
GOOGLE 10111

US005671412A

United States Patent 119 (11) Patent Number: 5,671,412
Christiano [45] Date of Patent: Sep. 23, 1997

[54] LICENSE MANAGEMENT SYSTEM FOR [S7] ABSTRACT
SOFTWARE APPLICATIONS . . .

An improved software license management system in accor-

[75] Inventor: Matt Christiano, Saratoga, Calif. dance with the present invention is disclosed. A license
server initializes a license database by receiving a package

[73] Assignee: Globetrotter Software, Incorporated. license description that includes componentlicense descrip-
Campbell, Calif. tions for component software products in a package.

Licenses for software products are also received, and license
21] Appl. No.: 508.829 records are created in the license database for components[21] Appl. No ; and suite packages, where each record includes a number of

(22] Filed: Jul. 28, 1995 licenses available to be checked out. A client computer
system can request a license for a component productin a

6

52] Ene Ch” veninsenenennrnnmennmnrinsinainnen,, GOK 17/30 package.A license is granted to the client whentheclientis
[52] U.S. CL. eersrrerrernene we 395/615 allowed to receive thelicense according toa license policy.
[58] Field of Search o.....c.eccesscsscssscssssseeseees 395/615, 186 When a component license is checked out, a linked suite

license is also automatically checked out. No other client
[56] References Cited thus may use a component license linked with the suite

license record unless another suite license is checked out.

U.S. PATENT DOCUMENTS The license management system also provides a number of
4,791,565 12/1988 Dunham et al. .mmnmmmine 395/186 MOdifiers to be included in license records, including an
4,924,378 5/1990 Hersey et al. 395/187 overdraft quantity, a fail safe indicator, a minimum license
5,014,234 5/1991 Edwards, Jr. w= 395/186 quantity, and a capacity indicator. A finder and a diagnostic
5,438,508 8/1995 Wyman a. 395/208 process can be implementedat the client computer system to
5,553,143° 9/1996 Ross et al. cecsssssessscsressreereseseeeee 80/25 find the license server over a network and provide a tool to

diagnose failures in the license management system.
Primary Examiner—Wayne Amsbury
Attorney, Agent, or Firm—Hickman Beyer & Weaver, LLP 70 Claims, 15 Drawing Sheets

16
CLIENT 12

19

PACKAGEP

 COMPONENTX

COMPONENTY

COMPONENTZ

1 GOOGLE 1011

2

U.S. Patent Sep. 23, 1997 Sheet 1 of 15 5,671,412

16

CLIENT

COMPUTER

CLIENT

COMPUTER

14

12

12

CLIENT

COMPUTER

12 Figure 1

CLIENT

19

PACKAGE P

COMPONENTX

COMPONENT Y

COMPONENTZ

Figure 2a

3

U.S. Patent Sep. 23, 1997 Sheet 2 of 15 5,671,412

PACKAGE CERTIFICATE a8
|

| 20 |
| PACKAGE DESCRIPTION “—
| 1) PACKAGE NAME——24 :
| 2) LIST OF COMPONENTS—— 26 |

| FOR EACH COMPONENT——28 |
| a) COMPONENT NAME—34
| b) COMPONENT VERSION——36 |

. c) LICENSE MULTIPLIER—37 |
| 3) PACKAGE VERSION—30 ,
| 4) SUITE INDICATOR—32

| 5) KEY._—33 :
wee

PACKAGE LICENSE ITEM

1) NUMBER OF PACKAGE LICENSES— 72
2) OTHER LICENSE INFORMATION-—42

3) OVERDRAFT, FAILSAFE, MINIMUM,— 44
CAPACITY VALUES/INDICATORS

Figure 2b

4

US. Patent Sep. 23, 1997 Sheet 3 of 15 5,671,412

INITIALIZE

LICENSE

DATABASE

 WAIT FOR

NEXT LICENSE
REQUEST

PROCESS

LICENSE

REQUEST

SEND STATUS
TO CLIENT

5

U.S. Patent Sep. 23, 1997 Sheet 4 of 15 5,671,412

Cy,
READ ALL PACKAGE
DESCRIPTIONS AND 65
STORE IN DATABASE

="
LICENSE ITEM

 ALL

LICENSE ITEMS
READ?

ENTER LICENSE
ITEM IN LICENSE NO

RECORD AND iS
ENTER RECORDIno THERE A PACKAGE
pittel DESCRIPTION HAVING

THE LICENSE VERSION
AND NAME?

 72

DATABASE

YES
74.

76 Is YES CREATE A
PACKAGE A LICENSE RECORD

SUITE? FOR SUITE

NO

YES IS NEXT
COMPONENT A 77

85 PACKAGE?

GO TO NO : YES

80

APPROPRIATE

LEVEL OR
PACKAGE

MORE

COMPONENTS
FOR CURRENT

PACKAGE AT CUR-

RENT LEVEL?

FOR THE NEXT
COMPONENTIN

PACKAGE, CREATE
A LICENSE RECORD

 83.

ANY REMAIN-

ING UNPROCESSED

COMPONENTSAT
HIGHER LEVELS

OR OTHER

PACKAGES?

82

 NO

6

USS. Patent Sep. 23, 1997 Sheet 5 of 15 5,671,412

(stant) 86 780
88

 ISA

LICENSE MULTIPLIER NO USE NUMBER
OF PACKAGE

PECIFIoneoy LICENSES AS $92

: NUMBER OF

YES LICENSES

MULTIPLY NUMBER OF

PACKAGE LICENSES BY

MULTIPLIER TO CREATE 92
NUMBER OF COMPONENT

LICENSES

 IS AN

OPTIONAL VERSION

SPECIFIED IN

94 USE PACKAGE
NO VERSION AS

 VERSION

COMPONENT? NUMBERIN
LICENSE

YES RECORD

USE OPTIONAL
98 VERSIONIN

LICENSE RECORD

MAKELINK TO SUITE

LICENSE,IF
100 APPLICABLE, AND

ENTERLINK IN

LICENSE RECORD

Figure 5
SYNTHESIZE A

102~| LICENSE KEY AND
PLACEIN LICENSE

RECORD

ENTERLICENSE DATA INTO

LICENSE RECORD AND ENTER {794
RECORDIN INTERNAL LICENSE

DATABASE

On

7

USS. Patent Sep. 23, 1997 Sheet 6 of 15 5,671,412

we

USE NUMBER OF

PACKAGELICENSES AS

NUMBEROF LICENSES

USE PACKAGE

VERSION AS VERSION

NUMBERIN LICENSE

RECORD

Figure 6
MAKE LINK TO SUITE

LICENSE,IF

APPLICABLE, AND
ENTERLINKIN

LICENSE RECORD

SYNTHESIZE A

LICENSE KEY AND

PLACEIN LICENSE

RECORD

ENTER LICENSE DATA INTO

LICENSE RECORD AND ENTER 120
RECORDIN INTERNAL LICENSE

DATABASE

8

US. Patent Sep. 23, 1997 Sheet 7 of 15 5,671,412

74, 1044, 104, 120.

ENTER OTHER

LICENSE
INFORMATIONIN 126

LICENSE RECORD

ENTER OVERDRAFT

QUANTITY IN

LICENSE RECORD

ENTER CAPACITY

VALUEIN LICENSE

RECORD

Figure /
ENTER FAIL SAFE

INDICATORIN
LICENSE RECORD

ENTER MINIMUM

QUANTITY IN
LICENSE RECORD

TOTAL # OF LICENSES

AVAILABLE = OVERDRAFT|135
QUANTITY + AUTHORIZED

LICENSELIMIT QUANTITY

ENTER LICENSE

RECORDIN
INTERNAL LICENSE

DATABASE

9

U.S. Patent Sep. 23, 1997 Sheet 8 of 15 5,671,412

(start) 142 ge

144 154 156

ISA

LICENSE AVAILABLE IS NO|SET STATUS
FOR REQUESTED PRODUCT LICENSE TO "NOT
USING RECEIVED NAME AND A FAIL SAFE AVAILABLE"

VERSION? LICENSE?

FAILUREIN
LICENSE

SYSTEM?

SET STATUS TO

FAIL SAFE

146 STATUS
IS

AVAILABLE LICENSE

A COMPONENTOF A

SUITE?

YES SET STATUS
TO

"AVAILABLE"
SET LICENSE REQUESTED

TO SUITE LICENSE
ASSOCIATED WITH 148

REQUESTED PRODUCT
152 (BONE)

Figure 8

10

U.S. Patent Sep. 23, 1997 Sheet 9 of 15 5,671,412

Coy a
ISA e

No Ca Figure 9

 LICENSE RECORD OF

THIS NAME AND VERSION

AVAILABLE IN

DATABASE?

MULTIPLY # OF

YESaoe beanie LICENSE UNITS
LICENSE? REQUESTED BY 127

RESOURCE

NO CAPACITY am
168 REQUESTED

nfae RECORD TO
LICENSE UNITS NEXT RECORD

SPECIFIED?

IS THERE

170 : ANOTHER RECORDIN
BER OFLICENSE LICENSE DATABASE

UNITS REQUESTED FOR REQUESTED_fYES
LESS THAN PRODUCT?
MINIMUM? NO 180

IS LICENSE
171._| SET NUMBER OF A FAILSAFE 178

UNITS TO LICENSE?
MINIMUM

174

IS # OF UNITS

REQUESTED PLUS #
OF UNITS IN USE BY USERS

IN LIST FOR THE REQUESTED

PRODUCT< AVAIL. # OF
UNITS IN DATABASE?

SUBTRACT THE NUMBER

OF DUPLICATE UNITS IN

USER LIST FROM THE
NUMBER OF UNITS

REQUESTED

172
YES

ADD REQUESTOR 176
TO USER LIST

11

U.S. Patent Sep. 23, 1997 Sheet 10 of 15 5,671,412

182 (stant) 184Na

LOCATE LICENSE|796
SERVER OR FILE

190

188 RUN YES IMPLEMENT
DIAGNOSTIC? DIAGNOSTIC

PROCESS

NO

SEND REQUEST TO SERVER

194 WITH PRODUCT NAME, (one) 192
VERSION; UNITS REQUESTED;
ENVIRONMENTAL RESOURCE

CAPACITY

196.|RECEIVE STATUS

MESSAGE FROM

SERVER

200

198 LICENSE SET LICENSE
ACCESS GRANTED REQUEST STATUS

BY SERVER? TO "GRANTED"

 204 SET LICENSE
REQUEST STATUS

TO "DENIED"

202 (BONE)

Figure 10

12

US. Patent Sep. 23, 1997 Sheet 11 of 15 5,671,412

oa

LOCATE LICENSE|78° (one)SERVER ORFILE

188’ YES|IMPLEMENT
DIAGNOSTIC

DIAGNOSTIC? BRODCGE
NO

IS THERE

A RECORDIN LICENSE

DATABASE FOR REQUESTED

PRODUCT?

Figure 11 192"

182.

190°

206

SEND REQUEST TO SERVER WITH

PRODUCT NAME, VERSION; UNITS
REQUESTED; ENVIRONMENTAL

RESOURCE CAPACITY

RECEIVE STATUS

MESSAGE FROM
SERVER

LICENSE

ACCESS GRANTED

BY SERVER?

YES|SET STATUS
TO

"GRANTED"

IS THERE

ANOTHER RECORDIN
LICENSE DATABASE FOR

REQUESTED PRODUCT2

SET REQUESTED
RECORD TO NEXT

RECORD

SET LICENSE

SET LICENSE
REQUEST THE LICENSES FOR

STATUS TO THE REQUESTED Bleyys
DENIED BUT PRODUCTFAIL SAFE "DENIED"

OKAY" LICENSES?

204'

13

U.S. Patent Sep. 23, 1997 Sheet 12 of 15 5,671,412

220

186, 186'

224

DID USER

SET ENVIRONMENT

VARIABLE FOR

SERVER ORFILE

ADDRESS?

YES|RETURN LICENSE

ADDRESS OF

ENVIRONMENT
VARIABLE

RETURN IS ALICENSE
DEFAULT FINDER NODE OR
LICENSE BACKUP FINDER NODE
ADDRESS AVAILABLE?

SEND USER NAME,
HOST NAME, DISPLAY
NAME, VENDOR NAME,
AND PRODUCT NAME

TO LICENSE FINDER AT
FINDER NODE

 READ LICENSE

ADDRESS AND

RETURN

Figure 12

14

U.S. Patent Sep. 23, 1997 Sheet 13 of 15 5,671,412

236
Ne

READ

CONFIGURATION 240
FILE

GET NEXT

CLIENT

REQUEST

242

LOOK UP ADDRESS

BASED ON
USER/HOST/ 244

DISPLAY/VENDOR/

PRODUCT

RETURN ADDRESS
TO CLIENT 2a

Figure 13

15

U.S. Patent Sep. 23, 1997 Sheet 14 of 15 5,671,412

oy190, 190°

ATTEMPT LICENSE CHECK OUT FOR 252
DESIGNATED PRODUCT

256

254 YES OUTPUT "OK"
AND EXIT

 EXAMINE NEXT LICENSE
RECORD FOR

DESIGNATED PRODUCT

258

DONE WITH

LICENSES FOR DESIGNATED

PROGRAM?

