
•
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF EXPRESS MAILING
I hereby certify that this paper and the documents and/or fees referred to as
attached therein are being deposited with the United States Postal Service
on January 05, 1999 in an envelope as "Express Mail Post Office to
Addressee" service u r 37 CFR §1.10, Mair bel Number
EL221766053US dr ssed to the Assista Co
Washingto,e, D 2~

Attorney Docket No.: SRI1P016

First Named Inventor:

CHEYER, Adam J.

UTILITY PATENT APPLICATION TRANSMITTAL (37 CFR § 1.53(b))

Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

0 Duplicate for
fee processing

Sir: This is a request for filing a patent application under 37 CFR § 1.53(b) in the name of inventors:
Adam J. Cheyer and David L. Martin

For: SOFfW ARE-BASED ARCHITECTURE FOR COMMUNICATION AND COOPERATION AMONG
DISTRIBUTED ELECTRONIC AGENTS

Application Elements:

I:8J 59 Pages of Specification, Claims and Abstract

1:3] 16 Sheets ofDrawings

,~ I:8J 01 Pages Combined Declaration and Power of Attorney

Accompanying Application Parts:

1:3] Assignment and Assignment Recordation Cover Sheet (recording fee not enclosed)

I:8J Return Receipt Postcard

Fee Calculation (37 CFR § 1.16)

(Col. 1) (Col. 2) SMALL ENTITY OR LARGE ENTITY
NO. FILED NO. EXTRA RATE FEE RATE FEE

BASIC FEE $395 $ OR $760 $760.00
TOTAL CLAIMS ~ -20= ~ x11 = $ OR x18 = $1242.00
INDEP CLAIMS QQ.____ -03 = _QL x41 = $ OR x78 = $234.00
* Ifthe difference in Col. 1 is less Total $ OR Total $2236.00
than zero, enter "0" in Col. 2.

Including filing fees and the assignment recordation fee of $40.00, the Commissioner is authorized to
charge all required fees to Deposit Account No. 50-0384 (Order No. SRI1P016).

I:8J The Commissioner is authorized to charge any fees beyond the amount enclosed which may be
required, or to credit any overpayment, to Deposit Account No. 50-0384 (Order No. SRI1P016).

(Revised 12/97, Pat App Trans 53(b) Reg Page 1 of2
GOOGLE EXHIBIT 1008

Part 1 of 2Page 1 of 778

1

~
General Authorization for Petition for Extension of Time (37 CFR § 1.136)

1:8] Applicants hereby make and generally authorize any Petitions for Extensions of Time as may be
needed for any subsequent filings. The Commissioner is also authorized to charge any extension fees under
37 CFR § 1.17 as may be needed to Deposit Account No. 50-0384.

rg] Please send correspondence to the following address:

Brian R. Coleman
HICKMAN STEPHENS & COLEMAN, LLP

P.O. Box 52037

Date: -----+--{ [:7--+--(9 _ _9_

(Revised 12/97, Pat App Trans 53(b) Reg

Palo Alto, CA 94303-0746

Tel (650) 470-7430
Fax (650) 470-7440

Brian R. Coleman
Registration No. 39,145

Page 2 of2

Page 2 of 778

5

Software-Based Architecture for Communication and Cooperation Among

Distributed Electronic Agents

By:

Adam J. Cheyer and David L. Martin

BACKGROUND OF THE INVENTION

1 o Field of the Invention

The present invention is related to distributed computing environments and the

completion of tasks within such environments. In particular, the present invention

teaches a variety of software-based architectures for communication and cooperation

among distributed electronic agents. Certain embodiments teach interagent

15 communication languages enabling client agents to make requests in the form of

arbitrarily complex goal expressions that are solved through facilitation by a

facilitator agent.

20

25

Context and Motivation for Distributed Software Systems

The evolution of models for the design and construction of distributed

software systems is being driven forward by several closely interrelated trends: the

adoption of a networked computing model, rapidly rising expectations for smarter,

longer-lived, more autonomous software applications and an ever increasing demand

for more accessible and intuitive user interfaces.

Prior Art Figure 1 illustrates a networked computing modellOO having a

plurality of client and server computer systems 120 and 122 coupled together over a

physical transport mechanism 140. The adoption ofthe networked computing model

100 has lead to a greatly increased reliance on distributed sites for both data and

processing resources. Systems such as the networked computing modellOO are based

30 upon at least one physical transport mechanism 140 coupling the multiple computer

systems 120 and 122 to support the transfer of information between these computers.

Some of these computers basically support using the network and are known as client

Attornev Docket No: SRI1P016(3477VBRC/EWJ Page 1 of 59 Page 3 of 778

5

computers (clients). Some of these computers provide resources to other computers

and are known as server computers (servers). The servers 122 can vary greatly in the

resources they possess, access they provide and services made available to other

computers across a network. Servers may service other servers as well as clients.

The Internet is a computing system based upon this network computing model.

The Internet is continually growing, stimulating a paradigm shift for computing away

from requiring all relevant data and programs to reside on the user's desktop machine.

The data now routinely accessed from computers spread around the world has become

increasingly rich in format, comprising multimedia documents, and audio and video

10 streams. With the popularization of programming languages such as JAVA, data

transported between local and remote machines may also include programs that can

be downloaded and executed on the local machine. There is an ever increasing

reliance on networked computing, necessitating software design approaches that allow

for flexible composition of distributed processing elements in a dynamically changing

15 and relatively unstable environment.

In an increasing variety of domains, application designers and users are

coming to expect the deployment of smarter, longer-lived, more autonomous,

software applications. Push technology, persistent monitoring of information sources,

and the maintenance of user models, allowing for personalized responses and sharing

20 of preferences, are examples of the simplest manifestations of this trend. Commercial

enterprises are introducing significantly more advanced approaches, in many cases

employing recent research results from artificial intelligence, data mining, machine

learning, and other fields.

More than ever before, the increasing complexity of systems, the development

25 of new technologies, and the availability of multimedia material and environments are

creating a demand for more accessible and intuitive user interfaces. Autonomous,

distributed, multi-component systems providing sophisticated services will no longer

lend themselves to the familiar "direct manipulation" model of interaction, in which

an individual user masters a fixed selection of commands provided by a single

30 application. Ubiquitous computing, in networked environments, has brought about a

situation in which the typical user of many software services is likely to be a non

expert, who may access a given service infrequently or only a few times.

Attorney Docket No: SRIIPOI6(3477)/BRC/EWJ Page 2 of 59
Page 4 of 778

Accommodating such usage patterns calls for new approaches. Fortunately, input

modalities now becoming widely available, such as speech recognition and pen-based

handwriting/gesture recognition, and the ability to manage the presentation of

systems' responses by using multiple media provide an opportunity to fashion a style

5 of human-computer interaction that draws much more heavily on our experience with

human-human interactions.

PRIOR RELATED ART

Existing approaches and technologies for distributed computing include

10 distributed objects, mobile objects, blackboard-style architectures, and agent-based

software engineering.

15

The Distributed Object Approach

Object-oriented languages, such as C++ or JAVA, provide significant

advances over standard procedural languages with respect to the reusability and

modularity of code: encapsulation, inheritance and polymorhpism. Encapsulation

encourages the creation of library interfaces that minimize dependencies on

underlying algorithms or data structures. Changes to programming internals can be

made at a later date with requiring modifications to the code that uses the library.

Inheritance permits the extension and modification of a library of routines and data

20 without requiring source code to the original library. Polymorphism allows one body

of code to work on an arbitrary number of data types. For the sake of simplicity

traditional objects may be seen to contain both methods and data. Methods provide

the mechanisms by which the internal state of an object may be modified or by which

communication may occur with another object or by which the instantiation or

25 removal of objects may be directed.

With reference to Figure 2, a distributed object technology based around an

Object Request Broker will now be described. Whereas "standard" object-oriented

programming (OOP) languages can be used to build monolithic programs out of many

object building blocks, distributed object technologies (DOOP) allow the creation of

30 programs whose components may be spread across multiple machines. As shown in

Figure 2, an object system 200 includes client objects 210 and server objects 220. To

implement a client-server relationship between objects, the distributed object system

Attornev Docket No: SRIIP016(3477)/BRC/EWJ Page 3 of 59
Page 5 of 778

200 uses a registry mechanism (COREA's registry is called an Object Request Broker,

or ORB) 230 to store the interface descriptions of available objects. Through the

services of the ORB 230, a client can transparently invoke a method on a remote

server object. The ORB 230 is then responsible for finding the object 220 that can

5 implement the request, passing it the parameters, invoking its method, and returning

the results. In the most sophisticated systems, the client 210 does not have to be aware

of where the object is located, its programming language, its operating system, or any

other system aspects that are not part of the server object's interface.

Although distributed objects offer a powerful paradigm for creating networked

10 applications, certain aspects of the approach are not perfectly tailored to the

constantly changing environment of the Internet. A major restriction of the DOOP

approach is that the interactions among objects are fixed through explicitly coded

instructions by the application developer. It is often difficult to reuse an object in a

new application without bringing along all its inherent dependencies on other objects

15 (embedded interface definitions and explicit method calls). Another restriction of the

DOOP approach is the result of its reliance on a remote procedure call (RPC) style of

communication. Although easy to debug, this single thread of execution model does

not facilitate programming to exploit the potential for parallel computation that one

would expect in a distributed environment. In addition, RPC uses a blocking

20 (synchronous) scheme that does not scale well for high-volume transactions.

Mobile Objects

Mobile objects, sometimes called mobile agents, are bits of code that can

move to another execution site (presumably on a different machine) under their own

programmatic control, where they can then interact with the local environment. For

25 certain types of problems, the mobile object paradigm offers advantages over more

traditional distributed object approaches. These advantages include network

bandwidth and parallelism. Network bandwidth advantages exist for some database

queries or electronic commerce applications, where it is more efficient to perform

tests on data by bringing the tests to the data than by bringing large amounts of data to

30 the testing program. Parallelism advantages include situations in which mobile agents

can be spawned in parallel to accomplish many tasks at once.

Attornev Docket No: SRI1P016(3477)/BRC/EWJ Pa!!e 4 of 59 Page 6 of 778

Some of the disadvantages and inconveniences of the mobile agent approach

include the programmatic specificity of the agent interactions, lack of coordination

support between participant agents and execution environment irregularities regarding

specific programming languages supported by host processors upon which agents

5 reside. In a fashion similar to that of DOOP programming, an agent developer must

programmatically specify where to go and how to interact with the target

environment. There is generally little coordination support to encourage interactions

among multiple (mobile) participants. Agents must be written in the programming

language supported by the execution environment, whereas many other distributed

10 technologies support heterogeneous communities of components, written in diverse

programming languages.

Blackboard Architectures

Blackboard architectures typically allow multiple processes to communicate

by reading and writing tuples from a global data store. Each process can watch for

15 items of interest, perform computations based on the state of the blackboard, and then

add partial results or queries that other processes can consider. Blackboard

architectures provide a flexible framework for problem solving by a dynamic

community of distributed processes. A blackboard architecture provides one solution

to eliminating the tightly bound interaction links that some of the other distributed

20

25

technologies require during interprocess communication. This advantage can also be a

disadvantage: although a programmer does not need to refer to a specific process

during computation, the framework does not provide programmatic control for doing

so in cases where this would be practical.

Agent-based Software Engineering

Several research communities have approached distributed computing by

casting it as a problem of modeling communication and cooperation among

autonomous entities, or agents. Effective communication among independent agents

requires four components: (1) a transport mechanism carrying messages in an

asynchronous fashion, (2) an interaction protocol defining various types of

30 communication interchange and their social implications (for instance, a response is

expected of a question), (3) a content language permitting the expression and

interpretation of utterances, and (4) an agreed-upon set of shared vocabulary and

Attornev Docket No: SRIIP016(3477)/BRCIEWJ Page 5 of 59

Page 7 of 778

meaning for concepts (often called an ontology). Such mechanisms permit a much

richer style of interaction among participants than can be expressed using a distributed

object's RPC model or a blackboard architecture's centralized exchange approach.

Agent-based systems have shown much promise for flexible, fault-tolerant,

5 distributed problem solving. Several agent-based projects have helped to evolve the

notion of facilitation. However, existing agent-based technologies and architectures

are typically very limited in the extent to which agents can specify complex goals or

influence the strategies used by the facilitator. Further, such prior systems are not

sufficiently attuned to the importance of integrating human agents (i.e., users) through

10 natural language and other human-oriented user interface technologies.

The initial version of SRI International's Open Agent Architecture ™

("OAA @")technology provided only a very limited mechanism for dealing with

compound goals. Fixed formats were available for specifying a flat list of either

conjoined (AND) sub-goals or disjoined (OR) sub-goals; in both cases, parallel goal

15 solving was hard-wired in, and only a single set of parameters for the entire list could

be specified. More complex goal expressions involving (for example) combinations

of different boolean connectors, nested expressions, or conditionally interdependent

("IF .. THEN") goals were not supported. Further, system scalability was not

adequately addressed in this prior work.

20

SUMMARY OF INVENTION

A first embodiment of the present invention discloses a highly flexible,

software-based architecture for constructing distributed systems. The architecture

25 supports cooperative task completion by flexible, dynamic configurations of

autonomous electronic agents. Communication and cooperation between agents are

brokered by one or more facilitators, which are responsible for matching requests,

from users and agents, with descriptions of the capabilities of other agents. It is not

generally required that a user or agent know the identities, locations, or number of

30 other agents involved in satisfying a request, and relatively minimal effort is involved

in incorporating new agents and "wrapping" legacy applications. Extreme flexibility

is achieved through an architecture organized around the declaration of capabilities by

Attorney Docket No: SRIIP016(3477)/BRC/EWJ Page 6 of 59
Page 8 of 778

service-providing agents, the construction of arbitrarily complex goals by users and

service-requesting agents, and the role of facilitators in delegating and coordinating

the satisfaction of these goals, subject to advice and constraints that may accompany

them. Additional mechanisms and features include facilities for creating and

5 maintaining shared repositories of data; the use of triggers to instantiate commitments

within and between agents; agent-based provision of multi-modal user interfaces,

including natural language; and built-in support for including the user as a privileged

member of the agent community. Specific embodiments providing enhanced

scalability are also described.

10

15

BRIEF DESCRIPTION OF THE DRAWINGS

Prior Art

Prior Art FIGURE 1 depicts a networked computing model;

Prior Art FIGURE 2 depicts a distributed object technology based around an

Object Resource Broker;

Examples of the Invention

FIGURE 3 depicts a distributed agent system based around a facilitator agent;

FIGURE 4 presents a structure typical of one small system of the present

20 invention;

FIGURE 5 depicts an Automated Office system implemented in accordance

with an example embodiment of the present invention supporting a mobile user with a

laptop computer and a telephone;

FIGURE 6 schematically depicts an Automated Office system implemented as

25 a network of agents in accordance with a preferred embodiment of the present

invention;

FIGURE 7 schematically shows data structures internal to a facilitator in

accordance with a preferred embodiment of the present invention;

FIGURE 8 depicts operations involved in instantiating a client agent with its

30 parent facilitator in accordance with a preferred embodiment of the present invention;

Attorney Docket No: SRIIP016(3477)/BRC/EWJ Page 7 of 59 Page 9 of 778

FIGURE 9 depicts operations involved in a client agent initiating a service

request and receiving the response to that service request in accordance with a certain

preferred embodiment of the present invention;

FIGURE 10 depicts operations involved in a client agent responding to a

5 service request in accordance with another preferable embodiment of the present

invention;

FIGURE 11 depicts operations involved in a facilitator agent response to a

service request in accordance with a preferred embodiment of the present invention;

FIGURE 12 depicts an Open Agent Architecture TM based system of agents

IO implementing a unified messaging application in accordance with a preferred

embodiment of the present invention;

15

FIGURE 13 depicts a map oriented graphical user interface display as might

be displayed by a multi-modal map application in accordance with a preferred

embodiment of the present invention;

FIGURE 14 depicts a peer to peer multiple facilitator based agent system

supporting distributed agents in accordance with a preferred embodiment of the

present invention;

FIGURE 15 depicts a multiple facilitator agent system supporting at least a

limited form of a hierarchy of facilitators in accordance with a preferred embodiment

20 of the present invention; and

25

FIGURE 16 depicts a replicated facilitator architecture in accordance with one

embodiment of the present invention.

BRIEF DESCRIPTION OF THE APPENDICES

The Appendices provide source code for an embodiment of the present

invention written in the PROLOG programming language.

APPENDIX A: Source code file named compound. pl.

APPENDIX B: Source code file named fac.pl.

APPENDIX C: Source code file named libcom_tcp.pl.

Attornev Docket No: SRI1P016(3477)fBRC/EWJ Page 8 of 59
Page 10 of 778

5

APPENDIX D: Source code file named liboaa.pl.

APPENDIX E: Source code file named translations.pl.

DETAILED DESCRIPTION OF THE INVENTION

Figure 3 illustrates a distributed agent system 300 in accordance with one

embodiment of the present invention. The agent system 300 includes a facilitator

agent 310 and a plurality of agents 320. The illustration of Figure 3 provides a high

level view of one simple system structure contemplated by the present invention. The

facilitator agent 310 is in essence the "parent" facilitator for its "children" agents 320.

10 The agents 320 forward service requests to the facilitator agent 310. The facilitator

agent 310 interprets these requests, organizing a set of goals which are then delegated

to appropriate agents for task completion.

The system 300 of Figure 3 can be expanded upon and modified in a variety of

ways consistent with the present invention. For example, the agent system 300 can be

IS distributed across a computer network such as that illustrated in Figure 1. The

facilitator agent 310 may itself have its functionality distributed across several

different computing platforms. The agents 320 may engage in interagent

communication (also called peer to peer communications). Several different systems

300 may be coupled together for enhanced performance. These and a variety of other

20 structural configurations are described below in greater detail.

Figure 4 presents the structure typical of a small system 400 in one

embodiment of the present invention, showing user interface agents 408, several

application agents 404 and meta-agents 406, the system 400 organized as a

community of peers by their common relationship to a facilitator agent 402. As will

25 be appreciated, Figure 4 places more structure upon the system 400 than shown in

Figure 3, but both are valid representations of structures of the present invention. The

facilitator 402 is a specialized server agent that is responsible for coordinating agent

communications and cooperative problem-solving. The facilitator 402 may also

provide a global data store for its client agents, allowing them to adopt a blackboard

30 style of interaction. Note that certain advantages are found in utilizing two or more

facilitator agents within the system 400. For example, larger systems can be

assembled from multiple facilitator/client groups, each having the sort of structure

Attornev Docket No: SRIIP016(3477)/BRC!EWJ Page 9 of 59
Page 11 of 778

5

shown in Figure 4. All agents that are not facilitators are referred to herein

generically as client agents-- so called because each acts (in some respects) as a client

of some facilitator, which provides communication and other essential services for the

client.

The variety of possible client agents is essentially unlimited. Some typical

categories of client agents would include application agents 404, meta-agents 406,

and user interface agents 408, as depicted in Figure 4. Application agents 404 denote

specialists that provide a collection of services of a particular sort. These services

could be domain-independent technologies (such as speech recognition, natural

10 language processing 410, email, and some forms of data retrieval and data mining) or

user-specific or domain-specific (such as a travel planning and reservations agent).

Application agents may be based on legacy applications or libraries, in which case the

agent may be little more than a wrapper that calls a pre-existing API 412, for

example. Meta-agents 406 are agents whose role is to assist the facilitator agent 402

15 in coordinating the activities of other agents. While the facilitator 402 possesses

domain-independent coordination strategies, meta-agents 406 can augment these by

using domain- and application-specific knowledge or reasoning (including but not

limited to rules, learning algorithms and planning).

With further reference to Figure 4, user interface agents 408 can play an

20 extremely important and interesting role in certain embodiments of the present

invention. By way of explanation, in some systems, a user interface agent can be

implemented as a collection of "micro-agents", each monitoring a different input

modality (point-and-click, handwriting, pen gestures, speech), and collaborating to

produce the best interpretation of the current inputs. These micro-agents are depicted

25 in Figure 4, for example, as Modality Agents 414. While describing such

subcategories of client agents is useful for purposes of illustration and understanding,

they need not be formally distinguished within the system in preferred

implementations of the present invention.

The operation of one preferred embodiment of the present invention will be

30 discussed in greater detail below, but may be briefly outlined as follows. When

invoked, a client agent makes a connection to a facilitator, which is known as its

parent facilitator. These connections are depicted as a double headed arrow between

Attornev Docket No: SRI1P016(3477)1BRC/EWJ Page 10 of 59
Page 12 of 778

the client agent and the facilitator agent in Figure 3 and 4, for example. Upon

connection, an agent registers with its parent facilitator a specification of the

capabilities and services it can provide. For example, a natural language agent may

register the characteristics of its available natural language vocabulary. (For more

5 details regarding client agent connections, see the discussion of Figure 8 below.)

Later during task completion, when a facilitator determines that the registered services

416 of one of its client agents will help satisfy a goal, the facilitator sends that client a

request expressed in the Interagent Communication Language (ICL) 418. (See Figure

11 below for a more detailed discussion of the facilitator operations involved.) The

10 agent parses this request, processes it, and returns answers or status reports to the

facilitator. In processing a request, the client agent can make use of a variety of

infrastructure capabilities provided in the preferred embodiment. For example, the

client agent can use ICL 418 to request services of other agents, set triggers, and read

or write shared data on the facilitator or other client agents that maintain shared data.

15 (See the discussion of Figures 9-11 below for a more detailed discussion of request

processing.)

The functionality of each client agent are made available to the agent

community through registration of the client agent's capabilities with a facilitator 402.

A software "wrapper" essentially surrounds the underlying application program

20 performing the services offered by each client. The common infrastructure for

constructing agents is preferably supplied by an agent library. The agent library is

preferably accessible in the runtime environment of several different programming

languages. The agent library preferably minimizes the effort required to construct a

new system and maximizes the ease with which legacy systems can be "wrapped" and

25 made compatible with the agent-based architecture of the present invention.

By way of further illustration, a representative application is now briefly

presented with reference to Figures 5 and 6. In the Automated Office system depicted

in Figure 5, a mobile user with a telephone and a laptop computer can access and task

commercial applications such as calendars, databases, and email systems running

30 back at the office. A user interface (UI) agent 408, shown in Figure 6, runs on the

user's local laptop and is responsible for accepting user input, sending requests to the

facilitator 402 for delegation to appropriate agents, and displaying the results of the

Attornev Docket No: SRIIPOI6(3477l/BRC/EWJ Page 11 of 59

Page 13 of 778

distributed computation. The user may interact directly with a specific remote

application by clicking on active areas in the interface, calling up a form or window

for that application, and making queries with standard interface dialog mechanisms.

Conversely, a user may express a task to be executed by using typed, handwritten, or

5 spoken (over the telephone) English sentences, without explicitly specifying which

agent or agents should perform the task.

For instance, if the question "What is my schedule?" is written 420 in the user

interface 408, this request will be sent 422 by the UI 408 to the facilitator 402, which

in tum will ask 424 a natural language (NL) agent 426 to translate the query into ICL

10 18. To accomplish this task, the NL agent 426 may itself need to make requests of the

agent community to resolve unknown words such as "me" 428 (the UI agent 408 can

respond 430 with the name of the current user) or "schedule" 432 (the calendar agent

434 defines this word 436). The resulting ICL expression is then routed by the

facilitator 402 to appropriate agents (in this case, the calendar agent 434) to execute

15 the request. Results are sent back 438 to the UI agent 408 for display.

The spoken request "When mail arrives for me about security, notify me

immediately." produces a slightly more complex example involving communication

among all agents in the system. After translation into ICL as described above, the

facilitator installs a trigger 440 on the mail agent 442 to look for new messages about

20 security. When one such message does arrive in its mail spool, the trigger fires, and

the facilitator matches the action part of the trigger to capabilities published by the

notification agent 446. The notification agent 446 is a meta-agent, as it makes use of

rules concerning the optimal use of different output modalities (email, fax, speech

generation over the telephone) plus information about an individual user's preferences

25 448 to determine the best way of relaying a message through available media transfer

application agents. After some competitive parallelism to locate the user (the

calendar agent 434 and database agent 450 may have different guesses as to where to

find the user) and some cooperative parallelism to produce required information

(telephone number of location, user password, and an audio file containing a text-to-

30 speech representation of the email message), a telephone agent 452 calls the user,

verifying its identity through touchtones, and then play the message.

Attornev Docket No: SRI1P016(3477)/BRC/EWJ Pa2e 12 of 59
Page 14 of 778

The above example illustrates a number of inventive features. As new agents

connect to the facilitator, registering capability specifications and natural language

vocabulary, what the user can say and do dynamically changes; in other words, the

ICL is dynamically expandable. For example, adding a calendar agent to the system

5 in the previous example and registering its capabilities enables users to ask natural

language questions about their "schedule" without any need to revise code for the

facilitator, the natural language agents, or any other client agents. In addition, the

interpretation and execution of a task is a distributed process, with no single agent

defining the set of possible inputs to the system. Further, a single request can produce

10 cooperation and flexible communication among many agents, written in different

programming languages and spread across multiple machines.

Design Philosophy and Considerations

One preferred embodiment provides an integration mechanism for

15 heterogeneous applications in a distributed infrastructure, incorporating some of the

dynamism and extensibility of blackboard approaches, the efficiency associated with

.mobile objects, plus the rich and complex interactions of communicating agents.

Design goals for preferred embodiments of the present invention may be categorized

under the general headings of interoperation and cooperation, user interfaces, and

20 software engineering. These design goals are not absolute requirements, nor will they

,)j necessarily be satisfied by all embodiments of the present invention, but rather simply

reflect the inventor's currently preferred design philosophy.

Versatile mechanisms of interoperation and cooperation

/nteroperation refers to the ability of distributed software components - agents

25 -to communicate meaningfully. While every system-building framework must

provide mechanisms of interoperation at some level of granularity, agent-based

frameworks face important new challenges in this area. This is true primarily because

autonomy, the hallmark of individual agents, necessitates greater flexibility in

interactions within communities of agents. Coordination refers to the mechanisms by

30 which a community of agents is able to work together productively on some task. In

these areas, the goals for our framework are to provide flexibility in assembling

Attornev Docket No: SRI1P016(3477)/BRC/EWJ Page 13 of 59 Page 15 of 778

communities of autonomous service providers, provide flexibility in structuring

cooperative interactions, impose the right amount of structure, as well as include

legacy and "owned-elsewhere" applications.

Provide flexibility in assembling communities of autonomous service providers

5 -- both at development time and at runtime. Agents that conform to the linguistic and

ontological requirements for effective communication should be able to participate in

an agent community, in various combinations, with minimal or near minimal

prerequisite knowledge of the characteristics of the other players. Agents with

duplicate and overlapping capabilities should be able to coexist within the same

10 community, with the system making optimal or near optimal use of the redundancy.

Provide flexibility in structuring cooperative interactions among the members

of a community of agents. A framework preferably provides an economical

mechanism for setting up a variety of interaction patterns among agents, without

requiring an inordinate amount of complexity or infrastructure within the individual

15 agents. The provision of a service should be independent or minimally dependent

upon a particular configuration of agents.

Impose the right amount of structure on individual agents. Different

approaches to the construction of multi-agent systems impose different requirements

on the individual agents. For example, because KQML is neutral as to the content of

20 messages, it imposes minimal structural requirements on individual agents. On the

other hand, the BDI paradigm tends to impose much more demanding requirements,

by making assumptions about the nature of the programming elements that are

meaningful to individual agents. Preferred embodiments of the present invention

should fall somewhere between the two, providing a rich set of interoperation and

25 coordination capabilities, without precluding any of the software engineering goals

defined below.

Include legacy and "owned-elsewhere" applications. Whereas legacy usually

implies reuse of an established system fully controlled by the agent-based system

developer, owned-elsewhere refers to applications to which the developer has partial

30 access, but no control. Examples of owned-elsewhere applications include data

sources and services available on the World Wide Web, via simple form-based

Attorney Docket No: SRIIP016(3477VBRCfEWJ Page 14 of 59
Page 16 of 778

interfaces, and applications used cooperatively within a virtual enterprise, which

remain the properties of separate corporate entities. Both classes of application must

preferably be able to interoperate, more or less as full-fledged members of the agent

community, without requiring an overwhelming integration effort.

5 Human-ori~nted user interfaces

Systems composed of multiple distributed components, and possibly dynamic

configurations of components, require the crafting of intuitive user interfaces to

provide conceptually natural interaction mechanisms, treat users as privileged

members of the agent community and support collaboration.

10 Provide conceptually natural interaction mechanisms with multiple

distributed components. When there are numerous disparate agents, and/or complex

tasks implemented by the system, the user should be able to express requests without

having detailed knowledge of the individual agents. With speech recognition,

handwriting recognition, and natural language technologies becoming more mature,

15 agent architectures should preferably support these forms of input playing increased

roles in the tasking of agent communities.

Preferably treat users as privileged members of the agent community by

providing an appropriate level of task specification within software agents, and

reusable translation mechanisms between this level and the level of human requests,

20 supporting constructs that seamlessly incorporate interactions between both human

interface and software types of agents.

25

Preferably support collaboration (simultaneous work over shared data and

processing resources) between users and agents.

Realistic software engineering requirements

System-building frameworks should preferably address the practical concerns

of real-world applications by the specification of requirements which preferably

include: Minimize the effort required to create new agents, and to wrap existing

applications. Encourage reuse, both of domain-independent and domain-specific

components. The concept of agent orientation, like that of object orientation, provides

30 a natural conceptual framework for reuse, so long as mechanisms for encapsulation

Attorney Docket No: SRI1P016(3477)/BRCIEWJ Pa2'e 15 of 59
Page 17 of 778

and interaction are structured appropriately. Support lightweight, mobile platforms.

Such platforms should be able to serve as hosts for agents, without requiring the

installation of a massive environment. It should also be possible to construct

individual agents that are relatively small and modest in their processing

5 requirements. Minimize platform and language barriers. Creation of new agents, as

well as wrapping of existing applications, should not require the adoption of a new

language or environment.

Mechanisms of Cooperation

Cooperation among agents in accordance with the present invention is

10 preferably achieved via messages expressed in a common language, ICL.

Cooperation among agent is further preferably structured around a three-part

approach: providers of services register capabilities specifications with a facilitator,

requesters of services construct goals and relay them to a facilitator, and facilitators

coordinate the efforts of the appropriate service providers in satisfying these goals.

15 The Interagent Communication Language (ICL)

Interagent Communication Language ("ICL") 418 refers to an interface,

communication, and task coordination language preferably shared by all agents,

regardless of what platform they run on or what computer language they are

programmed in. ICL may be used by an agent to task itself or some subset of the

20 agent community. Preferably, ICL allows agents to specify explicit control

parameters while simultaneously supporting expression of goals in an underspecified,

loosely constrained manner. In a further preferred embodiment, agents employ ICL to

perform queries, execute actions, exchange information, set triggers, and manipulate

data in the agent community.

25 In a further preferred embodiment, a program element expressed in ICL is the

event. The activities of every agent, as well as communications between agents, are

preferably structured around the transmission and handling of events. In

communications, events preferably serve as messages between agents; in regulating

the activities of individual agents, they may preferably be thought of as goals to be

30 satisfied. Each event preferably has a type, a set of parameters, and content. For

example, the agent library procedure oaa_Solve can be used by an agent to request

Attornev Docket No: SRI1P016(3477)!BRC/EWJ Page 16 of 59
Page 18 of 778

services of other agents. A call to oaa_Solve, within the code of agent A, results in an

event having the form

ev _post_solve(Goal, Params)

going from A to the facilitator, where ev_post_solve is the type, Goal is the content,

5 and Params is a list of parameters. The allowable content and parameters preferably

vary according to the type of the event.

The ICL preferably includes a layer of conversational protocol and a content

layer. The conversational layer of ICL is defined by the event types, together with the

parameter lists associated with certain of these event types. The content layer consists

10 of the specific goals, triggers, and data elements that may be embedded within various

events.

The ICL conversational protocol is preferably specified using an orthogonal,

parameterized approach, where the conversational aspects of each element of an

interagent conversation are represented by a selection of an event type and a selection

15 of values from at least one orthogonal set of parameters. This approach offers greater

expressiveness than an approach based solely on a fixed selection of speech acts, such

as embodied in KQML. For example, in KQML, a request to satisfy a query can

employ either of the performatives ask_all or ask_one. In ICL, on the other hand, this

type of request preferably is expressed by the event type ev _post_solve, together with

20 the solution_limit(N) parameter- where N can be any positive integer. (A request for

all solutions is indicated by the omission of the solution_limit parameter.) The request

can also be accompanied by other parameters, which combine to further refine its

semantics. In KQML, then, this example forces one to choose between two possible

conversational options, neither of which may be precisely what is desired. In either

25 case, the performative chosen is a single value that must capture the entire

conversational characterization of the communication. This requirement raises a

difficult challenge for the language designer, to select a set of performatives that

provides the desired functionality without becoming unmanageably large.

Consequently, the debate over the right set of performatives has consumed much

30 discussion within the KQML community.

The content layer of the ICL preferably supports unification and other features

found in logic programming language environments such as PROLOG. In some

Attorney Docket No: SR11P016(3477)!BRCIEWJ Page 17 of 59
Page 19 of 778

embodiments, the content layer of the ICL is simply an extension of at least one

programming language. For example, the Applicants have found that PROLOG is

suitable for implementing and extending into the content layer of the ICL. The agent

libraries preferably provide support for constructing, parsing, and manipulating ICL

s expressions. It is possible to embed content expressed in other languages within an

ICL event. However, expressing content in ICL simplifies the facilitator's access to

the content, as well as the conversational layer, in delegating requests. This gives the

facilitator more information about the nature of a request and helps the facilitator

decompose compound requests and delegate the sub-requests.

10 Further, ICL expressions preferably include, in addition to events, at least one

of the following: capabilities declarations, requests for services, responses to requests,

trigger specifications, and shared data elements. A further preferred embodiment of

the present invention incorporates ICL expressions including at least all of the

following: events, capabilities declarations, requests for services, responses to

15 requests, trigger specifications, and shared data elements.

Providing Services: Specifying .. Solvables"

In a preferred embodiment of the present invention, every participating agent

defines and publishes a set of capability declarations, expressed in ICL, describing the

services that it provides. These declarations establish a high-level interface to the

20 agent. This interface is used by a facilitator in communicating with the agent, and,

most important, in delegating service requests (or parts of requests) to the agent.

Partly due to the use of PROLOG as a preferred basis for ICL, these capability

declarations are referred as solvables. The agent library preferably provides a set of

procedures allowing an agent to add, remove, and modify its solvables, which it may

25 preferably do at any time after connecting to its facilitator.

There are preferably at least two major types of solvables: procedure solvables

and data solvables. Intuitively, a procedure solvable performs a test or action,

whereas a data solvable provides access to a collection of data. For example, in

creating an agent for a mail system, procedure solvables might be defined for sending

30 a message to a person, testing whether a message about a particular subject has

arrived in the mail queue, or displaying a particular message onscreen. For a database

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 18 of 59
Page 20 of 778

5

wrapper agent, one might define a distinct data solvable corresponding to each of the

relations present in the database. Often, a data solvable is used to provide a shared

data store, which may be not only queried, but also updated, by various agents having

the required pennissions.

There are several primary technical differences between these two types of

solvables. First, each procedure solvable must have a handler declared and defined

for it, whereas this is preferably not necessary for a data solvable. The handling of

requests for a data solvable is preferably provided transparently by the agent library.

Second, data solvables are preferably associated with a dynamic collection of facts (or

10 clauses), which may be further preferably modified at runtime, both by the agent

providing the solvable, and by other agents (provided they have the required

permissions). Third, special features, available for use with data solvables, preferably

facilitate maintaining the associated facts. In spite of these differences, it should be

noted that the mechanism of use by which an agent requests a service is the same for

15 the two types of solvables.

In one embodiment, a request for one of an agent's services normally arrives in

the form of an event from the agent's facilitator. The appropriate handler then deals

with this event. The handler may be coded in whatever fashion is most appropriate,

depending on the nature of the task, and the availability of task -specific libraries or

20 legacy code, if any. The only hard requirement is that the handler return an

appropriate response to the request, expressed in ICL. Depending on the nature of the

request, this response could be an indication of success or failure, or a list of solutions

(when the request is a data query).

A solvable preferably has three parts: a goal, a list of parameters, and a list of

25 permissions, which are declared using the format:

solvable(Goal, Parameters, Pennissions)

The goal of a solvable, which syntactically takes the preferable form of an ICL

structure, is a logical representation of the service provided by the solvable. (An ICL

structure consists of a junctor with 0 or more arguments. For example, in the structure

30 a(b,c), 'a' is the functor, and 'b' and 'c' the arguments.) As with a PROLOG structure,

the goal's arguments themselves may preferably be structures.

Attornev Docket No: SRI1P016(3477)/BRC/EWJ Page 19 of 59

Page 21 of 778

Various options can be included in the parameter list, to refine the semantics

associated with the solvable. The type parameter is preferably used to say whether the

solvable is data or procedure. When the type is procedure, another parameter may be

used to indicate the handler to be associated with the solvable. Some of the

5 parameters appropriate for a data solvable are mentioned elsewhere in this

application. In either case (procedure or data solvable), the private parameter may be

preferably used to restrict the use of a solvable to the declaring agent when the agent

intends the solvable to be solely for its internal use but wishes to take advantage of the

mechanisms in accordance with the present invention to access it, or when the agent

10 wants the solvable to be available to outside agents only at selected times. In support

of the latter case, it is preferable for the agent to change the status of a solvable from

private to non-private at any time.

The permissions of a solvable provide mechanisms by which an agent may

preferably control access to its services allowing the agent to restrict calling and

15 writing of a solvable to itself and/or other selected agents. (Calling means requesting

the service encapsulated by a solvable, whereas writing means modifying the

collection of facts associated with a data solvable.) The default permission for every

solvable in a further preferred embodiment of the present invention is to be callable

by anyone, and for data solvables to be writable by anyone. A solvable's permissions

20 can preferably be changed at any time, by the agent providing the solvable.

25

30

Msg) 1

For example, the solvables of a simple email agent might include:

solvable(send_message(email, +ToPerson, +Params),
[type(procedure), callback(send_mail)],

[])
solvable(last_message(email, -Messageid),

[type(data), single_value(true)],
[write(true)]) 1

solvable(get_message(email, +Messageid, -

[type(procedure), callback(get_mail}],
[])

The symbols'+' and'-', indicating input and output arguments, are at present

used only for purposes of documentation. Most parameters and permissions have

default values, and specifications of default values may be omitted from the

35 parameters and permissions lists.

Attornev Docket No: SRI1P016(3477)/BRC/EWJ Pa!!e 20 of 59
Page 22 of 778

Defining an agent's capabilities in terms of solvable declarations effectively

creates a vocabulary with which other agents can communicate with the new agent.

Ensuring that agents will speak the same language and share a common, unambiguous

semantics of the vocabulary involves ontology. Agent development tools and services

5 (automatic translations of solvables by the facilitator) help address this issue;

additionally, a preferred embodiment of the present invention will typically rely on

vocabulary from either formally engineered ontologies for specific domains or from

ontologies constructed during the incremental development of a body of agents for

several applications or from both specific domain ontologies and incrementally

10 developed ontologies. Several example tools and services are described in Cheyer et

al.'s paper entitled "Development Tools for the Open Agent Architecture," as

presented at the Practical Application of Intelligent Agents and Multi-Agent

Technology (PAAM 96), London, April1996.

Although the present invention imposes no hard restrictions on the form of

15 solvable declarations, two common usage conventions illustrate some of the utility

associated with solvables.

Classes of services are often preferably tagged by a particular type. For

instance, in the example above, the "last_message" and "get_message" solvables are

specialized for email, not by modifying the names of the services, but rather by the

20 use of the 'email' parameter, which serves during the execution of an ICL request to

select (or not) a specific type of message.

Actions are generally written using an imperative verb as the functor of the

solvable in a preferred embodiment of the present invention, the direct object (or item

class) as the first argument of the predicate, required arguments following, and then

25 an extensible parameter list as the last argument. The parameter list can hold optional

information usable by the function. The ICL expression generated by a natural

language parser often makes use of this parameter list to store prepositional phrases

and adjectives.

As an illustration of the above two points, "Send mail to Bob about lunch" will

30 be translated into an ICL request send_message(email, 'Bob Jones', [subject(lunch)]),

whereas "Remind Bob about lunch" would leave the transport unspecified

Attornev Docket No: SRIIP016(3477)/BRC/EWJ Page 21 of 59
Page 23 of 778

5

(send_message(KIND, 'Bob Jones', [subject(lunch)])), enabling all available message

transfer agents (e.g., fax, phone, mail, pager) to compete for the opportunity to carry

out the request.

Requesting SeNices

An agent preferably requests services of the community of agent by delegating

tasks or goals to its facilitator. Each request preferably contains calls to one or more

agent solvables, and optionally specifies parameters containing advice to help the

facilitator detennine how to execute the task. Calling a solvable preferably does not

require that the agent specify (or even know of) a particular agent or agents to handle

10 the call. While it is possible to specify one or more agents using an address parameter

(and there are situations in which this is desirable), in general it is advantageous to

leave this delegation to the facilitator. This greatly reduces the hard-coded

component dependencies often found in other distributed frameworks. The agent

libraries of a preferred embodiment of the present invention provide an agent with a

15 single, unified point of entry for requesting services of other agents: the library

procedure oaa_Solve. In the style of logic programming, oaa_Solve may preferably

be used both to retrieve data and to initiate actions, so that calling a data solvable

looks the same as calling a procedure solvable.

Complex Goal Expressions

20 A powerful feature provided by preferred embodiments of the present

invention is the ability of a client agent (or a user) to submit compound goals of an

arbitrarily complex nature to a facilitator. A compound goal is a single goal

expression that specifies multiple sub-goals to be performed. In speaking of a

"complex goal expression" we mean that a single goal expression that expresses

25 multiple sub-goals can potentially include more than one type of logical connector

(e.g., AND, OR, NOT), and/or more than one level oflogical nesting (e.g., use of

parentheses), or the substantive equivalent. By way of further clarification, we note

that when speaking of an "arbitrarily complex goal expression" we mean that goals

are expressed in a language or syntax that allows expression of such complex goals

30 when appropriate or when desired, not that every goal is itself necessarily complex.

Attornev Docket No: SRIIP016(3477)/BRC/EWJ Page 22 of 59
Page 24 of 778

It is contemplated that this ability is provided through an interagent

communication language having the necessary syntax and semantics. In one example,

the goals may take the form of compound goal expressions composed using operators

similar to those employed by PROLOG, that is, the comma for conjunction, the

5 semicolon for disjunction, the arrow for conditional execution, etc. The present

invention also contemplates significant extensions to PROLOG syntax and semantics.

For example, one embodiment incorporates a "parallel disjunction" operator

indicating that the disjuncts are to be executed by different agents concurrently. A

further embodiment supports the specification of whether a given sub-goal is to be

10 executed breadth-first or depth-first.

A further embodiment supports each sub-goal of a compound goal optionally

having an address and/or a set of parameters attached to it. Thus, each sub-goal takes

the form

Address:Goal::Parameters

15 where both Address and Parameters are optional.

An address, if present, preferably specifies one or more agents to handle the

given goal, and may employ several different types of referring expression: unique

names, symbolic names, and shorthand names. Every agent has preferably a unique

name, assigned by its facilitator, which relies upon network addressing schemes to

20 ensure its global uniqueness. Preferably, agents also have self-selected symbolic

names (for example, "mail"), which are not guaranteed to be unique. When an

address includes a symbolic name, the facilitator preferably takes this to mean that all

agents having that name should be called upon. Shorthand names include 'self and

'parent' (which refers to the agent's facilitator). The address associated with a goal or

25 sub-goal is preferably always optional. When an address is not present, it is the

facilitator's job to supply an appropriate address.

The distributed execution of compound goals becomes particularly powerful

when used in conjunction with natural language or speech-enabled interfaces, as the

query itself may specify how functionality from distinct agents will be combined. As

30 a simple example, the spoken utterance "Fax it to Bill Smith's manager." can be

translated into the following compound ICL request:

oaa_Solve((manager('Bill Smith', M), fax(it,M,[])), (strategy(action)])

Attornev Docket No: SRilP016(3477)!BRC/EWJ Page 23 of 59
Page 25 of 778

Note that in this ICL request there are two sub-goals, "manager('Bill

Smith' ,M)" and "fax(it,M,[])," and a single global parameter "strategy(action)."

According to the present invention, the facilitator is capable of mapping global

parameters in order to apply the constraints or advice across the separate sub-goals in

5 a meaningful way. In this instance, the global parameter strategy(action) implies a

parallel constraint upon the first sub-goal; i.e., when there are multiple agents that

can respond to the manager sub-goal, each agent should receive a request for service.

In contrast, for the second sub-goal, parallelism should not be inferred from the global

parameter strategy(action) because such an inference would possibly result in the

1 o transmission of duplicate facsimiles.

Refining Service Requests

In a preferred embodiment of the present invention, parameters associated

with a goal (or sub-goal) can draw on useful features to refine the request's meaning.

For example, it is frequently preferred to be able to specify whether or not solutions

15 are to be returned synchronously; this is done using the reply parameter, which can

take any of the values synchronous, asynchronous, or none. As another example,

when the goal is a non-compound query of a data solvable, the cache parameter may

preferably be used to request local caching of the facts associated with that solvable.

Many of the remaining parameters fall into two categories: feedback and advice.

20 Feedback parameters allow a service requester to receive information from

the facilitator about how a goal was handled. This feedback can include such things as

the identities of the agents involved in satisfying the goal, and the amount of time

expended in the satisfaction of the goal.

Advice parameters preferably give constraints or guidance to the facilitator in

25 completing and interpreting the goal. For example, a solution_limit parameter

preferably allows the requester to say how many solutions it is interested in; the

facilitator and/or service providers are free to use this information in optimizing their

efforts. Similarly, a time_limit is preferably used to say how long the requester is

willing to wait for solutions to its request, and, in a multiple facilitator system, a

30 level_limit may preferably be used to say how remote the facilitators may be that are

consulted in the search for solutions. A priority parameter is preferably used to

Attornev Docket No: SRIIP016(3477)/BRCfEWJ Page 24 of 59
Page 26 of 778

indicate that a request is more urgent than previous requests that have not yet been

satisfied. Other preferred advice parameters include but are not limited to parameters

used to tell the facilitator whether parallel satisfaction of the parts of a goal is

appropriate, how to combine and filter results arriving from multiple solver agents,

5 and whether the requester itself may be considered a candidate solver of the sub-goals

of a request.

Advice parameters preferably provide an extensible set of low-level,

orthogonal parameters capable of combining with the /CL goal language to fully

express how information should flow among participants. In certain preferred

10 embodiments of the present invention, multiple parameters can be grouped together

and given a group name. The resulting high-level advice parameters can preferably

be used to express concepts analogous to KQML's performatives, as well as define

classifications of problem types. For instance, KQML's "ask_all" and "ask_one"

performatives would be represented as combinations of values given to the parameters

15 reply, parallel_ok, and solution_limit. As an example of a higher-level problem type,

the strategy "rnath_problem" might preferably send the query to all appropriate math

solvers in parallel, collect their responses, and signal a conflict if different answers are

returned. The strategy "essay_question" might preferably send the request to all

appropriate participants, and signal a problem (i.e., cheating) if any of the returned

20 answers are identical.

Facilitation

In a preferred embodiment of the present invention, when a facilitator receives

a compound goal, its job is to construct a goal satisfaction plan and oversee its

satisfaction in an optimal or near optimal manner that is consistent with the specified

25 advice. The facilitator of the present invention maintains a knowledge base that

records the capabilities of a collection of agents, and uses that knowledge to assist

requesters and providers of services in making contact.

Figure 7 schematically shows data structures 700 internal to a facilitator in

accordance with one embodiment of the present invention. Consider the function of a

30 Agent Registry 702 in the present invention. Each registered agent may be seen as

associated with a collection of fields found within its parent facilitator such as shown

in the figure. Each registered agent may optionally possess a Symbolic Name which

Attorney Docket No: SRilP016(3477)!BRC/EWJ Page 25 of 59
Page 27 of 778

would be entered into field 704. As mentioned elsewhere, Symbolic Names need not

be unique to each instance of an agent. Note that an agent may in certain preferred

embodiments of the present invention possess more than one Symbolic Name. Such

Symbolic Names would each be found through their associations in the Agent

5 Registry entries. Each agent, when registered, must possess a Unique Address, which

is entered into the Unique Address field 706.

With further reference to Figure 7, each registered agent may be optionally

associated with one or more capabilities, which have associated Capability

Declaration fields 708 in the parent facilitator Agent Registry 702. These capabilities

10 may define not just functionality, but may further provide a utility parameter

indicating, in some manner (e.g., speed, accuracy, etc), how effective the agent is at

providing the declared capability. Each registered agent may be optionally associated

with one or more data components, which have associated Data Declaration fields 710

in the parent facilitator Agent Registry 702. Each registered agent may be optionally

15 associated with one or more triggers, which preferably could be referenced through

their associated Trigger Declaration fields 712 in the parent facilitator Agent Registry

702. Each registered agent may be optionally associated with one or more tasks,

which preferably could be referenced through their associated Task Declaration fields

714 in the parent facilitator Agent Registry 702. Each registered agent may be

20 optionally associated with one or more Process Characteristics, which preferably

could be referenced through their associated Process Characteristics Declaration fields

716 in the parent facilitator Agent Registry 702. Note that these characteristics in

certain preferred embodiments of the present invention may include one or more of

the following: Machine Type (specifying what type of computer may run the agent),

25 Language (both computer and human interface).

A facilitator agent in certain preferred embodiments of the present invention

further includes a Global Persistent Database 720. The database 720 is composed of

data elements which do not rely upon the invocation or instantiation of client agents

for those data elements to persist. Examples of data elements which might be present

30 in such a database include but are not limited to the network address of the facilitator

agent's server, facilitator agent's server accessible network port list, firewalls, user

Attornev Docket No: SRIIP016(3477)/BRC/EWJ Page 26 of 59

Page 28 of 778

lists, and security options regarding the access of server resources accessible to the

facilitator agent.

A simplified walk through of operations involved in creating a client agent, a

client agent initiating a service request, a client agent responding to a service request

5 and a facilitator agent responding to a service request are including hereafter by way

of illustrating the use of such a system. These figures and their accompanying

discussion are provided by way of illustration of one preferred embodiment of the

present invention and are not intended to limit the scope of the present invention.

Figure 8 depicts operations involved in instantiating a client agent with its

10 parent facilitator in accordance with a preferred embodiment of the present invention.

15

20

The operations begin with starting the Agent Registration in a step 800. In a next step

802, the Installer, such as a client or facilitator agent, invokes a new client agent. It

will be appreciated that any computer entity is capable of invoking a new agent. The

system then instantiates the new client agent in a step 804. This operation may

involve resource allocations somewhere in the network on a local computer system

for the client agent, which will often include memory as well as placement of

references to the newly instantiated client agent in internal system lists of agents

within that local computing system. Once instantiated, the new client and its parent

facilitator establish a communications link in a step 806. In certain preferred

embodiments, this communications link involves selection of one or more physical

transport mechanisms for this communication. Once established, the client agent

transmits it profile to the parent facilitator in a step 808. When received, the parent

facilitator registers the client agent in a step 810. Then, at a step 812, a client agent

has been instantiated in accordance with one preferred embodiment of the present

25 invention.

Figure 9 depicts operations involved in a client agent initiating a service

request and receiving the response to that service request in accordance with a

preferred embodiment of the present invention. The method of Figure 9 begins in a

step 900, wherein any initialization or other such procedures may be performed.

30 Then, in a step 902, the client agent determines a goal to be achieved (or solved).

This goal is then translated in a step 904 into JCL, if it is not already formulated in it.

The goal, now stated in ICL, is then transmitted to the client agent's parent facilitator

Attorney Docket No: SRIIP016(3477)/BRC/EWJ Page 27 of 59
Page 29 of 778

in a step 906. The parent facilitator responds to this service request and at a later

time, the client agent receives the results of the request in a step 908, operations of

Figure 9 being complete in a done step 910.

FIGURE 10 depicts operations involved in a client agent responding to a

5 service request in accordance with a preferred embodiment of the present invention.

Once started in a step 1000, the client agent receives the service request in a step

1002. In a next step 1004, the client agent parses the received request from ICL. The

client agent then determines if the service is available in a step 1006. If it is not, the

client agent returns a status report to that effect in a step 1008. If the service is

10 available, control is passed to a step 1010 where the client performs the requested

service. Note that in completing step 1010 the client may form complex goal

expressions, requesting results for these solvables from the facilitator agent. For

example, a fax agent might fax a document to a certain person only after requesting

and receiving a fax number for that person. Subsequently, the client agent either

15 returns the results of the service and/or a status report in a step 1012. The operations

of Figure 10 are complete in a done step 1014.

20

FIGURE 11 depicts operations involved in a facilitator agent response to a

service request in accordance with a preferred embodiment of the present invention.

The start of such operations in step 1100 leads to the reception of a goal request in a

step 1102 by the facilitator. This request is then parsed and interpreted by the

facilitator in a step 1104. The facilitator then proceeds to construct a goal satisfaction

plan in a next step 1106. In steps 1108 and 1110, respectively, the facilitator

determines the required sub-goals and then selects agents suitable for performing the

required sub-goals. The facilitator then transmits the sub-goal requests to the selected

25 agents in a step 1112 and receives the results of these transmitted requests in a step

1114. It should be noted that the actual implementation of steps 1112 and 1114 are

dependent upon the specific goal satisfaction plan. For instance, certain sub-goals

may be sent to separate agents in parallel, while transmission of other sub-goals may

be postponed until receipt of particular answers. Further, certain requests may

30 generate multiple responses that generate additional sub-goals. Once the responses

have been received, the facilitator determines whether the original requested goal has

been completed in a step 1118. If the original requested goal has not been completed,

Attornev Docket No: SRilP016(3477)/BRC/EWJ Page 28 of 59
Page 30 of 778

the facilitator recursively repeats the operations 1106 through 1116. Once the original

requested goal is completed, the facilitator returns the results to the requesting agent

1118 and the operations are done at 1120.

A further preferred embodiment of the present invention incorporates

5 transparent delegation, which means that a requesting agent can generate a request,

and a facilitator can manage the satisfaction of that request, without the requester

needing to have any knowledge of the identities or locations of the satisfying agents.

In some cases, such as when the request is a data query, the requesting agent may also

be oblivious to the number of agents involved in satisfying a request. Transparent

IO delegation is possible because agents' capabilities (solvables) are treated as an abstract

description of a service, rather than as an entry point into a library or body of code.

15

A further preferred embodiment of the present invention incorporates

facilitator handling of compound goals, preferably involving three types of

processing: delegation, optimization and interpretation.

Delegation processing preferably supports facilitator determination of which

specific agents will execute a compound goal and how such a compound goal's sub

goals will be combined and the sub-goal results routed. Delegation involves selective

application of global and local constraint and advice parameters onto the specific sub

goals. Delegation results in a goal that is unambiguous as to its meaning and as to the

20 agents that will participate in satisfying it.

Optimization processing of the completed goal preferably includes the

facilitator using sub-goal parallelization where appropriate. Optimization results in a

goal whose interpretation will require as few exchanges as possible, between the

facilitator and the satisfying agents, and can exploit parallel efforts of the satisfying

25 agents, wherever this does not affect the goal's meaning.

Interpretation processing of the optimized goal. Completing the addressing of

a goal involves the selection of one or more agents to handle each of its sub-goals

(that is, each sub-goal for which this selection has not been specified by the

requester). In doing this, the facilitator uses its knowledge of the capabilities of its

30 client agents (and possibly of other facilitators, in a multi-facilitator system). It may

also use strategies or advice specified by the requester, as explained below. The

Attorney Docket No: SRIIP016(3477)/BRCIEWJ Pasre 29 of 59
Page 31 of 778

interpretation of a goal involves the coordination of requests to the satisfying agents,

and assembling their responses into a coherent whole, for return to the requester.

A further preferred embodiment of present invention extends facilitation so the

facilitator can employ strategies and advice given by the requesting agent, resulting in

5 a variety of interaction patterns that may be instantiated in the satisfaction of a

request.

10

15

A further preferred embodiment of present invention handles the distribution

of both data update requests and requests for installation of triggers, preferably using

some of the same strategies that are employed in the delegation of service requests.

Note that the reliance on facilitation is not absolute; that is, there is no hard

requirement that requests and services be matched up by the facilitator, or that

interagent communications go through the facilitator. There is preferably support in

the agent library for explicit addressing of requests. However, a preferred

embodiment of the present invention encourages employment the paradigm of agent

communities, minimizing their development effort, by taking advantage of the

facilitator's provision of transparent delegation and handling of compound goals.

A facilitator is preferably viewed as a coordinator, not a controller, of

cooperative task completion. A facilitator preferably never initiates an activity. A

facilitator preferably responds to requests to manage the satisfaction of some goal, the

20 update of some data repository, or the installation of a trigger by the appropriate agent

or agents. All agents can preferably take advantage of the facilitator's expertise in

delegation, and its up-to-date knowledge about the current membership of a dynamic

community. The facilitator's coordination services often allows the developer to

lessen the complexity of individual agents, resulting in a more manageable software

25 development process, and enabling the creation of lightweight agents.

Maintaining Data Repositories

The agent library supports the creation, maintenance, and use of databases, in

the form of data solvables. Creation of a data solvable requires only that it be

declared. Querying a data solvable, as with access to any solvable, is done using

30 oaa_Solve.

Attornev Docket No: SRI1P016(3477l/BRC/EWJ Page 30 of 59
Page 32 of 778

A data solvable is conceptually similar to a relation in a relational database.

The facts associated with each solvable are maintained by the agent library, which

also handles incoming messages containing queries of data solvables. The default

behavior of an agent library in managing these facts may preferably be refined, using

5 parameters specified with the solvable's declaration. For example, the parameter

single_value preferably indicates that the solvable should only contain a single fact at

any given point in time. The parameter unique_ values preferably indicates that no

duplicate values should be stored.

Other parameters preferably allow data solvables use of the concepts of

10 ownership and persistence. For implementing shared repositories, it is often

preferable to maintain a record of which agent created each fact of a data solvable

with the creating agent being preferably considered the fact's owner. In many

applications, it is preferable to remove an agent's facts when that agent goes offline

(for instance, when the agent is no longer participating in the agent community,

15 whether by deliberate termination or by malfunction). When a data solvable is

declared to be non-persistent, its facts are automatically maintained in this way,

whereas a persistent data solvable preferably retains its facts until they are explicitly

removed.

A further preferred embodiment of present invention supports an agent library

20 through procedures by which agents can update (add, remove, and replace) facts

belonging to data solvables, either locally or on other agents, given that they have

preferably the required permissions. These procedures may preferably be refined

using many of the same parameters that apply to service requests. For example, the

address parameter preferably specifies one or more·particular agents to which the

25 update request applies. In its absence, just as with service requests, the update request

preferably goes to all agents providing the relevant data solvable. This default

behavior can be used to maintain coordinated "mirror" copies of a data set within

multiple agents, and can be useful in support of distributed, collaborative activities.

Similarly, the feedback parameters, described in connection with oaa_Solve,

30 are preferably available for use with data maintenance requests.

Attorney Docket No: SRIIP016(3477)/BRC/EWJ Page 31 of 59
Page 33 of 778

A further preferred embodiment of present invention supports ability to

provide data solvables not just to client agents, but also to facilitator agents. Data

solvables can preferably created, maintained and used by a facilitator. The facilitator

preferably can, at the request of a client of the facilitator, create, maintain and share

5 the use of data solvables with all the facilitator's clients. This can be useful with

relatively stable collections of agents, where the facilitator's workload is predictable.

Using a Blackboard Style of Communication

In a further preferred embodiment of present invention, when a data solvable

10 is publicly readable and writable, it acts essentially as a global data repository and can

be used cooperatively by a group of agents. In combination with the use of triggers,

this allows the agents to organize their efforts around a "blackboard" style of

communication.

As an example, the "DCG-NL" agent (one of several existing natural language

15 processing agents), provides natural language processing services for a variety of its

peer agents, expects those other agents to record, on the facilitator, the vocabulary to

which they are prepared to respond, with an indication of each word's part of speech,

and of the logical form (ICL sub-goal) that should result from the use of that word. In

a further preferred embodiment of present invention, the NL agent, preferably when it

20 comes online, preferably installs a data solvable for each basic part of speech on its

facilitator. For instance, one such solvable would be:

25

solvable(noun(Meaning, Syntax),[],[])

Note that the empty lists for the solvable's permissions and parameters are acceptable

here, since the default permissions and parameters provide appropriate functionality.

A further preferred embodiment of present invention incorporating an Office

Assistant system as discussed herein or similar to the discussion here supports several

agents making use of these or similar services. For instance, the database agent uses

the following call, to library procedure oaa_AddData, to post the noun 'boss', and to

indicate that the "meaning" of boss is the concept 'manager':

30 oaa_AddData(noun(manager, atom(boss)), [address(parent)])

Attornev Docket No: SRI1P016(3477)/BRC/EWJ Page 32 of 59
Page 34 of 778

Autonomous Monitoring with Triggers

A further preferred embodiment of present invention includes support for

triggers, providing a general mechanism for requesting some action be taken when a

set of conditions is met. Each agent can preferably install triggers either locally, for

5 itself, or remotely, on its facilitator or peer agents. There are preferably at least four

types of triggers: communication, data, task, and time. In addition to a type, each

trigger preferably specifies at least a condition and an action, both preferably

expressed in ICL. The condition indicates under what circumstances the trigger should

fire, and the action indicates what should happen when it fires. In addition, each

10 trigger can be set to fire either an unlimited number of times, or a specified number of

times, which can be any positive integer.

Triggers can be used in a variety of ways within .preferred embodiments of the

present invention. For example, triggers can be used for monitoring external sensors

in the execution environment, tracking the progress of complex tasks, or coordinating

15 communications between agents that are essential for the synchronization of related

tasks. The installation of a trigger within an agent can be thought of as a

representation of that agent's commitment to carry out the specified action, whenever

the specified condition holds true.

Communication triggers preferably allow any incoming or outgoing event

20 (message) to be monitored. For instance, a simple communication trigger may say

something like: "Whenever a solution to a goal is returned from the facilitator, send

the result to the presentation manager to be displayed to the user."

Data triggers preferably monitor the state of a data repository (which can be

maintained on a facilitator or a client agent). Data triggers' conditions may be tested

25 upon the addition, removal, or replacement of a fact belonging to a data solvable. An

example data trigger is: "When 15 users are simultaneously logged on to a machine,

send an alert message to the system administrator."

Task triggers preferably contain conditions that are tested after the processing

of each incoming event and whenever a timeout occurs in the event polling. These

30 conditions may specify any goal executable by the local /CL interpreter, and most

often are used to test when some solvable becomes satisfiable. Task triggers are

Attornev Docket No: SRI1P016(3477)/BRC/EWJ Page 33 of 59
Page 35 of 778

useful in checking for task-specific internal conditions. Although in many cases such

conditions are captured by solvables, in other cases they may not be. For example, a

mail agent might watch for new incoming mail, or an airline database agent may

monitor which flights will arrive later than scheduled. An example task trigger is:

5 "When mail arrives for me about security, notify me immediately."

Time triggers preferably monitor time conditions. For instance, an alarm

trigger can be set to fire at a single fixed point in time (e.g., "On December 23rd at

3pm"), or on a recurring basis (e.g., "Every three minutes from now until noon").

Triggers are preferably implemented as data solvables, declared implicitly for

10 every agent. When requesting that a trigger be installed, an agent may use many of the

same parameters that apply to service and data maintenance requests.

A further preferred embodiment of present invention incorporates semantic

support, in contrast with most programming methodologies, of the agent on which the

trigger is installed only having to know how to evaluate the conditional part of the

15 trigger, not the consequence. When the trigger fires, the action is delegated to the

facilitator for execution. Whereas many commercial mail programs allow rules of the

form "When mail arrives about XXX, [forward it, delete it, archive it]", the possible

actions are hard-coded and the user must select from a fixed set.

A further preferred embodiment of present invention, the consequence of a

20 trigger may be any compound goal executable by the dynamic community of agents.

25

Since new agents preferably define both functionality and vocabulary, when an

unanticipated agent (for example, a fax agent) joins the community, no modifications

to existing code is required for a user to make use of it- "When mail arrives, fax it to

Bill Smith."

The Agent Library

In a preferred embodiment of present invention, the agent library provides the

infrastructure for constructing an agent-based system. The essential elements of

protocol (involving the details of the messages that encapsulate a service request and

30 its response) are preferably made transparent to simplify the programming

applications. This enables the developer to focus functionality, rather than message

AttorneY Docket No: SRI 1 PO 16(34 77)/BRC/EWJ Page 34 of 59
Page 36 of 778

construction details and communication details. For example, to request a service of

another agent, an agent preferably calls the library procedure oaa_Solve. This call

results in a message to a facilitator, which will exchange messages with one or more

service providers, and then send a message containing the desired results to the

5 requesting agent. These results are returned via one of the arguments of oaa_Solve.

None of the messages involved in this scenario is explicitly constructed by the agent

developer. Note that this describes the synchronous use of oaa_Solve.

In another preferred embodiment of present invention, an agent library

provides both intraagent and interagent infrastructure; that is, mechanisms supporting

10 the internal structure of individual agents, on the one hand, and mechanisms of

cooperative interoperation between agents, on the other. Note that most of the

infrastructure cuts across this boundary with many of the same mechanisms

supporting both agent internals and agent interactions in an integrated fashion. For

example, services provided by an agent preferably can be accessed by that agent

15 through the same procedure (oaa_Solve) that it would employ to request a service of

another agent (the only difference being in the address parameter accompanying the

request). This helps the developer to reuse code and avoid redundant entry points into

the same functionality.

Both of the preferred characteristics described above (transparent construction

20 of messages and integration of intraagent with interagent mechanisms) apply to most

other library functionality as well, including but not limited to data management and

temporal control mechanisms.

Source Code Appendix

Source code for version 2.0 of theOAA software product is included as an

25 appendix hereto, and is incorporated herein by reference. The code includes an agent

library, which provides infrastructure for constructing an agent-based system. The

library's several families of procedures provide the functionalities discussed above, as

well as others that have not been discussed here but that will be sufficiently clear to

the interested practitioner. For example, declarations of an agent's solvables, and their

30 registration with a facilitator, are managed using procedures such as oaa_Declare,

oaa_Undeclare, and oaa_Redeclare. Updates to data solvables can be accomplished

with a family of procedures including oaa_AddData, oaa_RemoveData, and

Attorney Docket No: SRIIPOI6(3477)/BRC/EWJ Page 35 of 59

Page 37 of 778

oaa_ReplaceData. Similarly, triggers are maintained using procedures such as

oaa_AddTrigger, oaa_RemoveTrigger, and oaa_ReplaceTrigger. The provided

source code also includes source code for an OAA Facilitator Agent.

The source code appendix is offered solely as a means of further helping

5 practitioners to construct a preferred embodiment of the invention. By no means is

the source code intended to limit the scope of the present invention.

Illustrative Applications

To further illustrate the technology of the preferred embodiment, we will next

present and discuss two sample applications of the present inventions.

10 Unified Messaging

A further preferred embodiment of present invention incorporates a Unified

Messaging application extending the Automated Office application presented

previously herein with an emphasis on ubiquitous access and dynamic presentation of

the information and services supported by the agent community. The agents used in

15 this application are depicted in Figure 12.

A hypothetical example of realistic dialog using a preferred embodiment of

the present invention can provide insight into how systems may preferably be built

using the present invention. In this scenario. the user, with only a telephone as an

interface, is planning a trip to Boston where he will soon give a presentation.

20 Capitalized sentences are phrases spoken by the user into the telephone and processed

by a phone agent 452.

Responses, unless otherwise indicated, are spoken by the system using text-to

speech generation agent 454.

25 1.1 Welcome to SRI International. Please enter your
user ID and password.

<User enters touchtone ID and password>

Good to see you again Adam Cheyer. I am

listening to you.

30 Every user interface agent 408, including the telephone agent 452, should

know the identify of its user. This information is used in resolving anaphoric

Attornev Docket No: SRI1P016(3477VBRC!EWJ Page 36 of 59
Page 38 of 778

references such as "me" and "I", and allows multiple user interfaces operated by the

same user to work together.

1.2 WHAT IS TODAY'S SCHEDULE?
Here is today's schedule for Adam Cheyer:

5 At lOam for 1 hour, meeting with Dave.
At 3pm for 1 hour, presentation about software

agents.

End of schedule.

