
The X Window System

ROBERT W. SCHEIFLER
MIT Laboratory for Computer Science
and
JIM GETTYS
Digital Equipment Corporation and MIT Project Athena

An overview of the X Window System is presented, focusing on the system substrate and the low-
level facilities provided to build applications and to manage the desktop. The system provides high-
performance, high-level, device-independent graphics. A hierarchy of resizable, overlapping windows
allows a wide variety of application and user interfaces to be built easily. Network-transparent access
to the display provides an important degree of functional separation, without significantly affecting
performance, which is crucial to building applications for a distributed environment. To a reasonable
extent, desktop management can be custom-tailored to individual environments, without modifying
the base system and typically without affecting applications.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Pro-
tocols-protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed Sys-
terns-distributedapplications; D.4.4 [Operating Systems]: Communication Management-network
communication; terminal management; H.1.2 [Models and Principles]: User/Machine Systems-
human factors; 1.3.2 [Computer Graphics]: Graphics Systems-distributed/network graphics; 1.3.4
[Computer Graphics]: Graphics Utilities-graphics packages; software support; 1.3.6 [Computer
Graphics]: Methodology and Techniques-device independence; interaction techniques

General Terms: Design, Experimentation, Human Factors, Standardization

Additional Key Words and Phrases: Virtual terminals, window managers, window systems

1. INTRODUCTION
The X Window System (or simply X) developed at MIT has achieved fairly
widespread popularity recently, particularly in the UNIX1 community. In this
paper we present an overview of X, focusing on the system substrate and the
low-level facilities provided to build applications and to manage the desktop. In
X, this base window system provides high-performance graphics to a hierarchy
of resizable windows. Rather than mandate a particular user interface, X provides
primitives to support several policies and styles. Unlike most window systems,
the base system in X is defined by a network protocol: asynchronous

‘UNIX is a trademark of AT&T Bell Laboratories.

Authors’ addresses: R. W. Scheifler, 545 Technology Square, Cambridge, MA 02139; J. Gettys, Project
Athena, MIT, Cambridge, MA 02139.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0730-03Ol/S6/0400-0079 $00.75

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986, Pages 79-109.

Page 1 of 31 SONY EXHIBIT 1021f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

80 l FL W. Scheifler and J. Gettys

stream-based interprocess communication replaces the traditional procedure call
or kernel call interface. An application can utilize windows on any display in a
network in a device-independent, network-transparent fashion. Interposing a
network connection greatly enhances the utility of the window system, without
significantly affecting performance. The performance of existing X implemen-
tations is comparable to that of contemporary window systems and, in general,
is limited by display hardware rather than network communication. For example,
19,500 characters per second and 3500 short vectors per second are possible on
Digital Equipment Corporation’s VAXStation-II/GPX, both locally and over a
local-area network, and these figures are very close to the limits of the display
hardware.

X is the result of two separate groups at MIT having a simultaneous need for
a window system. In the summer of 1984, the Argus system [16] at the Laboratory
for Computer Science needed a debugging environment for multiprocess distrib-
uted applications, and a window system seemed the only viable solution. Project
Athena [4] was faced with dozens, and eventually thousands, of workstations
with bitmap displays and needed a window system to make the displays useful.
Both groups were starting with the Digital VSlOO display [14] and VAX hardware,
but it was clear at the outset that other architectures and displays had to be
supported. In particular, IBM workstations with bitmap displays of unknown
type were expected eventually within Project Athena. Portability was therefore
a goal from the start. Although all of the initial implementation work was for
Berkeley UNIX, it was clear that the network protocol should not depend on
aspects of the operating system.

