

DISH, Exh. 1008, p. 1

fr
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No.: SRI1P016

CERTIFICATE OF EXPRESS MAILING

I hereby certify that this paper and the documents and/orfees referred to as —5
attached therein are being deposited with the United States Postal Service oS, . :

on January 05, 1999 in an envelope as “ Express Mail Post Office to a=>= First Named Inventor:
Addressee” service e abel Number a oO >E£L221766053US, «4 =" ~CHEYER, AdamJ. . =
Washington, D¢, oS a bg =

, vr Ve 2 ——e - 7"Ze = a= Spa
—— 7 a

> = oo
Michael L. Gough ES=c ou =

= owSO
22 ay

UTILITY PATENT APPLICATION TRANSMITTAL (37 CFR § 1.53(b)) 2 =?==

Assistant Commissioner for Patents [| Duplicate for
- fee processingBox Patent Application

Washington, DC 20231

This is a requestfor filing a patent application under 37 CFR § 1.53(b) in the nameof inventors:| Sir:
Adam J. Cheyer and David L. Martin

=~ For: SOFTWARE-BASED ARCHITECTURE FOR COMMUNICATION AND COOPERATION AMONG
DISTRIBUTED ELECTRONIC AGENTS

 Application Elements:

ix] 59 Pages of Specification, Claims and Abstract
hx] 16 Sheets ofDrawings
x 01 Pages Combined Declaration and Power of Attorney

Accompanying Application Parts:

Assignment and Assignment Recordation Cover Sheet (recording fee not enclosed)
| Return Receipt Postcard

Fee Calculation (37 CFR§1.16

 (Col. 1) (Col. 2) SMALL ENTITY OR LARGE ENTITY
NO. FILED NO.EXTRA RATE FEE RATE FEE

BASIC FEE $395 $ OR $760 $760.00
TOTAL CLAIMS 89 -20=_69 xll= $ OR x18 = $1242.00
INDEP CLAIMS 06 -03 =_03 x41= $§$ OR x78 = $234.00

Total $ OR Total $2236.00* Tf the difference in Col. 1 is less

than zero, enter "O" in Col. 2.

Includingfiling fees and the assignment recordation fee of $40.00, the Commissioneris authorized to
chargeall required fees to Deposit Account No. 50-0384 (Order No. SRI1P016).

The Commissioneris authorized to charge any fees beyond the amount enclosed which may be
required,or to credit any overpayment, to Deposit Account No. 50-0384 (Order No. SRI1P016).

(Revised 12/97, Pat App Trans 53(b) Reg Page 1 of 2

DISH, Exh. 1008,p. 1

DISH, Exh. 1008, p. 2

< 7
“General Authorization for Petition for Extension of Time (37 CFR §1.136)

Applicants hereby make and generally authorize any Petitions for Extensions of Time as may be
needed for any subsequentfilings. The Commissioner is also authorized to charge any extension fees under
37 CFR §1.17 as may be needed to Deposit Account No. 50-0384.

Please send correspondenceto the following address:

Brian R. Coleman

HICKMAN STEPHENS & COLEMAN, LLP
P.O. Box 52037

Palo Alto, CA 94303-0746

Tel (650) 470-7430
Fax (650) 470-7440

Yo
: er_., Date: | 2 2S
es Brian R. Coleman

Registration No. 39,145

(Revised 12/97, Pat App Trans 53(b) Reg Page 2 of 2

DISH, Exh. 1008,p. 2

DISH, Exh. 1008, p. 3

wae

20

25

30

Software-Based Architecture for Communication and Cooperation Among

Distributed Electronic Agents

By:

Adam J. Cheyer and David L. Martin

BACKGROUNDOF THE INVENTION

Field of the Invention

Thepresent inventionis related to distributed computing environments and the

completion of tasks within such environments. In particular, the present invention
teaches a variety of software-based architectures for communication and cooperation

among distributed electronic agents. Certain embodiments teach interagent

communication languages enabling client agents to make requests in the form of

arbitrarily complex goal expressionsthat are solved through facilitation by a

facilitator agent.

Context and Motivation for Distributed Software Systems

The evolution of models for the design and construction of distributed

software systemsis being driven forward by several closely interrelated trends: the

adoption of a networked computing model, rapidly rising expectations for smarter,

longer-lived, more autonomoussoftware applications and an ever increasing demand
for more accessible andintuitive user interfaces.

Prior Art Figure | illustrates a networked computing model 100 having a

plurality of client and server computer systems 120 and 122 coupled together over a

physical transport mechanism 140. The adoption of the networked computing model
100 has lead to a greatly increased reliance on distributedsites for both data and

processing resources. Systems suchas the networked computing model 100 are based
uponat least one physical transport mechanism 140 coupling the multiple computer

systems 120 and 122 to support the transfer of information between these computers.
Someof these computers basically support using the network and are known as client

Attorney Docket No: SRI1P016(3477/BRC/EWJ DISH, Exha¥6ob Of 39

DISH, Exh. 1008, p. 4

computers (clients). Some of these computers provide resources to other computers

and are knownas server computers (servers). The servers 122 can vary greatly in the

resources they possess, access they provide and services madeavailable to other

computers across a network. Servers may service other servers as well as clients.

The Internet is a computing system based upon this network computing model.ww

The Internet is continually growing, stimulating a paradigm shift for computing away

from requiring all relevant data and programsto reside on the user's desktop machine.

The data now routinely accessed from computers spread around the world has become

increasinglyrich in format, comprising multimedia documents,and audio and video

10 streams. With the popularization of programming languages such as JAVA,data

transported between local and remote machines mayalso include programsthat can

be downloaded and executed on the local machine. There is an ever increasing

reliance on networked computing, necessitating software design approachesthat allow

for flexible composition of distributed processing elements in a dynamically changing

15 and relatively unstable environment.

In an increasing variety of domains, application designers and users are

coming to expect the deploymentof smarter, longer-lived, more autonomous,

software applications. Push technology, persistent monitoring of information sources,

and the maintenance of user models, allowing for personalized responses and sharing

20 of preferences, are examples of the simplest manifestations ofthis trend. Commercial

enterprises are introducing significantly more advanced approaches, in many cases

employing recent research results from artificial intelligence, data mining, machine

learning, and otherfields.

Morethan ever before, the increasing complexity of systems, the development

25 of new technologies, and the availability of multimedia material and environments are

creating a demand for more accessible and intuitive user interfaces. Autonomous,

distributed, multi-component systems providing sophisticated services will no longer

lend themselves to the familiar "direct manipulation” modelof interaction, in which

an individual user masters a fixed selection of commandsprovided bya single

30 application. Ubiquitous computing, in networked environments, has brought about a

situation in whichthe typical user of many softwareservicesis likely to be a non-

expert, who may access a given service infrequently or only a few times.

Attorney Docket No: SRI1P016(3477/BRC/EWJ Page 2 of 59
DISH, Exh. 1008, p. 4

DISH, Exh. 1008, p. 5

10

20

25

30

Accommodating such usage patterns calls for new approaches. Fortunately, input

modalities now becoming widely available, such as speech recognition and pen-based

handwriting/gesture recognition, and the ability to manage the presentation of

systems’ responses by using multiple media provide an opportunity to fashion a style

of human-computerinteraction that draws much more heavily on our experience with

human-human interactions.

PRIOR RELATED ART

Existing approaches and technologies for distributed computing include

distributed objects, mobile objects, blackboard-style architectures, and agent-based

software engineering.

The Distributed Object Approach

Object-oriented languages, such as C++ or JAVA,provide significant

advances over standard procedural languages with respect to the reusability and

modularity of code: encapsulation, inheritance and polymorhpism. Encapsulation

encouragesthecreation oflibrary interfaces that minimize dependencies on

underlying algorithms or data structures. Changes to programming internals can be

made ata later date with requiring modifications to the codethat uses the library.

Inheritance permits the extension and modification ofa library of routines and data

without requiring source code to the original library. Polymorphism allows one body

of code to work on an arbitrary numberof data types. For the sake of simplicity

traditional objects may be seen to contain both methods and data. Methods provide

the mechanisms by which the internal state of an object may be modified or by which

communication may occur with another object or by which the instantiation or

removal of objects may be directed.

With reference to Figure 2, a distributed object technology based around an

Object Request Broker will now be described. Whereas "standard" object-oriented

programming (OOP)languages canbe used to build monolithic programsout of many

object building blocks, distributed object technologies (DOOP)allow the creation of

programs whose components maybe spread across multiple machines. As shown in

Figure 2, an object system 200 includes client objects 210 and server objects 220. To

implementa client-server relationship between objects, the distributed object system

Attorney Docket No: SRI1P016(3477¥BRC/EWJ Page 3 of 59
DISH, Exh. 1008, p. 5

DISH, Exh. 1008, p. 6

 20

25

30

200 uses a registry mechanism (CORBA'sregistry is called an Object Request Broker,

or ORB) 230to store the interface descriptions of available objects. Through the

services of the ORB 230, a client can transparently invoke a method on a remote

server object. The ORB 230is then responsible for finding the object 220 that can

implementthe request, passingit the parameters, invoking its method, and returning

the results. In the most sophisticated systems, the client 210 does not have to be aware

of where the object is located, its programming language,its operating system, or any

other system aspects that are not part of the server object's interface.

Althoughdistributed objects offer a powerful paradigm for creating networked

applications, certain aspects of the approachare not perfectly tailored to the

constantly changing environmentof the Internet. A majorrestriction of the DOOP

approach is that the interactions among objects are fixed through explicitly coded

instructions by the application developer. It is often difficult to reuse an objectin a

new application without bringing alongall its inherent dependencies on other objects

(embeddedinterface definitions and explicit method calls). Another restriction ofthe

DOOPapproachis the result of its reliance on a remote procedure call (RPC)style of

communication. Although easy to debug,this single thread of execution model does

notfacilitate programmingto exploit the potential for parallel computation that one

would expectin a distributed environment. In addition, RPC uses a blocking

(synchronous) schemethat does not scale well for high-volume transactions.

Mobile Objects

Mobile objects, sometimes called mobile agents, are bits of code that can

move to another execution site (presumably on a different machine) under their own

programmatic control, where they can theninteract with the local environment. For

certain types of problems, the mobile object paradigm offers advantages over more

traditional distributed object approaches. These advantages include network

bandwidth and parallelism. Network bandwidth advantages exist for some database

queries or electronic commerce applications, where it is more efficient to perform

tests on data by bringing the tests to the data than by bringing large amountsof data to

the testing program. Parallelism advantagesincludesituations in which mobile agents

can be spawned in parallel to accomplish many tasksat once.

Attorney Docket No: SRILP016(3477)/BRC/EWJ Page 4 of 59
DISH, Exh. 1008, p. 6

DISH, Exh. 1008, p. 7

20

23

30

Some of the disadvantages and inconveniences of the mobile agent approach

include the programmatic specificity of the agent interactions, lack of coordination

support between participant agents and execution environmentirregularities regarding

specific programming languages supported by host processors upon which agents

reside. In a fashion similar to that of DOOP programming,an agent developer must

programmatically specify where to go and howto interact with the target

environment. There is generally little coordination support to encourage interactions

among multiple (mobile) participants. Agents must be written in the programming

language supported by the execution environment, whereas many other distributed

technologies support heterogeneous communities of components, written in diverse

programminglanguages.

Blackboard Architectures

Blackboard architectures typically allow multiple processes to communicate

by reading and writing tuples from a global data store. Each process can watch for

items of interest, perform computations based on the state of the blackboard, and then

add partial] results or queries that other processes can consider. Blackboard

architectures provide a flexible framework for problem solving by a dynamic

community of distributed processes. A blackboard architecture provides one solution

to eliminating the tightly bound interaction links that someof the other distributed

technologies require during interprocess communication. This advantage can also be a

disadvantage: although a programmerdoesnot needto refer to a specific process

during computation, the framework does not provide programmatic control for doing

so in cases where this would be practical.

Agent-based Software Engineering

Several research communities have approacheddistributed computing by

casting it as a problem of modeling communication and cooperation among

autonomousentities, or agents. Effective communication among independentagents

requires four components: (1) a transport mechanism carrying messages in an

asynchronousfashion, (2) an interaction protocol defining various types of

communication interchange and their social implications (for instance, a responseis

expected of a question), (3) a content language permitting the expression and

interpretation of utterances, and (4) an agreed-upon set of shared vocabulary and

Attorney Docket No: SRITP0O16(3477VBRC/EWJ Page 5 of 59

DISH, Exh. 1008, p. 7

DISH, Exh. 1008, p. 8

 15

20

25

30

meaning for concepts (often called an ontology). Such mechanisms permit a much

richer style of interaction amongparticipants than can be expressedusingadistributed

object's RPC modelor a blackboard architecture's centralized exchange approach.

Agent-based systems have shown much promiseforflexible, fault-tolerant,

distributed problem solving. Several agent-based projects have helped to evolve the

notion of facilitation. However, existing agent-based technologies and architectures

are typically very limited in the extent to which agents can specify complex goals or

influence the strategies used by thefacilitator. Further, such prior systems are not

sufficiently attuned to the importance of integrating human agents (i.e., users) through

natural language and other human-oriented user interface technologies.

Theinitial version of SRI International's Open Agent Architecture™

("OAA®") technology provided only a very limited mechanism for dealing with

compoundgoals. Fixed formats were available for specifying a flatlist of either

conjoined (AND)sub-goals or disjoined (OR) sub-goals; in both cases, parallel goal

solving was hard-wiredin, and only a single set of parameters for the entire list could

be specified. More complex goal expressions involving (for example) combinations

of different boolean connectors, nested expressions, or conditionally interdependent

("IF .. THEN”) goals were not supported. Further, system scalability was not

adequately addressed in this prior work.

SUMMARYOF INVENTION

A first embodimentof the present invention discloses a highly flexible,

software-based architecture for constructing distributed systems. The architecture

supports cooperative task completion by flexible, dynamic configurations of

autonomouselectronic agents. Communication and cooperation between agents are

brokered by one or morefacilitators, which are responsible for matching requests,

from users and agents, with descriptions of the capabilities of other agents.It is not

generally required that a user or agent know the identities, locations, or number of

other agents involvedin satisfying a request, and relatively minimal effort is involved

in incorporating new agents and "wrapping" legacy applications. Extremeflexibility

is achieved through an architecture organized around the declaration of capabilities by

Attorney Docket No: SRI1P016(3477/VBRC/EW] Page 6 of 59
DISH, Exh. 1008, p. 8

DISH, Exh. 1008, p. 9

20

25

30

service-providing agents, the construction ofarbitrarily complex goals by users and

service-requesting agents, and the role of facilitators in delegating and coordinating

the satisfaction of these goals, subject to advice and constraints that may accompany

them. Additional mechanisms and features include facilities for creating and

maintaining shared repositories of data; the use oftriggers to instantiate commitments

within and between agents; agent-based provision of multi-modaluserinterfaces,

including natural language; and built-in support for including the useras a privileged

memberof the agent community. Specific embodiments providing enhanced

scalability are also described.

BRIEF DESCRIPTION OF THE DRAWINGS

Prior Art

Prior Art FIGURE 1 depicts a networked computing model;

Prior Art FIGURE 2 depicts a distributed object technology based around an

Object Resource Broker;

Examplesof the Invention

FIGURE 3 depicts a distributed agent system based arounda facilitator agent;

FIGURE4presents a structure typical of one small system of the present

invention;

FIGURE 5 depicts an Automated Office system implemented in accordance

with an example embodimentof the present invention supporting a mobile user with a

laptop computer and a telephone;

FIGURE6schematically depicts an Automated Office system implemented as

a network of agents in accordance with a preferred embodimentofthe present

invention;

FIGURE 7 schematically shows data structures internal to a facilitator in

accordance with a preferred embodimentof the present invention;

FIGURE 8 depicts operations involvedin instantiating a client agent with its

parentfacilitator in accordance with a preferred embodimentof the present invention;

Attorney Docket No: SRI1P016(3477/¥BRC/EWJ Page 7 of 59
DISH, Exh. 1008, p. 9

DISH, Exh. 1008, p. 10

FIGURE9 depicts operations involved in a client agent initiating a service

request and receiving the response to that service request in accordance with a certain

preferred embodimentofthe present invention;

FIGURE 10 depicts operations involved in a client agent responding to a

5 service request in accordance with another preferable embodimentof the present

invention;

FIGURE 11 depicts operations involved in a facilitator agent response to a

service request in accordance with a preferred embodimentof the present invention;

FIGURE12 depicts an Open Agent Architecture™ based system of agents

10 implementing a unified messaging application in accordance with a preferred

embodimentof the present invention;

FIGURE 13 depicts a map oriented graphical user interface display as might

be displayed by a multi-modal map application in accordance with a preferred

embodimentof the present invention;

15 FIGURE 1|4 depicts a peer to peer multiple facilitator based agent system

supporting distributed agents in accordance with a preferred embodimentof the

present invention;

FIGURE 15 depicts a multiple facilitator agent system supportingat least a

limited form of a hierarchy of facilitators in accordance with a preferred embodiment

20 of the present invention; and

FIGURE 16 depicts a replicated facilitator architecture in accordance with one

embodimentof the present invention.

BRIEF DESCRIPTION OF THE APPENDICES

25 The Appendices provide source code for an embodimentof the present

invention written in the PROLOG programminglanguage.

APPENDIX A: Source code file named compound.pl.

APPENDIX B: Source code file named fac.pl.

APPENDIX C: Source code file named libcom_tcp.pl.

Attorney Docket No: SRI1P016(3477)/BRC/EWS Page 8 of 59

DISH, Exh. 1008, p. 10nnaeteata

DISH, Exh. 1008, p. 11

APPENDIX D: Source code file named liboaa.pl.

APPENDIX E: Source code file named translations.p].

DETAILED DESCRIPTION OF THE INVENTION

Figure 3 illustrates a distributed agent system 300 in accordance with onein

embodimentof the present invention. The agent system 300 includesa facilitator

agent 310 and a plurality of agents 320. The illustration of Figure 3 provides a high

level view of one simple system structure contemplated by the present invention. The

facilitator agent 310 is in essence the “parent” facilitator for its “children” agents 320.

10 The agents 320 forward service requests to the facilitator agent 310. The facilitator

agent 310 interprets these requests, organizing a set of goals which are then delegated

to appropriate agents for task completion.

The system 300 of Figure 3 can be expanded upon and modified in a variety of

ways consistent with the present invention. For example, the agent system 300 can be

i5 distributed across a computer network such as that illustrated in Figure 1. The

facilitator agent 310 mayitself haveits functionality distributed across several

different computing platforms. The agents 320 may engagein interagent

communication (also called peer to peer communications). Several different systems

300 may be coupled together for enhanced performance. These and a variety of other

20 structural configurations are described below in greater detail.

‘te Figure 4 presents the structure typical of a small system 400 in one

embodimentof the present invention, showing userinterface agents 408, several

application agents 404 and meta-agents 406, the system 400 organizedas a

community of peers by their commonrelationship to a facilitator agent 402. As will

25 be appreciated, Figure 4 places more structure upon the system 400 than shownin

Figure 3, but both are valid representations of structures of the present invention. The

facilitator 402 is a specialized server agent that is responsible for coordinating agent

communications and cooperative problem-solving. The facilitator 402 may also

provide a globaldata store for its client agents, allowing them to adopt a blackboard

30 style of interaction. Note that certain advantages are foundin utilizing two or more

facilitator agents within the system 400, For example, larger systems can be

assembled from multiple facilitator/client groups, each having the sort ofstructure

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 9 of 59
DISH, Exh. 1008, p. 11

DISH, Exh. 1008, p. 12

an

10

30

shown in Figure 4. All agentsthatare not facilitators are referred to herein

generically as client agents -- so called because each acts (in some respects)asa client

of somefacilitator, which provides communication and other essential services for the

client.

The variety of possible client agents is essentially unlimited. Some typical

categories of client agents would include application agents 404, meta-agents 406,

and userinterface agents 408, as depicted in Figure 4. Application agents 404 denote

specialists that provide a collection of services of a particular sort. These services

could be domain-independent technologies (such as speech recognition,natural

language processing 410, email, and some formsofdataretrieval and data mining) or

user-specific or domain-specific (such as a travel planning and reservations agent).

Application agents may be based on legacy applicationsor libraries, in which case the

agent may belittle more than a wrapperthat calls a pre-existing API 412,for

example. Meta-agents 406 are agents whose role is to assist the facilitator agent 402

in coordinating theactivities of other agents. While the facilitator 402 possesses

domain-independentcoordination strategies, meta-agents 406 can augment these by

using domain- and application-specific knowledge or reasoning (including but not

limited to rules, learning algorithms and planning).

With further reference to Figure 4, user interface agents 408 can play an

extremely important andinteresting role in certain embodiments ofthe present

invention. By way of explanation, in some systems, a user interface agent can be

implemented as a collection of "micro-agents", each monitoring a different input

modality (point-and-click, handwriting, pen gestures, speech), and collaborating to

producethe best interpretation of the current inputs. These micro-agents are depicted

in Figure 4, for example, as Modality Agents 414. While describing such

subcategoriesof client agents is useful for purposesofillustration and understanding,

they need not be formally distinguished within the system in preferred

implementations of the present invention.

The operation of one preferred embodimentof the present invention will be

discussed in greaterdetail below, but may be briefly outlined as follows. When

invoked, a client agent makes a connectionto a facilitator, which is knownasits

parentfacilitator. These connections are depicted as a double headed arrow between

Attorney Docket No: SRIP016(3477VBRC/EWS Page 10 of 59
DISH, Exh. 1008, p. 12

DISH, Exh. 1008, p. 13

 20

25

30

the client agent andthe facilitator agent in Figure 3 and 4, for example. Upon

connection, an agent registers with its parent facilitator a specification of the

capabilities and services it can provide. For example, a natural language agent may

register the characteristics of its available natural language vocabulary. (For more

details regarding client agent connections, see the discussion of Figure 8 below.)

Later during task completion, when a facilitator determinesthat the registered services

416 of oneofits client agents will help satisfy a goal, the facilitator sends that client a

request expressed in the Interagent Communication Language (CL) 418. (See Figure

11 below for a more detailed discussion of the facilitator operations involved.) The

agent parses this request, processesit, and returns answersor status reports to the

facilitator. In processing a request, the client agent can make use of a variety of

infrastructure capabilities provided in the preferred embodiment. For example,the

client agent can use CL 418 to request services of other agents,set triggers, and read

or write shared data on the facilitator or other client agents that maintain shared data.

(See the discussion of Figures 9-11 below for a more detailed discussion of request

processing.)

The functionality of each client agent are made available to the agent

community through registration of the client agent's capabilities with a facilitator 402.

A software “wrapper”essentially surrounds the underlying application program

performing the services offered by each client. The commoninfrastructure for

constructing agents is preferably supplied by an agentlibrary. The agentlibraryis

preferably accessible in the runtime environmentofseveral different programming

languages. The agentlibrary preferably minimizes the effort required to construct a

new system and maximizes the ease with which legacy systems can be “wrapped” and

made compatible with the agent-based architecture of the present invention.

By wayof further illustration, a representative application is now briefly

presented with reference to Figures 5 and6. In the Automated Office system depicted

in Figure 5, a mobile user with a telephone and a laptop computer can access and task

commercial applications such as calendars, databases, and email systems running

back at the office. A user interface (UD agent 408, shown in Figure 6, runs on the

user's local laptop andis responsible for accepting user input, sending requests to the

facilitator 402 for delegation to appropriate agents, and displaying the results of the

Attorney Docket No: SRI1P016(3477/BRC/EWJ Page 11 of 59

DISH, Exh. 1008, p. 13

DISH, Exh. 1008, p. 14

 20

distributed computation. The user mayinteract directly with a specific remote

application by clicking on active areas in the interface, calling up a form or window

for that application, and making queries with standardinterface dialog mechanisms.

Conversely, a user may express a task to be executed by using typed, handwritten, or

spoken (overthe telephone) English sentences, without explicitly specifying which

agent or agents should perform the task.

For instance, if the question "What is my schedule?” is written 420 in the user

interface 408, this request will be sent 422 by the UI 408 to the facilitator 402, which

in turn will ask 424 a natural language (NL) agent 426 to translate the query into JCL

18. To accomplish this task, the NL agent 426 mayitself need to make requests of the

agent community to resolve unknown wordssuch as "me" 428 (the UI agent 408 can

respond 430 with the name of the current user) or "schedule" 432 (the calendar agent

434 defines this word 436). The resulting JCL expression is then routed by the

facilitator 402 to appropriate agents (in this case, the calendar agent 434) to execute

the request. Results are sent back 438 to the UI agent 408fordisplay.

The spoken request "When mail arrives for me about security, notify me

immediately.” produces a slightly more complex example involving communication

amongall agents in the system. After translation into JCL as described above, the

facilitator installs a trigger 440 on the mail agent 442 to look for new messages about

security. When one such message doesarrive in its mail spool, the trigger fires, and

the facilitator matchesthe action part ofthe trigger to capabilities published by the

notification agent 446. Thenotification agent 446 is a meta-agent, as it makes use of

rules concerning the optimaluse of different output modalities (email, fax, speech

generation overthe telephone) plus information aboutan individual user's preferences

448 to determinethe best way of relaying a message through available media transfer

application agents. After some competitive parallelism to locate the user (the

calendar agent 434 and database agent 450 may have different guesses as to where to

find the user) and some cooperative parallelism to produce required information

(telephone numberof location, user password, and an audio file containing a text-to-

speechrepresentation of the email message), a telephone agent 452 calls the user,

verifying its identity through touchtones, andthen play the message.

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 12 of 59
DISH, Exh. 1008, p. 14

DISH, Exh. 1008, p. 15

10

15

20

25

30

The above example illustrates a numberof inventive features. As new agents

connectto the facilitator, registering capability specifications and natural language

vocabulary, what the user can say and do dynamically changes; in other words, the

ICL is dynamically expandable. For example, adding a calendar agent to the system

in the previous example and registering its capabilities enables users to ask natural

language questions abouttheir "schedule" without any needto revise code for the

facilitator, the natural language agents, or any other client agents. In addition, the

interpretation and execution of a task is a distributed process, with no single agent

defining the set of possible inputs to the system. Further, a single request can produce

cooperation and flexible communication among many agents, written in different

programming languages and spread across multiple machines.

Design Philosophy and Considerations

Onepreferred embodimentprovides an integration mechanism for

heterogeneous applications in a distributed infrastructure, incorporating someof the

dynamism and extensibility of blackboard approaches, the efficiency associated with

-mobile objects, plus the rich and complex interactions of communicating agents.

Design goals for preferred embodimentsof the present invention may be categorized

under the general headings of interoperation and cooperation, user interfaces, and

software engineering. These design goals are not absolute requirements, nor will they

necessarily be satisfied by all embodimentsof the present invention, but rather simply

reflect the inventor's currently preferred design philosophy.

Versatile mechanismsof interoperation and cooperation

Interoperation refers to the ability of distributed software components- agents

- to communicate meaningfully. While every system-building framework must

provide mechanismsof interoperation at some level of granularity, agent-based

frameworks face important new challengesin this area. Thisis true primarily because

autonomy, the hallmark of individual agents, necessitates greater flexibility in

interactions within communities of agents. Coordination refers to the mechanisms by

which a community of agents is able to work together productively on sometask. In

these areas, the goals for our frameworkare to provide flexibility in assembling

Attorney Docket No: SRI1P016(3477VBRC/EWJ Page 13 of 59
DISH, Exh. 1008, p. 15

DISH, Exh. 1008, p. 16

15

20

25

30

communities ofautonomous service providers, provideflexibility in structuring

cooperative interactions, impose the right amountofstructure, as well as include

legacy and "owned-elsewhere”applications.

Provideflexibility in assembling communities ofautonomous service providers

-- both at developmenttime and at runtime. Agents that conform to the linguistic and
ontological requirements for effective communication should be able to participate in

an agent community, in various combinations, with minimal or near minimal

prerequisite knowledge of the characteristics of the other players. Agents with

duplicate and overlapping capabilities should be able to coexist within the same

community, with the system making optimal or near optimal use of the redundancy.

Provideflexibility in structuring cooperative interactions among the members

of acommunity of agents. A framework preferably provides an economical

mechanism for setting up a variety of interaction patterns among agents, without

requiring an inordinate amount of complexity or infrastructure within the individual

agents. The provision of a service should be independent or minimally dependent

upon a particular configuration of agents.

Imposethe right amount ofstructure on individual agents. Different

approachesto the construction of multi-agent systems impose different requirements

on the individual agents. For example, because KQMLisneutral as to the content of

messages, it imposes minimalstructural requirements on individual agents. On the

other hand, the BDI paradigm tends to impose much more demanding requirements,

by making assumptions about the nature of the programming elements that are

meaningful to individual agents. Preferred embodimentsof the present invention

should fall somewhere betweenthe two, providing a rich set of interoperation and

coordination capabilities, without precluding any ofthe software engineering goals

defined below.

Include legacy and "owned-elsewhere" applications. Whereas legacy usually

implies reuse of an established system fully controlled by the agent-based system

developer, owned-elsewhere refers to applications to whichthe developerhaspartial

access, but no control. Examples of owned-elsewhere applications include data

sources and services available on the World Wide Web, via simple form-based

Attorney Docket No: SRI1P016(3477VBRC/EWJ Page 14 of 59
DISH, Exh. 1008, p. 16

DISH, Exh. 1008, p. 17

20

25

30

interfaces, and applications used cooperatively within a virtual enterprise, which

remain the properties of separate corporate entities. Both classes of application must

preferably be able to interoperate, more orless as full-fledged membersof the agent

community, without requiring an overwhelmingintegration effort.

Human-oriented userinterfaces

Systems composed of multiple distributed components, and possibly dynamic

configurations of components, require the crafting of intuitive user interfaces to

provide conceptually natural interaction mechanisms, treat users as privileged

members of the agent community and support collaboration.

Provide conceptually natural interaction mechanisms with multiple

distributed components. When there are numerousdisparate agents, and/or complex

tasks implemented by the system,the user should be able to express requests without

having detailed knowledge of the individual agents. With speech recognition,

handwriting recognition, and natural language technologies becoming more mature,

agent architectures should preferably support these forms of input playing increased

roles in the tasking of agent communities.

Preferably treat users as privileged members of the agent community by

providing an appropriate level of task specification within software agents, and

reusable translation mechanisms betweenthis level] and the level of human requests,

supporting constructs that seamlessly incorporate interactions between both human-

interface and software types of agents.

Preferably support collaboration (simultaneous work over shared data and

processing resources) between users and agents.

Realistic software engineering requirements

System-building frameworks should preferably address the practical concerns

of real-world applications by the specification of requirements which preferably

include: Minimize the effort required to create newagents, and to wrap existing

applications. Encourage reuse, both of domain-independent and domain-specific

components. The conceptof agent orientation, like that of object orientation, provides

a natural conceptual framework for reuse, so long as mechanismsfor encapsulation

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 15 of 59
DISH, Exh. 1008, p. 17

DISH, Exh. 1008, p. 18

20

25

30

and interaction are structured appropriately. Support lightweight, mobile platforms.

Such platforms should be able to serve as hosts for agents, without requiring the

installation of a massive environment. It should also be possible to construct

individual agentsthat are relatively small and modestin their processing

requirements. Minimize platform and language barriers. Creation of new agents, as

well as wrapping of existing applications, should not require the adoption of a new

language or environment.

Mechanisms of Cooperation

Cooperation among agents in accordance with the present invention is

preferably achieved via messages expressed in a commonlanguage, /CL.

Cooperation among agentis further preferably structured around a three-part

approach: providers of services register capabilities specifications with a facilitator,

requesters of services construct goals and relay them to a facilitator, and facilitators

coordinate the efforts of the appropriate service providers in satisfying these goals.

The Interagent Communication Language (ICL)

Interagent Communication Language ("ICL”) 418 refers to an interface,

communication, and task coordination language preferably shared byall agents,

regardless of what platform they run on or what computer language they are

programmed in. ICL may be used by an agentto task itself or some subsetof the

agent community. Preferably, JCL allows agents to specify explicit control

parameters while simultaneously supporting expression of goals in an underspecified,

loosely constrained manner.In a further preferred embodiment, agents employ /CL to

perform queries, execute actions, exchange information,set triggers, and manipulate

data in the agent community.

In a further preferred embodiment, a program element expressed in [CL is the

event. The activities of every agent, as well as communications between agents, are

preferably structured around the transmission and handling of events. In

communications, events preferably serve as messages between agents; in regulating

the activities of individual agents, they maypreferably be thoughtof as goals to be

satisfied. Each event preferably has a type, a set of parameters, and content. For

example, the agent library procedure oaa_Solve can be used by an agent to request

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 16 of 59
DISH, Exh. 1008, p. 18

DISH, Exh. 1008, p. 19

Gy

rpa

lao oS

services of other agents. A call to oaa_Solve, within the code of agent A, results in an

event having the form

ev_post_solve(Goal, Params)

going fromAto the facilitator, where ev_post_solveis the type, Goalis the content,

and Paramsis a list of parameters. The allowable content and parameters preferably

vary according to the type of the event.

The JCL preferably includes a layer of conversational protocol and a content

layer. The conversational layer of JCL is defined by the event types, together with the

parameter lists associated with certain of these event types. The content layer consists

of the specific goals, triggers, and data elements that may be embedded within various

events.

The /CL conversational protocol is preferably specified using an orthogonal,

parameterized approach, where the conversational aspects of each element of an

interagent conversation are represented by a selection of an event type and a selection

of values from at least one orthogonal set of parameters. This approach offers greater

expressiveness than an approach based solely on a fixed selection of speech acts, such

as embodied in KQML.For example, in KQML,a request to satisfy a query can

employeither of the performatives ask_all or ask_one. In ICL, on the other hand,this

type of request preferably is expressed by the event type ev_post_solve, together with

the solution_limit(N) parameter - where N can be any positive integer. (A requestfor

all solutions is indicated by the omission of the solution_limit parameter.) The request

can also be accompanied by other parameters, which combineto furtherrefineits

semantics. In KQML,then, this example forces one to choose between twopossible

conversational options, neither of which may be precisely whatis desired. In either

case, the performative chosenis a single value that must capturethe entire

conversational characterization of the communication. This requirementraises a

difficult challenge for the language designer, to select a set of performatives that

provides the desired functionality without becoming unmanageablylarge.

Consequently, the debate over the right set of performatives has consumed much

discussion within the KQML community.

The contentlayer of the ICL preferably supports unification and other features

foundin logic programming language environments such as PROLOG.In some

Attorney Docket No: SRI1P016(3477VBRC/EWJ Page 17 of 59
DISH, Exh. 1008, p. 19

DISH, Exh. 1008, p. 20

15

20

25

30

embodiments, the content layer of the CL is simply an extension of at least one

programming language. For example, the Applicants have found that PROLOGis

suitable for implementing and extendinginto the content layer of the CL. The agent

libraries preferably provide support for constructing, parsing, and manipulating ICL

expressions. It is possible to embed content expressed in other languages within an

ICL event. However, expressing content in JCL simplifies the facilitator’s access to

the content, as well as the conversational layer, in delegating requests. This gives the

facilitator more information about the nature of a request and helps thefacilitator

decompose compound requests and delegate the sub-requests.

Further, JCL expressions preferably include, in addition to events, at least one

of the following: capabilities declarations, requests for services, responses to requests,

trigger specifications, and shared data elements. A further preferred embodiment of

the present invention incorporates JCL expressionsincluding atleast all of the

following: events, capabilities declarations, requests for services, responses to

requests, trigger specifications, and shared data elements.

Providing Services: Specifying "Solvables"

In a preferred embodimentof the present invention, every participating agent

defines and publishes a set of capability declarations, expressed in JCL, describing the

services that it provides. These declarations establish a high-level interface to the

agent. This interface is used by a facilitator in communicating with the agent, and,

most important, in delegating service requests (or parts of requests) to the agent.

Partly due to the use of PROLOGasa preferred basis for ICL, these capability

declarations are referred as solvables. The agent library preferably provides a set of

procedures allowing an agent to add, remove, and modify its solvables, which it may

preferably do at any time after connecting to its facilitator.

There are preferably at least two major types of solvables: procedure solvables

and data solvables. Intuitively, a procedure solvable performsa test or action,

whereas a data solvable provides access to a collection of data. For example,in

creating an agent for a mail system, procedure solvables might be defined for sending

a message to a person, testing whether a message about a particular subject has

arrived in the mail queue, or displaying a particular message onscreen. For a database

Attorney Docket No: SRI1P016(3477 /BRC/EW]J Page 18 of 59
DISH, Exh. 1008, p. 20

DISH, Exh. 1008, p. 21

20

25

30

wrapper agent, one might define a distinct data solvable correspondingto each of the

relations present in the database. Often, a data solvable is used to provide a shared

data store, which may be not only queried, but also updated, by various agents having

the required permissions.

There are several primary technical differences between these two types of

solvables. First, each procedure solvable must have a handler declared and defined

for it, whereas this is preferably not necessary for a data solvable. The handling of

requests for a data solvable is preferably provided transparently by the agentlibrary.

Second, data solvables are preferably associated with a dynamic collection of facts (or

clauses), which may be further preferably modified at runtime, both by the agent

providing the solvable, and by other agents (provided they have the required

permissions). Third, special features, available for use with data solvables, preferably

facilitate maintaining the associated facts. In spite of these differences, it should be

noted that the mechanism of use by which an agent requests a service is the same for

the two types of solvables.

In one embodiment, a request for one of an agent's services normally arrives in

the form of an event from the agent's facilitator. The appropriate handler then deals

with this event. The handler may be coded in whatever fashion is most appropriate,

depending on the nature of the task, and the availability of task-specific libraries or

legacy code, if any. The only hard requirementis that the handler return an

appropriate response to the request, expressed in JCL. Depending on the nature of the

request, this response could be an indication of successorfailure, or a list of solutions

(when the request is a data query).

A solvable preferably has three parts: a goal, a list ofparameters, andalist of

permissions, which are declared using the format:

solvable(Goal, Parameters, Permissions)

The goal of a solvable, which syntactically takes the preferable form of an JCL

structure, is a logical representation of the service provided by the solvable. (An ICL

structure consists of afunctor with 0 or more arguments. For example, in the structure

a(b,c), “a’ is the functor, and “b' and ‘c’ the arguments.) As with a PROLOGstructure,

the goal's arguments themselves may preferably be structures.

Attorney Docket No: SRI1P016(3477VBRC/EW]J Page 19 of 59

DISH, Exh. 1008,p. 21

DISH, Exh. 1008, p. 22

Various options can be included in the parameterlist, to refine the semantics

associated with the solvable. The type parameter is preferably used to say whetherthe

solvable is data or procedure. When the type is procedure, another parameter may be

used to indicate the handlerto be associated with the solvable. Some of the

5 parameters appropriate for a data solvable are mentioned elsewhere in this

application. In either case (procedure or data solvable), the private parameter may be

preferably usedto restrict the use of a solvable to the declaring agent when the agent

intends the solvable to be solely for its internal use but wishes to take advantage of the

mechanismsin accordance with the present invention to access it, or when the agent

10 wants the solvable to be available to outside agents only at selected times. In support

of the latter case, it is preferable for the agent to changethe status of a solvable from

private to non-private at any time.

The permissionsof a solvable provide mechanisms by which an agent may

preferably control accessto its services allowing the agentto restrict calling and

15 writing of a solvableto itself and/or other selected agents. (Calling means requesting

the service encapsulated by a solvable, whereas writing means modifying the

collection of facts associated with a data solvable.) The default permission for every

solvable in a further preferred embodimentof the present invention is to be callable

by anyone, and for data solvables to be writable by anyone. A solvable's permissions

20 can preferably be changedat any time, by the agent providing the solvable.

For example, the solvables of a simple email agent mightinclude:

solvable (send_message(email, +ToPerson, +Params),

[type (procedure), callback(send_mail)],
(1)

25 solvable(last_message(email, -MessagelId),
[type(data), single_value(true)],
{write(true)]),

solvable(get_message(email, +MessagelId, -
Msg),

30 [type (procedure), callback(get_mail)],

())

The symbols ~+' and ~-’, indicating input and output arguments, are at present

used only for purposes of documentation. Most parameters and permissions have

default values, and specifications of default values may be omitted from the

35 parameters and permissionslists.

Attorney Docket No: SRI1P016(3477VBRC/EWJ Page 20 of 59
DISH, Exh. 1008, p. 22eneeT

DISH, Exh. 1008, p. 23

wa)

25

30

Defining an agent's capabilities in terms of solvable declarations effectively

creates a vocabulary with which other agents can communicate with the new agent.

Ensuring that agents will speak the same language and share a common, unambiguous

semantics of the vocabulary involves ontology. Agent developmenttools and services

(automatic translations of solvables by thefacilitator) help address this issue;

additionally, a preferred embodimentof the present invention will typically rely on

vocabulary from either formally engineered ontologies for specific domains or from

ontologies constructed during the incremental developmentof a body of agents for

several applications or from both specific domain ontologies and incrementally

developed ontologies. Several example tools and services are described in Cheyeret

al.’s paper entitled “Development Tools for the Open Agent Architecture,” as

presented at the Practical ApplicationofIntelligent Agents and Multi-Agent

Technology (PAAM 96), London, April 1996.

Although the present invention imposesno hardrestrictions on the form of

solvable declarations, two common usage conventionsillustrate someof the utility

associated with solvables.

Classes of services are often preferably tagged by a particular type. For

instance, in the example above, the "last_message” and "get_message"solvables are

specialized for email, not by modifying the names of the services, but rather by the

use of the “email' parameter, which serves during the execution of an JCL request to

select (or not) a specific type of message.

Actions are generally written using an imperative verb as the functor of the

solvable in a preferred embodimentof the present invention, the direct object (or item

class) as the first argumentof the predicate, required arguments following, and then

an extensible parameterlist as the last argument. The parameterlist can hold optional

information usable by the function. The 7/CL expression generated bya natural

language parser often makesuse of this parameterlist to store prepositional phrases

and adjectives.

Asanillustration of the above two points, “Send mail to Bob about lunch" will

be translated into an JCL request send_message(email, “Bob Jones’, (subject(lunch)]),

whereas "Remind Bob about lunch" would leave the transport unspecified

Attorney Docket No: SRI1P016(3477)/BRC/EW] Page 21] of 59

DISH, Exh. 1008, p. 23

DISH, Exh. 1008, p. 24

Un

we wn

(send_message(KIND, “Bob Jones’, [subject(lunch)})), enabling all available message

transfer agents (e.g., fax, phone, mail, pager) to compete for the opportunity to carry

out the request.

Requesting Services

An agent preferably requests services of the community of agent by delegating

tasks or goalsto its facilitator. Each request preferably contains calls to one or more

agent solvables, and optionally specifies parameters containing advice to help the

facilitator determine how to execute the task. Calling a solvable preferably does not

require that the agent specify (or even knowof) a particular agentor agents to handle

the call. While it is possible to specify one or more agents using an address parameter

(and there are situations in whichthis is desirable), in general it is advantageous to

leave this delegation to the facilitator. This greatly reduces the hard-coded

component dependencies often found in other distributed frameworks. The agent

libraries of a preferred embodimentof the present invention provide an agent with a

single, unified point of entry for requesting services of other agents: the library

procedure oaa_Solve. In the style of logic programming, oaa_Solve may preferably

be used both to retrieve data and toinitiate actions, so that calling a data solvable

looks the sameascalling a procedure solvable.

Complex Goal Expressions

A powerful feature provided by preferred embodiments ofthe present

invention is the ability of a client agent (or a user) to submit compoundgoals of an

arbitrarily complex natureto a facilitator. A compoundgoalis a single goal

expression that specifies multiple sub-goals to be performed. In speaking of a

"complex goal expression” we meanthat a single goal expression that expresses

multiple sub-goals can potentially include more than one type oflogical connector

(e.g., AND, OR, NOT), and/or more than one levelof logical nesting (e.g., use of

parentheses), or the substantive equivalent. By way offurtherclarification, we note

that when speaking of an "arbitrarily complex goal expression” we mean that goals

are expressed in a language or syntax that allows expression of such complex goals

when appropriate or when desired, not that every goal is itself necessarily complex.

Attorney Docket No: SRI1P016(3477V/BRC/EWJ Page 22 of 59
DISH, Exh. 1008, p. 24

DISH, Exh. 1008, p. 25

10

15

20

25

30

It is contemplated that this ability is provided through an interagent

communication language having the necessary syntax and semantics. In one example,

the goals may take the form of compound goal expressions composed using operators

similar to those employed by PROLOG,that is, the commafor conjunction, the

semicolon for disjunction, the arrow for conditional execution, etc. The present

invention also contemplates significant extensions to PROLOGsyntax and semantics.

For example, one embodimentincorporates a "parallel disjunction” operator

indicating that the disjuncts are to be executed by different agents concurrently. A

further embodiment supports the specification of whether a given sub-goalis to be

executed breadth-first or depth-first.

A further embodiment supports each sub-goal of a compoundgoal optionally

having an address and/or a set of parameters attached to it. Thus, each sub-goal takes

the form

Address:Goal::Parameters

where both Address and Parameters are optional.

An address,if present, preferably specifies one or more agents to handle the

given goal, and may employ several different types of referring expression: unique

names, symbolic names, and shorthand names. Every agent has preferably a unique

name,assigned byits facilitator, which relies upon network addressing schemes to

ensure its global uniqueness. Preferably, agents also have self-selected symbolic

names (for example, "mail"), which are not guaranteed to be unique. When an

address includes a symbolic name, the facilitator preferably takes this to meanthatall

agents having that name should be called upon. Shorthand namesinclude ‘self and

“parent' (which refers to the agent's facilitator). The address associated with a goal or

sub-goal is preferably always optional. When an address is not present,it is the

facilitator's job to supply an appropriate address.

The distributed execution of compound goals becomesparticularly powerful

whenused in conjunction with natural language or speech-enabledinterfaces, as the

query itself may specify how functionality from distinct agents will be combined. As

a simple example, the spoken utterance "Fax it to Bill Smith's manager.” can be

translated into the following compound /CL request:

oaa_Solve((manager('Bill Smith’, M), fax(it,M,[])), [strategy(action)})

Attorney Docket No: SRI1P016(3477)/BRC/EW]J Page 23 of 59

DISH, Exh. 1008, p. 25

DISH, Exh. 1008, p. 26

20

25

30

Note that in this ICL request there are two sub-goals, “manager(‘Bill

Smith’ ,M)”and “fax(it,M,|]}),” and a single global parameter “strategy(action).”

According to the present invention, the facilitator is capable of mapping global

parameters in order to apply the constraints or advice across the separate sub-goals in

a meaningful way. In this instance, the global parameter strategy(action) implies a

parallel constraint upon the first sub-goal; i.e., when there are multiple agents that

can respond to the manager sub-goal, each agent should receive a request for service.

In contrast, for the second sub-goal, parallelism should not be inferred from the global

parameter strategy(action) because such an inference would possibly result in the

transmission of duplicate facsimiles.

Refining Service Requests

In a preferred embodimentofthe present invention, parameters associated

with a goal (or sub-goal) can draw on useful features to refine the request's meaning.

For example, it is frequently preferred to be able to specify whether or not solutions

are to be returned synchronously;this is done using the reply parameter, which can

take any of the values synchronous, asynchronous, or none. As another example,

when the goal is a non-compound queryof a data solvable, the cache parameter may

preferably be used to request local caching of the facts associated with that solvable.

Manyof the remaining parameters fall into two categories: feedback and advice.

Feedback parameters allow a service requester to receive information from

the facilitator about how a goal was handled. This feedback can include such things as

the identities of the agents involved in satisfying the goal, and the amountof time

expendedin the satisfaction of the goal.

Advice parameters preferably give constraints or guidanceto thefacilitator in

completing and interpreting the goal. For example, a solution_limit parameter

preferably allows the requester to say how manysolutionsit is interested in; the

facilitator and/or service providers are free to use this information in optimizing their

efforts. Similarly, a time_limit is preferably used to say how long the requesteris

willing to wait for solutionsto its request, and, in a multiple facilitator system, a

level_limit may preferably be used to say how remote the facilitators may be that are

consulted in the search for solutions. A priority parameter is preferably used to

Attorney Docket No: SRI1P016(3477VBRC/EW] Page 24 of 59
DISH, Exh. 1008, p. 26

DISH, Exh. 1008, p. 27

15

20

25

30

indicate that a request is more urgent than previous requests that have not yet been

satisfied. Other preferred advice parameters include butare not limited to parameters

usedtotell the facilitator whether parallel satisfaction of the parts of a goal is

appropriate, how to combineandfilter results arriving from multiple solver agents,

and whether the requester itself may be considered a candidate solver of the sub-goals

of a request.

Advice parameters preferably provide an extensible set of low-level,

orthogonal parameters capable of combining with the JCL goal languageto fully

express how information should flow amongparticipants. In certain preferred

embodiments of the present invention, multiple parameters can be grouped together

and given a group name. Theresulting high-level advice parameters can preferably

be used to express concepts analogous to KQML's performatives, as well as define

classifications of problem types. For instance, KQML's "ask_all" and "ask_one"

performatives would be represented as combinations of values given to the parameters

reply, parallel_ok, and solution_limit. As an example of a higher-level problem type,

the strategy "math_problem" might preferably send the query to all appropriate math

solvers in parallel, collect their responses, and signal a conflict if different answers are

returned. The strategy "essay_question" might preferably send the requestto all

appropriate participants, and signal a problem (i.e., cheating) if any of the returned

answers are identical.

Facilitation

In a preferred embodimentofthe present invention, whenafacilitator receives

a compoundgoal, its job is to construct a goal satisfaction plan and oversee its

satisfaction in an optimal or near optimal mannerthat is consistent with the specified

advice. The facilitator of the present invention maintains a knowledge basethat

records the capabilities of a collection of agents, and uses that knowledgeto assist

requesters and providers of services in making contact.

Figure 7 schematically showsdata structures 700 internalto a facilitator in

accordance with one embodimentof the present invention. Consider the function of a

Agent Registry 702 in the present invention. Each registered agent may be seen as

associated with a collection of fields found within its parent facilitator such as shown

in the figure. Each registered agent mayoptionally possess a Symbolic Name which

Attorney Docket No: SRI1P016(3477VBRC/EWJ Page 25 of 59

DISH, Exh. 1008, p. 27

DISH, Exh. 1008, p. 28

 20

25

30

would be entered into field 704. As mentioned elsewhere, Symbolic Names need not

be unique to each instance of an agent. Note that an agent mayin certain preferred

embodiments of the present invention possess more than one Symbolic Name. Such

Symbolic Names would each be found throughtheir associations in the Agent

Registry entries. Each agent, when registered, must possess a Unique Address, which

is entered into the Unique Addressfield 706.

With further reference to Figure 7, each registered agent may be optionally

associated with one or more capabilities, which have associated Capability

Declaration fields 708 in the parent facilitator Agent Registry 702. These capabilities

may define not just functionality, but may further provide a utility parameter

indicating, in some manner(e.g., speed, accuracy, etc), how effective the agentis at

providing the declared capability. Each registered agent may be optionally associated

with one or more data components, which have associated Data Declaration fields 710

in the parent facilitator Agent Registry 702. Each registered agent may be optionally

associated with one or moretriggers, which preferably could be referenced through

their associated Trigger Declaration fields 712 in the parent facilitator Agent Registry

702. Each registered agent may be optionally associated with one or more tasks,

which preferably could be referenced through their associated Task Declaration fields

714 in the parentfacilitator Agent Registry 702. Each registered agent may be

optionally associated with one or more Process Characteristics, which preferably

could be referenced through their associated Process Characteristics Declaration fields

716 in the parent facilitator Agent Registry 702. Note that these characteristics in

certain preferred embodiments of the present invention may include one or more of

the following: Machine Type (specifying what type of computer mayrun the agent),

Language (both computer and human interface).

A facilitator agent in certain preferred embodiments of the present invention

further includes a Global Persistent Database 720. The database 720 is composed of

data elements which do not rely upon the invocation or instantiation of client agents

for those data elements to persist. Examples of data elements which might be present

in such a database include but are not limited to the network addressof the facilitator

agent’s server, facilitator agent’s server accessible networkport list, firewalls, user

Attorney Docket No: SRI1P016(3477VBRC/EWJ Page 26 of 59

DISH, Exh. 1008, p. 28

DISH, Exh. 1008, p. 29

20

25

30

lists, and security options regarding the access of server resources accessible to the

facilitator agent.

A simplified walk through of operations involved in creating a client agent, a

client agentinitiating a service request, a client agent responding to a service request

and a facilitator agent respondingto a service request are including hereafter by way

ofillustrating the use of such a system. These figures and their accompanying

discussion are provided by wayofillustration of one preferred embodimentof the

present invention and are notintendedto limit the scope of the present invention.

Figure 8 depicts operations involvedin instantiating a client agent with its

parentfacilitator in accordance with a preferred embodimentofthe present invention.

The operations begin withstarting the Agent Registration in a step 800. In a next step

802, the Installer, such as a client or facilitator agent, invokes a new client agent. It

will be appreciated that any computer entity is capable of invoking a new agent. The

system then instantiates the new client agent in a step 804. This operation may

involve resource allocations somewhere in the network on a local computer system

for the client agent, which will often include memory as well as placement of

references to the newly instantiated client agent in internal system lists of agents

within that local computing system. Onceinstantiated, the new client and its parent

facilitator establish a communicationslink in a step 806. In certain preferred

embodiments, this communicationslink involves selection of one or more physical

transport mechanismsfor this communication. Once established, the client agent

transmits it profile to the parent facilitator in a step 808. Whenreceived, the parent

facilitator registers the client agent in a step 810. Then, at a step 812, a client agent

has been instantiated in accordance with one preferred embodimentofthe present

invention.

Figure 9 depicts operations involved in a client agent initiating a service

request and receiving the response to that service request in accordance with a

preferred embodimentofthe present invention. The method of Figure 9 begins in a

step 900, wherein any initialization or other such procedures may be performed.

Then, in a step 902,the client agent determines a goal to be achieved(or solved).

This goal is then translated in a step 904 into /CL,if it is not already formulated init.

The goal, now stated in /CZ,is then transmitted to the client agent’s parent facilitator

Attorney Docket No: SRI P016(3477)/BRC/EWI Page 27 of 59
DISH, Exh. 1008, p. 29

DISH, Exh. 1008, p. 30

15

20

25

30

in a step 906. The parentfacilitator respondsto this service requestandat a later

time, the client agent receives the results of the request in a step 908, operations of

Figure 9 being complete in a done step 910.

FIGURE 10 depicts operations involved in a client agent respondingto a

service request in accordance with a preferred embodimentofthe present invention.

Oncestarted in a step 1000, the client agent receives the service request in a step

1002. In a next step 1004, the client agent parses the received request from ICL. The

client agent then determinesif the serviceis available in a step 1006. Ifit is not, the

client agent returnsa status report to that effect in a step 1008. If the service is

available, control is passed to a step 1010 where the client performs the requested

service. Note that in completing step 1010 the client may form complex goal

expressions, requesting results for these solvables from the facilitator agent. For

example, a fax agent might fax a documentto a certain person only after requesting

and receiving a fax numberfor that person. Subsequently, the client agent either

returns the results of the service and/or a status report in a step 1012. The operations

of Figure 10 are complete in a done step 1014.

FIGURE11 depicts operations involvedin a facilitator agent response to a

service request in accordance with a preferred embodimentofthe present invention.

The start of such operations in step 1100 leads to the reception of a goal request in a

step 1102 by the facilitator. This request is then parsed and interpreted by the

facilitator in a step 1104. The facilitator then proceedsto construct a goal satisfaction

plan in a next step 1106. In steps 1108 and 1110, respectively, the facilitator

determines the required sub-goals and then selects agents suitable for performing the

required sub-goals. The facilitator then transmits the sub-goal requests to the selected

agents in a step 1112 and receives the results of these transmitted requests in a step

1114. It should be noted that the actual implementation of steps 1112 and 1114 are

dependent uponthe specific goal satisfaction plan. Forinstance, certain sub-goals

may be sent to separate agents in parallel, while transmission of other sub-goals may

be postponed until receipt of particular answers. Further, certain requests may

generate multiple responses that generate additional sub-goals. Once the responses

have been received, the facilitator determines whetherthe original requested goal has

been completed in a step 1118. If the original requested goal has not been completed,

Attorney Docket No: SRI1P016(3477/BRC/EWJ Page 28 of 59

DISH, Exh. 1008, p. 30

DISH, Exh. 1008, p. 31

10

15

20

25

30

the facilitator recursively repeats the operations 1106 through 1116. Oncethe original

requested goal is completed, the facilitator returns the results to the requesting agent

1118 and the operations are done at 1120.

A further preferred embodimentof the present invention incorporates

transparent delegation, which meansthat a requesting agent can generate a request,

and a facilitator can managethe satisfaction of that request, without the requester

needing to have any knowledge ofthe identities or locations of the satisfying agents.

In some cases, such as when the requestis a data query, the requesting agent may also

be oblivious to the number of agents involved in satisfying a request. Transparent

delegation is possible because agents’ capabilities (solvables) are treated as an abstract

description of a service, rather than as an entry point into a library or body of code.

A further preferred embodimentof the present invention incorporates

facilitator handling of compound goals, preferably involving three types of

processing: delegation, optimization and interpretation.

Delegation processing preferably supports facilitator determination of which

specific agents will execute a compound goal and how such a compound goal’s sub-

goals will be combined and the sub-goal results routed. Delegation involves selective

application of global and Jocal constraint and advice parameters onto the specific sub-

goals. Delegation results in a goal that is unambiguousas to its meaning and as to the

agents that will participate in satisfying it.

Optimization processing of the completed goal preferably includes the

facilitator using sub-goal parallelization where appropriate. Optimization results ina

goal whose interpretation will require as few exchangesas possible, between the

facilitator and the satisfying agents, and can exploit parallel efforts of the satisfying

agents, whereverthis does not affect the goal's meaning.

Interpretation processing of the optimized goal. Completing the addressing of

a goal involvesthe selection of one or more agents to handle each of its sub-goals

(that is, each sub-goal for which this selection has not been specified by the

requester). In doingthis, the facilitator uses its knowledge of the capabilities ofits

client agents (and possibly of other facilitators, in a multi-facilitator system). It may

also use strategies or advice specified by the requester, as explained below. The

Attorney Docket No: SRI1P016(3477VBRC/EWJS Page 29 of 59

DISH, Exh. 1008, p. 31

DISH, Exh. 1008, p. 32

10

15

20

25

30

interpretation of a goal involvesthe coordination of requests to the satisfying agents,

and assembling their responses into a coherent whole,for return to the requester.

A further preferred embodimentof present invention extendsfacilitation so the

facilitator can employ strategies and advice given by the requesting agent, resulting in

a variety of interaction patterns that may be instantiated in thesatisfaction of a

request.

A further preferred embodimentof present invention handles the distribution

of both data update requests and requestsforinstallation of triggers, preferably using

some of the samestrategies that are employedin the delegation of service requests.

Note that the reliance on facilitation is not absolute; that is, there is no hard

requirement that requests and services be matched upbythefacilitator, or that

interagent communications go throughthe facilitator. There is preferably support in

the agentlibrary for explicit addressing of requests. However, a preferred

embodimentof the present invention encourages employmentthe paradigm of agent

communities, minimizing their developmenteffort, by taking advantage of the

facilitator's provision of transparent delegation and handling of compoundgoals.

A facilitator is preferably viewed as a coordinator, not a controller, of

cooperative task completion. A facilitator preferably never initiates an activity. A

facilitator preferably responds to requests to managethe satisfaction of some goal, the

update of some data repository, or the installation of a trigger by the appropriate agent

or agents. All agents can preferably take advantage ofthe facilitator's expertise in

delegation, and its up-to-date knowledge about the current membership of a dynamic

community. Thefacilitator’s coordination services often allows the developer to

lessen the complexity of individual agents, resulting in a more manageable software

developmentprocess, and enabling the creationoflightweight agents.

Maintaining Data Repositories

The agent library supports the creation, maintenance, and use of databases,in

the form of data solvables. Creation of a data solvable requires only that it be

declared. Querying a data solvable, as with access to any solvable, is done using

oaa_Solve.

Attorney Docket No: SR11P016(3477 VBRC/EWJ Page 30 of 59

DISH, Exh. 1008, p. 32

DISH, Exh. 1008, p. 33

30

A data solvable is conceptually similar to a relation in a relational database.

The facts associated with each solvable are maintained by the agentlibrary, which

also handles incoming messages containing queries of data solvables. The default

behavior of an agentlibrary in managing these facts may preferably be refined, using

parameters specified with the solvable's declaration. For example, the parameter

single_value preferably indicates that the solvable should only contain a single fact at

any given point in time. The parameter unigue_values preferably indicates that no

duplicate values should be stored.

Other parameters preferably allow data solvables use of the concepts of

ownership and persistence. For implementing shared repositories, it is often

preferable to maintain a record of which agent created each fact of a data solvable

with the creating agent being preferably considered the fact's owner. In many

applications,it is preferable to remove an agent's facts when that agent goes offline

(for instance, when the agentis no longerparticipating in the agent community,

whetherby deliberate termination or by malfunction). When a data solvable is

declared to be non-persistent, its facts are automatically maintained in this way,

whereasa persistent data solvable preferably retains its facts until they are explicitly

removed.

A further preferred embodimentof present invention supports an agentlibrary

through procedures by which agents can update (add, remove, and replace) facts

belonging to data solvables,either locally or on other agents, given that they have

preferably the required permissions. These procedures may preferably be refined

using many ofthe same parametersthat apply to service requests. For example, the

address parameter preferably specifies one or more-particular agents to which the

update request applies. In its absence, just as with service requests, the update request

preferably goesto all agents providing the relevant data solvable. This default

behavior can be used to maintain coordinated "mirror" copies of a data set within

multiple agents, and can be useful in support of distributed, collaborative activities.

Similarly, thefeedback parameters, described in connection with oaa_Solve,

are preferably available for use with data maintenance requests.

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 31 of 59
DISH, Exh. 1008, p. 33

DISH, Exh. 1008, p. 34

10

15

20

23

30

A further preferred embodimentof present invention supports ability to

provide data solvablesnotjust to client agents, but also to facilitator agents. Data

solvables can preferably created, maintained and used bya facilitator. The facilitator

preferably can, at the request of a client of the facilitator, create, maintain and share

the use of data solvables with all the facilitator's clients. This can be useful with

relatively stable collections of agents, where the facilitator’s workload is predictable.

Using a BlackboardStyle of Communication

In a further preferred embodimentof present invention, when a data solvable

is publicly readable and writable, it acts essentially as a global data repository and can

be used cooperatively by a group of agents. In combination with the use of triggers,

this allows the agents to organize their efforts around a "blackboard"style of

communication.

As an example, the "DCG-NL"agent (one of several existing natural language

processing agents), provides natural language processing servicesfor a variety ofits

peer agents, expects those other agents to record, on the facilitator, the vocabulary to

which they are prepared to respond, with an indication of each word's part of speech,

and of the logical form (JCL sub-goal) that should result from the use of that word. In

a further preferred embodimentof present invention, the NL agent, preferably whenit

comesonline, preferably installs a data solvable for each basic part of speech onits

facilitator. For instance, one such solvable would be:

solvable(noun(Meaning, Syntax),[], [])

Note that the empty lists for the solvable’s permissions and parameters are acceptable

here, since the default permissions and parameters provide appropriate functionality.

A further preferred embodimentof present invention incorporating an Office

Assistant system as discussed herein or similar to the discussion here supports several

agents making use of these or similar services. For instance, the database agent uses

the followingcall, to library procedure oaa_AddData,to post the noun “boss’, and to

indicate that the "meaning"of boss is the concept ‘manager’:

oaa_AddData(noun(manager, atom(boss)), [address(parent)])

Attorney Docket No: SRI1P016(3477VBRC/EWJ Page 32 of 59
DISH, Exh. 1008, p. 34

DISH, Exh. 1008, p. 35

20

25

30

Autonomous Monitoring with Triggers

A further preferred embodimentof present invention includes support for

triggers, providing a general mechanism for requesting some action be taken when a

set of conditions is met. Each agent can preferably install triggers either locally, for

itself, or remotely, on its facilitator or peer agents. There are preferably at least four

types of triggers: communication, data, task, and time.In addition to a type, each

trigger preferably specifies at least a condition and an action, both preferably

expressed in JCL. The condition indicates under what circumstancesthe trigger should

fire, and the action indicates what should happen whenit fires. In addition, each

trigger can besetto fire either an unlimited numberof times, or a specified numberof

times, which can be any positive integer.

Triggers can be used in a variety of ways within preferred embodiments of the

present invention. For example, triggers can be used for monitoring external sensors

in the execution environment, tracking the progress of complex tasks, or coordinating

communications between agents that are essential for the synchronization ofrelated

tasks. The installation of a trigger within an agent can be thoughtof as a

representation of that agent's commitmentto carry out the specified action, whenever

the specified condition holdstrue.

Communication triggers preferably allow any incomingor outgoing event

(message) to be monitored. For instance, a simple communication trigger may say

something like: "Whenevera solution to a goal is returned from thefacilitator, send

the result to the presentation managerto be displayed to the user.”

Data triggers preferably monitorthe state of a data repository (which can be

maintained onafacilitator or a client agent). Data triggers’ conditions may be tested

upon the addition, removal, or replacementof a fact belonging to a data solvable. An

example data trigger is: "When 15 users are simultaneously logged on to a machine,

send an alert message to the system administrator."

Task triggers preferably contain conditions that are tested after the processing

of each incoming event and whenevera timeoutoccurs in the event polling. These

conditions may specify any goal executable by the local JCL interpreter, and most

often are used to test when some solvable becomessatisfiable. Task triggers are

Attorney Docket No: SRI1P016(3477V/BRC/EW]J Page 33 of 59
DISH, Exh. 1008, p. 35

DISH, Exh. 1008, p. 36

20

25

30

useful in checking for task-specific internal conditions. Although in many cases such

conditions are captured by solvables, in other cases they may not be. For example, a

mail agent might watch for new incoming mail, or an airline database agent may

monitor which flights will arrive later than scheduled. An exampletask trigger ts:

"When mail arrives for me about security, notify me immediately.”

Timetriggers preferably monitor time conditions. For instance, an alarm

trigger can be setto fire at a single fixed point in time(e.g., "On December 23rd at

3pm"), or on a recurring basis(e.g., "Every three minutes from now until noon").

Triggers are preferably implemented as data solvables, declared implicitly for

every agent. When requesting that a trigger be installed, an agent may use manyof the

same parameters that apply to service and data maintenance requests.

A further preferred embodimentof present invention incorporates semantic
support, in contrast with most programming methodologies, of the agent on which the

trigger is installed only having to know how to evaluate the conditional part of the

trigger, not the consequence. Whenthetrigger fires, the action is delegatedto the

facilitator for execution. Whereas many commercial mail programsallow rules of the

form "When mail arrives about XXX, [forwardit, delete it, archive it]", the possible

actions are hard-coded and the user must select from a fixed set.

A further preferred embodimentof present invention, the consequenceof a

trigger may be any compound goal executable by the dynamic community of agents.

Since new agents preferably define both functionality and vocabulary, when an

unanticipated agent (for example, a fax agent) joins the community, no modifications

to existing code is required for a user to make use ofit - "When mailarrives,fax it to

Bill Smith."

The Agent Library

In a preferred embodimentofpresent invention, the agent library provides the

infrastructure for constructing an agent-based system. The essential elements of

protocol (involving the details of the messages that encapsulate a service request and

its response) are preferably made transparent to simplify the programming

applications. This enables the developerto focus functionality, rather than message

Attorney Docket No: SRIIP016(3477YBRC/EWJ Page 34 of 59
DISH, Exh. 1008, p. 36

DISH, Exh. 1008, p. 37

10

20

25

30

construction details and communication details. For example, to request a service of

another agent, an agent preferably calls the library procedure oaa_Solve. This call

results in a message to a facilitator, which will exchange messages with one or more

service providers, and then send a message containing the desired results to the

requesting agent. These results are returned via one of the arguments of oaa_Solve.

Noneof the messages involvedin this scenario is explicitly constructed by the agent

developer. Note that this describes the synchronous use of oaa_Solve.

In anotherpreferred embodimentof present invention, an agentlibrary

provides both intraagent and interagentinfrastructure; that is, mechanisms supporting

the internal structure of individual agents, on the one hand, and mechanismsof

cooperative interoperation between agents, on the other. Note that most of the

infrastructure cuts across this boundary with many of the same mechanisms

supporting both agent internals and agentinteractions in an integrated fashion. For

example, services provided by an agent preferably can be accessed by that agent

through the same procedure (oaa_Solve) that it would employto requesta service of

another agent(the only difference being in the address parameter accompanying the

request). This helps the developer to reuse code and avoid redundant entry points into

the same functionality.

Both of the preferred characteristics described above (transparent construction

of messages and integration of intraagent with interagent mechanisms) apply to most

other library functionality as well, including but not limited to data management and

temporal control mechanisms.

Source Code Appendix

Source code for version 2.0 of theOAA software product is included as an

appendix hereto, and is incorporated herein by reference. The code includes an agent

library, which provides infrastructure for constructing an agent-based system. The

library's several families of procedures provide the functionalities discussed above, as

well as others that have not been discussed here but that will be sufficiently clear to

the interested practitioner. For example, declarations of an agent's solvables, and their

registration with a facilitator, are managed using procedures such as oaa_Declare,

oaa_Undeclare, and oaa_Redeclare. Updatesto data solvables can be accomplished

with a family of procedures including oaa_AddData, oaa_RemoveData, and

Attorney Docket No: SRILP016(3477)/BRC/EWJ Page 35 of 59

DISH, Exh. 1008, p. 37

DISH, Exh. 1008, p. 38

20

25

30

oaa_ReplaceData. Similarly, triggers are maintained using procedures such as

oaa_AddTrigger, oaa_RemoveTrigger, and oaa_ReplaceTrigger. The provided

source code also includes source code for an OAA Facilitator Agent.

The source code appendix is offered solely as a meansoffurther helping

practitioners to construct a preferred embodimentof the invention. By no meansis

the source code intendedto limit the scope of the present invention.

Illustrative Applications

To further illustrate the technology of the preferred embodiment, we will next

present and discuss two sample applications of the present inventions.

Unified Messaging

A further preferred embodimentof present invention incorporates a Unified

Messaging application extending the Automated Office application presented

previously herein with an emphasis on ubiquitous access and dynamic presentation of

the information and services supported by the agent community. The agents used in

this application are depicted in Figure 12.

A hypothetical exampleofrealistic dialog using a preferred embodiment of

the present invention can provide insight into how systems may preferably be built

using the present invention. In this scenario. the user, with only a telephone as an

interface, is planning a trip to Boston where he will soon give a presentation.

Capitalized sentences are phrases spoken bythe user into the telephone and processed

by a phone agent 452.

Responses, unless otherwise indicated, are spoken by the system using text-to-

speech generation agent 454.

1.1 Welcome to SRI International. Please enter your
user ID and password.

<User enters touchtone ID and password>

Good to see you again Adam Cheyer. I am

listening to you.

Every user interface agent 408, including the telephone agent 452, should

knowthe identify of its user. This information is used in resolving anaphoric

Attorney Docket No: SRI1P016(3477VBRC/EW]J Page 36 of 59

DISH, Exh. 1008, p. 38

DISH, Exh. 1008, p. 39

1S

20

25

30

35

40

references such as "me" and "I", and allows multiple user interfaces operated by the

same user to work together.

1.2 WHAT IS TODAY'S SCHEDULE?

Here is today's schedule for Adam Cheyer:
At 10am for 1 hour, meeting with Dave.
At 3pm for 1 hour, presentation about software

agents.

End of schedule.

If the user is operating both a graphical user interface and a telephone, as

described in conjunction with the Automated Office application,the result of this

spoken requestistodisplay a calendar window containing the currentschedule. In

this case, with no graphical display available, the GEN_NL agent 1202is tasked to

produce a spoken response that can be played over the phone. GEN_NLshares the

same dynamic vocabulary and phrasalrules as the natural language parser DCG_NL

426, and containsstrategies for producing responses to queries using either simple or

list-based multimedia utterances.

1.3 FIND FRIDAY'S WEATHER IN BOSTON.

The weather in Boston for Friday is as follows:
Sunny in the morning. Partly cloudy in the

afternoon with a 20

percent chance of thunderstorms late. Highs in the
mid 70s.

In addition to data accessible from legacy applications, content may be

retrieved by web-reading agents which provide wrappers around useful websites.

1.4 FIND ALL NEW MAIL MESSAGES.

There are 2 messages available.
Message 1, from Mark Tierny, entitled "OAA meeting.”

1.5 NEXT MESSAGE

Message 2, from Jennifer Schwefler, entitled
"Presentation Summary.”
1.6 PLAY IT.

This message is a multipart MIME-encoded message.
There are two parts.

Part 1. (Voicemail message, not text-to speech):
Thanks for taking part as a speaker in our

conference.

The schedule will be posted soon on our homepage.
1.7 NEXT PART

Part 2. (read using text-to-speech):
The presentation home page is http://www....

1.8 PRINT MESSAGE

Command executed.

Attorney Docket No: SRI1P016(3477)//BRC/EW]J Page 37 of 59
DISH, Exh. 1008, p. 39

DISH, Exh. 1008, p. 40

 20

30

Mail messagesare no longerjust simple text documents, but often consist of

multiple subparts containing audio files, pictures, webpages, attachments andsoforth.

Whena user asks to play a complex email message overthe telephone, manydifferent

agents may be implicated in the translation process, which would be quite different

given the request "printit.” The challenge is to develop a system which will enable

agents to cooperate in an extensible, flexible mannerthat alleviates explicit coding of

agent interactions for every possible input/output combination.

In a preferred embodimentof the present invention, each agent concentrates

only on whatit can do and on whatit knows, and leaves other work to be delegated to

the agent community. For instance, a printer agent 1204, defining the solvable

print(Object,Parameters), can be defined by the following pseudo-code, which

basically says, "If someone can get me a document, in either POSTSCRIPTortext

form, I can print it.”.

print (Object, Parameters) {
' Tf Object is reference to "it", find an appropriate

document

if (Object = "ref(it)")
oaa_Solve(resolve_reference(the, document, Params,

Object), {]);
*’' Given a reference to some document, ask for the

document in POSTSCRIPT

if (Object = "id(Pointer)")
oaa_Solve(resolve_id_as(id(Pointer), postscript,

[], Object), []);
' T£ Object is of type text or POSTSCRIPT, we can

print it.
if ((Object is of type Text) or (Object is of type

Postscript})
do_print (Object);

}

In the above example, since an email messageis the salient document, the

mail agent 442 will receive a request to produce the message as POSTSCRIPT.

Whereasthe mail agent 442 may know howto Save a text message as POSTSCRIPT,

it will not know whatto do with a webpage or voicemail message. For these parts of

the message,it will simply send oaa_Solve requeststo see if another agent knows

how to accomplishthe task.

Attorney Docket No: SRI1P016(3477V/BRC/EWJ Page 38 of 59
DISH, Exh. 1008, p. 40

DISH, Exh. 1008, p. 41

10

15

20

25

30

Until now,the user has been using only a telephone as user interface. Now, he

movesto his desktop, starts a web browser 436, and accesses the URL referenced by

the mail message.

1.9 RECORD MESSAGE

Recording voice message. Start speaking now.
1.10 THIS IS THE UPDATED WEB PAGE CONTAINING THE

PRESENTATION SCHEDULE.

Message one recorded.
1.11 IF THIS WEB PAGE CHANGES, GET IT TO ME WITH NOTE
ONE.

Trigger added as requested.

In this example, a local agent 436 which interfaces with the web browser can

return the current page as a solution to the request "oaa_Solve(resolve_reference(this,

web_page,[], Ref),[])", sent by the NL agent 426. A trigger is installed on a web

agent 436 to monitor changes to the page, and when the pageis updated,the notify

agent 446 can find the user and transmit the webpage and voicemail message using

the most appropriate media transfer mechanism.

This example based on the Unified Messaging application is intended to show

how concepts in accordance with the present invention can be used to produce a

simple yet extensible solution to a multi-agent problem that would bedifficult to

implement using a more rigid framework. The application supports adaptable

presentation for queries across dynamically changing, complex information; shared

context and reference resolution among applications; and flexible translation of

multimedia data. In the next section, we will present an application which highlights

the use of parallel competition and cooperation among agents during multi-modal

fusion.

Multimodal Map

A further preferred embodimentof present invention incorporates the

Multimodal Map application. This application demonstrates natural ways of

communicating with a community of agents, providing an interactive interface on

which the user may draw, write or speak. In a travel-planning domainillustrated by

Figure 13, available information includes hotel, restaurant, and tourist-site data

retrieved by distributed software agents from commercial Internet sites. Some

preferred types of user interactions and multimodal issues handled by the application

Attorney Docket No: SRI1P016(3477VBRC/EWJ Page 39 of 59

DISH, Exh. 1008,p. 41

DISH, Exh. 1008, p. 42

nt

20

25

30

35

40

45

are illustrated by a brief scenario featuring working examples taken from the current

system.

Sara is planning a businesstrip to San Francisco, but would like to schedule

someactivities for the weekend while she is there. She turns on her laptop PC,

executes a map application, and selects San Francisco.

2.1 [Speaking] Where is downtown?
Map scrolls to appropriate area.

2.2 [Speaking and drawing region] Show me all hotels
near here.

Icons representing hotels appear.
2.3 [Writes on a hotel] Info?

A textual description (price, attributes, etc.)
appears.

2.4 [Speaking] I only want hotels with a pool.
Some hotels disappear.

2.5 [Draws a crossout on a hotel that is too close toa
highway]

Hotel disappears
2.6 [Speaking and circling] Show me a photo of this
hotel.

Photo appears.
2.7 [Points to another hotel]

Photo appears.
2.8 [Speaking] Price of the other hotel?

Price appears for previous hotel.
2.9 [Speaking and drawing an arrow] Scroll down.

Display adjusted.
2.10 [Speaking and drawing an arrow toward a hotel]

What is the distance from this hotel to Fisherman's

Wharf?

Distance displayed.
2.11 [Pointing to another place and speaking] And the
distance to here?

Distance displayed.

Sara decides she could use some human advice. She picks up the phone,calls

Bob,her travel agent, and writes Start collaboration to synchronize his display with

hers. At this point, both are presented with identical maps, and the input and actions

of one will be remotely seen by the other.

3.1 [Sara speaks and circles two hotels]
Bob, I'm trying to choose between these two hotels.

Any opinions?
3.2 [Bob draws an arrow, speaks, and points]

Well, this area is really nice to visit. You can
walk there from

Attorney Docket No: SRI1P016(3477VBRC/EWJ Page 40 of 59
DISH, Exh. 1008, p. 42

DISH, Exh. 1008, p. 43

this hotel.

Map scrolls to indicated area. Hotel selected.
3.3 [Sara speaks] Do you think I should visit Alcatraz?
3.4 [Bob speaks] Map, show video of Alcatraz.

5 Video appears.
3.5 [Bob speaks] Yes, Alcatraz is a lot of fun.

A further preferred embodimentof present invention generates the most

appropriate interpretation for the incoming streams of multimodal input. Besides

providing a user interface to a dynamicset ofdistributed agents, the applicationis

10 preferably built using an agent framework. The present invention also contemplates

aiding the coordinate competition and cooperation among information sources, which

in turn worksin parallel to resolve the ambiguities arising at every level of the

interpretation process: low-level processing of the data stream, anaphora resolution,

cross-modality influences and addressee.

15 Low-level processing of the data stream: Pen input may be preferably

interpreted as a gesture (e.g., 2.5: cross-out) by one algorithm, or as handwriting by a

separate recognition process(e.g., 2.3: "info?”). Multiple hypotheses may preferably

be returned by a modality recognition component.

Anaphoraresolution: When resolving anaphoric references, separate

20 information sources may contribute to resolving the reference: context by object type,

deictic, visual context, database queries, discourse analysis. An example of

information provided through context by object type is foundin interpreting an

utterance such as "show photo ofthe hotel", where the natural language component

can return a list of the last hotels talked about. Deictic information in combination

25 with a spoken utterancelike "show photo ofthis hotel" may preferably include

pointing, circling, or arrow gestures which mightindicate the desired object (e.g.,

2.7). Deictic references may preferably occur before, during, or after an

accompanying verbal command. Information provided in a visual context, given for

the request "display photo of the hotel” may preferably include the user interface

30 agent might determinethat only one hotel is currently visible on the map, and

therefore this might be the desired reference object. Database queries preferably

involving information from a database agent combined with results from other

resolution strategies. Examples are "show mea photo ofthe hotel in Menlo Park” and

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 41 of 59
DISH, Exh. 1008,p. 43
AASTAIS

DISH, Exh. 1008, p. 44

20

25

30

2.2. Discourse analysis preferably provides a source of information for phrases such

as "No,the other one”(or 2.8).

