
GOOGLE 10121

US006243468B1

a2) United States Patent (io) Patent No.: US 6,243,468 B1
 Pearceet al. (45) Date of Patent: Jun. 5, 2001

(54) SOFTWARE ANTI-PIRACY SYSTEM THAT FOREIGN PATENT DOCUMENTS

DATS TS BORDWARE DEGROPES O 844 549 AL * S/1998 (EP) caseseseecsenees GO6F/1/00
(75) Inventors: David B. Pearce, Woodinville, WA * cited by examiner

a4idam Hughes; Housion; 12% Primary Examiner—V. Millin
Assistant Examiner—Cuong H. Nguyen

(73) Assignee: Microsoft Corporation, Redmond, WA (74) Attorney, Agent, or Firm—Lee & Hayes, PLLC
(US) (57) ABSTRACT

(*) Notice: Subject to any disclaimer, the term ofthis An anti-piracy system reduces the opportunity for piracy and
patent is extended or adjusted under 35 illicit use of software products by requiring each software
US.C. 154(b) by 0 days. product to be registered for a single computer. If a user

attempts to install the software product on another computer,
(21) Appl. No.: 09/070,518 the software product will recognize a different hardware

composition and disable itself. During installation, the soft-22 iled:
22) Eitledl znph 25 1088 ware product generates a hardware ID that identifies the set
CSV) Tite C07 ieeeeeeceecsecceeessnnneneeeceeeceeennnate H04K 1/00 of hardware components and sendsit and a product ID to a

registration authority. The registration authority computes a

(52) US. Ch. eee 380/255; 380/258; 380/44; registration ID from the product LD and the hardware 1D and
380/266 sends the registration ID back to the software product. Each

time the software product is subsequently launched, the

(58) Field of Searchccccccce 705/26, 57; 713/187, software product computes its own test ID from the product
713/190, 200, 201; 455/410; 380/250, 27, TD and hardware ID using the same algorithm employed by

258; 707/9-10, 203; 709/229; 711/100 the registration authority. The software product then com-
pares the test ID to the registration ID. If the two match, the

(56) References Cited software product is enabled; otherwise, if no match occurs,
the software product is locked. The system flexibly accom-

U.S. RAENT DOLUMENTS modates a situation in which the user upgrades one or a few

5,199,066 * 3/1993 Logan . components in the computer without creating a new
5,357,573 * 10/1994 Walters 2.0.2...cececeeeeees 705/56 machine. The software product determines whether a new
5,379,343 * 1/1995 Grubectal. 455/410 set of hardware components in the computeris substantially
3,099,804 : 2/1996 Heathet al. ... vee T10/7 different from the original set of hardware components.If
Soar ‘ 1006 wee eka: Toss not substantially different, the upgraded computer is more5 5 CNULL oo... ns * os >

5,666,411 * 9/1997 McCarty ” 705/51 like the original compulet and the software product is
5,754,864 S/1998 Hill soeccssesssssessenseeseeeestnsee 705/26 Permitted to operate; otherwise, the computer more
5,757,907 * 5/1998 Cooperet al. . resembles a new computer and the software product is
5,761,649 * 6/1998 Hill oesceeeeeesesseseeeeseeeseeeeseseeenes 705/27~~prevented from operating.
5,835,911 * 11/1998 Nakagawa ou...eee 707/203
6,041,411 * 3/2000 Wyatt . 39 Claims, 6 Drawing Sheets

22-.| |
~ 30

24 [cD Key x
34

| Install _——

’ = 32 Registration ServerWoegeaeeewe
Lo 110 — Registration Unit

Customer Computer ‘a3 1 (Hashingbe ashing=*
Processor 40, | Algorithm J!l 36 CoPID+ HW ID ——

System Memory ~ ,
Program Reg. ID

! Hashing > Registration
__ Algorithm —_.[P}- 100 114 — Database
SL 112 116 +] pip|Hevip|RegiD

- 102 a:

118

Customer RegistrationAuthority

1 GOOGLE 1012

2

U.S. Patent Jun.5, 2001 Sheet 1 of 6 US 6,243,468 B1

20 22

Be
OJ

4

4

Generate and

Assign Serialized
CD Key

22

24
CD Key

3

US 6,243,468 B1Sheet 2 of 6Jun. 5, 2001U.S. Patent

yunuoHeysibeyJONasuonejsiboy

aseqejequonjejsibayWYoByyBuiysey

v
€

20L=

BLLcOL

OLLCLL
OOLWyWoDdivadBurysey——————___>

al‘Bey

cr

+?$vCIWH+Ald

9¢

Joss990ld

OV

JayndwoysawojsnyJ
—OLFF

ce

e3su|
keyao

CC

4

US 6,243,468 B1Sheet 3 of 6Jun. 5, 2001U.S. Patent

99~\voeyeqg

susitoyroeuojeoddysued

S0RLa}UlSAGjeondo

eORLa}U|AUCSIGoneubey;

eoRpeyy|SAL4SIQPAeH

SoeLE}uU|MOMION

SoRye}u]Hod[Bue

weJ6oi4Jeulo

sngweyshg vy

98SOISAJaydepycapi,

—78
punBuisseoo4

c8

eZ

eyeqwelbolg

ZZseinpow

wesboldgJEuUIO

OZswesBoiguonjeayddy89wayshgBujesado

5

U.S. Patent Jun.5, 2001 Sheet 4 of 6 US 6,243,468 B1

Software Product on Registration Unit on
Customer Computer Product Provider Server