If the user is operating both a graphical user interface and a telephone, as

10 described in conjunction with the Automated Office application, the result of this

spoken request is to display a calendar window containing the current schedule. In

this case, with no graphical display available, the GEN_NL agent 1202 is tasked to

produce a spoken response that can be played over the phone. GEN_NL shares the

same dynamic vocabulary and phrasal rules as the natural language parser DCG_NL

15 426, and contains strategies for producing responses to queries using either simple or

list-based multimedia utterances.

1.3 FIND FRIDAY'S WEATHER IN BOSTON.
The weather in Boston for Friday is as follows:

Sunny in the morning. Partly cloudy in the
20 afternoon with a 20

percent chance of thunderstorms late. Highs in the
mid 70s.

In addition to data accessible from legacy applications, content may be

retrieved by web-reading agents which provide wrappers around useful websites.

25 1.4 FIND ALL NEW MAIL MESSAGES.
There are 2 messages available.
Message 1, from Mark Tierny, entitled "OAA meeting."

1.5 NEXT MESSAGE
Message 2, from Jennifer Schwefler, entitled

30 "Presentation Summary. "
1. 6 PLAY IT.

This message is a multipart MIME-encoded message.
There are two parts.

Part 1. (Voicemail message, not text-to speech):
35 Thanks for taking part as a speaker in our

conference.
The schedule will be posted soon on our homepage.

1.7 NEXT PART
Part 2. (read using text-to-speech):

40 The presentation home page is http://www
1.8 PRINT MESSAGE

Command executed.

Attorney Docket No: SRllP016(3477)/BRC/EWJ Page 37 of 59
Page 39 of 778

Mail messages are no longer just simple text documents, but often consist of

multiple subparts containing audio files, pictures, webpages, attachments and so forth.

When a user asks to play a complex email message over the telephone, many different

agents may be implicated in the translation process, which would be quite different

5 given the request "print it." The challenge is to develop a system which will enable

agents to cooperate in an extensible, flexible manner that alleviates explicit coding of

agent interactions for every possible input/output combination.

In a preferred embodiment of the present invention, each agent concentrates

only on what it can do and on what it knows, and leaves other work to be delegated to

10 the agent community. For instance, a printer agent 1204, defining the solvable

print(Object,Parameters), can be defined by the following pseudo-code, which

basically says, "If someone can get me a document, in either POSTSCRIPT or text

form, I can print it.''.

15 print(Object, Parameters) {
' If Object is reference to "it", find an appropriate

document
if (Object= "ref(it)")

oaa_Solve(resolve_reference(the, document, Params,
20 Object),[]);

' Given a reference to some document, ask for the
document in POSTSCRIPT

if (Object = "id(Pointer) ")
oaa_Solve(resolve_id_as(id(Pointer), postscript,

25 [] , Object) , []) ;
' If Object is of type text or POSTSCRIPT, we can

print it.
if ((Object is of type Text) or (Object is of type

Postscript))
30 do_print (Object);

}

In the above example, since an email message is the salient document, the

mail agent 442 will receive a request to produce the message as POSTSCRIPT.

Whereas the mail agent 442 may know how to save a text message as POSTSCRIPT,

35 it will not know what to do with a webpage or voicemail message. For these parts of

the message, it will simply send oaa_Solve requests to see if another agent knows

how to accomplish the task.

Attornev Docket No: SRIIP016(3477)/BRC/EWJ Page 38 of 59
Page 40 of 778

Until now, the user has been using only a telephone as user interface. Now, he

moves to his desktop, starts a web browser 436, and accesses the URL referenced by

the mail message.

1.9 RECORD MESSAGE
5 Recording voice message. Start speaking now.

1.10 THIS IS THE UPDATED WEB PAGE CONTAINING THE
PRESENTATION SCHEDULE.

Message one recorded.
1.11 IF THIS WEB PAGE CHANGES, GET IT TO ME WITH NOTE

lO ONE.
Trigger added as requested.

In this example, a local agent 436 which interfaces with the web browser can

return the current page as a solution to the request "oaa_Solve(resolve_reference(this,

web_page, [],Ret),[])", sent by the NL agent 426. A trigger is installed on a web

15 agent 436 to monitor changes to the page, and when the page is updated, the notify

agent 446 can find the user and transmit the webpage and voicemail message using

the most appropriate media transfer mechanism.

This example based on the Unified Messaging application is intended to show

how concepts in accordance with the present invention can be used to produce a

20 simple yet extensible solution to a multi-agent problem that would be difficult to

implement using a more rigid framework. The application supports adaptable

presentation for queries across dynamically changing, complex information; shared

context and reference resolution among applications; and flexible translation of

multimedia data. In the next section, we will present an application which highlights

25 the use of parallel competition and cooperation among agents during multi-modal

fusion.

Multimodal Map

A further preferred embodiment of present invention incorporates the

Multimodal Map application. This application demonstrates natural ways of

30 communicating with a community of agents, providing an interactive interface on

which the user may draw, write or speak. In a travel-planning domain illustrated by

Figure 13, available information includes hotel, restaurant, and tourist-site data

retrieved by distributed software agents from commercial Internet sites. Some

preferred types of user interactions and multimoda1 issues handled by the application

Attornev Docket No: SRIIP016(3477)!BRCfEWJ Pa2:e 39 of 59
Page 41 of 778

are illustrated by a brief scenario featuring working examples taken from the current

system.

Sara is planning a business trip to San Francisco, but would like to schedule

some activities for the weekend while she is there. She turns on her laptop PC,

5 executes a map application, and selects San Francisco.

2.1 [Speaking] Where is downtown?
Map scrolls to appropriate area.

2.2 [Speaking and drawing region] Show me all hotels
near here.

10 Icons representing hotels appear.
2.3 [Writes on a hotel] Info?

A textual description (price, attributes, etc.)
appears.
2.4 [Speaking) I only want hotels with a pool.

15 Some hotels disappear.
2.5 [Draws a crosscut on a hotel that is too close to a
highway]

Hotel disappears
2.6 [Speaking and circling] Show me a photo of this

20 hotel.
Photo appears.

2.7 [Points to another hotel]
Photo appears.

2.8 [Speaking] Price of the other hotel?
25 Price appears for previous hotel.

2.9 [Speaking and drawing an arrow) Scroll down.
Display adjusted.

2.10 [Speaking and drawing an arrow toward a hotel]
What is the distance from this hotel to Fisherman's

30 Wharf?
Distance displayed.

2.11 [Pointing to another place and speaking] And the
distance to here?

Distance displayed.

35 Sara decides she could use some human advice. She picks up the phone, calls

40

45

Bob, her travel agent, and writes Start collaboration to synchronize his display with

hers. At this point, both are presented with identical maps, and the input and actions

of one will be remotely seen by the other.

3.1

Any
3.2

walk

[Sara speaks and circles two hotels]
Bob, I'm trying to choose between these two hotels.

opinions?
[Bob draws an arrow, speaks, and points]
Well, this area is really nice to visit. You can

there from

Attorney Docket No: SRI1P016(3477VBRC/EWJ Pa!!:e 40 of 59
Page 42 of 778

5

3.3
3.4

3.5

this hotel.
Map scrolls to indicated area. Hotel selected.
[Sara speaks] Do you think I should visit Alcatraz?
[Bob speaks] Map, show video of Alcatraz.
Video appears.

[Bob speaks] Yes, Alcatraz is a lot of fun.

A further preferred embodiment of present invention generates the most

appropriate interpretation for the incoming streams of multimodal input. Besides

providing a user interface to a dynamic set of distributed agents, the application is

10 preferably built using an agent framework. The present invention also contemplates

aiding the coordinate competition and cooperation among information sources, which

in turn works in parallel to resolve the ambiguities arising at every level of the

interpretation process: low-level processing of the data stream, anaphora resolution,

cross-modality influences and addressee.

15 Low-level processing of the data stream: Pen input may be preferably

interpreted as a gesture (e.g., 2.5: cross-out) by one algorithm, or as handwriting by a

separate recognition process (e.g., 2.3: "info?"). Multiple hypotheses may preferably

be returned by a modality recognition component.

Anaphora resolution: When resolving anaphoric references, separate

20 information sources may contribute to resolving the reference: context by object type,

deictic, visual context, database queries, discourse analysis. An example of

information provided through context by object type is found in interpreting an

utterance such as "show photo of the hotel", where the natural language component

can return a list of the last hotels talked about. Deictic information in combination

25 with a spoken utterance like "show photo of this hotel" may preferably include

pointing, circling, or arrow gestures which might indicate the desired object (e.g.,

2.7). Deictic references may preferably occur before, during, or after an

accompanying verbal command. Information provided in a visual context, given for

the request "display photo of the hotel" may preferably include the user interface

30 agent might determine that only one hotel is currently visible on the map, and

therefore this might be the desired reference object. Database queries preferably

involving information from a database agent combined with results from other

resolution strategies. Examples are "show me a photo of the hotel in Menlo Park" and

Attornev Docket No: SRI1P016(3477)fBRCfEWJ Pag:e 41 of 59
Page 43 of 778

i::'

2.2. Discourse analysis preferably provides a source of information for phrases such

as "No, the other one" (or 2.8).

The above list of preferred anaphora resolution mechanisms is not exhaustive.

Examples of other preferred resolution methods include but are not limited to spatial

5 reasoning ("the hotel between Fisherman's Wharf and Lombard Street") and user

preferences ("near my favorite restaurant").

Cross-modality influences: When multiple modalities are used together, one

modality may preferably reinforce or remove or diminish ambiguity from the

interpretation of another. For instance, the interpretation of an arrow gesture may vary

10 when accompanied by different verbal commands (e.g., "scroll left" vs. "show info

about this hotel"). In the latter example, the system must take into account how

accurately and unambiguously an arrow selects a single hotel.

Addressee: With the addition of collaboration technology, humans and

automated agents all share the same workspace. A pen doodle or a spoken utterance

15 may be meant for either another human, the system (3.1), or both (3.2).

The implementation of the Multimodal Map application illustrates and

exploits several preferred features of the present invention: ·reference resolution and

task delegation by parallel parameters of oaa_Solve, basic multi-user collaboration

handled through built-in data management services, additional functionality readily

20 achieved by adding new agents to the community, domain-specific code cleanly

separated from other agents.

A further preferred embodiment of present invention provides reference

resolution and task delegation handled in a distributed fashion by the parallel

parameters of oaa_Solve, with meta-agents encoding rules to help the facilitator make

25 context- or user-specific decisions about priorities among knowledge sources.

A further preferred embodiment of present invention provides basic multi-user

collaboration handled through at least one built-in data management service. The

map user interface preferably publishes data solvables for elements such as icons,

screen position, and viewers, and preferably defines these elements to have the

30 attribute "shareable". For every update to this public data, the changes are preferably

Attornev Docket No: SRI1P016(3477)!BRCIEWJ Page 42 of 59
Page 44 of 778

automatically replicated to all members of the collaborative session, with associated

callbacks producing the visible effect of the data change (e.g., adding or removing an

icon).

Functionality for recording and playback of a session is preferably

5 implemented by adding agents as members of the collaborative community. These

agents either record the data changes to disk, or read a log file and replicate the

changes in the shared environment.

The domain-specific code for interpreting travel planning dialog is preferably

separated from the speech, natural language, pen recognition, database and map user

lO interface agents. These components were preferably reused without modification to

add multimodal map capabilities to other applications for activities such as crisis

management, multi-robot control, and the MVIEWS tools for the video analyst.

Improved Scalability and Fault Tolerance

Implementations of a preferred embodiment of present invention which rely

15 upon simple, single facilitator architectures may face certain limitations with respect

to scalability, because the single facilitator may become a communications bottleneck

and may also represent a single, critical point for system failure.

Multiple facilitator systems as disclosed in the preferred embodiments to this

point can be used to construct peer-to-peer agent networks as illustrated in Figure 14.

20 While such embodiments are scalable, they do possess the potential for

communication bottlenecks as discussed in the previous paragraph and they further

possess the potential for reliability problems as central, critical points of vulnerability

to systems failure.

A further embodiment of present invention supports a facilitator implemented

25 as an agent like any other, whereby multiple facilitator network topologies can be

readily constructed. One example configuration (but not the only possibility) is a

hierarchical topology as depicted in Figure 15, where a top level Facilitator manages

collections of both client agents 1508 and other Facilitators, 1504 and 1506.

Facilitator agents could be installed for individual users, for a group of users, or as

30 appropriate for the task.

Attornev Docket No: SRI1P016(3477)!BRC/EWJ Page 43 of 59
Page 45 of 778

Note further, that network work topologies of facilitators can be seen as

graphs where each node corresponds to an instance of a facilitator and each edge

connecting two or more nodes corresponds to a transmission path across one or more

physical transport mechanisms. Some nodes may represent facilitators and some

5 nodes may represent clients. Each node can be further annotated with attributes

corresponding to include triggers, data, capabilities but not limited to these attributes.

A further embodiment of present invention provides enhanced scalability and

robustness by separating the planning and execution components of the facilitator. In

contrast with the centralized facilitation schemes described above, the facilitator

10 system 1600 of Figure 16 separates the registry/planning component from the

execution component. As a result, no single facilitator agent must carry all

communications nor does the failure of a single facilitator agent shut down the entire

system.

Turning directly to Figure 16, the facilitator system 1600 includes a

15 registry/planner 1602 and a plurality of client agents 1612~1616. The registry/planner

1604 is typically replicated in one or more locations accessible by the client agents.

Thus if the registry/planner 1604 becomes unavailable, the client agents can access

the replicated registry/planner(s).

This system operates, for example, as follows. An agent transmits a goal 1610

20 to the registry planner 1602. The registry/planner 1604 translates the goal into an

unambiguous execution plan detailing how to accomplish any sub-goals developed

from the compound goal, as well as specifying the agents selected for performing the

sub-goals. This execution plan is provided to the requesting agent which in turn

initiates peer-to-peer interactions 1618 in order to implement the detailed execution

25 plan, routing and combining information as specified within the execution plan.

Communication is distributed thus decreasing sensitivity of the system to bandwidth

limitations of a single facilitator agent. Execution state is likewise distributed thus

enabling system operation even when a facilitator agent fails.

Further embodiments of present invention incorporate into the facilitator

30 functionality such as load-balancing, resource management, and dynamic

configuration of agent locations and numbers, using (for example) any of the

topologies discussed. Other embodiments incorporate into a facilitator the ability to

aid agents in establishing peer-to-peer communications. That is, for tasks requiring a

Attornev Docket No: SRIIP016f3477)/BRC!EWJ Pa2e 44 of 59
Page 46 of 778

sequence of exchanges between two agents, the facilitator assist the agents in finding

one another and establishing communication, stepping out of the way while the agents

communicate peer-to-peer over a direct, perhaps dedicated channel.

Further preferred embodiments of the present invention incorporate

5 mechanisms for basic transaction management, such as periodically saving the state of

agents (both facilitator and client) and rolling back to the latest saved state in the

event of the failure of an agent.

Attornev Docket No: SRI1P016(3477)/BRCIEWJ Page 45 of 59
Page 47 of 778

IN THE CLAIMS:

1.

2

A computer-implemented method for communication and cooperative task

completion among a plurality of distributed electronic agents, comprising the

3 acts of:

4 registering a description of each active client agent's functional capabilities, using an

5 expandable, platform-independent, inter-agent language;

6 receiving a request for service as a base goal in the inter-agent language, in the form

7 of an arbitrarily complex goal expression; and

8 dynamically interpreting the goal expression, said act of interpreting further

9 comprising:

10 generating one or more sub-goals using the inter-agent language; and

11 dispatching each of the sub-goals to a selected client agent for performance,

12 based on a match between the sub-goal being dispatched and the

13 registered functional capabilities of the selected client agent.

2. A computer-implemented method as recited in claim 1, further including the

2 following acts of:

3 receiving a new request for service as a base goal using the inter-agent language, in

4 the form of another arbitrarily complex goal expression, from at least one of

5 the selected client agents in response to the sub-goal dispatched to said agent;

6 and

7 recursively applying the last step of claim 1 in order to perform the new request for

8 service.

3. A computer implemented method as recited in claim 2 wherein the act

2 of registering a specific agent further includes:

3 invoking the specific agent in order to activate the specific agent;

4 instantiating an instance of the specific agent; and

5 transmitting the new agent profile from the specific agent to the facilitator

6 agent in response to the instantiation of the specific agent.

4. A computer implemented method as recited in claim 1 further

2 including the act of deactivating a specific client agent no longer available to provide

3 services by deleting the registration of the specific client agent.

5. A computer implemented method as recited in claim 1 further

2 comprising the act of providing an agent registry data structure.

Attornev Docket No: SRilP016(3477)/BRCIEWJ Page 46 of 59
Page 48 of 778

6. A computer implemented method as recited in claim 5 wherein the

2 agent registry data structure includes at least one symbolic name for each active agent.

7. A computer implemented method as recited in claim 5 wherein the

2 agent registry data structure includes at least one data declaration for each active

3 agent.

8. A computer implemented method as recited in claim 5 wherein the

2 agent registry data structure includes at least one trigger declaration for one active

3 agent.

9. A computer implemented method as recited in claim 5 wherein the

2 agent registry data structure includes at least one task declaration, and process

3 characteristics for each active agent.

10. A computer implemented method as recited in claim 5 wherein the

2 agent registry data structure includes at least one process characteristic for each active

3 agent.

11. A computer implemented method as recited in claim 1 further

2 comprising the act of establishing communication between the plurality of distributed

3 agents.

12. A computer implemented method as recited in claim 1 further

2 comprising the acts of:

3 receiving a request for service in a second language differing from the inter-

4 agentlanguage;

5 selecting a registered agent capable of converting the second language into the

6 inter-agent language; and

7 forwarding the request for service in a second language to the registered agent

8 capable of converting the second language into the inter-agent language, implicitly

9 requesting that such a conversion be performed and the results returned.

13. A computer implemented method as recited in claim 12 wherein the

2 request includes a natural language query, and the registered agent capable of

3 converting the second language into the inter-agent language service is a natural

4 language agent.

14. A computer implemented method as recited in claim 13 wherein the

2 natural language query was generated by a user interface agent.

Attornev Docket No: SRI1P016(3477)/BRC/EWJ Page 47 of 59
Page 49 of 778

15. A computer implemented method as recited in claim 1, wherein the

2 base goal requires setting a trigger having conditional functionality and consequential

3 functionality.

16. A computer implemented method as recited in claim 15 wherein the

2 trigger is an outgoing communications trigger, the computer implemented method

3 further including the acts of:

4 monitoring all outgoing communication events in order to determine whether a

5 specific outgoing communication event has occurred; and

6 in response to the occurrence of the specific outgoing communication event,

7 performing the particular action defined by the trigger.

17. A computer implemented method as recited in claim 15 wherein the

2 trigger is an incoming communications trigger, the computer implemented method

3 further including the acts of:

4 monitoring all incoming communication events in order to determine whether

5 a specific incoming communication event has occurred; and

6 in response to the occurrence of a specific incoming communication event

7 satisfying the trigger conditional functionality, performing the particular

8 consequential functionality defined by the trigger.

18. A computer implemented method as recited in claim 15 wherein the

2 trigger is a data trigger, the computer implemented method further including the acts

3 of:

4 monitoring a state of a data repository; and

5 in response to a particular state event satisfying the trigger conditional

6 functionality, performing the particular consequential functionality defined by the

7 trigger.

19. A computer implemented method as recited in claim 15 wherein the

2 trigger is a time trigger, the computer implemented method further including the acts

3 of:

4 monitoring for the occurrence of a particular time condition; and

5 in response to the occurrence of a particular time condition satisfying the

6 trigger conditional functionality, performing the particular consequential functionality

7 defined by the trigger.

20. A computer implemented method as recited in claim 15 wherein the

2 trigger is installed and executed within the facilitator agent.

Attorney Docket No: SRIIP016(3477)/BRC/EWJ Page 48 of 59
Page 50 of 778

21. A computer implemented method as recited in claim 15 wherein the

2 trigger is installed and executed within a first service-providing agent.

22. A computer implemented method as recited in claim 15 wherein the

2 conditional functionality of the trigger is installed on a facilitator agent.

23. A computer implemented method as recited in claim 22 wherein the

2 consequential functionality is installed on a specific service-providing agent other

3 than a facilitator agent.

24. A computer implemented method as recited in claim 15 wherein the

2 conditional functionality of the trigger is installed on a specific service-providing

3 agent other than a facilitator agent.

25. A computer implemented method as recited in claim 15 wherein the

2 consequential functionality of the trigger is installed on a facilitator agent.

26. A computer implemented method as recited in claim 1 wherein the

2 base goal is a compound goal having sub-goals separated by operators.

27. A computer implemented method as recited in claim 26 wherein the

2 type of available operators includes a conjunction operator, a disjunction operator,

3 and a conditional execution operator.

Attorney Docket No: SRIIP016(3477)/BRC/EWJ Page 49 of 59
Page 51 of 778

28. A computer implemented method as recited in claim 27 wherein the type

2 of available operators further includes a parallel disjunction operator that indicates that

3 disjunct goals are to be performed by different agents.

Attorney Docket No: SRI1POI6(3477)/BRC/EWJ Page 50 of 59

Page 52 of 778

29. A computer program stored on a computer readable medium, the

2 computer program executable to facilitate cooperative task completion within a

3 distributed computing environment, the distributed computing environment including

4 a plurality of autonomous electronic agents, the distributed computing environment

5 supporting an Interagent Communication Language,· the computer program

6 comprising computer executable instructions for:

7 providing an agent registry that declares capabilities of service-providing

8 electronic agents currently active within the distributed computing environment;

9 interpreting a service request in order to determine a base goal that may be a

10 compound, arbitrarily complex base goal, the service request adhering to an

11 Interagent Communication Language (ICL), the act of interpreting including the sub-

12 acts of:

13 determining any task completion advice provided by the base goal, and

14 detennining any task completion constraints provided by the base goal;

15 constructing a base goal satisfaction plan including the sub-acts of:

16 determining whether the requested service is available,

17 detennining sub-goals required in completing the base goal,

18 selecting service-providing electronic agents from the agent registry

19 suitable for performing the determined sub-goals, and

20 ordering a delegation of sub-goal requests to best complete the

21 requested service; and

22 implementing the base goal satisfaction plan.

30. A computer program as recited in claim 29 wherein the computer

2 executable instruction for providing an agent registry includes the following computer

3 executable instructions for registering a specific service-providing electronic agent

4 into the agent registry:

5 establishing a bi-directional communications link between the specific agent

6 and a facilitator agent controlling the agent registry;

7 providing a new agent profile to the facilitator agent, the new agent profile

8 defining publicly available capabilities of the specific agent; and

9 registering the specific agent together with the new agent profile within the

10 agent registry, thereby making available to the facilitator agent the capabilities of the

11 specific agent.

Attornev Docket No: SRilP016(3477)/BRC/EWJ Page 51 of 59
Page 53 of 778

31. A computer program as recited in claim 30 wherein the computer

2 executable instruction for registering a specific agent further includes:

3 invoking the specific agent in order to activate the specific agent;

4 instantiating an instance of the specific agent; and

5 transmitting the new agent profile from the specific agent to the facilitator

6 agent in response to the instantiation of the specific agent.

32. A computer program as recited in claim 29 wherein the computer

2 executable instruction for providing an agent registry includes a computer executable

3 instruction for removing a specific service-providing electronic agent from the

4 registry upon determining that the specific agent is no longer available to provide

5 services.

33. A computer program as recited in claim 29 wherein the provided agent

2 registry includes a symbolic name, a unique address, data declarations, trigger

3 declarations, task declarations, and process characteristics for each active agent.

34. A computer program as recited in claim 29 further including computer

2 executable instructions for receiving the service request via a communications link

3 established with a client.

35. A computer program as recited in claim 29 wherein the computer

2 executable instruction for providing a service request includes instructions for:

3 receiving a non-ICL format service request;

4 selecting an active agent capable of converting the non-ICL formal service

5 request into an ICL fonnat service request;

6 forwarding the non-ICL format service request to the active agent capable of

7 converting the non-ICL fonnat service request, together with a request that such

8 conversion be performed; and

9 receiving an ICL format service request corresponding to the non-ICL format

10 service request.

36. A computer program as recited in claim 35 wherein the non-ICL

2 format service request includes a natural language query, and the active agent capable

3 of converting the non-ICL formal service request into an ICL format service request is

4 a natural language agent.

37. A computer program as recited in claim 36 wherein the natural

2 language query is generated by a user interface agent.

Attornev Docket No: SRI1P016(3477)!BRC/EWJ Page 52 of 59 Page 54 of 778

38. A computer program as recited in claim 29, the computer program

2 further including computer executable instructions for implementing a base goal that

3 requires setting a trigger having conditional and consequential functionality.

39. A computer program as recited in claim 38 wherein the trigger is an

2 outgoing communications trigger, the computer program further including computer

3 executable instructions for:

4 monitoring all outgoing communication events in order to determine whether a

5 specific outgoing communication event has occurred; and

6 in response to the occurrence of the specific outgoing communication event,

7 performing the particular action defined by the trigger. '

40. A computer program as recited in claim 38 wherein the trigger is an

2 incoming communications trigger, the computer program further including computer

3 executable instructions for:

4 monitoring all incoming communication events in order to determine whether

5 a specific incoming communication event has occurred; and

6 in response to the occurrence of the specific incoming communication event,

7 performing the particular action defined by the trigger.

41. A computer program as recited in claim 38 wherein the trigger is a data

"' 2 trigger, the computer program further including computer executable instructions for:

3 monitoring a state of a data repository; and

4 in response to a particular state event, performing the particular action defined

5 by the trigger.

42. A computer program as recited in claim 38 wherein the trigger is a

2 time trigger, the computer program further including computer executable instructions

3 for:

4 monitoring for the occurrence of a particular time condition; and

5 in response to the occurrence of the particular time condition, performing the

6 particular action defined by the trigger.

43. A computer program as recited in claim 38 further including computer

2 executable instructions for installing and executing the trigger within the facilitator

3 agent.

44. A computer program as recited in claim 38 further including computer

2 executable instructions for installing and executing the trigger within a first service-

3 providing agent.

Attorney Docket No: SRIIP016(3477)/BRC/EWJ Page 53 of 59 Page 55 of 778

45. A computer program as recited in claim 29 further including computer

2 executable instructions for interpreting compound goals having sub-goals separated

3 by operators.

46. A computer program as recited in claim 45 wherein the type of

2 available operators includes a conjunction operator, a disjunction operator, and a

3 conditional execution operator.

47. A computer program as recited in claim 46 wherein the type of

2 available operators further includes a parallel disjunction operator that indicates that

3 disjunct goals are to be performed by different agents.

48. An Interagent Communication Language (ICL) providing a basis for

2 facilitated cooperative task completion within a distributed computing environment

3 having a facilitator agent and a plurality of autonomous service-providing electronic

4 agents, the ICL enabling agents to perform queries of other agents, exchange

5 information with other agents, set triggers within other agents, an ICL syntax

6 supporting compound goal expressions such that goals within a single request

7 provided according to the ICL syntax may be coupled by a conjunctive operator, a

8 disjunctive operator, a conditional execution operator, and a parallel disjunctive

9 operator parallel disjunctive operator that indicates that disjunct goals are to be

10 performed by different agents.

49. An ICL as recited in claim 48, wherein the ICL is computer platform

2 independent.

50. An ICL as recited in claim 48 wherein the ICL is independent of

2 computer programming languages which the plurality of agents are programmed in.

51. An ICL as recited in claim 48 wherein the ICL syntax supports explicit

2 task completion constraints within goal expressions.

52. An ICL as recited in claim 51 wherein possible types of task

2 completion constraints include use of specific agent constraints and response time

3 constraints.

53. An ICL as recited in claim 51 wherein the ICL syntax supports explicit

2 task completion advisory suggestions within goal expressions.

54. An ICL as recited in claim 48 wherein the ICL syntax supports explicit

2 task completion advisory suggestions within goal expressions.

Attornev Docket No: SRI1P016(3477)/BRC/EWJ Page 54 of 59
Page 56 of 778

55. An ICL as recited in claim 48 wherein each autonomous service-

2 providing electronic agent defines and publishes a set of capability declarations or

3 solvables, expressed in ICL, that describes services provided by such electronic agent.

56. An ICL as recited in claim 55 wherein an electronic agent's solvables

2 define an interface for the electronic agent.

57. An ICL as recited in claim 56 wherein the facilitator agent maintains

2 an agent registry making available a plurality of electronic agent interfaces.

58. An ICL as recited in claim 57 wherein the possible types of solvables

2 includes procedure solvables, a procedure solvable operable to implement a procedure

3 such as a test or an action.

59. An ICL as recited in claim 58 wherein the possible types of solvables

2 further includes data solvables, a data solvable operable to provide access to a

3 collection of data.

60. An ICL as recited in claim 58 wherein the possible types of solvables

2 includes data solvables, a data solvable operable to provide access to a collection of

3 data.

61. A facilitator agent arranged to coordinate cooperative task completion

2 within a distributed computing environment having a plurality of autonomous service-

3 providing electronic agents, the facilitator agent comprising:

4 an agent registry that declares capabilities of service-providing electronic

5 agents currently active within the distributed computing environment; and

6 a facilitating engine operable to parse a service request in order to interpret a

7 compound goal set forth therein, the compound goal including both local and global

8 constraints and control parameters, the service request formed according to an

9 Interagent Communication Language (ICL), the facilitating engine further operable to

1 o construct a goal satisfaction plan specifying the coordination of a suitable delegation

11 of sub-goal requests to complete the requested service satisfying both the local and

12 global constraints and control parameters.

62. A facilitator agent as recited m claim 61, wherein the facilitating

2 engine is capable of modifying the goal satisfaction plan during execution, the

3 modifying initiated by events such as new agent declarations within the agent registry,

4 decisions made by remote agents, and information provided to the facilitating engine

5 by remote agents.

Attorney Docket No: SRI1POI6(3477)/BRC/EWJ Page 55 of 59
Page 57 of 778

63. A facilitator agent as recited in claim 61 wherein the agent registry

2 includes a symbolic name, a unique address, data declarations, trigger declarations,

3 task declarations, and process characteristics for each active agent.

64. A facilitator agent as recited in claim 61 wherein the facilitating engine

2 is operable to install a trigger mechanism requesting that a certain action be taken

3 when a certain set of conditions are met.

65. A facilitator agent as recited in claim 64 wherein the trigger

2 mechanism is a communication trigger that monitors communication events and

3 performs the certain action when a certain communication event occurs.

66. A facilitator agent as recited in claim 64 wherein the trigger

2 mechanism is a data trigger that monitors a state of a data repository and performs the

3 certain action when a certain data state is obtained.

67. A facilitator agent as recited in claim 66 wherein the data repository is

2 local to the facilitator agent.

68. A facilitator agent as recited in claim 66 wherein the data repository is

2 remote from the facilitator agent.

69. A facilitator agent as recited in claim 64 wherein the trigger

2 mechanism is a task trigger having a set of conditions.

70. A facilitator agent as recited in claim 61, the facilitator agent further

2 including a global database accessible to at least one of the service-providing

3 electronic agents.

71. A software-based, flexible computer architecture for communication

2 and cooperation among distributed electronic agents, the architecture contemplating a

3 distributed computing system comprising:

4 a plurality of service-providing electronic agents; and

5 a facilitator agent in bi-directional communications with the plurality of

6 service-providing electronic agents, the facilitator agent including:

7 an agent registry that declares capabilities of service-providing

8 electronic agents currently active within the distributed computing

9 environment;

1 o a facilitating engine operable to parse a service request in order

11 to interpret an arbitrarily complex goal set forth therein, the facilitating

12 engine further operable to construct a goal satisfaction plan including

Attornev Docket No: SRI1P016(3477)/BRC/EWJ Page 56 of 59
Page 58 of 778

I 3 the coordination of a suitable delegation of sub-goal requests to best

14 complete the requested service.

72. A computer architecture as recited in claim 71, wherein the basis for

2 the computer architect is an Interagent Communication Language (ICL) enabling

3 agents to perform queries of other agents, exchange information with other agents,

4 and set triggers within other agents, the ICL further defined by an ICL syntax

5 supporting compound goal expressions such that goals within a single request

6 provided according to the ICL syntax may be coupled by a conjunctive operator, a

7 disjunctive operator, a conditional execution operator, and a parallel disjunctive

8 operator parallel disjunctive operator that indicates that disjunct goals are to be

9 performed by different agents.

73. A computer architecture as recited in claim 72, wherein the ICL is

2 computer platform independent.

74. A computer architecture as recited in claim 73 wherein the ICL is

2 independent of computer programming languages in which the plurality of agents are

3 programmed.

75. A computer architecture as recited in claim 73 wherein the ICL syntax

2 supports explicit task completion constraints within goal expressions.

,, 76. A computer architecture as recited in claim 75 wherein possible types

2 of task completion constraints include use of specific agent constraints and response

3 time constraints.

77. A computer architecture as recited in claim 75 wherein the ICL syntax

2 supports explicit task completion advisory suggestions within goal expressions.

78. A computer architecture as recited in claim 73 wherein the ICL syntax

2 supports explicit task completion advisory suggestions within goal expressions.

79. A computer architecture as recited in claim 73 wherein each

2 autonomous service-providing electronic agent defines and publishes a set of

3 capability declarations or solvables, expressed in ICL, that describes services

4 provided by such electronic agent.

80. A computer architecture as recited in claim 79 wherein an electronic

2 agent's solvables define an interface for the electronic agent.

81. A computer architecture as recited in claim 80 wherein the possible

2 types of solvables includes procedure solvables, a procedure solvable operable to

3 implement a procedure such as a test or an action.

Attornev Docket No: SRI1P016(3477)/BRC!EWJ Page 57 of 59
Page 59 of 778

82. A computer architecture as recited in claim 81 wherein the possible

2 types of solvables further includes data solvables, a data solvable operable to provide

3 access to a collection of data.

83. A computer architecture as recited in claim 82 wherein the possible

2 types of solvables includes a data solvable operable to provide access

3 to modify a collection of data.

84.. A computer architecture as recited in claim 71 wherein the planning

2 component of the facilitating engine are distributed across at least two

3 computer processes.

85. A computer architecture as recited in claim 71 wherein the execution

component of the facilitating engine is distributed across at least two

computer processes.

86. A data wave carrier providing a transport mechanism for information

communication in a distributed computing environment having at least one facilitator

agent and at least one active client agent, the data wave carrier comprising a signal

representation of an inter-agent language description of an active client agent's

functional capabilities.

87. A data wave carrier as recited in claim 85, the data wave carrier further

2 comprising a signal representation of a request for service in the inter-agent language

3 from a first agent to a second agent.

88. A data wave carrier as recited in claim 85, the data wave carrier further

2 comprising a signal representation of a goal dispatched to an agent for performance

3 from a facilitator agent.

89. A data wave carrier as recited in claim 88 wherein a later state of the

2 data wave carrier comprises a signal representation of a response to the dispatched

3 goal including results and/or a status report from the agent for performance to the

4 facilitator agent.

Attornev Docket No: SRIIP016(3477)/BRC/EWJ Page 58 of 59 Page 60 of 778

5

Software-Based Architecture for Communication and Cooperation Among

Distributed Electronic Agents

ABSTRACT

A highly flexible, software-based architecture is disclosed for constructing

distributed systems. The architecture supports cooperative task completion by

flexible, dynamic configurations of autonomous electronic agents. Communication

and cooperation between agents are brokered by one or more facilitators, which are

responsible for matching requests, from users and agents, with descriptions of the

10 capabilities of other agents. It is not generally required that a user or agent know the

identities, locations, or number of other agents involved in satisfying a request, and

relatively minimal effort is involved in incorporating new agents and "wrapping"

legacy applications. Extreme flexibility is achieved through an architecture organized

around the declaration of capabilities by service-providing agents, the construction of

15 arbitrarily complex goals by users and service-requesting agents, and the role of

facilitators in delegating and coordinating the satisfaction of these goals, subject to

advice and constraints that may accompany them. Additional mechanisms and

features include facilities for creating and maintaining shared repositories of data; the

use of triggers to instantiate commitments within and between agents; agent-based

20 provision of multi-modal user interfaces, including natural language; and built-in

support for including the user as a privileged member of the agent community.

Specialized embodiments providing enhanced scalability are also described.

Attorney Docket No: SRI1P016(3477)/BRC/EWJ Page 59 of 59

Page 61 of 778

;;:

SRDP016 1/16

100

""'

Client
Computer

System

Client
Computer

System

Client
Computer

System

140

L~--~--~)~)-~~--~--~1
I ((I

Server Server
Computer Computer

System

112

System

112

Fig. 1
(Prior Art)

Page 62 of 778

SRI1P016 2/16

230

Interface Specific
Invocation

_.:.--...-J Orb

Distributed Computing Environment

Fig. 2
(Prior Art)

Page 63 of 778

SRI1P016 3/16

20

320

320

Fig. 3

Page 64 of 778

SRIPO16 3/16 :

Facilitator
Agent

Fig, 3

Page 64 of 778

SRI1P016 4/16

400

402

Facilitator Agent ~ 416

Registry

---------- __ t_____ t 418 ---- -- .("'
Interagent Communication Language (ICL))

------------ - ---------- -- ------~~~

Fig. 4

Page 65 of 778

Open Agent Architecture

~ ~
CHEYER I I

_ll _IL___jj IL___jJ _ IL ____ II_ __ ll_____ll -=-n= IC ·:-n.______n:: II If II II

-~
II ll 11 It II H II- II 11 ·11 If

~
1\ \

u
IMAICI

\1 I

~

u-

0

Connected to server. Aaents are now active. Adam Chever

11 II II II

[) Q)

"0

D
I I

CJ
When mail arrives for me about "security" get it to me

~ by telephone. I
r.L
1--

r-r
Do It

Fig. 5

en
§

~

~
~
0\

Page 66 of 778

~1)/ · Oser
V\ nterface

Agents

-.

3l6

Speech
Recognition

FACILITATOR AGENT

~~ 442
Electronic
Mal Agent

~

402

450

Database
Agent

I I 408 Agent
..' I t (

m .
Speaker ID

Aaent \\
\\~Q.,

:}...!\"

Web
Agent

~~~ '"""'"'-

• Voicemail 

~'Lib 
Natt.ral Lang.~age 

Parser Agent 

Notify Agoot irmP32 Telephone 
Agent 

Fax 
Agent 

Agent ~ 
420 426 

Calender 
Agent 

[jJ 
121J& 

Fig. 6 
[tJ]t 448 

User 
Preferences 

Text To 454 
Speech 
Agent 

Pri1ter 
Agent 

en 

~ 
0 
0\ 

~ 

Page 67 of 778



/702 
70 Agent Registry 

Process 
Symbolic Unique Capability Data Trigger Task Characteristics 

Name Address Declarations Declarations Declarations Declarations (Machine Type 
Language, etc. 

{ ( ( ( ( ( ( 
704 706 708 710 712 714 716 I 

~ 
1--1-
0'\ 

~ 
Global 720 

Persistent 
Database 

Fig. 7 
Page 68 of 778



SRllP016 8/16 

Installer Invokes 
New Client Agent 

System Instantiates 
New Client Agent 

Facilitator And New 
Client Agent Establish 
Communications Link 

Client Agent Transmits 
Profile To Facilitator 

Facilitator Registers 
Client Agent 

Cone 

800 

802 

804 

806 

808 

810 

Fig. 8 
812 

Page 69 of 778



SRI1P016 9/16 

Start 900 

Determine A Goal 902 

Construct 
Goal Into 904 

ICL 

Transmit Goal 
To Parent 
Facilitator 

Receive 
Results 

910 

906 

908 

Fig. 9 

Page 70 of 778



SRI1P016 10/16 

No 

Return 
Status 1008 
Report 

Start 

Receive Request 
For Service 

Parse Request 
For Request 

Yes 

Perform 
Service 

Return Results 

1000 

1002 

1004 

1006 

1010 

And/Or Status 1012 
Report 

1014 

Fig. 10 

Page 71 of 778



SRI1P016 11/16 

1100 

Receive Goal Request 

Parse And Interpret 
Goal Request 

Construct Goal 
Satisfaction Plan 

Determine Required Sub-Goals 

Select Agents Suitable For 
Performing Required Sub-Goals 

No 

Transmit Requests To 
Selected Agents 

Receive Results 

Return Results 

1116 

1120 

1102 

1104 

1106 

1108 

1110 

1112 

1114 

1118 

Fig. 11 

Page 72 of 778



User 
Interface 
Agents 

-. m 

420 

402 

FACILITATOR AGENT 

450 

}} 
"U ur ~~ 442 

Bectronic 
~ Fax 

Speech 
Recogition 

408 Agent 

Speaker ID 
Aaent 

Mall Agent 

)) 

• 
Natural Language 

Parser Agent 

~ Voicernal 
Agent 

426 

u-r u446 

Database 
Agent Agent 

·--..:. ---
432 

Calender 
Agent 

\ I 
452 

r:::::flll-1 

I Telephone 
Agent 

-- 1211 ~ 
[jl Pmter 

Text To 454 Agent 

Speech 
Agent 

Fig. 12 
User 

Preferences 

en 
~ 
~ 
0 
~ 

....-. 
N --....-. 
0'\ 

Page 73 of 778



IQ) [San Francisco/ CA: 12] 

File Edit Action Collaboration Window Help 

~~~~[IJ~I!]88~~[[] ~~~8 
[QJ [San Francisco1 CA: 12]

1
J bJ[iJ][8]1l~[~~~~a~cis~~ ~12]

m~ ~[Q]Illlil~ rn1 9

~

Fig. 13

ldlDIJ[g)l

~.~J§
""C
0
~

0\

._....
~ ._....
0\

Page 74 of 778

SRI1P016 14/16

Fig. 14

Page 75 of 778

SRIIP016 14/16 7

Facilitator Facilitator

Agent 1 Agent 2
Fig, 14

Page 75 of 778

SRllP016 15/16

1500

1502

Facilitator

Facilitator
Facilitator

1516

1514

Fig. 15

Page 76 of 778

'-.S
...::::::..
0

~ -e
B
'Vi

1604

Registry &
Planner

161

Agent IE

1612

160

Replicated

1616

1618

1614

Figure 16

Page 77 of 778

DECLARATION AND POWER OF ATTORNEY
FOR ORIGINAL U.S. PATENT APPLICATION

Attorney's Docket No. _..,.S~RI~IP"-'0'""1~6'---
As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, !rrst and joint inventor (1f
plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
SOFTWARE-BASED ARCHITECTURE FOR COMl\lfUNICATION AND COOPERATION AMONG DISTRIBUTED
ELECTRONIC AGENTS, the specification of which is attached hereto.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the clainls, as
amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title

37, CFR § 1.56. K((__, ~1~ ~. r\ LLr
rv s~~s ~ v CUY\"ZJV\J)

And I hereby appoint the law frrm of Hickman & 1oimm~including PaulL. Hickman (Reg. No. 28, 516); L. Keith Stephens
(Reg. No. 32,632); Brian R. Coleman (Reg. No. 39,145); Dawn L. Palmer (Reg. No. 41,238); Jerray Wei (Reg. No. 43,247);
and Ian L. Cartier (Reg. No. 38,406) as my principal attorneys to prosecute this application and to transact all business in the
Patent and Trademark Office connected therewith:

Send Correspondence To:

Direct Telephone Calls To:

Brian R. Coleman
HICKMAN STEPHENS & COLEMAN, LLP
P.O. BOX 52037
Palo Alto, California 94303-0746

Brian R. Coleman at telephone number (650) 470-7430

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and
belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the
like so made are punishable by fme or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that
such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Typewritten Full Name of
Sole or First Inventor:

Inventor's signature:

Residence: (City)

Post Office Address:

Typewritten Full Name of
Second Inventor:

Inventor's signature:

Residence: (City)

Post Office Address:

Adam J. Cheyer

David L. Martin

10/

1

Citizenship: (;SA

Date of Signature:__./-J)-'5"'-+-/_,q_~_,__ __ _

(State/Country) CA
f cJo Af-.Jo CA

Citizenship: LASA
Date of Signature: __ l+/_·5-f-/---'9._1~---,
(State/Country)

~ c vt \-c. C \o '(()._

CA
C:A 0 s-os 1

Page 78 of 778

..------.... - ~~
PATENT NUMBER .-----::::::-

U.S. UTILITY PATENT APPLICATION

SUBCLASS ART

PREPARED AND APPROVED FOR ISSUE .. ~· ''7 t

ISSUING CLASSIFICATION
ORIGINAL I CROSS REEERENCE(S)

CLASS SUBCLASS CLASS SUBCLASS (ONE SUBCLASS PER BLOCK)

INTERNAngNAL CLASSIF1CAnON

I ..

I
I
I
/ 0 Continued on Issue Slip Inside File Jacket

DTERMINAL DRAWINGS CLAIMS ALLOWED
DISCLAIMER Sheets Drwg. Figs. Drwg. Print Fig. Total Claims Print Claim for O.G. ,

~

..:..

0 a) The, t~ of this patent NOnCE OF ALLOWANC~ MAILED .
subsequent to (date)

has been dlsdalmed. (AaalarO EIIBII1inef) (Dale)

0 b) The tenn of this patent shan
not extand beyond the expiration date,
of U.S Patent. No. ·• ISSUE FEE

Amount Due Date Paid

(Prlmaty~ ~

0 C) The tennlnal _months of
ISSUE BATCH NUMBER

this patent~ been disclaimed.
(logol-~ ~

WARNING:
The lnlolmallon dlsc:tDsecll'llllaln may be restricted. llnaulhortZ8d dlsclosunl may be prahlliled by 1118 Unllecl States Code Tl1le 35, Sections 122, 181 and 368.
Possession OU1:I!Ida 1118 U.S. P-.s & Tredemslll Olllce is restrlcled 1D authollzed llfi'4)IOyees and COlli--. only:

Best Available Copy
(LABEL AREA)

(FACE) Page 79 of 778

Best Available Copy

SEARCHED SEARCH NOTES
j (INCLUDING SEARCH $TRATEGY)

Class . Sub. ·Date Exmr .
~

Date Exmr.

-zo1 ~ ltojo'L p-6,
t....£1T
~

1{1Gfcz. -f.-6 uz...
I~

7D'1 ¥tp/O) fu-6
IN~

'3j-:7
7-e>'L uP0~+'1'~

uP0/1"1' ••{v)~ ~ u p 0 f'rt' 6'() '

.fl

I I

. I .. · ::
t' .r .. -:

·.,c.: . ·\'
. ' ...

·, ~ . .\' '!
.. ~/~ .~

' ~~-.- .. : : ..
. ' i .. : . .. -:- ...
. . ·.·.

,.\
··:,1".

·. \

l

. \

INTERFERt:NCE SEARCHED
C~·._:· ·sub:

<

Exmr.
'

Date·

_,

· .. -.(_: .

·-.

(RIGHT oursioi:) Page 80 of 778

ISSUE SLIPS ... -·. f •)~ AREA (for additional cross references)

r--------- .,.-----..----··-··----.-,---------.,
POSmON INrTW.S IDNO. DATE

FEE DETERMJNAn N

O.LP.E. CLASSIFIER

FORIIAUTY REVIEW

INDEX OF CLAIMS
" Rejected N Non-elected
= · : Allowed I lnterferen.:e

(Through numeral) ... Canceled A Appeal
................................. Restricted 0 Objected

Claim Date

~Ji ~~
51 i" I'

2 52

3 53

4 54
5 55

8 56
7 57
8 56

9 59
10 60

6 ! •

62
63 '
64

15 ·65
16 . 66' I
17 67 f;

i 18 .
.,. Hr;.19++++-+++-+-+-HI-I--I-...:....J

66

69
20' 70 '

~ 21 71
72

··~: ~- t -
-;·. 23 t . -24 ' .

·, c . 25

73 I '.
74
75 '

l :
i' ;.: 26 . . ,.:, . 78 \ ..

'/ •, I : ~ 27.
. -~;~26~H+~.~, .. r..~.~~-~~.~.--~-~~ i.'

·77
78

,t

. , ... b I

; --

39
40'

41

... 43'

45•

47

49
50 .11

.79
80 ,.

. 61 -' .
62 '- -'.

~
84

85
86

e7

'· 86
lD ~~~ v
90

91
92

93

94
95
98
97
98

99
10(

If more than 150 claims or 1 0 actions
staple additional sheet here

\
'

(LEFT INSIDE) . · -7_§';::": ~-:~i;'~~·~jc~~ .. 4

.....:-
Ill~

~-

< c--

Page 81 of 778

• IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No.: SRI1P016

First Named Inventor:

· CHEYER, Adam J.

UTILITY PATENT APPLICATION TRANSMITTAL (37 CFR § 1.53(b))

Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

D Duplicate for
fee processing

Sir: This is a request for filing a patent application under 37 CFR § 1.53(b) in the name of inventors:
Adam J. Cheyer and David L. Martin

.;=; For: SOFTWARE-BASED ARCIDTECTURE FOR COMMUNICATION AND COOPERATION AMONG
~ DISTRIBUTED ELECTRONIC AGENTS
~

ru
f~ Application Elements:
§a'l
~
~td
~
Yo!

=
A
~

[ZJ
[ZJ
[ZJ

59 Pages of Specification, Claims and Abstract

16 Sheets of Drawings

01 Pages Combined Declaration and Power of Attorney

;.:; Accompanying Application Parts:
>:=:i

[ZJ Assignment and Assignment Recordation CoverSheet (recording fee not enclosed)

[ZJ Return Receipt Postcard

Fee Calculation (37 CFR § 1.16)

(Col. 1) (Col. 2) SMALL ENTITY OR LARGE ENTITY
NO. FILED NO. EXTRA RATE FEE RATE FEE

BASIC FEE $395 $ OR $760 $760.00
TOTAL CLAIMS ~ -20 = 69 xll = $ OR x18 = $1242.00
INDEP CLAIMS QL_ -03 = 03 x41 = $ OR x78= $234.00
* If the difference in Col. 1 is less Total $ OR Total $2236.00
than zero, enter "0" in Col. 2.

Including filing fees and the assignment recordation fee of $40.00, the Commissioner is authorized to
charge all required fees to Deposit Account No. 50-0384 (Order No. SRI1P016).

[ZJ The Commissioner is authorized to charge any fees beyond the amount enclosed which may be
required, or to credit any overpayment, to Deposit Account No. 50-0384 (Order No. SRI1P016).

(Revised 12/97, Pat App Trans 53(b) Reg Page 1 of2

Page 82 of 778

{ Gen~:l Authorization for Petitio&xtension of Time 13 7 CFR § 1.136) •

C8J Applicants hereby make and generally authorize any Petitions for Extensions of Time as may be
needed for any subsequent filings. The Commissioner is also authorized to charge any extension fees under
37 CFR § 1.17 as may be needed to Deposit Account No. 50-0384.

~ Please send correspondence to the following address:

Brian R. Coleman
HICKMAN STEPHENS & COLEMAN, LLP

P.O. Box 52037
Palo Alto, CA 94303-0746

Tel (650) 470-7430
Fax (650) 470-7440

A Date: ---+--{ [!5-+--(9 _ _9_
Brian R. Coleman
Registration No. 39,145

.. ~

(Revised 12/97, Pat App Trans 53(b) Reg Page 2 of2

Page 83 of 778

..
,..,_-l'"APPROVEQ O.G. FIG.]

BY CLASS SUBCLASS j .J
· DRAFTSMAN • : ~

a·..,.•~•- ' •---~.J

-

' SRI1P016 1/16

I
I

.rt~
iff! =
"'

100
~

Client
Computer

System

Server

~0

Client
Computer

System

140
)) i
((

Server

~0

Client
Computer

System

F Computer Computer =.J
tJ1
:.~

System
= fJd

1i2

System

112

Fig. 1
(Prior Art)

I
I

Page 84 of 778

APPROVED O.G. FIG. I
BY CLASS SUBCLASS l

• • l
1

· DRAFTSMAN · •
SRI1P016 2/16

Distributed Computing Environment

Fig. 2
(Prior Art)

Page 85 of 778

APPROVED O.G. FIG. J

BY 9LASS SUSCLASRj

· Dr>AFTSMAN

SRI1P016 3/16

Facilitator
Agent

320

Fig. 3

Page 86 of 778

• ~APPROVED O.G. "FIG.--~
BY CLASS SUBCU~ S~~ l

. Dlti\FtsMAN . ; SRI1P016 4/16

400

402

Facilitator Agent ~ 416

Registry

--- - ---------- __ t t 418 -~~~----- ------~-~ / -- ~
Interagent Communication Language (ICL))

User
Interface

Agent

Modality Agents
414

NL to ICL
Agent

410

Fig. 4

_______ -

Application
Agent

API

Application

404

Meta
Agent

412

406

Page 87 of 778

if11 s lnill::' 1m '" :i::~ !Eli ·u:~ •!:; ~ ;;::~~ ~EH n

Open Agent Architecture

~ I
CHEYER I I
ll ll II II II II II II II II II II II II II II ll II ll II II II II II II II II II ~ M II 11

~~ -- @ [] ~~~- - 16:19 'IT" JJl

(V,) I D u

~ w ' A-;;AM~H;E: ~~y I MAIL I ~~
~ 0 I I I

) F~
r1 I I 1"-- I I

LJ ~ I I
r--

II II
~-~

0 w \ ~ r-- ~ f= !- r-- -
I .l___)

Connected to server. Aaents are now active. Adam Chever

When mail arrives for me about "security" get it to me t -

~
by telephone. I -

T
Do It

Fig. 5

en

~
0
0\

~
0\

lo
f ;:n ~

p 'l)

~·~ ~
3:' < > m z 0

-~ 9
enG) en .
en"Tl
CG)
~·
>:
(/)

·----~:~.: __

Page 88 of 778

~~/b

-.

)

~)I
Speech

Recognition

· :, 408 Agent
I \

I I c

m .

il::tr l[Jf lll TI::a; ·~111r """l ,.,.
~. IL'1l

FACILITATOR AGENT

I~
Speaker D

Aaent \\

\\~fl.,

~1-q,

442
8ectronic
MaD Agent

I

=Lt\"

~
Web
Agent

402

450

Database
Agent

Fax·
Agent

•
Natu"allang..ta.ge

Parser Agent

~

~~
Notify Agent i rm P32

.. -- .. 452
~

Telephone
Agent

Voicemall
Agent

420

Fig. 6

426

~1448
User

Preferences

Calender
Agent

[jJ
121J\

Text To 454
Speech
Agent

Pmter
Agent

~
~

0'\ --0\

0 ~
~ "tl

~ ·~ ei
:!:: <
~ [!j

~9
cnP

t---cn--1 II
CG)
~·

i! ~

l--·~l-

Page 89 of 778

70

Symbolic
Name

(
704

ll"'" .. :.'ll ill ;r:~ u::n iEJ, UJ

L__702

Agent Registry

Unique Capability Data Trigger
Address Declarations Declarations Declarations

((((
706 708 710 712

Global
~

720
Persistent
Database

Fig. 7

Process
Task Characteristics

Declarations (Machine Type
Language, etc.

((
714 716

~
0
0\

~ ,.....
0\

0
$ ~
~-~ ~
~ <
)> m z 0

.o 0 !;.
wG)
(/).

(/)11
CG)
~·

i s:.:
L~;-

Page 90 of 778

APPROVED O.G. FIG. I
BY ~LASS SUBCLASS!!

. DR.I\FTSMAN I '------s.---J.... ____ ._j

~

ffi

'. !)=!

~
t,Q

SRI1P016 8/16

800

Installer Invokes
New Client Agent 802

System Instantiates
New Client Agent

Facilitator And New
Client Agent Establish
Communications Link

Client Agent Transmits
Profile To Facilitator

804

806

808

Facilitator Registers
810 Client Agent

Cone 812

Fig. 8

Page 91 of 778

APPROVED O.G. FIG. !
1-----.---,

. BY CLASS SUBCLASSt

· DR.t\FrSMAN

r~
'=
~!

~

w
.<~

=
=~

Ul
~
v.d

. '
I
1

.~

SRllP016 9/16

Start 900

Determine A Goal 902

Construct
Goal Into 904

ICL

Transmit Goal
To Parent 906
Facilitator

Receive
Results 908

Done 910

Fig. 9

Page 92 of 778

APPROVED O.G. FIG~-~1
BY CLASS SUBCLASS!

-~.~AFT~MAN . J
SRI1P016 10/16

Receive Request
For Service

Return Results
And/Or Status

Report

Done I

1000

1002

1012

1014

Fig. 10

Page 93 of 778

r-----r----·--~--
AF'PROVED O.G. FIG. :

~

R!
1'=

00
iii
g=:
~

~Jl

SRI1P016 11/16

1100

Receive Goal Request

Parse And Interpret
Goal Request

Construct Goal
Satisfaction Plan

Determine Required Sub-Goals

Select Agents Suitable For
Performing Required Sub-Goals

Transmit Requests To
Selected Agents

Receive Results

No
1116

Return Results

1120

1102

1104

1106

1108

1110

1112

1114

1118

Fig. 11

Page 94 of 778

rt:n ... :~:;r, 1r.:n "ir.:· ;;~1 u::n !Cil

402

FACILITATOR AGENT

450

) ~
User

Interface
Agents

~
U=flJ

"U),

Speech
Recogrition

~~
Speaker 10

Aaent

442
8ectronic

Mail Agent
Database

Agent
Fax

Agent

· , 408 Agent
~' I i \::

_ Natural Language 11=1 ~n 446

•

Parser Agent Notify Agent ~
~ -432

Calender Voicemal Agent Agent

~0 ~6

Fig. 12

Telephone
Agent

121e' [ih ~w
Text To 454 Agent

Speech
Agent

CJ'.l

~
~-
0
0\

~

tv --~

ro
'?! ~

:::j ro jj
en· -< o :s: <
l> m z 0

00 s:.
(f) G)
(/).

(1)-n
e
m G)l

I £j.'
L_~

•

Page 95 of 778

:fi'::illf.!, '!:::ii n .. ,r.:· n i!l ·1r ~~:; ;;~':11
ro-·---
u;, -< 0

$ < m
z 0

Ql [San Francisco, CA:12]

0 o. ·s:
en (;):
en • I

en -n j

~ G>l
'

o·
i

s; !