<7 262

OUTPUT A DESCRIPTION

OF LICENSE FOR 264
EXAMINED RECORD

ATTEMPT CHECK OUT

FOR DESIGNATED 266
PRODUCT

OUTPUT STATUS }--268

NO STATUS = "CAN
CONNECT"?

YES

Figure 14
270

USER
WISHES TO RUN

CONNECTION

DIAGNOSTICS?

YES

NO

272

 IMPLEMENT

CONNECTION 274
DIAGNOSTICS

15

16

USS. Patent Sep. 23, 1997 Sheet 15 of 15 5,671,412

276 274(start) v
288

START AT FIRST
278

YES NETWORK ADDRESS

PAST END

OF ADDRESS

RANGE?

ON SERVER NODE

 286

NO
ATTEMPT

CONNECTION AT 280
THIS ADDRESS

INCREMENT

284~| NETWORK NO 282
ADDRESS

YES

SEND MESSAGE

TO DETERMINEIF

CORRECT

LICENSE SERVER

OUTPUT THAT

UNKNOWN

PROCESSIS AT
THIS ADDRESS

290
294

OUTPUT THAT

WRONG SERVERIS AT

CORRECT

LICENSE

SERVER? THIS ADDRESS

298 YES

OUTPUT THE 300
CORRECT ADDRESS

FOR THE SERVER

Figure 15

17

5,671,412
1

LICENSE MANAGEMENT SYSTEM FOR
SOFTWARE APPLICATIONS

BACKGROUND OF THE INVENTION

The present invention relates generally to a license man-
agement system suitable for licensing and managing the
usage of software products.

Software piracy has long been a problem that has plagued
software developers. The unauthorized copying of software
products by users often causes significant losses of sales for
software developers. Accordingly, a variety of protection
schemes have been developed to protect software from
unauthorized copying and whichalso allowalegitimate user
to operate the software.

A popular approach to protect software is to provide
licenses to endusers rather than selling the software directly
to those users. A user is licensed by the software vendor to
use the software under certain conditions that prevent unlim-
ited use and/or copying of the software. Software vendors
use different methods or “license policies” to license soft-
ware. Commonly used license policies include “node-
locked”licenses, “floating” or “concurrent usage”licenses,
“site” licenses, and “metered” licenses, each of which uti-

lizes a different way of determining when or where a user
can use a software program. The “node-locked” license
allows a program to be used only on a specific computer
node in a network (or by a specific user). One method of
assigning a uniqueidentifier to a computer system is to use
hardware means, such as a hardware key or other methods
that are well known. The “floating” or “concurrent usage”
license allows only a predetermined number of copies of the
software to run simultaneously on the network, regardless of
the node on which the software is running. The “site” license
allows the licensed software to be used anywhere within a
licensed company or other defined area or organization.
Finally, the “met ” license allows a predetermined num-
ber ofactivations or uses of the program, or a predetermined
amount of time which the program can be run onacentral
processing unit (CPU) of a computer.

Software vendors can provide other features to a software
license policy. For example, the level of enforcement of the
license can vary in differentlicenses. A software vendor can
provide a high level of enforcement, which might never
allow the program to be used if the license is violated. A low
level of enforcement can also be provided by the software
vendor, so that, for example, a program can still be used
whenthe license is violated and a warning is issued to the
user.

Many software vendors use a license management system
to enforce a software policy. Such a system typically
includes a computer network andalicense server or “license
manager” that is often provided at a server node or similar
host location on the network which all computer nodes on
the network can access. The license manager can receive
requests from computer nodes for specific licenses and send
out answers to those requests to the specific nodes. The
license manager can keep track of all the various programs
licenses that have been “checked out” by client computer
systems and can determine when a request would violate a
license. For example, the license manager can check the
node identification of a client computer that requests a
license for a node-locked program. Or, the license manager
can keep track of how many programs or licenses are being
used at once under a concurrent use license, or how long a
program has been used under a metered license.

One problem that has been seen in conventional license
management systems concernsthe licensing of “packages”

30

35

40

45

55

65

17

2

or “suites”. A package includes several component programs
andlicense information for each component program. Suites
are a type of package in which a combinationof two or more
software programs that were originally sold separately but
have since been combined and sold as a single package for
marketing purposes. For example, Microsoft Office® sold
by Microsoft Corporation includes three component pro-
grams that were originally sold separately: Microsoft
Word®, Microsoft Excel®, and Microsoft Power Point®.
Using current license managers, no package license for the
combined products is available to allow the suite to operate
under the license manager. Also, current license managers
do not have the capability to allow the degree of interaction
of licenses necessary to implement such a package license.
For example, the use of one component program ofthe suite
should tie up the use ofthe other component programs in the
suite for a single license available for the package. Thus,
with a single package license, one user could not operate one
program in the package while another user operated another
program in the same package. Prior art license managers are
not capable of delegating program usage for this type of
program organization.

Another problem that has been encountered with existing
license management systems is the ability of a client com-
puter node to locate a license server to retrieve a license for
a designated program. The problemsoffinding a server on
a network are made more difficult in a license managed
network, since license management servers cannotbe freely
moved due to the nature and security of licenses. For the
same reason, it is not desirable that license servers be

duplicated on a network to assist in locating a server. The
variety of existing methodsfor locating a license server each
have their own problems. Some systems usea license file
which contains the network address location of the license

server. However, this license file system requires increased
administration overhead at large sites when new nodes are
added to the network. Other systems use a predetermined
server location; however, this type of system can cause
problems when two software vendors choose the same
network address for the license server, resulting in a conflict,
or when the license server node is changed. Still other
systems utilize a network broadcast to locate a license
server. However, in large networks, such broadcasts are
generally unacceptable due to a number of problems created
by the broadcasts, such as excessive networktraffic. Finally,
still other systems utilize a general purpose location broker.
However, such location brokers typically utilize network
broadcasts, which are unacceptable in large networks, as
well as requiring large administrative overhead.

Still another problem in prior license management sys-
tems involves a lack of flexibility in distributing licenses to
requesters. In many situations, a requester may not have
access to a program duetoastrict license policy but may
have special need for such access due to emergencies or
other needs. Or, a failure in the license management system
may prevent a requester from using a program in prior
systems, even when therequester has a special or emergency
need for use of a program. Also, the platform of the client
computer system may play arole in determining the amount
of required licenses for a program used on that platform.
Since some platforms can process data much quicker than
other platforms, the faster platforms can be required to
consume more licenses than a slower platform. Theability
to distribute licenses when taking into account these factors
does not exist in prior license management systems.

Yet another problem found in existing license manage-
ment systems is that there is no ability to diagnose problems

18

5,671,412
3

in the system. Since a license management system is fre-
quently used as a type of security system for the licensed
software. many aspects of the operation of the system are
poorly documented to prevent unauthorized use of licenses.
However. a side effect of this poor documentation is that
failures in the system are difficult to diagnose. If even a
simple. minor function of the license management system
fails. a network administrator has few tools to try to remedy
the failures.

SUMMARY OF THE INVENTION

An improved software license management system in
accordance with the present invention is disclosed. A license
server of the present invention provides package and pro-
gram licenses and allows several license modifiers to be
stored in license records to provide a licensor with a variety
of options and flexibility. A server address finder and diag-
nostic function mitigate common license server network
problems.

The license management system includes a license server
that initializes a license database by first receiving one or
more packagelicense descriptions, each describing a pack-
age license associated with a software product including
componentlicense descriptions describing licenses for com-
ponent products in the package. License items are then
received for software products, where a license item can be
a package license item or a standard license item. If the
license item is a standard license item, a standard license
record is entered in the license database.If the license item

is a package license item that matches one of the package
license descriptions, a componentlicense record is created in
the license database for each componentlicense description
in the matched package license description.

Each ofthe license records includes a numberoflicenses

available for the software product associated with thelicense
record. The licenses are able to be checked out by a client
requesting a license for the associated software product.
Additionally, the package description can include a suite
indicator for indicating when a packageis a suite. When a
packageis a suite, a suite license record for thesuite license
description is also created in the license database. The
component license record preferably includes a link to the
suite license record. Preferably, the component license
record and the suite license record include a number of

license units indicating a number of timesthat a license may
be checked out from the license database by a client. When
a license provided by the component license record is
checked out. a license provided by the suite license record
linked to said componentlicense recordis also automatically
checked out. Thus, when a suite license is checked out by a
client. no other client may use a componentlicense linked
with the suite license record unless anothersuite license is
checked out.

Each componentlicense description preferably includes a
name and a version number of the associated software

product, where the software product is a software program.
Alternatively. the component software product can be a
package. so that packages can be componentsof higher level
packages. The componentlicense description also includes
a license multiplier for determining how many component
licenses may be checked out by a client.

The license records stored on the license database can

each store a number of modifiers. An overdraft quantity
indicates a numberof licenses that can be providedto clients
over the authorized amountof licenses stored in the license
records. A fail safe indicator indicates that licenses can be

10

15

30

35

45

50

55

60

65

18

4

provided over the amountof licenses stored in the license
record to clients when a failure occurs in the license man-

agement system. A minimum quantity indicates a minimum
amountof licenses required to be checked outto allow the
designated program to be used by the client. A capacity
indicator indicates that the license record provides a required
number of licenses to a requesting client dependent on an
environmental resource capacity of the requesting client
computer system. The environmental resource capacity can
be determined by processing speed ofthe client platform or
other client environment characteristics.

The license server provides licenses from the license
database to client computer systems to allow the client
computer systems to use licensed software products. A
request is received from a client by the server. The request
can be for a component license for a component product in
a package. A package (suite) license is granted to the client
when the client is allowed to receive the package license
accordingto a license policy. The package license allows the
client to use the requested component product. The compo-
nent license and package license are denied to the client
when the client is not allowed to receive the component
license or the package license according to the license
policy. The component license is not denied when the
component license and the package license are fail safe
licenses. When a packagelicense is granted,different clients
are prevented from receiving a license for a component
product included in the package. Preferably, when the pack-
age license is granted to a client, the client is added to a user
list for the requested product. To determine if a client is
granted a license for the package, the server checks if the
number oflicenses requested plus licenses in use by clients
in the user list is less than or equal to the available number
oflicenses for the requested product.

A client computer system requesting a license for a
designated software product locates a license server on a
license management network. This can be accomplished by
sending a request to a finder located on the network to
provide a license address for the license server. A license
request is then sent by the clientto the located license server.
The request preferably includes the environmental resource
capacity of the computer system that determines how many
licenses are required by the computer system to use the
designated product. A status message is received from the
license server that provides information about whether the
requested license has been granted or denied. A license
policy associated with the designated product may be
enforced based on the information inthe status message. The
license policy may not allow the designated program to be
used whenthe requested license has not been granted, or the
license policy may provide a warning on the computer
system and allow the designated product to be used. The
program instructions for locating, sending and receiving can
also be implemented as part of a diagnostic process on the
computer system. The diagnostic process preferably can
check addresses on the network to find the license server

when the license server cannot normally be located.
Thefinder is used for locating the license server on the

network implementing a license management system. The
finder receives a request from a client computer system for
a license address of the license server. A license address for

the license server is looked up in a table, where the license
address is determined by client information in the request.
Finally, the license address of the license server is provided
to the client computer system. The client information can
include parameters such as a name of a user on said client
computer system. a host nameof the client computer system,

19

5,671,412
5

a terminal name of said client computer system, and/or
vendor nameofthe client software.

The present invention advantageously provides an
improved software license management system including a
license server that provides program licenses and package
licenses, allowing program licenses to be collected and
organized by a licensor in a variety of ways. In addition,
suite licenses prevent more than a single user from using any
component of the suite. The license modifiers, including
overdraft, minimum, fail safe, and capacity, allow the licen-
sor to provide a variety of options and flexibility to clients.
The server address finder and diagnostic function of the
Present invention allow common license server network
problems to be efficiently circumvented or alleviated.