Get PID 150

Generate
Hardware ID oe

(HW ID)
Send PID and H/W ID 154

to Registration
Authority

Compute
Registration ID 196

(Reg ID)

Store PID, HAV 158
ID, and Reg ID

Send Reg ID to 460

Customer

Computer
162

Store Reg ID

6

U.S. Patent Jun.5, 2001 Sheet 5 of 6 US 6,243,468 B1

Start Program 170

Get PID 172

Generate H/W ID 174

Compute test ID from 176
PID and H/W ID

Retrieve Reg ID from 178
Memory

Comparetest ID with 180
Reg ID

182
No Yes,

184

186 Allow Program to

7

U.S. Patent Jun.5, 2001 Sheet 6 of 6 US 6,243,468 B1

190

ChangeBit in H/W ID to
get Modified H/W ID

Concatenate PID and

Modified H/W ID

Compute test ID from
PID and Modified

H/W ID

Comparetest ID with
Reg ID

198

192

194

196

Try All
Permutations of

IW ID?

 Yes—204

Lock Program
200

Yes

Allow Program to
Operate

8

US 6,243,468 Bl
1

SOFTWARE ANTI-PIRACY SYSTEM THAT
ADAPTS TO HARDWARE UPGRADES

TECHNICAL FIELD

This invention relates to systems and methods for pre-
venting piracy orillicit use of software. More particularly,
this inventionrelates to such systems and methodsthat allow
hardware components of the underlying computer to be
upgraded and the software to be legitimately installed on the
upgraded machine withouttriggering the anti-piracy protec-
tion.

BACKGROUND

Computer software is a unique consumer product in that
the same product can be replicated many times after being
sold. Once a software product is sold, typically as software
code on a computer-readable disk, the purchaser can easily
copy the code to other computer-readable media thereby
replicating the same product many times over.

This characteristic of software can be a tremendous

benefit in terms of lowering manufacturing costs and facili-
tating distribution. For instance, easy replication allows a
software manufacturerto distribute one physical copyof the
software product and sell a multi-seat license that legally
empowers the purchaser to install the software product on
manydifferent computers.

Unfortunately, this benefit comes at a cost of open abuse.
One well-known abuse is piracy. An unscrupulous party can
obtain a copy of the object code (legally or illegally) and
then illicitly replicate and resell pirated copies of the prod-
uct. Software companies attempt to monitor piracy
activities, but detection is often difficult. Moreover, even
when improper activity is detected, enforcement and legal
recourse is often unavailable from a practical standpoint,
particularly since much of the abuse occurs in foreign lands.

A less subtle abuse is the improper use of the software
product beyond the scope of the license. One common
scenario involves a shrink-wrap software product available
at local retail stores. The product is typically accompanied
by a shrink-wraplicenseto install and use the product on one
computer, and perhaps additionally on a laptop.
Unfortunately, the purchaser may intentionally or uninten-
tionally install the product on more than the allowed
computers, thereby violating the license. For the software
manufacturer, this form of abuse is very difficult to monitor
and even more difficult to prosecute.

The computer software industry estimates that billions of
dollars are lost each year due to piracy and otherillicit uses.
While licenses provide a legal avenue for recourse against
such practices, the practicality of detecting and enforcing
often prove too onerous for the manufacturer. Accordingly,
software companies have a real incentive to reduce the
amount of abuses through other means.

One conventional technique for preventing unlimited
copying of a software product is to design the code with a
self-regulating mechanism that prevents repeated installa-
tions. This mechanism counts the numberof installations

and disables the software code after the product has been
installed a certain numberof times. The underlying premise
is that multiple installations tend to indicate that the user is
attempting to install the product on multiple different
computers, rather than just one computer allowed bythe
license.

FIG.1 illustrates this concept. A manufacturer creates a
software product and places the code on a disk 20, such as

10

15

25

35

40

50

55

60

65

2

a CD-ROMorfloppy diskette. The disk 20 is packaged to
form a shrink-wrap retail product 22. The manufacturer
generates and assigns a serialized key that uniquely identi-
fies that product. For instance, the key might consist of a
manufacturer ID, a serialized incrementing number, a reg-
istered product code, and a checksum value. The key is
printed ona label 24 and affixed somewhere onthe product,
such as the CD-ROM case.

Duringinstallation, the purchaser of the software product
is prompted to enter the key. This step alone is designed to
prevent another party from obtaining the disk 20 only,
without knowledge of the key, and installing the product
illegally. Without the key, the holder of the physical disk is
prevented from installing the product.

The product tracks the numberofinstallations. Once the
purchaser enters the same key more times than a defined
limit, the product is disabled. The purchaser is then forced
to call the manufacturer for assistance.

While such mechanismshelp reduce illicit copying, they
often cause other problems in the form of consumerincon-
venience. For instance, the premise that more installations
than a requisite number meansillegal use may be wrong in
some cases. A user who has upgraded his/her computer, for
example, shouldbe able to legitimately reinstall the software
product on the upgraded machine. However, if the requisite
numberof installations has already been reached, the prad-
uct will not install, forcing the user (who is now disgruntled)
to call the manufacturer for assistance.

Accordingly, there remains a need for improved technol-
ogy solutions to piracy and illicit use, but which also
recognizes and accommodates the needs and practices of a
legitimate purchaser.