i {/) II
ii.-.Y-1--.i

File Edit Action Collaboration Window Help

~~~~~[i]~[!]8E [!1[1]~~~~8 
~ [San Francisco, CA: 12] ,, b]IO]~~~IQJ [San Francisco, CA:12] 

m[@ ~~• ~~ [[ill 9 ~ ~l!~~~~~yz~~=jt·~·7·--~m')'~·~~ .. . Q -r-t-1 "'C ~.' _, 0 I K· . .. (5; 
~ 

......... 
~ ......... 
0\ • 

Fig. 13 
Page 96 of 778



APPROVED O.G. FIG·.-='-'f 
BY CLASS SUBCLASS~t 

h_n.I\FTSMAN . 1 • • 
SRI1P016 14/16 

:}.=! 

Fig. 14 

Page 97 of 778



TArPROVED O.G. FIG . 
I sv cLAss susCi:Ass 
I I lf:l.~~FTS:::.:.:M.:..::.;AN...t..____,__~-...! 

I 
I 

I 

• 
SRIIP016 15/16 

I 
I 

I 
I 

I 

, I 
I 

, 
I 

I 

I 

I 
I 

/ 1508 

7 l .... 

i -

Facilitator 

L_ 1502 

Facilitator 

l ,-- l 

J 

1504 

1514 

Fig. 15 

• 

l 

1516 

1500 

I 

\ 
\ 

\ 
\ 

\ 
\ . \ 

' ' ' ' ' 1506 \ 

Facilitator 

' 

Page 98 of 778



• ~ 
~ 

e 
B 
\.1 

1604 

Registry & 
Planner 

Agent IE 

1612 

16 

Replicated 

1616 

1618 

1614 

Figure 16 

'9 ir~~: w.~~ !!S "'a~u 

r·-- ....... ,_ 
. ~j 
':'J > p, ~ 

!21 to il 
tW -< Q 
s: < 
J> m z 0 

~
()0 

. 
p 
11 
G). 

o · r 
S:.:' t (/)I s 
(11. ~ 

...... ! 

• 

• 

Page 99 of 778



ill 

/,. 

~fi 

~:J1 = 

L 

5 

Software-Based Architecture for Communication and Cooperation Among 

Distributed Electronic Agents 

By: 

Adam J. Cheyer and David L. Martin 

BACKGROUND OF THE INVENTION 

10 Field of the Invention 

The present invention is related to distributed computing environments and the 

completion of tasks within such environments. In particular, the present invention 

teaches a variety of software-based architectures for communication and cooperation 

among distributed electronic agents. Certain embodiments teach interagent 

15 communication languages enabling client agents to make requests in the form of 

arbitrarily complex goal expressions that are solved through facilitation by a 

facilitator agent. 

20 

Context and Motivation for Distributed Software Systems 

The evolution of models for the design and construction of distributed 

software systems is being driven forward by several closely interrelated trends: the 

adoption of a networked computing model, rapidly rising expectations for smarter, 

longer-lived, more autonomous software applications and an ever increasing demand 

for more accessible and intuitive user inteifaces. 

25 Prior Art Figure 1 illustrates a networked computing model 100 having a 

plurality of client and server computer systems 120 and 122 coupled together over a 

physical transport mechanism 140. The adoption of the networked computing model 

100 has lead to a greatly increased reliance on distributed sites for both data and 

processing resources. Systems such as the networked computing modellOO are based 

30 upon at least one physical transport mechanism 140 coupling the multiple computer 

systems 120 and 122 to support the transfer of information between these computers. 

Some of these comp,uters basically support using the network and are known as client 

Attornev Docket No: SRilP016(3477l/BRC/EWJ Pa!!:e I of59 Page 100 of 778



5 

computers (clients) . • e of these computers provide resouro- other computers 

and are known as server computers (servers). The servers 122 can vary greatly in the 

resources they possess, access they provide and services made available to other 

computers across a network. Servers may service other servers as well as clients. 

The Internet is a computing system based upon this network computing model. 

The Internet is continually growing, stimulating a paradigm shift for computing away 

from requiring all relevant data and programs to reside on the user's desktop machine. 

The data now routinely accessed from computers spread around the world has become 

increasingly rich in format, comprising multimedia documents, and audio and video 

10 streams. With the popularization of programming languages such as JAVA, data 

transported between local and remote machines may also include programs that can 

be downloaded and executed on the local machine. There is an ever increasing 

reliance on networked computing, necessitating software design approaches that allow 

for flexible composition of distributed processing elements in a dynamically changing 

ru 15 and relatively unstable environment. 

20 

In an increasing variety of domains, application designers and users are 

coming to expect the deployment of smarter, longer-lived, more autonomous, 

software applications. Push technology, persistent monitoring of information sources, 

and the maintenance of user models, allowing for personalized responses and sharing 

of preferences, are examples of the simplest manifestations of this trend. Commercial 

enterprises are introducing significantly more advanced approaches, in many cases 

employing recent research results from artificial intelligence, data mining, machine 

learning, and other fields. 

More than ever before, the increasing complexity of systems, the development 

25 of new technologies, and the availability of multimedia material and environments are 

creating a demand for more accessible and intuitive user inteifaces. Autonomous, 

distributed, multi-component systems providing sophisticated services will no longer 

lend themselves to the familiar "direct manipulation" model of interaction, in which 

an individual user masters a fixed selection of commands provided by a single 

30 application. Ubiquitous computing, in networked environments, has brought about a 

situation in which the typical user of many software services is likely to be a non

expert, who may access a given service infrequently or only a few times. 

Attornev Docket No: SRll PO 16(3477)/BRC/EWJ Page 2 of 59 Page 101 of 778



Accommodating suc .. ge patterns calls for new approaches.rtunately. input 

modalities now becoming widely available, such as speech recognition and pen-based 

handwriting/gesture recognition, and the ability to manage the presentation of 

systems' responses by using multiple media provide an opportunity to fashion a style 

5 of human-computer interaction that draws much more heavily on our experience with 

human-human interactions. 

PRIOR RELATED ART 

Existing approaches and technologies for distributed computing include 

10 distributed objects, mobile objects, blackboard-style architectures, and agent-based 

software engineering. 

15 

The Distributed Object Approach 

Object-oriented languages, such as C++ or JAVA, provide significant 

advances over standard procedural languages with respect to the reusability and 

modularity of code: encapsulation, inheritance and polymorhpism. Encapsulation 

encourages the creation of library interfaces that minimize dependencies on 

underlying algorithms or data structures. Changes to programming internals can be 

made at a later date with requiring modifications to the code that uses the library. 

Inheritance permits the extension and modification of a library of routines and data 

~! 20 without requiring source code to the original library. Polymorphism allows one body 

of code to work on an arbitrary number of data types. For the sake of simplicity 

traditional objects may be seen to contain both methods and data. Methods provide 

the mechanisms by which the internal state of an object may be modified or by which 

communication may occur with another object or by which the instantiation or 

25 removal of objects may be directed. 

With reference to Figure 2, a distributed object technology based around an 

Object Request Broker will now be described. Whereas "standard" object-oriented 

programming (OOP) languages can be used to build monolithic programs out of many 

object building blocks, distributed object technologies (DOOP) allow the creation of 

30 programs whose components may be spread across multiple machines. As shown in 

Figure 2, an object system 200 includes client objects 210 and server objects 220. To 

implement a client-server relationship between objects, the distributed object system 

Attornev Docket No: SRIIP0!6(3477VBRCIEWJ Paee 3 of 59 Page 102 of 778



200 uses a registry .. anism (CORBA's registry is called an.ect Request Broker, 

or ORB) 230 to store the interface descriptions of available objects. Through the 

services of the ORB 230, a client can transparently invoke a method on a remote 

server object. The ORB 230 is then responsible for finding the object 220 that can 

5 implement the request, passing it the parameters, invoking its method, and returning 

the results. In the most sophisticated systems, the client 210 does not have to be aware 

of where the object is located, its programming language, its operating system, or any 

other system aspects that are not part of the server object's interface. 

Although distributed objects offer a powerful paradigm for creating networked 

10 applications, certain aspects of the approach are not perfectly tailored to the 

constantly changing environment of the Internet. A major restriction of the DOOP 

approach is that the interactions among objects are fixed through explicitly coded 

instructions by the application developer. It is often difficult to reuse an object in a 

new application without bringing along all its inherent dependencies on other objects 

15 (embedded interface definitions and explicit method calls). Another restriction of the 

DOOP approach is the result of its reliance on a remote procedure call (RPC) style of 

communication. Although easy to debug, this single thread of execution model does 

not facilitate programming to exploit the potential for parallel computation that one 

would expect in a distributed environment. In addition, RPC uses a blocking 

20 (synchronous) scheme that does not scale well for high-volume transactions. 

Mobile Objects 

Mobile objects, sometimes called mobile agents, are bits of code that can 

move to another execution site (presumably on a different machine) under their own 

programmatic control, where they can then interact with the local environment. For 

25 certain types of problems, the mobile object paradigm offers advantages over more 

traditional distributed object approaches. These advantages include network 

bandwidth and parallelism. Network bandwidth advantages exist for some database 

queries or electronic commerce applications, where it is more efficient to perform 

tests on data by bringing the tests to the data than by bringing large amounts of data to 

30 the testing program. Parallelism advantages include situations in which mobile agents 

can be spawned in parallel to accomplish many tasks at once. 

Attorney Docket No: SRIIP016C3477)!BRC/EWJ Paee 4 of 59 Page 103 of 778



Some of the .vantages and inconveniences of the .le agent approach 

include the programmatic specificity of the agent interactions, lack of coordination 

support between participant agents and execution environment irregularities regarding 

specific programming languages supported by host processors upon which agents 

5 reside. In a fashion similar to that of DOOP programming, an agent developer must 

programmatically specify where to go and how to interact with the target 

environment. There is generally little coordination support to encourage interactions 

among multiple (mobile) participants. Agents must be written in the programming 

language supported by the execution environment, whereas many other distributed 

10 technologies support heterogeneous communities of components, written in diverse 

programming languages. 

Blackboard Architectures 

Blackboard architectures typically allow multiple processes to communicate 

by reading and writing tuples from a global data store. Each process can watch for 

15 items of interest, perform computations based on the state of the blackboard, and then 

add partial results or queries that other processes can consider. Blackboard 

architectures provide a flexible framework for problem solving by a dynamic 

community of distributed processes. A blackboard architecture provides one solution 

to eliminating the tightly bound interaction links that some of the other distributed 

20 technologies require during interprocess communication. This advantage can also be a 

disadvantage: although a programmer does not need to refer to a specific process 

during computation, the framework does not provide programmatic control for doing 

so in cases where this would be practical. 

25 

Agent-based Software Engineering 

Several research communities have approached distributed computing by 

casting it as a problem of modeling communication and cooperation among 

autonomous entities, or agents. Effective communication among independent agents 

requires four components: (1) a transport mechanism carrying messages in an 

asynchronous fashion, (2) an interaction protocol defining various types of 

30 communication interchange and their social implications (for instance, a response is 

expected of a question), (3) a content language permitting the expression and 

interpretation of utterances, and (4) an agreed-upon set of shared vocabulary and 

Attornev Docket No: SRIIP016(3477)/BRC/EWJ Pall:e 5 of 59 Page 104 of 778



.= 

meaning for concept-en called an ontology). Such mechan. pennit a much 

richer style of interaction among participants than can be expressed using a distributed 

object's RPC model or a blackboard architecture's centralized exchange approach. 

Agent-based systems have shown much promise for flexible, fault-tolerant, 

5 distributed problem solving. Several agent-based projects have helped to evolve the 

notion of facilitation. However, existing agent-based technologies and architectures 

are typically very limited in the extent to which agents can specify complex goals or 

influence the strategies used by the facilitator. Further, such prior systems are not 

sufficiently attuned to the importance of integrating human agents (i.e., users) through 

10 natural language and other human-oriented user interface technologies. 

The initial version of SRI International's Open Agent Architecture™ 

("OAA @")technology provided only a very limited mechanism for dealing with 

compound goals. Fixed formats were available for specifying a flat list of either 

conjoined (AND) sub-goals or disjoined (OR) sub-goals; in both cases, parallel goal 

15 solving was hard-wired in, and only a single set of parameters for the entire list could 

be specified. More complex goal expressions involving (for example) combinations 

of different boolean connectors, nested expressions, or conditionally interdependent 

("IF .. THEN") goals were not supported. Further, system scalability was not 

adequately addressed in this prior work. 

20 

SUMMARY OF INVENTION 

A first embodiment of the present invention discloses a highly flexible, 

software-based architecture for constructing distributed systems. The architecture 

25 supports cooperative task completion by flexible, dynamic configurations of 

autonomous electronic agents. Communication and cooperation between agents are 

brokered by one or more facilitators, which are responsible for matching requests, 

from users and agents, with descriptions of the capabilities of other agents. It is not 

generally required that a user or agent know the identities, locations, or number of 

30 other agents involved in satisfying a request, and relatively minimal effort is involved 

in incorporating new agents and "wrapping" legacy applications. Extreme flexibility 

is achieved through an architecture organized around the declaration of capabilities by 

Anornev Docket No: SRIIPOJ6(3477)/BRC/EWJ Page 6 of 59 Page 105 of 778



service-providing .Jilt. the construction of arbitrarily comp.oals by users and 

service-requesting agents, and the role of facilitators in delegating and coordinating 

the satisfaction of these goals, subject to advice and constraints that may accompany 

them. Additional mechanisms and features include facilities for creating and 

5 maintaining shared repositories of data; the use of triggers to instantiate commitments 

within and between agents; agent-based provision of multi-modal user interfaces, 

including natural language; and built-in support for including the user as a privileged 

member of the agent community. Specific embodiments providing enhanced 

scalability are also described. 

10 

15 

BRIEF DESCRIPTION OF THE DRAWINGS 

Prior Art 

Prior Art FIGURE 1 depicts a networked computing model; 

Prior Art FIGURE 2 depicts a distributed object technology based around an 

Object Resource Broker; 

Examples of the Invention 

FIGURE 3 depicts a distributed agent system based around a facilitator agent; 

FIGURE 4 presents a structure typical of one small system of the present 

20 invention; 

FIGURE 5 depicts an Automated Office system implemented in accordance 

with an example embodiment of the present invention supporting a mobile user with a 

laptop computer and a telephone; 

FIGURE 6 schematically depicts an Automated Office system implemented as 

25 a network of agents in accordance with a preferred embodiment of the present 

invention; 

FIGURE 7 schematically shows data structures internal to a facilitator in 

accordance with a preferred embodiment of the present invention; 

FIGURE 8 depicts operations involved in instantiating a client agent with its 

30 parent facilitator in accordance with a preferred embodiment of the present invention; 

Attorney Docket No: SRilPOI6(3477)/BRCIEWJ Page 7 of 59 Page 106 of 778



FIGURE 9 dis operations involved in a client agen.iating a service 

request and receiving the response to that service request in accordance with a certain 

preferred embodiment of the present invention; 

FIGURE 10 depicts operations involved in a client agent responding to a 

5 service request in accordance with another preferable embodiment of the present 

invention; 

FIGURE 11 depicts operations involved in a facilitator agent response to a 

service request in accordance with a preferred embodiment of the present invention; 

FIGURE 12 depicts an Open Agent ArchitectureTM based system of agents 

10 implementing a unified messaging application in accordance with a preferred 

embodiment of the present invention; 

15 

FIGURE 13 depicts a map oriented graphical user interface display as might 

be displayed by a multi-modal map application in accordance with a preferred 

embodiment of the present invention; 

FIGURE 14 depicts a peer to peer multiple facilitator based agent system 

supporting distributed agents in accordance with a preferred embodiment of the 

present invention; 

FIGURE 15 depicts a multiple facilitator agent system supporting at least a 

limited form of a hierarchy of facilitators in accordance with a preferred embodiment 

20 of the present invention; and 

25 

FIGURE 16 depicts a replicated facilitator architecture in accordance with one 

embodiment of the present invention. 

BRIEF DESCRIPTION OF THE APPENDICES 

The Appendices provide source code for an embodiment of the present 

invention written in the PROLOG programming language. 

APPENDIX A: Source code file named compound. pl. 

APPENDIX B: Source code file named fac.pl. 

APPENDIX C: Source code file named libcom_tcp.pl. 

Attornev Docket No: SRIIP016(3477){BRC/EWJ Pal!e 8 of 59 Page 107 of 778



~ 
w 
s 

= 
b! 
Yi 

iJ 

5 

APP.IX D: Source code file named libo;,.f 

APPENDIX E: Source code file named translations.pl. 

DETAILED DESCRIPTION OF THE INVENTION 

Figure 3 illustrates a distributed agent system 300 in accordance with one 

embodiment of the present invention. The agent system 300 includes a facilitator 

agent 310 and a plurality of agents 320. The illustration of Figure 3 provides a high 

level view of one simple system structure contemplated by the present invention. The 

facilitator agent 310 is in essence the "parent" facilitator for its "children" agents 320. 

10 The agents 320 forward service requests to the facilitator agent 310. The facilitator 

15 

20 

agent 310 interprets these requests, organizing a set of goals which are then delegated 

to appropriate agents for task completion. 

The system 300 of Figure 3 can be expanded upon and modified in a variety of 

ways consistent with the present invention. For example, the agent system 300 can be 

distributed across a computer network such as that illustrated in Figure 1. The 

facilitator agent 310 may itself have its functionality distributed across several 

different computing platforms. The agents 320 may engage in interagent 

communication (also called peer to peer communications). Several different systems 

300 may be coupled together for enhanced performance. These and a variety of other 

structural configurations are described below in greater detail. 

Figure 4 presents the structure typical of a small system 400 in one 

embodiment of the present invention, showing user interface agents 408, several 

application agents 404 and meta-agents 406, the system 400 organized as a 

community of peers by their common relationship to a facilitator agent 402. As will 

25 be appreciated, Figure 4 places more structure upon the system 400 than shown in 

Figure 3, but both are valid representations of structures of the present invention. The 

facilitator 402 is a specialized server agent that is responsible for coordinating agent 

communications and cooperative problem-solving. The facilitator 402 may also 

provide a global data store for its client agents, allowing them to adopt a blackboard 

30 style of interaction. Note that certain advantages are found in utilizing two or more 

facilitator agents within the system 400. For example, larger systems can be 

assembled from multiple facilitator/client groups, each having the sort of structure 

Attornev Docket No: SRIJP016(3477)/BRCIEWJ Pa!.!e 9 of 59 Page 108 of 778



5 

shown in Figure 4 .• gents that are not facilitators are refe.to herein 

generically as client agents-- so called because each acts (in some respects) as a client 

of some facilitator, which provides communication and other essential services for the 

client. 

The variety of possible client agents is essentially unlimited. Some typical 

categories of client agents would include application agents 404, meta-agents 406, 

and user interface agents 408, as depicted in Figure 4. Application agents 404 denote 

specialists that provide a collection of services of a particular sort. These services 

could be domain-independent technologies (such as speech recognition, natural 

10 language processing 410, email, and some forms of data retrieval and data mining) or 

user-specific or domain-specific (such as a travel planning and reservations agent). 

Application agents may be based on legacy applications or libraries, in which case the 

agent may be little more than a wrapper that calls a pre-existing API 412, for 

example. Meta-agents 406 are agents whose role is to assist the facilitator agent 402 

15 in coordinating the activities of other agents. While the facilitator 402 possesses 

domain-independent coordination strategies, meta-agents 406 can augment these by 

using domain- and application-specific knowledge or reasoning (including but not 

limited to rules, learning algorithms and planning). 

With further reference to Figure 4, user interface agents 408 can play an 

20 extremely important and interesting role in certain embodiments of the present 

invention. By way of explanation, in some systems, a user interface agent can be 

implemented as a collection of "micro-agents", each monitoring a different input 

modality (point-and-click, handwriting, pen gestures, speech), and collaborating to 

produce the best interpretation of the current inputs. These micro-agents are depicted 

25 in Figure 4, for example, as Modality Agents 414. While describing such 

subcategories of client agents is useful for purposes of illustration and understanding, 

they need not be formally distinguished within the system in preferred 

implementations of the present invention. 

The operation of one preferred embodiment of the present invention will be 

30 discussed in greater detail below, but may be briefly outlined as follows. When 

invoked, a client agent makes a connection to a facilitator, which is known as its 

parent facilitator. These connections are depicted as a double headed arrow between 

Attornev Docket No: SRIJPOI60477)/BRC/EWJ Pae:e I 0 of 59 Page 109 of 778



the client agent and t.cilitator agent in Figure 3 and 4, for .ple. Upon 

connection, an agent registers with its parent facilitator a specification of the 

capabilities and services it can provide. For example, a natural language agent may 

register the characteristics of its available natural language vocabulary. (For more 

5 details regarding client agent connections, see the discussion of Figure 8 below.) 

Later during task completion, when a facilitator determines that the registered services 

416 of one of its client agents will help satisfy a goal, the facilitator sends that client a 

request expressed in the Interagent Communication Language (ICL) 418. (See Figure 

11 below for a more detailed discussion of the facilitator operations involved.) The 

10 agent parses this request, processes it, and returns answers or status reports to the 

facilitator. In processing a request, the client agent can make use of a variety of 

infrastructure capabilities provided in the preferred embodiment. For example, the 

client agent can use ICL 418 to request services of other agents, set triggers, and read 

or write shared data on the facilitator or other client agents that maintain shared data. 

15 (See the discussion of Figures 9-11 below for a more detailed discussion of request 

ru processing.) 

The functionality of each client agent are made available to the agent 

community through registration of the client agent's capabilities with a facilitator 402. 

A software "wrapper" essentially surrounds the underlying application program 

20 performing the services offered by each client. The common infrastructure for 

constructing agents is preferably supplied by an agent library. The agent library is 

preferably accessible in the runtime environment of several different programming 

languages. The agent library preferably minimizes the effort required to construct a 

new system and maximizes the ease with which legacy systems can be "wrapped" and 

25 made compatible with the agent-based architecture of the present invention. 

By way of further illustration, a representative application is now briefly 

presented with reference to Figures 5 and 6. In the Automated Office system depicted 

in Figure 5, a mobile user. with a telephone and a laptop computer can access and task 

commercial applications such as calendars, databases, and email systems running 

30 back at the office. A user interface (UI) agent 408, shown in Figure 6, runs on the 

user's local laptop and is responsible for accepting user input, sending requests to the 

facilitator 402 for delegation to appropriate agents, and displaying the results of the 

Attornev Docket No: SRIIPOJ6(347711BRCIEWJ Pa11:e II of 59 Page 110 of 778



,5 

distributed computa. The user may interact directly with a .ific remote 

application by clicking on active areas in the interface, calling up a form or window 

for that application, and making queries with standard interface dialog mechanisms. 

Conversely, a user may express a task to be executed by using typed, handwritten, or 

5 spoken (over the telephone) English sentences, without explicitly specifying which 

agent or agents should perform the task. 

For instance, if the question "What is my schedule?" is written 420 in the user 

interface 408, this request will be sent 422 by the UI 408 to the facilitator 402, which 

in tum will ask 424 a natural language (NL) agent 426 to translate the query into ICL 

10 18. To accomplish this task, the NL agent 426 may itself need to make requests of the 

agent community to resolve unknown words such as "me" 428 (the UI agent 408 can 

respond 430 with the name of the current user) or "schedule" 432 (the calendar agent 

434 defines this word 436). The resulting ICL expression is then routed by the 

facilitator 402 to appropriate agents (in this case, the calendar agent 434) to execute 

15 the request. Results are sent back 438 to the UI agent 408 for display. 

The spoken request "When mail arrives for me about security, notify me 

immediately." produces a slightly more complex example involving communication 

among all agents in the system. After translation into ICL as described above, the 

facilitator installs a trigger 440 on the mail agent 442 to look for new messages about 

20 security. When one such message does arrive in its mail spool, the trigger fires, and 

the facilitator matches the action part of the trigger to capabilities published by the 

notification agent 446. The notification agent 446 is a meta-agent, as it makes use of 

rules concerning the optimal use of different output modalities (email, fax, speech 

generation over the telephone) plus information about an individual user's preferences 

25 448 to determine the best way of relaying a message through available media transfer 

application agents. After some competitive parallelism to locate the user (the 

calendar agent 434 and database agent 450 may have different guesses as to where to 

find the user) and some cooperative parallelism to produce required information 

(telephone number of location, user password, and an audio file containing a text-to-

30 speech representation of the email message), a telephone agent 452 calls the user, 

verifying its identity through touchtones, and then play the message. 

Attornev Docket No: SRIIP016C3477)/BRCIEWJ Pa!!:e 12 of 59 Page 111 of 778



\Q 

~n -;::: 

~ 
Jd 
m 
"' 
Q 

~ 
~ 

The above elle illustrates a number of inventive f.s. As new agents 

connect to the facilitator, registering capability specifications and natural language 

vocabulary, what the user can say and do dynamically changes; in other words, the 

lCL is dynamically expandable. For example, adding a calendar agent to the system 

5 in the previous example and registering its capabilities enables users to ask.natural 

language questions about their "schedule" without any need to revise code for the 

facilitator, the natural language agents, or any other client agents. In addition, the 

interpretation and execution of a task is a distributed process, with no single agent 

defining the set of possible inputs to the system. Further, a single request can produce 

10 cooperation and flexible communication among many agents, written in different 

programming languages and spread across multiple machines. 

15 

20 

Design Philosophy and Considerations 

One preferred embodiment provides an integration mechanism for 

heterogeneous applications in a distributed infrastructure, incorporating some of the 

dynamism and extensibility of blackboard approaches, the efficiency associated with 

.mobile objects, plus the rich and complex interactions of communicating agents. 

Design goals for preferred embodiments of the present invention may be categorized 

under the general headings of interoperation and cooperation, user interfaces, and 

software engineering. These design goals are not absolute requirements, nor will they 

necessarily be satisfied by all embodiments of the present invention, but rather simply 

reflect the inventor's currently preferred design philosophy. 

Versatile mechanisms of interoperation and cooperation 

lnteroperation refers to the ability of distributed software components - agents 

25 -to communicate meaningfully. While every system-building framework must 

provide mechanisms of interoperation at some level of granularity, agent-based 

frameworks face important new challenges in this area. This is true primarily because 

autonomy, the hallmark of individual agents, necessitates greater flexibility in 

interactions within communities of agents. Coordination refers to the mechanisms by 

30 which a community of agents is able to work together productively on some task. In 

these areas, the goals for our framework are to provide flexibility in assembling 

Attornev Docket No: SRIIPOJ6(3477)/BRC/EWJ Page 13 of 59 Page 112 of 778



~ 
::=: 

2~ 

ll! 

~ 

m ·= 
a 

communities of auto-us service providers, provide flexibil- structuring 

cooperative interactions, impose the right amount of structure, as well as include 

legacy and "owned-elsewhere" applications. 

Provide flexibility in assembling communities of autonomous service providers 

5 -- both at development time and at runtime. Agents that conform to the linguistic and 

ontological requirements for effective communication should be able to participate in 

an agent community, in various combinations, with minimal or near minimal 

prerequisite knowledge of the characteristics of the other players. Agents with 

duplicate and overlapping capabilities should be able to coexist within the same 

10 community, with the system making optimal or near optimal use of the redundancy. 

15 

20 

Provide flexibility in structuring cooperative interactions among the members 

of a community of agents. A framework preferably provides an economical 

mechanism for setting up a variety of interaction patterns among agents, without 

requiring an inordinate amount of complexity or infrastructure within the individual 

agents. The provision of a service should be independent or minimally dependent 

upon a particular configuration of agents. 

Impose the right amount of structure on individual agents. Different 

approaches to the construction of multi-agent systems impose different requirements 

on the individual agents. For example, because KQML is neutral as to the content of 

messages, it imposes minimal structural requirements on individual agents. On the 

other hand, the BDI paradigm tends to impose much more demanding requirements, 

by making assumptions about the nature of the programming elements that are 

meaningful to individual agents. Preferred embodiments of the present invention 

should fall somewhere between the two, providing a rich set of interoperation and 

25 coordination capabilities, without precluding any of the software engineering goals 

defined below. 

Include legacy and "owned-elsewhere" applications. Whereas legacy usually 

implies reuse of an established system fully controlled J:>y the agent-based system 

developer, owned-elsewhere refers to applications to which the developer has partial 

30 access, but no control. Examples of owned-elsewhere applications include data 

sources and services available on the World Wide Web, via simple form-based 

Attornev Docket No: SRIIPOJ6(3477)!BRCIEWJ Pae:e 14 of 59 Page 113 of 778



interfaces, and appli.ns used cooperatively within a virtual41rprise, which 

remain the properties of separate corporate entities. Both classes of application must 

preferably be able to intemperate, more or less as full-fledged members of the agent 

community, without requiring an overwhelming integration effort. 

5 Human-oriented user interfaces 

10 

Systems composed of multiple distributed components, and possibly dynamic 

configurations of components, require the crafting of intuitive user interfaces to 

provide conceptually natural interaction mechanisms, treat users as privileged 

members of the agent community and support collaboration. 

Provide conceptually natural interaction mechanisms with multiple 

distributed components. When there are numerous disparate agents, and/or complex 

tasks implemented by the system, the user should be able to express requests without 

having detailed knowledge of the individual agents. With speech recognition, 

handwriting recognition, and natural language technologies becoming more mature, 

15 agent architectures should preferably support these forms of input playing increased 

roles in the tasking of agent communities. 

Preferably treat users as privileged members of the agent community by 

providing an appropriate level of task specification within software agents, and 

reusable translation mechanisms between this level and the level of human requests, 

20 supporting constructs that searnlessly incorporate interactions between both human

interface and software types. of agents. 

25 

Preferably support collaboration (sim';lltaneous work over shared data and 

processing resources) between users and agents. 

Realistic software engineering requirements 

System-building frameworks should preferably address the practical concerns 

of real-world applications by the specification of requirements which preferably 

include: Minimize the effort required to create new agents, and to wrap existing 

applications. Encourage reuse, both of domain-independent and domain-specific 

components. The concept of agent orientation, like that of object orientation, provides 

30 a natural conceptual framework for reuse, so long as mechanisms for encapsulation 

Auornev Docket No: SRIIPOJ6(3477VBRCIEWJ Pae:e 15 of 59 Page 114 of 778



Ml 
_:;";::: 

!!! 

~ 

$ 

;F'j 
'=;i 
y 
' 

~ 

and interaction are s.ured appropriately. Support lighnvei,obi/e platforms. 

Such platforms should be able to serve as hosts for agents, without requiring the 

installation of a massive environment. It should also be possible to construct 

individual agents that are relatively small and modest in their processing 

5 requirements. Minimize platform and language barriers. Creation of new agents, as 

well as wrapping of existing applications, should not require the adoption of a new 

language or environment. 

Mechanisms of Cooperation 

Cooperation among agents in accordance with the present invention is 

10 preferably achieved via messages expressed in a common language, ICL. 

15 

20 

25 

Cooperation among agent is further preferably structured around a three-part 

approach: providers of services register capabilities specifications with a facilitator, 

requesters of services construct goals and relay them to a facilitator, and facilitators 

coordinate the efforts of the appropriate service providers in satisfying these goals. 

The Interagent Communication Language (JCL) 

Interagent Communication Language ("/CL") 418 refers to an interface, 

communication, and task coordination language preferably shared by all agents, 

regardless of what platform they run on or what computer language they are 

programmed in. ICL may be used by an agent to task itself or some subset of the 

agent community. Preferably, ICL allows agents to specify explicit control 

parameters while simultaneously supporting expression of goals in an underspecified, 

loosely constrained manner. In a further preferred embodiment, agents employ /CL to 

perform queries, execute actions, exchange information, set triggers, and manipulate 
I 

data in the agent community. 

In a further preferred embodiment, a program element expressed in ICL is the 

event. The activities of every agent, as well as communications between agents, are 

preferably structured around the transmission and handling of events. In 

communications, events preferably serve as messages between agents; in regulating 

the activities of individual agents, they may preferably be thought of as goals to be 

30 satisfied. Each event preferably has a type, a set of parameters, and content. For 

example, the agent library procedure oaa_Solve can be used by an agent to request 

Attorney Docket No: SRIIP0160477)!BRC/EWJ Pa!!e 16 of 59 Page 115 of 778



Q 
~ 
ftl 
:<';;: 

~ 

}~ 

F: 
~ 

V! 
,fi 
1#:i 

.~ 

services of other age~A Call to oaa_So/ve, within the code o.nt A, results in an 

event having the form 

ev_post_solve(Goal, Params) 

going from A to the facilitator, where ev _post_solve is the type, Goal is the content, 

5 and Params is a list of parameters. The allowable content and parameters preferably 

vary according to the type of the event. 

The ICL preferably includes a layer of conversational protocol and a content 

layer. The conversational layer of ICL is defined by the event types, together with the 

parameter lists associated with certain of these event types. The content layer consists 

10 of the specific goals, triggers, and data elements that may be embedded within various 

15 

20 

events. 

The ICL conversational protocol is preferably specified using an orthogonal, 

parameterized approach, where the conversational aspects of each element of an 

interagent conversation are represented by a selection of an event type and a selection 

of values from at least one orthogonal set of parameters. This approach offers greater 

expressiveness than an approach based solely on a fixed selection of speech acts, such 

as embodied in KQML. For example, in KQML, a request to satisfy a query can 

employ either of the performatives ask_all or ask_one. In ICL, on the other hand, this 

type of request preferably is expressed by the event type ev_post_solve, together with 

the solution_limit(N) parameter- where N can be any positive integer. (A request for 

all solutions is indicated by the omission of the solution_limit parameter.) The request 

can also be accompanied by other parameters, which combine to further refine its 

semantics. In KQML, then, this example forces one to choose between two possible 

conversational options, neither of which may be precisely what is desired. In either 

25 case, the perfonnative chosen is a single value that must capture the entire 

conversational characterization of the communication. This requirement raises a 

difficult challenge for the language designer, to select a set of performatives that 

provides the desired functionality without becoming unmanageably large. 

Consequently, the debate over the right set of perfonnatives has consumed much 

30 discussion within the KQML community. 

The content layer of the ICL preferably supports unification and other features 

found in logic programming language environments such as PROLOG. In some 

Attorney Docket No: SRIIP016(3477)/BRCIEWJ Paee 17 of 59 Page 116 of 778



embodiments, the content layer of the JCL is simply an extens.f at least one 

programming language. For example;the Applicants have found that PROLOG is 

suitable for implementing and extending into the content layer of the ICL. The agent 

libraries preferably provide support for constructing, parsing, and manipulating ICL 

5 expressions. It is possible to embed content expressed in other languages within an 

ICL event. However, expressing content in ICL simplifies the facilitator's access to 

the content, as well as the conversational layer, in delegating requests. This gives the 

facilitator more information about the nature of a request and helps the facilitator 

decompose compound requests and delegate the sub-requests. 

10 Further, ICL expressions preferably include, in addition to events, at least one 

of the following: capabilities declarations, requests for services, responses to requests, 

trigger specifications, and shared data elements. A further preferred embodiment of 

the present invention incorporates /CL expressions including at least all of the 

following: events, capabilities declarations, requests for services, responses to 

15 requests, trigger specifications, and shared data elements. 

Providing Services: Specifying "Solvables" 

In a preferred embodiment of the present invention, every participating agent 

defines and publishes a set of capability declarations, expressed in ICL, describing the 

services that it provides. These declarations establish a high-level interface to the 

20 agent. This interface is used by a facilitator in communicating with the agent, and, 

most important, in delegating service requests (or parts of requests) to the agent. 

Partly due to the use of PROLOG as a preferred basis for ICL, these capability 

declarations are referred as solvables. The agent library preferably provides a set of 

procedures allowing an agent to add, remove, and modify its solvables, which it may 

'25 preferably do at any time after connecting to its facilitator. 

There are preferably at least two major types of solvables: procedure solvables 

and data solvables. Intuitively, a procedure solvable performs a test or action, 

whereas a data solvable provides access to a collection of data. For example, in 

creating an agent for a mail system, procedure solvables might be defined for sending 

30 a message to a person, testing whether a message about a particular subject has 

arrived in the mail queue, or displaying a particular message onscreen. For a database 

Attornev Docket No: SRIIP016(3477)/BRCIEWJ Pa!!e 18 of 59 Page 117 of 778



F 
~d 
a' ;;-

5 

wrapper agent, one It define a distinct data solvable corre.ding to each of the 

relations present in the database. Often, a data solvable is used to provide a shared 

data store, which may be not only queried, but also updated, by various agents having 

the required permissions. 

There are several primary technical differences between these two types of 

solvables. First, each procedure solvable must have a handler declared and defined 

for it, whereas this is preferably not necessary for a data solvable. The handling of 

requests for a data solvable is preferably provided transparently by the agent library. 

Second, data solvables are preferably associated with a dynamic collection of facts (or 

10 clauses), which may be further preferably modified at runtime, both by the agent 

providing the solvable, and by other agents (provided they have the required 

permissions). Third, special features, available for use with data solvables, preferably 

facilitate maintaining the associated facts. In spite of these differences, it should be 

noted that the mechanism of use by which an agent requests a service is the same for 

15 the two types of solvables. 

In one embodiment, a request for one of an agent's services normally arrives in 

the form of an event from the agent's facilitator. The appropriate handler then deals 

with this event. The handler may be coded in whatever fashion is most appropriate, 

depending on the nature of the task, and the availability of task-specific libraries or 

20 legacy code, if any. The only hard requirement is that the handler return an 

appropriate response to the request, expressed in /CL. Depending on the nature of the 

request, this response could be an indication of success or failure, or a list of solutions 

(when the request is a data query). 

A solvable preferably has three parts: a goal, a list of parameters, and a list of 

25 pennissions, which are declared using the format: 

solvable(Goal, Parameters, Permissions) 

The goal of a solvable, which syntactically takes the preferable form of an ICL 

structure, is a logical representation of the service provided by the solvable. (An ICL 

structure consists of a functor with 0 or more arguments. For example, in the structure 

30 a(b,c), 'a' is the functor, and 'b' and 'c' the arguments.) As with a PROLOG structure, 

the goal's arguments themselves may preferably be structures. 

Anornev Docket No: SRI1POJ6(3477)/BRCIEWJ Page 19 of 59 Page 118 of 778



g 
bO 
fii 
s~ 

r~ 
U') 
.~ 
w 
~ 
$ 

~ 

Various opti.an be included in the parameter list, .fine the semantics 

associated with the solvable. The type parameter is preferably used to say whether the 

solvable is data or procedure. When the type is procedure, another parameter may be 

used to indicate the handler to be associated with the solvable. Some of the 

5 parameters appropriate for a data solvable are mentioned elsewhere in this 

application. In either case (procedure or data solvable), the private parameter may be 

preferably used to restrict the use of a solvable to the declaring agent when the agent 

intends the solvable to be solely for its internal use but wishes to take advantage of the 

mechanisms in accordance with the present invention to access it, or when the agent 

10 wants the solvable to be available to outside agents only at selected times. In support 

of the latter case, it is preferable for the agent to change the status of a solvable from 

private to non-private at any time. 

15 

20 

25 

30 

The permissions of a solvable provide mechanisms by which an agent may 

preferably control access to its services allowing the agent to restrict calling and 

writing of a solvable to itself and/or other selected agents. (Calling means requesting 

the service encapsulated by a solvable, whereas writing means modifying the 

collection of facts associated with a data solvable.) The default permission for every 

solvable in a further preferred embodiment of the present invention is to be callable 

by anyone, and for data solvables to be writable by anyone. A solvable's permissions 

can preferably be changed at any time, by the agent providing the solvable. 

Msg) 1 

For example, the solvables of a simple email agent might include: 

solvable(send_message(emaill +ToPersonl +Params) 1 

[type(procedure)l callback(send_mail)] 1 

[ ] ) 

solvable(last_message(emaill -Messageid) 1 

[type(data)~ single_value(true)] 1 

[write(true)]) 1 

solvable(get_message(email 1 +Messageid 1 -

[type(procedure)l callback(get_mail)] 1 

[]) 

The symbols'+' and'-', indicating input and output arguments, are at present 

used only for purposes of documentation. Most parameters and permissions have 

default values, and specifications of default values may be omitted from the 

35 parameters and permissions lists. 

Attornev Docket No: SRIIP016(3477)!BRC/EWJ Pa!!e 20 of 59 Page 119 of 778



Defining an ··s capabilities in terms of solvable de.tions effectively 

creates a vocabulary with which other agents can communicate with the new agent. 

Ensuring that agents will speak the same language and share a common, unambiguous 

semantics of the vocabulary involves ontology. Agent development tools and services 

5 (automatic translations of solvables by the facilitator) help address this issue; 

additionally, a preferred embodiment of the present invention will typically rely on 

vocabulary from either formally engineered ontologies for specific domains or from 

ontologies constructed during the incremental development of a body of agents for 

several applications or from both specific domain ontologies and incrementally 

10 developed ontologies. Several example tools and services are described in Cheyer et 

al.'s paper entitled "Development Tools for the Open Agent Architecture," as 

presented at the Practical Application of Intelligent Agents and Multi-Agent 

Technology (PAAM 96), London, April 1996. 

Although the present invention imposes no hard restrictions on the form of 

ru 15 solvable declarations, two common usage conventions illustrate some of the utility 

associated with solvables. 

Classes of services are often preferably tagged by a particular type. For 

instance, in the example above, the "last_message" and "get_message" solvables are 

specialized for email, not by modifying the names of the services, but rather by the 

~~ 20 use of the 'email' parameter, which serves during the execution of an ICL request to .. 
r,.bi select (or not) a specific type of message. 

Actions are generally written using an imperative verb as the functor of the 

solvable in a preferred embodiment of the present invention, the direct object (or item 

class) as the first argument of the predicate, required arguments following, and then 

25 an extensible parameter list as the last argument. The parameter list can hold optional 

information usable by the function. The ICL expression generated by a natural 

language parser often makes use of this parameter list to store prepositional phrases 

and adjectives. 

As an illustration of the above two points, "Send mail to Bob about lunch" will 

30 be translated into an ICL request send_message(email, 'Bob Jones', [subject(lunch)]), 

whereas "Remind Bob about lunch" would leave the transport unspecified 

Attornev Docket No: SRIIP016(3477)/BRCIEWJ Page 21 of 59 Page 120 of 778



5 

(send_message(KIN.ob Jones', [subject(lunch}]}), enablin. available message 

transfer agents (e.g., fax, phone, mail, pager) to compete for the opportunity to carry 

out the request. 

Requesting Services 

An agent preferably requests services of the community of agent by delegating 

tasks or goals to its facilitator. Each request preferably contains calls to one or more 

agent solvables, and optionally specifies parameters containing advice to help the 

facilitator determine how to execute the task. Calling a solvable preferably does not 

require that the agent specify (or even know of) a particular agent or agents to handle 

10 . the call. While it is possible to specify one or more agents using an address parameter 

(and there are situations in which this is desirable), in general it is advantageous to 

leave this delegation to the facilitator. This greatly reduces the hard-coded 

component dependencies often found in other distributed frameworks. The agent 

nJ libraries of a preferred embodiment of the present invention provide an agent with a 

15 single, unified point of entry for requesting services of other agents: the library 

procedure oaa_Solve. In the style of logic programming, oaa_Solve may preferably 

be used both to retrieve data and to initiate actions, so that calling a data solvable 

looks the same as calling a procedure solvable. 

20 

Complex Goal Expressions 

A powerful feature provided by preferred embodiments of the present 

invention is the ability of a client agent (or a user) to submit compound goals of an 

arbitrarily complex nature to a facilitator. A compound goal is a single goal 

expression that specifies multiple sub-goals to be performed. In speaking of a 

"complex goal expression" we mean that a single goal expression that expresses 

25 multiple sub-goals can potentially include more than one type of logical connector 

(e.g., AND, OR, NOT), and/or more than one level of logical nesting (e.g., use of 

parentheses), or the substantive equivalent. By way of further clarification, we note 

that when speaking of an "arbitrarily complex goal expression" we mean that goals 

are expressed in a language or syntax that allows expression of such complex goals 

30 when appropriate or when desired, not that every goal is itself necessarily complex. 

Attorney Docket No: SRIIPOI60477)/BRCIEWJ Pa!!e 22 of 59 Page 121 of 778



It is contem.d that this ability is provided through .teragent 

communication language having the necessary syntax and semantics. In one example, 

the goals may take the form of compound goal expressions composed using operators 

similar to those employed by PROLOG, that is, the comma for conjunction, the 

5 semicolon for disjunction, the arrow for conditional execution, etc. The present 

invention also contemplates significant extensions to PROLOG syntax and semantics. 

For example, one embodiment incorporates a "parallel disjunction" operator 

indicating that the disjuncts are to be executed by different agents concurrently. A 

further embodiment supports the specification of whether a given sub-goal is to be 

10 executed breadth-first or depth-first. 

A further embodiment supports each sub-goal of a compound goal optionally 

having an address and/or a set of parameters attached to it. Thus, each sub-goal takes 

the form 

Address:Goal::Parameters 

r~ 15 where both Address and Parameters are optional. 

20 

An address, if present, preferably specifies one or more agents to handle the. 

given goal, and may employ several different types of referring expression: unique 

names, symbolic names, and shorthand names. Every agent has preferably a unique 

name, assigned by its facilitator, which relies upon network addressing schemes to 

ensure its global uniqueness. Preferably, agents also have self-selected symbolic 

names (for example, "mail"), which are not guaranteed to be unique. When an 

address includes a symbolic name, the facilitator preferably takes this to mean that all 

agents having that name should be called upon. Shorthand names include 'self and 

'parent' (which refers to the agent's facilitator). The address associated with a goal or 

25 sub-goal is preferably always optional. When an address is not present, it is the 

facilitator's job to supply an appropriate address. 

The distributed execution of compound goals becomes particularly powerful 

when used in conjunction with natural language or speech-enabled interfaces, as the 

query itself may specify how functionality from distinct agents will be combined. As 

30 a simple example, the spoken utterance "Fax it to Bill Smith's manager." can be 

translated into the following compound ICL request: 

oaa_Solve((manager('Bill Smith', M), fax(it,M,[])), [strategy(action)]) 

Attornev Docket No: SR11POJ6(3417)/BRC/EWJ Paee 23 of 59 Page 122 of 778



Note that in t~CL request there are two sub-goals, ... ger('Bill 

Smith' ,M)" and "fax(it,M,[])," and a single global parameter "strategy( action)." 

According to the present invention, the facilitator is capable of mapping global 

parameters in order to apply the constraints or advice across the separate sub-goals in 

5 a meaningful way. In this instance, the global parameter strategy( action) implies a 

parallel constraint upon the first sub-goal; i.e., when there are multiple agents that 

can respond to the manager sub-goal, each agent should receive a request for service. 

In contrast, for the second sub-goal, parallelism should not be inferred from the global 

parameter strategy(action) because such an inference would possibly result in the 

10 transmission of duplicate facsimiles. 

Refining Service Requests 

In a preferred embodiment of the present invention, parameters associated 

with a goal (or sub-goal) can draw on useful features to refine the request's meaning. 

For example, it is frequently preferred to be able to specify whether or not solutions 

15 are to be returned synchronously; this is done using the reply parameter, which can 

take any of the values synchronous, asynchronous, or none. As another example, 

when the goal is a non-compound query of a data solvable, the cache parameter may 

preferably be used to request local caching of the facts associated with that solvable. 

Many of the remaining parameters fall into two categories: feedback and advice. 

20 Feedback parameters allow a service requester to receive information from 

the facilitator about how a goal was handled. This feedback can include such things as 

the identities of the agents involved in satisfying the goal, and the amount of time 

expended in the satisfaction of the goal. 

Advice parameters preferably give constraints or guidance to the facilitator in 

25 completing and interpreting the goal. For example, a solution_limit parameter 

preferably allows the requester to say how many solutions it is interested in; the 

facilitator and/or service providers are free to use this information in optimizing their 

efforts. Similarly, a time_limit is preferably used to say how long the requester is 

willing to wait for solutions to its request, and, in a multiple facilitator system, a 

30 /evel_limit may preferably be used to say how remote the facilitators may be that are 

consulted in the search for solutions. A priority parameter is preferably used to 

Auornev Docket No: SRI I P016(3477)/BRC/EWJ Paee 24 of 59 Page 123 of 778



indicate that a reque. more urgent than previous requests t.ave not yet been 

satisfied. Other preferred advice parameters include but are not limited to parameters 

used to tell the facilitator whether parallel satisfaction of the parts of a goal is 

appropriate, how to combine and filter results arriving from multiple solver agents, 

s and whether the requester itself may be considered a candidate solver of the sub-goals 

of a request. 

Advice parameters preferably provide an extensible set of low-level, 

orthogonal parameters capable of combining with the ICL goal language to fully 

express how information should flow among participants. In certain preferred 

10 embodiments of the present invention, multiple parameters can be grouped together 

and given a group name. The resulting high-level advice parameters can preferably 

be used to express concepts analogous to KQML's performatives, as well as define 

classifications of problem types. For instance, KQML's "ask_all" and "ask_ one" 

performatives would be represented as combinations of values given to the parameters 

15 reply, parallel_ok, and solution_limit. As an example of a higher-level problem type, 

the strategy "math_problem" might preferably send the query to all appropriate math 

solvers in parallel, collect their responses, and signal a conflict if different answers are 

returned. The strategy "essay_question" might preferably send the request to all 

appropriate participants, and signal a problem (i.e., cheating) if any of the returned 

20 answers are identical. 

Facilitation 

In a preferred embodiment of the present invention, when a facilitator receives 

a compound goal, its job is to construct a goal satisfaction plan and oversee its 

satisfaction in an optimal or near optimal manner that is consistent with the specified 

25 advice. The facilitator of the present invention maintains a knowledge base that 

records the capabilities of a collection of agents, and uses that knowledge to assist 

requesters and providers of services in making contact. 

Figure 7 schematically shows data structures 700 internal to a facilitator in 

accordance with one embodiment of the present invention. Consider the function of a 

30 Agent Registry 702 in the present invention. Each registered agent may be seen as 

associated with a collection of fields found within its parent facilitator such as shown 

in the figure. Each registered agent may optionally possess a Symbolic Name which· 

Atlornev Docket No: SRIIPOJ6(3477VBRC/EWJ Page 25 of 59 Page 124 of 778



would be entered in.eld 704. As mentioned elsewhere, Sy.lic Names need not 

be unique to each instance of an agent. Note that an agent may in certain preferred 

embodiments of the present invention possess more than one Symbolic Name. Such 

Symbolic Names would each be found through their associations in the Agent 

5 Registry entries. Each agent, when registered, must possess a Unique Address, which 

is entered into the Unique Address field 706. 

With further reference to Figure 7, each registered agent may be optionally 

associated with one or more capabilities, which have associated Capability 

Declaration fields 708 in the parent facilitator Agent Registry 702. These capabilities 

10 may define not just functionality, but may further provide a utility parameter 

indicating, in some manner (e.g., speed, accuracy, etc), how effective the agent is at 

providing the declared capability. Each registered agent may be optionally associated 

with one or more data components, which have associated Data Declaration fields 710 

in the parent facilitator Agent Registry 702. Each registered agent may be optionally 

15 associated with one or more triggers, which preferably could be referenced through 

their associated Trigger Declaration fields 712 in the parent facilitator Agent Registry 

702. Each registered agent may be optionally associated with one or more tasks, 

which preferably could be referenced through their associated Task Declaration fields 

714 in the parent facilitator Agent Registry 702. Each registered agent may be 

.t: 20 optionally associated with one or more Process Characteristics, which preferably 

could be referenced through their associated Process Characteristics Declaration fields 

716 in the parent facilitator Agent Registry 702. Note that these characteristics in 

certain preferred embodiments of the present invention may include one or more of 

the following: Machine Type (specifying what type of computer may run the agent), 

25 Language (both computer and human interface). 

A facilitator agent in certain preferred embodiments of the present invention 

further includes a Global Persistent Database 720. The database 720 is composed of 

data elements which do not rely upon the invocation or instantiation of client agents 

for those data elements to persist. Examples of data elements which might be present 

30 in such a database include but are not limited to the network address of the facilitator 

agent's server, facilitator agent's server accessible network port list, firewalls, user 

Auornev Docket No: SRIIPOI6(3477)/BRC/EWJ Paee 26 of 59 Page 125 of 778



lists, and security o.s regarding the access of server resou. accessible to the 

facilitator agent. 

A simplified walk through of operations involved in creating a client agent, a 

client agent initiating a service request, a client agent responding to a service request 

5 and a facilitator agent responding to a service request are including hereafter by way 

of illustrating the use of such a system. These figures and their accompanying 

discussion are provided by way of illustration of one preferred embodiment of the 

present invention and are not intended to limit the scope of the present invention. 

Figure 8 depicts operations involved in instantiating a client agent with its 

10 parent facilitator in accordance with a preferred embodiment of the present invention. 

The operations begin with starting the Agent Registration in a step 800. In a next step 

802, the Installer, such as a client or facilitator agent, invokes a new client agent. It 

will be appreciated that any computer entity is capable of invoking a new agent. The 

system then instantiates the new client agent in a step 804. This operation may 

15 involve resource allocations somewhere in the network on a local computer system 

for the client agent, which will often include memory as well as placement of 

references to the newly instantiated client agent in internal system lists of agents 

within that local computing system. Once instantiated, the new client and its parent 

facilitator establish a communications link in a step 806. In certain preferred 

20 embodiments, this communications link involves selection of one or more physical 

transport mechanisms for this communication. Once established, the client agent 

transmits it profile to the parent facilitator in a step 808. When received, the parent 

facilitator registers the client agent in a step 810. Then, at a step 812, a client agent 

has been instantiated in accordance with one preferred embodiment of the present 

25 invention. 

Figure 9 depicts operations involved in a client agent initiating a service 

request and receiving the response to that service request in accordance with a 

preferred embodiment of the present invention. The method of Figure 9 begins in a 

step 900, wherein any initialization or other such procedures may be performed. 

30 Then, in a step 902, the client agent determines a goal to be achieved (or solved). 

This goal is then translated in a step 904 into ICL, if it is not already formulated in it. 

The goal, now stated in ICL, is then transmitted to the client agent's parent facilitator 

Attorney Docket No: SRIIP016(3477)/BRC/EWJ Page 27 of 59 Page 126 of 778



in a step 906. The p.t facilitator responds to this service r.t and at a later 

time, the client agent receives the results of the request in a step 908, operations of 

Figure 9 being complete in a done step 910. 

) 
FIGURE 10 depicts operations involved in a client agent responding to a 

5 service request in accordance with a preferred embodiment of the present invention. 

Once started in a step 1000, the client agent receives the service request in a step 

1002. In a next step 1004, the client agent parses the received request from ICL. The 

client agent then determines if the service is available in a step 1006. If it is not, the 

client agent returns a status report to that effect in a step 1008. If the service is 

10 available, control is passed to a step 1010 where the client performs the requested 

service. Note that in completing step 1010 the client may form complex goal 

expressions, requesting results for these solvables from the facilitator agent. For 

example, a fax agent might fax a document to a certain person only after requesting 

and receiving a fax number for that person. Subsequently, the client agent either 

15 returns the results of the service and/or a status report in a step 1012. The operations 

of Figure 10 are complete in a done step 1014. 

FIGURE 11 depicts operations involved in a facilitator agent response to a 

service request in accordance with a preferred embodiment of the present invention. 

The start of such operations in step 1100 leads to the reception of a goal request in a 

20 step 1102 by the facilitator. This request is then parsed and interpreted by the 

facilitator in a step 1104. The facilitator then proceeds to construct a goal satisfaction 

plan in a next step 1106. In steps 1108 and 1110, respectively, the facilitator 

determines the required sub-goals and then selects agents suitable for performing the 

required sub-goals. The facilitator then transmits the sub-goal requests to the selected 

25 agents in a step 1112 and receives the results of these transmitted requests in a step 

1114. It should be noted that the actual implementation of steps 1112 and 1114 are 

dependent upon the specific goal satisfaction plan. For instance, certain sub-goals 

may be sent to separate agents in parallel, while transmission of other sub-goals may 

be postponed until receipt of particular answers. Further, certain requests may 

30 generate multiple responses that generate additional sub-goals. Once the responses 

have been received, the facilitator determines whether the original requested goal has 

been completed in a step 1118. If the original requested goal has not been completed, 

Attornev Docket No: SRI I PO 1604 77)/BRC/EW J Pa!!e 28 of 59 Page 127 of 778



the facilitator recurs~ repeats the operations 1106 through •. Once the original 

requested goal is completed, the facilitator returns the results to the requesting agent 

1118 and the operations are done at 1120. 

A further preferred embodiment of the present invention incorporates 

5 transparent delegation, which means that a requesting agent can generate a request, 

and a facilitator can manage the satisfaction of that request, without the requester 

needing to have any knowledge of the identities or locations of the satisfying agents. 

In some cases, such as when the request is a data query, the requesting agent may also 

be oblivious to the number of agents involved in satisfying a request. Transparent 

