
USENIX Association

Proceedings of the
9th USENIX Security Symposium

Denver, Colorado, USA
August 14 –17, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

IA1024Page 1 of 12 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Defeating TCP/IP Stack Fingerprinting

Matthew Smart G. Robert Malan Farnam Jahanian

Department of Electrical Engineering and Computer Science

University of Michigan

1301 Beal Ave.

Ann Arbor, Mich. 48109-2122

fmcsmart,rmalan,farnamg@eecs.umich.edu

Abstract

This paper describes the design and implementa-
tion of a TCP/IP stack �ngerprint scrubber. The
�ngerprint scrubber is a new tool to restrict a re-
mote user's ability to determine the operating sys-
tem of another host on the network. Allowing en-
tire subnetworks to be remotely scanned and char-
acterized opens up security vulnerabilities. Specif-
ically, operating system exploits can be eÆciently
run against a pre-scanned network because exploits
will usually only work against a speci�c operating
system or software running on that platform. The
�ngerprint scrubber works at both the network and
transport layers to convert ambiguous traÆc from a
heterogeneous group of hosts into sanitized packets
that do not reveal clues about the hosts' operating
systems. This paper evaluates the performance of
a �ngerprint scrubber implemented in the FreeBSD
kernel and looks at the limitations of this approach.

1 Description

TCP/IP stack �ngerprinting is the process of de-
termining the identity of a remote host's operating
system by analyzing packets from that host. Freely
available tools (such as nmap [3] and queso [15])
exist to scan TCP/IP stacks eÆciently by quickly
matching query results against a database of known
operating systems. The reason this is called \�nger-
printing" is therefore obvious; this process is simi-
lar to identifying an unknown person by taking his
or her unique �ngerprints and �nding a match in
a database of known �ngerprints. The di�erence
is that in real �ngerprinting, law enforcement agen-
cies use �ngerprinting to track down suspected crim-
inals; in computer networking potential attackers

can use �ngerprinting to quickly create a list of tar-
gets.

We argue that �ngerprinting tools can be used to aid
unscrupulous users in their attempts to break into
or disrupt computer systems. A user can build up a
pro�le of IP addresses and corresponding operating
systems for later attacks. Nmap can scan a subnet-
work of 254 hosts in only a few seconds, or it can
be set up to scan very slowly, i.e. over days. These
reports can be compiled over weeks or months and
cover large portions of a network. When someone
discovers a new exploit for a speci�c operating sys-
tem, it is simple for an attacker to generate a script
to run the exploit against each corresponding host
matching that operating system. An example might
be an exploit that installs code on a machine to take
part in a distributed denial of service attack. Fin-
gerprinting scans can also potentially use non-trivial
amounts of network resources including bandwidth
and processing time by intrusion detection systems
and routers.

Fingerprinting provides �ne-grained determination
of an operating system. For example, nmap

has knowledge of 21 di�erent versions of Linux.
Other methods of determining an operating sys-
tem are generally coarse-grained because they use
application-level methods. An example is the ban-
ner message a user receives when he or she uses tel-
net to connect to a machine. Many systems freely
advertise their operating system in this way. This
paper does not deal with blocking application-level
�ngerprinting because it must be dealt with on an
application by application basis.

Almost every system connected to the Internet is
vulnerable to �ngerprinting. The major operating
systems are not the only TCP/IP stacks identi�ed
by �ngerprinting tools. Routers, switches, hubs,

IA1024Page 2 of 12 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

bridges, embedded systems, printers, �rewalls, web
cameras, and even game consoles are identi�able.
Many of these systems, like routers, are important
parts of the Internet infrastructure, and compromis-
ing infrastructure is a more serious problem than
compromising end hosts. Therefore a general mech-
anism to protect any system is needed.

Some people may consider stack �ngerprinting a
nuisance rather than a security attack. As with
most tools, �ngerprinting has both good and bad
uses. Network administrators should be able to �n-
gerprint machines under their control to �nd known
vulnerabilities. Stack �ngerprinting is not neces-
sarily illegal or an indication of malicious behav-
ior, but we believe the number of scans will grow
in frequency as more people access the Internet and
discover easy to use tools such as nmap. As such,
network administrators may not be willing to spend
time or money tracking down what they consider
petty abuses each time they occur. Instead they
may choose to reserve their resources for full-blown
intrusions. Also, there may be networks that no sin-
gle authority has administrative control over, such
as a university residence hall. A tool that detects
�ngerprinting scans but turns them away would al-
low administrators to track attempts while keeping
them from penetrating into local networks.

This paper presents the design and implementation
of a tool to defeat TCP/IP stack �ngerprinting. We
call this new tool a �ngerprint scrubber. The �nger-
print scrubber is transparently interposed between
the Internet and the network under protection. The
intended use of the scrubber is for it to be placed
in front of a set of end hosts or a set of network
infrastructure components. The goal of the tool is
to block the majority of stack �ngerprinting tech-
niques in a general, fast, scalable, and transparent
manner.