SUMMARY

This invention concernsan anti-piracy system and method
that reduces the opportunity for piracy and illicit use of
software products by requiring each software product to be
registered for a single computer that consists of a specific
hardware composition. If a user attempts to install the
software product on another computer, the software product
will recognize a different hardware composition and disable
itself

According to one aspect of the invention, the system
includes a software product that is loaded onto a specific
computer having a set of hardware components (e.g., RAM,
hard disk drive, floppy disk drive, BIOS, network card,
video card, etc.). The software product has an associated
product ID consisting of, for example, a manufacturer ID, a
registered product code, a serialized number, and a check-
sum value.

During installation, the software product generates a
hardware ID that identifies the set of hardware components.
As an example, the software product generates a five-digit
hardware ID that includes a bit representing each of five
system components: BIOS, a video BIOS in the video card,
RAM,a hard disk drive, and a floppy disk drive. The bit for
a given system componentcan be derived in different ways,
such as performing a modulo operation onall or part of the
BIOS, or on the hard disk drive’s serial number.

The software product concatenates the product ID and
hardware ID and sendsit to a registration authority, such as
the product manufacturer or an authorized third party. The
registration authority has a registration unit that computes a
registration ID from the product ID and the hardware ID.
Onepreferred approach is to hash the concatenation of the
product ID and hardware ID to produce the registration ID.

9

US 6,243,468 Bl
3

The registration authority stores the registration ID, product
ID,and hardware ID in a database. The registration authority
sends the registration ID back to the software product, where
the registration ID is stored locally on the computer.

Eachtime the software product is subsequently launched,
the software product again obtains the product ID and
generates the hardware ID for the computer. The software
product then computes its own test ID from the product ID
and hardware ID using the same algorithm (e.g., hashing
algorithm) employed by the registration unit at the registra-
tion authority. The software product compares the test ID to
the registration ID. If the two match, the software productis
enabled to operate on the computer; otherwise, if no match
occurs, the software product is locked and prevented from
operating on the computer.

In the typical case, the test and registration IDs will not
matchif the hardware ID is changed. This indicates that the
underlying hardware has been altered, either through
upgrade or because the user is attempting to install the
product on another computer. At the minimum,the self- -
locking mechanism prevents the user from installing the
software product on multiple different computers. However,
the system is also sensitive to the situation in which the user
simply upgrades one or a few components in the computer
without effectively creating a new machine.

In this situation, the software product determines whether
a new set of hardware components in the computer is
substantially different from the original set of hardware
components. If only one or a few componentsare different
(e.g., not more than two out of five components), the
upgraded computer is more like the original computer and
the software product is permitted to operate. Conversely,if
manyor all components are different (e.g., more than two
out of five components), the “upgraded” computer more
closely resembles a new computer and the software product
is prevented from operating on this new computer without
an additional license from the registration authority.

One waythe software product makes this determination is
by trying different permutations of the hardware ID, chang-
ing at least one bit per try while leaving other bits
unchanged. Each modified hardware ID is concatenated with
the product ID, and then hashed to producethetest ID. If as
a result of this trial-and-error process the test and registra-
tion IDs match, the software product is assured that only a
few of the components have beenaltered, and the productis
permitted to run.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 is a diagrammatic illustration of a prior art manu-
facturing and packaging process to produce a shrink-wrap
software product.

FIG. 2 is a block diagram of an anti-piracy system that
facilitates registration of a software productfor installation
and use on a particular computer.

FIG.3 is a block diagram of an exemplary computer.
FIG.4 is a flow diagram showing steps in a method for

registering, the software product for use on the computer.
FIG.5 is a flow diagram showing steps in a method for

running the software product on the computer.
FIG. 6 is a flow diagram showing steps in a method for

running the software product after the computer has been
upgraded.

DETAILED DESCRIPTION

FIG. 2 shows an anti-piracy system 30 that facilitates
registration of a software product with a registration author-

10

15

25

30

35

45

50

55

60

65

4

ity for installation and use on a particular computer. The
system 30 includes a customer computer 32 and a registra-
tion server 34, which resides at the registration authority
remote from the customer. The customer computer 32 and
registration server 34 are interconnected by a network 36 to
provide data communication. In the absence of a customer
computer’s access to a network, the manufacturer or trusted
third party may provide proxy access to the registration
server by other means, such as electronic mail, fax machine,
postal mail, or telephone.

For discussion purposes, the customer computer is
described as a personal computer, such as a desktop or
portable computer. However,as used herein, the term “com-
puter” is intended to meanessentially any type of computing
device or machine that is capable of running a software
product, including such devices as communication devices
(e.g., pagers, telephones, electronic books, electronic maga-
zines and newspapers, etc.) and personal and home con-
sumer devices (e.g., handheld computers, Web-enabled
televisions, home automation systems, multimedia viewing
systems, etc.). Within the described context, the network 36
is representative of an Internet or Intranet, or a local or wide
area network. However, the network 36 may be imple-
mented in many different forms, including both wire-based
networks(e.g., cable, telephone, fiber optic, etc.) and wire-
less networks (e.g., RF, satellite, microwave, etc.).

FIG. 3 shows the customer computer 32 within an exem-
plary implementation of a personal computer. The computer
32 includes the processing unit 40, system memory42, and
a system bus 44 that interconnects various system
components, including the system memory 42 to the pro-
cessing unit 40. The system bus 44 may be implemented as
any one of several bus structures and using any of a variety
of bus architectures, including a memory bus or memory
controller, a peripheral bus, and a local bus. The system
memory 42 includes read only memory (ROM) 46 and
random access memory (RAM) 48. A basic input/output
system 50 (BIOS)is stored in ROM 46.