The abovelist of preferred anaphora resolution mechanismsis not exhaustive.

Examplesofother preferred resolution methods include butare not limited to spatial

reasoning ("the hotel between Fisherman's Wharf and Lombard Street") and user

preferences (“near my favorite restaurant”).

Cross-modality influences: When multiple modalities are used together, one

modality may preferably reinforce or remove or diminish ambiguity from the

interpretation of another. Forinstance, the interpretation of an arrow gesture may vary

when accompanied by different verbal commands(e.g., "scroll left" vs. "show info

aboutthis hotel"). In the latter example, the system must take into account how

accurately and unambiguously an arrow Selects a single hotel.

Addressee: With the addition of collaboration technology, humans and

automated agents all share the same workspace. A pen doodle or a spoken utterance

may be meantfor either another human,the system (3.1), or both (3.2).

The implementation of the Multimodal Map application illustrates and

exploits several preferred features of the present invention: - reference resolution and

task delegation by parallel parameters of oaa_Solve, basic multi-user collaboration

handled through built-in data managementservices, additional functionality readily

achieved by adding new agents to the community, domain-specific code cleanly

separated from other agents.

A further preferred embodimentof present invention provides reference

resolution and task delegation handled in a distributed fashion bythe parallel

parameters of oaa_Solve, with meta~agents encodingrulesto help the facilitator make

context- or user-specific decisions about priorities among knowledge sources.

A further preferred embodimentof present invention provides basic multi-user

collaboration handled through at least one built-in data managementservice. The

mapuser interface preferably publishes data solvables for elements such asicons,

screen position, and viewers, and preferably defines these elements to have the

attribute "shareable". For every update to this public data, the changes are preferably

Attorney Docket No: SRI1P016(3477)/BRC/EWJS Page 42 of 59
DISH, Exh. 1008, p. 44

DISH, Exh. 1008, p. 45

 20

25

30

automatically replicated to all members of the collaborative session, with associated

callbacks producingthevisible effect of the data change (e.g., adding or removing an

icon).

Functionality for recording and playback of a session is preferably

implemented by adding agents as membersof the collaborative community. These

agents either record the data changesto disk,or read a log file and replicate the

changes in the shared environment.

The domain-specific code for interpreting travel planning dialog is preferably

separated from the speech, natural language, pen recognition, database and map user

interface agents. These components were preferably reused without modification to

add multimodal map capabilities to other applications for activities such as crisis

management, multi-robot control, and the MVIEWStools for the video analyst.

Improved Scalability and Fault Tolerance

Implementations of a preferred embodimentofpresent invention which rely

upon simple, single facilitator architectures may face certain limitations with respect

to scalability, because the single facilitator may become a communications bottleneck

and mayalso representa single, critical point for system failure.

Multiple facilitator systems as disclosed in the preferred embodimentsto this

point can be used to construct peer-to-peer agent networksasillustrated in Figure 14.

While such embodiments are scalable, they do possess the potential for

communication bottlenecks as discussed in the previous paragraph and they further

possess the potential for reliability problems ascentral, critical points of vulnerability

to systems failure.

A further embodimentofpresent invention supports a facilitator implemented

as an agentlike any other, whereby multiple facilitator network topologies can be

readily constructed. One example configuration (but not the only possibility) is a

hierarchical topology as depicted in Figure 15, where a top level Facilitator manages

collections of both client agents 1508 and other Facilitators, 1504 and 1506.

Facilitator agents could be installed for individualusers, for a group of users, or as

appropriate for the task.

Attorney Docket No: SRI1P016(3477 /BRC/EW]J Page 43 of 59
DISH, Exh. 1008, p. 45

DISH, Exh. 1008, p. 46

10

15

20

25

30

Note further, that network work topologies of facilitators can be seen as

graphs where each node correspondsto an instanceofa facilitator and each edge

connecting two or more nodes correspondsto a transmission path across one or more

physical transport mechanisms. Some nodes may representfacilitators and some

nodes mayrepresentclients. Each node can be further annotated with attributes

corresponding to include triggers, data, capabilities but not limited to these attributes.

A further embodimentof present invention provides enhanced scalability and

robustness by separating the planning and execution components ofthe facilitator. In

contrast with the centralized facilitation schemes described above,the facilitator

system 1600 of Figure 16 separates the registry/planning componentfrom the

execution component. Asa result, no single facilitator agent mustcarry all

communications nor doesthe failure of a single facilitator agent shut downthe entire

system.

Turning directly to Figure 16, the facilitator system 1600 includes a

registry/planner 1602 and a plurality of client agents 1612-1616. The registry/planner

1604 is typically replicated in one or more locations accessible bythe client agents.

Thusif the registry/planner 1604 becomes unavailable, the client agents can access

the replicated registry/planner(s).

This system operates, for example, as follows. An agent transmits a goal 1610

to the registry planner 1602. The registry/planner 1604 translates the goal into an

unambiguous execution plan detailing how to accomplish any sub-goals developed

from the compound goal, as well as specifying the agents selected for performing the

sub-goals. This execution plan is provided to the requesting agent which in turn

initiates peer-to-peer interactions 1618 in order to implement the detailed execution

plan, routing and combining information as specified within the execution plan.

Communication is distributed thus decreasing sensitivity of the system to bandwidth

limitationsof a single facilitator agent. Execution state is likewise distributed thus

enabling system operation even whena facilitator agentfails.

Further embodiments of present invention incorporate into the facilitator

functionality such as load-balancing, resource management, and dynamic

configuration of agent locations and numbers, using (for example) any ofthe

topologies discussed. Other embodiments incorporateinto a facilitator the ability to

aid agents in establishing peer-to-peer communications. Thatis, for tasks requiring a

Attorney Docket No: SRI1P016(3477)/BRC/EW] Page 44 of 59
DISH, Exh. 1008, p. 46

DISH, Exh. 1008, p. 47

sequence of exchanges between two agents, the facilitator assist the agents in finding

one another and establishing communication, stepping out of the way while the agents

communicate peer-to-peer overa direct, perhaps dedicated channel.

Further preferred embodiments of the present invention incorporate

5 mechanismsfor basic transaction management, such as periodically saving the state of

agents (both facilitator and client) and rolling back to the latest saved state in the

event of the failure of an agent.

Attorney Docket No: SRI1P016(3477)/BRC/EWS Page 45 of 59

DISH, Exh. 1008, p. 47

DISH, Exh. 1008, p. 48

IN THE CLAIMS:

1. A computer-implemented method for communication and cooperative task

completion amonga plurality of distributed electronic agents, comprising the

acts of:

registering a description of each active client agent's functional capabilities, using an

expandable, platform-independent, inter-agent language;

receiving a request for service as a base goalin the inter-agent language, in the form

of an arbitrarily complex goal expression; and

dynamically interpreting the goal expression,said act of interpreting further

comprising:

generating one or more sub-goals using the inter-agent language; and

dispatching each of the sub-goals to a selected client agent for performance,

based on a match between the sub-goal being dispatched and the

registered functional capabilities of the selected client agent.

2. A computer-implemented methodasrecited in claim 1, further including the

following acts of:

receiving a new request for service as a base goal using the inter-agent language,in

the form of another arbitrarily complex goal expression, from at least one of

the selected client agents in response to the sub-goal dispatched to said agent;

and

recursively applying the last step of claim 1 in order to perform the new request for

service.

3. A computer implemented method as recited in clatm 2 wherein the act

of registering a specific agent further includes:

invoking the specific agent in order to activate the specific agent;

instantiating an instance of the specific agent; and

transmitting the new agent profile from the specific agent to the facilitator

agentin responsetotheinstantiation of the specific agent.

4, A computer implemented method as recited in claim 1 further

including the act of deactivating a specific client agent no longer available to provide

services by deleting the registration of the specific client agent.

5. A computer implemented method as recited in claim 1 further

comprising the act of providing an agentregistry data structure.

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 46 of 59
DISH, Exh. 1008, p. 48

DISH, Exh. 1008, p. 49

1 6. A computer implemented method as recited in claim 5 wherein the

2 agentregistry data structure includes at least one symbolic name for each active agent.

1 7. A computer implemented method as recited in claim 5 wherein the

2 agent registry data structure includes at least one data declaration for each active
3 agent.

1 8. A computer implemented method as recited in claim 5 wherein the

2 agent registry data structure includes at least one trigger declaration for one active

3 agent.

1 9. A computer implemented method as recited in claim 5 wherein the

2 agent registry data structure includes at least one task declaration, and process

3 characteristics for each active agent.

1 10. A computer implemented method as recited in claim 5 wherein the

2 agentregistry data structure includesat least one process characteristic for each active

3. agent.

1 11. A computer implemented method as recited in claim 1 further

2 comprising the act of establishing communication between the plurality of distributed

3 agents.

1 12. A computer implemented method as recited in claim 1 further

2 comprising theactsof:

3 receiving a request for service in a second language differing from the inter-

4 agent language;

5 selecting a registered agent capable of converting the second language into the
6_inter-agent language; and

7 forwarding the request for service in a second languageto the registered agent

8 capable of converting the second language into the inter-agent language, implicitly

9 requesting that such a conversion be performed and the results returned.

1 13. A computer implemented method as recited in claim 12 wherein the

2 request includes a natural language query, and the registered agent capable of

3. converting the second language into the inter-agent language service is a natural

4 language agent.

| 14. A computer implemented method as recited in claim 13 wherein the

2 natural language query was generated by a userinterface agent.

Attorney Docket No: SRI1P016(3477/BRC/EWJ Page 47 of 59
DISH, Exh. 1008, p. 49

DISH, Exh. 1008, p. 50

1 15.|Acomputer implemented methodasrecited in claim 1, wherein the

2 base goal requiressetting a trigger having conditional functionality and consequential

3 functionality.

] 16. A computer implemented method as recited in claim 15 wherein the

2 trigger is an outgoing communications trigger, the computer implemented method

3 further including the acts of:

4 monitoring all outgoing communication events in order to determine whether a

5 specific outgoing communication event has occurred; and

6 in response to the occurrence of the specific outgoing communication event,

7 performing the particular action defined by the trigger.

1 17. A computer implemented method as recited in claim 15 wherein the

2 trigger is an incoming communications trigger, the computer implemented method

3 further includingthe acts of:

4 monitoring all incoming communication events in order to determine whether

5 a specific incoming communication event has occurred; and

6 in response to the occurrence of a specific incoming communication event

7 satisfying the trigger conditional functionality, performing the particular

8 consequential functionality defined by thetrigger.

1 18.|A computer implemented method as recited in claim 15 wherein the

2 trigger is a data trigger, the computer implemented method further including the acts 3 Of:

4 monitoring a state of a data repository; and

5 in responseto a particular state event satisfying the trigger conditional

6 functionality, performing the particular consequential functionality defined by the

7 trigger.

1 19. A computer implemented method as recited in claim 15 wherein the

2 trigger is a time trigger, the computer implemented method further includingthe acts

3. Of:

4 monitoring for the occurrenceofa particular time condition; and

5 in response to the occurrence of a particular time condition satisfying the

6 trigger conditional functionality, performing the particular consequential functionality

7 defined by the trigger.

1 20. A computer implemented method as recited in claim 15 wherein the

wR trigger is installed and executed within the facilitator agent.

Attorney Docket No: SRI P016(3477)/BRC/EWJ Page 48 of 59
DISH, Exh. 1008, p. 50

DISH, Exh. 1008, p. 51

1 21. A computer implemented method as recited in claim 15 wherein the

2 trigger is installed and executed within a first service-providing agent.

1 22. A computer implemented method as recited in claim 15 wherein the

2 conditional functionality of the trigger is installed on a facilitator agent.

1 23.|Acomputer implemented method asrecited in claim 22 wherein the

2 consequential functionality is installed on a specific service-providing agent other

3 than a facilitator agent.

1 24. A computer implemented method as recited in claim 15 wherein the

2 conditional functionality of the trigger is installed on a specific service-providing

3 agent otherthan a facilitator agent.

1 25. A computer implemented method as recited in claim 15 wherein the

2 consequential functionality of the triggeris installed onafacilitator agent.

1 26. A computer implemented method as recited in claim 1 wherein the

2 base goal is a compound goal having sub-goals separated by operators. .

1 27. A computer implemented method as recited in claim 26 wherein the

2 type of available operators includes a conjunction operator, a disjunction operator,

3 and aconditional execution operator.

Attorney Docket No: SRIIP016(3477VBRC/EWJ Page 49 of 59
DISH, Exh. 1008, p. 51

DISH, Exh. 1008, p. 52

1 28.|A computer implemented methodasrecited in claim 27 wherein the type

2 of available operators further includes a parallel disjunction operator that indicates that

3 disjunct goals are to be performed bydifferent agents.

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 50 of 59

DISH, Exh. 1008, p. 52

DISH, Exh. 1008, p. 53

1 29. A computer program stored on a computer readable medium, the

2 computer program executable to facilitate cooperative task completion within a

3 distributed computing environment, the distributed computing environmentincluding

4 a plurality of autonomous electronic agents, the distributed computing environment

5 supporting an Interagent Communication Language, the computer program

6 comprising computer executable instructionsfor:

7 providing an agent registry that declares capabilities of service-providing

8 electronic agents currently active within the distributed computing environment;

9 interpreting a service request in order to determine a base goal that may be a

10 compound, arbitrarily complex base goal, the service request adhering to an

11. Interagent Communication Language (ICL), the act of interpreting including the sub-

12 acts of:

13 determining any task completion advice provided by the base goal, and

14 determining any task completion constraints provided by the base goal;

15 constructing a base goal satisfaction plan including the sub-actsof:

16 determining whether the requested service is available,

17 determining sub-goals required in completing the base goal,

18 selecting service-providing electronic agents from the agent registry

19 suitable for performing the determined sub-goals, and

20 ordering a delegation of sub-goal requests to best complete the

21 requested service; and

22 implementing the base goal satisfaction plan.

1 30. A computer program as recited in claim 29 wherein the computer

2 executable instruction for providing an agent registry includes the following computer

3 executable instructions for registering a specific service-providing electronic agent

4 into the agentregistry:

5 establishing a bi-directional communications link between the specific agent

6 anda facilitator agent controlling the agent registry;

7 providing a new agent profile to the facilitator agent, the new agent profile

8 defining publicly available capabilities of the specific agent; and

9 registering the specific agent together with the new agent profile within the

10 agent registry, thereby making available to the facilitator agent the capabilities of the

li specific agent.

Attorney Docket No: SRI1P016(3477)//BRC/EWJ Page 51 of 59
DISH, Exh. 1008, p. 53

DISH, Exh. 1008, p. 54

— 31. A computer program as recited in claim 30 wherein the computer

executable instruction for registering a specific agent further includes:

invoking the specific agent in orderto activate the specific agent;

instantiating an instance of the specific agent; and

transmitting the new agent profile from the specific agent to the facilitatorNnA&WYBH
agent in responseto the instantiation of the specific agent.

— 32. A computer program as recited in claim 29 wherein the computer

2 executable instruction for providing an agent registry includes a computer executable

3. instruction for removing a specific service-providing electronic agent from the

4 registry upon determining that the specific agent is no longer available to provide

5 services.

1 33.|A computer program as recited in claim 29 wherein the provided agent

2 registry includes a symbolic name, a unique address, data declarations, trigger

3 declarations, task declarations, and process characteristics for each active agent.

1 34. A computer program asrecited in claim 29 further including computer

2 executable instructions for receiving the service request via a communications link

3. established withaclient.

1 35. A computer program as recited in claim 29 wherein the computer

2 executable instruction for providing a service request includes instructions for: 3 receiving a non-ICL formatservice request;

4 selecting an active agent capable of converting the non-ICL formal service

5 request into an ICL formatservice request;

6 forwarding the non-ICL format service request to the active agent capable of

7 converting the non-ICL format service request, together with a request that such

8 conversion be performed; and

9 receiving an ICL format service request corresponding to the non-ICL format

10 service request.

1 36. A computer program as recited in claim 35 wherein the non-ICL

2 format service request includes a natural language query, and the active agent capable

3. of converting the non-ICL formal service request into an ICL format service requestis

4 anatural language agent.

1 37. A computer program as recited in claim 36 wherein the natural

2 language query is generated by a userinterface agent.

Attorney Docket No: SRIIP016(3477)/BRC/EWJ Page 52 of 59
DISH, Exh. 1008, p. 54

DISH, Exh. 1008, p. 55

1 38. A computer program as recited in claim 29, the computer program

2 further including computer executable instructions for implementing a base goal that

3 requiressetting a trigger having conditional and consequential functionality.
l 39. A computer program asrecited in claim 38 wherein the trigger is an

2 outgoing communications trigger, the computer program further including computer
3 executable instructionsfor:

4 monitoring all outgoing communication events in order to determine whether a

5 specific outgoing communication event has occurred; and
6 in responseto the occurrence of the specific outgoing communication event,

7 performing the particular action defined by thetrigger.
1 40. A computer program as recited in claim 38 wherein the trigger is an

2 incoming communications trigger, the computer program further including computer
3. executable instructionsfor:

4 monitoring all incoming communication events in order to determine whether

5 aspecific incoming communication event has occurred; and
6 in responseto the occurrence of the specific incoming communication event,

7 performing the particular action defined by the trigger.
1 41.|A computer program asrecited in claim 38 wherein the trigger is a data

2 trigger, the computer program further including computer executable instructions for:
3 monitoring a state of a data repository; and

4 in response to a particular state event, performing the particular action defined

5_bythetrigger.

1 42. A computer program asrecited in claim 38 wherein the trigger is a

2 timetrigger, the computer program further including computer executable instructions
3 for:

4 monitoring for the occurrence ofa particular time condition; and

5 in response to the occurrence ofthe particular time condition, performing the

6 particular action defined bythetrigger.

1 43.|A computer program asrecited in claim 38 further including computer

> executable instructions for installing and executing the trigger within the facilitator

3 agent.

1 44. A computer program asrecited in claim 38 further including computer
2 executable instructions for installing and executing the trigger within a first service-

3. providing agent.

Attorney Docket No: SRIIP016(3477)/BRC/EWJ DISH, PageapgfPes

DISH, Exh. 1008, p. 56

1 45. A computer program as recited in claim 29 further including computer

2 executable instructions for interpreting compound goals having sub-goals separated

3 by operators.

1 46. A computer program as recited in claim 45 wherein the type of

2 available operators includes a conjunction operator, a disjunction operator, and a

3. conditional execution operator.

I 47. A computer program as recited in claim 46 wherein the type of

2 available operators further includes a parallel disjunction operator that indicates that

3 disjunct goals are to be performedby different agents.

1 48. An Interagent Communication Language (ICL) providing a basis for

2 facilitated cooperative task completion within a distributed computing environment

3 having a facilitator agent and a plurality of autonomousservice-providing electronic

4 agents, the ICL enabling agents to perform queries of other agents, exchange

5 information with other agents, set triggers within other agents, an ICL syntax

supporting compound goal expressions such that goals within a single request

7 provided according to the ICL syntax may be coupled by a conjunctive operator, a

8 disjunctive operator, a conditional execution operator, and a parallel disjunctive

9 operator parallel disjunctive operator that indicates that disjunct goals are to be

10 performed by different agents.

1 49. An ICL asrecited in claim 48, wherein the ICL is computer platform

2 independent.

1 50. An ICL as recited in claim 48 wherein the ICL is independent of

2 computer programming languages whichthe plurality of agents are programmedin.

1 51. An ICL asrecited in claim 48 wherein the ICL syntax supports explicit

2 task completion constraints within goal expressions.

1 52. An ICL as recited in claim 51 wherein possible types of task

2 completion constraints include use of specific agent constraints and response time

3 constraints.

1 53. An/ICL as recited in claim 51 wherein the ICL syntax supports explicit

2 task completion advisory suggestions within goal expressions.

1 54. An ICL asrecited in claim 48 wherein the ICL syntax supports explicit

2 task completion advisory suggestions within goal expressions.

Attorney Docket No: SRI1P016(3477VBRC/EWJ Page 54 of 59
DISH, Exh. 1008, p. 56

DISH, Exh. 1008, p. 57

1 55. An ICL asrecited in claim 48 wherein each autonomous service-

2 providing electronic agent defines and publishes a set of capability declarations or

3 solvables, expressed in ICL, that describes services provided by such electronic agent.

1 56. An ICL as recited in claim 55 wherein an electronic agent’s solvables

2 define an interface for the electronic agent.

1 57.|An ICL asrecited in claim 56 wherein the facilitator agent maintains

2 anagent registry making available a plurality of electronic agent interfaces.

1 58. An ICL as recited in claim 57 wherein the possible types of solvables

2 includes procedure solvables, a procedure solvable operable to implement a procedure

3 such asatest or an action.

1 59. An ICL asrecited in claim 58 wherein the possible types of solvables

2 further includes data solvables, a data solvable operable to provide access to a

3. collection ofdata.

1 60. An ICL asrecited in claim 58 wherein the possible types of solvables

2 includes data solvables, a data solvable operable to provide access to a collection of

3 data.

1 61. _A facilitator agent arranged to coordinate cooperative task completion

2 within a distributed computing environmenthavingaplurality of autonomousservice-
3. providing electronic agents, the facilitator agent comprising:

4 an agent registry that declares capabilities of service-providing electronic

5 agents currently active within the distributed computing environment; and

6 a facilitating engine operable to parse a service requestin orderto interpret a
7 compound goalset forth therein, the compound goal including both local and global

8 constraints and control parameters, the service request formed according to an

9 Interagent Communication Language (ICL), the facilitating engine further operable to

10 construct a goal satisfaction plan specifying the coordination of a suitable delegation

11 of sub-goal requests to complete the requested service satisfying both the local and

12. global constraints and contro] parameters.

1 62. A facilitator agent as recited in claim 61, wherein the facilitating

2 engine is capable of modifying the goal satisfaction plan during execution, the

3 modifying initiated by events such as new agent declarations within the agentregistry,

4 decisions made by remote agents, and information provided to the facilitating engine

5 by remote agents.

Attorney Docket No: SRI1P016(3477)/BRC/EW]J Page 55 of 59
DISH, Exh. 1008, p. 57

DISH, Exh. 1008, p. 58

1 63. A facilitator agent as recited in claim 61 wherein the agent registry

2 includes a symbolic name, a unique address, data declarations, trigger declarations,

3 task declarations, and process characteristics for each active agent.

1 64. A facilitator agent as recited in claim 61 wherein the facilitating engine

2 is operable to install a trigger mechanism requesting that a certain action be taken

3. when a certain set of conditions are met.

1 65. <A facilitator agent as recited in claim 64 wherein the trigger

2 mechanism is a communication trigger that monitors communication events and

3. performsthe certain action when a certain communication eventoccurs.

1 66. A facilitator agent as recited in claim 64 wherein the trigger

2 mechanism is a data trigger that monitors a state of a data repository and performs the

3 certain action when a certain datastate is obtained.

1 67. A facilitator agent as recited in claim 66 wherein the data repository is

2 local to the facilitator agent.

1 68. A facilitator agent as recited in claim 66 wherein the data repository is

2 remote from the facilitator agent.

1 69. A facilitator agent as recited in claim 64 wherein the trigger

2 mechanism is a task trigger having a set of conditions.

1 70. A facilitator agent as recited in claim 61, the facilitator agent further

2 including a global database accessible to at least one of the service-providing

3. electronic agents.

I 71. A software-based, flexible computer architecture for communication

2 and cooperation among distributed electronic agents, the architecture contemplating a

3. distributed computing system comprising:

4 a plurality of service-providing electronic agents; and

5 a facilitator agent in bi-directional communications with the plurality of

6 service-providing electronic agents, the facilitator agent including:

7 an agent registry that declares capabilities of service-providing

8 electronic agents currently active within the distributed computing

9 environment;

10 a facilitating engine operable to parse a service request in order

il to interpret an arbitrarily complex goal set forth therein, the facilitating

12 engine further operable to construct a goal satisfaction plan including

Attorney Docket No: SRITPO16(3477VBRC/EWJ Page 56 of 59
DISH, Exh. 1008, p. 58

DISH, Exh. 1008, p. 59

13 the coordination of a suitable delegation of sub-goal requests to best

14 complete the requested service.

1 72. A computer architecture as recited in claim 71, wherein the basis for

2 the computer architect is an Interagent Communication Language (ICL) enabling

3. agents to perform queries of other agents, exchange information with other agents,

4 and set triggers within other agents, the ICL further defined by an ICL syntax

5 supporting compound goal expressions such that goals within a single request

6 provided according to the ICL syntax may be coupled by a conjunctive operator, a

7 disjunctive operator, a conditional execution operator, and a parallel disjunctive

8 operator parallel disjunctive operator that indicates that disjunct goals are to be

9 performed bydifferent agents.

1 73. A computer architecture as recited in claim 72, wherein the ICL is

2 computer platform independent.

1 74. A computer architecture as recited in claim 73 wherein the ICL is

2 independent of computer programming languages in which the plurality of agents are

3. programmed.

1 75. A computer architecture as recited in claim 73 wherein the ICL syntax

2 supports explicit task completion constraints within goal expressions.

] 76. A computer architecture as recited in claim 75 wherein possible types

2 of task completion constraints include use of specific agent constraints and response

3 time constraints.

1 77. A computer architecture as recited in claim 75 wherein the ICL syntax
2 supports explicit task completion advisory suggestions within goal expressions.

1 78. Acomputer architecture as recited in claim 73 wherein the ICL syntax

2 supports explicit task completion advisory suggestions within goal expressions.

1 79. A computer architecture as recited in claim 73 wherein each

2 autonomous service-providing electronic agent defines and publishes a set of

3 capability declarations or solvables, expressed in ICL, that describes services

4 provided by such electronic agent.

1 80.|A computer architecture as recited in claim 79 wherein an electronic

2 agent’s solvables define an interface for the electronic agent.

1 81. A computer architecture as recited in claim 80 wherein the possible

2 types of solvables includes procedure solvables, a procedure solvable operable to

3 implement a procedure suchasa test or an action.

Attorney Docket No: SRI/P016(3477VBRC/EWJ Page 57 of 59
DISH, Exh. 1008, p. 59

DISH, Exh. 1008, p. 60

82. A computer architecture as recited in claim 81 wherein the possible

types of solvables further includes data solvables, a data solvable operable to provide

access to a collection of data.

83.|Acomputerarchitecture as recited in claim 82 wherein the possible

types of solvables includes a data solvable operable to provide access

to modify a collection of data.

84... A computer architecture as recited in claim 71 wherein the planning

componentofthe facilitating engine are distributed acrossat least two

computer processes.

85.|Acomputer architecture as recited in claim 71 wherein the execution

componentofthe facilitating engine is distributed acrossat least two

computer processes.

86. A data wavecarrier providing a transport mechanism for information

communication in a distributed computing environment havingat least one facilitator

agent andatleast one active client agent, the data wave carrier comprising a signal

representation of an inter-agent language description ofan active client agent's

functional capabilities.

87. A data wavecarrier as recited in claim 85, the data wavecarrier further

comprising a signal representation of a request for service in the inter-agent language

from a first agent to a second agent.

88.|A data wavecarrieras recited in claim 85, the data wavecarrier further

comprising a signal representation of a goal dispatched to an agentfor performance

from a facilitator agent.

89. A data wavecarrier as recited in claim 88 whereinalater state of the

data wave carrier comprises a signal representation of a response to the dispatched

goal including results and/or a status report from the agent for performance to the

facilitator agent.

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 58 of 59
DISH, Exh. 1008, p. 60

DISH, Exh. 1008, p. 61

Software-Based Architecture for Communication and Cooperation Among

Distributed Electronic Agents

ABSTRACT

5 A highly flexible, software-based architecture is disclosed for constructing

distributed systems. The architecture supports cooperative task completion by

flexible, dynamic configurations of autonomouselectronic agents. Communication

and cooperation between agents are brokered by one or morefacilitators, which are

responsible for matching requests, from users and agents, with descriptions of the

10 capabilities of other agents. It is not generally required that a user or agent know the

identities, locations, or numberof other agents involvedin satisfying a request, and

relatively minimal effort is involved in incorporating new agents and “wrapping”

legacy applications. Extremeflexibility is achieved through an architecture organized

around the declaration of capabilities by service-providing agents, the construction of

15 arbitrarily complex goals by users and service-requesting agents, and the role of

facilitators in delegating and coordinating the satisfaction of these goals, subject to

advice and constraints that may accompany them. Additional mechanisms and

features include facilities for creating and maintaining shared repositories of data; the

use of triggers to instantiate commitments within and between agents; agent-based

20 provision of multi-modal user interfaces, including natural language; and built-in

support for including the user asa privileged memberof the agent community.

Specialized embodiments providing enhanced scalability are also described.

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 59 of 59

DISH, Exh. 1008,p. 61netaRSG

DISH, Exh. 1008, p. 62

SRIIPO16 1/16 -

100

Fig, |
(Prior Art)

DISH, Exh. 1008, p. 62

DISH, Exh. 1008, p. 63

SRIIP0I6 2/16 -

Interface Specific
Invocation

IDL Interface IDL Interface

Server

Object
Methods

Data

Client

Object
Methods

Data

Distributed Computing Environment

Fig. 2
(Prior Art)

DISH, Exh. 1008, p. 63

DISH, Exh. 1008, p. 64

SRIIPO16 3/16 -

Facilitator

Agent

Fig. 3

DISH, Exh. 1008, p. 64

DISH, Exh. 1008, p. 65

SRIIP016 4/16

Facilitator Agent as
Registry

User
Interface

Modality Agents a4

DISH, Exh. 1008, p. 65

DISH, Exh. 1008, p. 66

5/16SRILPO16

|‘puoydayjsyAq
au0}1406,Aqundes,,ynogeSWJO}SBAjEUDYM

JASNaABHOWYO |_|eenS

=|
6T:fax

[1 waAaHO

(as)(Tas)

T_TLWLLLra
a1injpewuojyquebyuedo

DISH, Exh. 1008, p. 66

DISH, Exh. 1008, p. 67

6/16SRILP016

quobyeseqeyeqjess
OSV

COV

SBQUdJO}OldJesr

juaby

yosedgShhFE
pspvelee|AY

Joy

==vOcljuebyquabyJepugeoeWso|0A,yuabyAON

 quabyfewqseyeadsoUOROeLS°[|tySPNLNAOVYOLVITTOVA

sjuabys0e}ia}UJas)

x

DISH, Exh. 1008, p. 67

DISH, Exh. 1008, p. 68

7/16SRIIP016

‘ayo‘osendur’y]adkyj,suIyoRIA)|=suonerepoodSOI}SIIO}OVILY)sel,ssao0lg

 Lsty

oseqeiedJUSISISIOgTeqo1Dsuonjerepoaq|suonereped|suonerejoodSSoIPPVQuIvNyJoss],ByeAyyigedeaenbiuy,o1joquiASAy\sisoyJusO0L

DISH, Exh. 1008, p. 68

DISH, Exh. 1008, p. 69

SRIIPO16 8/16

Start Agent
Registration

Installer Invokes
New Client Agent

800

802

System Instantiates
New Client Agent 804

 Facilitator And New

Client Agent Establish
Communications Link

806

Client Agent Transmits
Profile To Facilitator 808

Facilitator Registers
Client Agent

812

Fig, 8

DISH, Exh. 1008, p. 69

DISH, Exh. 1008, p. 70

SRIIPOI6 9/16 -

Determine A Goal 902

Construct
Goal IntoCL 904

ei

Transmit Goal
To Parent 906
Facilitator

Receive
Results 908

Fig. 9

DISH, Exh. 1008, p. 70

DISH, Exh. 1008, p. 71

SRIIPO16 10/16 -

Receive Request
For Service 1002

Parse Request
For Request 1004

No Service
Available? 1006

Yes

a

1008
Perform
Service 1010

Return Results
And/Or Status 1012

Report

Fig, 10

DISH, Exh. 1008,p. 71

DISH, Exh. 1008, p. 72

SRIIP016 11/16

Receive Goal Request 1102

Parse And Interpret
Goal Request 1104

Construct Goal
Satisfaction Plan 1106

Determine Required Sub-Goals 1108

Select Agents Suitable For
Performing Required Sub-Goals 1110

 Transmit Requests To
Selected Agents 1112

No Original GoalCompleted? 1116
Yes

Return Results

1120

1118 Fig. il

DISH, Exh. 1008, p. 72

DISH, Exh. 1008, p. 73

12/16SRILPO16

quabyyovedsyhOLPelatLAY
Ja\UUd=pocl

juabyquoudsja=——|7See=ejucbyyueby
xeCire

 SOOUOI0JOldJes)

juabyJopugjey)

yuabyJasiedaabenbue’]jeumen
yuabyjueby|iqjJeyeedsaseqejedGeM, 91UO.0aE]°=||B)lalhaefs}||AA]|NasLNADVYOLVITTOVA

COV

ZlSIA

quabyuonusooeyyosedsjeWwCH

sjuaby908}J9}U]Josn

DISH, Exh. 1008,p. 73

DISH, Exh. 1008, p. 74

SRIIPOI6 13/16 -
OCS”

SD >|= m OIOY

PAC = CE
r\ —SOSeHTe

eySime Gan

(1 SAS eS| eke |
Lo Ssepee

A ‘eka acerecan(,7Sanue
5Preete a1
=YesECESpeaseel

2
a
a

=o
3

£& ota

S|yz

ri o N

Ole S
3} 0 o|a
B18 8
O oO
&| SIP scoe 5

c c

“a Ula We (A
heTeeic \\\ WSSSS BAY

DISH, Exh. 1008, p. 74

DISH, Exh. 1008, p. 75

SRIIPO16 14/16 -

Facilitator Facilitator
Agent | Agent 2

Fig. 14

DISH, Exh. 1008, p. 75

DISH, Exh. 1008, p. 76

SRIIPOI6 15/16 -

DISH, Exh. 1008, p. 76

DISH, Exh. 1008, p. 77

IG/IGSKIPOG

Registry&Planner

DISH, Exh. 1008, p. 77

DISH, Exh. 1008, p. 78

s DECLARATION AND POWER OF ATTORNEY

a FOR ORIGINAL U.S. PATENT APPLICATION
Attorney’s Docket No.____SRI1P016

As a below-namedinventor, I hereby declare that:

Myresidence, post office address and citizenship are as stated below next to my name.

I believe that I am the original, first and sole inventor (if only one nameis listed below)or an original, first and joint inventor (if
plural namesare listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
SOFTWARE-BASED ARCHITECTURE FOR COMMUNICATION AND COOPERATION AMONG DISTRIBUTED

ELECTRONIC AGENTS, the specification ofwhich is attached hereto.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as
amended by any amendmentreferred to above.

I acknowledge the duty to disclose informationceiis material to the examination of this application in accordance with Title37, CFR § 1.56. we onsa he CACaM LW,
And I hereby appoint the law firm of Hickman Seteut Paul L.. Hickman(Reg. No. 28, 516); L. Keith Stephens
(Reg. No. 32,632); Brian R. Coleman (Reg. No. 39,145); Dawn L. Palmer (Reg. No. 41,238); Jerray Wei (Reg. No. 43,247);

« and Ian L. Cartier (Reg. No. 38,406) as my principal attorneys to prosecute this application and to transact all business in the
Patent and Trademark Office connected therewith:

Send Correspondence To: Brian R. Coleman
HICKMAN STEPHENS & COLEMAN, LLP
P.O. BOX 52037

Palo Alto, California 94303-0746

Direct Telephone Calls To: Brian R. Coleman at telephone number(650) 470-7430

I hereby declare that all siatements made herein of my own knowledgeare true andthat all statements made on information and
belief are believed to be true; and further that these statements were made with the knowledgethat willful false statements and the
like so made are punishable by fine or imprisonment, or both, undersection 1001 of Title 18 of the United States Code, and that
such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Typewritten Full Name of
Sole or First Inventor: Adam J. Cheyer Citizenship: | / > |

Inventor’s signature: { Minn 4 { Ase a Date of Signature:__//.) { 4
Residence: (City) Alo +o (State/Country) GCA

Post Office Address: #5 + Cerezo, ~Y We f cle Abe > CA gq 43 OG

Typewritten Full Name of U SSecond Inventor: David L. Martin Citizenship: i |
‘ { ? : 7Inventor’s signature: Cs ARR .ALain Date of Signature: 1/5 g

Residence: (City) santaOl,GM ‘i ‘K QhAX (State/Country) CA
Post Office Address: | 6D CRON EN Q& a SSG are. CNave. CA ASOst

~ DISH, Exh. 1008,p. 78

DISH, Exh. 1008, p. 79

PATENT NUMBER =5
o
gleol<c
Blo
6 jeWw

0wr Ce7)/im wos2|=
2

AA O.1P.E.
SCANNED 7 C2OG aa.7We

FILED With: [_] DISK (CRF)*[_] FICHE’.
(Atisnizadin pocket onsight insite flap) ”we

'

ntPREPARED AND APPROVEDFOR ISSUE~*

ISSUING CLASSIFICATION

ORIGINAL CROSS REFERENCE(S) . 7
[erase|~svecuass[ess] suncuassoneovsacerensoog

wrenwariona.cassimcaon| (||__|

jeeme

 TERMINAL

DISCLAIMER
Tee,[prawns SkaALLOwED |4 Go

Sheets Drwg.|Figs. Drwg. ©faePrintClaim for 0.G.o a) The, term of this patent|NOTICEOFALLOWANCEMAILED|OF ALLOWANCE MAILED .[|
subsequentto. (date)has been disclaimed. ~tassistamtExaminer)SS

C1 ©) The term of this patent shall
not extend beyond the expiration date,

‘shee [saver
Amount Due Date Paid

(Date)

ISSUE BATCH NUMBER
1c) The terminal __months of
this patent have been disclaimed.

wanna: disclosure may be prohibited by the United States Code Title 35, Sections 122, 181 and 368.
PossesionangegeuaPaPalont&TexdomarsOfce leteemictou to autocad omppoyees and contractors only.

PTO-4396A

” Best Availabl
(LABEL AREA)

 Fom
(Rev.

(FACE)

DISH, Exh. 1008, p. 80

SEARCH NOTES
(INCLUDING SEARCH STRATEGY)

EyhehLt2ad=
edag

DISH, Exh. 1008, p. 80(RIGHT OUTSIDE)

DISH, Exh. 1008, p. 81

kvena

I Iwiu|Iheoo

SERREREEEEREEREEPEESeeeeeeeeeepeer

BSRaeete
OhadiA4gLeerelelelnfele(eiereie[25|2(2/8aa]8]s[sels[8(8]85/8313[8le[bls[aes[9/9[39/38]9)siaEEEeee
FEE DETERMINAT! N

il

aZEZS:pial8&Peay]

2

:=tsalpoQ5Qik|ofZz5z-<o|>S@@3Ty2%9&2PT:Q=5PtTTTT.a5xosamiSdge&3Pe}Ieeeee734:idszelpteteeei=-<een20].BAeBE2Z=<0e[3[3/8/8[5[2]3/8(o)/9[2/3]3]IRONS=ls[alssillsals|slslslslaalsiaels]»#bPigPTETreretTT4ATTRATIIIIEEETET22wieCOOCOSeo&iis:ppteeBPie|PTTASE«iiE:TET]Lj}|terdpwaltPtTTTeyaPTEelsteTgcr5[|
ujS3S

DISH, Exh. 1008, p. 82

> 6-

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No.: SRI1P016
CERTIFICATE OF EXPRESS MAILING

I hereby certify that this paper and the documents and/or fees referred to as
attached therein are being deposited with the United States Postal Service
on January 05, 1999 in an envelope as “‘ Express Mail Post Office to
Addressee” service under 37 CFR §1.10, Mailjngy-abel Number

EL221766053US,addressed to the AssistaofCory issioner for Patents,
Washington,

66/S0/T0ANP
Michael L. Gough

UTILITY PATENT APPLICATION TRANSMITTAL (37 CFR § 1.53(b)) | 8 =

Assistant Commissioner for Patents

Box Patent Application
Washington, DC 20231

“SoMbesol,
Od

First Named Inventor:

‘ CHEYER, Adam J.

[| Duplicate for
fee processing

Sir: This is a requestforfiling a patent application under 37 CFR § 1.53(b) in the nameofinventors:
Adam J. Cheyer and David L. Martin

s= For:

Fi DISTRIBUTED ELECTRONIC AGENTS

lication Elements:

SOFTWARE-BASED ARCHITECTURE FOR COMMUNICATION AND COOPERATION AMONG

= ix] 59 Pages of Specification, Claims and Abstract
FF 16 Sheets of Drawings
2 x] 01 Pages Combined Declaration and Power of Attorney

e Accompanying Application Parts:

Z x] Assignment and Assignment Recordation CoverSheet (recording fee not enclosed)
oe Return Receipt Postcard

Fee Calculation (37 CFR§1.16‘

(Col. 1) (Col. 2) SMALL ENTITY OR
NO. FILED NO. EXTRA RATE FEE

BASIC FEE $395 $ OR
TOTAL CLAIMS 89 -20=_69 xll= $ OR
INDEP CLAIMS 06 -03 =_03 x4l= § OR
* If the difference in Col. 1 is less Total $ OR

than zero, enter "0" in Col. 2.

LARGE ENTITY

RATE FEE
$760 $760.00

x18 = $1242.00

x78 = $234.00

Total $2236.00

Includingfiling fees and the assignmentrecordation fee of $40.00, the Commissioneris authorized to
chargeall required fees to Deposit Account No. 50-0384 (Order No. SRI1P016).

The Commissioneris authorized to charge any fees beyond the amount enclosed which may be
required, or to credit any overpayment, to Deposit Account No. 50-0384 (Order No. SRI1P016).

(Revised 12/97, Pat App Trans 53(b) Reg Page 1 of 2

DISH, Exh. 1008, p. 82

DISH, Exh. 1008, p. 83

-

“General Authorization for PetitionDextension of Time (37 CFR §1.136) ©
Dx] Applicants hereby make and generally authorize any Petitions for Extensions of Time as may be

needed for any subsequentfilings. The Commissioneris also authorized to charge any extension fees under
37 CFR §1.17 as may be needed to Deposit Account No. 50-0384.

Please send correspondenceto the following address:

Brian R. Coleman

HICKMAN STEPHENS & COLEMAN, LLP
P.O. Box 52037

Palo Alto, CA 94303-0746

Tel (650) 470-7430
Fax (650) 470-7440

 “ S9 ee= Date: (5
= Brian R. Coleman
= Registration No. 39,145

(Revised 12/97, Pat App Trans 53(b) Reg Page 2 of 2

DISH, Exh. 1008,p. 83

DISH, Exh. 1008, p. 84

S| APPROVED| OG. FIG. - . @CLASS [SUBCLASS| "1
; . , * ONY é

SRIIP016 1/16 -

100

ie
nFiab
FiBa

2mgaat
nei

End
“ani
ies
fFso

Sea

Fig. 1
(Prior Art)

DISH, Exh. 1008, p. 84

DISH, Exh. 1008, p. 85

mi
.FRti
Bei

ih

Pigo.Cetin
ioe

FaeSey

SRIIP016 2/16 -

 Interface Specific
Invocation

 IDL Interface IDL Interface
 Server

Object
Methods

Data

Methods
Data

Distributed Computing Environment
Fig. 2

(Prior Art)

DISH, Exh. 1008, p. 85

DISH, Exh. 1008, p. 86

aasy
f

eyWTeyel
aanA

SRIIPO16 3/16

Facilitator

Agent

Fig, 3

DISH, Exh. 1008, p. 86

DISH, Exh. 1008, p. 87

APPROVED| CQG. FIG.

 SRIIP016 4/16

Facilitator Agent hac
Registry

User
Interface

Agent
tesaeeeea
iBeSao

Modality Agents 4

DISH, Exh. 1008,p. 87

DISH, Exh. 1008, p. 88

Zz<2]“Eea|tcQo{

5/16SRIIPO16

|"suoydaja,Ag
owO}1386,,AWunoas,,ynogeSLUJOJSOA[JELUdUM

aaa83

COYaASHD
ainpayudsyjuabyuado CSaeSs.

DISH, Exh. 1008, p. 88

DISH, Exh. 1008, p. 89

6/16SRIIPO16

aseqeyeqie

COP

SQ0UAIAJO14Jasn

yuabyEUBDIO/A,

yuabysessedeBenbue7]jenjenoy\tha»
NyuebyquabyTeqseyeadsSUOQOIIB°INASOVYOLVITWOVACEDeeeShEEEpseen

9‘BI

DISH, Exh. 1008, p. 89

DISH, Exh. 1008, p. 90

z<=|,OIL@ay

7/16SRIIPO16

 LBq

oseqeyeqqua}SISIag[eqo1p

‘210‘gSendueq

adAJ,autyory))|suonesepaq|suonesepaq|suoneseped|suoreiejseqSSaIPpVUPN]SONSIJa}9eIeY7)yselJossisy,BedAyyiqedegonbiup)a1joquAs
ssao0lg

AusisayJuasVOLHAMeaceteeceEeCCIeIS

DISH, Exh. 1008, p. 90

DISH, Exh. 1008, p. 91

BY

‘| DRAFTSMAN

ReESWPeeeeCH
iSCEa

APPROVED O.G.FIG.

SRIIP016 8/16

Start Agent
| Registration

Installer Invokes

New Client Agent

802

 System Instantiates

New Client Agent 804

Facilitator And New

Client Agent Establish
Communications Link

806

 Client Agent Transmits

Profile To Facilitator

 Facilitator Registers

Client Agent 810

DISH, Exh. 1008,p. 91

DISH, Exh. 1008, p. 92

 “APPROVED|OG. FIG.
|. By

‘| DRAFTSMAN

ityCH
many ant

deatESASegyel

aa

SRIIP016 9/16

Determine A Goal

Construct
Goal Into

ICL

Transmit Goal
To Parent
Facilitator

Receive
Results
 902

904

906

908

Fig. 9

DISH, Exh. 1008, p. 92

DISH, Exh. 1008, p. 93

APPROVED OG. FIG.|
SUBCLASS!

__

SRIIPO16 10/16 -

Receive Request
For Service 1002

Parse Request
For Request 1004

No Service
Available? 1006

Yes

 Ciei

wet
Fat
BRS
FlPaam
gy
Bog
iad

aed

cae

a

1008
Perform
Service 1010heSo

Return Results
And/Or Status 1012

Report

| Fig. 10

DISH, Exh. 1008, p. 93

DISH, Exh. 1008, p. 94

Bo

Fiaed=r

iFiPu
im
iF]

Ft

a

=

i
-

iFad]
iae

FYa8

©©

SRIIPOI6 11/16 -

Receive Goal Request 1102

Parse And Interpret
Goal Request 1104

Construct Goal

Satisfaction Plan 1106

Determine Required Sub-Goals 1108

Select Agents Suitable For
Performing Required Sub-Goals 1110

 Transmit Requests To
Selected Agents 112

Receive Results 1114

No Original Goal
Completed? 1116

iReturn Results 118

CDoney—~1120 Fig.

DISH, Exh. 1008, p. 94

DISH, Exh. 1008, p. 95

LASS}

__
i

sourced

LASS [SUBC:C

wh

APPROVED| ©.G, FIG.
BY

RAFTSMA

12/16SRIIP016

juabyyosedspSpOLMeLEd

yuebyeuoudgja———||tSzELS
yuebyquayaseqeyeq

4[JLiIs,
cOv

SO9U0J0JOldJesf) "uabyIe
Jayeed

ge9101999 a1eens
3

INASVYOLVITTWOVAAcoececlSEEyHCESL,ACEMMa
ZISI

sjueby908}.19}U
WTwan

DISH, Exh. 1008, p. 95

DISH, Exh. 1008, p. 96

SRIIPO16 13/16 -

lIdth=|SheoasesA ARKe
i COB SERS Sse Al dS iit= ;
A “Ts FAY ete Hh
= raA 1a] oh@ | FE m4 & ht — r_\
c OIE lo HeeeoES- areair— — +) BO 11)eC
fi s 4M WEE ar
if |

CL
Tretr

(SanFrancisco,CA:12] {SanFrancisco,CA:12] Air At
<n. wae
WASJuNeeZ (Ak

: aS

y

NE LS 5NAVE Wa

NiPiere(¢le9RB@LSLOIeeleFileEditActionCollaborationWindowHelp
O W =

DISH, Exh. 1008, p. 96

DISH, Exh. 1008, p. 97

APPROVED OG.FIG.|

i

Rit
Figd

"EEIDSyet,
aneSoACH

©
SRIIP016

Facilitator

Agent 1

14/16

Fig. 14

Facilitator

Agent 2
DISH, Exh. 1008, p. 97

DISH, Exh. 1008, p. 98

}APPROVED OG. FIGOG7

gy [CLASS [SUBCLASS @ ©’
. f

t|DRAFTSMAN
SRILPO16 15/16 -

tesfeSeelleyAY
1SoC

DISH, Exh. 1008, p. 98

DISH, Exh. 1008, p. 99

SSBRSeecyQ]onsTy
rouur]d2AISISOY

‘+te cee

APPROVED|OG. FIG

ORAFTSMAN

t
t

|&

DISH, Exh. 1008, p. 99
Aylys@?

DISH, Exh. 1008, p. 100

5

10

48
Hi 15

_

20II SOOee

p

Software-Based Architecture for Communication and Cooperation Among

Distributed Electronic Agents

By: .

AdamJ. Cheyer and David L. Martin

BACKGROUNDOFTHE INVENTION

Field of the Invention

Thepresent inventionis related to distributed computing environments and the

completion of tasks within such environments. In particular, the present invention

teachesa variety of software-based architectures for communication and cooperation

among distributed electronic agents. Certain embodiments teach interagent

communication languages enabling client agents to make requests in the form of

arbitrarily complex goal expressionsthat are solved throughfacilitation by a

facilitator agent.

Context and Motivation for Distributed Software Systems

The evolution of models for the design and construction of distributed

software systems is being driven forward byseveral closely interrelated trends: the

adoption of a networked computing model, rapidly rising expectations for smarter,

longer-lived, more autonomoussoftware applications and an ever increasing demand
for more accessible andintuitive userinterfaces.

Prior Art Figure | illustrates a networked computing model100 having a

plurality of client and server computer systems 120 and 122 coupled together over a

physical transport mechanism 140. The adoption ofthe networked computing model
100 haslead to a greatly increasedreliance on distributed sites for both data and

processing resources. Systems such as the networked computing model 100 are based
uponat least one physical transport mechanism 140 coupling the multiple computer

systems 120 and 122 to support the transfer of information between these computers.
Someof these computers basically support using the network and are known as client

Attorney Docket No: SRI1P016(3477/BRC/EW]J DISH, Exhp4QQ8199

DISH, Exh. 1008, p. 101

t1

ulEyA

Fac&SDSaee
15

20

25

30

computers(clients). @. of these computers provide resourfi other computers
and are known as server computers (servers). The servers 122 can vary greatly in the
resources they possess, access they provide and services madeavailable to other
computers across a network. Servers may service other servers as well as clients.

The Internet is a computing system baseduponthis network computing model.
The Internetis continually growing, stimulating a paradigm shift for computing away

from requiringall relevant data and programsto reside on the user's desktop machine.
The data now routinely accessed from computers spread around the world has become
increasingly rich in format, comprising multimedia documents, and audio and video
streams. With the popularization of programming languages such as JAVA, data
transported between local and remote machines mayalso include programs that can
be downloaded andexecuted onthe local machine.There is an ever increasing
reliance on networked computing, necessitating software design approachesthat allow

for flexible composition of distributed processing elements in a dynamically changing
and relatively unstable environment.

In an increasing variety of domains,application designers and users are

coming to expect the deployment of smarter, longer-lived, more autonomous,
software applications. Push technology, persistent monitoring of information sources,
and the maintenance of user models, allowing for personalized responsesand sharing

of preferences, are examplesofthe simplest manifestations of this trend. Commercial
enterprises are introducing significantly more advanced approaches, in many cases
employing recentresearch results from artificial intelligence, data mining, machine
learning, and other fields.

Morethanever before, the increasing complexity of systems, the development

of new technologies, and the availability of multimedia material and environments are
creating a demand for more accessible and intuitive user interfaces. Autonomous,
distributed, multi-componentsystemsproviding sophisticated services will no longer
lend themselvesto the familiar "direct manipulation" model ofinteraction, in which
an individual user masters a fixed selection of commands provided bya single

application. Ubiquitous computing,in networked environments, has brought about a
situation in whichthe typical user of many software servicesis likely to be a non-

expert, who may access a given service infrequently or only a few times.

Attorney Docket No: SRI1P016(3477/BRC/EWJ DISH, ExhPaesDofGP

DISH, Exh. 1008, p. 102

wea
wityes

aeagpjaneceiaTT
st
iH d

ThBySPa 20

25

30

Accommodating Ae: patterns calls for new spproactemMrunately, input
modalities now becoming widely available, such as speech recognition and pen-based
handwriting/gesture recognition, and the ability to managethepresentation of
systems’ responses byusing multiple media provide an opportunity to fashionastyle
of human-computerinteraction that draws much moreheavily on our experience with
human-human interactions.

PRIOR RELATED ART

Existing approachesandtechnologies for distributed computing include
distributed objects, mobile objects, blackboard-style architectures, and agent-based
software engineering.

The Distributed Object Approach

Object-oriented languages, such as C++ or JAVA,providesignificant
advances overstandard procedural languages with respect to the reusability and

modularity of code: encapsulation, inheritance and polymorhpism. Encapsulation
encouragesthe creation oflibrary interfaces that minimize dependencies on
underlying algorithmsor data structures. Changes to programminginternals can be
madeata later date with requiring modifications to the codethat uses the library.
Inheritance permits the extension and modification of a library of routines and data
without requiring source codeto the original library. Polymorphism allows one body
of code to work on an arbitrary numberof data types. For the sake of simplicity

traditional objects may be seen to contain both methods and data. Methods provide
the mechanisms by which the internalstate of an object may be modified or by which
communication may occur with anotherobject or by which the instantiation or

removalof objects may be directed.

Withreference to Figure 2, a distributed object technology based around an

Object Request Broker will now be described. Whereas “standard” object-oriented
programming (OOP)languages can be used to build monolithic programs out of many
object building blocks, distributed object technologies (DOOP)allow thecreation of
programs whose components may be spread across multiple machines. As shown in
Figure 2, an object system 200 includes client objects 210 and server objects 220. To
implementa client-serverrelationship between objects, the distributed object system

Attorney Docket No: SRIIP016(3477/BRC/EWJ DISH, Exh.Rage,0fc99

DISH, Exh. 1008, p. 103

“ach
ae

i

eaSaIPtaet

15

20

25

30

200 uses a registry @..... (CORBA'sregistry is called an WBject Request Broker,
or ORB)230 to store the interface descriptions of available objects. Through the
services of the ORB 230,a client can transparently invoke a method on a remote

server object. The ORB 230is then responsible for finding the object 220 that can
implementthe request, passing it the parameters, invoking its method, and returning
the results. In the most sophisticated systems, the client 210 does not have to be aware

of wherethe objectis located,its programming language,its operating system, or any
other system aspectsthat are notpart of the server object's interface.

Althoughdistributed objects offer a powerful paradigm forcreating networked
applications, certain aspects of the approachare notperfectly tailored to the
constantly changing environmentof the Internet. A major restriction of the DOOP
approachis that the interactions among objects are fixed through explicitly coded
instructions by the application developer. It is often difficult to reuse an object in a
new application without bringing alongall its inherent dependencies on other objects
(embeddedinterface definitions and explicit method calls). Another restriction of the
DOOPapproachis the result ofits reliance on a remote procedurecall (RPC) style of
communication. Although easyto debug,this single thread of execution model does
not facilitate programmingto exploit the potential for parallel computation that one
would expectin a distributed environment. In addition, RPC usesa blocking
(synchronous) scheme that doesnot scale well for high-volumetransactions.

Mobile Objects

Mobile objects, sometimes called mobile agents, are bits of code that can
moveto another execution site (presumably on a different machine) undertheir own

programmatic control, where they can then interact with the local environment. For
certain types of problems, the mobile object paradigm offers advantages over more
traditional distributed object approaches. These advantages include network

bandwidth andparallelism. Network bandwidth advantages exist for some database
queries or electronic commerce applications, where it is more efficient to perform
tests on data by bringingthe tests to the data than by bringing large amountsofdata to
the testing program. Parallelism advantages include situations in which mobile agents
can be spawnedin parallel to accomplish many tasks at once.

Attornev Docket No: SRI1P016(3477)/BRC/EWJ DISH, Exh. Page, 4.4639

DISH, Exh. 1008, p. 104

Ch
ae wa
a
i
rsa

i

atane

CSeyes

15

20

25

30

Someoftheaand inconveniencesofthe @.. agent approach
include the programmatic specificity of the agent interactions, lack of coordination
support betweenparticipant agents and execution environmentirregularities regarding
specific programming languages supported by host processors upon whichagents .
reside. In a fashion similar to that of DOOP programming, an agent developer must

programmatically specify where to go and howtointeractwith the target
environment. There is generally little coordination support to encourage interactions

among multiple (mobile) participants. Agents must be written in the programming
language supported by the execution environment, whereas manyotherdistributed
technologies support heterogeneous communities of components,written in diverse
programming languages.

Blackboard Architectures

Blackboard architectures typically allow multiple processesto communicate

by reading and writing tuples from a global data store. Each process can watch for
items of interest, perform computations based on the state of the blackboard, and then
add partial results or queries that other processes can consider. Blackboard
architectures providea flexible framework for problem solving by a dynamic
communityof distributed processes. A blackboardarchitecture provides one solution
to eliminating the tightly bound interaction links that some of the other distributed
technologies require during interprocess communication. This advantage can also be a
disadvantage: although a programmerdoes not needto refer to a specific process
during computation, the framework doesnot provide programmatic control for doing
so in cases where this would bepractical.

Agent-based Software Engineering

Several research communities have approached distributed computing by

casting it as a problem of modeling communication and cooperation among
autonomousentities, or agents. Effective communication among independent agents

requires four components: (1) a transport mechanism carrying messagesin an
asynchronousfashion,(2) an interaction protocol defining various types of
communication interchange and their social implications (for instance, a response is
expected of a question), (3) a content language permitting the expression and
interpretation of utterances, and (4) an agreed-uponsetof shared vocabulary and

Attorney Docket No: SRI1P016(3477/¥BRC/EWJ DISH, Exh. Paws 8.9629

DISH, Exh. 1008, p. 105

7h
+bfpsy

a
cal

weanersy

z

fu“di fi

faaeIaS 20

25

30

meaningfor concenMen called an ontology). Such vecnafl permit a much
richer style of interaction among participants than can be expressed using a distributed
object's RPC modelor a blackboard architecture's centralized exchange approach.

Agent-based systems have shown much promisefor flexible, fault-tolerant,
distributed problem solving. Several agent-based projects have helped to evolve the
notionoffacilitation. However, existing agent-based technologies and architectures

are typically very limited in the extent to which agents can specify complexgoals or
influencethe strategies used by thefacilitator. Further, such prior systemsare not
sufficiently attuned to the importance of integrating human agents (i.e., users) through
natural language and other human-oriented userinterface technologies.

The initial version of SRI International's Open Agent Architecture™
("OAA®") technology provided only a very limited mechanism for dealing with
compoundgoals. Fixed formats were available for specifyingaflatlist of either
conjoined (AND)sub-goals or disjoined (OR) sub-goals; in both cases, parallel goal
solving was hard-wired in, and only a single set of parameters for the entire list could
be specified. More complex goal expressionsinvolving (for example) combinations
of different boolean connectors, nested expressions, or conditionally interdependent
("IF .. THEN") goals were not supported. Further, system scalability was not
adequately addressed in this prior work.

SUMMARYOF INVENTION

A first embodimentofthe present invention discloses a highly flexible,

software-based architecture for constructing distributed systems. The architecture

supports cooperative task completion by flexible, dynamic configurations of
autonomouselectronic agents. Communication and cooperation between agents are

brokered by one or more facilitators, whichare responsible for matching requests,
from users and agents, with descriptionsofthe capabilities of other agents.It is not
generally required that a user or agent knowtheidentities, locations, or number of
other agents involved in satisfying a request, and relatively minimal effort is involved
in incorporating new agents and "wrapping" legacy applications. Extreme flexibility
is achieved through an architecture organized around the declaration of capabilities by

Attorney Docket No: SRI1P016(3477)/BRC/EWJ : DISH, Exh. Rags,of89

DISH, Exh. 1008, p. 106

service-providing @ the construction ofarbitrarily comoMat by users and
service-requesting agents, and the role of facilitators in delegating and coordinating
the satisfaction of these goals, subject to advice and constraints that may accompany

them. Additional mechanismsandfeatures include facilities for creating and

5 maintaining shared repositories of data; the use oftriggers to instantiate commitments
within and between agents; agent-based provision of multi-modal user interfaces,
including natural language; and built-in support for including the user as a privileged
memberof the agent community. Specific embodiments providing enhanced
scalability are also described.

10

BRIEF DESCRIPTION OF THE DRAWINGS

Prior Art |

Prior Art FIGURE | depicts a networked computing model;

15 Prior Art FIGURE 2 depicts a distributed object technology based around an
Object Resource Broker;

Examples of the Invention

Sed

my

FIGURE3depicts a distributed agent system based arounda facilitator agent;

FIGURE4presentsa structure typical of one small system of the presenteaea
if 20 invention;

FIGURE 5 depicts an Automated Office system implemented in accordance
with an example embodimentofthe present invention supporting a mobile user with a
japtop computerand a telephone;

FIGURE 6 schematically depicts an Automated Office system implemented as

25 anetwork ofagents in accordance with a preferred embodimentofthe present
invention;

FIGURE 7 schematically showsdata structures internal to a facilitator in

accordance with a preferred embodimentof the present invention;

FIGURE8depicts operations involved in instantiating a client agent with its

30 parentfacilitator in accordance with a preferred embodimentofthe present invention;

Attorney Docket No: SRILP016(3477VBRC/EWJ DISH, Exh. Page, 3.0059

DISH, Exh. 1008, p. 107

teTY
iaecetit

fe?SaIE8s
20

25

FIGURE 92operations involvedin a client corMMtin a service
request and receiving the responseto that service request in accordance with a certain
preferred embodimentofthe present invention;

FIGURE 10 depicts operations involved in a client agent responding to a

service request in accordance with anotherpreferable embodimentof the present
invention;

FIGURE 11 depicts operations involvedin a facilitator agent response to a

service request in accordance with a preferred embodimentof the present invention;

FIGURE12 depicts an Open Agent Architecture™ based system of agents
implementing a unified messaging application in accordance with a preferred
embodimentof the present invention;

FIGURE 13 depicts a maporiented graphical user interface display as might

be displayed by a multi-modal map application in accordance with a preferred
embodimentof the present invention;

FIGURE 14 depicts a peer to peer multiple facilitator based agent system
supporting distributed agents in accordance with a preferred embodimentof the
presentinvention,

FIGURE 15 depicts a multiple facilitator agent system supporting at least a
limited form of a hierarchy offacilitators in accordance with a preferred embodiment

of the present invention; and

FIGURE 16 depicts a replicated facilitator architecture in accordance with one
embodimentof the present invention.

BRIEF DESCRIPTION OF THE APPENDICES

The Appendices provide source code for an embodimentofthe present
invention written in the PROLOG programminglanguage.

APPENDIX A: Sourcecodefile named compound.pl.

APPENDIX B: Source code file named fac.pl.

APPENDIX C: Source codefile named libcom_tcp.pl.

Attorney Docket No: SRI1P016(3477VBRC/EWJ DISH, Exh.PalasSofG9

DISH, Exh. 1008, p. 108

TadSSYSeteS
10

15

No wa

30

APPENDIX D: Source code file named vor
APPENDIX E: Source codefile named translations.pl.

DETAILED DESCRIPTION OF THE INVENTION

Figure3illustrates a distributed agent system 300 in accordance with one
embodimentofthe present invention. The agent system 300 includesa facilitator
agent 310 andaplurality of agents 320. Theillustration of Figure 3 provides a high
level view of one simple system structure contemplatedby the present invention. The
facilitator agent 310 is in essence the “parent”facilitator for its “children” agents 320.
The agents 320 forward service requests to the facilitator agent 310. The facilitator
agent 310 interprets these requests, organizing a set of goals which are then delegated
to appropriate agents for task completion.

The system 300of Figure 3 can be expanded upon and modified in a variety of
ways consistent with the present invention. For example, the agent system 300 can be
distributed across a computer network such asthatillustrated in Figure 1. The
facilitator agent 310 mayitself haveits functionality distributed across several
different-computing platforms. The agents 320 may engagein interagent
communication (also called peer to peer communications). Several different systems

300 may be coupledtogether for enhanced performance. These and a variety of other
structural configurationsare described below in greater detail.

Figure 4 presents the structure typical of a small system 400in one
embodimentofthe present invention, showing user interface agents 408, several
application agents 404 and meta-agents 406, the system 400 organized as a
community ofpeers by their common relationship to a facilitator agent 402. As will
be appreciated, Figure 4 places morestructure upon the system 400 than shownin
Figure 3, but both are valid representationsof structures of the present invention. The
facilitator 402 is a specialized server agent that is responsible for coordinating agent
communications and cooperative problem-solving. The facilitator 402 may also

provide a global data store for its client agents, allowing them to adopt a blackboard
style of interaction. Note that certain advantagesare foundin utilizing two or more
facilitator agents within the system 400. For example, larger systems can be
assembled from multiple facilitator/client groups, each having the sort of structure

Attorney Docket No: SRI1P016(3477/BRC/EWJ DISH, Exh. R898, 9.0f089

DISH, Exh. 1008, p. 109

are

BaySSSESeaIeaeecal

a

30

shownin Figure 4. @.. that are not facilitators are etc herein
generically as client agents -- SO called because each acts (in somerespects) as a Client
of somefacilitator, which provides communication and otheressential services for the

client.

The variety of possible client agentsis essentially unlimited. Some typical
categories of client agents would include application agents 404, meta-agents 406,
and user interface agents 408,as depicted in Figure 4. Application agents 404 denote

specialists that provide a collection of services ofa particular sort. These services
could be domain-independenttechnologies (such as speech recognition, natural

language processing 410, email, and some formsofdata retrieval and data mining) or
user-specific or domain-specific (such as a travel planning and reservations agent).
Application agents may be based on legacyapplicationsorlibraries, in which case the
agent maybelittle more than a wrapper that calls a pre-existing API 412, for
example. Meta-agents 406 are agents whoserole is to assist the facilitator agent 402
in coordinatingtheactivities of other agents. While the facilitator 402 possesses
domain-independentcoordinationstrategies, meta-agents 406 can augmentthese by
using domain- and application-specific knowledge or reasoning (including but not
limited to rules, learning algorithms and planning).

With further reference to Figure 4,user interface agents 408 can play an

extremely importantandinteresting role in certain embodimentsofthe present
invention. By way of explanation, in some systems,a user interface agent can be
implementedas a collection of "micro-agents”, each monitoring a different input
modality (point-and-click, handwriting, pen gestures, speech), and collaborating to
produce the bestinterpretation of the current inputs. These micro-agents are depicted
in Figure 4, for example, as Modality Agents 414. While describing such
subcategories of client agents is useful for purposes ofillustration and understanding,
they need not be formally distinguished within the system in preferred
implementationsof the present invention.

The operation of one preferred embodiment of the present invention will be
discussed in greater detail below, but may be briefly outlined as follows. When
invoked, a client agent makes a connectionto a facilitator, which is knownas its
parentfacilitator. These connections are depicted as a double headed arrow between

Attornev Docket No: SRI1P016(3477/BRC/EWJ DISH, ExhPages] Q.of059

DISH, Exh. 1008, p. 110

eaaeellaySY
1°seTSi
aaES
nyBongptt aay

ti

20

25

30

the client agent and @viss agent in Figure 3 and4,for @.. Upon
connection,an agentregisters with its parent facilitator a specification of the

capabilities and servicesit can provide. For example, a natural language agent may
register the characteristicsofits available natural language vocabulary. (For more
details regarding client agent connections,see the discussion of Figure 8 below.)
Later during task completion, when a facilitator determines that the registered services
416 of one ofits client agents will help satisfy a goal, the facilitator sends that client a

request expressed in the Interagent Communication Language (ICL) 418. (See Figure
11 below for a moredetailed discussion ofthe facilitator operations involved.) The

agent parsesthis request, processes it, and returns answersorstatus reports to the
facilitator. In processing a request, the client agent can make use ofa variety of
infrastructure capabilities provided in the preferred embodiment. For example, the
client agent can use JCL 418 to request services of other agents,set triggers, and read
or write shared data on the facilitator or other client agents that maintain shared data.

(See the discussion of Figures 9-11 below for a more detailed discussion of request
processing.)

The functionality of each client agent are made available to the agent

community throughregistration ofthe client agent's capabilities with a facilitator 402.
A software "wrapper"essentially surrounds the underlying application program

performingthe services offered by each client. The commoninfrastructure for
constructing agents is preferably supplied by an agent library. The agent library is
preferably accessible in the runtime environmentof severaldifferent programming
languages. The agentlibrary preferably minimizesthe effort required to construct a
new system and maximizesthe ease with which legacy systems can be “wrapped” and
made compatible with the agent-based architecture of the present invention.

By wayoffurtherillustration, a representative application is now briefly
presented with referenceto Figures 5 and6. In the Automated Office system depicted
in Figure 5, a mobile user-with a telephone and a laptop computer can access and task
commercial applications such as calendars, databases, and email systems running
back at the office. A user interface (UI) agent 408, shown in Figure 6, runs on the
user's local laptop andis responsible for accepting user input, sending requests to the
facilitator 402 for delegation to appropriate agents, and displaying the results of the

Auorney Docket No: SRI!P016(3477 /BRC/EWJ DISH, ExPapgod |ofHP

DISH, Exh. 1008, p. 111

rt
td

fiFil
ru

RaSSsayWeee

20

distributed compuall®The user mayinteractdirectly with @... remote
application by clicking on active areas in the interface, calling up a form or window
for that application, and making queries with standard interface dialog mechanisms.
Conversely, a user may expressa task to be executed by using typed, handwritten, or
spoken(overthe telephone) English sentences, without explicitly specifying which
agent or agents should perform the task.

Forinstance, if the question "What is my schedule?”is written 420 in the user

interface 408, this request will be sent 422 by the UI 408to the facilitator 402, which
in turn will ask 424 a natural language (NL) agent 426 to translate the query into JCL
18. To accomplishthis task, the NL agent 426 mayitself need to make requestsof the
agent community to resolve unknown wordssuch as "me" 428 (the UI agent 408 can
respond 430 with the name of the current user) or "schedule" 432 (the calendar agent
434 defines this word 436). The resulting JCL expressionis then routed by the

facilitator 402 to appropriate agents(in this case, the calendar agent 434) to execute

the request. Results are sent back 438 to the UI agent 408for display.

The spoken request "When mail arrives for me aboutsecurity, notify me
immediately.” producesa slightly more complex example involving communication
amongall agents in the system. After translation into JCL as described above, the
facilitator installs a trigger 440 on the mail agent 442 to look for new messages about

security. When one such message does arrive in its mail spool, the triggerfires, and
the facilitator matches the action part ofthe trigger to capabilities published by the

notification agent 446. The notification agent 446 is a meta-agent,as it makes use of
rules concerningthe optimal use of different output modalities (email, fax, speech

generation overthe telephone) plus information about an individual user's preferences
448 to determine the best way ofrelaying a message through available media transfer

application agents. After some competitive parallelism to locate the user (the
calendar agent 434 and database agent 450 may havedifferent guesses as to where to
find the user) and some cooperative parallelism to produce required information

(telephone numberof location,user password, and an audiofile containing a text-to-
speech representation of the email message), a telephone agent452 calls the user,
verifying its identity through touchtones, and then play the message.

Attorney Docket No: SRIIPO16(3477VBRC/EWJ DISH, ExPaod,2of69

DISH, Exh. 1008, p. 112

myetct

‘gtee
nal

foal?
a

AaEees
sectae

Pay

15

20

25

30

The above ®. illustrates a numberof inventivee. As new agents
connectto the facilitator, registering capability specifications and natural language

vocabulary, what the user can say and do dynamically changes; in other words, the
ICLis dynamically expandable. For example, adding a calendar agentto the system
in the previous example andregistering its capabilities enables users to ask natural
language questions about their "schedule" without any need to revise code for the
facilitator, the natural language agents, or any other client agents. In addition, the

interpretation and execution ofa task is a distributed process, with no single agent
defining theset of possible inputs to the system. Further, a single request can produce
cooperation and flexible communication among manyagents, written in different
programming languages and spread across multiple machines.

Design Philosophy and Considerations

Onepreferred embodimentprovides an integration mechanism for
heterogeneousapplications in a distributed infrastructure, incorporating some of the
dynamism and extensibility of blackboard approaches,the efficiency associated with
mobile objects, plus the rich and complex interactions of communicating agents.
Design goals for preferred embodiments of the present invention maybe categorized
under the general headings of interoperation and cooperation, user interfaces, and
software engineering. These design goals are not absolute requirements, nor will they
necessarily be satisfied by all embodiments of the present invention, but rather simply
reflect the inventor's currently preferred design philosophy.

Versatile mechanismsof interoperation and cooperation

Interoperation refers to the ability of distributed software components- agents
- to communicate meaningfully. While every system-building framework must

provide mechanismsof interoperation at somelevel of granularity, agent-based
frameworks face important new challengesin this area. This is true primarily because
autonomy,the hallmark of individual agents, necessitates greater flexibility in
interactions within communities of agents. Coordinationrefers to the mechanisms by

which a community ofagents is able to work together productively on some task. In
these areas, the goals for our frameworkare to provide flexibility in assembling

Attorney Docket No: SRI1P016(3477VBRC/EW]J DISH, ExPat09,0f69

DISH, Exh. 1008, p. 113

3,tf

elEa
ar ae

aIhoy

aESS 20

25

30

communities ofwae service providers, provideastructuring
cooperative interactions, impose the right amountofstructure, as well as include
legacy and "owned-elsewhere” applications.

Provide flexibility in assembling communities ofautonomous service providers
-- both at development time andat runtime. Agents that conform to the linguistic and
ontological requirementsfor effective communication should be able to participate in
an agent community, in various combinations, with minimal or near minimal
prerequisite knowledge of the characteristics of the other players. Agents with
duplicate and overlapping capabilities should be able to coexist within the same
community, with the system making optimal or near optimal use of the redundancy.

Provide flexibility in structuring cooperative interactions among the members
of acommunity of agents. A framework preferably provides an economical
mechanism for setting up a variety of interaction patterns among agents, without
requiring an inordinate amount of complexity or infrastructure within the individual
agents. The provision of a service should be independent or minimally dependent
upona particular configuration of agents.

Impose the right amount of structure on individual agents. Different
aches to the construction of multi-agent systems imposedifferent requirements

because KQMLis neutralas to the content of
appro

on the individual agents. For example,

messages,it imposes minimal structural requirements on individual agents. On the
other hand,the BDI paradigm tendsto impose much more demanding requirements,
by making assumptions about the nature of the programming elements that are
meaningful to individual agents. Preferred embodimentsof the present invention
should fall somewhere betweenthe two, providing a rich set of interoperation and
coordination capabilities, without precluding any of the software engineering goals
defined below.

Include legacy and "owned-elsewhere " applications. Whereaslegacy usually
implies reuse of an established system fully controlled by the agent-based system
developer, owned-elsewhererefers to applications to which the developer has partial
access, but no control. Examples of owned-elsewhere applications include data
sources and services available on the World Wide Web,via simple form-based

Attorney Docket No: SRI1P016(3477)/BRC/EWJ DISH, ExtPaaesl 4.0159

DISH, Exh. 1008, p. 114

aeFyEY
i

peae
im

i
 gg

15

20

25

30

interfaces, and opis used cooperatively within a avabess which
remain the properties of separate corporate entities. Both classes of application must
preferably be able to interoperate, more or less as full-fledged members of the agent
community, without requiring an overwhelmingintegrationeffort.

Human-oriented user interfaces

Systems composed ofmultiple distributed components, and possibly dynamic
configurations of components, require the crafting ofintuitive user interfaces to
provide conceptually natural interaction mechanisms,treat users as privileged
membersof the agent community and support collaboration.

Provide conceptually naturalinteraction mechanisms with multiple
distributed components. When there are numerous disparate agents, and/or complex
tasks implemented by the system,the user should be able to express requests without
havingdetailed knowledge ofthe individual agents. With speech recognition,
handwriting recognition, and natural language technologies becoming more mature,
agentarchitectures should preferably support these forms of input playing increased
roles in the tasking of agent communities.

Preferably treat users as privileged members of the agent community by
providing an appropriate level of task specification within software agents, and
reusable translation mechanisms between this level and the level of human requests,
supporting constructs that seamlessly incorporate interactions between both human-
interface and software types, of agents.

Preferably support collaboration (simultaneous work over shared data and

processing resources) between users and agents.

Realistic software engineering requirements

System-building frameworks should preferably address the practical concerns
of real-world applications by the specification of requirements which preferably
include: Minimize the effort required to create new agents, and to wrap existing

applications. Encourage reuse, both of domain-independent and domain-specific
components. The conceptof agent orientation, like that of object orientation, provides
a natural conceptual frameworkfor reuse, so long as mechanismsfor encapsulation

Attorney Docket No: SRI1P016(3477/BRC/EWJ DISH, ExiPaggod Spof £9

DISH, Exh. 1008, p. 115

teA
fueaya
Fil
ie

idkSenet
zestket
ed
Rd
Ey

aad
ab

a
Re}

fn

10

20

25

30

 and interaction are ®... appropriately. Support lightweig obile platforms.
Such platforms should be able to serve as hosts for agents, without requiring the

,

installation of a massive environment. It should also be possible to construct

individual agents that are relatively small and modestin their processing

requirements. Minimize platform and language barriers. Creation of new agents, as
well as wrapping of existing applications, should not require the adoption of a new
language or environment.

Mechanismsof Cooperation

Cooperation among agents in accordance with the presentinvention is
preferably achieved via messages expressed in a commonlanguage, ICL.
Cooperation amongagentis further preferably structured around a three-part
approach:providers of services register capabilities specifications with a facilitator,
requesters of services construct goals and relay them toa facilitator, and facilitators
coordinate the efforts of the appropriate service providersin satisfying these goals.

The Interagent Communication Language (ICL)

Interagent Communication Language ("ICL") 418 refers to an interface,
communication, and task coordination language preferably shared by all agents,

regardless of what platform they run on or what computer language they are
programmedin. ICL may be used by an agentto task itself or somesubset of the
agent community. Preferably, ICL allows agents to specify explicit control
parameters while simultaneously supporting expression of goals in an underspecified,
loosely constrained manner.In a further preferred embodiment, agents employ /CL to
perform queries, execute actions, exchange information, set triggers, and manipulatef

data in the agent community.

In a further preferred embodiment, a program element expressed in JCLis the
event. The activities of every agent, as well as communications between agents, are

preferably structured around the transmission and handling ofevents.In
communications, events preferably serve as messages between agents; in regulating

the activities of individual agents, they maypreferably be thoughtof as goals to be

satisfied. Each eventpreferably has a type, a set of parameters, and content. For

example, the agentlibrary procedure oaa_Solve can be used by an agent to request

Attorney Docket No: SRI1P016(3477)/BRC/EWJ DISH, ExRate0b6of158

DISH, Exh. 1008, p. 116

wa

“aidff

aaee

sre“ute weadlal
7a89

teaSat
wyithe<n

mattif

tad

services of otheraA call to oaa_Solve, within the code @.A, results in an
event having the form

ev_post_solve(Goal, Params)

going from A to the facilitator, where ev_post_solveis the type, Goalis the content,
and Paramsis a list of parameters. The allowable content and parameters preferably

vary according to the type of the event.

The JCL preferably includes a layer of conversational protocol and a content

layer. The conversational layer of ICL is defined by the event types, together with the
parameterlists associated with certain of these event types. The content layer consists
of the specific goals, triggers, and data elements that may be embedded within various
events.