The name X derives from the lineage of the system. At Stanford University,
Paul Asente and Brian Reid had begun work on the W window system [3] as an
alternative to VGTS [13, 221 for the V system [5]. Both VGTS and W allow
network-transparent access to the display, using the synchronous V communi-
cation mechanism. Both systems provide “text” windows for ASCII terminal
emulation. VGTS provides graphics windows driven by fairly high-level object
definitions from a structured display file; W provides graphics windows based on
a simple display-list mechanism, with limited functionality. We acquired a UNIX-
based version of W for the VSlOO (with synchronous communication over TCP
[24] produced by Asente and Chris Kent at Digital’s Western Research Labora-
tory. From just a few days of experimentation, it was clear that a network-
transparent hierarchical window system was desirable, but that restricting the
system to any fixed set of application-specific modes was completely inadequate.
It was also clear that, although synchronous communication was perhaps accept-
able in the V system (owing to very fast networking primitives), it was completely
inadequate in most other operating environments. X is our “reaction” to W. The
X window hierarchy comes directly from W, although numerous systems have
been built with hierarchy in at least some form [ll, 15, 18, 28, 30, 32-361. The
asynchronous communication protocol used in X is a significant improvement
over the synchronous protocol used in W, but is very similar to that used in
Andrew [lo, 201. X differs from all of these systems in the degree to which both
graphics functions and “system” functions are pushed back (across the network)
as application functions, and in the ability to tailor desktop management
transparently.
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Page 2 of 31 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The X Window System l 81

The next section presents several high-level requirements that we believe a
window system must satisfy to be a viable standard in a network environment,
and indicates where the design of X fails to meet some of these requirements. In
Section 3 we describe the overall X system model and the effect of network-
based communication on that model. Section 4 describes the structure of windows,
and the primitives for manipulating that structure. Section 5 explains the
color model used in X, and Section 6 presents the text and graphics facilities.
Section 7 discusses the issues of window exposure and refresh, and their resolution
in X. Section 8 deals with input event handling. In Section 9 we describe the
mechanisms for desktop management.

This paper describes the version’ of X that is currently in widespread use. The
design of this version is inadequate in several respects. With our experience to
date, and encouraged by the number of universities and manufacturers taking a
serious interest in X, we have designed a new version that should satisfy a
significantly wider community. Section 10 discusses a number of problems with
the current X design and gives a general idea of what changes are contemplated.

2. REQUIREMENTS

A window system contains many interfaces. A programming interface is a library
of routines and types provided in a programming language for interacting with
the window system. Both low-level (e.g., line drawing) and high-level (e.g., menus)
interfaces are typically provided. An application interface is the mechanical
interaction with the user and the visual appearance that is specific to the
application. A management interface is the mechanical interaction with the user,
dealing with overall control of the desktop and the input devices. The manage-
ment interface defines how applications are arranged and rearranged on the
screen, and how the user switches between applications; an individual application
interface defines how information is presented and manipulated within that
application. The user interface is the sum total of all application and management
interfaces.

Besides applications, we distinguish three major components of a window
system. The window manager3 implements the desktop portion of the manage-
ment interface; it controls the size and placement of application windows, and
also may control application window attributes, such as titles and borders. The
input manager implements the remainder of the management interface; it con-
trols which applications see input from which devices (e.g., keyboard and mouse).
The base window system is the substrate on which applications, window managers,
and input managers are built.

In this paper we are concerned with the base window system of X, with the
facilities it provides to build applications and managers. The following require-
ments for the base window system crystallized during the design of X (a few were
not formulated until late in the design process):

1. The system should be implementable on a variety of displays. The system
should work with nearly any bitmap display and a variety of input devices. Our
design focused on workstation-class display technology likely to be available in a

’ Version 10.
3 Some people use this term for what we call the base window system; that is not the meaning here.

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Page 3 of 31 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

82 l R. W. Scheifler and J. Gettys

university environment over the next few years. At one end of the spectrum is a
simple frame buffer and monochrome monitor, driven directly by the host CPU
with no additional hardware support. At the other end of the spectrum is a
multiplane display with color monitor, driven by a high-performance graphics
coprocessor. Input devices, such as keyboards, mice, tablets, joysticks, light pens,
and touch screens, should be supported.

