US007503072B2

a2 United States Patent 10) Patent No.: US 7,503,072 B2
Hughes et al. 45) Date of Patent: Mar. 10, 2009
(549) HARDWARE ID TO PREVENT SOFTWARE 5,199,066 A 3/1993
PIRACY 5,357,573 A 10/1994
5,379,343 A 1/1995
(75) Inventors: AidanT. Hughes, Bellevue, WA (US); 5,490,216 A 2/1996 Richardson, IIT 380/4
David Barnaby Pearce, West Palm 5,491,804 A 2/1996 Heathvetal: coosesemsvsnn 395/275
Beach, FL (US) (Continued)
(73) Assignee: Microsoft Corporation, Redmond, WA FOREIGN PATENT DOCUMENTS
US) EP 0844549 Al 5/1998
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Silent saf g - e ot Joar e Bl
lenl sajeguara—An anli-piracy aevice iels you near e bandas
U.S.C. 154(b) by 2544 days. without the blips; B. Fox; New Scientist, (Aug. 21, 1999) v.163, n.
(21) Appl. No.: 09/859,915 2200, p- 12.
(Continued)
(22) Filed: May 17, 2001 . .
Primary Examiner—Matthew B Smithers
(65) Prior Publication Data (74) Attorney, Agent, or Firm—Merchant & Gould PC
US 2001/0044782 A1 Nov. 22, 2001 (57) ABSTRACT
Related U.S. Application Data In one embodiment, the invention is a 64 bit hardware ID
(63) Continuation-in-part of application No. 09/070,518, (/W ID) for tying a softwa.re product fo a Pamcular com-
filed on Apr. 29, 1998, now Pat. No. 6,243,468. puter to prevent software piracy. The 64 bit hardware 1D
’ ’ - represents ten different components of the user’s computer:
(51) Int.CL the CD-ROM device, the disk adapter, the disk device, the
HO4L 29/00 (2006.01) display adapter, the first drive serial number, the MAC
HO4L 9/00 (2006.01) address, the processor serial number, the processor type, the
(52) US.Cl 726/26: 705/51: 705/59 RAM size in Mb, and the SCSI adapter. Each time the soft-
(58) Fi-el-d o f Class1ﬁcatlon “S.(.e;l.'ch ’ 3,8 0/201 ware product is opened, the expanded H/W ID is compared to
380/203. 231. 232 705/5152 56 57 58, the hardware on the computer to determine whether a prede-
’ ’ ’ ’705/’59" 72:5 2 6’ termined minimum number of components match. In one
g lication file f ek h hist ’ embodiment, the expanded H/W ID allows for expansion of
el e the user’s computer because so long as the component origi-
(56) References Cited nally listed in the expanded H/W ID can be found on the

U.S. PATENT DOCUMENTS

4,658,093 A 4/1987 Hellman. w::.ososessumsesssasss 380/25
4,688,169 A 8/1987 Joshi 364/200
4,796,220 A 1/1989 Wolfe .iisvwsvwssssvomiwssss 364/900
5,182,770 A * 1/1993 Medveczky et al. 705/56

222

224

l Install

Customer Computer

Processor

System Memory

36

Program

Hashing
Algorithm

Product ID | 102
18
ul

Customer

PID +H/W ID
—>
«—
n2 License

computer, then that component matches the expanded H/W
ID. Typically, seven out of ten components in the expanded
H/W ID must match the computer before the software product
will fully operate.

1 Claim, 6 Drawing Sheets

300

e

110
Activation Server

Activation Unit

Hashing
] _Algorithm

N2~
—
-«

file

Activation
Database

[Pio] w10 Tic. fie]
I —

14—

Activation Authority

GOOGLE 1013

US 7,503,072 B2
Page 2

U.S. PATENT DOCUMENTS

5,502,831 A 3/1996 Grube etal. 395/427
5,509,070 A 411996 Schulll .isosrssssssssmsssssasssss 380/4
5,651,064 A * 7/1997 Newell 705/51
5,666,411 A 9/1997 MCcCaity wewssomsemsmmms: 380/4
5,671,412 A 9/1997 Christiano etal. 395/615
5,754,804 A 5/1998 Hill . 395/712
5,757,907 A 5/1998 Cooperetal.ooueeen. 380/4
5,761,649 A 6/1998 Hill: covsissmnvsssmssssmmssnasmses 705/27
5,790,664 A 8/1998 Coleyetal. 380/4
5,835,911 A 11/1998 Nakagawa et al . 707/203
5,892,900 A 4/1999 Ginter et al. . 395/186
5,940,504 A 8/1999 Griswold 380/4
5,968,175 A 10/1999 713/200
6,041,411 A 3/2000 713/200
6,044,471 A 3/2000 ... 713/202
6,085,324 A 7/2000 Ogrametal. 713/202
6,240,401 Bl 52001 Orengtial: sssrsesssmms: 705/40
6,243,468 Bl 6/2001 Pearce et al. ... 380/255
6,244,758 Bl 6/2001 Solymar et al 395/200.54
6,449,645 Bl 9/2002 Nashi sesssmswsssssmemsmss 709/224

OTHER PUBLICATIONS

Rallying the disc patrol: protection schemes for CD and DVD; D.
Galante Block; EMedia Professional, (Dec. 1998) v. 11, n. 12 p. 34-8,
40-3.

Anti-counterfeiting holograms and government anti-piracy activities
in China; Hsu Dahsiung; Proceedings of the SPIE—The Interna-
tional Society for Optical Engineering Conference, (1998) v. 3358, p.
318-321.

CD/DVD piracy: the replicator, the user and the technology; D.G.
Block; EMedia Professional, (Dec. 1997) v.10, n.12, p. 92-96,
98-100, 102-104, 106-107.