These and other advantages of the present invention will
become apparentto thoseskilled in the art after reading the
following descriptions and studying the various figures of
the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by reference to the
following description taken in conjunction with the accom-
panying drawings in which:

FIG. 1 is a schematic diagram of a license management
system incorporating a license server and client computer
systems;

FIG. 2a is a schematic diagram of the license server, a
client computer system, and an internal license database;

FIG. 2b is a diagrammatic illustration of a license certifi-
cate received by the license server;

FIG. 3 is a flow diagram illustrating a method of imple-
menting the license server of FIG. 2;

FIG. 4 is a flow diagram illustrating a method ofinitial-
izing the license database (step 54 of FIG.3);

FIG. 5 is a flow diagram illustrating a method of creating
and entering a license record in the license database for a
component in a package (step 80 of FIG. 4);

FIG. 6 is a flow diagram illustrating a methodofcreating
and entering a license record in the license database for a
suite (step 78 of FIG. 4);

FIG.7 is a flow diagram illustrating a method of entering
license data into a license record and entering the license
record in the license database (step 74 of FIG. 4);

FIG.8 is a flow diagram illustrating a method of process-
ing a license request from a client (step 58 of FIG. 3);

FIG. 9 is a flow diagram illustrating a method of deter-
mining if a license is available for a requested product (step
144 of FIG.8);

FIG. 10 is a flow diagram illustrating a method of the
present invention for requesting a license from a client
computer system;

FIG.11 is a flow diagram illustrating an alternate method
of the present invention for requesting a license fromaclient
computer system; .

FIG. 12 is a flow diagram illustrating a method oflocating
a license server usingafinder of the present invention (step
186 of FIG. 10);

FIG. 13 is a flow diagram illustrating a method of
implementing the license finder of the present invention;

FIG. 14 is a flow diagram illustrating a method of
implementing a diagnostic process of the present invention
(step 190 of FIG. 10); and

FIG. 15 is a flow diagram illustrating a method of
implementing the connection diagnostics of the diagnostic
process of FIG. 14.

10

30

35

60

19

6
DETAILED DESCRIPTION OF THE

INVENTION

The present invention relates to software license manage-
ment systems. Referring initially to FIG. 1, a license man-
agement system 10 suitable for incorporating the present
invention will be described. As seen therein, individual

client computer systems 12 are interconnected by network
connections 14. Each computer system 12 serves as a node
in the network having its own network address so that other
computer systems 12 can send and receive data from any
other computer system 12 in the network system 10. As is
well known to those skilled in the art, a client computer
system 12 typically includes a microprocessor and several
components coupled to the microprocessor, such as memory
(RAM, ROM), input components such as a keyboard, input
tablet, etc., and output components such as a screen display,
printer, etc.

Also included in the network system 10 of the present
invention is a license server 16, which is connected in

network system 10 like computer systems 12. License server
16 may typically include hardware components for imple-
menting license management processes, such as a
microprocessor(s) or central processing unit (CPU) and
associated components coupled to the microprocessor by a
main bus, such as random access memory (RAM), read-only
memory (ROM), input/output components, storage devices,
etc., as is well known to those skilled in the art. License
server either includes or has access to a database imple-
mented on in a storage medium such as memory, disk space,
or the like.

The license server 16 serves as a “license manager” for
the computer systems 12 and for other servers (not shown)
that may be included in system 10. License server 16 stores
licenses for software programs available to computer sys-
tems 12 and assignsor “checks out” these licenses to client
computer systems 12 that requesta license. Herein, the term
“license” is used to designatepermission or authorization for
a client computer system to use or “implement” (run) a
single designated software product, such as a program, or to
view data incorporated in the software product. The vendor,
supplier, or manager (“licensor”) of the software typically
providesthe licenses for users on the network. For example,
if a user wishes to operate a designated computer program
on a particular computer system 12 (i.¢., run or execute the
program on the central processing unit (CPU) of that com-
puter system), then the program (or a license program)
instructs the computer system to send out a license request
over license managementsystem 10 to the license server 16.
The license server 16 receives the license request and
determines if the requesting client computer system is
allowed check out or be assigneda license for that program,
i.e., allowed to mun or use the program. Preferably, a license
is checked out to a client computer system only if the
requesting computer systemis allowed to have the requested
license according to a predetermined software license
policy. To use multiple copies of the designated program, a
client would typically have to check out an equivalent
number of licenses.

Many types of software license policies can be imple-
mented. For example, a “node-locked” policy allows only
one computer system at a specific node on the license
management system 10 to use a designated software prod-
uct. Thus, under a node-lockedpolicy, a computer system 12
would be able to check out a license only if a license were
available on the license server which matched that computer
system’s node, address, serial number, user name, or other

20

5,671,412
7

identifier. In a “floating” or “concurrent usage” type of
license policy. a predetermined number of copies of a
program are allowed to be run simultaneously on license
management system 10. A computer system 12 is thus able
to check out a concurrent usage license for a program only
if the maximum allowed number of copies of that program
are currently not in use by other computer systems, i.e., if
one of a limited number of licenses for that program is
available to be checked out. The license server keeps track
of how manylicenses are currently checked out and thus can
quickly determine if the maximum numberoflicenses for a
program are in use. In a “site” license policy, a computer
system 12 can check out a license for a program if the
computer system is located in a predetermined location,
such as on license management system 10, within a com-
pany or other defined organization. etc. License server 16
can determine where a requesting client computer system is
located by examining other information included in the
license request, such as the node addressorspecific location
data. In a “metered”license policy, a predetermined number
of activations of a program or a predetermined amount of
time during which the software can be used on a computer
are allowed. When a client computer system 12 requests a
license in such a policy. the license server can refer to a
record of how many times that program has been activated,
or how much run timeof the program has been used, and can
grant the license if appropriate. The license server can also
keep track of the elapsed time while the computer system is
implementing the program to determineif the allowed time
runs out.

The present invention makes use of the concurrent usage
license policy, as described above, amongother policies. In
concurrent use policy, a number of available program
licenses are made available for each program that is
licensed. These licenses can be specified in “license units”,
as described below. Thus, once a single program license is
“checked out” by one computer system, another computer
system cannot use that license and must check out (be
assigned) another license for that program, if any are still
available. This concurrent use policy can also be used in
conjunction with other license policies, such as the metered
policy and/or the node-locked policy. For example, a num-
ber of licenses can be made available from thelicense server

16, and the license server can also keep track of the node
identification of a client or how many minutes (or
activations) remain for the use of each license.

Whena license is violated by a client computer system,
the license server preferably returns a status messageto the
Tequesting computer system thatindicates that the computer
system would be violating the license policy when using the
designated program. The client computer system or program
then decidesthe actionto take if a violation has occurred. In
some embodiments, the server can decide this action. The

action taken dependson the level of enforcement desired by
the provider of the license policy. Different degrees of
enforcementto the use of the computer program ontheclient
computer system can be provided depending on the needs of
the policy provider. For example, if a lenient enforcement
technique is implemented, and if license request for a
designated program is denied, then the violating computer
system can display a simple warning to the user while still
allowing the designated program to be run on the computer
system. If a strict enforcement technique is provided, and a
license request is denied. the computer system 12 may
immediately cause the designated program to quit on the
computer system and not allow the program to be activated
and used as long as the license policy is violated.

25

30

35

50

55

65

20

8

Alternatively, the license server can decide the action to take
if a license violation has occurred and can transmit the

decided action to the client computer system, which can
implement the action.

FIG. 2a is a block diagram illustrating a client computer
system 12 and license server 16 having received a package
“certificate” and providing an internal license database 19 of
the present invention. A “package”, as referenced herein,
designates a generic grouping ofdifferent component prod-
ucts included within that package. The component products
are typically programs, although in an alternate
embodiment, packages can be components of higher level
packages. The term “software product” thus is considered to
be a program, package. or other similar type of licensed
software product. “Program” refers to any software process,
such as an application program (word processor,
spreadsheet, drawing program, etc.), utility program, resi-
dent or background program, etc. For example, a package
can include different component programs that are conve-
niently specified within a package heading. In addition,
some packages may be specified as “suites”, which are
packages that provide licenses of the components of the
suite to only one user for each suite license. Thus, if a
non-suite package P had components X, Y, and Z, one user
could use component X, and a different user could use
component Y without checking out a new packagelicense.
If the package P were a suite, however, then only one user
could use components X, Y and Z. A different user would
have to check out a new license for package P to be able to
use any of the components.

Internal database 19 can be implemented on a standard
storage device or memory device coupled to the license
server 16, as is well-known to those skilled in the art, and

can be organized as a license file. For example, a hard drive
can store license data. Preferably, as described below, the
license server creates the internal license database 19 after

receiving standard licenses and/or package certificates from
an external file or other input source, where each package
certificate includes a package description and package
license data. Alternatively, the package description of the
certificate can first be read, and the package license data can
be retrieved using a pointer in the package description. Or,
the internal representation of the package license data can be
stored in an external file instead of database 19 to encode the
data. As used herein,the term “license database” refers to the
internal license database 19.

The internal license database 19 stores entries for each

license received from the external file. If a package certifi-
cate is received from the external file, the license server
examines the package description and determines how many
license records are written into the internal license database

in an initialization procedure (described below), where each
license stored on the internal license database is stored as a
license record. The license server examines these license

records to determine whether a requesting computer system
should receive a license for a designated software product.
as described subsequently.

FIG. 2b is a diagrammatic illustration of a package
certificate 18. A package certificate includes a package
license description 20 and package license item 22. Package
license description 20 includes five main fields in the
described embodiment, including package namefield 24,list
of components field 26, component descriptor fields 28,
package version field 30, and suite indicator field 32. Addi-
tional fields can be included in other embodiments.It should

be noted that a standard, non-package license would include
only a license item similar to license item 22 and not a
description 20.

21

5,671,412
9

Package namefield 24 stores the package name, which is
the identifier of the package. This name can be searched by
license server 16 to match a package license to a request for
a package license. List of components field 26 includes all
the component software products that are included within
the package product namedin field 24. As described above,
a package includes at least one component product, and
typically includes multiple component products that are
organized in the package. Each componentlisted in field 26
has a name oridentifier field 34, similar to packagefield 24,
which stores a name that can be matched with a request from
a client computer system for a particular component license.
Each component also includes a version field 36 which
stores the version of that component program. Due to
software companies continually updating the versions of
component programs, and due to new licenses for new
versions ofthe programs being sold by software vendors,the
version number can be significant in determining if the
request for a component program matches a component
included in the package. Also included for each component
is a numberoflicenses field 37 which provides a license
multiplier for each component. This multiplier is multiplied
by the number of authorized package licenses stored in the
license data portion 22 of the certificate to determine the
number of authorized component licenses available, as
described in greater detail subsequently. The component
license information stored in the package description 20 can ~
be considered “component license descriptions.”

Package versionfield 30 stores the version of the package,
similar to the component version field 36. Suite indicator
field 32 stores a flag indicating if the current package is a
suite or a non-suite package. A suite, as described above, is
a package whose components may only be used by the user
who checked out the suite license or any of the component
licenses of the suite. Key field 33 stores a key that is used
to verify the package description, as described subsequently.
The fields of package description 20 can be arranged in a
wide variety of ways, and may include additional fields in
other embodiments.

Package license item 22 includes three portions in the
described embodiment, including the number of package
licenses portion 40, which stores the number of available
package licenses (or “license units”, as described
subsequently)for that package (assuming a concurrent usage
license policy). Other information portion 42 stores other
licensing information that may be pertinent to the package
license, such as a date of expiration of the license record, a
key for verifying that the license item 22 has not been
tampered with, and other desired information as is well
knownto those skilled in the art. Options portion 44 stores
optional “license modifier” information pertinent to licens-
ing features of the present invention, including an overdraft
quantity, a failsafe indicator, a minimum quantity, and a
capacity indicator. These modifiers of the present invention
are described subsequently with respect to FIG. 7. In the
described embodiment, each componentlicense of a pack-
age license has the same modifier information,i-e., the same
overdraft quantity, failsafe indicator, etc, Alternatively, each
componentlicense (and suite license, if applicable) can be
specified to have its own individual license modifier infor-
mation. For example, a component’s name and version can
be specified in package description 20 along with any
license modifiers that apply only to the license for that
component. ;

FIG. 3 is a flow diagram illustrating a process of imple-
menting the license server 16 of the present invention as
shown in FIG. 1. This process, for example. can be imple-

30

40

50

55

60

65

21

10

mented with license server software on a microprocessor or
CPU oflicense server 16. Standard associated components
can be coupled to the microprocessor, such as random access
memory (RAM), read-only memory (ROM), input/output
components, storage devices, etc., as is well knownto those
skilled in the art.

The process begins at 52, and, in step 54, a license
databaseis initialized. In this step, package descriptions 20
and license items 22 are read from a external file, external
database, or other storage medium whichstores license data
and packagelicense descriptionsfor the license server. The
software licensor can conveniently provide standard and
package licenses on this external file. The read license
descriptions and licenses are added to license database 19
for the license server. The internal license database 19is also

referred to herein as a “license file” on which the processed
database data is organized. The license file may be acces-
sible to client computer systems in some embodiments. Step
54 is described in greater detail below with respect to FIG.
4. In addition, other steps well-knownto those skilled in the
art would be performed before and after step 54 to imple-
mentthe licenseserver, such asinitializing network software
and processes, bookkeeping steps such as allocating internal
variables, etc.

