
Page 1 of 10 SONY EXHIBIT 1020

Developing
EET=T5 i

Titsrele
SONY EXHIBIT 1020f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Sponsoring Editor
Production Manager
Production Editor
Editorial Coordinator
Copy editor

Michael B. Morgan
Yonie Overton
Julie Pabst
Marilyn Uffner Alan
Jeff Van Bueren

Text Design
Illustration
Composition
Cover Design
Proofreaders
Indexer
Printer

Side by Side Studios
Cherie Plumlee
Nancy Logan
Ross Carron Design
Erin Milnes, Gary Morris
SteveRath
Courier Corporation

Morgan Kaufmann Publishers, Inc.
Editorial and Sales Office:
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205
USA

Telephone
Facsimile
Email
www
Order toll free

415/392-2665
415/982-2665
mkp@mkp.com
http://www.mkp.com
800/7 45-7323

©1998 Morgan Kaufmann Publishers, Inc.
All rights reserved
Printed in the United States of America

OS 04 03 5 4 3

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means-electronic, mechanical, photocopying, recording, or otherwise-without
the prior written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Olsen, Dan R., 1953-

Developing user interfaces/Dan R. Olsen, Jr.
p.cm.

ISBN 1-55860-418-9
1. User interfaces (Computer systems) 2. Computer software-Development. I. Title.
QA76.9.U83043 1998
005.4'28--dc21 97-45231

Tom
and aga.

Page 2 of 10 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

132
• 5 BASIC INTERACTION

Chip
A Chip is a simple object that consists of the following:

CenterPoint
Center of the chip in the layout.

Name
Name of the chip.

In this simple application, the class Chip has no methods of its own. The
entire functional behavior is captured in the Circuit class. In general, this
would not be true. Circuits would consist of a variety of classes of circuit
objects, each of which would have its own behavior. We will discuss more
complex models in later chapters when we have more powerful geometric and
architectural tools to handle them.

Wire
Wires are also quite simple and contain only their relevant data, as follows:

Chipl
Chip index to which the wired is connected.

Connectorl
Connector index in Chip1 to which the wire is connected. All Chips
have exactly 8 connectors.

Chip2
Chip index for the other end of the wire.

Connector2
Connector index from Chip2 for the other end of the wire.

5.2 Model-View-Controller Architecture
The Smalltalk system was developed as a language and an environment for
building interactive applications.1 As part of that development, an architec­
ture for interactive applications was designed. This object-oriented approach
was called the model-view-controller (MVC) architecture.2 A schematic of
this architecture is shown in Figure 5-2.

The model is the information that the application is trying to manipulate.
This is the data representation of the real-world objects in which the user is
interested. In our logic diagrams, the model would consist of the Circuit,
Chip, and Wire classes.

The view implements a visual display of the model. In our application,
there are two views, the circuit view and the part list view. Anytime the

Figure 5-2

model is
change tl
screen th
aged. W1.
the displ;
some sys
will use 1

maintain
A mod

be notifit
Later, wl:
be redra-w
and by an
based on
is also th1

The cc
what the~
the contr
the curre
lated. Th
objects ru
for positi•
pass amo
a wire, or
needs, it ,
changes.
notify the:

Becaus
twined ax
many arcl
Chapter

Page 3 of 10
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

·n. The
al, this
circuit
s more
ric and

llows:

Chips

tt for
itec­
oach
ic of

late.
er is
;uit,

ion,
the

133
5.2 MODEL-VIEW-CONTROLLER ARCHITECTURE. •

Figure 5-2 Model-view-controller

model is changed, each view of that model must be notified so that it can
change the visual presentation of the model on the screen. A region of the
screen that is no longer consistent with the model information is called dam­
aged. When notified of a change, the view will identify the changed parts of
the display and report those regions as damaged to the windowing system. In
some systems, such regions are called invalid or out of date. In this text, we
will use the term damaged. Reporting of damaged regions is fundamental to
maintaining views on the screen.

A model, like ours, may have multiple views. In such a case, all views must
be notified of the changes and the windowing system will collect them all.
Later, when the main event loop looks for a new event to process, there will
be redraw events waiting for any views that were affected by damage reporting
and by any windowing operations. Each view must redraw the damaged areas
based on information in the model. In addition to drawing the display, a view
is also the location for all display geometry as will be discussed later.

The controller receives all of the input events from the user and decides
what they mean and what should be done. In the circuit view of our example,
the controller would receive a mouse-down event and must determine from
the currently selected menu item whether wires or chips are to be manipu­
lated. The controller must communicate with the view to determine what
objects are being selected. For example, since the circuit view is responsible
for positioning all of the chips in the window, the controller must be able to
pass a mouse point to the view to determine if that mouse point is over a chip,
a wire, or in empty space. Once the controller has all of the information that it
needs, it will make calls on the objects in the model to make the appropriate
changes. These calls by the controller on the model will cause the model to
notify the views, and the displays will be updated.

Because the functionality of the controller and the view are so tightly inter­
twined and also because controllers and views almost always occur in pairs,
many architectures combine the two functions into a single class. Recall from
Chapter 4 the WinEventHandler class, which had several methods for

Page 4 of 10 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

134
• 5 BASIC INTERACTION

responding to events. The Redraw method would implement the majority of
the view. (The methods to handle notification from the model and object
selection for the controller must be added.) The mouse and keyboard methods
would implement the controller functionality. The model is implemented
based on our functional design as described in Chapter 2.

5.2.1 The Problem with Multiple Parts

In simple applications, it is tempting to combine the model, view, and con­
troller into a single class or into global variables. Such an approach will not
scale up to large applications. The model classes must be separated out for
two reasons. The first is that there may be multiple models that a user is
working with. In our example, the user may have an old version of the circuit
on the screen and may be using it as a guide to design a new version in a sepa­
rate window. This scenario would require multiple models and multiple
views. The implementations would be the same but different information is
being manipulated in each case.

A second problem, which is frequently ignored by those building simple
applications, is the fact that a model may have more than one view. In our
example, the model has at least two views, the circuit view and the parts list
view. Each view is very different but each must be updated when a chip is
added to the circuit. There may also be multiple, similar views of the same
model. Our example application does not support scrolling of the circuit view,
but let us suppose that it did. Let us also suppose that the circuit was very
large and the user had need to work in two separate areas of the circuit at
once. An additional circuit view of the same circuit could be created at run
time. Each view could be scrolled to a different part of the circuit. In such an
application, there can be any number of views of the same model, depending
on what the user is trying to do. Each of these views must be kept consistent
with the model and the user must be able to interact with the model through
the controllers of each of those views. The support for multiple views is the
primary reason for the separation between the model and the view-controller.

There are also software maintenance reasons for the separation. Suppose,
for example, that our users look at our first implementation and decide that it
is important to have a wiring list view that shows all of the wires and that
names their connections. We could implement the new view and its con­
troller and add it to the list of views that need to be notified whenever the
model changes. The existing views would not need to be changed and the
model would be unaffected. With the addition of a new view, new model
information may be needed; however, the old views would still respond in the
same way.

Suppose that our graphics designers and marketing people decide that chips
should be drawn with a 3D look rather than a flat schematic look. Only the

Figure 5

view"
would
way, b1
That i1
troller.
Thepa
pender

5.2.2

Inmos
model
toupd
betwec:
relatio:
to the c

Let1
sists of
geome1
shapes
display
vertica

One
moved
will ere
positio
shown

It w
results

Page 5 of 10 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