The ICL conversational protocolis preferably specified using an orthogonal,

parameterized approach, where the conversational aspects of each elementof an
interagent conversationare represented by a selection of an eventtype and a Selection
of values from at least one orthogonalsetof parameters. This approachoffers greater
expressiveness than an approach based solely on a fixed selection of speech acts, such
as embodied in KQML.For example, in KQML,a request to satisfy a query can
employ either of the performatives ask_all or ask_one. In ICL, onthe other hand,this
type of request preferably is expressed by the event type ev_post_solve, together with
the solution_limit(N) parameter - where N can be any positive integer. (A request for
all solutions is indicated by the omission of the solution_limit parameter.) The request

can also be accompanied by other parameters, which combineto furtherrefine its
semantics. In KQML,then, this example forces one to choose between twopossible
conversational options, neither of which may be precisely what is desired. In either
case, the performative chosenis a single value that must capture the entire
conversational characterization of the communication. This requirementraises a

difficult challenge for the language designer,to select a set of performativesthat
provides the desired functionality without becoming unmanageablylarge.
Consequently, the debate overthe right set of performatives has consumed much
discussion within the KQML community.

The content layer of the ICL preferably supports unification and otherfeatures
found in logic programming language environments such as PROLOG.In some

Attorney Docket No: SRI1P016(3477)/BRC/EWJ DISH, EXPadécs/ of158

DISH, Exh. 1008, p. 117

pt

aittes

=
Seed
Bos
=
=

a
2fiAbd

20

25

30

embodiments,the contentlayer of the CL is simply an2at least one
programming language. For example, the Applicants have foundthat PROLOGis
suitable for implementing and extending into the contentlayer of the JCL. The agent
libraries preferably provide support for constructing, parsing, and manipulating ICL
expressions. It is possible to embedcontent expressed in otherlanguages within an
ICL event. However, expressing content in JCL simplifies the facilitator’s access to
the content, as well as the conversational layer,in delegating requests. This gives the
facilitator more information aboutthe nature of a request and helps the facilitator

decompose compoundrequests and delegate the sub-requests.

Further, CL expressionspreferably include, in addition to events, at least one
of the following: capabilities declarations, requests for services, responses to requests,
trigger specifications, and shared data elements. A further preferred embodimentof
the present invention incorporates ICL expressionsincludingatleastall of the
following: events, capabilities declarations, requests for services, responses to
requests, trigger specifications, and shared data elements.

Providing Services: Specifying "Solvables"

In a preferred embodimentof the present invention, every participating agent
defines and publishes a set of capability declarations, expressed in JCL, describing the
services that it provides. These declarations establish a high-level interface to the
agent. This interface is used by a facilitator in communicating with the agent, and,
most important, in delegating service requests (or parts of requests) to the agent.
Partly due to the use of PROLOGas a preferred basis for JCL,these capability
declarations are referred as solvables. The agentlibrary preferably providesa set of

proceduresallowing an agentto add, remove, and modifyits solvables, which it may
preferably do at anytimeafter connecting to its facilitator.

There are preferably at least two major types of solvables: procedure solvables
and data solvables. Intuitively, a procedure solvable performsa test or action,
whereas a data solvable provides access to a collection ofdata. For example,in
creating an agent for a mail system, procedure solvables might be defined for sending
a message to a person, testing whether a message about a particular subject has
arrived in the mail queue, or displaying a particular message onscreen. Fora database

Attorney Docket No: SRI1P016(3477)/BRC/EWJ DISH, ExiPate0$ 8o0f$9

DISH, Exh. 1008, p. 118

raleelaeAo
at

fiSISBIey 20

25

30

wrapper agent, one @ define a distinct data solvable coreMin to each of the
relations present in the database. Often,a data solvable is used to provide a shared
data store, which may be notonly queried,but also updated, by various agents having

the required permissions.

There are several primary technical differences between these two types of
solvables. First, each procedure solvable must have a handler declared and defined
for it, whereas this is preferably not necessary for a data solvable. The handling of

requests for a data solvable is preferably provided transparently by the agentlibrary.
Second, data solvables are preferably associated with a dynamic collection of facts (or
clauses), which maybe further preferably modified at runtime, both by the agent
providing the solvable, and by other agents (provided they have the required
permissions). Third, special features, available for use with data solvables, preferably
facilitate maintaining the associated facts. In spite of these differences, it should be
noted that the mechanism of use by which an agentrequests a service is the same for

the two types of solvables.

In one embodiment, a requestfor one of an agent's services normally arrives in

the form of an event from the agent's facilitator. The appropriate handler then deals
with this event. The handler may be coded in whateverfashion is most appropriate,

depending onthe natureofthe task, and the availability of task-specific libraries or
legacy code,if any. The only hard requirementis that the handler return an
appropriate responseto the request, expressed in ICL. Depending onthe nature of the
request, this response could be an indication of successorfailure, oralist of solutions
(when the requestis a data query).

A solvable preferably has three parts: a goal, a list of parameters, andalist of

permissions, whichare declared using the format:
solvable(Goal, Parameters, Permissions)

The goal of a solvable, which syntactically takes the preferable form of an ICL
structure,is a logical representation of the service provided bythe solvable. (An JCL
structure consists of afunctor with O or more arguments. For example,in the structure

a(b,c), °a’ is the functor, and ~b’ and *c' the arguments.) As with a PROLOGstructure,
the goal's arguments themselves may preferably be structures.

Attornev Docket No: SRI1P016(3477)/BRC/EWJ DISH, ExtPdg04,9of129

DISH, Exh. 1008, p. 119

et
nnay

et

MLdt

SSTaea&
i

15

20

25

30

35

Various spiWen be included in the parameterlist, t0#€fine the semantics
associated with the solvable. The type parameteris preferably used to say whetherthe
solvable is data or procedure. When the typeis procedure, another parameter may be
used to indicate the handlerto be associated with the solvable. Someofthe

parameters appropriate for a data solvable are mentioned elsewherein this
application. In either case (procedure or data solvable), the private parameter may be
preferably usedto restrict the use of a solvable to the declaring agent whenthe agent
intends the solvable to be solely forits internal use but wishes to take advantageofthe
mechanisms in accordance with the present invention to access it, or when the agent
wants the solvable to be available to outside agents only at selected times. In support
ofthe latter case, it is preferable for the agentto changethestatus of a solvable from

private to non-private at any time.

The permissionsof a solvable provide mechanisms by which an agent may
preferably control accesstoits services allowing the agentto restrict calling and
writing of a solvableto itself and/or other selected agents. (Calling means requesting
the service encapsulated by a solvable, whereas writing means modifying the
collection of facts associated with a data solvable.) The default permission for every
solvable in a further preferred embodimentofthe present inventionis to be callable
by anyone, andfor data solvables to be writable by anyone. A solvable's permissions
can preferably be changedat any time, by the agent providingthe solvable.

For example, the solvables of a simple email agent mightinclude:
solvable (send_message (email, +ToPerson, +Params),

[type (procedure), callback(send_mail)],
(])

solvable (last_message (email, -Messageld),
[type (data), single_value(true)],
[write(true)]),

solvable (get_message (email, +Messageld, -
Msg),

[type (procedure), callback(get_mail)],
{})

The symbols ~+' and °-’, indicating input and output arguments,are at present
used only for purposes of documentation. Most parameters and permissions have
default values, and specifications of default values may be omitted from the

parameters and permissionslists.

Attorney Docket No: SRI1P016(3477 /BRC/EWJ DISH, ExhPages2Qof|§9

DISH, Exh. 1008, p. 120

mY
wal

Stan3

Tt&
rahaE
ay
‘t

Der
ahras

1"mafeyif

Defining an @. capabilities in termsof solvable Dion: effectively
creates a vocabulary with which other agents can communicate with the new agent.

Ensuring that agents will speak the same language and share a common, unambiguous
semantics of the vocabulary involves ontology. Agent developmenttools and services

(automatic translations of solvablesby the facilitator) help addressthis issue;
additionally, a preferred embodimentofthe present invention will typically rely on
vocabulary from either formally engineered ontologies for specific domainsor from
ontologies constructed during the incremental developmentof a bodyof agents for
several applications or from both specific domain ontologies and incrementally
developed ontologies. Several example tools and services are described in Cheyeret
al.’s paper entitled “Development Tools for the Open Agent Architecture,”as
presented at the Practical Application ofIntelligent Agents and Multi-Agent
Technology (PAAM 96), London, April 1996.

Although the presentinvention imposes no hard restrictions on the form of
solvable declarations, two commonusage conventionsillustrate some of the utility

associated with solvables.

Classes of services are often preferably tagged by a particular type. For

instance, in the example above,the "last_message” and "get_message”solvables are

specialized for email, not by modifying the names of the services, but rather by the
use of the “email’ parameter, which serves during the execution of an JCL request to

select (or not) a specific type of message.

Actions are generally written using an imperative verb as the functorof the
solvable in a preferred embodimentof the present invention,the direct object (or item
class) as the first argumentof the predicate, required arguments following, and then
an extensible parameterlist as the last argument. The parameterlist can hold optional
information usable by the function. The /CL expression generated bya natural

languageparser often makes use of this parameterlist to store prepositional phrases .
and adjectives.

As anillustration of the above twopoints, "Send mail to Bob about lunch”will

be translated into an CL request send_message(email, “Bob Jones’, [subject(lunch)]),
whereas "Remind Bob about lunch" wouldleave the transport unspecified

Attorney Docket No: SRIIP016(3477V/BRC/EWS DISH, ExPags7,ofa?

DISH, Exh. 1008, p. 121

ateetPaATI
est
Fu

feEeas

Ww

endmessagekinbor Jones’, [subject(lunch)])), nabinAavaiavie message
transfer agents (e.g., fax, phone, mail, pager) to compete for the opportunity to carry

out the request.

Requesting Services

An agentpreferably requests services of the communityof agent by delegating
tasks or goals toits facilitator. Each request preferably contains calls to one or more
agent solvables, and optionally specifies parameters containing advice to help the
facilitator determine how to execute the task. Calling a solvable preferably does not

require that the agent specify (or even know of) a particular agent or agents to handle
the call. While it is possible to specify one or more agents using an address parameter

(and thereare situations in whichthisis desirable), in general it is advantageous to
leave this delegation to the facilitator. This greatly reduces the hard-coded
component dependencies often found in other distributed frameworks. The agent
libraries of a preferred embodimentof the present invention provide an agent with a
single, unified point of entry for requesting services of other agents: the library
procedure oaa_Solve. In thestyle of logic programming, oaa_Solve may preferably -
be used bothto retrieve data andto initiate actions, so that calling a data solvable

looks the sameascalling a procedure solvable.

Complex Goal Expressions

A powerful feature provided by preferred embodimentsof the present
inventionis the ability of a client agent(or a user) to submit compound goals of an

arbitrarily complex nature to a facilitator. A compoundgoal is a single goal
expression that specifies multiple sub-goals to be performed. In speakingofa
“complex goal expression” we mean that a single goal expression that expresses
multiple sub-goals can potentially include more than onetype oflogical connector
(e.g., AND, OR, NOT), and/or more than one level of logical nesting (e.g., use of
parentheses), or the substantive equivalent. By wayof further clarification, we note
that when speakingof an “arbitrarily complex goal expression" we meanthat goals
are expressed in a language or syntax that allows expression of such complex goals
when appropriate or whendesired,not that every goal is itself necessarily complex.

Auorney Docket No: SRI1P016(3477/BRC/EWJ DISH, ERtagt002 pf89

DISH, Exh. 1008, p. 122

neoaHY
snug iml
yaa es

STEeaS
i

ay
20

25

30

It is conem that this ability is provided throughDorccer
communication language having the necessary syntax and semantics. In one example,

the goals maytake the form of compound goalexpressions composedusing operators
similar to those employed by PROLOG,thatis, the comma for conjunction, the
semicolon for disjunction, the arrow for conditional execution, etc. The present
invention also contemplates significant extensions to PROLOG syntax and semantics.

For example, one embodimentincorporates a "parallel disjunction” operator
indicating that the disjuncts are to be executed by different agents concurrently. A
further embodimentsupports the specification of whether a given sub-goalis to be
executed breadth-first or depth-first.

A further embodimentsupports each sub-goal of a compound goal optionally

having an address and/or a set of parameters attachedto it. Thus, each sub-goal takes
the form

Address:Goal::Parameters

where both Address and Parameters are optional.

An address,if present, preferably specifies one or more agents to handle the.

given goal, and may employ several different types of referring expression: unique
names, symbolic names, and shorthand names. Every agent has preferably a unique
name, assigned byits facilitator, which relies upon network addressing schemesto
ensure its global uniqueness. Preferably, agents also have self-selected symbolic
names(for example, "mail"), which are not guaranteed to be unique. When an
address includes a symbolic name,the facilitator preferably takes this to meanthatall
agents having that name should be called upon. Shorthand namesinclude‘self’ and
‘parent’ (whichrefers to the agent's facilitator). The address associated with a goal or
sub-goal is preferably always optional. Whenan addressis not present, it is the
facilitator’s job to supply an appropriate address.

The distributed execution of compound goals becomes particularly powerful

whenused in conjunction with natural language or speech-enabledinterfaces, as the
queryitself may specify how functionality from distinct agents will be combined. As
a simple example, the spoken utterance "Fax it to Bill Smith's manager.” can be
translated into the following compound /JCL request:

oaa_Solve((manager(‘Bill Smith’, M), fax(it,M,[])), [strategy(action)])

Attorney Docket No: SRI1P016(3477V/BRC/EW) DISH, ExtPage?>of9

DISH, Exh. 1008, p. 123

AEY
tf

ceoe
a

eera£
td

aa

10

15

20

25

30

Note that in «. requestthere are two sub-goals,.en
Smith’ ,M)”and “fax(it,M,[]),” and a single global parameter “strategy(action).”
Accordingto the present invention,the facilitator is capable of mapping global
parameters in order to apply the constraints or advice across the separate sub-goalsin
a meaningful way. In this instance, the global parameter strategy(action) implies a
parallel constraint uponthe first sub-goal; i.e., when there are multiple agents that
can respond to the manager sub-goal, each agent should receive a request for service.
In contrast, for the second sub-goal, parallelism should not be inferred from the global
parameter strategy(action) because such an inference would possibly result in the
transmission of duplicate facsimiles.

Refining Service Requests

In a preferred embodimentof the present invention, parameters associated
with a goal (or sub-goal) can draw on useful features to refine the request's meaning.
For example,it is frequently preferred to be able to specify whether ornotsolutions
are to be returned synchronously; this is done using the reply parameter, which can
take any ofthe values synchronous, asynchronous, or none. As another example,
whenthe goal is a non-compound query of a data solvable, the cache parameter may
preferably be used to request local cachingof the facts associated with that solvable.
Manyofthe remaining parameters fall into two categories: feedback and advice.

Feedback parameters allow a service requester to receive information from
the facilitator about how a goal washandled. This feedback can include such things as
the identities of the agents involvedin satisfying the goal, and the amountoftime

expendedin the satisfaction of the goal.

Advice parameters preferably give constraints or guidanceto the facilitator in
completing andinterpreting the goal. For example, a solution_limit parameter
preferably allows the requester to say how many solutionsit is interested in; the
facilitator and/or service providersare free to use this information in optimizing their
efforts. Similarly, a time_limit is preferably used to say how long the requester is
willing to wait for solutionsto its request, and, in a multiple facilitator system, a
level_limit may preferably be used to say how remotethe facilitators may be that are
consulted in the search for solutions. A priority parameter is preferably used to

Attorney Docket No: SRI1P016(3477/BRC/EWJ DISH, ExRa#@0B4pofi 39

DISH, Exh. 1008, p. 124

indicate that a ecuwore urgent than previous requests &.. not yet been
satisfied. Other preferred advice parametersinclude butare not limited to parameters
usedtotell the facilitator whetherparallel satisfaction of the parts of a goalis

appropriate, how to combine and filter results arriving from multiple solver agents,
and whether the requesteritself may be considered a candidate solver of the sub-goals

of a request.

Advice parameters preferably provide an extensible set of low-level,

orthogonal parameters capable of combining with the JCL goal languageto fully
express how information should flow among participants. In certain preferred

10 embodimentsof the present invention, multiple parameters can be grouped together
and given a group name. Theresulting high-level advice parameters can preferably
be used to express concepts analogousto KQML's performatives, as well as define
classifications of problem types. For instance, KQML's "ask_all” and "ask_one”

performatives would be represented as combinations of values given to the parameters
parallel_ok, and solution_limit. As an example of a higher-level problem type,

ri
LFRit

15 reply,

the strategy "math_problem” might preferably send the queryto all appropriate math

solversin parallel, collect their responses, andsignal a conflict if different answers are
returned.The strategy "essay_question” might preferably send the requestto all1aSB
appropriate participants, and signal a problem (i.e., cheating) if any of the returnedro) sa

20 answersare identical.raosi

Facilitation tr
anHRS In a preferred embodiment of the present invention, whena facilitator receives

a compoundgoal,its job is to constructa goal satisfaction plan and overseeits
satisfaction in an optimal or near optimal mannerthatis consistent with the specified

95 advice. Thefacilitator of the present invention maintains a knowledge basethat

records the capabilities of a collection of agents, and uses that knowledge to assist
requesters and providers ofservices in making contact.

Figure 7 schematically shows data structures 700 internal to a facilitator in _
accordance with one embodimentofthe present invention. Consider the function of a

30 Agent Registry 702 in the present invention. Eachregistered agent may be seen as
associated with a collection of fields found within its parentfacilitator such as shown

in the figure. Each registered agent may optionally possess a Symbolic Name which

Attorney Docket No: SRI1P016(3477VWBRC/EWJ DISH, ExiPagozpofa9

DISH, Exh. 1008, p. 125

Me
aanyywey

at

hae

fetIDey
TE
a

afeyan

it

20

25

30

would be entered e.. 704. As mentioned elsewhere,i. Namesneed not
be unique to each instance of an agent. Note that an agent may in certain preferred
embodimentsof the present invention possess more than one Symbolic Name. Such

Symbolic Names would each be found through their associations in the Agent

Registry entries. Each agent, whenregistered, must possess a Unique Address, which
is entered into the Unique Addressfield 706.

With further reference to Figure 7, each registered agent may beoptionally

associated with one or more capabilities, which have associated Capability

Declaration fields 708 in the parentfacilitator Agent Registry 702. These capabilities

maydefine notjust functionality, but may further provide a utility parameter
indicating, in some manner(e.g., speed, accuracy,etc), how effective the agentis at

providing the declared capability. Each registered agent maybe optionally associated
with one or more data components,which haveassociated Data Declaration fields 710

in the parentfacilitator Agent Registry 702. Each registered agent may be optionally
associated with one or more triggers, which preferably could be referenced through

their associated Trigger Declaration fields 712 in the parentfacilitator Agent Registry

702. Each registered agent maybe optionally associated with one or more tasks,

whichpreferably could be referenced through their associated Task Declaration fields
714 in the parentfacilitator Agent Registry 702. Each registered agent may be

optionally associated with one or moreProcess Characteristics, which preferably
could be referenced throughtheir associated Process Characteristics Declaration fields

716 in the parentfacilitator Agent Registry 702. Note that these characteristics in
certain preferred embodimentsofthe present invention may include one or more of
the following: Machine Type (specifying what type of computer mayrun the agent),

Language (both computer and humaninterface).

A facilitator agent in certain preferred embodiments ofthe present invention
further includes a Global Persistent Database 720. The database 720 is composed of

data elements which do not rely upon the invocation or instantiation of client agents

for those data elements to persist. Examples of data elements which might be present

in such a database includebutare notlimited to the network addressof the facilitator

agent’s server, facilitator agent’s server accessible network port list, firewalls, user& g

Attornev Docket No: SRI1P016(3477)/BRC/EW]J DISH, ExRaee026p0f 59

DISH, Exh. 1008, p. 126

ft
yagum“can,oonag

1°SoATe
eya
dyTet

20

25

30

lists, and security 2. regarding the accessof server veal accessible to the
facilitator agent.

A simplified walk through of operations involved in creating a client agent, a

client agent initiating a service request, a client agent respondingto a service request

andafacilitator agent respondingto a service requestare including hereafter by way

ofillustrating the use of such a system. These figures and their accompanying

discussion are provided by wayofillustration of one preferred embodimentofthe

presentinvention and are notintendedto limit the scope ofthe present invention.

Figure 8 depicts operations involved in instantiating a client agent with its

parentfacilitator in accordance with a preferred embodimentofthe present invention.
The operations begin with starting the AgentRegistration ina step 800. Ina next step
802, the Installer, such as a clientor facilitator agent, invokes a newclientagent. It

will be appreciated that any computerentity is capable of invoking a new agent. The

system then instantiates the new client agentin a step 804. This operation may
involve resource allocations somewherein the network on a local computer system

for the client agent, which will often include memory as well as placementof
references to the newly instantiated client agentin internal system lists of agents

within that local computing system. Once instantiated, the new client and its parent

facilitator establish a communicationslink in a step 806. In certain preferred

embodiments, this communicationslink involves selection of one or more physical

transport mechanismsfor this communication. Once established, the client agent

transmits it profile to the parentfacilitator in a step 808. When received, the parent

facilitator registers the client agent in a step 810. Then,at a step 812, a client agent
has beeninstantiated in accordance with one preferred embodimentof the present

‘
invention.

Figure 9 depicts operations involvedin a client agentinitiating a service

request and receiving the responseto that service request in accordance with a

preferred embodimentofthe presentinvention. The method of Figure 9 begins in a
step 900, wherein anyinitialization or other such procedures may be performed.
Then,in a step 902, the client agent determines a goal to be achieved(or solved).

This goalis then translated in a step 904 into JCL,if it is not already formulatedin it.
The goal, now stated in /CL, is then transmitted to the client agent’s parent facilitator

Attorney Docket No: SRIIP016(3477/BRC/EWJ DISH, ExRape08poli28

DISH, Exh. 1008, p. 127

PeeletaAt
“

En

Caes
they

dey
20

25

30

in a step 906. The @ facilitator respondsto this service2. and ata later
time, the client agent receivesthe results of the requestin a step 908, operations of

Figure 9 being complete in a done step 910.

FIGURE 10 depicts operationsinvolved in a client agent responding to a

service request in accordance with a preferred embodimentofthe present invention.

Oncestarted in a step 1000,the client agent receives the service requestin a step

1002. In anext step 1004,the client agent parses the received requestfrom ICL. The

client agent then determinesif the service is available in a step 1006. If it is not, the

client agent returnsa status report to that effect in a step 1008. If the service is

available, control is passed to a step 1010 where the client performs the requested

service. Note that in completing step 1010 the client may form complexgoal

expressions, requesting results for these solvables from the facilitator agent. For
example, a fax agent might fax a documentto a certain person only after requesting
and receiving a fax numberfor that person. Subsequently, the client agent either
returns the results of the service and/ora status report in a step 1012. The operations

of Figure 10 are complete in a donestep 1014.

FIGURE11 depicts operations involved in a facilitator agent response to a

service request in accordance with a preferred embodimentof the present invention.
Thestart of such operations in step 1100 leads to the reception of a goal request in a

step 1102 bythe facilitator. This requestis then parsed and interpreted by the
facilitator in a step 1104. Thefacilitator then proceedsto construct a goal satisfaction

plan in a next step 1106. In steps 1108 and1 110, respectively, the facilitator
determines the required sub-goals and thenselects agents suitable for performing the

required sub-goals. Thefacilitator then transmits the sub-goal requests to the selected
agents in a step 1112 andreceivesthe results of these transmitted requests in a step
1114. It should be notedthat the actual implementation of steps 1112 and 1114 are

dependentuponthe specific goalsatisfaction plan. Forinstance, certain sub-goals
maybesent to separate agents in parallel, while transmission of other sub-goals may

be postponed until receipt of particular answers. Further, certain requests may

generate multiple responsesthat generate additional sub-goals. Once the responses
have been received,the facilitator determines whetherthe original requested goal has

been completed in a step 1118. If the original requested goal has not been completed,

Attorney Docket No: SRI1P016(3477)/BRC/EW] DISH, ExRatecas ofi59

DISH, Exh. 1008, p. 128

eeteH
wt

Da
eaTE‘d

aSaae

5

10

15

20

25

30

the facilitator couy repeats the operations 1106 heousn Oncethe original
requested goal is completed,the facilitator returns the results to the requesting agent
1118 and the operations are done at 1120.

A further preferred embodimentofthe present invention incorporates

transparentdelegation, which means that a requesting agent can generate a request,
and a facilitator can manage the satisfaction of that request, without the requester

needing to have any knowledgeof the identities or locationsof the satisfying agents.
In somecases, such as when the requestis a data query, the requesting agent may also
be oblivious to the numberof agents involvedin satisfying a request. Transparent

delegation is possible because agents’ capabilities (solvables) are treated as an abstract
description of a service, rather than as an entry pointinto a library or body of code.

A further preferred embodimentofthe present invention incorporates
facilitator handling of compoundgoals, preferably involving three types of

processing: delegation, optimization andinterpretation.

Delegation processing preferably supports facilitator determination of which
specific agents will execute a compoundgoal and how such a compoundgoal’s sub-
goals will be combined andthe sub-goal results routed. Delegation involves selective
application of global and local constraint and advice parameters onto the specific sub-
goals. Delegation results in a goal that is unambiguousasto its meaning andasto the
agents that will participate in satisfying it.

Optimization processingof the completed goalpreferably includes the
facilitator using sub-goalparallelization where appropriate. Optimization results ina
goal whoseinterpretation will require as few exchangesas possible, between the
facilitator and the satisfying agents, and can exploit parallel efforts of the satisfying

agents, whereverthis does not affect the goal's meaning.

Interpretation processing of the optimized goal. Completing the addressing of
a goal involvesthe selection of one or more agentsto handle eachofits sub-goals
(that is, each sub-goal for which this selection has not been specified by the
requester). In doingthis, the facilitator uses its knowledge ofthe capabilities ofits
client agents (and possibly of other facilitators, in a multi-facilitator system). It may
also use strategies or advice specified by the requester,as explained below. The

Attorney Docket No: SRI1P016(3477)/BRC/EWJ DISH, ExtPd902% 0f259

DISH, Exh. 1008, p. 129

Sly
Pea

pall

ete
I

PaEig 20

25

30

interpretation of a @ore the coordination of requests©. satisfying agents,
and assemblingtheir responsesinto a coherent whole, for return to the requester.

A further preferred embodimentof present invention extendsfacilitation so the

facilitator can employ strategies and advice given by the requesting agent, resulting in

a variety of interaction patterns that may be instantiatedin the satisfaction of a

request.

A further preferred embodiment ofpresent invention handles the distribution

of both data update requests and requests for installation oftriggers, preferably using

some of the samestrategies that are employed in the delegationof service requests.

Note that the reliance onfacilitation is not absolute; that is, there is no hard

requirementthat requests and services be matchedup bythe facilitator, or that

interagent communications go through the facilitator. There is preferably support in

the agent library for explicit addressing of requests. However, a preferred

embodimentofthe present invention encourages employment the paradigm of agent

communities, minimizing their developmenteffort, by taking advantageof the

facilitator's provision of transparent delegation and handling of compoundgoals.

A facilitator is preferably viewed as a coordinator, not a controller, of

cooperative task completion. A facilitator preferably neverinitiates an activity. A

facilitator preferably responds to requests to managethe satisfaction of some goal, the

update of some data repository,or the installation ofa trigger by the appropriate agent

or agents. All agents can preferably take advantageofthe facilitator’s expertise in

delegation, and its up-to-date knowledge about the current membership of a dynamic

community. The facilitator's coordination services often allows the developerto

lessen the complexity of individual agents, resulting in a more manageable software

developmentprocess, and enablingthe creation of lightweight agents.

Maintaining Data Repositories

The agentlibrary supports the creation, maintenance, and use of databases, in
the form of data solvables. Creation of a data solvable requires only thatit be

declared. Querying a data solvable, as with accessto any solvable, is done using

oaa_Solve.

Attorney Docket No: SRI1P016(3477 VBRC/EWJ DISH, EXasmé® of

DISH, Exh. 1008, p. 130

ll

lyif2

BeTEAyt
I

ioy

PET2

PeEyendl
tf

A data,conceptually similar to a relation .lodatabase.
The facts associated with each solvable are maintained by the agentlibrary, which

also handles incoming messagescontaining queries of data solvables. The default

behavior of an agent library in managing these facts may preferably be refined, using

parameters specified with the solvable’s declaration. For example, the parameter
single_value preferably indicates that the solvable should onlycontain a singlefact at
any given point in time. The parameter unique_values preferably indicates that no
duplicate values should bestored.

Other parameters preferably allow data solvables use of the concepts of
ownership and persistence. For implementing shared repositories,it is often
preferable to maintain a record of which agent created eachfact of a data solvable
with the creating agent being preferably considered the fact's owner. In many

applications,it is preferable to remove an agent's facts when that agent goes offline
(for instance, when the agentis no longer participating in the agent community,
whether by deliberate termination or by malfunction). Whena datasolvable is
declared to be non-persistent, its facts are automatically maintained in this way,

whereasa persistent data solvable preferably retainsits facts until they are explicitly
removed.

A further preferred embodimentofpresent invention supports an agentlibrary

through procedures by which agents can update (add, remove, and replace) facts
belonging to data solvables, either locally or on other agents, given that they have
preferably the required permissions. These procedures may preferably be refined
using manyof the same parametersthat apply to service requests. For example, the
address parameter preferably specifies one or more particular agents to which the
update request applies. In its absence, just as with service requests, the update request
preferably goes to all agents providing the relevant data solvable. This default
behavior can be used to maintain coordinated "mirror" copies of a data set within

multiple agents, and can be useful in support of distributed, collaborative activities.

Similarly, the feedback parameters, described in connection with oaa_Solve,

are preferably available for use with data maintenance requests.

Attorney Docket No: SRI! P016(3477)/BRC/EWJ DISH, ExRat@08poi 39

DISH, Exh. 1008, p. 131

elEa
satam

“ee
iy

1S
oy

itaonED

10

20

30

A further2. embodimentof present invention @. ability to
provide data solvables notjust to client agents, but also to facilitator agents. Data
solvables can preferably created, maintained andusedbya facilitator. The facilitator

preferably can, at the requestofa client of the facilitator, create, maintain and share
the use of data solvables with all the facilitator’s clients. This can be useful with

relatively stable collections of agents, where the facilitator's workloadis predictable.

Using a Blackboard Style of Communication

In a further preferred embodimentofpresent invention, when a data solvable

is publicly readable and writable,it acts essentially as a global data repository and can
be used cooperatively by a group ofagents. In combination with the use of triggers,

this allows the agents to organizetheir efforts around a "blackboard"style of

communication.

As an example, the "DCG-NL"agent(oneofseveral existing natural language

processing agents), providesnatural language processing services for a variety ofits
peer agents, expects those other agentsto record, on the facilitator, the vocabulary to
which they are preparedto respond,with an indication of each word's part of speech,
and ofthe logical form (JCL sub-goal) that should result from the use of that word. In

a further preferred embodimentofpresent invention,the NL agent, preferably whenit

comesonline, preferably installs a data solvable for each basic part of speech on its
facilitator. For instance, one such solvable wouldbe:

solvable(noun(Meaning, Syntax), [], [])

Note that the emptylists for the solvable’s permissions and parametersare acceptable

here, since the default permissions and parameters provide appropriate functionality.

A further preferred embodimentofpresent invention incorporating an Office

Assistant system as discussed herein or similar to the discussion here supports several

agents makinguse ofthese orsimilar services. For instance, the database agent uses
the followingcall, to library procedure oaa_AddData,to post the noun “boss’, and to
indicate that the "meaning" of boss is the concept ‘manager’:

oaa_AddData(noun(manager, atom(boss)), [address(parent)])

Attorney Docket No: SRIiP016(3477VBRC/EWJ DISH, ExPag@Q@2 pfis9

DISH, Exh. 1008, p. 132

feeaceel
ay
4

Fa

TASs
“Hla ses

et

10

20

25

30

Autonomous ron with Triggers
A further preferred embodiment ofpresentinvention includes support for

triggers, providing a general mechanism for requesting some action be taken when a

set of conditions is met. Each agent can preferablyinstall triggers either locally, for

itself, or remotely, on its facilitator or peer agents. There are preferably atleast four
types oftriggers: communication,data, task, and time. In additionto a type, each

trigger preferably specifies at least a condition and an action, both preferably

expressed in JCL. The condition indicates under whatcircumstancesthe trigger should

fire, and the action indicates what should happen whenitfires. In addition, each

trigger can besetto fire either an unlimited numberoftimes,or a specified number of
times, which can be any positive integer.

Triggers can be used in a variety of ways within preferred embodimentsof the

present invention. For example, triggers can be used for monitoring external sensors
in the execution environment, tracking the progress of complextasks, or coordinating

communications between agentsthat are essential for the synchronization of related

tasks. The installation of a trigger within an agent can be thoughtof as a

representation of that agent's commitmentto carry outthe specified action, whenever

the specified condition holdstrue.

Communication triggers preferably allow any incoming or outgoing event

(message) to be monitored.Forinstance, a simple communication trigger may say

something like: "Whenever a solution to a goal is returned from the facilitator, send

the result to the presentation managerto be displayed to the user."

Datatriggers preferably monitorthe state of a data repository (which can be

maintained ona facilitator or a client agent). Data triggers’ conditions maybetested

upon the addition, removal, or replacementofa fact belonging to a data solvable. An

example data trigger is: "When 15 users are simultaneously loggedon to a machine,

send an alert message to the system administrator.”

Task triggers preferably contain conditionsthat are tested after the processing

of each incoming event and whenevera timeoutoccursin the event polling. These

conditions may specify any goal executable bythe local /CLinterpreter, and most

often are used to test when some solvable becomessatisfiable. Task triggers are

Attorney Docket No: SRI1P016(3477VBRC/EWJ DISH, ERagt098, of 582

DISH, Exh. 1008, p. 133

etaoH
oy

PPESeaIer
hw
at
it

faiey!

5

10

15

20

25

30

useful in checking.internal conditions. anno, manycases such
conditions are captured by solvables, in other cases they may not be. For example, a

mail agent might watch for new incoming mail, or an airline database agent may
monitor whichflights will arrive later than scheduled. An example task trigger iS:
“When mail arrives for me aboutsecurity, notify me immediately.”

Time triggers preferably monitor time conditions. For instance, an alarm

trigger can besetto fire at a single fixed point in time (e.g., "On December 23rd at
3pm"), or on a recurring basis (€.g., "Every three minutes from now until noon").

Triggers are preferably implemented as data solvables, declared implicitly for

every agent. When requesting that a trigger be installed, an agent may use manyofthe
same parametersthat apply to service and data maintenance requests.

A further preferred embodimentofpresent invention incorporates semantic
support, in contrast with most programming methodologies,of the agent on which the
trigger is installed only having to know how to evaluate the conditional part ofthe
trigger, not the consequence. Whenthetrigger fires, the action is delegated to the
facilitator for execution.. Whereas many commercial mail programsallow rulesofthe

form "When mail arrives about XXX,[forwardit, delete it, archiveit]", the possible

actions are hard-coded andthe user mustselect from a fixed set.

A further preferred embodimentofpresent invention,the consequence of a

trigger may be any compound goal executable by the dynamic community of agents.
Since new agents preferably define both functionality and vocabulary, when an

unanticipated agent (for example, a fax agent) joins the community, no modifications
to existing code is required for a user to make useofit - "When mailarrives, fax it to
Bill Smith."

The AgentLibrary

In a preferred embodimentofpresent invention, the agentlibrary provides the
infrastructure for constructing an agent-based system. The essential elements of

protocol (involvingthe details of the messagesthat encapsulate a service request and
its response) are preferably made transparentto simplify the programming

applications. This enables the developer to focus functionality, rather than message

Attorney Docket No: SRI1P016(3477/BRC/EWJ DISH, EPag064, of£2

DISH, Exh. 1008, p. 134

layt
suas a

fdSCT!sagsey

10

20

25

30

construction details Dovrrvvvication details. For example, @.... a service of
anotheragent, an agent preferably calls the library procedure oaa_Solve. Thiscall
results in a messagetoafacilitator, which will exchange messages with one or more

service providers, and then send a message containing the desired results to the
requesting agent. These results are retumedvia oneofthe arguments of oaa_Solve.
Noneof the messagesinvolvedin this scenario is explicitly constructed by the agent

developer. Notethat this describes the synchronous use of oaa_Solve.

In another preferred embodimentofpresent invention, an agent library

provides both intraagent andinteragentinfrastructure; that is, mechanismssupporting
the internal structure of individual agents, on the one hand, and mechanismsof

cooperative interoperation betweenagents, on the other. Note that mostof the
infrastructure cuts across this boundary with manyof the same mechanisms

supporting both agentinternals and agent interactions in an integrated fashion. For
example,services provided by an agent preferably can be accessed by that agent
through the same procedure (oaa_Solve) that it would employ to request a service of
another agent(the only difference being in the address parameter accompanying the
request). This helps the developer to reuse code and avoid redundantentry pointsinto
the same functionality.

Both ofthe preferred characteristics described above(transparent construction

of messages and integration ofintraagent with interagent mechanisms) apply to most
other library functionality as well, including but not limited to data management and

temporal contro] mechanisms.

Source Code Appendix

Source code for version 2.0 of theOAA software productis included as an

appendix hereto,and is incorporated herein by reference. The code includes an agent
library, which provides infrastructure for constructing an agent-based system. The
library's several families of procedures provide the functionalities discussed above, as
well as others that have not been discussed here butthat will be sufficiently. clear to

the interested practitioner. For example, declarations of an agent's solvables, and their
registration with a facilitator, are managedusing procedures such as oaa_Declare,
oaa_Undeclare, and oaa_Redeclare. Updatesto data solvables can be accomplished
with a family of procedures including oaa_AddData, oaa_RemoveData, and

Attorney Docket No: SRIIP016(3477/BRC/EWJ DISH, ERaseds ofa

DISH, Exh. 1008, p. 135

in
at

faEe
ti

ee
+

SL.
Sya

Putt 20

25

30

oaa_ReplaceData. &.., triggers are maintained usingcs such as
oaa_AdadTrigger, oaa_RemoveTrigger, and oaa_ReplaceTrigger. The provided

source code also includes source code for an OAAFacilitator Agent.

The source code appendixis offered solely as a meansoffurther helping

practitioners to construct a preferred embodimentofthe invention. By no meansis
the source code intendedto limit the scope of the present invention.

Illustrative Applications

To furtherillustrate the technology of the preferred embodiment, we will next

present and discuss two sample applicationsof the presentinventions.
~

Unified Messaging

A further preferred embodiment ofpresent invention incorporates a Unified

Messaging application extending the AutomatedOffice application presented —

previously herein with an emphasis on ubiquitous access and dynamic presentation of
the information and services supported by the agent community. The agents used in

this application are depicted in Figure 12.

A hypothetical example ofrealistic dialog using a preferred embodiment of

the presentinvention can provide insight into how systems may preferably be built

using the presentinvention. In this scenario, the user, with only a telephone as an

interface, is planning a trip to Boston where hewill soon give a presentation.

Capitalized sentences are phrases spokenbythe userinto the telephone and processed

by a phone agent 452.

Responses, unless otherwise indicated, are spoken by the system using text-to-

speech generation agent 454.

1.1 Welcome to SRI International. Please enter your
user ID and password.

<User enters touchtone ID and password>

Good to see you again Adam Cheyer. I am

listening to you.

Every user interface agent 408, including the telephone agent452, should

knowtheidentify of its user. This information is used in resolving anaphoric

Attorney Docket No: SRI1P016(3477)/BRC/EWJ DISH, BardGiof. 595

DISH, Exh. 1008, p. 136

Ea
ies wedspel

semrey coalat

ithSseESeae8
20

25

30

35

40

references such as ®.. "T", and allows multiple user nA operated by the
sameuser to work together.

1.2 WHAT IS TODAY'S SCHEDULE?
Here is today's schedule for Adam Cheyer:

At 10am for 1 hour, meeting with Dave.
At 3pm for 1 hour, presentation about software

agents.

End of schedule.

If the user is operating both a graphicaluserinterface and a telephone,as

described in conjunction with the Automated Office application, the result of this

spoken requestis to display a calendar window containingthe current schedule. In

this case, with no graphicaldisplay available, the GEN_NL agent 1202is taskedto

producea spokenresponsethat can be played over the phone. GEN_NLshares the

same dynamic vocabulary andphrasalrules as the natural language parser DCG_NL

426, and containsstrategies for producing responses to queries using either simple or
list-based multimedia utterances.

1.3 FIND FRIDAY'S WEATHER IN BOSTON.
The weather in Boston for Friday is as follows:

Sunny in the morning. Partly cloudy in the
afternoon with a 20

percent chance of thunderstorms late. Highs in the
mid 70s.

In addition to data accessible from legacy applications, content may be

retrieved by web-reading agents which provide wrappers arounduseful websites.

1.4 FIND ALL NEW MAIL MESSAGES.
There are 2 messages available.
Message 1, from Mark Tierny, entitled "OAA meeting."

1.5 NEXT MESSAGE

Message 2, from Jennifer Schwefler, entitled
"Presentation Summary.”
1.6 PLAY IT.

This message is a multipart MIME-encoded message.
There are two parts.

Part 1. (Voicemail message, not text-to speech):
Thanks for taking part as a speaker in our

conference.

The schedule will be posted soon on our homepage.
1.7 NEXT PART

Part 2. (read using text-to-speech):
The presentation home page is http://www....

1.8 PRINT MESSAGE

Command executed.

Attorney Docket No: SRIIP016(3477/BRC/EWJ DISH, EPagt083, of 596

DISH, Exh. 1008, p. 137

my
ttelaS

stan, weeellHET
ai

®rYit ui

CEas
2

snfen
its

15

20

25

30

Mail nessWe no longerjust simple text socumeDo often consist of
multiple subparts containing audiofiles, pictures, webpages, attachments andsoforth.
Whena userasks to play a complex email messageoverthe telephone, many different

agents may be implicated in the translation process, which would be quite different

given the request"printit." The challenge is to develop a system which will enable
agents to cooperate in an extensible, flexible mannerthatalleviates explicit coding of

agentinteractions for every possible input/output combination.

In a preferred embodimentofthe present invention, each agent concentrates

only on whatit can do and on whatit knows,andleaves other workto be delegated to
the agent community.Forinstance,a printer agent 1204, defining the solvable |
print(Object,Parameters), can be defined bythe following pseudo-code, which
basically says, "If someone can get me a document,in either POSTSCRIPTortext

form, I can print it.”.

print(Object, Parameters) {
' T£ Object is reference to "it", find an appropriate

document

if (Object = "ref(it)")
oaa_Solve(resolve_reference(the, document, Params,

Object), []);
' Given a reference to some document, ask for the

document in POSTSCRIPT

if (Object = "id(Pointer)”)
oaa_Solve(resolve_id_as(id(Pointer), postscript,

[], Object), []);
' If Object is of type text or POSTSCRIPT, we can

print it.
if ((Object is of type Text) or (Object is of type

Postscript))
do_print (Object) ;

}

In the above example, since an email message is the salient document, the

mail agent 442 will receive a request to produce the message as POSTSCRIPT.

Whereas the mail agent 442 may know howto save a text message as POSTSCRIPT,

it will not know whatto do with a webpage or voicemail message.For these parts of

the message,it will simply send oaa_Solve requests to see if another agent knows

how to accomplishthe task.

Attorney Docket No: SRI1P016(3477/BRC/EWJ DISH, ExPat®08 8p0f39

DISH, Exh. 1008, p. 138

Pnmril
im
ralif

waela es

fiSS?Eee
20

25

30

Until now, @.. has been using only a telephonee interface. Now, he
movesto his desktop,starts a web browser 436, and accesses the URLreferenced by

the mail message.

1.9 RECORD MESSAGE

Recording voice message. Start speaking now.
1.10 THIS IS THE UPDATED WEB PAGE CONTAINING THE
PRESENTATION SCHEDULE.

Message one recorded.
1.11 IF THIS WEB PAGE CHANGES, GET IT TO ME WITH NOTE
ONE.

Trigger added as requested.

In this example, a local agent 436 which interfaces with the web browser can

return the current page as a solutionto the request "oaa_Solve(resolve_reference(this,
web_page,[], Ref),[])", sent by the NLagent 426.A triggeris installed on a web

agent 436 to monitor changesto the page, and when the page is updated, the notify

agent 446 can find the user and transmit the webpage and voicemail message using

the most appropriate media transfer mechanism.

This example based on the Unified Messaging application is intended to show

how concepts in accordancewith the present invention can be usedto produce a

simple yet extensible solution to a multi-agent problem that would be difficult to

implement using a morerigid framework. The application supports adaptable

presentation for queries across dynamically changing, complex information; shared
context and reference resolution amongapplications; and flexible translation of

multimedia data. In the next section, we will present an application which highlights

the use of parallel competition and cooperation amongagents during multi-modal

fusion.

Multimodal Map

A further preferred embodimentofpresent invention incorporates the

Multimodal Mapapplication. This application demonstrates natural ways of

communicating with a community ofagents, providing aninteractive interface on

which the user may draw, write or speak.In a travel-planning domainillustrated by

Figure 13, available information includes hotel, restaurant, and tourist-site data

retrieved by distributed software agents from commercial Internetsites. Some

preferred typesofuser interactions and multimodal issues handled bythe application

Attorney Docket No: SRI! P016(3477VBRC/EWJ DISH, ExRageo39,0f 39

DISH, Exh. 1008, p. 139

ET
rece

rad‘gs

PSeeESa
a
a

ty3

15

20

25

30

35

40

45

are illustrated by a.featuring working examples @ from the current
system.

Sara is planning a businesstrip to San Francisco, but wouldlike to schedule

someactivities for the weekend whileshe is there. She turnson herlaptop PC,

executes a mapapplication, and selects San Francisco.

2.1 [Speaking] Where is downtown?
Map scrolls to appropriate area.

2.2 [Speaking and drawing region] Show me all hotels
near here.

Icons representing hotels appear.
2.3 (Writes on a hotel] Info?

A textual description (price, attributes, etc.)
appears.
2.4 [Speaking] I only want hotels with a pool.

Some hotels disappear.
2.5 [Draws a crossout on a hotel that is too close toa
highway]

Hotel disappears
2.6 [Speaking and circling] Show me a photo of this
hotel.

Photo appears.
2.7 [Points to another hotel]

Photo appears.
2.8 [Speaking] Price of the other hotel?

Price appears for previous hotel.
2.9 [Speaking and drawing an arrow] Scroll down.

Display adjusted.
2.10 [Speaking and drawing an arrow toward a hotel]

What is the distance from this hotel to Fisherman's
Wharf?

Distance displayed.
2.11 [Pointing to another place and speaking] And the
Gistance to here?

Distance displayed.

Sara decides she could use some humanadvice. She picks up the phone,calls

Bob,hertravel agent, and writes Start collaboration to synchronize his display with

hers. At this point, both are presented with identical maps, and the input and actions

of onewill be remotely seen bythe other.

3.1 [Sara speaks and circles two hotels]
Bob, I'm trying to choose between these two hotels.

Any opinions?
3.2 [Bob draws an arrow, speaks, and points]

Well, this area is really nice to visit. You can
walk there from

Attornev Docket No: SRI1P016(3477/BRC/EWJ DISH, ERagect,of $90

DISH, Exh. 1008, p. 140

i
aay

tate

it
shmy

EySS3

10

20

25

30

this wo
Map scrolls to indicated area. Hotel selected.

3.3 [Sara speaks] Do you think I should visit Alcatraz?
3.4 [Bob speaks] Map, show video of Alcatraz.

Video appears.
3.5 [Bob speaks] Yes, Alcatraz is a lot of fun.

A further preferred embodimentofpresent invention generates the most

appropriate interpretation for the incoming streams of multimodal input. Besides

providing a userinterface to a dynamicset of distributed agents, the application is

preferably built using an agent framework. Thepresent invention also contemplates
aiding the coordinate competition and cooperation among information sources, which
inturn worksin parallel to resolve the ambiguities arising at every level of the

interpretation process: low-level processing of the data stream, anaphora resolution,

cross-modality influences and addressee.

Low-level processing of the data stream: Peninput maybepreferably

interpreted as a gesture (e.g., 2.5: cross-out) by one algorithm, or as handwriting by a

separate recognition process(e.g., 2.3: "info?"). Multiple hypotheses may preferably
be returned by a modality recognition component.

Anaphora resolution: When resolving anaphoric references, separate

information sources may contribute to resolving the reference: context by objecttype,

deictic, visual context, database queries, discourse analysis. An example of

information provided through context by object typeis found in interpreting an

utterance such as "show photoofthe hotel", where the natural language component

can returnalist of the last hotels talked about. Deictic information in combination

with a spokenutterancelike "show photo ofthis hotel" may preferably include

pointing,circling, or arrow gestures which might indicate the desired object(e.g.,
2.7). Deictic references may preferably occurbefore, during, or after an

accompanying verbal command. Information provided in a visual context, given for
the request "display photo ofthe hotel" may preferably include the user interface

agent might determine that only one hotelis currently visible on the map, and
therefore this might be the desired reference object. Database queries preferably

involving information from a database agent combined with results from other

resolution strategies. Examples are "show me a photo ofthe hotel in Menlo Park” and

Attorney Docket No: SRI1P016(3477VBRC/EWJ DISH, ERaga@d, pf6

DISH, Exh. 1008, p. 141

eyaetelliyoY
MyAd3

PyenAE
Pu 20

25

30

2.2. Discourse snaQDcoterabr provides a source ofm3 for phrases such
as "No,the other one”(or 2.8).

The abovelist of preferred anaphora resolution mechanismsis not exhaustive.

Examplesof other preferred resolution methodsincludebutare not limited to spatial

reasoning("the hotel between Fisherman's Wharf and Lombard Street") and user

preferences("near my favorite restaurant’).

Cross-modality influences: When multiple modalities are used together, one

modality may preferably reinforce or remove or diminish ambiguity from the

interpretation of another. Forinstance, the interpretation of an arrow gesture may vary

when accompanied bydifferent verbal commands(e.g., "scrollleft” vs. "show info

aboutthis hotel"). In the latter example, the system musttake into account how

accurately and unambiguously an arrow selects a single hotel.

Addressee. With the addition of collaboration technology, humans and

automatedagentsall share the same workspace. A pen doodle or a spoken utterance

may be meantfor either another human,the system (3.1), or both (3.2).

The implementation of the Multimodal Map application illustrates and

exploits several preferred features of the present invention: reference resolution and
task delegation by parallel parameters of oaa_Solve, basic multi-user collaboration

handled throughbuilt-in data managementservices, additional functionality readily

achieved by adding new agents to the community, domain-specific code cleanly

separated from other agents.

A further preferred embodimentofpresent invention provides reference

resolution and task delegation handled in a distributed fashionby theparallel

parameters of oaa_Solve, with meta-agents encodingrulesto help the facilitator make
context- or user-specific decisions aboutpriorities among knowledge sources.

A further preferred embodimentofpresent invention provides basic multi-user

collaboration handled throughat least one built-in data managementservice. The

map userinterface preferably publishes data solvables for elements such as icons,
screen position, and viewers, and preferably defines these elementsto have the
attribute "shareable". For every updateto this public data, the changes are preferably

Attorney Docket No: SRI1P016(3477VBRC/EW]J DISH, EPashé2 of£91

DISH, Exh. 1008, p. 142

a
tH

aASUeaSeee
20

25

30

automatically eonMc all membersofthe collaborative @ with associated
callbacks producingthe visible effect of the data change (e.g., adding or removing an

icon).

Functionality for recording and playbackofa sessionis preferably

implemented by adding agents as membersofthe collaborative community. These

agents either record the data changesto disk,or read a log file and replicate the

changesin the shared environment.

The domain-specific code for interpreting travel planningdialog is preferably

separated from the speech,natural language, pen recognition, database and map user

interface agents. These componentswere preferably reused without modification to

add multimodal map capabilities to other applications for activities such as crisis

management, multi-robot control, and the MVIEWStoolsfor the video analyst.

Improved Scalability and Fault Tolerance

Implementations of a preferred embodimentofpresent invention which rely

upon simple,single facilitator architectures may face certain limitations with respect

to scalability, because the single facilitator may become a communications bottleneck

and mayalso representa single,critical point for system failure.
~

Multiple facilitator systems as disclosed in the preferred embodimentsto this

point can be used to construct peer-to-peer agent networksas illustrated in Figure 14.
While such embodiments are scalable, they do possess the potential for

communication bottlenecks as discussed in the previous paragraph and they further

possess the potential for reliability problemsas central, critical points of vulnerability

to systemsfailure.

A further embodimentof present invention supports a facilitator implemented

as an agentlike any other, whereby multiple facilitator network topologies can be

readily constructed. One example configuration (but not the only possibility) is a

hierarchical topologyas depicted in Figure 15, wherea top level Facilitator manages

collections of both client agents 1508 and other Facilitators, 1504 and 1506.

Facilitator agents could be installed for individualusers, for a group ofusers, or as

appropriate for the task.

Attornev Docket No: SRI1P016(3477 ¥BRC/EWJ DISH, ERagt093,of $92

DISH, Exh. 1008, p. 143

1aTPeetae
Htet me

oe
ay)
i

i.

an

FaFy

15

20

25

30

Note rane:MDnerwor worktopologies of wcinall be seen as
graphs where each nodecorrespondsto an instance of a facilitator and each edge
connecting two or more nodescorrespondsto a transmission path across one or more

physical transport mechanisms. Some nodes mayrepresent facilitators and some
nodes may representclients. Each node can be further annotated with attributes

corresponding to include triggers, data, capabilities but notlimited to these attributes.
A further embodimentofpresent invention provides enhanced scalability and

robustness by separating the planning and execution componentsofthe facilitator. In
contrast with the centralized facilitation schemes described above,the facilitator

system 1600 of Figure 16 separates the registry/planning component from the
execution component. As a result, no single facilitator agent mustcarry all
communications nor doesthefailure of a single facilitator agent shut downtheentire

system.
Turningdirectly to Figure 16, the facilitator system 1600 includes a

registry/planner 1602 anda plurality of client agents 1612-1616. The registry/planner
1604is typically replicated in one or more locations accessible by the client agents.

Thusif the registry/planner 1604 becomesunavailable, the client agents can access

the replicated registry/planner(s).

This system operates, for example, as follows. An agent transmits a goal 1610

to the registry planner 1602. The registry/planner 1604 translates the goal into an

unambiguous execution plan detailing how to accomplish any sub-goals developed
from the compoundgoal, as well as specifying the agents selected for performing the
sub-goals. This execution plan is provided to the requesting agent which in turn
initiates peer-to-peer interactions 1618 in order to implement the detailed execution

plan, routing and combining informationas specified within the execution plan.
Communicationis distributed thus decreasing sensitivity of the system to bandwidth

limitations ofa single facilitator agent. Executionstate is likewise distributed thus

enabling system operation even whena facilitator agent fails.

Further embodiments ofpresentinvention incorporate into the facilitator

functionality such as load-balancing, resource management, and dynamic

configuration of agentlocations and numbers, using (for example) any of the

topologies discussed. Other embodiments incorporate into a facilitator the ability to
aid agentsin establishing peer-to-peer communications. Thatis, for tasks requiring a

Attorney Docket No: SRI1P016(3477/BRC/EWJ DISH, ERagé00$, of 593

DISH, Exh. 1008, p. 144

Ms

atEadl
a5]We

fyTEty
hy
i

ec:i
Paey
fui

sequence of_—two agents, the facilitator&. agents in finding
one anotherand establishing communication, stepping out of the way while the agents

communicate peer-to-peer over a direct, perhaps dedicated channel.

Further preferred embodiments ofthe present invention incorporate

mechanismsfor basic transaction management,such as periodically savingthe state of

agents (both facilitator and client) and rolling backto thelatest saved state in the
eventof the failure of an agent.

Attorney Docket No: SRI1P016(3477/BRC/EW) DISH, ExRageoé5pof 49

DISH, Exh. 1008, p. 145

APPENDIXAI

Source codefile named compound.pl.

o =

e SSPoo) =>
nan =n= SO

Ro SS
Y%®au=
=~

aon S41
vo ==
¥ =

DISH, Exh. 1008, p. 145

DISH, Exh. 1008, p. 146

SESESEEFESSTSEEEESEEEEEETESETEEELEEEEFEEEESEEELEGEELELTESESSEEEEEEEESETEEETETS

File : compound.pl
Primary Authors : David Martin, Adam Cheyer
Purpose : Provides handling of compound goals by the facilitator.

Unpublished-rights reserved under the copyright laws of the United States.

Unpublished Copyright (c) 1998, SRI International.
"Open Agent Architecture" and "OAA" are Trademarks of SRI International.

OPOPdPdPdPdPdPdPdPdPap
ESESESEEEEEEESESSEEEEESESTSESESESEEEEEEEEEEBEEEGEGEEEESESEEEESEETEEEEESTEE TEESE

% This is just here so this file can be compiled separately (but its
% official declaration is in oaa.pl):
:- op(599,yfx,::).

:- dynamic
binding_num/1,
ks_num/1,
multiple_continuation/7

% This file is loaded by facilitator code, and thus no
% module imports are needed here.

ESEEESESEEESESEETESESEEESEEEEEEEEE EYES EEEEELEEEEETEEE ESE ESET SEESESE TEES
% OVERVIEW

EEEEESESESESTEEESEEEEESEESESEEEEEEEEGEEEGEEEEEREEELEEEEEESEEEEEESEEEEEES

/*\

These facilitator routines support the use of compound "ICL goals".
An ICLGoal is of the form Sources:Goal::Params, where both Sources and

Params are optional. Each subgoal of ICLGoal is also of that form.

When an agent calls solve/2, it may specify an ICL goal which is
"incomplete"; that is, ambiguous as to which agents are to solve the
various subgoals. The facilitator then completes the ICL goal, if
necessary, and executes it. Execution involves having all the
subgoals solved by the appropriate agents, assembling the solutions,
and returning them to the requesting agent.

If a agent wants to construct a complete ICL goal, and is willing to
guarantee that it's complete and that all solvers mentioned in it are
currently valid, then that agent (usually a "meta-agent") may call
execute_goal directly. @@ We haven't yet provided library calls for
this.

IMPORTANT NOTE: : has higher precedence than ::. This means that
a:b::ce will unify with X:¥Y and X:Y¥::Z, but NOT with Y::Z.

Wherever a Sources field appears, it may be any of the following:
built_in
facilitator

DISH, Exh. 1008, p. 146

DISH, Exh. 1008, p. 147

parent
KS

[KS1, KS2, ...]

'built_in’ isn't normally specified by a requesting agent - although
there's no harm in doing so - but is used internally by the
facilitator. KS, KS1, KS2, etc. may be either the name or address of
an agent (client or facilitator). ‘facilitator' or 'parent' may also
appear in a list of KS's. If Sources is an empty list or a var, it is
handled just as if there were no Sources field, in which case the
facilitator determines what sources are relevant.

Note that when an ICL goal includes a Sources field, there should not be
Sources fields for any of its subgoals. If there are, they will be
ignored. (@@Need to make sure this works ok.) However, Params fields
may be usefully nested within goals that have Params fields. Certain
nested parameters, such as solution_limit/1, can be used by the
solving agent.

If an ICL goal has parameters, some of them are "inherited" by
subgoals. If there's a conflicting parameter on a subgoal, however,
it overrides an inherited parameter.

PARAMETERS

address (+A) [embedded or global] - Used precisely as if A: prefixes
the relevant goal.

get_address(-S) [embedded] - bind S to indicate who provided the
solution. Solver identities will be given as numeric ids. Currently
only works when attached to non-compound (sub)goals.

get_address(-S) [global] - bind S to indicate all sources that were queried
in finding solutions (even if they returned none).

*/

EELESSESESESESTEESESESEESESEEEEEEGELEEESEEEEEEEEESESEEESESEEEESEESEES EES
% GOAL COMPLETION

EESESEESESESESSEESESEEEESESESEEEEEESEGEEEEEEEEEEELETESET EEE EEEEEEEESESS

/*\

complete_goal (RequestingKS, Goal, GlobalParams, CompletedGoal) .

complete_goal takes in an ICL goal and produces a "complete ICL goal"
(sometimes known as a "plan", but I think we'll reserve that term for
future developments). The goal and the complete goal have precisely
the same variables - but are not necessarily unifiable.

*/

complete_goal (RequestingkKS, Goal, GlobalParams, CompletedGoal) :-
complete_addressing(RequestingKS, Goal, GlobalParams, AddressedGoal),
complete_concurrency (AddressedGoal, CompletedGoal).

DISH, Exh. 1008, p. 147

DISH, Exh. 1008, p. 148

/*\

complete_addressing(+RequestingKS, +ICLGoal, +GlobalParams, -AddressedGoal).

AddressedGoal has more-or-less the same form as ICLGoal, but possibly
with some regrouping of subgoals, and the addition of Sources fields
to ICLGoal or its subgoals. The idea is that AddressedGoal contains
complete information as to where its various subgoals are to be sent,
so that no further analysis is needed. Any regrouping of subgoals is
done as an optimization. AddressedGoal shares all variables with
ICLGoal .

@@What other operators (e.g., negation) might we want to support?

*/

completeaddressing (RequestingKS, ICLGoal, GlobalParams, AddressedGoal) :-
% @@ verifyparams (GlobalParams, global, Verified),
complete_sources (RequestingKS, ICLGoal, GlobalParams,

AddressedGoalWithParamsEverywhere),
% @@Here, propagate params, instantiate address request in GlobalParams. ?
remove_empty_params (AddressedGoalWithParamsEverywhere, AddressedGoal) .

/*\

complete_sources (+RequestingKS, +ICLGoal, +GlobalParams, -AddressedGoal).

Ensures that every subgoal is explicitly covered by one or more
sources. Determines the largest subgoals that can be "chunked"; that
is, grouped together for submission to a source.

In the process, every goal acquires a Params field (wherever there was
no Params field before, the empty list is added). This is done just
to make the definition of complete_sources more readable.

*/

% Here we assume that the goal-writer didn't really mean to put a var,
% because it's not meaningful to do so:

complete_sources (KS, Sources:Goal, GlobalParams, AddressedGoal) :-
var (Sources),!m4

completesources (KS, Goal, GlobalParams, AddressedGoal).

/*

{ AddressedGoal = A:_ ->
Sources =A

| otherwise ->
findall(A, sub_term(A:_, AddressedGoal), SubSources),
% @@More work needed here:
Sources = SubSources

).

*/

% Here we assume that the goal-writer didn't really mean to put [],
% because it's not meaningful to do so:

DISH, Exh. 1008, p. 148

DISH, Exh. 1008, p. 149

complete_sources(KS, []:Goal, GlobalParams, AddressedGoal) :-
!,

complete_sources(KS, Goal, GlobalParams, AddressedGoal).

% Sources and Params already specified; we're done:
% @@But let's verify the sources are valid!

complete_sources(_KS, Sources:Goal::Params, _GlobalParams,
Sources:Goal::Params) :-

|

% Sources already specified; add empty Params list:
complete_sources(_KS, Sources:Goal, _GlobalParams, Sources:Goal::[]) :-

1,

% Sure, we'll continue to support an address in Params or GlobalParams:
complete_sources (KS, Goal::Params, GlobalParams, AddressedGoal) :-

% @@ verify_params(...),
(memberchk (address (Sources), Params) ;

memberchk (address (Sources), GlobalParams)),
\+ var (Sources),|of

complete_sources(KS, Sources:Goal::Params, GlobalParams, AddressedGoal).

% No Sources or Params specified; add empty Params list before
% proceeding:

complete_sources(KS, Goal, GlobalParams, AddressedGoal) :-
\+ (Goal = —::_),1

complete_sources(KS, Goal::[{], GlobalParams, AddressedGoal).

% Here we get down to the real work: determining solvers and
% chunking of subgoals:

complete_sources(KS, (\+ Goall)::Params, GlobalParams, AddressedGoal) :-t

oaa_Name (Facilitator),
complete_sources(KS, Goali, GlobalParams, AddressedGoall),

% If $1 is a SINGLE source, it's OK to send the negation to the source.
% This case also works if $1 == built_in.

((AddressedGoall = [S1]:G1::Pl,

Sl \s= Facilitator,
Sl \=s= facilitator) ->
AddressedGoal = S1:((\+ G1)::P1)::Params

| otherwise ->
AddressedGoal = (\+ AddressedGoall: : Params)

).

complete_sources(KS, (Goall, Goal2, Goal3)::Params, GlobalParams,
AddressedGoal) :-

% This clause is needed because we want built_in pred's to be grouped
% with what comes before, not after.
!

complete_sources(KS, Goall, GlobalParams, AddressedGoall),
complete_sources(KS, Goal2, GlobalParams, AddressedGoal2),
complete_sources(KS, Goal3, GlobalParams, AddressedGoal3),
((AddressedGoall = $1:G1::Pl1,

AddressedGoal2 = S2:G2::P2,

DISH, Exh. 1008, p. 149

DISH, Exh. 1008, p. 150

AddressedGoal3 = $3:G3::P3,

chunkable_sources([S1, S2, $3], Sources),
compatibleparams([P1, P2, P3])) ->
AddressedGoal = Sources: (G1::P1, G2::P2, G3::P3)::Params

| (AddressedGoall = $1:G1::P1,
AddressedGoal2 = S$2:G2::P2,

AddressedGoal3 = (S3A:G3A::P3A, Goal3B)::P3,

% Goal3B may or may not begin with Source:. icl_GoalComponents
% deals with the precedence issues.
icl_GoalComponents(Goal3B, _, G3B, P3B),
chunkable_sources([S1, S2, S3A], Sources),
append (P3A, P3, NewP3A),
append (P3B, P3, NewP3B),
compatible_params([P1, P2, NewP3A))) ->
AddressedGoal = (Sources: (G1::P1, G2::P2, G3A::NewP3A)::[],

G3B::NewP3B) ::Params

| (AddressedGoall = $1:G1::P1,
AddressedGoal2 = S2:G2::P2,

chunkable_sources(S1, S2, Sources),
compatible_params([P1, P2])) ->
AddressedGoal = (Sources: (G1::P1, G2::P2)::[], AddressedGoal3) ::Params

| (AddressedGoal2 = $2:G2::P2,
AddressedGoal3 = $3:G3::P3,

chunkable_sources (S2, S3, Sources),
compatibleparams([P2, P3])) ->
AddressedGoal = (AddressedGoall, Sources: (G2::P2, G3::P3)::[])::Params

| (AddressedGoal2 = S2:G2::P2,
AddressedGoal3 = (S3A:G3A::P3A, Goal3B)::P3,

icl_GoalComponents (Goal3B, _, G3B, P3B),
chunkable_sources([S2, S3A], Sources),
append (P3A, P3, NewP3A),
append (P3B, P3, NewP3B),
compatibleparams([P2, NewP3A])) ->
AddressedGoal = (AddressedGoall, Sources: (G2::P2, G3A::NewP3A)::[],

G3B:NewP3B)::Params

| otherwise ->
AddressedGoal =

(AddressedGoall, AddressedGoal2, AddressedGoal3)::Params
).

complete_sources(KS, (Goall, Goal2)::Params, GlobalParams, AddressedGoal) :-I

complete_sources (KS, Goall, GlobalParams, AddressedGoall),
complete_sources (KS, Goal2, GlobalParams, AddressedGoal2),
((AddressedGoall = S1:Gi::P1,

AddressedGoal2 = S2:G2::P2,

chunkable_sources(S1, S2, Sources),
compatibleparams([P1, P2])) ->
AddressedGoal = Sources: (G1::P1i, G2::P2)::Params

| otherwise ->
AddressedGoal = (AddressedGoall, AddressedGoal2)::Params

).

% Note: this clause must precede that for disjunction.
complete_sources(KS, (Goall -> Goal2 ; Goal3)::Params, GlobalParams,

AddressedGoal) :-
t4

complete_sources(KS, Goall, GlobalParams, AddressedGoall),
complete_sources (KS, Goal2, GlobalParams, AddressedGoal2) ,

DISH, Exh. 1008, p. 150

DISH, Exh. 1008, p. 151

complete_sources(KS, Goal3, GlobalParams, AddressedGoal3),
((AddressedGoall = $1:G1::Pl,

AddressedGoal2 $2:G2::P2,

AddressedGoal3 = S$3:G3::P3,

chunkable_sources([S1, $2, $3], Sources),
compatibleparams([P1, P2, P3])}) ->
AddressedGoal = Sources: (Gi::P1 -> G2::P2 | G3::P3)::Params

| otherwise ->
AddressedGoal =

(AddressedGoali -> AddressedGoal2 | AddressedGoal3) : : Params
).

complete_sources{KS, (Goall -> Goal2)::Params, GlobalParams, AddressedGoal) :-1

complete_sources (KS, Goall, GlobalParams, AddressedGoall),
complete_sources (KS, Goal2, GlobalParams, AddressedGoal2),
((AddressedGoall = S$1:G1::P1,

AddressedGoal2 = S$2:G2::P2,

chunkablesources([S1, $2], Sources),
compatible_params([P1, P2])}) ->
AddressedGoal = Sources: (G1::P1 -> G2::P2)::Params

| otherwise ->
AddressedGoal =

(AddressedGoall -> AddressedGoal2) :: Params

).

complete_sources(KS, (Goall ; Goal2)::Params, GlobalParams, AddressedGoal) :-'

complete_sources (KS, Goall, GlobalParams, AddressedGoall),
complete_sources(KS, Goal2, GlobalParams, AddressedGoal2),
((AddressedGoall = $1:G1::Pl1,

AddressedGoal2 = S2:G2::P2,

chunkable_sources(S1, S2, Sources),
compatibleparams([P1, P2])) ->
AddressedGoal = Sources: (G1::P1; G2::P2)::Params

| otherwise ->
AddressedGoal = (AddressedGoall; AddressedGoal2) :: Params

).

% To be complete, we will allow for this nonstandard goal form:
complete_sources (KS, Goal::Params1::Params2, GlobalParams,

AddressedGoal::Params2) :-
1

complete_sources (KS, Goal::Paramsl1, GlobalParams, AddressedGoal) .
complete_sources(_KS, Goal::Params, _GlobalParams, built_in:Goal::Params) :-

icl_BuiltIn (Goal),I

% Here, finally, we determine the agents (or parent facilitator) that
% can solve a non-compound Goal:

complete_sources(KS, Goal, GlobalParams, Sources:Goal) :-
sourcesfor_goal(KS, Goal, GlobalParams, Sources) .

remove_empty_params (Addr:Goal::[], Addr:NewGoal) :-i‘a

remove_empty_params (Goal, NewGoal) .
remove_empty_params (Addr:Goal::Params, Addr:NewGoal::Params) :-{4

remove_empty_params (Goal, NewGoal).
remove_emptyparams (Goal::[], NewGoal) :-|74

DISH, Exh. 1008, p. 151

DISH, Exh. 1008, p. 152

remove_empty_params (Goal, NewGoal).
remove_empty_params (Goal::Params, NewGoal::Params):-

!,

remove_empty_params (Goal, NewGoal).
remove_empty_params (Sources:Goal, Sources:NewGoal) :-

',

remove_empty_params (Goal, NewGoal).
remove_empty_params((\+ Goal)::[], (\+ NewGoal)) :-

t,

remove_empty_params (Goal, NewGoal).
remove_empty_params((Goall, Goal2), (NewGoall, NewGoal2)) :-

t,

remove_empty_params (Goall, NewGoall),
remove_empty_params (Goal2, NewGoal2).

remove_empty_params((Goall ; Goal2), (NewGoall ; NewGoal2)) :-
i,

remove_empty_params (Goall, NewGoalli),
remove_empty_params (Goal2, NewGoal2).

remove_empty_params((Goall -> Goal2), (NewGoall -> NewGoal2)) :-
!,

remove_empty_params (Goall, NewGoall),
removeemptyparams (Goal2, NewGoal2).
% Primitive (non-compound) goal:

remove_empty_params (Goal, Goal).

remove_addresses (_Sources:Goal, NewGoal) :-
!,

remove_addresses (Goal, NewGoal).
remove_addresses ((Goall, Goal2), (NewGoall, NewGoal2)) :-

!,

remove_addresses(Goall, NewGoall),
remove_addresses(Goal2, NewGoal2).

remove_addresses((Goall ; Goal2), (NewGoall ; NewGoal2)) :-
!,

remove_addresses (Goall, NewGoall),
removeaddresses (Goal2, NewGoal2).

remove_addresses((Goall -> Goal2), (NewGoall -> NewGoal2)) :-
!,

remove_addresses (Goall, NewGoall),
remove_addresses (Goal2, NewGoal2).
% Primitive (non-compound) goal:

remove_addresses (Goal, Goal).

/*\

chunkable_sources (+Sourcesi1, +Sources2, -Sources).

Each argument is either: a single KS name (or numeric id); a list of
KS names (where 'facilitator' or 'parent' also count as KS

names), or the atom 'built_in'. (Empty list is OK.)

Sourcesl1 gives the sources that can solve some goal, Sources2
gives the sources that can solve some other goal, and if this
pred. succeeds, Sources gives a set of sources that can solve
both together.

NOTES ON CHUNKING:

DISH, Exh. 1008, p. 152

DISH, Exh. 1008, p. 153

%1 A chunk is a sub-goal SG of a Goal such that
(1) There is a nonempty set S of client agents each of which can solve

the entire chunk (that is, every predicate in the chunk is either an
icl_BuiltIn or one of the agent's solvables), and

(2) Performing the subgoal as (ks1:SQ ; ks2:SQ ; ... ; ksN:SQ), where
ks1 ... ksN are all the agents in S, does not in any way violate the
intended semantics of the overall Goal.

NOTE: chunking is done "conservatively", so as to preserve Prolog
semantics. So, for example, the following Goal:

(a(1), b(2)),

where a and b are both solvable by ksi and ks2, will be chunked as
follows:

chunk(a(1), [(ksl, ks2]), chunk(b(2), [ks1, ks2])
which amounts to no chunking at all, instead of

chunk((a(1), b(2)), [ks1, ks2]).

The former results in execution

(ksl:a(1) ; ks2:a2), (ksl:b(2) ; ks2:b(2))
whereas the latter would result in execution

ks1:(a(1), b(2)) ; ks2:(a(1), b(2))

We might want to explore under what conditions more extensive chunking
can be done.

*/

% This just allows for single sources, not ina list:
chunkable_sources(Sourcel, Source2, Sources) :-

(atomic (Sourcel) ->
S1 = [Source1]

| otherwise ->
S1 = Sourcel

) ‘
(atomic (Source2) ->

S2 = [Source2]

| otherwise ->
S2 = Source2

),

chunkable_sres(S1, S2, Sources).

chunkable_srces(built_in, Sources, Sources) :-
% at least one element:

Sources = [_ | _],
!,

chunkable_srces(Sources, built_in, Sources) :-
Sources = [_ | _],
t.

chunkable_sres([]), [], []) :-
!,

chunkable_sres([Source], [Source], [Source]) :-
I.

chunkable_sres([Source1], [Source2], [Sourcel]) :-
(number (Sourcel), atom(Source2) ;

number (Source2), atom(Sourcel)),{4

find_address(Sourcel, Source),
find_address (Source2, Source).

DISH, Exh. 1008, p. 153

DISH, Exh. 1008, p. 154

% chunkable_sources(+SourcesIn, -SourcesOut).
% Does the same as chunkable_sources/3, but allows for a list
% of sources (length >= 1) as arg 1.

chunkable_sources([Sources], Sources).
chunkable_sources([Sourcesl1, Sources2 | RestSources], SourcesOut) :-

chunkable_sources (Sources1, Sources2, SourcesTemp),
chunkable_sources([SourcesTemp | RestSources], SourcesOut) .

% compatibleparams (+ParamLists) .
% ParamLists is a list of 2 or more ParamLists. This predicate
% succeeds IFF the ParamLists are compatible for purposes of
% chunking.

compatibleparams (_).

% sourcesfor_goal(+RequestingKS, +Goal, +Params, -Sources).
% @@ Here, depending on how the treatment of multiple facilitators evolves,
% we may need to revisit the default use of the facilitator.

sourcesfor_goal (RequestingKS, ICLGoal, GlobalParams, Sources) :-
icl_GoalComponents (ICLGoal, _, Goal, Params),
append (Params, GlobalParams, AllParams),
findall (SomekKS,

choose_ks_for_goal (RequestingKS,Goal,_,Al1Params,SomekS,_),
KSList),

(KSList = [] ->

* @@Determine if there's a parent facilitator that can handle
% the goal. This needs work; probably should have a local record
% of what the parent can handle.

find_level(AllParams, Level, _NewParams),
((on_exception(_, com:com_GetiInfo(parent, fac_id(ParentBB)), fail), Level

> 0) ->

Sources = [ParentBB]

| otherwise ->
Sources = []

)

| otherwise ->
Sources = KSList

).

% If Sources is bound, VERIFIES that all the Sources can be used
% on the ICLGoal. If var(Sources), finds all the Sources that can
% be used.

% sources_for_compound_goal(RKS, ICLGoal, GlobalParams, Sources) :-

/*\

complete_concurrency(+Goal, -ConcurrentGoal).

TBD.

*/

complete_concurrency (Goal, Goal).

DISH, Exh. 1008, p. 154

DISH, Exh. 1008, p. 155

EELEGSESELEEESEEESEEEEEESEEGEEEEEEEEEGEGEEEEGEEEEEEEEEEEEEGELEEESEETEEEEEEES

% GOAL EXECUTION: TOP LEVEL

EEVETEFEEEEEEEEETELELEEESTEEEEEEETEEEEETEEEEETEEETETESEELETELESESEEEEEEEEEEE

/*\

execute_goal (+RequestingKS, +OrigGoal, +OrigParams, +CompleteGoal).

OrigGoal are OrigParams are exactly as submitted by some client agent
(RequestingKS). CompleteGoal is the rewriting of OrigGoal that
ensures complete addressing. OrigGoal and ICLGoal contain precisely
the same var's.

See global comments near the top of this file.

Note: the meaning of variable "Goal" and other variables ending in
"Goal" varies with context. In some places they indicate an ICL
goal Source:Goal::Params (where Source and Params are both optional);
in other places, they indicate just the Goal part of an ICL goal.

*/

execute_goal(RKS, OrigGoal, OrigParams, ICLGoal) :-
% Here, ICLGoal may or may not include a Sources component. Either
% way, it gets handled by execute/7.
% @@ What if OrigGoal's Params or GlobalParams has vars?
% We remove addresses before calling term_vars only so as to avoid
%$ a syntax error exception that comes up when ICLGoal = Addr:\+Goal
remove_addresses(ICLGoal, TempGoal),
term_vars (TempGoai, AllVars, _Singletons, _NonSingletons),
new_goal_id(Id),
% This means simply, "When the Solvers and solutions (in the form of
% Bindings for AllVars) are known for Goal, call
% unify_and_return_solutions(...)."
assert (continuation(Id, Requestees, Solvers, Bindings,

unify_and_return_solutions (Id,RKS,OrigGoal, OrigParams,AllVars,
Requestees,Solvers,Bindings))),

% This means: Find the Solvers and solutions:

execute(Id, RKS, [], [], ICLGoal, OrigParams, AllVars).

/*\

* execute(Id, RKS, Requestees, Solvers, Goal, InheritedParams, Vars).

execute/7 satisfies the ICL goal Goal. Id is an integer that
identifies a continuation assertion. When the satisfaction of Goal

has been completed, the continuation assertion tells what to do next.
The satisfaction of Goal may be very simple, or may involve a number
of steps, depending on the form of Goal.

Requestees is a list of source id's of all sources asked to
participate in the satisfaction of whatever request contained Goal,
and Solvers is a list of source id's of sources that succeeded in

satisfying some part of the request (so Solvers is a subset of
Requestees. These lists are being accumulated for return to the agent
that submitted the request.

Conceptually, execute/7 does this:

10

DISH, Exh. 1008, p. 155

DISH, Exh. 1008, p. 156

findall(Vars, Goal, Bindings),
append (Requestees, <list of KSs called on in the findall>, NewRequestees),
append(Solvers, <list of KSs providing solutions in the findall>,

NewSolvers),

continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings)

The behavior of continue_execution, then, depends on a continuation/5
assertion, with Id as the first arg.

The important details have to do with how the satisfaction of the
"findall" part of this strategy may be delayed.