We describe an experimental evaluation of the tool
and show that our implementation blocks known �n-
gerprint scan attempts and is prepared to block fu-
ture scans. We also show that our �ngerprint scrub-
ber can match the performance of a plain IP for-
warding gateway on the same hardware and is an
order of magnitude more scalable than a transport-
level �rewall.

The remaining sections are organized as follows. We
describe TCP/IP stack �ngerprinting in more detail
in Section 2. In Section 3 we describe the design
and implementation of our �ngerprint scrubber. In

Section 4 we evaluate the validity and performance
of the scrubber. In Section 5 we cover related work
and in Section 6 we cover future directions. Finally,
in Section 7 we summarize our work.

2 TCP/IP Stack Fingerprinting

The most complete and widely used TCP/IP �n-
gerprinting tool today is nmap. It uses a database
of over 450 �ngerprints to match TCP/IP stacks to
a speci�c operating system or hardware platform.
This database includes commercial operating sys-
tems, routers, switches, �rewalls, and many other
systems. Any system that speaks TCP/IP is poten-
tially in the database, which is updated frequently.
Nmap is free to download and is easy to use. For
these reasons, we are going to restrict our talk of
existing �ngerprinting tools to nmap.

Nmap �ngerprints a system in three steps. First, it
performs a port scan to �nd a set of open and closed
TCP and UDP ports. Second, it generates specially
formed packets, sends them to the remote host, and
listens for responses. Third, it uses the results from
the tests to �nd a matching entry in its database of
�ngerprints.

Nmap uses a set of nine tests to make its choice of op-
erating system. A test consists of one or more pack-
ets and the responses received. Eight of nmap's tests
are targeted at the TCP layer and one is targeted at
the UDP layer. The TCP tests are the most impor-
tant because TCP has a lot of options and variabil-
ity in implementations. Nmap looks at the order of
TCP options, the pattern of initial sequence num-
bers, IP-level ags such as the don't fragment bit,
the TCP ags such as RST, the advertised window
size, and a few more things. For more details, in-
cluding the speci�c options set in the test packets,
refer to the home page for nmap [3].

Figure 1 is an example of the output of nmap

when scanning our EECS department's web server,
www.eecs.umich.edu, and one of our department's
printers. The TCP sequence prediction result comes
from nmap's determination of how a host increments
its initial sequence number for each TCP connec-
tion. Many commercial operating systems use a ran-
dom, positive increment, but simpler systems tend
to use �xed increments or increments based on the
time between connection attempts.

IA1024Page 3 of 12 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(a)

TCP Sequence Prediction:

Class=truly random

Difficulty=9999999 (Good luck!)

Remote operating system guess:

Linux 2.0.35-37

(b)

TCP Sequence Prediction:

Class=trivial time dependency

Difficulty=1 (Trivial joke)

Remote operating system guess:

Xerox DocuPrint N40

Figure 1: Output of an nmap scan against (a) a web
server running Linux and (b) a shared printer.

While nmap contains a lot of functionality and does
a good job of performing �ne-grained �ngerprint-
ing, it does not implement all of the techniques that
could be used. Various timing-related scans could
be performed. For example, determining whether
a host implements TCP Tahoe or TCP Reno by
imitating packet loss and watching recovery behav-
ior. We discuss this threat and potential solu-
tions in Section 3.2.4. Also, a persistent person
could also use methods such as social engineering
or application-level techniques to determine a host's
operating system. Such techniques are outside the
scope of this work. However, there will still be a
need to block TCP/IP �ngerprinting scans even if
an application-level �ngerprinting tool is developed.
Currently, TCP/IP �ngerprinting is the fastest and
easiest method for identifying remote hosts' operat-
ing systems, and introducing techniques that target
applications will not make it obsolete.

3 Fingerprint Scrubber

We developed a tool called a �ngerprint scrubber to
remove ambiguities from TCP/IP traÆc that give
clues to a host's operating system. In this section we
discuss the goals and intended use of the scrubber
and its design and implementation. We demonstrate
the validity of the scrubber in the face of known
�ngerprinting scans and give performance results in
the next section.

3.1 Goals and Intended Use of Finger-
print Scrubber

The goal of the �ngerprint scrubber is to block
known stack �ngerprinting techniques in a general,
fast, scalable, and transparent manner. The tool
should be general enough to block classes of scans,
not just speci�c scans by known �ngerprinting tools.
The scrubber must not introduce much latency and
must be able to handle many concurrent TCP con-
nections. Also, the �ngerprint scrubber must not
cause any noticeable performance or behavioral dif-
ferences in end hosts. For example, it is desirable to
have a minimal e�ect on TCP's congestion control
mechanisms by not delaying or dropping packets un-
necessarily.