10 delegation is possible because agents' capabilities (solvables) are treated as an abstract 

description of a service, rather than as an entry point into a library or body of code. 

15 

A further preferred embodiment of the present invention incorporates 

facilitator handling of compound goals, preferably involving three types of 

processing: delegation, optimization and interpretation. 

Delegation processing preferably supports facilitator determination of which 

specific agents will execute a compound goa1 and how such a compound goal's sub

goals will be combined and the sub-goal results routed. Delegation involves selective 

application of global and local constraint and advice parameters onto the specific sub

goals. Delegation results in a goal that is unambiguous as to its meaning and as to the 

~ 20 agents that will participate in satisfying it. 

Optimization processing of the completed goal preferably includes the 

facilitator using sub-goal parallelization where appropriate. Optimization results in a 

goal whose interpretation will require as few exchanges as possible, between the 

facilitator and the satisfying agents, and can exploit parallel efforts of the satisfying 

25 agents, wherever this does not affect the goal's meaning. 

Interpretation processing of the optimized goal. Completing the addressing of 

a goal involves the selection of one or more agents to handle each of its sub-goals 

(that is, each sub-goal for which this selection has not been specified by the 

requester). In doing this, the facilitator uses its knowledge of the capabilities of its 

30 client agents (and possibly of other facilitators, in a multi-facilitator system). It may 

also use strategies or advice specified by the requester, as explained below. The 

Attornev Dockel No: SRIIP016(3477)/BRCIEWJ Pae:e 29 of 59 Page 128 of 778



interpretation of a .nvolves the coordination of requests .e satisfying agents, 

and assembling their responses into a coherent whole, for return to the requester. 

A further preferred embodiment of present invention extends facilitation so the 

facilitator can employ strategies and advice given by the requesting agent, resulting in 

5 a variety of interaction patterns that may be instantiated in the satisfaction of a 

request. 

10 

A further preferred embodiment of present invention handles the distribution 

of both data update requests and requests for installation of triggers, preferably using 

some of the same strategies that are employed in the delegation of service requests. 

Note that the reliance on facilitation is not absolute; that is, there is no hard 

requirement that requests and services be matched up by the facilitator, or that 

interagent communications go through the facilitator. There is preferably support in 

the agent library for explicit addressing of requests. However, a preferred 

embodiment of the present invention encourages employment the paradigm of agent 

15 communities, minimizing their development effort, by taking advantage of the 

facilitator's provision of transparent delegation and handling of compound goals. 

A facilitator is preferably viewed as a coordinator, not a controller, of 

cooperative task completion. A facilitator preferably never initiates an activity. A 

facilitator preferably responds to requests to manage the satisfaction of some goal, the 

20 update of some data repository, or the installation of a trigger by the appropriate agent 

or agents. All agents can preferably take advantage of the facilitator's expertise in 

delegation, and its up-to-date knowledge about the current membership of a dynamic 

community. The facilitator's coordination services often allows the developer to 

lessen the complexity of individual agents, resulting in a more manageable software 

25 development process, and enabling the creation of lightweight agents. 

Maintaining Data Repositories 

The agent library supports the creation, maintenance, and use of databases, in 

the form of data solvables. Creation of a data solvable requires only that it be 

declared. Querying a data solvable, as with access to any solvable, is done using 

30 oaa_Solve. 

Attornev Docket No: SRIIPOI6(3477l!BRC/EWJ Pae:e 30 of 59 Page 129 of 778



n = 

lf 

ltd 
:;;p, 
w 
$ 

Fi 
""?' 
;f! 
1:::": 

;!d 
~n 
<;:;;: 

A data solva.s conceptually similar to a relation in .ational database. 

The facts associated with each solvable are maintained by the agent library, which 

also handles incoming messages containing queries of data solvables. The default 

behavior of an agent library in managing these facts may preferably be refined, using 

5 parameters specified with the solvable's declaration. For example, the parameter 

single_value preferably indicates that the solvable should only contain a single fact at 

any given point in time. The parameter unique_values preferably indicates that no 

duplicate values should be stored. 

Other parameters preferably allow data solvables use of the concepts of 

10 ownership and persistence. For implementing shared repositories, it is often 

preferable to maintain a record of which agent created each fact of a data solvable 

with the creating agent being preferably considered the fact's owner. In many 

applications, it is preferable to remove an agent's facts when that agent goes offline 

(for instance, when the agent is no longer participating in the agent community, 

whether by deliberate termination or by malfunction). When a data solvable is 

declared to be non-persistent, its facts are automatically maintained in this way, 

whereas a persistent data solvable preferably retains its facts until they are explicitly 

removed. 

15 

20 

A further preferred embodiment of present invention supports an agent library 

through procedures by which agents can update (add, remove, and replace) facts 

belonging to data solvables, either locally or on other agents, given that they have 

preferably the required permissions. These procedures may preferably be refined 

using many of the same parameters that apply to service requests. For example, the 

address parameter preferably specifies one or more-particular agents to which the 

25 update request applies. In its absence, just as with service requests, the update request 

preferably goes to all agents providing the relevant data solvable. This default 

behavior can be used to maintain coordinated "mirror" copies of a data set within 

multiple agents, and can be useful in support of distributed, collaborative activities. 

Similarly, the feedback parameters, described in connection with oaa_Solve, 

30 are preferably available for use with data maintenance requests. 

Attornev Docket No: SRIIP016(3477)/BRCfEWJ Paee 31 of 59 Page 130 of 778



A further p.ed embodiment of present invention slorts ability to 

provide data solvables not just to client agents, but also to facilitator agents. Data 

solvables can preferably created, maintained and used by a facilitator. The facilitator 

preferably can, at the request of a client of the facilitator, create, maintain and share 

5 the use of data solvables with all the facilitator's clients. This can be useful with 

relatively stable collections of agents, where the facilitator's workload is predictable. 

Using a Blackboard Style of Communication 

In a further preferred embodiment of present invention, when a data solvable 

10 is publicly readable and writable, it acts essentially as a global data repository and can 

be used cooperatively by a group of agents. In combination with the use of triggers, 

this allows the agents to organize their efforts around a "blackboard" style of 

communication. 

As an example, the "DCG-NL" agent (one of several existing natural language 

15 processing agents), provides natural language processing services for a variety of its 

peer agents, expects those other agents to record, on the facilitator, the vocabulary to 

which they are prepared to respond, with an indication of each word's part of speech, 

and of the logical form (ICL sub-goal) that should result from the use of that word. In 

a further preferred embodiment of present invention, the NL agent, preferably when it 

20 comes online, preferably installs a data solvable for each basic part of speech on its 

facilitator. For instance, one such solvable would be: 

25 

30 

solvable(noun(Meaning, Syntax), [], []) 

Note that the empty lists for the solvable's permissions and parameters are acceptable 

here, since the default permissions and parameters provide appropriate functionality. 

A further preferred embodiment of present invention incorporating an Office 

Assistant system as discussed herein or similar to the discussion here supports several 

agents making use of these or similar services. For instance, the database agent uses 

the following call, to library procedure oaa_AddData, to post the noun 'boss', and to 

indicate that the "meaning" of boss is the concept 'manager': 

oaa_AddData( noun(manager, atom(boss)), [ address(parent)]) 

Auornev Docket No: SRII PO 16(3477)/BRCIEWJ Pa!!:e 32 of 59 Page 131 of 778



g 
k! 

Autonomous Mon.g with Triggers 

A further preferred embodiment of present invention includes support for 

triggers, providing a general mechanism for requesting some action be taken when a 

set of conditions is met. Each agent can preferably install triggers either locally, for 

5 itself, or remotely, on its faci_litator or peer agents. There are preferably at least four 

types of triggers: communication, data, task, and time. In addition· to a type, each 

trigger preferably specifies at least a condition and an action, both preferably 

expressed in /CL. The condition indicates under what circumstances the trigger should 

fire, and the action indicates what should happen when it fires. In addition, each 

10 trigger can be set to fire either an unlimited number of times, or a specified number of 

times, which can be any positive integer. 

Triggers can be used in a variety of ways within _preferred embodiments of the 

present invention. For example, triggers can be used for monitoring external sensors 

in the execution environment, tracking the progress of complex tasks, or coordinating 

15 communications between agents that are essential for the synchronization of related 

tasks. The installation of a trigger within an agent can be thought of as a 

representation of that agent's commitment to carry out the specified action, whenever 

the specified condition holds true. 

.~ Communication triggers preferably allow any incoming or outgoing event 

Vi 20 (message) to be monitored. For instance, a simple communication trigger may say 
\0 

something like: "Whenever a solution to a goal is returned from the facilitator, send 

the result to the presentation manager to be displayed to the user." 

Data triggers preferably monitor the state of a data repository (which can be 

maintained on a facilitator or a client agent). Data triggers' conditions may be tested 

25 upon the addition, removal, or replacement of a fact belonging to a data solvable. An 

example data trigger is: "When 15 users are simultaneously logged on to a machine, 

send an alert message to the system administrator." 

Task triggers preferably contain conditions that are tested after the processing 

of each incoming event and whenever a timeout occurs in the event polling. These 

30 conditions may specify any goal executable by the local /CL interpreter, and most 

often are used to test when some solvable becomes satisfiable. Task triggers are 

Attornev Docket No: SRIIPOI6(3477VBRC/EWJ Pa!!e 33 of 59 Page 132 of 778



useful in checking fo.k-specific internal conditions. Althou.n many cases such 

conditions are captured by solvables, in other cases they may not be. For example, a 

mail agent might watch for new incoming mail, or an airline database agent may 

monitor which flights will arrive later than scheduled. An example task trigger is: 

5 "When mail arrives for me about security, notify me immediately." 

Time triggers preferably monitor time conditions. For instance, an alarm 

trigger can be set to fire at a single fixed point in time (e.g., "On December 23rd at 

3pm"), or on a recurring basis (e.g., "Every three minutes from now until noon"). 

Triggers are preferably implemented as data solvables, declared implicitly for 

10 every agent. When requesting that a trigger be installed, an agent may use many of the 

same parameters that apply to service and data maintenance requests. 

A further preferred embodiment of present invention incorporates semantic 

support, in contrast with most programming methodologies, of the agent on which the 

trigger is installed only having to know how to evaluate the conditional part of the 

15 trigger, not the consequence. When the trigger fires, the action is delegated to the 

facilitator for execution.· Whereas many commercial mail programs allow rules of the 

form "When mail arrives about XXX, [forward it, delete it, archive it]", the possible 

actions are hard-coded and the user must select from a fixed set. 

U'1 A further preferred embodiment of present invention, the consequence of a 

20 trigger may be any compound goal executable by the dynamic community of agents. 

25 

Since new agents preferably define both functionality and vocabulary, when an 

unanticipated agent (for example, a fax agent) joins the community, no modifications 

to existing code is required for a user to make use of it - "When mail arrives, fax it to 

Bill Smith." 

The Agent Library 

In a preferred embodiment of present invention, the agent library provides the 

infrastructure for constructing an agent-based system. The essential elements of 

protocol (involving the details of the messages that encapsulate a service request and 

30 its response) are preferably made transparent to simplify the programming 

applications. This enables the developer to focus functionality, rather than message 

Attornev Docket No: SRIIPOI6(3477VBRCIEWJ Pa!!e 34 of 59 Page 133 of 778



construction details .omrnunication details. For example, .quest a service of 

another agent, an agent preferably calls the library procedure oaa_Solve. This call 

results in a message to a facilitator, which will exchange messages with one or more 

service providers, and then send a message containing the desired results to the 

5 requesting agent. These results are returned via one of the arguments of oaa_Solve. 

None of the messages involved in this scenario is explicitly constructed by the agent 

developer. Note that this describes the synchronous use of oaa_Solve. 

In another preferred embodiment of present invention, an agent library 

provides both intraagent and interagent infrastructure; that is, mechanisms supporting 

10 the internal structure of individual agents, on the one hand, and mechanisms of 

cooperative interoperation between agents, on the other. Note that most of the 

infrastructure cuts across this boundary with many of the same mechanisms 

supporting both agent internals and agent interactions in an integrated fashion. For 

example, services provided by an agent preferably can be accessed by that agent 

15 through the same procedure (oaa_Solre) that it would employ to request a service of 

another agent (the only difference being in the address parameter accompanying the 

request). This helps the developer to reuse code and avoid redundant entry points into 

the same functionality. 

Both of the preferred characteristics described above (transparent construction 

20 of messages and integration of intraagent with interagent mechanisms) apply to most 

other library functionality as well, including but not limited to data management and 

temporal control mechanisms. 

Source Code Appendix 

Source code for version 2.0 of theOAA software product is included as an 

25 appendix hereto, and is incorporated herein by reference. The code includes an agent 

library, which provides infrastructure for constructing an agent-based system. The 

library's several families of procedures provide the functionalities discussed above, as 

well as others that have not been discussed here but that will be sufficiently clear to 

the interested practitioner. For example, declarations of an agent's solvables, and their 

30 registration with a facilitator, are managed using procedures such as oaa_Declare, 

oaa_Undeclare, and oaa_Redeclare. Updates to data solvables can be accomplished 

with a family of procedures including oaa_AddData, oaa_RemoveData, and 

Anornev Docket No: SRIIP016(3477)/BRC/EWJ Paee 35 of 59 Page 134 of 778



oaa_ReplaceData. S.arly, triggers are maintained using pr.res such as 

oaa_AddTrigger, oaa_RemoveTrigger, and oaa_ReplaceTrigger. The provided 

source code also includes source code for an OAA Facilitator Agent. 

The source code appendix is offered solely as a means of further helping 

5 practitioners to construct a preferred embodiment of the invention. By no means is 

the source code intended to limit the scope of the present invention. 

Illustrative Applications 

To further illustrate the technology of the preferred embodiment, we will next 

present and discuss two sample applications of the present inventions. 

10 Unified Messaging 

A further preferred embodiment of present invention incorporates a Unified 

.Q Messaging application extending the Automated Office application presented 

previously herein with an emphasis on ubiquitous access and dynamic presentation of 

the information and services supported by the agent community. The agents used in 

15 this application are depicted in Figure 12. 

A hypothetical example of realistic dialog using a preferred embodiment of 

the present invention can provide insight into how systems may preferably be built 

using the present invention. In this scenario, the user, with only a telephone as an 

interface, is planning a trip to Boston where he will soon give a presentation. 

\!d 20 Capitalized sentences are phrases spoken by the user into the telephone and processed 

by a phone agent 452. 

Responses, unless otherwise indicated, are spoken by the system using text-to

speech generation agent 454. 

25 1.1 Welcome to SRI International. Please enter your 
user ID and password. 

30 

<User enters touchtone ID and password> 

Good to see you again Adam Cheyer. I am 

listening to you. 

Every user interface agent 408, including the telephone agent 452, should 

know the identify of its user. This information is used in resolving anaphoric 

Attornev Docket No: SRI I PO 16(34 77)/BRC/EWJ Page 36 of 59 Page 135 of 778



:.A 
;;;: 

rll 
fiJ 
~fi 
'iofi 
l' 
.r-

\g 
t'fi ·:.r.:: 

references such as ··and "I", and allows multiple user inte.s operated by the 

same user to work together. 

1.2 WHAT IS TODAY'S SCHEDULE? 
Here is today's schedule for Adam Cheyer: 

5 At lOam for 1 hour, meeting with Dave. 
At 3prn for 1 hour, presentation about software 

agents. 

End of schedule. 

If the user is operating both a graphical user interface and a telephone, as 

10 described in conjunction with the Automated Office application, the result of this 

spoken request is to display a calendar window containing the current schedule. In 

this case, with no graphical display available, the GEN_NL agent 1202 is tasked to 

produce a spoken response that can be played over the phone. GEN_NL shares the 

same dynamic vocabulary and phrasal rules as the natural language parser DCG_NL 

15 

20 

25 

426, and contains strategies for producing responses to queries using either simple or 

list-based multimedia utterances. 

1.3 FIND FRIDAY'S WEATHER IN BOSTON. 
The weather in Boston for Friday is as follows: 

Sunny in the morning. Partly cloudy in the 
afternoon with a 20 

percent chance of thunderstorms late. Highs in the 
mid 70s. 

In addition to data accessible from legacy applications, content may be 

retrieved by web-reading agents which provide wrappers around useful websites. 

1.4 FIND ALL NEW MAIL MESSAGES. 
There are 2 messages available. 
Message 1, from Mark Tierny, entitled 11 0AA meeting." 

1.5 NEXT MESSAGE 
Message 2, from Jennifer Schwefler, entitled 

30 II Presentation Summary. II 

1. 6 PLAY IT. 
This message is a multipart MIME-encoded message. 

There are two parts. 
Part 1. (Voicernail message, not text-to speech): 

35 Thanks for taking part as a speaker in our 
conference. 

The schedule will be posted soon on our homepage. 
1.7 NEXT PART 

Part 2. (read using text-to-speech): 
40 The presentation horne page is http://www .... 

1.8 PRINT MESSAGE 
Command executed. 

Auornev Docket No: SRIIP0160477)/BRCIEWJ Pa2e 37 of 59 Page 136 of 778



Mail messalre no longer just simple text docume.ut often consist of 

multiple subparts containing audio files, pictures, webpages, attachments and so forth. 

When a user asks to play a complex email message over the telephone, many different 

agents may be implicated in the translation process, which would be quite different 

5 given the request "print it." The challenge is to develop a system which will enable 

agents to cooperate in an extensible, flexible manner that alleviates explicit coding of 

agent interactions for every possible input/output combination. 

In a preferred embodiment of the present invention, each agent concentrates 

only on what it can do and on what it knows, and leaves other work to be delegated to 

10 the agent community. For instance, a printer agent 1204, defining the solvable 

print(Object,Parameters), can be defined by the following pseudo-code, which 

basically says, "If someone can get me a document, in either POSTSCRIPT or text 

form, I can print it.". 

15 print(Object, Parameters) { 
I If Object is reference to "it", find an appropriate 

document 
if (Object = "ref(it) ") 

oaa_Solve(resolve_reference(the, document, Params, 
20 Object) , [] ) ; 

1 Given a reference to some document, ask for the 
document in POSTSCRIPT 

if (Object= "id(Pointer)") 
oaa_Solve(resolve_id_as(id(Pointer), postscript, 

25 [], Object),[]); 
1 If Object is of type text or POSTSCRIPT, we can 

print it. 
if ((Object is of type Text) or (Object is of type 

Postscript) ) 
30 do_print (Object); 

} 

In the above example, since an email message is the salient document, the 

mail agent 442 will receive a request to produce the message as POSTSCRIPT. 

Whereas the mail agent 442 may know how to save a text message as POSTSCRIPT, 

35 it will not know what to do with a webpage or voicemail message. For these parts of 

the message, it will simply send oaa_Solve requests to see if another agent knows 

how to accomplish the task. 

Attornev Docket No: SRIIP016(3477)!BRCIEWJ Page 38 of 59 Page 137 of 778



i:j 

rl! 

~-1; 

Until now, .ser has been using only a telephone a.r interface. Now, he 

moves to his desktop, starts a web browser 436, and accesses the URL referenced by 

the mail message. 

1.9 RECORD MESSAGE 
5 Recording voice message. Start speaking now. 

1.10 THIS IS THE UPDATED WEB PAGE CONTAINING THE 
PRESENTATION SCHEDULE. 

Message one recorded. 
1.11 IF THIS WEB PAGE CHANGES, GET IT TO ME WITH NOTE 

10 ONE. 

15 

20 

Trigger added as requested. 

In this example, a local agent 436 which interfaces with the web browser can 

return the current page as a solution to the request "oaa_Solve(resolve_reference(this, 

web_page, [],Ref),[])", sent by the NL agent 426. A trigger is installed on a web 

agent 436 to monitor changes to the page, and when the page is updated, the notify 

agent 446 can find the user and transmit the webpage and voicemail message using 

the most appropriate media transfer mechanism. 

This example based on the Unified Messaging application is intended to show 

how concepts in accordance with the present invention can be used to produce a 

simple yet extensible solution to a multi-agent problem that would be difficult to 

implement using a more rigid framework. The application supports adaptable 

presentation for queries across dynamically changing, complex information; shared 

context and reference resolution among applications; and flexible translation of 

multimedia data. In the next section, we will present an application which highlights 

25 the use of parallel competition and cooperation among agents during multi-modal 

fusion. 

Multimodal Map 

A further preferred embodiment of present invention incorporates the 

Multimodal Map application. This application demonstrates natural ways of 

30 communicating with a community of agents, providing an interactive interface on 

which the user may draw, write or speak. In a travel-planning domain illustrated by 

Figure 13, available information includes hotel, restaurant, and tourist-site data 

retrieved by distributed software agents from commercial Internet sites. Some 

preferred types of user interactions and multimodal issues handled by the application 

Attornev Docket No: SRIIPOJ6(3477VBRC/EWJ Pae:e 39 of 59 Page 138 of 778



w 
= -::~ 
~ 

are illustrated by a b.cenario featuring working examples • from the current 

system. 

Sara is planning a business trip to San Francisco, but would like to schedule 

some activities for the weekend while she is there. She turns on her laptop PC, 

5 executes a map application, and selects San Francisco. 

2.1 [Speaking] Where is downtown? 
Map scrolls to appropriate area. 

2.2 [Speaking and drawing region] Show me all hotels 
near here. 

10 Icons representing hotels appear. 
2.3 [Writes on a hotel] Info? 

A textual description (price, attributes, etc.) 
appears. 
2.4 [Speaking] I only want hotels with a pool. 

15 Some hotels disappear. 
2.5 [Draws a crosscut on a hotel that is too close to a 
highway] 

Hotel disappears 
2.6 [Speaking and circling] Show me a photo of this 

20 hotel. 

25 

30 

35 

Photo appears. 
2.7 [Points to another hotel] 

Photo appears. 
2.8 [Speaking] Price of the other hotel? 

Price appears for previous hotel. 
2.9 [Speaking and drawing an arrow] Scroll down. 

Display adjusted. 
2.10 [Speaking and drawing an arrow toward a hotel] 

What is the distance from this hotel to Fisherman's 
Wharf? 

Distance displayed. 
2.11 [Pointing to another place and speaking] And the 
distance to here? 

Distance displayed. 

Sara decides she could use some human advice. She picks up the phone, calls 

Bob, her travel agent, and writes Start collaboration to synchronize his display with 

hers. At this point, both are presented with identical maps, and the input and actions 

of one will be remotely seen by the other. 

40 3.1 [Sara speaks and circles two hotels] 
Bob, I'm trying to choose between these two hotels. 

Any opinions? 
3.2 [Bob draws an arrow, speaks, and points] 

Well, this area is really nice to visit. You can 
45 walk there from 

Auornev Docket No: SRilPOI6(3477)/BRCIEWJ Pa!!:e 40 of 59 Page 139 of 778



5 

3.3 
3.4 

3.5 

this ho •. 
Map scrolls to indicated area. Hotel selected. 
[Sara speaks] Do you think I should visit Alcatraz? 
[Bob speaks] Map, show video of Alcatraz. 
Video appears. 

[Bob speaks] Yes, Alcatraz is a lot of fun. 

A further preferred embodiment of present invention generates the most 

appropriate interpretation for the incoming streams of multiinodal input. Besides 

providing a user interface to a dynamic set of distributed agents, the application is 

10 preferably built using an agent framework. The present invention also contemplates 

aiding the coordinate competition and cooperation among information sources, which 

in tum works in parallel to resolve the ambiguities arising at every level of the 

interpretation process: low-level processing of the data stream, anaphora resolution, 

cross-modality influences and addressee. 

15 Low-level processing of the data stream: Pen input may be preferably 

interpreted as a gesture (e.g., 2.5: cross-out) by one algorithm, or as handwriting by a 

separate recognition process (e.g., 2.3: "info?"). Multiple hypotheses may preferably 

be returned by a modality recognition component. 

Anaphora resolution: When resolving anaphoric references, separate 

0 20 information sources may contribute to resolving the reference: context by object type, 

deictic, visual context, database queries, discourse analysis. An example of 

information provided through context by object type is found in interpreting an 

utterance such as "show photo of the hotel", where the natural language component 

can return a list of the last hotels talked about. Deictic information in combination 

25 with a spoken utterance like "show photo of this hotel" may preferably include 

pointing, circling, or arrow gestures which might indicate the desired object (e.g., 

2.7). Deictic references may preferably occur before, during, or after an 

accompanying verbal command. Information provided in a visual context, given for 

the request "display photo of the hotel" may preferably include the user interface 

30 agent might determine that only one hotel is currently visible on the map, and 

therefore this might be the desired reference object. Database queries preferably 

involving information from a database agent combined with results from other 

resolution strategies. Examples are "show me a photo of the hotel in Menlo Park" and 

Attornev Docket No: SRIIPOI6(3477l/BRC/EWJ Pa2e 41 of 59 Page 140 of 778



n = 

2.2. Discourse anal.preferably provides a source of infon8n for phrases such 

as "No, the other one" (or 2.8). 

The above list of preferred anaphora resolution mechanisms is not exhaustive. 

Examples of other preferred resolution methods include but are not limited to spatial 

5 reasoning ("the hotel between Fisherman's Wharf and Lombard Street") and user 

preferences ("near my favorite restaurant"). 

Cross-modality influences: When multiple modalities are used together, one 

modality may preferably reinforce or remove or diminish ambiguity from the 

interpretation of another. For instance, the interpretation of an arrow gesture may vary 

10 when accompanied by different verbal commands (e.g., "scroll left" vs. "show info 

about this hotel"). In the latter example, the system must take into account how 

accurately and unambiguously an arrow selects a single hotel. 

Addressee: With the addition of collaboration technology, humans and 

automated agents all share the same workspace. A pen doodle or a spoken utterance 

15 may be meant for either another human, the system (3.1), or both (3.2). 

The implementation of the Multimodal Map application illustrates and 

exploits several preferred features of the present invention: ·reference resolution and 

task delegation by parallel parameters of oaa_Solve, basic multi-user collaboration 

handled through built-in data management services, additional functionality readily 

20 achieved by adding new agents to the community, domain-specific code cleanly 

separated from other agents. 

A further preferred embodiment of present invention provides reference 

resolution and task delegation handled in a distributed fashion by the parallel 

parameters of oaa_Solve, with meta-agents encoding rules to help the facilitator make 

25 context- or user-specific decisions about priorities among knowledge sources. 

A further preferred embodiment of present invention provides basic multi-user 

collaboration handled through at least one built-in data management service. The 

map user interface preferably publishes data solvables for elements such as icons, 

screen position, and viewers, and preferably defines these elements to have the 

30 attribute ".shareable". For every update to this public data, the changes are preferably 

Attornev Docket No: SRIIP016(3477)/BRC/EWJ Paee 42 of 59 Page 141 of 778



automatically replic.to all members of the collaborative s.n. with associated 

callbacks producing the visible effect of the data change (e.g., adding or removing an 

icon). 

Functionality for recording and playback of a session is preferably 

5 implemented by adding agents as members of the collaborative community. These 

agents either record the data changes to disk, or read a log file and replicate the 

changes in the shared environment. 

10 

The domain-specific code for interpreting travel planning dialog is preferably 

separated from the speech, natural language, pen recognition, database and map user 

interface agents. These components were preferably reused without modification to 

add multimodal map capabilities to other applications for activities such as crisis 

management, multi-robot control, and the MVIEWS tools for the video analyst. 

Improved Scalability and Fault Tolerance 

Implementations of a preferred embodiment of present invention which rely 

Vi 15 upon simple, single facilitator architectures may face certain limitations with respect 
y 
' to scalability, because the single facilitator may become a communications bottleneck 

and may also represent a single, critical point for system failure. 

Multiple facilitator systems as disclosed in the preferred embodiments to this 

point can be used to construct peer-to-peer agent networks as illustrated in Figure 14. 

20 While such embodiments are scalable, they do possess the potential for 

communication bottlenecks as discussed in the previous paragraph and they further 

possess the potential for reliability problems as central, critical points of vulnerability 

to systems failure. 

A further embodiment of present invention supports a facilitator implemented 

25 as an agent like any other, whereby multiple facilitator network topologies can be 

readily constructed. One example configuration (but not the only possibility) is a 

hierarchical topology as depicted in Figure 15, where a top level Facilitator manages 

collections of both client agents 1508 and other Facilitators, 1504 and 1506. 

Facilitator agents could be installed for individual users, for a group of users, or as 

30 appropriate for the task. 

Attornev Docket No: SRIIP016C3477l/BRCIEWJ Pa!!:e 43 of 59 Page 142 of 778



Note further •• network work topologies of facilitato.an be seen as 

graphs where each node corresponds to an instance of a facilitator and each edge 

connecting two or more nodes corresponds to a transmission path across one or more 

physical transport mechanisms. Some nodes may represent facilitators and some 

5 nodes may represent clients. Each node can be further annotated with attributes 

corresponding to include triggers, data, capabilities but not limited to these attributes .. 

A further embodiment of present invention provides enhanced scalability and 

robustness by separating the planning and execution components of the facilitator. In 

contrast with the centralized facilitation schemes described above, the facilitator 

1 o system 1600 of Figure 16 separates the registry/planning component from the 

execution component. As a result, no single facilitator agent must carry all 

communications nor does the failure of a single facilitator agent shut down the entire 

system. 

Turning directly to Figure 16, the facilitator system 1600 includes a 

15 registry/planner 1602 and a plurality of client agents 1612-1616. The registry/planner 

1604 is typically replicated in one or more locations accessible by the client agents. 

Thus if the registry/planner 1604 becomes unavailable, the client agents can access 

the replicated registry/planner(s). 

This system operates, for example, as follows. An agent transmits a goal1610 

20 to the registry planner 1602. The registry/planner 1604 translates the goal into an 

unambiguous execution plan detailing how to accomplish any sub-goals developed 

from the compound goal, as well as specifying the agents selected for performing the 

sub-goals. This execution plan is provided to the requesting agent which in tum 

initiates peer-to-peer interactions 1618 in order to implement the detailed execution 

25 plan, routing and combining information as specified within the execution plan. 

Communication is distributed thus decreasing sensitivity of the system to bandwidth 

limitations of a single facilitator agent. Execution state is likewise distributed thus 

enabling system operation even when a facilitator agent fails. 

Further embodiments of present invention incorporate into the facilitator 

30 functionality such as load-balancing, resource management, and dynamic 

configuration of agent locations and numbers, using (for example) any of the 

topologies discussed. Other embodiments incorporate into a facilitator the ability to 

aid agents in establishing peer-to-peer communications. That is, for tasks requiring a 

Attornev Docket No: SRIIP016C3477VBRCIEWJ Pa!!e 44 of 59 Page 143 of 778



sequence of exchan-etween two agents, the facilitator as*e agents in finding 

one another and establishing communication, stepping out of the way while the agents 

communicate peer-to-peer over a direct, perhaps dedicated channel. 

Further preferred embodiments of the present invention incorporate 

5 mechanisms for basic transaction management, such as periodically saving the state of 

agents (both facilitator and client) and rolling back to the latest saved state in the 

event of the failure of an agent. 

Attornev Docket No: SRIIP016(3477)!BRCIEWJ Page 45 of 59 Page 144 of 778



\ 

• 

APPENDIX A.I 

Source code file named compound. pl. 

Page 145 of 778



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File : compound.pl 
% Primary Authors David Martin, Adam Cheyer 
% Purpose : Provides handling of compound goals by the facilitator. 
% 
% 
% Unpublished-rights reserved under the copyright laws of the United States. 
% 
% 
% Unpublished Copyright (c) 1998, SRI International. 
% "Open Agent Architecture" and "OAA" are Trademarks of SRI International. 
% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This is just here so this file can be compiled separately (but its 
% official declaration is in oaa.pl): 

op (599,yfx,::). 

dynamic 
binding num/1, 
ks num/l, 
multiple_ continuation/? 

% This file is loaded by facilitator code, and thus no 
% module imports are needed here. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OVERVIEW 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

/*\ 

These facilitator routines support the use of compound "ICL goals". 
An ICLGoal is of the form Sources:Goal: :Params, where both Sources and 
Params are optional. Each subgoal of ICLGoal is also of that form. 

When an agent calls solve/2, it may specify an ICL goal which is 
"incomplete"; that is, ambiguous as to which agents are to solve the 
various subgoals. The facilitator then completes the ICL goal, if 
necessary, and executes it. Execution involves having all the 
subgoals solved by the appropriate agents, assembling the solutions, 
and returning them to the requesting agent. 

If a agent wants to construct a complete ICL goal, and is willing to 
guarantee that it's complete and that all solvers mentioned in it are 
currently valid, then that agent (usually a "meta-agent") may call 
execute_goal directly. @@ We haven't yet provided library calls for 
this. 

IMPORTANT NOTE: : has higher precedence than ::. This means that 
a:b: :c will unify with X:Y and X:Y: :Z, but NOT with Y: :Z. 

Wherever a Sources field appears, it may be any of the following: 
built in 
facilitator 

1 

Page 146 of 778



parent 
KS 
[KSl, KS2, ... ] 

'built_in• isn't normally specified by a requesting agent although 
there's no harm in doing so but is used internally by the 
facilitator. KS, KSl, KS2, etc. may be either the name or address of 
an agent (client or facilitator). 'facilitator' or 'parent' may also 
appear in a list of KS's. If Sources is an empty list or a var, it is 
handled just as if there were no Sources field, in which case the 
facilitator determines what sources are relevant. 

Note that when an ICL goal includes a Sources field, there should not be 
Sources fields for any of its subgoals. If there are, they will be 
ignored. (®®Need to make sure this works ok.) However, Params fields 
may be usefully nested within goals that have Params fields. Certain 
nested parameters, such as solution_limit/1, can be used by the 
solving agent. 

If an ICL goal has parameters, some of them are "inherited" by 
subgoals. If there's a conflicting parameter on a subgoal, however, 
it overrides an inherited parameter. 

PARAMETERS 

address(+A) [embedded or global] -Used precisely as if A: prefixes 
the relevant goal. 

get_address(-S) [embedded] bindS to indicate who provided the 
solution. Solver identities will be given as numeric ids. Currently 
only works when attached to non-compound (sub)goals. 

get_address(-S) [global] -bindS to indicate all sources that were queried 
in finding solutions (even if they returned none) . 

\*/ 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% GOAL COMPLETION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

/*\ 

complete_goal(RequestingKS, Goal, GlobalParams, CompletedGoal). 

complete_goal takes in an ICL goal and produces a "complete ICL goal" 
(sometimes known as a "plan", but I think we'll reserve that term for 
future developments) . The goal and the complete goal have precisely 
the same variables - but are not necessarily unifiable. 

\*/ 

complete_goal(RequestingKS, Goal, GlobalParams, CompletedGoal) 
complete_addressing(RequestingKS, Goal, GlobalParams, AddressedGoal), 
complete_concurrency(AddressedGoal, CompletedGoal). 

2 

Page 147 of 778



/*\ 

complete_addressing(+RequestingKS, +ICLGoal, +GlobalParams, -AddressedGoal). 

AddressedGoal has more-or-less the same form as ICLGoal, but possibly 
with some regrouping of subgoals, and the addition of Sources fields 
to ICLGoal or its subgoals. The idea is that AddressedGoal contains 
complete information as to where its various subgoals are to be sent, 
so that no further analysis is needed. Any regrouping of subgoals is 
done as an optimization. AddressedGoal shares all variables with 
ICLGoal. 

®®What other operators (e.g., negation) might we want to support? 

\*/ 

complete_addressing(RequestingKS, ICLGoal, GlobalParams, AddressedGoal) 
% @@ verify_params(GlobalParams, global, Verified), 
complete_sources(RequestingKS, ICLGoal, GlobalParams, 

AddressedGoalWithParamsEverywhere) , 

/*\ 

%®®Here, propagate params, instantiate address request in GlobalParams. ? 
remove_empty_params(AddressedGoalWithParamsEverywhere, AddressedGoal). 

complete_sources(+RequestingKS, +ICLGoal, +GlobalParams, -AddressedGoal). 

Ensures that every subgoal is explicitly covered by one or more 
sources. Determines the largest subgoals that can be "chunked"; that 
is, grouped together for submission to a source. 

In the process, every goal acquires a Params field (wherever there was 
no Params field before, the empty list is added). This is done just 
to make the definition of complete_sources more readable. 

\*/ 

% Here we assume that the goal-writer didn't really mean to put a var, 
% because it's not meaningful to do so: 

complete_sources(KS, Sources:Goal, GlobalParams, AddressedGoal) 
var (Sources) , 

I* 

*I 

! I 

complete_sources(KS, Goal, GlobalParams, AddressedGoal). 

) . 

AddressedGoal 
Sources = A 
otherwise -> 

A: -> 

findall(A, sub_term(A: , AddressedGoal), SubSources), 
% ®®More work needed here: 
Sources SubSources 

% Here we assume that the goal-writer didn't really mean to put [], 
% because it's not meaningful to do so: 

3 

Page 148 of 778



complete_sources(KS, []:Goal, GlobalParams, AddressedGoal) 
! I 

complete_sources(KS, Goal, GlobalParams, AddressedGoal). 

% Sources and Params already specified; we're done: 
% ®®But let's verify the sources are valid! 

complete_sources(_KS, Sources:Goal: :Params, _GlobalParams, 
Sources:Goal: :Params) 

! . 

% Sources already specified; add empty Params list: 
complete_sources(_KS, Sources:Goal, _GlobalParams, Sources:Goal:: []) 

! . 

% Sure, we'll continue to support an address in Params or GlobalParams: 
complete_sources(KS, Goal: :Params, GlobalParams, AddressedGoal) 

% ®® verify_params( ... ) , 
( memberchk(address(Sources), Params) ; 

memberchk(address(Sources), GlobalParams) ) , 
\+ var(Sources), 
! I 

complete_sources(KS, Sources:Goal: :Params, GlobalParams, AddressedGoal). 

% No Sources or Params specified; add empty Params list before 
% proceeding: 

complete sources(KS, Goal, GlobalParams, AddressedGoal) 
\+ (Goal :: ) , 
! I 

complete_sources(KS, Goal::[], GlobalParams, AddressedGoal). 

% Here we get down to the real work: determining solvers and 
% chunking of subgoals: 

complete_sources(KS, (\+ Goall) ::Params, GlobalParams, AddressedGoal) 
! I 

oaa_Name(Facilitator), 
complete_sources(KS, Goall, GlobalParams, AddressedGoall), 

) . 

% If Sl is a SINGLE source, it's OK to send the negation to the source. 
% This case also works if Sl == built_in. 
(AddressedGoall = [Sl] :Gl: :Pl, 
Sl \== Facilitator, 
Sl \== facilitator) -> 
AddressedGoal Sl: ((\+ Gl): :Pl): :Params 

otherwise -> 
AddressedGoal (\+ AddressedGoall: :Params) 

complete_sources(KS, (Goall, Goal2, Goal3): :Params, GlobalParams, 
AddressedGoal) 

% This clause is needed because we want built in pred's to be grouped 
% with what comes before, not after. 
! I 

complete_sources(KS, Goall, GlobalParams, AddressedGoall), 
complete_sources(KS, Goal2, GlobalParams, AddressedGoal2), 
complete_sources(KS, Goal3, GlobalParams, AddressedGoal3), 
( (AddressedGoall Sl:Gl: :Pl, 

AddressedGoal2 = S2:G2: :P2, 

4 

Page 149 of 778



) . 

AddressedGoal3 = S3:G3: :P31 
chunkable_sources{[Sll s21 S3] I Sources) I 

compatible_params{[Pl 1 P21 P3])) -> 

AddressedGoal =Sources: {Gl: :Pl 1 G2: :P2 1 G3: :P3): :Params 
{AddressedGoall Sl:Gl: :Pl 1 
AddressedGoal2 = S2:G2: :P2 1 
AddressedGoal3 = {S3A:G3A: :P3AI Goal3B): :P31 
% Goal3B may or may not begin with Source:. icl_GoalComponents 
% deals with the precedence issues. 
icl_Goa1Components{Goal3B 1 1 G3B 1 P3B) 1 
chunkable_sources{[Sl 1 S2 1 S3A] 1 Sources) 1 
append{P3A1 P3 1 NewP3A) 1 
append{P3B 1 P3 1 NewP3B) 1 
compatible_params{[Pl 1 P2 1 NewP3A])) > 
AddressedGoal = {Sources: (Gl: :Pl 1 G2: :P2 1 G3A: :NewP3A):: [] 1 

G3B: :NewP3B) ::Params 
(AddressedGoall Sl:Gl: :Pl1 
AddressedGoal2 S2:G2: :P2 1 
chunkable_sources(Sll S21 Sources) I 

compatible_params([Pl 1 P2])) > 
AddressedGoal = (Sources: (Gl: :Pl 1 G2: :P2):: [] 1 AddressedGoal3): :Params 

(AddressedGoal2 = S2:G2: :P2 1 
AddressedGoal3 = S3:G3: :P31 
chunkable_sources{S2 1 S3 1 Sources) 1 

compatible_params{[P2 1 P3])) -> 

AddressedGoal = (AddressedGoall 1 Sources: (G2: :P2 1 G3: :P3):: []): :Params 
(AddressedGoal2 = S2:G2: :P21 
AddressedGoal3 = (S3A:G3A::P3AI Goal3B) ::P31 
icl Goa1Components(Goal3BI I G3BI P3B) I 

chu~kable_sources([S2 1 S3A]~ Sources) 1 

append(P3A1 P3 1 NewP3A) 1 
append(P3B 1 P3 1 NewP3B) 1 
compatible_params([P2 1 NewP3A])) -> 

AddressedGoal (AddressedGoall 1 Sources: (G2: :P21 G3A::NewP3A):: (]I 

otherwise -> 

AddressedGoal 

G3B:NewP3B): :Params 

(AddressedGoall 1 AddressedGoal2 1 AddressedGoal3): :Params 

complete_sources(KS 1 (Goall 1 Goal2): :Params 1 GlobalParamsl AddressedGoal) 
! I 

complete_sources(KS 1 Goall 1 Globa1Params 1 AddressedGoall) 1 

complete_sources(KS 1 Goal2, GlobalParamsl AddressedGoal2) 1 

( (AddressedGoall = Sl:Gl: :Pl, 

) . 

AddressedGoal2 S2:G2: :P2 1 

chunkable_sources(Sl 1 S2 1 Sources) 1 

compatible_params([P1 1 P2])) -> 

AddressedGoal Sources: (Gl: :Pll G2: :P2): :Params 
otherwise -> 

AddressedGoal (AddressedGoall, AddressedGoal2): :Params 

%Note: this clause must precede that for disjunction. 
complete_sources{KS 1 (Goall -> Goal2 ; Goal3): :Params 1 Globa1Params 1 

AddressedGoal) 
! I 

complete_sources(KS, Goall, GlobalParams, AddressedGoall), 
complete_sources(KS, Goal2, Globa1Params 1 AddressedGoal2), 

5 

Page 150 of 778



complete_sources(KS, Goal3, GlobalParams, AddressedGoal3), 
( (AddressedGoall Sl:Gl: :Pl, 

) . 

AddressedGoal2 = S2:G2: :P2, 
AddressedGoal3 = S3:G3: :P3, 
chunkable_sources( [Sl, S2, S3], Sources), 
compatible_params( [Pl, P2, P3))) -> 
AddressedGoal Sources: (Gl::Pl -> G2: :P2 I G3: :P3): :Params 

otherwise -> 
AddressedGoal 

(AddressedGoall -> AddressedGoal2 I AddressedGoal3): :Params 

complete_sources(KS, (Goall -> Goal2): :Params, GlobalParams, AddressedGoal) 
! I 

complete_sources(KS, Goall, GlobalParams, AddressedGoall), 
complete_sources(KS, Goal2, GlobalParams, AddressedGoal2), 
( (AddressedGoall = Sl:Gl: :Pl, 

) . 

AddressedGoal2 = S2:G2: :P2, 
chunkable_sources([Sl, S2], Sources), 
compatible_params([Pl, P2))) -> 
AddressedGoal Sources: (Gl: :Pl -> G2: :P2): :Params 

otherwise -> 
AddressedGoal 

(AddressedGoall -> AddressedGoal2): :Params 

complete_sources(KS, (Goall ; Goal2): :Params, GlobalParams, AddressedGoal) 
I . , 
complete_sources(KS, Goall, GlobalParams, AddressedGoall), 
complete_sources(KS, Goal2, GlobalParams, AddressedGoal2), 
( (AddressedGoall = Sl:Gl: :Pl, 

) . 

AddressedGoal2 = S2:G2: :P2, 
chunkable_sources(Sl, S2, Sources), 
compatible_params([Pl, P2])) -> 

AddressedGoal Sources: (Gl: :Pl; G2: :P2): :Params 
otherwise > 

AddressedGoal (AddressedGoall; AddressedGoal2): :Params 

% To be complete, we will allow for this nonstandard goal form: 
complete_sources(KS, Goal: :Paramsl: :Params2, GlobalParams, 

AddressedGoal: :Params2) 
! , 

complete_sources(KS, Goal: :Paramsl, GlobalParams, AddressedGoal). 
complete_sources(_KS, Goal: :Params, _GlobalParams, built_in:Goal: :Params) 

icl_Builtin(Goal), 
! . 
% Here, finally, we determine the agents (or parent facilitator) that 
% can solve a non-compound Goal: 

complete_sources(KS, Goal, GlobalParams, Sources:Goal) 
sources_for_goal(KS, Goal, GlobalParams, Sources). 

remove_empty_params(Addr:Goal:: [), Addr:NewGoal) 
! I 

remove_empty_params(Goal, NewGoal). 
remove_empty_params(Addr:Goal: :Params, Addr:NewGoal: :Params) 

! I 

remove_empty_params(Goal, NewGoal). 
rernove_empty_params(Goal:: [], NewGoal) 

! I 

6 

Page 151 of 778



remove_empty_params(Goal, NewGoal). 
remove_empty_params(Goal: :Params, NewGoal: :Params) 

I 
• I 

remove_empty_params(Goal, NewGoal). 
remove_empty_params(Sources:Goal, Sources:NewGoal) 

I 
• I 

remove_empty_params(Goal, NewGoal). 
remove_empty_params((\+ Goal)::[], (\+ NewGoal)) 

I 
• I 

remove_empty_params(Goal, NewGoal). 
remove_empty_params((Goall, Goal2), (NewGoall, NewGoal2)) 

I 
• I 

remove_empty_params(Goall, NewGoall), 
remove_empty_params(Goal2, NewGoal2). 

remove_empty_params((Goall ; Goal2), (NewGoall 
I 
• I 

NewGoal2)) 

remove_empty_params(Goall, NewGoall), 
remove_empty_params(Goal2, NewGoal2). 

remove_empty_params((Goall -> Goal2), (NewGoall -> NewGoal2)) 
! I 

remove_empty_params(Goall, NewGoall), 
remove_empty_params(Goal2, NewGoal2). 
% Primitive (non-compound) goal: 

remove_empty_params(Goal, Goal). 

remove_addresses(_Sources:Goal, NewGoal) 
! I 

remove_addresses(Goal, NewGoal). 
remove_addresses((Goall, Goal2), (NewGoall, NewGoal2)) 

! I 

remove_addresses(Goall, NewGoall), 
remove_addresses(Goal2, NewGoal2). 

remove_addresses((Goall ; Goal2), (NewGoall 
! ' 

NewGoal2)) 

remove_addresses(Goall, NewGoall), 
remove_addresses(Goal2, NewGoal2). 

remove_addresses((Goall -> Goal2), (NewGoall -> NewGoal2)) 
! I 

remove_addresses(Goall, NewGoall), 
remove_addresses(Goal2, NewGoal2). 
% Primitive (non-compound) goal: 

remove_addresses(Goal, Goal). 

I*\ 

chunkable_sources(+Sourcesl, +Sources2, -Sources). 

Each argument is either: a single KS name (or numeric id); a list of 
KS names (where 'facilitator' or 'parent' also count asKS 
names), or the atom 'built_in'. (Empty list is OK.) 

Sourcesl gives the sources that can solve some goal, Sources2 
gives the sources that can solve some other goal, and if this 
pred. succeeds, Sources gives a set of sources that can solve 
both together. 

NOTES ON CHUNKING: 

7 

Page 152 of 778



%1 A chunk is a sub-goal SG of a Goal such that 
(1) There is a nonempty set S of client agents each of which can solve 

the entire chunk (that is, every predicate in the chunk is either an 
icl_Builtln or one of the agent's solvables), and 

{2) Performing the subgoal as (ksl:SQ; ks2:SQ ... , ksN:SQ), where 
ks1 ... ksN are all the agents in s, does not in any way violate the 
intended semantics of the overall Goal. 

NOTE: chunking is done "conservatively", so as to preserve Prolog 
semantics. So, for example, the following Goal: 

(a(l), b(2)), 
where a and b are both solvable by ksl and ks2, will be chunked as 
follows: 

chunk(a(1), [ksl, ks2)), chunk(b(2), [ks1, ks2]) 
which amounts to no chunking at all, instead of 

chunk ( (a ( 1) , b ( 2) ) , [ks 1, ks2] ) . 

The former results in execution 
(ks1:a(1) ; ks2:a2), (ksl:b(2) ; ks2:b(2)) 

whereas the latter would result in execution 
ks1:(a(1), b(2)); ks2:(a(1), b(2)) 

We might want to explore under what conditions more extensive chunking 
can be done. 

\*I 

% This just allows for single sources, not in a list: 
chunkable_sources(Source1, Source2, Sources) 

( atomic(Source1) -> 
S1 = [Sourcel) 
otherwise -> 
S1 = Source1 

) I 

( atomic(Source2) > 
S2 = [Source2] 
otherwise > 
S2 Source2 

) I 

chunkable_srcs(S1, S2, Sources). 

chunkable_srcs(built_in, Sources, Sources) 
% at least one element: 
Sources = [_ I _l , 
! . 

chunkable srcs(Sources, built_in, Sources) 
Sourc~s = [_ I _J , 
! . 

chunkable_srcs ( [), [], [)) 
! . 

chunkable_srcs([Source], [Source], [Source)) 
! • 

chunkable_srcs([Source1], [Source2], [Source1]) 
( number(Source1), atom(Source2) 

number(Source2), atom(Source1) ), 
! I 

find_address(Sourcel, Source), 
find_address(Source2, Source). 

8 

Page 153 of 778



% chunkable sources(+Sourcesin, -SourcesOut). 
% Does the same as chunkable_sources/3, but allows for a list 
% of sources (length >= 1) as arg 1. 

chunkable sources([Sources], Sources). 
chunkable=sources([Sourcesl, Sources2 I RestSources], SourcesOut) 

chunkable sources(Sourcesl, Sources2, SourcesTemp), 
chunkable=sources( [SourcesTemp I RestSources], SourcesOut). 

% compatible_params(+ParamLists). 
% ParamLists is a list of 2 or more ParamLists. This predicate 
% succeeds IFF the ParamLists are compatible for purposes of 
% chunking. 

compatible_params(_). 

% sources_for_goal(+RequestingKS, +Goal, +Params, -Sources). 
% ®® Here, depending on how the treatment of multiple facilitators evolves, 
% we may need to revisit the default use of the facilitator. 

sources_for_goal(RequestingKS, ICLGoal, GlobalParams, Sources) 
icl_GoalComponents(ICLGoal, _, Goal, Params), 
append(Params, GlobalParams, AllParams), 
findall(SomeKS, 

choose_ks_for_goal(RequestingKS,Goal,_,AllParams,SomeKS,_), 
KSList), 

KSList = [] -> 
%®®Determine if there's a parent facilitator that can handle 
% the goal. This needs work; probably should have a local record 
% of what the parent can handle. 
find_level(AllParams, Level, _NewParams), 
( (on_exception(_, com:com_Getinfo(parent, fac_id(ParentBB)), fail), Level 

> 0) - > 

) . 

Sources = [ParentBB] 
otherwise -> 

Sources [] 

otherwise -> 

Sources = KSList 

% If Sources is bound, VERIFIES that all the Sources can be used 
% on the ICLGoal. If var(Sources), finds all the Sources that can 
% be used. 

% sources_for_compound_goal(RKS, ICLGoal, GlobalParams, Sources) 

I*\ 

complete_concurrency(+Goal, -ConcurrentGoal). 

TBD. 

\*/ 

complete_concurrency(Goal, Goal). 

9 

Page 154 of 778



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% GOAL EXECUTION: TOP LEVEL 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

/*\ 
execute_goal{+RequestingKS, +OrigGoal, +OrigParams, +CompleteGoal). 

origGoal are origParams are exactly as submitted by some client agent 
{RequestingKS) . CompleteGoal is the rewriting of OrigGoal that 
ensures complete addressing. OrigGoal and ICLGoal contain precisely 
the same var's. 

See global comments near the top of this file. 

Note: the meaning of variable "Goal" and other variables ending in 
"Goal" varies with context. In some places they indicate an ICL 
goal Source:Goal: :Params {where Source and Params are both optional); 
in other places, they indicate just the Goal part of an ICL goal. 

\*/ 

execute_goal{RKS, OrigGoal, OrigParams, ICLGoal) 

/*\ 

% Here, ICLGoal may or may not include a Sources component. Either 
%way, it gets handled by execute/?. 
%@@What if OrigGoal's Params or GlobalParams has vars? 
% We remove addresses before calling term_vars only so as to avoid 
% a syntax error exception that comes up when ICLGoal = Addr:\+Goal 
remove addresses(ICLGoal, TempGoal), 
term_v~rs(TempGoal, AllVars, _Singletons, _NonSingletons), 
new_goal_id(Id), · 
% This means simply, "When the Solvers and solutions (in the form of 
% Bindings for AllVars) are known for Goal, call 
% unify_and_return_solutions( ... ) ." 
assert(continuation(Id, Requestees, Solvers, Bindings, 

unify_and_return_solutions(Id,RKS,OrigGoal,OrigParams,AllVars, 
Requestees,Solvers,Bindings))), 

% This means: Find the Solvers and solutions: 
execute(Id, RKS, [], [], ICLGoal, OrigParams, AllVars). 

* execute(Id, RKS, Requestees, Solvers, Goal, InheritedParams, Vars). 

execute/? satisfies the ICL goal Goal. Id is an integer that 
identifies a continuation assertion. When the satisfaction of Goal 
has been completed, the continuation assertion tells what to do next. 
The satisfaction of Goal may be very simple, or may involve a number 
of steps, depending on the form of Goal. 

Requestees is a list of source id's of all sources asked to 
participate in the satisfaction of whatever request contained Goal, 
and Solvers is a list of source id's of sources that succeeded in 
satisfying some part of the request (so Solvers is a subset of 
Requestees. These lists are being accumulated for return to the agent 
that submitted the request. 

Conceptually, execute/? does this: 

10 

Page 155 of 778



findall{Vars, Goal, Bindings), 
append{Requestees, <list of KSs called on in the findall>, NewRequestees), 
append(Solvers, <list of KSs providing solutions in the findall>, 

NewSolvers), 
continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings) 

The behavior of continue_execution, then, depends on a continuation/5 
assertion, with Id as the first arg. 

The important details have to do with how the satisfaction of the 
"findall" part of this strategy may be delayed. 

* 
\*/ 

execute(Id, RKS, Requestees, Solvers, built_in:ICLGoal, InheritedParams, Vars) 

% This handles ICL built-ins, such as <, >, =, member/2, true, false, ... 
! I 

icl_GoalComponents(ICLGoal, _, Goal, Params), 
append(Params, InheritedParams, AllParams), 
oaa_Name(Facilitator), 
add_element(Facilitator, Requestees, NewRequestees), 
% If the requestor wants to know the solver, bind it here: 
( memberchk(get_address(Facilitator), Params) ->true I true), 

) I 

oaa:passes_tests(Params) > 
% @@The use of solution limit and elsewhere here needs a close look: 
( memberchk(solution_li~it(N), AllParams) > 

oaa:findNSolutions(N, Vars, call(Goal), Bindings) 
otherwise -> 

findall(Vars, call(Goal), Bindings) 

otherwise > 
Bindings [] 

( Bindings == [] > 
NewSolvers = Solvers 

otherwise -> 
add_element(Facilitator, Solvers, NewSolvers) 

) I 

( memberchk(reply(none), AllParams) -> 

) . 

continue_execution(Id, RKS, NewRequestees, NewSolvers, [Vars]) 
otherwise > 

continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings) 

% Empty list of sources: 
execute(Id, RKS, Requestees, Solvers, [] :ICLGoal, _InheritedParams, _Vars) 

format('WARNING: No solvers for ICL goal or subgoal:-n -q-n', 
ICLGoal), 

continue_execution(Id, RKS, Requestees, Solvers, []). 

% Single KS in a list: 
execute(Id, RKS, Requestees, Solvers, [KS] :G, Params, Vars) 

! I 

11 

Page 156 of 778



execute(Id, RKS, Requestees, Solvers, KS:G, Params, Vars). 

% Multiple KSs in a list: 
execute(Id, RKS, Requestees, Solvers, [KS I Rest] :G, Params, Vars) 

I 
• I 

execute_for_each_ks(Id, RKS, Requestees, Solvers, G, Params, 
Vars, [KS I Rest] ) . 

% Solver is facilitator (me) : 
execute(Id, RKS, Requestees, Solvers, Source:ICLGoal, InheritedParams, Vars) 

oaa_Name(Facilitator), 
(Source = facilitator ; Source = Facilitator) , 
I 
• I 

icl_GoalComponents(ICLGoal, _, Goal, Params), 
% If the requestor wants to know the solver, bind it here: 
( memberchk(get_address(Facilitator), Params) ->true I true), 
append(Params, InheritedParams, AllParams), 
findall(Vars, 

oaa:oaa_solve_local(Goal, InheritedParams), 
Bindings), 

memberchk(reply(none), AllParams) -> 
true 

otherwise -> 
oaa_Name(KSName), 
add element(KSName, Requestees, NewRequestees), 
( Bindings == [] > 

) I 

NewSolvers Solvers 
otherwise > 

add_element(KSName, Solvers, NewSolvers) 

continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings) 
) . 

%Note: this code was inherited from pre-compound-query facilitator. 
% One significant change: when a goal is sent to a parent, we used to 
% automatically include local blackboard solutions also. We don't 
% do this anymore. 
% 
% ®® Strategy should be re-evaluated at some point. For instance, 
% the use of var P2 might now cause things to break (the requesting 
% agent might try to unify its copy of Params with P2). 

execute(Id, RKS, Requestees, Solvers, Sources:ICLGoal, InheritedParams, Vars) 
on_exception(_, com:com_Getinfo(parent, fac_id(ParentBB)), fail), 
(Sources== parent ; Sources== ParentBB), 
! I 

icl_GoalComponents(ICLGoal, _Goal, Params), 
% If the requestor wants to know the solver, bind it here: 
% NO - it gets bound by the parent facilitator. 
% ( memberchk(get_address(ParentBB), Params) ->true I true), 

append(Params, InheritedParams, AllParams), 
%We don't need to check the level here (that's already been done), 
% but we do need to decrement its value by 1: 
find_level(AllParams, _Level, NewParams), 
oaa_TraceMsg('-nRouting goal "solve(-p)" to parent -p.-n', 

12 

Page 157 of 778



[ICLGoal, ParentBB]), 
new_goal_id(Newid), 
oaa_PostEvent(ev_post_solve_from_bb(Newid, ICLGoal, NewParams), · 

[address(ParentBB)]), 

) . 

memberchk(reply(none), NewParams) > 
unify_and_continue_execution(Id, RKS, ICLGoal, Vars, 

ParentBB, Requestees, Solvers, [ICLGoal]) 
otherwise -> 
% @@Shouldn't there be a time-check here? 
oaa:oaa_add_trigger_local( 

comm, 
event(ev_reply_solved_by_bb(Newid, KS, ICLGoal, _P2, 

Solutions), 
) I 

ev_unify_and_continue_execution(Id, RKS, ICLGoal, Vars, 
ParentBB, Requestees, Solvers, Solutions), 

[recurrence(when), on(receive)]) 

% Send the goal to an agent: 
execute(Id, RKS, Requestees, Solvers, KS:ICLGoal, InheritedParams, Vars) 

! , 
icl_GoalComponents(ICLGoal, _, Goal, Params), 
append(Params, InheritedParams, AllParams), 
%@®What if the KS' status has changed since it was specified? 
% find_address allows for KS to be either numeric or symbolic. 
find_address(KS, KSid), 
% If the requestor wants to know the solver, bind it here: 
( memberchk(get_address(KSid), Params) ->true I true), 
% Could do another check of the agent's validity: 
% ks_ready(KSid, _), 

% relevant_vars(Vars, Goal, GVars), 
% OptimizedG = findall(GVars, Goal, All), 

% Output trace message: 
( oaa:oaa_trace(on) -> 

) , 

copy_term(ICLGoal, TraceCopy), 
numbervars(Tracecopy, 0, _), 

copy_term(InheritedParams, ParamsCopy), 
numbervars(ParamsCopy, 0, _), 
oaa_TraceMsg( 

'%Routing goal to -w:-n% -w -w-n-n', 
[KS, TraceCopy, Paramscopy]) 

otherwise -> 
true 

new_goal_id(Newid), 
% oaa_PostEvent(KS, RKS, solve(Newid, OptimizedG: :Params, [])), 

oaa_PostEvent(ev_solve(Newid, ICLGoal, InheritedParams), 
[from(RKS), address(KSid)]), 

memberchk(reply(none), AllParams) > 
unify_and_continue_execution(Id, RKS, ICLGoal, vars, 

KSid, Requestees, Solvers, [ICLGoal]) 
% If time_limit specified in parameters, setup 

13 

Page 158 of 778



% time_trigger to wakeup if solutions hasn't been returned 
% in specified time. 

otherwise -> 
( memberchk(time_limit(NSecs), AllParams) -> 

add_time_check(NSecs, Newid, RKS, Goal,AllParams) 
true) , 

oaa:oaa_add_trigger_local( 
comm, 
event(ev_solved(Newid, _KS, ICLGoal, P2, Solutions), _), 
ev_unify_and_continue_execution(Id, RKS, ICLGoal, Vars, 

KSid, Requestees, Solvers, Solutions), 
[recurrence(when), on(receive)]) 

% poll_until_all_events([solved(Id, _KS, OptimizedG, P2, Solutions)]), 
% Solutions= [findall(GVars, Goal, All)), 
% respond query(Id, RKS, Solvers, KS, Goal, P2, Solutions) 

% Backtrack over solutions: 
% member(GVars, All). 

) . 

% Negation: 
execute(Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars) 

icl_GoalComponents(ICLGoal, _, (\+ Gl), Params), 
I . ' 
append(Params, InheritedParams, NewiParams), 
new_goal_id(Newid), 
assert( 

continuation(Newid, NewRequestees, NewSolvers, Bindings, 
continue_negation(Id, RKS, NewRequestees, NewSolvers, NewiParams, 

Vars, Bindings))), 
execute(Newid, RKS, Requestees, Solvers, Gl, NewiParams, Vars). 

% Conjunction: 
execute(Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars) 

icl_GoalComponents(ICLGoal, _, (Gl, G2), Params), 

! ' 
append(Params, InheritedParams, NewiParams), 
new_goal_id(Newid), 
assert( 

continuation(Newid, NewRequestees, NewSolvers, Bindings, 
continue_conjunction(Id, RKS, NewRequestees, NewSolvers, G2, 

NewiParams, 
Vars, Bindings))), 

execute(Newid, RKS, Requestees, Solvers, Gl, NewiParams, Vars). 

% Local cut with alternative. Note: this clause must precede 
% that for disjunction. 

execute(Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars) 
icl_GoalComponents(ICLGoal, _, (Gl -> G2 I G3), Params), 
! I 

append(Params, InheritedParams, NewiParams), 
new_goal_id(Newid), 
assert( 

continuation(Newid, NewRequestees, NewSolvers, Bindings, 
continue_local_cut(Id, RKS, NewRequestees, NewSolvers, G2, G3, 

NewiParams, 
Vars, Bindings))), 

execute(Newid, RKS, Requestees, Solvers, Gl, NewiParams, Vars). 

14 

Page 159 of 778



% Local cut: 
execute(Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars) 

icl_GoalComponents(ICLGoal, _, (Gl -> G2), Params), 
! I 

append(Params, InheritedParams, NewiParams), 
new_goal_id(Newid), 
assert ( 

continuation(Newid, NewRequestees, NewSolvers, Bindings, 
continue_local_cut(Id, RKS, NewRequestees, NewSolvers, G2, false, 

NewiParams, 
Vars, Bindings))), 

execute(Newid, RKS, Requestees, Solvers, Gl, NewiParams, Vars). 

% Disjunction: 
execute(Id, RKS, Requestees, Solvers, ICLGoal, · InheritedParams, Vars) 

icl_GoalComponents(ICLGoal, _, (Gl; G2), Params), 
! I 

append(Params, InheritedParams, NewiParams), 
new_goal_id(Idl), 
new_goal_id(Id2), 
assert ( 

multiple_continuation([Idl, Id2), Requestees, AllRequestees, 
Solvers, AllSolvers, 
[ 1 , All Bindings, 

continue_execution(Id, RKS, AllRequestees, AllSolvers, AllBindings))), 
execute(Idl, RKS, Requestees, Solvers, Gl, NewiParams, Vars), 
execute(Id2, RKS, Requestees, Solvers, G2, NewiParams, Vars). 

% Occasionally, a goal may have the form G: :P (that is, no 
% address, and P is not compound), but it is still valid, so 
% long as G is valid. 
% 
%Ex.: ([7):al(l)::[ ... ))::[ ... ) 

execute(Id, RKS, Requestees, Solvers, Goal: :Params, InheritedParams, Vars) 
! I 

append(Params, InheritedParams, NewiParams), 
execute(Id, RKS, Requestees, Solvers, Goal, NewiParams, vars). 

execute(Id, RKS, Requestees, Solvers, G, Params, Vars) 
format('WARNING (execute/?): unrecognized goal-form:-n 
continue_execution(Id, RKS, Requestees, Solvers, [)). 

-w-n' , [G) ) , 

execute_for_each_ks(Id, RKS, Requestees, Solvers, Goal, Params, Vars, KSs) 
length(KSs, NumKSs), 
new_goal_ids(NumKSs, Ids), 
assert ( 

multiple_continuation(Ids, Requestees, AllRequestees, Solvers, 
AllSolvers, [], AllBindings, 

continue_execution(Id, RKS, AllRequestees, AllSolvers, AllBindings))), 
exec_for_each_ks(NumKSs, Ids, KSs, RKS, Requestees, Solvers, Goal, 

Params, Vars) . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% GOAL EXECUTION: INTERMEDIATE STEPS 
% The predicates in this group define intermediate steps in the satisfaction 
%of various ICL goal forms. 

15 

Page 160 of 778



% 
% Note: intermediate steps in handling of DISJUNCTION are handled by 
% continue_execution, using the multiple_continuation assertion. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%This is used in satisfying [KSl, KS2, ... ] :Goal. Note that this is 
%equivalent to a disjunction (KSl:Goal ; KS2:Goal ; .... ) . So we 
% are able to use the multiple_continuation assertion to accumulate 
% the solutions. 
% 
% We don't need Solvers, because ... 

exec for_each_ks(NumKSs, Ids, KSs, RKS, _Requestees, _Solvers, 
Goal, Params, Vars) 

retractall( ks_num(_) ) , 
assert( ks_num(l) ), 
repeat, 
ks_num (Num), 
( Num > NumKSs -> 

otherwise -> 
nthl(Num, KSs, KS), 
nthl(Num, Ids, Id), 
% We use a local cut to prevent some (harmless) backtracking. 
% This is one place where we don't need to pass Requestees and 

) . 

% Solvers through to execute (3rd and 4th args), because they are 
% filled in by handle_multiple_continuation. 

execute(Id, RKS, [], [], KS:Goal, Params, Vars) ->true ) , 
NextNum is Num + 1, 
retractall( ks_num(_) ) , 
assert( ks_num(NextNum) ) , 
fail 

% This is used in satisfying (\+ Goal) . When this 
% pred. is called, Goal has just been completed. Bindings gives 
% the solutions to Goal. 

continue_negation(Id, RKS, Requestees, Solvers, _Params, Vars, []) 
! I 

continue_execution(Id, RKS, Requestees, Solvers, [Vars]). 
continue_negation(Id, RKS, Requestees, Solvers, _Params, _Vars, _Bindings) 

continue_execution(Id, RKS, Requestees, Solvers, []). 

% This is used in satisfying (Goall, Goal2). When this 
% pred. is called, Goall has just been completed. Bindings gives 
% the solutions to Goall. 

continue_conjunction(Id, RKS, Requestees, Solvers, _Goal2, _Params, _vars, [)) 

I 
• I 

continue_execution(Id, RKS, Requestees, Solvers, []). 
continue_conjunction(Id, RKS, Requestees, Solvers, Goal2, Params, Vars, 
Bindings) 

length(Bindings, NumBindings), 
new_goal_ids(NumBindings, Ids), 

16 

Page 161 of 778



assert ( 
multiple_continuation(Ids, Requestees, AllRequestees, Solvers, 

AllSolvers, [], AllBindings, 
continue_execution(Id, RKS, AllRequestees, AllSolvers, AllBindings))), 

exec_for_each_binding(NumBindings, Ids, Bindings, RKS, Requestees, Solvers, 
Goal2, 

Params, Vars). 

% We don't need Requestees or Solvers, because they are filled in 
% by handle_multiple_continuation. 

exec_for_each_binding(NumBindings, Ids, Bindings, RKS, _Requestees, _Solvers, 
Goal, Params, Vars) 

retractall( binding_num(_) ) , 
assert( binding_num(l) ), 
repeat, 
binding_num(Num), 
( Num > NumBindings -> 

) . 

otherwise -> 
nthl(Num, Bindings, Binding), 
nthl(Num, Ids, Id), 
Vars = Binding, 
% We use a local cut to prevent some (harmless) backtracking. 
% This is one place where we don't need to pass Solvers through 
% to execute (3rd arg) : 
( execute(Id, RKS, [], [], Goal, Params, Binding) -> true ) , 
NextNum is Num + 1, 
retractall( binding_num(_) ) , 
assert( binding_num(NextNum) ) , 
fail 

%This is used in satisfying Goall -> Goal2 I Goal3. When this 
% pred. is called, Goall has just been completed. Bindings gives 
% the solutions to Goall. 

% No solutions to Goall: 
continue_local_cut(Id, RKS, Requestees, Solvers, _Goal2, Goal3, Params, 

Vars, []) 
! I 

) . 