Preventive and deterrent controls for software piracy; R.D. Gopal
and G.L. Sanders; Journal of Management Information Systems
(Spring 1997) v.13, n.4, p. 29-47.

Foiling corporate software pirates; D.H. Freedman; High Technol-
ogy (Jul. 1995) v.5, n.7, p. 62-64.

Software piracy: stopping it before it stops you; Mark B. Johnson;
Proceedings of the Sixteenth ACM SIGUCCS Conference on User
Services, 1988, p. 295-299.

Software watermarking: models and dynamic embeddings; Christian
Colberg and Clark Thomborson; Proceedings of the 26™ ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 1999, p. 311-324.

How to prove where you are: tracking the location of customer
equipment; Eran Gabber and Avishai Wool; Proceedings of the 5
ACM conference on Computer and Communications Security, 1998,
p. 142-149.

Handling site-licensing agreements and public domain sofiware
architecture; John D. Chovan; Proceedings of the ACM SIGUCCS
XIIT Conference on User Services: pulling it all together, 1985, p.
175-179.

Digital signets: self-enforcing protection of digital information (pre-
liminary version), Cynthia Dwork, Jeffrey Lotspich and Moni Naor;
Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing, 1996, p. 489-498.

Globetrotter Software, Inc., “FLEXIm End User Manual”, Chapters
1-7 (1996).

* cited by examiner

US 7,503,072 B2

Sheet 1 of 6

Mar. 10, 2009

U.S. Patent

Jaindwo)
ajoey B

1S

NIOM]BN Baly (207

eeqg
8¢ weubo.d

a|npo welbolid
g€ uoneslddy

or pieoghay|

Nv\.mm

asnop

a0l
HIOMION

>
EREIEV] EREIEI]
Hod QAU YsI
[euag leondo

19ydepy
O03pPIA

ejeq saiNpoN | anpop weiboig wasAs
welboa weJbol uoneoydd Bunelad
d /8 d g nedlaay ge I o]
NII NN \\\
Y e [
/ eleqg
aoepau| 2B 8¢ weJbo.d
AL YsIg aAug
onaubep %s1Q pieH
so|npoyy weiboiyd
9¢ uopeolddy

sng woaysAg

nin
Buissaoold

_.N.\

ge wajsAg Buneledp
14 wvy
09 SOIg 03pIA
9c solid
2z e NOoA

US 7,503,072 B2

Sheet 2 of 6

Mar. 10, 2009

U.S. Patent

AJHOUINY UCTBAOY

m—

ol .o:_ alm/H [aid

aspgpIPg
UOHDAYOY

N~

Wyjuoo)y
BuiysoH

1UN UODAIDY

~

g 911

vl

Sl
VS

J8AISS UOHDAIOY
/ . oLt

vee k

00€

Z ‘bi4

8L
201~
z117]
—>
4—
Qi M/H + Ald

¢

1€ —

0c

BwoEny

\

—

\

o[} 95U _

\

dl onpoid _

\

—
]
\
wyjLob|y L
BuiysoH
\/7 wpliboid L L

AIOWBW WSJSAS K

105582014 7

18Ndwo Jswosn) \

>
g

[[SIR]] %
Asy @D

V¥ CT

N_——2tC

| -9¢

U.S. Patent Mar. 10,2009 Sheet 3 of 6 US 7,503,072 B2

Software Product on Activation Unit on
Customer Computer Product Provider Server

150

Get PID

¢ 152

Generate
Hardware ID
(H/W ID)

¢ 154

Send PID and H/W ID
To Activation
Authority

|

¥ 156

Compute License file

A 158

Store PID, H/W
ID, and License file

l 160

Send License file to
Customer
Computer

A 162

Store license file

Fig. 3

U.S. Patent Mar. 10,2009 Sheet 4 of 6 US 7,503,072 B2

Start Program

A 172

Get PID

‘ 174

Generate H/W ID

l 176

Compute test
ID from PID and H/W ID

l 178

Retrieve License file from
memory

l 180

Compare test ID
with License file

182

No Yes
Match?

186 184

Allow Program
Lock Program to Operate

Fig. 4

U.S. Patent Mar. 10,2009 Sheet 5of 6 US 7,503,072 B2

190

> Change digit in H/W ID
To get modified H/W ID

I 192

Concatenate PID and
Modified H/W ID

i 194

Compute test ID from
PID and modified
H/W ID

i 196

Compare test ID
with license file

"o e 198
Tried All No Yes
permutations of ¢ Match?
H/W ID?2
Yes 200
204 Allow Program
to Operate
Lock Program
Fig. 5

U.S. Patent

Mar. 10, 2009

Sheet 6 of 6

602

Start Program

RSy

Get Expanded
H/W ID

¢ 606

——» Get portion of H/W ID

L 608

Compare portion of

H/W 1D with alf
IAppropriate componenty
On computer

610

Yes

612

Add one to count

More portions of
H/W ID to examine?

No s count greater than™~._Yes

Lock Program

US 7,503,072 B2

minimum?2

620

Fig. 6

618

Allow Program
to Operate

US 7,503,072 B2

1

HARDWARE ID TO PREVENT SOFTWARE
PIRACY

REFERENCE TO RELATED APPLICATIONS

This is a continuation-in-part of U.S. patent application
Ser. No. 09/070,518, entitled “SOFTWARE ANTI-PIRACY
SYSTEM THAT ADAPTS TO HARDWARE UPGRADES”,
filed Apr. 29, 1998 now U.S. Pat. No. 6,243,468, which is
incorporated by reference herein.