The customer computer 32 may have one or more of the
following drives: a hard disk drive 52 for reading from and
writing to a hard disk or hard disk array; a magnetic disk
drive 54 for reading from or writing to a removable magnetic
disk 56; and an optical disk drive 58 for reading from or
writing to a removable optical disk 60 (e.g., CD ROM or
other optical media). The hard disk drive 52, magnetic disk
drive 54, and optical disk drive 58 are connected to the
system bus 44 bya hard disk drive interface 62, a magnetic
disk drive interface 64, and an optical drive interface 66,
respectively. The drives and their associated computer-
readable media provide nonvolatile storage of computer
readable instructions, data structures, program modules and
other data for the computer 32. It is noted that other types of
computer readable media may also be used to store data.
Other such media include magnetic cassettes, flash memory
cards, digital video disks, Bernoulli cartridges, random
access memories (RAMs), read only memories (ROM), and
the like.

A number of program modules may be stored on the hard
disk, magnetic disk 56, optical disk 60, ROM 46, or RAM
48. These programsinclude an operating system 68, one or
more application programs 70, other program modules 72,
and program data 74. The operating system 68is preferably
a Windows brand operating system (e.g., Windows NT,
Windows 98, Windows CE,ctc.), although other types of
operating systems may be used.In this implementation, the
software product can be implementedas one of the programs
70.

10

US 6,243,468 Bl
5

An operator may enter commands and information into
the computer 32 via input devices such as a keyboard 76 and
a mouse 78. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish, scanner, or
the like. These and other input devices are connected to the
processing unit 40 through a serial port interface 80 that is
coupled to the system bus 44, but may alternatively be
connected by other interfaces, such as a parallel port, game
port, or a universal serial bus (USB). A monitor 82 or other
type of display device is also connected to the system bus 44
via an interface, such as a video adapter 84. The video
adapter 84 has a video BIOS (VBIOS) 86. The computer 32
has a networkinterface or adapter 88, a modem 99,or other
means for establishing communications over the network
36.

It is once again noted that the computer shownin FIG. 3
is just one possible type of computing device that can be
used to implement aspects of this invention. Other types of
computers may be used.

With reference again to FIG. 2, the customer purchases a
software product for running on the computer 32. In this
illustration, the software product is in the form of a shrink-
wrap product 22 having a software program stored on a
transportable computcr-readable medium, such as a
CD-ROMor floppy diskette. In other implementations, the
software product may be delivered electronically over a
network. The customer loads the software product onto the
computer 32 as a program 100 stored in system memory 42.

During installation, the customer is prompted to enter a
portion of the product ID of the software product. The
product ID (PID) in this case is the CD key printed on label
24 of the shrink-wrap package. The customer enters the
product ID 102, which is associated with the program 100.
Additionally, another portion of the product ID is already
included in the software program 100 and the software
product combines the two portions, along with other
information, into a product ID that is unique to the specific
installation.

As part of the installation process, the customer registers
the software product with the registration authority. This
authority might be, for example, the product manufacturer or
an authorized third party. The registration process forces the
customerto register the software product for installation and
use on a specific computer.

FIG. 4 shows steps in a method for registering the
software product 100 for installation and use on the com-
puter 32. The methodis described with continuing reference
to FIG. 2. The steps are performed in software by the
software product on the customer computer, and by a
registration unit on the registration server. At step 150, the
software product 100 obtains its product ID 102. As an
example, the product ID consists of a 5-bit RPC (registered
product code) value for the software product, a 3-bit site
valuc indicating a place of manufacture, and a 7-bit serial-
ized numberthat is incremented with each product.

The software product 100 generates a hardware ID (H/W
ID)that identifies a set of hardware components that make
up the customer’s computer 32 (step 152). The hardware ID
is a multi-bit value having at least one bit representing each
of the corresponding system components. As an example,
the software product generates a 5-bit hardware ID that
includes a single bit for each of five system components:
BIOS 50, VBIOS 86, RAM 48, hard disk drive 52, and
floppy disk drive 54. A bit for a given system component can
be derived in different ways, such as performing a modulo
operation on a chunk of the BIOS,or on the hard disk drive’s

10

15

20

40

45

50

55

a 0

5a

10

6

serial number. Table I shows an example construction of a
5-bit hardware I D, and how the bits are derived from the
corresponding component.

TABLE1

Bit Place Hardware Component Method

1 BIOS Perform modulus 8 on first 2 K
chunk of BIOS.
Perform modulus 8 on 64-bit HDD
serial number.
Perform modulus 9 oftotal bytes ofRAM.
Perform modulus 9 on FDD
configuration return valuc.Perform modulus 9 on Video BIOS.

2 Hard Disk Drive

3 RAM

4 Floppy Disk Drive

$ Video Card

It is noted that other hardware components may be used.
For instance, many computers are equipped with a network
card with a unique 128-bit address. A bit for the hardware ID
can be derived from this global network card address.
Moreover, more than, or fewer than five system components
may be used to derive the hardware ID.

The software product in this example concatenates the
15-bit product ID with the 5-bit hardware ID, and sends the
20-bit value over the network 36to the registration server 34
(step 154 in FIG. 4). This phase is preferably automated in
that the software product automatically initiates connection
with the registration server 34 to register itself with the
registration authority.

Alternatively, the software product supports a registration
pilot with a graphical user interface (UI) dialog window
asking the customer to call a service representative at the
registration authority. The UI window lists the product ID
and the hardware ID, and includes a entry box to enter the
registration ID given bythe service representative over the
phone.