*

*/

execute (Id, RKS, Requestees, Solvers, built_in:ICLGoal, InheritedParams, Vars)

% This handles ICL built-ins, such as <, >, =, member/2, true, false,
t

icl_GoalComponents (ICLGoal, _, Goal, Params),
append(Params, InheritedParams, AllParams),
oaa_Name (Facilitator),
add_element (Facilitator, Requestees, NewRequestees),
% If the requestor wants to know the solver, bind it here:
(memberchk (get_address (Facilitator), Params) -> true | true),

(Oaa:passes_tests (Params) ->
% @@The use of solution_limit and elsewhere here needs a close look:
(memberchk(solution_limit(N), AllParams) ->

oaa:findNSolutions(N, Vars, call(Goal), Bindings)

| otherwise ->
findall(Vars, call(Goal), Bindings)

)

| otherwise ->
Bindings = []

),

(Bindings == [] ->
NewSolvers = Solvers

| otherwise ->
add_element (Facilitator, Solvers, NewSolvers)

),

(memberchk (reply (none), AllParams) ->
continueexecution(Id, RKS, NewRequestees, NewSolvers, [Vars])

| otherwise ->
continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings)

).

% Empty list of sources:
execute(Id, RKS, Requestees, Solvers, []:ICLGoal, _InheritedParams, _Vars) :-

format ('WARNING: No solvers for ICL goal or subgoal:~n ~q-n',
IcLGoal),

continue_execution(Id, RKS, Requestees, Solvers, []).

% Single KS in a list:
execute(Id, RKS, Requestees, Solvers, [KS]:G, Params, Vars) :-!4

11

DISH, Exh. 1008, p. 156

DISH, Exh. 1008, p. 157

execute (Id, RKS, Requestees, Solvers, KS:G, Params, Vars).

% Multiple KSs in a list:
execute (Id, RKS, Requestees, Solvers, [KS | Rest]:G, Params, Vars) :-

!,

execute_for_each_ks (Id, RKS, Requestees, Solvers, G, Params,
vars, [KS | Rest]).

%* Solver is facilitator (me):

execute(Id, RKS, Requestees, Solvers, Source:ICLGoal, InheritedParams, Vars) :-
oaa_Name (Facilitator),
(Source = facilitator ; Source = Facilitator),I

icl_GoalComponents (ICLGoal, _, Goal, Params),
% If the requestor wants to know the solver, bind it here:
(memberchk (get_address (Facilitator), Params) -> true | true),
append (Params, InheritedParams, AllParams),
findall (Vars,

oaa:oaa_solve_local (Goal, InheritedParams),
Bindings),

(memberchk(reply(none), AllParams) ->
true

| otherwise ->
oaa_Name (KSName) ,
add_element (KSName, Requestees, NewRequestees) ,
(Bindings == [] ->

NewSolvers = Solvers

| otherwise ->
add_element (KSName, Solvers, NewSolvers)

) f

continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings)
).

Note: this code was inherited from pre-compound-query facilitator.
One significant change: when a goal is sent to a parent, we used to
automatically include local blackboard solutions also. We don't
do this anymore.

@@ Strategy should be re-evaluated at some point. For instance,
the use of var P2 might now cause things to break (the requesting
agent might try to unify its copy of Params with P2).

dedPd&dPdPdPdPde
execute (Id, RKS, Requestees, Solvers, Sources:ICLGoal, InheritedParams, Vars) :-

on_exception(_, com:com_GetInfo(parent, fac_id(ParentBB)), fail),
(Sources == parent ; Sources == ParentBB),!

icl_GoalComponents (ICLGoal, _, _Goal, Params),
% If the requestor wants to know the solver, bind it here:
% NO - it gets bound by the parent facilitator.
% (memberchk (get_address(ParentBB), Params) -> true | true),

append (Params, InheritedParams, AllParams), /
*% We don't need to check the level here (that's already been done),
% but we do need to decrement its value by 1:
find_level(AllParams, _Level, NewParams),
oaa_TraceMsg('~nRouting goal "solve(~p)" to parent ~p.~n',

12

DISH, Exh. 1008, p. 157

DISH, Exh. 1008, p. 158

{ICLGoal, ParentBB)),

new_goal_id(NewId),
oaa_PostEvent (ev_post_solve_from_bb(NewId, ICLGoal, NewParams) ,

[address (ParentBB))),

(memberchk (reply (none), NewParams) ->
unify_and_continue_execution(Id, RKS, ICLGoal, Vars,

ParentBB, Requestees, Solvers, [ICLGoal])
| otherwise ->

% @@Shouldn't there be a time-check here?

oaa:oaa_add_trigger_local (
comm,

event (ev_reply_solved_by_bb(NewId, _KS, ICLGoal, _P2,
Solutions),

),

ev_unify_and_continue_execution(Id, RKS, ICLGoal, Vars,
ParentBB, Requestees, Solvers, Solutions),

[recurrence (when), on(receive)])
).

% Send the goal to an agent:
execute (Id, RKS, Requestees, Solvers, KS:ICLGoal, InheritedParams, Vars) :-1

icl_GoalComponents (ICLGoal, _, Goal, Params),
append (Params, InheritedParams, AllParams),
% @@What if the KS' status has changed since it was specified?
% find_address allows for KS to be either numeric or symbolic.
find_address(KS, KSId),
% If the requestor wants to know the solver, bind it here:
(memberchk (get_address(KSId), Params) -> true | true),

% Could do another check of the agent's validity:

% ks_ready(KSId, _),

% relevant_vars(Vars, Goal, GVars),
% OptimizedG = findall(GVars, Goal, All),

% Output trace message:

{ oaa:oaa_trace(on) ->
copy_term(ICLGoal, TraceCopy),

numbervars (TraceCopy, 0, _),
copy_term(InheritedParams, ParamsCopy),

numbervars (ParamsCopy, 0, _),
oaa_TraceMsg(

'$ Routing goal to -w:-~n% ~W ~w-n-n',
(KS, TraceCopy, ParamsCopy])

| otherwise ->
true

),

new_goal_id(NewId),
% oaa_PostEvent (KS, RKS, solve(NewId, OptimizedG::Params, [])),

oaa_PostEvent (ev_solve (NewId, ICLGoal, InheritedParams),
[from(RKS), address(KSId))),

(memberchk (reply(none), AllParams) ->
unify_and_continue_execution(Id, RKS, ICLGoal, Vars,

KSId, Requestees, Solvers, [ICLGoal])
% If time_limit specified in parameters, setup

13

DISH, Exh. 1008, p. 158

DISH, Exh. 1008, p. 159

% time_trigger to wakeup if solutions hasn't been returned
% in specified time.

| otherwise ->
{ memberchk(time_limit(NSecs), AllParams) ->

add_time_check(NSecs, NewId, RKS, Goal,All]lParams)
| true),
oaa:oaa_add_trigger_local {

comm,

event (ev_solved(NewId, _KS, ICLGoal, _P2, Solutions), _),
ev_unify_and_continue_execution(Id, RKS, ICLGoal, Vars,

KSId, Requestees, Solvers, Solutions),
(recurrence (when), on(receive)])

% poll_until_all_events([solved(Id, _KS, OptimizedG, P2, Solutions)]),
% Solutions = [findall(GVars, Goal, All)],

% respond_query(Id, RKS, Solvers, KS, Goal, P2, Solutions)
% Backtrack over solutions:

% member (GVars, All).
).

% Negation:
execute (Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars) :-

icl_GoalComponents(ICLGoal, _, (\+ G1), Params),I

append (Params, InheritedParams, NewIParams) ,
new_goal_id(NewId),
assert(

continuation (NewId, NewRequestees, NewSolvers, Bindings,
continue_negation(Id, RKS, NewRequestees, NewSolvers, NewIParams,

Vars, Bindings))),
execute (NewId, RKS, Requestees, Solvers, Gl, NewIParams, Vars).

% Conjunction:
execute (Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars) :-

icl_GoalComponents(ICLGoal, _, (G1, G2), Params),I

append(Params, InheritedParams, NewIParams) ,
new_goal_id(NewId),
assert(

continuation (NewId, NewRequestees, NewSolvers, Bindings,
continue_conjunction(Id, RKS, NewRequestees, NewSolvers, G2,

NewlParams,

Vars, Bindings))),
execute (NewId, RKS, Requestees, Solvers, Gl, NewIParams, Vars).

% Local cut with alternative. Note: this clause must precede
% that for disjunction.

execute (Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars) :-
icl_GoalComponents(ICLGoal, _, (Gl -> G2 | G3), Params),{

append (Params, InheritedParams, NewlIParams),
new_goal_id(NewId),
assert(

continuation (NewId, NewRequestees, NewSolvers, Bindings,
continue_local_cut (Id, RKS, NewRequestees, NewSolvers, G2, G3,

NewI Params,

Vars, Bindings))),
execute (NewId, RKS, Requestees, Solvers, Gl, NewIParams, Vars).

14

DISH, Exh. 1008,p. 159

DISH, Exh. 1008, p. 160

% Local cut:

execute (Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars) :-
icl_GoalComponents (ICLGoal, _, (G1 -> G2), Params),1“¢f

append (Params, InheritedParams, NewIParams) ,
new_goal_id(NewId),
assert(

continuation(NewId, NewRequestees, NewSolvers, Bindings,
continue_local_cut(Id, RKS, NewRequestees, NewSolvers, G2, false,

NewlParams,

Vars, Bindings))),
execute (NewId, RKS, Requestees, Solvers, Gi, NewIParams, Vars).

% Disjunction:
execute (Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars) :-

iclGoalComponents(ICLGoal, _, (G1; G2), Params),t

append (Params, InheritedParams, NewIParams) ,
new_goal_id(Id1),
new_goal_id(Id2),
assert(

multiplecontinuation([Id1, Id2], Requestees, AllRequestees,
Solvers, AllSolvers,

[], AllBindings,
continue_execution(Id, RKS, AllRequestees, AllSolvers, AllBindings))),

execute (Id1, RKS, Requestees, Solvers, Gl, NewIParams, Vars),
execute (Id2, RKS, Requestees, Solvers, G2, NewIParams, Vars).

% Occasionally, a goal may have the form G::P (that is, no
% address, and P is not compound), but it is still valid, so
% long as G is valid.
%

$ Ex.: ((7]:a1(1)::f..-]))::f...]

execute (Id, RKS, Requestees, Solvers, Goal::Params, InheritedParams, Vars) :-1“¢

append (Params, InheritedParams, NewlIParams),
execute (Id, RKS, Requestees, Solvers, Goal, NewIParams, Vars).

execute (Id, RKS, Requestees, Solvers, G, _Params, _Vars) :-
format ('WARNING (execute/7): unrecognized goal form:~n ~w-n', [G]),
continue_execution(Id, RKS, Requestees, Solvers, []).

execute_for_each_ks(Id, RKS, Requestees, Solvers, Goal, Params, Vars, KSs) :-
length(KSs, NumKSs),
new_goal_ids(NumKSs, Ids),
assert (

multiple_continuation(Ids, Requestees, AllRequestees, Solvers,
AllSolvers, [], AllBindings,

continueexecution(Id, RKS, AllRequestees, AllSolvers, AllBindings))),
exec_for_each_ks(NumKSs, Ids, KSs, RKS, Requestees, Solvers, Goal,

Params, Vars).

SESELESEEEEESEEETESEEEEEESEESTEEESEEESSEEEESEEEESEEEEEEEEEEEEEEEEEEEEESEEES
% GOAL EXECUTION: INTERMEDIATE STEPS

% The predicates in this group define intermediate steps in the satisfaction
% of various ICL goal forms.

15

DISH, Exh. 1008,p. 160

DISH, Exh. 1008, p. 161

%

% Note: intermediate steps in handling of DISJUNCTION are handled by
% continue_execution, using the multiplecontinuation assertion.
EESEEEEESEEEEEESEEEEESESEEESESESEEESEEESEEEEEEESEEEEE TESS EEEEEESEEEEESEESS

This is used in satisfying [KS1, KS2, ...}]:Goal. Note that this is
equivalent to a disjunction (KS1:Goal ; KS2:Goal ;). So we
are able to use the multiplecontinuation assertion to accumulate
the solutions.dPdPdPdPdPoP
We don't need Solvers, because

exec_for_each_ks(NumKSs, Ids, KSs, RKS, _Requestees, _Solvers,
Goal, Params, Vars) :-

retractall(ks_num(_)),
assert(ks_num(1)),
repeat,

ks_num (Num) ,
(Num > NumKSs ->

!

| otherwise ->
nth1(Num, KSs, KS),
nth1(Num, Ids, Id),

% We use a local cut to prevent some (harmless) backtracking.
% This is one place where we don't need to pass Requestees and
% Solvers through to execute (3rd and 4th args), because they are
% filled in by handle_multiple_continuation.

(execute (Id, RKS, {], [], KS:Goal, Params, Vars) -> true),
NextNum is Num + 1,

retractall(ks_num(_)),
assert(ks_num(NextNum)),
fail

% This is used in satisfying (\+ Goal). When this
% pred. is called, Goal has just been completed. Bindings gives
% the solutions to Goal.

continue_negation(Id, RKS, Requestees, Solvers, _Params, Vars, []) :-
!,

continue_execution(Id, RKS, Requestees, Solvers, [Vars]).
continue_negation(Id, RKS, Requestees, Solvers, _Params, _Vars, _Bindings) :-

continue_execution(Id, RKS, Requestees, Solvers, []).

% This is used in satisfying (Goall, Goal2). When this
% pred. is called, Goall has just been completed. Bindings gives
% the solutions to Goali.

continue_conjunction(Id, RKS, Requestees, Solvers, _Goal2, _Params, _Vars, [])

|4

continue_execution(Id, RKS, Requestees, Solvers, []).
continue_conjunction(Id, RKS, Requestees, Solvers, Goal2, Params, Vars,
Bindings) :-

length(Bindings, NumBindings),
new_goal_ids(NumBindings, Ids),

16

DISH, Exh. 1008, p. 161

DISH, Exh. 1008, p. 162

assert (

multiple_continuation(Ids, Requestees, AllRequestees, Solvers,
AllSolvers, []), AllBindings,

continue_execution(Id, RKS, AllRequestees, AllSolvers, All1Bindings))),
exec_for_each_binding(NumBindings, Ids, Bindings, RKS, Requestees, Solvers,

Goal2,

Params, Vars).

% We don't need Requestees or Solvers, because they are filled in
% by handlemultiplecontinuation.

exec_for_each_binding(NumBindings, Ids, Bindings, RKS, _Requestees, Solvers,
Goal, Params, Vars) :-

retractall(bindingnum(_)),
assert (bindingnum(1)),
repeat,

binding_num(Num),
(Num > NumBindings ->t

| otherwise ->
nthi(Num, Bindings, Binding),
nthi(Num, Ids, Id),

Vars = Binding,
% We use a local cut to prevent some (harmless) backtracking.
% This is one place where we don't need to pass Solvers through
% to execute (3rd arg):
(execute(Id, RKS, [], [], Goal, Params, Binding) -> true),
NextNum is Num + 1,

retractall(binding_num(_)),
assert (bindingnum(NextNum)),
fail

oe This is used in satisfying Goall -> Goal2 | Goal3. When this
pred. is called, Goall has just been completed. Bindings gives

% the solutions to Goall. :

ge

%* No solutions to Goall:

continue_local_cut(Id, RKS, Requestees, Solvers, _Goal2, Goal3, Params,
vars, []) :-1

(Goal3 = false ->

continue_execution(Id, RKS, Requestees, Solvers, [))
| otherwise ->

execute (Id, RKS, Requestees, Solvers, Goal3, Params, Vars)
).
% Some solutions:

continue_local_cut (Id, RKS, Requestees, Solvers, Goal2, _Goal3, Params,
Vars, [Bindingl | _]) :-

new_goal_id(NewId),
assert(

continuation (NewId, NewRequestees, NewSolvers, Bindings,

continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings))),
Vars = Bindingl,
% local cut to prevent some (harmless) backtracking:
(execute (NewId, RKS, Requestees, Solvers, Goal2, Params, Bindingl) -> true

17

DISH, Exh. 1008, p. 162

DISH, Exh. 1008, p. 163

EESSESESESETESESESESEESESESTESEGESESESESEEEEEFEEESESEEEEEESEEETEEESTEEEEEES
% GOAL EXECUTION: COMPLETION

ESETEEETESETETESTEESEEEEEEEVEETEEEEEEEETELESEEELESEEELEEEEEEEEBELESETEEES

% This is called when the goal associated with Id has been completely
% satisfied.

continue_execution(Id, _RKS, Requestees, Solvers, Bindings) :-
% Here we are BINDING the Solvers and Bindings var's. in the
% continuation assertion. The var. also appears in Continuation:

(retract (continuation(Id, Requestees, Solvers, Bindings, Continuation)) ->
call (Continuation)

| muitiple_continuation(Ids, _, _, _, _, _4 _),
memberchk (Id, Ids) ->

handlemultiplecontinuation(Id, Requestees, Solvers, Bindings, Ids)
| otherwise ->

format ('Internal Error: no continuation with id ~w-n', [Id])
).

handlemultiple_continuation (Id, Requestees, Solvers, Bindings, Ids) :-
retract (multiplecontinuation(Ids, PrevRequestees,

AllRequestees, PrevSolvers, AllSolvers,
PrevBindings, AllBindings,
Continuation)),

del_element (Id, Ids, NewIds),
append (PrevBindings, Bindings, NewBindings),
append (PrevRequestees, Requestees, NewRequestees) ,
append (PrevSolvers, Solvers, NewSolvers),
(NewIds = [] ->

AllBindings = NewBindings,
AllRequestees = NewRequestees,
AllScolvers = NewSolvers,
call (Continuation)

| otherwise ->
assert (multiplecontinuation (NewIds, NewRequestees, AllRequestees,

NewSolvers, AllSolvers,

NewBindings, AllBindings,
Continuation))

).

% @@Let's see, if these args included the vars for any
% nested solvers params, we could probably instantiate solvers
% params in Goal...

unify_and_continue_execution(Id, RKS, Goal, Vars, Requestee, Requestees,
Solvers, Solutions) :-

add_element (Requestee, Requestees, NewRequestees),
(Solutions == [] ->

NewSolvers = Solvers

| otherwise ->
add_element (Requestee, Solvers, NewSolvers)

) ‘

findall(Vars,
member (Goal, Solutions),

Bindings),
continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings) .

18

_DISH, Exh. 1008, p. 163

DISH, Exh. 1008, p. 164

ESEEESESESESELESESEEEEEEFEEEEEEEEEEEEEEEEEEEEEETEE ES ESTES EEEEESESTESEESS
% GENERAL UTILITIES

EESSESESESTESSESESELESESTEEEEEEEEEFEEESEEETEGELESESEEESESESEETESESTEETEES

term_vars(Term, AllVars, SingletonVars, NonSingletonVars) :-
with_output_to_chars (portray_clause(Term), Chars),
with_input_from_chars (

read_term(([variable_names (Names), singletons (Singletons)],
Terml),

Chars),

extract_vars (Names, Singletons, Allvars, SingletonVars, NonSingletonVars},
Term = Terml.

extract_vars([], _Singletons, [], [], []).
extract_vars([Name = Var | RestNames], Singletons, [Var | RestVars],

[Var | RestSV], NonSingletonVars) :-
memberchk (Name = Var, Singletons),
!,

extract_vars(RestNames, Singletons, RestVars, RestSV, NonSingletonVars) .
extract_vars([_Name = Var | RestNames], Singletons, [Var | RestVars],

RestSv, [Var | NonSingletonVars]) :-
extract_vars(RestNames, Singletons, RestVars, RestSV, NonSingletonVars) .

SESESEESESEEESESESEEFEEELEEEESEEEEEEETELEEEEEEEEEGEEEEEEEEEEESEEEEESEEEES
% DEBUGGING UTILITIES

EESSEEELEEEEESESESESEEEEESESESEESEEEEEEEEEEESEEEEEEEEESEESEEEEEEEELESESES

static_test :-
Class = root,

KSName = dontcare,

BBName = dontcare,

oaa_read_setup_file,
oaa_init_flags,
assert (oaa_class(Class)),
oaa_SetupCommunication(Class, KSName, BBName, []),
on_exception(_, oaa_AppInit, true),
oaa_Ready (true) .

connect :-

% go(leaf, shell, root).
static_test.

ce :-

repeat,

oaa_GetEvent (CallingKS, Event, 0),
(Event = timeout ->
tca

format ('No events~-n', [])

| otherwise ->
oaa_process_event (CallingKS, Event),

fail

).
ce :-

format ('No events~n', []).

%
%

%

%

%

%
%

%

%
%

%
%

%

%

%
%

%

%

%

%
%

%

%

%
%
%

%

%

19

DISH, Exh. 1008, p. 164

DISH, Exh. 1008, p. 165

SSESESEEEEEESEESETSESESESEESEESESTEEESEEFEEELEEEEEEEEEELEEEETELEGEEEEEEEEEE
%

SSSELESESEEEEEEEEEESEEETELEEEEESEEEEEESESEEEEEETEEEEEEEEEESEETEEEEEEEEESEES

% OrigGoal must be used in the return event, so that the
% requesting KS will identify it correctly.

unify_and_return_solutions (Id, RKS,OrigGoal,OrigParams, Vars,Requestees,Solvers,Bi
ndings) :-

findall (OrigGoal,
member (Vars, Bindings),
Solutions),

oaa_TraceMsg('~nRouting answers back to ~p:~n ~p-n',
(RKS,Solutions]),

canceltime_check (Id),
remove_dups (Requestees, RequesteesSet),
remove_dups (Solvers, SolversSet),
% If present, bind solvers request in OrigParams:
(memberchk (get_address (RequesteesSet), OrigParams) -> true | true),
(memberchk (get_satisfiers(SolversSet), OrigParams) -> true | true),
oaa_PostEvent (ev_reply_solved (RequesteesSet, SolversSet, OrigGoal,

OrigParams, Solutions),
{address (RKS)]).

EESESEEEEEEESEEEEEESEEEGEEEEESTEEEESEGEESSEEESEESEEESEEESEEEEELESESESESEEE SESS

SESESEETESEEELESEEESEEEEEESEESEEELESEEEEEEEELESEEEEEEEEEEEEEEEEEEEELEEESESS
%

SESSESSEESEEEEESEEEESESELEBESESESELESESEETEEEEEEETELESEEEEEETEEETEEEEEEEESS
EEESSESEESEEELESEE EEE EEESESEEEEEEEEEEEEESEGEGEGEEEEEEEEEEEEESEEEEEESEEEEEEEEE
%

EESTESESESLESEEESESEYETELEGLESEEGESEEGEEEEEEEGEESEEESEEEEEEEEEBESTESEESEE EES

20

DISH, Exh. 1008, p. 165

DISH, Exh. 1008, p. 166

APPENDIX A.I

Source code file named fac.pl.

DISH, Exh. 1008, p. 166

DISH, Exh. 1008, p. 167

GRR KKK KKK KEK KEKE KK KK KKK KEK KKK EEK KEKE KK EKER KEKE KKK KEKE EKKEKEKKKEKKEKKEKKKEKKKEKKKKKKKKKK

a?dPdPdedPd@dPdPdPdPdPdPdPdPdPdP?
apoe
%

File : £fac.pl
Primary Authors : Adam Cheyer, David Martin
Purpose : Provides communications and coordination of the activities

of a dynamic collection of client agents.
Updated : 12/98

Unpublished-rights reserved under the copyright laws of the United States.

Unpublished Copyright (c) 1998, SRI International.
"Open Agent Architecture" and "OAA" are Trademarks of SRI International.

EESETSEESESESEEESESESEELESEEEEEEEEEEEEEEEEESEEEETEEETEGEEEEEEEETESETESEE EEE

fac.pl : the facilitator agent Adam Cheyer
David Martin

% Provides communications and coordination of the activities of a

% dynamic collection of client agents.
%

ae

%

%
%

%

%
%

%

%

%

%
%

%

%

%

%
%

%

%

%
%

%
%

%

%

%
%

%

%

The blackboard can respond to the following external requests:

ev_post_event (AgentID, Cmd) : sends event to the agent
ev_post_event (Cmd) : sends event to all
ev_post_declare (Mode, Solvables, Params)

adds, removes or replaces solvables ON
: the facilitator

ev_post_update (Mode, Clause, Params)
adds, removes, or replaces data
on appropriate agents

ev_post_trigger_update (Mode, TriggerType, Condition, Action, Params)
adds or removes a trigger
on appropriate agents

ev_post_solve(Goal, Params): finds agent(s) to solve Goal
connected (Connection) : records that a client agent has connected

ev_connect(AgentInfo)
additional information from a client

agent (having version > 3.0)
end_of_file(Connection) : records that a client has closed its

connection

ev_register_solvables : records the goals that an agent can solve.

A facilitator uses the following events internally as trigger actions:

ev_respond_query (Id, ToKS, ByKS,G, OrigParams, Params, S)
Sends the result of a query back to KS

EEEEEEEEETEELESESESESEEEESEELEEEEEEEEEEEGEBEEEEESEESESEEEEEESEEEGEEEEEEEEESE

use_module (library(lists)).
use_module (library (basics)).
use_module (library(strings))}.
use_module (library (charsio)).

DISH, Exh. 1008, p. 167

DISH, Exh. 1008, p. 168

:- use_module (library (sets)).
:- use_module(library(samsort)). % for samsort (Ordered, Raw, Sort)
:- use_module (library (tcp), {tcp_now/1, tcp_time_plus/3,

tcp_schedule_wakeup/2, tcp_cancel_wakeup/2]).

% The file containing the com module is normally specified here. For
% more info, see comments near the top of oaa.pl.

:- use_module(com_tcp, all).
:- use_module({oaa, all).

% Whether or not to load translations and compound query code
% is determined right here:
% :- [compound].

[translations].

multifile oaa_AppDoEvent/2.

dynamic time_limit_trigger/5. % time_limit_trigger (Id,When, KS,Goal, Params)
:- dynamic goal_count/10. % goal_count (GoalId,Goal, Params,EvParams,

% ToBeCalled, Called, Responders, Solvers,
% Answers, NumAnswers)

dynamic update_count/4. % updatecount (GoallId, NumAgentsRequested,
% KSs, Updaters)

initial_solvables(/[
solvable (agent_data(_Id, Status, _Solvables, _Name), [type(data)],

[write(true)]),

% Locations of all facilitators (currently maintained only by the 'root'
% facilitator:

solvable (agent_location(_Id2, _Name2, _Host2, _Port2), [type(data)],
[write (true)]),

% Host (if known) of each client agent:
solvable (agent_host (_Id3, _Name3, _Host3), [type(data)], [write(true)]),
agent_version(_Id1, _Languagel, _Version1),
can_solve(_Goal4, _IdList4),

% For backwards compatibility. In translations.pl, some events
% (write_bb, etc.) specify updates to this solvable. Also, old-style
% data triggers refer to it:

solvable(data(_Item, Data), [type(data)], [write (true)])
}).

/* Agent specific declarations */

oaa_AppInit :-
oaa_SetTimeout(0).

/* This is the event generated by the TCP library. Will be followed
immediately by ev_connect/4, which is constructed by the client agent */

oaa_AppDoEvent (connected (Connection), _) :-
!,

format ('~nKnowledge source connected: ~p-n-n', [Connection]),
Id = Connection,

oaa:oaa_add_data_local(agent_data(Id, open, [}, Id), []),
$% Maintain information of currently connected data.

add_connected(Id, Connection).

DISH, Exh. 1008, p. 168

DISH, Exh. 1008, p. 169

/* For now, the ID of a client agent is the same as its connection (socket).
This could change in the future, so we store Id and Connection
as two separate entities. */

oaa_AppDoEvent (ev_connect (AgentInfoList), Params) :-
memberchk(connection_id(Id), Params),

oaa_Name (MyName) ,
oaa_Id(MyId),
MyLanguage = prolog,
oaa_LibraryVersion (MyVersion),

update_connected (Id, AgentInfoList),

% preferred TCP transfer mechanism
MyFormat = quintus_binary,

% Inform the client of his Id, and info about me.

com_SendData (Id,
event (ev_connected([oaa_id(Id), fac_id(MyId), fac_name (MyName) ,

fac_lang(MyLanguage), fac_version(MyVersion),
format (MyFormat)]),

[])).

/* Removes meta-data for KS when the KS deconnects */

oaa_AppDoEvent (end_offile(Connection), _) :-
Id = Connection,

remove_connected (Id),
oaa:oOaa_remove_data_local (agent_data(Id, _Status, Solvable, AgentName),

(1),

format ('~nKnowledge source disconnected: ~p (~p)~n~n', [Id,AgentName]),
% remove all facts written by the agent

%* TBD: Is this getting all relevant triggers (see commented code below) ?
oaa:oaa_remove_data_owned_by(Id),

Do we really want to do this? I think clients who are interested could
register a trigger on the agent_data predicate.
Rather, I think we should check to see if any agents are currently waiting
for this agent to solve some goal -- if the agent disconnects, we can assume
that it won't be solving the goal anytime soon, and we should send back
failure to the requesting agent. See OAA 1.0 Facilitator, end_of_file()
method. (AJC, 11/24/97]

post_to_all_clients (ev_agent_disconnected(Id)).

dPdPdPdPdeadde
% fail.

% TBD: This needs update to look at the persistence param.
% oaa_AppDoEvent (end_of_file(KS), _) :-
% % remove all triggers for KS
% on_exception(_, trigger(KS, Type, Kind, OpMask, Template, Cond, Action),
fail),

% retract (trigger(KS, Type, Kind, OpMask, Template, Cond, Action)),
% fail.

% oaa_AppDoEvent (end_of_file(_KS), _) :- !.

oaa_AppDoEvent (ev_ready (Name), Params) :-
memberchk (from(Id), Params),

% TBD: Let's have an error message if this fails:
oaa:oaa_remove_data_local(agent_data(Id, _OldStatus, Solvables, _Name),

Params),

DISH, Exh. 1008, p. 169

DISH, Exh. 1008, p. 170

oaa:oaa_add_data_local (agent_data(Id, ready, Solvables, Name), Params).

/* Stores the goals that a KS knows how to solve */
%* Is this obsolete?

oaa_AppDoEvent (ev_register_solvables (Goals), Params) :-
memberchk(from(KS), Params),

oaa_AppDoEvent (ev_register_solvables(add,Goals,KS,[]), Params), !.

IMPORTANT: We assume the Solvables are in standard form and can

legally be added/removed/replaced for this agent. Also, we take
care to keep the facilitator's copy of each client's solvables
identical to that stored at the client. (Compare to code in

% liboaa.pl, pred. oaa_declare_local).
oaa_AppDoEvent (ev_register_solvables (Mode, Solvs,AgentName,EvParams), Params) :-

memberchk(from(KS), Params),

oaa_Name (KSName) ,
(oaa:oaa_remove_data_local (agent_data(KS, Status, List, _AgentName),

Params)

opdPaedP

format ('STRANGE! register_solvables called by unknown KS!!!: ~p-n',
(KS]),

Status = ready,
List = []

),

icl_ConvertSolvables (PrettySolvs, Solvs),
(Mode == add, memberchk(if_exists (overwrite), EvParams) ->

NewList = Solvs,

format ('~p (~p) can solve: ~n ~p-~n~n', [KS, AgentName,
PrettySolvs])

| Mode == add ->
append(List, Solvs, NewList),
format ('~p (~p) has added solvables: ~n -~p~n-n',

(KS, AgentName, PrettySolvs])
| Mode == remove ->

subtract (List, Solvs, NewList), °

format ('~p (~p) has removed solvables: ~n ~p-~n~n',
{KS, AgentName, PrettySolvs])

| Mode == replace ->
memberchk (with (NewSolvable), EvParams),
Solvs = [Solvable],

oaa:replaceelement (Solvable, List, NewSolvable, NewList),
format ('~p (~p) has replaced solvable:-~n ~p~nwith solvable:~n

~p-n-n',

[KS, AgentName, Solvable, NewSolvable])
) ‘

oaa:oaa_add_data_local (agent_data(KS, Status, NewList, AgentName),
Params),

% if a parent exists (not root), pass goals upward.
(com:com_GetInfo(parent, connection(_C)}) ->

oaa_PostEvent(ev_register_solvables (Mode, Solvs, EvParams, KSName) ,
{address (parent)])

true),

DISH, Exh. 1008, p. 170

DISH, Exh. 1008, p. 171

/* A client has requested that I declare certain solvables.
TBD: This is still sketchy; should include some validation of the
request, and should ensure the perms and params are right. */

oaa_AppDoEvent (ev_post_declare (Mode, Solvables, Params), EvParams}) :-
memberchk (from(RequestingKS), EvParams),
oaa:oaa_declare_local (Mode, Solvables, Params, NewSolvables),
icl_ConvertSolvables (PrettySolvs, NewSolvables),
oaa_Id(MyId) ,
oaa_Name (MyName) ,
format ('~p (~p) has added solvables: ~n -~p-~n-n',

[MyId, MyName, PrettySolvs)),
oaa_PostEvent(

ev_reply_declared (Mode, Solvables, Params, NewSolvables}),
{address (RequestingKS)]).

% A client requests a data solvable update operation (add, remove, replace)
% on the appropriate agents.
oaa_AppDoEvent (ev_post_update (Mode, Clause, Params), EvParams) :-

(Clause = (Head :- _Body) ->
true

| otherwise ->
Head = Clause

) f

memberchk (from(RequestingKS), EvParams),
% see if the query is addressed using address(KS) in Params
checkaddress (Params, AddrKS),
choose_agents_for_data (RequestingKS, Head, AddrKS,write, false, KSList),
dispatchupdate_request (RequestingKS, Mode, Clause, Params, KSList).

%* A client requests a trigger update operation (Mode = add, remove, replace)

oPofoPoP
on the appropriate agents. For triggers of type comm' and time', the
address parameter must be present (otherwise, the request should not
have come to the facilitator). For the other types, the address is
optional.

oaa_AppDoEvent (ev_post_trigger_update (Mode, data, Condition,
Action, Params), EvParams) :-

1"st

memberchk (from(RequestingKS), EvParams),
% see if the query is addressed using address(KS) in Params
check_address (Params, AddrKS),
choose_agents_for_data(RequestingKS, Condition, AddrKS,call,false,KSList),
append(Params, EvParams, AllParams),
dispatchtrigger_request (RequestingKS, Mode, data, Condition, Action,

AllParams, KSList).

oaa_AppDoEvent (ev_post_trigger_update (Mode, task, Condition,
Action, Params), EvParams) :-

|

memberchk (from(RequestingKS), EvParams) ,
% see if the query is addressed using address(KS) in Params
check_address (Params, AddrKS),
choose_agents_for_goal (RequestingKS, Condition, AddrkS, Params, false, KSList),
append (Params, EvParams, AllParams),
dispatch_trigger_request (RequestingkKS, Mode, task, Condition, Action,

AllParams, KSList).

oaa_AppDoEvent (ev_post_trigger_update (Mode, Type, Condition,

DISH, Exh. 1008, p. 171

DISH, Exh. 1008, p. 172

Action, Params), EvParams) :-

memberchk (from(RequestingKS), EvParams),
check_address(Params, KSList),
is_list(KSList),
append (Params, EvParams, AllParams),
dispatch_trigger_request (RequestingkKS, Mode, Type, Condition, Action,

AllParams, KSList).

ESEEEEEESESEEEEESEEEEEEEEEEEEEESEEEEESS

% TBD: New for compound goals:

% If satisfaction of a compound goal is requested, and the compound query
% interpreter is not included, signal error condition:
caa_AppDoEvent (ev_post_solve(Goal, Params), EvParams) :-

\+ currentpredicate (complete_goal, complete_goal(_,_,_,_)),
\+ icl_BasicGoal (Goal),I

format ('ERROR: This facilitator does not support compound goals~n', []),
format(' Returning 0 solutions for goal:~n ~w-n', [Goal]),
oaa_Id(Facilitator),
memberchk (from(RequestingKS), EvParams) ,
oaa_PostEvent(

ev_reply_solved([Facilitator], [],Goal, Params, []),
{address (RequestingKS)]).

% If compound goal capabilities are included, ALL ev_post_solve events are
% handled here. Otherwise, they fall through to later clauses.
oaa_AppDoEvent (ev_post_solve(Goal, Params), EvParams) :-

currentpredicate (complete_goal, complete_goal(_,_,_,_)),|

memberchk (from(RequestingKS), EvParams),
complete_goal(RequestingkS, Goal, Params, CompletedGoal),
executegoal (RequestingKS, Goal, Params, CompletedGoal) .

SEELEGEEEETESEEEGEESEESEEEESEEEEETEEESS

/* Finds all KSs for a goal, asks them to solve it, then returns */
/* the answers to the calling KS * /
oaa_AppDoEvent (ev_post_solve(Goal, Params), EvParams) :-

memberchk (from(RequestingKS), EvParams),
% see if the query is addressed using address(KS) in Params
check_address (Params, AddrkKS),

choose_agents_for_goal (RequestingKS,Goal,AddrkS, Params, true,KSList),

% if none of my agents know how to solve goal, send to parent
(KSList = [] ->

find_level (Params, Level, NewParams),
((com:com_GetInfo(parent, fac_name(ParentName)),

Level > 0) ->

oaa_TraceMsg('~nRouting goal "ev_solve(~p)" to parent ~p.-~n',
{[Goal, ParentName]),

new_goal_id(Id),
oaa_PostEvent (ev_post_solve_from_bb(Id, Goal, NewParams),

{address (parent)]),

DISH, Exh. 1008, p. 172

DISH, Exh. 1008, p. 173

 % if answers requested,
% send parent's answers directly back to requestingKS
% as well as blackboard solutions

(memberchk (reply (none), NewParams) -> true |
% No longer valid:
% send_blackboard_solutions(RequestingKS, Goal, Params),
oaa:oaa_add_trigger_local (

comm,

event (ev_reply_solved_by_bb (Id, SomeKS, Goal, Params2,Solutions),
),

ev_respond_query (Id, RequestingKS, SomeKS, Goal, Params, Params2,
Solutions),

{recurrence (when), on(receive)])
)

% root blackboard: doesn't know anyone who can solve goal
(memberchk (reply (none), NewParams) -> true |

oaa_Id(KSID),
oaa_PostEvent(
ev_reply_solved([KSID], [],Goal, Params, []),
[address (RequestingKS)])

)

| otherwise ->
dispatch_solve_request (RequestingkKS, Goal, Params, EvParams, KSList)

).

/* Finds all KSs for a goal, asks them to solve it, then returns */
/* the answers to the calling BB x /
oaa_AppDoEvent (ev_post_solve_from_bb(Id, Goal, Params), EvParams) :-

memberchk (from(RequestingKS), EvParams),
* see if the query is addressed using address(KS) in Params
check_address (Params, AddrKs),

choose_agents_for_goal (RequestingkS, Goal, AddrKS, Params,true,KSList),

% if none of my agents know how to solve goal, send to parent
(KSList = [] ->

find_level (Params, Level, NewParams),
% try to ask parent
((com:com_GetInfo(parent, fac_name(ParentName)),

com:com_GetInfo(parent, fac_id(ParentId)), Level > 0) ->
oaa_TraceMsg('~nRouting goal "ev_solve(-p)" to parent ~p.-n',

{Goal, ParentName]),

oaa_PostEvent (ev_post_solve_from_bb(Id, Goal, NewParams) ,
{address (parent)]}),

(memberchk (reply (none), NewParams) -> true |
oaa:oaa_add_trigger_local (

comm,

event (ev_reply_solved_bybb(Id, _SomeKS, Goal, P2, Solutions),
),

ev_respond_bbquery (RequestingKS, ParentId,Id,Goal, Params,
P2, Solutions),

DISH, Exh. 1008, p. 173

DISH, Exh. 1008, p. 174

ea,

{recurrence (when), on(receive)])
)

% root blackboard : knows no solvers

(memberchk (reply (none), Params) -> true |
oaa_Name (KSName}),
oaa_PostEvent(
ev_reply_solved_bybb(Id, KSName,Goal,Params, [}),
[address (RequestingKS)])

member (SomeKS, KSList), % backtrack over all KSs.

oaa_TraceMsg('~nRouting goal to ~p: ~p~n',
[SomeKS, Goal]),

oaa_PostEvent (ev_solve(Id, Goal, Params),
{address (SomeKS), from(RequestingKS)]),

(memberchk(reply(none), Params) -> fail |
oaa:oaa_add_trigger_local (

comm,

event (ev_solved(Id, _SomeKS, Goal, P2, Solutions), _),
ev_respond_bbor_post_higher (RequestingKS,SomeKS, Id,
Goal,P2,Solutions),

[recurrence (when), on(receive)])

),

fail %* send events to all KSs that can solve goal.
).

oaa_AppDoEvent (wakeup (time_limit(Id)), _EvParams) :-
retract (time_limit_trigger (Id, When, RequestingKS,Goal,Params)),
oaa_TraceMsg('~nTime limit expired. Goal failed:~n ~p~n', [Goal]),
oaa_Id({KSId), % get local ksid

% interpret (KSId,
% ev_respond_query(-1,RequestingKS, KSId, Goal, Params, Params, [])).

oaa_Interpret(
ev_respond_query(-1,RequestingkKS, KSId, Goal, Params, Params, []},

[from(KSId)]).

% When asked by parent blackboard to solve a goal,
% route all answers back using "ev_solved(Id, KS, Goal, Params, Solutions)".
oaa_AppDoEvent (ev_solve (Id, Goal, Params), EvParams) :-

memberchk (from(ParentBB), EvParams),

oaa_Name (KSName) ,

% see if the query is addressed using address(KS) in Params
check_address (Params, AddrKS),
choose_agents_for_goal (KSName,Goal,AddrkS, Params, true,KSList),

% if none of my agents know how to solve goal, send empty solutions
(KSList = [] ->

(memberchk(reply(none), Params) -> true |
oaa_PostEvent(ev_solved (Id, KSName,Goal, Params, []),

[address (ParentBB)])

DISH, Exh. 1008, p. 174

DISH, Exh. 1008, p. 175

)

member (SomeKS, KSList), % backtrack over all KSs.

oaa_TraceMsg('~nRouting goal "ev_solve(~p)" to ~p.-n', [Goal,
SomeKS]),

oaa_PostEvent (ev_solve(Id, Goal, Params),
[address (SomeKS), from(ParentBB)])),

(memberchk (reply(none), Params) -> fail |
oaa:oaa_add_trigger_local (

comm,

event (ev_solved(Id, _SomeKS, Goal, P2, Solutions), _),
ev_respond_to_parent (ParentBB, KSName, Id,Goal, Params,

P2, Solutions),
[recurrence(when), on(receive)])}

),

fail % send events to all KSs that can solve goal.
).

/* If a KS is available, send it the message */
oaa_AppDoEvent (ev_post_event (Event), EvParams) :-

memberchk (from(KS), EvParams) ,

choose_ks_for_goal(KS, Event, _, [], SomeKS, _),
oaa_PostEvent (Event, [address(SomeKS), from(KS)]),
fail.

/* If a KS is available, send it the message */
oaa_AppDoEvent (ev_post_event (KSName, Event), EvParams) :-

oaa_Name(KSName), !,
% interpret (KS, Event).
oaa_Interpret (Event, EvParams) .

oaa_AppDoEvent (ev_post_event (KSName, Event), EvParams) :-
memberchk(from(KS), EvParams),

%* agent must be "ready" to receive messages, or just
% open if it is an agent compiled with old agentlib.

(oaa:oaa_solve_local (agent_data(RealKS, ready, _Solvable,AgentName), [])

oaa:oaa_solve_local (agent_data(RealKS, open, _Solvable,AgentName), []),
oaa_Version(RealkKS, _Language, Version),
Version < 2.0),

(match_ks(KSName, RealKS) ; KSName = AgentName),
oaa_PostEvent (Event, [address(RealKS), from(KS)]),
fail.

% oaa_AppDoEvent (ev_post_event (_KS, _Event), _KS) :- !.
oaa_AppDoEvent (ev_post_event (_KS, _Event), _EvParams) :- !.

% Send back solutions to KS who originally requested them (with ev_post_solve)
%

%® 970219: DLM: Added arg. OrigParams. There is now a requirement that
% the params returned in a ev_reply_solved event must be unifiable with the
original
% params (from the corresponding solve event).
oaa_AppDoEvent (ev_respond_query (Id,RequestingKS, Requestee, Goal, OrigParams,

Params,Solutions), _EvParams) :-
oaa_TraceMsg('~nRouting answers back to ~p:-~n ~p~n',

DISH, Exh. 1008, p. 175

DISH, Exh. 1008, p. 176

[RequestingKS,Solutions]),
canceltime_check (Id),
unify_params (OrigParams, Params, UParams),
(Solutions == [] ->

Solvers = []

| otherwise ->
Solvers = [Requestee]}

),

oaa_PostEvent (ev_reply_solved([Requestee], Solvers, Goal, UParams,
Solutions),

[address (RequestingKS)]), !.

% Send back solutions to KS who originally requested them (with ev_post_solve)
% If no solutions, ask a higher blackboard
oaa_AppDoEvent(

ev_respond_or_post_higher (RequestingKS, Solver,Id,Goal,P,Solutions) , ©
_EvParams) :- ,

((Solutions \== {] ; oaa:oaa_class(root)) ->
cancel_time_check(Id), !,
return_solutions (RequestingkKS, Solver, Id, .Goal,P,Solutions)

% @@DLM: The following needs work. Must check goal_count status
$% before posting higher
% sub-agents found no solutions: post higher
com:com_Getinfo(parent, fac_id(ParentId)),
find_level(P, Level, NewParams) ,
Level > 0,

oaa_PostEvent (ev_post_solve_from_bb(Id, Goal, NewParams),
[address (parent)]),

oaa:oaa_add_trigger_local (
comm,

event (ev_reply_solved_by_bb(Id, _SomeKS, Goal, P2, Solutions),
) f

ev_respond_query (Id, RequestingKS, ParentId,Goal,P,P2, Solutions),
{recurrence (when), on(receive)])

% Send back acknowledgement to agent that originally requested an update.
oaa_AppDoEvent(

ev_return_update (RequestingKS, Mode, Solver, Id, Clause, Params, Updaters),
_EvParams) :-

return_update (RequestingKS, Mode, Solver, Id, Clause, Params, Updaters).
% Send back acknowledgement to agent that originally requested a trigger
% update.

oaa_AppDoEvent(
ev_return_trigger_update (RequestingKS, Mode, Solver, Id, Type, Condition,

Action, Params, Updaters),
_EvParams) :-

oaa_TraceMsg('~nRouting trigger updaters back to ~p:~n ~p-n',
[RequestingKS,Updaters]),

return_trigger_update (RequestingKS, Mode, Solver, Id, Type, Condition,
Action, Params, Updaters).

% Send back solutions to a blackboard who requested them
% (with ev_post_solve_from_bb)
%

10

DISH, Exh. 1008, p. 176

DISH, Exh. 1008, p. 177

% 970219: DLM: Added arg. OrigP. There is now a requirement that
% the params returned in a ev_solved event must be unifiable with the original
% params (from the corresponding solve event).
oaa_AppDoEvent (ev_respond_bbquery(RequestingBB, Solver, Id,Goal,

OrigP, P,Solutions), _EvParams) :-
unify_params(OrigP, P, UP),
oaa_TraceMsg('~nRouting answers back to blackboard ~p:~n ~p~-n',

(RequestingBB,Solutions]),
oaa_PostEvent (ev_reply_solved_by_bb(Id,Solver,Goal,UP,Solutions),

[address (RequestingBB)]), !.

% Send back solutions to a blackboard who requested them

oaa_AppDoEvent(
ev_respond_bbor_post_higher (RequestingBB, Solver,Id,Goal,P,Solutions) ,
_EvParams) :-

((Solutions \== [] ; oaa:oaa_class(root)) ->
oaa_TraceMsg('~nRouting answers back to blackboard ~p:~n ~p-n',

(RequestingBB,Solutions]),
oaa_PostEvent(ev_reply_solved_by_bb(Id, Solver, Goal, P,Solutions),

[address (Request ingBB)])

% sub-agents found no solutions: post higher
com:com_GetInfo(parent, fac_id(ParentId)),
findlevel(P, Level, NewParams) ,
Level > 0,

oaa_PostEvent(ev_post_solve_from_bb(Id, Goal, NewParams) ,
[address (parent)]),

oaa:oaa_add_trigger_local (
comm,

event (ev_reply_solved_by_bb(Id, _SomeKS, Goal, P2, Solutions),
) ‘

ev_respond_bb_query (RequestingBB, ParentId, Id,Goal,P,P2,Solutions) ,
[recurrence (when), on(receive)])

Send back solutions to KS who originally requested them (with ev_post_solve)

the params returned in a ev_solved event must be unifiable with the original
params (from the corresponding solve event).

oaa_AppDoEvent (ev_respond_to_parent (ParentBB,Solver,Id,Goal, OrigP,

%

%

% 970219: DLM: Added arg. OrigP. There is now a requirement that
%

%

P, Solutions), _EvParams) :-
unifyparams (OrigP, P, UP),
oaa_TraceMsg('~nRouting answers back to parent bb ~p:-~n ~p-n',

{[ParentBB,Solutions]),

oaa_PostEvent (ev_solved(Id, Solver, Goal, UP, Solutions),
[address (ParentBB)]), !.

oaa_AppDoEvent (ev_check_agent_name(KSName), EvParams) : -
memberchk (from(KS), EvParams),

findall(KSName, oaa:oaa_solve_local(agent_location(_KSID, KSName ,_,_},
(1), L),

(L==[] ->

% @@tcp_send shouldn't be used:
tep_send(KS, 'UNIQUE');
findall(KS1, oaa:oaa_solve_local (agent_location(_, KS1, _,_), []), R),

11

DISH, Exh. 1008, p. 177

DISH, Exh. 1008, p. 178

tcep_send(KS, R)),!.

oaa_AppDoEvent (ev_register_port_number (Name,Address), EvParams) :- %+KS, +Port,
+Host

memberchk (from(KS), EvParams),

Address =.. [faddress, Port, Host],

oaa:oaa_remove_data_local (agent_location(KS, _Name, _Port, _Host),
(}),!,

oaa:oaa_add_data_locai(agent_location(KS, Name, Port, Host), []),
format ('Agent ~p has Port: ~p , Host: ~p ~n', [KS, Port, Host]),'

oaa_AppDoEvent (ev_register_port_number (Name,Address), EvParams) :- %+KS, +Port,
+Host

memberchk (from(KS), EvParams),
Address =.. [address, Port, Host],

oaa:oaa_add_data_local(agent_location(KS, Name, Port, Host), []),
format ('Agent ~p has Port: ~p , Host: ~p ~n', [KS, Port, Host]),

oaa_AppDoEvent (ev_continue_execution(Id, RKS, Requestees, Solvers, Solutions),
_EvParams) :-

continue_execution(Id, RKS, Requestees, Solvers, Solutions).

* This is called from a trigger set in compound.pl.
oaa_AppDoEvent(

ev_unify_and_continue_execution(Id, RKS, Goal, Vars, Requestee, Requestees,
Solvers, Solutions),

yor-

unify_and_continue_execution(Id, RKS, Goal, Vars, Requestee, Requestees,
Solvers, Solutions).

/* Facilitator solvable: report the version and language of some
connected agent. */

oaa_AppDoEvent (agent_version(Id, Language, Version), _EvParams):-
!,

oaa_Version(Id, Language, Version).

/* Facilitator solvable: Find all agents who can solve goal */
oaa_AppDoEvent (can_solve(Goal, KSList), EvParams) :-

(memberchk(from(KS), EvParams) -> true | oaa_Id(KS)),
findall(SomeKS, choose_ks_for_goal(KS, Goal, _, [], SomeKS, _), KSList).

SSSESESELESESESESELESSEEEKESSEEEEEFEEESESEEEEEEE EEE ESE SE EEEEEEELE EEE ESE SEEES

% choose_agents_for_goal (RequestingkKS,Goal,AddrKS, Params,Sort,Agents) .
%

% The first 4 arguments are exactly as expected by chooseksfor_goal.
% Sort, a boolean, tells whether to sort on utility.

choose_agents_for_goal (RequestingKS,Goal,AddrkS, Params,Sort,Agents) :-
findall (

p(Agent,Utility),
choose_ks_for_goal (RequestingkKS, Goal, AddrkS, Params,Agent,Utility),
Pairs

) f
(Sort ->

samsort (oaa_utility_compare, Pairs, SortedPairs)
| otherwise ->

12

DISH, Exh. 1008, p. 178

DISH, Exh. 1008, p. 179

SortedPairs = Pairs

,

findall(Agent, member (p(Agent, Utility), SortedPairs), Agents).

% choose_agents_for_data(RequestingKS,Goal,AddrkS, Perm, Sort,Agents) .
%

% The first 4 arguments are exactly as expected by choose_ks_fordata.
% Sort, a boolean, tells whether to sort on utility.

choose_agentsfor_data (RequestingkS,Goal,AddrKS, Perm, Sort, Agents)
findall (

p(Agent,Utility),
choose_ks_for_data(RequestingKS,Goal,AddrkS, Perm,Agent, Utility),
Pairs

) i
(Sort ->

samsort (oaa_utility_compare, Pairs, SortedPairs)
| otherwise ->

SortedPairs = Pairs

),

findall (Agent, member (p(Agent, Utility), SortedPairs), Agents).

caa_utility_compare (p(_Agent1,Utilityl), p(_Agent2,Utility2)) :-
Utilityl >= Utility2.

/* Finds a KS that knows how to solve Goal */

%
%

%

%
%

%
%

%

%
%

%

$

%

%

backtracks over all KSs that know how to solve

a particular goal, except for RequestingKS, which is the
KS who asked for the goal to be solved in the
first place. (RequestingKS is included if the 'reflexive' Param
is present.)

MemberList can be a list used to reduce the set to at most MemberList

or can be a specific KS to try, or a variable.
If an address is specified in MemberList, it can be the same as

RequestingKS (DLM, 96/10/30).
Solvable lists can contain complex tests (AC, 97/2/5)

e.g. [goall(Y),(g(X) :- X > 1,X < 10),goal2]}
Params is now used to check for 'reflexive' (DLM, 97/03/06).

Utility is the numeric value the KS has associated with the
solvable.

choose_ks_for_goal (RequestingKS, Goal, MemberList, Params, SomeKS, Utility) :-

choose_ks_for_goal(_RequestingKS, Goal, MemberList, _Params, SomeKS, Utility)

var (MemberList),
!

ks_ready(SomeKS, ListOfGoals),
(icl_GetParamValue (reflexive (true), Params) ->

true

| otherwise ->
SomeKS \== RequestingKS

),

Oaa:0aa_goal_matches_solvables(Goal, ListOfGoals, _, Matched),
Matched = solvable(_, SolveParams, _),
icl_GetParamValue (utility (Utility), SolveParams).

(is_list(MemberList) ->
member (SomeKS, MemberList)

| SomeKS = MemberList),

13

DISH, Exh. 1008, p. 179

DISH, Exh. 1008, p. 180

oaa:icl_true_id(SomeKS, TruelId),
ks_ready(TrueId, ListOfGoals),

oaa:oaa_goal_matches_solvables (Goal, ListOfGoals, _, Matched),
Matched = solvable(_, SolveParams, _),
icl_GetParamValue (utility (Utility), SolveParams) .

backtracks over all KSs that know how to write a particular goal (or
read, though that's not currently used), except for RequestingKS,
which is the KS who asked for the goal to be solved in the first
place. RequestingKS is never included, because he does the
appropriate asserts locally, when appropriate.dPdPdPdPdPdPoP
Perm is 'read' or 'write'.

choose_ks_for_data(RequestingKS, Goal, MemberList, Perm, SomeKS, Utility) :-
var (MemberList),

1

ks_ready(SomeKS, ListOfGoals) ,
SomeKS \== RequestingkKS,
Oaa:oaa_data_matches_solvables(Goal, ListOfGoals, Perm, _, Matched),
Matched = solvable(_, SolveParams, _),
icl_GetParamValue (utility (Utility), SolveParams) .

choose_ks_for_data(_RequestingKS, Goal, MemberList, Perm, SomeKS, Utility) :-
(is_list(MemberList) ->

member (SomeKS, MemberList)

| SomeKS = MemberList),
ks_ready(SomeKS, ListOfGoals),

Oaa:oaa_data_matches_solvables(Goal, ListOfGoals, Perm, _, Matched),
Matched = solvable(_, SolveParams, _),
icl_GetParamValue (utility (Utility), SolveParams) .

% ks_ready(*SomeKS, *ListOfGoals).
% Backtracks over all agents that are ready to solve goals.
% If SomeKS is bound (with an agent's local ID), only that agent is
% considered.

ks_ready (SomeKS, ListOfGoals) :-
%¢ agent must be "ready" to receive messages, or just

% open if it is an agent compiled with old agentlib.
(oaa:oaa_solve_local(agent_data(SomeKS, ready, ListOfGoals, AgentName),

(]) ;

oaa:oaa_solve_local (agent_data(SomeKS, open, ListOfGoals, AgentName) ,
]),

oaa_Version(SomeKS, _Language, Version),
Version < 2.0).

% Facilitator agents look up their own solvables in oaa_solvables/1.
ks_ready(SomeKS, ListOfGoals) :-

oaa_Id(SomeKS),
oaa:Oaa_solvables (ListOfGoals).

match_ks(all, _KS).
match_ks(KS, KS).

If params contains a VALID address (symbolic name or id) for one or more
agents, return the agents' ids.
If params contains an INVALID address, remove it from the list returned.
Otherwise, KSAddr should return a variable.

97-05-23 (DLM): The address param now should always contain a list,
dgdPoPofae

14

DISH, Exh. 1008, p. 180

DISH, Exh. 1008, p. 181

% but we'll check just to be safe.

check_address (Params, 'KSAddr) :-
memberchk (address (Addr), Params),

(is_list (Addr) ->
AddrList = Addr

| AddrList = [Addr]}),
find_addresses (AddrList, KSAddr),|

check_address(_Params, _SomeKS).

find_addresses([], []).
find_addresses([Addr | Addrs], [Id | Ids]) :-

find_address (Addr, Id),
',

find_addresses (Addrs, Ids).
find_addresses([_Addr | Addrs], Ids) :-

find_addresses (Addrs, Ids).

Given an agent id (eg. 5) or a symbolic name (eg. 'interface')
returns the local id for the reference.

%

%

%

% TBD: This does not yet handle remote addresses (associated with a different
% facilitator).

find_address (addr (Addr), SomeKS) :-
com:comGetInfo(incoming, oaa_addr(Addr)),
% That's me, the facilitator.

1

oaa_Id(SomeKS).
findaddress (addr (Addr, SomeKS), SomeKS) :-

com:com_GetInfo(incoming, oaa_addr(Addr)),
% One of my clients.| ‘

% Make sure it's current:

oaa:oaa_solve_local (agent_data(SomekS, _, _ListOfGoals, _AgentName), []).
find_address (name (Name), SomeKS) :-jos

atom(Name),

oaa:oaa_solve_local(agent_data(SomeKS, _, _ListOfGoals, Name), []).
findaddress (SomeKS, SomeKS) :-

oaa:oaa_solve_local (agent_data(SomeKS, _, _ListOfGoals, _AgentName), []),

find_level(Params, Level, NewParams):-
oaa:remove_element (level_limit (Level), Params, Params2), !,
(Level > 0 ->

NewLevel is Level - 1

| NewLevel is 0),
NewParams = [level_limit (NewLevel) |Params2].

find_level(Params, 1, Params).

post_to_all_clients(Event) :-
oaa_Id(FacId),
oaa:oaa_solve_local (agent_data(ClientId, ready, Solvable, AgentName) ,

(}),

15

DISH, Exh. 1008, p. 181

DISH, Exh. 1008, p. 182

ClientId \== Factid,

oaa_PostEvent (Event, [address (ClientId), from(FacId)]),
fail.

post_to_all_clients(_Event).

% This is called when length of KSList is > 0.
%

% goal_count (GoalId,Goal, Params, EvParams, ToBeCalled, Called,
% Responders, Solvers, Answers, NumAnswers)

dispatch_solve_request (RequestingKS, Goal, Params, EvParams, KSList) :-
new_goal_id(Id),
% Note that reply (none) overrides parallelok (false). We can't
% provide parallel_ok (false) if no replies come back from solvers.
(memberchk(reply(none), Params) ->

dispatch_solve_events(KSList, Id, RequestingKS, Goal, Params, EvParams)
| memberchk (parallel_ok(false), Params) ->

% Dispatch to one KS; save the rest for later.
KSList = [FirstKS | Rest],

assert (goal_count(Id, Goal, Params, EvParams, Rest,
{Firstks], [], (], [], 0)),

dispatch_solve_event (Id, RequestingkKS, Goal, Params, EvParams, FirstKS)
| otherwise ->

% Dispatch to all KSs.
assert (goal_count (Id, Goal, Params, EvParams, [],

KSList, [], 0), (). 0)),

dispatch_solve_events(KSList, Id, RequestingKS, Goal, Params, EvParams)

dispatch_solve_events([], _Id, _RequestingkKS, _Goal, Params, _EvParams).
dispatchsolveevents([SomeKS | Rest], Id, RequestingkKS, Goal,

Params, EvParams) :-

dispatch_solve_event (Id, RequestingKS, Goal, Params, EvParams, SomeKS),
dispatch_solve_events (Rest, Id, RequestingKS, Goal, Params, EvParams) .

dispatch_solve_event (Id, RequestingKS, Goal, Params, EvParams, SomeKS) :-
oaa_Id(SomeKS),
% That's me, the facilitator.t“4

icl_GoalComponents (Goal, _, _, GoalParams),
append (Params, EvParams, InheritedParams) ,
append (GoalParams, InheritedParams, AllParams),
findall (Goal,

% InheritedParams here is right, not AllParams:
oaa:oaa_solve_local(Goal, InheritedParams) ,

Solutions),

(memberchk (reply (none), AllParams) ->
true

| otherwise ->
oaa_AppDoEvent(

ev_respond_or_post_higher (RequestingkKS, SomeKS,Id,Goal, Params, Solutions) ,
1)

).

dispatch_solve_event (Id, RequestingKS, Goal, Params, _EvParams, SomeKS) :-
oaa_TraceMsg('~nRouting goal "ev_solve(~p)" to ~p.~n', [Goal, SomeKS]),

16

DISH, Exh. 1008, p. 182

DISH, Exh. 1008, p. 183

ask a sub-agent to try and solve goal.
if solutions are returned, pass them to requestingKS.
otherwise, ask higher blackboard to try and solve goals.

note: send ev_solve(id(Id,SomeKS), ...} as a means of insuring
that each ev_solved() trigger is unique and only matches
exactly one response. We use _SomeKS in the field indicating
which agent actually solved the goal because individual

% agents don't necessarily know their internal unique ID #.
oaa_PostEvent(ev_solve(id(Id,SomeKS), Goal, Params),

{address (SomeKS), from(RequestingKS)]),
(memberchk(reply(none), Params) ->

true

| otherwise ->
% If time_limit specified in parameters, setup
% time_trigger to wakeup if solutions hasn't been returned
% in specified time.

(memberchk (time_limit(NSecs), Params) ->
add_time_check(NSecs, Id, RequestingKkKS, Goal, Params)

ddPdPdPdedPdP

| true),
oaa:oaa_add_triggerlocal (

comm,

event (ev_solved (id(Id,SomeKS), _SomeKS, Goal, P2, Solutions), _},
ev_respond_or_post_higher (RequestingKS, SomeKS,Id,Goal,P2,Solutions),
{recurrence (when), on(receive)])

).

return_solutions(+RequestingkS, +Responder, +Id, +Goal, +P, +NewSolutions).
Having just received solutions from a Responder, take the appropriate action.

Even though the Responder has returned copies of the goal and params,
we don't need them because we have a local copy in goal_count.

@@DLM: Unresolved question about streaming: Should we stream the
responses with 0 solutions? [My thinking is "yes".]

return_solutions (RequestingKS, Responder, Id, _Goal, _P, NewSolutions) :-
% ToBeCalled lists solvers not yet called. PrevCalled lists
% the called solvers that have yet to respond.

retract (goal_count (Id, Goal, Params, EvParams,
ToBeCalled, PrevCalled, PrevResponders,
PrevSolvers, PrevSolutions, PrevNumSol)),

dedPd®&dPdPdPdPdP
!of

% Take Responder out of the called list:
(selectchk(Responder, PrevCalled, Called) ->

true

| otherwise ->
format ('ERROR: Inappropriate ev_solved event received:~n', []),
format(' ~w ~w ~w ~w-n', [RequestingKS, Responder, Id, Goal]),
Called = PrevCalled

),

% and put him into the responder list:
append (PrevResponders, [Responder], Responders),

% The solvers are just the responders that succeeded:
(NewSolutions = [] ->

NewSolvers = {]

| otherwise ->
NewSolvers = [Responder]

17

DISH, Exh. 1008,p. 183

DISH, Exh. 1008, p. 184

append (PrevSolvers, NewSolvers, Solvers),
append (PrevSolutions, NewSolutions, Solutions),
length (NewSolutions, NewNumSol),
NumSol is PrevNumSol + NewNumSol,

* This case means that either: (1) we've gotten responses from all
%* solvers; and/or (2) we have reached the desired number of solutions.
% By not saving goal_count, we ensure that any additional returned
% solutions are ignored:

(((ToBeCalled == [], Called == []) ;

(memberchk (solution_limit (Limit), Params), NumSol >= Limit)) ->
% This test is a place-holder; streaming not yet official:

(memberchk (reply (streaming), Params) ->
Return = ev_reply_solved([Responder], NewSolvers, Goal, Params,

NewSolutions)

| otherwise ->
Return = ev_reply_solved(Responders, Solvers, Goal, Params,

Solutions)

),
Save = false

% This case happens with parallel_ok(false):
| ToBeCalled = [Next | Rest] ->

dispatch_solve_event (Id, RequestingKS, Goal, Params, EvParams, Next),
% This test is a place-holder; streaming not yet official:

(memberchk(reply(streaming), Params) ->
Return = ev_reply_solved([Responder], NewSolvers, Goal, Params,

NewSolutions),

Save = goal_count(Id, Goal, Params, EvParams,
Rest, [Next|Called], [], [], [J], NumSol)

| otherwise ->
Return = false,

Save = goal_count(Id, Goal, Params, EvParams,
Rest, (Next |Called], Responders, Solvers,

Solutions, NumSol)
)

% Still waiting for some called solvers to respond:
| Called = [_ | _] ->

% This test is a place-holder; streaming not yet official:
(memberchk(reply(streaming), Params) ->

Return = ev_reply_solved([Responder], NewSolvers, Goal, Params,
NewSolutions) ,

Save = goal_count(Id, Goal, Params, EvParams,
ToBeCalled, Called, [J], [J], [J], NumSol)

| otherwise ->
Return = false,

Save = goal_count(Id, Goal, Params, EvParams,
ToBeCalled, Called, Responders, Solvers,

Solutions, NumSol)

)

),
(Save == false ->

true

| otherwise ->
assert (Save)

),
(Return == false ->

true

18

DISH, Exh. 1008, p. 184

DISH, Exh. 1008, p. 185

| otherwise ->
oaa_TraceMsg('~nRouting answers back to -p:~n ~p~n',

(RequestingKS,Return]),
oaa_PostEvent (Return, [address (RequestingKS)])

).

return_solutions(_RequestingKS, _Responder, _Id, _Goal, _P, _NewSolutions).

dispatch_update_request (RequestingKS, Mode, Clause, Params, []) :-
% No agents able to perform the requested update:{

(memberchk(reply(none), Params) ->
true

| otherwise ->
Event = ev_reply_updated (Mode, Clause, Params, [], []),
oaa_PostEvent (Event, [address (RequestingKS)])

).

dispatch_update_request (RequestingKS, Mode, Clause, Params, KSList) :-
new_goal_id(Id),
length (KSList,NumKSsForGoal) ,
% if more than one KS can solve the goal, remember so that
% we can collect answers from all of them later

(NumKSsForGoal > 1 ->

assert (update_count (Id, NumKSsForGoal, [], []))
| otherwise ->

true

),

member (SomeKS, KSList), % backtrack over all KSs.

dispatch_update_event (Id, RequestingkKS, Mode, Clause, Params, SomeKS) ,
fail.

dispatch_update_request (_RequestingKS, _Mode, Clause, _Params, _KSList).

dispatchupdate_event (Id, RequestingKS, Mode, Clause, Params, SomeKS) :-
oaa_Id(SomeKS) ,
% That's me, the facilitator.{ f

(Mode == add ->

Functor = oaa_add_data_local
| Mode == replace ->

Functor = oaa_replace_data_local
| otherwise ->

Functor = oaa_remove_data_local
),

append(Params, [from(RequestingkKS)], AllParams),
Goal =.. [Functor, Clause, AllParams]},
(call(oaa:Goal) ->

Updaters = [SomeKS]
| otherwise ->

Updaters = []
) ‘

(memberchk (reply (none), Params) ->
true

| otherwise ->
% Params must be returned here (not AllParams) :

return_update (RequestingKS,Mode,SomeKS,Id, Clause, Params, Updaters)
).

dispatch_update_event (Id, RequestingKS, Mode, Clause, Params, SomeXKS) :-
oaa_TraceMsg('~nRouting request "ev_update(~p, ~p, ~p)" to ~p.-n',

19

DISH, Exh. 1008, p. 185

DISH, Exh. 1008, p. 186

[Mode, Clause, Params, SomeKS]),

append (Params, [from(RequestingKS)], AllParams),
oaa_PostEvent(

ev_update (id(Id,SomeKS), Mode, Clause, AllParams),
{address (SomeKS)]),

(memberchk (reply(none), Params) ->
true

| otherwise ->
%* TBD: Do we want to set a time trigger here?
oaa:oaa_add_trigger_local (

comm,

event (ev_updated(id(Id,SomeKS), Mode, _Clause, _P2, Updaters),
% Params must be returned here (not AllParams) :

ev_return_update (RequestingKS , Mode, SomeKS, Id,
Clause, Params, Updaters),

[recurrence (when), on(receive)])

Returns, to requesting KS, the addresses of all agents (including
facilitator if appropriate), that attempted (NewKSs) and that actually
satisfied (Updaters) an update request.

NewUpdaters is always either [], or a singleton list.

Possible values for Mode: add, remove, replace.

Note: Params must be returned in ev_reply_updated, so it must be
dPdPdPdPdPdPdPdPdPdP
return_update (RequestingkKS, Mode, Responder, Id, Clause, Params,

NewUpdaters) :-
retract (update_count (Id, AgentsLeft, PrevKSs, PrevUpdaters)),
append (PrevUpdaters, NewUpdaters, Updaters),
append (PrevKSs, [Responder], NewKSs),
(AgentsLeft > 1 ->

NewAgentsLeft is AgentsLeft - 1,
assert (update_count (Id, NewAgentsLeft, NewKSs, Updaters))

| otherwise ->
oaa_TraceMsg('~nRouting updaters back to ~p:~n ~p-n',

[RequestingkKS, Updaters]),
Event = ev_reply_updated(Mode, Clause, Params, NewKSs, Updaters),
oaa_PostEvent (Event, [address (RequestingKS) })

), f.

return_update(RequestingKS, Mode, Responder, _Id, Clause, Params, Updaters)
oaa_TraceMsg('-~nRouting updaters back to ~p:~n ~p-n',

[RequestingKS,Updaters]),
Event = ev_replyupdated (Mode, Clause, Params, [Responder], Updaters),
oaa_PostEvent (Event, [address (RequestingKS)]).

% No agents able to install this trigger:
dispatch_trigger_request(RKS, Mode, Type, Condition, Action, Params, [])

!,

(memberchk (reply(none), Params) ->
true

| otherwise ->

_)s

unifiable with the params embedded in the requesting event (ev_post_event).

Event = ev_reply_trigger_updated(Mode, Type, Condition, Action, Params,

20

DISH, Exh. 1008, p. 186

DISH, Exh. 1008, p. 187

(1), (1),

oaa_PostEvent (Event, [address (RKS) })
).

dispatchtrigger_request (RKS, Mode, Type, Condition, Action, Params, KSList) :-
new_goal_id(Id),
length (KSList, NumKSsForGoal),
% if more than one KS can solve the goal, remember so that
% we can collect answers from all of them later

(NumKSsForGoal > 1 ->

assert (update_count (Id, NumKSsForGoal, [], []))
| otherwise ->

true

),
member (SomeKS, KSList), % backtrack over all KSs.

dispatch_trigger_event (Id, RKS, Mode, Type, Condition, Action, Params,
SomeKS),

fail.

dispatchtrigger_request (_RKS, Mode, _Type, _Condition, Action, _Params,
KSList) .

dispatch_trigger_event (Id, RKS, Mode, Type, Condition, Action, Params,
SomeKS) :-

oaa_Id(SomeKS),
% That's me, the facilitator.'

(Mode == add ->

Functor = oaa_add_trigger_local
| otherwise ->

Functor = oaa_remove_trigger_local
),

Goal =.. [Functor, Type, Condition, Action, Params],
(call(oaa:Goal) ->

Updaters = [SomeKS]
| otherwise ->

Updaters = [])
),

(memberchk(reply(none), Params) ->
true

| otherwise ->
return_trigger_update(RKS, Mode, SomeKS, Id, Type,

Condition, Action, Params, Updaters)
).

dispatch_trigger_event (Id, RKS, Mode, Type, Condition, Action, Params,
SomeKS) :-

oaa_TraceMsg('~nRouting request~n ev_update_trigger(~p, ~p, ~p, ~Pp, ~p)~nto
~p.-~n',

(Mode, Type, Condition, Action, Params, SomeKS]),
oaa_PostEvent(

ev_updatetrigger (id(Id,SomeKS), Mode, Type, Condition, Action, Params),
{address (SomeKS), from(RKS)]),

(memberchk (reply (none), Params) ->
true

| otherwise ->
% TBD: Do we want to set a time trigger here?
oaa:oaa_add_trigger_local (

comm,

21

DISH, Exh. 1008, p. 187

DISH, Exh. 1008, p. 188

event (ev_trigger_updated(id(Id,SomeKS), _Mode, _Type, _Condition,
_Action, P2, Updaters), _),

ev_return_trigger_update (RKS, Mode, SomeKS, Id,
Type, Condition,Action, P2,Updaters),

[recurrence (when), on(receive)])

Returns, to requesting KS, the addresses of all agents (including
facilitator if appropriate), that attempted (NewKSs) and that actually
satisfied (Updaters) a trigger update request.

NewUpdaters is always either [{], or a singleton list.dPdPd&dPdeadde
Possible values for Mode: add, remove.

return_trigger_update (RequestingKS, Mode, Responder, Id,
Type, Condition, Action, Params, NewUpdaters) :-

retract (updatecount (Id, AgentsLeft, PrevKSs, PrevUpdaters)),
append (PrevUpdaters, NewUpdaters, Updaters),
append(PrevKSs, [Responder], NewKSs),
(AgentsLeft > 1 ->

NewAgentsLeft is AgentsLeft - 1,
assert (update_count (Id, NewAgentsLeft, NewKSs, Updaters))

| otherwise ->
Event = ev_reply_trigger_updated (Mode, Type, Condition,Action,

Params, NewKSs, Updaters),
oaa_PostEvent (Event, [address (RequestingKS)])

), of.

return_trigger_update(RequestingkKS, Mode, Responder, _Id,
Type, Condition, Action, Params, Updaters) :-

Event = ev_reply_trigger_updated (Mode, Type, Condition, Action,
Params, [Responder], Updaters),

oaa_PostEvent (Event, [address (RequestingKS)]).

unifyparams (+OrigParams, +Params, -UnifiedParams) .%
%

% There is now (970219) a requirement that the params returned in
% a ev_solved or ev_solved_by_bb event must be unifiable with the original
% params from the corresponding solve request. In some situations*, the
% Params returned to the facilitator by a solver may not unify with
% the OrigParams, but may contain individual elements with variables
% instantiated by the solver. This pred. can be used to save these
% instantiations.
%

% *Such as, when find_level has been used to create a new params list.
unify_params([], _Params, []).
unify_params([OrigParam | Rest], Params, [OrigParam | UnifiedRest]) :-

{ memberchk(OrigParam, Params) | true),|‘a

unifyparams (Rest, Params, UnifiedRest).

ESESSELESEEEFESTESEEEELESTEESEEEEETEEEEEEEGESESEEEEEEEEEEEEEELEEESELEESES

% These are extremely simple predicates for maintaining com_connection_info/5,
% which keeps info about the agents to which this agent currently has
% a communications channel.

22

DISH, Exh. 1008, p. 188

DISH, Exh. 1008, p. 189

add_connected(Id, Connection) :-
assert (com:com_connection_info(Id, unknown, child,

(connection (Connection) ,oaa_id(Id)], connected)).

update_connected(Id, AddInfo) :-
com_AddInfo(Id, AddInfo).

% remove_connected (+Id).
remove_connected(Id) :-

retractall (com:com_connection_info(Id, _, _, _, _)).

% if the time_limit(NSec) parameter is sent, install wakeup on server
% to indicate the request has failed if not achieved in the correct time.
add_time_check(NSecs, Id, RequestingKS, Goal,Params) :-

(time_limit_trigger(Id, When, RequestingKS, Goal, Params) ->
true % already added for this goal request

tcp_now (Now),
tcp_time_plus (Now, NSecs, Soon),
tcp_schedule_wakeup(Soon, time_limit(Id)),
assert (time_limit_trigger (Id, Soon, RequestingKS,Goal, Params)),
oaa_TraceMsg('~nTime limit check added for ~p~n', [Goal])

), ?.

% if solutions are returned before a time_limit_trigger has expired,
% remove the trigger.
canceltime_check(Id) :-

retract (time_limit_trigger(Id,When, RequestingkS,Goal, Params)),
tcp_cancel_wakeup (When, time_limit(Id)),
oaa_TraceMsg('~nTime limit check removed because solution returned.~n

~p-n',
[Goal]), !.

cancel_time_check(_Id).

/* Generates a unique ID for a goal. */
/* ID's should be unique across blackboards*/
/* which is why we use the KSName prefix */
/* Goal counters are used to make sure the */
/* solution really matches the query. */

new_goal_id(NewId) :-
oaa_Name (KSName) ,
concat (KSName, '_', Tmp),
gensym(Tmp, NewId) .

% Returns a list containing Num new goal ids.

new_goal_ids(Num, [NewId | RestIds]) :-
Num > OQ,

,

new_goal_id(NewId),
NewNum is Num - 1,

new_goal_ids(NewNum, RestIds).
new_goal_ids(_Num, []).

23

DISH, Exh. 1008, p. 189

DISH, Exh. 1008, p. 190

start :-

runtime_entry (start).

runtime_entry(start) :-
initial_solvables (Solvables),
com_ListenAt (incoming, CInfo),
format (‘Listening at ~p~n~n', [CInfo]),
oaa_RegisterCallback(app_do_event, user:oaa_AppDoEvent),
oaa_Register(incoming, 'root', Solvables),
on_exception(_, oaa_AppIinit, true),
oaa_MainLoop (true).

runtime_entry(abort) :- !.
%

%

OPAPdPAPdPdPdeAdedPoP
format ('Closing all connections...~n',[]),
close_all_connections.

If the Facilitator is killed (ctrl-c) before disconnecting
all clients, it will not free the port.
This code is an attempt to fix this problem, but it doesn't
help. Why not???

close_all_connections:-
tep_connected (X,Y),
tcpdestroylistener (Y),
tcp_shutdown (X),
fail.

close_all_connections :-
tep_reset, fail.

24

DISH, Exh. 1008, p. 190

DISH, Exh. 1008, p. 191

APPENDIX A.

Source codefile named libcom_tcp.pl.

° =
e SS
ap =
4

a=’ 1)io —™
oN Sn
ofNl==S—™
AN ==oo =o
U =>m =

DISH, Exh. 1008, p. 191

DISH, Exh. 1008, p. 192

SokKtKKKKK KEE KEK KK KR KEIR KEKE KKK KKK KKK KEK KEKE KKK K KKK EREKKKEKEKEKKKEK

File : libcom_tcp.pl
Primary Authors : Adam Cheyer, David Martin
Purpose : TCP instantiation of lowlevel communication primitives for OAA
Updated : 01/98

Unpublished-rights reserved under the copyright laws of the United States.