Goal3 false -> 
continue_execution(Id, RKS, Requestees, Solvers, []) 

otherwise -> 

execute(Id, RKS, Requestees, Solvers, Goal3, Params, Vars) 

% Some solutions: 
continue_local_cut(Id, RKS, Requestees, Solvers, Goal2, _Goal3, Params, 

Vars, [Bindingl I_]) 

) . 

new_goal_id(Newid), 
assert ( 

continuation(Newid, NewRequestees, NewSolvers, Bindings, 
continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings))), 

Vars = Bindingl, 
% local cut to prevent some (harmless) backtracking: 
( execute(Newid, RKS, Requestees, Solvers, Goal2, Params, Bindingl) ->true 

17 

Page 162 of 778



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% GOAL EXECUTION: COMPLETION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This is called when the goal associated with Id has been completely 
% satisfied. 

continue execution(Id, RKS, Requestees, Solvers, Bindings) 
%Here we are BINDING the Solvers and Bindings var's. in the 
% continuation assertion. The var. also appears in Continuation: 
retract(continuation(Id, Requestees, Solvers, Bindings, Continuation)) > 

call(Continuation) 
multiple_continuation(Ids, _, _, ) , 
memberchk(Id, Ids) -> 
handle_multiple_continuation(Id, Requestees, Solvers, Bindings, Ids) 
otherwise -> 
format('Internal Error: no continuation with id -w-n', [Id]) 

) . 

handle_multiple_continuation(Id, Requestees, Solvers, Bindings, Ids) 
retract(multiple_continuation(Ids, PrevRequestees, 

AllRequestees, PrevSolvers, AllSolvers, 
PrevBindings, AllBindings, 
Continuation)), 

del_element(Id, Ids, Newids), 
append(PrevBindings, Bindings, NewBindings), 
append(PrevRequestees, Requestees, NewRequestees), 
append(PrevSolvers, Solvers, NewSolvers), 
( Newids = [] -> 

) . 

AllBindings = NewBindings, 
AllRequestees = NewRequestees, 
AllSolvers NewSolvers, 
call(Continuation) 
otherwise -> 
assert(multiple_continuation(Newids, NewRequestees, AllRequestees, 

NewSolvers, AllSolvers, 
NewBindings, AllBindings, 
Continuation)) 

%®®Let's see, if these args included the vars for any 
% nested solvers params, we could probably instantiate solvers 
% params in Goal ... 

unify_and_continue_execution(Id, RKS, Goal, Vars, Requestee, Requestees, 
Solvers, Solutions) 

add_element(Requestee, Requestees, NewRequestees), 
( Solutions == [] -> 

NewSolvers = Solvers 
otherwise > 

add_element(Requestee, Solvers, NewSolvers) 
) , 
findall(Vars, 

member(Goal, Solutions), 
Bindings), 

continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings). 

18 

Page 163 of 778



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% GENERAL UTILITIES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

term_vars(Term, AllVars, Singletonvars, NonSingletonVars) 
with output to chars(portray clause(Term), Chars), 
with=input_fro~_chars( -

read_term( [variable_names(Names), singletons(Singletons)], 
Terml), 

Chars), 
extract_vars(Names, Singletons, AllVars, SingletonVars, NonSingletonVars), 
Term Terml. 

extract vars ( [], Singletons, [), [] , []) . 
extract=vars([Name = Var I RestNames], Singletons, [Var I RestVars], 

[Var I RestSV] , NonSingletonVars) 
mernberchk(Name = Var, Singletons), 
! I 

extract vars(RestNames, Singletons, RestVars, RestSV, NonSingletonVars). 
extract_var;([_Name = Var I RestNames], Singletons, [Var I RestVars], 

RestSV, [Var I NonSingletonVars]) :-
extract_vars(RestNames, Singletons, Restvars, RestSV, NonSingletonVars). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DEBUGGING UTILITIES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% static_test :-
% Class = root, 
% KSName = dontcare, 
% BBName = dontcare, 
% oaa_read_setup_file, 
% oaa_init_flags, 
% assert(oaa class(Class)), 
% oaa_SetupC~mmunication(Class, KSName, BBName, []), 
% on_exception(_, oaa_Appinit, true), 
% oaa_Ready(true). 
% 
%connect :-
% % go(leaf, shell, root). 
% static test. 
% 
% ce 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% ce 

repeat, 
oaa_GetEvent(CallingKS, Event, 0), 
( Event = timeout -> 
I 
• I 

format( 1 No events-n•, [)) 
I otherwise > 

oaa_process_event(CallingKS, Event), 
fail 
) . 

% format ( 1 No events-n 1 , []) • 

% 

19 

Page 164 of 778



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% OrigGoal must be used in the return event, so that the 
% requesting KS will identify it correctly. 

unify_and_return_solutions(Id,RKS,OrigGoal,OrigParams,Vars,Requestees,Solvers,Bi 
ndings) :-

findall(OrigGoal, 
member(Vars, Bindings), 
Solutions), 

oaa_TraceMsg('-nRouting answers back to -p:-n -p-n', 
[RKS,Solutions)), 

cancel_time_check(Id), 
remove_dups(Requestees, RequesteesSet), 
remove_dups(Solvers, SolversSet), 
% If present, bind solvers request in OrigParams: 
( memberchk(get address(Requesteesset), OrigParams) ->true I true), 
( memberchk(get=satisfiers(SolversSet), OrigParams) >true I true ) , 
oaa_PostEvent(ev_reply_solved(RequesteesSet, SolversSet, OrigGoal, 

OrigParams, Solutions), 
[address(RKS)]). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

20 

Page 165 of 778



APPENDIX A.II 

Source code file named fac.pl. 

Page 166 of 778



%***************************************************************************** 
% File : fac.pl 
% Primary Authors : Adam Cheyer, David Martin 
% Purpose Provides communications and coordination of the activities 
% of a dynamic collection of client agents. 
% Updated 12/98 
% 
% 
% 
% 
% 

Unpublished-rights reserved under the copyright laws of the United States. 

% Unpublished Copyright (c) 1998, SRI International. 
% "Open Agent Architecture" and "OAA" are Trademarks of SRI International. 

% - --------------------------------
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% fac.pl : the facilitator agent Adam Cheyer 
% 
% 

David Martin 

% Provides communications and coordination of the activities of a 
% dynamic collection of client agents. 
% 
% The blackboard can respond to the following external requests: 
% 
% ev_post_event(AgentiD, Cmd) : sends event to the agent 
% ev_post_event(Cmd) : sends event to all 
% ev_post_declare(Mode, Solvables, Params) 
% : adds, removes or replaces solvables ON 
% : .the facilitator 
% ev_post_update(Mode, Clause, Params) 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

: adds, removes, or replaces data 
on appropriate agents 

ev_post_trigger_update(Mode,TriggerType,Condition,Action,Params) 
: adds or removes a trigger 

on appropriate agents 
ev_post_solve(Goal, Params): finds agent(s) to solve Goal 
connected(Connection) records that a client agent has connected 

ev_connect(Agentinfo) 

end_of_file(Connection) 

: additional information from a client 
: agent (having version> 3.0) 
records that a client has closed its 

connection 
ev_register_solvables : records the goals that an agent can solve. 

%A facilitator uses the following events internally as trigger actions: 
% 
% 
% 
% 
% 

ev_respond_query(Id,ToKS,ByKS,G,OrigParams,Params,S) 
: Sends the result of a query back to KS 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

use_module(library(lists)). 
use_module(library(basics)). 
use_module(library(strings}). 
use_module(library(charsio}). 

1 

Page 167 of 778



use_module(library(sets)). 
use module(library(samsort)). %for samsort(Ordered,Raw,Sort) 
use=module(library(tcp), [tcp_now/1, tcp_time_plus/3, 

tcp_schedule_wakeup/2, tcp_cancel_wakeup/2]). 

% The file containing the com module is normally specified here. For 
%more info, see comments near the top of oaa.pl. 

use_module(com_tcp, all). 
use_module(oaa, all). 

% Whether or not to load translations and compound query code 
% is determined right here: 
% :- [compound]. 

[translations] . 

multifile oaa_AppDoEvent/2. 

dynamic time limit trigger/5. 
dynamic goal=count/10. 

% time_limit_trigger(Id,When,KS,Goal,Params) 
% goal_count(Goalid,Goal,Params,EvParams, 

% ToBeCalled,Called,Responders,Solvers, 
% Answers,NumAnswers) 

dynamic update_count/4. 
% 

% update_count(Goalid,NumAgentsRequested, 
KSs, Updaters) 

initial_solvables([ 
solvable(agent_data(_Id, _Status, _Solvables, Name), [type(data)], 

[write(true)]), 
% Locations of all facilitators (currently maintained only by the 'root' 
% facilitator: 

solvable(agent_location(_Id2, _Name2, _Host2, _Port2), 

% Host (if known) of each client agent: 

[type (data)] , 
[write (true)]), 

solvable(agent_host(_Id3, _Name3, _Host3), [type(data)], [write(true)]), 
agent_version(_Id1, _Language1, _Versionl), 
can solve( Goal4, IdList4), 

%-For backwards-compatibility. In translations.pl, some events 
% (write_bb, etc.) specify updates to this solvable. Also, old-style 
% data triggers refer to it: 

solvable (data ( Item, _Data) , [type (data)], [write (true)]) 
l ) . 

/* Agent specific declarations */ 

oaa_Appinit :
oaa_SetTimeout(O). 

I* This is the event generated by the TCP library. Will be followed 
immediately by ev connect/4, which is constructed by the client agent */ 

oaa_AppDoEvent(connected(Connection), 
! , 

format('-nKnowledge source connected: -p-n-n', [Connection]), 
Id = Connection, 
oaa:oaa_add_data_local(agent_data(Id, open, [], Id), []), 
%% Maintain information of currently connected data. 
add_connected(Id, Connection). 

2 

Page 168 of 778



/* For now, the ID of a client agent is the same as its connection (socket) . 
This could change in the future, so we store Id and Connection 
as two separate entities. */ 

oaa_AppDoEvent(ev_connect(AgentinfoList), Params) 
memberchk( connection_id(Id), Params), 

oaa_Name(MyName), 
oaa_Id {Myid), 
MyLanguage = prolog, 
oaa_LibraryVersion{MyVersion), 

update_connected{Id, AgentinfoList), 

% preferred TCP transfer mechanism 
MyFormat = quintus_binary, 

% Inform the client of his Id, and info about me. 
com_SendData{Id, 
event{ev_connected{(oaa_id(Id), fac_id{Myid), fac_name{MyName), 

fac_lang(MyLanguage), fac_version(MyVersion), 
format(MyFormat)]), 

[] ) ) . 

/* Removes meta-data for KS when the KS deconnects */ 
oaa_AppDoEvent(end_of_file(Connection), ) 

Id = Connection, 
remove_connected(Id), 
oaa:oaa_remove_data_local{agent_data(Id, _Status, _Solvable, AgentName), 

( l ) I 

format('-nKnowledge source disconnected: -p {-p)-n-n', (Id,AgentName]), 
% remove all facts written by the agent 

% TBD: Is this getting all relevant triggers (see commented code below)? 
oaa:oaa_remove_data_owned_by(Id), 

% Do we really want to do this? I think clients who are interested could 
% register a trigger on the agent_data predicate. 
% Rather, I think we should check to see if any agents are currently waiting 
% for this agent to solve some goal -- if the agent disconnects, we can assume 
% that it won't be solving the goal anytime soon, and we should send back 
% failure to the requesting agent. See OAA 1.0 Facilitator, end_of_file() 
% method. (AJC, 11/24/97] 

post_to_all_clients(ev_agent_disconnected{Id)). 

% fail. 
% TBD: This needs update to look at the persistence param. 
% oaa_AppDoEvent(end_of_file(KS), _) 
% % remove all triggers for KS 
% on_exception(_, trigger(KS, Type, Kind, OpMask, Template, Cond, Action), 
fail), 
% retract{trigger(KS, Type, Kind, OpMask, Template, Cond, Action)), 
% fail. 
% oaa_AppDoEvent(end_of_file(_KS), _) :- !. 

oaa_AppDoEvent(ev_ready(Name), Params) 
memberchk{from(Id), Params), 

% TBD: Let's have an error message if this fails: 
oaa:oaa_remove_data_local(agent_data(Id, _OldStatus, Solvables, _Name), 

Params), 

3 

Page 169 of 778



oaa:oaa_add_data_local{agent_data{Id, ready, Solvables, Name), Params). 

/* Stores the goals that a KS knows how to solve */ 
% Is this obsolete? 
oaa_AppDoEvent{ev_register_solvables{Goals), Params) 

memberchk{from{KS), Params), 
oaa_AppDoEvent{ev_register_solvables(add,Goals,KS, [)), Params), ! . 

% IMPORTANT: We assume the Solvables are in standard form and can 
% legally be added/removed/replaced for this agent. Also, we take 
% care to keep the facilitator's copy of each client's solvables 
% identical to that stored at the client. {Compare to code in 
% liboaa.pl, pred. oaa_declare_local). 

oaa_AppDoEvent{ev_register_solvables{Mode,Solvs,AgentName,EvParams), Params) 
memberchk{from{KS), Params), 

oaa_Name{KSName), 
(oaa:oaa_remove_data_local(agent_data{KS, Status, List, _AgentName), 

Params) 

format{'STRANGE! register_solvables called by unknown KS!!!: -p-n', 
[KS]), 

Status ready, 
List = [) 

) , 
icl_ConvertSolvables(PrettySolvs, Solvs), 
(Mode== add, memberchk(if_exists{overwrite), EvParams) -> 

NewList = Solvs, 

-p-n-n', 

) , 

format('-p (-p) can solve: -n -p-n-n', [KS, AgentName, 
PrettySolvs]) 

Mode == add > 
append(List, Solvs, NewList), 
format('-p (-p) has added solvables: -n -p-n-n', 

[KS, AgentName, PrettySolvs]) 
Mode == remove -> 

subtract(List, Solvs, NewList), 
format{'-p (-p) has removed solvables: -n -p-n-n', 

[KS, AgentName, PrettySolvs]) 
Mode == replace -> 

memberchk(with(NewSolvable), EvParams), 
Solvs = [Solvable], 
oaa:replace_element(Solvable, List, NewSolvable, NewList), 
format('-p (-p) has replaced solvable:-n -p-nwith solvable:-n 

[KS, AgentName, Solvable, NewSolvable]) 

oaa:oaa_add_data_local(agent_data(KS, Status, NewList, AgentName), 
Params), 

% if a parent exists (not root) , pass goals upward. 
(com:com_Getinfo(parent, connection(_C)) -> 

! • 

oaa_PostEvent( ev_register_solvables(Mode,Solvs,EvParams,KSName), 
[address(parent))) 

true), 

4 

Page 170 of 778



I* A client has requested that I declare certain solvables. 
TBD: This is still sketchy; should include some validation of the 
request, and should ensure the perms and params are right. */ 

oaa_AppDoEvent(ev_post_declare(Mode, Solvables, Params), EvParams) 
memberchk(from(RequestingKS), EvParams), 
oaa:oaa_declare_local{Mode, Solvables, Params, NewSolvables), 
icl_ConvertSolvables(PrettySolvs, NewSolvables), 
oaa_Id(Myid), 
oaa_Name(MyName), 
format('-p {-p) has added solvables: -n -p-n-n', 

[Myi~, MyName, PrettySolvs]), 
oaa_PostEvent( 

ev_reply_declared{Mode, Solvables,Params, Newsolvables), 
[address{RequestingKS)]). 

% A client requests a data solvable update operation {add, remove, replace) 
% on the .appropriate agents. 
oaa_AppDoEvent(ev_post_update{Mode, Clause, Params), EvParams) 

( Clause = (Head _Body) -> 

) I 

true 
otherwise -> 

Head = Clause 

memberchk{from{RequestingKS), EvParams), 
% see if the query is addressed using address{KS) in Params 
check_address(Params, AddrKS), 
choose_agents_for_data{RequestingKS,Head,AddrKS,write,false,KSList), 
dispatch_update_request{RequestingKS, Mode, Clause, Params, KSList). 

% A client requests a trigger update operation {Mode = add, remove, replace) 
%on the appropriate agents. For triggers of type comm' and time', the 
% address parameter must be present {otherwise, the request should not 
% have come to the facilitator). For the other types, the address is 
% optional. 

oaa_AppDoEvent(ev_post_trigger_update{Mode, data, Condition, 
Action, Params) , EvParams) 

! I 

memberchk{from{RequestingKS), EvParams), 
% see if the query is addressed using address(KS) in Params 
check_address{Params, AddrKS), 
choose_agents_for_data(RequestingKS,Condition,AddrKS,call,false,KSList), 
append(Params, EvParams, AllParams), 
dispatch_trigger_request(RequestingKS, Mode, data, Condition, Action, 

AllParams, KSList). 
oaa_AppDoEvent(ev_post_trigger_update(Mode, task, Condition, 

Action, Params), EvParams) 
I 
• I 

memberchk(from(RequestingKS), EvParams), 
% see if the query is addressed using address{KS) in Params 
check_address(Params, AddrKS), 
choose_agents_for_goal(RequestingKS,Condition,AddrKS,Params,false,KSList), 
append{Params, EvParams, AllParams), 
dispatch_trigger_request{RequestingKS, Mode, task, Condition, Action, 

AllParams, KSList). 

oaa_AppDoEvent(ev_post_trigger_update(Mode, Type, Condition, 

5 

Page 171 of 778



Action, Params) , EvParams) 
memberchk(from(RequestingKS), EvParams), 
check_address(Params, KSList), 
is_list (KSList) , 
append(Params, EvParams, AllParams), 
dispatch_trigger_request(RequestingKS, Mode, Type, Condition, Action, 

AllParams, KSList). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% TBD: New for compound goals: 

% If satisfaction of a compound goal is requested, and the compound query 
% interpreter is not included, signal error condition: 
oaa_AppDoEvent(ev_post_solve(Goal, Params), EvParams) 

\+ current_predicate(complete_goal, complete_goal(_,_,_,_)), 
\+ icl_BasicGoal(Goal), 
I 
• I 

format('ERROR: This facilitator does not support compound goals-n', []), 
format(' Returning 0 solutions for goal:-n -w-n•, [Goal]), 
oaa_Id(Facilitator), 
memberchk(from(RequestingKS), EvParams), 
oaa_PostEvent( 

ev_reply_solved([Facilitator], [] ,Goal,Params, []), 
[address(RequestingKS)]). 

% If compound goal capabilities are included, ALL ev_post_solve events are 
% handled here. Otherwise, they fall through to later clauses. 
oaa_AppDoEvent(ev_post_solve(Goal, Params), EvParams) 

current_predicate(complete_goal, complete_goal(_,_,_,_)), 
! I 

memberchk(from(RequestingKS), EvParams), 
complete_goal(RequestingKS, Goal, Params, CompletedGoal), 
execute_goal(RequestingKS, Goal, Params, CompletedGoal). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

/* Finds all KSs for a goal, asks them to solve it, then returns */ 
/* the answers to the calling KS */ 
oaa_AppDoEvent(ev_post_solve(Goal, Params), EvParams) 

memberchk(from(RequestingKS), EvParams), 
%see if the query is addressed using address(KS) in Params 
check_address(Params, AddrKS), 

choose_agents_for_goal(RequestingKS,Goal,AddrKS,Params,true,KSList), 

% if none of my agents know how to solve goal, send to parent 
(KSList (] > 

find_level(Params, Level, NewParams), 
((com:com_Getinfo(parent, fac_name(ParentName)), 

Level > 0) > 
oaa_TraceMsg('-nRouting goal "ev_solve(-p)" to parent -p.-n', 

[Goal, ParentName]), 

new_goal_id (Id), 
oaa_PostEvent( ev_post_solve_from_bb(Id, Goal, NewParams), 

[address(parent)]), 

6 

Page 172 of 778



) . 

% if answers requested, 
% send parent's answers directly back to requestingKS 
% as well as blackboard solutions 
(memberchk(reply(none), NewParams) -> true 
% No longer valid: 
% send_blackboard_solutions(RequestingKS, Goal, Params), 
oaa:oaa_add_trigger_local( 

comm, 
event(ev_reply_solved_by_bb(Id,SomeKS,Goal,Params2,Solutions), 

) I 

ev_respond_query(Id,RequestingKS,SomeKS,Goal,Params,Params2, 
Solutions), 

[recurrence(when), on(receive)]) 

% root blackboard: doesn't know anyone who can solve goal 
(memberchk(reply(none), NewParams) -> true I 

oaa_Id (KSID), 
oaa_PostEvent( 

ev_reply_solved( [KSID], [] ,Goal,Params, []), 
[address(RequestingKS)]) 

otherwise -> 
dispatch_solve_request(RequestingKS, Goal, Params, EvParams, KSList) 

/* Finds all KSs for a goal, asks them to solve it, then returns */ 
/* the answers to the calling BB */ 
oaa_AppDoEvent(ev_post_solve_from_bb(Id, Goal, Params), EvParams) 

memberchk(from(RequestingKS), EvParams), 
%see if the query is addressed using address(KS) in Params 
check_address(Params, AddrKS), 
choose_agents_for_goal(RequestingKS,Goal,AddrKS,Params,true,KSList), 

% if none of my agents know how to solve goal, send to parent 
(KSList [] > 

find level(Params, Level, NewParams), 
% try to ask parent 
((com:com_Getinfo(parent, fac_name(ParentName)), 

com:com_Getinfo(parent, fac id(Parentid)), Level> 0) -> 
oaa_TraceMsg('-nRouting goal "ev_solve(-p)" to parent -p.-n', 

[Goal, ParentName]), 

oaa_PostEvent( ev_post_solve_from_bb(Id, Goal, NewParams), 
[address(parent)]), 

(memberchk(reply(none), NewParams) ->true I 
oaa:oaa_add_trigger_local( 

comm, 
event(ev_reply_solved_by_bb(Id, _SomeKS, Goal, P2, Solutions), 

) I 

ev_respond_bb_query(RequestingKS,Parentid,Id,Goal,Params, 
P2, Solutions), 

7 

Page 173 of 778



•. 

) . 

[recurrence(when), on(receive)]) 

% root blackboard : knows no solvers 
(memberchk{reply(none), Params) -> true 

oaa_Name{KSName), 
oaa_PostEvent{ 
ev_reply_solved_by_bb(Id, KSName,Goal,Params, []), 
[address(RequestingKS)]) 

member{SomeKS, KSList), % backtrack over all KSs. 
oaa_TraceMsg('-nRouting goal to-p: -p-n', 

[SomeKS, Goal]), 

oaa PostEvent( ev_solve(Id, Goal, Params), 
[address{SomeKS), from{RequestingKS)]), 

(memberchk{reply(none), Params) -> fail I 
oaa:oaa_add_trigger_local( 

comm, 
event{ev_solved(Id, SomeKS, Goal, P2, Solutions), ) , 
ev_respond_bb_or_post_higher(RequestingKS,SomeKS,Id, 
Goal,P2,Solutions), 

[recurrence(when), on(receive)]) 
) I 

fail % send events to all KSs that can solve goal. 

oaa AppDoEvent{wakeup(time limit{Id)), EvParams) 
- retract{time_limit_trigger(Id,_Wh~n,RequestingKS,Goal,Params)), 

oaa_TraceMsg('-nTime limit expired. Goal failed:-n -p-n', [Goal]), 
oaa_Id(KSid), % get local ksid 

% interpret(KSid, 
% ev_respond_query{-l,RequestingKS, KSid, Goal, Params, Params, [])). 

oaa_Interpret( 
ev_respond_query(-l,RequestingKS, KSid, Goal, Params, Params, (]), 

[from (KSid)] ) . 

% When asked by parent blackboard to solve a goal, 
%route all answers back using "ev_solved(Id, KS, Goal, Params, Solutions)". 
oaa_AppDoEvent(ev_solve(Id, Goal, Params), EvParams) 

memberchk(from(ParentBB), EvParams), 
oaa_Name{KSName), 

%see if the query is addressed using address(KS) in Params 
check_address{Params, AddrKS), 
choose_agents_for_goal(KSName,Goal,AddrKS,Params,true,KSList), 

% if none of my agents know how to solve goal, send empty solutions 
(KSList = [) > 

(memberchk(reply{none), Params) -> true I 
oaa_PostEvent( ev_solved{Id,KSName,Goal,Params, []), 

[address{ParentBB)]) 

8 

Page 174 of 778



member(SomeKS, KSList), % backtrack over all KSs. 
oaa_TraceMsg('-nRouting goal "ev_solve(-p)" to -p.-n', [Goal, 

SomeKS]), 

) . 

oaa PostEvent( ev solve(Id, Goal, Params), 
- [address(SomeKS), from(ParentBB))), 

(memberchk(reply(none), Params) > fail I 
oaa:oaa_add_trigger_local( 

comm, 
event(ev_solved(Id, SomeKS, Goal, P2, Solutions), ) , 
ev_respond_to_parent(ParentBB,KSName,Id,Goal,Params, 

P2, Solutions), 
[recurrence(when), on(receive))) 

) I 

fail % send events to all KSs that can solve goal. 

/* If a KS is available, send it the message */ 
oaa_AppDoEvent(ev_post_event(Event), EvParams) 

memberchk(from(KS), EvParams), 
choose_ks_for_goal(KS, Event, _, [], SomeKS, ) , 

oaa_PostEvent(Event, [address(SomeKS), from(KS)]), 
fail. 

/* If a KS is available, send it the message */ 
oaa_AppDoEvent(ev_post_event(KSName, Event), EvParams) 

oaa_Name(KSName), !, 
% interpret(KS, Event). 
oaa_Interpret(Event, EvParams). 

oaa_AppDoEvent(ev_post_event(KSName, Event), EvParams) 
memberchk(from(KS), EvParams), 
% agent must be "ready" to receive messages, or just 

% open if it is an agent compiled with old agentlib. 
(oaa:oaa_solve_local(agent_data(RealKS, ready, _Solvable,AgentName), []) 

oaa:oaa_solve_local(agent_data(RealKS, open, _Solvable,AgentName), []), 
oaa_Version(RealKS, _Language, Version), 
Version< 2.0), 

(match_ks(KSName, RealKS) ; KSName = AgentName), 
oaa PostEvent(Event, [address(RealKS), from(KS)] ) , 
fail. 

% oaa_AppDoEvent(ev_post_event(_KS, _Event), _KS) :- ! . 
oaa_AppDoEvent(ev_post_event(_KS, _Event), _EvParams) ! . 

% Send back solutions to KS who originally requested them (with ev_post_solve) 
% 
% 970219: DLM: Added arg. OrigParams. There is now a requirement that 
% the params returned in a ev_reply_solved event must be unifiable with the 
original 
% params (from the corresponding solve event) . 
oaa AppDoEvent(ev respond query(Id,RequestingKS, Requestee, Goal, OrigParams, 

- - Params,Solutions), _EvParams) 
oaa_TraceMsg('-nRouting answers back to -p:-n -p-n', 

9 

Page 175 of 778



[RequestingKS,Solutions]), 
cancel time check(Id), 
unify_Farams(OrigParams, Params, UParams), 
( Solutions == [] -> 

) , 

Solvers = [] 
otherwise -> 

Solvers = [Requestee] 

oaa PostEvent( ev reply solved( [Requestee], Solvers, Goal, UParams, 
Solutionsf, - -

[address(RequestingKS)]), ! . 

% Send back solutions to KS who originally requested them (with ev_post_solve) 
% If no solutions, ask a higher blackboard 
oaa_AppDoEvent( 

ev_respond_or_post_higher(RequestingKS, Solver,Id,Goal,P,Solutions), 
_EvParams) 

((Solutions [] ; oaa:oaa_class (root)) -> 

) . 

cancel_time_check(Id), !, 
return_solutions(RequestingKS, Solver, Id, .Goal,P,Solutions) 

% ®®DLM: The following needs work. Must check goal_count status 
% before posting higher 
% sub-agents found no solutions: post higher 
com:com_Getinfo(parent, fac_id(Parentid)), 
find_level(P, Level, NewParams), 
Level > 0, 
oaa_PostEvent( ev_post_solve_from_bb(Id, Goal, NewParams), 

[address(parent)]), 
oaa:oaa_add_trigger_local( 

comm, 
event(ev_reply_solved_by_bb(Id, SomeKS, Goal, P2, Solutions), 

) , 
ev_respond_query(Id,RequestingKS,Parentid,Goal,P,P2, Solutions), 
[recurrence(when), on(receive)]) 

% Send back acknowledgement to agent that originally requested an update. 
oaa_AppDoEvent( 

ev_return_update(RequestingKS, Mode, Solver, Id, Clause, Params, Updaters), 
_EvParams) 

return_update(RequestingKS, Mode, Solver, Id, Clause, Params, Updaters). 
% Send back acknowledgement to agent that originally requested a trigger 
% update. 
oaa_AppDoEvent( 

ev_return_trigger_update(RequestingKS, Mode, Solver, Id, Type, Condition, 
Action, Params, Updaters), 

_EvParams) 
oaa TraceMsg('-nRouting trigger updaters back to -p:-n -p-n', 

- [RequestingKS,Updaters]), 
return_trigger_update(RequestingKS, Mode, Solver, Id, Type, Condition, 

Action, Params, Updaters). 

% Send back solutions to a blackboard who requested them 
% (with ev_post_solve_from_bb) 
% 

10 

Page 176 of 778



% 970219: DLM: Added arg. OrigP. There is now a requirement that 
% the params returned in a ev_solved event must be unifiable with the original 
% params (from the corresponding solve event) . 
oaa_AppDoEvent(ev_respond_bb_query(RequestingBB, Solver, Id,Goal, 

OrigP, P,Solutions), _EvParams) 
unify_params(OrigP, P, UP), 
oaa TraceMsg('-nRouting answers back to blackboard -p:-n -p-n', 

- [RequestingBB,Solutions1), 
oaa_PostEvent( ev_reply_solved_by_bb(Id,Solver,Goal,UP,Solutions), 

[address (RequestingBB) 1) , ! . 

% Send back solutions to a blackboard who requested them 
oaa_AppDoEvent( 

ev_respond_bb_or_post_higher(RequestingBB,Solver,Id,Goal,P,Solutions), 
_EvParams) 

((Solutions \== [1 ; oaa:oaa_class (root)) -> 

) . 

oaa_TraceMsg('-nRouting answers back to blackboard -p:-n -p-n', 
[RequestingBB,Solutions1), 

oaa_PostEvent( ev_reply_solved_by_bb(Id, Solver, Goal, P,Solutions), 
[address(RequestingBB)]) 

% sub-agents found no solutions: post higher 
com:com_Getinfo(parent, fac_id(Parentid)), 
find_level(P, Level, NewParams), 
Level > 0, 
oaa_PostEvent( ev_post_solve_from_bb(Id, Goal, NewParams), 

[address(parent)]), 
oaa:oaa_add_trigger_local( 

comm, 
event(ev_reply_solved_by_bb(Id, SomeKS, Goal, P2, Solutions), 

_)I 
ev_respond_bb_query(RequestingBB,Parentid,Id,Goal,P,P2,Solutions), 
[recurrence(when), on(receive)1) 

% Send back solutions to KS who originally requested them (with ev_post_solve) 
% 
% 970219: DLM: Added arg. OrigP. There is now a requirement that 
% the params returned in a ev_solved event must be unifiable with the original 
% params (from the corresponding solve event) . 
oaa_AppDoEvent(ev_respond_to_parent(ParentBB,Solver,Id,Goal, OrigP, 

P, Solutions), _EvParams) 
unify_params(OrigP, P, UP), 
oaa_TraceMsg('-nRouting answers back to parent bb -p:-n -p-n', 

[ParentBB,Solutions]), 
oaa_PostEvent( ev_solved(Id, Solver, Goal, UP, Solutions), 

[address (ParentBB) 1), ! . 

oaa_AppDoEvent(ev_check_agent_name(KSName), EvParams) :
memberchk(from(KS), EvParams), 
findall(KSName, oaa:oaa solve local(agent location( KSID, KSName, , ), 

[] ) I L) I - - - -

(L== (] -> 
% ®®tcp_send shouldn't be used: 

tcp_send(KS, 'UNIQUE'); 
findall(KS1, oaa:oaa_solve_local(agent_location(_, KSl, , ), []), R), 

11 

Page 177 of 778



tcp_send(KS, R)),!. 

oaa_AppDoEvent(ev_register_port_number(Name,Address), EvParams) 
+Host 

memberchk(from(KS), EvParams), 
Address [address, Port, Host], 

%+KS, +Port, 

oaa:oaa_remove_data_local(agent_location(KS, _Name, _Port, _Host), 
[])I! I 

oaa:oaa_add_data_local(agent_location(KS, Name, Port, Host), []), 
format('Agent -p has Port: -p, Host: -p -n', [KS, Port, Host]), 
! • 

oaa_AppDoEvent(ev_register_port_number(Name,Address), EvParams) 
+Host 

memberchk(from(KS), EvParams), 

%+KS, +Port, 

Address = .. [address, Port, Host], 
oaa:oaa_add_data_local(agent_location(KS, Name, Port, Host), []), 
format('Agent -p has Port: -p, Host: -p -n', [KS, Port, Host]), 
! . 

oaa_AppDoEvent(ev_continue_execution(Id, RKS, Requestees, Solvers, Solutions), 
_EvParams) 

continue_execution(Id, RKS, Requestees, Solvers, Solutions). 

% This is called from a trigger set in compound.pl. 
oaa_AppDoEvent( 

ev_unify_and_continue_execution(Id, RKS, Goal, Vars, Requestee, Requestees, 
Solvers, Solutions), 

unify_and_continue_execution(Id, RKS, Goal, Vars, Requestee, Requestees, 
Solvers, Solutions) . 

/* Facilitator solvable: report the version and language of some 
connected agent. */ 

oaa_AppDoEvent(agent_version(Id, Language, Version), _EvParams) 
! I 

oaa_Version(Id, Language, Version). 

/* Facilitator solvable: Find all agents who can solve goal */ 
oaa AppDoEvent(can solve(Goal, KSList), EvParams) 

- ( memberchk(from(KS), EvParams) >true I oaa_Id(KS) ), 
findall(SomeKS, choose_ks_for_goal(KS, Goal, _, [], SomeKS, ) , KSList). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% choose_agents_for_goal(RequestingKS,Goal,AddrKS,Params,Sort,Agents). 
% 
%The first 4 arguments are exactly as expected by choose_ks_for_goal. 
% Sort, a boolean, tells whether to sort on utility. 

choose_agents_for_goal(RequestingKS,Goal,AddrKS,Params,Sort,Agents) 
findall{ 

) I 

p(Agent,Utility), 
choose_ks_for_goal(RequestingKS,Goal,AddrKS,Params,Agent,Utility), 
Pairs 

{ Sort -> 
samsort(oaa_utility_compare, Pairs, SortedPairs) 
otherwise -> 

12 

Page 178 of 778



SortedPairs = Pairs 
) I 

findall(Agent, member(p(Agent,_Utility), SortedPairs), Agents). 

% choose_agents_for_data(RequestingKS,Goal,AddrKS,Perm,Sort,Agents). 
% 
% The first 4 arguments are exactly as expected by choose_ks_for_data. 
% Sort, a boolean, tells whether to sort on utility. 

choose_agents_for_data(RequestingKS,Goal,AddrKS,Perm,Sort,Agents) 
findall ( 

) , 

p(Agent,Utility), 
choose_ks_for_data(RequestingKS,Goal,AddrKS,Perm,Agent,Utility), 
Pairs 

( sort -> 

) , 

samsort(oaa_utility_compare, Pairs, sortedPairs) 
otherwise > 
SortedPairs = Pairs 

findall(Agent, member(p(Agent,_Utility), SortedPairs), Agents). 

oaa utility compare(p( Agentl,Utilityl), p(_Agent2,Utility2)) 
-Utilityl >= Utility2. 

I* Finds a KS that knows how to solve Goal */ 

% backtracks over all KSs that know how to solve 
% a particular goal, except for RequestingKS, which is the 
% KS who asked for the goal to be solved in the 
% first place. (RequestingKS is included if the 'reflexive' Param 
% is present. ) 
% MemberList can be a list used to reduce the set to at most MemberList 
% or can be a specific KS to try, or a variable. 
% If an address is specified in MemberList, it can be the same as 
% RequestingKS (DLM, 96/10/30). 
% Solvable lists can contain complex tests (AC, 97/2/5) 
% e.g. [goall(Y), (g(X) X> l,X < 10) ,goal2] 
% Params is now used to check for •reflexive' (DLM, 97/03/06). 
% Utility is the numeric value the KS has associated with the 
% solvable. 
choose_ks_for_goal(RequestingKS, Goal, MemberList, Params, SomeKS, Utility) 

var (MemberList), 
! , 

) , 

ks_ready(SomeKS, ListOfGoals), 
icl_GetParamValue(reflexive(true), Params) -> 

true 
otherwise -> 

someKS RequestingKS 

oaa:oaa_goal_matches_solvables(Goal, ListOfGoals, , Matched), 
Matched solvable(_, SolveParams, _), 
icl_GetParamValue(utility(Utility), SolveParams). 

choose_ks_for_goal(_RequestingKS, Goal, MemberList, _Params, someKs, Utility) 
(is_list(MemberList) -> 

member(SomeKS, MemberList) 
I SomeKS = MemberList), 

13 

Page 179 of 778



oaa:icl true id{SomeKS, Trueid), 
ks_re~dy{T;ueid, ListOfGoals), 

oaa:oaa_goal_matches_solvables{Goal, ListOfGoals, , Matched), 
Matched= solvable(_, SolveParams, _), 
icl_GetParamValue(utility(Utility), SolveParams). 

% backtracks over all KSs that know how to write a particular goal (or 
% read, though that's not currently used), except for RequestingKS, 
% which is the KS who asked for the goal to be solved in the first 
% place. RequestingKS is never included, because he does the 
% appropriate asserts locally, when appropriate. 
% 
% Perm is 'read' or 'write'. 

choose ks for data(RequestingKS, Goal, MemberList, Perm, SomeKS, Utility) 
- v~r{MemberList), 
! I 

ks ready(SomeKS, ListOfGoals), 
SomeKS \== RequestingKS, 
oaa:oaa_data_matches_solvables(Goal, ListOfGoals, Perm, , Matched), 
Matched= solvable{_, SolveParams, ) , 
icl GetParamValue(utility(Utility), SolveParams). 

choose ks-for data( RequestingKS, Goal, MemberList, Perm, SomeKS, Utility) :~ 
(is=list(MemberList) -> 

member(SomeKS, MemberList) 
I SomeKS = MemberList), 

ks ready(SomeKS, ListOfGoals), 
oaa:~aa_data_matches_solvables(Goal, ListOfGoals, Perm, , Matched), 
Matched= solvable(_, SolveParams, ), 
icl_GetParamValue(utility(Utility), SolveParams). 

% ks_ready(*SomeKS, *ListOfGoals). 
% Backtracks over all agents that are ready to solve goals. 
% If SomeKS is bound (with an agent's local ID), only that agent is 
% considered. 
ks_ready(SomeKS, ListOfGoals) 

[] ) 

% agent must be "ready" to receive messages, or just 
% open if it is an agent compiled with old agentlib. 

(oaa:oaa_solve_local(agent_data(SomeKS, ready, ListOfGoals,_AgentName), 

oaa:oaa_solve_local(agent_data(SomeKS, open, ListOfGoals,_AgentName), 

oaa_Version(SomeKS, _Language, Version), 
Version< 2.0). 

% Facilitator agents look up their own solvables in oaa_solvables/1. 
ks_ready(SomeKS, ListOfGoals) 

oaa_Id (SomeKS), 
oaa:oaa_solvables(ListOfGoals). 

match_ks(all, _KS). 
match_ks(KS, KS). 

% If params contains a VALID address (symbolic name or id) for one or more 
%agents, return the agents' ids. 
% If params contains an INVALID address, remove it from the list returned. 
% Otherwise, KSAddr should return a variable. 
% 97-05-23 (DLM) : The address param now should always contain a list, 

14 

Page 180 of 778



% but we'll check just to be safe. 

check_address(Params, 'KSAddr) 
memberchk(address(Addr), Params), 
( is_list(Addr) -> 

AddrList = Addr 
I AddrList = [Addr]), 
find_addresses(AddrList, KSAddr), 
! . 

check_address(_Params, _SomeKS). 

find addresses ( [], []). 
find=addresses ( [Addr I Addrs], [Id I Ids]) 

find_address(Addr, Id), 
I 
• I 

find addresses(Addrs, Ids). 
find_add~esses([_Addr I Addrs], Ids) 

find_addresses(Addrs, Ids). 

%Given an agent id (eg. 5) or a symbolic name (eg. 'interface') 
% returns the local id for the reference. 
% 
% TBD: This does not yet handle remote addresses (associated with a different 
% facilitator) . 

find_address(addr(Addr), SomeKS) :
com:com_Getinfo(incoming, oaa_addr(Addr)), 
% That's me, the facilitator. 
! I 

oaa_Id(SomeKS). 
find_address(addr(Addr, SomeKS), SomeKS) : 

com:com Getinfo(incoming, oaa_addr(Addr)), 
% One of my clients. 
! I 

%Make sure it's current: 
oaa:oaa solve local(agent data(SomeKS, 

find_address{name(Name), SomeKS) : 
! I 

atom {Name), 
oaa:oaa_solve_local{agent_data(SomeKS, 

find_address{SomeKS, SomeKS) :
oaa:oaa_solve_local(agent_data{SomeKS, 
! . 

find_level(Params, Level, NewParams) :-

_ListOfGoals, _AgentName), []). 

_ListOfGoals, Name), []). 

_ListOfGoals, _AgentName), []), 

oaa:remove element(level limit(Level), Params, Params2), !, 
(Level > 0-- > -

NewLevel is Level - 1 
NewLevel is 0), 

NewParams = [level_limit(NewLevel) 1Params2]. 
find_level(Params, 1, Params). 

post_to_all_clients(Event) :
oaa_Id (Facid), 
oaa:oaa_solve_local(agent_data(Clientid, ready, _Solvable,_AgentName), 

[] ) I 

15 

Page 181 of 778



clientid \== Facid, 
oaa PostEvent(Event, [address(Client!d), from(Facid)] ) , 
fail. 

post_to_all_clients(_Event). 

% This is called when length of KSList is > 0. 
% 
% goal_count{Goalid,Goal,Params,EvParams,ToBeCalled,Called, 
% Responders 1 Solvers,Answers,NumAnswers) 

dispatch_solve_request{RequestingKS, Goal, Params, EvParams, KSList) :
new_goal_id(Id), 
%Note that reply (none) overrides parallel_ok (false). We can't 
%provide parallel_ok (false) if no replies come back from solvers. 
{ memberchk(reply(none) 1 Params) > 

dispatch_solve_events{KSList, Id, RequestingKS, Goal, Params, EvParams) 
memberchk(parallel_ok(false), Params) -> 

% Dispatch to one KS; save the rest for later. 
KSList = [FirstKS I Rest) 1 

assert{goal_count{Id 1 Goal, Params, EvParams, Rest, 
[FirstKS], [), [) 1 [], 0)), 

dispatch_solve_event(Id, RequestingKS, Goal, Params, EvParams, FirstKS) 
otherwise -> 
%Dispatch to all KSs. 
assert{goal_count(Id, Goal, Params, EvParams, [], 

KSList, [], [), [], 0)), 
dispatch_solve_events(KSList, Id, RequestingKS 1 Goal, Params, EvParams) 

) . 

dispatch_solve_events{[], _Id, _RequestingKS, Goal, Params, _EvParams). 
dispatch_solve_events{[SomeKS I Rest], Id, RequestingKS, Goal, 

Params, EvParams) 
dispatch solve event(Id, RequestingKS, Goal, Params, EvParams, SomeKS), 
dispatch=solve=events(Rest 1 Id, RequestingKS, Goal, Params, EvParams). 

dispatch_solve_event(Id, RequestingKS, Goal, Params, EvParams, SomeKS) 
oaa_Id (SomeKS), 
% That's me, the facilitator. 
! I 

icl_GoalComponents(Goall _, _, GoalParams), 
append(Params, EvParams, InheritedParams), 
append(Goa1Params 1 InheritedParams, AllParams), 
findall (Goal, 

% InheritedParams here is right, not AllParams: 
oaa:oaa_solve_local(Goal, InheritedParams), 

Solutions) , 
memberchk(reply(none), AllParams) -> 

true 
otherwise -> 

oaa_AppDoEvent( 

ev_respond_or_post_higher(RequestingKS,SomeKS,Id,Goal,Params,Solutions), 
[) ) 

) . 
dispatch_solve_event(Id, RequestingKS, Goal, Params, _EvParams, SomeKS) 

oaa_TraceMsg{'-nRouting goal "ev_solve(-p)" to -p.-n', [Goal, SomeKS]), 

16 

Page 182 of 778



% ask a sub-agent to try and solve goal. 
% if solutions are returned, pass them to requestingKS. 
% otherwise, ask higher blackboard to try and solve goals. 
%note: send ev solve{id{Id,SomeKS), ... ) as a means of insuring 
% that each e~ solved{) trigger is unique and only matches 
% exactly one response. We use _SomeKS in the field indicating 
% which agent actually solved the goal because individual 
% agents don't necessarily know their internal unique ID #. 

oaa PostEvent{ ev solve{id{Id,SomeKS), Goal, Params), 

) . 

- [address{SomeKS), from{RequestingKS)]), 
memberchk{reply{none), Params) -> 

true 
otherwise -> 

% If time_limit specified in parameters, setup 
% time_trigger to wakeup if solutions hasn't been returned 
% in specified time. 

memberchk(time_limit(NSecs), Params) -> 

add time check(NSecs, Id, RequestingKS, Goal,Params) 
I true)~ -
oaa:oaa_add_trigger_local( 

comm, 
event(ev solved(id(Id,SomeKS), SomeKS, Goal, P2, Solutions), ) , 
ev_respond_or_post_higher(Reque;tingKS,SomeKS,Id,Goal,P2,Solutions), 
[recurrence(when), on(receive)]) 

% return_solutions(+RequestingKS, +Responder, +Id, +Goal, +P, +NewSolutions). 
% Having just received solutions from a Responder, take the appropriate action. 
% 
% Even though the Responder has returned copies of the goal and params, 
% we don't need them because we have a local copy in goal_count. 
% 
% ®®DLM: Unresolved question about streaming: Should we stream the 
%responses with 0 solutions? [My thinking is "yes''.] 
return solutions(RequestingKS, Responder, Id, Goal, P, NewSolutions) 

% ToBeCalled lists solvers not yet called.- PrevC;lled lists 
% the called solvers that have yet to respond. 
retract(goal_count{Id, Goal, Params, EvParams, 

! I 

) , 

ToBeCalled, PrevCalled, PrevResponders, 
PrevSolvers, PrevSolutions, PrevNumSol)), 

%Take Responder out of the called list: 
selectchk(Responder, PrevCalled, Called) > 

true 
otherwise -> 

format('ERROR: Inappropriate ev_solved event received:-n', []), 
format{' -w -w -w -w-n', [RequestingKS, Responder, Id, Goal]), 
Called = PrevCalled 

% and put him into the responder list: 
append{PrevResponders, [Responder], Responders), 

) , 

% The solvers are just the responders that succeeded: 
NewSolutions [] -> 

NewSolvers = [] 
otherwise -> 

NewSolvers [Responder] 

17 

Page 183 of 778



append(PrevSolvers, NewSolvers, Solvers), 
append(PrevSolutions, NewSolutions, Solutions), 
length(NewSolutions, NewNumSol), 
NumSol is PrevNumSol + NewNumSol, 

) I 

% This case means that either: (1) we've gotten responses from all 
% solvers; and/or (2} we have reached the desired number of solutions. 
% By not saving goal_count, we ensure that any additional returned 
% solutions are ignored: 
( (ToBeCalled == [], Called []) ; 
(memberchk(solution_limit(Limit), Params), NumSol >=Limit)) -> 

%This test is a place-holder; streaming not yet official: 
memberchk(reply(streaming), Params) -> 

) I 

Return= ev_reply_solved([Responder], NewSolvers, Goal, Params, 
NewSolutions) 

otherwise -> 
Return = ev_reply_solved(Responders, Solvers, Goal, Params, 

Solutions) 

Save = false 
% This case happens with parallel ok(false): 
ToBeCalled = [Next I Rest] > -
dispatch_solve_event(Id, RequestingKS, Goal, Params, EvParams, Next}, 

% This test is a place-holder; streaming not yet official: 
memberchk(reply(streaming), Params} > 

Return= ev_reply_solved([Responder], NewSolvers, Goal, Params, 
NewSolutions) , 

Save = goal_count(Id, Goal, Params, EvParams, 

otherwise -> 
Return false, 

Rest, [Next I Called), [], [], [], NumSol) 

Save =goal count(Id, Goal, Params, EvParams, 
- Rest, [NextiCalled], Responders, Solvers, 

Solutions, NumSol) 

% Still waiting for some called solvers to respond: 
Called [_ I _l -> 

% This test is a place-holder; streaming not yet official: 
memberchk(reply(streaming}, Params) -> 

Return = ev_reply_solved( [Responder], NewSolvers, Goal, Params, 
NewSolutions) , 

Save = goal_count(Id, Goal, Params, EvParams, 
ToBeCalled, Called, [] , [], [] , NumSol) 

otherwise > 
Return false, 

Save = goal_count(Id, Goal, Params, EvParams, 
ToBeCalled, Called, Responders, Solvers, 

Solutions, NumSol) 

( Save == false -> 
true 

) I 

otherwise -> 
assert(Save) 

( Return == false -> 
true 

18 

Page 184 of 778



) . 

otherwise -> 

oaa_TraceMsg('-nRouting answers back to -p:-n -p-n', 
[RequestingKS,Return]), 

oaa_PostEvent(Return, [address(RequestingKS)]) 

return_solutions(_RequestingKS, _Responder, _Id, _Goal, _P, _NewSolutions). 

dispatch_update_request(RequestingKS, Mode, Clause, Params, []) 
% No agents able to perform the requested update: 
! I 

) . 

memberchk(reply(none), Params) -> 

true 
otherwise -> 
Event= ev_reply_updated(Mode, Clause, Params, [], []), 
oaa_PostEvent(Event, [address(RequestingKS)]) 

dispatch_update_request(RequestingKS, Mode, Clause, Params, KSList) 
new_goal_id (Id), 
length(KSList,NumKSsForGoal), 
% if more than one KS can solve the goal, remember so that 
% we can collect answers from all of them later 
( NumKSsForGoal > 1 -> 

) I 

assert (update_ count ( Id, NumKSsForGoal, [], [])) 
otherwise -> 

true 

member(SomeKS, KSList), % backtrack over all KSs. 
dispatch_update_event(Id, RequestingKS, Mode, Clause, Params, SomeKS), 
fail. 

dispatch_update_request(_RequestingKS, _Mode, _Clause, _Params, _KSList). 

dispatch_update_event(Id, RequestingKS, Mode, Clause, Params, SomeKS) 
oaa_Id (SomeKS), 
% That's me, the facilitator. 
! I 

Mode == add > 
Functor = oaa_add_data_local 

Mode == replace -> 

Functor oaa_replace_data_local 
otherwise > 

Functor = oaa_remove_data_local 
) I 

append(Params, [from(RequestingKS)], AllParams), 
Goal= .. [Functor, Clause, AllParams], 
( call(oaa:Goal) -> 

) , 

Updaters [SomeKS] 
otherwise -> 

Updaters = [] 

( memberchk(reply(none), Params) -> 
true 
otherwise -> 

% Params must be returned here (not AllParams) : 
return_update(RequestingKS,Mode,SomeKS,Id, Clause,Params,Updaters) 

) . 
dispatch_update_event(Id, RequestingKS, Mode, Clause, Params, SomeKS) 

oaa_TraceMsg('-nRouting request "ev_update(-p, -p, -p)" to -p.-n', 

19 

Page 185 of 778



[Mode, Clause, Params, SomeKS]), 
append(Params, [from(RequestingKS)], AllParams), 
oaa_PostEvent( 

) . 

ev update(id(Id,SomeKS), Mode, clause, AllParams), 
[address(SomeKS)]), 

memberchk(reply(none), Params) -> 

true 
otherwise -> 
% TBD: Do we want to set a time trigger here? 
oaa:oaa_add_trigger_local( 

comm, 
event(ev_updated(id(Id,SomeKS), Mode, Clause, P2, Updaters), ) , 

% Params must be returned here (not AllParams) : 
ev_return_update(RequestingKS,Mode,SomeKS,Id, 

Clause,Params,Updaters), 
[recurrence(when), on(receive)]) 

% Returns, to requesting KS, the addresses of all agents (including 
% facilitator if appropriate), that attempted (NewKSs) and that actually 
% satisfied (Updaters) an update request. 
% 
% NewUpdaters is always either [], or a singleton list. 
% 
% Possible values for Mode: add, remove, replace. 
% 
%Note: Params must be returned in ev_reply_updated, so it must be 
% unifiable with the params embedded in the requesting event (ev_post_event). 

return_update(RequestingKS, Mode, Responder, Id, Clause, Params, 
NewUpdaters) 

retract(update_count(Id, AgentsLeft, PrevKSs, PrevUpdaters)), 
append(PrevUpdaters, NewUpdaters, Updaters), 
append(PrevKSs, [Responder], NewKSs), 
( AgentsLeft > 1 -> 

NewAgentsLeft is AgentsLeft - 1, 
assert(update_count(Id, NewAgentsLeft, NewKSs, Updaters)) 

otherwise -> 
oaa TraceMsg('-nRouting updaters back to -p:-n -p-n', 

- [RequestingKS,Updaters]), 
Event = ev_reply_updated(Mode, Clause, Params, NewKSs, Updaters), 
oaa_PostEvent(Event, [address(RequestingKS)]) 

) I ! • 
return_update(RequestingKS, Mode, Responder, Id, Clause, Params, Updaters) 

oaa_TraceMsg('-nRouting updaters back to -p:-n -p-n', 
[RequestingKS,Updaters]), 

Event= ev_reply_updated(Mode, Clause, Params, [Responder], Updaters), 
oaa_PostEvent(Event, [address(RequestingKS)]). 

% No agents able to install this trigger: 
dispatch_trigger_request(RKS, Mode, Type, Condition, Action, Params, []) 

I 
• I 

memberchk(reply(none), Params) -> 
true 
otherwise > 
Event = ev_reply_trigger_updated(Mode, Type, Condition, Action, Params, 

20 

Page 186 of 778



oaa_PostEvent{Event, 
) . 

[] I [) ) I 

[address {RKS)]) 

dispatch_trigger_request{RKS, Mode, Type, Condition, Action, Params, KSList) 
new_goal_id{Id), 
length{KSList,NumKSsForGoal), 
% if more than one KS can solve the goal, remember so that 
% we can collect answers from all of them later 
{ NumKSsForGoal > 1 -> 

assert{update_count{Id, NumKSsForGoal, [], [])) 
otherwise > 

true 
) I 

member{SomeKS, KSList), %backtrack over all KSs. 
dispatch_trigger_event{Id, RKS, Mode, Type, Condition, Action, Params, 

SomeKS), 
fail. 

dispatch_trigger_request{_RKS, _Mode, Type, _Condition, _Action, _Params, 
_KSList) . 

dispatch_trigger_event{Id, RKS, Mode, Type, Condition, Action, Params, 
SomeKS) 

oaa_Id {SomeKS), 
% That's me, the facilitator. 
! I 

) I 

Mode == add -> 
Functor = oaa_add_trigger_local 

otherwise -> 

Functor = oaa_remove_trigger_local 

Goal = .. [Functor, Type, Condition, Action, Params], 
{ call{oaa:Goal) -> 

) I 

Updaters = [SomeKS] 
otherwise -> 

Updaters = [] 

{ memberchk{reply{none), Params) -> 
true 

) . 

otherwise -> 

return_trigger_update{RKS, Mode, SomeKS, Id, Type, 
Condition, Action, Params, Updaters) 

dispatch_trigger_event{Id, RKS, Mode, Type, Condition, Action, Params, 
SomeKS) 

oaa_TraceMsg{'-nRouting request-n ev_update_trigger{-p, -p, -p, -p, -p)-nto 
-p. -n', 

[Mode, Type, Condition, Action, Params, SomeKS]), 
oaa_PostEvent{ 

ev update trigger{id{Id,SomeKS), Mode, Type, Condition, Action, Params), 
[address{SomeKS), from{RKS)]), 

memberchk{reply{none), Params) -> 
true 
otherwise -> 
% TBD: Do we want to set a time trigger here? 
oaa:oaa_add_trigger_local{ 

comm, 

21 

Page 187 of 778



event{ev_trigger_updated(id(Id,SomeKS), _Mode, _Type, _Condition, 
_Action, P2, Updaters), _), 

) . 

ev_return_trigger_update{RKS,Mode,SomeKS,Id, 
Type,Condition,Action,P2,Updaters), 

[recurrence{when), on(receive)]) 

% Returns, to requesting KS, the addresses of all agents (including 
% facilitator if appropriate) , that attempted (NewKSs) and that actually 
% satisfied (Updaters) a trigger update request. 
% 
% NewUpdaters is always either [], or a singleton list. 
% 
% Possible values for Mode: add, remove. 

return_trigger_update(RequestingKS, Mode, Responder, Id, 
Type, Condition, Action, Params, NewUpdaters) 

retract(update_count(Id, AgentsLeft, PrevKSs, PrevUpdaters)), 
append(PrevUpdaters, NewUpdaters, Updaters), 
append(PrevKSs, [Responder], NewKSs), 
( AgentsLeft > 1 -> 

NewAgentsLeft is AgentsLeft - 1, 
assert(update_count{Id, NewAgentsLeft, NewKSs, Updaters)) 

otherwise -> 

Event = ev_reply_trigger_updated(Mode,Type,Condition,Action, 
Params, NewKSs, Updaters), 

oaa_PostEvent{Event, [address(RequestingKS)]) 
) I ! • 

return_trigger_update(RequestingKS, Mode, Responder, _Id, 
Type, Condition, Action, Params, Updaters) 

Event = ev_reply_trigger_updated(Mode, Type, Condition, Action, 
Params, [Responder], Updaters), 

oaa_PostEvent(Event, [address(RequestingKS)]). 

% unify_params(+OrigParams, +Params, -UnifiedParams). 
% 
% There is now (970219) a requirement that the params returned in 
% a ev_solved or ev_solved_by_bb event must be unifiable with the original 
% params from the corresponding solve request. In some situations*, the 
% Params returned to the facilitator by a solver may not unify with 
% the OrigParams, but may contain individual elements with variables 
% instantiated by the solver. This pred. can be used to save these 
% instantiations. 
% 
% *Such as, when find_level has been used to create a new params list. 

unify _params ( [] , _Params, [] ) . 
unify_params( [OrigParam I Rest], Params, [OrigParam I UnifiedRest]) 

( memberchk(OrigParam, Params) I true ) , 
! I 

unify_params(Rest, Params, UnifiedRest). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% These are extremely simple predicates for maintaining com_connection_info/5, 
% which keeps info about the agents to which this agent currently has 
% a communications channel. 

22 

Page 188 of 778



add_connected(Id, Connection) 
assert(com:com_connection_info(Id, unknown, child, 

[connection(Connection) ,oaa_id(Id)], connected)). 

update_connected(Id, Addinfo) 
com_Addinfo(Id, Addinfo). 

% remove_connected(+Id). 
remove_connected(Id) 

retractall(com:com_connection_info(Id, ) ) . 

% if the time limit(NSec) parameter is sent, install wakeup on server 
% to indicate-the request has failed if not achieved in the correct time. 
add_time_check(NSecs, Id, RequestingKS, Goal,Params) 

(time limit trigger(Id, When, RequestingKS, Goal, Params) -> 
tr;e %-already add;d for this goal req;est -

tcp_now (Now), 
tcp_time_plus(Now,NSecs,Soon), 
tcp schedule wakeup(Soon, time limit(Id)), 
assert(time_limit_trigger(Id,Soon,RequestingKS,Goal,Params)), 
oaa_TraceMsg('-nTime limit check added for -p-n', [Goal]) 

) ' ! . 

% if solutions are returned before a time_limit_trigger has expired, 
% remove the trigger. 
cancel_time_check(Id) 

retract(time_limit_trigger(Id 1 When 1 _RequestingKS 1 Goal,_Params)), 
tcp cancel wakeup(When 1 time limit(Id)), 
oaa-TraceMsg('-nTime limit check removed because solution returned.-n 

-p-n' 1 

[Goal]), ! • 
cancel_time_check(_Id). 

/* Generates a unique ID for a goal. *I 
I* ID's should be unique across blackboards*/ 
I* which is why we use the KSName prefix */ 
/* Goal counters are used to make sure the */ 
/* solution really matches the query. */ 

new_goal_id(Newid) 
oaa_Name(KSName) I 

concat(KSName, _ Tmp), 
gensym(Tmp, Newid). 

% Returns a list containing Num new goal ids. 

new_goal_ids(Num 1 [Newid I Restids]) 
Num > o, 
I 
• I 

new_goal_id(Newid), 
NewNum is Num 1, 
new goal ids(NewNum, Restids). 

new_goal_ids(_Num 1 []). 

23 

Page 189 of 778



start :
runtime_entry(start). 

runtime_entry(start) 
initial_solvables(Solvables) 1 

com_ListenAt(incoming 1 Cinfo) 1 

format( 1 Listening at -p-n-n 1
1 [Cinfo]) I 

oaa_RegisterCallback(app_do_event 1 user:oaa_AppDoEvent) 1 

oaa_Register(incoming, 'root', Solvables), 
on_exception(_, oaa_Appinit, true), 
oaa_MainLoop(true). 

runtime_entry(abort) :- ! . 
% format ( 1 Closing all connections ... -n 1 , []), 

% close all connections. 

% If the Facilitator is killed (ctrl-c) before disconnecting 
% all clients, it will not free the port. 
% This code is an attempt to fix this problem, but it doesn't 
% help. Why not??? 
% close_all_connections :-
% tcp_connected(X,Y), 
% tcp_destroy_listener(Y), 
% tcp_shutdown(X), 
% fail. 
% close_all_connections 
% tcp_reset, fail. 

24 

Page 190 of 778



APPENDIX A.III 

Source code file named libcom_tcp.pl. 

Page 191 of 778



,· 

%***************************************************************************** 
% 
% 
% 
% 
% 
% 

File 
Primary 
Purpose 
Updated 

: libcom_tcp.pl 
Authors : Adam Cheyer, David Martin 

TCP instantiation of lowlevel communication 
: 01/98 

primitives for OAA 

% Unpublished-rights reserved under the copyright laws of the United States. 
% 
% 
% Unpublished Copyright (c) 1993-98, SRI International. 
% "Open Agent Architecture" and "OAA" are Trademarks of SRI International. 
% 
% 
% 

%***************************************************************************** 
%* RCS Header and internal version 
%***************************************************************************** 

module(com, 
[com Connect/2, 
com-Disconnect/1, 
com-ListenAt/2, 
com-SendData/2, 
com-SelectEvent/2, 
com-Addinfo/2, 
com=:Getinfo/2]) 

% res version number 
rcsid(libcom_tcp, '$Header: 
/tmp mnt/home/zuma1/martin/OAA/agents/beta/prolog/RCS/com tcp.pl,v 1.10 
1998/0S/06 22:35:36 martin Exp $'). -

use_module(library(sets)). 
use_module(library(tcp)). 
use_module(library(basics)) 
use_module(library(lists)). 
use_module(library(charsio)). 
use_module(library(ask)). 
use_module(library(environ}). 
use_module(library(files)). 
use_module(library(strings)). 

dynamic 

% for sprintf and with_output_to_chars 
% for ask oneof 
% read environment vars 

% can_open_file 
% for concat 

com connection info/5, % id, commtype, client/server, comminfo, status 
com_already_loaded/1. % filename 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: com_Connect(+Connectionid, ?Address) 
% purpose: Given a connection ID and an address, initiates a client connection 
% remarks: 

1 

Page 192 of 778



% if Address is a variable, instantiates the Address by using 
% com_ResolveVariables, which looks in a setup file, command line, and 
% environment variables for the required info. 
% - stores the connection info for connection ID in com connection info/5. 
% - fails if connection can't be made - -
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
com_Connect(Connectionid, tcp(Host,Port)) :-

ground(Connectionid), 
%if variable address, look it up ... 
((var(Host) ; var(Port)) -> 

com_ResolveVariables([ 
[cmd (' -oaa_host', Host), cmd (' -oaa_port', Port)), 
[env('OAA_HOST', Host), env_int('OAA_PORT', Port)), 
[setup(•setup.pl', oaa_host, Host), 
setup('setup.pl',oaa_port, Port)) 

] ) 

true) , 

tcp_connect(address(Port, Host), RootConnection), 
assert(com_connection_info(Connectionid, tcp, client, 

[addr(tcp(Host,Port)), 
oaa_host(Host) ,oaa_port(Port),connection(RootConnection)], 

connected)). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: com_Disconnect(+Connectionid) 
%purpose: Given a connection ID of type 'client', shuts down the connection. 
% remarks: Succeeds silently if there is not an open connection having the 
% given id. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
com_Disconnect(Connectionid) 

ground(Connectionid), 
com_connection_info(Connectionid, tcp, client, _Info, connected), 
com_Getinfo(Connectionid, connection(Connection)), 
tcp_shutdown(Connection), 
retract(com_connection_info(Connectionid,tcp,client,_Info,connected)), 
! . 

com_Disconnect(_Connectionid). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: com_ListenAt(+Connectionid, ?Address) 
% purpose: Given a connection ID and an address, initiate a server connection 
% remarks: 
% if Address is a variable, instantiates the Address by using 
% com_ResolveVariables, which looks in a setup file, command line, and 
% environment variables for the required info. 
% - stores the connection info for connection ID in com_connection_info/5. 
% fails if connection can't be made 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
com_ListenAt(Connectionid, tcp(Host,Port)) 

ground(Connectionid), 
% if variable address, look it up ... 
((var(Host) ; var(Port)) -> 

com_ResolveVariables([ 

2 

Page 193 of 778



] ) 

[cmd('-oaa_host',Host), cmd('-oaa_port', Port)), 
[env( 'OAA_HOST', Host), env_int ( 'OAA_PORT', Port)), 
[setup('setup.pl',oaa_host, Host), 
setup('setup.pl',oaa_port, Port)] 

true) , 

repeat, 
(on_exception(E, 

) . 

tcp_listen_at_port(Port, Host), 
Exception = E) -> 

var(Exception) -> 

assert(com_connection_info(Connectionid, tcp, server, 
[addr(tcp(Host,Port)) ,oaa_host(Host) ,oaa_port(Port)], 
connected)), 

otherwise > 
com_ask_about_tcp_exception(Port, Host, Response), 
( Response == yes -> 

fail 
otherwise -> 

halt 

com_ask_about_tcp_exception(Port, Host, Response), 
( Response == yes > 

fail 
otherwise -> 

halt 

com_ask_about_tcp_exception(Port, Host, Response) 
repeat, 
with_output_to_chars( 

format('Currently unable to access -w port -w.-n Try again? -w', 
[Host, Port, '[y)es, n)o, h)elp) ']), 

Chars), 
name(Prompt, Chars), 
ask_oneof(Prompt, [yes, no, help], Response), 
( Response == help -> 

com_print_tcp_exception_help, 
fail 

otherwise > 

) . 

com_print_tcp_exception_help 
write(' 

I' •ve just attempted to listen on the specified port, but was unable 
to gain control of it. This could be because there' 's already a 
Facilitator, or some other program, making use of that port. Or, it 
could be that a Facilitator using that port was just terminated. In 
such cases, the port may be inaccessible for a brief period (usually 
only a few seconds, but sometimes more). It may help to kill any 

3 

Page 194 of 778



client agents which may still be connected to the defunct Facilitator. 

If you think the specified port may now be accessible, enter "Y" and 
I' '11 try again. You may request retry any number of times. 

If you want me to listen on a different port, enter "n", which will 
cause me to terminate. Then change your port specification (it' •s 
either in a setup file or an environment variable). Then restart me. 

I) • 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: com_SendData(+Connectionid, +Data) 
% purpose: Sends data to the specified connection ID 
% remarks: 
% Checks format for destination connection 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
com_SendData(Connectionid, Data) 

ground(Connectionid); 
( com_connection_info(Connectionid, Type, _ClientServer, InfoList 1 

connected) , 
(Type= tcp ; Type= unknown) 1 !, 
memberchk(connection(Dest), InfoList) 

format('-nError: cannot find open connection for -p!-n', 
[Connectionid] ) , 

fail 
) I 

( memberchk(format(F) 1 InfoList) -> 

true 
memberchk(agent_language(c) 1 InfoList) > 

F = special_case_c 
otherwise -> 

F = default 
) I 

! I 

com_send_data_by_format(Dest 1 F 1 Data). 

% quintus_binary: for inter-quintus communication 
com_send_data_by_format(Dest 1 quintus_binary, Data) 

tcp_send(Dest, Data). 
% prolog: a synonym for quintus_binary 
com_send_data_by_format(Dest, prologl Data) 

tcp_send(Destl Data). 

% pure_ascii: don't wrap data in term() wrapper 
com_send_data_by_format(Dest, pure_ascii 1 Data) 

current_output(Currentoutput) 1 

flush_output(CurrentOutput), 
tcp output stream(Dest 1 TcpOutput) 1 

set=output(TcpOutput) I 

4 

I 
• I 

! I 

! I 

Page 195 of 778



WriteParams = 
[quoted(true), % make input acceptable for read 
ignore_ops(false), %false so list will be printed as '[1,2]' 
% ! ! ! could be a problem with+, other opts. 
numbervars(true), %print vars as f(A). 
character_escapes(false) ,% write actual character, not \255 
max_depth(O)], %no depth limit 

write_term(Data, WriteParams), 

flush_output(TcpOutput), 
set_output(CurrentOutput), ! . 

% special_case_c: This is the same as default, EXCEPT for the use of 
% nl, nl. See comments within the clause for default format. 
% Currently we don't understand why it matters. 
com_send_data_by_format(Dest, special_case_c, Data) !, 

current_output(CurrentOutput), 
flush_output(CurrentOutput), 
tcp_output_stream(Dest, TcpOutput), 
set_output(TcpOutput), 

WriteParams = 
[quoted(true), % make input acceptable for read 
ignore_ops(false), %false so list will be printed as '[1,2]' 
% ! ! ! could be a problem with +, other opts. 
numbervars(true), %print vars as f(A). 
character_escapes(false) ,% write actual character, not \255 
max_depth(O)], %no depth limit 

write_term(term(Data), WriteParams), 
write ( ' . ') , 
nl, nl, 
flush_output(TcpOutput), 
set_output(CurrentOutput), ! . 

% DefaultOAA: wrap in term() wrapper for easy parsing 
com_send_data_by_format(Dest, _DefaultOAA, Data) 

current_output(CurrentOutput), 
flush output(CurrentOutput), 
tcp_o~tput_stream(Dest, TcpOutput), 
set_output(TcpOutput), 

WriteParams = 
[quoted(true), % make input acceptable for read 
ignore_ops(false), % false so list will be printed as '[1,2]' 
% ! ! ! could be a problem with +, other opts. 
numbervars(true), %print vars as f(A). 
character_escapes(false) ,% write actual character, not \255 
max_depth(O)], %no depth limit 

write_term(term(Data), WriteParams), 
write('.'), 
% nl, nl, 

% The preceding does not work between two Quintus agents 
% (neither does a single nl, nor does it help to use nl(TcpOutput)), 
% so we went to the following. However, the following does not work 

5 

Page 196 of 778



% when a QP facilitator sends to the C interface agent. For now, 
% we'll solve this problem by defining the special_case_c format. 
% (DLM, 97-04-09) 

put(TcpOutput, 10), 
% This causes the agents to disconnect (at least under UNIX) : 

% put(TcpOutput, 13), 

flush_output(TcpOutput), 
set_output(CurrentOutput), ! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: com SelectEvent(+TimeOut, -Event) 
% purpose: Waits and returns an incoming event, or 'timeout' if TimeOut expires 
% remarks: 
% - TimeOut may be a real number, and represents seconds. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
com_SelectEvent(O, Event) :- !, 

on_exception(E,tcp_select(Event), com_print_err(E)). 
com SelectEvent(Seconds, Event) :-

- on_exception(E,tcp_select(Seconds, Event) ,com_print_err(E)). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: com_print_err 
% purpose: Print error message if problem reading the event 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
com_print_err(E) : 

format('-n=========== READ ERROR!!! ============-n', []), 
format(' I Messages in this block are rejected-n', []), 
format(' I by the system.-n', []), 
format('----------------------------------------n', []), 
print_message(error, E), 
format('=======================================-n', []), fail. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: com_Addinfo 
% purpose: Adds or changes information about connection 
% remarks: 
% Info may be status(S), type(T), protocol(P) or any element (or list 
% of elements) to be stored in InfoList. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
com_Addinfo(Connectionid, Newinfo) :-

retract{com_connection_info(Connectionid, Protocol, Type, 
InfoList, Status)), 

(Newinfo status(NewStatus), C =true ; NewStatus =Status), 
(Newinfo protocol(NewProtocol), C =true ; NewProtocol =Protocol), 
(Newinfo type(NewType), C =true; NewType =Type), 
(Newinfo [_HI_T] -> 

union([InfoList, Newinfo], NewinfoList) 
I (ground(C) ; union([InfoList, [Newinfo]], NewinfoList)) 

) , 
assert{com_connection_info{Connectionid, NewProtocol, NewType, 

6 

Page 197 of 778



NewinfoList, NewStatus)), ! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: 
% purpose: 
% remarks: 

com_Getinfo 
Looks up information about connection 

% Info may be status(S), type(T), protocol(P) or any element stored 
% in InfoList. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
com_Getinfo(Connectionid, Info) :

com_connection_info(Connectionid, Protocol, Type, 
InfoList, Status), 

(Info status(Status) ; 
Info = type(Type) ; 
Info= protocol(Protocol) 
memberchk(Info, InfoList)), 

! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% name: com ResolveVariables 
% purpose: Tries to instantiate the arguments by looking in the command 
% line arguments, environment variables, and setup files 
% inputs: 
% - VarList: A list of lists: the first sublist that completely resolves 
% provides the value for com_ResolveVariables. 
% remarks: 
% sublists may contain elements in the following format: 
% env(EnvVar, Val) looks for "EnvVar" in environment vars 
% env_int(EnvVar, Val) Returns value for EnvVar as an integer 
% cmd(CmdVar, Val) : looks for "CmdVar <Val>" on command line 
% setup(File,SVar, Val) reads SVar from setup file File 
% example: 
% resolves host and port by searching first commandline, then environment 
% variables, finally reads setup file. 
% 
% com_ResolveVariables([ 
% [cmd('-oaa_host',Host), cmd('-oaa_port', Port)], 
% [env('OAA_HOST', Host), env_int('OAA_PORT', Port)], 
% [setup('setup.pl',oaa_host, Host), 
% setup('setup.pl',oaa_port, Port)] 
% ] ) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
com_ResolveVariables([VarListl_l) :-

com resolve variables(VarList), ! . 
com_Resol~eVariables([_VarListiRest]) 

com_ResolveVariables(Rest). 

com_resolve_variables([]). 

com resolve variables([env int(Envvar, Val) !Rest]) !, 
environ(Envvar, EnvAtom), 
name(EnvAtom, EnvChars), 

7 

Page 198 of 778



• 

number_chars(Val, EnvChars), 
com_resolve_variables(Rest). 

com_resolve_variables([env(Envvar, Val) !Rest)) !, 
environ(Envvar, Val), 
com_resolve_variables(Rest). 

com_resolve_variables([cmd(CmdVar, Val) !Rest]) !, 
% get command line arguments 
unix(argv(ListOfArgs)), 
append(_, [CmdVar, Vali_J, ListOfArgs), 
com_resolve_variables(Rest). 

com_resolve_variables([setup(File,SVar, Val) !Rest]) !, 
% read setup file to load all values 
com_read_setup_file(File), 
Pred =·. [SVar, Val), 

on_exception(_, Pred, fail), 
com_resolve_variables(Rest). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: com_read_setup_file 
% purpose: Finds and loads setup file 
% remarks: 
% Always succeeds. 
% The search path for 'setup.pl' is as follows: 
% 1. Current directory 
% 2. Home directory for user 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
com read setup file(File) :-

- co~_already_loaded(File), ! . 

com_read_setup_file(File) :-
( absolute file name(File, LocalSetupFile), 

can_open=file(LocalSetupFile, read, fail) -> 

SetupFile = LocalSetupFile 

) , 

concat('-/',File, HomeName), 
absolute_file_name(HomeName, UserSetupFile), 

can_open_file(UserSetupFile, read, fail) -> 

SetupFile = UserSetupFile 

(ground(SetupFile) -> 

format('Loading setup file:-n -w-n-n', [SetupFile)), 
( com_consult(SetupFile, _) -> 

assert{com_already_loaded(File)) 
otherwise -> 

format('-w: A problem was encountered in loading the setup file-n', 
['WARNING']) 

true) . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

8 

Page 199 of 778



' ~ 

% name: com_consult(+FilePath, -AbsFileName). 
% purpose: 
% remarks: We don't use Quintus' builtin consult, because it's too picky 
% about associating predicates with files. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
com_consult(FilePath, AbsFileName) :-

absolute file name(FilePath, AbsFileName), 
can_open=file(AbsFileName, read, fail), 
open(AbsFileName, read, Stream), 
load_clauses(Stream), 
close(Stream). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: load_clauses(+Stream). 
%purpose: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
load_clauses(Stream) :-

repeat, 
read_term(Stream, [], Term), 
(Term ':-'(_Body) -> 

) I 

true 
Term 
true 

end_of_file > 

otherwise -> 
load_clause(Term) 

( at_end_of_file(Stream) > 

) . 

otherwise > 
fail 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: load_clause(+Term). 
% purpose: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
load_clause(Term) : 

assert( Term). 

9 

Page 200 of 778



APPENDIX A.IV 

Source code file named liboaa.pl. 

Page 201 of 778



%***************************************************************************** 
% 
% 
% 
% 
% 
% 

File 
Primary 
Purpose 
Updated 

: liboaa.pl 
Authors : Adam Cheyer, David Martin 

Prolog version of library for the Open 
12/98 

Agent Architecture 

% Unpublished-rights reserved under the copyright laws of the United States. 
% 

% 
% Unpublished Copyright (c) 1998, SRI International. 
% "Open Agent Architecture" and "OAA" are Trademarks of SRI International. 
% ----------------------------------------------------------
% 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Note: internal functions use the naming convention oaa_function_name(), 
% while public predicates use oaa_PublicPredicate(). 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Version 2.0 (change oaa_version assertion) 
% - corrects FromKS in do_events by changing event format to include this 
% info. 
% - messages are only sent to READY agents. For previous versions, an 
% agent may be either READY or just OPEN. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Version 2.1 (change oaa_version assertion) 
% - triggers have 2 new arguments, OpMask and Template, and 
% more general semantics. Backwards compatibility is provided. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Version 3.0 (change oaa_version assertion) 
% - primitives changed to start with oaa_ (and _icl) prefixes 
% - Major restructuring and cleanup, including many new capabilities, 
% for first public release (a.k.a. "OAA 2") 
%***************************************************************************** 

module(oaa, 
[icl GetParamValue/2, 
icl-GetPermValue/2, 
icl-BasicGoal/1, 
icl-GoalComponents/4, 
icl-ConsistentParams/2, 
icl~)uil tin/1, 
icl ConvertSolvables/2, 
oaa-Libraryversion/1, 
oaa-Register/3, 
oaa-RegisterCallback/2, 
oaa-ResolveVariables/1, 
oaa-Ready/1, 
oaa-MainLoop/1, 
oaa-SetTimeout/1, 
oaa-GetEvent/3, 
oaa-ProcessEvent/2, 
oaa-Interpret/2, 
oaa=DelaySolution/1, 
oaa_ReturnDelayedSolutions/2, 
oaa_AddDelayedContextParams/3, 

1 

Page 202 of 778



oaa PostEvent/2, 
oaa-CanSolve/2, 
oaa=:version/3, 
oaa Ping/3, 
oaa-Declare/5, 
oaa-DeclareData/3, 
oaa-Undeclare/3, 
oaa-Redeclare/3, 
oaa-AddData/2, 
oaa-RemoveData/2, 
oaa-ReplaceData/3, 
oaa-CheckTriggers/3, 
oaa-AddTrigger/4, 
oaa-RemoveTrigger/4, 
oaa-Solve/2, 
oaa-InCache/2, 
oaa-AddToCache/2, 
oaa-ClearCache/0, 
oaa-TraceMsg/2, 
oaa-ComTraceMsg/2, 
oaa=:rnform/31 
oaa Id/11 
oaa=:Name/1 

) ) . 

%***************************************************************************** 
%* RCS Header and internal version 
%***************************************************************************** 

% res version number 
rcsid('$Header: /home/trestle4/0AA/src/V2/prolog/RCS/oaa.pl 1V 1.127 1998/12/23 
23:14:18 martin Exp cheyer $'). 

: - op (59 9 I yfx, : : ) . 

%***************************************************************************** 
% Include files 
%***************************************************************************** 