In next step 56, the license server waits for the next
license request from a client computer system 12 as shown
in FIG. 1. Typically, a license request is a message sent by
a client 12 which includes identifying information about a
designated product for which a license is being requested,
such as an identification of the product and the version
number of the product. Herein, the “designated product” or
“requested product” is a program, package, or other licensed
product for which a license is being requested. Other infor-
mation can also be included in the license request, such as
an identification of the computer system 12 which is sending
the request (as in a node-locked policy). The time or number
of activations which have already been used on the desig-
nated program (in a metered policy) and the physical or
organizational location of the client computer system (in a
site license policy) can also be providein the license request.
In the described embodiment, a concurrent usage license
policy is implemented that provides a predetermined number
oflicenses for computer systems on the network, so that the
minimum information in the license request is the identifi-
cation or nameof the designated product for which a license
is requested. The request is described in greater detail with
respect to the client requesting process of FIG. 10 and FIG.
11. In addition, the license request can be decryptedif it was
encrypted when output by the client. Such encrypted and
decrypted requests, and other security measures to prevent
the user from fraudulently obtaining licenses, are well
knownto those skilled in the art.

Once a license request is received in step 56, then step 58
is initiated, in which the license request is processed. This
includes checking the status of the licenses, the requester,
and thelicense policy and determining if a license should be
provided to the requester. This step is described in greater
detail with respect to FIG, 8. In next step 60, the license
server 16 outputs the resulting status as a status message to
the client computer system. The status message includes
information about whether the license is granted or denied.
If the license is granted, then the status message indicates to
the designated product that it may be used on the computer
system, as is well knownto those skilled in the art. If the
license is denied, the status message can include information
depending on the desired enforcement in the licensing
system. For example, if a high level of enforcement is

22

5,671,412
11

desired, the status message includes a license denied signal
that does not allow the designated product to be used on the
requesting computer system. If a low level of enforcement
is desired, the status message can cause a warning that
indicates that the license has been violated, butstill allows

the designated product to be used by the requesting com-
puter system. The denied signal can also include other
information concerning other features of the present
invention, such as a fail safe status, as described subse-

quently. The process then returns to step 56 to wait for
another license request.

FIG. 4 is a flow diagram illustrating the step 54 of
initializing the license database as shown in FIG. 3. The
process beings at 64. and, in step 65, all the package
descriptions are read from an external file, external database,
or a list of license descriptions and data otherwise input to
the license server (referred to as the “external file” herein).
Each item in the external file is read and examined to

determine if it is a package description 20. This can be
determined, for example, by checkingif the item starts with
the term “package.” In addition, each package description
can be verified by the server as authentic and unmodified as
a security measure to prevent unauthorized access to the
componentlicenses. Preferably, the key stored in field 33 of
each package description can be examined by methods well
known to those skilled in the art to verify the package
description, and package descriptions that do not have a
correct key are ignored. Each found and verified package
descriptionis then stored in the internal database 19 or other
internal memory space in license server 16. A package
license description 20 is detailed with respect to FIG. 25, and
includes information on identifiers for the package and the
componentlicenses included in the package. An example of
a package license description is shown in Table 1, below.

PACKAGEP 1.00 KEY COMPONENTS="X:2:3.0 Y Z
AxuL5 B:7”

OPTIONS=SUITE

TABLE 1

This item is designated as a package license description by
thefirst string. The secondstring “P” designates the name of
the package, and the third string “1.00” designates the
version number of the package. The “KEY”provides an
authentication, such as an X-digit number or string of
characters, which allows the server processto verify that the
package description has not been tampered with. The server
can verify the key using a known algorithm, for example.
Other license verification information can be stored in the

license description as well. The component descriptions
included in the package license description are specified
after the string “COMPONENTS”, where each component
description is separated by a space. The “OPTIONS”string
specifies any options for the package license. These and
other portions of the package license description are
described in greater detail below.

In step 66, the next license item is read from the external
file. The retrieved license item can be a standard license

item. designating a numberof licenses (license units) for a
single program. as is well-known to those skilled in the art,
and mayalso include other information such as the license
modifiers of the present invention. The license item can also
be a package license item 22 that includes a number of
licenses that are applied to each component specified in an
associated package description 20. The license items (and
license records)in the described embodimentare designated

30

aa.

45

50

55

65

22

12

by the term “FEATURE”, as shown below.In addition, each
license data item retrieved in step 66 is preferably verified
and authenticated by the license server using the key stored
in the license data item. This verification is similar to that

described above in step 65, with the exception that license
items are typically only usable on a single license server, as
is well knownto those skilled in the art. and thus the key
may include specific server information. Package descrip-
tions are not necessarily specific to any licenseserver,so that
the key may be more generic.

In step 68, it is determined whether all license items have
been read, i.e., if there are no more license items to poten-
tially add to the license database of the license server. If all
license items have been examined, then the initialization
process is complete at step 70. If notall license items have
been examined, then the process continuesto step 72. where
it is determined if there is a package description having the
license item’s version and name,i.e., whether the license

item matches a package description 20 that was read and
stored in step 65. This is preferably determined by compar-
ing the license item’s name and version to the name and
version of each package description 20. If there is not a
matching package description, then the currentlicense item
describes a standard license. A standard license item typi-
cally is associated with a single program or product, as is
well known to those skilled in the art. Step 74 is then
implemented, in which the license item is entered into a
license record. The license record is then entered into the

internal license database. The process involvedin step 74 for
the present invention is described in greater detail with
reference to FIG. 7. The process of FIG. 4 then returns to
step 66 to read the next license item from the external file.

If, in step 72, the license item matches a package descrip-
tion and is therefore a package license item 22, then the
process continues to step 76, whereit is determined whether
the associated packageis a suite. As explained above,a suite
is a type of packagethatlimits the use of every component
in the package to one user or computer system. In the
examplelicense description of Table 1, a suite is designated
by the OPTIONSstringat the end of the package description
20. If the package is a suite, then, in step 78, a separate
license record is created for the suite and entered into the

internal license database. This separate suite license record
is used to keep track of the number of suite licenses in use
at any particular time, as described below. Step 78 is
described in greater detail below with respect to FIG. 6. A
license record is not created for a non-suite package, since
such a package does not regulate the licenses of its compo-
nents.

After step 78, or if the package is not a suite in step 76,
the process continues to step 77, in which the next compo-
nent in the package is checkedto determineif it is a package.
In an alternate embodiment of the present invention, pack-
ages can be specified as components of higher level pack-
ages. The child package would be at a lower hierarchical
“level” than the parent package in the complete package
structure. Thus, if the next componentin the packageis also
a package (by checking the list of packages found in step
65), the process returns back to step 76 to check if the
packageis a suite. If the next componentis not a package,
ie.. the component is a regular license. then the process
continues to step 80, where a license record is created in the
license database for the next component program described
in the packagelicense description 20. If this is the first time
implementing step 80, then a license record is created for the
first component program in the package description 20 and
entered in the license database. The component license

23

5,671,412
13

records are created from information in the package license
description, such as in Table 1. Step 80 is described in
greater detail below with respect to FIG.5.

In step 82, the process checks if there are more compo-
nents in the currently examined package at the current
hierarchical level of packages. If so, the process returns to
step 77 to check if the next component in the packageis a
package, as described above. If there are no more
components, the process continues to step $3, whereit is
determined if there are any remaining unprocessed compo-
nents at higher levels or in other packages in the hierarchy.
If so, the process goes to the appropriate hierarchical level
or package in step 85. The appropriate level can be deter-
mined by a recursive method to process each branch of the
hierarchy before processing another branch, or by other
methods as are well known to those skilled in the art. The

process then returns to step 77 to check if the next compo-
nent of the current package is a package. If no unprocessed
components remain in the package structure in step 83, then
the process returns to step 66 to read the next license item
from the external file. Ifpackagesare not being implemented
as components of other packages, then steps 77, 83, and 85
can be omitted from the above process.

The process of FIG. 4 allows a software licensor to
specify and store a number ofcomponent licenses using only
one package description 20 and packagelicense item 22 in
the external file. The component license details are deter-
mined from one set of package license data. This provides a
convenient method to organize licenses for related programs
and to specify many component licenses in a format that
saves storage space and transmission and data entry time.

FIG.5 is a flow diagram illustrating step 80 of FIG.4,in
which a license record is created and entered in the license

database for the next component program in the examined
package. The process begins at 86. In step 88, the process
determines whether a license multiplier is specified for the
currently-examined component. A license multiplier, as
referred to herein, is a quantity that is stored in package
license description 20 which allowsthe licensor to designate
a specific amount of component licenses for each component
description in the package description.If a license multiplier
is specified, then, in step 92, the number of package licenses
is multiplied by the license multiplier to create the number
of available componentlicenses, and that number is entered
in a created license record. The number of packagelicenses
is known from the packagelicense item 22. This number can
also be referredto as “license units” (explained below). For
example, in Table 1, the number after the first colon in a
component description is the component multiplier; if no
value is specified, then the value is assumedtobe 1. Package
P thus includes Component X with a license multiplier of 2,
so that in each license for PackageP, there are two licenses
for Component X automatically specified. If there is no
license multiplier specified in the component description,
then step 90 is implemented, in which a number of compo-
nent licenses is entered in the license record equal to the
number of package licenses, i.e., a multiplier of 1 is
assumed.

After step 92 or step 90, step 94 is implemented, in which
the process checks whether an optional version is specified
in the currently-examined component. The version of a
component, if specified, is preferably listed after a second
colon in the package description. Thus, for Package P of
Table 1, Component X has a multiplier of 2 (after the first
colon) and a version of 3.0 (after the second colon). Com-
ponents Y and Z do not specify a multiplier or a version.
ComponentA only specifies a version of 1.5 (a multiplier of

15

20

25

35

40

45

55

65

23

14

1 is assumedafter the first colon), and Component B only
specifies a multiplier of 7. If a version is specified, then in
step 98 that version is entered in the license record. If a
version is not specified, then in step 96 the package version
found in the package description 20 is used as the compo-
nent version numberin the license record. After step 96 or
98, step 100 is initiated, wherein a link is madeto the suite
license record that includes the current component, if appro-
priate. That is. if a package is a suite, a suite license record
is made in step 78 if FIG. 4 (described in FIG. 6), and a link
to that suite license record is made and stored in the license

record if the current componentis part of a suite. This link
need only be, for example, the identifier and version number
of the appropriate suite. Thus,if a license for a component
is checked out, and that componentis part of a suite, then the
suite can be found via the link and a suite license can be

correspondingly checked out, as described with reference to
FIG.8.

In next step 102, a license record key is synthesized by a
CPUorequivalent processor and the key sequence is entered
in the component license record. Thus, a unique key is
synthesized for each component in a package when each
componentlicense is added to the internal database. Many
methods of synthesizing such keys are well-knownto those
skilled in the art; for example, the version number, names,
or other information in a component can be used to synthe-
size a 10- or 12-character key code using a standard or
non-standard encryption algorithm. Other methods can also
be used to synthesize a key. The server can verify the key to
gain access to the license record when a license request is
received (explained below) and is used to prevent unautho-
rized access to a license record. In step 104, other license
data from the external file is entered into the license record
and the license record is entered into the internal license

database 19. This step is similar to step 80 of FIG.4, andis
described in greater detail with respect to FIG. 7. The
process is then complete as indicated at 108.

An example of componentlicense records that are created
from the package description shown in Table 1 is shown
below in Table 2:

FEATURE X 3.00 1-JAN-99 10 KEY LINK P 1.00
OVERDRAFT=3,

MINIMUM=2, OPTIONS="FAILSAFE, CAPACITY”
FEATURE Y 1.00 1-JAN-99 5 KEY LINK P 1.00

OVERDRAFT=3,
MINIMUM=2, OPTIONS="FAILSAFE, CAPACITY”
FEATURE Z 1.00 1-JAN-99 5 KEY LINK P 1.00

OVERDRAFT=3,

MINIMUM=2, OPTIONS="FAILSAFE, CAPACITY”
FEATURE A 1.50 1-JAN-99 5 KEY LINK P 1.00

OVERDRAFT=3,

MINIMUM=2, OPTIONS=“FAILSAFE, CAPACITY”
FEATURE B 1.00 1-JAN-99 35 KEY LINK P 1.00

OVERDRAFT=3,

MINIMUM=2, OPTIONS=“FAILSAFE, CAPACITY”

TABLE 2

where “FEATURE” designates the record as a license
record, “X”, “Y”, etc. designates the name of the
component, “3.00”, “1.00”, etc. designates the version num-
ber of the component,“1-JAN-1999” indicates the expira-
tion date of the license, “10”, “5”, etc. designates the number
of componentlicenses (license units) available, and “KEY”
designates the synthesized key for each componentlicense
record. The string “LINK” indicates that the next two

24

5,671,412
15

parameters are the name and version numberof the package
of which that componentis a part. Alternatively. the link can
be stored in an internal memory structure rather than in the
license record. Other types of links or pointers can also be
used in other embodiments. OVERDRAFT and MINIMUM
specify license modifiers, and OPTIONSindicates any other
licensing modifiers. such as fail safe and capacity. These
modifiers are described in greater detail with reference to
FIG.7.