Unpublished Copyright (c) 1993-98, SRI International.
"Open Agent Architecture" and "OAA" are Trademarks of SRI International.APdPdPdPdPdPdPdPdPdPoPdPdPoD

BRK KKK KERR ER KKK KKK KKK KK KKK IK KKK KKK KKK KK KR KEKE KEKE EKRE KEK KEKE KKKKE KR KREKK

%* RCS Header and internal version
BRK KR KR REE IKK KR IKK KKK IK KK KEE KKK KEK KKK KK EK REIKI KEKRERKE KEK KEKE KEERKEKKEEK

:- module(com,

[com_Connect/2,
com_Disconnect/1,
com_ListenAt/2,
comSendData/2,
com_SelectEvent/2,
com_AddIinfo/2,
com_GetInfo/2]).

% rcs version number

resid(libcom_tcp, '$Header:
/tmp_mnt/home/zumal/martin/OAA/agents/beta/prolog/RCS/com_tcp.pl,v 1.10
1998/05/06 22:35:36 martin Exp $').

:- use_module (library (sets)).
:- use_module(library(tcp)).
:- use_module (library (basics)).
:- use_module (library (lists)).
:- use_module(library(charsio)). % for sprintf and with_output_to_chars
:- use_module (library (ask)). % for ask_oneof
:- use_module(library(environ)). % read environment vars
:- use_module (library (files)). % can_open_file
:~ use_module(library(strings)). % for concat

:- dynamic
com_connection_info/5, % id, commtype, client/server, commInfo, status

com_already_loaded/1. % filename

ESSEESESEETEBEELSELESTEEESSESELESEEETEEEEELEETELESESETESEETEEEEEEEEEEGEEESEEEEEES

% name: com_Connect (+ConnectionId, ?Address)
% purpose: Given a connection ID and an address, initiates a client connection
% remarks:

DISH, Exh. 1008, p. 192

DISH, Exh. 1008, p. 193

% - if Address is a variable, instantiates the Address by using
% comResolveVariables, which looks in a setup file, command line, and
% environment variables for the required info.
% - stores the connection info for connection ID in com_connection_info/5.
% - fails if connection can't be made

EELEEESEEESEETESESEEEEEEEEEETEESESTETEEEEEEEE EE EEE FEES EEE SEE SEEEEEESEEEESEEEESS

comConnect (ConnectionId, tcp(Host,Port)) :-
ground (ConnectionId),
% if variable address, look it up...
((var(Host) ; var(Port)) ->

com_ResolveVariables([
[cmd ('-oaa_host',Host), cmd('-oaa_port', Port)],
[env ('OAA_HOST', Host), env_int('OAAPORT', Port)],
[setup('setup.pl', oaa_host, Host),
setup('setup.pl',oaa_port, Port)]

})

| true),

tep_connect (address (Port, Host), RootConnection),
assert (com_connection_info(ConnectionId, tcp, client,

{addr (tcp (Host, Port)),
oaa_host (Host) ,oaa_port (Port) , connection (RootConnection)],

connected)).

EEEEESESEESEEEEEESESSESEEEEEEEEEESEEEEEEEEEEEEEEEEEEEETEETEETESEEEEESEEEE EEE ES

% name: comDisconnect (+ConnectionId)
% purpose: Given a connection ID of type ‘client', shuts down the connection.
% remarks: Succeeds silently if there is not an open connection having the
% given id.
EESEEEEEEEEEEEEEEEEESE ESET EEEESESEESEEEEEEEEEEEEEEES EEE EEEEE EEE EEE EEEEEEEEEES

com_Disconnect (ConnectionId) :-
ground (ConnectionId) ,
com_connection_info(ConnectionId, tcp, client, _Info, connected),
com_GetInfo(ConnectionId, connection (Connection)),
tcp_shutdown (Connection),
retract (com_connection_info(ConnectionId,tcp,client, Info,connected)),|

com_Disconnect (_ConnectionId).

ESSESSEEEEEEEEEESEEEEEESESESEEESESSSEEEEEEEEEEEEEEEETEETEEEESEEEETEELEETEEESEESEEES

% name: com_ListenAt(+ConnectionId, ?Address)
% purpose: Given a connection ID and an address, initiate a server connection
% remarks:

% - if Address is a variable, instantiates the Address by using

% com_ResolveVariables, which looks in a setup file, command line, and
% environment variables for the required info.
% - stores the connection info for connection ID in com_connection_info/5.
% - fails if connection can't be made
ESEESEEESEEESESTEEEESSSEESEESEEEESESESEESESEEESEEEEESEEEEEEEESEEEEEEEELEEEEETESS

com_ListenAt (ConnectionId, tcp(Host,Port)) :-
ground (ConnectionId),
% if variable address, look it up...
((var(Host) ; var(Port)) ->

com_ResolveVariables ([

DISH, Exh. 1008, p. 193

DISH, Exh. 1008, p. 194

[cmd ('-oaa_host',Host), cmd('-oaa_port', Port)],
(env('OAA_HOST', Host), env_int ('OAAPORT', Port)],
(setup('setup.pl',oaa_host, Host),
setup('setup.pl',oaa_port, Port)]

}))

| true),

repeat,

(on_exception(E,
tcp_listen_at_port (Port, Host),
Exception = E) ->

(var (Exception) ->
assert (com_connection_info(ConnectionId, tcp, server,

[addr (tcp (Host, Port)),oaa_host (Host) ,oaa_port (Port)],
connected)),

!

| otherwise ->
com_ask_about_tcp_exception(Port, Host, Response),
(Response == yes ->

fail

| otherwise ->
halt

)

com_ask_about_tcp_exception(Port, Host, Response),
(Response == yes ->

fail

| otherwise ->
halt

)

com_ask_about_tcp_exception(Port, Host, Response) :-
repeat,

with_output_to_chars(
format ('Currently unable to access ~w port ~w.~n Try again? ~w',

{[Host, Port, 'fy)es, n)o, h)elp]')),
Chars),

name (Prompt, Chars),
ask_oneof(Prompt, [yes, no, help], Response),
(Response == help ->

com_print_tcp_exception_help,
fail

| otherwise ->j

).

com_print_tcp_exception_help :-
write ('

I''ve just attempted to listen on the specified port, but was unable
to gain control of it. This could be because there''s already a
Facilitator, or some other program, making use of that port. Or, it
could be that a Pacilitator using that port was just terminated. In
such cases, the port may be inaccessible for a brief period (usually
only a few seconds, but sometimes more). It may help to kill any

DISH, Exh. 1008, p. 194

DISH, Exh. 1008, p. 195

client agents which may still be connected to the defunct Facilitator.

If you think the specified port may now be accessible, enter "y" and
I''ll try again. You may request retry any number of times.

If you want me to listen on a different port, enter "n", which will
cause me to terminate. Then change your port specification (it''s
either in a setup file or an environment variable). Then restart me.

‘),

ESESSESEEEEEEEEEEEEEEESEEEEESEEEEEESESEEEEEEEEE EEE SEE E EEE EEE TEESE SEEEESEELEEES

% name: com_SendData(+ConnectionId, +Data)
% purpose: Sends data to the specified connection ID
% remarks:

% - Checks format for destination connection
ELSEEGESEFSEESEEELEEEEEEEESEEESSEEEEESEEEETEEESELESESEEESSEEEE ESTEE EEEEESSEEEEETS

com_SendData(ConnectionId, Data) :-
ground (ConnectionId),

(com_connection_info(ConnectionId, Type, _ClientServer, InfoList,
connected),

(Type = tcp ; Type = unknown), !,
memberchk (connection (Dest), InfoList)

format ('~nError: cannot find open connection for ~p!-~n',
(ConnectionId]),

fail

),
(memberchk(format (F), InfoList}) ->

true

| memberchk(agent_language(c), InfoList) ->
F = specialcasec

| otherwise ->
F = default

),t“4

com_send_data_byformat (Dest, F, Data).

% quintus_binary: for inter-quintus communication
com_send_data_byformat (Dest, quintus_binary, Data) :- !,

tcp_send(Dest, Data).
% prolog: a synonym for quintus_binary
com_send_data_byformat (Dest, prolog, Data) :- !,

tcp_send(Dest, Data).

% pureascii: don't wrap data in term() wrapper
com_send_data_byformat (Dest, pure_ascii, Data) :- !,

current_output (CurrentOutput) ,
flush_output (CurrentOutput),
tcp_output_stream(Dest, TcpOutput),
set_output (TcpOutput) ,

DISH, Exh. 1008, p. 195

DISH, Exh. 1008, p. 196

WriteParams =

[quoted (true), % make input acceptable for read
ignore_ops (false), % false so list will be printed as '(1,2]'
% !!! could be a problem with +, other opts.
numbervars (true), % print vars as f(A).
character_escapes(false),% write actual character, not \255
max_depth(0)], % no depth limit

writeterm(Data, WriteParams) ,

flush_output (TcpOutput) ,
set_output (CurrentOutput), !.

% special_case_c: This is the same as default, EXCEPT for the use of
%* nl, nl. See comments within the clause for default format.
% Currently we don't understand why it matters.
com_send_data_byformat (Dest, special_case_c, Data) :- !,

current_output (CurrentOutput) ,
flush_output (CurrentOutput) ,
tcp_output_stream(Dest, TcpOutput),
set_output (TcpOutput),

WriteParams =

(quoted (true), % make input acceptable for read
ignore_ops (false), % false so list will be printed as '[1,2]'
% I!!! could be a problem with +, other opts.
numbervars (true) , % print vars as f(A).
character_escapes (false),% write actual character, not \255
max_depth(0)], % no depth limit

write_term(term(Data), WriteParams) ,
write('.'),
nl, nil,

flush_output (TcpOutput),
set_output (CurrentOutput), !.

% DefaultOAA: wrap in term() wrapper for easy parsing
com_send_data_byformat (Dest, _DefaultOAA, Data) :-

current_output (CurrentOutput) ,
flush_output (CurrentOutput) ,
tcp_output_stream(Dest, TcpOutput),
set_output (TcpOutput) ,

WriteParams =

[quoted (true), % make input acceptable for read
ignore_ops(false), % false so list will be printed as '[1,2]'
% !!! could be a problem with +, other opts.
numbervars (true) , % print vars as f(A).
character_escapes (false),% write actual character, not \255
max_depth(0)], % no depth limit

write_term(term(Data), WriteParams) ,
write('.'),
% nil, nil,

% The preceding does not work between two Quintus agents
% (neither does a single nl, nor does it help to use nl(TcpOutput)),
% so we went to the following. However, the following does not work

DISH, Exh. 1008, p. 196

DISH, Exh. 1008, p. 197

% when a QP facilitator sends to the C interface agent. For now,
% we'll solve this problem by defining the special_case_c format.
% (DLM, 97-04-09)

put (TcpOutput, 10),
% This causes the agents to disconnect (at least under UNIX):

% put (TcpOutput, 13),

flush_output (TcpOutput),
set_output (CurrentOutput), !.

ESEESEEEEEEEEEEEESEEEESEEEETEESEEEEEEEESEL EE EEE SEEEEEEE SEE EEEESE EES EESEEEETEEEEES

% name: com_SelectEvent (+TimeOut, -Event)
% purpose: Waits and returns an incoming event, or 'timeout' if TimeOut expires
% remarks:

% - TimeOut may be a real number, and represents seconds.
SEESEEEEEEESSESEEEEEEEGEEEEEEEEEEEEESEEESEEEEE ETE EEE EEELEEEEEEEEEESEEEEEESEESSESS

comSelectEvent (0, Event) :- !,
on_exception(E,tcp_select (Event), com_print_err(E)).

com_SelectEvent (Seconds, Event) :-
on_exception(E,tcp_select (Seconds, Event) ,com_print_err(E)).

EEEEEESESEEEEEEEEESEEEETEEEEEEFEEE SEES EEE EESEEEEEEEEEEEEEEEEEEEEEEEEEEESELES

% name: com_print_err
% purpose: Print error message if problem reading the event
SEEESESSE ESSE EE ESE SESES EEE SEE EEEEEEEES EEE EEE EE ESE EEE EE EEE EEE ESE EE EES SEES EEE EES

com_print_err{E) :-
format ('~n=========== READ ERROR !!! ===s==s==s====~n',[]),

format ('| Messages in this block are rejected-~n',[]),
format ('| by the system.~n',[]),
format ('------------------- nr nro rr rrrerrrn',[]),

print_message(error, E),
format ("seeeceesesssestesst stetesseSesesssseses=~y! 1 {]) A fail .

SESE ESSE ESSE EEE EES ESE EEE EES ESE SEE ES EEE EEE EEE EEESEEEEEEESEEEEEEEEEEEEEEESEES ESET

% name: com_AddInfo
% purpose: Adds or changes information about connection
% remarks:

% Info may be status(S), type(T), protocol(P) or any element (or list
% of elements) to be stored in InfolList.
ESEEEEEEEEEEEEEESEEETEEEEEEEEEEEEE ESTE EEE SLETEFEEEEEESEEEEESEEEE EEE EEE EEEEEEEES

com_AddInfo(ConnectionId, NewInfo) :-
retract (com_connection_info(ConnectionId, Protocol, Type,

InfoList, Status)),
(NewInfo = status (NewStatus), C = true ; NewStatus = Status),
(NewInfo = protocol (NewProtocol), C = true ; NewProtocol = Protocol),
(NewInfo type (NewType), C = true ; NewType = Type),
(Newinfo = [_H|_T] ->

union({InfoList, NewInfo], NewInfoList)

| (ground(C) ; union([InfoList, [NewInfo]], NewInfoList))
‘

assert (com_connection_info(ConnectionId, NewProtocol, NewType,

DISH, Exh. 1008, p. 197

DISH, Exh. 1008, p. 198

NewInfoList, NewStatus)), !.

EESSESEEELESESEEELELESEESEESEEESESFEEEEESEEEESEESEETLELELEEEEEEEEEEETEEEEEEETEES

% name: com_GetInfo
% purpose: Looks up information about connection
% remarks:

% Info may be status(S), type(T), protocol(P) or any element stored
% in InfoList.

ESEEEEEEEEEEEEEELEEEEEEEESEEEEFEEEESESEEEFESEEESEELELEEEEEEEEEEEEEEEGETEEEEESS

comGetInfo(ConnectionId, Info) :-
com_connection_info(ConnectionId, Protocol, Type,

InfoList, Status),
(Info = status(Status) ;

Info type(Type) ;
Info = protocol (Protocol) ;
memberchk (Info, InfoList)),

!.

ESESELESSESEESESEEEESESESTSEEEESEEETEEEEEEEEELEEETESEEEEEEEETEEEEEEEEETEEESESE
%

% name: com_ResolveVariables
% purpose: Tries to instantiate the arguments by looking in the command
% line arguments, environment variables, and setup files
% inputs:
% - VarList: A list of lists: the first sublist that completely resolves

% provides the value for com_ResolveVariables.
% remarks:

% sublists may contain elements in the following format:
% env (EnvVar, Val) : looks for "EnvVar" in environment vars
% env_int(EnvVar, Val) : Returns value for EnvVar as an integer
% emd(CmdVar, Val) : looks for "CmdVar <Val>" on command line
% setup (File,SVar, Val) : reads SVar from setup file File
% example:
% resolves host and port by searching first commandline, then environment
% variables, finally reads setup file.
%

% com_ResolveVariables([
% [cmd ('-oaa_host',Host), cmd('-oaa_port', Port)],
% (env ('OAA_HOST', Host), env_int('OAAPORT', Port)],
% (setup('setup.pl',oaa_host, Host),
% setup('setup.pl',oaa_port, Port)]
%])
%

SESESESESESESEEEEEEEEEEEESEEEEEEEREEELEEEELEEEFEEELEGEEEEEEEEEEESEEEEESEEEEEES

com_ResolveVariables([VarList|_]) :-
com_resolve_variables(VarList), !.

com_ResolveVariables([_VarList|Rest]) :-
com_ResolveVariables (Rest) .

com_resolve_variables([]).

com_resolve_variables([env_int(EnvVar, Val)|Rest]) :- !,
environ(EnvVar, EnvAtom),

name (EnvAtom, EnvChars),

DISH, Exh. 1008, p. 198

DISH, Exh. 1008, p. 199

number_chars(Val, EnvChars),
com_resolve_variables (Rest) .

com_resolve_variables([env(EnvvVar, Val)|Rest])) :- !,
environ(EnvVar, Val),

com_resolve_variables (Rest).

com_resolve_variables([cmd(Cmdvar, Val)|Rest]) :- !,
% get command line arguments
unix (argv (ListOfArgs)),
append(_, (Cmdvar, Valj_], ListOfArgs),
com_resolve_variables (Rest).

com_resolve_variables((setup(File,SVar, Val) |Rest]) :- !,
% read setup file to load all values
com_read_setup_file(File),
Pred =.. [SVar, Val],

on_exception(_, Pred, fail),
com_resolve_variables (Rest) .

SEVEEEESEEELEEEEFEELESEEEEESLESESEEEEEES ETE ESSE EEESEEEEEESEEEEEEEEEEEEEEEEESEES

% name: com_read_setup_file
% purpose: Finds and loads setup file
% remarks:

% Always succeeds.
% The search path for 'setup.pl' is as follows:
% 1. Current directory
% 2. Home directory for user
SESSESEEESEEEEEETESESSEESSESEEESEEELEEEEEERESEGESEEEEEETEEEEEESEEEEESESELESESE EES

com_read_setup_file(File) :-
com_already_loaded(File), !.

com_read_setup_file(File) :-
(absolute_file_name(File, LocalSetupFile),

can_open_file(LocalSetupFile, read, fail) ->
SetupFile = LocalSetupFile

|
concat('~/',File, HomeName),

absolute_file_name(HomeName, UserSetupFile),
can_open_file(UserSetupFile, read, fail) ->

SetupFile = UserSetupFile
),

(ground (SetupFile) ->
format (‘Loading setup file:~n -~w-n-n', [(SetupFile]),
(com_consult (SetupFile, _) ->

assert (com_already_loaded (File))
| otherwise ->

format ('~w: A problem was encountered in loading the setup file-n',
['WARNING'])

)

| true).

ESEEFSEEELETESEEEESEEFEEESESESEEEESTEEEEETEGEEEEEEELEEEEEEEEEEEEETETEEELTEEEEES

DISH, Exh. 1008, p. 199

DISH, Exh. 1008, p. 200

% name: com_consult(+FilePath, -AbsFileName) .
% purpose:
% remarks: We don't use Quintus! builtin consult, because it's too picky
% about associating predicates with files.
SLESEESSSETEEEEEEEEEEEESEESELESEEEEEESEEESEEEEESEESEEELEEESESEEEEEESEEEEEEEEES

com_consult (FilePath, AbsFileName) :-
absolute_file_name(FilePath, AbsFileName),
can_open_file(AbsFileName, read, fail),
open (AbsFileName, read, Stream),
load_clauses (Stream) ,
close (Stream) .

ESEBEELEEEEETEESEESEESEESESESELEELESTEEETEEEEEFEELEGETEEEEEETESEEEEEEEEESEETES

% name: load_clauses(+Stream).
% purpose:
ESESESEEESESESESESEEEEEEEEEESEFESESTEEEEEEEEEEEEEGEEEELELEGEEEEEELESEEESTSEE EES

load_clauses(Stream) :-
repeat,

read_term(Stream, [], Term),
(Term = ':-'(_Body) ->

true

| Term = end_of_file ->
true

| otherwise ->
load_clause (Term)

),

(at_end_of_file(Stream) ->
!

| otherwise ->
fail

).

SESSSESESSESEEESESESESEESEEESELESEEESSEEEVEEEEEEEEREETEEEEEEERESEEEEEEEEEEE SES

% name: load_clause (+Term).
% purpose:
SESVEVESEEEFESTESEETEEEEEEEEEESELSEEETESEEEEEEEEEEEEEEEESEEEEVEEEEGEEEEEETE SESE

load_clause(Term) :-
assert(Term).

DISH, Exh. 1008, p. 200

DISH, Exh. 1008, p. 201

APPENDIX A.IV

Source codefile namedliboaa.pl.

ee —_—_

hep =
at} =e

mE —s
oN SS
ofl=S—=™
AA SS-i
oo =

DISH, Exh. 1008, p. 201

DISH, Exh. 1008, p. 202

Be RRR KEKE RK KKK KKK KKK RKRRRKKKKK KK KKK IKK KKK KKK KK EERE KK KER KKK KE

cPdPdegedPoPdPOP
oPdPdPoPdPdP

File : liboaa.pl
Primary Authors : Adam Cheyer, David Martin
Purpose : Prolog version of library for the Open Agent Architecture
Updated : 12/98

Unpublished-rights reserved under the copyright laws of the United States.

Unpublished Copyright (c) 1998, SRI International.
"Open Agent Architecture" and "OAA" are Trademarks of SRI International.

ESSEEEEEEEESSSEEESESESSEEEEEEEELEEELESEEEEELEEEEESEEEEEEELEEEEEEEEEEEEEEESEEESS
%

%

%

%
%

%
%

&

Note: internal functions use the naming convention oaa_function_name(),
while public predicates use oaa_PublicPredicate().

EESEEEEEEESEEEEEEEEEEEESEESEEEEEEEEEEEEESESEEEEEEEGEEEEEEEESESESEEEEEEEEEEESS

Version 2.0 (change oaa_version assertion)
- corrects FromKS in do_events by changing event format to include this

info.

- messages are only sent to READY agents. For previous versions, an
agent may be either READY or just OPEN.

ESESESSEEESEESESESESESEESESESEEEEEEEEEEESEEEEEEEEEESEEEEEEEESEEEEEEEEEEEESESES
%

%

%

Version 2.1 (change oaa_version assertion)
-~ triggers have 2 new arguments, OpMask and Template, and

more general semantics. Backwards compatibility is provided.
ESETESEEEEESESESESESESEESEEESESEEESESESESEEEEEEEEEEEEEEEEESEEEEEETEEESEEEEEEES
%

%

%

%

%

Version 3.0 (change oaa_version assertion)
- primitives changed to start with oaa_ (and _icl) prefixes
- Major restructuring and cleanup, including many new capabilities,

for first public release (a.k.a. "OAA 2")KRKRKKKKEKKEKKHK KK KKK KEKE KEKE EEK KKK KEKE KKK KEKE KEKE EKEKEKKKKKEKKKREREKRREKEKKKKKKKKEE

:- module (oaa,

{icl_GetParamValue/2,
icl_GetPermValue/2,
icl_BasicGoal/1,
icl_GoalComponents/4,
iclConsistentParams/2,
ic]BuiltIn/1,
icl_ConvertSolvables/2,
oaa_LibraryVersion/1,
oaa_Register/3,
oaa_RegisterCallback/2,
oaa_ResolveVariables/1,
oaa_Ready/1,
oaa_MainLoop/1,
oaa_SetTimeout/1,
oaa_GetEvent/3,
oaa_ProcessEvent/2,
oaa_Interpret/2,
oaa_DelaySolution/1,
oaa_ReturnDelayedSolutions/2,
oaa_AddDelayedContextParams/3,

DISH, Exh. 1008, p. 202

DISH, Exh. 1008, p. 203

oaa_PostEvent/2,
oaa_CanSolve/2,
oaa_Version/3,
oaa_Ping/3,
oaa_Declare/5,
oaa_DeclareData/3,
oaa_Undeclare/3,
oaa_Redeclare/3,
oaa_AddData/2,
oaa_RemoveData/2,
oaa_ReplaceData/3,
oaa_CheckTriggers/3,
oaa_AddTrigger/4,
oaa_RemoveTrigger/4,
oaa_Solve/2,
oaa_InCache/2,
oaa_AddToCache/2,
oaa_ClearCache/0,
oaa_TraceMsg/2,
oaa_ComTraceMsg/2,
oaa_Inform/3,
oaa_Id/1,
oaa_Name/1

]).

ERR KKKAEKKEKE EKER EERE KK KKK KK KK KEKE KK RIK RK KKK KK KKK KEKE ERE KEK KKK KEK KEKE KE KE

%* RCS Header and internal version
ERK KK KKK KEK RK KER ERE ERE EKER KKK IKKE KKK KKK RR KKK KKK KKK KKK KREKKRKEEKEKEKKEKKKKKEK

% rcs version number

resid('$Header: /home/trestle4/OAA/src/V2/prolog/RCS/oaa.pl,v 1.127 1998/12/23
23:14:18 martin Exp cheyer §').

:- op(599,yf£x,::).

BERK KKK KEKE KKK KIRK EER EEK IKK KEK IKKE KEK KEKE KHER KK IKK KKK KKK KEKE RKKEEKEKEKKEKKKEE

% Include files
BRERA KKK RRR EK KEK KR KK RE KEE KEKE ERE KKK KK KKK KKK EEK KEKE KEKE KEK KKK KE RKEEKEEKKEKE

:- usemodule (library (basics)).
:- use_module (library (read_sent)).
:- usemodule (library(lists)).
:- use_module (library (sets)).
:- use_module (library (strings)).
:- use_module (library (files)).
:- use_module(library(environ)). % read environment vars
:- use_module(library(ctr)).
:- use_module(library(charsio)). % for sprintf and with_output_to_chars
:- use_module (library (ask)). % for ask_oneof
:- use_module(library(samsort)). % for samsort (Ordered, Raw,Sort)
:- use_module (library (date)). % for now(Time)

:- use_module(library(tcp), [tcp_now/1l, tcp_time_plus/3]).

% IMPORTANT: COM module. We don't want to hard code the name of the

DISH, Exh. 1008, p. 203

DISH, Exh. 1008, p. 204

% file that contains module 'com'. So, when this file is loaded,

% we first check to see if module ‘'com' is already present, then
% we check to see if the file containing 'com' has been specified
% on the command line, and if neither of those works, we load the

% default file (./com_tcp).
%

% In the case where the module has already been
% loaded, the following seems like the right thing to do:
% :> use_module(com, _File, all).
% BUT when compiling, this approach results in "undefined" errors from
% qcon. Thus, for now, in oaa.pl, we are explicitly using com: with all
% calls to the com module.

:- (current_predicate(_, com:_) ->
use_module(com, _File, all)

| unix(argv(ListOfArgs)), append(_, ['-com', File | _], ListOfArgs) ->
use_module(File, all)

| otherwise ->
use_module(com_tcp, all)

).

BRK KKK EERE KEKE KEKE KKK KKK KR KKK KEE KEKE KEKE EERE EKER KEKE KKK KE KHER RE KREKRKEEKKKEEKEKKEKKEKEREK

% Global variables
BkaKRRR KKK EK KK KK KK KEK KK KEK KIRK KKK KKK IK KKK KEKE KK EEK KKEKEEKKEKKEKEK KR KEKE

:- dynamic
oaa_already_loaded/1, % record if file already loaded

oaa_solvables/1, % list of agent capabilities
oaa_trigger/S, %$ a built-in solvable

oaa_trace/1, % trace mode: on or off
oaa_com_trace/1, % com_trace mode: on or off
oaa_debug/1, % debug mode: on or off

cached solutions

buffer of waiting events
used for recursive blocking solve

problem...
tcp timeout value (use oaa_SetTimeout)
table of delayed solutions
the current goal is delayed
bookkeeping for 'data' solvables
Solve parameters to be propagated
Record of app-specific callbacks

oaa_cache/2,
oaa_event_buffer/1,
oaa_waiting_for/2,
oaa_waiting_event/1,
oaa_timeout/1,
oaa_delay_table/5,
oaa_delay/2,
oaa_data_ref/3,
oaa_current_contexts/2,
oaa_callback/2,

% These may appear in setup.pl:

dPdPdPGPdPdPdPdPdPae
oaa_host/1, % for root, my host; otherwise,

% host of my parent
oaa_port/1. %¢ ... similarly

oaa_LibraryVersion (3.0).

% solvables shared by all agents
% Note: all built-in DATA solvables must be declared dynamic to avoid
% QP warnings and exceptions.

oaa_built_in_solvables([
% @@DLM: If we do away with TriggerId, we could use param
% uniquevalues (true) .

DISH, Exh. 1008, p. 204

DISH, Exh. 1008, p. 205

solvable (oaa_trigger(_TriggerId, Type, _Condition, Action, _Params),
[type(data)], [write (true)])

]).

% We'll always have exactly one oaa_solvables fact. Note that application
% code should NOT include a declaration or clause for oaa_solvables/1.
oaa_solvables([]).

GRR KKK KR RK KKK RIK KR IKK KEK IK ERE HK EK KKK KEKE ERK KK ERE KEKE KR KE RHR KARE ERE KKK ERK EE

% Initialization and connection functions
GK KK KK RK RK KK KKK IK IK KK IKK KERR KHIR IKKE EEK KKK KK KKK KEKE KEKE KKK KEKE KKK KEK

SLESEEEEEEEEEEEREESLESEEEEESEEEEEESTEEEEESESESEEEEEEEEEEETEEEEEEEEEEEEEEETEESE

% name: oaa_Register
% purpose: Once a comm link is established, either as a client to a Facilitator
% or as a server for other agents, oaa_Register will setup and registration

information for this agent.
inputs:

- ConnectionId: the symbolic connection Id (client or server connection)
- AgentName: the name of the agent
- Solvables: solvable list

remarks:

The following information is stored about the current connection,
accessible through com_GetInfo(ConnectionId, Info):

oaa_name (Name) : the name of the current agent
oaa_id(Id) : the Id for the agent

connection (C) : system-level communications handle
(e.g., socket number)

if connecting as client, this is also available:
fac_id(Id) : the Facilitator's Id
fac_name (Name) : the Facilitator's name
fac_lang(L) : the Facilitator's language
fac_version(V) : the version of the Facilitator's agent library

In addition, the following predicates are written to parent Facilitator,
or locally if the ConnectionId is a server connection:

agent_host (Id, Name, Host)

Solvables are also written using oaa_Declare()

It is possible for an agent to create both server and client connections:
such an agent was classified in OAA 1.0 as an agent of class "node"
(as opposed to a pure client "leaf" or pure server "root").

examples:
% connecting to a Facilitator

MySolvables = [do(something)],
com_Connect (parent, ConnectionInfo),
oaa_Register(parent, my_agent_name, MySolvables) .

GPdPAPdPAPAPGPAPAPdPAPdPDPDPDPdPdPdPdPdPdPdPdPdPdPaPdmdPdPdPOPdPdPGPaadPdP
% connecting as a Facilitator

DISH, Exh. 1008, p. 205

DISH, Exh. 1008, p. 206

%

%

%

%

%

MySolvables = {],
com_ListenAt (incoming, ConnectionInfo),
oaa_Register(incoming, root, MySolvables).

ESSESESEEEESTETESEEESESEEESSEEEEELEEEESEEEEEEEESEEESEEEEEEEEETEEEEEESEEEESESS

% For client connecting to Facilitator
oaa_Register(ConnectionId, AgentName, Solvables) :-

% succeeds only if exists an open client connection for ConnectionId
% as created by com_Connect()
com:com_connection_info(Connectionid, _Protocol, client, _Info,

connected),

com:com_AddInfo(ConnectionId, oaa_name (AgentName)),

% FIXED HACK: default now works thanks to update in com_tcp.pl for
% the default mode

% HACK!!! Why doesn't this work right without it?
% for some reason, when we send the handshaking info in

default mode (instead of quintus_binary), the facilitator's
tcep_select (VerySmallTimeout, Event) doesn't timeout!!!!
So it keeps hanging until some other event (such as disconnect)
arrives.

com:com_AddInfo(ConnectionId, format (default)),

adedPde
% lookupversion number
oaa_LibraryVersion (Version),

%%% handshaking with Facilitator -- exchange information...
% note: for this first communication, no format is defined for the
% connection, so it will be sent using default (ascii) format.
% Information coming back from Facilitator will update the
% format() field for the connection, improving future
% communication.

com:com_SendData (ConnectionId,
event (ev_connect ([oaa_name (AgentName), agent_language (prolog),
format (quintus_binary), agent_version(Version)]), [])),

%% Get the connection acknowledgement:
% potential bug: what if selected event is NOT from FacId connection?
oaa_GetEvent (ConnEvent, _Parms, 0),
ConnEvent = ev_connected(FacInfoList) ,
com:com_AddInfo(ConnectionId, FacInfoList),

oaa_Id(MyId),

% write host

(environ('HOST', MyHost) ->
oaa_AddData(agent_host (MyId, AgentName, MyHost), [address (parent)])

| true),

% Declare solvables (and post to parent facilitator) :
% Note: OK if Solvables = [].

oaa_Declare(Solvables, (], [], [if_exists(overwrite)], _).

% For Faciliator serving client agents
oaa_Register(ConnectioniId, AgentName, Solvables) :-

DISH, Exh. 1008, p. 206

DISH, Exh. 1008, p. 207

% succeeds only if exists an open client connection for ConnectionId
% as created by com_Connect()
com:com_connection_info(ConnectionId, _Protocol, server, _Info,

connected),

AgentId = 0, % A facilitator's ID is always 0
com:com_Addinfo(ConnectionId, [oaa_id(AgentId) ,oaa_name (AgentName)]),

% The fac. records its own agent_data in the same way as its clients’.
% Note that we can't call oaa_add_data_local until after the solvables
% have been declared, and we can't declare solvables until we're

% open - so we have to bootstrap this assertion:
oaa_assertz(agent_data(AgentId, open, [], AgentName), AgentId, _),

% Note: OK if Solvables = [].

oaa_Declare(Solvables, (], [], [if_exists(overwrite)], _),

% write host

(environ('HOST', MyHost) ->
oaa_add_data_local(agent_host (AgentId, AgentName, MyHost), [])

| true).

SSSSSEESEEESEEESEEEEESEEEEEEEETESEEEESEEEEEESEEESESSEEEELESEEEEEEEEEEEEEEEEEGE
%

% name: oaa_ResolveVariables (+VariableList)
purpose: Tries to instantiate the arguments by looking in the commandape

line arguments, environment variables, and setup files
inputs:

- VarList: A list of lists: the first sublist that completely resolves

provides the value for oaa_ResolveVariables.
remarks:

sublists may contain elements in the following format:
env (EnvVar, Val) : looks for "EnvVar" in environment vars

env_int(EnvVar, Val) : Returns value for EnvVar as an integer
emd(CmdVar, Val) : looks for "CmdVar <Val>" on command line
setup (SVar, Val) : reads SVar from setup file

example:
resolves host and port by searching first commandline, then environment
variables, finally reads setup file.

oaa_ResolveVariables([
(cmd ('-oaa_host',Host), cmd('-oaa_port', Port)],

fenv('OAA_HOST', Host), env_int('OAA_PORT', Port)],
{setup (oaa_host, Host), setup(oaa_port, Port)]

])

OPdPdPdPAPdPdOdPdPdPdPdPGPGPaodPdodPdPdP
EESESESESEEELESEEEEESEEESESEESESEEEEEEEEEEEELELEEEEEEEELEEEEEEESESEEEEEEEET EES

oaa_ResolveVariables([VarList|_]) :-
oaa_resolve_variables(VarList), !.

oaa_ResolveVariables([{_VarList|Rest]) :-
oaa_ResolveVariables (Rest).

oaa_resolve_variables([]).

oaa_resolvevariables (fenv_int(EnvVar, Val)|Rest]) :- !,

DISH, Exh. 1008, p. 207

DISH, Exh. 1008, p. 208

environ(EnvVar, EnvAtom),

name (EnvAtom, EnvChars),

numberchars (Val, EnvChars),
oaa_resolve_variables (Rest).

oaa_resolve_variables({env(EnvVar, Val)|Rest]) :- !,
environ(EnvVar, Val),

oaa_resolve_variables (Rest).

oaa_resolve_variables({cmd(CmdVar, Val)|Rest]) :- !,
% get command line arguments
unix (argv (ListOfArgs)),
append(_, [Cmdvar, Val|_], ListOfArgs),
oaa_resolve_variables (Rest).

oaa_resolve_variables([setup(SVar, Val) |Rest]) :- !,
% read setup file to load all values
oaa_read_setup_file,
Pred =.. [SVar, Val],

on_exception(_, Pred, fail),
oaa_resolve_variables (Rest).

ESSSESESESEELEESESESETEETESESEESESEEEEESEEEEEEEEEELEEEEEEGEEESEEEEEEGESEEESEEES

% name: oaa_read_setup_file
% purpose: Finds and loads setup file
% remarks:

% Always succeeds.
% The search path for 'setup.pl' is as follows:
% 1. Current directory
% 2. Home directory for user
ESEEEEEEEEEEELESEEEBEEEYEGEEEEESEEESEEEEEEEEEGEEEEEEEESSELESEEEEEEEELEEEEESEEES

oaa_read_setupfile :-
oaa_alreadyloaded(setup), !.

oaa_read_setup_file :-
(absolutefile_name('setup.pl', LocalSetupFile),

can_openfile(LocalSetupFile, read, fail) ->
SetupFile = LocalSetupFile

| absolutefilename('~/setup.pl', UserSetupFile),
can_open_file(UserSetupFile, read, fail) ->

SetupFile = UserSetupFile
),

(ground (SetupFile) ->
format (‘Loading OAA setup file:~n -~w-n', [SetupFile]),
{ oaa_consult(SetupFile, _) ->

assert (oaa_already_loaded (setup))
| otherwise ->

format ('~w: A problem was encountered in loading the setup file-n',
[' WARNING '])

)

| true).

DISH, Exh. 1008, p. 208

DISH, Exh. 1008, p. 209

EEEESEEEESEEEEEBSEESEESSESEEESEEESEEETTEEEESTESEEETEEEEEELETETEEEELEEEEEESSETEEES

* name: oaa_Ready
% purpose: Changes the agent's 'open' status to 'ready', indicating that the
% agent is now ready to receive messages.
% remarks:

% if requested, prints 'Ready' to standard out.
EESELSEEEEEELESESESESESESEEEEEESEEEETEEEEEEFESEEEEEEEEEEEEEEEEESESEEEEESEEEETESS

oaa_Ready (ShouldPrint) :-

% replaces 'open' status with 'ready'.
((\+ oaa_class(root), caa_Name (MySymbolicName)) ->

oaa_PostEvent (ev_ready (MySymbolicName), [])
| true),

% if ShouldPrint, print ready
(on_exception(_,ShouldPrint,fail) ->

format ('Ready.~n', [])
| true).

QR RIK KK RK KKK KIRK KE KKK EKER RK ERE KKK KIKI KKK KEK KR KEK KKK KEK REE KK EKEKERKEEKKEKEKEKE

% Classifying and Manipulating ICL expressions
Bow KKK IKK KKK KEK KE KK IKK KK KKK KK KEKE KK KEKE KK EEK ERE KEKE KKK EKK KEK EK KEKE

ESEEEELEESYEEEEEEEESEEEEEEEESEESSEEEEEEEESTEEEEEEEE EES ESTEE EEEEEEEEEEEEEESEEESEES

% name: icl_BuiltIn(+Goal) .
% purpose: Test whether an expression is an ICL built-in goal.
% remarks:

- icl_BuiltIn differs significantly from the Quintus Prolog predicate
builtin, in that here we do not include basic constructors such
as ',' and ';'.

- oaa_Interpret/2 must be defined for every goal for which
% iciBuiltIn succeeds.
ESESESEEEFLEESEEESESEEEEEEESEESSEFESTEEEEELEESEEEEESEEEEEEEEEEEEEEEEEEEEET SEES

ofdhdPdP
icl_BuiltIn((_A = _B)).
icl_BuiltIn((_A == _B))
icl_BuiltIn((_A \== _B)).
icl_BuiltiIn((_A B
iclBuiltiIn((_A >= _B
iclBuiltIn((_A < _B)
ic]BuiltIn((_A > _B)
icl_BuiltIn(member(_,_)).
icl_BuiltIn(memberchk(_,_)).
icl_BuiltIn(findall(_,_,_}).
icl_BuiltIn(icl_ConsistentParams(_,_)).

ESEEESEEEEEEESELESEEEEEEEEEEEEEETELESTEEESEEESEEEEEEEEEEEEESEEEEEEESEEETEEEEEES

% name: icl_BasicGoal (+Goal) .
% purpose: Test whether an expression is an ICL basic (non-compound) goal;
% that is, just a functor with 0 or more arguments.
% remarks:

- Basic goals include built-in's as well as solvables.
- This is a syntactic test; that is, we're not checking whether the

Goal is a declared solvable.dPdPgp

DISH, Exh. 1008, p. 209

DISH, Exh. 1008, p. 210

SESEESESEEEESEEEEEEEELESTESSBESEEELEEEEESEEESEEEEELEEBEEEEEEEEGEEEEEEEEEEEEELS

icl_BasicGoal (Goal) :-
var(Goal), !, fail.

icl_BasicGoal (Goal) :-
is_list(Goal), !, fail.

icl_BasicGoal (Goal) :-
icl_compound_goal (Goal), !, fail.

icl_BasicGoal (Goal) :-
icl_BuiltIn(Goal),|

icl_BasicGoal(Goal) :-
Goal =.. [Functor | _],
atom(Functor) .

SEVEEGEEEEELELEEESEEESEETLEELESTEEEEETEEEEESEEEEESEEESEEEESSEESESEEESEEEESEEEES

% name: icl_compound_goal (+Goal) .
% purpose: Test whether an expression is an ICL compound goal.
ESESESESEEESEEESESESEEEEEEEEEESFESEEEEEEEEEEEEEEEEEEEEEEEEEEEEETEEETEEEREEEEES

icl_compound_goal(_X:_Y).
icl_compound_goal(_X::_Y).
icl_compound_goal((\+ _P)).
icl_compound_goal((_P -> _Q ; _R)).
icl_compound_goal((_P -> _Q)).
icl_compound_goal((_X, _Y)).
icl_compound_goal((_X ; _Y)).

SES EEES ESS EEE EES EE EEE EEE EEE EEE ESET EE EE EESEEEEEEEESEEES EE ESSE SESEEETETEEESEEEES

% name: icl_GoalComponents (+ICLGoal, -A, -G, -P).
% icl_GoalComponents(-ICLGoal, +A, +G, +P).
% iclGoalComponents(+ICLGoal, +A, +G, +P).
% purpose: Assemble, disassemble, or match against the top-level components
% of an ICL goal.
% remarks:

% - The top-level structure of an ICL goal is Address:Goal::Params,
% with Address and Params BOTH OPTIONAL. Thus, every ICL goal
% either explicitly or implicitly includes all three components.
% ~ This may be used with any ICL goal, basic or compound.
% - When P is missing, its value is returned or matched as []. When A is
% missing, its value is returned or matched as ‘unknown’.
EETEESESESESESESEESESEEEESESEEEEESEEELEEELEEEESESESEEEESEEEEEEEEEEEEETESEEEEES

% The first 4 clauses handled all cases where the ICL Goal is bound;
% the remainder handle those where it is a var.

icl_GoalComponents(A:G::P, Address, Goal, Params) :-
\+ var(A), \+ var(G), \+ var(P),!

Address = A, Goal = G, Params = P.

icl_GoalComponents(A:G, Address, Goal, Params) :-
\+ var(A), \+ var(G),{

Address = A, Goal = G, Params = [].

icli_GoalComponents(G::P, Address, Goal, Params) :-
\+ var(G), \+ var(P),{“4

Address = unknown, Goal = G, Params = P.

DISH, Exh. 1008, p. 210

DISH, Exh. 1008, p. 211

icl_GoalComponents(G, Address, Goal, Params) :-
\+ var(G),
!,

Address = unknown, Goal = G, Params = [].

icl_GoalComponents (Goal, unknown, Goal, []) :-
1,

icl_GoalComponents (Address:Goal, Address, Goal, []) :-
',

icl_GoalComponents (Goal::Params, unknown, Goal, Params) :~
',

icl_GoalComponents (Address:Goal::Params, Address, Goal, Params) :-
!,

EEESEEEESEBESEEEEERESEEESESESEFEBEEEEEEBEESFEFEESSESETEBEEEEEEESEETSEEEEES SESE

Permissions and parameter lists

These procedures are used in processing solvables permissions, and
parameter lists of all kinds (including those used with solvables,
those contained in events, and those used in calls to various
library procedures).

All permissions and many parameters have default values.

%

%
%

%

%

%

%

%

%

% Permissions and parameters lists have a standard form, as defined by
% the predicates below. To save bandwidth and promote readability, a
% "perm" or "param" list in standard form OMITS default values. For
% easier processing (e.g., comparing/merging param lists), boolean
% params in standard form always include a single argument 'true' or
% ‘false’.

%
%

%

%

%

%

%
%

In definitions of solvables and calls to documented library
procedures, it's OK to include default params in a Params list, if
desired. For boolean params, when the intended value is 'true', it's
OK just to specify the functor, for example, instead of
cache(true), it's OK just to include 'cache'.

SESESESEEEEEESESESETEELESESESEELEEEEEEEEGELEEEEEEEEEEESEEEETEEEEEEFEEEEESESES

% icl_standardize_perms(+Perms, +KeepDefaults, -Standardized) .

icl_standardize_perms([], _KeepDefaults, []).
icl_standardizeperms((Perm | Perms], KeepDefaults, [SPerm | SPerms]) :-

icl_perm_standard_form(Perm, SPerm),
(KeepDefaults ; (\+ icl_perm_default (SPerm)) },
!,

icl_standardize_perms(Perms, KeepDefaults, SPerms).
icl_standardizeperms([_Perm | Perms], KeepDefaults, SPerms) :-

icl_standardize_perms (Perms, KeepDefaults, SPerms).

icl_perm_standard_form(Perm, SPerm) :-
atom(Perm),!“a4

SPerm =.. [{Perm, true].

icl_perm_standard_form(Perm, Perm).

icl_perm_default (call (true)).

10

DISH, Exh. 1008, p. 211

DISH, Exh. 1008, p. 212

icl_perm_default (read (false)).
icl_perm_default (write (false)).

icl_standardize_params(+Params, +KeepDefaults, -Standardized) .%

%

% Normally there's no need to keep the default value of a param,
% but there are exceptional situations. If KeepDefaults is true,
% default values are kept.

icl_standardize_params([], _, []).
icl_standardize_params([Param | Rest], KeepDefaults, AllStandardized) :-

icl_param_standard_form(Param, FullStandardized),
(KeepDefaults ->

Standardized = FullStandardized

| otherwise ->
iclremove_default_params(FullStandardized, Standardized)

) i

icl_standardizeparams (Rest, KeepDefaults, RestStandardized),
append (Standardized, RestStandardized, AllStandardized).

icl_param_standard_form(+Param, -StandardParams).

Maps from an element of a parameter list to a list of elements
in standardized form. The parameter list element can be from
any context (from a call to Solve, AddTrigger, AddData, etc.).

dPdPdodPdP
icl_param_standard_form(reply(false), [reply(none)]) :-

!,

% broadcast has been retained, as a synonym for reply(none):
icl_param_standard_form(broadcast, [reply{none)]}) :-!

iclparamstandardform(broadcast (true), [reply(none)]) :-
I,

icl_param_standard_form(broadcast (false), [reply(true)]) :-
I,

icl_param_standard_form(address (Addr), [address (SAddr)]) :-
!,

icl_standardize_address (Addr, SAddr).
icl_param_standard_form(strategy(query), [parallel_ok(true)]) :-

t.

icl_param_standard_form(strategy (action),
(parallel_ok(false), solution_limit(1)]) :-

I,

icl_param_standard_form(strategy (inform),
[parallel_ok(true), reply(none)]) :-1

icl_param_standard_form(callback(Mod:Proc), [callback (Mod:Proc)]) :-
!,

icl_param_standard_form(callback(Proc), [callback(user:Proc)]) :-
I,

icl_param_standard_form(Param, [SParam]) :-
atom(Param) ,
',

SParam =.. (Param, true].

icl_param_standard_form(Param, [Param]).

icl_param_default (from(unknown)).

11

DISH, Exh. 1008, p. 212

DISH, Exh. 1008, p. 213

icl_param_default (priority(5)).
icl_param_default (utility(5)).
icl_param_default (if_exists (append)).
icl_param_default (type (procedure)).
icl_param_default (private (false)).
icl_param_default (single_value(false)}).
icl_param_default (unique_values(false)).
icl_param_default (rules_ok(false)).
icl_param_default (bookkeeping (true)).
icl_param_default (persistent (false)).
icl_param_default (at_beginning(false)).
icl_param_default (do_all(false)).
icl_param_default (reflexive (true)).
icl_param_default (parallel_ok(true)).
icl_param_default (reply(true)).
icl_param_default (block (true)).
icl_param_default (cache (false)).
icl_param_default (flush_events (false)).
icl_param_default (recurrence (when)).

icl_remove_default_params([], []).
icl_remove_default_params([Param | Rest], Removed) :-

icl_param_default (Param) ,
ty

icl_remove_default_params (Rest, Removed).
icl_remove_default_params([Param | Rest], [Param | Removed]) :-

icl_remove_default_params (Rest, Removed).

icl_GetParamValue(+Param, +ParamList).

Param must have a functor, but its argument(s) can be either ground
or variables. E.g., persistent (X).

To get or test the value of a parameter that has a default, it is
best to call iclGetParamValue. For a parameter that has no default,
you can use iclGetParamValue OR memberchk.

9PoPBfdPdPdPdPdP
icl_GetParamValue (Param, ParamList) :-

predicate_skeleton(Param, Skel),
memberchk(Skel, ParamList),
1,
Skel = Param.

icl_GetParamValue (Param, _ParamList) :-
predicateskeleton(Param, Skel),
icl_param_default (Skel),
!,
Skel = Param.

icl_GetPermValue (Perm, PermList) :-
predicate_skeleton(Perm, Skel),
memberchk(Skel, PermList),
!,
Skel = Perm.

icl_GetPermValue (Perm, _PermList) :-
predicate_skeleton(Perm, Skel),
icl_perm_default (Skel),!c

12

DISH, Exh. 1008, p. 213

DISH, Exh. 1008, p. 214

Skel = Perm.

SELESSESESETESESEEESESEEEESESEETEEEESESESESEFEEEEEEEEEEEEEEEEEEEEELEEEEEEEESES

% name: icl_ConsistentParams(+Test, +ParamList)
% purpose: Often used in solvable declarations to filter on a certain
% condition.

% definition:

% Test a param list: if one or more values are given in a parameter
% list for parameter ParamName, then ParamValue must be defined as
% one of the values to succeed. If ParamValue is NOT defined, then

% icl_ConsistentParams succeeds.
% example:
% A natural language parser agent can only handle English definitions:
%

% convert (nl, icl,Input,Params,Output) :-
% icl_ConsistentParams (language (english) , Params) .
%

% if "language(english)" is defined in parameter list of a solve request,
% the nl agent will receive the request.
% if "language(spanish)" is defined in the parameter list, the nl agent
% WILL NOT receive the request.
% if no language parameter is specified, the request WILL be sent
% if "language(X)" is specified, the request WILL be sent to the nl agent
% remarks:

% - Test may contain either a single predicate or a list of test predicates,
% in which case icl_ConsistentParams will execute all consistency tests.
% - Interesting note: icl_ConsistentParams() checks consistency as a
% relation between the two arguments, so it doesn't matter which argument
% specifies the test list and which the parameters to test.
ESSEEESEEESEEEEEESEEEESESSSEESES EE ESSE ESSE SEEEEETEEEEEEEEEEESEYELESEEEEE TEE EEES

icl_ConsistentParams(_TestList, []) :- !.
icl_ConsistentParams([], _ParamList) :- !.
icl_ConsistentParams([Test|RTest], [P1|RParams}) :- !,

ParamList = [P1|RParams],
predicateskeleton(Test, TestWithVars),
(memberchk (TestWithVars, ParamList) ->

memberchk (Test, ParamList)

| true),
icl_ConsistentParams(RTest, ParamList).

% either Test or Params is NOT a list

icl_ConsistentParams (Test, Param) :-
(Test = [_|_] ->

NewTest = Test

| NewTest = [Test]),
(Param = [_|_] ->

NewParam = Param

| NewParam = [Param]),
icl_ConsistentParams (NewTest, NewParam) .

SEETEETEESESEEEEEEEEELESEEEEESSEEEEEFESEEEEEEEEEESEEESEEETEESEEESEEEEEVESEESES

% Agent identity and addressing
%

% Every agent (including facilitators) has a symbolic name, a full address,

13

DISH, Exh. 1008, p. 214

DISH, Exh. 1008, p. 215

and a local address (or "local ID"). A full address has the form:

addr (tcp (Host, Port)) for a facilitator (if TCP is protocol)
addr (tcp (Host, Port), LocalID) for a client agent.

Even though it doesn't appear in the full address, a facilitator also
has a local ID, for consistency and convenient reference. The
local ID of a client agent is assigned to it by its facilitator.
This, and the facilitator's local ID, are passed to the client at
connection time.

Full addresses are globally unique, and local addresses are unique with
respect to a facilitator. Symbolic names are NOT unique in any sense.

The local ID happens to be an integer, but developers should not rely
on this.

When specifying addresses, in address/l params for calls to
oaa_AddData, oaa_Solve, etc., either names or addresses may be used.
In addition, for convenience, reserved terms 'self', ‘'parent', and
‘'facilitator' may also be used.

More precisely, the address parameter may contain any of the following:
a full address; a local ID (when the addressee is known to be either
the facilitator or a peer client); a name, enclosed in the name/1 functor;
‘self’; 'parent'; or ‘facilitator’. ('parent' and ‘facilitator are
synonymous.)

Address parameters are standardized as follows: A full address for the
local facilitator or a peer client is changed to the local ID; all
other full addresses are left as is. Names are left as is. ‘self',

‘parent', and 'facilitator' are changed to the appropriate local ID.

dPdPdPdPdPdPdPdPdPdPdPoPdPdPGPdPdPdPdPadPdPdPdPdPd&dPdPdPdPdPdPdP
SESSEEEEESESESESESESESTESEEEEESEEEEELEGESEEEGEEEGEEEEEEEEEEEEESEEEEEEEEEETESES

% This can only be used AFTER oaa_SetupCommunication has been called,
% because of the reliance here on com:com_connection_info/5.

icl_standardize_address (Addr, SAddr) :-
\+ is_list (Addr),!

icl_standardize_address((Addr], SAddr).
icl_standardize_address([], []).
icl_standardizeaddress((Addr | Addrs], [SAddr | SAddrs]) :-

icl_standardize_addressee (Addr, SAddr),
',

icl_standardizeaddress (Addrs, SAddrs).
icl_standardize_address([_Addr | Addrs], SAddrs) :-

icl_standardize_address(Addrs, SAddrs).

EESESEESESEETEETSESSEESEEEEETELEETETESEEEEEEFEBEETEEEEEEESEEREEEEEEEEESESEETES

icl_standardize_addressee (addr (Addr), ParentId) :-
com:com_GetInfo(parent, addr (Addr)),
com:com_GetInfo(parent, fac_id(ParentId)),
!.

icl_standardize_addressee (addr (Addr), addr({Addr)) :-
1,

icl_standardize_addressee(addr(Addr, LID), LID) :-

14

DISH, Exh. 1008, p. 215

DISH, Exh. 1008, p. 216

com:com_GetInfo(parent, addr (Addr)),
!.

icl_standardize_addressee (addr (Addr, LID), LID) :-
com:com_GetiInfo(incoming, addr (Addr)),
!.

icl_standardize_addressee (addr (Addr, LID), addr(Addr, LID)) :-|

icl_standardize_addressee (name (Name), name(Name)):-
',

icl_name (Name) .
icl_standardize_addressee (Name, name(Name)) :-

icl_name (Name) ,
',

format ('~w (~w): addressee name, in address/1 param, should be specified
as:~n mname(~w)-n',

('WARNING', 'liboaa.pl', Name]).
icl_standardize_addressee(Id, TrueId) :-

icl_true_id(Id, TrueId),
1,

icl_standardizeaddressee (Whatever, _) :-
format ('~w (~w): Illegal addressee, in address/1 param, discarded:~n ~w-~n',

['WARNING', 'liboaa.pl', Whatever]),
fail.

icltrue_id(self, Me) :-
‘,

oaa_Id(Me).
icl_true_id(parent, Parent) :-

,

com:com_GetInfo(parent, fac_id(Parent)).
icl_true_id(facilitator, Parent) :-

\,

com:com_GetInfo(parent, fac_id(Parent)).
icl_true_id(Id, Id) :-

icl_id (Id).

icl_id(Num) :-
integer (Num) ,
Num >= 0.

icl_name(self) :-
!, fail.

icl_name(parent) :-
!, fail.

icl_name(facilitator) :-
!, fail.

icl_name (Atom) :-
atom(Atom).

SESE EEE SESE ESELEEEEESESESELES EEE EE ELE EEL EEE EEE EL ESESEEEEEEEEELEESEEEEESEEEEE SES

% name: icl_ConvertSolvables (+ShorthandSolvables, -StandardSolvables).
& icl_ConvertSolvables(-ShorthandSolvables, +StandardSolvables) .
&

% purpose: Convert between shorthand and standard forms of solvables list.
% remarks:

% - In the standard form, each element is a term solvable (Goal,

15

DISH, Exh. 1008, p. 216

DISH, Exh. 1008, p. 217

dPdPdPdPdPdPdPdPdPdedPdPdPdPdPdPdPdPdPoPoPdPdPdPde
%

Params, Permissions), with Permissions and Params both lists.
In the Permissions and Params lists, values appear only when they

are OTHER than the default.

- In the shorthand form, each element can be solvable/3, as above,
or solvable(Goal, Params), or solvable(Goal), or just Goal.

- Note that "shorthand" means "anything goes" - so shorthand
solvables are a superset of standard solvables.

- Permissions (defaults in square brackets):
call(T_F) [true], read(T_F) [false], write(T_F) [false]

- Params (defaults in square brackets) :
type (Data_Procedure) [procedure],
callback(Functor) [no default]

utility(N) [5]
synonym(SynonymHead, RealHead) [none]
rules_ok(T_F) [false],
single_value(T_F) [false],

unique_values(T_F) [false],
private(T_F) [false]
bookkeeping(T_F) [true]
persistent (T_F) [false]

- Refer to Agent Library Reference Manual for details on Permissions
and Params.

- (@@DLM) This might be the place to check the validity of solvables,
such as using only built-ins in tests. Also, check for dependencies
between solvables; e.g., when persistent (false) is there,
bookkeeping (true) must also be there.

SESEEEEEEETSESESEESESESTESEEESEEEEEEEEELEGEEEEEEEESEEEEEEGEEEEEEEEEESETESEESESSE

icl_ConvertSolvables (ShorthandSolvables, StandardSolvables) :-
var (StandardSolvables),|4

icl_standardize_solvables (ShorthandSolvables, StandardSolvables) .
icl_ConvertSolvables (ShorthandSolvables, StandardSolvables) :-

icl_readable_solvables (StandardSolvables, ShorthandSolvables) .

% icl_standardize_solvables (+ShorthandSolvables,
% -~StandardSolvables) .

icl_standardizesolvables([], []).
icl_standardizesolvables([Shorthand | RestSH], [Standard | RestStan]) :-

icl_standardize_solvable (Shorthand, Standard),
icl_standardize_solvables (RestSH, RestStan).

% icl_standardizesolvable(+Shorthand, -Standard).
icl_standardizesolvable(solvable((Goal :- Test), Params, Perms), Standard) :-

!,

append ([test(Test)], Params, NewParams),
icl_standardize_solvable(solvable(Goal, NewParams, Perms), Standard).

icl_standardize_solvable(solvable((Goal :- Test), Params), Standard) :-
!,

icl_standardizesolvable(solvable(Goal, (test(Test) | Params], []),
Standar@) .

icl_standardizesolvable(solvable((Goal :- Test)), Standard) :-!“7

icl_standardize_solvable(solvable(Goal, [test(Test)], []), Standard).
icl_standardize_solvable((Goal :- Test), Standard) :-|‘8

icl_standardize_solvable(solvable(Goal, [test(Test)], []), Standard).

16

DISH, Exh. 1008, p. 217

DISH, Exh. 1008, p. 218

icl_standardize_solvable (solvable (Goal, Params, Perms),
solvable(Goal, NewParams, NewPerms)) :-

ty

icl_standardizeparams (Params, false, NewParams),
icl_standardizeperms(Perms, false, NewPerms) .

icl_standardize_solvable (solvable (Goal, Params),
solvable (Goal, NewParams, [])) :-

ty

icl_standardizeparams (Params, false, NewParams) .
icl_standardize_solvable (solvable (Goal), solvable(Goal, [], [])) :- !.
icl_standardize_solvable(Goal, solvable(Goal, [], [])) :- !.

%¢ iclreadable_solvables (+StandardSolvables,
% -ShorthandSolvables) .

% This is provided for use in "pretty-printing" solvables, in trace
% messages, etc.

icl_readable_solvables([], []).
icl_readablesolvables([Standard | RestStan], [Shorthand | RestSh]) :-

icl_readable_solvable(Standard, Shorthand),
icl_readable_solvables(RestStan, RestSh).

% icl_readable_solvable(+Standard, -Shorthand).
icl_readable_solvable(solvable(Goal, [], []), Goal) :- !.
icl_readable_solvable (solvable (Goal, Params, []), solvable(Goal, Params)) :- !.
icl_readable_solvable (solvable (Goal, Params, Perms),

solvable(Goal, Params, Perms)) :- !.

SSSSESEEEEEEEEEEEEESEESEEEEEEESEEFELESEEESSSESEEEEEESEEEESESTEEEEESEEEEEEEEEEES

% name: icl_minimally_instantiate_solvables(+ShorthandSolvables,
% -MinimalSolvables).

% purpose: Convert from shorthand (or standard form) to minimally instantiated
% solvables list.

% remarks: - This is special-purpose. It's used to massage a list of solvables
% that are to be UNdeclared, to make sure each of them will unify
% with some existing solvable. Perms and Params are completely
% ignored in the unification; only the Goal is relevant. So each
& minimally instantiated solvable is simply solvable(Goal, _, _).
% - Note that "shorthand" means "anything goes" - so shorthand
% solvables are a superset of standard solvables.
ESESESESSEEESESESESEEEEEEEEEESSEEEESTSEEEEEEEELESEEESTEEEEEELEEEESEEEETESEEEEES

% icl_minimallyinstantiate_solvables (+ShorthandSolvables,
% -Solvables).

icl_minimally_instantiate_solvables([], []).
icl_minimally_instantiate_solvables([Shorthand | RestSH],

(Minimal | RestMin]) :-
icl_minimally_instantiate_solvable (Shorthand, Minimal),
icl_minimally_instantiate_solvables (RestSH, RestMin).

% icl_minimally_instantiate_solvable(+Shorthand, -Minimal).
icl_minimally_instantiate_solvable(solvable((Goal :- _Test), Params, Perms),

Minimal) :-
!

icl_minimally_instantiate_solvable(solvable(Goal, Params, Perms),
Minimal).

icl_minimallyinstantiate_solvable(solvable((Goal :- Test), Params),
Minimal) :-

17

DISH, Exh. 1008, p. 218

DISH, Exh. 1008, p. 219

!,

icl_minimallyinstantiate_solvable(solvable(Goal, Params, []), Minimal) .
icl_minimally_instantiate_solvable(solvable((Goal :- _Test)), Minimal) :-

,

icl_minimally_instantiate_solvable(solvable(Goal, [], []), Minimal).
icl_minimally_instantiate_solvable((Goal :- _Test), Minimal) :-

,

icl_minimally_instantiate_solvable(solvable(Goal, [], []), Minimal).
icl_minimally_instantiate_solvable(solvable({Goal, _Params, _Perms),

solvable(Goal, _, _)) :-
!.

icl_minimally_instantiate_solvable(solvable (Goal, _Params),
solvable(Goal, _, _)) :-

!.

icl_minimally_instantiate_solvable(solvable(Goal), solvable(Goal, _, -)) ore ft.
icl_minimally_instantiate_solvable(Goal, solvable(Goal, _, _)) :- }.

ESESESSEEEESESSEEELEEEEEEESESEEEEEEESESEEEEESEEETESEEEEEEEEEEEEEETEEEELTESEESEES

% name: oaa_goal_matches_solvables(+Goal, +Solvables,
% -RealGoal, -MatchedSolvable).

% purpose: Determine whether a call to Goal is handled by the agent with
% these Solvables.

% arguments:
% - Goal must be non-compound (basic) to match: no address, no params,
% no subgoals.
% - Solvables must be in standard form.

% - RealGoal is what should actually be called, after taking synonyms
% into account.

% - MatchedSolvable is the solvable record corresponding to RealGoal.
% remarks:

% -~ A solvable's params may contain a single test, but it can
% be compound:
% solvable(q(X), [test((X > 1,X < 10))], [...]).
% Tests should contain only prolog builtins.
% - Any solvable can be a synonym of another solvable (including a
% synonym of a synonym), but eventually there must be a non-synonym
% solvable. Synonyms must be used with care. If predicate A
% is synonymed to predicate B, there must be a solvable for clause B,
% for A to be usable.

% - When a predicate A is synonymed to predicate B, all other params
% and all permissions associated with A are ignored.
& -~ Uses would_unify (and \+ \+) so that any variables in the goal are
% not bound by the solvable, thereby unnecessarily constraining query
% I forget why: I think it was because we had some problems
% matching solutions coming back. However, this has an unusual
% side effect: if your solvable is t(6) and your query is t(X),
% the query arrives at the agent as t(X), not t(6), which might
% be unexpected. Look into this more someday...
% - However, when Goal is a synonym, variables in the synonym param DO
% get unified correctly.
ESSESEEEFTEETEEESTESEEEEESESESESSFESEEELEFEEEEEEEELEFSEEESESEFEEEESEEEEEESETEEES

oaa_goal_matches_solvables (Goal, Solvables, RealGoal, RealMatched) :-
oaa_built_in_solvables (BuiltIns),
append (BuiltIns, Solvables, AllSolvables),
oaa_goal_in_solvables(Goal, AllSolvables, Matched),
Matched = solvable(_, Params, _),

18

DISH, Exh. 1008, p. 219

DISH, Exh. 1008, p. 220

% See if Goal is a synonym predicate
(icl_GetParamValue(synonym(Goal, SynGoal), Params) ->

oaa_goal_matches_solvables(SynGoal, Solvables, RealGoal, RealMatched)
| otherwise ->

RealGoal = Goal,
RealMatched = Matched

EESESESTELESEEETESESEEEEEESESEETESEEELELEFELEEEEELEEEEEEEEEEEESEEEESEEEEEEETES

name: oaa_goal_in_solvables(+Goal, +Solvables, -MatchedSolvable) .
purpose: Determine whether a call to Goal is handled by the agent with

these Solvables.

purpose: Determine whether Goal appears in Solvables, with
appropriate Params and Perms for it to be called.

arguments:

- Goal must be non-compound (basic) to match: no address, no params,
no subgoals.

- Solvables must be in standard form.
remarks:

% - Should not be called directly; only by oaa_goal_matches_solvables.
SESEELESSSLELESIEELELESFESSSELELELELFEEEEEEEEEEEEEEEEREEEELEEEEEEEELEEEESESSESS

oaa_goal_in_solvables (Goal, [solvable(G1l,Params,Perms) | _Rest],
solvable (G1,Params,Perms)) :-

would_unify(Goal, G1),
icl_GetParamValue(synonym(Goal, _RealGoal), Params),

dPdPdOdPdPd&dPdPdPdP
I

oaa_goal_in_solvables (Goal, [solvable(G1, Params, Perms) | Rest],
solvable (G1,Params,Perms)) :-

would_unify (Goal, G1),
icl_GetPermValue(call(true), Perms),
{ iclGetParamValue(test(T), Params) ->

\+ \+ oaa_Interpret((Goal = Gi, T), [])
| otherwise ->

true

),
1.

oaa_goal_insolvables(Goal, [_|Rest], Matched) :-
oaa_goal_in_solvables(Goal, Rest, Matched).

ESESEEEEEESELESEESEEESSSEEEETEEEEEFEEEEESEETEESTEEEFELEEESEEEELEESEEEEEEEEEEEEES

% name: oaa_data_matches_solvables(+Clause, +Solvables, +Perm
% -RealClause, -MatchedSolvable).

% purpose: Determine whether Clause can be read or written by the agent with
% these Solvables, and return the "real" form of the clause that

% takes synonyms into account.
% arguments:
% - Clause must be non-compound (basic) to match: no address, no params,
% no subClauses.

% - Solvables must be in standard form.

% Perm is 'read' or 'write’.

% - RealClause is what should actually be used (asserted, retracted,
% replaced).
% - MatchedSolvable is the solvable record corresponding to RealClause.
% remarks:

19

DISH, Exh. 1008, p. 220

DISH, Exh. 1008, p. 221

"Writing" means making an assertion.
"Reading" is different than "calling". "Reading" is retrieving the

definition clauses of a predicate (including the bodies, if any).
Reading is not currently supported by any library procedures.

Any solvable can be a synonym of another solvable (including a
synonym of a synonym), but eventually there must be a non-synonym
solvable. Synonyms must be used with care. If predicate A
is synonymed to predicate B, there must be a solvable for clause B,
for A to be usable.

When a predicate A is synonymed to predicate B, all other params
% and all permissions associated with A are ignored.
ESSELSSSEEEEESESESESEEEESESESESSEFELESEEESEEEEEEESEEEEEEEEEBEGEGELEEEEEESELESS

oaa_data_matches_solvables (Clause, Solvables, Perm, RealClause, RealMatched) :-
oaa_built_in_solvables (BuiltIns),
append (BuiltIns, Solvables, AllSolvables),
oaa_data_in_solvables (Clause, AllSolvables, Perm, Matched),
Matched = solvable(_, Params, _),
(Clause = (Head :- Body) ->

true

| otherwise ->
Head = Clause

) f

% See if Clause is a synonym predicate |
(icl_GetParamValue (synonym(Head, SynHead), Params) ->

(Clause = (Head :- Body) ->
SynClause = (SynHead :- Body)

| otherwise ->
SynClause = SynHead

dedPdPdPdPdPdPdPdPdP

) i

oaa_data_matches_solvables(SynClause, Solvables, Perm,
RealClause, RealMatched)

| otherwise ->
RealClause = Clause,

RealMatched = Matched

),

ESSSEEEESESESEESESESTESESESTEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEELESEEEETEE TESS

% name: oaa_data_in_solvables(+Clause, +Solvables, +Perm, -MatchedSolvable) .
% purpose: Determine whether (the Head of) Clause appears in Solvables, with
% appropriate Params and Perms for it to be read or written.
% arguments: .
% - Clause must be non-compound (basic) to match: no address, no params,
% no subClauses.

% - Solvables must be in standard form.

% remarks:

% - Should not be called directly; only by caa_data_matches_solvables.
EETEEEESEESSEEEESEEESSSEESESESEEEEEELEEEEFEESEEESTSESEEESEELEEESEESEESSEEELESEERS

oaa_data_in_solvables(Clause, [solvable(Gl,Params,Perms) | _Rest], _Perm,
solvable(G1,Params,Perms)) :-

(Clause = (Head :- Body) ->
true

| otherwise ->
Head = Clause

),

would_unify (Head, G1),
icl_GetParamValue (synonym(Head, _RealHead), Params),

20

DISH, Exh. 1008, p. 221

DISH, Exh. 1008, p. 222

% @@DLM: OK, so it's a synonym, but shouldn't we check
% the permissions and type(data) for the referenced solvable?{

oaa_data_in_solvables (Clause, [solvable(G1,Params,Perms) | _Rest], Perm,
solvable(G1,Params,Perms)) :-

icl_GetParamValue (type(data), Params),
{ Clause = (Head :- _Body) ->

icl_GetParamValue(rules_ok(true), Params)
| otherwise ->

Head = Clause

),

would_unify (Head, G1),
(Perm == write ->

icl_GetPermValue (write (true), Perms)
| otherwise ->

icl_GetPermValue (call (true), Perms)
),|

oaa_data_in_solvables (Clause, [_|Rest], Perm, Matched) :-
oaa_data_in_solvables(Clause, Rest, Perm, Matched).

RRR KKK EK KKK KEK KK REE ERE KEKE KK KKK KKK KEKE KEK KKK HK KKK KEKE EE EKKEEEKEKEKKERE

% Retrieving and managing events
SRK KKK KEK KK KEKE KEKE KEK KKK KEE KEKE KK KEKE KKK KKK KKK KEKE EK KEE KEE KEKE KEKE KEE KKEKEEKEKKE

EEESEEEEEESEEEETETEESESESEEVEEEETEEEEEEEEEEELET EEE ET EEESETETEESESSEEEEESESEEEES

% name: oaa_MainLoop
% purpose: The main event loop for the application.
% Reads an event, executes (interprets) it,
% checks on_receive triggers for the event,
% checks any application-dependent triggers,
SESESEESESESESESESEEEESESEEEESEEEEEEESTEEEEEEEEEEGEEEEEESTEEEETETEEES EES EEEE EES

oaa_MainLoop(ShouldPrint) :-

oaa_Ready (ShouldPrint) ,

repeat,

oaa_GetEvent (Event, Params, 0),
oaa_ProcessEvent (Event, Params),

fail.

EEEEEEEESEEEESEEESESEEESEESSSEESSEEESEEEETEEESSEEEEESEEEEEESEEEEEESEEEEEEEEEES

% name: oaa_ProcessEvent
% purpose: Interprets an incoming event
% - For a timeout, checks task triggers and calls user's idle procedure
% - Otherwise, oaa_Interprets the event, checks on_receive comm
% triggers, and then checks task triggers.
ELESEELEEETEEEEESEEELEEEEEELEEEEESEEEEEEEEEEEEEEEEEESEEEEEEETELETEEEEEELESETESES

oaa_ProcessEvent (timeout, _Params) :- !,
oaa_CheckTriggers(task, _, _), !,
oaa_call_callback(app_idle, _, []).

oaa_ProcessEvent (Event, Params) :-

21

DISH, Exh. 1008, p. 222

DISH, Exh. 1008, p. 223

(oaa_Interpret (Event, Params) -> true | true),
oaa_CheckTriggers(task, _, _), !.

TEEEESEESTEEEEESEEEEFESESESESEEEEEEEELEFEEELEELTEEEEEEEEEEEEEEEEETEEEEEES TEE ETS

% name: oaa_SetTimeout
%* purpose: Sets the timeout value used by oaa_GetEvent
TEVETSFESSEEFEFEEETESESESETETEETESESTEEEEEEEEEEEEELEEEGEEEEEEEEEEGEEEELESELESE

oaa_SetTimeout (NSecs) :-
%* Make sure NSecs is valid number

number (NSecs),
(NSecs < 0 ->

TimeOut 0

| TimeOut = NSecs),

oaa_TraceMsg('-nSetting event timeout to ''~q''.~n', [TimeOut]),
on_exception(_,retractall (oaa_timeout(_)), true),
assert (oaa_timeout (TimeOut)).

ESSTEEEELEFELELESSSEEEEESEEESESEEEESESESEEELEEESEEEEFEEEEESEEEEEEEGEEESESEEESESS

% name: oaa_GetEvent
% purpose: Return the next event to execute
% remarks:

- if a oaa_timeout (Secs) is set to a positive real number by
oaa_SetTimeout, wait Secs for an event.
If none arrives in this time, return Event = ~timeout'

- Reads ALL events available on communication stream, sorts the events

according to priority, chooses the next event to execute,
and then saves the rest for next time oaa_GetEvent is called.

- The communication stream is read every time oaa_GetEvent is called, even
if there are already saved events (a new one might have a higher
priority!)

% - If saved events exist, return immediately (timeout not considered) .
SYEESEEEESEEVESEEEEESEEEESSEEEEESSSEEEESESESSEEESSEEEFEFEEEEEEEETEEEEEEEEEEEEEES

oaa_GetEvent (Event, Params, LowestPriority) :-
% see if previously saved events to process
(retract (oaa_event_buffer(SavedEvents)) ->

true

| otherwise ->
SavedEvents = []

dPdPdPdPAPoPdPdPde
),

% If at least one event can be found with an appropriate priority
% from among the saved events, no timeout needed -- flush tcp
% buffer, and read_all available
(oaa_choose_event (LowestPriority, SavedEvents, _OneEvent, _Remainder) ->

TimeoutSecs = 0.01

|

|

),

on_exception(_,oaa_timeout (TimeoutSecs) , TimeoutSecs=0)

TimeoutSecs=0

oaa_read_all_events(TimeoutSecs, MoreEvents, FlushPriority),

% if one of the new events has a flush in it, see if it

22

DISH, Exh. 1008, p. 223

DISH, Exh. 1008, p. 224

% flushes any of the saved events
%$ note: MoreEvents have already been flushed by FlushPriority
oaa_flush_events (SavedEvents, FlushPriority, RemainingSavedEvents) ,

% These are the events we've read so far and haven't executed yet...
append (RemainingSavedEvents, MoreEvents, EventList),

(oaa_sort_and_get_event (EventList, LowestPriority, Event, Params) ->
% we are able to find an appropriate event from list
% The event will be returned, so fire triggers on it

oaa_CheckTriggers (comm, event (Event, Params), receive)

% no good event found, return timeout
Event = timeout,
Params = []

),

% This cut is essential to avoid faulty behavior (DLM):
!.

EESEFEEESEELESESTESEEEEEELEEEEEEEEEEEEEERESEEEEEEEEEEELESEEE SETS SES ES ESEEES SES

$ name: Oaa_sort_and_get_event
% purpose: Sort raw events by priority, choose the highest priority event
% or FirstIn if equal priority, extract event data and sender,
% and store the rest of events
% remarks:

% The chosen event must be of HIGHER priority than LowestPriority, and
% oaa_sort_and_get_event can fail if no appropriate event is found
ELEESELEELELESEEEEEESESEEEEEEESESEEEEEEEESEESESEEEESEEEEESEEESSSEETEESEEETESES

oaa_sort_and_get_event (EventList, LowestPriority, Event, Params) :-
samsort (oaa_priority_compare, EventList, SortedList),
oaa_choose_event (LowestPriority, SortedList, RawEvent, Remainder),
oaa_extract_event (RawEvent, Event, Params),
(Remainder = [J ;

assert (oaa_event_buffer (Remainder))),
!, .

oaa_priority_compare(E1l, E2) :-
Oaa_extract_event_param(E1, _, priority(P1)),
oaa_extract_event_param(E2, _, priority(P2)),
!, Pl >= P2.

SSEETETEEETEEEESESELEEESESETEEEEEELEEEEEEBEEEEEEEEETELEEEEEEEEEEEEEEEEEEEETEES

% name: oaa_choose_event
% purpose: Extracts the first event from a list which has a HIGHER priority
% than the required lowest. Fails if none found.
EEEEEETEEEEEESETESEEEEEEEEEEEEEELEEEEEEEEEEEEEEEEEEE EES EETESES EES ETESTETEEESEES
oaa_choose_event (LowestPriority, [Event|Remainder], Event, Remainder) :-

Oaa_extract_event_param(Event, _, priority(P)),
LowestPriority < P,|

oaa_choose_event (LowestPriority, [E|Rest], Event, [E|Rest2]) :-
oaa_choose_event (LowestPriority, Rest, Event, Rest2).

SEELESSEEESEEEEEEEESESESESESTETEESETEEEEEGEEEEESESESELTESEEEEEGEESESEEETESETESEEES

23

DISH, Exh. 1008, p. 224

DISH, Exh. 1008, p. 225

% name: oaa_read_all_events
% purpose: Flush the communication event queue, reading ALL available events and

returning a list of them, or empty list if none available.
remarks:

- Events are retrieved in raw (unextracted) form.

- We check to make sure the event is Validated (security hook)
before returning it

- We check to see if the event is flushed by a later event.
If so, we notify event sender of the flush and we don't return the

% event.

ESEEEESEELELESSESEEEESEEEEEESSEETSESEEEESETTSEEEEEEEEBEEEELEEEEEELEGEEEEEEEESS

oaa_read_all_events(TimeOut, Events, FlushPriority) :-
oaa_select_event (TimeOut, E), !,
(E == timeout ->

Events = [],

FlushPriority = 0 % lowest event priority: don't flush events

oPdPdPdPdPdPdP

% read one event, so read all the rest

oaa_read_all_events(0.0001, RestEvents, RestFlushPriority),

% check if read Event is acceptable (security hook)
(oaa_ValidateEvent (E,OkEvent) ->

oaa_ComTraceMsg('~n[COM received] :-n ~q~n', [OkEvent]),

%$ get event's priority
oaa_extract_event_param(OkEvent, _, priority(P)),

% if less than some higher priority flush event, discard event
% and perhaps notify sender
(P < RestFlushPriority ->

% event will be removed,

oaa_flush_notification (OkEvent),
FlushPriority = RestFlushPriority,
Events = RestEvents

|
% keep event: not flushed

Events = [OkEvent|RestEvents],

% see if this event adds a flush:

% if so record new flush priority
(oaa_event_param(OkEvent, flush_events(true)) ->
FlushPriority = P

| FlushPriority = RestFlushPriority)
)

% Not validated, skip event
| Events = RestEvents)

ESEEEETESTESTSEESEEEEEEEEEEEEEFESEEEEEEGEEEEEEEEEEEEEEEEEEESEEELEEESEESEESEESEES

$ name: oaa_ValidateEvent
% purpose: Check that an incoming lowlevel event should be processed.
% This is the place to put security checks on events.
% The default behavior defined by the library can be made more
% stringent by individual agents using the callback oaa_AppValidateEvent
% remarks:

24

DISH, Exh. 1008, p. 225

DISH, Exh. 1008, p. 226

% oaa_ValidateEvent has the right to modify the incoming event,
% or refuse it altogether by failing.
ESEEEEEEEESEEEEESEEEEEEEETEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEGESEESEEEEEEEES

oaa_ValidateEvent(E,OkEvent) :-
% if oaa_AppValidateEvent is defined, use it.
predicate_property (user:oaa_AppValidateProperty(_,_), _),{

user:oaa_AppValidateProperty(E, OkEvent).
% currently, no security checks are performed
oaa_ValidateEvent (OkEvent,OkEvent) .