TECHNICAL FIELD

The invention generally relates to systems and methods for
preventing piracy or illicit use of software by identifying
hardware components of a computer. More particularly, this
invention relates to such systems and methods that allow
hardware components of the underlying computer to be
upgraded and the software to be legitimately installed on the
upgraded machine without triggering the anti-piracy protec-
tion.

BACKGROUND

Computer software is a unique consumer product in that
the same product can be replicated many times after being
sold. Once a software product is sold, typically as software
code on a computer-readable disk, the purchaser can easily
copy the code to other computer-readable media thereby rep-
licating the same product many times over.

This characteristic of software can be a tremendous benefit
in terms of lowering manufacturing costs and facilitating
distribution. For instance, easy replication allows a software
manufacturer to distribute one physical copy of the software
product and sell a multi-seat license that legally empowers the
purchaser to install the software product on many different
computers.

Unfortunately, this benefit comes at a cost of open abuse.
One well-known abuse is piracy. An unscrupulous party can
obtain a copy of the object code (legally or illegally) and then
illicitly replicate and resell pirated copies of the product.
Software companies attempt to monitor piracy activities, but
detection is often difficult. Moreover, even when improper
activity is detected, enforcement and legal recourse is often
unavailable from a practical standpoint, particularly since
much of the abuse occurs in foreign lands.

A less subtle abuse is the improper use of a software prod-
uct beyond the scope of the license. One common scenario
involves a shrink-wrap software product available at local
retail stores. The product is typically accompanied by a
shrink-wrap license to install and use the product on one
computer, and perhaps additionally on a laptop. Unfortu-
nately, the purchaser may intentionally or unintentionally
install the product on more than the allowed computers,
thereby violating the license. For the software manufacturer,
this form of abuse is very difficult to monitor and even more
difficult to prosecute.

The computer software industry estimates billions of dol-
lars are lost each year due to piracy and other illicit uses.
While licenses provide a legal avenue for recourse against
such practices, the practicality of detecting and enforcing
these licenses often proves too onerous for the manufacturer.
Accordingly, software companies have a real incentive to
reduce the amount of abuses through other means.

One conventional technique for preventing unlimited
copying of a software product is to design the code with a
self-regulating mechanism that prevents repeated installa-

10

15

20

25

30

35

40

45

50

55

60

65

2

tions. This mechanism counts the number of installations and
disables the software code after the product has been installed
a certain number of times. The underlying premise is that
multiple installations tend to indicate that the user is attempt-
ing to install the product on multiple different computers,
rather than just one computer allowed by the license.

As an example of this concept, suppose a manufacturer
creates a software product and places the code on a disk, such
asaCD-ROM or floppy diskette. The disk is packaged to form
a shrink-wrap retail product. The manufacturer generates and
assigns a serialized key that uniquely identifies that product.
For instance, the key might consist of a manufacturer 1D, a
serialized incrementing number, a registered product code,
and a checksum value. The key is printed on a label and
affixed somewhere on the product, such as the CD-ROM case.

During installation, the purchaser of the software product
is prompted to enter the key. This step alone is designed to
prevent another party from obtaining the disk only, without
knowledge of the key, and installing the product illegally.
Without the key, the holder of the physical disk is prevented
from installing the product.

The product tracks the number of installations. Once the
purchaser enters the same key more times than a defined limit,
the product is disabled. The purchaser is then forced to call the
manufacturer for assistance.

While such mechanisms help reduce illicit copying, they
often cause other problems in the form of consumer inconve-
nience. For instance, the premise that more installations than
a requisite number means illegal use may be wrong in some
cases. A user who has upgraded his/her computer, for
example, should be able to legitimately reinstall the software
product on the upgraded machine. However, if the requisite
number of installations has already been reached, the product
will not install, forcing the user (who is now disgruntled) to
call the manufacturer for assistance.

Accordingly, there remains a need for improved technol-
ogy solutions to piracy and illicit use, while recognizing and
accommodating the needs and practices of a legitimate pur-
chaser.

SUMMARY OF THE INVENTION

The present invention meets the above-described needs by
providing a system for enabling enforcement of written soft-
ware licensing terms for a software product for use with a
computer having a set of hardware components.

In one aspect, the system includes a software product resi-
dent on a computer, the software product having an associated
product ID. The software product generates a hardware 1D
that identifies the set of hardware components on the com-
puter. In one embodiment, a 64-bit hardware ID that identifies
a set of ten hardware components within the computer is
derived. The 64 bit hardware ID represents ten different com-
ponents of the user’s computer: the CD-ROM device, the disk
adapter, the disk device, the display adapter, the first drive
serial number, the MAC address, the processor serial number,
the processor type, the RAM size in Mb, and the SCSI
adapter. Each time the software product is opened, the
expanded H/W ID is compared to the hardware on the com-
puter to determine whether a predetermined minimum num-
ber of components match. In one embodiment, the expanded
H/W ID allows for expansion of the user’s computer because
so long as the component originally listed in the expanded
H/W ID can be found on the computer, then that component
matches the expanded H/W ID. Typically, seven out of ten
components in the expanded H/W ID must match the com-
puter before the software product will operate.

US 7,503,072 B2

3

In another aspect of the invention, the software product is
subsequently launched following installation and the soft-
ware product retrieves the 64-bit hardware ID. The hardware
ID is compared to the set of hardware components on the
computer on which the software product is installed. If a
suitable match occurs, the software product is enabled to
operate on the computer. Otherwise, if a suitable match does
not occur, the software product is locked and prevented from
operating on the computer. Typically, a suitable match is
found when at least seven out of ten components identified by
the hardware 1D are found in the set of hardware components
on the current computer. Thus, the invention prevents a user
from installing the software product onto multiple different
computers because it uses the hardware ID to identify a spe-
cific computer.