The registration server 34 has a registration unit 110 to
assign a registration ID (Reg ID)to the software product on
the customer’s computer. The registration unit 110 computes
the registration ID from the product ID and the hardware ID
(step 156 in FIG. 4). In the illustrated implementation, the
registration unit 110 employs a hashing algorithm 112 to
compute a hash value of the concatenated product ID and
hardware ID. The registration server 34 also maintains a
database 114 to store the product ID, hardware ID, and
registration ID (step 158 in FIG. 4). Preferably, these IDs are
correlated in a table or other data record 116.

The registration server 34 returns the registration ID over
the network 36 to the customer computer 32 (step 160 in
FIG.4). In the manual case, the service representative tells
the customer the registration ID over the phone and the
customer enters the registration ID via the UI window. The
registration ID 118 isstored locally in the system memory 42
of the customer computer 32, where it is accessible by the
software program 100 (step 162 in FIG.4). The program 100
is also equipped with the same hashing algorithm 112 as
found in the registration unit 110 at the registration server
34.

FIG. 5 showssteps in a method for running the software
product 100 on the computer 32. The method is described
with continuing reference to FIG. 2. The steps are performed
by software code within the software product on the cus-
tomer computer. At step 170, the software productis started.
On cach launch aftcr installation, the software product
obtains the product ID 102 (step 172) and generates the
hardware ID from the set of hardware components within
the computer (step 174).

11

US 6,243,468 Bl
7

At step 176, the software product 100 computes its own
test ID from the product ID and hardware ID using the
hashing algorithm 112. This is the same hashing algorithm
as employed by the registration unit 110 when computing
the original registration ID 118. The software product 100
retrieves the original registration ID 118 from memory 42
(step 178 in FIG. 5) and compares the test ID to the
registration ID 118 (step 180 in FIG. 5). If the two match
(ie., the “yes” branch from step 182), the software product
is enabled to operate on the computer (step 184). On the
other hand, if no match occurs (ie., the “no” branch from
step 182), the software product is locked and prevented from
operating on the computer (step 186 in FIG.§).

The anti-piracy system is effective at stopping repeated
installation of the same software product on multiple dif-
ferent machines. In the typical case, the test and registration
IDs will not match if the hardware ID is different now than

it was when the customer first registered the software
product with the registration authority. Thatis, the only thing
that has changed in the computation of the test and regis- °
tration IDs is the hardware ID. The product ID and the hash
algorithm are the same for both computations.

A different hardware ID suggests that the underlying
hardware components have been altered in some manner.
Forinstance, reconfiguring the floppy disk drive or replacing
the hard disk drive might change the hardware ID. Of
course, an entirely different computer with a different set of
hardware components mightalso result in a different hard-
ware ID.

If an unscrupulous customer attempts to install the prod-
uct on another computer, the software product will deter-
mine that the test and registration IDs do not match and will
sclf-lock, thereby preventing its operation on the different
computer. The customeris then forced to contact the regis-
tration authority to obtain a new registration ID, and if
appropriate, pay an additional licensing fee for an additional
installation.

Another advantage is that the anti-piracy system is sen-
sitive to the situation in which the customer has upgraded
his/her computer, without effectively creating a new
machine, and is now attempting to reinstall the software
product on the upgraded computer. In this situation, the
software product determines whether a new set of hardware
components in the computer is substantially different from
the original set of hardware components.If only one or a few
components are different, the upgraded computer is more
like the original computer and the software product is
permitted to operate. Conversely, if manyor all components
are different, the “upgraded” computer more closely
resembles a new computer and the software product is
prevented from operating on this new computer.

One waythe software product makesthis determination is
by trying different permutations of the hardware ID, chang-
ing at Icast one bit per try while lIcaving other bits
unchanged. Each modified hardware ID is concatenated with
the product ID, and then hashedto producethetest ID. If this
trial-and-error process yields a match between the test and
original registration IDs, the software productis assured that
only one or a few components have been altered, and the
software product is permitted to run.

FIG. 6 showssteps in a method for running the software
product 100 on the computer 32 after upgrade. The method
is described with continuing reference to FIG. 2. The steps
are performed by software code within the software product
on the customer computer. At step 190, the software product
changesat least one bit in the hardware ID, while leaving the

10

15

25

30

35

40

45

50

55

60

65

11

8

other bits unchanged, to produce a modified hardware ID.
For example, the software [ID might toggle one bit in the
5-bit hardware ID, while maintaining the other four bits thesame.

The software product concatenates the product ID and
modified hardware ID (step 192) and computes a new test ID
using the hashing algorithm 112 (step 194). At step 196, the
software product retrieves the registration ID 118 from
memory 42 and comparesit to the test ID. If the two match
(i.e., the “yes” branch from step 198), this suggests that only
one component has been changed or upgraded, but rest of
the computer remains substantially the same. Thus, the
computer is deemed an upgrade, and not a new computer.
The software product is enabled to operate on the computer
(step 200 in FIG.6).

If no match occurs (i.e., the “no” branch from step 198),
the software product remains locked. At step 202, the
software product checks whether it has exhausted all pos-
sible new combinations of bits. As an example, suppose the
software manufacturer wants to drawa distinction between

a computer with one or two new hardware components
(which the manufacturer deems an “upgrade”), and a com-
puter with three or more new hardware components (which
the manufacturer dccms a new computer and not an
“upgrade”). In this case, the software product is configured
to change at most up to two bits within the five-bit hardware
ID while keeping at least three bits the same. This process
essentially determines whether at most two out of the five
hardware componentsare different. If the software product
has not exhaustedall available permutations of the hardware
ID (ie., the “no” branch from step 202), the software
product repeats steps 190-198 for the next modified hard-
ware ID.