EEESEEESELESEEEEEEE TESTE EEE EEEESEEESEEEEEEEEEEEEEESEEEEEGE LESSEE EEEEEEETEESEEEEE

% name: oaa_flush_events
% purpose: Flushes any events with a lower priority than the FlushPriority
SEESEESEELEEEEEEEE EEE EEE EEE ESEEESEEESEEESEEEEEELEEEEEEEEEEEG EEE SE EEEEEEEEEEESS

oaa_flush_events(({], _FlushPriority, []).
oaa_flush_events({Event|RestEvents], FlushPriority, RemainingEvents) :-

oaa_flush_events (RestEvents, FlushPriority, RestSaved),

% get event's priority
oaa_extract_event_param(Event, _, priority(P)),

% if lower priority than we are flushing, notify and remove
(P < FlushPriority ->

oaa_flush_notification (Event),
RemainingEvents = RestSaved

RemainingEvents = [Event |RestSaved]

SESEEESESESEEEEESSEEEEEEESEEEESEE ESET ESEEEESEEEEEEESESEEEES ESSE SESE EEEEEEETEEES

$ name: oaa_flush_notification
% purpose: Given a raw event, grabs its real event and looks up whether
% a notification should be sent out regarding the event's
% cancellation due to a flush.
SEEEEEELEEEEEEEEGEEEEEEEEETEEEEEESTEETESEEEEE EEE EES EEEEEEESEEEEEEEEEEESEEETESELS

oaa_flush_notification(RawEvent) :-
oaa_extract_event (RawEvent, Event, _Params),
(oaa_get_flush_notify(Event, NotifyEvent) ->

oaa_PostEvent (NotifyEvent, [])
| true), !.

ESESEEEEESELESESEEEESESESEESESESESESESEEESETEEEFEEESEEEEEEEEEEEEELEEEEEEEEEEES

% name: oaa_get_flush_notify
% purpose: Records a list of events which require a return notification
% if the event is flushed.

% remarks:

% currently, only the ev_solve() event returns a message;
% all other events are flushed without notification
SEEEEEESESEEEEEEEEESEEEEEESEEESEEEEEEEEEEEEEEEEEESEESETEEEEEEEEEEEEESEEEEEEEES

% @@Additional entries needed here:

oaa_get_flush_notify(ev_solve(ID, Goal, Params),
ev_solved(ID, FromMe, Goal, Params, [])) :-

25

DISH, Exh. 1008, p. 226

DISH, Exh. 1008, p. 227

(icl_GetParamValue(reply(none), Params) ->
fail

| oaa_Id(FromMe)) .

SEESEEGELESESEEEEEEEEEEEESEELEEESEEEEEEEEEESEEEEEEEESEESEEETESEEEEEYEELEEEESEES

% name: oaa_select_event
% purpose: If a positive timeout is defined, wait N seconds for an event
% to arrive

Otherwise block-wait until an event arrives.

remarks: IMPORTANT: Connected/1 gets special handling, because we want
the connection ID and oaa ID to be assigned immediately.

Otherwise, oaa_translate_incoming_event and oaa_unwrapevent
won't always work properly for subsequent events from the

% new connection (or would have to be more complicated).
ESSEEESEEEEEEEESESEEEEESESELEEESESESTESEESSTEEEEEESESEEEESSTELEEESELEEEEEEESEEEES

oaa_select_event (TimeOut, Event) :-
com:comSelectEvent (TimeOut, InEvent),
(InEvent = connected(_) ->

oaa_ProcessEvent (InEvent, []),
oaa_select_event (TimeOut, Event)

| otherwise ->
oaa_translate_incomingevent (InEvent, TranslatedEvent),
Oaa_unwrap_event (TranslatedEvent, Connection, Event)

dedPdedPdP

ESEEEEELESEEEESEEESEEEESSESEEESEEEEEEEEEESEEE ESTEE ESEEEEEEEEEEELEESEEEESEESEEEE EES

% name: oaa_unwrap_event (+TranslatedEvent, -Connection, -Event).
% arguments: TranslatedEvent: An event from another agent, which has already

been translated for version compatibility, if necessary.
& Event: An event term in our standard internal format, as required

% by all other library procedures.
% Connection: The CONNECTION of the immediate agent
% from which this message came (note that an agent's CONNECTION
% can be different than its ID).
%

%

%

%

ae

purpose: Remove an event term from its communications wrapper (if any),
and returns it in our standard internal form:

'timeout' OR event (Content, Params) .
ESEESETESTESESEEEEEEEEEEESEEEESEEEEEESEEEGEEESEEEEEEEELEESSEEEEESESESETEEE TEESE

% timeout is the ONLY event that doesn't get embedded in event/2:
Oaa_unwrap_event (timeout, unknown, timeout) :-

ty

oOaa_unwrapevent (term(Connection, event (Content, Params)), ConnectionId,
event (Content, NewParams)) :-I“7

(com:com_GetInfo(ConnectionId, connection(Connection)) ->
true

| otherwise ->
format(

'~w: incoming event from an unrecognized connection (~w):~n -~w-n',
{' INTERNAL ERROR', Connection, event (Content, Params)]),
ConnectionId = unknown

),

(memberchk(from(_), Params) ->
NewParams = [connection_id(ConnectionId) | Params]

| Content = ev_connected(InfoList),

26

DISH, Exh. 1008, p. 227

DISH, Exh. 1008, p. 228

memberchk (fac_id(Id), InfoList) ->
NewParams = [from(Id), connection_id(ConnectionId) | Params]

| ConnectionId = parent,
com:com_GetInfo(ConnectionId, fac_id(Id)) ->

NewParams = [from(Id), connection_id(ConnectionId) | Params]
| com:com_GetInfo(ConnectionId, oaa_id(Id)) ->

NewParams = [from(Id), connection_id(ConnectionId) | Params]
| otherwise ->

* With current code, this should never happen. But I can
% imagine code changes that might need this (DLM 98/02/18):

NewParams = [from(unknown), connection_id(ConnectionId) | Params]
).

% This handles connected/1, end_of_file/1l, wakeup/1:
Oaa_unwrap_event (Content, unknown, event(Content, [])).

ETETESEESSEEELTEEEEESEETEEEEEEEEEYESEE EEE SEETESESEEEEEEEEEEEESSEELEEESEEESSEEESS

% name: oaa_translate_incomingevent (+InEvent, -OutEvent).
% purpose: Provides backwards compatibility by calling a hook
% (user:oaa_event_translation/7) that translates incoming events from agents
of

other versions. Also allows for event differences based on language.
The idea is to return an event with both format and contents that

are appropriate for the agent receiving the event.
remarks: user:oaa_event_translation/7 can be hard-coded, loaded at runtime,

or whatever. If it's not present, we return the same event.
Note that the translation hook is somewhat limited. It allows a single
event to be translated to another single event, and with essentially
no information about context. This inadequate or awkward for some cases.
Those cases are handled using extra clauses of user:oaa_AppDoEvent (in
translations.pl).

aededPoPdPdPdPdPdPoP
SEESESESEEEEEESESESESESEEESEEEELELEEESELESEEEEELEGEESEGEEEEEEEEEEEEEEELELES EES

% Special cases. There's no need to translate these. And, it could be
% problematical, because we don't yet know the language and version of
% the sender.

oaa_translate_incoming_event (term(Conn, event (Contents, Params)),
term(Conn, event (Contents, Params))) :-

{ Contents = ev_connect(_) ;
Contents ev_connected(_)),

oaa_translate_incomingevent (term(Connection, InEvent),
term(Connection, OutEvent)) :-

current_predicate (oaa_event_translation,
user:oaa_event_translation(_,_,_,_,_,_,_)),

(com:com_GetInfo(ConnectionId, connection (Connection)) ->
true

| otherwise ->
true

),

% These assumptions may not always be right, but will
% nearly always get the desired results.

% :

(ground (ConnectionId),

27

DISH, Exh. 1008, p. 228

DISH, Exh. 1008, p. 229

com:com_GetInfo(ConnectionId, agent_version(PriorVersion)) ->
true

| otherwise ->
PriorVersion = 2.1

) f

(ground (ConnectionId),
com:com_GetInfo(ConnectionId, agent_language(PriorLanguage)) ->

true

| otherwise ->
PriorLanguage = c

),

oaa_LibraryVersion(MyVersion),
{ MyVersion \== PriorVersion ; PriorLanguage \== prolog),
user:oaa_event_translation(PriorVersion, PriorLanguage, MyVersion, prolog,

Connection, InEvent, OutEvent),
|

% This handles timeout/0, connected/1, end_of_file/1, wakeup/1.
% Also passes through any event for which there is no translation.
oaa_translate_incoming_event (Event, Event) :- !.

SESTELESEEEEEEESEEESEESEEEEESEEEEESEESEEEEEEEEEEEEEEEEEEEEETEEEEESESESSEEESEESEESS

% name: oaa_extract_event
% purpose: Extract the content and parameters from an event term.
% remarks: Always succeeds.

% The content part of the term is often (loosely) called the Event.
EEEEEEEEEEEEEEESEEEESESESSEEEEESEEEEEEEEEEEEFEEEEEEEEEESEESEEEEEESEESESEESSEEESES

oaa_extract_event (event (Content, Params), Content, Params) :-
1.

EEEEEEEEEEEEEEESEELELEEEESEEEEEEEEEEEEEESESEESESEEESELEETEEEEEEESELEESEEEESEEES

% name: oaa_extract_event_param
% purpose: Extract the content and a parameter value from an event term.
% remarks: Always succeeds - unless you ask for a param that has no default
% value.

% The content part of the term is often (loosely) called the Event.
SESEEEEESEEEESEEEEEEESEEESTESEEEELEEEEEEEGEEEEEGEETESTEEEEESEEESEEESEE EGE SEE TEE

oaa_extract_event_param(event (Content, Params), Content, Param) :- !,
icl_GetParamValue (Param, Params).

SSSSESTESEEEESESESEELESEEELESEEEEEEEEEEESEEEEEEEEEEEEEESEEEELEEEEEEEESEEEEEEES

% name: Oaa_event_param
% purpose: Extract a parameter from an event term.
% remarks: This FAILS if the parameter isn't present (unlike
% oaa_extract_event_param).
SEEESSESESEEEEEETESELESESESEELEEEEEEEEEEEEEEGEEEEEEEEETESEEEEEESEEETEEEEEEEEEES

oaa_event_param(event(_Content, Params), Param) :- !,
memberchk (Param, Params) .

Baa KKK KK KKK KERRI KER KER KIRK IKE KEK KKK KK KKK KEE KEK KEK RK KEK EKKERKEKKKEKKEKEKEK

% Interpreting EVENTS
GR KKK KKK RRR KKK KKK IRI REIKI EK KKK KKK KK KKK KKK KEKE KEKE KEKE KEE EEK KEKEKEEEEK

28

DISH, Exh. 1008, p. 229

DISH, Exh. 1008, p. 230

ESEESTEEESSSEEFLESEEESEESESESESESTEESESELESEEEEEEEEEEEEEEEEEGEGEEEESEL ESTE SESS

$ name: oaa_Interpret (+ICLExpression, +Params)
% purpose: Executes an incoming event
% remarks: Implements a simple meta-interpreter for executing complex goals.

Agent goals are interpreted by oaa_exec_event().

The contents of Params will vary depending on context.
When oaa_Interpret is called on an incoming event, Params
will (usually) include from(Sender). Calls generated internally
may contain from(self). Additional params may
accumulate through recursive calls to oaa_Interpret.

dedPdPdPoPdPae
ESESESESEFESEEEEESEEEEEESEEFEEEEEESEEESTEEELEEEEEEEEEEEEEEEESEEEEEESESEEEEEEES

oaa_Interpret (Goal, _) :- var(Goal), !, fail. % How could this happen?
oaa_Interpret(true, _) :- !.
oaa_Interpret (fail, _) :- !, fail.
oaa_Interpret (false, _) :- !, fail.
oaa_Interpret((\+ P), Params) :- !, \+ oaa_Interpret(P, Params) .
oaa_Interpret((P -> Q ; _R), Params) :-

oaa_Interpret(P, Params), !, oaa_Interpret(Q, Params).
oaa_Interpret((_P -> _Q; R}, Params) :- !, oaa_Interpret(R, Params).
oaa_Interpret((P -> Q), Params) :- !, oaa_Interpret((P -> Q ; fail), Params).
oaa_Interpret((X, Y), Params) :- !,

oaa_Interpret(X, Params), oaa_Interpret(Y, Params) .
oaa_Interpret((X ; Y), Params) :- !,

(oaa_Interpret(X, Params) ; oaa_Interpret(Y, Params)).
oaa_Interpret (findall(Var, Goal, All), Params) :- !,

findall (Var, oaa_Interpret (Goal, Params), All).
oaa_Interpret(P, _Params) :- iclBuiltIn(P), !, call(P).
oaa_Interpret (X, Params) :- oaa_exec_event(X, Params).

SEELESELEGSEEEELESESELETEELEEEEEEEEEEEEEEEEEEELEEEEEVEEEEELELEEEEELELEEEEESESS

% name: oaa_exec_event
% purpose: Defines execution of events built into all agents
% remarks: Goals that can't be handled by oaa_exec_event are passed to the
% user-declared app_do_event callback, if present.
ELETEESSSSEEVEFISESETSSSSESEELETESEEEEEGEEEEEEEEEEEEEEEEEEEEEEESEEEGEEEEEETEEES
% turn on trace

Oaa_exec_event (ev_trace_on, _) :-
abolish(oaa_trace/1),
assert (oaa_trace(on)),
format ('~nTrace on.~n', []}), !.

% turn off trace

oaa_exec_event(ev_trace_off, _) :-
abolish(oaa_trace/1),
assert (oaa_trace(off)),
format ('~nTrace off.~n', [J), !.

% tcp level trace

oOaa_exec_event (ev_com_trace_on, _) :-
abolish(oaa_com_trace/1),
assert (oaa_com_trace(on)),
format ('~nCOMMUNICATION PROTOCOL trace on.~-n', {]), !.

% tcp level trace

29

DISH, Exh. 1008, p. 230

DISH, Exh. 1008, p. 231

oaa_exec_event (ev_com_trace_off, _) :-
abolish (oaa_com_trace/1),
assert (oaa_com_trace(off)),
format ('~nCOMMUNICATION PROTOCOL trace off.~n', []), !.

% turn on debug

oaa_exec_event (ev_debug_on, _) :-
abolish (oaa_debug/1),
assert (oaa_debug(on)),
format ('~nDebug on.-n', []), !.

% turn off debug

oaa_exec_event (ev_debug_off, _) :-
abolish(oaa_debug/1),
assert (oaa_debug(off)),
format ('~nDebug off.~-n', []), !.

% Set the timeout value

oaa_exec_event (ev_set_timeout(N), _) :-
abolish(timeout/1),
assert (timeout (N)),

format ('~nTimeout set to ~q.~n', [N]), !.

% Notification that some other agent has disconnected. Currently, this applies
% only to peer client agents, and the arg. will always be a local ID.
Oaa_exec_event (ev_agent_disconnected (LID), _) :-

oaa_remove_data_owned_by (LID).

% quit to UNIX
oaa_exec_event(ev_halt, _) :-

format ('~nDisconnecting...~n', []),
com:comDisconnect (parent),
(oaa_call_callback(app_done, _, []) ; true),
halt.

oaa_exec_event (ev_update(ID, Mode, Clause, Params), EvParams) :-
oaa_Id(AgentId),
append(Params, EvParams, AllParams),
(Mode = add ->

Functor = oaa_add_data_local
| Mode = remove ->

Functor = oaa_remove_data_local
| Mode = replace ->

Functor = oaa_replace_data_local
),
Call =.. [Functor, Clause, AllParams],
(call(Call) ->

Updaters = [AgentId]}
| otherwise ->

Updaters = [)
),

(icl_GetParamValue(reply(none), AllParams) -> true |
oaa_PostEvent (ev_updated(ID, Mode, Clause, Params, Updaters),

(})

30

DISH, Exh. 1008, p. 231

DISH, Exh. 1008, p. 232

% add or remove a local trigger
oaa_exec_event (ev_update_trigger(ID, Mode, Type,

aedPdPdPdPdPaedPap

Condition, Action, TrigParams),
Params) :-

oaa_Id(AgentId),
append (TrigParams, Params, NewParams),
(Mode == add ->

Functor = oaa_add_trigger_local
| Mode == remove ->

Functor = oaa_remove_trigger_local
),

Call =.. [Functor, Type, Condition, Action, NewParams],
(call(Call) ->

Updaters = [AgentId]
| otherwise ->

Updaters = []
,

{ icl_GetParamValue(reply(none), Params) ->
true

| otherwise ->
oaa_PostEvent (ev_trigger_updated(ID, Mode, Type, Condition,

Action, TrigParams, Updaters),
(])

} f
(Mode = add ->

oaa_Inform(trigger, 'trigger_added(~q,~q,-q,~q)~n',
(Type, Condition, Action, NewParams])

| true
).

When asked to solve a goal, see if you know how to solve
it, then find all solutions. Send the solutions to the
caller.

The various params lists must be used with care. Searching different
lists may be appropriate for different params, depending on their
meanings. Another consideration is that Solve params and Goal params,
as returned to the requesting agent, must unify with the original
lists that came from the requesting agent.

Oaa_exec_event (ev_solve (ID, FullGoal, SolveParams), Params) :-
oaa_class(leaf),

icl_GoalComponents(FullGoal, _, _, GoalParams),

% More "local" params take precedence, so they go to the
% beginning of the list:
append([{SolveParams, Params], InheritedParams) ,
append (([GoalParams, InheritedParams], AllParams),
% Assert context:

findall (context (C), member (context (C), AllParams), Contexts),

asserta(oaa_current_contexts(ID, Contexts) },

oaa_TraceMsg('~n~nAttempting to solve:~n Goal:~q-n Params:~q~-n',
(FullGoal, InheritedParams]),

findall (FullGoal,

oaa_solve_local(FullGoal, InheritedParams),
Solutions),

31

DISH, Exh. 1008, p. 232

DISH, Exh. 1008, p. 233

oaa_TraceMsg('~nSolutions found for ~q:~n ~q~n',
[FullGoal, Solutions]),

ge If user has requested to delay the solution (oaaDelaySolution)
save current userid, Goal and Params in delay table, to be

% sent back in an ev_solved() msg later (oaaReturnDelayedSolutions) .

oe

(retract (oaa_delay(ID, UserId)) ->
assert (oaa_delay_table(ID, UserId, FullGoal, SolveParams, Al1Params})

|
(icl_GetParamValue(reply(none), AllParams) -> true |

(oaa_Id(FromKS) ; FromKS = unknown), !,
oaa_PostEvent (ev_solved(ID, FromKS, FullGoal, SolveParams,

Solutions), [))

),

% Retract context:

retractall(oaa_current_contexts(ID, _)).

% This is for subgoals (of goals passed in solve events) that have
% Params. Subgoals with no params will fall through to the next clause.
oaa_exec_event (Goal: :GoalParams, Params) :-

oaa_solve_local (Goal::GoalParams, Params).

%* call user events. Must not have a cut, to return all solutions.

oaa_exec_event (Event, Params) :-
oaa_turn_on_debug,
(oaa_solvables(Solvables) -> true | otherwise -> Solvables = []),
((oaa_goal_matches_solvables (Event, Solvables, Goal, Matched),

Matched = solvable(_, SolvParams, _),
(icl_GetParamValue (callback (CB), SolvParams) ;
oaa_callback(app_do_event, CB)))

(oaa_callback (app_do_event, CB),
Goal = Event)

),
!

(CB = Module:Functor ->
true

| otherwise ->
Module = user,
Functor = CB

) ‘
Call =.. [Functor, Goal, Params],

on_exception(E,
Module:Call,

(oaa_TraceMsg('WARNING (agent.pl): Exception raised thru callback
handler (~w):~n -~q-n',

(Functor, E]),

fail)),

oaa_turn_off_debug.

% What to do about test (TEST)?

% if test (TEST) is listed in arguments, solve

32

DISH, Exh. 1008, p. 233

DISH, Exh. 1008, p. 234

% it locally.

passes_tests(Params) :-
oaa_class(leaf),
icl_GetParamValue(test (Test), Params),to4

oaa_Solve(Test, [level_limit(0)]).
% With compound goals, we also want to allow tests on the facilitator.
% @@DLM: Is this the best way?

passestests(Params) :-
(oaa_class (root) ;oaa_class (node)),
icl_GetParamValue(test(Test), Params),1

oaa_solve_local(Test, []).
passes_tests(_Params) :-

true.

EESEEEEEEEEEEEEEELESEEEEEEEEEEEEFEEEEESEEEEEEEEEEEESEGESEESEEESEEEESEFESESEESEES

% name: oaa_DelaySolution
% purpose: Requests that the current AppDoEvent not return solutions to the
& current goal until a later time.
% inputs:
% - Id: an Id which will be used to later match solutions to request
ESESEEESESEESELESEEEEEEEESESEFEEEGEEEEEEEEEEEREEETEEEEEEEVEEEEEETEEEEEEEEEE ESS

oaa_DelaySolution(Id) :-
oaa_current_contexts(GoalId, Contexts), !,
assert (oaa_delay(GoalId, Id)).

SESEEESEE SEES ESEEESESEEEESEEEEEEELESEEEE SEE EEE SEE ESESEEEEESEEEEEESEEEEEEEEEEES

* name: oaa_ReturnDelayedSolutions
% purpose: Returns the list of solutions for a delayed request
% inputs:
% - Id: an Id referring to a previously saved oaa_DelaySolution
SSESESESESESESESELESESEESEEESESE SYS ESESESEEESESESEEEEE EEE LEST EEE EEE EES EESEE EES

oaa_ReturnDelayedSolutions (Id, SolutionList) :-
(retract (oaa_delay_table(GoalId, Id, Goal, SolveParams,AllParams)) ->

(icl_GetParamValue(reply(none), AllParams) -> true |
(oaa_Id(FromKS) ; FromKS = unknown), !,

% make sure all Solutions unify with original goal
findall (Goal, member (Goal,SolutionList), Solutions),

oaa_PostEvent (ev_solved(GoalId, FromKS, Goal, SolveParams,
Solutions), (])

)

| true).

ESESESEEEEESEEEEETEESEEEEEEEESEE EES EEE EEEEEEEEEEEEEEEESEE TESTE SESEEEEEEEE ESE ESS

% name: oaa_AddDelayedContext Params
% purpose: When a goal is delayed using oaa_DelaySolution(), incoming context

parameters from the original request can not be automatically
concatenated to outgoing oaa_Solve requests -- since an agent can
manage multiple delayed goals at the same time, liboaa doesn't
know the correct context for the outgoing oaa_Solve without explicit
direction from the programmer. Hence, an agent programmer who
wants to call oaa_Solve during a delayed goal is expected to
use this function to add the saved contexts for the delayed goal to

oP

dPdPdPdPdPde
33

DISH, Exh. 1008, p. 234

DISH, Exh. 1008, p. 235

his/her outgoing oaa_Solve parameters.
inputs:

- Id: an Id which will be used to later match solutions to request
- Params: Parameters for solve goal
- NewParams: Params augmented by saved contexts.

example:
oaa_AppDoEvent (goal (_X), Params) :- oaa_DelayEvent (a_goal).
oaa_AppDoEvent (temp_event(Y), Params) :-

oaa_AddDelayedContextParams(a_goal, [], P),
oaa_Solve(sub_goal(Y), P).

oaa_AppDoEvent (final_event(S), _Params) :-
oaa_ReturnDelayedSolutions(a_goal, [goal{S)]).

dPdPdPdPdPdPdPdPdPdPdedP
%

SESSECEESEEEEEEFEEEEEEEEEESEEEEEEEEEESEEEEEEEEEEETEEEEETEEEEEETEEEEEEEEEEEEE TEES

oaa_AddDelayedContextParams (Id, Params, NewParams) :-
retract (oaa_delay_table(_GoalId, Id, _Goal, _SolveParams, AllParams)),
findall (context (C), member(context(C), AllParams), Contexts),

append(Contexts, Params, NewParams) .

GRR KKK KKK KK ERK KK KR ER KKK KKH KIRKE KEKE KEKE KEK KEE IKK KKK KE KEKE EKEEKK RAKE REE

% Agent-Facilitator communication
GRR KKK KEK KK EK KKK RIK RK KKK IKKKIKI KEKE KEK EE KKK KK KER KK KEKE KEKE KEKE EKEREKKE

SESSEEESEELELEEEEESESTEEEEEEEESEEEEEEEEEEEEEEESESEEEEE ESTEE EEE ESE SEEEEEEELEEEES

* name: oaa_PostEvent
% purpose: Sends a low-level event to another agent
% remarks:

% Should NOT be used before there's a connection established for

% the destination (such as when a client sends ev_connect to its
% facilitator). In such unusual cases, use com_SendData directly.
% For application developers, this just means don't call
% oaa_PostEvent until after you've called oaa_Register.
% Parameters may include:
% - priority (P):
% - address(A): specify address of specific server or client agent
% A must be an agent ID, not a name. If caller is a client agent,
% the only meaningful address is that of the client's facilitator.
% - from(KS): where the event originally originated
% IMPORTANT: there may be a different address INSIDE the event;
% these should not be confused!

EEEEEEEESEEEEEEEEEEEEEESTEEEEESEEEESEEEEEEEEEEEGEEEEESEEEEEEEEEEEGEEGEEEEEEEEES

oaa_PostEvent (Contents, Params) :-

% see if any params of interest
(memberchk(priority(_P), Params) ;

memberchk (from(_Agent), Params) ->
SendEvent = event (Contents, Params)

|

),

SendEvent = event(Contents, [])

% find destination: if none, dest = server

(memberchk (address (Dest), Params) ->
true

34

DISH, Exh. 1008, p. 235

DISH, Exh. 1008, p. 236

Dest = parent
),

icl_true_id(Dest, DestId),
caa_translate_outgoing_event (SendEvent, DestId, TransEvent),

oaa_ComTraceMsg('~n{COM send to ~q]:~n ~q~n', [Dest, TransEvent]),

oaa_convert_id_to_comm_id(DestId, Commld),
% send event to destination

com:com_SendData(CommId, TransEvent),

% Use SendEvent here, becuase triggers always contain event/2
% to unify with.

oaa_CheckTriggers (comm, SendEvent, send).

oaa_convert_id_to_comm_id(Id, CId) :-
com:com_GetInfo(CId, fac_id(Id)), !.

oaa_convert_id_to_comm_id(Id, CId) :-
com:comGetInfo(CId, oaa_id(Id)), !.

SEEEEETESTELESTESEEEEEEEEETEEEEEEBEEEEEEEELESESEEESEEEEEEEEETESELEEEEESEEEEEES

% name: oaa_translate_outgoingevent (+Event, +DestId, -NewEvent) .
% purpose: Provides backwards compatibility by calling a hook
% (user:oaa_event_translation/7) that translates outgoing events to agents of
% other versions. Also allows for event differences based on language.
% remarks: user:oaa_event_translation/7 can be hard-coded, loaded at runtime,
% or whatever. If it's not present, we return the same event.
% See also comments for oaa_translate_incoming_event.
EEESEEESEEESEELEGTEEEEEEEEEEEEEELEESEEEEETSEEEESEEELEGEEESEEEEEESEEESEESSESESEEES

% Special cases. There's no need to translate these. And, it could be
% problematical, because we don't yet know the language and version of
% the receiver. See comments for oaa_unwrap_event.
oaa_translate_outgoingevent (event (Contents, Params), _DestId,

event (Contents, Params)) :-

(Contents = ev_connect(_) ;
Contents ev_connected(_)),!

oaa_translate_outgoing_event (event (Content, Params), DestId, TransEvent) :-
current_predicate (oaa_event_translation,

% These assumptions may not always be right, but will
% nearly always get the desired results:

com:com_GetInfo(Connection, oaa_id(DestId)),
(com:com_GetInfo(Connection, agent_version(DestVersion)) ->

true

| otherwise ->
DestVersion = 2.1

),

{ com:com_GetInfo(Connection, agent_language(DestLanguage)) ->
true

| otherwise ->
DestLanguage = c

35

DISH, Exh. 1008, p. 236

DISH, Exh. 1008, p. 237

),

oaa_LibraryVersion(MyVersion),
user:oaa_event_translation(MyVersion, prolog, DestVersion, DestLanguage,

Connection, event (Content, Params), TransEvent),!

oaa_translate_outgoingevent (Event, _, Event).

ESESELELSESLELESESEEFEESEEEESSEEEEFEEESESELEFEEELESEEEELEEEEEEEEEEETEEEE ESTEE EE TS

% name: oaa_Version
% purpose: Lookup the language and library version number for an agent
%¢ remarks: The default version (if unspecified) is 1.0
EESEEEESEEEEEESEEEEEEEEEEEEEEEEEEEEEEESTETESESEEEEESEEEEEEEESEEEEEEEEEEEEEEEETS

oaa_Version(AgentId, Language, Version) :-
icl_true_id(AgentId, Trueld),
% Asking for my version:
oaa_Id(TrueId),
Language = prolog,
oaa_LibraryVersion (Version),t

oaa_Version(AgentId, Language, Version) :-
icl_true_id(AgentId, Trueld),
{ com:com_GetInfo(CommId, oaa_id(TrueId)) ;

com:com_Getinfo(CommId, fac_id(TrueId))),
(com:com_GetInfo(CommId, agent_language (Language)) ->

true

| otherwise ->
Language = unknown

d,

(com:com_GetInfo(CommId, agent_version(Version)) ->
true

| otherwise ->
Version = 1.0

),
1.

oaa_Version(Agentid, Language, Version) :-
(oaa_class(leaf) ; oaa_class(node)),
icl_true_id(AgentId, TrueId),

% The use of caching here could be dangerous - unless we install a
% mechanism for automatic updating of the cache.

oaa_Solve(agent_version(TrueId, Language, Version),
{address (parent)]),!

oaa_Version(_, prolog, 1.0).

SSESESTESESESESTESEETEEEEESESESEEESEEEEEFEEELEEEEEEEEEEEEEEEEEETEBEBEETESEE TES

% name: oaa_CanSolve
% purpose: Asks the Facilitator for a list of agents which could solve a Goal
ESETESEEESESTEEEESESSETSEEESELESTESEFTESEFESEEETESESEEFEBEEEELEEEEEEEEEEEEEETES

oaa_CanSolve(Goal,KSList) :-
oaa_Solve(can_solve (Goal, KSList), [address(parent)]).

EESESEETETESEETEFEETEEETEEEEEEEEEEEEEEEEFEEEEEEEEEEEEEEEESEEEEEETESETEEEETEEEES

% name: oaa_Ping

36

DISH, Exh. 1008, p. 237

DISH, Exh. 1008, p. 238

purpose: Tests whether a given agent is currently responding to requests.
inputs:

AgentAddr: address of agent to test
TimeLimit: Time limit (in seconds) for how long to wait for a response

outputs:

TotalResponseTime for round trip (in seconds)
% remarks: Fails if a ping is not returned in TimeLimit amount of time
ESSSEETEEESTESESESELEEESEESESEESESELESEEETEEEESESEEEEEEEEEEESEEEEEEEEEEEEEEESE

oaa_Ping(AgentAddr, TimeLimit, TotalResponseTime) :-
ground (AgentAddr) ,
number (TimeLimit) ,

TimeLimit >= 0,

tcp_now (Before) ,
oaa_Solve(true, [address (AgentAddr), time_limit (TimeLimit)]),
tcp_now (After),
tcp_time_plus (Before, TotalResponseTimeMs, After),
TotalResponseTime is TotalResponseTimeMs / 1000.

dPdPoPdPdPdP

ERK KKK EK KEKE KKK KKK KKK KKK KKK KKK KEKE EK IKK KEK KKK KKH KKK KKK KEKE KEE KEKE KKK KRKKEKK

% Declaring Solvables
GRR K KKK KKK KH KKK KEKE KKK EK EK KR KEKE KEK ERK KKK KKK KEKE KEKE EK KEKEKEREKKEEKRKEKEKRKEKEKEKEKE

EESESSESEEESEESSESEEEEEEEEEEEEEEEEETESESEEEEEEESSESTEEEEEESEETEEEEESESEEETESES

% name: oaa_Declare(+Solvables, +CommonPermissions, +CommonParams, +Params,
% -DeclaredSolvables)

% purpose: Declare solvables for a client or facilitator, and inform the
% parent if appropriate.
% arguments:

Solvables: A single solvable or a list of solvables, in shorthand or
standard form.

CommonPermissions: Permissions to be distributed to each solvable in

Solvables. This is purely for programming convenience. See
comments for icl_ConvertSolvables for possible values, and
solvables documentation for their meanings.

CommonParams: Params to be distributed to each solvable in Solvables.

This is purely for programming convenience. See comments for
icl_ConvertSolvables for possible values, and solvables
documentation for their meanings.

Params:

address (X): Where the solvable will exist. xX may be either 'self'
or 'parent' (or the appropriate local ids). Default: ‘self'.

if_exists (OverwriteOrAppend): What to do when declaring solvables
for self, and some already exist. Default: append.

DeclaredSolvables: Returns a list, in standard form, of all solvables

successfully declared.
remarks:

- Any agent can declare solvables for itself. In addition, a client can
ask its facilitator to declare solvables. Client-requested facilitator
solvables will automatically acquire permission write(true), and params
type(data), rules_ok(false), private(false), and bookkeeping(true).

- If called by a leaf or node agent, assumes agent is already registered
with a parent facilitator.

- Predicates can only be declared once. Changing an existing
predicate definition should be done with oaa_Redeclare. However,

OPOPDPdPdPdPdPdPdPdPdPdPdhoPdPdPdPd&dPdPdedPdPaoPoP
37

DISH, Exh. 1008,p. 238

DISH, Exh. 1008, p. 239

a request to declare a predicate, which is already declared in
precisely the same way, succeeds transparently.

- @@Future params may include ‘num_context_args(N)'.
- @@Future solvable params may include 'shared'.

synonym predicates can have their own triggers, but share the clause
database with their master table.

- views and filters, as provided by the OAA V1 DB agent, are not
supported as separate params, but the same functionality is available
using other params.

- @@Do we want client agents to request declarations on other client
% agents?
ESEEESESEELESEFESESTEFELEEEEEEEEEEELESESEEEFEEEEEEEEEEEEEEEEEEELEGEEESETELEEEEE

oaa_Declare(Solvable, InitialCommonPerms, InitialCommonParams,
InitialParams, DeclaredSolvables) :-

(is_list(Solvable) ->
SolvableList = Solvable

| otherwise ->
SolvableList = [Solvable]

),

icl_ConvertSolvables (SolvableList, Solvables),
icl_standardize_perms(InitialCommonPerms, false, CommonPerms) ,
icl_standardize_params(InitialCommonParams, false, CommonParams),
icl_standardize_params(InitialParams, false, Params),
oaa_distribute_perms(Solvables, CommonPerms, Solvables1),
oaa_distribute_params (Solvables1, CommonParams, NewSolvables) ,
oaa_declare_aux(add, NewSolvables, Params, DeclaredSolvables) .

dedPdPdPdPdPdPdPdPOP '

ESSEEEEESEEEEEEEEEEEEEEESEESSESESSEEEEEESEEESEEEEESESEESSEEEEEEEEFEEEGE EEE EESS

% name: oaa_DeclareData(+Solvables, +Params, -DeclaredSolvables)
% purpose: Declare data solvables for an agent.
ESEEEEEEEEEEEEEEEEEEEEEEESESESEEEEEEEEEEEESE EE SESE SEE EEEEEEE EL ESESEEEEEEEEEESES

oaa_DeclareData(Solv, Params, DeclaredSolvs) :-
\+ is_list (Solv),I

oaa_DeclareData([Solv], Params, DeclaredSolvs) .
oaa_DeclareData(Solvs, Params, DeclaredSolvs) :-

% It's only necessary to specify the non-default perms and params.
CommonPerms = [write(true)],

CommonParams = [type(data)],
oaa_Declare(Solvs, CommonPerms, CommonParams, Params, DeclaredSolvs) .

SESEEEESSESESESESESEEEESESETESESESEEEEEEEEEEGEFELEEEEEEEEEESEEEEEESEEEEE EEE ESE

* name: oaa_Undeclare(+Solvables, +Params, -UndeclaredSolvables)
% purpose: Remove solvables from a client or facilitator, and inform the
% parent if appropriate.
% arguments:
% Solvables: A single solvable or a list of solvables, in shorthand or
% Standard form. If a solvable is in standard form, however, ONLY

% the goal is considered in selecting the solvables to be removed
% (permissions and parameters are ignored).
% Params:

% address (X): Where the solvable exists. X may be either 'self'
% or 'parent' (or the appropriate local ids). Default: ‘self’.
% DeclaredSolvables: Returns a list, in standard form, of all solvables

% successfully removed.

38

DISH, Exh. 1008, p. 239

DISH, Exh. 1008, p. 240

% remarks:

% - If called by a leaf or node agent, assumes agent is already registered
% with a parent facilitator.
EEEEEEEELESESEEEEEEEEEEEEESEESEEEEEEEEEEEEEEEETEEEEEEEESEEEESEEEEEEEEEEEEEEEE EES

oaa_Undeclare (Solvable, InitialParams, UndeclaredSolvables) :-
(is_list(Solvable) ->

SolvableList = Solvable

| otherwise ->
SolvableList = [Solvable]

),

icl_minimallyinstantiate_solvables(SolvableList, Solvables),
icl_standardize_params (InitialParams, false, Params),
oaa_declare_aux(remove, Solvables, Params, UndeclaredSolvables) .

EEESESEEEELELEEEESEEESELESESESEESEESEEEEELELELECEEEEEEE ET EL EST ETEEEEESESTEEETES

% name: oaa_Redeclare (+Solvable, +NewSolvable, +Params)
% purpose: Replace a solvable on a client or facilitator, and inform the
% parent if appropriate.
% arguments:
% Solvable: A single solvable, in shorthand or standard form. If in
% standard form, however, ONLY the goal is considered in selecting
% the solvable to be replaced (permissions and parameters are ignored).
% NewSolvable: A single solvable, in shorthand or standard form.
% Params:

% address (X): Where the solvable exists. X may be either 'self'
% or 'parent' (or the appropriate local ids). Default: 'self'.
% remarks:

% - If called by a leaf or node agent, assumes agent is already registered
& with a parent facilitator.
% - FAILS if the operation cannot be completed.
ESSESEEEEEEEESEEEEEESEESEESEEEEEEEEEEEEESSEEEEEEEESESEEEEEEEEESEEEEEEEEESEEEEEES

oaa_Redeclare(InitialSolvable, InitialNewSolvable, InitialParams):-
icl_minimally_instantiate_solvables([InitialSolvable]), [Solvable]),
icl_ConvertSolvables ((InitialNewSolvable], [NewSolvable]),
icl_standardize_params (InitialParams, false, Params),
oaa_declare_aux(replace, Solvable, [with(NewSolvable) | Params],

RedeclaredSolvables),

RedeclaredSolvables \== [].

SEETESTEEEEEEEBEEEELEBEEEEEEEEEEEEEETESEESEEEEEEEEEEEEETETELETESEEEEEETTETEE SEES

% name: oaa_declare_aux(+Mode, +Solvables, +Params, -DeclaredSolvables)
purpose: Common code for oaa_Declare, oaa_Undeclare, oaa_Redeclare.oe

% Mode: add, remove, or replace.
% Solvables: for Mode = add, a list of Solvables in standard form.

% for Mode = remove, a list of Solvables in "minimally instantiated"
% form.

% for Mode = replace, a list containing a single Solvable, in
% "minimally instantiated" form.
% Params: whatever is appropriate for oaa_Declare, _Undeclare, _Redeclare.
% Must already be in standard form.
% DeclaredSolvables: A list of all solvables successfully added (or removed
% or replaced), in standard form.
% remarks:

% A number of params and perms are required when requesting that a
% parent declare solvables (see comments for oaa_Declare). We could ensure

39

DISH, Exh. 1008, p. 240

DISH, Exh. 1008, p. 241

% their presence here, but it's not essential, because the facilitator will
% enforce this.

SESSESEEEEEEEESESESEEEEEEEEEEEESESESESEEELEFEEEEEFEEEEEEEESESEEEVEEEEEEEEEETEES

% Here, a client is asking the facilitator to add, remove, or replace
% solvables.

oaa_declare_aux(Mode, Solvables, Params, DeclaredSolvables) :-
com:com_GetInfo(parent, fac_id(ParentId)),
memberchk (address ([(ParentId)), Params),

!

% Send the request to the Facilitator
oaa_PostEvent (ev_post_declare (Mode, Solvables, Params), []),
oaa_poll_until_event(

ev_reply_declared(Mode, Solvables, Params, DeclaredSolvables)).

% Leaf, node or root adding, removing or replacing its own solvables:
oaa_declare_aux(Mode, Solvables, Params, DeclaredSolvables) :-

oaa_Id(Me),
(memberchk (address (Addr), Params) ->

Addr = [Me]

| true),!f

oaa_declare_local(Mode, Solvables, Params, DeclaredSolvables),

% If I'm a facilitator, I must also "register" my Solvables with myself.
% (If I'm a node, this will also register them with my parent.)
((\+ oaa_class(leaf), DeclaredSolvables \== []) ->

oaa_Name (MyName),
user:oaa_AppDoEvent(

ev_register_solvables (Mode, DeclaredSolvables, MyName, Params),
[from (Me)])

| true
),

% If I'ma leaf, post public solvables to parent facilitator:
select_elements (DeclaredSolvables, oaa_public_solvable, PublicSolvables),
((oaa_class(leaf), PublicSolvables \== []) ->

com:com_GetInfo(parent, oaa_name (MyNameC)),
oaa_PostEvent(

ev_register_solvables (Mode, PublicSolvables, MyNameC, Params),
{])

| true).

% Solvable must be in standard form.

oaa_public_solvable(solvable(_Solvable, Params, _Perms)) :-
icl_GetParamValue (private(false), Params).

% Solvable must be in standard form.

oaa_data_solvable(solvable(_Solvable, Params, _Perms)) :-
icl_GetParamValue (type (data), Params).

EEESEETESETEEEESESEEEEEESESEETEEELEEESEEEEEEEEEEESEEEEEEEELESESTESEEEESETETELES

% name: oaa_declare_local(+Mode, +Solvables, +Params, -DeclaredSolvables)
% purpose: Declare solvables for an agent.
% Mode: add, remove, or replace.
% Solvables: The form they're in depends on the mode. See oaa_declare_aux.

40

DISH, Exh. 1008, p. 241

DISH, Exh. 1008, p. 242

%

%

%
%

%

%

%

%

%

%

%

%

DeclaredSolvables: Returns those members of Solvables for which

the operation was successful (more specifically, those that should
be passed up to the parent in ev_register_solvables). Always returned
in STANDARD FORM.

Also see: comments for oaa_Declare, oaa_Undeclare, oaa_Redeclare.
remarks:

- This performs the local processing needed by calls to oaa_Declare,
and by ev_declare events.

- Solvables and Params must already be in standard form.

@@DLM: Could do more careful testing to be sure the solvables are
all valid for the requested operation.

SEESESEEEEEESESELEEEESEEEEESESEEELESEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEESELEEEEES

oaa_declare_local(Mode, Solvable, Params, DeclaredSolvables) :-
\+ is_list (Solvable),|4

oaa_declare_local (Mode, [Solvable], Params, DeclaredSolvables) .
oaa_declare_local(add, InitialSolvables, Params, DeclaredSolvables) :-

(icl_GetParamValue(if_exists (overwrite), Params) ->
CurrentSolvables = []

| oaa_solvables(CurrentSolvables) ->
true

CurrentSolvables = []|
),
% This will eliminate those that unify with an already declared solvable.
% @@DLM: Should do more, though: warnings.
solvables_to_be_added(InitialSolvables, CurrentSolvables,

DeclaredSolvables),

% Make sure Quintus has the correct properties for each DB solvable.
select_elements (DeclaredSolvables, oaa_data_solvable, DBSolvables),
oaa_declare_for_prolog(DBSolvables) ,

append (CurrentSolvables, DeclaredSolvables, AllSolvables),
retractall (oaa_solvables(_)),
assert (oaa_solvables (Al1Solvables)).

oaa_declare_local(remove, Solvables, _Params, RemovedSolvables) :-
% See which ones are really declared:
(oaa_solvables(Current) -> true | Current = []),
solvables_to_be_removed(Solvables, Current, RemovedSolvables),
% Retract all clauses from data solvables:

select_elements (RemovedSolvables, oaa_data_solvable, DBSolvables),
oaa_remove_solvables_data(DBSolvables),
% Assert the new solvables list:

retractall (oaa_solvables(_)),
subtract (Current, RemovedSolvables, New),

assert (oaa_solvables (New)).

oaa_declare_local(replace, [Solvable], Params, [Solvable]) :-
memberchk (with (NewSolvable), Params),

% Make sure Solvable is really declared:

(oaa_solvables (Current) -> true | otherwise -> Current = [)),
memberchk (Solvable, Current),| '

% If a data solvable, maybe retract all its clauses:
(oaa_data_solvable(Solvable) ->

41

DISH, Exh. 1008, p. 242

DISH, Exh. 1008, p. 243

oaa_remove_solvables_data([Solvable])
| true
) i
% Assert the new solvables list:

retractall (oaa_solvables(_)),
replaceelement (Solvable, Current, NewSolvable, New),
assert (oaa_solvables (New)) .

oaa_declare_local(replace, [Solvable], _Params, []) :-
Solvable = solvable(Goal, _, _),
format ('-~w: Ignoring attempt to replace a non-existent solvable:~-n -~w-n',

{'WARNING', Goal]).

SESESSSEEFEFEEEEEESESESESEEEEEEEEEEEGEEEEEESEEEEEEEEEVEGEGEEETEEEELEEEEEEEETEEES

%$ name: oaa_distribute_params(+Solvables, +CommonParams, -NewSolvables).
% oaa_distribute_perms(+Solvables, +CommonPerms, -NewSolvables) .
% purpose: Add CommonParams (CommonPerms) to the Params (Permissions) list of
% each solvable in Solvables.

% Solvables: a solvables list, in standard form.

% remarks: @@Should warn when a solvables has a param that conflicts with
% CommonParams. Also, should have an arg that says which version of
% of the conflicting param to keep.
SSECESSEEEEEEEEEEESEEEEEEEEEEESESEEESEESEEEEEESEEEES ELE TEES SELES EEE SETESEEEEES

oaa_distribute_params([], _CommonParams, []).
oaa_distribute_params([Solvable | Solvables], CommonParams,

[NewSolvable | NewSolvables]) :-
Solvable = solvable(Goal, Params, Perms),
union(Params, CommonParams, NewParams),

NewSolvable = solvable(Goal, NewParams, Perms),

oaa_distribute_params (Solvables, CommonParams, NewSolvables).

oaa_distribute_perms([], _CommonPerms, []).
oaa_distribute_perms([Solvable | Solvables], CommonPerms,

[NewSolvable | NewSolvables]) :-
Solvable = solvable(Goal, Params, Perms),
union(Perms, CommonPerms, NewPerms),
NewSolvable = solvable(Goal, Params, NewPerms),

oaa_distribute_perms(Solvables, CommonPerms, NewSolvables).

EEESEETEEESEEEEEEEEEEEEEEEETESEEEEEEEEEEEEFEEEEEEESTEEEESEEEESEE SEES ELESELESESES

name: solvables_to_be_added(+ProposedSolvs, +CurrentSolvs, -SolvsToBeAdded).
purpose: Checks a list of solvables, to make sure they can legally be

declared.

ProposedSolvs: Must be in STANDARD FORM.
CurrentSolvs: This agent's current solvables.

% SolvsToBeAdded: A subset of ProposedSolvs.
EEEEESTEEEEEEEESESEELEEESESEESEEEELESEEEEEEEELEEEESEEEELEGEEEEEEEEEEEESEEEESESS

solvables_to_beadded({[{], _Current, []).
solvables_to_be_added([Solvable | Solvables}, Current, OKSolvables) :-

Solvable = solvable(Goal, _, _),
memberchk(solvable(Goal, _, _), Current),|4

format ('~w: Ignoring attempt to declare an already existing solvable:-n
~w-n',

dPdPdPAPAP

('WARNING', Goal}),

solvables_to_beadded (Solvables, Current, OKSolvables).

42

DISH, Exh. 1008, p. 243

DISH, Exh. 1008, p. 244

solvables_to_beadded([Solvable | Solvables], Current,
[Solvable | OKSolvables]) :-

solvables_to_be_added(Solvables, Current, OKSolvables).

ESEEESEEEESEEEESEEEEEBEGEEESEEEESEEEEEEESESEEEEEEEEEEEEESEEEEEEEEEEEELESEEEEES

name: solvables_to_be_removed(+ProposedSolvs, +CurrentSolvs,
-SolvsToBeRemoved) .

purpose: Checks a list of solvables, to make sure they can legally be
UNdeclared.

ProposedSolvs: Must be in MINIMALLY INSTANTIATED FORM.
CurrentSolvs: This agent's current solvables.
SolvsToBeRemoved: A subset of ProposedSolvs, but returned in standard form,

fully instantiated.
SESESEEEEEEETELESELELESTSESEEEEFEEEEEGEESEEEEELEEEEEELEEEEEEEEEVEEEEESEGELEEES

solvables_to_be_removed([], Current, []).
solvables_to_be_removed([Solvable | Solvables], Current,

[Solvable | OKSolvables]) :-
memberchk (Solvable, Current),|

solvables_to_be_removed (Solvables, Current, OKSolvables).
solvables_to_beremoved([Solvable | Solvables], Current, OKSolvables) :-

Solvable = solvable(Goal, _, _),
format ('~w: Ignoring attempt to remove a non-existent solvable:~n ~w~n',

['WARNING', Goal]),

solvables_to_be_removed (Solvables, Current, OKSolvables) .

dedPdPdPdPdPap
ge

GREK KKK KEKE KKK KEKE KEK KK KKK KK KR KEK KEE KEKE KEE REE KK KEK KEK EER EKEKEKRKEEKEKEEKKKKKKKKKEKE

% Updating Data Solvables
BRAK KEKE KEK KK KK KKK KER KEK KKK KKK KKK ERE REIKI KKK KKK KEK KEK EERE KEKE KKKKEKK KEKE

ESEEESEESESEEESEEEEESESELESEEEESEEEEEEEEEEEEE SEE EEETEEE TEESE STEEL EESEEEEEETEEEEEY

% name: oaa_AddData(+Clause, +Params) .
% purpose: Add a new clause for a DATA solvable (locally and/or remotely)
% Params:

address(X): a list including 'self', 'parent', and/or the
addresses of other client agents. The default (no address)
behavior is the same as with oaa_Solve.

reflexive(T_F): Save as with oaa_Solve. Default: true.
at_beginning(T_F): if true, uses asserta instead of assertz.

Default: false.

single_value(T_F): if true, ALL clauses for this predicate are removed
before adding the new clause.
Default: false.

unique_values(T_F): if true, at most one copy of each value is stored.
Default: false.

owner (LocalId): if bookkeeping(true) for this solvable, record
LocalId as the owner.

Default: the agent from which the request originated.
get_address(X): Returns a list of addresses (ids) of agents that

were sent the request.

get_satisfiers(X): Returns a list of addresses (ids) of agents that
successfully completed the request.

dPdPdPdPdPdPdPdPoPdPdPdPdPdPdPdPdPdP
43

DISH, Exh. 1008, p. 244

DISH, Exh. 1008, p. 245

% reply({true,none}): When data is being added on
% a remote agent or agents, this tells whether reply message(s) are
& desired.

& block (Mode) : true: Block until the reply arrives.
% false: Don't block. In

% this case, the reply events (ev_reply_updated)
% can be handled by the user's app_doevent callback
% Default: true. Note that reply(none) overrides
% block (true).
% remarks:

% - Clause is normally a fact (no body), but with Prolog agents, and
% with rules_ok(true), it's possible for it to have a body.
% - Triggers will be examined with the on(add) operation mask
EEEEEEEESLESEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEELEGELESEEEEEETLEELESEEEES

oaa_AddData(Clause, Params) :-
oaa_update (add, Clause, Params).

SESSELEEEEEEEELEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEFEEEEEESEESSEEEVESYEEES

% name: oaa_RemoveData(+Clause, +Params) .
% purpose: Remove a clause from a DATA solvable (locally and/or remotely)
% Params:

address (X): a list including 'self', 'parent', and/or the
addresses of other client agents. The default (no address)
behavior is the same as with oaa_Solve and oaa_AddData.

reflexive (T_F): Save as with oaa_Solve. Default: true.
do_all(T_F): If true, removes all predicate values that match the Clause

Default: false (removes only the first)
get_address(X): Returns a list of addresses (ids) of agents that

were sent the request.
get_satisfiers(X): Returns a list of addresses (ids) of agents that

successfully completed the request.
owner (LocalId): if bookkeeping(true) for this solvable, remove only

data owned by Locallid.
Default: ignore owner in removing data.

reply({true,none}): When data is being removed on
a remote agent or agents, this tells whether reply message(s) are
desired.

block(Mode) : true: Block until the reply arrives.
false: Don't block. [In

this case, the reply events (ev_reply_updated)
can be handled by the user's app_do_event callback

Default: true. Note that reply(none) overrides
block (true).

remarks:

- Clause is normally a fact (no body), but with Prolog agents, and
with rules_ok(true), it's possible for it to have a body.

- Triggers will be examined with the 'on_Retract' operation mask.
% - Not for backtracking.
SESSSELELEEEESESEEEEEESESSEEEEEEELESESEEEEEEEEEESEEEEEEEESEEELETEEEESEEEEE EEE EES

oaa_RemoveData(Clause, Params) : -
Oaa_update (remove, Clause, Params).

dPdPdPdPdPdPdPdPdPdPdPdPdidhdOdPdfdPamdPdPdPdPAPdodP
%----------------------- ~~ +--+ ---eeee++

% name: Oaa_ReplaceData(+Clausel, +Clause2, +Params).
% purpose: Change a predicate value to a new one

44

DISH, Exh. 1008, p. 245

DISH, Exh. 1008, p. 246

% Clausel: Must be a clause of a writable data solvable.
% Clause2: Must be a clause of a writable data solvable.
% Params:

address(X): a list including 'self', ‘parent', and/or the
addresses of other client agents. The default (no address)
behavior is the same as with oaa_Solve and oaa_AddData.

reflexive(T_F): Save as with oaa_Solve. Default: true.
do_all(T_F): If, true, changes all predicate values that match the

Clausel specification
default is 'false': changes only the first

at_beginning(T_F): If true, uses asserta instead of assertz
default is ‘false’

owner (LocalId): if bookkeeping(true) for this solvable, record
LocalId as the owner of each new data item. Note: It is not possible
to specify the owner of the data to be replaced, just that of the
NEW data.

Default: the agent from which the request originated.
get_address(X): Returns a list of addresses (ids) of agents that

were sent the request.
get_satisfiers(X): Returns a list of addresses (ids) of agents that

successfully completed the request.
reply({true,none}): When data is being replaced on

a remote agent or agents, this tells whether reply message(s) are
desired.

block(Mode) : true: Block until the reply arrives.
false: Don't block. In

this case, the reply events (ev_replyupdated)
can be handled by the user's appdoevent callback

Default: true. Note that reply(none) overrides
block (true) .

remarks:

- Clausel and/or Clause2 may be synonym predicates.
- Clausel and Clause2 are not required to have the same functor.
- Clausel and Clause2 may share variables.
- Triggers will be examined with the 'remove' operation mask with Clausel,

and the 'add' operation mask with Clause2.
- db_replace triggers on the Pred2 argument, not on the Predl arg
- at_beginning param only used if do_all is false

deg@OPdPdPdPdPdPdPdOdPdPdPdOdPdPdPOPdPdPOPdPdPOPdPdPdPdodPdPdPoPdPdeoP
oaa_ReplaceData(Clausel, Clause2, Params) :-

Oaa_update(replace, Clausel, [with(Clause2) | Params]).

ESELEEEEEEEEEEEELESEEESEETEEEEELESSEELESTESEEEETESEEEE EEE SEEEETEEEEEESEESEEEEES

% name: oaa_update(+Mode,, +Clause, +Params).
% purpose: Common code for oaa_AddData, oaaRemoveData, and oaa_ReplaceData.
% Mode: add, remove, or replace.
% Clause, Params: May include whatever is appropriate for oaa_AddData,
% oaaRemoveData, or oaa_ReplaceData.
ESESESSEEEEEESSEESEFESEEEEFEEEEEEESETESEEEEESEEEEEEEEEESEEEELEEEEEEEEEEEEEEEEEESES

oaa_update (Mode, Clause, InitialParams) :-
icl_standardizeparams (InitialParams, false, Params),
% Is there a specified address?
(memberchk (address (Addr), Params) ->

true

| otherwise ->
Addr = [])

45

DISH, Exh. 1008, p. 246

DISH, Exh. 1008, p. 247

),

% Decide whether or not to update locally:

oaa_Id (Me),
(memberchk (Me, Addr) ->

delete (Addr, Me, NewAddr),

replaceelement (address (Addr), Params, address (NewAddr), Paramsl),
Self = true

| otherwise ->
NewAddr Addr,
Paramsl = Params

), .

(Addr = [], icl_GetParamValue(reflexive(true), Params1) ->
% do NOT use remove_element here:
delete (Paramsl, reflexive(true), Params2),

(oaa_solvables(Solvables) -> true | otherwise -> Solvables = []),
(oaa_data_matches_solvables(Clause, Solvables, write, _, _) ->

Self = true

| otherwise ->
true

)

| otherwise ->
Params2 = Paramsl

),

% Update locally if appropriate:
(Self == true ->

Requesteesi1 = [Me],
(Mode == add ->

Functor = oaa_add_data_local
| Mode == replace ->

Functor = oaa_replace_data_local
| Mode == remove ->

Functor = oaa_remove_data_local
),
LocalCall =.. [Functor, Clause, Params2],
(call(LocalCall) ->

Updaters1 = [{Me]
| Updaters1 = [))

| otherwise ->
Requesteesi = [],
Updatersl1 = []

),

% Update remotely if appropriate:
(oaa_class(leaf), (Addr == [] ; NewAddr \== []) ->

% Send the ev_post_update event to the Facilitator
oaa_PostEvent (ev_post_update (Mode, Clause, Params2), ()),
% In the return event, Requestee2s lists all agents to whom
* the update request was sent; Updaters2 lists those who succeeded.
((icl_GetParamValue (reply (asynchronous), Params)

icl_GetParamValue(reply(none), Params)) ->
Requestees2 = [],
Updaters2 = []

| otherwise ->
oaa_poll_until_event(

’

ev_reply_updated (Mode, Clause, Params2, Requestees2, Updaters2))

46

DISH, Exh. 1008, p. 247

DISH, Exh. 1008, p. 248

)

| otherwise ->
Requestees2 = [],
Updaters2 = []

) ,

append (Updaters1, Updaters2, Updaters),
% Return Updaters if requested:
(memberchk(get_satisfiers(Updaters), Params) -> true | true)
append (Requesteesl, Requestees2, Requestees),
% Return Requestees if requested:
(memberchk(get_address (Requestees), Params) -> true | true).

’

ESEEEEESESEEEEEETESESEEESESELESELEGEEEEEEELEETEEEEEEEEELEEGEEEEVEEEESEEEESESES

dPdPoPdPoPdPdP
%

name: oaa_add_data_local(+Clause, +Params)
purpose: Assert a clause for an agent's solvable.
arguments: See comments for oaa_AddData.
remarks:

This performs the local processing needed for calls to oaa_AddData, and
ev_update (add, ...) requests.
Application code should not call oaa_add_data_local directly,
oaa_AddData with address (self).

but rather

SESETEESETEEEEESESESELEEEEEELEEEREEEEEEESEEEEEEEEES EEE EEE EEE EESEESEEEESEEEEESETES

oaa_add_data_local(Clausel, Params) :-
(oaa_solvables(Solvables) -> true | otherwise -> Solvables = []),
oaa_data_matches_solvables(Clausel, Solvables, write, Clause,
Matched = solvable(Pred, DeclParams, _Perms),
(Clause = (Head :- Body) ->

true

| otherwise ->
Head = Clause,

Body = true
),

append (Params, DeclParams, AllParams),
% If there's no callback, leave Callback a var:

(memberchk (callback (Callback), AllParams) -> true | true),

% if single value, erase all old values
(icl_GetParamValue (single_value(true), AllParams) ->

(\+ icl_GetParamValue (bookkeeping (false), DeclParams) ->
oaa_retractall((Pred :- _), _OldOwner, Callback)

| otherwise ->
retract_all((Pred :- _))

)

| true),

% if unique_values(true), make sure fact not already in datab
(clause (Head, Body), icl_GetParamValue (unique_values (true),

true

| otherwise ->
{ \+ icl_GetParamValue (bookkeeping (false), DeclParams) ->

oaa_data_owner (Params, Owner),
(icl_GetParamValue (at_beginning(true), AllParams) ->

oaa_asserta(Clause, Owner, Callback)
|

Oaa_assertz(Clause, Owner, Callback)

47

Matched),

ase

AllParams) ->

DISH, Exh. 1008, p. 248

DISH, Exh. 1008, p. 249

)

| otherwise ->
(icl_GetParamValue (at_beginning(true), AllParams) ->

asserta (Clause)

|

)

assertz (Clause)

)

),

oaa_CheckTriggers(data, Head, add),

EETEETEEELESESEEEEESEESEESESEEEEEEEEEEEEESSESEESEEEEEEETTEEEEEEEEEEEEESEEEEESEEEVEES
%

%

%
%

%
%

name : oaa_remove_data_local(+Clause, +Params)
purpose: Retract a clause (or all clauses) from an agent's solvable.
arguments: See comments for oaaRemoveData.
remarks:

This performs the local processing needed for calls to oaaRemoveData, and
ev_update (remove, ...) requests.

SESEELESEEEEEEEEEEEEEEEEETEEESTESESSESEEEEEEESESSEEEEEESEEEESEE EEE TEE EES ESESEES

oaa_remove_data_local(Clausel, Params) :-
(oaa_solvables(Solvables) -> true | otherwise -> Solvables = fl),

oaa_data_matchessolvables(Clausel, Solvables, write, Clause, Matched),
Matched = solvable(_Pred, DeclParams, _Perms),
(Clause = (Head :- Body) ->

true

| otherwise ->
Head = Clause,

Body = true
),

append (Params, DeclParams, AllParams),
(memberchk (callback (Callback), AllParams) -> true | true),

(\+ icl_GetParamValue (bookkeeping (false), DeclParams) ->
(icl_GetParamValue (owner (Owner), Params) -> true | true),

{ iclGetParamValue(do_all(true), Params) ->
oaa_retractall (Clause, Owner, Callback)

| otherwise ->
oOaa_retract (Clause, Owner, Callback)

)

| otherwise ->
(icl_GetParamValue(do_all(true), Params) ->

retract_all (Clause)
| otherwise ->

retract (Clause)

)

),

oaa_CheckTriggers (data, Head, remove),
I,

ESETESESEEEVEEELEEEEEEEEEEETEEEEEEEEEEEEEEBEEELESEBEEEEEEEEESEEEEEEEEEEEEGEBESES

% name: oaa_replace_data_local(+Clausel, +Params)
% purpose:
% arguments: See comments for oaa_ReplaceData.

48

Replace one or more clauses from an agent's solvable.

DISH, Exh. 1008, p. 249

DISH, Exh. 1008, p. 250

% remarks:

% This performs the local processing needed for calls to oaa_ReplaceData, and
% ev_update(replace, ...) requests.
% Clausel is the thing to be replaced. The thing to replace it with must
% be present in Params, as with(Clause2).
SESSEEESEEESESEEESELESSEEEEEEESEEELEETEEEEEEEEEEESESEEEEESESESETEEESEEEEESEEES

oaa_replace_data_local (ClauseliIn, Params) :-
memberchk (with(Clause2In), Params),

(caa_solvables(Solvables) -> true | otherwise -> Solvables = []),
oaa_data_matches_solvables(ClauselIn, Solvables, write, Clausel, Matched),
oaa_data_matches_solvables(Clause2In, Solvables, write, Clause2, _Matched2),
Matched = solvable(_Pred, DeclParams, _Perms),
(Clausel = (Head :- Body) ->

true

| otherwise ->
Head = Clausel,

Body = true
) f

append (Params, DeclParams, AllParams),
(memberchk (callback (Callback), AllParams) -> true | true),

% do replace of either one or all occurrences
(\+ icl_GetParamValue (bookkeeping (false), DeclParams) ->

oaa_data_owner (Params, Owner),
(icl_GetParamValue(do_all(true), Params) ->

oaa_replace_all(Clausel, Clause2, Owner, Callback)
| otherwise ->

oaa_retract(Clausel, _OldOwner, Callback),
(icl_GetParamValue (at_beginning(true), AllParams) ->

oaa_asserta(Clause2, Owner, Callback)
| oaa_assertz(Clause2, Owner, Callback)
)

)

| otherwise ->
(icl_GetParamValue (do_all(true), Params) ->

replace_all(Clausel, Clause2)
| otherwise ->

retract (Clausel),

(iclGetParamValue(at_beginning(true), AllParams) ->
asserta (Clause2)

| assertz(Clause2)
)

)

) ‘

oaa_CheckTriggers (data, Clausel, remove),
oaa_CheckTriggers (data, Clause2, add),
',

SESESESEEEEESESEEEEEEEEESEESEEEESEEEEEEEEEEEEEEEEESESESESSESEEEEEEEEEEETEEES

% name: retract_all
% purpose: Remove all clauses matching Clausel
% remarks: Always succeeds. Needed because retractall((func(X) :- Y)) doesn't
% work.

EESESEESEETEELESEEELESESSEEEEEEEEEELEEEEEEESESEEESEESESEEEEEGEESEEESEEELEEEES

retract_all(Clausel) :-
retract (Clausel),

49

DISH, Exh. 1008, p. 250

DISH, Exh. 1008, p. 251

fail.

retract_all(_Clausel).

SEEEESESEEESEEEESEEESESESEEEESESESEEEEESEEEEESEEEEEEEEEEEEESEEELEELEE EL ESTES

% name: replace_all
% purpose: Replace all clauses matching Clausel by Clause2
% remarks: Always succeeds
SSEEEEEEEEETSEEEEEEFESEEEFEFESEEEEEEEBEEEEEELELEETEEEEEEEEESEEEEEEEEESEESEEETS

replace_all(Clausel, Clause2) :-
retract (Clausel),

assert (Clause2),
fail.

replace_all(_Clausel, _Clause2).

EESSESESESELESESSEESEEESEEEEEEESEEEEFEFESEEETTEETELETEEESEEEEEEELEGEEEEEEEEES

% name: oaa_data_owner(+Params, -Owner)
% purpose: Determine data ownership from the available params
SSESEEEEEELESEEEEESESEEESEEEEESEEEEESSSEESEEEEEEEEEESELEGESEEEEEEEEEEEEEEEESE

oaa_data_owner(Params, Owner) :-
(memberchk (owner (Owner), Params) ->

true

| memberchk (from(Owner), Params) ->
true

| oaa_Id(Owner) ->
true

| otherwise ->
Owner = unknown

).

ESEEEESEELELESEEEEEESEEEEEEEESEEEEESESEEEES EEE SS ETELEEEEEEE ESE SE EEL EE ESEEEESS

% name: oaa_Id(MyId)
% purpose: Return the Id of the current agent
ESELESEEEEEEESEEEEEESEEEEEEEEEEEESEEEEEEEEEEEEESEFEFEEEEEEE SEES EEEEEEEEEEETS

* if connected to a Facilitator, use this Id

oaa_Id(MyId) :-
com:com_GetInfo(parent, oaa_id(MyId)), !.

% For root, get any id
oaa_Id(MyId) :-

com:com_GetInfo(ConnectionId, type(server)),
com:com_GetInfo(ConnectionId, oaa_id(MyId)), !.

ESEEEELELEEEEEEEEEEELEEEEESEEESESEEESEEEEEEEEESEEEEEESEESEEEESSEESESESEEEEEES

% name: oaa_Name (MyName)
% purpose: Return the name of the current agent
ELSELELTEEEEEEEEESEETEEESEEEEESEEEEEETEEEEEEESEEEEEESSEEEEETEEEEEEELEEEEESEES

% if connected to a Facilitator, use this Id

oOaa_Name(MyName):-
com:com_GetInfo(parent, oaa_name(MyName)), !.

% For root, get any id

oaa_Name(MyName):-
com:com_GetInfo(ConnectionId, type(server)),
com:com_GetInfo(ConnectionId, oaa_name(MyName)), !.

ESEEELELEFEEEEEEEEEEEEEEEEEEEEEEBEEBEEEEEEEEEEEEEESEEEEEEEEEETEETEETESEEETETS

% name: oaa_class (MyClass)

50

DISH, Exh. 1008, p. 251

DISH, Exh. 1008, p. 252

% purpose: Return the class (leaf, node, root) of the current agent
ESSEEEEEESEEEEEEETEELESEFEELEELEEEEESESEEESELEESEEEEEEEEEEEEEEESESEEEESETEEEESS

% if connected to a Facilitator, use this Id

oaa_class(leaf) :-
com:com_GetInfo(_, type(client)),
\+ com:com_GetInfo(_, type(server)), !.

oaa_class (node) :-
com:com_GetInfo(_, type(client)),
com:com_GetInfo(_, type (server)), !.

oaa_class (root) :-
com:com_GetInfo(_, type(server)),
\+ com:com_GetInfo(_, type(client)), !.

EXETEEEESSESELEEEEESEESTLEETESTEEEEESELELELEEEEEEGEEEEEEEEEEEEELEEERETELEEEE

% name: oaa_asserta(Clause, Owner, SpecifiedCallback)
% Oaa_assertz(Clause, Owner, SpecifiedCallback)
% oaa_retract (Clause, Owner, SpecifiedCallback)
% oaa_retractall(Clause, Owner, SpecifiedCallback)
& oaa_replace_all(Clausel, Clause2, Owner, SpecifiedCallback)
% purpose: Perform data updates with bookkeeping info (in oaa_data_ref/3)
% remarks: These should only be used with data solvables having param
% bookkeeping (true).
% There are still a couple limitations related to data callbacks.
% First, callbacks don't work when bookkeeping (false).
% Second, oaa_replace_all assumes the same callback is appropriate
% for both the old and new facts.
ESEEEEEEESEEESESELESSESEEEEEEEEEEEESEEEEEEEESESESEEEEESEEEEESEESEEEEEEEEEEES

Oaa_asserta(Clause, Owner, Callback) :-
asserta(Clause, Ref),
now (Time),

assert (oaa_data_ref (Ref, Owner, Time)),
oaa_call_callback(app_on_data_change, Callback, [add(Clause)]).

oaa_assertz (Clause, Owner, Callback) :-
assertz(Clause, Ref),
now (Time),

assert (oaa_data_ref (Ref, Owner, Time)),
oaa_call_callback(app_on_data_change, Callback, [add(Clause)]).

oaa_retract (Clause, Owner, Callback) :-
(Clause = (Head :- Body) ->

true

| otherwise ->
Head = Clause,

Body = true
),

clause (Head, Body, Ref),
(retract (oaa_data_ref(Ref, Owner, _)) ->

erase (Ref),

oaa_call_callback(app_on_data_change, Callback, [remove (Clause)])
).

oaa_retractall(Clause, Owner, Callback) :-
(Clause = (Head :- Body) ->

true

| otherwise ->

31

DISH, Exh. 1008, p. 252

DISH, Exh. 1008, p. 253

Head

Body

Clause,
true

),

clause (Head, Body, Ref),
(retract (oaa_data_ref(Ref, Owner, _)) ->

erase (Ref),

oaa_call_callback(app_on_data_change, Callback, [remove (Clause) })
,
fail.

oaa_retractall(_Clause, _Owner, _Callback).

oaa_replace_all(Clausel, Clause2, Owner, Callback) :-
oaa_retract (Clausel, _OldOwner, Callback),
oaa_assertz(Clause2, Owner, Callback),
% This would be redundant:

% oaa_call_callback(app_on_data_change, Callback, [replace(Clausel,
Clause2)])),

fail.

oaa_replace_all(_Clausel, _Clause2, Owner, _Callback).

Bw RK KK KR KKK RK KKK KEK IK KK KKK KK KKK KKK KKK HK KKK KEKE KE ERE REKRKEKE EK EKER EKE REE

% Trigger Handling
BRR KKK KEK EK KKK RE RK KKK IKK CK KK KKK KKK KEI KKK KKK KEKE KKK ERE REE KKEKKKEKER

ESELESEESESEEEEEESESEETESTEESEEEEEEEEEEFESEEEEEEEGESEEEEGEEEELESETESESEEEEEEES

% name: oaa_CheckTriggers
% purpose: Given a trigger type, a mask and an Op (e.g. [send, receive],
% (add, remove], etc), see if any triggers fire.
SEEEESEEEEEEESEEEESEESEEEEEESEEESEEEESEESESEEE SEE EET EETEEEEEEEEEEEESEEEEE SEE ES

oaa_CheckTriggers (Type, Condition, Op) :-
% for each matching trigger
oaa_solve_local(

oaa_trigger(TriggerId, Type, Condition, Action, Params),
(]),

((Type == task, \+ var(Condition)) ->
% We don't want this to succeed more than once, so use ->

(oaa_Interpret (Condition, [from(self)]) -> true)
| otherwise ->

true

),

% see if on(Op) has been specified
(memberchk (on (OpSpecified), Params) ->

OpMask = OpSpecified
| OpMask = _),

%* see if Op is OK
((ground (OpMask), OpMask = [_|_]) ->

memberchk (Op, OpMask)
| otherwise ->

Op = OpMask
) i

% test additional conditions

52

\ DISH, Exh. 1008, p. 253

DISH, Exh. 1008, p. 254

(memberchk (test (Test), Params) ->
% We don't want this to succeed more than once, so use ->

{ oaa_Interpret (Test, [from(self)]) -> true)
| Test = 'true'),

% check recurrence: remove trigger?
(remove_element (recurrence(R), Params, NewParams) ->

(R = whenever ->

true % don't remove trigger if 'whenever'
| integer(R), R > 1 ->

R2 is R - 1,
%* decrement recurrence count

oaa_remove_data_local (
oaa_trigger(TriggerId, Type, Condition, Action, Params),

(1),

oaa_add_data_local(
oaa_trigger(TriggerId, Type, Condition, Action,

[recurrence (R2) |NewParams]) ,
(})

| oaa_remove_local_trigger_by_id(TriggerId)
)

R = when,

oaa_remove_local_trigger_by_id(TriggerId)
),

oaa_TraceMsg (
'~n-q trigger fired (~q): ~q AND ~q,~n Action: ~q~n',

(Type, Op, Cond, Test, Action]),

(Type \== comm ->
oaa_Inform(trigger,

'trigger_fired(~q,~q,~q,~q)-~n',
{Type, Cond, Action, Params])

| true),

% FIRE!!!!

oaa_fire_trigger (Action),

% loop back for more triggers
fail.

oaa_CheckTriggers(_Type, _Cond, _Op).

oaa_fire_trigger(oaa_Solve (Goal, Params)) :-
,

(memberchk(block(_), Params) ->
NewParams = Params

| otherwise ->
append ({block(false)], Params, NewParams)

),

oaa_Solve(Goal, NewParams) .
oaa_fire_trigger(oaa_Solve(Goal)) :-|4

oaa_Solve(Goal, [block(false)]).
oaa_fire_trigger(oaa_Interpret (Goal, Params)) :-|4

53

DISH, Exh. 1008, p. 254

DISH, Exh. 1008, p. 255

{ memberchk(from(_), Params) ->
NewParams = Params

| otherwise ->
oaa_Id(Me),
append((from(Me)], Params, NewParams)

),

oaa_Interpret (Goal, NewParams) .
oaa_fire_trigger(oaa_Interpret(Goal)) :-|

oaa_Id (Me),
oaa_Interpret (Goal, [from(Me)]).

oaa_fire_trigger(Goal) :-
oaa_Id (Me),
oaa_Interpret (Goal, [from(Me)]).

EESESEESEELEEEESESESEEEESESEEEESESESESESEEESESEEEESEEEEEEEEEEEEEEEEEEEEEEEEESS

name: oaa_AddTrigger
purpose: Adds a trigger according to parameters
Type = comm, data, task, time
Condition= comm:event to match, data:data to match, task:solvable to call

time :@@

Action = Can be any of these:
oaa_Solve(Goal, Params)
oaa_Interpret (Goal, Params)
Goal [passed to oaa_Interpret with default params]

Params =

address (X): a list including 'self', 'parent', and/or the
addresses of other client agents. Default: see below.

test (T): additional tests before trigger will fire [@@needs work?]
on(OP) : operation check: on(add), on(remove), on(receive), etc.
recurrence (R): when, whenever, or integer (# of times to execute)
reply({true,none}): When a trigger is being added on

a remote agent or agents, this tells whether reply message(s) are
desired.

block(Mode) : true: Block until the reply arrives.
false: Don't block. In

this case, the reply events

can be handled by the user's app_do_event callback
Default: true. Note that reply(none) overrides

block (true) .

get_address(X): Returns a list of addresses (ids) of agents that
were sent the request.

get_satisfiers(X): Returns a list of addresses (ids) of agents that
successfully completed the request.

Default destination for triggers:
Data triggers: all agents with solvables matching the Condition

field.