use_module(library(basics)). 
use_module(library(read_sent)). 
use_module(library(lists)). 
use_module(library{sets)). 
use_module{library{strings)). 
use_module(library{files)). 
use_module{library{environ)). 
use_module(library(ctr)). 
use_module(library{charsio)). 
use_module(library{ask)). 
use_module(library{samsort)). 
use_module(library{date)) 

% read environment vars 

% for sprintf and with_output_to_chars 
% for ask oneof 
% for samsort{Ordered 1Raw 1Sort) 
% for now(Time) 

use_module{library{tcp) 1 [tcp_now/1 1 tcp_time_plus/3)). 

% IMPORTANT: COM module. We don't want to hard code the name of the 

2 

Page 203 of 778



% file that contains module 'com'. So, when this file is loaded, 
% we first check to see if module •com' is already present, then 
% we check to see if the file containing •com' has been specified 
% on the command line, and if neither of those works, we load the 
%default file (./com_tcp). 
% 
% In the case where the module has already been 
% loaded, the .following seems like the right thing to do: 
% :-use module(com, File, all). 
% BUT when compiling, this approach results in "undefined" errors from 
% qcon. Thus, for now, in oaa.pl, we are explicitly using com: with all 
% calls to the com module. 

) . 

current_predicate(_, com:_) > 
use_module(com, _File, all) 

unix(argv(ListOfArgs)), append(_, ['-com', File I _], ListOfArgs) -> 

use_module(File, all) 
otherwise > 

use_module(com_tcp, all) 

%***************************************************************************** 
% Global variables 
%***************************************************************************** 

dynamic 
oaa already loaded/1, 

-oaa sol~ables/1, 
oaa-trigger/5, 

% record if file already loaded 
% list of agent capabilities 
% a built in solvable 

% trace mode: on or off oaa tra-;;-e/1, 
oaa-com trace/1, % 
oaa-deb-;:;:g I 1, 
oaa::::cache/2, 

com trace mode: on or off 

oaa event buffer/1, 
oaa-waiting for/2, 
oaa::::waiting::::event/1, 
oaa timeout/1, 
oaa::::delay_table/5, 
oaa delay/2, 
oaa-data ref/3, 
oaa-current contexts/2, 
oaa::::callback/2, 

%These may appear in setup.pl: 
oaa_host/1, 

oaa_port/1. 

oaa_LibraryVersion(3.0). 

% debug mode: on or off 
% cached solutions 
% buffer of waiting events 
% used for recursive blocking solve 
% problem ... 
% tcp timeout value (use oaa_SetTimeout) 
% table of delayed solutions 
% the current goal is delayed 
% bookkeeping for 'data' solvables 
% Solve parameters to be propagated 
% Record of app-specific callbacks 

% for root, my host; otherwise, 
% host of my parent 

% . . . similarly ... 

% solvables shared by all agents 
% Note: all built-in DATA solvables must be declared dynamic to avoid 
% QP warnings and exceptions. 

oaa_built_in_solvables([ 
% ®®DLM: If we do away with Triggerid, we could use param 
% unique_values(true). 

3 

Page 204 of 778



solvable(oaa_trigger(_Triggerid, _Type, _Condition, _Action, _Params), 
[type (data)], [write (true)]) 

] ) . 

% We'll always have exactly one oaa solvables fact. Note that application 
% code should NOT include a declaration or clause for oaa_solvables/1. 
oaa_solvables( []). 

%***************************************************************************** 
% Initialization and connection functions 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa Register 
% purpose: One~ a comm link is established, either as a client to a Facilitator 
% or as a server for other agents, oaa_Register will setup and registration 
% information for this agent. 
% inputs: 
% - Connectionid: the symbolic connection Id (client or server connection) 
% - AgentName: the name of the agent 
% - Solvables: solvable list 
% remarks: 
% The following information is stored about the current connection, 
% accessible through com_Getinfo(Connectionid, Info): 
% 
% 
% 
% 
% 
% 

oaa_name(Name) 
oaa_id(Id) : the 

connection(C) 

: the name of the current agent 
Id for the agent 

system-level communications handle 
(e.g., socket number) 

% if connecting as client, this is also available: 
% fac_id(Id) : the Facilitator's Id 
% fac_name(Name) : the Facilitator's name 
% fac_lang(L) : the Facilitator's language 
% fac_version(V) : the version of the Facilitator's agent library 
% 
% In addition, the following predicates are written to parent Facilitator, 
% or locally if the Connectionid is a server connection: 
% 
% agent_host(Id, Name, Host) 
% 
% Solvables are also written using oaa_Declare() 
% 
% It is possible for an agent to create both server and client connections: 
% such an agent was classified in OAA 1.0 as an agent of class "node" 
% (as opposed to a pure client "leaf" or pure server "root"). 
% 
% examples: 
% % connecting to a Facilitator 
% MySolvables = [do(something)], 
% com_Connect(parent, connectioninfo), 
% oaa_Register(parent, my_agent_name, MySolvables). 
% 
% % connecting as a Facilitator 

4 

Page 205 of 778



% MySolvables = [] , 
% com_ListenAt(incoming, Connectioninfo), 
% oaa_Register(incoming, root, MySolvables). 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% For client connecting to Facilitator 
oaa_Register(Connectionid, AgentName, Solvables) 

% succeeds only if exists an open client connection for Connectionid 
% as created by com_Connect() 
com:com_connection_info(Connectionid, _Protocol, client, Info, 

connected) , 

com:com_Addinfo(Connectionid, oaa_name(AgentName)), 

% FIXED HACK: default now works thanks to update in com_tcp.pl for 
% the default mode 
%HACK!!! Why doesn't this work right without it? 
% for some reason, when we send the handshaking info in 
% default mode (instead of quintus_binary), the facilitator's 
% tcp_select(VerySmallTimeout, Event) doesn't timeout!!!! 
% So it keeps hanging until some other event (such as disconnect) 
% arrives. 
com:com_Addinfo(Connectionid, format(default)), 

% lookupversion number 
oaa_LibraryVersion(Version), 

%%% handshaking with Facilitator exchange information ... 
% note: for this first communication, no format is defined for the 
% connection, so it will be sent using default (ascii) format. 
% Information coming back from Facilitator will update the 
% format() field for the connection, improving future 
% communication. 
com:com_SendData(Connectionid, 

event(ev_connect([oaa_name(AgentName), agent_language(prolog), 
format(quintus_binary), agent_version(Version))), [])), 

%% Get the connection acknowledgement: 
% potential bug: what if selected event is NOT from Facid connection? 
oaa_GetEvent(ConnEvent, _Parms, 0), 
ConnEvent = ev_connected(FacinfoList), 
com:com_Addinfo(Connectionid, FacinfoList), 

oaa_Id (Myid), 

% write host 
( environ('HOST', MyHost) -> 

oaa_AddData(agent_host(Myid, AgentName, MyHost), [address(parent)]) 
true), 

% Declare solvables (and post to parent facilitator) : 
%Note: OK if Solvables = []. 
oaa_Declare (Solvables, [], [], [if_exists (overwrite)), ) . 

% For Faciliator serving client agents 
oaa_Register(Connectionid, AgentName, Solvables) 

5 

Page 206 of 778



% succeeds only if exists an open client connection for Connectionid 
% as created by com_Connect() 
com:com_connection_info(Connectionid, _Protocol, server, _Info, 

connected) , 

Agentid 0, % A facilitator's ID is always 0 
com:com_Addinfo(Connectionid, [oaa_id(Agentid),oaa_name(AgentName)]), 

% The fac. records its own agent_data in the same way as its clients'. 
% Note that we can't call oaa_add_data_local until after the solvables 
%have been declared, and we can't declare solvables until we're 
% open - so we have to bootstrap this assertion: 
oaa_assertz(agent_data(Agentid, open, [), AgentName), Agentid, _), 

% Note: OK if solvables = 
oaa_Declare(Solvables, [], 

% write host 

[] . 
[], [if_exists(overwrite)], ) I 

( environ( 'HOST', MyHost) -> 
oaa_add_data_local(agent_host(Agentid, AgentName, MyHost), [)) 

true) . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 

%name: oaa_ResolveVariables(+VariableList) 
% purpose: Tries to instantiate the arguments by looking in the command 
% line arguments, environment variables, and setup files 
% inputs: 
% - VarList: A list of lists: the first sublist that completely resolves 
% provides the value for oaa_ResolveVariables. 
% remarks: 
% sublists may contain elements in the following format: 
% env(EnvVar, Val) looks for "EnvVar" in environment vars 
% env_int(EnvVar, Val) Returns value for EnvVar as an integer 
% cmd(CmdVar, Val) looks for "CmdVar <Val>" on command line 
% setup(SVar, Val) : reads SVar from setup file 
% example: 
% resolves host and port by searching first commandline, then environment 
% variables, finally reads setup file. 
% 
% oaa_Resolvevariables([ 
% [cmd('-oaa host',Host), cmd('-oaa_port', Port)], 
% [env('OAA_HOST', Host), env_int('OAA_PORT', Port)], 
% [setup(oaa_host, Host), setup(oaa_port, Port)] 
% ] ) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_ResolveVariables([VarListi_J) 

oaa resolve variables(VarList), ! . 
oaa_Resol~eVariables([_VarListiRest]) 

oaa_ResolveVariables(Rest). 

oaa_resolve_variables([]). 

oaa_resolve_variables([env_int(EnvVar, Val) !Rest]) !, 

6 

Page 207 of 778



environ(EnvVar, EnvAtom), 
name(EnvAtom, EnvChars), 
number_chars(Val, EnvChars), 
oaa_resolve_variables(Rest). 

oaa_resolve_variables([env(EnvVar, Val) !Rest]) !, 
environ(EnvVar, Val), 
oaa_resolve_variables(Rest). 

oaa_resolve_variables([cmd(CmdVar, Val) !Rest]) !, 
% get command line arguments 
unix(argv(ListOfArgs)), 
append( , [CmdVar, Vall_l, ListOfArgs), 
oaa_resolve_variables(Rest). 

oaa_resolve_variables( [setup(SVar, Val) !Rest]) !, 
% read setup file to load all values 
oaa_read_setup_file, 
Pred = .. [SVar, Val], 

on_exception(_, Pred, fail), 
oaa~resolve_variables(Rest). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_read_setup_file 
% purpose: Finds and loads setup file 
% remarks: 
% Always succeeds. 
% The search path for 'setup.pl' is as follows: 
% 1. Current directory 
% 2. Home directory for user 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_read_setup_file :-

oaa_already_loaded(setup), !. 
oaa_read_setup_file :-

( absolute_file_name('setup.pl', LocalSetupFile), 
can_open_file(LocalSetupFile, read, fail) > 

SetupFile = LocalSetupFile 
absolute_file_name('-/setup.pl', UserSetupFile), 

can_open_file(UserSetupFile, read, fail) -> 

SetupFile = UserSetupFile 
) I 

(ground(SetupFile) -> 
format('Loading OAA setup file:-n -w-n', [SetupFile]), 
( oaa_consult(SetupFile, _) -> 

assert(oaa_already_loaded(setup)) 
otherwise -> 

format('-w: A problem was encountered in loading the setup file-n', 
['WARNING']) 

true) . 

7 

Page 208 of 778



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_Ready 
%purpose: Changes the agent's 'open' status to 'ready', indicating that the 
% agent is now ready to receive messages. 
% remarks: 
% if requested, prints 'Ready' to standard out. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_Ready(ShouldPrint) :-

% replaces 'open' status with 'ready'. 
((\+ oaa_class(root), oaa_Name(MySymbolicName)) -> 

oaa_PostEvent(ev_ready(MySymbolicName), []) 
true), 

% if ShouldPrint, print ready 
(on_exception(_,ShouldPrint,fail) -> 

format ('Ready. -n', []) 
I true). 

%***************************************************************************** 
% Classifying and Manipulating ICL expressions 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: icl_Builtin(+Goal). 
% purpose: Test whether an expression is an ICL built in goal. 
% remarks: 
% - icl Builtin differs significantly from the Quintus Prolog predicate 
% built_in, in that here we do not include basic constructors such 
% as I I I and I i I • 

% - oaa_Interpret/2 must be defined for every goal for which 
% icl Builtin succeeds. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
icl_Builtin((_A _B)). 
icl_Builtin((_A _B)). 
icl Builtin(( A _B)). 
icl-Builtin((-A =<_B)). 
icl~)uiltin ( CA >= _B)) . 
icl_Builtin((_A <_B)). 
icl_Builtin((_A >_B)). 
icl Builtin(member( , )) . 
icl=Builtin(memberchk(_,_)). 
icl_Builtin(findall(_,_,_)). 
icl_Builtin(icl_ConsistentParams( , )) . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: icl_BasicGoal(+Goal). 
% purpose: Test whether an expression is an ICL basic (non-compound) goal; 
% that is, just a functor with 0 or more arguments. 
% remarks: 
% - Basic goals include built-in's as well as solvables. 
% - This is a syntactic test; that is, we're not checking whether the 
% Goal is a declared solvable. 

8 

Page 209 of 778



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
icl_BasicGoal(Goal) 

var (Goal), ! , fail. 
icl BasicGoal(Goal) 

-is_list (Goal), ! , fail. 
icl_BasicGoal(Goal) 

icl compound goal(Goal), !, fail. 
icl_BasicGoal(Go~l) 

icl_Builtin(Goal), 
! . 

icl BasicGoal (Goal) :-
-Goal =. . [Functor I ) , 

atom(Functor). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: icl_compound_goal(+Goal). 
% purpose: Test whether an expression is an ICL compound goal. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
icl_compound_goal(_X:_Y). 
icl compound goal( X:: Y). 
icl=compound=goal((\+ =P)). 
icl_compound_goal((_P > _Q _R)). 
icl compound goal(( P -> Q)). 
icl=compound=goal((=X, _Yl). 
icl_compound_goal((_X; _Y)). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: icl_GoalComponents(+ICLGoal, -A, -G, -P). 
% icl_GoalComponents(-ICLGoal, +A, +G, +P). 
% icl_GoalComponents(+ICLGoal, +A, +G, +P). 
% purpose: Assemble, disassemble, or match against the top-level components 
% of an ICL goal. 
% remarks: 
% - The top-level structure of an ICL goal is Address:Goal: :Params, 
% with Address and Params BOTH OPTIONAL. Thus, every ICL goal 
% either explicitly or implicitly includes all three components. 
% - This may be used with any ICL goal, basic or compound. 
% - When P is missing, its value is returned or matched as [). When A is 
% missing, its value is returned or matched as •unknown'. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The first 4 clauses handled all cases where the ICL Goal is bound; 
% the remainder handle those where it is a var. 
icl_GoalComponents(A:G: :P, Address, Goal, Params) 

\+ var(A), \+ var(G), \+ var(P), 
! , 

Address = A, Goal = G, Params = P. 
icl_GoalComponents(A:G, Address, Goal, Params) 

\+ var(A), \+ var(G), 
! , 

Address = A, Goal = G, Params = (] . 
icl_GoalComponents(G: :P, Address, Goal, Params) 

\+ var(G), \+ var(P), 
I . , 
Address = unknown, Goal G, Params P. 

9 

Page 210 of 778



icl_GoalComponents(G, Address, Goal, Params) 
\+ var(G), 
I 
• I 

Address = unknown, Goal = G, Params = []. 
icl_GoalComponents(Goal, unknown, Goal, []) 

! . 
icl_GoalComponents(Address:Goal, Address, Goal, []) 

! . 

icl_GoalComponents(Goal: :Params, unknown, Goal, Params) 
! . 

icl_GoalComponents(Address:Goal: :Params, Address, Goal, Params) 
! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Permissions and parameter lists 
% 
% These procedures are used in processing solvables permissions, and 
% parameter lists of all kinds (including those used with solvables, 
% those contained in events, and those used in calls to various 
% library procedures). 
% 
%All permissions and many parameters have default values. 
% 
% Permissions and parameters lists have a standard form, as defined by 
% the predicates below. To save bandwidth and promote readability, a 
% "perm" or "param" list in standard form OMITS default values. For 
%easier processing (e.g., comparing/merging param lists), boolean 
% params in standard form always include a single argument 'true' or 
% 'false'. 
% 
% In definitions of solvables and calls to documented library 
%procedures, it's OK to include default params in a Params list, if 
%desired. For boolean params, when the intended value is 'true', it's 
% OK just to specify the functor, for example, instead of 
% cache(true), it's OK just to include 'cache'. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% icl_standardize_perms(+Perms, +KeepDefaults, -Standardized). 

icl_standardize_perms([], _KeepDefaults, []). 
icl_standardize_perms([Perm I Perms], KeepDefaults, [SPerm I SPerms]) 

icl_perm_standard_form(Perm, SPerm), 
( KeepDefaults ; (\+ icl_perm_default(SPerm)) ) , 
! I 

icl_standardize_perms(Perms, KeepDefaults, SPerms). 
icl_standardize_perms([_Perm I Perms], KeepDefaults, SPerms) 

icl_standardize_perms(Perms, KeepDefaults, SPerms). 

icl_perm_standard_form(Perm, SPerm) 
atom(Perm), 
! I 

SPerm= .. [Perm, true]. 
icl_perm_standard_form(Perm, Perm). 

icl_perm_default(call(true)). 

10 

Page 211 of 778



icl_perm_default(read(false)). 
icl_perm_default(write(false)). 

% icl_standardize_params(+Params, +KeepDefaults, -standardized). 
% 
% Normally there's no need to keep the default value of a param, 
% but there are exceptional situations. If KeepDefaults is true, 
% default values are kept. 

icl_standardize_params ( [] , []) . 
icl_standardize_params([Param I Rest], KeepDefaults, AllStandardized) 

icl_param_standard_form(Param, FullStandardized), 
( KeepDefaults > 

Standardized = FullStandardized 
otherwise -> 
icl_remove_default_params(FullStandardized, Standardized) 

) I 

icl_standardize_params(Rest, KeepDefaults, RestStandardized), 
append(Standardized, RestStandardized, AllStandardized). 

% icl_param_standard_form(+Param, -StandardParams). 
% 
% Maps from an element of a parameter list to a list of elements 
% in standardized form. The parameter list element can be from 
%any context (from a call to Solve, AddTrigger, AddData, etc.). 

icl_param_standard_form(reply(false), [reply(none)]) 
! . 
% broadcast has been retained, as a synonym for reply(none): 

icl_param_standard_form(broadcast, [reply(none)]) 
! . 

icl_param_standard_form(broadcast(true), [reply (none)]) 
! . 

icl_param_standard_form(broadcast(false), [reply (true)]) 
! • 

icl_param_standard_form(address(Addr), [address(SAddr)]) 
! I 

icl_standardize_address(Addr, SAddr). 
icl_param_standard_form(strategy(query), [parallel_ok(true)]) 

! . 
icl_param_standard_form(strategy(action), 

[parallel_ok(false), solution_limit(l)]) 
! • 

icl_param_standard_form (strategy (inform), 
[parallel_ok(true), reply(none)]) 

! . 
icl_param_standard_form(callback(Mod:Proc), [callback(Mod:Proc)]) 

! . 
icl_param_standard_form(callback(Proc), [callback(user:Proc)]) 

! • 
icl_param_standard_form(Param, 

atom (Param) , 
I 
• I 

[SParam] ) : -

SParam =·. [Param, true]. 
icl_param_standard_form(Param, [Param]). 

icl_param_default(from(unknown)). 

11 

Page 212 of 778



icl_param_default(priority(S)). 
icl_param_default(utility(S)). 
icl_param_default(if_exists(append)). 
icl_param_default(type(procedure)). 
icl_param_default(private(false)). 
icl_param_default(single_value(false)). 
icl_param_default(unique_values(false)). 
icl_param_default(rules_ok(false)). 
icl_param_default(bookkeeping(true)). 
icl_param_default(persistent(false)). 
icl_param_default(at_beginning(false)). 
icl_param_default(do_all(false)). 
icl_param_default(reflexive(true)). 
icl_param_default(parallel_ok(true)). 
icl_param_default(reply(true)). 
icl_param_default(block(true)). 
icl_param_default(cache(false)). 
icl_param_default(flush_events(false)). 
icl_param_default(recurrence(when)). 

icl_remove_default_params([], []). 
icl_remove_default_params([Param I Rest], Removed) 

icl_param_default(Param), 
! I 

icl_remove_default_params(Rest, Removed). 
icl_remove_default_params([Param I Rest], [Param I Removed]) 

icl_remove_default_params(Rest, Removed). 

% icl_GetParamValue(+Param, +ParamList). 
% 
% Param must have a functor, but its argument(s) can be either ground 
%or variables. E.g., persistent(X). 
% 
% To get or test the value of a parameter that has a default, it is 
% best to call icl_GetParamValue. For a parameter that has no default, 
% you can use icl_GetParamValue OR memberchk. 

icl_GetParamValue(Param, ParamList) :
predicate skeleton(Param, Skel), 
memberchk(Skel, ParamList), 
! I 

Skel = Param. 
icl_GetParamValue(Param, _ParamList) 

predicate skeleton(Param, Skel), 
icl_param=default(Skel), 
! I 

Skel = Param. 

icl_GetPermValue(Perm, PermList) :
predicate skeleton(Perm, Skel), 
memberchk(Skel, PermList), 
! I 

Skel = Perm. 
icl_GetPermValue(Perm, PermList) :

predicate_skeleton(Perm, Skel), 
icl_perm_default(Skel), 
I . , 

12 

Page 213 of 778



Skel Perm. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: icl_ConsistentParams(+Test, +ParamList) 
% purpose: Often used in solvable declarations to filter on a certain 
% condition. 
% definition: 
% Test a param list: if one or more values are given in a parameter 
% list for parameter ParamName, then ParamValue must be defined as 
% one of the values to succeed. If ParamValue is NOT defined, then 
% icl_ConsistentParams succeeds. 
% example: 
% A natural language parser agent can only handle English definitions: 
% 
% 
% 
% 

convert(nl, icl,Input,Params,Output) 
icl_ConsistentParams(language(english) ,Params). 

% if 11 language(english) 11 is defined in parameter list of a solve request, 
% the nl agent will receive the request. 
% if "language(spanish) 11 is defined in the parameter list, the nl agent 
% WILL NOT receive the request. 
% if no language parameter is specified, the request WILL be sent 
% if 11 language(X) 11 is specified, the request WILL be sent to the nl agent 
% remarks: 
% Test may contain either a single predicate or a list of test predicates, 
% in which case icl_ConsistentParams will execute all consistency tests. 
% - Interesting note: icl_ConsistentParams() checks consistency as a 
% relation between the two arguments, so it doesn't matter which argument 
% specifies the test list and which the parameters to test. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

icl_ConsistentParams (_TestList, []) :- ! • 

icl ConsistentParams ( [), ParamList) :- ! . 
ic(~consistentParams ( [TestiRTest], [PliRParams]) ! , 

ParamList [PliRParams], 
predicate_skeleton(Test, TestWithVars), 
(memberchk(TestWithVars, ParamList) -> 

memberchk(Test, ParamList) 
I true), 
icl_ConsistentParams(RTest, ParamList). 

% either Test or Params is NOT a list 
icl ConsistentParams(Test, Param) : 

- (Test = [_I_J -> 

NewTest = Test 
I NewTest = [Test]), 
(Param = [_I_J -> 

NewParam = Param 
NewParam = [Param]), 

icl_ConsistentParams(NewTest, NewParam). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Agent identity and addressing 
% 
% Every agent (including facilitators) has a symbolic name, a full address, 

13 

Page 214 of 778



% and a local address (or "local ID"). 
% addr(tcp(Host,Port)) 
% addr(tcp(Host,Port), LocaliD) 
% 

A full address has the form: 
for a facilitator (if TCP is protocol) 
for a client agent. 

% Even though it doesn't appear in the full address, a facilitator also 
% has a local ID, for consistency and convenient reference. The 
% local ID of a client agent is assigned to it by its facilitator. 
%This, and the facilitator's local ID, are passed to the client at 
% connection time. 
% 
% Full addresses are globally unique, and local addresses are unique with 
% respect to a facilitator. Symbolic names are NOT unique in any sense. 
% 
% The local ID happens to be an integer, but developers should not rely 
% on this. 
% 
% When specifying addresses, in address/1 params for calls to 
% oaa_AddData, oaa_Solve, etc., either names or addresses may be used. 
%In addition, for convenience, reserved terms •self', 'parent', and 
% 'facilitator' may also be used. 
% 
% More precisely, the address parameter may contain any of the following: 
% a full address; a local ID (when the addressee is known to be either 
% the facilitator or a peer client); a name, enclosed in the name/1 functor; 
%'self'; 'parent'; or 'facilitator'. ('parent' and 'facilitator are 
% synonymous . ) 
% 
%Address parameters are standardized as follows: A full address for the 
% local facilitator or a peer client is changed to the local ID; all 
% other full addresses are left as is. Names are left as is. •self', 
% 'parent', and 'facilitator' are changed to the appropriate local ID. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This can only be used AFTER oaa SetupCommunication has been called, 
% because of the reliance here on-com:com_connection_info/5. 

icl standardize address(Addr, SAddr) 
-\+ is_list(Addr), 

I 
• I 

icl_standardize_address([Addr], SAddr). 
icl standardize address ( [] , []) . 
icl=standardize=address([Addr I Addrs], [SAddr I SAddrs]) 

icl_standardize_addressee(Addr, SAddr), 
I 
• I 

icl standardize address(Addrs, SAddrs). 
icl_standardize_add~ess([_Addr I Addrsl, SAddrs) 

icl_standardize_address(Addrs, SAddrs). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

icl_standardize_addressee(addr(Addr), Parentid) 
com:com_Getinfo(parent, addr(Addr)), 
com:com_Getinfo(parent, fac_id(Parentid)), 
! . 

icl_standardize_addressee(addr(Addr), addr(Addr)) 
! . 

icl_standardize_addressee(addr(Addr, LID), LID) :-

14 

Page 215 of 778



com:com_Getinfo(parent, addr(Addr)), 
! . 

icl_standardize_addressee(addr(Addr, LID), LID) 
com:com_Getlnfo(incoming, addr(Addr)), 
! . 

icl_standardize_addressee(addr(Addr, LID), addr(Addr, LID)) 
! . 

icl_standardize_addressee(name(Name), name(Name)) :-
! , 
icl_name (Name) . 

icl_standardize_addressee(Name, name(Name)) 
icl_name (Name) , 
! , 
format('-w (-w): addressee name, in address/1 param, should be specified 

as:-n name(-w)-n', 
['WARNING', 'liboaa.pl', Name]). 

icl_standardize_addressee(Id, Trueid) :
icl_true_id(Id, Trueid), 
! . 

icl_standardize_addressee(Whatever, ) :-
format('-w (-w): Illegal addressee, in address/1 param, discarded:-n -w-n', 

['WARNING', 'liboaa.pl', Whatever]), 
fail. 

icl_true_id(self, Me) 
! , 
oaa_Id(Me). 

icl_true_id(parent, Parent) 
I . , 
com:com_Getinfo(parent, fac id(Parent)). 

icl_true_id(facilitator, Parent) : 
! , 
com:com_Getinfo(parent, fac_id(Parent)). 

icl_true_id(Id, Id) :-
icl_id (Id) . 

icl_id (Num) :
integer (Num) , 
Num >= 0. 

icl_name(self) 
! , fail. 

icl_name(parent) :-
!, fail. 

icl_name(facilitator) 
! , fail. 

icl_name(Atom) :
atom (Atom) . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: 
% 
% 
% purpose: 
% remarks: 
% - In 

icl ConvertSolvables(+ShorthandSolvables, -StandardSolvables). 
icl=ConvertSolvables(-ShorthandSolvables, +StandardSolvables). 

Convert between shorthand and standard forms of solvables list. 

the standard form, each element is a term solvable(Goal, 

15 

Page 216 of 778



% Params, Permissions), with Permissions and Params both lists. 
% In the Permissions and Params lists, values appear only when they 
% are OTHER than the default. 
% - In the shorthand form, each element can be solvable/3, as above, 
% or solvable(Goal, Params), or solvable(Goal), or just Goal. 
% - Note that "shorthand" means "anything goes" - so shorthand 
% solvables are a superset of standard solvables. 
% - Permissions (defaults in square brackets) : 
% call (T_F) [true], read (T_F) [false], write (T_F) [false] 
% Params (defaults in square brackets) : 
% type(Data_Procedure) [procedure), 
% callback(Functor) [no default] 
% utility (N) [5] 
% synonym(SynonymHead, RealHead) [none] 
% rules ok (T F) [false] , 
% single_value(T_F) [false], 
% unique_values(T_F) [false], 
% private (T_F) [false] 
% bookkeeping(T_F) [true] 
% persistent (T F) [false] 
% - Refer to Agent Library Reference Manual for details on Permissions 
% and Params. 
% - (®®DLM) This might be the place to check the validity of solvables, 
% such as using only built-ins in tests. Also, check for dependencies 
% between solvables; e.g., when persistent(false) is there, 
% bookkeeping(true) must also be there. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
icl_ConvertSolvables(ShorthandSolvables 1 StandardSolvables) :-

var(StandardSolvables)1 
! I 

icl_standardize_solvables(ShorthandSolvables 1 StandardSolvables). 
icl_ConvertSolvables(ShorthandSolvableS 1 StandardSolvables) :

icl_readable_solvables(StandardSolvables1 ShorthandSolvables). 

% icl_standardize_solvables(+ShorthandSolvables, 
% -StandardSolvables) . 

icl standardize solvables ( [] 1 []). 

icl=standardize=solvables([Shorthand I RestSH] 1 [Standard 
icl_standardize_solvable(Shorthand, Standard), 
icl_standardize_solvables(RestSH, RestStan). 

RestStan]) 

% icl_standardize_solvable(+Shorthand1 -standard). 
icl_standardize_solvable(solvable((Goal :-Test), Params, Perms), Standard) 

! I 

append([test(Test)], Params, NewParams), 
icl_standardize_solvable(solvable(Goal, NewParams, Perms), Standard). 

icl standardize_solvable(solvable((Goal :-Test), Params), Standard) :-
I 
• I 

icl_standardize_solvable(solvable(Goal, [test(Test) I Params], []), 
Standard). 

icl_standardize_solvable(solvable((Goal :-Test)), Standard) :-
! I 

icl_standardize_solvable(solvable(Goal, [test(Test)], []), Standard). 
icl_standardize_solvable((Goal :-Test), Standard) :-

! I 

icl_standardize_solvable(solvable(Goal, [test(Test)], []), Standard). 

16 

Page 217 of 778



icl_standardize_solvable(solvable(Goal, Params, Perms), 
solvable(Goal, NewParams, NewPerms)) 

! I 

icl_standardize_params(Params, false, NewParams), 
icl_standardize_perms(Perms, false, NewPerms). 

icl_standardize_solvable(solvable(Goal, Params), 
solvable(Goal, NewParams, [])) :-

! I 

icl_standardize_params(Params, false, NewParams). 
icl_standardize_solvable(solvable(Goal), solvable(Goal, [], [])) ! . 

icl_standardize_solvable(Goal, solvable(Goal, [], [])) :- ! . 

% icl_readable_solvables(+StandardSolvables, 
% -ShorthandSolvables) . 
% This is provided for use in "pretty-printing" solvables, in trace 
% messages, etc. 

icl readable solvables ( [], []). 
icl=readable=solvables([Standard I RestStan], [Shorthand I RestSh)) 

icl_readable_solvable(Standard, Shorthand), 
icl_readable_solvables(RestStan, RestSh). 

% icl readable solvable(+Standard, -Shorthand). 
icl readable_solvable(solvable(Goal, [), [)),Goal) :- !. 

icl_readable_solvable(solvable(Goal, Params, []), solvable(Goal, Params)) ! . 
icl readable solvable(solvable(Goal, Params, Perms), 

- - solvable(Goal, Params, Perms)) :- J. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: icl minimally instantiate solvables(+ShorthandSolvables, 
% - - - -MinimalSolvables). 
% purpose: Convert from shorthand (or standard form) to minimally instantiated 
% solvables list. 
% remarks: - This is special-purpose. It's used to massage a list of solvables 
% that are to be UNdeclared, to make sure each of them will unify 
% with some existing solvable. Perms and Params are completely 
% ignored in the unification; only the Goal is relevant. So each 
% minimally instantiated solvable is simply solvable(Goal, _, ) . 
% Note that "shorthand" means "anything goes" so shorthand 
% solvables are a superset of standard solvables. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% icl_minimally_instantiate_solvables(+ShorthandSolvables, 
% -solvables) . 

icl_minimally_instantiate_solvables( [], []). 
icl_minimally_instantiate_solvables( [Shorthand I RestSH], 

[Minimal I RestMin] ) :-
icl minimally instantiate solvable(Shorthand, Minimal), 
icl=minimally=instantiate=solvables(RestSH, RestMin). 

% icl minimally instantiate solvable(+Shorthand, -Minimal). 
icl_minimally_instantiate_solvable(solvable((Goal _Test), Params, Perms), 

Minimal) 
! , 
icl_minimally_instantiate_solvable(solvable(Goal, Params, Perms), 

Minimal). 
icl_minimally_instantiate_solvable(solvable((Goal _Test), Params), 

Minimal) 

17 

Page 218 of 778



! I 

icl minimally instantiate solvable(solvable(Goal, Params, [)), Minimal). 
icl_minimally_instantiate_sol~able(solvable((Goal :-_Test)), Minimal) 

! I 

icl_minimally_instantiate_solvable(solvable(Goal, [), [)), Minimal). 
icl_minimally_instantiate_solvable((Goal :-_Test), Minimal) 

! 1 

icl_minimally_instantiate_solvable(solvable(Goal, [), [)), Minimal). 
icl_minimally_instantiate_solvable(solvable(Goal, _Params, _Perms), 

solvable(Goal, )) 
! . 

icl_minimally_instantiate_solvable(solvable(Goal, _Params), 
solvable (Goal, ) ) 

! . 
icl minimally instantiate solvable(solvable(Goal), solvable(Goal, )) ! . 

icl=minimally=instantiate=solvable(Goal, solvable(Goal, _, _)) !. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_goal_matches_solvables(+Goal, +Solvables, 
% -RealGoal, -MatchedSolvable). 
% purpose: Determine whether a call to Goal is handled by the agent with 
% these Solvables. 
% arguments: 
% Goal must be non-compound (basic) to match: no address, no params, 
% no subgoals. 
% - Solvables must be in standard form. 
% - RealGoal is what should actually be called, after taking synonyms 
% into account. 
% - MatchedSolvable is the solvable record corresponding to RealGoal. 
% remarks: 
% - A solvable's params may contain a single test, but it can 
% be compound: 
% solvable (g (X), [test ((X > 1, X < 10))), [ ... )) . 
% Tests should contain only prolog builtins. 
% Any solvable can be a synonym of another solvable (including a 
% synonym of a synonym), but eventually there must be a non-synonym 
% solvable. Synonyms must be used with care. If predicate A 
% is synonymed to predicate B, there must be a solvable for clause B, 
% for A to be usable. 
% When a predicate A is synonymed to predicate B, all other params 
% and all permissions associated with A are ignored. 
% Uses would_unify (and \+ \+) so that any variables in the goal are 
% not bound by the solvable, thereby unnecessarily constraining query 
% I forget why: I think it was because we had some problems 
% matching solutions coming back. However, this has an unusual 
% side effect: if your solvable is t(6) and your query is t(X), 
% the query arrives at the agent as t(X), not t(6), which might 
% be unexpected. Look into this more someday ... 
% However, when Goal is a synonym, variables in the synonym param DO 
% get unified correctly. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_goal_matches_solvables(Goal, Solvables, RealGoal, RealMatched) 

oaa_built_in_solvables(Builtins), 
append(Builtins, Solvables, AllSolvables), 
oaa_goal_in_solvables(Goal, AllSolvables, Matched), 
Matched = solvable( , Params, ) , 

18 

Page 219 of 778



% See if Goal is a synonym predicate 
( icl_GetParamValue(synonym(Goal, SynGoal), Params) -> 

oaa_goal_matches_solvables(SynGoal, Solvables, RealGoal, RealMatched) 
otherwise > 

) ' 
! . 

RealGoal = Goal, 
RealMatched = Matched 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa goal in solvables(+Goal, +Solvables, -MatchedSolvable). 
% purpose: Determine whether a call to Goal is handled by the agent with 
% these Solvables. 
% purpose: Determine whether Goal appears in Solvables, with 
% appropriate Params and Perms for it to be called. 
% arguments: 
% - Goal must be non-compound (basic) to match: no address, no params, 
% no subgoals. 
% Solvables must be in standard form. 
% remarks: 
% - Should not be called directly; only by oaa_goal_matches_solvables. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_goal_in_solvables(Goal, [solvable(Gl,Params,Perms) I _Rest], 

solvable (Gl, Params, Perms)) :.
would_unify(Goal, Gl), 

icl_GetParamValue(synonym(Goal, _RealGoal), Params), 
! . 

oaa goal in solvables(Goal, [solvable(Gl,Params,Perms) I _Rest], 
- - - solvable(Gl,Params,Perms)) 

would_unify(Goal, Gl), 
icl_GetPermValue(call(true), Perms), 
( icl GetParamValue(test(T), Params) -> 

\~ \+ oaa_Interpret ((Goal == Gl, T), []) 
otherwise > 

) ' 
! • 

true 

oaa_goal_in_solvables(Goal, [_!Rest], Matched) : 
oaa_goal_in_solvables(Goal, Rest, Matched). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_data_matches_solvables(+Clause, +Solvables, +Perm 
% -RealClause, -MatchedSolvable). 
% purpose: Determine whether Clause can be read or written by the agent with 
% these Solvables, and return the "real" form of the clause that 
% takes synonyms into account. 
% arguments: 
% - Clause must be non-compound (basic) to match: no address, no params, 
% no subClauses. 
% - Solvables must be in standard form. 
% Perm is 'read' or 'write'. 
% - RealClause is what should actually be used (asserted, retracted, 
% replaced) . 
% - MatchedSolvable is the solvable record corresponding to RealClause. 
% remarks: 

19 

Page 220 of 778



% "Writing" means making an assertion. 
% "Reading" is different than "calling". "Reading" is retrieving the 
% definition clauses of a predicate (including the bodies, if any). 
% Reading is not currently supported by any library procedures. 
% Any solvable can be a synonym of another solvable (including a 
% synonym of a synonym) , but eventually there must be a non-synonym 
% solvable. Synonyms must be used with care. If predicate A 
% is synonymed to predicate B, there must be a solvable for clause B1 

% for A to be usable. 
% When a predicate A is synonymed to predicate B, all other params 
% and all permissions associated with A are ignored. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_data_matches_solvables(Clause 1 Solvables, Perm, Rea1Clause 1 RealMatched) : 

oaa_built_in_solvables(Builtins), 
append(Builtins 1 Solvables, AllSolvables), 
oaa_data_in_solvables(Clause, AllSolvables, Perm, Matched) 1 

Matched= solvable( , Params, ) , 
( Clause = (Head Body) -> 

) I 

true 
otherwise > 
Head = Clause 

% See if Clause is a synonym predicate 
( icl_GetParamValue(synonym(Head 1 SynHead), Params) -> 

( Clause = (Head :- Body) -> 

) I 

! . 

) I 

SynClause = (SynHead Body) 
otherwise -> 

SynClause = SynHead 

oaa_data_matches_solvables(SynClause, Solvables, Perm, 
Rea1Clause 1 RealMatched) 

otherwise -> 
RealClause = Clause, 

RealMatched = Matched 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa data in solvables(+Clause, +Solvables, +Perm, -MatchedSolvable). 
% purpose: Determine whether (the Head of) Clause appears in Solvables, with 
% appropriate Params and Perms for it to be read or written. 
% arguments: 
% - Clause must be non-compound (basic) to match: no address, no params, 
% no subClauses. 
% - Solvables must be in standard form. 
% remarks: 
% - Should not be called directly; only by oaa_data_matches_solvables. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_data_in_solvables(Clause, [solvable(Gl 1 Params,Perms) I _Rest], _Perm, 

) I 

solvable(Gl,Params,Perms) ) :-
( Clause = (Head _Body) -> 

true 
otherwise > 

Head = Clause 

would_unify(Head, Gl) 1 

icl_GetParamValue(synonym(Head, _RealHead), Params), 

20 

Page 221 of 778



% ®®DLM: OK, so it's a synonym, but shouldn't we check 
% the permissions and type(data) for the referenced solvable? 
! . 

oaa_data_in_solvables(Clause, [solvable(Gl,Params,Perms) I _Rest], Perm, 
solvable(Gl,Params,Perms) ) 

icl_GetParamValue(type(data), Params), 
( Clause = (Head :-_Body) -> 

icl_GetParamValue( rules_ok(true), Params) 
otherwise -> 

Head = Clause 
) I 

would_unify(Head, Gl), 
( Perm == write > 

icl_GetPermValue(write(true), Perms) 
otherwise -> 

icl_GetPermValue(call(true), Perms) 
) I 

! • 

oaa_data_in_solvables(Clause, [_!Rest], Perm, Matched) 
oaa_data_in_solvables(Clause, Rest, Perm, Matched). 

%***************************************************************************** 
% Retrieving and managing events 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_MainLoop 
% purpose: The main event loop for the application. 
% Reads an event, executes (interprets) it, 
% checks on_receive triggers for the event, 
% checks any application-dependent triggers, 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

oaa_MainLoop(ShouldPrint) 

oaa_Ready(ShouldPrint), 

repeat, 
oaa_GetEvent(Event, Params, 0), 
oaa ProcessEvent(Event, Params), 

fail. -

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_ProcessEvent 
% purpose: Interprets an incoming event 
% - For a timeout, checks task triggers and calls user's idle procedure 
% - Otherwise, oaa Interprets the event, checks on receive comm 
% triggers, and then checks task triggers. -
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_ProcessEvent(timeout, Params) !, 

oaa_CheckTriggers(task, _, _), !, 
oaa_call_callback(app_idle, _, []). 

oaa_ProcessEvent(Event, Params) 

21 

Page 222 of 778



( oaa_Interpret(Event, Params) ->true I true ) , 
oaa_CheckTriggers(task, ), ! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa SetTimeout 
% purpose: Sets the timeout value used by oaa_GetEvent 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_SetTimeout(NSecs) 

% Make sure NSecs is valid number 
number(NSecs), 
(NSecs < 0 -> 

TimeOut 0 
TimeOut = NSecs) , 

oaa_TraceMsg('-nSetting event timeout to ''-q' '.-n', [TimeOut]), 
on_exception(_,retractall(oaa_timeout(_)), true), 
assert(oaa_timeout(TimeOut)). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_GetEvent 
% purpose: Return the next event to execute 
% remarks: 
% - if a oaa_timeout(Secs) is set to a positive real number by 
% oaa_SetTimeout, wait Sees for an event. 
% If none arrives in this time, return Event = 'timeout' 
% - Reads ALL events available on communication stream, sorts the events 
% according to priority, chooses the next event to execute, 
% and then saves the rest for next time oaa_GetEvent is called. 
% - The communication stream is read every time oaa_GetEvent is called, even 
% if there are already saved events (a new one might have a higher 
% priority!) 
% - If saved events exist, return immediately (timeout not considered). 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_GetEvent(Event, Params, LowestPriority) 

% see if previously saved events to process 
( retract(oaa_event_buffer(SavedEvents)) -> 

) I 

true 
otherwise -> 

SavedEvents [] 

% If at least one event can be found with an appropriate priority 
% from among the saved events, no timeout needed flush tcp 
% buffer, and read_all available 
(oaa_choose_event(LowestPriority, SavedEvents, _OneEvent, _Remainder) -> 

TimeoutSecs = 0.01 

on_exception(_,oaa_timeout(TimeoutSecs) ,TimeoutSecs=O) 

TimeoutSecs=O 
) I 

oaa_read_all_events(TimeoutSecs, MoreEvents, FlushPriority), 

% if one of the new events has a flush in it, see if it 

22 

Page 223 of 778



% flushes any of the saved events 
% note: MoreEvents have already been flushed by FlushPriority 
oaa_flush_events{SavedEvents, FlushPriority, RemainingSavedEvents), 

% These are the events we've read so far and haven't executed yet ... 
append{RemainingSavedEvents, MoreEvents, EventList), 

{oaa_sort_and_get_event{EventList, LowestPriority, Event, Params) -> 

% we are able to find an appropriate event from list 
% The event will be returned, so fire triggers on it 

oaa_CheckTriggers{comm, event{Event, Params), receive) 

% no good event found, return timeout 
Event timeout, 
Params = [] 

) I 

% This cut is essential to avoid faulty behavior {DLM) 
! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_sort_and_get_event 
% purpose: Sort raw events by priority, choose the highest priority event 
% or Firstin if equal priority, extract event data and sender, 
% and store the rest of events 
% remarks: 
% The chosen event must be of HIGHER priority than LowestPriority, and 
% oaa_sort_and_get_event can fail if no appropriate event is found 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_sort_and_get_event{EventList, LowestPriority, Event, Params) 

samsort{oaa_priority_compare, EventList, SortedList), 
oaa_choose_event{LowestPriority, SortedList, RawEvent, Remainder), 
oaa_extract_event{RawEvent, Event, Params), 
{Remainder = [] ; 
assert(oaa_event_buffer(Remainder))), 

! . 

oaa_priority_compare(El, E2) :
oaa_extract_event_param(El, 
oaa_extract_event_param(E2, 
!, Pl >= P2. 

, priority{Pl)), 
, priority(P2)), 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa choose event - -
% purpose: Extracts the first event from a list which has a HIGHER priority 
% than the required lowest. Fails if none found. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_choose_event{LowestPriority, [EventjRemainder], Event, Remainder) :-

oaa_extract_event_param{Event, , priority(P)), 
LowestPriority < P, 
! . 

oaa_choose_event(LowestPriority, [EjRest], Event, [EjRest2]) : 
oaa_choose_event(LowestPriority, Rest, Event, Rest2). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

23 

Page 224 of 778



% name: oaa read all events 
% purpose: Flush the co;munication event queue, reading ALL available events and 
% returning a list of them, or empty list if none available. 
% remarks: 
% Events are retrieved in raw {unextracted) form. 
% - We check to make sure the event is Validated {security hook) 
% before returning it 
% - We check to see if the event is flushed by a later event. 
% If so, we notify event sender of the flush and we don't return the 
% event. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa read all events{TimeOut, Events, FlushPriority) 

- oa~_select_event{TimeOut, E), !, 

{E == timeout -> 

) . 

Events = [], 
FlushPriority = 0 % lowest event priority: don't flush events 

% read one event, so read all the rest 
oaa_read_all_events{O.OOOl, RestEvents, RestFlushPriority), 

% check if read Event is acceptable {security hook) 
{oaa_ValidateEvent{E,OkEvent) -> 

oaa_ComTraceMsg{'-n[COM received] :-n -q-n', [OkEvent]), 

% get event's priority 
oaa_extract_event_param{OkEvent, , priority{P)), 

% if less than some higher priority flush event, discard event 
% and perhaps notify sender 
{P < RestFlushPriority > 

I 

% event will be removed, 
oaa flush notification{OkEvent), 
FlushPriority RestFlushPriority, 
Events = RestEvents 

% keep event: not flushed 
Events = [OkEventiRestEvents], 

% see if this event adds a flush: 
% if so record new flush priority 

{oaa_event_param{OkEvent, flush_events{true)) > 
FlushPriority P 

I FlushPriority = RestFlushPriority) 
) 

% Not validated, skip event 
I Events = RestEvents) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_ValidateEvent 
% purpose: Check that an incoming lowlevel event should be processed. 
% This is the place to put security checks on events. 
% The default behavior defined by the library can be made more 
% stringent by individual agents using the callback oaa_AppValidateEvent 
% remarks: 

24 

Page 225 of 778



% oaa_ValidateEvent has the right to modify the incoming event, 
% or refuse it altogether by failing. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa ValidateEvent(E,OkEvent) 

- % if oaa AppValidateEvent is defined, use it. 
predicate_property(user:oaa_AppValidateProperty(_,_), ) , 
! I 

user:oaa_AppValidateProperty(E, OkEvent). 
% currently, no security checks are performed 
oaa_ValidateEvent(OkEvent,OkEvent). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa flush events - -
% purpose: Flushes any events with a lower priority than the FlushPriority 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa flush events ( [], FlushPriority, []). 
oaa=flush=events([EventiRestEvents], FlushPriority, RemainingEvents) 

oaa_flush_events(RestEvents, FlushPriority, RestSaved), 

% get event's priority 
oaa_extract_event_param(Event, _, priority(P)), 

% if lower priority than we are flushing, notify and remove 
(P < FlushPriority -> 

oaa_flush_notification(Event), 
RemainingEvents RestSaved 

RemainingEvents [EventiRestSaved] 
) . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_flush_notification 
% purpose: Given a raw event, grabs its real event and looks up whether 
% a notification should be sent out regarding the event's 
% cancellation due to a flush. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_flush_notification(RawEvent) :-

oaa_extract_event(RawEvent, Event, Params), 
(oaa_get_flush_notify(Event, NotifyEvent) -> 

oaa PostEvent(NotifyEvent, []) 
I true), ! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_get_flush_notify 
% purpose: Records a list of events which require a return notification 
% if the event is flushed. 
% remarks: 
% currently, only the ev solve() event returns a message; 
% all other events are flushed without notification 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ®®Additional entries needed here: 
oaa_get_flush_notify(ev_solve(ID, Goal, Params), 

ev_solved(ID, FromMe, Goal, Params, [])) 

25 

Page 226 of 778



(icl_GetParamValue(reply(none), Params) -> 

fail 
I oaa_Id(FromMe)). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_select_event 
% purpose: If a positive timeout is defined, wait N seconds for an event 
% to arrive 
% Otherwise block-wait until an event arrives. 
% remarks: IMPORTANT: Connected/1 gets special handling, because we want 
% the connection ID and oaa ID to be assigned immediately. 
% Otherwise, oaa_translate_incoming_event and oaa_unwrap_event 
% won't always work properly for subsequent events from the 
% new connection (or would have to be more complicated) . 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_select_event(TimeOut, Event) 

com:com_SelectEvent(TimeOut, InEvent), 
( InEvent = connected( ) -> 

oaa_ProcessEvent(InEvent, []), 
oaa_select_event(Timeout, Event) 

otherwise -> 

) . 
oaa_translate_incoming_event(InEvent, TranslatedEvent), 
oaa_unwrap_event(TranslatedEvent, _Connection, Event) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_unwrap_event(+TranslatedEvent, -Connection, -Event). 
% arguments: TranslatedEvent: An event from another agent, which has already 
% been translated for version compatibility, if necessary. 
% Event: An event term in our standard internal format, as required 
% by all other library procedures. 
% Connection: The CONNECTION of the immediate agent 
% from which this message came (note that an agent's CONNECTION 
% can be different than its ID) . 
% purpose: Remove an event term from its communications wrapper (if any), 
% and returns it in our standard internal form: 
% 'timeout' OR event(Content, Params). 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%timeout is the ONLY event that doesn't get embedded in event/2: 
oaa_unwrap_event(timeout, unknown, timeout) 

! . 

oaa unwrap event(term(Connection, event(Content,Params)), Connectionid, 
- - event(Content, NewParams)) 

! ' 

) , 

com:com_Getinfo(Connectionid, connection(Connection)) -> 
true 
otherwise -> 
format( 

'-w: incoming event from an unrecognized connection (-w) :-n -w-n', 
['INTERNAL ERROR', Connection, event(Content,Params)]), 
Connectionid = unknown 

( memberchk(from(_), Params) -> 

NewParams [connection_id(Connectionid) I Params] 
Content = ev_connected(InfoList), 

26 

Page 227 of 778



memberchk(fac_id(Id), InfoList) -> 
NewParams = [from(Id), connection id(Connectionid) I Params] 

I Connectionid = parent, -

) . 

com:com Getinfo(Connectionid, fac id(Id)) -> 
NewPa;ams = [from(Id), connection_id(Connectionid) Params] 

com:com_Getinfo(Connectionid, oaa_id(Id)) -> 

NewParams = [from(Id), connection_id(Connectionid) Params] 
otherwise -> 
% With current code, this should never happen. But I can 
% imagine code changes that might need this (DLM 98/02/18): 

NewParams = [from(unknown), connection_id(Connectionid) I Params] 

% This handles connected/1, end_of_file/1, wakeup/1: 
oaa_unwrap_event(Content, unknown, event(Content, [])). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_translate_incoming_event(+InEvent, -OutEvent). 
%purpose: Provides backwards compatibility by calling a hook 
% (user:oaa_event_translation/7) that translates incoming events from agents 
of 
% other versions. Also allows for event differences based on language. 
% The idea is to return an event with both format and contents that 
% are appropriate for the agent receiving the event. 
% remarks: user:oaa_event_translation/7 can be hard-coded, loaded at runtime, 
% or whatever. If it's not present, we return the same event. 
% Note that the translation hook is somewhat limited. It allows a single 
% event to be translated to another single event, and with essentially 
% no information about context. This inadequate or awkward for some cases. 
% Those cases are handled using extra clauses of user:oaa_AppDoEvent (in 
% translations.pl). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Special cases. There's no need to translate these. And, it could be 
% problematical, because we don't yet know the language and version of 
% the sender. 
oaa_translate_incoming_event(term(Conn, event(Contents, Params)), 

! . 

Contents 
Contents 

term(Conn, event(Contents, Params))) 
ev_connect( ) ; 
ev_connected( ) ) , 

oaa_translate_incoming_event(term(Connection, InEvent), 
term(Connection, OutEvent)) 

current_predicate(oaa_event_translation, 
user:oaa_event_translation(_,_,_,_,_,_,_)), 

com:com_Getinfo(Connectionid, connection(Connection)) -> 

) I 

true 
otherwise -> 
true 

% These assumptions may not always be right, but will 
% nearly always get the desired results. 

% : 
ground(Connectionid), 

27 

Page 228 of 778



) , 

com:com_Getinfo(Connectionid, agent_version(PriorVersion)) -> 
true 

otherwise -> 

PriorVersion = 2.1 

( ground(Connectionid), 
com:com_Getinfo(Connectionid, agent_language(PriorLanguage)) -> 

) , 

true 
otherwise -> 

PriorLanguage = c 

oaa LibraryVersion(MyVersion), 
( MyVersion PriorVersion ; PriorLanguage prolog ) , 
user:oaa_event_translation(PriorVersion, PriorLanguage, MyVersion, prolog, 

Connection, InEvent, OutEvent), 
! . 

% This handles timeout/0, connected/1, end_of_file/1, wakeup/1. 
% Also passes through any event for which there is no translation. 
oaa_translate_incoming_event(Event, Event) ! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_extract_event 
% purpose: Extract the content and parameters from an event term. 
% remarks: Always succeeds. 

·% The content part of the term is often (loosely) called the Event. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

oaa_extract_event(event(Content, Params), Content, Params) 
! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_extract_event_param 
% purpose: Extract the content and a parameter value from an event term. 
% remarks: Always succeeds - unless you ask for a param that has no default 
% value. 
% The content part of the term is often (loosely) called the Event. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

oaa_extract_event_param(event(Content, Params), Content, Param) 
icl_GetParamValue(Param, Params). 

I . , 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_event_param 
% purpose: Extract a parameter from an event term. 
% remarks: This FAILS if the parameter isn't present (unlike 
% oaa_extract_event_param) . 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

oaa_event_param(event(_Content, Params), Param) !, 
memberchk(Param, Params). 

%***************************************************************************** 
% Interpreting EVENTS 
%***************************************************************************** 

28 

Page 229 of 778



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_Interpret(+ICLExpression, +Params) 
% purpose: Executes an incoming event 
% remarks: Implements a simple meta-interpreter for executing complex goals. 
% Agent goals are interpreted by oaa_exec_event(). 
% 
% 
% 
% 
% 
% 

The contents of Params will vary depending on context. 
When oaa_Interpret is called on an incoming event, Params 
will (usually) include from(Sender). Calls generated internally 
may contain from(self). Additional params may 
accumulate through recursive calls to oaa_Interpret. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_Interpret(Goal, _) var(Goal), !, fail. %How could this happen? 
oaa_Interpret(true, _) :- ! • 
oaa_Interpret (fail, _) :- ! , fail. 
oaa Interpret (false, ) :- ! , fail. 
oaa=Interpret((\+ P) ,-Params) !, \+ oaa_Interpret(P, Params). 
oaa_Interpret((P -> Q; _R), Params) 

oaa_Interpret(P, Params), !, oaa_Interpret(Q, Params). 
oaa_Interpret((_P -> _Q; R), Params) :- !, oaa_Interpret(R, Params). 
oaa_Interpret((P > Q), Params) :- !, oaa_Interpret((P -> Q; fail), Params). 
oaa_Interpret((X, Y), Params) :- !, 

oaa_Interpret(X, Params), oaa_Interpret(Y, Params). 
oaa_Interpret((X; Y), Params) :- !, 

(oaa_Interpret(X, Params) ; oaa_Interpret(Y, Params)). 
oaa_Interpret(findall(Var, Goal, All), Params) :- !, 

findall(Var, oaa_Interpret(Goal, Params), All). 
oaa_Interpret(P, Params) :- icl Builtin(P), !, call(P). 
oaa_Interpret(X, Params) oaa_exec_event(X, Params). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa exec event - -
% purpose: Defines execution of events built into all agents 
% remarks: Goals that can't be handled by oaa_exec_event are passed to the 
% user-declared app_do_event callback, if present. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% turn on trace 
oaa exec event(ev trace on, 

- abolish(oaa=trace/1), 
assert(oaa_trace(on)), 
format('-nTrace on.-n', []), ! . 

% turn off trace 
oaa exec event(ev trace off, 

abolish(oaa=trace/1), 
assert(oaa_trace(off)), 
format (' -nTrace off. -n', []), ! . 

% tcp level trace 
oaa exec event(ev com trace on, 

- abolish(oaa=com=trace/1), 
assert(oaa_com_trace(on)), 
format('-nCOMMUNICATION PROTOCOL trace on.-n', []), ! . 

% tcp level trace 

29 

Page 230 of 778



oaa exec event(ev com trace off, 
- ab;lish(oaa=com=tracefl), 

assert(oaa_com_trace(off)), 
format( 1 -nCOMMUNICATION PROTOCOL trace off.-n 1

, []), !. 

% turn on debug 
oaa exec event(ev debug on, 

- ab;lish(oaa-debugfl), 
assert(oaa debug(on)), 
format (' -nDebug on. -n 1 , []), ! . 

% turn off debug 
oaa exec event(ev debug off, 

- ab;lish(oaa=debugfl), 
assert(oaa_debug(off)), 
format ( 1 -nDebug off. -n 1 , []) , ! • 

% Set the timeout value 
oaa exec event(ev set timeout(N), 

- ab;lish(timeoutfl), 
assert(timeout(N)), 
format( 1 -nTimeout set to -q.-n', [N]), ! . 

% Notification that some other agent has disconnected. Currently, this applies 
% only to peer client agents, and the arg. will always be a local ID. 
oaa_exec_event(ev_agent_disconnected(LID), ) 

oaa_remove_data_owned_by(LID). 

% quit to UNIX 
oaa_exec_event(ev_halt, 

format('-nDisconnecting ... -n', []), 
com:com_Disconnect(parent), 
( oaa_call_callback(app_done, []) 
halt. 

true ) , 

oaa_exec_event(ev_update(ID, Mode, Clause, Params), EvParams) 
oaa_Id(Agentid), 
append(Params, EvParams, AllParams), 
( Mode = add -> 

Functor = oaa_add_data_local 
Mode = remove -> 

Functor = oaa remove data local - - -
Mode = replace > 

Functor = oaa_replace_data_local 
) I 

Call= .. [Functor, Clause, AllParams], 
( call(Call) -> 

) I 

Updaters = [Agentid] 
otherwise -> 

Updaters = [] 

(icl_GetParamValue(reply(none), AllParams) >true I 
oaa_PostEvent(ev_updated(ID, Mode, Clause, Params, Updaters), 

[] ) 
) . 

30 

Page 231 of 778



% add or remove a local trigger 
oaa exec event(ev update trigger(ID, Mode, Type, 

- - - -Condition, Action, TrigParams) 1 

Params) 
oaa Id(Agentid) 1 

append(TrigParams 1 Params, NewParams), 
( Mode == add -> 

) I 

Functor = oaa_add_trigger_local 
Mode == remove -> 

Functor = oaa_remove_trigger_local 

Call = .. [Functor, Type, Condition, Action, NewParams], 
( call (Call) -> 

) I 

Updaters = [Agentid] 
otherwise -> 

Updaters = [) 

( icl_GetParamValue(reply(none), Params) -> 

true 

) I 

otherwise -> 
oaa_PostEvent(ev_trigger_updated(ID, Mode, Type, Condition, 

Action, TrigParams, Updaters), 
[)) 

( Mode = add -> 

I true 
) . 

oaa_Inform(trigger, 'trigger_added(-q,-q 1 -q,-q)-n', 
[Type, Condition, Action, NewParams]) 

% When asked to solve a goal, see if you know how to solve 
% it, then find all solutions. Send the solutions to the 
% caller. 
% 
% The various params lists must be used with care. Searching different 
% lists may be appropriate for different params, depending on their 
% meanings. Another consideration is that Solve params and Goal params, 
% as returned to the requesting agent, must unify with the original 
% lists that came from the requesting agent. 

oaa exec event(ev_solve(ID, Ful1Goal 1 SolveParams), Params) 
oaa_class(leaf), 

icl_GoalComponents(FullGoal, _, _, GoalParams), 

% More "local" params take precedence, so they go to the 
% beginning of the list: 
append([SolveParams 1 Params) 1 InheritedParams), 
append([Goa1Params 1 InheritedParams], AllParams) 1 

% Assert context: 
findall(context(C) 1 member(context(C), AllParams), Contexts) 1 

asserta( oaa_current_contexts(ID, Contexts) ), 

oaa_TraceMsg('-n-nAttempting to solve:-n Goal:-q-n Params:-q-n', 
[FullGoal, InheritedParams]), 

findall(FullGoal, 
oaa_solve_local(FullGoal, InheritedParams), 

Solutions) 1 

31 

Page 232 of 778



oaa_TraceMsg('-nSolutions found for -q:-n 
[FullGoal, Solutions]), 

-q-n', 

% If user has requested to delay the solution (oaaDelaySolution) 
% save current userid, Goal and Params in delay table, to be 
% sent back in an ev_solved() msg later {oaaReturnDelayedSolutions). 

(retract(oaa_delay(ID, Userid)) -> 

) I 

assert(oaa_delay_table(ID, Userid, FullGoal, SolveParams, AllParams)) 

(icl_GetParamValue(reply(none), AllParams) -> true 
(oaa_Id(FromKS) ; FromKS =unknown), !, 

oaa_PostEvent(ev_solved{ID, FromKS, FullGoal, SolveParams, 
Solutions), []) 

% Retract context: 
retractall( oaa current_contexts(ID, ) . 

% This is for subgoals (of goals passed in solve events) that have 
% Params. Subgoals with no params will fall through to the next clause. 
oaa_exec_event(Goal: :GoalParams, Params) 

oaa_solve_local(Goal: :GoalParams, Params). 

% call user events. Must not have a cut, to return all solutions. 
oaa_exec_event(Event, Params) 

oaa turn on debug, 
( oaa_solvables(Solvables) ->true I otherwise -> Solvables = [])I 
( (oaa_goal_matches_solvables(Event, Solvables, Goal, Matched), 

) I 

! I 

) I 

Matched= solvable(_, SolvParams, _), 
(icl_GetParamValue(callback(CB), SolvParams) 
oaa_callback(app_do_event, CB))) 

(oaa_callback{app_do_event, CB), 
Goal = Event) 

CB = Module:Functor -> 
true 

otherwise -> 
Module = user, 
Functor = CB 

Call = .. [Functor, Goal, Params], 
on_exception{E, 

Module:Call, 
( oaa_TraceMsg{'WARNING (agent.pl): Exception raised thru callback 

handler (-w) :-n -q-n', 
[Functor, E] ) , 

fail ) ) , 
oaa_turn_off_debug. 

%What to do about test(TEST)? 
% if test(TEST) is listed in arguments, solve 

32 

Page 233 of 778



% it locally. 
passes tests(Params) 

oaa class(leaf), 
icl=GetParamValue(test(Test), Params), 
I 
• I 

oaa_Solve(Test, [level_limit(O)]). 
% With compound goals, we also want to allow tests on the facilitator. 
% @@DLM: Is this the best way? 
passes_tests(Params) :-

(oaa class(root) ;oaa class(node)), 
icl_GetParamValue(te;t(Test), Params), 
! I 

oaa_solve_local (Test, []) . 
passes_tests(_Params) 

true. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_DelaySolution 
% purpose: Requests that the current AppDoEvent not return solutions to the 
% current goal until a later time. 
% inputs: 
% - Id: an Id which will be used to later match solutions to request 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_DelaySolution(Id) :-

oaa_current_contexts(Goalid, _Contexts), !, 
assert(oaa_delay(Goalid, Id)). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_ReturnDelayedSolutions 
% purpose: Returns the list of solutions for a delayed request 
% inputs: 
% - Id: an Id referring to a previously saved oaa_DelaySolution 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_ReturnDelayedSolutions(Id, SolutionList) :-

(retract(oaa delay table(Goalid, Id, Goal, SolveParams,AllParams)) -> 

(icl_GetParamValue(reply(none), AllParams) > true I 
(oaa_Id(FromKS) ; FromKS =unknown), !, 
% make sure all Solutions unify with original goal 
findall(Goal, member(Goal,SolutionList), Solutions), 

oaa PostEvent(ev solved(Goalid, FromKS, Goal, SolveParams, 
- -Solutions),[]) 

true) . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_AddDelayedContextParams 
% purpose: When a goal is delayed using oaa_DelaySolution(), incoming context 
% parameters from the original request can not be automatically 
% concatenated to outgoing oaa Solve requests -- since an agent can 
% manage multiple delayed goal; at the same time, liboaa doesn't 
% know the correct context for the outgoing oaa_Solve without explicit 
% direction from the programmer. Hence, an agent programmer who 
% wants to call oaa_Solve during a delayed goal is expected to 
% use this function to add the saved contexts for the delayed goal to 

33 

Page 234 of 778



% his/her outgoing oaa_Solve parameters. 
% inputs: 
% - Id: an Id which will be used to later match solutions to request 
% 
% 
% 
% 
% 
% 
% 
% 
% 

- Params: Parameters for solve goal 
- NewParams: Params augmented by saved contexts. 

example: 
oaa_AppDoEvent(goal(_X),_Params) oaa_DelayEvent(a_goal). 
oaa_AppDoEvent(temp_event(Y) ,_Params) 

oaa_AddDelayedContextParams(a_goal, [], P), 
oaa_Solve(sub_goal(Y), P). 

oaa AppDoEvent(final event(S), Params) 
- oaa_ReturnDelayedSolutions(a_goal, [goal(S)]). 

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_AddDelayedContextParams(Id, Params, NewParams) 

retract(oaa_delay_table(_Goalid, Id, _Goal, _SolveParams, AllParams)), 
findall(context(C), member(context(C), AllParams), Contexts), 
append(Contexts, Params, NewParams). 

%***************************************************************************** 
% Agent-Facilitator communication 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa PostEvent 
% purpose: Sends a low-level event to another agent 
% remarks: 
% Should NOT be used before there's a connection established for 
% the destination (such as when a client sends ev connect to its 
% facilitator). In such unusual cases, use com SendData directly. 
% For application developers, this just means don't call 
% oaa_PostEvent until after you've called oaa_Register. 
% Parameters may include: 
% - priority(P): 
% - address(A): specify address of specific server or client agent 
% A must be an agent ID, not a name. If caller is a client agent, 
% the only meaningful address is that of the client's facilitator. 
% - from(KS): where the event originally originated 
% IMPORTANT: there may be a different address INSIDE the event; 
% these should not be confused! 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_PostEvent(Contents, Params) 

% see if any params of interest 
(memberchk(priority(_P), Params); 

memberchk(from(_Agent), Params) -> 

SendEvent event(Contents, Params) 

SendEvent event(Contents, []) 
) I 

% find destination: if none, dest = server 
(memberchk(address(Dest), Params) -> 

true 

34 

Page 235 of 778



Dest parent 
) I 

icl_true_id(Dest 1 Destid) 1 

oaa_translate_outgoing_event(SendEvent 1 Destid 1 TransEvent) I 

oaa_ComTraceMsg('-n[COM send to -q] :-n -q-n' I [Dest I TransEvent]), 

oaa_convert_id_to_comm_id(Destid, Commid), 
% send event to destination 
com:com_SendData(Commid, TransEvent), 

% Use SendEvent here, becuase triggers always contain event/2 
% to unify with. 

oaa_CheckTriggers(comm, SendEvent, send). 

oaa_convert_id_to_comm_id(Id, Cid) 
com:com_Getinfo(Cid, fac_id(Id)), ! . 

oaa_convert_id_to_comm_id(Id, Cid) 
com:com_Getinfo(Cid, oaa_id(Id)), ! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa translate outgoing event(+Event, +Destid, -NewEvent). 
% purpose: Pro~ides back~ards compatibility by calling a hook 
% (user:oaa_event_translation/7) that translates outgoing events to agents of 
% other versions. Also allows for event differences based on language. 
% remarks: user:oaa_event_translation/7 can be hard-coded, loaded at runtime, 
% or whatever. If it's not present, we return the same event. 
% See also comments for oaa_translate_incoming_event. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Special cases. There's no need to translate these. And, it could be 
%problematical, because we don't yet know the language and version of 
% the receiver. See comments for oaa_unwrap_event. 
oaa_translate_outgoing_event(event(Contents, Params), _Destid, 

! • 

event(Contents, Params)) 
Contents ev_connect(_) ; 
Contents ev_connected( ) ), 

oaa_translate_outgoing_event(event(Content, Params), Destid, TransEvent) 
current_predicate(oaa_event_translation, 

user:oaa_event_translation(_,_,_,_,_,_,_)), 
% These assumptions may not always be right, but will 

% nearly always get the desired results: 
com:com_Getinfo(Connection, oaa_id(Destid)), 
( com:com_Getinfo(Connection, agent_version(DestVersion)) -> 

true 
otherwise -> 

DestVersion = 2.1 
) I 

( com:com_Getinfo(Connection, agent_language(DestLanguage)) -> 

true 
otherwise -> 

DestLanguage c 

35 

Page 236 of 778



) I 

oaa_LibraryVersion{MyVersion), 
user:oaa_event_translation{MyVersion, prolog, DestVersion, DestLanguage, 

Connection, event(Content, Params), TransEvent), 
! . 

oaa_translate_outgoing_event{Event, _, Event). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa Version 
% purpose: Lookup the language and library version number for an agent 
% remarks: The default version {if unspecified) is 1.0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

oaa_Version(Agentid, Language, Version) 
icl_true_id(Agentid, Trueid), 
% Asking for my version: 
oaa_Id(Trueid), 
Language = prolog, 
oaa_LibraryVersion(Version), 
! • 

oaa_Version(Agentid, Language, Version) 
icl_true_id(Agentid, Trueid), 
( com:com_Getinfo(Commid, oaa_id(Trueid)) 

com:com_Getinfo(Commid, fac_id(Trueid)) ) , 
com:com_Getinfo(Commid, agent_language(Language)) -> 

) I 

true 
otherwise -> 

Language = unknown 

( com:com_Getinfo(Commid, agent_version(Version)) -> 

) I 

! . 

true 
otherwise -> 

Version = 1.0 

oaa_Version(Agentid, Language, Version) :
(oaa_class(leaf) ; oaa class(node)), 
icl true id(Agentid, Trueid), 

%The-use of caching here could be dangerous - unless we install a 
% mechanism for automatic updating of the cache. 

oaa Solve(agent version(Trueid, Language, Version), 
- [address(parent)J), 

! • 
oaa_Version( , prolog, 1.0). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa CanSolve 
% purpose: Asks the Facilitator for a list of agents which could solve a Goal 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_CanSolve(Goal,KSList) : 

oaa_Solve(can_solve(Goal, KSList), [address(parent))). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_Ping 

36 

Page 237 of 778



%purpose: Tests whether a given agent is currently responding to requests. 
% inputs: 
% AgentAddr: address of agent to test 
% TimeLimit: Time limit (in seconds) for how long to wait for a response 
% outputs: 
% TotalResponseTime for round trip (in seconds) 
% remarks: Fails if a ping is not returned in TimeLimit amount of time 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_Ping(AgentAddr, TimeLimit, TotalResponseTime) 

ground(AgentAddr) 1 

number(TimeLimit), 
TimeLimit >= 0, 
tcp_now(Before), 
oaa_Solve(true, [address(AgentAddr), time_llmit(TimeLimit)]), 
tcp_now(After), 
tcp_time_plus(Before, TotalResponseTimeMs, After), 
TotalResponseTime is TotalResponseTimeMs I 1000. 

%***************************************************************************** 
% Declaring Solvables 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_Declare(+Solvables, +CommonPermissions, +CommonParams, +Params, 
% -DeclaredSolvables) 
% purpose: Declare solvables for a client or facilitator, and inform the 
% parent if appropriate. 
% arguments: 
% Solvables: A single solvable or a list of solvables, in shorthand or 
% standard form. 
% CommonPermissions: Permissions to be distributed to each solvable in 
% Solvables. This is purely for programming convenience. See 
% comments for icl_ConvertSolvables for possible values, and 