Whenthe software product exhausts all available permu-
tations without success, this tends to indicate that the com-
putcr is a new computer, not an upgrade. Accordingly, the
software product remains locked (step 204) and forces the
customer to contact the registration authority for assistance.

The anti-piracy system is advantageous in that it allows
the customer someflexibility to upgrade or modify his/her
computer without locking out the program. It is noted,
however, thal this method can be circumvented through
incremental upgrades, where a customer changes out one
componentat a time and reinstalls the software productafter
each component upgrade. However, the incremental upgrade
approach is mostlikely not a viable option for the customer
because it requires a large amount of time to eventually
create the new computer.

A variation of the anti-piracy method prevents even the
incremental upgrade approach, but at the cost of requiring
the customer to contact the registration authority any time
the test ID and the registration ID fail to match. When a
mismatch occurs, the software productinitiates a connection
with the registration server 34 and sends the product ID and
hardware ID over the network 36. The registration unit 110
checks the database 114 for any prior records involving the
product ID. If records with the same product ID exist, the
registration unit 110 evaluates the hardware IDs associated
with the product IDs to determine how they have changed.
Forinstance, if the two hardware IDsdiffer in one or two bits
(which is an acceptable indication of upgrade), the registra-
tion unit will compute a newregistration ID, return it to
customer computer, and create a new record in the database
116. This can be the case even if there are multiple entries
in the database for a single product ID. For instance, further
analysis might reveal that the hardware ID has remained

12

US 6,243,468 Bl
9

substantially the same, excepting one or two bits, in each
table entry for the product ID.

On the other hand, suppose the registration unit deter-
mines that any two hardware IDs for the same product ID
differ by more than twoofthe five bits. This case indicates
that the computer, albeit incrementally upgraded, has
become effectively a new computer. In this case, the regis-
tration unit returns a message denying a new registration ID
and explaining that a new license is required before the
product can be reinstalled and run on the new computer. In
this manner, the customer cannot incrementally upgrade all
products in the computer (one at a time) to effectively
produce a new computer without payment of a new license
fee.

Although the invention has been described in language
specific to structural features and/or methodologicalsteps,it
is to be understood that the invention defined in the

appended claims is not necessarily limited to the specific
features or steps described. Rather, the specific features and
steps are disclosed as preferred forms of implementing the
claimed invention.

What is claimedis:

1. One or more computer-readable media, comprising:
a software product executable by a computer havingaset

of hardware components, the software product having
an associated product ID and the software product
being configured to generate a first hardware ID that
identifies the set of hardware components and to send
the product ID and first hardware ID to a registration
authority remote from the computer;

a registration unit executable by the registration authority,
the registration unit computing a registration ID by
applying an operation to the product ID and thefirst
hardware ID, the registration unit returning the regis-
tration ID to the software product;

the software product being further configured to store the
registration ID locally on the computer and, each time
the software product is subsequently launched on the
computer:

generate a second hardware ID that identifies the set of
hardware components;

apply the operation to the product ID and the second
hardware ID to derive a test ID;
compare the test ID to the registration ID; and
if the test ID substantially matches the registration ID,

enable execution of the software product on the
computer; and

if the test ID does not substantially match the registration
ID, disable exccution of the software product on the
computer.

2. The one or more computer-readable media as recited in
claim 1, wherein the software product is further configured
to generate the hardware ID by software product deriving a
multi-bit hardware ID having multiple bits representing
corresponding hardware components.

3. The one or more computer-readable media as recited in
claim 1, wherein the software product is further configured
to generate the hardware ID by deriving a five-bit hardware
ID that identifies a set of five hardware components within
the computer, the five-bit hardware ID having one bit
representing each of the five hardware components.

4. The one or more computer-readable mediaas recited in
claim 1, wherein the registration unit hashes a concatenation
of the product ID and the hardware ID to derive the
registration ID.

5. The one or more computer-readable mediaas recited in
claim 1, wherein the registration unit stores the product ID,
hardware ID,and registration ID.

10

15

25

30

35

40

45

50

55

60

65

12

10

6. The one or more computer-readable mediaas recited in
claim 1, wherein the test ID is deemedto substantially match
the registration ID if comparingthetest ID to the registration
ID indicates that one hardware component in the set of
hardware components has been changed since the registra-
tion ID was computed.

7. The one or more computer-readable media as recited in
claim 1, wherein the test ID substantially matches the
registration ID if comparing the test ID to the registration ID
indicates that less than one-half of the one hardware com-

ponents in the set of hardware components have been
changed since the registration ID was computed.

8. The one or more computer-readable media as recited in
claim 1, wherein the hardware ID identifies a set of n
hardware components, and in the event that the computeris
upgraded from its original set of hardware componentsto a
new set of hardware components in which at least one
hardware component is different since the last time the
software product was executed on the computer, the soft-
ware product determines whether at most one-half of the n
hardware components are different.

9. The one or more computer-readable media as recited in
claim 1, wherein the hardware ID identifies a set of five
hardware components.

10. A software product implemented on a computer read-
able medium, the software product having a corresponding
original registration ID that represents the software product
being registered to run on a specific computer having a set
of hardware components, comprising:

a code segmentto obtain a product ID associated with the
software product;

a code segment to generate a hardware ID that identifies
the set of hardware components within the specific
computer,

a code segment to compute a test [ID from the product ID
and hardware ID;

a code segment to compare the test ID to the original
registration ID;

a code segment to enable the software product to operate
on the specific computer if the test and original regis-
tration IDs match; and

a code segment to determine if the set of hardware
components is substantially different since the regis-
tration ID was computed if the test and original regis-
tration IDs do not match.