That the invention improves over the drawbacks of prior art
and accomplishes the advantages described above will
become apparent from the following detailed description of
the exemplary embodiments and the appended drawings and
claims.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of an exemplary personal com-
puter.

FIG. 2 is a block diagram of an anti-piracy system that
facilitates activation of a software product for installation and
use on a particular computer.

FIG. 3 is a flow diagram showing steps in a method for
activating the software product for use on the computer.

FIG. 4 is a flow diagram showing steps in a method for
running the software product on the computer.

FIG. 5 is a flow diagram showing steps in a method for
running the software product after the computer has been
upgraded.

FIG. 6 is a flow diagram showing steps in a method for
running the software product with an expanded hardware ID.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

An embodiment of the present invention will be incorpo-
rated into the “OFFICE 10” suite of program modules mar-
keted by Microsoft Corporation of Redmond, Wash. Briefly
described, in one embodiment, the invention is an expanded
64 bit hardware ID (H/W ID) for tying a software product to
a particular computer to prevent software piracy. The 64 bit
hardware ID represents ten different components of the user’s
computer: the CD-ROM device, the disk adapter, the disk
device, the display adapter, the first drive serial number, the
MAC address, the processor serial number, the processor
type, the RAM size in Mb, and the SCSI adapter. Each time
the software product is opened, the expanded H/W ID is
compared to the hardware on the computer to determine
whether a predetermined minimum number of components
match. In one embodiment, the expanded H/W 1D allows for
expansion of the user’s computer because so long as the
component originally listed in the expanded H/W ID can be
found on the computer, then that component matches the
expanded H/W ID. Typically, seven out of ten components in
the expanded H/W ID must match the computer before the
software product will operate.

FIG. 2 shows an anti-piracy system 300 that facilitates
activation of a software product with an activation authority
for installation and use on a particular computer. The system
300 includes a customer computer 20 and an activation server
334, which resides at the activation authority remote from the

10

15

20

25

30

35

40

45

50

55

60

65

4

customer. The customer computer 20 and activation server
334 are interconnected by a network 336 to provide data
communication. In the absence of a customer computer’s
access to a network, the manufacturer or trusted third party
may provide proxy access to the activation server by other
means, such as electronic mail, fax machine, postal mail, or
telephone.

For discussion purposes, the customer computer is
described as a personal computer, such as a desktop or por-
table computer. However, as used herein, the term “com-
puter” is intended to mean essentially any type of computing
device or machine that is capable of running a software prod-
uct, including such devices as communication devices (e.g.,
pagers, telephones, electronic books, electronic magazines
and newspapers, etc.) and personal and home consumer
devices (e.g., handheld computers, Web-enabled televisions,
home automation systems, multimedia viewing systems,
etc.). Within the described context, the network 336 is repre-
sentative of an Internet or intranet, or a local or wide area
network. However, the network 336 may be implemented in
many different forms, including both wire-based networks
(e.g., cable, telephone, fiber optic, etc.) and wireless networks
(e.g., RE, satellite, microwave, etc.).

FIG. 1 and the following discussion are intended to provide
a brief, general description of an exemplary customer com-
puter 20. While the invention will be described in the general
context of an application program that runs on an operating
system in conjunction with a personal computer, those skilled
in the art will recognize that the invention also may be imple-
mented in combination with other program modules. Gener-
ally, program modules include routines, programs, compo-
nents, data structures, etc. that perform particular tasks or
implement particular abstract data types. Moreover, those
skilled in the art will appreciate that the invention may be
practiced with other computer system configurations, includ-
ing hand-held devices, multiprocessor systems, microproces-
sor-based or programmable consumer electronics, minicom-
puters, mainframe computers, and the like. The invention
may also be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted computing environment, program modules may be
located in both local and remote memory storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting the invention includes a conventional personal com-
puter 20, including a processing unit 21, a system memory 22,
and a system bus 23 that couples the system memory to the
processing unit 21. The system memory 22 includes read only
memory (ROM) 24 and random access memory (RAM) 25. A
basic input/output system 26 (BIOS), containing the basic
routines that help to transfer information between elements
within the personal computer 20, such as during start-up, is
stored in ROM 24. A video BIOS 60 is also stored in ROM 24.
The personal computer 20 further includes a hard disk drive
27, a magnetic disk drive 28.e.g., to read from or write to a
removable disk 29, and an optical disk drive 30, e.g., for
reading a CD-ROM disk 31 or to read from or write to other
optical media. The hard disk drive 27, magnetic disk drive 28,
and optical disk drive 30 are connected to the system bus 23
by a hard disk drive interface 32, a magnetic disk drive inter-
face 33, and an optical drive interface 34, respectively. The
drives and their associated computer-readable media provide
nonvolatile storage for the personal computer 20. Although
the description of computer-readable media above refers to a
hard disk, a removable magnetic disk and a CD-ROM disk, it
should be appreciated by those skilled in the art that other
types of media which are readable by a computer, such as

10

US 7,503,072 B2

5

magnetic cassettes, flash memory cards, digital video disks,
Bernoulli cartridges, and the like, may also be used in the
exemplary operating environment.

A number of program modules may be stored in the drives
and RAM 25, including an operating system 35, application
program modules 36, such as Microsoft’s “OFFICE 10” suite
of program modules, and program data 38. A user may enter
commands and information into the personal computer 20
through a keyboard 40 and pointing device, such as a mouse
42. Other input devices (not shown) may include a micro-
phone, joystick, game pad, satellite dish, scanner, or the like.
These and other input devices are often connected to the
processing unit 21 through a serial port interface 46 that is
coupled to the system bus, but may be connected by other
interfaces, such as a game port or a universal serial bus (USB).
A monitor 47 or other type of display device is also connected
to the system bus 23 via an interface, such as a video adapter
48. In addition to the monitor, personal computers typically
include other peripheral output devices (not shown), such as
speakers or printers.