% solvables documentation for their meanings. 
% CommonParams: Params to be distributed to each solvable in Solvables. 
% This is purely for programming convenience. See comments for 
% icl ConvertSolvables for possible values, and solvables 
% doc~mentation for their meanings. 
% Params: 
% address(X): Where the solvable will exist. X may be either •self' 
% or 'parent' (or the appropriate local ids). Default: 'self'. 
% if_exists(OverwriteOrAppend): What to do when declaring solvables 
% for self, and some already exist. Default: append. 
% DeclaredSolvables: Returns a list, in standard form, of all solvables 
% successfully declared. 
% remarks: 
% - Any agent can declare solvables for itself. In addition, a client can 
% ask its facilitator to declare solvables. Client-requested facilitator 
% solvables will automatically acquire permission write(true) 1 and params 
% type(data), rules_ok(false), private(false), and bookkeeping(true). 
% - If called by a leaf or node agent, assumes agent is already registered 
% with a parent facilitator. 
% - Predicates can only be declared once. Changing an existing 
% predicate definition should be done with oaa Redeclare. However, 

37 

Page 238 of 778



% a request to declare a predicate, which is already declared in 
% precisely the same way, succeeds transparently. 
% ®®Future params may include •num_context_args(N) '. 
% - ®®Future solvable params may include 'shared'. 
% - synonym predicates can have their own triggers, but share the clause 
% database with their master table. 
% - views and filters, as provided by the OAA Vl DB agent, are not 
% supported as separate params, but the same functionality is available 
% using other params. 
% - @@Do we want client agents to request declarations on other client 
% agents? 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_Declare(Solvable, InitialCommonPerms, InitialCommonParams, 

InitialParams, DeclaredSolvables) 
is_list(Solvable) > 
SolvableList Solvable 
otherwise -> 
SolvableList [Solvable] 

.) , 
icl_ConvertSolvables(SolvableList, Solvables), 
icl_standardize_perms(InitialCommonPerms, false, CommonPerms), 
icl_standardize_params(InitialCommonParams, false, CommonParams), 
icl_standardize_params(InitialParams, false, Params), 
oaa_distribute_perms(Solvables, CommonPerms, Solvablesl), 
oaa_distribute_params(Solvablesl, CommonParams, NewSolvables), 
oaa_declare_aux(add, NewSolvables, Params, DeclaredSolvables). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_DeclareData(+Solvables, +Params, -DeclaredSolvables) 
% purpose: Declare data solvables for an agent. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_DeclareData(Solv, Params, DeclaredSolvs) 

\+ is_list(Solv), 
! , 
oaa_DeclareData([Solv], Params, DeclaredSolvs). 

oaa_DeclareData(Solvs, Params, DeclaredSolvs) 
% It's only necessary to specify the non-default perms and params. 
CommonPerms = [write(true)], 
CommonParams = [type(data)], 
oaa_Declare(Solvs, CommonPerms, CommonParams, Params, DeclaredSolvs). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa Undeclare(+Solvables, +Params, -UndeclaredSolvables) 
% purpose: Remove solvables from a client or facilitator, and inform the 
% parent if appropriate. 
% arguments: 
% Solvables: A single solvable or a list of solvables, in shorthand or 
% standard form. If a solvable is in standard form, however, ONLY 
% the goal is considered in selecting the solvables to be removed 
% (permissions and parameters are ignored) . 
% Params: 
% address(X): Where the solvable exists. X may be either 'self' 
% or 'parent' (or the appropriate local ids). Default: •self'. 
% DeclaredSolvables: Returns a list, in standard form, of all solvables 
% successfully removed. 

38 

Page 239 of 778



% remarks: 
% - If called by a leaf or node agent, assumes agent is already registered 
% with a parent facilitator. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa Undeclare(Solvable, InitialParams, UndeclaredSolvables) 

-( is_list(Solvable) -> 

SolvableList Solvable 
otherwise > 
SolvableList [Solvable] 

) I 

icl_minimally_instantiate_solvables(SolvableList, Solvables), 
icl_standardize_params(InitialParams, false, Params), 
oaa_declare_aux(remove, Solvables, Params, UndeclaredSolvables). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa Redeclare(+Solvable, +NewSolvable, +Params) 
% purpose: Replace a solvable on a client or facilitator, and inform the 
% parent if appropriate. 
% arguments: 
% Solvable: A single solvable, in shorthand or standard form. If in 
% standard form, however, ONLY the goal is considered in selecting 
% the solvable to be replaced (permissions and parameters are ignored) . 
% NewSolvable: A single solvable, in shorthand or standard form. 
% Params: 
% address(X): Where the solvable exists. X may be either 'self' 
% or 'parent' (or the appropriate local ids). Default: 'self'. 
% remarks: 
% - If called by a leaf or node agent, assumes agent is already registered 
% with a parent facilitator. 
% - FAILS if the operation cannot be completed. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa Redeclare(InitialSolvable, InitialNewSolvable, InitialParams) :-

-icl_minimally_instantiate_solvables( [InitialSolvable], [Solvable]), 
icl_ConvertSolvables([InitialNewSolvable], [NewSolvable]), 
icl_standardize_params(InitialParams, false, Params), 
oaa_declare_aux(replace, Solvable, [with(NewSolvable) I Params], 

RedeclaredSolvables), 
RedeclaredSolvables [). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_declare_aux(+Mode, +Solvables, +Params, -DeclaredSolvables) 
% purpose: Common code for oaa_Declare, oaa_Undeclare, oaa_Redeclare. 
% Mode: add, remove, or replace. 
% Solvables: for Mode = add, a list of Solvables in standard form. 
% for Mode = remove, a list of Solvables in "minimally instantiated" 
% form. 
% for Mode = replace, a list containing a single Solvable, in 
% "minimally instantiated" form. 
% Params: whatever is appropriate for oaa_Declare, _Undeclare, _Redeclare. 
% Must already be in standard form. 
% DeclaredSolvables: A list of all solvables successfully added (or removed 
% or replaced), in standard form. 
% remarks: 
% A number of params and perms are required when requesting that a 
% parent declare solvables (see comments for oaa_Declare) . We could ensure 

39 

Page 240 of 778



% their presence here, but it's not essential, because the facilitator will 
% enforce this. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Here, a client is asking the facilitator to add, remove, or replace 
% solvables. 
oaa_declare_aux(Mode, Solvables, Params, DeclaredSolvables) 

com:com_Getinfo(parent, fac_id(Parentid)), 
memberchk(address([Parentid]), Params), 
! I 

% Send the request to the Facilitator 
oaa_PostEvent(ev_post_declare(Mode, Solvables, Params), [)), 
oaa_poll_until_event( 

ev_reply_declared(Mode, Solvables, Params, DeclaredSolvables)). 

%Leaf, node or root adding, removing or replacing its own solvables: 
oaa_declare_aux(Mode, Solvables, Params, DeclaredSolvables) 

oaa_Id (Me), 
( memberchk(address(Addr), Params) -> 

Addr = [Me] 
true), 

! , 

oaa_declare_local(Mode, Solvables, Params, DeclaredSolvables), 

% If I'm a facilitator, I must also "register" my Solvables with myself. 
% (If I'm a node, this will also register them with my parent.) 
( (\+ oaa_class(leaf), DeclaredSolvables \== [)) > 

oaa_Name(MyName), 
user:oaa_AppDoEvent( 

ev_register_solvables(Mode, DeclaredSolvables, MyName, Params), 
[from (Me)] ) 

true 
) , 

% If I'm a leaf, post public solvables to parent facilitator: 
select_elements(DeclaredSolvables, oaa_public_solvable, PublicSolvables), 
( (oaa_class(leaf), PublicSolvables \== []) > 

com:com_Getinfo(parent, oaa_name(MyNameC)), 
oaa_PostEvent( 

ev_register_solvables(Mode, PublicSolvables, MyNameC, Params), 
[] ) 

true ) . 

% Solvable must be in standard form. 
oaa_public_solvable(solvable(_Solvable, Params, _Perms)) 

icl_GetParamValue(private(false), Params). 

% Solvable must be in standard form. 
oaa data solvable(solvable( Solvable, Params, _Perms)) 

-icl_GetParamValue(type(data), Params). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa declare local(+Mode, +Solvables, +Params, -DeclaredSolvables) 
% purpose: Declare solvables for an agent. 
% Mode: add, remove, or replace. 
% Solvables: The form they're in depends on the mode. See oaa_declare_aux. 

40 

Page 241 of 778



% DeclaredSolvables: Returns those members of Solvables for which 
% the operation was successful (more specifically, those that should 
% be passed up to the parent in ev_register_solvables). Always returned 
% in STANDARD FORM. 
% Also see: comments for oaa_Declare, oaa_Undeclare, oaa_Redeclare. 
% remarks: 
% 
% 

- This performs the local processing needed by calls to oaa_Declare, 
and by ev declare events. 

- Solvables-and Params must already be in standard form. % 
% 
% ®®DLM: Could do more careful testing to be sure the solvables are 
% all valid for the requested operation. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa declare local(Mode, Solvable, Params, DeclaredSolvables) 

-\+ is_list(Solvable), 
! I 

oaa declare local(Mode, [Solvable], Params, DeclaredSolvables). 
oaa_declare_loc~l(add, InitialSolvables, Params, DeclaredSolvables) 

( icl_GetParamValue(if_exists(overwrite), Params) -> 
CurrentSolvables = [] 

I oaa_solvables(CurrentSolvables) > 
true 

I CurrentSolvables = [] 
) I 

% This will eliminate those that unify with an already declared 
% ®®DLM: Should do more, though: warnings. 
solvables_to_be_added(InitialSolvables, CurrentSolvables, 

DeclaredSolvables), 

solvable. 

% Make sure Quintus has the correct properties for each DB solvable. 
select_elements(DeclaredSolvables, oaa_data_solvable, DBSolvables), 
oaa_declare_for_prolog(DBSolvables), 

append(CurrentSolvables, DeclaredSolvables, AllSolvables), 
retractall(oaa_solvables(_)), 
assert(oaa_solvables(AllSolvables)). 

oaa_declare_local(remove, Solvables, _Params, Removedsolvables) 
% See which ones are really declared: 
( oaa_solvables(Current) ->true I Current= [] ) , 
solvables_to_be_removed(Solvables, Current, RemovedSolvables), 
% Retract all clauses from data solvables: 
select_elements(RemovedSolvables, oaa_data_solvable, DBSolvables), 
oaa_remove_solvables_data(DBSolvables), 
% Assert the new solvables list: 
retractall(oaa_solvables(_)), 
subtract(Current, RemovedSolvables, New), 
assert(oaa_solvables(New)). 

oaa declare local(replace, [Solvable], Params, [Solvable]) 
-memberchk(with(NewSolvable), Params), 

% Make sure Solvable is really declared: 
( oaa_solvables(Current) ->true I otherwise-> Current []), 
memberchk(Solvable, Current), 
I 
• I 

% If a data solvable, maybe retract all its clauses: 
( oaa_data_solvable{Solvable) > 

41 

Page 242 of 778



oaa_remove_solvables_data( [Solvable]) 
true 

) I 

% Assert the new solvables list: 
retractall(oaa_solvables( )) , 
replace_element(Solvable, Current, NewSolvable, New), 
assert(oaa solvables(New)). 

oaa_declare_local(replace, [Solvable], _Params, []) 
Solvable = solvable(Goal, ) , 
format('-w: Ignoring attempt to replace a non-existent solvable:-n -w-n', 

['WARNING', Goal]). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_distribute_params(+Solvables, +CommonParams, -NewSolvables). 
% oaa_distribute_perms(+Solvables, +CommonPerms, -NewSolvables). 
% purpose: Add CommonParams (CommonPerms) to the Params (Permissions} list of 
% each solvable in Solvables. 
% Solvables: a solvables list, in standard form. 
% remarks: ®®Should warn when a solvables has a param that conflicts with 
% CommonParams. Also, should have an arg that says which version of 
% of the conflicting param to keep. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_distribute_params([], _CommonParams, []). 
oaa_distribute_params([Solvable I Solvables], CommonParams, 

[NewSolvable I NewSolvables]} 
Solvable= solvable(Goal, Params, Perms), 
union(Params, CommonParams, NewParams), 
NewSolvable = solvable(Goal, NewParams, Perms), 
oaa_distribute_params(Solvables, CommonParams, NewSolvables). 

oaa_distribute_perms([], _CommonPerms, []). 
oaa_distribute_perms([Solvable I Solvables], CommonPerms, 

[NewSolvable I NewSolvables]) 
Solvable= solvable(Goal, Params, Perms), 
union(Perms, CommonPerms, NewPerms), 
NewSolvable = solvable(Goal, Params, NewPerms), 
oaa_distribute_perms(Solvables, CommonPerms, NewSolvables). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: solvables_to_be_added(+ProposedSolvs, +CurrentSolvs, -SolvsToBeAdded). 
% purpose: Checks a list of solvables, to make sure they can legally be 
% declared. 
% ProposedSolvs: Must be in STANDARD FORM. 
% CurrentSolvs: This agent's current solvables. 
% SolvsToBeAdded: A subset of Proposedsolvs. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
solvables to be added([], Current, []). 
solvables=to=be=added([Sol~able I Solvables], Current, OKSolvables) 

Solvable= solvable(Goal, ) , 
memberchk(solvable(Goal, ) , Current), 
! I 

format('-w: Ignoring attempt to declare an already existing solvable:-n 
-w-n', 

['WARNING', Goal]), 
solvables_to_be_added(Solvables, Current, OKSolvables). 

42 

Page 243 of 778



solvables_to_be_added([Solvable I Solvables], Current, 
[Solvable I OKSolvables]) 

solvables_to_be_added(Solvables, Current, OKSolvables). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: solvables_to_be_removed(+ProposedSolvs, +CurrentSolvs, 
% -SolvsToBeRemoved) . 
% purpose: Checks a list of solvables, to make sure they can legally be 
% UNdeclared. 
% ProposedSolvs: Must be in MINIMALLY INSTANTIATED FORM. 
% CurrentSolvs: This agent's current solvables. 
% SolvsToBeRemoved: A subset of ProposedSolvs, but returned in standard form, 
% fully instantiated. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
solvables to be removed([], Current, []). 
solvables=to=be=removed([Sol~able I Solvables), Current, 

[Solvable I OKSolvables]) 
memberchk(Solvable, Current), 
I 
• I 

solvables to be removed(Solvables, Current, OKSolvables). 
solvables_to_be_removed([Solvable I Solvables], Current, OKSolvables) 

Solvable solvable(Goal, __ ), 
format('-w: Ignoring attempt to remove a non-existent solvable:-n -w-n', 

['WARNING', Goal)), 
solvables_to_be_removed(Solvables, Current, OKSolvables). 

%***************************************************************************** 
% Updating Data Solvables 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_AddData(+Clause, +Params). 
% purpose: Add a new clause for a DATA solvable (locally and/or remotely) 
% Params: 
% address(X): a list including 'self', 'parent', and/or the 
% addresses of other client agents. The default (no address) 
% behavior is the same as with oaa_Solve. 
% reflexive(T_F): Save as with oaa_Solve. Default: true. 
% at_beginning(T_F): if true, uses asserta instead of assertz. 
% Default: false. 
% single_value(T_F): if true, ALL clauses for this predicate are removed 
% before adding the new clause. 
% Default: false. 
% unique_values(T_F): if true, at most one copy of each value is stored. 
% Default: false. 
% owner(Localid): if bookkeeping(true) for this solvable, record 
% Localid as the owner. 
% Default: the agent from which the request originated. 
% get_address(X): Returns a list of addresses (ids) of agents that 
% were sent the request. 
% get_satisfiers(X): Returns a list of addresses (ids) of agents that 
% successfully completed the request. 

43 

Page 244 of 778



% reply({true,none}): When data is being added on 
% a remote agent or agents, this tells whether reply message(s) are 
% desired. 
% block(Mode) true: Block until the reply arrives. 
% false: Don't block. In 
% this case, the reply events (ev_reply_updated) 
% can be handled by the user's app_do_event callback 
% Default: true. Note that reply(none) overrides 
% block(true). 
% remarks: 
% Clause is normally a fact (no body), but with Prolog agents, and 
% with rules_ok(true), it's possible for it to have a body. 
% - Triggers will be examined with the on(add) operation mask 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_AddData(Clause, Params) 

oaa_update(add, Clause, Params). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa RemoveData(+Clause, +Params). 
% purpose: Remove a clause from a DATA solvable (locally and/or remotely) 
% Params: 
% address(X): a list including 'self', 'parent', and/or the 
% addresses of other client agents. The default (no address) 
% behavior is the same as with oaa_Solve and oaa_AddData. 
% reflexive(T_F): Save as with oaa_Solve. Default: true. 
% do_all(T_F): If true, removes all predicate values that match the Clause 
% Default: false (removes only the first) 
% get_address(X): Returns a list of addresses (ids) of agents that 
% were sent the request. 
% get_satisfiers(X): Returns a list of addresses (ids) of agents that 
% successfully completed the request. 
% owner(Localid): if bookkeeping(true) for this solvable, remove only 
% data owned by Localid. 
% Default: ignore owner in removing data. 
% reply({true,none}): When data is being removed on 
% a remote agent or agents, this tells whether reply message(s) are 
% desired. 
% block(Mode) 
% 
% 
% 
% 
% 
% remarks: 

true: Block until the reply arrives. 
false: Don't block. In 

this case, the reply events (ev_reply_updated) 
can be handled by the user's app_do_event callback 

Default: true. Note that reply(none) overrides 
block(true). 

% -Clause is normally a fact (no body), but with Prolog agents, and 
% with rules ok(true), it's possible for it to have a body. 
% - Triggers will be examined with the 'on_Retract' operation mask. 
% - Not for backtracking. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa RemoveData(Clause, Params) 

oaa_update(remove, Clause, Params). 

%---------------------------------------------------------------------------
% name: oaa_ReplaceData(+Clausel, +Clause2, +Params). 
% purpose: Change a predicate value to a new one 

44 

Page 245 of 778



% Clausel: Must be a clause of a writable data solvable. 
% Clause2: Must be a clause of a writable data solvable. 
% Params: 
% address(X): a list including 'self', 'parent', and/or the 
% addresses of other client agents. The default (no address) 
% behavior is the same as with oaa Solve and oaa AddData. - -
% reflexive(T_F): Save as with oaa_Solve. Default: true. 
% do_all(T_F): If, true, changes all predicate values that match the 
% Clausel specification 
% default is 'false': changes only the first 
% at_beginning(T_F): If true, uses asserta instead of assertz 
% default is 'false' 
% owner(Localid): if bookkeeping(true) for this solvable, record 
% Localid as the owner of each new data item. Note: It is not possible 
% to specify the owner of the data to be replaced, just that of the 
% NEW data. 
% Default: the agent from which the request originated. 
% get address(X): Returns a list of addresses (ids) of agents that 
% were sent the request. 
% get_satisfiers(X): Returns a list of addresses (ids) of agents that 
% successfully completed the request. 
% reply({true,none}): When data is being replaced on 
% a remote agent or agents, this tells whether reply message(s) are 
% desired. 
% block(Mode) true: Block until the reply arrives. 
% false: Don't block. In 
% this case, the reply events (ev_reply_updated) 
% can be handled by the user's app_do_event callback 
% Default: true. Note that reply(none) overrides 
% block (true) . 
% remarks: 
% - Clausel and/or Clause2 may be synonym predicates. 
% - Clausel and Clause2 are not required to have the same functor. 
% Clausel and Clause2 may share variables. 
% - Triggers will be examined with the •remove' operation mask with Clausel, 
% and the •add' operation mask with Clause2. 
% db_replace triggers on the Pred2 argument, not on the Predl arg 
% - at_beginning param only used if do_all is false 
%---------------------------------------------------------------------------
oaa_ReplaceData(Clausel, Clause2, Params) 

oaa_update(replace, Clausel, [with(Clause2) I Params)). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_update (+Mode,. +Clause, +Params). 
% purpose: Common code for oaa_AddData, oaaRemoveData, and oaa_ReplaceData. 
% Mode: add, remove, or replace. 
% Clause, Params: May include whatever is appropriate for oaa_AddData, 
% oaaRemoveData, or oaa_ReplaceData. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_update(Mode, Clause, InitialParams) 

icl_standardize_params(InitialParams, false, Params), 
% Is there a specified address? 
( memberchk(address(Addr), Params) -> 

true 
otherwise -> 

Addr = [) 

45 

Page 246 of 778



) , 

% Decide whether or not to update locally: 
oaa_Id (Me), 
( memberchk(Me, Addr) -> 

delete(Addr, Me, NewAddr), 

) , 

replace_element(address(Addr), Params, address(NewAddr), Paramsl), 
Self = true 

otherwise 
NewAddr 

> 
Addr, 

Paramsl = Params 

( Addr = [), icl_GetParamValue(reflexive(true), Paramsl) > 
% do NOT use remove element here: 

) , 

delete(Paramsl, reflexive(true), Params2), 
( oaa_solvables(Solvables) >true I otherwise-> Solvables = (] ), 
( oaa_data_matches_solvables(Clause, Solvables, write, ) -> 

Self = true 
otherwise -> 

true 

otherwise -> 
Params2 = Paramsl 

% Update locally if appropriate: 
( Self == true -> 

) , 

Requesteesl = [Me] , 
( Mode == add -> 

Functor = oaa_add_data local 
Mode == replace -> 

Functor = oaa_replace_data_local 
Mode == remove -> 

Functor = oaa_remove_data_local 
) , 
LocalCall = .. [Functor, Clause, Params2], 
( call(LocalCall) -> 

Updatersl [Me] 
Updatersl = []) 

otherwise -> 
Requesteesl [] , 
Updatersl = [] 

% Update remotely if appropriate: 
( oaa_class (leaf), (Addr == [) ; NewAddr \== []) -> 

% Send the ev_post_update event to the Facilitator 
oaa_PostEvent(ev_post_update(Mode, Clause, Params2), []), 
% In the return event, Requestee2s lists all agents to whom 
% the update request was sent; Updaters2 lists those who succeeded. 
( (icl_GetParamValue(reply(asynchronous), Params) 

icl_GetParamValue(reply(none), Params)) -> 
Requestees2 [] , 
Updaters2 = (] 

otherwise -> 
oaa_poll_until_event( 

ev_reply_updated(Mode, Clause, Params2, Requestees2, Updaters2)) 

46 

Page 247 of 778



otherwise -> 
Requestees2 [], 
Updaters2 = [] 

} I 

append(Updatersl, Updaters2, Updaters), 
% Return Updaters if requested: 
( memberchk(get_satisfiers(Updaters}, Params} ->true I true}, 
append(Requesteesl, Requestees2, Requestees), 
% Return Requestees if requested: 
( memberchk(get_address(Requestees}, Params) -> true I true } . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_add_data_local(+Clause, +Params) 
% purpose: Assert a clause for an agent's solvable. 
% arguments: See comments for oaa AddData. 
% remarks: 
% This performs the local processing needed for calls to oaa_AddData, and 
% ev_update(add, ... } requests. 
% Application code should not call oaa_add_data_local directly, but rather 
% oaa_AddData with address(self). 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa add data local(Clausel, Params} :-

-( oaa_solvables(Solvables) >true I otherwise-> Solvables = []}, 
oaa_data_matches_solvables(Clausel, Solvables, write, Clause, Matched}, 
Matched= solvable(Pred, DeclParams, _Perms), 
( Clause = (Head Body} -> 

} I 

true 
otherwise -> 

Head Clause, 
Body = true 

append(Params, DeclParams, AllParams}, 
% If there's no callback, leave Callback a var: 
( memberchk(callback(Callback), AllParams} -> true I true } , 

% if single value, erase all old values 
(icl_GetParamValue(single_value(true}, AllParams} -> 

( \+ icl_GetParamValue(bookkeeping(false), DeclParams} -> 
oaa_retractall((Pred } , _OldOwner, Callback} 

otherwise -> 
retract_all((Pred }} 

true), 

% if unique_values(true}, make sure fact not already in database 
( clause(Head, Body), icl_GetParamValue(unique_values(true), AllParams} > 

true 
otherwise -> 

( \+ icl_GetParamValue(bookkeeping(false), DeclParams) -> 
oaa_data_owner(Params, Owner}, 

( icl GetParamValue(at beginning(true}, AllParams) -> 
oaa_asserta(Clause~ Owner, Callback} 

oaa_assertz(Clause, Owner, Callback) 

47 

Page 248 of 778



otherwise -> 
( icl_GetParamValue(at_beginning{true), AllParams) -> 

asserta(Clause) 

assertz(Clause) 

) , 
oaa_CheckTriggers(data, Head, add), 

! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_remove_data_local(+Clause, +Params) 
% purpose: Retract a clause (or all clauses) from an agent's solvable. 
% arguments: See comments for oaaRemoveData. 
% remarks: 
% This performs the local processing needed for calls to oaaRemoveData, and 
% ev_update{remove, ... ) requests. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa remove data local(Clausel, Params) :-

-( oaa_solvables(Solvables) >true I otherwise 
oaa_data_matches_solvables(Clausel, Solvables, 
Matched= solvable(_Pred, DeclParams, _Perms), 
( Clause = {Head Body) -> 

) , 

true 
otherwise > 

Head Clause, 
Body = true 

append(Params, DeclParams, AllParams), 

-> Solvables []), 
write, Clause, Matched) , 

{ memberchk{callback{Callback), AllParams) ->true I true), 

) , 

\+ icl_GetParamValue(bookkeeping(false), DeclParams) > 
( icl_GetParamValue(owner(Owner), Params) > true I true ) , 

( icl_GetParamValue(do_all(true), Params) -> 
oaa_retractall(Clause, Owner, Callback) 

otherwise -> 
oaa_retract(Clause, Owner, Callback) 

otherwise -> 
( icl_GetParamValue(do_all(true), Params) -> 

retract_all{Clause) 
otherwise -> 

retract{Clause) 

oaa_CheckTriggers(data, Head, remove), 
! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_replace_data_local(+Clausel, +Params) 
% purpose: Replace one or more clauses from an agent's solvable. 
% arguments: See comments for oaa_ReplaceData. 

48 

Page 249 of 778



% remarks: 
% This performs the local processing needed for calls to oaa_ReplaceData, and 
% ev_update(replace, ... ) requests. 
% Clausel is the thing to be replaced. The thing to replace it with must 
% be present in Params, as with(Clause2). 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_replace_data_local(Clauselin, Params) : 

memberchk(with(Clause2In), Params), 
( oaa_solvables(Solvables) ->true I otherwise-> Solvables = []), 
oaa_data_matches_solvables(Clauselin, Solvables, write, Clausel, Matched), 
oaa_data_matches_solvables(Clause2In, Solvables, write, Clause2, _Matched2), 
Matched = solvable(_Pred, DeclParams, _Perms), 
( Clausel = (Head Body) -> 

true 
otherwise -> 

Head Clausel, 
Body = true 

) , 

append(Params, DeclParams, AllParams), 
( memberchk(callback(Callback), AllParams) >true I true), 

% do replace of either one or all occurrences 
( \+ icl_GetParamValue(bookkeeping(false), DeclParams) -> 

oaa_data_owner(Params, Owner), 

) , 

( icl_GetParamValue(do_all(true), Params) > 
oaa_replace_all(Clausel, Clause2, Owner, Callback) 

otherwise -> 
oaa_retract(Clausel, _OldOwner, Callback), 
(icl_GetParamValue(at_beginning(true), AllParams) > 

oaa_asserta(Clause2, Owner, Callback) 
oaa_assertz(Clause2, Owner, Callback) 

otherwise -> 
( icl_GetParamValue(do_all(true), Params) -> 

replace_all(Clausel, Clause2) 
otherwise -> 

retract(Clausel), 
(icl_GetParamValue(at_beginning(true), AllParams) > 

asserta(Clause2) 
assertz(Clause2) 

oaa_CheckTriggers(data, Clausel, remove), 
oaa_CheckTriggers(data, Clause2, add), 
! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: retract all 
% purpose: Remove all clauses matching Clausel 
%remarks: Always succeeds. Needed because retractall((func(X) :- Y)) doesn't 
% work. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
retract_all(Clausel) 

retract(Clausel), 

49 

Page 250 of 778



fail. 
retract_all(_Clausel). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: replace_all 
% purpose: Replace all clauses matching Clausel by Clause2 
% remarks: Always succeeds 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
replace_all(Clausel, Clause2) :-

retract(Clausel), 
assert(Clause2), 
fail. 

replace_all(_Clausel, _Clause2). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_data_owner(+Params, -owner) 
% purpose: Determine data ownership from the available params 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_data_owner(Params, Owner) 

( memberchk(owner(Owner), Params) -> 

) . 

true 
memberchk(from(Owner), Params) -> 

true 
oaa_Id(Owner) -> 

true 
otherwise > 

Owner unknown 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_Id(Myid) 
% purpose: Return the Id of the current agent 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if connected to a Facilitator, use this Id 
oaa_Id(Myid) :-

com:com_Getinfo(parent, oaa_id(Myid)), ! . 
% For root, get any id 
oaa_Id(Myid) :-

com:com_Getinfo(Connectionid, type(server)), 
com:com_Getinfo(Connectionid, oaa_id(Myid)), ! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_Name(MyName) 
% purpose: Return the name of the current agent 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if connected to a Facilitator, use this Id 
oaa_Name(MyName) :-

com:com_Getinfo(parent, oaa_name(MyName)), ! . 
% For root, get any id 
oaa_Name(MyName) :-

com:com_Getinfo(Connectionid, type(server)), 
com:com_Getinfo(Connectionid, oaa_name(MyName)), ! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_class(MyClass) 

50 

Page 251 of 778



% purpose: Return the class (leaf, node, root) of the current agent 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if connected to a Facilitator, use this Id 
oaa_class(leaf) : 

com:com Getinfo( , type(client)), 
\+ com:com_Getinfo(_, type(server)), ! . 

oaa_class(node) :-
com:com_Getinfo( , type(client)), 
com:com_Getinfo( , type(server)), ! . 

oaa_class(root) :-
com:com_Getinfo(_, type(server)), 
\+ com:com_Getinfo( , type(client)), ! . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_asserta(Clause, Owner, SpecifiedCallback) 
% oaa_assertz(Clause, Owner, SpecifiedCallback) 
% oaa_retract(Clause, Owner, SpecifiedCallback) 
% oaa_retractall(Clause, Owner, SpecifiedCallback) 
% oaa replace all(Clausel, Clause2, Owner, SpecifiedCallback) 
% purpose: Perform data updates with bookkeeping info (in oaa_data_ref/3) 
% remarks: These should only be used with data solvables having param 
% bookkeeping(true). 
% There are still a couple limitations related to data callbacks. 
% First, callbacks don't work when bookkeeping(false). 
% Second, oaa_replace_all assumes the same callback is appropriate 
% for both the old and new facts. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_asserta(Clause, Owner, Callback) : 

asserta(Clause, Ref), 
now(Time), 
assert(oaa_data_ref(Ref, Owner, Time)), 
oaa_call_callback(app_on_data_change, Callback, [add(Clause)]). 

oaa_assertz(Clause, Owner, Callback) :
assertz(Clause, Ref), 
now(Time), 
assert(oaa_data_ref(Ref, Owner, Time)), 
oaa_call_callback(app_on_data_change, Callback, [add(Clause)]). 

oaa_retract(Clause, Owner, Callback) 
( Clause = (Head Body) -> 

) , 

true 
otherwise -> 

Head Clause, 
Body = true 

clause(Head, Body, Ref), 
( retract(oaa_data_ref(Ref, Owner, )) -> 

erase(Ref), 
oaa_call_callback(app_on_data_change, Callback, [remove(Clause)]) 

) . 

oaa_retractall(Clause, Owner, Callback) 
( Clause = (Head Body) -> 

true 
otherwise -> 

51 

Page 252 of 778



) I 

Head 
Body 

Clause, 
true 

clause(Head, Body, Ref), 
( retract(oaa_data_ref(Ref, Owner, )) -> 

erase(Ref), 
oaa_call_callback(app_on_data_change, Callback, [remove(Clause)]) 

) ' 
fail. 

oaa_retractall(_Clause, _owner, _Callback). 

oaa_replace_all(Clausel, Clause2, Owner, Callback) 
oaa_retract(Clausel, _OldOwner, Callback), 
oaa_assertz(Clause2, Owner, Callback), 
% This would be redundant: 
% oaa_call_callback(app_on_data_change, Callback, [replace(Clausel, 

Clause2) ] ) , 
fail. 

oaa_replace_all(_Clausel, _Clause2, _owner, _Callback). 

%***************************************************************************** 
% Trigger Handling 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_CheckTriggers 
% purpose: Given a trigger type, a mask and an Op (e.g. [send, receive], 
% [add, remove], etc), see if any triggers fire. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_CheckTriggers(Type, Condition, Op) 

% for each matching trigger 
oaa_solve_local( 

oaa_trigger(Triggerid, Type, Condition, Action, Params), 
[] ) I 

(Type== task, \+ var(Condition)) -> 
% We don't want this to succeed more than once, so use -> 
( oaa_Interpret(Condition, [from(self)]) ->true) 

otherwise -> 
true 

) ' 

% see if on(Op) has been specified 
(memberchk(on(OpSpecified), Params) > 

OpMask opspecified 
OpMask = ) , 

% see if Op is OK 
( (ground(OpMask), OpMask 

memberchk(Op, OpMask) 
otherwise -> 

Op = OpMask 
) I 

% test additional conditions 

[_l_l) - > 

52 

Page 253 of 778



(memberchk(test(Test), Params) -> 

% We don't want this to succeed more 
( oaa_Interpret (Test, [from (self)]) 
Test= •true'), 

than once, 
> true ) 

so use -> 

% check recurrence: remove trigger? 
{remove_element{recurrence{R), Params, NewParams) -> 

{R = whenever -> 

) I 

true % don't remove trigger if 'whenever' 
integer(R), R > 1 -> 

R2 is R - 1, 
% decrement recurrence count 
oaa_remove_data_local{ 

oaa_trigger{Triggerid, Type, Condition, Action, Params), 
[]) I 

oaa_add_data_local{ 
oaa trigger(Triggerid, Type, Condition, Action, 

- [recurrence(R2) INewParams]), 
[ l ) 

oaa_remove_local_trigger_by_id{Triggerid) 

R = when, 
oaa_remove_local_trigger_by_id{Triggerid) 

oaa_TraceMsg( 
•-n-q trigger fired (-q): -q AND -q,-n Action: -q-n', 

[Type, Op, Cond, Test, Action]), 

(Type \== comm -> 
oaa_Inform(trigger, 

'trigger_fired(-q,-q,-q,-q)-n', 
[Type, Cond, Action, Params)) 

true), 

% FIRE!!!! 
oaa_fire_trigger(Action), 

% loop back for more triggers 
fail. 

oaa_CheckTriggers(_Type, _Cond, _Op). 

oaa_fire_trigger(oaa_Solve(Goal, Params)) 
I 
• I 

memberchk(block( ) , Params) -> 
NewParams = Params 
otherwise > 
append([block(false)), Params, NewParams) 

) I 

oaa_Solve(Goal, NewParams). 
oaa_fire_trigger{oaa_Solve{Goal)) 

! I 

oaa_Solve(Goal, [block{false)]). 
oaa_fire_trigger{oaa_Interpret{Goal, Params)) 

! I 

53 

Page 254 of 778



memberchk(from(_), Params) -> 

NewParams = Params 
otherwise -> 
oaa_Id (Me), 
append([from(Me)], Params, NewParams) 

) I 

oaa_Interpret(Goal, NewParams). 
oaa_fire_trigger(oaa_Interpret(Goal)) 

I 
• I 

oaa_Id (Me), 
oaa_Interpret (Goal, [from (Me)]) . 

oaa_fire_trigger(Goal) 
oaa_Id (Me) , 
oaa_Interpret (Goal, [from (Me)]) . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_AddTrigger 
% purpose: Adds a trigger according to parameters 
% Type comm, data, task, time 
% Condition= 
% 

comm:event to match, data:data to match, task:solvable to call 
time:®® 

% Action 
% 

Can be any of these: 
oaa_Solve(Goal, Params) 
oaa_Interpret(Goal, Params) % 

% Goal [passed to oaa_Interpret with default params] 
% Params 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

address(X): a list including 'self', 'parent', and/or the 
addresses of other client agents. Default: see below. 

test(T): additional tests before trigger will fire [®®needs work?] 
on(OP) : operation check: on(add), on(remove), on(receive), etc. 
recurrence(R): when, whenever, or integer (#of times to execute) 
reply({true,none}): When a trigger is being added on 

a remote agent or agents, this tells whether reply message(s) are 
desired. 

block(Mode) true: Block until the reply arrives. 
false: Don't block. In 

this case, the reply events 
can be handled by the user's app_do_event callback 

Default: true. Note that reply(none) overrides 
block(true). 

get_address(X): Returns a list of addresses (ids) of agents that 
were sent the request. 

get_satisfiers(X): Returns a list of addresses (ids) of agents that 
successfully completed the request. 

% Default destination for triggers: 
% Data triggers: all agents with solvables matching the Condition 
% field. 
% All other types: the local agent 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_AddTrigger(Type, Condition, Action, InitialParams) :-

oaa_update_trigger(add, Type, Condition, Action, InitialParams). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_RemoveTrigger 

54 

Page 255 of 778



% purpose: Removes a trigger from a local or remote agent 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_RemoveTrigger(Type,Condition,Action,Params) : 

oaa_update_trigger(remove, Type, Condition, Action, Params). 

oaa update trigger(Mode, Type, InCondition, Action, InParams) 
( (Type-== comm, \+ InCondition =event(_,_)) > 

Condition= event(InCondition, ) 
otherwise > 

Condition = InCondition 
) I 

icl_standardize_params(InParams, false, Params), 
% Is there a specified address? 
( memberchk(address(Addr), Params) -> 

true 
otherwise -> 

Addr = [] 
) I 

% Decide whether or not to update locally: 
oaa_Id (Me), 
( Addr \== [], memberchk(Me, Addr) -> 

delete(Addr, Me, NewAddr), 

) I 

replace_element(address(Addr), Params, address(NewAddr), Paramsl), 
Self = true 

Addr = [], Type == data, icl_GetParamValue(reflexive(true), Params) -> 

% Do NOT use remove element here: 
delete(Params, reflexive(true), Paramsl), 
NewAddr Addr, 
Self = true 

Addr = [], Type \== data -> 

NewAddr = Addr, 
Paramsl = Params, 
Self true 

otherwise -> 
NewAddr Addr, 
Paramsl = Params 

% Update locally if appropriate: 
( Self == true > 

) I 

Requesteesl = [Me] , 
( Type == add -> 

) I 

Functor oaa_add_trigger_local 
otherwise -> 

Functor oaa_remove_trigger_local 

LocalCall = .. [Functor, Type, Condition, Action, Paramsl], 
( call(LocalCall) -> 

Updatersl [Me] 
Updatersl = []) 

otherwise -> 

Requesteesl [), 
Updatersl = [] 

% Update remotely if appropriate: 

55 

Page 256 of 778



) , 

oaa_class(leaf), ((Addr == [], Type= data) NewAddr \== (]) -> 
% Send the request event to the Facilitator 
oaa_PostEvent( 

ev_post_trigger_update(Mode,Type,Condition,Action,Paramsl), [)), 
(icl GetParamValue(reply(asynchronous), Params) 
icl-GetParamValue(reply(none), Params)) > 
Requestees2 [], 
Updaters2 = [] 

otherwise > 
% In the return event, Requestees lists all agents to whom 
% the update request was sent; Updaters2 lists those who succeeded. 
oaa_poll_until_event( 

ev_reply_trigger_updated(Mode, Type, Condition, Action, Paramsl, 
Requestees2, Updaters2)) 

otherwise -> 
Requestees2 [], 
Updaters2 = [] 

append(Updatersl, Updaters2, Updaters), 
% Return Updaters if requested: 
( memberchk(get_satisfiers(Updaters), Params) ->true I true ) , 
append(Requesteesl, Requestees2, Requestees), 
% Return Requestees if requested: 
( memberchk(get_address(Requestees), Params) ->true I true ) . 

oaa_add_trigger_local(Type, Condition, Action, Params) 
gensym(trg, Triggerld), 
oaa add data local( 

-oaa=trigger(Triggerld, Type, Condition, Action, Params), 
[] ) . 

oaa_remove_trigger_local(Type, Condition, Action, Params) 
oaa_remove_data_local( 

oaa trigger( Triggerid, Type, Condition, Action, Params), 
[]). - -

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_remove_local_trigger_by_id 
% purpose: Removes a local trigger given its unique identifier 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_remove_local_trigger_by_id(Triggerid) 

oaa_remove_data_local(oaa_trigger(Triggerid, 
! . 

I I I ) I [] ) I 

%***************************************************************************** 
% Requesting Services 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa Solve 
% purpose: Sends work or information requests to distributed agents, brokered 
% by the Facilitator agent 

56 

Page 257 of 778



% 
% The default behavior (paramlist = [)) is to act like the Prolog primitive 
% call(Goal), blocking until Goal is finished, and unifying and backtracking 
% over solutions for Goal. 
% 
% This behavior may be modified by a parameter list, which may contain: 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

cache(T_F) : cache all solutions locally, and if good solutions 
already exist in the cache, use the local values 
instead of making a distributed request. 

Default: false. 
level_limit(N) highest number of hierarchical levels to climb for 

solutions. 
address(Agentid): send request to specific agent, given its name or Addr 

If AgentiD is 'self', solves the goal locally 
reply(Mode) : true: Reply desired. 

: none: No reply desired. 
Default: true, except when the call to oaa Solve 

is a trigger action, in which case it is 
none. •none' is used here instead of false, 
because we anticipate some additional values. 

block(Mode) true: Block until the reply arrives. 
false: Don't block. In 
this case, the reply events (ev_reply_solved) 
can be handled by the user's app_do_event callback 

Default: true, except when the call to oaa_Solve 
is a trigger action, in which case it is 
false. Note that reply(none) overrides 
block(true). 

solution_limit(N) 
: limits the maximum number of solutions found to N 

time_limit(N) : Waits a maximum of N seconds before returning 
(failure if no solution found in time) . 

context(C) : Passes a context value through any subsequent 
solves. 

parallel_ok(T_F): if T_F is 'true' (default), multiple agents 
that can solve the Goal will attempt to work on it 

reflexive(T_F) 

in parallel. If 'false•, one agent will be selected 
at a time to solve the goal, until the maximum 
number of requested solutions (see solution_limit) is 
found. 

: If T F is 'true•, the Facilitator will consider the 
originating agent when choosing agents to solve a 
request. Default: true. 

priority(P) P ranges from 1 (low priority) to 10 (high priority) 
with a default of 5. 

flush events(T_F) 
Will flush (dispose of) all events of lower priority 

currently queued at the destination agent. These 
events are lost, and will not be executed. 
This parameter should be used with caution!!! 

get_address(X) 

get_satisfiers(X) 

Default: false. 
Returns a list of addresses (ids) of agents that 
were asked to solve the goal, or one of its subgoals 

Returns a list of addresses (ids) of agents that 

57 

Page 258 of 778



% 
% 
% 
% 
% 
% 
% 
% 
% 

strategy(S) 

succeeded in solving the goal, or one of its 
subgoals. 

Shorthand for certain combinations of the above 
parameters. S is one of 

query= [parallel_ok(true)) 
action [parallel_ok(false), solution_limit(l)] 
inform= [parallel_ok(true), reply(none)] 

% Remarks: Note that certain combinations of parameters are inconsistent, 
% and are handled as follows: 
% reply(none) overrides block(true) 
% reply(none) overrides parallel_ok(false) 
% 
% All of the above parameters may be used in the "global" parameter 
% list (the second argument to oaa_Solve), when Goal is non-compound. 
% Most can be used in the global list with compound goals also. 
% Some of these parameters can also be used in the NESTED parameter 
% lists of compound goals. Uses of these parameters with compound 
% goals are documented elsewhere. When that documentation exists, 
% this will go there: 
% With many compound goals, however, the get_satisfier/1 parameter isn't 
% really meaningful. Thus, with compound goals, it is often best to use 
% this parameter in a nested parameter list. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_Solve(Goal, InitialParams) 

% Trace message 
oaa_TraceMsg('-n-nStarting oaa Solve request:-n 

[Goal,Params]), 
-q [ -q) • • • -n I 1 

icl_standardize_params(InitialParams, false, Params), 
% Check for inappropriate params 

) I 

( icl GetParamValue(cache(true), Params), icl compound goal(Goal) -> 
for~at('-w: -w (-w)-n Goal: -w-n', - -

[ 'WARNING' , ' Ignoring ' 'cache' ' parameter' , 
'cannot be used with compound goal', Goal]), 

Compound = true 
otherwise -> 

Compound = false 

% Add context to params 
( oaa_current_contexts( , Contexts) > 

append(Contexts, Params, NewParams) 
otherwise -> 

NewParams Params 
) I 

% check cache 
(icl_GetParamValue(cache(true), NewParams), \+ Compound, 
on_exception(_, oaa_InCache(Goal, Solutions), fail) -> 

oaa_TraceMsg('-n-nSolutions found in cache:-n -q.-n', 
[Solutions]) 

% Should I solve this only locally? 
(oaa_Id (Me), 

58 

Page 259 of 778



) I! I 

memberchk(address(Me) 1 Params) > 
findall(Goal 1 oaa_solve_local(Goal 1 NewParams) 1 Solutions) 

% send request to Facilitator 
oaa_cont solve(Goal 1 NewParams 1 Solutions) 1 

% print appropriate trace message 
(icl_GetParamValue(reply(none), NewParams) -> 

oaa_TraceMsg('-n-nMessage broadcast.-n' 1 [)) 

) I 

oaa_TraceMsg('-n-nSolutions returned:-n 
[Solutions]) 

-q.-n' 1 

% cache returned solutions if necessary 
((icl_GetParamValue(cache(true), NewParams), Solutions\== (]) -> 

oaa_AddToCache(Goal 1 Solutions) 1 

oaa_TraceMsg('Solutions cached.-n' 1 []) 

true) 

% backtrack over all solutions 
member(Goal 1 Solutions). 

oaa_solve_local(Ful1Goal 1 Params) 
%Validate the goal: 
icl GoalComponents(FullGoal, , Goall, GoalParams), 
( o;a_solvables(Solvables) >-true I otherwise-> Solvables []) 1 

( icl_compound_goal(Goall) ; 
icl_Builtin(Goall) ; 
oaa_goal_matches_solvables(Goall, Solvables, Goal, Matched) ) , 

! I 

% More "local" params take precedence, so they go to the 
% beginning of the list: 
append([GoalParams, Params], AllParams), 

% We don't want tests to be performed repeatedly with compound goals, 
% so we remove them after testing. 
( passes_tests(AllParams) -> 

delete(AllParams, test(_), NewParams), 
( ( \+ var(Matched), Matched = solvable(_, SolvParams, ) , 

icl GetParamValue(type(data), SolvParams) ) -> 
(-memberchk(solution_limit(N), AllParams) -> 

call_n(N 1 Goal) 
otherwise -> 

call (Goal) 

otherwise -> 
( memberchk(solution_limit(N), AllParams) -> 

call_n(N, oaa_Interpret(Goal 1 NewParams)) 
otherwise -> 

oaa_Interpret(Goal, NewParams) 

59 

Page 260 of 778



) . 

otherwise -> 
oaa_TraceMsg('-nDoesn' 't pass test in: -q-n' 1 [AllParams]) 1 

fail 

oaa_solve_local(FullGoal 1 _Params) :-
format('-nError: do not know how to solve: -q-n' 1 [FullGoal]) 1 fail. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_cont_solve 
% purpose: Post request for solutions, and if appropriate, poll until 
% results are returned. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_cont_solve(Goal, GlobalParams, Solutions) 

% Send the ev_post_solve event to the Facilitator 
oaa_PostEvent(ev_post_solve(Goal, GlobalParams), []), 

% Compound goals may also contain relevant params 
icl_GoalComponents(Goal, _, _, Params), 

append(Params, GlobalParams, AllParams), 

% If delayed reply or no reply OK, succeed immediately 
( icl_GetParamValue(reply(false), AllParams) ; 

icl GetParamValue(reply(none), AllParams) ; 
icl=GetParamValue(block(false), AllParams) ) > 

Solutions = [Goal] , 
Requestees = [] , 
Solvers = [] 

% otherwise wait for solutions to return 

icl_GetParamValue(priority(P), AllParams), 
oaa_poll_until_event(ev_reply_solved(Requestees, Solvers, Goal, 

SolvedParams, Solutions), 

) I 

P) I 

% The facilitator is responsible for making SolvedParams 
% unifiable with GlobalParams. This msg is to keep facilitator 
% writers honest. 
( GlobalParams = SolvedParams -> 

true 
otherwise > 

format('-w: -w -w-n -w: -w-n', 
['WARNING:', 'Params in solved event don' 't unify', 
'with original params•, 'SolvedParams', SolvedParams]) 

% Return Solvers if requested: 
memberchk(get_satisfiers(Solvers), GlobalParams) > true 
% Return Requestees if requested: 
memberchk(get_address(Requestees), GlobalParams) ->true 

true ) , 

true ) . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_Solve/1 
% purpose: Convenience function: oaa_Solve with default parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

60 

Page 261 of 778



oaa_Solve(Goal) oaa_Solve(Goal, (]). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_InCache 
% purpose: Retrieve solutions from the cache if the goal we are 
% asking for is properly contained in the cache (check subsumption) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_InCache(Goal, Solutions):-

oaa_cache(SomeGoal, ) , 
subsumes_chk(SomeGoal, Goal), 
! I 

findall(Solution, oaa_cache(Goal, Solution) 1 Solutions). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa AddToCache 
% purpose: Add-each solution to goal one at a time 
% so we can retrieve solutions later using findall 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_AddToCache(Goal 1 Solutions) : 

member(Solution, Solutions) 1 

\+ oaa_cache(Goal, Solution), 
assert(oaa_cache(Goal 1 Solution)) 1 

fail. 
oaa_AddToCache(_Goal 1 _Solutions). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa ClearCache 
% purpose: Clear the cache 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_Clearcache :-

retractall(oaa_cache( 1 )) • 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_poll_until_event 
% purpose: Block until requested event arrives in oaa_GetEvent 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

oaa_poll_until_event(Event) :
icl_param_default(priority(P)), 
oaa_poll_until_event(Event 1 P). 

oaa_poll_until_event(Event 1 Priority) 
oaa_poll_until_all_events( [Event] ,Priority). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_poll_until_all_events 
% purpose: Block until all requested events arrive 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%no more events: we're done! 

61 

Page 262 of 778



oaa_poll_until_all_events([], _Priority) :- ! . 

%% ®®Adam - you were apparently working on this; I corrected a syntax 
%% error or two, but otherwise left it alone. - Dave 
oaa_poll_until_all_events(EventList, Priority) 

% If we have a waiting_event, grab it 
% see problem description in (oaa_is_waiting_for) 
(oaa_grab_waiting_event(EventList, Event) ; 
oaa_GetEvent(Event, Params, 0)), 

% if timeout returned, check triggers and call user:oaa_Appidle 
% then fail (continue with next clause) 
(Event = timeout -> 

oaa CheckTriggers(task, , 
oaa=call_callback(app_idle, []), 
fail 

oaa_cont_poll_until_all_events(EventList, Event, Params, Priority) 
) I ! • 

% if oaa_GetEvent fails (e.g. timeout), just continue waiting 
oaa_poll_until_all_events(EventList, Priority) 

oaa_poll_until_all_events(EventList, Priority). 

oaa_cont_poll_until_all_events(EventList, Event, _Params, Priority) 
remove element(Event, EventList, NewEventList), !, 
oaa_poll_until_all_events(NewEventList, Priority). 

oaa_cont_poll_until_all_events(EventList, Event, Params, Priority) 
% if the new event is a ev_reply_solved() message for which we 
% are waiting at a higher recursive level, save this for 
% a later time, until we pop back out to the correct level. 
(oaa_is_waiting_for(Event) -> 

assert(oaa_waiting_event(Event)) 

% record what events we are waiting for on this processing level 
gensym(wait, Waitid), 
assert(oaa_waiting_for(Waitid, EventList)), 

(oaa_ProcessEvent(Event, Params) I true), !, 

% level over, remove waiting statement 
retract(oaa_waiting_for(Waitid, EventList)) 

) I 

oaa_poll_until_all_events(EventList, Priority). 

%***************************************************************************** 
% Callbacks 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_RegisterCallback 
% purpose: Declare what procedures should be used for callbacks. These 
% are application-defined procedures called by library code. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

oaa_RegisterCallback(CallbackiD, CallbackProc) 

62 

Page 263 of 778



CallbackProc 
true 
otherwise > 
Module = user, 

Module:Proc -> 

Proc = CallbackProc 
) I 

retractall( oaa_callback(CallbackiD, _) ) , 
assert( oaa_callback(CallbackiD, Module:Proc) ) . 

oaa_call_callback(CallbackiD, SpecifiedCB, Args) :-
( ground(SpecifiedCB) -> 

SpecifiedCB = Module:Functor 
otherwise > 

oaa_callback(CallbackiD, Module:Functor) 
) ' 
! ' 
Call =. . [Functor I Args], 
on_exception(E, 

Module:Call, 
( oaa_TraceMsg('WARNING (oaa.pl): Exception raised thru callback 

handler (-w) :-n -q-n', 
[Module:Functor, E)), 

fail ) 
) . 

oaa call_callback(_CallbackiD, _SpecifiedCB, _Args). 

%***************************************************************************** 
% Debugging 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_TraceMsg 
% purpose: If trace mode is on, display message and arguments 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_TraceMsg(FormatString, Args) 

(oaa_trace(on) -> 

format(FormatString, Args) 
% oaa_Inform(trace_info, FormatString, Args) 

true). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_ComTraceMsg 
% purpose: If com trace mode is on, display message and arguments 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_ComTraceMsg(FormatString, Args) 

(oaa_com_trace(on) > 
format(FormatString, Args) 

% oaa_Inform(trace_info, FormatString, Args) 

true). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_turn_on_debug 
% purpose: start debugging if debug mode is on 
% remarks: 

63 

Page 264 of 778



% Use predicate_property and call so as to avoid errors in 
% building and running a Quintus runtime system. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_turn_on_debug :-

(oaa_debug(on) -> 
( predicate_property(user:trace, built_in) -> 

call(user:trace) 
true ) 

true) . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_turn_off_debug 
% purpose: stop debugging if debug mode is on 
% remarks: 
% Use predicate_property and call so as to avoid errors in 
% building and running a Quintus runtime system. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_turn_off_debug :-

(oaa_debug(on) > 
( predicate_property(user:nodebug, built_in) -> 

call(user:nodebug) 
I true ) 
true) . 

%***************************************************************************** 
% User Interface 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa Inform 
% purpose: sends a typed message to interested agents 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_Inform(Typeinfo, FormatString, Args) 

oaa_TraceMsg(FormatString, Args), 
(oaa_class(leaf) -> 

sprintf(Result, FormatString, Args), 
oaa Solve(inform(Typeinfo, Result), [strategy(inform)]) 

I -
true 

) I ! • 

%***************************************************************************** 
% Connection primitives 
%***************************************************************************** 

%%% BUG/HACK! ! ! ! ! 
% tcp_send/1 is not currently defined (new version of quintus) 
% so these predicates should fail. This means we can't have 
% multilevel facilitators. 
% However, if we fix it by the tcp_send/2 version (commented out), 
% killing the agent doesn't shut down both connections and the 
% facilitator server doesn't register the agent as disconnected. 

64 

Page 265 of 778



% This must be fixed, but I don't have time now ... 

% Ask the root agent for the address of facilitator FacName. 
% Either Facid or FacName may be bound. 
% IMPORTANT: This assumes the root agent is the only connection when 
% this is called. 
% ®®Not happy with the use of a Connection number in the address param here. 
%Can an address be a connection number as well as an id or name??? [No.] 

% get_address(Facid, FacName, Port, Host): 
% tcp connected(RootConnection), 
% oaa_Sol;e(agent_location(Facid, FacName, Port, Host), 
% [address(RootConnection)]}. 

%% succeed if FacName has not been registered with the root agent. 
%% otherwise, ask user to enter a different name for FacName 

% check_name_duplication(MyName, NewMyName} :-
% tcp send(ev check agent name(MyName}}, 
% oaa=select_~vent(O, X},-
% oaa_extract_event(X, Result, } , %% 'UNIQUE' 
% (Result == 'UNIQUE' -> NewMyName MyName 
% 
% 
% 
% 
% 

format('Name is duplicated-n', []}, 
format('The following are registered -n -q -n', [Result]), 
format('Input agent name again:',[]}, 
read(NewMyName}). 

% report_address_to_root(MyName, NewAddress} :-
% tcp_send(register_port_number(MyName, NewAddress}}. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% routines to fix bug: 
% blocking solvel 
% incoming event generates blocking solve2 
% solution to solvel thrown away!!! 
% solutions to solve2 
% stuck waiting for solvel forever 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa is waiting for 
% purpose: Check to see if the current event is something we are waiting 
% for on a higher recursive level 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_is_waiting_for(Event} 

oaa_waiting_for(_Id, EventList), 
memberchk(Event, EventList}. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_grab_waiting_event 
% purpose: If one of the delayed events is in the EventList that we are 
% waiting for, return this event and remove from delayed list 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_grab_waiting_event(EventList, Event) :-

65 

Page 266 of 778



oaa_waiting_event(Event) 1 

memberchk(Event 1 EventList) 1 

I 
• I 

retract(oaa_waiting_event(Event)). 

%***************************************************************************** 
% OAA Utilities 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa remove solvables data(Solvables). 
% purpose: For-each data solvable, remove all clauses belonging to it. 
% remarks: Solvables must be in standard form, and should include only 
% data solvables. 
% Permissions are ignored. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa remove solvables data([]). 
oaa=remove=solvables=data([Solvable I Solvables]) 

Solvable = solvable(Goal, Params, _Perms), 
icl GetParamValue(type(data) 1 Params), 
\+ memberchk(synonym(_, _), Params), 
! , 

% This should have already been done, but to be safe: 
(clause(Goal, _, _) -> true I true), 
predicate_skeleton(Goal, Skeleton), 
( oaa_remove_data_local(Skeleton, [do_all(true)]) -> 

) , 

true 
otherwise -> 

format('-w: Problem in removing all data for solvable: -w-n', 
['! ERROR', Goal]) 

oaa remove solvables data(Solvables). 
oaa_remove_sol~ables_data( [_Solvable I Solvables]) 

oaa_remove_solvables_data(Solvables). 

oaa remove data owned by(Id) :-
-( oaa_solvables(Solvables) >true I otherwise > Solvables [])I 
oaa_built_in_solvables(Builtins), 
append(Builtins 1 Solvables, AllSolvables), 
oaa_remove_data_owned_by(AllSolvables, Id). 

oaa remove data owned by([] 1 Id). 
oaa=remove=data=owned=by([Sol~able I Solvables], Id) 

Solvable = solvable(Goal, Params, Perms), 
icl_GetParamValue(type(data) 1 Params), 
\+ icl GetParamvalue(persistent(true), Params) 1 

\+ icl=GetParamValue(synonym(_ 1 ) 1 Params) 1 

! , 

% This should have already been done, but to be safe: 
(clause(Goal, _, _) ->true I true), 
predicate_skeleton(Goal, Skeleton) 1 

( oaa_remove_data_local(Skeleton 1 [owner(Id) 1 do_all(true)]) -> 
true 

otherwise -> 
format('-w: Problem in removing data owned by -w for solvable:-n -w-n' 1 

['! ERROR', Id, Goal]) 

66 

Page 267 of 778



) I 

oaa remove data owned by(Solvables, Id). 
oaa_remove_data_owned_by([_solvable I Solvables], Id) 

oaa_remove_data_owned_by(Solvables, Id). 

%***************************************************************************** 
% General Utilities 
%***************************************************************************** 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: oaa_consult(+FilePath, -AbsFileName). 
% purpose: 
% remarks: We don't use Quintus' builtin consult, because it's too picky 
% about associating predicates with files. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_consult(FilePath, AbsFileName) :-

absolute_file_name(FilePath, AbsFileName), 
can_open_file(AbsFileName, read, fail), 
open(AbsFileName, read, Stream), 
load_clauses(Stream), 
close(Stream). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: load_clauses(+Stream). 
% purpose: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
load_clauses(Stream) 

repeat, 
read_term(Stream, [], Term), 
( Term ':-'(_Body) -> 

) I 

true 
Term 
true 

end of file > 

otherwise -> 

load_clause(Term) 

( at_end_of_file(Stream) -> 

) . 

otherwise -> 

fail 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: load_clause(+Term). 
% purpose: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
load_clause(Term) :-

assert( Term). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: oaa_declare_for_prolog(Solvables). 
% purpose: For each solvable, make sure it's known to Prolog as a dynamic 
% predicate. This will prevent exceptions and warnings from 

67 

Page 268 of 778



% calls and retracts before there have been any asserts. 
% remarks: Solvables must be in standard form, and should include only 
% data solvables. 
% This is probably Quintus-specific. 
% We are assuming that none of these predicates are known to 
% Prolog as compiled predicates. Would be better to check for this. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oaa_declare_for_prolog([]). 
oaa_declare_for_prolog([solvable(Pred, _, _) I Rest]) 

copy_term(Pred, PredCopy), 
( clause(PredCopy, _Body) >true I true), 
oaa_declare_for_prolog(Rest). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: predicate_skeleton(+Goal, +Skeleton). 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
predicate_skeleton(Goal, Skeleton) : 

functor(Goal, Functor, Arity), 
functor(Skeleton, Functor, Arity). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: sprintf 
% purpose: C-like command formats a string + args into an atom 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
sprintf(AtomResult, FormatStr, Args) :-

with output to chars(format(FormatStr, Args), Chars), 
name(AtomResult, Chars). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: memberchk nobind 
% purpose: like memberchk, but doesn't bind variables in Elt when doing test. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
memberchk_nobind(Elt, [HI_l) :-

would unify(Elt, H), ! • 
memberchk_nobind(Elt, [_ITJ) : 

memberchk_nobind(Elt, T). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: would unify 
% purpose: succeeds if X and Y WOULD unify, but doesn't actually do the 
% unification (no variables are bound by test) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
would_unify(X,Y) :- \+\+X= Y. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: remove element 
%purpose: Removes the element X from a list 
% remarks: Fails if X is not an element in the list 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
remove_element (X, [X I Rest], Rest) :- ! . 

remove_element (X, [Y I Rest] , [Y I Rest2]) :- remove_element (X, Rest, Rest2) . 

68 

Page 269 of 778



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: replace element(Elt, List, New, NewList) 
% purpose: Replaces the element Elt, if present in List, with the element New 
% remarks: If there are multiple occurrences of Elt, only replaces the first 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
replace_element(Elt, [EltiRest), New, [NewiRest]) !. 
replace_element(Elt, [YIRest), New, [YIRest2]) 

replace_element(Elt, Rest, New, Rest2). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%name: select_elements(List, Selector, NewList) 
% purpose: Selects all List elements for which Selector(element) succeeds. 
% remarks: If there are multiple occurrences of Elt, only replaces the first 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
select elements ( [) , Selector, [] ) . 
select=elements([Ele;ent I Elements], Selector, [Element I Selected]) :

Test =. . [Selector, Element] , 
call ( Test ) , 
! I 

select elements(Elements, Selector, Selected). 
select_ele;ents([_Element I Elements], Selector, Selected) 

select_elements(Elements, Selector, Selected). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% name: call_n(+N, +Goal) 
% purpose: Call Goal with a limit on the number of solutions generated. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

call_n(l, Goal) 
call (Goal) , 
! . 

call_n(N, Goal) 
%Remember the counter's value in case anyone else is using it. 
ctr_is(12, CtrOrig), 
call_n_aux(N, Goal, CtrOrig). 

call_n_aux(N, Goal, CtrOrig) :
N > 1, 
ctr_set(12, 1), 
call(Goal), 
ctr_inc(12, 1, M), 
( M =< N -> 

true 
otherwise -> 

ctr_set(12, CtrOrig), 
I 
• I 

fail 
) . 
% This clause is for when the Goal fails before M > N: 

call_n_aux(_N, _Goal, CtrOrig) 
ctr_set(12, ctrorig), 
! I 

fail. 

69 

Page 270 of 778



% findall with a limit on the number of solutions generated. 
findNSolutions(O, _Var, _Predicate, []). 
findNSolutions(1, Var, Predicate, [Var]) 

call (Predicate) , ! . 
findNSolutions(1, Var, Predicate, []). 
findNSolutions(N, Var, P~edicate, Solutions) 

N > 1, 
% Save the counter's value in case anyone else is using it. 
ctr_is(12, CtrOrig), 
ctr_set(12, 1), 
findall (Var, 

(Predicate, ctr inc(12, 1, M), 
(M >= N -> !-otherwise -> true)), 

Solutions) , 
ctr_set(12, Ctrorig). 

% ============================================================== 
% No longer used: replaced or obsolete 
% ============================================================== 

% initialize all data flags 
% oaa_init_flags :-
% % set appropriate prolog flags 
% prolog_flag(fileerrors,_,on), 
% prolog flag(syntax errors, ,error), 
% % Let'; use retractall so ~s to avoid unknown exceptions when tracing: 
% retractall(oaa_cache(_,_)), 
% retractall(oaa_already_loaded(_)), 
% assert(oaa_trace(off)), 
% assert(oaa_debug(off)), 
% assert(oaa_com_trace(off)), 
% tcp_trace(_,off). 

70 

Page 271 of 778



t' 

APPENDIX A.V 

Source code file named translations. pl. 

Page 272 of 778



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% File : translations.pl 
% Primary Authors David Martin, Adam Cheyer 
% Purpose : Provides translations for backward compatibility with OAA 1.0 
% 
% 
% Unpublished-rights reserved under the copyright laws of the United States. 
% 
% 
% Unpublished Copyright (c) 1998, SRI International. 
% "Open Agent Architecture" and "OAA" are Trademarks of SRI International. 
% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This file is loaded by facilitator code, and thus no 
% module imports are needed here. 

%Currently, we support a 3.0 facilitator with a mix of 3.0 and/or pre-3.0 
% clients. 
%A pre-3.0 facilitator with a 3.0 client is NOT supported, and probably 
% never will be. 

:-multifile oaa_AppDoEvent/2. 

%At present we only support the case where the facilitator is 3.0, and 
%the client is pre-3.0. 

% Here we can ignore the languages. 
oaa_event_translation(2.0, L1, 3.0, L2, Connection, Event1, Event2) 

oaa_event_translation(2.1, L1, 3.0, L2, Connection, Event1, Event2). 
oaa_event_translation(2.1, L1, 3.0, L2, Connection, Event1, Event2) 

( Event1 = event(From, Contents1, Priority) -> 

Params2 = [from(From), priority(Priority)] 
Event1 = event(From, Contents1) > 

) , 

Params2 [from(From)] 
Event1 = Contents1 -> 
Params2 = [] 

( ev_trans_21_30(Contents1, Contents2) -> 

true 
otherwise > 
Contents2 = Contents1 

) I 

Event2 = event(Contents2, Params2). 

% Here we can ignore the languages. 
oaa_event_translation(3.0, L1, 2.0, L2, Connection, Event1, Event2) 

oaa_event_translation(3.0, L1, 2.1, L2, Connection, Event1, Event2). 
oaa_event_translation(3.0, _L1, 2.1, _L2, _Connection, Event1, Event2) 

Event1 = event(Contentsl, Params1), 
( ev_trans_30_21(Contents1, Paramsl, Contents2) -> 

) I 

true 
otherwise -> 
Contents1 = Contents2 

( memberchk(from(KS), Params1) -> 

1 

Page 273 of 778



) I 

! . 

Event2 ; event(KS, Contents2) 
otherwise -> 

Event2 = Contents2 

% Anything not specified explicitly stays the same: 
oaa_event_translation(3.0, _L1, 2.1, _L2, _Connection, E1, E1). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The following could go to or from the facilitator. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ev_trans_21_30(trace_on, ev_trace_on). 
ev_trans_21_30(trace_off, ev_trace_off). 
ev_trans_21_30(tcp_trace_on, ev_com_trace_on). 
ev_trans_21_30(tcp_trace_off, ev_com_trace_off). 
ev_trans_21_30(debug_on, ev_debug_on). 
ev_trans_21_30(debug_off, ev_debug_off). 
ev trans 21 30(set timeout(N), ev set timeout(N)). 
ev=trans=21=30(halt, ev_halt). - -

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%The following are sent only from (pre-3.0) client to facilitator. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ev_trans_21_30(post_event(Event), ev_post_event(NewEvent)) : 
ev_trans_21_30(Event, NewEvent). 

ev_trans_21_30(post_event(To, Event), ev_post_event(To, NewEvent)) 
ev_trans_21_30(Event, NewEvent). 

ev_trans_21_30(post_query(Goal, Params), 
ev_post_solve(Goal, [reflexive(false) I NewParams))) 

params_trans_21_30(Params, NewParams). 

% This is the message from a facilitator to its parent facilitator; 
% will probably evolve: 
% ev_trans_21_30(register_solvable_goals(AGL), register_solvable_goals(AGL)). 
%NO, we don't want to translate this. The old form is still handled 
% by the new facilitator: 
% ev_trans_21_30(register_solvable_goals(Goa1List, KSName), 
% ev_register_solvables(add, GoalList, KSName, 
% [if_exists(overwrite)))). 

ev_trans_21_30(solved(Goa1Id, FromKS, Goal, SolveParams, Solutions), 
ev_solved(Goalid, FromKS, Goal, SolveParams, Solutions)). 

/* post_trigger/4: retained for backwards compatibility*/ 
ev_trans_21_30(post_trigger(test, Type, Cond, Action), NewEvent) 

ev_trans_21_30(post_trigger(test, Type, unused, unused, Cond, Action), 
NewEvent) . 

I* post_trigger/4: retained for backwards compatibility*/ 
ev_trans_21_30(post_trigger(data, Type, Cond, Action), NewEvent) 

ev_trans_21_30(post_trigger(data, Type, 
[on_write, on_write_replace, on_replace), 
Cond, true, Action), NewEvent). 

2 

Page 274 of 778



/* post_trigger/4: retained for backwards compatibility*/ 
ev_trans_21_30(post_trigger(event, Type, Cond, Action}, NewEvent} 

ev_trans_21_30(post_trigger(event, Type, [on_receive], Cond, true, Action}, 
NewEvent). 

ev_trans_21_30(post_trigger(Kind,Recur,OpMask,Template,Test,Action}, 
ev_post_trigger_update(add,Mode,Condition,NewAction,Params)} 

Kind test -> Mode = task 
Kind == event -> Mode = comm 
Kind == alarm -> Mode = time 
otherwise >Mode= Kind}, 
Recur == whenever -> 
Recurrence= [recurrence(whenever}] 
otherwise -> 
Recurrence= [recurrence(when)] 

} I 

template trans 21 30(Kind, Template, Condition}, 
( var(Test} ->-TestParam = [J I otherwise-> TestParam [test(Test)J ), 
(Mode== data, ev trans 21 30(Action, NewAction) ->true 
I otherwise -> NewAction-= Action ) , 
opmask_trans_21_30(0pMask, OpParam}, 
( Mode data -> 

) I 

oaa_Id (Facid} , 
Addr = [address(Facid}] 
otherwise -> 
Addr [] 

append([Addr, [reply(none) ,reflexive(false}], 
Recurrence, TestParam, OpParam), Params). 

ev_trans_21_30(post_trigger(KS, Kind,Recur,OpMask,Template,Test,Action), 
ev_post_trigger_update(add,Type,Condition,NewAction,Params}} 

Kind test -> Type = task 
Kind event > Type comm 
Kind alarm -> Type = time 
otherwise-> Type= Kind}, 
Recur == whenever -> 
Recurrence = recurrence(whenever} 
otherwise -> 
Recurrence = recurrence(when) 

) I 

template_trans_21_30(Kind, Template, Condition}, 
( var (Test) -> TestParam = [] I otherwise -> TestParam [test (Test)] ) , 
oaa_Id (Facid) , 
( KS == Facid, ev trans 21_30(Action, NewAction) ->true 
I otherwise -> NewAction = Action ) , 
opmask_trans_21_30(0pMask, OpParam), 
append([[address(KS), reply(none), reflexive(false}], 

Recurrence, TestParam, OpParam], 
Params) . 

params trans 21 30 ( [], []). 
params=trans=21=30([Param I Params], [NewParam I NewParams]) 

( param_trans_21_30(Param, NewParam} -> 
true 
otherwise > 
NewParam Par am 

) I 

3 

Page 275 of 778



params_trans_21_30(Params, NewParams). 

param_trans_21_30(cache, cache(true)). 
param trans 21 30(solution limit(N), solution limit(N)). 
param=trans=21=30(reflexiv~, reflexive(true))~ 
param_trans_21_30(address(A), address(NewA)) :-

( is_list(A) -> NewA =A I otherwise -> NewA = [A] ) . 