FIG.6 is a flow diagram illustrating step 78 of FIG. 4, in
whichalicense record is created for a suite and entered into

the internal license database. The process of creating a suite
license record is similar to the process of FIG.5 for creating
a license record for a component program of a package. The
process begins at 110. In step 112, the number of package
licenses in the package license item 22 is used as the number
of suite licenses and placed in the suite license record. In
next step 114, the package version read from the package
description 20 is used as the suite version number in the suite
license record. In optional step 116, a link is made to the
parentsuite license record which includes the currentsuite.
This is only applicable if the alternate embodimentis being
used in which packages may be components of other pack-
ages. If suchis the case, and the currentsuite is a component
of a higher level suite, then a link to the higherlevel suite
is added to the suite license record (or added to an internal
memory structure). This link can be a name and version
number, or a different pointer, as described above with
reference to step 100 of FIG. 5.

In nextstep 118, a license key is synthesized for the suite
and is placed in the license record. This step is substantially
similar to step 102 of FIG. 5. In next step 120, package
license data from the external file is entered into the suite
license record andthesuite license recordis entered into the

internal license database. This step is substantially similar to
steps 80 and 104 of FIGS. 4 and 5, respectively. and is
described in greater detail with respect to FIG. 7. The
process is then complete as indicated at 122.

An example of a suite license record is shown below in
Table 3:

FEATURE P 1.00 1-JAN-1999 5 KEY OVERDRAFT=3,
MINIMUM=2,

OPTIONS="FAILSAFE, CAPACITY”

TABLE 3

where FEATURE designates this entry as a license recordin
the internal database, “P” designates the name of the suite
covered by this license, “1.00” designates the version of the
suite covered by this license, “1-JAN-1999”is the date that
this suite license expires, “5” designates the number of suite
licenses (license units) available, “KEY” designates the key
identification sequence that was synthesized as explained
above, and the modifier options indicate the options for the
suite license. These modifiers are determined from the
license data item 22. In other embodiments, different or
additional information can be stored in a suite license record.

FIG.7 is a flow diagram illustrating step 74 ofFIG.4, step
104 of FIG. 5, and step 120 of FIG. 6, wherein information
from thelicense item from the external file is entered into a
license record and the license record is entered into the

internal license database 19. The process of FIG. 7 is
implemented for a standard license record, component
license record, or suite license record. The process begins at
124, and, in step 126, other information in the license item
is entered in the license record from the external file. This

other information can include any information not specifi-

3

10

15

20

25

35

45

50

55

65

24

16

cally addressed in its own step, such as the date of expiration
of the license,, as shown in Tables 2 and 3. Aiso, this other

license information can vary depending on the type of
license record being created. For example, a key for standard
licenses can be pre-synthesized and stored in the external
file. Ifa license record for a standard license is being created,
the key can be copiedinto the license record from the license
item along with the other license information. The key for
suite license records and component license records,
however, are preferably synthesized at the time of license
record creation and stored in the license record instead of

being retrieved from an external file. Alternatively, the keys
for standard licenses can also be synthesized at the time of
license record creation.

Steps 128, 130, 132, and 134 allow license record “modi-
fiers” of the present invention to be entered in the license
record depending on the options desired by the operator of
the license management system. Someorall of the data used.
in these steps is stored with the license item read in step 66
of FIG,4 if the operator of the license management system
has opted for the features implemented by the modifiers.

In step 128, a license overdraft quantity is read from the
license item and entered in the license record. License

overdraft is a policy that allows users of licensed software to
use more licenses than the users have purchased. For
example, a software vendorselling a software product to a
large, trusted company may wish to provide a more lenient
policy which allows the company to use more licenses than
the company purchased or was authorized to use. The
amount of licenses over the authorized amount is considered

the overdraft quantity. The overdraft quantity can be limited
by the software vendor to a specific amount. This can
stimulate additional use of the licensed product, further
resulting in additional purchases of the product. In addition,
the amountof usage over the authorized amountof licenses
can be recorded for later business negotiations with the
customer. If the overdraft quantity is desired to be infinity,
then a special value or indicator, such as —1, can be entered
in the license record.

In next step 130, a capacity indicator is read from the
license item and entered in the license record. The capacity
indicator indicates if the license record is a capacity license.
This means that the license may cost more licenses or
“license units” for some requesters than other requesters.
Herein, “license units” refer to elements of value used in

calculating how many licenses are available for a requested
product and/or a client computer system, i.e. the cost (in
units) of particular product in terms of available licenses.
Typically, a number of license units will be available to
checkout, and program license requests check out a standard
amountoflicense units, such as 1 unit=1 program license.

The capacity indicator can influence the standard amount
of license units that are checked out for a license. For

example,licenses for a designated program are available on
a license server and can be implemented by two types of
client hardware platforms that have access thelicenseserver.
The first hardware platform is a slower, less expensive
personal computer, such as an IBM-compatible PC. The
second hardware platform is a more expensive, faster
workstation, such as a SUN workstation. The SUN platform
will be able to execute the program at a muchfaster rate so
that less program usage may result; users will be able to
complete their use of the program muchfaster. To compen-
sate for this. the software vendor can provide a capacity
indicator in the license for this program. When a client
checks out a capacity license, the license server receives an
“environmental resource capacity” of the client and multi-

25

5,671,412
17

plies that resource capacity by the number of license units
required for that requester to check out a license. The
resource capacity of a requester is a measure of the license
consumptionability of a client computer system, and can be
determined by different criteria in different embodiments.
Hardware speed is preferably used to determine resource
capacity of a requester, but monitor size, disk drive space,
user identity, memory space, or other characteristics can be
also used. Thus, the SUN platform might have a resource
capacity of 2 and the IBM-PC might have a resource
capacity of 1, thus causing the SUN platform to check out
twice as many license units to obtain a license for the
program. Typically, the resource capacity can be determined
on the client computer system end and sent in the request to
the license server.

In next step 132, a fail safe indicator is entered in the
license record if the license item includes a fail safe indi-
cator. The fail safe indicator allows licenses to be checked

out when no licenses are available during failures. This can
be beneficial during license management system failures,
when normally no licenses would be available. For example,
whenevera failure occurs in a license management system,
licenses are typically denied to new requesters. However, a
software developer selling a product to a large, trusted
company may wish to provide a more lenient policy which
allows the customer to check out licenses when an error

occurs in the license management system. This could be
especially important for mission-critical applications. In
some embodiments, a fail safe license can be checked out
regardless ofthe type of error. In other embodiments, thefail
safe license can be checked out only when the error is an
actual failure of the license system, and not when the client
is denied a license dueto thelicense policy (i.e. “no licenses
available”).

In next step 134, a minimum quantity is read from the
license item and enteredin the license record. The minimum

is the minimum number oflicenses (license units) that a
particular license record requires to be used. The minimum
value places a minimum cost in license units on a particular
license. For example, if the amount of units required for a
license for a program is determined to be one (after deter-
mining resource capacity), but the license record indicates
the minimum is 2, then 2 license units must be available to
check out a license for that program. The minimum license
units allows the software vendor to decrease the amount of

licenses available for specific programs regardless of
resource capacity of the requester.

In step 135, the total number oflicense units available for
that license record are calculated as the overdraft quantity
from step 128 (if being used) plus the authorized license
limit quantity. The authorized license limit is the number of
licenses (license units) retrieved from the license item. In
next step 136, the license record is entered in the license
database, and the process is complete at 138.

FIG.8 is a flow diagram illustrating step 58 of FIG. 3, in
which a license request from a computer system is processed
by the license server. The process beginsat 142. In step 144,
the process checks if a licenseis available for the designated
product using the name and version received in the request.
The license may not be available because the product is not
presentin the license database, because no more licenses are
available for the requested product, or for a different reason
(as in metering licenses, node-lockedlicenses, site licenses,
etc.) The process of determiningif a license is available for
the requested product is described in greater detail with
respect to FIG. 9. If the license(s) for the requested product
is available, then, in step 146, the process determinesif the

10

15

20

30

40

50

60

65

18

available license is a component of a suite, ie. is the
requested product part of a suite which has a license record
stored on the internal license database. If so, then step 148
is implemented, in which the license requested is set to the
suite license associated with the requested component. After
step 148,the process returns to step 144 to checkif a license
is available for that suite. Thus, both a component license
and a suite license must be available to check out a license

for a suite component. Also, in the alternate embodiment
where suites may be components of suites, the process will
recursively implement step 144 to checkif all higher level
suites for a component havea license available.

If, in step 146, the license checked in step 144 is not a
component ofa suite, then the process continues to step 150,
where the statusis set to “available.” This status is output to
the requesting computer system 12, which then preferably
decides how to enforce the software policy depending on the
status message received. Alternatively, the license server 16
can provide information on how to enforce the software
policy, such as not allowing the designated program to be
used. The process is then complete at 152.

If the license is not available in step 144, then step 154 is
initiated (or step 156 is initiated directly after a special case
in step 144, as detailed below in FIG. 9). In step 154, the
process checks if the license of the requested productis a
failsafe license. If not, then the status is set to “not available”
in step 156, andthis status is output to the requesting client
computer system. The process is then complete at 152. If the
requestedlicenseis a fail safe license in step 154, then step
158is implemented, in which the process checks in step 157
if there has been a failure in the license managementsystem,
i.e., some nodesof the network are not operating,the license
server has a failure in some subsystem, etc. If so, then, in
step 158, the status is set to “fail safe” status and this status
is output to the requesting client computer system. This
indicates to the requesting client that the requested product
is not available, but the client is allowed to use the product.
Theclient can decide the action to take based onafail safe

status; for example, a fail safe message can be displayed to
the user of the client system. The process is then complete
at 152. In other embodiments where a fail safe license is

always granted to the client, regardless of actual failure in
the system, step 157 can be omitted.

If no failure has occurred in the license management
system in step 157, or if the license is not a failsafe license
in step 154, then, in step 156, the status is set to “not
available,” which indicates that the license for the desig-
nated product is not available and theclientis not authorized
to use the product. This status can then be output to the
requesting client computer system. The process is then
complete at 152.

If the user has checked out an overdraft license or a

failsafe license, then preferably this informationis logged by
the license server in a file or database. Thelicense provider
can thus later refer to the log to determine how many
overdraft andfail safe licenses were granted to clients. Other
information can also be logged, such as time or activations
remaining for use of the designated product by the client (in
a metered policy), user name, host name, terminal name,
product name, version number,etc.

FIG. 9 is a flow diagram illustrating step 144 of FIG.8,
in which the process checks if a license record is available
for the requested product. The process begins at 160, and, in
step 162, the process checks if the name and version number
of the license for the requested product is available in the
internal license database. In some embodiments, this can be

25

26

5,671,412
19

a search for an exact match to the requesting name and
version number. Alternatively, an inexact match can be
found. For example, an exact name match and a match
between a version numberthat is less than or equal to the
version number of the requested product can be considered
a match. This allows an older version of a product to be
matchedto license recordsfor newerversionsof the product.
The license will not be available in the database when no

license information has been provided for the requested
product from the software vendor,or if a license record were
not stored in the database for some other reason.

If there is not a license record for the requested product in
the license database. then the process continues to steps 154
and 156 of FIG.6 andthe process is complete at 152 of FIG.
6 (since the license does not exist, it therefore cannot be a
fail safe license. and step 154 is false).

If a license record is available in the database, then in

optional step 163, the key stored in the found license record
is verified to determine if the license record has not been

tampered with andis legitimate, similarly to step 65 and 66
described above (step not shown). If the record is not
legitimate. then step 180 is implemented. If the record is
legitimate. step 164 is implemented, in which the process
checks if the license record is a capacity license,i.e., if the
license record includes a capacity indicator. If so, then step
166 is implemented, in which the number of license units
requested by the requester are multiplied by the resource
capacity of the requester. The number of license units
requested can be more than oneif, for example, the requester
desires to use more than one copy of a program. The
resource capacity can be provided by the client computer
system orprogram and is calculated based on predetermined
criteria, as described with reference to FIGS. 7 and 10.