The personal computer 20 may operate in a networked
environment using logical connections to one or more remote
computers, such as a remote computer 49. The remote com-
puter 49 may be a server, a router, a peer device or other
common network node, and typically includes many or all of
the elements described relative to the personal computer 20,
although only a memory storage device 50 has been illus-
trated in FIG. 1. The logical connections depicted in FIG. 1
include a local area network (LAN) 51 and a wide area net-
work (WAN) 52. Such networking environments are com-
monplace in offices, enterprise-wide computer networks,
Intranets and the Internet.

When used in a LAN networking environment, the per-
sonal computer 20 is connected to the LAN 51 through a
network interface 53. When used in a WAN networking envi-
ronment, the personal computer 20 typically includes a
modem 54 or other means for establishing communications
over the WAN 52, such as the Internet. The modem 54, which
may be internal or external, is connected to the system bus 23
via the serial port interface 46. In a networked environment,
program modules depicted relative to the personal computer
20, or portions thereof, may be stored in the remote memory
storage device. It will be appreciated that the network con-
nections shown are exemplary and other means of establish-
ing a communications link between the computers may be
used.

With reference again to FIG. 2, suppose a customer pur-
chases a software product for running on the computer 20. In
this illustration, the software product is in the form of a
shrink-wrap product 222 having a software program stored on
a transportable computer-readable medium, such as a CD-
ROM or floppy diskette. In other implementations, the soft-
ware product may be delivered electronically over a network.
The customer loads the software product onto the computer
20 as a program 36 stored in system memory 22.

During installation, the customer is prompted to enter a
portion of the product ID of'the software product. The product
ID (PID) in this case is partially derived from the CD key 224
printed on the label of the shrink-wrap package. The customer
enters the CD key 224, which is associated with the program
36. Additionally, another portion of the product ID is already
included in the software program 36 and the software product
combines the portion with the CD key into a product ID that
is unique to the specific installation.

As part of the installation process, the customer registers
the software product with the activation authority. This
authority might be, for example, the product manufacturer or

10

15

20

25

30

35

40

45

50

55

60

65

11

6

an authorized third party. The activation process allows the
customer to activate the software product for installation and
use on a specific computer.

FIG. 3 shows steps in a method for activating the software
product 36 for installation and use on the computer 20. The
method is described with continuing reference to FIG. 2. The
steps are performed in software by the software product on
the customer computer, and by an activation unit 110 on the
activation server. At step 150, the software product 36 obtains
its product ID 102. As an example, the product ID consists of
a 5-digit RPC (registered product code) value for the software
product, a 3-digit site value indicating a place of manufacture,
and a 7-digit serialized number that is incremented with each
product.

The software product 36 generates a hardware 1D (H/W
ID) that identifies a set of hardware components that make up
the customer’s computer 20 (step 152). The hardware ID may
be a multi-digit value having at least one digit representing
each of the corresponding system components. As an
example, the software product generates a 5-digit hardware
1D that includes a single digit for each of five system compo-
nents: BIOS 26, VBIOS 60, RAM 25, hard disk drive 27, and
floppy disk drive 28. A digit for a given system component
can be derived in different ways, such as performing a modulo
operation on a chunk of the BIOS, or on the hard disk drive’s
serial number. Table 1 shows an example construction of a
5-digit hardware ID, and how the digits are derived from the
corresponding component.

TABLE 1

Digit Place Hardware Component Method

1 BIOS Perform modulus 8 on first 2K
chunk of BIOS.
2 Hard Disk Drive Perform modulus 8 on 64-bit

HDD serial number.
Perform modulus 9 of total
bytes of RAM.

Perform modulus 9 on FDD
configuration return value.
Perform modulus 9 on Video
BIOS.

5] RAM

4 Floppy disk drive

5 Video Card

It is noted that other hardware components may be used.
For instance, many computers are equipped with a network
card with a unique 48-bit address. A digit for the hardware ID
can be derived from this global network card address. More-
over, more than, or fewer than, five system components may
be used to derive the hardware ID.

The software product in this example concatenates the
15-digit product ID with the 5-digit hardware ID, and sends
the 20-digit value over the network 336 to the activation
server 334 (step 154 in FIG. 3). This phase is preferably
automated in that the software product automatically initiates
connection with the activation server 334 to register itself
with the activation authority.

Alternatively, the software product supports an activation
pilot with a graphical user interface (UI) dialog window ask-
ing the customer to call a service representative at the activa-
tion authority. The UI window lists the product ID and the
hardware ID, and includes an entry box to enter the license file
given by the service representative over the phone.

The activation server 334 has an activation unit 110 to
assign a license file to the software product on the customer’s
computer. The activation unit 110 computes the license file
from the product ID and the hardware ID (step 156 in FI1G. 3).
In the illustrated implementation, the activation unit 110
employs a hashing algorithm 112 to compute a hash value of

US 7,503,072 B2

7

the concatenated product ID and hardware ID. The activation
server 334 also maintains a database 114 to store the product
1D, hardware 1D, and license file (step 158 in FIG. 3). Pref-
erably, these IDs are correlated in a table or other data record
116.

The activation server 334 returns the license file over the
network 336 to the customer computer 20 (step 160 in FIG.
3). In the manual case, the service representative tells the
customer the license file over the phone and the customer
enters the license file via the Ul window. The license file 118
is stored locally in the system memory 22 of the customer
computer 20, where it is accessible by the software program
36 (step 162 in FIG. 3). The program 36 is also equipped with
the same hashing algorithm 112 as found in the activation unit
110 at the activation server 334.