11. A software product as recited in claim 10, wherein the
code segment to gencrate a hardware ID derives a multi-bit
hardware ID having multiple bits representing correspond-
ing hardware components.

12, Asoftware product as recited in claim 10, wherein the
code segment to generate a hardware ID derives a five-bit
hardware ID that identifies a set of five hardware compo-
nents within the computer, the five-bit hardware ID having
one bit representing each of the five hardware components.

13. A software product as recited in claim 10, wherein the
code segment to compute the test ID hashes a concatenation
of the product ID and hardware ID to produce the test ID.

14. Asoftware productas recited in claim 10, wherein the
specific computer is upgraded from its original set of hard-
ware components to a new set of hardware components in
whichat least one hardware componentis different since the
last time the software product was executed on the specific
computer, the software product further comprising a code
segment to determine, in the event that the test and original
registration IDs do not match, whether the new set of
hardware components is substantially different from the

13

US 6,243,468 Bl
11

original set of hardware components, wherein an affirmative
conclusion indicatesthat the upgraded computeris morelike
anew computer and the code segment to lock the software
product is executed, and wherein a negative conclusion
indicates that the upgraded computer is more like the
specific computer and the code segment to enable the
software product is executed.

15. A software product as recited in claim 14, wherein:

the code segment to gencrate a hardware ID derives a
multi-bit hardware ID having multiple bits representing
corresponding hardware components; and

the code segment to determine whether the new set of
hardware components is substantially different from
the original set of hardware componentstries different
permutations of the multi-bit hardware ID, changing at
least one bit per try while leaving at least some of the
bits unchanged.

16. Asoftware product as recited in claim 10, wherein the
hardware ID identifies a set of n hardware components, and
in the event that the computer is upgraded from its original
set of hardware components to a new set of hardware
components in which at least one hardware component is
different since the last time the software product was
executed on the computer, the software product determines
whether at most one-half of the n hardware components are
different.

17. Asoftware product as recited in claim 10, wherein the
hardware ID identifies a set of five hardware components,
and in the event that the computer is upgraded from its
original set of hardware components to a new set of hard-
ware components in whichat least one hardware component
is different since the last time the software product was
executed on the computer, the software product determines
whether at most two out of the five hardware componentsare
different.

18. A methodfor registering a software productfor use on
a computer, comprising the following steps:

obtaining a product ID of the software product;

generating a hardware ID that identifies a set of hardware
components within the computer;

submitting the product ID and hardware ID to a registra-
tion authority;

recciving a registration ID from the registration authority,
the registration ID being computed from the product ID
and hardware ID; and

storing the registration ID.
19. A method as recited in claim 18, wherein the gener-

ating step comprises the step of deriving a multi-bit hard-
ware ID having multiple bits representing corresponding
hardware components.

20. A method as recited in claim 18, wherein the gener-
ating step comprises the step of deriving a five-bit hardware
ID that identifies a set of five hardware components within
the computer, the five-bit hardware ID having one bit
representing each of the five hardware components.

21. A method as recited in claim 18, wherein the regis-
tration ID is computed by hashing a concatenation of the
product ID and hardware ID.

22. A methodas recited in claim 18, further comprising
the following steps:

starting the software product;
obtaining the product ID of the software product;
generating a hardware ID that identifies a set of hardware

components within the computer;

computing a test ID from the product ID and hardware ID;

10

15

35

40

45

50

55

60

65

13

12

comparing the test ID to the registration ID stored on the
computer;

if a match occurs, enabling the software product to
operate; and

if no match occurs, locking the software product to
prevent it from operating.

23. A computer-readable medium having computer-
executable instructions for:

obtaining a product ID of the software product;

generating a hardware ID that identifies a set of hardware
components within the computer;

submitting the product ID and hardware ID to a registra-
tion authority;

receiving a registration ID from the registration authority,
the registration ID being computed from the product ID
and hardware ID; and

storing the registration ID.
24. A method for running a software product on a

computer, the software product having a corresponding
original registration ID that represents the software product
being registered to run on the computer, the method com-
prising the following steps:

obtaining a product ID of the software product;
generating a hardwareID that identifies a set of hardware

components within the computer;

computing a test ID from the product ID and hardware ID;
comparing the test ID to the original registration ID;
if a match occurs, enabling the software product to

operate on the computer; and

if no match occurs, determining if the set of hardware
components has substantially changed since the origi-
nal registration ID was computed.

25. A method as recited in claim 24, wherein the gener-
ating step comprises the step of deriving a multi-bit hard-
ware ID having multiple bits representing corresponding
hardware components.

26. A methodas recited in claim 24, wherein the gener-
ating step comprises the step of deriving a five-bit hardware
ID that identifies a set of five hardware components within
the computer, the five-bit hardware ID having one bit
representing each of the five hardware components.

27. A method as recited in claim 24, wherein the com-
puling slep comprising hashing a concatenation of the
product ID and hardware ID to produce the test ID.

28. A computer-readable medium having computer-
executable instructions for:

obtaining a product ID of the software product;

generaling a hardware ID that identifies a set of hardware
components within the computer;

computing a test ID from the product ID and hardware ID;
comparing the test ID to an original registration ID;

if a match occurs, enabling the software product to
operate on the computer; and

if no match occurs, determining if the computer is sub-
stantially the same computer associated with the origi-
nal registration ID, enabling the software product to
operate on the computerif the computeris substantially
the same computer, and locking the software productto
prevent it from operating on the computer if the com-
puter is nat substantially the same computer.