Alternatively, the resource capacity can be calculated by the
license server based on information provided by the client.
such as type of hardware platform, identity of user, etc.

After step 166, or if the license record is not a capacity
license, then step 168 is initiated. The process checks if a
minimum quantity of license units is specified in the license
record. If not, then step 172is initiated, described below. If
a minimumis specified, then, in step 170. the process checks
if the number of license units requested (as modified by
resource capacity, if appropriate) is less than the minimum
number of units. If not, step 172 is initiated, described
below. If so. then the number of requested units is set to the
minimum number in step 171.

After step 171, step 172 is implemented in some
embodiments, in which the number of duplicate license units
in the userlist is subtracted from the number oflicense units

requested. The “userlist”, as described herein, is a list of
requesters that have requested the license record in question
and are currently using a license, and includes the number of
units that each such requester currently has checked out.
Duplicate units are those units that are currently being
checked out by the sameuser for the same license. This can
occur whena user has previously requested a license, and is
currently requesting another of the same license for the
designated product. In some embodiments. the client may be
allowed to request and receive the same license a number of
times, but will not be required to check outadditional license
units each time the same license is requested. In such an
embodiment, by subtracting the duplicate units from the
number of units requested in step 172.the client will not be
required to check out multiple license units for the same
license.

In step 174, the process checks if the number of units
requested plus the number of units currently checked out

10

15

25

30

35

45

50

55

65

26

20

(i.e.. in use by requesters in the user list for the requested
product)is less than or equal to the total number of available
units in the internal license database. This total number of
available units is stored in the license record as described

above in step 135 of FIG. 7, and may include overdraft
license units if appropriate. If the result of step 174 is true,
then there are sufficient license units available for the

requester, and step 176 is implemented, in which the
requester is added tothe user list. i-c., the requester is
considered to have checked out the requested number of
license units. The process then continues to step 146 of FIG.
8. If the result of step 174 is not true, then there are not
enoughlicense units available. Theprocess then continuesto
step 178, in which the process checks if the license is a
failsafe license. If so, the process continues to step 154 and
(automatically) to step 157 of FIG. 8.

If the license is not a failsafe license. then the server

checks in step 180 whether there is another, different license
record in the internal license database for the requested
product. For example, there may be a license record pro-
viding a number of license units for one version or “feature
line” of the requested product. There may also be different
license records in the database which provide license units
for other versions or feature lines of the requested product.
Theclient thus may be able to requesta license for one of
multiple license records for a requested product in the
database. If no other license record is available for the

requested product, the process returnsto step 154 of FIG.8.
If another license record for the requested product is
available, then step 181 is implemented, in which thelicense
record for the requested product is set to the next record that
matches the product that is stored in the database. The
process then returns to step 164, described above.It should
be noted that steps 180 and 181 should only be included in
the process of FIG.9 if the client requesting process of FIG.
10 is being implemented. Steps 180 and 181 should be
omitted if the requesting process of FIG. 11 is being used,
since, in FIG. 11, these steps are performed onthe clientside
of the process instead of the server side.

It should be noted that the process above implements a
“concurrent usage” policy so that only a predetermined
number of licenses are allowed to be concurrently checked
out. Other steps can be addedto the process of FIG. 9, or can
replace existing steps, to determine if the requestor should
be granted a license. Such other steps can include checks for
how much time is left on a license in a metered license

policy, checks to determine if the correct user/client is
requesting a license in a node-locked policy, and/or checks
to determineif the user is from the correctsite for the license

in a site policy. The implementation of these policies is well
known to those skilled in the art.

Note also that some of the steps of FIG. 9 can be
implemented on the client computer system in addition to or
instead of implementing these steps by the license server.
For example, steps 164, 166, 168, 170, and 171 can be
implemented by a license management program or process
implemented onthe client computer system using the license
records in the license database (as in the embodiment
described with reference to FIG. 11).

FIG. 10 is a flow diagram illustrating a method 182 for
implementing a request for a license and other license
managementactivities on a client computer system 12. This
process can be implemented in software or hardware on the
client computer system, or within a particular licensed
program or product. The client computer system preferably
includes standard components such as a microprocessor,
RAM, ROM, input/outputcircuitry, a storage device,etc., as

27

5,671,412
21

is well knownto those skilledin the art. The process of FIG.
10 allows the client to send a request and receive a status
concerning the availability of one or more licenses for a
requested product. In the alternate embodiment of FIG. 11.
described below,the client computer system can research the
license database instead of the license server and requestfor
a specific license from a license record.

The process begins at 184. In step 186, the license server
or file is located by the client computer system. In the
described embodiment, the license server is located at

another node, having an address, on a network in which the
client computer system is also located. There are a wide
variety of methods to locate a license server on a network.
Onepreferred methodto locate the server is to use a license
finder ofthe present invention, which is described in greater
detail with respect to FIGS. 12 and 13. The license records
can also be stored in a license file. which can be located at
a network-accessible node.

In next step 188, the process checks if the user of the
client computer system 12 wishes torun a diagnostic process
of the present invention. This process implements tests the
requesting of licenses and locates a license serveror license
file if the server orfile cannot belocated. If the user indicates

to run the diagnostic, then step 199 is initiated, described in
greater detail with reference to FIG. 14. The process is then
complete as indicated at 192. In addition, the diagnostic step
190 can be initiated and run at any time theuser is operating
the client computer system.

If the diagnostic process is not run in step 188, then step
194 is implemented, in which a license request is sent to the
license server including the name of the requested product,
the product version number, the number of license units
requested, and the environmental resource capacity (if being
implemented). The environmental resource capacity is pref-
erably determined prior to step 194 by either reading a
resource capacity set by the operator of the license manage-
ment system, or determining the resource capacity using an
established method. For example, the resource capacity can
be determined by examining the current hardware platform
or other environmental resource. In addition, other informa-

tion can be included in the license request as desired. For
example, the user name, client identifier, site indication (in
a site license policy), time or activations remaining (in a
metered license policy), etc. The license request typically
requests one license for a designated program; however, a
request for multiple licenses can also be made in some
embodiments. The requestis typically outputfight after the
designated program is activated by the user on the client
computer system;it can also be outputat other times. In step
196, a status message is received back from the server.

In next step 198, the process examinesthe status message
to determineif access has been granted by the license server
to the license units requested in step 194. If license access
has been granted, then the license request status on the client
computer system is set to “granted” in step 200, and the
process is complete 202. The designated product typically
checks the status, determines that it is “granted” a license,
and allows itself to be activated continues to run on the

client. Alternately, a separate, dedicated license program
running on the client can check the status and inform the
designated product that it is allowed to be activated. If
license access is denied by the license server in step 198,
then step 204 is implemented, wherein the license request
status is set to “denied.” The process is then complete as
indicated at 202. Thus, when the designated product is
activated, the license request status is checked and the user
is determined to have been denied a license. A warning is

25

30

35

45

55

60

65

27

22

then issued and the designated product is allowed to be used
(in a lenient enforcementlicense policy), or the designated
product is not allowed to be used (in a strict enforcement
license policy).

In addition, if fail safe and/or overdraft is being
implemented, the server can send back indications of these
conditions in step 196. The fail safe condition can be
indicated by a fail safe status. as described with respect to
step 158 of FIG. 8. A message can be displayed or provided
to the user indicating thata fail safe condition has occurred,
and that the requested productcan be still used, An overdraft
condition can be indicated by an overdraft signal. Preferably,
the overdraft condition is displayed or provided to the user
only when the user issues a commandfor an overdraft status,
which can occur at any time while the requested productis
being implemented by the user’s client computer system.
Alternatively, the overdraft condition can be automatically
displayed by the client computer system immediately after
receiving the license status message from the serverin step
196.

FIG.11 is a flow diagram illustrating an alternate method
182' for processing of a request for a license and other
license managementactivities on a client computer system
12. Unlike the method of FIG. 10, method 182' allows the
client computer system to have access to the databaseor file
of license records,

The process begins at 184. In step 186’, the license server
orfile is located by the client computer system, as described
with reference to FIG. 10. In step 188', the process checks
if the user of the client computer system 12 wishes to run a
diagnostic process of the present invention. If so, then step
190' is initiated, in which the diagnostic process is imple-
mented. This process is described in greater detail with
reference to FIG. 14. The process is then complete as
indicated at 192'.

If the diagnostic process is not run in step 188', then step
206 is implemented, in which the client computer system
checks if there is a license record in the license database 19

(or file) for the requested product. The client checks the
name and version number of license records in the internal

license database for a match to the requested product. The
client computer system can access the license database that
includes all the license records as provided in the initializa-
tion step 54 of FIG. 3. The client computer system can
retrieve the license database information from the server

after the server has initialized the database, or during the
process of FIG. 11 after step 186’. Each client on the
licensing network can store the internal license database in
memory or on a storage device. Alternatively, the client
computer system can access the license database that is
stored on the license server or license file over the network
as needed.

If the client computer system determines that there is no
license record in the license database for the requested
product, then the process continues to step 204’, described
below. If there is a license record for the requested product,
then step 194' is implemented, in which the request is sent
to the license server with the product name, version number,
number of license units requested, and the environmental
resource capacity. This step is similar to step 194 of FIG. 10.
Since the server maintains a user list having the number of
license units currently checked out, the client sends a request
to determine if license units for the requested product are
currently available. In next step 196', the status message is
received from the license server, and, in step 198’, the client
computer system checks the status message to determine if

28

5,671,412
23

access to a license has been granted by the server.If so, then
the license request status on the clientis set to “granted” and
the process is complete at 202’. If not, then, in step 208, the
client determines if there is another license record in the

internal license database for the requested product. This step
is similar to step 163 of FIG. 9 (which should be omitted
from FIG. 9 if the process of FIG. 11 is being used.)

If another license record for the requested product is
stored in the license database, then step 210 is implemented,
in which the license record for the requested product is set
to the next record that matches the productthat is stored in
the database. The process then returns to step 194' to send
another requestto the license server. If there is not another
license record in the license database, then, in step 212, the
client checks if any of the licenses for the requested product
are fail safe licenses. If so, in step 214, the license request
status is set to a fail safe status of “denied but okay”,
meaning that a license is not available but the requested
program maystill be used. (optionally, a check for system
failure, similar to step 157 of FIG. 8. can be implemented
before step 214). The process is then complete at 218. If
none of the license records for the requested product are fail
safe licenses. then the license request status is set to
“denied” in step 204' and the process is complete at 218.

FIG, 12 is a fiow diagram illustrating one embodiment of
step 186 and 186' of FIGS. 10 and 11, respectively, wherein
the license serveror file is located by the client computer
system. In this embodiment, the license server or file can be
located by having the client computer system access a
dedicated “finder” process that is preferably located at an
accessible node on the license network. A client can access
the finder, which locates the license server for the client. Use

of the finder allows a systematic, effective search for a server
to be implemented with the most recent known location of
the server regardless of the type or location of the client. In
addition, the server can be movedto a different node in the

network and only one process on the network, the finder,
need be updated by the operator to include the new location
of the server.

The process begins at 220, and, in step 222, the client
checks if the user has set an environment variable of the

client computer system that provides an address of the
license server or file. The user can set the environment

variable if the address of the server is knownbythe user. In
such a case. the license server orfile location on the network

is known, and. in step 224, the license address of the
environmentvariable is returned to the client process ofFIG.
10 or 11. The “license address”is the location of the license

server or license file on the network of the license manage-
ment system. The process is then complete at 232.

If the user did not set the license address environment

variable in step 222, then step 226 is implemented, in which
the client checks if a license finder node, or a backup finder
node. is available. The client computer system can send
requests out over the network at one or more finder
addresses that are stored on the client computer system. For
the finder to beavailable, the client computer system should
preferably be able to translate the address ofthe finder and
determineif the finder node can be accessed on the network.

If a primary finder is not available, then the client computer
system can check if a backup finder node is available,
assuming a backup finder is implemented in the license
management system. The backup finder is in all respects a
standard finder. except that it is only accessible when a
primary finder is not available.

If a finder nodeis available. then in step 228, parameters
including the user name, host name, terminal name, vendor

20

25

30

35

45

50

55

65

28

24

name, and name/identifier of the designated product on the
client computer system are preferably sent to the finder.
Some orall of these parameters can be sent in step 228.
depending on the specific embodiment; additional param-
eters defining the productor client can also be sent. The host
name is the name of the client computer system processor
unit, the terminal name is the name of the keyboard/display
screen I/O station wherethe user is operating the client, and
the vendor nameis the name of the vendor of the software

product that is running (the vendor of the designated
product). The host and terminal can be combined in one
device or location in some embodiments. The finder uses
this information to determine the license address of the
correct server or file for the client. as described with

reference to FIG. 13. In next step 230, the license address is
read from the finder and is returned to the client request
process of FIG. 10 or 11. The process is then complete at
232.