FIG. 4 shows steps in a method for running the software
product 36 on the computer 20. The method is described with
continuing reference to FIG. 2. The steps are performed by
software code within the software product on the customer
computer. At step 170, the software product is started. On
each launch after installation, the software product obtains
the product ID 102 (step 172) and generates the hardware ID
from the set of hardware components within the computer
(step 174).

At step 176, the software product 36 computes its own test
ID from the product ID and hardware ID using the hashing
algorithm 112. This is the same hashing algorithm as
employed by the activation unit 110 when computing the
original license file 118. The software product 36 retrieves the
original license file 118 from memory 22 (step 178 in FIG. 4)
and compares the test ID to the license file 118 (step 180 in
FIG. 4). If the two match (i.e., the “yes” branch from step
182), the software product is enabled to operate on the com-
puter (step 184). On the other hand, if no match occurs (i.e.,
the “no” branch from step 182), the software product is locked
and prevented from operating on the computer (step 186 in
FIG. 4).

The anti-piracy system is effective at stopping repeated
installation ofthe same software product on multiple different
machines. In the typical case, the test and license files will not
match if the hardware ID is different now than it was when the
customer first registered the software product with the acti-
vation authority. That is, the only thing that has changed in the
computation of the test and license files is the hardware ID.
The product ID and the hash algorithm are the same for both
computations.

A different hardware 1D suggests that the underlying hard-
ware components have been altered in some manner. For
instance, reconfiguring the floppy disk drive or replacing the
hard disk drive might change the hardware ID. Of course, an
entirely different computer with a different set of hardware
components might also result in a different hardware ID.

If an unscrupulous customer attempts to install the product
on another computer, the software product will determine that
the test and license files do not match and will self-lock,
thereby preventing its operation on the different computer.
The customer is then forced to contact the activation authority
to obtain a new license file, and if appropriate, pay an addi-
tional licensing fee for an additional installation.

Another advantage is that the anti-piracy system is sensi-
tive to the situation in which the customer has upgraded
his/her computer, without effectively creating a new machine,
and is now attempting to reinstall the software product on the
upgraded computer. In this situation, the software product
determines whether a new set of hardware components in the
computer is substantially different from the original set of
hardware components. If only one or a few components are

10

15

20

25

30

35

40

45

50

55

60

65

8

different, the upgraded computer is more like the original
computer and the software product is permitted to operate.
Conversely, if many or all components are different, the
“upgraded” computer more closely resembles a new com-
puter and the software product is prevented from operating on
this new computer.

One way the software product makes this determination is
by trying different permutations of the hardware ID, changing
at least one digit per try while leaving other digits unchanged.
Each modified hardware ID is concatenated with the product
ID, and then hashed to produce the test ID. If this trial-and-
error process yields a match between the test and original
license files, the software product is assured that only one or
afew components have been altered, and the software product
is permitted to run.

FIG. 5 shows steps in a method for running the software
product 36 on the computer 20 after upgrade. The method is
described with continuing reference to FIG. 2. The steps are
performed by software code within the software product on
the customer computer. At step 190, the software product
changes at least one digit in the hardware 1D, while leaving
the other digits unchanged, to produce a modified hardware
ID. For example, the software ID might toggle one digit in the
5-digit hardware ID, while maintaining the other four digits
the same.

The software product concatenates the product ID and
modified hardware ID (step 192) and computes a new test ID
using the hashing algorithm 112 (step 194). At step 196, the
software product retrieves the license file 118 from memory
22 and compares it to the test ID. If the two match (i.e., the
“yes” branch from step 198), this suggests that that only one
component has been changed or upgraded, but rest of the
computer remains substantially the same. Thus, the computer
is deemed an upgrade, and not a new computer. The software
product is enabled to operate on the computer (step 200 in
FIG. 5).

Ifno match occurs (i.e., the “no” branch from step 198), the
software product remains locked. At step 202, the software
product checks whether it has exhausted all possible new
combinations of digits. As an example, suppose the software
manufacturer wants to draw a distinction between a computer
with one or two new hardware components (which the manu-
facturer deems an “upgrade”), and a computer with three or
more new hardware components (which the manufacturer
deems a new computer and not an “upgrade”). In this case, the
software product is configured to change at most up to two
digits within the five-digit hardware ID while keeping at least
three digits the same. This process essentially determines
whether at most two out of the five hardware components are
different. If the software product has not exhausted all avail-
able permutations of the hardware ID (i.e., the “no” branch
from step 202), the software product repeats steps 190-198
for the next modified hardware ID.

When the software product exhausts all available permu-
tations without success, this tends to indicate that the com-
puter is a new computer, not an upgrade. Accordingly, the
software product remains locked (step 204) and forces the
customer to contact the activation authority for assistance.

The anti-piracy system is advantageous in that it allows the
customer some flexibility to upgrade or modify his/her com-
puter without locking out the program. It is noted, however,
that this method can be circumvented through incremental
upgrades, where a customer changes out one component at a
time and reinstalls the software product after each component
upgrade. However, the incremental upgrade approach is most
likely not a viable option for the customer because it requires
alarge amount of time to eventually create the new computer.

12

US 7,503,072 B2

9

A variation of the anti-piracy method prevents even the
incremental upgrade approach, but at the cost of requiring the
customer to contact the activation authority any time the test
1D and the license file fail to match. When a mismatch occurs,
the software product initiates a connection with the activation
server 334 and sends the product ID and hardware ID over the
network 336. The activation unit 110 checks the database 114
for any prior records involving the product ID. If records with
the same product ID exist, the activation unit 110 evaluates
the hardware IDs associated with the product IDs to deter-
mine how they have changed. For instance, if the two hard-
ware IDs differ in one or two digits (which is an acceptable
indication of upgrade), the activation unit will compute a new
license file, return it to customer computer, and create a new
record in the database 116. This can be the case even if there
are multiple entries in the database for a single product ID.
For instance, further analysis might reveal that the hardware
ID has remained substantially the same, excepting one or two
digits, in each table entry for the product ID.