29. A method for running a software product on a com-
puter that has been upgraded from anoriginal set of hard-
ware components to a new set of hardware components in
whichat least one hardware componentis different since the

14

US 6,243,468 Bl
13

last time the software product was executed on the computer,
the software product having an associated original registra-
tion ID that represents the software product being registered
to run on the computer with the original set of hardware
components prior to upgrade, the method comprising the
following steps:

obtaining a product ID of the software product;
generating a hardware ID that identifies the new set of

hardware components within the upgraded computer;
computing a test ID from the product ID and hardware ID;

comparing the test ID to the original registration ID;
if a match occurs, enabling the software product to

operate on the upgraded computer; and
if a match does not occur, determining whether the new

set of hardware components is substantially different
fromthe original set of hardware components, wherein
an affirmative conclusion indicates that the upgraded
computer is more like a new computer and the software
product is prevented from operating, and wherein a 29
negative conclusion indicates that the upgraded com-
puter is more like the original computer and the soft-
ware product is permitted to operate.

30. A method as recited in claim 29, wherein the gener-
ating step comprises the step of deriving a multi-bit hard-
ware ID having multiple bits representing corresponding
hardware components.

31. A method as recited in claim 29, wherein the gener-
ating step comprises the step of deriving a five-bit hardware
ID that identifies a set of five hardware components within
the computer, the five-bit hardware ID having one bit
representing each of the five hardware components.

32. A method as reciled in claim 29, wherein the com-
puting step comprising hashing a concatenation of the
product ID and hardware ID to produce the test ID.

33. A method as recited in claim 29, wherein:

the generating step comprises the step of deriving a
multi-bit hardware ID having multiple bits representing
corresponding hardware components; and

the determining step comprises the step of changing at
least one bit in the hardware ID while leaving at least
some of the bits unchanged, and repeating the comput-
ing and comparingsteps.

34. Amcthod as recited in claim 29, wherein the hardware
ID identifies a set of n hardware components, and the
determining step comprises the step of determining whether
at most one-half of the n hardware components are different.

35. Amethod as recited in claim 29, wherein the hardware
ID identifies a set of five hardware components, and the
determining step comprises the step of determining whether
at most two out of the five hardware components are
different.

36. A computer-readable medium having computer-
executable instructions for:

obtaining a product ID of the software product;

generaling a hardware ID that identifies the new set of
hardware components within the upgraded computer;

computing a test ID from the product ID and hardware ID;
comparing the test ID to the original registration ID;
if a match occurs, enabling the software product to

operate on the upgraded computer; and
if a match does not occur, determining whether the new

sct of hardware components is substantially different
from the original set of hardware components, wherein
an affirmative conclusion indicates that the upgraded
computer is more like a new computer and the software

10

15

25

30

35

40

45

50

55

60

65

14

14

product is prevented from operating, and wherein a
negative conclusion indicates that the upgraded com-
puter is more like the original computer and the soft-
ware product is permitted to operate.

37. A method for comprising the following steps:

(A) registering a software product for use on a computer
having an original set of hardware components, com-
prising the following steps:
obtaining a product ID of the software product;
generating an original hardware ID that identifies the

original set of hardware components within the com-
puter;

submitting the product ID and hardware ID to a regis-
tration authority;

receiving an original registration ID from the registra-
lion authority, the original registration ID being
computed from the product ID and hardware ID; and

storing the original registration ID;

(B) subsequently running the software product on the
computer, comprising the following steps:
obtaining the product ID of the software product;
generating the original hardware ID;
computing a test ID from the product ID and hardware

ID;
comparing the test ID to the original registration ID;
enabling the software product to operate on the com-

puter if a match occurs; and
locking the software product to prevent it from oper-

ating on the computer if no match occurs;

(C) in an event that the computer is upgraded from the
original set of hardware components to a newset of
hardware components in which at least one hardware
componentis different since the last time the software
product was executed on the computer, performing the
following steps:
obtaining the product ID of the software product;
generating a oew hardware ID that identifies the new

set of hardware components within the upgraded
computer;

computing a new registration ID from the product ID
and hardware ID;

comparing the new registration ID to the original
registration ID;

enabling the software product to operate on the
upgraded computer if a match occurs; and

if a match does not occur, determining whether the new
set of hardware components is substantially different
from the original set of hardware components,
wherein an affirmative conclusion indicates that the

upgraded computer is more like a new computer and
the software product is prevented from operating,
and wherein a negative conclusion indicates that the
upgraded computer is more like the original com-
puter and the software product is permitted to oper-
ate.

38. A method for preventing multiple installations of a
software product on different computers, comprising the
following steps:

registering the software product for use with a first
computer havingafirst set of hardware components;

in an event that the software product is subsequently
installed on a second computer having a secondset of
hardware components different from the first set:

detecting the different set of hardware components;
discerning whether the second computer is substantially

similar the first computer in which only a subset ofthe

15

US 6,243,468 Bl
15 16

hardware components are different, and allowing the 39. A method as recited in claim 38, wherein the second
software product to operate on the second computer in computer is substantially similar to the first computer is
the event that the second computer is substantially|more than half of the hardware componentsin the sct of
similar; hardware components are the same hardware components in

disabling the software product from operating on the 5 the set of hardware components in the first computer.
second computer in the event that the second computer
is not substantially similar. ee

15