This license address can be one of a number of different

forms. For example, in the embodiment of FIG. 10, just the
server address can be provided to the client, so that the client
can send out a requestto that address to receive a license. In
the embodiment of FIG. 11, the finder can provide a file to
the client including one or more license addresses, so that
the client can read the lines in the file to determine a license

server’s host name, ID, port on the network, etc. This file
includes the license server address as well as the license

data. Alternatively, the client of FIG. 11 can receive a single
server address like the client of FIG. 10.

If a finder node is not available in step 226, then a default
license address is returned to the client request process of
FIG. 10 or 11. The default license address can be the address

value normally used when attempting to communicate with
the license server, such as the last known location of the

license server orfile. The client requesting process of FIG.
10 or 11 can thustry to locate the license server or file with
that default address. The process is then complete as indi-
cated at 232.

FIG. 13 is a flow diagram illustrating a process 236 of
providing a license address for a client using a license finder
as described in FIG. 12. The process of FIG. 13 is preferably
implemented on a finder that is available to any client
computer system over the license network. The finder can be
implemented on a computer, system (or a license server)
connected to the license management network including
CPU, memory, and other components similar to those
included in client computer systems 12 and server 16. The
process begins at 238, and in step 240, a configuration file
is read by the finder. This configuration file includes infor-
mation mapping parameters such as a user, host, terminal,
vendor and/or software product name to a license address.
For example, the configuration file may include the license
server address to give to user Joe Smith (user name) when
operating a SUN product (vendor name). Thus, if user Joe
Smith running a SUN product requests a license address,the
configuration file provides a particular server address to give
to that particular client. The configuration file can include
additional parameters relating to the client or product in
alternate embodiments. Using the configuration file, the
operator of the license management system can map certain
types of hosts, users, terminals, etc. to particular license
servers orfiles.

In step 242, the finder waits for and receives the next
client requestfor a license address. As described in step 228
of FIG. 12, the request can include one or more of the
parameters defining the client. In step 244, the finder looks
up the license address in the configurationfile based on the

29

5,671,412
25

received user name, host, terminal, vendor, and/or product
name, or any combination of these parameters as determined
by the operator of the license management system. A default
license address also can be specified for clients that do not
match any parameters in the configuration file (or for all
clients if parameters are not being implemented). In step
246,the license address found in the configuration file is
returned to the client over the network, and the process
returnsto step 242to get another client request for a license
address.

FIG.14 is a flow diagram illustrating step 190 and 190' of
FIGS. 10 and 11, in which a diagnostic process is imple-
mented for a user on a client computer system. The process
begins at 250, and in step 252, the diagnostic process
attempts to check out (request and receive) a license for a
designated product. The user can designate any program
normally available at that client computer system. The check
out is preferably accomplished using the client process of
FIG. 10 or FIG. 11; in the described embodiment. the

process 190 assumesthata list or databaseoflicense records
is available to the client as in the method of FIG. 11.

Alternatively, the process of FIG. 10 or the server process of
FIG. 3 can provide output diagnostic information on license
records as described below (the process of FIG. 10 can also
run the connection diagnostics of step 274). In step 254, the
diagnostic process checks if the license was successfully
granted; if so, then step 256 is implemented, in which an
“OK” message is output to the user and the diagnostic
process is exited. The process is thus complete at 258.

If the license is not successfully granted to theclient in
step 254,then, in step 260, the diagnostic process examines
the next license record in the database oflicense records for

the designated product. The “next” license record is another
license record that can be matched to the name and version

of the designated product, similar to step 208 of FIG. 11. In
step 262, the diagnostic process checks if all license records
for the requested product have been checked. If so, the
process is complete at 258. If not, then, in step 264, a
description of the license for the examined license record is
output by the diagnostic process to the user. The outputted
license description includes the name, version, number of
license units provided, any overdraft, fail safe, minimum,
and capacity indicators or values, date of expiration, and any
other relevant information found in the license record. The

license description can be output in different mediums, such
as a display on a display screen, a printout on paper, data
written to a storage device such as a disk drive,etc.

In nextstep 266, a request for the examined license record
for the designated product is attempted by the diagnostic
process. This step is substantially similar to step 252,
described above. In step 268, the status of the request is
output by the diagnostic process. This status can be the
normal license status returned by the license server, such as
“granted” or “denied”. If “denied”, this status can include
the reason for the denial, such as all the licenses are currently
in use, the client is node-locked from the license, or the
client’s metered license time has been depleted. This output
status can also be an error message or other message
preventing the normal status from being received. In step
270, the process checks if the status of the requestis a “can’t
connect” error message, which indicates that the client
cannotfind the license server or file on the network. If this
status is not “can’t connect”, then the process returns to step
260 to examine the next license record for the designated
product. If the status is “can’t connect,”, the process checks
in step 272 whether the user wishes to implement the
connection diagnostics. If not, the process returns to step

10

15

30

35

45

55

65

29

26

260; if so, the process continues to step 274, wherein the
connection diagnostics are implemented by the diagnostic
process. Since a “can’t connect” error can be caused due to
a number of different reasons, the connection diagnostics
help determine the causes for the error. The connection
diagnostics are described in greater detail with respect to
FIG, 14. After the connection diagnostics are complete, the
process returns to step 260.

FIG. 15 is a flow diagram illustrating step 274 of FIG. 14,
in which the connection diagnostics are implemented by the
diagnostic process. The process begins at 276. In step 278,
the first network address on the network is obtained. This

address is the first possible address at which the license
server orfile could be located, such as “O”. In step 280, a
connection to the license server orfile is attempted at this
network address. In step 282, the results of the connection
are checked. If no connection was made, the process con-
tinues to step 284, where the network addressis incremented
to (or changed to) the next viable address. In step 286, the
process checks if the new address is past the end of the
network address range. For example, a network may have
addresses ranging from 0 to 65,534. If past the address
range,the process is complete at 288. If not past the address
range, then step 280 is again implemented to attempt a
connection at the new address.

Once a successful connection has been made at a network

address, the process continues to step 290 from step 282. In
step 290, a message is sent to the address to determine if a
connection has been made to the correct license server for

the designated product (if multiple license servers are
available). If no response is received in next step 292,then
in step 294 the process outputs that an unknown processis
at the current network address. The process then continues
to step 284 to increment the network address as described
above.If a response is received in step 292,then the process
checks if the response is from the correct license server. If
not, in step 298, the process outputs that the wrong license
server is at the current network address. The process then
continues to step 284 as described above.If the response is
from the correct license server in step 296, then the current
network address is output with a message stating that this
network addressis the correct address for the license server

of the designated product. The process is then complete at
302.

Although only one embodimentof the present invention
has been described in detail, it should be understood that the
present invention may be embodied in many other specific
forms without departing from the spirit or scope of the
invention. Particularly, the license management system con-
figuration described can be adapted to a wide variety of
network layouts and configurations. In addition, the license
server functions can be provided by a single computer
system or several different systems, and can even be incor-
porated into a client computer system. Further, the types of
requesters can be widely varied, from personal computer
systems, terminals, other servers, or any CPU-based com-
puter. The embodiment described contemplates an internal
license database; however,as should be appreciated by those
skilled in the art, license data can be stored in a variety of
locations and devices.

Therefore, the present examples are to be considered as
illustrative and notrestrictive, and the invention is not to be
limited to the details given herein, but may be modified
within the scope of the appended claims.

Whatis claimed is:

1. A methodforinitializing a license database including
licenses for software products available to be checked out by

30

5,671,412
27

clients wishing to use said software products, the method
comprising the steps of:

receiving a license item including a license associated
with a software product;

checking whether said license item is a package license
item associated with a package, or a standard license
item;

whensaid license item is a standard license item, entering
said license item as a standard license record in a
license database; and

whensaid license item is a package license item,creating
a componentlicense record in said license database for
an associated component software product included in
said package. said component license record being
created from said package license item.

2. A method as recited in claim 1 wherein said license
records each include a numberof licenses available for said

product associated with said license record, said number of
licenses being able to be checked outbyaclient requesting
a license for said software product associated with said
license record.

3. Amethod as recited in claim 2 further comprising a step
of receiving at least one packagelicense description before
said step ofreceiving said license item, said package license
description being associated with said package license item
and including a component license description for said
component product of said package, wherein said compo-
nentlicense record createdin said license database is created

from said associated package license description and said
package license item. :

4. A methodas recited in claim 3 wherein said package
license description includes a suite indicator for indicating
whensaid package license item is a suite license item, such
that when said step of creating a component license record
is accomplished, a suite license record for said suite license
item is also created in said license database.

5. A methodasrecited in claim 4 wherein whenalicense

provided by said suite license record is checked out by a
client, no other client may use a license provided by said
component license records linked with said suite license
record unless another license provided by said suite license
record is checked out.

6. Amethodasrecited in claim 4 wherein said component
license record includesa link to said suite license record.

7. Amethodas recited in claim 6 wherein said component
license record andsaid suite license record include a number

of license units indicating a number of times a license may
be checked out from said license database by a client,
wherein when a license provided by said componentlicense
record is checked out, a license provided by said suite
license record linked to said component license record is
also automatically checked out.

8. Amethodas recited in claim 3 wherein said component
license description includes a name of a software product
and a version numberofsaid software product, said software
product being a software program.

9. Amethod as recited in claim 3 wherein said component
license description includes a name of a software product
and a version numberof said software product,said software
product being a package.

10. A method as recited in claim 8 wherein said compo-
nent license description includes a license multiplier for
determining how many times said componentlicense record
may be checked out from said license database by a client.

il. A method as recited in claim 8 wherein a key is
synthesized and stored in said componentlicense record,
said key being used to verify the validity of said license for
said component whena client requests said license.

10

15

20

30

35

40

45

50

55

65

30

28

12. A method as recited in claim 3 further comprising
steps of:

determining when a client requests a license to operate a
software program, said license; being provided by a
license record stored in said license database; and

providing said license to said client when said license is
determined to be available for said client.

13. A method as recited in claim 2 wherein an overdraft

quantity is stored in said license record, said overdraft
quantity indicating a number oflicenses that can be provided
to clients over the amountoflicenses stored in said license
records.

14. A method as recited in claim 2 wherein a fail safe
indicator is stored in said license record, said fail safe

indicator indicating that licenses over the amount oflicenses
stored in said license record can be provided to clients when
a failure occursin a license management system, said license
Managementsystem including said license database and said
clients.

15. A method as recited in claim 7 wherein a minimum
indicator is stored in said license record, said minimum

quantity indicating a minimum mount of license units
required to check out said license provided by said license
record,

16. A method for providing licenses to client computer
systems to allow said client computer systems to use
licensed software products, the method comprising the steps
of:

receiving a request for a component license for a com-
ponent product included in a package, said request
being received from a client computer system that
wishes to use said component product;

granting a packagelicense to said client computer system
whensaid client computer system is allowed to receive
said package license accordingto a license policy, said
packagelicense being associated with said package that
includes said requested component product, said pack-
age license allowingsaid client computer system to use
said requested component product; and

denying said componentlicense and said package license
to said client computer system when said client com-
puter system is not allowed to receive said component
license or said package license according said license
policy.

17. Amethodas recited in claim 16 wherein said package
includes a plurality. of component products.

18. A method as recited in claim 17 further comprising a
step of preventing different client computer systems from
receiving a component license for a component product
included in said package when a componentlicense for a
componentproduct included in said package is requested by
said different client computer system.

19. A method as recited in claim 17 wherein said step of
denying said componentlicense and said package license is
not performed when said componentlicense or said package
license is a fail safe license.

20. A method as recited in claim 17 wherein said com-

ponentlicense and said package license are each included in
a license record, wherein each license record includes a

number of license units indicating the number of licenses
that each license can provide to different client computer
systems,

21. A method as recited in claim 20 wherein said license

record includes a capacity indicator. wherein whenalicense
record includes a capacity indicator, that license record
provides a number of licenses dependent on a resource
capacity of said requesting client computer systems.

31

5.671,412
29

22. A method as recited in claim 18 wherein when said

package license is granted, said client computer system is
added to a user list for said requested product.

23. A method as recited in claim 22 wherein said client

computer system is determined to be granted a license for
said package when a number of licenses requested plus
licenses in use by client computer systems in said user list
is less than or equal to the available numberof licenses for
said requested product.

24. A software license server suitable for use in conjunc-
tion with a computer system and operative to provide
licenses to said computer system to allow said computer
system to use licensed software programs,the license server
comprising:

a database for storing a plurality of program licenses and
suite licenses;

meansfor receiving a request for a program license for a
designated program, said request being received from a
user on a client computer system that wishestouse said
designated program;

means for determining whether said designated program
is a component program in a suite;

means for providing a status message indicating to said
client computer system whether said requested license
has been granted or denied, said requested license
being granted when a program license onsaid database
is available for said designated program, wherein when
said designated program is a component program in a
suite, said requested license is granted when a suite
license is available for said suite, and wherein when

said requested license is granted, said client computer
system is allowed to use said designated program.