On the other hand, suppose the activation unit determines
that any two hardware IDs for the same product ID differ by
more than two of the five digits. This case indicates that the
computer, albeit incrementally upgraded, has become effec-
tively a new computer. In this case, the activation unit returns
a message denying a new license file and explaining that a
new license is required before the product can be reinstalled
and run on the new computer. In this manner, the customer
cannot incrementally upgrade all products in the computer
(one at a time) to effectively produce a new computer without
payment of a new license fee.

Expanded Hardware 1D

In another embodiment, the invention comprises an
expanded hardware ID (H/W ID) that is not 5 digits, but
instead is 64 bits. The 64 bit hardware ID represents ten
different components of the user’s computer: the CD-ROM
device 30, the disk adapter 32, the disk device 27, the display
adapter 48, the first drive (27) serial number, the network
interface (53) MAC address, the processor (21) serial number,
the processor (21) type, the RAM (25) size in Mb, and the
SCSI adapter (32 or 34).

The 64 bits in the expanded H/W 1D are divided between
the ten different components depending on the ability to
differentiate between computers based on the components.
For example, if there are only two possible CD-ROM devices
available in the marketplace, the CD-ROM portion of the
H/W ID would be represented by fewer bits than if there were
thousands of different CD-ROM devices available. Thus, the
number of bits corresponding to a component typically cor-
responds roughly to the ability to differentiate computers
based on that particular component.

The CD-ROM device portion of the H/W ID is typically the
manufacturer’s ID of the CD-ROM device. The CD-ROM
portion corresponds to a hash of the CD-ROM device identi-
fication string.

The disk adapter portion of the H/W 1D is the hard disk
drive interface 32 connecting the hard disk 27 to the system
bus 23. It corresponds to a hash of the disk adapter peripheral
component interface (PCI) vendor and device IDs.

The disk device portion of the H/W ID is the hard disk drive
27. It corresponds to a hash of the disk device identification
string.

The display adapter portion of the H/W ID identifies the
device that converts information in memory to video output to
adisplay, such as video adapter 48. It corresponds to a hash of
the video adapter PCI vendor and device Ids.

The first drive serial number portion of the H/W ID iden-
tifies the hard disk drive 27 of the user’s computer by a hash
of the operating system assigned serial number of the first
partition on that drive.

10

15

20

25

30

35

40

50

55

60

65

10

The Media Access Control (MAC) address is a hardware
address of a network interface 53 connecting the computer to
a shared network.

The processor serial number portion of the H/'W ID iden-
tifies the manufacturer’s serial number of the processing unit
21.

The processor type portion of the H/W ID identifies the
type of processing unit 21. It corresponds to ahash of the CPU
manufacturer, family ID and model number.

The RAM portion of the H/W ID identifies the size of RAM
25 in megabytes.

The SCSI adapter portion of the H/W ID identifies the
Small Computer Systems Interface adapter (32 or 34 for
example) of the user’s computer.

The expanded H/W ID is created at installation of the
software product 36 and may be stored on the user’s computer
by itself or as part of a license file stored on the user’s com-
puter. The license file is a file containing information that has
been digitally signed by the activation authority. The
expanded H/W 1D is created using the first instance of each
component encountered during the installation process. For
example, if a user’s computer has several CD-ROM devices,
then the first CD-ROM device encountered during installa-
tion is used to complete the CD-ROM device portion of the
expanded H/W ID.

When the software product is started, the expanded H/W
1D is compared to the user’s computer to determine whether
the expanded H/W ID and the hardware components match.
This comparison method is described in reference to FIG. 6.

Version Number

The expanded H/W ID may also include a version number
bit(s). The version number bit is used to indicate what the
version number of the software product was when the
expanded H/W ID was created. As technological advance-
ments in hardware occur over time, it may be necessary to
remove certain portions of the expanded H/W ID from con-
sideration during updates to the software product. The ver-
sion number will help identify at what point in time an
expanded H/W ID was created and whether or not it needs to
be changed to reflect technological hardware advancements.

Dockable Flag

The expanded H/W ID may also include a dockable flag.
The dockable flag indicates whether the user’s computer is
capable of being docked, as is the case with portable comput-
ers. Ifa computer is capable of being docked and is docked at
the time the expanded H/W 1D is generated, then it is possible
that elements of the docking station could be incorporated
into the expanded H/W ID. Thus, the dockable flag is set for
portable computers, and, if the dockable flag is set when the
expanded H/W ID is examined, then several portions of the
expanded H/W ID (disk adapter, display adapter, and SCSI
adapter) are not compared to the user’s computer when deter-
mining whether to allow the software product to fully operate.

Comparing Expanded Hardware ID with a Computer

FIG. 6 is a flow diagram illustrating a method 600 for
comparing the expanded H/W ID to the user’s computer when
the software product is started.

Generally described, if seven out of ten of the components
in the expanded H/W ID are found in the computer, then the
computer matches the expanded hardware ID and the soft-
ware product is allowed to fully operate. The expanded hard-
ware 1D is oftentimes useful because when matching the
expanded hardware ID to the machine, the process iterates
through the components of the computer to determine if any
of'the computer’s components match the expanded hardware
ID. For example, if the computer’s main disk drive does not
match the expanded hardware ID, then the process will iterate

13

US 7,503,072 B2

11

through all of the computer’s disk drives to determine if
another one matches the expanded hardware ID.