2. Applications must be device independent. There are several aspects to device
independence. Most important, it must not be necessary to rewrite, recompile,
or even relink an application for each new hardware display. Nearly as important,
every graphics function defined by the system should work on virtually every
supported display; the alternative, which is to use GKS-style inquire operations
[12] to determine the set of implemented functions at run time, leads to tedious
case analysis in every application and to inconsistent user interfaces. A third
aspect of device independence is that, as far as possible, applications should not
need dual control paths to work on both monochrome and color displays.

3. The system must be network transparent. An application running on one
machine must be able to utilize a display on some other machine, nor should it
be necessary for the two machines to have the same architecture or operating
system.

There are numerous examples of why this is important: a compute-intensive
VLSI design program executing on a mainframe, but displaying results on a
workstation; an application distributed over several stand-alone processors, but
interacting with a user at a workstation; a professor running a program on one
workstation, presenting results simultaneously on all student workstations.

In a network environment, there are certain to be applications that must run
on particular machines or architectures. Examples include proprietary software,
applications depending on specific architectural properties, and programs manip-
ulating large databases. Such applications still should be accessible to all users.
In a truly heterogeneous environment, not all programming languages and
programming systems are supported on all machines, and it is very undesirable
to have to write an interactive front end in multiple languages in order to make
the application generally available. With network-transparent access, this is not
necessary; a single front end written in the same language as the application
suffices.

One might think that remote display will be extremely infrequent, and that
performance is therefore much less important than for local display. Experience
at MIT, however, indicates that many users routinely make use of the remote
display capabilities in X, and that the performance of remote display is quite
important. The desktop display, although physically connected to a single com-
puter, is used as a true network virtual terminal; indeed, the idea of an X server
(see the next section) built into a Blit-like terminal [23] is an intriguing one.

4. The system must support multiple applications displaying concurrently. For
example, it should be possible to display a clock with a sweep second hand in one
window, while simultaneously editing a file in another window.
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Page 4 of 31 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The X Window System l 83

5. The system should be capable of supporting many different application and
management interfaces. No single user interface is “best”; different communities
have radically different ideas about user interfaces. Even within a single com-
munity, “experts” and “novices” place different demands on an interface. Instead
of mandating a particular user interface, the base window system should support
a wide range of interfaces.

To achieve this, the system must provide hooks (mechanism) rather than
religion (policy). For example, since menu styles and semantics vary dramatically
among different user interfaces, the base window system must provide primitives
from which menus can be built, instead of just providing a fixed menu facility.

The system should be designed in such a way that it is possible to implement
management policy in a way that is external to the base window system and
external to applications. Applications should be largely independent of manage-
ment policy and mechanism; applications should react to management decisions,
rather than direct those decisions. For example, an application needs to be
informed when one of its windows is resized and should react by reformatting
the information displayed, but involvement of the application should not be
required in order for the user to change the size. Making applications management
independent, as well as device independent, facilitates the sharing of applications
among diverse cultures.

6. The system must support overlapping windows, including output to partially
obscured windows. This is in some sense a by-product of the previous require-
ment, but it is important enough to merit explicit statement. Not all user
interfaces allow windows to overlap arbitrarily. However, even interfaces that do
not allow application windows to overlap typically provide some form of pop-up
menu that overlaps application windows. If such menus are built from windows,
then support for overlapping windows must exist.

7. The system should support a hierarchy of resizable windows, and an appli-
cation should be able to use many windows at once. Subwindows provide a clean,
powerful mechanism for exporting much of the basic system machinery back to
the application for direct use. Many applications make use of their own window-
like abstractions; some even implement what is essentially another window
system, nested within the “real” window system. It is important to support
arbitrary levels of nesting. What is viewed as a single window at one abstraction
level may well require multiple subwindows at a lower level. By providing a true
window hierarchy, application windows can be implemented as true windows
within the system, freeing the application from duplicating machinery such as
clipping and input control.

8. The system should provide high-performance, high-quality support for text,
2-D synthetic graphics, and imaging. The base window system must provide
“immediate” or “transparent” graphics: The application describes the image
precisely, and the system does not attempt to second-guess the application. The
use of high-level models, whereby the application describes what it wants in
terms of fairly abstract objects and the system determines how best to render the

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Page 5 of 31 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