25. A software license server as recited in claim 24

wherein said program licenses and said suite licenses are
organized into an amountof available license units, wherein
when a license is granted, a license unit is used and said
available license units are decreased in amount.

26. A software license server as recited in claim 25

wherein said program licenses and said suite licenses are
stored as license records on said database, each of said

license records providing an amountofsaid license units.
27. A software license server as recited in claim 25

wherein said license records include a minimum quantity
that indicates a minimum amountof license units that are

used whena license for said license record is granted. |
28. A software license server as recited in claim 25

wherein said license records include an overdraft quantity
that indicates a amountof license units that can be used over
the amountofavailable license units for a license record.

29. A software license server as recited in claim 25

wherein a license record may include a fail safe indicator
that indicates that an unlimited number of license units may
be used for said license record, wherein when no license
units are available for said license record, a fail safe status
is provided in said status message.

30. A software license server as recited in claim 25

wherein a license record may include a capacity indicator
that indicates that when arequestfor a license of said license
record is granted, an amountof license units are used equal
to an environmental resource capacity of said client com-
puter system multiplied by the number of requested license
units.

31. A computer readable medium containing program
instructions for:

sending a requestto a license server, said request request-
ing a license for a designated product which is desired

25

30

35

40

45

55

65

31

30

to be used on a computer system, wherein said request
includes an environmental resource capacity of said
computer system, said resource capacity determining
how many licenses are required by said computer
system to use said designated product; and

receiving a status message from said license server, said
status message providing information about whether
said requestedlicense has been granted or not, such that
a license policy associated with said designated product
may be enforced based on said information in said
status message.

32. A computer readable medium as recited in claim 31
wherein said license policy does not allow said designated
program to be used on said computer system when said
requested license has not been granted.

33. A computer readable medium as recited in claim 31
wherein said license policy provides a warning on said
computer system and allows said designated product to be
used when said requested license has not been granted.

34. A computer readable medium as recited in claim 31
wherein said environmental resource capacity is a value
based onthe processing speed of said computer system, such
that when said processing speed is high, said resource
capacity is increased and said designated product requires
additional licenses to be used on said computer system.

35. A computer readable medium as recited in claim 31
wherein said designated product is a component program in
a package, and wherein whena license is granted for said
component program, a separate license is also granted for
said package.

36. A computer readable medium as recited in claim 31
further comprising a step of locating a license server on a
network, said step of locating a license server including
sending a request to a finder located on said network to
provide a license address for said license server.

37. A computer readable medium as recited in claim 36
wherein whensaidfinder cannotbe located on said network,
a default license server addressis used to locate said license
server.

38. A computer readable medium as recited in claim 31
wherein said program instructions for locating, sending and
receiving are implemented as part of a diagnostic process on
said computer system.

39. A computer readable medium as recited in claim 38
wherein said diagnostic process includes connection diag-
nostics for checking addresses on said network to find said
license server when said license server cannot be located.

40. A computer readable medium as recited in claim 31
wherein said program instructions further access a list of
license records, wherein a license record that matches said

designated product is selected and wherein said request is
for a license provided by said matched license record.

41. A computer readable medium as recited in claim 40
wherein when said request for said license is not granted,
another license record in said list that matches said desig-
nated productis selected and a request for a license provided
by said license record is sent to said license server.

42. A method for providing licenses to client computer
systems to allow said client computer systems to use
licensed software products, the method comprising the steps
of:

receiving a request for a license for a software product,
said request being received from a client computer
system that wishes to use said software product;

determining whensaid client computer system is allowed
to receive a license according to a license policy;

providing a granted license status to said client computer
system whensaid client computer system is allowed to

32

5,671,412
31

receive said license according to said license policy,
said granted license status allowing said client com-
puter system to use said software product;

when said client computer system is not allowed to
receive said license according to said license policy,
providing a granted license status to said client com-
puter system when an overdraft license for said soft-
ware productis available; and

providing a denied license status to said client computer
system when said client computer system is not
allowedto receive said license accordingto said license
policy and no overdraft license for said software prod-
uct is available.

43. A method as recited in claim 42 further comprising a
step of determining how many overdraft licenses are avail-
able for said software product by checking how many
overdraft licenses have been provided to different client
computer systems.

44. A methodasrecited in claim 43 wherein a number of

available licenses for said software product are stored in a
license record, and wherein a numberof overdraft licenses

for said software product are stored in said license record.
45. A methodas recited in claim 42 wherein when said

granted license status is provided. said client computer
system is added to a userlist for said software product, and
wherein said client computer system is provided a granted.
license status when a number of licenses requested plus
licenses in use by client computer systems in said user list
is less than or equal to the available numberoflicenses plus
the available number of overdraft licenses for said software

product.
46. A methodasrecited in claim 42 wherein said granted

license status is provided when a minimum mount of
licenses are available to received by said client computer
system when said client computer system is allowed to
receive said license according to said license policy, said
minimum amount being dependent on an identity of said
designated product.

47. A method as recited in claim 42 further comprising a
step of providing a granted fail safe license status to said
client computer system whensaid license is a designated fail
safe license. when said client computer system is not
allowed to receive said license according to said license
policy, and when no overdraft license for said software
product is available.

48. A methodas recited in claim 42 wherein said request
from said client computer system includes an environmental
resource capacity of said client computer system, said
resource capacity determining how many licenses are
required by said computer system to use said designated
product.

49. A computer readable medium containing program
instructions for:

(a) receiving a request for a license for a software product.
said request being received from a client computer
system that wishes to use said software product;

(b) determining when said client computer system is
allowed to receive a license according to a license
policy;

(c) providing a granted license status to said client com-
puter system when said client computer system is
allowed to receive said license accordingto said license
policy. said granted license status allowing said client
computer system to use said software product;

(d) providing a granted fail safe license status to said
client computer system when said client computer

30

35

40

45

50

65

32

32

system is not allowed to receive said license according
to said license policy and whensaid licenseis a fail safe
license; and

(e) providing a denied license status to said client com-
puter system when said client computer system is not
allowed to receive said license accordingto said license
policy and whensaid licenseis not a fail safe license.

50. A computer readable medium as recited in claim 49
wherein said granted fail safe license status is provided to
said client computer system only when a failure occurs in a
license management systemthat includesaplurality of client
computer systems and implements steps (a) through(e).

51. A computer readable medium as recited in claim 50
wherein said failure in said license management system is a
computer network failure.

52. A computer readable medium as recited in claim 49
wherein said license policy doesnotallow a client computer
system to receive a license when none of a number of
available licenses is currently available for said software
product, said licenses having been previously provided to
different client computer systems.

53. A computer readable medium as recited in claim 52
wherein said grantedlicense status is providedto said client
computer system when none of said available licenses is
currently available and when a number of overdraft licenses
are available for said software product.

54, A computer readable medium as recited in claim 52
wherein a minimum number of licenses are required to be
available for said client computer system when requesting
said license for said software product, said minimum num-
ber being dependenton an identity of said software product.

55. A software license server suitable for use in conjunc-
tion with a computer system and operative to provide
licenses to said computer system to allow said computer
system to use licensed software programs. the license server
comprising:

a database for storing a plurality of license units available
for a designated software product;

means for receiving a request for a license for said
designated software product, said request being
received from a user on a client computer system that
wishes to use said designated product;

means for determining when said client computer system
is allowedto receive said license according to a license
policy;

means for checking out a minimum number of license
units for said designated product when said client
computer system is allowed to receive said license
accordingto said license policy, said minimum number
being dependent on said designated product;

means for providing a granted license statusto saidclient
computer system when said minimum number of
license units are available to be checked out, said

granted license status allowing said client computer
system to use said designated product; and

means for providing a denied license status to said client
computer system when said minimum number of
license are not available to be checked out.

56. A software license server as recited in claim 55

wherein said minimum numberis designated bya licensor of
said license for said designated software product.

57. A software license server as recited in claim 55
wherein said minimum number of licenses units are not

available to be checked out when a different client computer
system has checked outsaid license units.

58. A software license server as recited in claim 55
wherein when a license unit is checked out. said available
license units are decreased in amount.

33

5,671,412
33

59. A software license server as recited in claim 57
wherein said license units are stored in a license record on

said database, each of said license records providing an
amountof said license units.

60. A software license server as recited in claim 59
wherein each ofsaid license records stores an indication of
a minimum number oflicense units.

61. A software license server as recited in claim 55

wherein said means for providing said granted license status
provides said grantedstatus to said client computer system
whennoneofsaid license units are available to be checked
out and when a minimum number of overdraft licenses for

said software product are available to be checked out.
62. A method for diagnosing problems in a license man-

agement system, the method comprising the steps of:
(a) receiving a diagnose command on a client computer

system connected to a network;
(b) attempting to locate a license server on said network

in said license management system, said license server
being operative to provide licenses to client computer
systems on said network that wish to use licensed
software products;

(c) whensaid license server is located, sending a request
to said located license server, said request requesting a
license for a designated product which is desired to be
used on a client computer system;

(d) outputting a diagnosis description on an output device
based on results obtained from said steps (b) and (c).

63. A method as recited in claim 62 wherein a list of

license records is accessed in step (c), wherein a license
record that matches said designated product is selected and
wherein said request is for a license provided by said
matched license record.

64. A method as recited in claim 62 wherein a status

message is received from said license server in response to
said request, said status message providing information
about whether said requested license has been granted or
not, wherein a description of said status message is output in
said diagnosis description, and wherein when said requested
license has not been granted, said diagnosis description
includes a license policy reason why said license was not
granted.

65. A method as recited in claim 62 wherein when said

license server has not been located in step (b), connection

10

15

25

30

35

40

33

34

diagnostics are implemented to attempt connections at a
plurality of network addresses to locate said license server.

66. A method as recited in claim 65 wherein said con-

nection diagnostics attempt to Locate said license server at a
plurality of sequential network addresses, wherein after an
attempt at a network address, a description of the result of
said attempt is included in said diagnosis description.

67. A method for providing a license server location on a
network implementing a license management system, said
location being provided to a client computer system, the
method comprising the steps of:

receiving a request from a client computer system for a
license address of a license server on said network, said

client computer systemrequiring said license address to
locate said license server and thereby requesta license
from said license server for a designated program in use
on said client computer system;

looking up a license address for said license server in a
table, wherein said license address is determined by
client information in said request; and

providing said license address to said client computer
system.

68. A method as recited in claim 67 wherein said client

information includes parameters of at least one of a name of
a user on said client computer system, a host name of said
client computer system, a terminal name of said client
computer system, a vendor name of said designated
program, and a name of said designated program, and
wherein at least one of said parameters in said client
information is included in said table.

69. A method as recited in claim 68, wherein a plurality
of client computer systems connected to said license man-
agement system can request a license address for a license
server, wherein each of said client computer systems pro-
vides a request with said parameters, wherein at least one of
said parameters is included in said table.

70. A method as recited in claim 67 wherein said step of
looking up a license address includes looking up a single
license address in said table that is provided to all client
computer systems.

34

UNITED STATES PATENT AND TRADEMARKOFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 5,671,412

DATED : September 23, 1997
INVENTOR(S) ; Christiano

it is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Column 5, line 33, change "FIG. 2" to --FIG. 2a--.
Column 16, line 2, after "license" change ",," to —-,--.
Column 21, line 47, change "fight" to --right--.
Column 24, line 44, delete "," after "computer".
Colurm 28, line 4, delete ";" after "license".
Colurm 28, line 22, change "mount" to --amount—-.
Column 31, line 33, change "mount" to --amount--.

Signed and Sealed this

Twentieth Day of January, 1998

aeWBuct Chora
BRUCE LEHMAN

Commissioner of Patents and TrademarksAttesting Officer

34

35

UNITED STATES PATENT AND TRADEMARKOFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 5,671,412

DATED : September 23, 1997
INVENTOR(S) ; Christiano

it is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Column 5, line 33, change "FIG. 2" to --FIG. 2a--.
Column 16, line 2, after "license" change ",," to —-,--.
Column 21, line 47, change "fight" to --right--.
Column 24, line 44, delete "," after "computer".
Colurm 28, line 4, delete ";" after "license".
Colurm 28, line 22, change "mount" to --amount—-.
Column 31, line 33, change "mount" to --amount--.

Signed and Sealed this

Twentieth Day of January, 1998

aeWBuct Chora
BRUCE LEHMAN

Commissioner of Patents and TrademarksAttesting Officer

35