FIG. 6 shows steps in a method for running the software
product 36 with an expanded hardware ID on the computer
20. The steps are performed by software code within the
software product on the customer computer. At step 602, the
software product is started. On each launch after installation,
at step 604, the software product obtains the expanded hard-
ware ID which is stored on the computer 20. Alternatively, the
expanded H/W ID may be stored as part of the digitally signed
license file and extracted from the digitally signed license file
at step 604.

A portion of the expanded H/W ID is obtained at step 606.
As described above, the expanded H/W 1D is typically 64 bits
with portions of the bits corresponding to different hardware
components of the user’s computer, such as: the CD-ROM
device 30, the disk adapter 32, the disk device 27, the display
adapter 48, the first drive (27) serial number, the network
interface (53) MAC address, the processor (21) serial number,
the processor (21) type, the RAM (25) size in Mb, and the
SCSI adapter (32 or 34). At step 606, a portion corresponding
to one of the hardware components is retrieved from the
expanded hardware ID. For example, the bits corresponding
to the CD-ROM device may be retrieved at step 606.

At step 608, the bits retrieved from the expanded H/W 1D
at step 606 are compared to all the appropriate hardware
components of the user’s computer 20. For example, all of the
CD-ROM devices on the user’s computer may be examined to
determine whether there is a match with the bits from the
expanded H/W ID corresponding to the CD-ROM device.

At step 610, it is determined whether there is a match. If
not, then step 614 is performed. However, if there is a match
between the expanded H/W ID portion and a hardware com-
ponent on the user’s machine, then one is added to a count
(step 612). The count is used to determine how closely the
user’s computer matches the expanded H/W ID.

At step 614, it is determined whether there is another
portion of the expanded H/W ID that has not been examined.
If so, the method returns to step 606 and another portion of the
expanded H/W ID is examined. However, if all portions of the
expanded H/W ID have been examined and compared to the
hardware on the user’s computer, then it is determined
whether the count is greater than a minimum number estab-
lished by the software product manufacturer (step 616). Typi-
cally, the minimum will be six (unless the dockable flag is set
in which case the minimum will be four). So, if seven com-
ponents of the expanded H/W ID are found on the user’s
computer then the count will be seven and the program will
fully operate (618). However, if the count does not exceed the
minimum, then the program will be locked (step 620) or the
program will operate in a reduced functionality mode.

In other words, if the count is greater than the predeter-
mined minimum, the software product is enabled to fully
operate on the computer (step 618). On the other hand, if the
count is not greater than the predetermined minimum (i.e., the
“no” branch from step 616), the software product is locked
and prevented from operating on the computer (step 620 in
FIG. 6). It should be noted that, alternatively, the software
product may be allowed to operate in a “reduced functionality
mode” where key features are limited or unavailable rather
than preventing the software product from working entirely.

If an unscrupulous customer attempts to install the soft-
ware product on another computer, the software product will
determine that the expanded H/W ID does not match the
actual hardware on the computer and will self-lock, thereby
preventing its operation on the different computer. The cus-
tomer is then forced to contact the activation authority and, if
appropriate, pay an additional licensing fee for an additional
installation.

30

35

45

50

55

60

65

12

Another advantage is that the anti-piracy system is sensi-
tive to the situation in which the customer has upgraded
his/her computer by adding components (without removing
components) and is now attempting to reinstall the software
product on the upgraded computer. In this situation, the
expanded H/W ID will still find the older components on the
user’s computer and will allow the software product to oper-
ate. In other words, the expanded H/W ID eliminates the
problem encountered when a user added a new component
and only the first instance of a component was considered. In
this case, a non-expanded H/W ID would sometimes find a
mismatch because the new component may have been the first
instance detected and would not match the non-expanded
H/W ID. The expanded H/W ID eliminates this problem and
accommodates new components.

It should be understood that the expanded H/W 1D allows
for distinguishing between two different computers, while
still allowing a user to add new hardware to his computer that
was not previously present. In a preferred embodiment, the
expanded H/W ID allows 3 out of 10 hardware components to
be removed before disabling the software product.

In a preferred embodiment, the expanded H/W ID also
allows a user to have many different components, such as 3
video drivers, 10 hard disks, etc. without disabling the soft-
ware product so long as the no more than three of the original
components found in the expanded H/W ID have not been
removed. In other words, the expanded H/W ID is tolerant of
adding new components, so long as no more than three of the
original components found in the H/W ID are removed.

It should be understood that the process of matching the
expanded H/W ID to the user’s computer is an iterative pro-
cess performed on a component-by-component basis. Thus, it
should be understood that the present invention compares all
of the relevant components on the user’s computer with the
expanded H/W ID to determine whether the expanded H/W
ID and the computer match.

It should be understood that the foregoing pertains only to
the preferred embodiments of the present invention, and that
numerous changes may be made to the embodiments
described herein without departing from the spirit and scope
of the invention.

We claim:

1. A detection system for use with the Internet for gener-
ating information related to pirating of a software product,
comprising:

a server in communication with said Internet, a database

associated with said server;
said software product being associated with a product id
that identifies said software product;
a software program stored in a plurality of customer com-
puters utilizing said software product, said software pro-
gram generating a hardware id for each of said customer
computers so as to uniquely identify each of said plural-
ity of customer computers,
said software program automatically transferring said
product id and said hardware id over said Internet to
said server,

said server receiving and storing in said database said
product id and said hardware id for each of said plu-
rality of customer computers,

said software program being installed on said plurality
of customer computers along with other program
modules, including an operating system or network
communication; and

an activation unit utilized by said server for determining if
said product id is associated with more than one of said
plurality of customer computers.

#* * * #* #*

14