All other types: the local agent
ESESSEEEESEESESEEEESEEEEESSEEEEEESESEEESTESEESSESSEELESTSEEEEETEEEESELEEEEESEEEEES

oaa_AddTrigger (Type, Condition, Action, InitialParams) :-
oaa_update_trigger(add, Type, Condition, Action, InitialParams) .

aOPAPdPdPdPdPdPdPdPdPGPdPdPdPdPdPDPadedeAPdPdPdedPdPdPdPdPdPdPoe
SEETESTEEEEEEESESTSEEEEEESESESEEEFEEEEEEEEEEEEEEEEEEEESEEEESSEEETEESEESTEEEEEEESES

% name: oaa_RemoveTrigger

54

DISH, Exh. 1008, p. 255

DISH, Exh. 1008, p. 256

% purpose: Removes a trigger from a local or remote agent
SETESSEEESESESEEEEEESESESESEBEELESELEESELEEESEEESEEESEEEESEESEEEEEEEEEESEEEEES

oaa_RemoveTrigger (Type,Condition,Action, Params) :-
oaa_update_trigger(remove, Type, Condition, Action, Params).

oaa_update_trigger (Mode, Type, InCondition, Action, InParams) :-
((Type == comm, \+ InCondition = event(_,_)) ->

Condition = event (InCondition, _)
| otherwise ->

Condition = InCondition

),

icl_standardize_params (InParams, false, Params),
% Is there a specified address?
(memberchk (address (Addr), Params) ->

true

| otherwise ->
Addr = []

),

% Decide whether or not to update locally:
oaa_Id(Me),
(Addr \== [], memberchk (Me, Addr) ->

delete (Addr, Me, NewAddr),

replace_element (address (Addr), Params, address (NewAddr), Params1),
Self = true

| Addr = [], Type == data, icl_GetParamValue(reflexive(true), Params) ->
% Do NOT use remove_element here:
delete (Params, reflexive(true), Paramsl),

NewAddr = Addr,
Self = true

| Addr = [], Type \== data ->
NewAddr = Addr,
Paramsi = Params,
Self = true

| otherwise ->
NewAddr
Params1

Addr,
Params

),

% Update locally if appropriate:
(Self == true ->

Requesteesi = [Me],
(Type == add ->

Functor = oaa_add_trigger_local
| otherwise ->

Functor = oaa_remove_trigger_local
),

LocalCall =.. [Functor, Type, Condition, Action, Paramsi],
(call(LocalCall) ->

Updatersl = [Me]
| Updaters1 (1)

| otherwise ->
Requesteesl = [],
Updaters1 = []

),

% Update remotely if appropriate:

55

DISH, Exh. 1008, p. 256

DISH, Exh. 1008, p. 257

(oaa_class(leaf), ((Addr == [], Type = data) ; NewAddr \== []) ->
% Send the request event to the Facilitator
oaa_PostEvent(

ev_post_trigger_update (Mode, Type, Condition, Action,Params1), []),
((icl_GetParamValue (reply (asynchronous), Params) ;

icl_GetParamValue(reply(none), Params)) ->
Requestees2 = [],
Updaters2 = []

| otherwise ->
% In the return event, Requestees lists all agents to whom
% the update request was sent; Updaters2 lists those who succeeded.
oaa_poll_until_event(

ev_reply_trigger_updated(Mode, Type, Condition, Action, Params1,
Requestees2, Updaters2))

)

| otherwise ->
Requestees2 = [],
Updaters2 = [)

) i

append (Updaters1, Updaters2, Updaters),
% Return Updaters if requested:
(memberchk (get_satisfiers(Updaters), Params) -> true | true),
append (Requesteesl, Requestees2, Requestees),
% Return Requestees if requested:
(memberchk (get_address (Requestees), Params) -> true | true).

oaa_add_trigger_local(Type, Condition, Action, Params) :-
gensym(trg, TriggerId),
oaa_add_data_local (

oaa_trigger(TriggerId, Type, Condition, Action, Params),
(]).

oaa_remove_trigger_local(Type, Condition, Action, Params) :-
oaa_remove_data_local(

oaa_trigger(_TriggerId, Type, Condition, Action, Params),
(]).

ESESESEEEEESESEEEESEEEEEETELESESEEETEEEEEEELESTESELEEEEGEEETEEELEEEEESEEEEEEES

% name: oaa_remove_local_trigger_by_id
% purpose: Removes a local trigger given its unique identifier
SSSESESEEEESEEELESSESEEEEETEEEEESTESEEEEEEVESEEEEEBEEELEEEESEEEESEEEEEEEEESEEEE

oaa_remove_local_trigger_by_id(TriggerId) :-
‘oaa_remove_data_local(oaa_trigger(TriggerId, _, ,_,_), [),

I,

GK KKK RRR KR RE KEK IKK REE EKRIKRKEERKEEKEKEKEKIEKH KK K EH KKK KEK KRE KEKE KEK EK KEKKKEEEEKE

% Requesting Services
RRR KE KKK KR KEE ERKEEKERK KKK KKK KKH KKK KEKEKEKEEKKEEKEKKEE

EEEEFSLEEEESTESESSESESESEEEEEEEESEEEEEETEESEEKEEEEEEEEEEESEEEEGEEEEEETEEETSESE ES

& name: oaa_Solve
% purpose: Sends work or information requests to distributed agents, brokered
% by the Facilitator agent

56

DISH, Exh. 1008, p. 257

DISH, Exh. 1008, p. 258

adPdPaeoPAPOPOPaPoFoPdPdPGPOPdPdPdPdedPdPdPdPdPdPdPdPdPa?dPdPadPdPdPdPdPoP
oPoPOfGPOPdPdPdPAPdPdPdPGaPaedPdPdPdPdP

The default behavior (paramlist = []} is to act like the Prolog primitive
call(Goal), blocking until Goal is finished, and unifying and backtracking
over solutions for Goal.

This behavior may be modified by a parameter list, which may contain:

cache (T_F) : cache all solutions locally, and if good solutions
already exist in the cache, use the local values
instead of making a distributed request.

Default: false.

level_limit(N) : highest number of hierarchical levels to climb for
solutions.

address (AgentId): send request to specific agent, given its name or Addr
If AgentID is 'self', solves the goal locally

reply (Mode) : true: Reply desired. :
none: No reply desired.

Default: true, except when the call to oaa_Solve
is a trigger action, in which case it is
none. 'none' is used here instead of false,

because we anticipate some additional values.
block (Mode) : true: Block until the reply arrives.

: false: Don't block. In

this case, the reply events (ev_reply_solved)
can be handled by the user's appdoevent callback

Default: true, except when the call to oaa_Solve
is a trigger action, in which case it is
false. Note that reply(none) overrides
block (true) .

solution_limit (N)
limits the maximum number of solutions found to N

time_limit (N) : Waits a maximum of N seconds before returning
(failure if no solution found in time).

context (C) : Passes a context value through any subsequent
solves.

parallel_ok(T_F): if T_F is 'true' (default), multiple agents
that can solve the Goal will attempt to work on it
in parallel. If 'false', one agent will be selected
at a time to solve the goal, until the maximum
number of requested solutions (see solution_limit) is
found.

reflexive (T_F)
If T_F is “true', the Facilitator will consider the

originating agent when choosing agents to solve a
request. Default: true.

priority(P) : P ranges from 1 (low priority) to 10 (high priority)
with a default of 5.

flush_events (T_F)
Will flush (dispose of) all events of lower priority

currently queued at the destination agent. These
events are lost, and will not be executed.

This parameter should be used with caution!!!
Default: false.

get_address(X) : Returns a list of addresses (ids) of agents that
were asked to solve the goal, or one of its subgoals

get_satisfiers (X)
: Returns a list of addresses (ids) of agents that

57

DISH, Exh. 1008, p. 258

DISH, Exh. 1008, p. 259

oPdPdPdPdPdPdPdPdPdPad?oPdPdPdPdPdPdPdPdPoPdPdPdP
succeeded in solving the goal, or one of its
subgoals.

strategy (S) : Shorthand for certain combinations of the above
parameters. S is one of

query = [parallel_ok(true)]
action = [parallel_ok(false), solution_limit(1)]
inform = [parallel_ok(true), reply(none)]

Remarks: Note that certain combinations of parameters are inconsistent,
and are handled as follows:

reply(none) overrides block (true}
reply(none) overrides parallel_ok(false)

All of the above parameters may be used in the "global" parameter
list (the second argument to oaa_Solve), when Goal is non-compound.
Most can be used in the global list with compound goals also.
Some of these parameters can also be used in the NESTED parameter
lists of compound goals. Uses of these parameters with compound
goals are documented elsewhere. When that documentation exists,
this will go there:
With many compound goals, however, the get_satisfier/1 parameter isn't
really meaningful. Thus, with compound goals, it is often best to use
this parameter in a nested parameter list.

ESSEEEESELESESESESEESEEEEEEEEESESEEEEEEEEEEESEEEEEEEESEEESEEEEEESEEEE EEE SEE ESEES

oaa_Solve(Goal, InitialParams) :-
% Trace message

oaa_TraceMsg('~n~nStarting oaa_Solve request:~n ~q [~q]...~n',
[Goal, Params]),

icl_standardize_params(InitialParams, false, Params),
% Check for inappropriate params

(icl_GetParamValue(cache(true), Params), icl_compound_goal(Goal) ->
format ('~w: ~w (~w)~n Goal: ~w-n',

['WARNING', ‘Ignoring ''cache'' parameter',
‘cannot be used with compound goal', Goal]),

Compound = true
| otherwise ->

Compound = false
,

% Add context to params

(oaa_current_contexts(_, Contexts) ->
append (Contexts, Params, NewParams)

| otherwise ->
NewParams = Params

), ¢

% check cache

{(icl_GetParamValue (cache (true), NewParams) , \+ Compound,
on_exception(_, oaa_InCache(Goal, Solutions), fail) ->

oaa_TraceMsg('~n~nSolutions found in cache:~n ~q.~-n',
[Solutions])

% Should I solve this only locally?
(oaa_Id (Me),

58

DISH, Exh. 1008, p. 259

DISH, Exh. 1008, p. 260

memberchk (address (Me), Params) ->

findall (Goal, oaa_solve_local(Goal, NewParams), Solutions)

* send request to Facilitator
oaa_cont_solve(Goal, NewParams, Solutions),

% print appropriate trace message
(icl_GetParamValue (reply (none), NewParams) ->

oaa_TraceMsg('~n-nMessage broadcast.~n', [])

oaa_TraceMsg('~n~nSolutions returned: ~n ~q.~n',
[Solutions])

),

% cache returned solutions if necessary

((icl_GetParamValue (cache(true), NewParams), Solutions \== []) ->
oaa_AddToCache (Goal, Solutions),
oaa_TraceMsg('Solutions cached.-~n', [])

| true)

Voi,

% backtrack over all solutions

member (Goal, Solutions).

oaa_solve_local(FullGoal, Params) :-
% Validate the goal:
icl_GoalComponents(FullGoal, _, Goall, GoalParams),
(oaa_solvables(Solvables) -> true | otherwise -> Solvables = []),
{ icl_compound_goal(Goall) ;

icl_Builtin(Goali) ;
oaa_goal_matches_solvables(Goall, Solvables, Goal, Matched)),!

% More "local" params take precedence, so they go to the
% beginning of the list:
append([GoalParams, Params], AllParams),

% We don't want tests to be performed repeatedly with compound goals,
% so we remove them after testing.
(passes_tests(AllParams) ->

delete (AllParams, test(_), NewParams),
((\+ var (Matched), Matched = solvable(_, SolvParams, _),

icl_GetParamValue (type (data), SolvParams)) ->
(memberchk (solution_limit(N), AllParams) ->

call_n(N, Goal)
| otherwise ->

call (Goal)

)

| otherwise ->
(memberchk(solution_limit(N), AlilParams) ->

call_n(N, oaa_Interpret (Goal, NewParams))
| otherwise ->

oaa_Interpret (Goal, NewParams)
)

59

DISH, Exh. 1008, p. 260

DISH, Exh. 1008, p. 261

)

| otherwise ->
oaa_TraceMsg('~nDoesn''t pass test in: ~q~n', (AllParams]),

fail

).

oaa_solve_local(FuliGoal, _Params) :-
format ('~nError: do not know how to solve: ~q-n', [FullGoal]), fail.

EELEEEESEEEEESESSSESEEETESESEELESEFEEEEEEEELESEEEEEEEEEEEEESEEEEEEEEEEESEEEESE

% name: oaa_cont_solve
% purpose: Post request for solutions, and if appropriate, poll until
% results are returned.

EEESELEEESERESESEEEELESESEEEESESESESEEEEEFEEEEEEEEESEEEELEREEEEEEEEEEEEEEEEETES

oaa_cont_solve(Goal, GlobalParams, Solutions) :-
% Send the ev_post_solve event to the Facilitator
oaa_PostEvent (ev_post_solve (Goal, GlobalParams),(]),

% Compound goals may also contain relevant params
icl_GoalComponents (Goal, _, _, Params),

append (Params, GlobalParams, AllParams),

% If delayed reply or no reply OK, succeed immediately
((icl_GetParamValue(reply(false), AllParams) ;

icl_GetParamValue(reply(none), AllParams) ;
icl_GetParamValue(block(false), AllParams)) ->

Solutions = [Goal],

Requestees = [],
Solvers = []

% otherwise wait for solutions to return

icl_GetParamValue(priority(P), AllParams),
oaa_poll_until_event (ev_reply_solved(Requestees, Solvers, Goal,

SolvedParams, Solutions),
P),

% The facilitator is responsible for making SolvedParams
% unifiable with GlobalParams. This msg is to keep facilitator
% writers honest.

(GlobalParams = SolvedParams ->
true

| otherwise ->
format ('-~w: ~w ~w-n ~w: ~wen',

('WARNING:', 'Params in solved event don''t unify',
‘with original params', 'SolvedParams', SolvedParams])}

)

),

% Return Solvers if requested:
(memberchk (get_satisfiers (Solvers), GlobalParams) -> true | true),

% Return Requestees if requested:
(memberchk (get_address (Requestees), GlobalParams) -> true | true).

SESEEESEEESESEESSEEETESEESESEETESEEETESEESESEEEEESEEEELEEEEEEEEEEEESEEEEETEEEE

% name: oaa_Solve/1
% purpose: Convenience function: oaa_Solve with default parameters
EESTEEEEESESEEEEETESSESESELEEELEEESSESESEETEETEYELESESESEELEETEETEETETESEEESESS

60

DISH, Exh. 1008,p. 261

DISH, Exh. 1008, p. 262

oaa_Solve(Goal) :- oaa_Solve(Goal, []).

ESESEEEELESEEEEEEEESEEEEEEEEEEEEEEESEEEEEEEESEEEESEEESEEEEEEEEEEEESEEEESTELEESES

% name: oaa_InCache
% purpose: Retrieve solutions from the cache if the goal we are
% asking for is properly contained in the cache (check subsumption)
SEEEEEESEEEESEEEEEESESEFETTEEETEETEESEFEEEEELEEEEEESEEEEEBEEEEEEEESEEEGEET ESE TEES

oaa_InCache (Goal, Solutions) :-
oaa_cache (SomeGoal, _),
subsumes_chk(SomeGoal, Goal),1ce

findall (Solution, oaa_cache(Goal, Solution), Solutions).

ETLELELESESSESSEEEEEEEEEEEEEEEETEEEEESEEEEEEEESSEEEGEEEGEEEESEEEGEEESEESESEEEES

% name: oaa_AddToCache
% purpose: Add each solution to goal one at a time
% so we can retrieve solutions later using findall
EXEEEEESEEESEEEEEEEESEEEESEEEEEEESEESEEEEEEEETEEEESEEEEESTEEEEEGEEEEEESEESEEEES

oaa_AddToCache (Goal, Solutions) :-
member (Solution, Solutions),

\+ oaa_cache(Goal, Solution),
assert (oaa_cache(Goal, Solution)),
fail.

oaa_AddToCache(_Goal, _Solutions).

ESEEELESELEEESEEELEEEEEEEEEEESEEEEEEEGELEBEEEEEGEEEEESEEESEEEEESEEEEEESEEEEEEES

%* name: oaa_ClearCache
% purpose: Clear the cache
ESSEEEEEEEEEEESEEEEEEEESEEEEEEEEEEEREEEEEEEESEETEEEEEEEEEEEEEEEELESEESEEEETESES

oaa_ClearCache :-
retractall (oaa_cache(_,_)).

SEEESEEESESESESEEESESESESESESEEEEEEEGEFEEELELELES SEES EE ESESEEESEEEEEETEEEESSEETS

% name: oaa_poll_untilevent
% purpose: Block until requested event arrives in oaa_GetEvent
ESESESESESFESEEEESSELESEEEESESESEEESTSEEEESEEEEEETEEEEEEEEEEEEEEEEEEEEEEEEEEES

oaa_poll_until_event (Event) :-
icl_param_default (priority (P)),
oaa_poll_until_event (Event,P).

oaa_poll_until_event (Event, Priority) :-
oaa_poll_until_all_events([Event] , Priority) .

SEESSESSEEEEEESEEETESEESESESSESEEEETESEEEETEEEESESELEEEEGEEEEEEEEEEEEESEEEEEES

% name: oaa_poll_until_all_events
% purpose: Block until all requested events arrive
SEETEESEEEEELEEEEEFESEETESSEESEEETEFEEEEEEEEEEEEEEEEEEFESEEEEEEEVEGEESEEETEEETES

% no more events: we're done!

61

DISH, Exh. 1008, p. 262

DISH, Exh. 1008, p. 263

oaa_poll_until_all_events([], _Priority) :- !.

%% @@Adam - you were apparently working on this; I corrected a syntax
%% error or two, but otherwise left it alone. - Dave

oaa_poll_until_all_events(EventList, Priority) :-
% If we have a waiting_event, grab it
% see problem description in (oaa_is_waiting_for)
(oaa_grab_waitingevent (EventList, Event)
oaa_GetEvent (Event, Params, 0)),

’

% if timeout returned, check triggers and call user:oaa_AppIdle
% then fail (continue with next clause)

(Event = timeout ->

oaa_CheckTriggers(task, _, _),
oaa_call_callback(app_idle, _, []),
fail

eaa_cont_poll_until_all_events(EventList, Event, Params, Priority)
y, f.

% if oaa_GetEvent fails (e.g. timeout), just continue waiting
oaa_poll_until_all_events(EventList, Priority) :-

oaa_poll_until_all_events(EventList, Priority).

oaa_cont_poll_until_all_events(EventList, Event, _Params, Priority) :-
remove_element (Event, EventList, NewEventList), !,
oaa_poll_until_all_events (NewEventList, Priority).

oaa_cont_poll_until_all_events(EventList, Event, Params, Priority) :-
% if the new event is a ev_reply_solved() message for which we
% are waiting at a higher recursive level, save this for
% a later time, until we pop back out to the correct level.
(oaa_is_waiting_for(Event) ->

assert (oaa_waiting_event (Event))
|

% record what events we are waiting for on this processing level
gensym(wait, WaitId),
assert (oaa_waiting_for(WaitId, EventList)),

(oaa_ProcessEvent (Event, Params) | true), !,

% level over, remove waiting statement
retract (oaa_waiting_for(WaitId, EventList))

),

oaa_poll_until_all_events(EventList, Priority).

IaKKK KR KK KKK KKK KI KKK KK KE KEK KIKI K IKE KK KEE KKEKEKKERKEKKKEKKKKEKEK

% Callbacks
BRK IKKE KEK KKK KKK KK KK KEKE KER KIKI KKK KEKE KIRKE KKK KKK KEKE KEK KEKE EKEKEKEKERKKEEEKEKE

SESESESESESELESESEEESEESEESEEEESEEEELESESEEESESEEEEEEESEEEEGESEEEETEEEETEEEESETES

% name: oaa_RegisterCallback
% purpose: Declare what procedures should be used for callbacks. These
% are application-defined procedures called by library code.
ESSETESEESEESEEEEESEETEEETEESEEEETESEEEEESEEELEEEEEEEEEEEETESESESEEETEE ESTES TS

oaa_RegisterCallback(CallbackID, CallbackProc) :-

62

DISH, Exh. 1008, p. 263

DISH, Exh. 1008, p. 264

(CallbackProc = Module:Proc ->
true

| otherwise ->
Module = user,
Proc = CallbackProc

),

retractall(oaa_callback(CallbackID, _)),
assert (oaa_callback(CallbackID, Module:Proc)).

oaa_call_callback(CallbackID, SpecifiedCB, Args) :-
(ground(SpecifiedCB) ->

SpecifiedCB = Module:Functor
| otherwise ->

oaa_callback(CallbackiID, Module: Functor)
) ft

Call =.. [Functor | Args],
on_exception(E,

Module:Call,

(oaa_TraceMsg('WARNING (caa.pl): Exception raised thru callback
handler (-w):~n ~q-n',

{Module:Functor, E]),
fail)

).

oaa_call_callback(_CallbackID, _SpecifiedCB, _Args).

SR RK KKK IK KK IKK KEK KKK KIRKE IKE KKK IKK KIKI KKH KK IKE KK KKK AKER KKK EKEKKEEEKKEKER

% Debugging
GRRE RR KEKE KEE ERE EKER EERE KEK KEKE REE RE KEE REE KKK IKK RK EEE KEKE KEKE KEE KKE ERE RKEKEEEKEKER

SLESSEEEEEEEESEEEEEEEEETEEEEEEEEESEEESEEETSESEEEEEESEEEESSESEEEEEESEEEEEEEEE SESS

% name: oaa_TraceMsg
% purpose: If trace mode is on, display message and arguments
EXESELEEEEEESEEEEESEEESEEEEEEEESSEEESEEEEESEESEEESE SELES SE SEEEEEEEETEEEEEEEEE SEES

oaa_TraceMsg(FormatString, Args) :-
(oaa_trace(on) ->

format (FormatString, Args)
& oaa_Inform(trace_info, FormatString, Args)

true).

ESSEEEEEEESEESEESESEEEEEEEEEESEEEEEEEES SESE TEESE SEE ESESEEEEEEESEEEEEEEEEEEEEEESS

% name: caa_ComTraceMsg
% purpose: If com trace mode is on, display message and arguments
EELESESSEEEEEEESESESEEEESESESEEEEEESESEEESEEFTEEEEELEEEEEGEEEEEEEEELELESEEELTEEEES

oaa_ComTraceMsg(FormatString, Args) :-
(oaa_com_trace(on) ->

format (FormatString, Args)
% oaa_Inform(trace_info, FormatString, Args)

true).

SSELEELELESEEEEEEEEEEEEEEEEEEEEEEEEESEEEEESEFEEEESEEEEEETEESTEFEEELESEETEEEEEES

% name: oaa_turn_on_debug
% purpose: start debugging if debug mode is on
% remarks:

63

DISH, Exh. 1008, p. 264

DISH, Exh. 1008, p. 265

% Use predicate_property and call so as to avoid errors in
% building and running a Quintus runtime system.
ESEEELESEEEEEESESEEESESESEEESEEEESEEEFELELSEEEEEEEEEESEEEEEEEEEEEEEEEEEESETESS

oaa_turn_on_debug :-
(oaa_debug(on) ->

(predicate_property(user:trace, built_in) ->
call (user:trace)

| true)
| true).

ELEEELEEEEEETETEEEEESEEESSEEEEESESEEESELESELEEESEEEETEEEEEEGESTESEETETESSETESEEES

% name: oaa_turn_off_debug
% purpose: stop debugging if debug mode is on
% remarks:

% Use predicateproperty and call so as to avoid errors in
% building and running a Quintus runtime system.
SESSSESEESESEETEEEEEESESESESEEEELEEELEEEEEEELEEEEESEEEEEESEEEEEEEESTESSETEEE ESS

oaa_turn_off_debug :-
(oaa_debug(on) ->

(predicate_property(user:nodebug, built_in) ->
call (user :nodebug)

| true)
| true).

ERK KEKE KEKE KKK KEKE KEK KKK EKER KEK EEK HEIKKI KK KKK KK IKK KK KEKE KEKE KKK KKK KE KER EKRERKKE EEE

% User Interface

BRAKE KKK KKK KERIKERI KEK KIRKE KKK KKH K KKK KK KKK KERR KER KEKE EKER EKRE EEK

SESEEEELESESESEESEFESEEESEEESETEESESTEEESEEEESETEEEEEEETEEEEEEEEEEEESEEEEESEEEEEEE

% name: oaa_Inform
% purpose: sends a typed message to interested agents
EESEELESEEEEEEEEESEEEEEEEEEEEEEEEEEETESEEEEESESEESEEEEEEEELESEEEEEEEEEEEESELESS

oaa_Inform(TypeInfo, FormatString, Args) :-
oaa_TraceMsg(FormatString, Args),
(oaa_class(leaf) ->

sprintf (Result, FormatString, Args),
oaa_Solve(inform(TypeInfo, Result), [strategy (inform)])

|
true

), !.

SRRKR KEK KE KEK RE KIER KKK ERR KK KKK KI KKK KEI KEE KEKE KEK KEE KEKEKKKKEKKEE

% Connection primitives
GRR KKK KEK KKK KEIN KKK KKK KEI K ERK KE KKK KKK KKK KKK KKK HK KEKE KEKE KEKKKEKEKKEKKEKKEKKEKKEK

%%% BUG/HACK!!1!!

tcep_send/1 is not currently defined (new version of quintus)
so these predicates should fail. This means we can't have
multilevel facilitators.

However, if we fix it by the tcp_send/2 version (commented out),
killing the agent doesn't shut down both connections and the
facilitator server doesn't register the agent as disconnected.

dPdPdPdPdPdP
64

DISH, Exh. 1008, p. 265

DISH, Exh. 1008, p. 266

% This must be fixed, but I don't have time now...

Ask the root agent for the address of facilitator FacName.
Either FacId or FacName may be bound.
IMPORTANT: This assumes the root agent is the only connection when
this is called.

@@Not happy with the use of a Connection number in the address param here.
Can an address be a connection number as well as an id or name??? ([No.]

0dPdPdPdPdP
get_address(FacId, FacName, Port, Host) :-

tcp_connected(RootConnection}),
oaa_Solve (agent_location(FacId, FacName, Port, Host),

{address (RootConnection)]).
egdPdPOP
%% succeed if FacName has not been registered with the root agent.
$& otherwise, ask user to enter a different name for FacName

% check_name_duplication(MyName, NewMyName) :-
% tcp_send (ev_check_agent_name (MyName)) ,
% oaa_select_event(0, X),
% oaa_extract_event (X, Result, _), %% 'UNIQUE'
% (Result == 'UNIQUE' -> NewMyName = MyName
% ;

% format ('Name is duplicated-~n', []),
% format ('The following are registered ~n ~q ~n', [Result]),
% format ('Input agent name again:',[]),
% read (NewMyName)) .

de report_address_to_root (MyName, NewAddress) : -
tcp_send(register_port_number (MyName, NewAddress)) .ap

SESEELELESEEEEEELEEEESEEEEEEEEEEEEEEEEEESEESEEEESESEEELEEEEEEEEEEEESEEEBESESETS

% routines to fix bug:
% blocking solvel
% incoming event generates blocking solve2
% solution to solvel thrown away!!!
% solutions to solve2

% stuck waiting for solvel forever
ELELELERSESESESEEEEEEELEETESESTESEEESEEESESESEETEESEEEEEEEEEEEEEEEESEETEEEEEEES

ESEEESESEEESSESSEESESETEESESESEEEESESESESEEESEELELEGEEEEEGEEEEELEEES ESTEE EEEEES

% name: oaa_is_waitingfor
% purpose: Check to see if the current event is something we are waiting
% for on a higher recursive level

EESESEEEEEEESESELSEEETELESELEEEEEEEEEEEEEFEEEELEELEGEEEEEELESEEEETETESEETEETETES

oaa_is_waitingfor(Event) :-
oaa_waitingfor(_Id, EventList),
memberchk (Event, EventList).

EESESESEEEEEESEEEEELESEEESESSETEEESTEEEESEVEEEEELEYESELEEEEEEEEEEEEEEEEEE TEES

% name: oaa_grab_waiting_event
% purpose: If one of the delayed events is in the EventList that we are
% waiting for, return this event and remove from delayed list

EESLEELEEEEEEEEEEESEEEEEETEETSESESETEELETEETEEESTESTEEEEEEREEEELEGESEETESESSEES

oaa_grab_waiting_event (EventList, Event) :-

65

DISH, Exh. 1008, p. 266

DISH, Exh. 1008, p. 267

oaa_waitingevent (Event),
memberchk (Event, EventList),!cf

retract (oaa_waiting_event (Event)).

Gk aKaKKKK KKK KKK KEKE KK KIRK KERRI KKK KEKE KEKE KK KKK KEKE KE KKKKKRKEKK EK

% OAA Utilities

SkRK KK KK KK KR RK KKK KK EK REI KK EK EK KE RR ERE KKK KEKE EEK ERE KEE KEKE REE KEKE

ESETESESSTESESESTSEEEEELESESESELEEEEEEEEEEGELEGEEEEEEEEEELESESEEEETESEETETES EES

% name: oaa_remove_solvables_data(Solvables).
% purpose: For each data solvable, remove all clauses belonging to it.
% remarks: - Solvables must be in standard form, and should include only
% data solvables.

% - Permissions are ignored.
ESEEEEEEEESEESSESEEELELESEEEEEEEEEEEEESEEEEEEESESEEEEEEEEEE EEE ESEEEEEEEEEEEE EEE ES

oaa_remove_solvablesdata([]).
oaa_remove_solvables_data([Solvable | Solvables]) :-

Solvable = solvable(Goal, Params, _Perms),
icl_GetParamValue(type(data), Params),
\+ memberchk(synonym(_, _), Params),ioe

% This should have already been done, but to be safe:
(clause(Goal, _, _) -> true | true),
predicate_skeleton(Goal, Skeleton),
(oaa_remove_data_local (Skeleton, [do_all(true)]) ->

true

| otherwise ->
format ('~w: Problem in removing all data for solvable: ~w-~n',

['! ERROR', Goal])

) f

oaa_remove_solvables_data(Solvables) .
oaa_remove_solvablesdata([_Solvable | Solvables]) :-

oaa_remove_solvables_data(Solvables) .

oaa_remove_data_owned_by(Id) :-
(oaa_solvables(Solvables) -> true | otherwise -> Solvables = []),
oaa_built_in_solvables (BuiltIns),
append (Builtins, Solvables, AllSolvables),
oaa_remove_data_owned_by(AllSolvables, Id).

oaa_remove_data_owned_by([], _Id).
oaa_remove_data_owned_by([Solvable | Solvables], Id) :-

Solvable = solvable(Goal, Params, Perms),
icl_GetParamValue(type(data), Params),
\+ icl_GetParamValue (persistent (true), Params),
\+ icl_GetParamValue(synonym(_, _), Params),| ’

% This should have already been done, but to be safe:
(clause (Goal, _, _) -> true | true),
predicate_skeleton(Goal, Skeleton),
(oaa_remove_data_local (Skeleton, [owner(Id), do_all(true)]) ->

true

| otherwise ->
format ('~w: Problem in removing data owned by ~w for solvable:-n ~w~n',

['! ERROR', Id, Goal))

66

DISH, Exh. 1008, p. 267

DISH, Exh. 1008, p. 268

),

oaa_remove_data_owned_by(Solvables, Id).
oaa_remove_data_owned_by([_Solvable | Solvables], Id) :-

oaa_remove_data_owned_by(Solvables, Id).

GRR K HK KEKE KK KEK EK KEKE KEKE KKK KR KK KKK KKK KKK KK KE KEKE RK ERE KEKE KK KR KKK KK KEE KEKE KEKE

% General Utilities
$k RR aK KR KKK KKK RK KKK KERR KEKE KR KERR KKK KIRKE RK KKK IKKE KEK KHKEEKEEKEKKKEKK KEKE

EELEETEEEEEEESETESESTEEETESEEEEEEESEEETELELETEEESESESESEREEEEEEEEEELELEEEEEEES

% name: oaa_consult (+FilePath, -AbsFileName) .
% purpose:
% remarks: We don't use Quintus' builtin consult, because it's too picky
% about associating predicates with files.
ESEEETESESESEEEEEEESESESEELESEEESESEEEEELELEEEEEEESESEEEGEEEEEEEEEEEETEEEEEEES

oaa_consult (FilePath, AbsFileName) :-
absolute_file_name(FilePath, AbsFileName),
can_openfile (AbsFileName, read, fail),
open (AbsFileName, read, Stream),
load_clauses (Stream),
close (Stream) .

ESESETELESEEESTESELEEEEEEEEEEEEETEEEEEBEEEELEEEEEEEEETEEESEEEEEEEEEEEETEEEEETS

% name: load_clauses (+Stream) .
% purpose:
SSSESTEEEEELEEEEEEEEEEEEEEEEEGEESESEEEESEEEEEEESETEEEEEEEEEEETEBSESEEESESEEESEES

load_clauses (Stream) :-
repeat,

read_term(Stream, [], Term),
(Term = ':-'(Body) ->

true

| Term = end_of_file ->
true

| otherwise ->
load_clause (Term)

),

{ at_end_of_file(Stream) ->
!

| otherwise ->
fail

).

ESESTELESEEEEETESELESEESEEEEFESEEEEEEEEEEEFEEEETEEEEETEEEEEELEEEESEREEEEEEEEEE

% name: load_clause (+Term) .
% purpose:
EEESEELESEEEEEEESEEEESELEEEESEEEEFEEEEEEEEFESEEEEEEEEEEVEEEEEEEEEEEEEEEEELEEES

load_clause (Term) :-
assert (Term).

FEELELESELETELEEEEEEEEEESEEEEEESEEEEEEEEEEEEEEEEEEEEEESESEEEEEEEEELESEESEEEEEES

% name: oaa_declare_for_prolog(Solvables) .
% purpose: For each solvable, make sure it's known to Prolog as a dynamic
% predicate. This will prevent exceptions and warnings from

67

DISH, Exh. 1008, p. 268

DISH, Exh. 1008, p. 269

calls and retracts before there have been any asserts.
remarks: Solvables must be in standard form, and should include only

data solvables.

This is probably Quintus~-specific.
We are assuming that none of these predicates are known to

% Prolog as compiled predicates. Would be better to check for this.
ESEEEEEEFEEEESEEEETEESELESTESEEESTESEEFEREEEGELELEEEEELEGELESEEESESELESELESEEESS

oaa_declare_for_prolog([]).
oaa_declare_for_prolog([{solvable(Pred, _, _) | Rest]) :-

copy_term(Pred, PredCopy),
(clause(PredCopy, _Body) -> true | true),
oaa_declare_for_prolog(Rest).

dPdPdPdPde

SSELEEESEESESSSSEEEEEEESEEEEESEESSEEEETEESEEEEEEEESEEEETEEEEEFEEE EEE EEE ESEEESEES

% name: predicate_skeleton(+Goal, +Skeleton).
SESESEEESSEEEESTEEEEEEESEEESEESESESEESEEEESEETESELEEEEETETEEEEEESESEEEEEEESELETEES

predicate_skeleton(Goal, Skeleton) :-
functor (Goal, Functor, Arity),
functor (Skeleton, Functor, Arity).

ESEEESESEEESEEEEESEEEEEEESESEETESEEEESEEEESEEESEEEEESESEEEESEEEELESEEETEEEEEEEE

$ name: sprintf ;
% purpose: C-like command formats a string + args into an atom
EESESEESSEEESEEEEESEESEE EES EEEEEEEEESSEEEEEELEESEE ES SESESEEEETESELESSEEETEEESSEEES

sprintf (AtomResult, FormatStr, Args) :-
with_output_to_chars (format (FormatStr, Args), Chars),
name (AtomResult, Chars).

ESEEESEEESEEEEEEEEEEEEEESEEEEESESEEEEEEEEESEEESEE EE EEE EEE EESEESEEEEESEESEEEEEEEES

% name: memberchknobind
% purpose: like memberchk, but doesn't bind variables in Elt when doing test.
ESEEEEESEEEEEEEEESEEEEEEES SEES EEE EEEEEEEEEEEEEEEEEEEEEELEEESETESSESEEEEELEEEEYF

memberchknobind(Elt, [H]_]) :-
would_unify(Elt, H), !.

memberchk_nobind(Elt, [_|T]) :-
memberchknobind(Elt, T).

EESEEEEEEEEEETELEEEEEEELEEEEEESEEEEEGEEEEEEEEEEEEEGEEEEEEEETEETETELESEEEEEEE ESS

% name: would_unify
% purpose: succeeds if X and Y WOULD unify, but doesn't actually do the
% unification (no variables are bound by test)
SESEESEESEEESSESSEESEEESEESEEEETEEEEELEEEEEEEEEESEEEEEEEEESEESEEEEEEELEEEESEEEEES

would_unify (X,Y) :- \+ \+ K = Y.

ESEEEEEEELEFEEEEEESEEEEEEELEEEEEEEEEEEEEEGESEGEEEEEEEEEGE LEE TEE EEE EEESEETEEELESS

% name: remove_element
% purpose: Removes the element X froma list
%¢ remarks: Fails if X is not an element in the list
EEEEEEELELEEEESESESESEELEEEESEETEEEEEEEEEEGELELEEEEEEEEEEEEEEEEEEEEEEEEEEESESEES

remove_element (X, [X|Rest], Rest) :- !.
remove_element(X, [Y|Rest], [Y|Rest2]) :- remove_element(X, Rest, Rest2).

68

DISH, Exh. 1008, p. 269

DISH, Exh. 1008, p. 270

SEESESSEESEETESEEFEETEESESEEEEFEESEEELEEESESESEFEBEEEEEEEEEYEETEEEEEEFEFEEEETSEE

% name: replaceelement (Elt, List, New, NewList)
% purpose: Replaces the element Elt, if present in List, with the element New
% remarks: If there are multiple occurrences of Elt, only replaces the first
SEEEEEEEESSESESEEESESEEEEEEETEETELSEEEFEEEETESEEELESEELEEEEEEEFEESEGBEEEELELEEES

replace_element (Elt, [Elt|Rest], New, [New|Rest]) :- !.
replaceelement (Elt, [Y|Rest], New, [(¥|Rest2]) :-

replace_element (Elt, Rest, New, Rest2).

SEEESEEEEEFEEEEEEEEEEEESEEEEEEEEEEEE SEE SEEEESEEEEEESELESEEELEEEEEEEEEETEEEEEEYE

% name: select_elements (List, Selector, NewList)
% purpose: Selects all List elements for which Selector(element) succeeds.
% remarks: If there are multiple occurrences of Elt, only replaces the first
SEEEESERESLEESELESESEEEEEEEEESEEESEETEEEEEEESEEEFEE ESTES ESESEEEEEEELEESEEEEESS

select_elements({], _Selector, []).
select_elements({Element | Elements], Selector, [Element | Selected]) :-

Test =.. (Selector, Element],

call(Test),
!,

select_elements (Elements, Selector, Selected).
select_elements([_Element | Elements], Selector, Selected) :-

select_elements (Elements, Selector, Selected).

SIESSEESEEEESEEESSESEEEEEEEESEEEESESSEEEEEESESEEESEEEEEEEEEEEEEEEEEESEEEEEEEES

% name: call_n(+N, +Goal)
% purpose: Call Goal with a limit on the number of solutions generated.
SELELELEEESESEESEEESESESEEEEEEEEEESESEEEEEEEEEEEEEETEEEEESEEEESEEEEEEEEEE EEE ESS

call_n(1, Goal) :-
call (Goal),|

call_n(N, Goal) :-
% Remember the counter's value in case anyone else is using it.
etr_is(12, CtrOrig),
call_n_aux(N, Goal, CtrOrig).

call_n_aux(N, Goal, CtrOrig) :-
N > 1,

ctr_set(12, 1),
call(Goal),

ctr_inc(12, 1, M),
(M =< N ->

true

| otherwise ->
ctr_set(12, CtrOrig),{

fail

).
% This clause is for when the Goal fails before M > N:

call_n_aux(_N, _Goal, CtrOrig) :-
etr_set(12, CtrOrig),!"oe

fail.

69

DISH, Exh. 1008, p. 270

DISH, Exh. 1008, p. 271

% findall with a limit on the number of solutions generated.
findNSolutions(0, _Var, _Predicate, [}).
findNSolutions(1, Var, Predicate, [Var]) :-

call (Predicate), !.

findNSolutions(1i, _Var, _Predicate, []).
findNSolutions(N, Var, Predicate, Solutions) :-

N > 1,

% Save the counter's value in case anyone else is using it.
etr_is(12, CtrOrig),
ctr_set(12, 1),
findall (Var,

(Predicate, ctr_inc(12, 1, M),
(M >= N -> ! | otherwise -> true)),

Solutions),

ctr_set (12, CtrOrig).

% initialize all data flags

% oaa_init_flags :-
% % set appropriate prolog flags

prolog_flag(fileerrors,_,on),
prolog_flag(syntax_errors,_,error),

retractall(oaa_cache(_,_})),
retractall (oaa_already_loaded(_)),
assert (oaa_trace(off)),
assert (oaa_debug(off)),
assert (oaa_com_trace(off)),
tcp_trace(_,off).

dPdPAPdPdPdPGPAPae

70

* Let's use retractall so as to avoid unknown exceptions when tracing:

DISH, Exh. 1008, p. 271

DISH, Exh. 1008, p. 272

APPENDIX A.V

Source code file namedtranslations.pl.

DISH, Exh. 1008, p. 272

DISH, Exh. 1008, p. 273

SEETEEESESESEESESEEELESESETEEEEELEGEEEEEEEETEEEEBEEESELESEEEEEEEETEE EEE EEESS

File : translations.pl
Primary Authors : David Martin, Adam Cheyer
Purpose : Provides translations for backward compatibility with OAA 1.0

Unpublished-rights reserved under the copyright laws of the United States.

Unpublished Copyright (c) 1998, SRI International.
"Open Agent Architecture" and "OAA" are Trademarks of SRI International.

dPdPdPdPdPdPdPdPdPdPdP
SESEESESESELELESTEEEEEEEEESEEELEEEEELEEEEEEEEGEEESEEEEEEEEEEEEEEEEEEEEEEEESS

% This file is loaded by facilitator code, and thus no
% module imports are needed here.

% Currently, we support a 3.0 facilitator with a mix of 3.0 and/or pre-3.0
% clients.

$ A pre-3.0 facilitator with a 3.0 client is NOT supported, and probably
% never will be.

:- multifile oaa_AppDoEvent/2.

% At present we only support the case where the facilitator is 3.0, and
% the client is pre-3.0.

% Here we can ignore the languages.
oaa_event_translation(2.0, Ll, 3.0, L2, Connection, Eventl, Event2) :-

oaa_event_translation(2.1, L1, 3.0, L2, Connection, Eventl, Event2).
oaa_event_translation(2.1, _L1, 3.0, _L2, _Connection, Eventl, Event2) :-

(Eventl = event(From, Contentsl, Priority) ->
Params2 = [from(From), priority(Priority)]

| Eventl = event (From, Contents1) ->
Params2 = [from(From)]

| Eventl = Contents1 ->
Params2 = []

) ‘

(ev_trans_21_30(Contents1, Contents2) ->
true

| otherwise ->
Contents2 = Contents1

y
Event2 = event(Contents2, Params2).

% Here we can ignore the languages.
oaa_event_translation(3.0, L1, 2.0, L2, Connection, Eventl, Event2) :-

oaa_event_translation(3.0, L1, 2.1, L2, Connection, Eventl, Event2).
oaa_event_translation(3.0, _L1, 2.1, _L2, Connection, Eventl, Event2) :-

Eventl = event(Contentsl1, Paramsl1),

(ev_trans_30_21(Contents1, Paramsl, Contents2) ->
true

| otherwise ->
Contentsl = Contents2

),

(memberchk(from(KS), Paramsl1) ->

DISH, Exh. 1008, p. 273

DISH, Exh. 1008, p. 274

Event2 = event(KS, Contents2)

| otherwise ->
Event2 = Contents2

),
ty

% Anything not specified explicitly stays the same:
oaa_event_translation(3.0, _L1, 2.1, _L2, _Comnection, El, E1).

ESESEEESEFEELEEESESEESETETEFESTEEFESESELESEEEEELEETETESELEEEETETEEEEESTEEEE

% The following could go to or from the facilitator.
EEESELESEEESEEESESESESSEEESESESEFELESELESESEEEEEEEEEEGEEEEEETELEEEEEESEEES

ev_trans_21_30(trace_on, ev_trace_on).
ev_trans_21_30(trace_off, ev_trace_off).
ev_trans_21_30(tcp_trace_on, ev_com_trace_on).
ev_trans_21_30(tcp_trace_off, ev_com_traceoff).
ev_trans_21_30(debug_on, ev_debug_on).
ev_trans_21_30(debug_off, ev_debugoff).
ev_trans_21_30(set_timeout (N), ev_set_timeout (N)).
ev_trans_21_30(halt, ev_halt).

ESESEEEEESSEEESESSEEEESESESESTEEEEEEESELEEETESEEETEEESEEEEEEEEEEGEEEEEETES

% The following are sent only from (pre-3.0) client to facilitator.
SESSESEESEEESEEEEEEEESESEEEEEESEESSEEEEEEEEEETEEEEEEETEEESEEEEEEESEEEEE TEESE

ev_trans_21_30(post_event (Event), ev_post_event (NewEvent)) :-
ev_trans_21_30(Event, NewEvent) .

ev_trans_21_30(post_event (To, Event), ev_post_event (To, NewEvent)) :-
ev_trans_21_30(Event, NewEvent).

ev_trans_21_30(post_query(Goal, Params),
ev_post_solve(Goal, [reflexive(false) | NewParams))) :-

params_trans_2130(Params, NewParams) .

This is the message from a facilitator to its parent facilitator;
will probably evolve:
ev_trans_21_30(register_solvable_goals (AGL), register_solvable_goals(AGL)).
NO, we don't want to translate this. The old form is still handled

by the new facilitator:
ev_trans_21_30(register_solvable_goals(GoalList, KSName),

ev_register_solvables (add, GoalList, KSName,
[if_exists(overwrite)])).

aedPdPdPdPdPdPdP
ev_trans_21_30(solved(GoaliId, FromKS, Goal, SolveParams, Solutions),

ev_solved(GoallId, FromKS, Goal, SolveParams, Solutions)). .

/* post_trigger/4: retained for backwards compatibility */
ev_trans_21_30(post_trigger(test, Type, Cond, Action), NewEvent) :-

ev_trans_21_30(post_trigger(test, Type, unused, unused, Cond, Action),
NewEvent) .

/* post_trigger/4: retained for backwards compatibility */
ev_trans_21_30(post_trigger (data, Type, Cond, Action), NewEvent) :-

ev_trans_21_30(post_trigger(data, Type,
(on_write, on_write_replace, on_replace],
Cond, true, Action), NewEvent).

DISH, Exh.'1008, p. 274

DISH, Exh. 1008, p. 275

/* post_trigger/4: retained for backwards compatibility */
ev_trans21_30(post_trigger (event, Type, Cond, Action), NewEvent) :--

ev_trans_21_30(post_trigger(event, Type, [on_receive], Cond, true, Action),
NewEvent) .

ev_trans_21_30(post_trigger (Kind, Recur,OpMask, Template, Test, Action),
ev_post_trigger_update (add, Mode, Condition,NewAction, Params)) :-

(Kind == test -> Mode = task

| Kind == event -> Mode = comm
| Kind == alarm -> Mode = time
| otherwise -> Mode = Kind),
(Recur == whenever ->

Recurrence = [recurrence (whenever)]

| otherwise ->
Recurrence = [recurrence (when)]

),

template_trans_21_30(Kind, Template, Condition),
(var(Test) -> TestParam = [] | otherwise -> TestParam = [test (Test)]),
(Mode == data, ev_trans_21_30(Action, NewAction) -> true
| otherwise -> NewAction = Action),
opmask_trans_21_30(OpMask, OpParam),
(Mode == data ->

oaa_Id(FacId),
Addr = [address (FacId)]

| otherwise ->
Addr = []

),

append([Addr, [reply (none) , reflexive (false)],
Recurrence, TestParam, OpParam], Params).

ev_trans_21_30(post_trigger (KS, Kind, Recur,OpMask,Template,Test,Action),
ev_post_trigger_update (add, Type, Condition,NewAction, Params)) :-

(Kind == test -> Type = task
| Kind == event -> Type = comm
| Kind == alarm -> Type = time
| otherwise -> Type = Kind),
(Recur == whenever ->

Recurrence = recurrence (whenever)

| otherwise ->
Recurrence = recurrence (when)

),

template_trans_21_30(Kind, Template, Condition),
(var(Test) -> TestParam = [] | otherwise -> TestParam = [test (Test)]),
oaa_Id(FacId),
(KS == FacId, ev_trans_21_30(Action, NewAction) -> true
| otherwise -> NewAction = Action),
opmask_trans_21_30(OpMask, OpParam),
append ([[address(KS), reply(none), reflexive(false)],

Recurrence, TestParam, OpParam],
Params) .

params_trans_2130([], []).
params_trans_21_30([Param | Params], [NewParam | NewParams]) :-

(param_trans_21_30(Param, NewParam) ->
true

| otherwise ->
NewParam = Param

),

DISH, Exh. 1008, p. 275

DISH, Exh. 1008, p. 276

params_trans_2130(Params, NewParams) .

param_trans_21_30(cache, cache(true)).
param_trans_21_30(solution_limit(N), solution_limit(N)).
param_trans_21_30(reflexive, reflexive (true)).
param_trans_21_30(address(A), address(NewA)) :-

(islist(A) -> NewA = A | otherwise -> NewA = [A]).
param_trans_21_30(broadcast, reply(none)).
param_trans_21_30(asynchronous, reply (asynchronous)).
% @@DLM: is this handled?:

param_trans_21_30(test(T), test(T)).
param_trans_2130(level_limit(N), level_limit(N)).
param_trans_21_30(time_limit(N), time_limit(N)).
% @@DLM: NOT HANDLED!:

param_trans_21_30(and_parallel, and_parallel).
param_trans_21_30(or_parallel, or_parallel).

SETESSESSELEESEEESEEEEEESEEEEEESEEESEGEEEESEEEEEEEEEEEEGEEEEEEEEEEEEEEEET

% The following could go to or from the facilitator.
EESEESESESEEESEEEEESEETEETESELEEEEEEEEEETESELEEEEEEEEEEEEEEEEEEEEEETES EES

ev_trans_30_21(ev_trace_on, _EvParams, trace_on).
ev_trans_30_21(ev_trace_off, _EvParams, trace_off).
ev_trans_30_21(ev_com_trace_on, _EvParams, tcp_trace_on).
ev_trans_30_21(ev_com_trace_off, _EvParams, tcp_traceoff).
ev_trans_30_21(ev_debug_on, _EvParams, debug_on).
ev_trans_30_21(ev_debug_off, _EvParams, debugoff).
ev_trans_30_21(ev_set_timeout(N), _EvParams, set_timeout(N)).
ev_trans_30_21(ev_halt, _EvParams, halt).

ESESEEEEESEEESEEESESEEEEE SESE EEESEEEEEEEEEESESEEEEEEEEEESESEEEEEEEESEEEESE

% The following are sent only from facilitator to client.
ELESELEEEEEEEEEESEEEEEEEESESSESESEEEEEEESEEEEEEEEEETEEEE EEE EEEEEESEEEEEESE

ev_trans_30_21(
ev_solve(ID, Goal, NewParams),

_EventParams,
solve(ID, Goal, Params)) :-

params_trans_30_21(Params, NewParams) .

ev_trans_30_21(ev_reply_solved(_, Solved, Goal, SolveParams, Solutions),
_EventParams,
solved(FromKS, Goal, SolveParams, Solutions)) :-

(Solved = [FromKS] ->
true

| otherwise ->
FromKS = Solved

).

% OBSOLETE: forget these:
ev_trans_30_21(add_trigger (data, Type, Cond, Action),
ev_trans_30_21(add_trigger (event, Type, Cond, Action)
ev_trans_30_21(add_trigger (test, Type, Cond, Action)
@@DLM: Don't think this is needed:

ev_trans_30_21(inform_ui(TypeInfo, Result),))
dPdPdPdPdP
ev_trans_30_21(

DISH, Exh. 1008, p. 276

DISH, Exh. 1008, p. 277

ev_update_trigger(_ID, add, Type, Condition, Action, TrigParams) ,
_EventParams,
add_trigger(Kind, Recur, OpMask, Template, Test, Action)) :-

Type = task -> Kind == test
Type = comm-> Kind == event

otherwise -> Type = Kind },
memberchk (recurrence (whenever), TrigParams) ->
Recur = whenever

| otherwise ->
Recur = when

),

Template = Condition,
(memberchk (test (Test), TrigParams) -> true | otherwise -> Test =_},
(memberchk(on(OpParam), TrigParams) ->

true

| otherwise ->
OpParam = _

),

opmask_trans_30_21(OpParam, OpMask),
(memberchk (test (Test), TrigParams) -> true | true).

(

|
| Type = time-> Kind == alarm
|
(

paramstrans30_21([], []).
params_trans_3021({Param | Params], [NewParam | NewParams]) :-

(param_trans_30_21(Param, NewParam) ->
true

| otherwise ->
NewParam = Param

),

paramstrans_30_21(Params, NewParams) .

param_trans_30_21(cache(true), cache).
param_trans_30_21(solution_limit(N), solution_limit(N)).
param_trans3021(reflexive (true), reflexive).
% @@DLM: double-check this:

param_trans_30_21 (address (A), address (A)).
param_trans_30_21(reply(none), broadcast).
param_trans_30_21(reply(asynchronous), asynchronous) .
% @@DLM: is this handled?:

param_trans_30_21(test(T), test(T)).
param_trans_30_21(level_limit(N), level_limit(N)).
param_trans_30_21(time_limit(N), time_limit(N)).
% @@DLM: NOT HANDLED! :

param_trans_30_21(and_parallel, and_parallel).
param_trans_30_21(or_parallel, or_parallel).

ESESESEEESEEESSEEEEEESESESEEEEEESEEEETEEEESEEESE SEE EE EEE EEEEESEEEEEEEEEES

% The following are sent only from a pre-3.0 facilitator to a client.
% Backwards compatibility not currently supported.
EEEGEEEEEEEEEEEEEEEESEETEEEEEEE TEESE EEEEEEEEFEEEEESSEEEETEEEEEEEEEEES TEES

% ev_trans2130(solved(FromKS, Goal, SolveParams, Solutions),
% ev_reply_solved([FromKS], Solvers, Goal, SolveParams, Solutions)) :-
% (Solutions == [] ->
% Solvers = []

% | otherwise ->

DISH, Exh. 1008, p. 277

DISH, Exh. 1008, p. 278

Solvers = [FromKS]

),

(memberchk(get_address(FromkKS), SolveParams) ->
true

| otherwise ->
FromKS = unknown

).

oPdPdPdPdPdPdP
SESESEEETESSEEEEEFESEEEEELEEEEEEFLETEEERELESEEEEEEEETESEEEEEVEEESELETEETS

% Auxiliary procedures.
ESSSESESESEEEEEEESESESESEEEEEESESESELEEEEEELELESEEEEELEEEEEEEEEEETEEEEEES

% Returns either a Singleton list or an empty list.
opmask_trans_21_30(OpMask, []) :-

var (OpMask) ,
!.

opmask_trans_21_30(OpMask, OpParam) :-
\+ is_list (OpMask),
ty

opmask_trans_21_30([OpMask], OpParam).
opmask_trans2130(f], {[]).
opmask_trans_21_30([Elt | Rest], [EltTrans | RestTrans]) :-

opmaskelt_trans_21_30(Elt, EltTrans),
‘,

opmask_trans_21_30(Rest, RestTrans).
opmask_trans2130([_Elt | Rest], RestTrans) :-ioa

opmasktrans2130(Rest, RestTrans).
opmask_elt_trans_21_30(on_send, on(send)).
opmask_elt_trans_21_30(on_receive, on(receive)).
opmask_elt_trans_21_30(on_write, on(add)).
opmask_elt_trans_21_30(on_retract, on(remove)).
opmask_elt_trans_2130(on_replace, on(replace)).

' % This one probably doesn't have a precise translation:
opmask_elt_trans_21_30(on_write_replace, on(replace)).

opmask_trans_30_21(OpMask, OpMask) :-
var (OpMask),
I,

opmask_trans_30_21(OpMask, OpParam) :-
\+ is_list (OpMask),
ty

opmask_trans_30_21([OpMask], OpParam) .
opmask_trans_30_21([], []).
opmask_trans_30_21([Elt | Rest], [EltTrans | RestTrans]) :-

opmask_elt_trans_30_21(Elt, EltTrans),
i,

opmask_trans_30_21(Rest, RestTrans) .
opmask_trans30_21({_Elt | Rest], RestTrans) :-

1,

opmask_trans_30_21(Rest, RestTrans).
opmask_elt_trans_30_21(on(send), on_send).
opmask_elt_trans_30_21(on(receive), on_receive).
opmask_elt_trans_30_21(on(add), on_write).
opmask_elt_trans_30_21(on(remove), on_retract).
opmask_elt_trans_30_21(on(replace), on_replace).
% This one probably doesn't have a precise translation:

DISH, Exh. 1008, p. 278

DISH, Exh. 1008, p. 279

opmask_elt_trans_30_21(on(replace), on_write_replace).

templatetrans_21_30 (data,
data(ksdata, [AgentId,Status,Solvables,Name]),
agent_data(AgentId,Status,Solvables,Name)) :-

!.

template_trans_21_30(data, Template, Template) :-
!,

template_trans_2130(event, Template, Condition) :-
!,

ev_trans_21_30(Template, Condition).
templatetrans_21_30(_, Template, Template).

ESEEESEEEESEEEEEEEEEEEEEESSEEESEESEEEEEEEEESEEEEEEEEESEEE ESE TEESE TEE EEEEES

% Event handlers for selected pre-3.0 events.
%

% In these cases, this approach is easier than providing an event
% translation.

SESEEEEESEEEEEEESESESEEEESEEEEESEEEESEEEEESEEEEEEEEEEETEETEEEEEEEEEEEEEEES

oaa_AppDoEvent (register_solvable_goals(GoalList), Params) :-
memberchk(connection_id(Connection), Params),

% This hack inherited from b.pl:
oaa_AppDoEvent (register_solvable_goals(GoalList, Connection),

Params) .

oaa_AppDoEvent (register_solvable_goals(GoalList, Name), Params) :-
memberchk(connection_id(Connection), Params),

update_connected (Connection, [oaa_name(Name)]),
icl_ConvertSolvables(GoalList, Solvables),
oaa_AppDoEvent(ev_register_solvables (add,Solvables,Name, [if_exists (overwri

te)]),
Params) .

oaa_AppDoEvent (can_solve(Goal), EvParams) :-
memberchk (from(KS), EvParams),

findall(SomeKS, choose_ks_for_goal(KS, Goal, _, [], SomeKS, _), AgentList),
oaa_PostEvent (return_can_solve(Goal, AgentList), [address(KS)]).

ESESESELEEEESESEEEEEEEEESEEEE EES

% BB events
EESTESEEEEEEEEEEEEESEEEEESEEEEES

oaa_AppDoEvent (write_bb(ksdata, [Id,Status,Solvables,Name]),
EvParams) :-

| ’

(var(Solvables) ->

% (Surely this never happens.)
oaa:oaa_add_data_local (agent_data(Id,Status,Solvables,Name), [from(Id)])

| otherwise ->
icl_ConvertSolvables(Solvables, FormalSolvables) ,
oaa_AppDoEvent (ev_register_solvables (add, FormalSolvables,Name,

(if_exists (overwrite)]),
{from(Id) | EvParams])

).

oaa_AppDoEvent (write_bb(oaa_version, V), EvParams) :-

DISH, Exh. 1008, p. 279

DISH, Exh. 1008, p. 280

memberchk(from(Id), EvParams),

% oaa:oaa_add_data_local (data(oaa_Version, V), [from(Id)]}),
com_GetInfo(ConnectionId, oaa_id({Id)),
com_AddiInfo(ConnectionId, agent_version(V)).

oaa_AppDoEvent (write_bb(language, Language), EvParams) :-t

memberchk(from(Id), EvParams),

com_GetInfo(ConnectionId, oaa_id(Id)),
com_AddInfo(ConnectionId, agent_language (Language) }) .

oaa_AppDoEvent (write_bb(kshost, Host), EvParams) :-!

memberchk (from(Id), EvParams) ,

oaa:oaa_solve_local(agent_data(Id, _, _, Name), []),
oaa:oaa_add_data_local(agent_host (Id, Name, Host),

[from(Id) | EvParams]).
oaa_AppDoEvent (write_bb(Item, Data), EvParams) :-

,

memberchk (from(Id), EvParams),

oaa:oaa_add_data_local(data(Item, Data), [from(Id)]).

oaa_AppDoEvent (write_once_bb(Item, Data), EvParams) :-
(Item = ksdata ; Item = oaa_version ; Item = language ; Item = kshost),
!,

oaa_AppDoEvent (write_bb(Item, Data), [single_value(true) | EvParams]).
oaa_AppDoEvent (write_once_bb(Item, Data), EvParams) :-

!,

memberchk (from(Id), EvParams),

oaa:oaa_add_data_local(data(Item, Data), [from(Id), single_value(true)]).

oaa_AppDoEvent (write_replace_bb(Item, Data), EvParams) :-
(Item = ksdata ; Item = oaa_version ; Item = language ; Item = kshost),
!,

oaa_AppDoEvent (write_bb(Item, Data), [unique_values(true) | EvParams]).
oaa_AppDoEvent (write_replace_bb(Item, Data), EvParams) :-

!,

memberchk(from(Id), EvParams),

oaa:oaa_add_data_local(data(Item, Data), [from(Id), unique_values(true)]).

oaa_AppDoEvent (replace_bb(ksdata, [A,open,C,Name], [A,ready,C,Name]),
EvParams) :-

la

oaa_AppDoEvent (ev_ready (Name), EvParams) .
oaa_AppDoEvent (replace_bb(ksdata, [Id,Status,Solvables,Name] ,

(NewId, NewStatus,NewSolvables,NewName]),
EvParams) :-

| t

(var(NewSolvables) ->

oaa:oaa_replace_data_local (agent_data(Id,Status,Solvables,Name),
(from(Id), with (agent_data (Newld, NewStatus, NewSolvables, NewName))])

| otherwise ->
' icl_ConvertSolvables (NewSolvables, FormalSolvables) ,

oaa_AppDoEvent (ev_register_solvables (add, FormalSolvables, NewName,
{if_exists (overwrite)]),

{from(NewId) | EvParams])
).

oaa_AppDoEvent (replace_bb(Item, OldData, NewData), EvParams) :-

DISH, Exh. 1008, p. 280

DISH, Exh. 1008, p. 281

!,

memberchk(from(Id), EvParams),

oaa:oaa_replace_data_local(data(Item, OldData),
{from(Id), with(data(Item, NewData))]).

% @@DLM: May need more special-purpose clauses starting here:
oaa_AppDoEvent (retract_bb(Item, Data), EvParams) :-{v4

memberchk (from(Id), EvParams) ,

Oaa:oaa_remove_data_local(data(Item, Data), (from(Id)]).

oaa_AppDoEvent (read_bb(ksdata, [AgentId, Status, Solvables,Name]), EvParams) :-{

memberchk (from(Id), EvParams),

findall (read_bb(ksdata, [AgentId,Status,Solvables,Name]),
oaa:oaa_solve_local (agent_data (AgentId,Status,Solvables,Name), []),
Solutions),

oaa_simplify_ksdata(Solutions, Simplified),
oaa_PostEvent (return_read_bb(Simplified), [address (Id)]).

oaa_AppDoEvent (read_bb(KS,kshost,Host), EvParams) :-|

memberchk(from(Id), EvParams) ,

findall(read_bb(KS, kshost, Host),
oaa:oaa_solve_local(agent_host(KS,_,Host), []),
Solutions),

oaa_PostEvent (return_read_bb(Solutions), [address(Id)]).
oaa_AppDoEvent (read_bb(oaa_version,V), EvParams) :-1

memberchk(from(Id), EvParams),
% Not sure if this works (but this clause is probably never called):
findall (read_bb(oaa_version, V),

(com_GetInfo(ConnectionId, oaa_id(_)),
com_GetInfo(ConnectionId, agent_version(v))),

Solutions),

oaa_PostEvent (return_read_bb(Solutions), faddress(Id)}]).

oaa_AppDoEvent (read_bb(KS,oaa_version,V), EvParams) :-t

memberchk (from(Id), EvParams),

findall(read_bb(KS, oaa_version, V),
(com_GetInfo(ConnectionId, oaa_id(KS)),
comGetInfo(ConnectionId, agent_version(V))),

Solutions),

oaa_PostEvent (return_read_bb(Solutions), [address(Id)]).
oaa_AppDoEvent (read_bb(Item,Data), EvParams):-I

memberchk(from(Id), EvParams),

findall(read_bb(Item, Data),
Oaa:oaa_solve_local(data(Item, Data), []),
Solutions),

oaa_PostEvent (return_read_bb(Solutions), [faddress(Id)]).
% @@The owner parameter isn't implemented yet for solve!

oaa_AppDoEvent(read_bb(_KS, Item,Data), EvParams) :-t

memberchk (from(Id), EvParams) ,

findall (read_bb(Item, Data),
oaa:oaa_solve_local(data(Item, Data), []),

DISH, Exh. 1008, p. 281

DISH, Exh. 1008, p. 282

Solutions),

oaa_PostEvent (return_read_bb(Solutions), [address(Id)]).

oaa_simplify_ksdata({], []).
oaa_simplify_ksdata((KSData | Rest], [Simplified | RestSimp]) :-

KSData = read_bb(ksdata, [A, B, Solvables, D]),
icl_ConvertSolvables(SimplifiedSolvables, Solvables),
Simplified = read_bb(ksdata, [A, B, SimplifiedSolvables, D)),
oaa_simplify_ksdata (Rest, RestSimp).

10

DISH, Exh. 1008, p. 282

DISH, Exh. 1008, p. 283

iiSoFeSaPeeeeid
BASES

nr

IN THE _.
puter-implemented method for communication and cooperative task

completion among a plurality of distributed electronic agents, comprising the

acts of:

registering a desciiption ofeachactive client agent's functional capabilities, using an

expandable; latform-independent, inter-agent language;

receiving a request fok service as a base goal in the inter-agent language,in the form

of an arbitrarily Somplex goal expression; and

dynamically interpreting the goal expression,said act of interpreting further

comprising:

generating one or madre sub-goals using the inter-agent language; and

dispatching each ofthe sub-goals to a selected client agent for performance,
based on a match between the sub-goal being dispatched and the

registered functional capabilities of the selected client agent.

2. A computer-implemented methodasrecited in claim 1, further including the

followingactsof:

receiving a new requestfor service asabase goal using the inter-agentlanguage, in
the form of anotherarbitrarily complex goal expression,from at least one of

the selected client agents in response to the sub-goal dispatchedto said agent;

and

recursively applying the last step of claim 1 in order to perform the new request for
service.

3. A computer implemented method\as recited in claim 2 wherein the act

of registering a specific agent further includes:

invoking the specific agentin order to activate the specific agent,

instantiating an ingtance of the specific agent,

transmitting the few agent profile from the specific agent to the facilitator

agent in responseto the jnstantiation of the specific agent.

4. A computer implemented method as recited in claim 1! further

including the act of deactivating a specific client agent no longer available to provide

services by deleting tHe registration of the specific client agent.

5. A computer implemented method as recited in claim 1 further

comprising the act of providing an agentregistry data structure.

Attorney Docket No: SRI1P016(3477/BRC/EWJ DISH, ERakdh pias

DISH, Exh. 1008, p. 284

6. A coimputer implemented] method as recited6... 5 wherein the
2 agentregistry data structure includes at least one symbolic namefor eachactive agent.

1 7. A computer implemented} method asrecited in claim 5 wherein the

2 agent registry data structure includes a least one data declaration for each active
3 agent.

l 8. A computer impleme ed method as recited in claim 5 wherein the

t 2 agent registry data structure includgs at least one trigger declaration for one active
3 agent.

1 9. A computer implemented methodas recited in claim 5 wherein the

2 agent registry data structure infludes at least one task declaration, and process
3 characteristics for each active agent.

1 10. A computer implemented method as recited in claim 5 wherein the

2 agent registry data structure includes at least one process characteristic for each active
nl Ww agent.
 11. A computer /implemented method as recited in claim 1 furtherAi |ga

“tt N comprising the act of establishing communication betweenthe plurality of distributed
seatafsiteet

SC!eeet
3 agents.

1 12. A computér implemented method as recited in claim 1 further

2 comprising the acts of:

3 receiving a requést for service in a second language differing from the inter-

4 agent language;

5 selecting a regjstered agent capable of converting the second languageinto the
t

7”Eai
6 inter-agent language? and

7 forwarding fhe request for service in a secondlanguageto the registered agent

8 capable of converting the second language into the inter-agent language, implicitly
9 requesting that such a conversion be performedandtheresults returned.

computer implemented methodasrecited in claim 12 wherein the

l 13.

2 request includgs a natural language query, and the registered agent capable of
3 converting th¢ second language into the inter-agent language service is a natural

4_language agent.

l 14./A computer implemented methodas recited in claim 13 wherein the

2 natural language query was generated by a user interface agent.

Attorney Docket No: SRIIP016(3477/BRC/EWJ DISH, ExRa#@0$7 poP59

DISH, Exh. 1008, p. 285

1 15. A.. implemented methodasrecited «3 1, wherein the
2 base goal requires setting a trigger having cgnditional functionality and consequential

3 functionality.

1 16.|A computer implemented /method as recited in claim 15 wherein the

2 trigger is an outgoing communications/trigger, the computer implemented method
3 further includingtheactsof:

4 monitoring all outgoing commynication events in order to determine whether a

specific outgoing communication event has occurred; and

6 in response to the occurrencg ofthe specific outgoing communication event,

7 performing the particular action defined by the trigger.
I 17. A computer implemgnted method asrecited in claim 15 wherein the

2 trigger is an incoming communicdtionstrigger, the computer implemented method

3 further including theacts of:

4 monitoring all incoming communication events in order to determine whether

5 aspecific incoming communicatjon event has occurred; and
st ence of a specific incoming communication event

ie 6 in response to the occ

is 7 satisfying the trigger conflitional functionality, performing the particular

a 8 consequential functionality defined by the trigger.
a 1 18 A computer iynplemented methodasrecited in claim 15 wherein the
is 2 trigger is a data trigger, the komputer implemented method further including the acts
3 3 of:
Ls 4 monitoring a state of a data repository; and

5 in response to a particular state eventsatisfying the trigger conditional

6 functionality, performing the particular consequential functionality defined by the

7 trigger.

1 19. A computer implemented method as recited in claim 15 wherein the

2 trigger is a time trigger, the computer implemented method further including the acts
3 Of:

4 monitoring for the occurrence of a particular time condition; and

5 in responge to the occurrence ofa particular time condition satisfying the

6 trigger conditiogal functionality, performing the particular consequential functionality
7 defined by the frigger.

A computer implemented method as recited in claim 15 wherein the

w trigger is installed and executed within the facilitator agent.

Attorney Docket No: SRIIP016(3477)/BRC/EWJ DISH, EPadodg pfs

DISH, Exh. 1008, p. 286

es
elfi
igenes ceed122
+c

iu1 1

ITas
tf
=

iuaS

21. A &.. implemeftted methodas recited @.. 15 wherein the
triggeris installed and executed withina first service-providing agent.

22. A computer implemented methodasrecited in claim 15 wherein the

conditional functionality of the trigger is installed on a facilitator agent.

23.|Acomputer implémented methodasrecited in claim 22 wherein the

consequential functionality is installed on a specific service-providing agent other

than a facilitator agent.

24.|A computef implemented methodas recited in claim 15 wherein the

conditional functionality/of the trigger is installed on a specific service-providing

agentother thanafacilitator agent.

ter implemented methodas recited in claim 15 wherein the

consequential functiopiality of the trigger is installed on a facilitator agent.
26. A computer implemented method as recited in claim | wherein the

base goal is a comppund goal having sub-goals separated by operators.

27. A cbmputer implemented methodasrecited in claim 26 wherein the

type of available/operators includes a conjunction operator, a disjunction operator,
and a conditionay execution operator.

Attorney Docket No: SRI! P016(3477)/BRC/EW] DISH, ERagtod9, of2%

DISH, Exh. 1008, p. 287

3 -

SiSeSeeeey
i

aplemented methodas recited in claim 27 wherein the type

1 28.|Acomputeri

2 of available operators further includesaparallel disjunction operator that indicates that

3 disjunctgoals are to be performedbydifferent agents.

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 50 of 59

DISH, Exh. 1008, p. 287

DISH, Exh. 1008, p. 288

(ATSGSheeah
Hi

ABEy

stored on a compuco medium, the2» A 2. progr.
computer program executable to /facilitate cooperative task completion within a

distributed computing environment, the distributed computing environment including>

a plurality of autonomous electronic agents, the distributed computing environment

‘ supporting an Interagent Communication Language, the computer program
comprising computer executable Anstructionsfor:

providing an agent regjstry that declares capabilities of service-providing

electronic agents currently active within the distributed computing environment;

interpreting a service r¢quest in order to determine a base goal that may be a

compound, arbitrarily complex base goal, the service request adhering to an

Interagent Communication Language (ICL), the act of interpreting including the sub-
actsof:

determining ahy task completion advice provided by the base goal, and

determining dny task completion constraints provided by the base goal;

constructing a base goal satisfaction plan including the sub-actsof:

determining whetherthe requested service is available,

determining sub-goals required in completing the base goal,

selecting Service-providing electronic agents from the agentregistry

suitable for performing the determined sub-goals, and

a delegation of sub-goal requests to best complete the

requested service; and

implementing the base goalsatisfaction plan.

30. A cgmputer program as recited in claim 29 wherein the computer

executable instruction for providing an agent registry includes the following computer

executable instru¢tions for registering a specific service-providing electronic agent

into the agentregistry:

establishing a bi-directional communicationslink between the specific agent

and a facilitato# agent controlling the agentregistry; |
providing a new agentprofile to the facilitator agent, the new agentprofile

defining publicly available capabilities of the specific agent; and

registering the specific agent together with the new agent profile within the

agent registyy, thereby making available to the facilitator agent the capabilities of the

specific agent.

Attorney Docket No: SRI1P016(3477VBRC/EWJ DISH, ExPad608) po R59

DISH, Exh. 1008, p. 289

1 31. A 8. program as fecited in claim @... the computer
2 executable instruction for registering a specific agent further includes:

3 invoking the specific agentin order to activate the specific agent,

4 instantiating an instance of the specific agent; and

5 transmitting the new agent profjle from the specific agent to the facilitator

6 agent in responseto the instantiation of fhe specific agent.

1 32. A computer program 4s recited in claim 29 wherein the computer

agent registry includes a computer executable

2 executable instruction for providing

3. instruction for removing a specifig service-providing electronic agent from the

4 registry upon determining that the $pecific agent is no longer available to provide

5 services.

1 33.|A computer programasrecited in claim 29 wherein the provided agent

2 registry includes a symbolic name, a unique address, data declarations, trigger

declarations, task declarations, and process characteristics for each active agent.Ec Ww

34. A computer progrgm asrecited in claim 29 further including computeralea
2 executable instructions for receiWVing the service request via a communications link
3. established with a client.

1 35. A computer program as recited in claim 29 wherein the computer

executable instruction for providing a service request includes instructionsfor:2

3 receiving a non-ICL fofmat service request;

4 selecting an active agent capable of converting the non-ICL formal service

ze

aFdi
Pa

&
=goa
tT

=

r t

5 request into an ICL format s¢rvice request;o

6 forwarding the non-ACL format service request to the active agent capable of

7 converting the non-ICL format service request, together with a request that such

8 conversion be performed;/and

9 receiving an ICL/format service request corresponding to the non-ICL format

10 service request.

1 36. A computer program as recited in claim 35 wherein the non-ICL

2 format service reques{ includes a natural language query, and the active agent capable

3 of converting the no#-ICL formal service request into an ICL formatservice requestis

4 anatural language agent.

1 37. A ¢omputer program as recited in claim 36 wherein the natural

2 language query ig generated bya userinterface agent.

Attorney Docket No: SRIIP016(3477VBRC/EW] DISH, Ppgpel S98op.A89

DISH, Exh. 1008, p. 290

1 38. A e. program as r¢cited in claim 29, Me computer program
2 further including computer executable instructions for implementing a base goal that

3 ‘requiressetting a trigger having conditional and consequential functionality.

1 39. A computer program as fecited in claim 38 wherein the trigger is an

2 outgoing communications trigger, the/computer program further including computer

3 executable instructions for:

4 monitoring all outgoing communication events in order to determine whether a

5 specific outgoing communication ¢vent has occurred; and

6 in response to the occurrfénce of the specific outgoing communication event,

7 performingthe particular action/defined bythetrigger. °

l 40.|A computer program asrecited in claim 38 wherein the trigger is an

2 incoming communicationstrigger, the computer program further including computer

3. executable instructionsfor:

4 monitoring all incomigg communication events in order to determine whether

5 aspecific incoming communication event has occurred; and

6 in response to the ogcurrence of the specific incoming communication event,
7 performingthe particular action defined bythetrigger.

1 41. A computer/program asrecited in claim 38 wherein the trigger is a data
- 2 trigger, the computer program further including computer executable instructionsfor:
a 3 monitoring a state/of a data repository; and
= 4 in responseto a particular state event, performing the particular action defined

5 bythetrigger.
1 42. A computer program as recited in claim 38 wherein the trigger is a

2 time trigger, the computer program further including computer executable instructions

3. for:

4.) monitoring for the occurrence ofa particular time condition; and

5 in resporse to the occurrence of the particular time condition, performing the

6 particular actiof defined bythetrigger.

1 43. /A computer program as recited in claim 38 further including computer

2 executable ipstructions for installing and executing the trigger within the facilitator

A computer program asrecited in claim 38 further including computer

instructions for installing and executing the trigger within a first service-

3 providing agent.

Attorney Docket No: SRI1P016(3477WBRC/EWJ DISH Fede SAG55G90

DISH, Exh. 1008, p. 291

x"NY

th

felEy
ame ARSaw

feSSey

recited in claim 29 @including computer
compound goals having sub-goals separated

45. A..program
executable instructions for interpreti

by operators.

-46. A computer progran/ as recited in claim 45 wherein the type of

available operators includes a conjunction operator, a disjunction operator, and a
conditional execution operator.

47. A computer prog as recited in claim 46 wherein the type of

available operators further inclufles a parallel disjunction operatorthat indicates that

disjunct goals are to be performed bydifferent agents.

48. Ak Interagent

facilitated cooperative task gompletion within a distributed computing environment

ommunication Language (ICL) providing a basis for

havingafacilitator agent and a plurality of autonomous service-providing electronic
agents, the ICL enabling jagents to perform queries of other agents, exchange
information with other \agents, set triggers within other agents, an ICL syntax

supporting compound gogl expressions such that goals within a single request
provided according to the /ICL syntax may be coupled by a conjunctive operator, a
disjunctive operator, a cpnditional execution operator, and a parallel disjunctive
operator parallel disjunctive Operator that indicates that disjunct goals are to be
performed by different agents.

49. An ICL4srecited in claim 48, wherein the ICL is computer platform

independent.

50. AnIC

computer programming languages which the plurality of agents are programmedin.

as recited in claim 48 wherein the ICL is independent of

51. An ICL asrecited in claim 48 wherein the ICL syntax supports explicit

task completion constraints within goal expressions.
52. An ICL as recited in claim 51 wherein possible types of task

completion constrdints include use of specific agent constraints and response time
constraints.

53.|AnJCLas recited inclaim 51 wherein the ICL syntax supports explicit

task completion advisory suggestions within goal expressions.
54. n ICL asrecited in claim 48 wherein the ICL syntax supports explicit

task completiog advisory suggestions within goal expressions.

Attorney Docket No: SRH P016(3477)/BRC/EWJ DISH, E#adeds} {259

DISH, Exh. 1008, p. 292

4

1 55. An 2. recited in claim/48 wherein eacfautonomous service-
2 providing electronic agent defines and publishes a set of capability declarations or
3 solvables, expressed in ICL, that describes services provided by such electronic agent.

I 56.|AnJICL as recited in claim $5 wherein an electronic agent’s solvables

2 define an interface for the electronic agent,

l 57. An ICL as recited in claim 56 wherein the facilitator agent maintains

2 anagent registry making available a plu ality of electronic agent interfaces.
I 58.|An ICL asrecited in claim 57 wherein the possible types of solvables

2 includes procedure solvables, a procedure solvable operable to implementa procedure

3 such as a test or an action.

i 59. An ICL as recited jn claim 58 wherein the possible types of solvables

2 further includes data solvables,/a data solvable operable to provide access to a

3 collection ofdata.

1 60. AnICLasrecitdd in claim 58 wherein the possible types of solvables

2 includes data solvables, a datq solvable operable to provide access to a collection of

3 data.

1 IO A facilitator
2 within a distributed computihg environmenthaving a plurality of autonomousservice-

ent arranged to coordinate cooperative task completion

3 providing electronic agents the facilitator agent comprising:

4 an agent registry/that declares capabilities of service-providing electronic

agents currently active within the distributed computing environment; and 5

6 a facilitating engine operable to parse a service requestin orderto interpret a

7 compoundgoalset forththerein, the compoundgoalincludingboth local and global

8 constraints and contrp] parameters,the service request formed according to an

9 Interagent Communication Language (ICL), the facilitating engine further operable to

10 construct a goal satisfaction plan specifying the coordinationof a suitable delegation

11 of sub-goal requeSts to complete the requested service satisfying both the local and

12 global constrainjs and control parameters.

1 62. facilitator agent as recited in claim 61, wherein the facilitating

2 engine is capable of modifying the goal satisfaction plan during execution, the
3 modifying initiated by events such as new agent declarations within the agent registry,

4 decisions made by remote agents, and information provided to the facilitating engine

5 by remote/agents.

Docket No: SRI1P016(3477)/BRC/EWJ DISH, EPadO6S pfB2

DISH, Exh. 1008, p. 293

ty

1 63. A 2. agent as recited in claim 61 whef€in the agent registry
 2 includes a symbolic name, a unique address, data declarations, trigger declarations,

3 task declarations, and process characteristics for each active agent.

l 64. A facilitator agent as recited in claim 61 wherein the facilitating engine

2 is operable to install a trigger mechanism requesting that a certain action be taken
3 when acertain set of conditionsare njet.