We intend for the �ngerprint scrubber to be placed
in front of a set of systems with only one connec-
tion to a larger network. We expect that a �nger-
print scrubber would be most appropriately imple-
mented in a gateway machine from a LAN of het-
erogeneous systems (i.e. Windows, Solaris, MacOS,
printers, switches) to a larger corporate or campus
network. A logical place for such a system would be
as part of an existing �rewall. Another use would be
to put a scrubber in front of the control connections
of routers. The network under protection must be
restricted to having one connection to the outside
world because all packets traveling to and from a
host must travel through the scrubber.

Because the scrubber a�ects only traÆc moving
through it, an administrator on the trusted side of
the network will still be able to scan the network.
Alternatively, an IP access list or some other au-
thentication mechanism could be added to the �n-
gerprint scrubber to allow authorized hosts to by-
pass scrubbing.

3.2 Fingerprint Scrubber Design and
Implementation

We designed the �ngerprint scrubber to be placed
between a trusted network of heterogeneous systems
and an untrusted connection (i.e. the Internet). The
scrubber has two interfaces; one interface is des-
ignated as trusted, and the other is designated as
untrusted. A packet coming from the untrusted in-
terface is forwarded out the trusted interface and
vice versa. The basic design principle is that data

IA1024Page 4 of 12 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ipintr

ip_forwardip_input ip_output

isg_input

isg_tcpin isg_outputisg_forward

ether_input ether_output

Figure 2: Data ow through modi�ed FreeBSD ker-
nel.

coming in from the untrusted interface is handled
di�erently than data traveling out to the untrusted
interface.

The �ngerprint scrubber operates at the IP and
TCP layers to cover a wide range of known and po-
tential �ngerprinting scans. We could have simply
implemented a few of the techniques discussed in
the following sections to defeat nmap. However, the
goal of this work is to stay ahead of those devel-
oping �ngerprinting tools. By making the scrubber
operate at a generic level for both IP and TCP, we
feel we have raised the bar suÆciently high.

The �ngerprint scrubber is based o� the protocol
scrubber by Malan, et al. [7]. The protocol scrub-
ber operates at the IP and TCP layers of the pro-
tocol stack. It is a set of kernel modi�cations to
allow fast TCP ow reassembly to avoid TCP inser-
tion and deletion attacks as described by Ptacek and
Newsham [13]. The protocol scrubber follows TCP
state transitions by maintaining a small amount of
state for each connection, but it leaves the bulk of
the TCP processing and state maintenance to the
end hosts. This allows a tradeo� between the per-
formance of a stateless solution with the control of
a full transport-layer proxy. The protocol scrubber
is implemented under FreeBSD, and we continued
under FreeBSD 2.2.8 for our development.

Figure 2 shows the data ow through the kernel for
the �ngerprint scrubber. Packets come in from ei-
ther the trusted or untrusted interface through an
Ethernet driver. Incoming IP packets are handed
to ip input through a software interrupt, just as
would be done normally. A �lter in ip input de-
termines if the packet should be forwarded to the
TCP scrubbing code. If not, then it follows the

normal IP forwarding path to ip output. If it
is, then isg input (ISG stands for Internet Scrub-
bing Gateway) performs IP fragment reassembly
if necessary and passes the packet to isg tcpin.
Inside isg tcpin the scrubber keeps track of the
TCP connection's state. The packet is passed to
isg forward to perform TCP-level processing. Fi-
nally, isg output modi�es the next-hop link level
address and isg output or ip output hands the
packet straight to the correct device driver interface
for the trusted or untrusted link.

We must also make sure that di�erences in the pack-
ets sent by the trusted hosts to the untrusted hosts
don't reveal clues. These checks and modi�cations
are done in isg forward for TCP modi�cations,
isg output for IP modi�cations to TCP segments,
and ip output for IP modi�cations to non-TCP
packets.

3.2.1 IP scrubbing

IP-level ambiguities arise mainly in IP header ags
and fragment reassembly algorithms. Modifying
ags requires no state but requires adjustment of the
header checksum. Reassembly, however, requires
fragments to be stored at the scrubber. Once a
completed IP datagram is formed, it may need to
be re-fragmented on the way out the interface.

The �ngerprint scrubber uses the code in Figure 3
to normalize IP type-of-service and fragment bits in
the header. This occurs for all ICMP, IGMP, UDP,
TCP, and other packets for protocols built on top of
IP. Uncommon and generally unused combinations
of TOS bits are removed. In the case that these bits
need to be used (i.e. an experimental modi�cation
to IP) this functionality could be removed. Most
TCP/IP implementations we have tested ignore the
reserved fragment bit and reset it to 0 if it is set, but
we wanted to be safe so we mask it out explicitly.
The don't fragment bit is reset if the MTU of the
next link is large enough for the packet. This check
is not shown in the �gure.

Modifying the don't fragment bit could break MTU
discovery through the scrubber. One could argue
that the reason you would put the �ngerprint scrub-
ber in place is to hide information about the systems
behind it. This might include topology and band-
width information. However, such a modi�cation is
controversial. We leave the decision on whether or

IA1024Page 5 of 12 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