I 65. A facilitator agent fas recited in claim 64 wherein the trigger

2 mechanism is a communication trigger that monitors communication events and

3 performsthe certain action when a certain communication event occurs.

1 66. -A facilitator agent/ as recited in claim 64 wherein the trigger

2 mechanismis a data trigger that mpnitors a state of a data repository and performsthe

3 certain action whenacertain data state is obtained. |
1 67. A facilitator agentjas recited in claim 66 wherein the data repository is

2 local to the facilitator agent.

 l 68. A facilitator agent as recited in claim 66 wherein the data repository is

ru 2 remote from the facilitator agent
ts 1 69. A facilitator agent as recited in claim 64 wherein the trigger
ie 2 mechanismisatasktrigger having a set of conditions.
= I 70. A facilitator aggnt as recited in claim 61, the facilitator agent further
= 2 including a global database faccessible to at least one of the service-providing
= 3 electronic agents. .
o 1 i. A software-baged, flexible computer architecture for communication
2Fl

2 and cooperation among distributedelectronic agents, the architecture contemplating a

3 distributed computing system comprising:

4 a plurality of service}providing electronic agents; and

5 a facilitator agent jin bi-directional communications with the plurality of

6—service-providing electroni¢ agents, the facilitator agent including:

7 an agent registry that declares capabilities of service-providing

8 electronic agents furrently active within the distributed computing

9 environment;

10 a facilitating engine operable to parse a service requestin order

lt to interpret an arbitrarily complex goal set forth therein,the facilitating

12 engine further operable to construct a goal satisfaction plan including

Attorney Docket No: SRIIP016(3477/BRC/EWJ DISH, ERag@086, of 598

DISH, Exh. 1008, p. 294

——~

eaASaeelelSySH
“i

iani

aeted|4

stk

ey

fthe comaof a suitable delegation of sub-goal r
complete the requestedservice.

uests to best

72. A computer architecture fs recited in claim 71, wherein the basis for

the computer architect is an Interagent Communication Language (ICL) enabling

agents to perform queries of other agents, exchange information with other agents,

and set triggers within other agents, the ICL further defined by an ICL syntax

supporting compound goal expressions such that goals within a single request

provided according to the ICL syntax jmay be coupled by a conjunctive operator, a
disjunctive operator, a conditional execution operator, and a parallel disjunctive

operator parallel disjunctive operatoy that indicates that disjunct goals are to be

performedbydifferent agents.

73. A computer architecture .as recited in claim 72, wherein the ICL is

computer platform independent.

74. A computer architectpre as recited in claim 73 wherein the ICL is

independent of computer programmjng languages in which the plurality of agents are

programmed.

75.|Acomputer architecture as recited in claim 73 wherein the ICL syntax

supports explicit task completion gonstraints within goal expressions. |
76.|A computerarchitgcture as recited in claim 75 wherein possible types

of task completion constraints intlude use of specific agent constraints and response

time constraints.

77. A computerarchjtecture as recited in claim 75 wherein the ICL syntax

supports explicit task completign advisory suggestions within goal expressions.
itecture as recited in claim 73 wherein the ICL syntax

supports explicit task completion advisory suggestions within goal expressions.

79. A computer/ architecture as recited in claim 73 wherein each

autonomous service-providing electronic agent defines and publishes a set of

capability declarations oy solvables, expressed in ICL, that describes services

provided by suchelectronif agent.

80. A computdr architecture as recited in claim 79 wherein an electronic

agent’s solvables define an interface for the electronic agent.

81. A computerarchitecture as recited in claim 80 wherein the possible

types of solvables inc\udes procedure solvables, a procedure solvable operable to

implementa procedur¢ such asatestor an action.

Attorney Docket No: SRI1P016(3477)/BRC/EW]J DISH, PedQBof.294

DISH, Exh. 1008, p. 295

alSO!Seeeeeah

webd

82. A computer architectureajrecited in claim 81 wherein the possible

types of solvables further includes data solvables, a data solvable operable to provide

access to a collection of data.

83.|Acomputer architecture as recited in claim 82 wherein the possible
types of solvablesincliides a data solvable operable to provide access

of data.

to modify a collecti

84.- cture as recited in claim 71 wherein the planning

componentofth¢ facilitating engine are distributed acrossat least two

computer procdsses.

85.|Acomputey drchitectureas recited in claim 71 wherein the execution

component$fthe facilitating engine is distributed acrossat least two

computerprocesses.

BO A data wae carNerproviding a transport mechanism for information
communication in a distributed computing environmenthavingatleast onefacilitator

agentandatleast one dctive client agent, the data wave carrier comprisinga signal

representation of an ifter-agent language description of an active client agent's

functional capabilitjes.

87. A data wave carrier as recited in claim 85, the data wavecarrier further

comprising a sighal representation of a requestfor service in the inter-agent language

from a first aggnt to a second agent.

88. claim 85, the data wave carrier furtherA data wavecarrier as recited i

comprisingdsignal representation of a goal dispatched to an agent for performance

from a facijitator agent.

A data wavecarrier as recited in clairh 88 whereinalater state of the

carrier comprisesa signal representation o se" to the dispatched
goal ingludingresults and/ora status report from the agent for performanceto the

facilitator agent.

Attornev Docket No: SRI1P016(3477/BRC/EWJ DISH, Efag§8 Bf3
oa

DISH, Exh. 1008, p. 296

Software-Basea@=tchitecture for Communication and Cooperation Among

Distributed Electronic Agents

ABSTRACT

5 A highly flexible, software-based architecture is disclosed for constructing

distributed systems. The architecture supports cooperative task completion by

flexible, dynamic configurations of autonomouselectronic agents. Communication

and cooperation between agents are brokered by one or morefacilitators, which are

responsible for matching requests, from users and agents, with descriptionsof the

10 capabilities of other agents.It is not generally required that a user or agent know the

identities, locations, or numberof other agents involvedin satisfying a request, and

relatively minimaleffort is involved in incorporating new agents and “wrapping”iRod=

legacy applications. Extremeflexibility is achieved throughanarchitecture organized
around the declaration of capabilities by service-providing agents, the construction of

ant it

arbitrarily complex goals by users and service-requesting agents, andtherole of“DPenella — ws

facilitators in delegating and coordinating the satisfaction of these goals, subject topl1°

i advice and constraints that may accompany them. Additional mechanisms and
a features includefacilities for creating and maintaining shared repositories of data; the
5 use oftriggers to instantiate commitments within and betweenagents; agent-based
a 20 provision of multi-modaluser interfaces, including natural language; andbuilt-in

support for includingthe useras a privileged member ofthe agent community.

Specialized embodiments providing enhanced scalability are also described.

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 59 of 59
DISH, Exh. 1008, p. 296

DISH, Exh. 1008, p. 297

ee

\ DECLA TION AND POWEROF ATR2RNEY

- FOR ORIGINAL U.S. PATENT APPLICATION
Attomey’s Docket No. SRUPO1 6 _.

As a below-namedinventor, I hereby declare that:

Myresidence,post office address and citizenship are as stated below next to my name.

I believe that I am the original, first and sole inventor (if only one nameis listed below) or an original, first and joint inventor(if
plural namesare listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
SOFTWARE-BASED ARCHITECTURE FOR COMMUNICATION AND COOPERATION AMONG_DISTRIBUTED

ELECTRONIC AGENTS,the specification of which is attached hereto.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as
amended by any amendmentreferred to above.

I acknowledgethe duty to disclose information which is material to the examination of this application in accordance with Title
37, CFR § 1.56. YMFitbaleenUU
AndI hereby appoint the law firm of Hickman including Paul L. Hickman (Reg. No. 28, 516); L. Keith Stephens
(Reg. No. 32,632); Brian R. Coleman (Reg. No. 39,145); Dawn L. Palmer (Reg. No. 41,238); Jerray Wei (Reg. No. 43,247);

== and Ian L. Cartier (Reg. No. 38,406) as my principal attorneys to prosecute this application and to transact all business in the

a Patent and Trademark Office connected therewith:
fu
ri Send Correspondence To: Brian R. Coleman
iF HICKMAN STEPHENS & COLEMAN, LLP
oe P.O. BOX 52037
fe Palo Alto, California 94303-0746
Hp -

Direct Telephone Calls To: Brian R. Colemanat telephone number (650) 470-7430a
I hereby declare that all statements made herein of my own knowledgeare true and that all statements made on information and
belief are believed to be true; and further that these statements were made with the knowledgethat willful false statements and the
like so madeare punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that
such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Sole or First Inventor: Adam J. Cheyer Citizenship: { / >

Inventor’s signature: { evon iY _{ debe — Date of Signature:__/ 15 LAA
Residence: (City) AIO (State/Country)

754 Ceres a) CA 30

P

hay&
Typewritten Full Name of

Post Office Address:

Typewritten Full Name of U SDavid L. Martin Citizenship:] |Second Inventor:

Inventor’s signature:(Jew({ J Nj Dn. Date of Signature:_! /S/ G9
Residence: (City) S Gv he Clara (State/Country) CA

lo7 CRoven OR, Sanka Clave CA G5051Post Office Address:

DISH, Exh. 1008, p. 297

DISH, Exh. 1008, p. 298

TOTAL CLAIMS

INDEPENDENT CLAIMS

CLAIMS AS FILED - PART!
Column1

 minus 20=

minus 3 =

MULTIPLE DEPENDENT CLAIM PRESENT

PATENTAPPLICATION FEE DETERMINATION RECORD

Effective November 10, 1998

Column 2

NUMBERFILED NUMBER EXTRA

*If the difference in column 1 is less than zero, enter “0” in column 2

AMENDMENTB

AMENDMENTC

CLAIMS AS AMENDED- PARTIl

Column 1 Column 2
LAIM HIGHEST

REMAINING NUMBER
AFTER PREVIOUSLY

AMENDMENT PAID FOR

)

independent
VYrEo

j=SO|
pS

‘Column 3

PRESENT

 FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

REMAINING
R

AMENDMENT

Independent
ve

Column 2
HIGHEST
NUMBER

PREVIOUSLY
PAID FOR

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

Column 3

PRESENT
EXTRA

Column 1
CLAIMS

REMAINING
AFTER

AMENDMENT

Independent

Column 2
HIGHEST
NUMBER

PREVIOUSLY
PAID FOR

[fi
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

Column 3

PRESENT

* ifthe entry in column 1 is less than the entry in column2, write "0" in column 3.
“Hth “Highest Number Previously Paid For” IN THIS SPACEis less than 20,enter °20.°
“itth “Highest Number Previously Paid F r° IN THIS SPACEis less than 3, enter °3."

The “Highest Number Previously Paid For" (Tota! or Independent)is the highest number found in th appropriate box in column 1.

(Rev. 68)

nA

OoDiPAL

S &? e
~?

%P

g

2|<

e 9

Adodejqnylonyjseg

DISH, Exh. 1008, p. 299

tb 20

PATENT APPLICATION SERIAL NO..

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

01/19/1999 MVILLARI 00000027 500384 09225198

O1 FC3101 760.00 CH
~ 02 FC2102 234.00

03 FCs103 1242.00 CH

PTO-1556

(5/87)

DISH, Exh. 1008, p. 299

DISH, Exh. 1008, p. 300

ARTIFACT SHEET

Enter artifact number below. Artifact numberis application number +
artifact type code (see list below) + sequential letter (A, B, C ...). The first
artifact folder for an artifact type receives the letter A, the secondB,etc..
Examples: 59123456PA, 59123456PB, 59123456ZA, 59123456ZB

225 —
Indicate quantity of a single type ofartifact received but not scanned. Create
individual artifact folder/box and artifact numberfor each Artifact Type.

CD(s) containing: 7]
computer program listing
Doc Code: Computer Artifact Type Code: P

pages of specification
and/or sequencelisting [|
and/or table

Doc Code: Artifact Artifac e Code: Scontent unspecified or combined Pe
Doc Code: Artifact . Artifact Type Code: U

Stapled Set(s) Color Documents or B/W Photographs
Doc Code: Artifact Artifact Type Code: C

Microfilm(s)
Doc Code: Artifact Artifact Type Code: F

Video tape(s)
Doc Code:Artifact Artifact Type Code: V

Model(s) :
Doc Code: Artifact Artifact Type Code: M ©

Bound Document(s)
Doc Code: Artifact Artifact Type Code: B

Confidential Information Disclosure Statement or Other Documents

markedProprietary, Trade Secrets, Subject to Protective Order,
Material Submitted under MPEP 724.02,etc.

Doc Code: Artifact Artifact Type Code X

Other, description:
Doc Code: Artifact Artifact Type Code: Z

PFEFLLIL
March 8, 2004

DISH, Exh. 1008, p. 300

DISH, Exh. 1008, p. 301

ARTIFACT SHEET

Enter artifact number below. Artifact numberis application number +
artifact type code(see list below) + sequential letter (A, B, C ...). The first
artifact folder for an artifact type receives the letter A, the secondB,etc..

Examples: 59123456PA gSOre. 59123456ZA, 59123456ZBO71 225)90 :
Indicate quantity of a single type ofartifact received but not scanned. Create
individual artifact folder/box and artifact numberfor each Artifact Type.

CD(s) containing: 7
computer program listing
Doc Code: Computer Artifact Type Code: P
pagesof specification
and/or sequencelisting [|
and/or table
Doc Code: Artifact Artifac e Code: Scontent unspecified or combined PP
Doc Code: Artifact _ Artifact Type Code: U

Stapled Set(s) Color Documents or B/W Photographs
Doc Code: Artifact Artifact Type Code: C

Microfilm(s)
Doc Code: Artifact Artifact Type Code: F

Video tape(s)
Doc Code: Artifact Artifact Type Code: V

Model(s)
Doc Code: Artifact Artifact Type Code: M

Bound Document(s)
Doc Code: Artifact Artifact Type Code: B

Confidential Information Disclosure Statement or Other Documents

marked Proprietary, Trade Secrets, Subject to Protective Order,
Material Submitted under MPEP 724.02,etc.

Doc Code: Artifact Artifact Type Code X

Other, description:
Doc Code: Artifact Artifact Type Code: Z

JOOOOOO
March 8, 2004

DISH, Exh. 1008, p. 301

DISH, Exh. 1008, p. 302

Ch USS
© s ws

, - PATENT a
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of:
Group: 2755

Cheyeretal.
Examiner: Unassigned

Application No.: 09/225,198
. Atty. Docket No.: SRI1P016

Filed: January 5, 1999
- Date: May 11, 1999

RECEIVED

MAY 2 0 1999

Groun 2700

For: SOFTWARE-BASED ARCHITECTURE

FOR COMMUNICATION AND COOPERATION

AMONGDISTRIBUTED ELECTRONIC

AGENTS

NoweNeNeNeee”NeeNeneeeeeee”Ne”
CERTIFICATE OF MAILING

I hereby certify that this correspondenceis being deposited with the
United States Postal Service as First Class Mail in an envelope
addressed to: Assistant Commissioner for Patents, Washington, DC

— 20231 on May 11, 1999 :

Signed:
J asudevan

INFORMATION DISCLOSURE STATEMENT
UNDER37 CFR §§1.56 AND 1.97(c)

Assistant Commissioner for Patents

Washington, DC 20231

Dear Sir:

The references listed in the attached PTO Form 1449, copies of whichare attached,

maybe material to examination of the above-identified patent application. Applicants submit

these references in compliance with their duty of disclosure pursuant to 37 CFR §§1.56 and

1.97. The Examineris requested to make these references ofofficial record in this ;

application.

Reference No. R on Page 4 of PTO form 1449 contains documents downloaded from

a web site owned by Dejima,Inc. at http://www.dejima.com on April 29, 1999 and March 18,

1999. The applicant makes no representation that this web site has not changed between the

dates of downloadingor that this web site will not change in the future.

This Information Disclosure Statementis not to be construed as a representation that a

search has been made,that additional information material to the examination ofthis

application does not exist, or that these references indeed constitute priorart.

Attny Dkt No. SRI1P016 1

DISH, Exh. 1008, p. 302

DISH, Exh. 1008, p. 303

This Information Disclosure Statementis believed to be filed before the mailing date

of a first Office Action on the merits. Accordingly, it is believed that no fees are due in

connection with the filing of this Information Disclosure Statement. However,if it is

determined that any fees are due, the Commissioner is hereby authorized to charge such fees

to Deposit Account 50-0384 (Order No._SRI1P016).

Respectfully submitted,

HICKMAN STEPHENS & COLEMAN, LLP

a

Brian R. Coleman

Reg. No. 39,145

P.O. Box 52037

Palo Alto, CA 94303-0746
Telephone: (650) 470-7430 —

Attny Dkt No. SRI1P016 2

DISH, Exh. 1008, p. 303

DISH, Exh. 1008, p. 304

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER OF PATENTS AND TRADEMARKS

Washington, D.C. 20231
www.uspto.gov

09/225,198 01/05/1999 ADAM J. CHEYER SRI1P016 2756

25696 7590 07/17/2002

OPPENHEIMER WOLFF & DONNELLY
P.O. BOX 10356

PALO ALTO, CA 94303 BULLOCK JR, LEWIS ALEXANDER
ART UNIT PAPER NUMBER

2151

DATE MAILED: 07/17/2002

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 07-01) J

DISH, Exh. 1008, p. 304

DISH, Exh. 1008, p. 305

Application No. q Applicantis)

‘ 09/225,198 CHEYERETAL.

Office Action Summary Examiner Art Unit

Lewis A. Bullock,Jr. 2151

-- The MAILING DATEof this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLYIS SET TO EXPIRE 3 MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- €xtensionsof time may be available underthe provisions of 37 CFR 1.136(a). In no event, however, mayareply betimelyfiled

after SIX (6) MONTHSfrom the mailing date of this communication.
If the period for reply specified aboveis less thanthirty (30) days, a reply within the statutory minimum ofthirty (30) days will be considered timely.
If NO period for reply is specified above, the maximumstatutory period will apply andwill expire SIX (6) MONTHSfrom the mailing date of this communication.
Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED(35 U.S.C. § 133).
Any reply received by the Office later than three months after the mailing date of this communication, evenif timely filed, may reduce any
eamed patentterm adjustment. See 37 CFR 1.704(b).

Status

1)0_ Responsive to communication(s)filed on

2a)L] This action is FINAL. 2b)X] This action is non-final.

3)L] Sincethis application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4)X] Claim(s) 1-89 is/are pending in the application.

4a) Of the above claim(s) is/are withdrawn from consideration.

5)C] Claim(s) is/are allowed.

6)[X] Claim(s) 1-89 is/are rejected.

(7)L] Claim(s)___ is/are objectedto.

8)L] Claim(s) are subject to restriction and/or election requirement.
Application Papers

9)L] The specification is objected to by the Examiner.

10)] The drawing(s)filed on is/are: a)C] acceptedor b)L_] objected to by the Examiner.

Applicant may not requestthat any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11)(_] The proposed drawing correction filed on is: a)_] approved b)(_] disapproved by the Examiner.

If approved, corrected drawings are requiredin reply to this Office action.

12)L] The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)L] Acknowledgmentis made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or p.
a)LJAll b)] Some *c)L] Noneof:

1.1] Certified copies of the priority documents have been received.

2.L] Certified copies of the priority documents have been received in Application No.

3.L] Copiesofthe certified copies of the priority documents have been receivedin this National Stage
application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

14)L] Acknowledgmentis made of a claim for domestic priority under 35 U.S.C. § 119(e) (fe-a_ provisional application).
a) CJ Thetranslation of the foreign languageprovisional application has been received.

15)L] Acknowledgmentis madeof a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121. .
Attachment(s)

1) XK Notice of References Cited (PTO-892) 4) O Interview Summary (PTO-413) Paper No(s). .
2) X Notice of Draftsperson's Patent Drawing Review (PTO-948) 5) Oj Notice of Informal Patent Application (PTO-152)
3) X Information Disclosure Statement(s) (PTO-1449) Paper No(s) 2. 6) Oo Other:

U.S. Patent and Trademark Office :

PTO-326 (Rev. 04-01) Office Action Summary DISH, ExiP46s PaPRENO- 3

DISH, Exh. 1008, p. 306

. Application/Control Number: 09/225,198 Page 2
Art Unit: 2151

DETAILED ACTION

Claim Rejections - 35 USC § 112

1. Claim 2 is rejected under 35 U.S.C. 112, second paragraph,as being indefinite

for failing to particularly point out and distinctly claim the subject matter which applicant

regards as the invention. Applicant claims the recursively applying the last step of claim

1, however the Examiner cannot determine which step applicantis referring to.

Applicantis either referring to the dynamically interpreting step and its substep or the

dispatching step of the dynamically interpreting step. Clarification is requested.

2. Claim 3 recites the limitation "from the specific agent to the facilitator agent"in

lines 5-6. Thereis insufficient antecedent basisfor this limitation in the claim. There is

no mention of the facilitator agent anywhere in the parent claims. In review of the

specification the examinerfinds the facilitator agent performs the steps of claim 1,

however, claim 1 does notdetail the facilitator agent as performing the steps. The

examiner request Applicant to amend claim 1 to detail that the facilitator agent performs

the functionality.

3. Claims 84 and 85are rejected under 35 U.S.C. 112, second paragraph, as being

indefinite forfailing to particularly point out and distinctly claim the subject matter which

applicant regards as the invention. Claims 84 and 85 recite the planning and execution

components, howeverneither component has antecedentbasis in the parent claim 71.

Correction is requested.

DISH, Exh. 1008, p. 306

DISH, Exh. 1008, p. 307

@

. Application/Control Number: 09/225, 198 Page 3
Art Unit: 2151

4. Claims 87 and 88recite the limitation "A data wave carrier as recited in claim 85"

in line 1. There is insufficient antecedentbasis for this limitation in the claim. Claims 87

and 88 should be dependent onclaim 86 not claim 85 and are further examined as

such.

Claim Rejections - 35 USC § 102

5. The following is a quotation of the appropriate paragraphsof 35 U.S.C. 102 that

form the basis for the rejections underthis section madein this Office action:

A person shall be entitled to a patent unless —

(a) the invention was knownorused byothersin this country, or patented or describedin a printed
publication in this or a foreign country, before the invention thereof by the applicant for a patent.

(b) the invention was patented or describedin a printed publication in this or a foreign country or in public
use or on sale in this country, more than oneyearprior to the date of application for patent in the United
States.

6. Claims 1, 2, 5-11, 15-28, 48-89 are rejected under 35 U.S.C. 102(a) as being

anticipated by “Building Distributed Software Systems with the Open Agent

Architecture” by MARTIN.

As to claim 1, MARTIN teaches a computer-implemented method for

communication and cooperative task completion amonga plurality of distributed agents

(application agent / meta agent / userinterface agent), comprising the actsof:

registering a description of each client agent’s functional capabilities (capabilities

specifications), using a platform independentinter-agent language(ICL); receiving a

requestfor service as a base goal (goals created by requesters of service) in the inter-

agent language,in the form of an arbitrarily complex goal expression; and dynamically

interpreting the goal expression (goals)(via facilitator) comprising: generating one or

DISH, Exh. 1008, p. 307

DISH, Exh. 1008, p. 308

@

. Application/Control Number: 09/225, 198 Page 4
Art Unit: 2151

more sub-goals using the inter-agent language; and dispatching each of the sub-goals

to a selected client agent (service providers) for performance, based on a match

between the sub-goal being dispatched and the registered functional capabilities of the

selected client agent (pg. 7, Mechanisms of Cooperation; pg. 12-14, Requesting

Services; Refining Service Requests, and Facilitation).

As to claim 2, MARTIN teachesreceiving a new request (subgoal) for service as

a base goalfrom at least one of the selected client agents in response to the sub-goal

and recursively applying the dynamically interpreting (pg. 13, Refining Service

Requests).

As to claims 5-10, MARTIN teachesproviding an agent registry data structure

that can comprise of symbolic names,data declarations, trigger declarations, and task

and processcharacteristics (pg. 13-14, Facilitation; pg. 7, “In processing a request...it

can use ICL to request services of other agents, set triggers, and read or write shared

data onthe facilitator...”).

As to claim 11, MARTIN teaches establishing communication betweendistributed

agents(pg. 6, Thefacilitator is a specialized server agentthat is responsible for

coordinating agent communications and cooperative problem-solving.”).

DISH, Exh. 1008, p. 308

DISH, Exh. 1008, p. 309

« Application/Control Number: 09/225,198 Page 5
Art Unit: 2151

As to claims 15-25, MARTIN teachesthe base goal requires setting a trigger

having conditional functionality and consequential functionality which can be stored on

the facilitator agent and/or the service providing agent (pgs. 16-17, Autonomous

Monitoring Using Triggers).

As to claims 26-28, MARTIN teaches the base goal is a compound goal having

sub-goals separated by operators, i.e. conjuction operator, disjunction operator,

conditional operator, and a parallel operator (pg. 12-13, Compound goals).

Asto claim 48, MARTIN teaches an Inter-agent Communication Language(ICL)

providing a basis forfacilitated cooperative task completion within a distributed

computing environmenthaving a facilitator agent (facilitator) and a plurality of electronic

agents (service providing agents / service requesting agents), the ICL enabling agents

to perform queries of other agents, exchange information with other agents,set triggers

within other agents (pgs. 4-7, Overview of OAA System Structure, Mechanismsof

Cooperation; pg. 8, “OAA agents employ ICL to perform queries, execute actions,

exchangeinformation, set triggers, and manipulate data in the agent community.”), an

ICL syntax supporting compound goal expressions such that goals within a single

requestprovided according to the ICL syntax may be coupled by a conjunctive operator,

a disjunctive operator, a conditional execution operator, and a parallel operator that

indicates that goals are to be performedbydifferent agents (pg. 12, Compoundgoals).

DISH, Exh. 1008, p. 309

DISH, Exh. 1008, p. 310

. Application/Contro! Number: 09/225,198 Page 6
Art Unit: 2151

Asto claim 49 and 50, MARTIN teachesthe ICLis platform and language

independent(pg. 8, “OAA’s Inter-agent Communication Language(ICL)is the interface,

communication, and task coordination language sharedbyall agents, regardless of

whatplatform they run on or what computer language they are programmedin.”).

Asto claims 51-54, MARTIN teaches the ICL supports task completion

constraints within goal expressions(pg. 9, “A numberof important declarations. ..we

consider each of these elements.”).

Asto claims 55-60, MARTIN teaches each electronic agent defines and

publishes a set of capability declarations or solvables that describe services and an

interface to the electronic agent (pg. 9, “A numberof important declarations...we

considereach of these elements.”).

As to claims 61 and 62, reference is madeto an agentthat performs the method

of claim 1 above andis therefore met by the rejection of claim 1 above. However, claim

61 further details an agent register and the construction of a goal satisfaction plan.

MARTIN teaches an agent register (knowledge base) (pg. 13-14, Facilitation); and the

construction of a goal satisfaction plan (pg. 13, “When a facilitator receives a compound

goal, its job is to construct a goalsatisfaction plan and overseeits satisfaction in the

most appropriate, efficient manner that is consistent with the specified advice.”).

DISH, Exh. 1008, p. 310

DISH, Exh. 1008, p. 311

. Application/Control Number: 09/225,198 Page 7
Art Unit: 2151

As to claim 63, refer to claim 5 for rejection.

Asto claim 64-69, refer to claims 15-25 for rejection.

As to claim 70, MARTIN teachesthe agent registry (knowledge base)is a

database accessible to all electronic agents (via the facilitator) (pg. 13-14, Facilitation).

As to claim 71, reference is made to an architecture that encompassesthe agent

of claim 61 above,and is therefore met by the rejection of claim 61 above. However

claim 71, further details the facilitator agent in bi-directional communication with the

electronic agents. MARTIN teachesthefacilitator agentin bi-directional communication

with the electronic agents(fig 1).

As to claim 72, refer to claim 48 for rejection.

As to claims 73 and 74, refer to claims 49 and 50 for rejection.

Asto claims 75-78, refer to claims 51-54 for rejection.

Asto claims 79-83, refer to claims 54-60 for rejection.

DISH, Exh. 1008, p. 311

DISH, Exh. 1008, p. 312

. Application/Control Number: 09/225,198 Page 8
Art Unit: 2151

As to claims 84 and 85, MARTIN teachesthefacilitating engine is distributed

acrossat least two processes(pg. 6, “Larger systems can be assembled from multiple

facilitator/client groups. ..”).

Asto claim 86, MARTIN teaches a data wavecarrier (system) providing a

transport mechanism (layer of conversational protocol / communication functions) for

information communicationin a distributed computing environment having at least one

facilitator agent(facilitator) and at least one client agent (application agent / user

interface agent), the carrier comprising a signal representation of an inter-agent

language description of a client agent’s functional capabilities (registering by the service

provider agents) (pg. 6-9).

As to claim 87, MARTIN teachesa signal representation of a request for service

in the inter-agent languagefromafirst agent to a second agent (request for service

from an service requesting agentto the facilitator) (pg. 12, Requesting Services).

As to claim 88, MARTIN teaches a signal representation of a goal dispatched to

an agent for performancefromafacilitator agent (pg. 13-14, Facilitation).

As to claim 89, MARTIN teachesa signal representation of a responseto the

dispatched goal including results and/or a status report from the agent for performance

to the facilitator agent (pg. 13-14, Facilitation).

DISH, Exh. 1008, p. 312

DISH, Exh. 1008, p. 313

. Application/Control Number: 09/225,198 Page 9
Art Unit: 2151

7. Claims 1, 2, 5-11, and 15-25 are rejected under 35 U.S.C. 102(b) as being

anticipated by “DevelopmentTools for the OpenAgent Architecture” by MARTIN.
As to claim 1, MARTIN teaches a computer-implemented method for

communication and cooperative task completion amonga plurality of distributed agents

(sub-agents / agents), comprising the acts of: registering a description of each client

agent's functional capabilities, using a platform independentinter-agent language(pg.

5, Each facilator records the published capabilities of their subagents...”); receiving a

request as a base goalin the inter-agent language (ICL form), in the form of an

arbitrarily complex goal expression; and dynamically interpreting the goal expression

comprising: generating one or more sub-goals using the inter-agent language; and

dispatching each of the sub-goals to a selected client agent for performance(“pg. 5,

“...and when requests arrive (expressed in the Inter-agent Communication Language,

described below), the facilitator is responsible for breaking them down and for

distributing sub-requests to the appropriate agents; “For example, every agent

can...and request solutions for a set of goals,...”).

As to claim 2, MARTIN teaches receiving a new request for service as a base

goal from at least one of the selected client agents in responseto the sub-goal and

recursively applyingthe dynamically interpreting (pg. 5, “An agent satisfying a request

may require supporting information, and the OAA provides numerous means of

requesting data from other agents orfrom the user.”).

DISH, Exh. 1008, p. 313

DISH, Exh. 1008, p. 314

. Application/Control Number: 09/225,198 Page 10
Art Unit: 2151

As to claims 5-10, MARTIN teachesproviding an agentregistry data structure

that can comprise of symbolic names,data declarations, trigger declarations, and task

and processcharacteristics (pg. 5, “For example, every agent can install local or remote

triggers on data..”).

As to claim 11, MARTIN teaches establishing communication betweendistributed

agents (pg. 5, ...the facilitator is responsible for breaking them down andfordistributing

sub-requests to the appropriate agent.”).

As to claims 15-25, MARTIN teaches the base goal requires setting a trigger

having conditional functionality and consequential functionality which can be stored on

the facilitator agent and/or the service providing agent (pg. 5, “For example, every agent

caninstail local or remote triggers on data..”).

Claim Rejections - 35 USC § 103

8. The following is a quotation of 35 U.S.C. 103(a) which forms the basis forall

obviousnessrejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set
forth in section 102 ofthis title, if the differences between the subject matter sought to be patented and
the prior art are such that the subject matter as a whole would have been obviousat the time the
invention was madeto a person havingordinary skill in the art to which said subject matter pertains.
Patentability shall not be negatived by the mannerin which the invention was made.

DISH, Exh. 1008, p. 314

DISH, Exh. 1008, p. 315

- Application/Control Number: 09/225, 198 Page 11
Art Unit: 2151

9. Claims 3, 29-34, and 38-47 are rejected under 35 U.S.C. 103(a) as being

unpatentable over“Building Distributed Software Systems with the Open Agent

Architecture” by MARTIN.

As to claim 3, MARTIN teachestheact of registering and transmitting the new

agentprofile from the specific agent to the facilitator agent (pg. 7, “Wheninvoked, a

client agent makes a connectionto a facilitator...an agent informs its parent facilitator of

the servicesit is capable of providing.”). It would be obvious that an agentthatis

initially created is instantiated in memory beforeit is registered.

As to claim 29, MARTIN teaches a methodto facilitate cooperative task

completion within a distributed computing environment supporting an Inter-agent

Communication Language amonga plurality of electronic agents (fig 1) comprising:

providing an agent registry (knowledge base) as disclosed (pg. 13-14, Facilitation);

interpreting a service requestin order to determine a base goal (compound goal)

comprising: determining any task completion advice provided by the base goal, and

determining any task completion constraints provided by the base goal(pg. 14, “It may

also use strategies or advice specified by the requester..”); constructing a base goal

satisfaction plan (pg. 13, “Whena facilitator receives a compound goal, its job is to

construct a goalsatisfaction plan and overseeits satisfaction in the most appropriate,

efficient mannerthat is consistent with the specified advice.”) comprising: determining

whether the requested service is available, determining sub-goals required in

completing the base goal (delegation), selecting suitable service-providing electronic

DISH, Exh. 1008, p. 315

DISH, Exh. 1008, p. 316

. Application/Control Number: 09/225, 198 Page 12
Art Unit: 2151

agents for performing the sub-goals, and ordering a delegation of sub-goal requests to

complete the requested service; and implementing the base goal satisfaction plan (pg.

13-14, Facilitation). However, MARTIN does notexplicitly mention that the method is

operable in a computer program product. It would be obviousto oneskilled in the art to

generate program codethat would entail the method of Martin and thereby obviousthat

the method can beentailed in a computer program product.

Asto claims 30 and 31, MARTIN teachesregistering a specific agent (service

provider agents) into the agent registry comprising: establishing a bi-directional

communications link between the specific agent and a facilitator agent(facilitator)

controlling the agent registry; providing a new agentprofile to thefacilitator agent; and

registering the specific agent with the profile thereby making the capabilities available to

the facilitator agent (pgs. 9-10, Providing Services; pg. 7, Mechanisms of Cooperation).

As to claim 32, refer to claim 3 for rejection.

As to claim 33, refer to claim 5 for rejection.

Asto claim 34, refer to claim 11 for rejection.

As to claims 38-44, refer to claims 15-25 for rejection.

DISH, Exh. 1008, p. 316

DISH, Exh. 1008, p. 317

. Application/Control Number: 09/225,198 Page 13
Art Unit: 2151

As to claims 45-47, refer to claims 26-28 for rejection.

10. Claims 4, 12-14 and 35-37 is rejected under 35 U.S.C. 103(a) as being

unpatentable over “Building Distributed Software Systems with the Open Agent

Architecture” by MARTIN1 in view of “Information Brokering in an Agent Architecture” by

MARTIN2.

As to claim 4, MARTIN1 substantially discloses the invention above. However,

MARTIN1 doesnot explicitly mention the cited limitation. MARTIN2 teaches

deactivating a client agent no longer available to provide services by deleting the

registration (pg. 9, Source agents that need to go offline...so that it can unregister the

source and retract its schema mappingrules.”). Therefore it would be obvious to

combinethe teachings of MARTIN1 with the teachings of MARTIN2in orderto provide

transparent accessto a plurality of independent agents (abstract).

As to claims 12-14, MARTIN1 substantially discloses the invention above.

However, MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches

receiving a requestfor service in a second language (source shema); selecting a

registered agent capable of converting the second languageinto the inter-agent

language (broker schema); and forwarding the requestfor service in a second language

to the registered agent for conversion to be performed and the results returned (pg. 12-

13, Queries Expressed in a Source Schema). Refer to claim 4 for the motivation to

combine.

DISH, Exh. 1008, p. 317

DISH, Exh. 1008, p. 318

. Application/Control Number: 09/225,198 Page 14
Art Unit: 2151

As to claims 35-37, refer to claims 12-14 for rejection.

11. Claims 3, 29-34, 38-47, 61-71, and 84-89 are rejected under 35 U.S.C. 103(a) as

being unpatentable over “Developing Tools for the Open Agent Architecture” by

MARTIN.

As to claim 3, MARTIN teachesthe act of registering and transmitting the new

agentprofile from the specific agentto the facilitator agent (pg. 5, “Every agent

participating in an OAA-based system defines and publishes a set of capabilities

specifications, expressed in the ICL, describing the servicesthatit provides.”). It would

be obvious that an agentthatis initially created is instantiated in memory beforeit is

registered.

As to claim 29, MARTIN teaches a methodto facilitate cooperative task

completion within a distributed computing environment supporting an Inter-agent

Communication Language amonga plurality of electronic agents (sub-agents / agents)

comprising: providing an agentregistry as disclosed (facilitator storage of published

sub-agents capabilities); interpreting a service request in order to determine a base goal

(via facilitator) constructing a base goal satisfaction plan comprising: determining

whetherthe requested service is available, determining sub-goals required in

completing the base goal (determine solutions for a set of goals) selecting suitable

service-providing electronic agents for performing the sub-goals, and ordering a

DISH, Exh. 1008, p. 318

DISH, Exh. 1008, p. 319

. Application/Control Number: 09/225,198 Page 15
Art Unit: 2151

delegation of sub-goal requests to complete the requested service; and implementing

the base goalsatisfaction plan (pg. 5, “The facilitator is responsible for breaking them

downandfordistributing sub-requests to the appropriate agents.”). However, MARTIN

doesnotexplicitly mention that the method is operable in a computer program product

or the sending of advice or constraints. It would be obvious that since an agent can

request solutions for a goal to be satisfied under a variety of different contro! strategies

(pg. 5) that the control strategies are the advice and/or constraints. It would also be

obvious to one skilled in the art to generate program codethat would entail the method

of Martin and thereby obvious that the method can be entailed in a computer program

product.

As to claims 30 and 31, MARTIN teaches registering a specific agent (agent) into

the agentregistry (list of agents capabilities) comprising: establishing a bi-directional

communicationslink between the specific agent and a facilitator agent controlling the

agentregistry; providing a new agentprofile to the facilitator agent; and registering the

specific agent with the profile thereby making the capabilities available to the facilitator

agent(pg. 5, “Eachfacilitator records the published capabilities of their subagents...”;

“Every agent participating in an OAA-based system...describing the servicesthatit

provides.”).

Asto claim 32, refer to claim 3 for rejection.

DISH, Exh. 1008, p. 319

DISH, Exh. 1008, p. 320

- Application/Control Number: 09/225,198 Page 16
Art Unit: 2151

As to claim 33, refer to claim 5 for rejection.

As to claim 34, refer to claim 11 for rejection.

Asto claims 38-44, refer to claims 15-25 for rejection.

Asto claims 45-47, refer to claims 26-28 for rejection.

As to claim 61 and 62, reference is made to an agentthat performs the method

of claim 1 above andis therefore met by the rejection of claim 1 above. However, claim

61 further details an agent register and the construction of a goal satisfaction plan.

MARTIN teaches every agentparticipating in an OAA-based system defines and

publishes a set of capabilities describing the services that it provides and that the

facilitator records these published capabilities (pg. 5). Therefore, there is an agent

register of the capabilities of each agent. MARTIN also teaches an agent can request

solutions for a set of goals to be satisfied undera variety of different control strategies.

It would be obvious that since solutions are determined based on the goals and control

strategies that a goal satisfaction plan is created.

As to claim 63, refer to claim 5 for rejection.

Asto claim 64-69,refer to claims 15-25 for rejection.

DISH, Exh. 1008, p. 320

DISH, Exh. 1008, p. 321

- Application/Control Number: 09/225,198 Page 17
Art Unit: 2151

As to claim 70, MARTIN teaches the agentregistry (agentlibrary / list of agent

capabilities) is a database accessibleto all electronic agents (pg. 5, A collection of

agents satisfies requests from users, or other agents. ..one or morefacilitators.”; “An

agent satisfying a request may require supporting information...requesting data from

other agents or from the user.”).

As to claim 71, reference is madeto an architecture that encompasses the agent

of claim 61 above,and is therefore met by the rejection of claim 61 above. However

claim 71, further details the facilitator agentin bi-directional communication with the

electronic agents. MARTIN teachesthefacilitator can distribute request to the agents

and the agents can requestinformation via the facilitator (pg. 5), therefore it would be

obviousthat the facilitator and agents are in bi-directional communication.

As to claims 84 and 85, MARTIN teachesthefacilitating engine is distributed

acrossat least two processes(pg.5, “Facilitators can, in turn, be connected asclients

of otherfacilitators.”).

As to claim 86, MARTIN teaches system for information communication in a

distributed computing environment having at least one facilitator agent (facilitator) and

at least one client agent (sub-agent / agents), the carrier comprising a signal

representation of an inter-agent language description (ICL registration of capabilities) of

DISH, Exh. 1008, p. 321

DISH, Exh. 1008, p. 322

. Application/Control Number: 09/225, 198 Page 18
Art Unit: 2151

a client agent's functional capabilities (pg. 5, “Each facilitator records the published

capabilities of their subagents..”). It would be obvious that the system has a data wave

carrier and a transport mechanism for network communication.

As to claim 87, MARTIN teachesa signal representation of a request for service

in the inter-agent language fromafirst agent (client agent sending a query) to a second

agent(facilitator) (pg. 5).

As to claim 88, MARTIN teachesa signal representation of a goal dispatched to

an agent for performancefromafacilitator agent (every agent can requestsolutions for

a set of goals / facilitator is responsible for breaking them downandfordistributing sub-

requests to the appropriate agent) (pg. 5).

Asto claim 89,It is well known in the art to one skilled in the art that an agent

can send backa responseafter processing the request.

12. Claims 4, 12-14, 26-28, 35-37, 48-60, 72-83 are rejected under 35 U.S.C. 103(a)

as being unpatentable over “DevelopmentTools for the Open Agent Architecture” by

MARTIN1 in view of “Information Brokering in an Agent Architecture” by MARTIN2.

Asto claim 4, MARTIN1 substantially discloses the invention above. However,

MARTIN1 doesnot explicitly mention the cited limitation. MARTIN2 teaches

deactivating a client agent no longer available to provide services by deleting the

DISH, Exh. 1008, p. 322

DISH, Exh. 1008, p. 323

. Application/Control Number: 09/225,198 Page 19
Art Unit: 2151

registration (pg. 9, Source agents that need to go offline...so that it can unregister the

source and retract its schema mapping rules.”). Therefore it would be obvious to

combine the teachings of MARTIN1 with the teachings of MARTIN2in orderto provide

transparent accessto a plurality of independent agents (abstract).

As to claims 12-14, MARTIN1 substantially discloses the invention above.

However, MARTIN1 doesnot explicitly mention the cited limitation. MARTIN2 teaches

receiving a requestfor service in a second language (source schema); selecting a

registered agent capable of converting the second languageinto the inter-agent

language (broker schema); and forwarding the requestfor service in a second language

to the registered agent for conversion to be performed and the results returned (pg. 12-

13, Queries Expressed in a Source Schema). Refer to claim 4 for the motivation to

combine.

Asto claims 26-28, MARTIN1 substantially discloses the invention above.

However, MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches

the base goal is a compound goal having sub-goals (pg. 8, “Queries submitted to the

Broker are expression...and backtracking in expressing and processing queries.”). It

would be obvious that since the base goal (query) is broken downanddistributed to as

sub-requests to the appropriate agents or solutions are requested for a set of goals as

disclosed in MARTIN1 that the base goal as a compoundgoalis broken down based on

DISH, Exh. 1008, p. 323

DISH, Exh. 1008, p. 324

_ Application/Control Number: 09/225, 198 Page 20
Art Unit: 2151

operators disclosing whereit can be broken down. Refer to claim 4 for the motivation to

combine.

As to claims 35-37, refer to claims 12-14 for rejection.

As to claim 48, MARTIN1 teaches an Inter-agent Communication Language(ICL)

providing a basis for facilitated cooperative task completion within a distributed

computing environmenthavingafacilitator agent(facilitator) and a plurality of electronic

agents (sub-agents / agents), the ICL enabling agents to perform queries of other

agents, exchangeinformation with other agents, set triggers within other agents (pg.5,

Agents share a common communication language...and may run on any networklinked

platform.”). However, MARTIN1 does not teach the ICL supporting compound goal

expressions. MARTIN2 teaches the query is a base goalstored in as a compound goal

having sub-goals (pg. 8, “Queries submitted to the Broker are expression...and

backtracking in expressing and processing queries.”). It would be obviousthat since the

base goal (query) is broken down anddistributed to as sub-requests to the appropriate

agents or solutions are requested for a set of goals as disclosed in MARTIN1 that the

base goal as a compoundgoalis broken down based on operators disclosing whereit

can be broken down. Refer to claim 4 for the motivation to combine.

DISH, Exh. 1008, p. 324

DISH, Exh. 1008, p. 325

- Application/Control Number: 09/225,198 Page 21
Art Unit: 2151

Asto claim 49 and 50, MARTIN‘ teachesthe ICLis platform and language

independent(pg. 5, “The OAA’s Inter-agent Communication Language...they are

programmedin.”).

As to claims 51-54, MARTIN1 teaches the ICL supports task completion

constraints (triggers) within goal expressions (pg.5).

Asto claims 54-60, MARTIN1 teaches eachelectronic agent defines and

publishes a set of capability declarations or solvables that describe services and an

interface to the electronic agent (pg. 5, “Every agent participating in an OAA-based

system defines and publishes...we refer to these capabilities specifications as

solvables.”).

Asto claim 72, refer to claim 48 for rejection.

Asto claims 73 and 74, refer to claims 49 and 50 for rejection.

Asto claims 75-78, refer to claims 51-54 for rejection.

Asto claims 79-83, refer to claims 54-60 for rejection.

DISH, Exh. 1008, p. 325

DISH, Exh. 1008, p. 326

- Application/Control Number: 09/225,198 Page 22
Art Unit: 2151

Conclusion

Anyinquiry concerning this communication or earlier communications from the

examiner should be directed to Lewis A. Bullock, Jr. whose telephone numberis (703)

305-0439. The examiner can normally be reached on Monday-Friday, 8:30 am - 5:00

pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Alvin E. Oberley can be reached on (703) 305-9716. The fax phone

numbersfor the organization wherethis application or proceeding is assigned are (703)

746-7239 for regular communications and (703) 746-7238 for After Final

communications.

Anyinquiry of a general nature or relating to the status of this application or

proceeding should be directed to the receptionist whose telephone numberis (703) 305-

0286.

tek ST. JOHN COURTEMAY ti
PRIMARY EXARINER

July 11, 2002

DISH, Exh. 1008, p. 326

DISH, Exh. 1008, p. 327

Form PTO 948 (Rev. 8-98) U.S. DEPARTMENT OF COMMERCE- Patent and Trademark Office Application No. OF7/ 22 Ss ‘ | 93
NOTICE OF DRAFTSPERSON'S

PATENT DRAWING REVIEW

The drawing(s) filed (insert date)/ losfare:
A. approved by the Draftsperson under 37 CFR 1.84 or 1.152.

B. ©) objected to by the Draftsperson under 37 CFR 1.84 or 1.152 for the reasons indicated below. The Examiner will require
submission of new, corrected drawings when necessary. Corrected drawing must be sumitted according to the instructions on the back of this notice.

 » DRAWINGS. 37 CFR 1.84(a): Acceptable categories of drawings: . ARRANGEMENT OFVIEWS. 37 CFR 1.84(i)
Black ink. Color. —— Words do not appear on a horizontal,left-to-right fashion
——— Color drawingsare not acceptable until petiton is granted. whenpageis either upright or turnedso that the top

Fig(s) becomestheright side, except for graphs. Fig(s)
—._ Pencil and non black ink not permitted. Fig(s) 9. SCALE. 37 CFR 1.84(k)

2. PHOTOGRAPHS.37 CFR 1.84 (b) ____ Scale not large enough to show mechanism without
—_. | full-tone set is required. Fig(s) crowding when drawingis reducedin size to two-thirds in

~__— Photographsnot properly mounted (must use brystol board or reproduction.
photographic double-weight paper). Fig(s) Fig(s)

—. Foorquality (half-tone). Fig(s) 10. CHARACTEROFLINES, NUMBERS, & LETTERS.
3. TYPE OF PAPER. 37 CFR 1.84(e) . : 37 CFR 1.84(i)

_—. Papernotflexible, strong, white, and durable. ____ Lines, numbers & letters not uniformly thick and well

Fig(s) : : defined,clean, durable, and black (poorline quality).
____ Erasures,alterations, overwritings, interlineations, Fig(s) .

folds, copy machine marks not accepted. Fig(s) "14, SHADING. 37 CFR 1.84(m)
—__ Mylar, velum paperis not acceptable (too thin). —_— Solid black areas pale. Fig(s)

Fig(s) ~__ Solid black shading not permitted. Fig(s)

4. SIZE OF PAPER. 37 CFR 1.84(f): Acceptablesizes: Shadelines, pate, rough and blurred. Fig(s)
21.0 cm by 29.7 cm (DIN size A4) 12, NUMBERS,LETTERS, & REFERENCE CHARACTERS.
21.6 cm by 27.9 em (8 1/2 x 11 inches) 37 CFR 1.84(p)

 ____ All drawing sheets not the samesize. —— Numbers and reference characters not plain and legible.

Sheet(s) Fig(s)
—._ Drawings sheets not an acceptable size. Fig(s) ___ Figure legends are poor. Fig(s)

5. MARGINS. 37 CFR 1.84(g): Acceptable margins: ——. Numbers and reference characters not oriented in the
same direction as the view. 37 CFR 1.84(p)(1)

Top 2.5 em Left 2.5cm Right 1.5m Bottom 1.0cm Fig(s)
SIZE: A4 Size . — English alphabet not used. 37 CFR 1.84(p)(2)

Top 2.5 cm Left 2.5 cm Right 1.5 cm Bottom 1.0 em Figs
SIZE: 8 1/2x 11 —___ Numbers, letters and reference characters must be at least

 Margins not acceptable. Fig(s) .32 cm (1/8 inch) in height. 37 CFR 1.84(p)(3)

Top (T) Left (L) Fig(s)
Right (R) Bottom (B) 13. LEAD LINES. 37 CFR 1.84(q) .

6. VIEWS. 37 CFR 1.84(h) —__ Lead lines cross each other. Fig(s)
REMINDER:Specification may require revision to —— Lead lines missing. Fig(s)

 correspond to drawing changes. 14, NUMBERING OF SHEETS OF DRAWINGS. 37 CFR 1.84(0)
Partial views. 37 CFR 1.84(h)(2) ____ Sheets not numbered consecutively, and in Arabic numerals
—__ Brackets needed to show figure as one entity. beginning with number J. Sheet(s)

Fig(s) 15. NUMBERING OF VIEWS. 37 CFR 1.84(u)
____ Viewsnot labeled separately or properly. —— Views not numbered consecutively, and in Arabic numerals,

Fig(s) beginning with number 1. Fig(s)
-___ Enlarged view not labeled separetely or properly. 16. CORRECTIONS. 37 CFR 1.84(w)

Fig(s) _—__ Corrections not made from prior PTO-948
7, SECTIONAL VIEWS. 37 CFR 1.84 (h)(3) dated

—— Hatching notindicated for sectional portions of an object. 17. DESIGN DRAWINGS. 37 CFR 1.152
Fig(s) —_ Surface shading shown not appropriate. Fig(s)

___ Sectional designation should be noted with Arabic or ____. Solid black shading not used for color contrast.
Roman numbers. Fig(s) Fig(s)

COMMENTS

~~-" REVIEWER_L AM DATE_Q? [1 [99 TELEPHONE NO.-

ATTACHMENTTO PAPER NO. / ;

7 DISH, Exh. 1008, p. 327

b
t

DISH, Exh. 1008, p. 328

Application/Control No. -Applicant(s)/Patent Under
Reexamination

09/225,198 CHEYER ETAL.
Notice of References Cited -

Examiner Art Unit

Lewis A. Bullock,Jr. 2151 Page 1 of 1
U.S. PATENT DOCUMENTS

Document Number D: . .
Country Code-Number-Kind Code|MM-YYYY Classification

US-5,960,404 09-1999 Chaaret al. 705/11

usCd

Document Number . .
Country Code-Number-Kind Code MM-YYYY Classification

*A copy ofthis reference is not being fumished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be USorforeign.
U.S. Patent and Trademark Office

PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 3

DISH, Exh. 1008, p. 328

DISH, Exh. 1008, p. 329

Form 1449 (Modified) Atty Docket No. Serial No.:
SRI1P016 09/225,198

Applicant:
Cheyeretal.
Filing Date: ~ Group
January 5. 1999 2755

Information Disclosure

Statement By Applicant

 se Several Sheets if Necessa

U.S. Patent Documents

aminer Sub-Tatial No. | Patent No. Date Patentee Class|class

Filing

ae
[6

Examiner Document Publication Country oor Sub-
Initial No.|No. Date Patent Office Class|class

Other Documents

 Examiner

Initial

MORAN,Douglas B. and CHEYER, Adam J., “Intelligent Agent-based
UserInterfaces”, Article Intelligence center, SRI International
MARTIN,David L., CHEYER, Adam J. and MORAN,Douglas B.,
“Building Distributed Software Systems with the Open Agent Architecture”
COHEN,Philip R. and CHEYER, Adam, SRI International, WANG,
Michelle, Stanford University, BAEG, Soon Cheol, ETRI, ““An Open Agent
Architecture”

Examiper Date ConsideredOO bulinr# fh
Examiner: Initial citation considered. Draw line throughcitation if not in conformance and not
considered. Include copy of this form with next communication to applicant.

Page 1 of 4

DISH, Exh. 1008, p. 329

DISH, Exh. 1008, p. 330

Form 1449 (Modified) Atty Docket No. Serial No.:
SRI1P016 09/225,198

Applicant:
Cheyeretal.
Filing Date:

Information Disclosure

Statement By Applicant
Group

 se Several Sheets if Necessa

Examiner -| Sub- Filing
Initial No. | Patent No. Date Patentee - Class|class Date

case|Sub-Class|class

Examiner

Initial No.|Author, Title, Date, Place (e.g. Journal) of Publication

|fos|® JULIA, Luc E. and CHEYER, Adam J., SRI International “Cooperative

ae]

MORAN,Douglas B., CHEYER, Adam J., JULIA, Luc E., MARTIN,
David L., SRI International, and PARK, Sangkyu, Electronics and
Telecommunications Research Institute, “Multimodal UserInterfaces in the
Open Agent Architecture’,

CHEYER, Adam and LULIA,Luc, SRI International “Multimodal Maps:
An Agent-based Approach”,

Date Considered

7/ ttf AR

Exanymerpen 0Sutin Ve
Examiner: Initial citation considered. Draw line throughcitation if not in conformanceand not
considered. Include copy of this form with next communication to applicant.

A ition Systems (CARS) for Drivers and Passengers”,

T
Page 2 of 4

DISH, Exh. 1008, p. 330

DISH, Exh. 1008, p. 331

Atty Docket No. Serial No.:
SRIIP016 09/225,198

Information Disclosure Applicant:
Statement By Applicant Cheyeretal.

Filing Date: Group
se Several Sheets ifNecessa January 5. 1999 2755

U.S. Patent Documents

Initial

CUTKOSKY, Mark R., ENGELMORE,Robert S., FIKES, Richard E.,
GENESERETH, Michael R., GRUBER, Thomas R., Stanford University, MARK,
William, Lockheed Palo Alto Research Labs, TENENBAUM,Jay M., WEBER,
Jay C., Enterprise Integration Technologies, “An Experiment in Integrating
Concurrent Engineering

of Intelligent Agents and Multi-Agent Technology (P
CHEYER, Adam, MARTIN,David and MORAN,Douglas, “The Open Agent
architecture™”, SRI International, AJ Center

Examiner Date ConsideredeG. Siullok V Drow
Examiner: Initial citation considered. Draw line throughcitation if not in conformance and not
considered. Include copy of this form with next communication to applicant.

S|MARTIN, David L., CHEYER, Adam, SRI International, LEE, Gowang-Lo, ETRI,
“Development Tools for the Open Agent Architecture”, The Practical Application

Page 3 of 4

DISH, Exh. 1008, p. 331

DISH, Exh. 1008, p. 332

Form 1449 (Modified) © Atty Docket No. Serial No.:
SRI1P016 09/225,198

Applicant:
Cheyeretal.
Filing Date: Group
January 5. 1999 2755

Information Disclosure

Statement By Applicant

se Several Sheets if Necessa

U.S. Patent Documents

 uu

COHEN,Philip R, CHEYER, Adam, WANG,Michelle, Stanford

University, BAEG, Soon Cheol ETRI; “An Open Agent Architecture,”
s Symposium, pp1-8, March 1994

MARTIN, David; OOHAMA,Hiroki; MORAN, Douglas; CHEYER,
Adam; “Information Brokering in an Agent Architecture,” Proceeding of
the gnd International Conference on Practical Application of Intelligent
Agents & Multi-Agent Technology, London, April 1997 -

Ex ayminer
2 —

Examiner: Initial citation considered. Draw line through citation if not in conformanceand not
considered. Include copy of this form with next communication to applicant.

Page 4 of 4

DISH, Exh. 1008, p. 332

yeciloste

DISH, Exh. 1008, p. 333

Attorney“Vocket No. 59501-8016.US01

| hereby certify that this correspondence is being deposited with the U.S. Postal Service with sufficient postage
First Class Mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C., 20231, on:

\) Date: August6,20020 oyQumitdckigney
A Jamie KX HughesAg 1. 3 _ PATENTJ 29 . IN THE UNITED STATES PATENT AND TRADEMARK OFFICE LU

¢

new oN Re APPLICATION OF: EXAMINER: UNKNOWN ae
Cheyer ART UNIT: 2755

APPLICATION No.: 09/225, 198

FILED: 01/05/1999

For: SOFTWARE-BASED ARCHITECTURE FOR RECEIVED

COMMUNICATION AND COOPERATION 1 5 002AmoncDISTRIBUTED ELECTRONIC \ AUG 1 .
AGENTS . Technology Center 2100

information Disclosure Statement After First Office Action but

Before Final Action or Notice of Allowance — 37 CFR 1.97(c)

Assistant Commissionerfor Patents

Washington, D.C. 20231

Sir:

1. Timing of Submission

The information transmitted herewith is being filed after three monthsofthefiling
date of this application or after the mailing date of the first Office action on the

a merits, whichever occurred last, but before the mailing date of either a final
ection under 37 CFR 1.113 or a Notice of Allowance under 37 CFR 1.311,
whicheveroccursfirst. The references listed on the enclosed Form PTO/SB/O8A

may be material to the examination of this application; the Examiner is requested
to make them of record in the application.

OG/iA/E008 CHEER G0G00007 Buecd? 09225198

OL 70:26 105.00 CH

{/BY022180] 1

DISH, Exh. 1008, p. 333

(5/

_p-—

yy

DISH, Exh. 1008, p. 334

~ g

2. Cited Information

atomBaer No. 59501-8016.US01

& Copiesof the following references are enclosed:

& All cited references

3. Effect of Information Disclosure Statement (37 CFR 1.97(h))

This Information Disclosure Statementis not to be construed as a representation
that: (i) a search has been made;(ii) additional information material to the
examination of this application does not exist; (iii) the information, protocols,
results and the like reported by third parties are accurate or enabling; or (iv) the
cited information is, or is considered to be, material to patentability. In addition,
applicant does not admit that any enclosed item of information constitutes prior
art to the subject invention and specifically reserves the right to demonstrate that
any such referenceis not priorart.

4. Fee Payment (37 CFR 1.97(c)) or Certification (37 CFR 1.97(e))

x Applicant elects to pay the fee under 37 CFR 1.17(p) $180.00.

oO Check enclosedfor $,

X Please charge the above fee(s) to Deposit Account No. 50-2207
this paperis providedin triplicate.

Respectfully submitted,
Perkins Coie LLP

vate o Mey2002. at
Brian R. Coleman

Registration No. 39,145

Correspondence Address:
Customer No. 22918

Perkins Coie LLP

P.O. Box 2168

Menlo Park, California 94026
(650) 838-4300

[/BY022180] 2
DISH, Exh. 1008, p. 334

DISH, Exh. 1008, p. 335

astomecre No. 59 6.US01
/Cited Information AUG ,. VED

Teo,” 20
4] Copiesof the following references are enclosed: nog, %

Or& All cited references “109

Effect of Information Disclosure Statement (37 CFR 1.97(h))

This Information Disclosure Statementis not to be construed as a representation
that: (i) a search has been made; (ii) additional information material to the
examination of this application does not exist; (iii) the information, protocols,
results and the like reported by third parties are accurate or enabling; or(iv) the
cited information is, or is considered to be, material to patentability. in addition,
applicant does not admit that any enclosed item of information constitutes prior
art to the subject invention and specifically reserves the right to demonstrate that
any such referenceis not prior art.

4. Fee Payment (37 CFR 1.97(c)) or Certification (37 CFR 1.97(e))

& Applicant elects to pay the fee under 37 CFR 1.17(p) $180.00.

Oo Check enclosed for $;

& Please charge the above fee(s) to Deposit Account No. 50-2207
this paperis providedintriplicate.

Respectfully submitted,
Perkins Coie LLP

vate. Co Avy2002. at
Brian R. Coleman

Registration No. 39,145

Correspondence Address:
Customer No. 22918

Perkins Coie LLP

P.O. Box 2168

Menlo Park, California 94026
(650) 838-4300

{/BY022180] 2

DISH, Exh. 1008, p. 335

DISH, Exh. 1008, p. 336

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representationsofthe
original documents submitted by the applicant.

Defects in the images may include (butare notlimited to):

e BLACK BORDERS

e TEXT CUT OFF AT TOP, BOTTOM OR SIDES

e FADED TEXT

e ILLEGIBLE TEXT

e SKEWED/SLANTED IMAGES

e COLORED PHOTOS

e BLACK OR VERY BLACK AND WHITE DARK PHOTOS

e GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,
please do not report the imagesto the

Image Problems Mailbox.

DISH, Exh. 1008, p. 336

DISH, Exh. 1008, p. 337

* PCT WORLDINTELLECTUAL PROPERTY ORGANIZATION
v International Bureau

T)

(51) International Patent Classification: (11) International Publication Number: WO 00/11869
HOAN 7/16 (43) International Publication Date: 02 March 2000 (02.03.2000)

(21) International Application Number: PCT/US99/19051

Published
(22) International Filing Date: 20 August 1999 (20.08.1999)

(30) Priority Data:
60/097538 21 August 1998 (21.08.1998) US
not furnished 30 July 1999 (30.07.1999) US

|(60) Parent Application or Grant
UNITED VIDEO PROPERTIES,INC.[/}; Q. ELLIS,

Michael, D.[/]; 0. LEMMONS,Thomas,R. [/]; 0. THOMAS,
William, L. (4; 0. TREYZ,G., Victor ; 0.

(54) Title: CLIENT-SERVER ELECTRONIC PROGRAM GUIDE
(54) Titre: GUIDE DE PROGRAMMESELECTRONIQUE CLIENT-SERVEUR

(57) Abstract

A client-server interactive television program guide system is provided. An interactive television program guide client is
implemented on usertelevision equipment. The interactive television pragram guide provides users with an opportunity to define
expressions that are processed by the program guide server. The program guide server may provide program guide data, schedules
reminders, schedules program fecordings, and parentally locks programs based on the expressions. Users’ viewing histories may be
tracked. The program guide server may analyzethe viewinghistories and generates viewing recommendations, targets advertising,
and collects program ratings information based on the viewing histories.

(57) Abrégé

Liinvention concerne un systeéme de guide de programmesdetélévision interactif entre un client et un serveur. Un client de

guide de programmes detélévision interactif est mis en application sur l'nstallation télévisuelle d'un utilisateur. Ce guide de
programmes permet aux utilisateurs de définir des expressionstraitées par le serveur de guide de programmes. Ce serveur peut
produire des données de guide de programmes, des rappels de programmation, des enregistrements de programmes et, de méme,
verrouille des programmes en fonction des expressions. Il est possible de rechercher Ihistorique de visualisation des
utilisateurs. Le serveur de guide de programmes peut analyserles historiques de visualisation et générer des recommandations de
visualisation, des publicités ciblées et recueillir des informations d'évaluation de programmes en fonction de ces historiques de
visualisation.

DISH, Exh. 1008, p. 337

DISH, Exh. 1008, p. 338

 PCT WORLD INTELLECTUAL PROPERTY ORGANIZATIONInternational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/11869

HOAN 7/16 (43) International Publication Date: 2 March 2000 (02.03.00)

(21) International Application Number: PCT/US99/19051|(81) Designated States: AE, AL, AM, AT,
BR, BY, CA, CH, CN, CR, CU,

(22) Internationa! Filing Date: 20 August 1999 (20.08.99) ES, FI, GB, GD, GE, GH, GM, HR,
KE, KG,KP, KR, KZ, LC, LK, LR, LS,
MG, MK, MN, MW,

(30) Priority Data: . SE, SG, SL SK, §
60/097,538 21 August 1998 (21.08.98) US
not furnished 13 August 1999 (13.08.99) us

(71) Applicant: UNITED VIDEO PROPERTIES, INC. [US/US];
7140 South Lewis Avenue, Tulsa, OK 74136 (US). MR, NE, SN, TD, TG).

(72) Inventors: ELLIS, Michael, D. 1300 Kingwood Place, Boul-
der, CO 80304 (US). LEMMONS, Thomas, R.; Route|Published
2, Box 1178, Sand Springs, OK 74063 (US), THOMAS, With international search report.
William, L.; 11611 South 70th East Avenue, Bixby, OK
74008 (US).

(74) Agents: TREYZ, G., Victor et al.; Fish & Neave, 1251 Avenue
of the Americas, New York, NY 10020 (US).

(54) Title: CLIENT-SERVER ELECTRONIC PROGRAM GUIDE

MAIN FACILITY

INTERACTIVE TELEVISION
DATA PROGRAM GUIDE EQUIPMENT

SOURCE

LOCAL INFORMATION
SERVICE

14
DATA SOURCE

(57) Abstract

A client-server interactive television program guide system is provided. An interactive television program guide client is implemented
on user television equipment. The interactive television program guide provides users with an opportunity to define expressions that are
processed by the program guide server. The program guide server may provide program guide data, schedules reminders, schedules program
recordings, and parentally locks programs based on the expressions. Users’ viewing histories may be tracked. The program guide server
may analyze the viewing histories and generates viewing recommendations, targets advertising, and collects program ratings information
based on the viewing histories. .

DISH, Exh. 1008, p. 338

DISH, Exh. 1008, p. 339

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Shovakia
Austria FR Frence LU Laxembourg SN Senegat
Australia GA Gaboa LV Latvia SZ Swaziland
Azerbaijan GB United Kingdom Mc Monzco TD Chad
Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar Ts Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Paso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary Mali tT Trinidad and Tobago
Benin IE Ireland Mongolia UA Ukraine
Brazil Israel Mauritania UG Uganda
Betarus Iceland Malawi US United States of America
Canada Taly Mexico uz Uzbekistan
Centra} African Republic Japan Niger YN Viet Nam

Kenya Netherlands ¥U Yugoslavia
Kyrgyzstan Norway ZW Zimbabwe
Democratic People's . New Zealand
Republic of Korea Poland
Republic of Korea Poctugal
Kazakstan Romania
Saint Lucia Russian Federation
Ciechtenstein Sudan
Sri Lanka Sweden
Libesia Singapore

58

Czech Republic
Germany
Denmark
Estonia BREERE

DISH, Exh. 1008, p. 339

DISH, Exh. 1008, p. 340

10

15

20

25

30

35

45

Description

DISH, Exh. 1008, p. 340

DISH, Exh. 1008, p. 341

10

15

20

25

30

35

40

45

WO 00/11869 PCT/US99/19051

10

15

20

CLIENT-SERVER ELECTRONIC PROGRAM GUIDE

Background of the Invention

This invention relates to interactive

television program guide systems, and more

particularly, to interactive television program guide

systems based on client-server arrangements.

Cable, satellite, and broadcast television

systems provide viewers with a large number of

television channels. Users have traditionally

consulted printed television program schedules to

determine the programs being broadcast at a particular
time. More recently, interactive television program

guides have been developed that allow television

program information to be displayed on a user's

television. Interactive television program quides,

which are typically implemented on set-top boxes, allow

users to navigate through television program listings

using a remote control. In a typical program guide,

various groups of television program listings are

displayed in predefined or user-selected categories.

Program listings are typically displayed in a grid or

DISH, Exh. 1008, p. 341

DISH, Exh. 1008, p. 342

10

15

20

25

30

35

45

WO00/11869 PCT/US99/19051

10

15

20

25

30

~2-

table. On-line program guides have been proposed that

require users to navigate the Internet to access

program listings.

Client-server based program guides have been

proposed in which program listings are stored on a
server at a cable system headend. The server provides
the program listings to program guide clients

implemented on the set-top boxes of a number of users

associated with each headend. As users navigate within

a program listings grid, the server provides program

listings to the client for display. Such systems, may

be limited in their functionality due to their limited

use of the resources of the server.

It is therefore an object of the present

invention to provide an interactive televison program

guide system in which server resources are used to

provide enhanced program guide features not provided by

conventional set-top-box-based or client-server-based

program guides.

Summary of the Invention

This and other objects of the present

invention are accomplished in accordance with the

principles of the present invention by providing a

client-server based interactive television program

guide system in which a main facility (e.g., a

satellite uplink facility or a facility that feeds such

an uplink facility) provides data from one or more data

sources to a number of televisiondistribution

facilities such as cable system headends, broadcast

‘distribution facilities, satellite television
distribution facilities, or other suitable distribution

facilities. Some of the data sources may be located at

DISH, Exh. 1008, p. 342

DISH, Exh. 1008, p. 343

10

15

20

25

30

35

45

WO 00/11869 PCT/US99/19051

10

15

20

25

30

-3-

different facilities and have their data provided to

the main facility for localization and distribution or

may provide their data to the television distribution
facilities directly. The data provided to the

television distribution facilities includes television

programming data (e.g., titles, channels, content
information, rating information, program identifiers,

series identifiers, or any other information associated
with television programming), and other program guide
data for additional services other than television

program listings (e.g., weather information, associated
Internet web links, computer software, etc.). The main
facility (and other sources) may provide the program
guide data to the television distribution facilities
via a satellite link, a telephone network link, a cable

or fiber optic link, a microwave link, an Internet
jink, a combination of such links, or any other
suitable communications link.

Each television distribution facility has a

program guide server. If desired, program guide
-servers may also be located at cable system network
nodes or other facilities separate from the television

distribution facilities or other distribution
facilities. Each program guide server stores the

program guide data provided by the main facility and
provides access to the program guide data to program
guide clients implemented on the user television
equipment of a number of users associated with each
television distribution facility. The program guide
servers may also store user data, such as user
preference profiles, parental control settings, record
and reminder settings, viewing history, and other
suitable data.

DISH, Exh. 1008, p. 343

DISH, Exh. 1008, p. 344

10

15

20

25

30

35

45

WO 00/11869 PCT/US99/19051

10

15

20

25

30

Providing program guide data with a program

guide server and storing user data on the server may
provide users with opportunities to perform various
functions that may enhance the users' television
viewing experience. Users may, for example, set user
preference profiles or other favorites that are stored
by the program guide server and used by the server to
customize the program guide viewing experience for the
user. The program guide server may filter program
guide data based on the user preference profiles. Only
data that is of interest to the user may then be
provided to the guide client, thereby tending to
minimize the memory requirements of the user's
television equipment and lessen the bandwidth
requirements of the local distribution network.

R client-server based architecture may also

provide users with the ability to search and sort
through program related information in ways that might
not otherwise be possible due to the limited processing
and storage capabilities of the users' television

-equipment. If desired, users may be provided with
access to program guide data without requiring them to
navigate the Internet. Users may, for example, define
sophisticated boolean or natural language expressions
having one or more criteria for searching through and
sorting program guide data, scheduling reminders,
automatically recording programs and parentally
controlling programs. The criteria may also be derived
by the program guide server or program guide client
from user profiles or by monitoring usage of the
program guide. The criteria may be stored on the
program guide server. Users may be provided with an

DISH, Exh. 1008, p. 344

DISH, Exh. 1008, p. 345

10

15

20

25

30

35

45

WO 00/11869 PCT/US99/19051

10

15

20

25

30

opportunity to access, modify, or delete the
expressions.

The program guide server may also track the
users' viewing histories to provide a user-customized
program guide experience. Programs or series of
episodes users have watched may be identified and used
by the program guide, for example, to inform users when
there are showings in the series that the users have
not watched. The program guide may, for example,
provide viewing recommendations based on a user's
viewing history and, if appropriate, on user preference
profiles or other criteria stored by the program guide
server. The program guide may also target
advertisements toward users based on the viewing
histories or criteria, and may track the viewing of
programs to generate viewership ratings.

Further features of the invention, its nature

and various advantages will be more apparent from the
accompanying drawings and the following detailed
description of the preferred embodiments.

Brief Description of the Drawings
FIG. 1 is a schematic block diagram of an

illustrative system in accordance with the present
invention.

FIGS. 2a, 2b, and 2c show illustrative

arrangements for the interactive program guide
equipment of FIG. 1 in accordance with the principles
of the present invention.

FIG. 3 is an illustrative schematic block

diagram of a user television equipment of FIGS. 2a and
2b in accordance with the principles of the present
invention.

DISH, Exh. 1008, p. 345

DISH, Exh. 1008, p. 346

10

15

20

25

30

35

45

WO 00/11869 PCT/US99/19051

10

15

20

25

30

-6-

FIG. 4 is a generalized schematic block

diagram of portions of the illustrative user television
equipment of FIG. 3 in accordance with the principles
of the present invention.

FIG. 5 is an illustrative main menu screen in

accordance with the principles of the present
invention.

FIG. 6 is an illustrative program listings by

time screen in accordance with the principles of the
present invention.

FIG. 7 is an illustrative program listings by

channel screen in accordance with the principles of the
present invention.

FIGS. 8a-8c are illustrative program listings

by category screens in accordance with the principles
of the present invention.

FIG. 9a is an illustrative boolean type

criteria screen in accordance with the principles of
the present invention.

FIG. 9b is an illustrative natural language

‘criteria screen in accordance with the principles of
the present invention.

FIG. 10 shows an illustrative agents screen

in accordance with the principles of the present
invention.

FIG. 11 is an illustrative program listings

screen in which program listings found according to the
illustrative expressions of FIGS. 9a and 9b are

displayed in accordance with the principles of the
present invention.

FIG. 12 shows an illustrative setup screen in

accordance with the principles of the present
invention.

DISH, Exh. 1008, p. 346

DISH, Exh. 1008, p. 347

10

15

20

25

30

35

45

WO 00/11869 PCT/US99/19051

10

15

20

25

30

FIGS. 13a-13f show illustrative preference

profile screens in accordance with the principles of
the present invention.

FIG. 14 shows an illustrative profile

activation screen in accordance with the principles of
the present invention.

; FIG. 15 shows a table containing an
illustrative list of programs that might be available
to a user after defining the preference profiles of
FIGS. 13a-13f in accordance with the principles of the
present invention.

FIGS. 16a-16c are illustrative program

listings screens that may be displayed according to the
preference profiles of FIGS. 13a-13f in accordance with
the principles of the present invention.

FIGS. 17a and 17b show illustrative criteria
screens in accordance with the principles of the
present invention.

FIGS. 18 and 19 show illustrative program

reminder lists generated according to the expressions
- of FIGS. 17a and i7b in accordancewith the principles

of the present invention.
FIGS. 20a and 20b show an illustrative viewer

recommendation overlay, in accordance with the
principles of the present invention.

FIG. 20c shows an illustrative additional
information screen in accordance with the principles of
the present invention.

FIG. 21 is a flowchart of illustrative steps
involved in providing users with an opportunity to
define preference profiles and access program guide
data according to the preference profiles in accordance
with the principles of the present invention.

DISH, Exh. 1008, p. 347

DISH, Exh. 1008, p. 348

10

15

20

25

30

35

45

WO 00/11869 . PCT/US99/19051

10

15

20

25

30

FIG. 22 is a flowchart of illustrative steps

involved in providing users with an opportunity to
search program guide data, other information, and
videos in accordance with the principles of the present
invention.

FIG. 23 is a flowchart of illustrative steps

involved in processing and using expressions in
accordance with the principles of the present
invention.

FIG. 24 is a flowchart of illustrative steps

involved in tracking and using viewing histories in
accordance with the principles of the present
invention.

Detailed Description of the Preferred Embodiments
An illustrative system 10 in accordance with

the present invention is shown in FIG. 1. Main
facility 12 may provide program guide data from data
source 14 to interactive television program guide
equipment 17 via communications link 18. There may be
multiple program guide data sources in main facility 12
but only one has been shown to avoid over-complicating
the drawing. If desired, program guide data sources
may be located at facilities separate from main
facility 12 such as at local information services 15,
and may have their data provided to main facility 12
for localization and distribution. Data sources 14 may
be any suitable computer or computer-based system for
obtaining data (e.g., manually from an operator,
electronically via a computer network or other
connection, or via storage media) and placing the data
into electronic form for distribution by main facility
12. Link 18 may be a satellite link, a4 telephone

DISH, Exh. 1008, p. 348

DISH, Exh. 1008, p. 349

10

15

20

25

30

35

45

WO00/11869 PCT/US99/19051

10

15

20

25

30

- 9-

network link, a cable or fiber optic link, a microwave
link, an Internet link, a combination of such links, or
any other suitable communications link. Video signals
may also be transmitted over link 18 if desired.

Local information service 15 may be any
suitable facility for obtaining data particular to a
localized region and providing the data to main
facility 12 or interactive television program guide
equipment 17 over communications links 4i. Local
information service 15 may be, for example, a local
weather station that measures weather data, a local
newspaper that obtains local high school and college
sporting information, or any other suitable provider of
information. Local information service 15 may be a
local business with a computer for providing main
facility 12 with, for example, local ski reports,
fishing conditions, menus, etc., or any other suitable
provider of information. Link 41 may be a satellite
link, a telephone network link, a cable or fiber optic
Link, a microwave link, an Internet link, a combination
of such links, or any other suitable communications
link. Additional data sources 14 may be located at
other facilities for providing main facility 12 with
non-localized data (e.g., non-localized program guide
data) over link 41.

The program guide data transmitted by main
facility 12 to interactive television program guide
equipment 17 may include television programming data
(e.g., program identifiers, times, channels, titles,
descriptions, series identifiers, etc.) and other data
for services other than television program listings
(e.g., help text, pay-per-view information, weather
information, sports information, music channel

DISH, Exh. 1008, p. 349

DISH, Exh. 1008, p. 350

10

15

20

25

30

35

” 45

WO00/11869 PCT/US99/19051

10

15

20

25

30

- 10 -

information, associated Internet web links, associated

software, etc.). There are preferably numerous pieces
or installations of interactive television program

guide equipment 17, although only one is shown in
FIG. 1 to avoid over-complicating the drawing.

Program guide data may be transmitted by main
facility 12 to interactive television program guide
equipment 17 using any suitable approach. Data files
may, for example, be encapsulated as objects and
transmitted using a suitable Internet based addressing

scheme and protocol stack (e.g., a stack which uses the
user datagram protocol (UDP) and Internet protocol
(IP)). Systems in which program guide data is
transmitted from a main facility to television

distribution facilities are described, for example, in
Gollahon et al. U.S. patent application Serial No.

09/332,624, filed June 11, 1999 (Attorney Docket No.
UV-106), which is hereby incorporated by reference
herein in its entirety.

A client-server based interactive television

_program guide is implemented on interactive television
program guide equipment 17. Three illustrative
arrangements for interactive television program guide
equipment 17 are shown in FIGS. 2a-2c. FIG. 2a shows
an illustrative arrangement for interactive television

program guide equipment 17 in which a program guide
server obtains program guide data directly from main

facility 12. FIG. 2b shows an illustrative arrangement
for interactive television program guide equipment 17

in which a program guide server obtains program guide
data from main facility 12 or some other facility

(e.g., local information service 15) via the Internet.
In either of these approaches, users may be provided

DISH, Exh. 1008, p. 350