param_trans_21_30(broadcast, reply(none)). 
param_trans_21_30(asynchronous, reply(asynchronous)). 
% ®®DLM: is this handled?: 
param_trans_21_30(test(T), test(T)). 
param trans 21 30(level limit(N), level limit(N)). 
param=trans=21=30(time_limit(N), time_limit(N)). 
% @@DLM: NOT HANDLED!: 
param_trans_21_30(and_parallel, and_parallel). 
param_trans_21_30(or_parallel, or_parallel). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The following could go to or from the facilitator. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ev_trans_30_21(ev_trace_on, _EvParams, trace_on). 
ev_trans_30_2l(ev_trace_off, _EvParams, trace_off). 
ev_trans_30_2l(ev_com_trace_on, _EvParams, tcp_trace_on). 
ev trans 30 21(ev com trace off, EvParams, tcp trace off). 
ev-trans-30-21(ev-deb~g on,- EvParams, debug on). -
ev=trans=30=21(ev=debug=off,-_EvParams, debug_off). 
ev_trans_30_21(ev_set_timeout(N), _EvParams, set_timeout(N)). 
ev_trans_30_21(ev_halt, _EvParams, halt). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The following are sent only from facilitator to client. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ev_trans_30_21( 
ev_solve(ID, Goal, NewParams), 

_EventParams, 
solve(ID, Goal, Params)) :

params_trans_30_21(Params, NewParams). 

ev_trans_30_21(ev_reply_solved(_, Solved, Goal, SolveParams, Solutions), 
_EventParams, 

) . 

solved(FromKS, Goal, SolveParams, Solutions)) 
Solved = [FromKS] -> 
true 
otherwise > 

FromKS Solved 

% OBSOLETE: forget these: 
% ev_trans_30_21(add_trigger(data, Type, Cond, Action), 
% ev_trans_30_21(add_trigger(event, Type, Cond, Action) 
% ev_trans_30_2l(add_trigger(test, Type, Cond, Action) 
% ®®DLM: Don't think this is needed: 
% ev_trans_30_2l(inform_ui(Typeinfo, Result), )) 

ev_trans_30_21( 

4 

Page 276 of 778



ev_update_trigger(_ID, add, Type, Condition, Action, TrigParams), 
_EventParams, 
add_trigger(Kind, Recur, OpMask, Template, Test, Action) ) :
( Type task -> Kind == test 
I Type = comm-> Kind == event 
I Type = time-> Kind == alarm 
I otherwise >Type= Kind), 
( memberchk(recurrence(whenever), TrigParams) -> 

Recur = whenever 
otherwise -> 
Recur = when 

) , 
Template = Condition, 
( memberchk(test(Test), TrigParams) -> true I otherwise ->Test ) , 
( memberchk(on(OpParam), TrigParams) -> 

) , 

true 
otherwise -> 
OpParam = 

opmask_trans_30_2l(OpParam, OpMask), 
( memberchk(test(Test), TrigParams) ->true I true). 

params trans 30 21 ( [], []) . 
params=trans=30=2l([Param I Params], [NewParam I NewParams]) 

( param_trans_30_2l(Param, NewParam) -> 
true 
otherwise -> 
NewParam = Param 

) , 
params_trans_30_21(Params, NewParams). 

param_trans_30_21(cache(true), cache). 
param_trans_30_21(solution_limit(N), solution_limit(N)). 
param_trans_30_21(reflexive(true), reflexive). 
% ®®DLM: double-check this: 
param_trans_30_21(address(A), address(A)). 
param_trans_30_21(reply(none), broadcast). 
param_trans_30_21(reply(asynchronous), asynchronous). 
% ®®DLM: is this handled?: 
param_trans_30_21(test(T), test(T)). 
param_trans_30_21(level_limit(N), level_limit(N)). 
param_trans_30_21(time_limit(N), time_limit(N)). 
% @@DLM: NOT HANDLED!: 
param_trans_30_21(and_parallel, and_parallel). 
param_trans_30_21(or_parallel, or_parallel). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%The following are sent only from a pre-3.0 facilitator to a client. 
% Backwards compatibility not currently supported. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% ev_trans_21_30(solved(FromKS, Goal, SolveParams, Solutions), 
% ev_reply_solved([FromKS], Solvers, Goal, SolveParams, Solutions)) 
% ( Solutions == [] -> 
% Solvers = [] 
% I otherwise -> 

5 

Page 277 of 778



% Solvers = [FromKS] 
% ) I 

% ( memberchk(get_address(FromKS), SolveParams) -> 

% true 
% I otherwise -> 
% FromKS = unknown 
% ) • 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Auxiliary procedures. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Returns either a Singleton list or an empty list. 
opmask_trans_21_30(0pMask, [)) :-

var (OpMask), 
! • 

opmask trans 21 30(0pMask, OpParam) 
\+-is_li;t(OpMask), 
! I 

opmask_trans_21_30([0pMask], OpParam). 
opmask trans 21 30 ( [], []). 
opmask=trans=21=30( [Elt I Rest], [EltTrans I RestTrans)) 

opmask_elt_trans_21_30(Elt, EltTrans), 
! I 

opmask trans 21 30(Rest, RestTrans). 
opmask_tra~s_21_3o([_Elt I Rest), RestTrans) 

! I 

opmask_trans_21_30(Rest, RestTrans). 
opmask elt trans 21 30(on send, on(send)). 
opmask=elt=trans=21=30(on=receive, on(receive)). 
opmask_elt_trans_21_30(on_write, on(add)). 
opmask_elt_trans_21_30(on_retract, on(remove)). 
opmask elt trans 21 30(on replace, on(replace)). 
% This-one-probably-doesn7t have a precise translation: 
opmask_elt_trans_21_30(on_write_replace, on(replace)). 

opmask trans 30 21(0pMask, OpMask) :
va;;(OpMa;k)-; 
!. 

opmask trans 30 21(0pMask, OpParam) 
\+-is_li;t(OpMask), 
! I 

opmask_trans_30_21([0pMask), OpParam). 
opmask trans 30 21 ( [), []) . 
opmask=trans=30=21( [Elt I Rest], [EltTrans I RestTrans)) 

opmask_elt_trans_30_21(Elt, EltTrans), 
! I 

opmask trans 30 21(Rest, RestTrans). 
opmask_tra~s_3o_21C[_Elt I Rest), RestTrans) 

! I 

opmask_trans_30_21(Rest, RestTrans). 
opmask elt trans 30 21(on(send), on send). 
opmask=elt=trans=30=21(on(receive) ,-on_receive). 
opmask_elt_trans_30_21(on(add), on_write). 
opmask_elt_trans_30_21(on(remove), on_retract). 
opmask_elt_trans_30_21(on(replace), on_replace). 
% This one probably doesn't have a precise translation: 

6 

Page 278 of 778



opmask_elt_trans_30_21(on(replace}, on_write_replace}. 

template_trans_21_30(data, 

! . 

data(ksdata, [Agentid,Status,Solvables,Name]}, 
agent_data(Agentid,Status,Solvables,Name}} 

template_trans_21_30(data, Template, Template} :-
! . 

template_trans_21_30(event, Template, Condition} 
! I 

ev_trans_21_30(Template, Condition}. 
template_trans_21_30(_, Template, Template}. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Event handlers for selected pre-3.0 events. 
% 
% In these cases, this approach is easier than providing an event 
% translation. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

oaa AppDoEvent(register solvable goals(GoalList}, Params} 
- memberchk( connection_id(connection} I Params}, 

%This hack inherited from b.pl: 
oaa_AppDoEvent(register_solvable_goals(GoalList, Connection}, 

Params}. 

oaa_AppDoEvent(register_solvable_goals(GoalList, Name}, Params} 

te} J}, 

memberchk( connection_id(Connection}, Params}, 
update connected(Connection, [oaa name(Name}]}, 
icl_Co~vertSolvables(GoalList, Solvables}, 
oaa_AppDoEvent(ev_register_solvables(add,Solvables,Name, [if_exists(overwri 

Params}. 

oaa_AppDoEvent(can_solve(Goal}, EvParams} :
memberchk(from(KS}, EvParams}, 
findall(SomeKS, choose_ks_for_goal(KS, Goal, _, [], SomeKS, _}, AgentList}, 
oaa_PostEvent(return_can_solve(Goal, AgentList}, [address(KS}]}. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% BB events 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

oaa_AppDoEvent(write_bb(ksdata, [Id 1 Status,Solvables 1 Name]} I 

EvParams} :-
! I 

} . 

var(Solvables} > 
% (Surely this never happens.} 

oaa:oaa_add_data_local(agent_data(Id 1 Status 1 Solvables,Name}, [from(Id}]} 
otherwise -> 

icl_ConvertSolvables(Solvables, FormalSolvables} I 

oaa_AppDoEvent(ev_register_solvables(add,FormalSolvables 1 Name, 
[if exists(overwrite}]} 1 

[from(Id} I EvParams]} -

oaa_AppDoEvent(write_bb(oaa_version, V} 1 EvParams} 

7 

Page 279 of 778



I 
• I 

memberchk(from(Id) I EvParams) I 

% oaa:oaa_add_data_local(data(oaa_Version 1 V) 1 [from(Id)]), 
com Getinfo(Connectionid, oaa id(Id)), 
com=Addinfo(Connectionid, agent_version(V)). 

oaa_AppDoEvent(write_bb(language, Language) 1 EvParams) 
I 
• I 

memberchk(from(Id), EvParams), 
com_Getinfo(Connectionid, oaa_id(Id)), 
com Addinfo(Connectionid 1 agent language(Language)). 

oaa_AppDoEvent(write_bb(kshost, Host), EvParams) :-
I . , 
memberchk(from(Id), EvParams), 
oaa:oaa_solve_local(agent_data(Id, _, _ 1 Name), []), 
oaa:oaa add data local(agent host(Id, Name, Host), 

- - - [from(Idl-1 EvParams]). 
oaa_AppDoEvent(write_bb(Item, Data), EvParams) 

I . , 
memberchk(from(Id), EvParams), 
oaa:oaa_add_data_local(data(Item, Data), [from(Id)]). 

oaa_AppDoEvent(write_once_bb(Item, Data), EvParams) 
(Item = ksdata ; Item = oaa_version ; Item = language ; Item = kshost), 
! I 

oaa_AppDoEvent(write_bb(Item, Data), [single_value(true) I EvParams]). 
oaa_AppDoEvent(write_once_bb(Item, Data), EvParams) 

! , 
memberchk(from(Id), EvParams), 
oaa:oaa_add_data_local(data(Item, Data) 1 [from(Id), single_value(true)]). 

oaa_AppDoEvent(write_replace_bb(Item, Data) 1 EvParams) 
(Item = ksdata ; Item = oaa_version ; Item = language ; Item = kshost), 
! , 

oaa_AppDoEvent(write_bb(Item 1 Data), [unique_values(true) I EvParams]). 
oaa_AppDoEvent(write_replace_bb(Item, Data), EvParams) 

! , 

memberchk(from(Id) 1 EvParams), 
oaa:oaa_add_data_local(data(Item 1 Data), [from(Id) 1 unique_values(true)]). 

oaa_AppDoEvent(replace_bb(ksdata, [A,open 1 C,Name] 1 [A 1 ready 1 C,Name]), 
EvParams) 

! I 

oaa_AppDoEvent(ev_ready(Name), EvParams). 
oaa_AppDoEvent(replace_bb(ksdata, [Id,Status,Solvables 1 Name], 

[Newid,NewStatus,NewSolvables,NewName]) I 

I . , 

) . 

EvParams) 

var(NewSolvables) -> 
oaa:oaa_replace_data_local{agent_data{Id 1 Status,Solvables,Name), 

[from(Id), with{agent_data(Newid,NewStatus,NewSolvables,NewName)))) 
otherwise -> 

icl_ConvertSolvables(NewSolvables 1 FormalSolvables) 1 

oaa_AppDoEvent(ev_register_solvables(add 1 FormalSolvables 1 NewName, 
[if exists(overwrite)]), 

[from(Newid) I EvParamsJ) 

oaa_AppDoEvent(replace_bb(Item, OldData, Newnata), EvParams) 

8 

Page 280 of 778



! I 

memberchk(from(Id), EvParams) 1 

oaa:oaa_replace_data_local(data(Iteml OldData) 1 

[from(Id) 1 with(data(Item 1 NewData))]). 

% ®®DLM: May need more special-purpose clauses starting here: 
oaa_AppDoEvent(retract_bb(Item 1 Data), EvParams) 

! I 

memberchk(from(Id), EvParams), 
oaa:oaa_remove_data_local(data(Item 1 Data), [from(Id)]). 

oaa_AppDoEvent(read_bb(ksdata, [Agent!d,Status,Solvables,Name]), EvParams) 
! I 

memberchk(from(Id), EvParams), 
findall(read_bb(ksdata, [Agentid,Status,Solvables,Name]), 

oaa:oaa_solve_local(agent_data(Agentid,Status,Solvables,Name), []), 
Solutions) , 

oaa_simplify_ksdata(Solutions, Simplified), 
oaa_PostEvent(return_read_bb(Simplified), [address(Id))). 

oaa_AppDoEvent(read_bb(KS,kshost,Host), EvParams) 
I 
• I 

memberchk(from(Id), EvParams), 
findall(read_bb(KS, kshost, Host), 

oaa:oaa_solve_local(agent_host(KS,_,Host), []), 
Solutions), 

oaa_PostEvent(return_read_bb(Solutions), [address(Id))). 
oaa_AppDoEvent(read_bb(oaa_version,V), EvParams) 

! I 

memberchk(from(Id), EvParams), 
% Not sure if this works (but this clause is probably never called) : 
findall(read_bb(oaa_version, V), 

( com_Getinfo(Connection!d, oaa_id(_)), 
com_Getinfo(Connectionid, agent_version(V)) ) , 

Solutions) , 
oaa_PostEvent(return_read_bb(Solutions), [address(Id)]). 

oaa_AppDoEvent(read_bb(KS,oaa_version,V), EvParams) 
I 
• I 

memberchk(from(Id), EvParams), 
findall(read_bb(KS, oaa_version, V), 

( com_Getinfo(Connectionid, oaa_id(KS)) 1 

com_Getinfo(Connectionid, agent_version(V)) ) , 
Solutions), 

oaa_PostEvent(return_read_bb(Solutions), [address(Id)]). 
oaa_AppDoEvent(read_bb(Item,Data), EvParams) 

! I 

memberchk(from(Id), EvParams), 
findall(read_bb(Item, Data), 

oaa:oaa_solve_local(data(Item, Data), []), 
Solutions) , 

oaa_PostEvent(return_read_bb(Solutions), [address(Id))). 
% ®®The owner parameter isn't implemented yet for solve! 

oaa_AppDoEvent(read_bb(_KS, Item 1 Data) 1 EvParams) 
! I 

memberchk(from(Id) 1 EvParams) 1 

findall(read_bb(Item, Data) 1 

oaa:oaa_solve_local(data(Item, Data), [)) 1 

9 

Page 281 of 778



.. 

Solutions), 
oaa_PostEvent(return_read bb(Solutions), [address(Id)]). 

oaa simplify ksdata ( [], []) . 
oaa=sirnplify=ksdata([KSData I Rest], [Simplified I RestSimp]) 

KSData = read_bb(ksdata, [A, B, Solvables, D)), 
icl_ConvertSolvables{SimplifiedSolvables 1 Solvables) 1 

Simplified= read_bb(ksdatal [A, B, SimplifiedSolvables 1 D)) 1 

oaa_simplify_ksdata(Restl RestSimp). 

10 

Page 282 of 778



INTHECL.S: 

~A c puler-implemented method for communication and cooperative task 

comp tion among a plurality of distributed electronic agents, comprising the 

registering a desc · ption of each active client agent's functional capabilities, using an 

expandable, latform-independent, inter-agent language; 

receiving a request fo service as a base goal in the inter-agent language, in the form 

of an arbitrarily omplex goal expression; and 

dynamically interpreting he goal expression, said act of interpreting further 

comprising: 

generating one or m re sub-goals using the inter-agent language; and 

dispatching each of ttl sub-goals to a selected client agent for performance, 

based on a mate between the sub-goal being dispatched and the 

registered functio al capabilities of the selected client agent. 

2. A computer-implemented ethod as recited in claim 1, further including the 

2 following acts of: 

3 receiving a new request for service as base goal using the inter-agent language, in 

4 

5 

6 

the form of another arbitrarily c plex goal expression, from at least one of 

the selected client agents in respo e to the sub-goal dispatched to said agent; 

and 

7 recursively applying the last step of claim 1 i order to perform the new request for 

8 

2 

3 

service. 

3. A computer· recited in claim 2 wherein the act 

of registering a specific ag t further includes: 

invoking the speci c agent in order to activat 

instantiating an in tance of the specific agent; 

transmitting the ew agent profile from the sp cific agent to the facilitator 

agent in response to the nstantiation of the specific agent. 

4. A com uter implemented method as recited in claim 1 further 

2 including the act of de ctivating a specific client agent no longer available to provide 

3 services by deleting t e registration of the specific client agent. 

5. A co • puter implemented method as recited in claim 1 further 

2 comprising the act o providing an agent registry data structure. 

Auornev Docket No: SRIIP0160477)/BRCIEWJ Page 46 of 59 Page 283 of 778



6. A colter implemented method as recited .!aim 5 wherein the 

2 agent registry data structure includes at 1 stone symbolic name for each active agent. 

7. A computer implemented method as recited in claim 5 wherein the 

2 agent registry data structure includes a least one data declaration for each active 

3 agent. 

8. A computer impleme ed method as recited in claim 5 wherein the 

() 2 agent registry data structure includ s at least one trigger declaration for one active 

3 agent. 

9. A computer imple ented method as recited in claim 5 wherein the 

2 agent at least one task declaration, and process 

3 characteristics for each active a nt. 

10. A computer im lemented method as recited in claim 5 wherein the 

2 agent registry data structure i ludes at least one process characteristic for each active 

3 agent. 

11. A computer implemented method as recited in claim 1 further 

2 comprising the act of estab shing communication between the plurality of distributed 

3 agents. 

12. implemented method as recited in claim 1 further 

2 comprising the acts of: 

3 st for service in a second language differing from the inter-

4 agent language; 

5 stered agent capable of converting the second language into the 

6 

7 e request for service in a second language to the registered agent 

8 capable of conve ing the second language into the inter-agent language, implicitly 

9 requesting that s ch a conversion be performed and the results returned. 

13. computer implemented method as recited in claim 12 wherein the 

2 request includ s a natural language query, and the registered agent capable of 

3 converting th second language into the inter-agent language service is a natural 

4 

14. A computer implemented method as recited in claim 13 wherein the 

2 uage query was generated by a user interface agent. 

Attornev Docket No: SRIIPOI60477VBRCIEWJ Pa!!e 47 of 59 Page 284 of 778



15. A colter implemented me hod as recited in·~ I, wherein the 

2 base goal requires setting a trigger having c nditional functionality and consequential 

3 functionality. 

16. A computer implemented ethod as recited in claim 15 wherein the 

2 trigger is an outgoing communications trigger, the computer implemented method 

3 further including the. acts o( 

4 monitoring all outgoing comm nication events in order to determine whether a 

\1\ 5 specific outgoing communication eve t has occurred; and 

Q 

ru 

.~ 

"' ~· 

6 in response to the occurrenc of the specific outgoing communication event, 

7 performing the particular action defi ed by the trigger. 

2 

3 

4 

5 

6 

7 

8 

2 

3 

4 

5 

6 

7 

2 

17. A computer implem nted method as recited in claim 15 wherein the 

trigger is an incoming communic tions trigger, the computer implemented method 

further including the acts of: 

monitoring all incoming mmunication events in order to determine whether 

a specific incoming communi cat" on event has occurred; and 

in response to the occ ence of a specific incoming communication event 

satisfying the trigger functionality, performing the particular 

consequential functionality de med by the trigger. 

18. A computer i plemented method as recited in claim 15 wherein the 

trigger is a data trigger, the omputer implemented method further including the acts 

of: 

monitoring a state fa data repository; and 

in response to a p rticular state event satisfying the trigger conditional 

functionality, performin the particular consequential functionality defined by the 

trigger. 

19. puter implemented method as recited in claim 15 wherein the 

er, the computer implemented method further including the acts 

3 of: 

4 for the occurrence of a particular time condition; and 

5 in respon e to the occurrence of a particular time condition satisfying the 

6 trigger conditio al functionality, performing the particular consequential functionality 

7 

20. A computer implemented method as recited in claim 15 wherein the 

2 trigger is in ailed and executed within the facilitator agent. 

Attornev Docket No: SRIIP016C3477)!BRCIEWJ Paee 48 of 59 Page 285 of 778



= :l"l 

""' 

21. A colter impleme ted method as recited .aim 15 wherein the 

2 trigger is installed and executed wit in a first service-providing agent. 

22. A computer imple nted method as recited in claim 15 wherein the 

2 conditional functionality of the tri ger is installed on a facilitator agent. 

23. A computer impl mented method as recited in claim 22 wherein the 

2 consequential functionality is i stalled on a specific service-providing agent other 

3 than a facilitator agent. 

24. implemented method as recited in claim 15 wherein the 

2 conditional functionality of the trigger is installed on a specific service-providing 

3 

25. A com ter implemented method as recited in claim 15 wherein the 

2 consequential functio ality of the trigger is installed on a facilitator agent. 

2 

2 

3 

26. A co puter implemented method as recited in claim wherein the 

base goal is a comp und goal having sub-goals separated by operators. 

27. mputer implemented method as recited in claim 26 wherein the 

type of available operators includes a conjunction operator, a disjunction operator, 

and a conditiona execution operator. 

Attornev Docket No: SRIIP016(3477){8RCIEWJ Pae:e 49 of 59 Page 286 of 778



• • 
28. A computer i ; plemented method as recited in claim 27 wherein the type 

2 of available operators fu er includes a parallel disjunction operator that indicates that 

3 disjunct goals are to be erformed by different agents. 

Attorney Docket No: SRIIP016(3477)/BRC/EWJ Page 50 of 59 

Page 287 of 778



2 

3 

4 

5 

6 

7 

8 

9 

10 

II 

12 

13 

14 

15 

16 

17 

18 

Fi 19 

;-.: 20 

21 
"= !i!il 

"'"' :.F: 22 == w 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

A ~-ter progr stored on a compute.dable medium, the 

computer program executable to facilitate cooperative task completion within a 

distributed computing environmen , the distributed computing environment including 

a plurality of autonomous electro ic agents, the distributed computing environment 

supporting an Interagent Co munication Language, the computer program 

comprising computer executable nstructions for: 

providing an agent reg stry that declares capabilities of service-providing 

electronic agents currently acti within the distributed computing environment; 

interpreting a service r quest in order to determine a base goal that may be a 

x base goal, the service request adhering to an 

Interagent Communication L guage (ICL), the act of interpreting including the sub

acts of: 

determining a y task completion advice provided by the base goal, and 

ny task completion constraints provided by the base goal; 

constructing a base oal satisfaction plan including the sub-acts of: 

whether the requested service is available, 

sub-goals required in completing the base goal, 

ervice-providing electronic agents from the agent registry 

suitable for per£ rming the determined sub-goals, and 

a delegation of sub-goal requests to best complete the 

implementin the base goal satisfaction plan. 

30. A c mputer program as recited in claim 29 wherein the computer 

executable instruc on for providing an agent registry includes the following computer 

executable instru tions for registering a specific service-providing electronic agent 

ng a bi-directional communications link between the specific agent 

agent controlling the agent registry; 

provid. g a new agent profile to the facilitator agent, the new agent profile 

defining pubr ly available capabilities of the specific agent; and 

ring the specific agent together with the new agent profile within the 

, thereby making available to the facilitator agent the capabilities of the 

Allornev Docket No: SRI1POI6(3477)/BRC/EWJ Pa2e 51 of 59 Page 288 of 778



~ 

31. A colter program as ecited in claim 3~~rein the computer 

2 executable instruction for registering a sp cific agent further includes: 

3 invoking the specific agent in ord r to activate the specific agent; 

4 instantiating an instance of the sp cific agent; and 

5 transmitting the new agent pro le from the specific agent to the facilitator 

6 agent in response to the instantiation of he specific agent. 

32. s recited in claim 29 wherein the computer 

2 executable instruction for providing agent registry includes a computer executable 

3 instruction for removing a specifi service-providing electronic agent from the 

4 registry upon determining that the pecific agent is no longer available to provide 

5 services. 

33. A computer progra as recited in claim 29 wherein the provided agent 

2 registry includes a symbolic na e, a unique address, data declarations, trigger 

3 declarations, task declari;'!.tions, an process characteristics for each active agent. 

34. A computer progr m as recited in claim 29 further including computer 

2 executable instructions for recei ing the service request via a communications link 

3 established with a client. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

35. ram as recited in claim 29 wherein the computer 

executable instruction for prov· ing a service request includes instructions for: 

receiving a non-ICL fo at service request; 

selecting an active a ent capable of converting the non-ICL formal service 

request into an ICL format s rvice request; 

forwarding the non- CL format service request to the active agent capable of 

converting the non-ICL service request, together with a request that such 

receiving an IC format service request corresponding to the non-ICL format 

service request. 

36. A com uter program as recited in claim 35 wherein the non-ICL 

2 format service reques includes a natural language query, and the active agent capable 

3 of converting the no -ICL formal service request into an ICL format service request is 

4 

37. program as recited in claim 36 wherein the natural 

2 language query i generated by a user interface agent. 

Attornev Docket No: SRIIPOJ6(3477)!BRCIEWJ Page 52 of 59 Page 289 of 778



~ 

;;; 

a ~ 
if';;= 

38. I 
.) 

A co ter program as r cited in claim 29,Y computer program 

2 further including computer executable in tructions for implementing a base goal that 

3 requires setting a trigger having conditio al and consequential functionality. 

39. A computer program as ecited in claim 38 wherein the trigger is an 

2 outgoing communications trigger, the computer program further including computer 

3 executable instructions for: 

4 monitoring all outgoing co unication events in order to determine whether a 

5 specific outgoing communication vent has occurred; and 

6 in response to the occurr nee of the specific outgoing communication event, 

7 performing the particular action defined by the trigger. ' 

2 

3 

4 

5 

6 

7 

2 

3 

4 

5 

40. A computer pro ram as recited in claim 38 wherein the trigger is an 

incoming communications trig er, the computer program further including computer 

executable instructions for: 

g communication events in order to determine whether 

a specific incoming commun·cation event has occurred; and 

in response to the o currence of the specific incoming communication event, 

performing the particular a ion defined by the trigger. 

41. A computer program as recited in claim 38 wherein the trigger is a data 

trigger, the computer pro!! am further including computer executable instructions for: 

monitoring a stat of a data repository; and 

in response to a articular state event, performing the particular action defined 

by the trigger. 

42. puter program as recited in claim 38 wherein the trigger is a 

2 time trigger, the co puter program further including computer executable instructions 

3 for: 

4 for the occurrence of a particular time condition; and 

5 se to the occurrence of the particular time condition, performing the 

6 particular actio defined by the trigger. 

43. A computer program as recited in claim 38 further including computer 

2 structions for installing and executing the trigger within the facilitator 

3 agent. 

A computer program as recited in claim 38 further including computer 

2 executabl instructions for installing and executing the trigger within a first service-

3 

Attorne Docket No: SRIJPOJ6(3477)/BRCIEWJ Pa2:e 53 of 59 Page 290 of 778



~ 

45. A co-er program recited in claim 29 fu. including computer 

2 executable instructions for interpreti compound goals having sub-goals separated 

3 by operators. 

. 46. as recited in claim 45 wherein the type of 

2 available operators includes a con unction operator, a disjunction operator, and a 

3 conditional execution operator. 

47. m as recited in claim 46 wherein the type of 

2 available operators further inclu es a parallel disjunction operator that indicates that 

3 disjunct goals are to be perfo d by different agents. 

4 

5 

ommunication Language (ICL) providing a basis for 

facilitated coopera 've task ompletion within a distributed computing environment 

having a facilitator a ent a d a plurality of autonomous service-providing electronic 

agents to perform queries of other agents, exchange 

nts, set triggers within other agents, an ICL syntax 

6 supporting compound go expressions such that goals within a single request 

7 provided according to the L syntax may be coupled by a conjunctive operator, a 

8 disjunctive operator, a c nd'tional execution operator, and a parallel disjunctive 

9 operator parallel disjune ive o erator that indicates that disjunct goals are to be 

10 

49. 

2 independent. 

50. 

2 

51. 

An ICL s recited in claim 48, wherein the ICL is computer platform 

as recited in claim 48 wherein the ICL is independent of 

g languages which the plurality of agents are programmed in. 

as recited in claim 48 wherein the ICL syntax supports explicit 

2 task completion con traints within goal expressions. 

52. An CL as recited in claim 51 wherein possible types of task 

2 completion constr ints include use of specific agent constraints and response time 

3 constraints. 

53. A ICL as recited in claim 51 wherein the ICL syntax supports explicit 

2 task completion dvisory suggestions within goal expressions. 

54. n ICL as recited in claim 48 wherein the ICL syntax supports explicit 

2 task completio advisory suggestions within goal expressions. 

Auornev Docket No: SRIIPOI6(3477VBRC/EWJ Paee 54 of 59 Page 291 of 778



ijj 

iii 

~:;4 

55. An ;tas recited in claim 48 wherein ea.utonomous service-

2 providing electronic agent defines and pub ishes a set of capability declarations or 

3 solvables, expressed in ICL, that describes s rvices provided by such electronic agent. 

56. An ICL as recited in claim 5 wherein an electronic agent's solvables 

2 define an interface for the electronic agent. 

57. An ICL as recited in clai 56 wherein the facilitator agent maintains 

2 an agent registry making available a plu ality of electronic agent interfaces. 

58. An ICL as recited in c im 57 wherein the possible types of solvables 

2 includes procedure solvables, a proc ure solvable operable to implement a procedure 

3 such as a test or an action. 

59. An ICL as recited · claim 58 wherein the possible types of solvables 

2 further includes data data solvable operable to provide access to a 

3 collection of data. 

60. An ICL as recit d in claim 58 wherein the possible types of solvables 

2 includes data solvables, a dat solvable operable to provide access to a collection of 

3 data. 

2 

3 

4 

5 

6 

7 

8 

9 

lO 

II 

12 

2 

Y. A facilitator ent arranged to coordinate cooperative task completion 

within a distributed comput" g environment having a plurality of autonomous service

providing electronic agents the facilitator agent comprising: 

an agent registry that declares capabilities of service-providing electronic 

agents currently active thin the distributed computing environment; and 

a facilitating en ine operable to parse a service request in order to interpret a 

compound goal set fo h therein, the compound goal including both local and global 

constraints and contr 1 parameters, the service request formed according to an 

Interagent Commu cation Language (ICL), the facilitating engine further operable to 

construct a goal s isfaction plan specifying the coordination of a suitable delegation 

of sub-goal requ ts to complete the requested service satisfying both the local and 

global constrain s and control parameters. 

62. facilitator agent as recited in claim 61, wherein the facilitating 

able of modifying the goal satisfaction plan during execution, the 

3 modifying i tiated by events such as new agent declarations within the agent registry, 

4 decisions ade by remote agents, and information provided to the facilitating engine 

5 

Attorn Docket No: SRIIP016(3477)/BRC/EWJ Pa!!e 55 of 59 Page 292 of 778



63. A fa-tor agent as cited in claim 61 whf the agent registry 

2 includes a symbolic name, a unique dress, data declarations, trigger declarations, 

3 task declarations, and process characte istics for each active agent. 

64. A facilitator agent as r ited in claim 61 wherein the facilitating engine 

2 is operable to install a trigger mech nism requesting that a certain action be taken 

3 when a certain set of conditions are 

65. A facilitator agent s recited in claim 64 wherein the trigger 

2 mechanism is a communication tr" gger that monitors communication events and 

3 performs the certain action when a c rtain communication event occurs. 

66. · A facilitator agent as recited in claim 64 wherein the trigger 

2 mechanism is a data trigger that m nitors a state of a data repository and performs the 

3 certain action when a certain data tate is obtained. 

67. A facilitator agent as recited in claim 66 wherein the data repository is 

2 local to the facilitator agent. 

68. A facilitator agen as recited in claim 66 wherein the data repository is 

2 remote from the facilitator agent 

69. as recited in claim 64 wherein the trigger 

2 mechanism is a task trigger hav ng a set of conditions. 

70. A facilitator ag nt as recited in claim 61, the facilitator agent further 

2 including a global database accessible to at least one of the service-providing 

3 electronic agents. 

"7-r. A software-ba ed, flexible computer architecture for communication 

2 and cooperation among distr' uted electronic agents, the architecture contemplating a 

3 distributed computing syste comprising: 

4 a plurality of service providing electronic agents; and 

5 a facilitator agent in bi-directional communications with the plurality of 

6 service-providing electroni agents, the facilitator agent including: 

7 istry that declares capabilities of service-providing 

8 

9 

10 

II 

12 

electronic agents urrently active within the distributed computing 

environment; 

g engine operable to parse a service request in order 

to interpret an ar itrarily complex goal set forth therein, the facilitating 

engine further o erable to construct a goal satisfaction plan including 

Attornev Docket No: SRIIP016(3477)/BRCIEWJ Paee 56 of 59 Page 293 of 778



l3 

14 

2 

3 

4 

5 

6 

the coordinator a suitable d egation of sub-goal tests to best 

complete the requested service. 

72. A computer architecture s recited in claim 71, wherein the basis for 

the computer architect is an lnterage t Communication Language (ICL) enabling 

agents to perform queries of other age ts, exchange information with other agents, 

and set triggers within other agents, he ICL further defined by an ICL syntax 

supporting compound goal expressio s such that goals within a single request 

provided according to the ICL syntax ay be coupled by a conjunctive operator, a 

7 disjunctive operator, a conditional e ecution operator, and a parallel disjunctive 

8 operator parallel disjunctive operato that indicates that disjunct goals are to be 

9 performed by different agents. 

73. A computer architect e .as recited in claim 72, wherein the ICL is 

2 computer platform independent. 

74. A computer architec re as recited in claim 73 wherein the ICL is 

2 independent of computer programm ng languages in which the plurality of agents are 

3 programmed. 

75. A computer archite ure as recited in claim 73 wherein the ICL syntax 

~ 2 supports explicit task completion nstraints within goal expressions. 
f,{j 
iii 76. A computer archit cture as recited in claim 75 wherein possible types 

2 of task completion constraints i lude use of specific agent constraints and response 

3 time constraints. 

77. A computer arch tecture as recited in claim 75 wherein the ICL syntax 

2 supports explicit task completi n advisory suggestions within goal expressions. 

78. itecture as recited in claim 73 wherein the ICL syntax 

2 supports explicit task comple on advisory suggestions within goal expressions. 

79. A computer architecture as recited in claim 73 wherein each 

2 autonomous service-provi ing electronic agent defines and publishes a set of 

3 capability declarations o solvables, expressed in ICL, that describes services 

4 provided by such electroni agent. 

80. A comput r architecture as recited in claim 79 wherein an electronic 

2 agent's solvables define n interface for the electronic agent. 

81. er architecture as recited in claim 80 wherein the possible 

2 types of solvables inc des procedure solvables, a procedure solvable operable to 

3 implement a procedur such as a test or an action. 

Attornev Docket No: SRI I PO 16(34 77)/BRC/EW J Page 57 of 59 Page 294 of 778



~? 

0: 
"' 

82. A c-uter architecture recited in claim 'wherein the possible 

2 types of solvables further includes data so vables, a data solvable operable to provide 

3 access to a collection of data. 

2 

3 

2 

3 

2 

3 

2 

3 

4 

5 

83. 

84.· 

85. 

A computer architectur as recited in claim 82 wherein the possible 
I 

types of solvables inc .odes a data solvable operable to provide access 

A omputer archi cture as recited in claim 71 wherein the planning 

rchitecture as recited in claim 71 wherein the execution 

the facilitating engine is distributed across at least two 

%. · er providing a transport mechanism for information 

puting environment having at least one facilitator 

aent, the data wave carrier comprising a signal 

representation of an i ter-agent langu ge description of an active client agent's 

87. A ata wave carrier as rec ted in claim 85, the data wave carrier further 

2 comprising a si est for service in the inter-agent language 

3 

2 

3 

2 

3 

4 

88. claim 85, the data wave carrier further 

signal representation of a goal disp tched to an agent for performance 

A data wave carrier as recited in clai 88 wherein a later state of the 

data wa carrier comprises a signal representation o \;esponse to the dispatched 

goal in uding results and/or a status report from the age\ for performance to the 

facilit or agent. ~ 

Attornev Docket No: SRIIPOJ6(3477)!BRCIEWJ Pa!!e 58 of 59 Page 295 of 778



'' F 

Hi 
~·t 

5 

Software-Base,hitecture for Communication and Cttion Among 

Distributed Electronic Agents 

ABSTRACT 

A highly flexible, software-based architecture is disclosed for constructing 

distributed systems. The architecture supports cooperative task completion by 

flexible, dynamic configurations of autonomous electronic agents. Communication 

and cooperation between agents are brokered by one or more facilitators, which are 

responsible for matching requests, from users and agents, with descriptions of the 

10 capabilities of other agents. It is not generally required that a user or agent know the 

identities, locations, or number of other agents involved in satisfying a request, and 

relatively minimal effort is involved in incorporating new agents and "wrapping" 

legacy applications. Extreme flexibility is achieved through an architecture organized 

around the declaration of capabilities by service-providing agents, the construction of 

15 arbitrarily complex goals by users and service-requesting agents, and the role of 

facilitators in delegating and coordinating the satisfaction of these goals, subject to 

advice and constraints that may accompany them. Additional mechanisms and 

features include facilities for creating and maintaining shared repositories of data; the 

use of triggers to instantiate commitments within and between agents; agent-based 

20 provision of multi-modal user interfaces, including natural language; and built-in 

support for including the user as a privileged member of the agent community. 

Specialized embodiments providing enhanced scalability are also described. 

Attorney Docket No: SR11P016(3477)/BRC/EWJ Page 59 of 59 
Page 296 of 778



-
DECL.,TION AND POWER OF AT~EY . -
FOR O!UGINAL U.S. PATENT APPLICATION 

Attorney's Docket No. _ _,S""RI'-'=-'l""-P-"0'-'-1~6'---
As a below-named inventor, I hereby declare that: 

My residence, post office address and citizenship are as stated below next to my name. 

I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if 
plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: 
SOFIW ARE-BASED ARCHITECTURE FOR COMMUNICATION AND COOPERATION AMONG DISTRIBUTED 
ELECTRONIC AGENTS, the specification of which is attached hereto. 

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as 
amended by any amendment referred to above. 

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 

37, CFR § 1.56. . I(\(_, ~ih't\_ f. "\ Ll'f 
f\-'. 

5 
~ ~~)~ lJ) Q.XffZI\f\j ) 

And I hereby appoint the law :firm of Hickman & fvfartin~including PaulL. Hickman (Reg. No. 28, 516); L. Keith Stephens 
(Reg. No. 32,632); Brian R. Coleman (Reg. No. 39,145); Dawn L. Palmer (Reg. No. 41,238); Jerray Wei (Reg. No. 43,247); 

A and Ian L. Cartier (Reg. No. 38,406) as my principal attorneys to prosecute this application and to transact all business in the 
~ Patent and Trademark Office connected therewith: 

fid Send Correspondence To: 

tf; 
L;. =-
~ 
.00 
;; Direct Telephone Calls To: 

Brian R. Coleman 
HICKMAN STEPHENS & COLEMAN, LLP 
P.O. BOX 52037 
Palo Alto, California 94303-0746 

Brian R. Coleman at telephone number (650) 470-7430 

-~~ I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and 
C belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the 
~"'j like so made are punishable by f"me or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that 
4i such willful false statements may jeopardize the validity of the application or any patent issuing thereon. 

~ 

Typewritten Full Name of 
Sole or First Inventor: 

Inventor's signature: 

Residence: (City) 

Post Office Address: 

Typewritten Full Name of 
Second Inventor: 

Inventor's signature: 

Residence: (City) 

Post Office Address: 

Adam J. Cheyer 

David L. Martin 

IG/ 

1 

Citizenship: CJSA 

Date of Signature:___,/c....}"-'''""-')-+}_q..:...~....:.....----
(State/Country) CA 

94306 

Citizenship: 

Date of Signature: __ I-+/--:5-+/-9.._7-S-----
(State/Country) 

~c11\-c. C.\o-co.. 

CA 

Page 297 of 778



C't -- . . . 
.:. 

Application or 'Docket Number 

PATENT· APPUCATION FEE DETERMINATION RECORD 
!ift (cZU ;crt Effective 'November 10, 1~~8 

CLAIMS AS FILED - PART I SMALL ENTITY OTHER THAN 
(Column 1) (Column 2) TYPE c:::J OR SMALL ENTITY 

FOR NUMBER FILED NUMBER EXTRA RATE FEE RATE FEE 

BASIC FEE 380.00 OR 760.00 

TOTAL CLAIMS 9,q minus20= * (cJi' X$9= X$18= 1/.J!.c[z._ OR 

INDEPENDENT CLAIMS G minus3 = * '2) X39= OR X78= 'rJ~~-
MULTIPLE DEPENDENT CLAIM PRESENT 

+130= OR +260= 

* If the difference in column 1 is less than zero, enter ·cr in column 2 TOTAL OR TOTAL l/rl3~ 
' 

kJ( 
CLAIMS AS AMENDED- PART II OJHERTHAN 

lColumn 1) lColumn2\ lColumn 3\ SMALL ENTIT'( OR SMALL ENTITY 
CLAIMS HIGHEST ADDI· ADD I· c REMAINING NUMBER PRESENT 

RATE TIONAL RATE TIONAL ~ AFTER PREVIOUSLY EXTRA 
w AMENDMENT PAID FOR FEE ·FEE 
:IE 

Total * f/ Minus ** ,;;2() = ~1' 0~ ~X$18= ~1/-:L-Q X$9= z w Independent * (() Minus - ~ =<. ~X78= lz50'rJ b :IE' X39= OR c FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM 

+130= OR +260= 

TOTAL TOTAL 
ADOIT.FEE OR ADDIT. FEE 

· (Column 1) . {Column 2) lColumn 31 
CLAIMS HIGHEST 

ADD I- ADO I-m REMAINING NUMBER PRESENT 
1- AFTER PREVIOUSLY EXTRA RATE TIONAL RATE TIONAL z 

AMENDMENT PAID FOR FEE FEE w 
:IE 

Total Minus Q * - = X$9= OR X$18= z w Independent * Minus - = :IE X39= X78= c OR FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM 

+130= OR +260= 

TOTAL TOTAL 
ADOIT.FEE OR ADDIT. FEE 

lColumn 1) (Column 2\ Column 3' 
CLAIMS HIGHEST 

(,) REMAINING NUMBER PRESENT ADD I- ADD I-
1- AFTER PREVIOUSLY EXTRA RATE TIONAL RATE TIONAL z AMENDMENT PAID FOR FEE FEE w 
:& 

Total Minus Q •· ** = X$9= X$18= z OR w Independent * Minus *** = :& X39= X78= c( 
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM OR 

+130= OR +260:: 
• If the entry in column 1 is less than the entry in column 2. write "0" in column 3. 

TOTAL OR TOTAL .. H th ~ighest Number Previously Paid For" IN THIS SPACE is less than 20. enter "20. • 
-tf th "Highest Number Previously Paid F r" IN THIS SPACE is less than 3, enter "3." 

AOOIT. FEE ADOIT. FEE 

The "Highest Number Previously Paid For" (Total or Independent) is the highest numbel' found in th apprOpriate _box in· COlumn 1. 

FORM PTo.875 
(Rev. f!.l98l Patent and Trademark Ollice. U.S. DEPARTMENT OF COMMERCE 

~ 
0 -· -=-c 
tT co 
() 
0 u 
"< 

Page 298 of 778



PATENT APPLICATION SERIAL NO.--------

U.S. DEPARTMENT OF COMMERCE 
PATENT AND TRADEMARK OFFICE 

FEE RECORD SHEET 

OV19/1999 IIVIWRI 00000027 500384 092251CJI 

01 FCI101 
02 FCa102 
03 FCI103 

PT0-1556 
(5/87) 

760.00 at 
234.00 at 

1242.00 at 

Page 299 of 778



ARTIFACT SHEET 

Enter artifact number below. Artifact number is application number+ 
artifact type code (see list below)+ sequential letter (A, B, C ... ). The first 
artifact folder for an artifact type receives the letter A, the second B, etc .. 
Examples: 59123456PA, 59123456PB, 59123456ZA, 59123456ZB 

D t) z_z_ r J 9 ~Pzt 
Indicate quantity of a single type of artifact received but not scanned. Create 
individual artifact folder/box and artifact number for each Artifact Type. 

~ CD(s) containing: [2'] 

D 
D 
D 
D 
D 
D 

D 

computer program listing 
·Doc Code: Computer Artifact Type Code: P 
pages of specification 
and/or sequence listing D 
and/or table 
Doc Code: Artifact Artifact-IYPe Code: S 
content unspecified or combined U 
Doc Code: Artifact Artifact Type Code: U 

Stapled Set(s) Color Documents or B/W Photographs 
Doc Code: Artifact Artifact Type Code: C 

Microfilm(s) 
Doc Code: Artifact Artifact Type Code: F 

Video tape(s) 
Doc Code: Artifact Artifact Type Code: V 

Model(s) 
Doc Code: Artifact Artifact Type Code: M 

Bound Document(s) 
Doc Code: Artifact Artifact Type Code: B 

Confidential Information Disclosure Statement or Other Documents 
marked Proprietary, Trade Secrets, Subject to Protective Order, 
Material Submitted under MPEP 724.02, etc. 

Doc Code: Artifact Artifact Type Code X 

Other, description: ---------------------------------Doc Code: Artifact Artifact Type Code: Z 

March 8, 2004 

Page 300 of 778



ARTIFACT SHEET 

Enter artifact number below. Artifact number is application number+ 
artifact type code (see list below)+ sequential letter (A, B, C ... ). The first 
artifact folder for an artifact type receives the letter A, the second B, etc .. 
Examples: 59123456PAY-\5J;ll23456PB, 59~?l456ZA, 59123456ZB 

u I z..z,<;-')9( 
Indicate quantity of a single type of artifact received but not scanned. Create 
individual artifact folder/box and artifact number for each Artifact Type. 

D 
D 
D 
D 
D 
D 

D 

CD(s) containing: 
computer program listing 
Doc Code: Computer Artifact Type Code: P 
pages of specification 
and/or sequence listing 
and/or table 

D 
Doc Code: Artifact Artifact-llPe Code: S 
content unspecified or combined U 
Doc Code: Artifact Artifact Type Code: U 

Stapled Set(s) Color Documents or B/W Photographs 
Doc Code: Artifact Artifact Type Code: C 

Microfilm(s) 
Doc Code~ Artifact Artifact Type Code: F 

Video tape(s) 
Doc Code: Artifact Artifact Type Code: V 

Model(s) 
Doc .Code: Artifact Artifact Type Code: M 

Bound Document(s) 
Doc Code: Artifact Artifact Type Code: B 

Confidential Information Disclosure Statement or Other Documents 
marked Proprietary, Trade Secrets, Subject to Protective Order, 
Material Submitted under MPEP 724.02, etc. 

Doc Code: Artifact Artifact Type Code X 

Other, description: 
----~~----~~-----------------

Doc Code: Artifact Artifact Type Code: Z 

March 8, 2004 

Page 301 of 778



• • PATENT 

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

In re the application of: ) 
) Group: 2755 

Cheyer et al. ) 
) Examiner: Unassigned 

Application No.: 09/225,198 ) 
) Atty. Docket No.: SRI1P016 

Filed: January 5, 1999 ) 
) 

For: SOFTWARE-BASED ARCHITECTURE ) 
FOR COMMUNICATION AND COOPERATION) 

Date: May 11, 1999 
RECEIVED 

AMONG DISTRIBUTED ELECTRONIC ) MAY 2 0 1999 
AGENTS ) 

Gro• •n 2700 

CERTIFICATE OF MAILING 

I hereby certify that this correspondence is being deposited with the 
United States Postal Service as First Class Mail in an envelope 
addressed to: Assistant Commissioner for Patents, Washington, DC 
20231 on May II, 1999 · 

Signod' ~ ~ 
~asu~ 

INFORMATION DISCLOSURE STATEMENT 
UNDER 37 CFR §§1.56 AND 1.97(c) 

Assistant Commissioner for Patents 
Washington, DC 20231 

Dear Sir: 

The references listed in the attached PTO Form 1449, copies ofwhich are attached, 

may be material to examination of the above-identified patent application. Applicants submit 

these references in compliance with their duty of disclosure pursuant to 37 CFR §§1.56 and 

1.97. The Examiner is requested to make these references of official record in this 

application. 

Reference No. Ron Page 4 ofPTO form 1449 contains documents downloaded from 

a web site owned by Dejima, Inc. at http://www.dejima.com on April 29, 1999 and March 18, 

1999. The applicant makes no representation that this web site has not changed between the 

dates of downloading or that this web site will not change in the future. 

This Information Disclosure Statement is not to be construed as a representation that a 

search has been made, that additional information material to the examination of this 

application does not exist, or that these references indeed constitute prior art. 

Attny Dkt No. SRI1P016 1 

Page 302 of 778



• 
This Information Disclosure Statement is believed to be filed before the mailing date 

of a first Office Action on the merits. Accordingly, it is believed that no fees are due in 

connection with the filing of this Information Disclosure Statement. However, if it is 

determined that any fees are due, the Commissioner is hereby authorized to charge such fees 

to Deposit Account 50-0384 (Order No. SRI1P016). 

P.O. Box 52037 
Palo Alto, CA 94303-0746 
Telephone: (650) 470-7430 

Attny Dkt No. SRIIP016 

Respectfully submitted, 

HICKMAN STEPHENS & COLEMAN, LLP 

~ 
Brian R. Coleman 
Reg. No. 39,145 

2 

Page 303 of 778



UNITED STATES PATENT AND 'IRADE:tviARK OFFICE 

APPLICATION NO. FILING DATE 

09/225,198 01/0511999 

25696 7590 07/17/2002 

OPPENHEIMER WOLFF & DONNELLY 
P. 0. BOX 10356 
PALO ALTO, CA 94303 

FIRST NAMED INVENTOR 

ADAM J. CHEYER 

Ur-'l:TED STATES DEPARTIIENT OF COMMERCE 
United States Po. tent and Trndcznnrk Office 
Addreoo: COMMISSIONER OF PATENTS AND TRADEMARKS 

Wao!Ungton, D.C. 20231 
www .uspto.gov 

ATTORNEY DOCKET NO. CONFIRMATION NO. 

SRIIP016 2756 

EXAMINER 

BULLOCK JR, LEWIS ALEXANDER 

ART UNIT PAPER NUMBER 

2151 

DATE MAILED: 07/17/2002 

Please find below and/or attached an Office communication concerning this application or proceeding. 

PT0-90C (Rev. 07-01) 

Page 304 of 778



Application No. 

09/225,198 

Applicant(s) 

CHEYER ET AL. 

Office Action Summary 

Period for Reply 

Examiner 

Lewis A. Bullock, Jr. 
appears on 

Art Unit 

2151 

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE ;l MONTH(S) FROM 
THE MAILING DATE OF THIS COMMUNICATION. 

Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however. may a reply be timely filed 
after SIX (6) MONTHS from the mailing date of this communication. 

- If the period for reply specified above is less than thirty (30) days. a reply within the statutory minimum of thirty (30) days will be considered timely. 
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. 

Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S. C.§ 133). 
Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any 
earned patent term adjustment. See 37 CFR 1.704(b). 

Status 

1)0 Responsive to communication(s) filed on __ . 

2a)0 This action is FINAL. 2b)[8J This action is non-final. 

3)0 Since this application is in condition for allowance except for formal matters, prosecution as to the merits is 
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. 

Disposition of Claims 

4)[8] Claim(s) 1-89 is/are pending in the application. 

4a) Of the above claim(s) __ is/are withdrawn from consideration. 

5)0 Claim(s) __ is/are allowed. 

6)[8] Claim(s) 1-89 is/are rejected. 

7)0 Claim(s) __ is/are objected to. 

8)0 Claim(s) __ are subject to restriction and/or election requirement. 
Application Papers 

9)0 The specification is objected to by the Examiner. 

10)0 The drawing(s) filed on __ is/are: a)O accepted or b)O objected to by the Examiner. 

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). 

11)0 The proposed drawing correction filed on __ is: a)O approved b)O disapproved by the Examiner. 

If approved, corrected drawings are required in reply to this Office action. 

12)0 The oath or declaration is objected to by the Examiner. 

Priority under 35 U.S.C. §§ 119 and 120 

13)0 Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). 

a)O All b)O Some* c)O None of: 

1.0 Certified copies of the priority documents have been received. 

2.0 Certified copies of the priority documents have been received in Application No. __ . 

3.0 Copies of the certified copies of the priority documents have been received in this National Stage 
application from the International Bureau (PCT Rule 17 .2(a)). 

* See the attached detailed Office action for a list of the certified copies not received. 

14)0 Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (fo-~ provisional application). 

a) 0 The translation of the foreign language provisional application has been received. 
15)0 Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121. 

AHachment(s) 

1) [8J Notice of References Cited (PT0-892) 

2) [8J Notice of Draftsperson's Patent Drawing Review (PT0-948) 

3) [8J Information Disdosure Statement(s) (PT0-1449) Paper No(s) 2. 

4) 0 Interview Summary (PT0-413) Paper No(s). __ . 

5) 0 Notice of Informal Patent Application (PT0-152) 
6) 0 Other: 

PT0-326 (Rev. 04-01) Office Action Summary Part of Paper No. 3 Page 305 of 778



. Application/Control Number: 09/225,198 

Art Unit: 2151 

DETAILED ACTION 

Claim Rejections - 35 USC § 112 

• 
Page 2 

1. Claim 2 is rejected under 35 U.S.C. 112, second paragraph, as being indefinite 

for failing to particularly point out and distinctly claim the subject matter which applicant 

regards as the invention. Applicant claims the recursively applying the last step of claim 

1, however the Examiner cannot determine which step applicant is referring to. 

Applicant is either referring to the dynamically interpreting step and its substep or the 

dispatching step of the dynamically interpreting step. Clarification is requested. 

2. Claim 3 recites the limitation "from the specific agent to the facilitator agent" in 

lines 5-6. There is insufficient antecedent basis for this limitation in the claim. There is 

no mention of the facilitator agent anywhere in the parent claims. In review of the 

specification the examiner finds the facilitator agent performs the steps of claim 1 , 

however, claim 1 does not detail the facilitator agent as performing the steps. The 

examiner request Applicant to amend claim 1 to detail that the facilitator agent performs 

the functionality. 

3. Claims 84 and 85 are rejected under 35 U.S.C. 112, second paragraph, as being 

indefinite for failing to particularly point out and distinctly claim the subject matter which 

applicant regards as the invention. Claims 84 and 85 recite the planning and execution 

components, however neither component has antecedent basis in the parent claim 71. 

Correction is requested. 

Page 306 of 778



, 
• Application/Control Number: 09/225,198 

Art Unit: 2151 

• 
Page 3 

4. Claims 87 and 88 recite the limitation "A data wave carrier as recited in claim 85" 

in line 1. There is insufficient antecedent basis for this limitation in the claim. Claims 87 

and 88 should be dependent on claim 86 not claim 85 and are further examined as 

such. 

Claim Rejections- 35 USC§ 102 

5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that 

form the basis for the rejections under this section made in this Office action: 

A person shall be entitled to a patent unless -

(a) the invention was known or used by others in this country, or patented or described in a printed 
publication in this or a foreign country, before the invention thereof by the applicant for a patent. 

(b) the invention was patented or described in a printed publication in this or a foreign country or in public 
use or on sale in this country, more than one year prior to the date of application for patent in the United 
States. 

6. Claims 1, 2, 5-11, 15-28, 48-89 are rejected under 35 U.S.C. 1 02(a) as being 

anticipated by "Building Distributed Software Systems with the Open Agent 

Architecture" by MARTIN. 

As to claim 1, MARTIN teaches a computer-implemented method for 

communication and cooperative task completion among a plurality of distributed agents 

(application agent I meta agent I user interface agent), comprising the acts of: 

registering a description of each client agent's functional capabilities (capabilities 

specifications), using a platform independent inter-agent language (ICL); receiving a 

request for service as a base goal (goals created by requesters of service) in the inter-

agent language, in the form of an arbitrarily complex goal expression; and dynamically 

interpreting the goal expression (goals) (via facilitator) comprising: generating one or 

Page 307 of 778



J 

. Application/Control Number: 09/225,198 

Art Unit: 2151 

• 
Page4 

more sub-goals using the inter-agent language; and dispatching each of the sub-goals 

to a selected client agent (service providers) for performance, based on a match 

between the sub-goal being dispatched and the registered functional capabilities of the 

selected client agent (pg. 7, Mechanisms of Cooperation; pg. 12-14, Requesting 

Services; Refining Service Requests, and Facilitation). 

As to claim 2, MARTIN teaches receiving a new request (subgoal) for service as 

a base goal from at least one of the selected client agents in response to the sub-goal 

and recursively applying the dynamically interpreting (pg. 13, Refining Service 

Requests). 

As to claims 5-10, MARTIN teaches providing an agent registry data structure 

that can comprise of symbolic names, data declarations, trigger declarations, and task 

and process characteristics (pg. 13-14, Facilitation; pg. 7, "In processing a request. .. it 

can use ICL to request services of other agents, set triggers, and read or write shared 

data on the facilitator. .. "). 

As to claim 11, MARTIN teaches establishing communication between distributed 

agents (pg. 6, The facilitator is a specialized server agent that is responsible for 

coordinating agent communications and cooperative problem-solving."). 

Page 308 of 778



. Application/Control Number: 09/225,198 

Art Unit: 2151 

Page 5 

As to claims 15-25, MARTIN teaches the base goal requires setting a trigger 

having conditional functionality and consequential functionality which can be stored on 

the facilitator agent and/or the service providing agent (pgs. 16-17, Autonomous 

Monitoring Using Triggers). 

As to claims 26-28, MARTIN teaches the base goal is a compound goal having 

sub-goals separated by operators, i.e. conjuction operator, disjunction operator, 

conditional operator, and a parallel operator (pg. 12-13, Compound goals). 

As to claim 48, MARTIN teaches an Inter-agent Communication Language (ICL) 

providing a basis for facilitated cooperative task completion within a distributed 

computing environment having a facilitator agent (facilitator) and a plurality of electronic 

agents (service providing agents I service requesting agents), the ICL enabling agents 

to perform queries of other agents, exchange information with other agents, set triggers 

within other agents (pgs. 4-7, Overview of OAA System Structure, Mechanisms of 

Cooperation; pg. 8, "OAA agents employ ICL to perform queries, execute actions, 

exchange information, set triggers, and manipulate data in the agent community."), an 

ICL syntax supporting compound goal expressions such that goals within a single 

request provided according to the ICL syntax may be coupled by a conjunctive operator, 

a disjunctive operator, a conditional execution operator, and a parallel operator that 

indicates that goals are to be performed by different agents (pg. 12, Compound goals). 

Page 309 of 778



. Application/Control Number: 09/225,198 

Art Unit: 2151 

Page 6 

As to claim 49 and 50, MARTIN teaches the ICL is platform and language 

independent (pg. 8, "OAA's Inter-agent Communication Language (ICL) is the interface, 

communication, and task coordination language shared by all agents, regardless of 

what platform they run on or what computer language they are programmed in."). 

As to claims 51-54, MARTIN teaches the ICL supports task completion 

constraints within goal expressions (pg. 9, "A number of important declarations ... we 

consider each of these elements."). 

As to claims 55-60, MARTIN teaches each electronic agent defines and 

publishes a set of capability declarations or solvables that describe services and an 

interface to the electronic agent (pg. 9, "A number of important declarations ... we 

consider each of these elements."). 

As to claims 61 and 62, reference is made to an agent that performs the method 

of claim 1 above and is therefore met by the rejection of claim 1 above. However, claim 

61 further details an agent register and the construction of a goal satisfaction plan. 

MARTIN teaches an agent register (knowledge base) (pg. 13-14, Facilitation); and the 

construction of a goal satisfaction plan (pg. 13, "When a facilitator receives a compound 

goal, its job is to construct a goal satisfaction plan and oversee its satisfaction in the 

most appropriate, efficient manner that is consistent with the specified advice."). 

Page 310 of 778



. Application/Control Number: 09/225,198 

Art Unit: 2151 

As to claim 63, refer to claim 5 for rejection. 

As to claim 64-69, refer to claims 15-25 for rejection. 

• 

As to claim 70, MARTIN teaches the agent registry (knowledge base) is a 

Page 7 

database accessible to all electronic agents (via the facilitator) (pg. 13-14, Facilitation). 

As to claim 71, reference is made to an architecture that encompasses the agent 

of claim 61 above, and is therefore met by the rejection of claim 61 above. However 

claim 71, further details the facilitator agent in bi-directional communication with the 

electronic agents. MARTIN teaches the facilitator agent in bi-directional communication 

with the electronic agents (fig 1 ). 

As to claim 72, refer to claim 48 for rejection. 

As to claims 73 and 74, refer to claims 49 and 50 for rejection. 

As to claims 75-78, refer to claims 51-54 for rejection. 

As to claims 79-83, refer to claims 54-60 for rejection. 

Page 311 of 778



Application/Control Number: 09/225,198 

Art Unit: 2151 

• 
Page 8 

As to claims 84 and 85, MARTIN teaches the facilitating engine is distributed 

across at least two processes (pg. 6, "Larger systems can be assembled from multiple 

facilitator/client groups ... "). 

As to claim 86, MARTIN teaches a data wave carrier (system) providing a 

transport mechanism (layer of conversational protocol I communication functions) for 

information communication in a distributed computing environment having at least one 

facilitator agent (facilitator) and at least one client agent (application agent I user 

interface agent), the carrier comprising a signal representation of an inter-agent 

language description of a client agent's functional capabilities (registering by the service 

provider agents) (pg. 6-9). 

As to claim 87, MARTIN teaches a signal representation of a request for service 

in the inter-agent language from a first agent to a second agent (request for service 

from an service requesting agent to the facilitator) (pg. 12, Requesting Services). 

As to claim 88, MARTIN teaches a signal representation of a goal dispatched to 

an agent for performance from a facilitator agent (pg. 13-14, Facilitation). 

As to claim 89, MARTIN teaches a signal representation of a response to the 

dispatched goal including results and/or a status report from the agent for performance 

to the facilitator agent (pg. 13-14, Facilitation). 

Page 312 of 778



. Application/Control Number: 09/225,198 

Art Unit: 2151 

7. Claims 1, 2, 5-11, and 15-25 are rejected under 35 U.S.C. 102(b) as being 

anticipated by "Development Tools for the Open Agent Architecture" by MARTIN. 

As to claim 1, MARTIN teaches a computer-implemented method for 

Page 9 

communication and cooperative task completion among a plurality of distributed agents 

(sub-agents I agents), comprising the acts of: registering a description of each client 

agent's functional capabilities, using a platform independent inter-agent language (pg. 

5, Each facilator records the published capabilities of their subagents ... "); receiving a 

request as a base goal in the inter-agent language (ICL form), in the form of an 

arbitrarily complex goal expression; and dynamically interpreting the goal expression 

comprising: generating one or more sub-goals using the inter-agent language; and 

dispatching each of the sub-goals to a selected client agent for performance ("pg. 5, 

" ... and when requests arrive (expressed in the Inter-agent Communication Language, 

described below), the facilitator is responsible for breaking them down and for 

distributing sub-requests to the appropriate agents; "For example, every agent 

can ... and request solutions for a set of goals, ... "). 

As to claim 2, MARTIN teaches receiving a new request for service as a base 

goal from at least one of the selected client agents in response to the sub-goal and 

recursively applying the dynamically interpreting (pg. 5, "An agent satisfying a request 

may require supporting information, and the OAA provides numerous means of 

requesting data from other agents or from the user."). 

Page 313 of 778



Application/Control Number: 09/225,198 

Art Unit: 2151 

Page 10 

As to claims 5-10, MARTIN teaches providing an agent registry data structure 

that can comprise of symbolic names, data declarations, trigger declarations, and task 

and process characteristics (pg. 5, "For example, every agent can install local or remote 

triggers on data .. "). 

As to claim 11, MARTIN teaches establishing communication between distributed 

agents (pg. 5, ... the facilitator is responsible for breaking them down and for distributing 

sub-requests to the appropriate agent."). 

As to claims 15-25, MARTIN teaches the base goal requires setting a trigger 

having conditional functionality and consequential functionality which can be stored on 

the facilitator agent and/or the service providing agent (pg. 5, "For example, every agent 

can install local or remote triggers on data .. "). 

Claim Rejections- 35 USC§ 103 

8. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all 

obviousness rejections set forth in this Office action: 

(a) A patent may not be obtained though the invention is not identically disclosed or described as set 
forth in section 102 of this title, if the differences between the subject matter sought to be patented and 
the prior art are such that the subject matter as a whole would have been obvious at the time the 
invention was made to a person having ordinary skill in the art to which said subject matter pertains. 
Patentability shall not be negatived by the manner in which the invention was made. 

Page 314 of 778



Application/Control Number: 09/225,198 

Art Unit: 2151 

9. Claims 3, 29-34, and 38-47 are rejected under 35 U.S.C. 103(a) as being 

unpatentable over "Building Distributed Software Systems with the Open Agent 

Architecture" by MARTIN. 

Page 11 

As to claim 3, MARTIN teaches the act of registering and transmitting the new 

agent profile from the specific agent to the facilitator agent (pg. 7, "When invoked, a 

client agent makes a connection to a facilitator ... an agent informs its parent facilitator of 

the services it is capable of providing."). It would be obvious that an agent that is 

initially created is instantiated in memory before it is registered. 

As to claim 29, MARTIN teaches a method to facilitate cooperative task 

completion within a distributed computing environment supporting an Inter-agent 

Communication Language among a plurality of electronic agents (fig 1) comprising: 

providing an agent registry (knowledge base) as disclosed (pg. 13-14, Facilitation); 

interpreting a service request in order to determine a base goal (compound goal) 

comprising: determining any task completion advice provided by the base goal, and 

determining any task completion constraints provided by the base goal (pg. 14, "It may 

also use strategies or advice specified by the requester .. "); constructing a base goal 

satisfaction plan (pg. 13, "When a facilitator receives a compound goal, its job is to 

construct a goal satisfaction plan and oversee its satisfaction in the most appropriate, 

efficient manner that is consistent with the specified advice.") comprising: determining 

whether the requested service is available, determining sub-goals required in 

completing the base goal (delegation), selecting suitable service-providing electronic 

Page 315 of 778



. Application/Control Number: 09/225,198 

Art Unit: 2151 

• 
Page 12 

agents for performing the sub-goals, and ordering a delegation of sub-goal requests to 

complete the requested service; and implementing the base goal satisfaction plan (pg. 

13-14, Facilitation). However, MARTIN does not explicitly mention that the method is 

operable in a computer program product. It would be obvious to one skilled in the art to 

generate program code that would entail the method of Martin and thereby obvious that 

the method can be entailed in a computer program product. 

As to claims 30 and 31, MARTIN teaches registering a specific agent (service 

provider agents) into the agent registry comprising: establishing a bi-directional 

communications link between the specific agent and a facilitator agent (facilitator) 

controlling the agent registry; providing a new agent profile to the facilitator agent; and 

registering the specific agent with the profile thereby making the capabilities available to 

the facilitator agent (pgs. 9-10, Providing Services; pg. 7, Mechanisms of Cooperation). 

As to claim 32, refer to claim 3 for rejection. 

As to claim 33, refer to claim 5 for rejection. 

As to claim 34, refer to claim 11 for rejection. 

As to claims 38-44, refer to claims 15-25 for rejection. 

Page 316 of 778



r. 
. Application/Control Number: 09/225,198 

Art Unit: 2151 

As to claims 45-47, refer to claims 26-28 for rejection. 

10. Claims 4, 12-14 and 35-37 is rejected under 35 U.S.C. 103(a) as being 

unpatentable over "Building Distributed Software Systems with the Open Agent 

Page 13 

Architecture" by MARTIN1 in view of "Information Brokering in an Agent Architecture" by 

MARTIN2. 

As to claim 4, MARTIN1 substantially discloses the invention above. However, 

MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches 

deactivating a client agent no longer available to provide services by deleting the 

registration (pg. 9, Source agents that need to go offline ... so that it can unregister the 

source and retract its schema mapping rules."). Therefore it would be obvious to 

combine the teachings of MARTIN1 with the teachings of MARTIN2 in order to provide 

transparent access to a plurality of independent agents (abstract). 

As to claims 12-14, MARTIN1 substantially discloses the invention above. 

However, MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches 

receiving a request for service in a second language (source shema); selecting a 

registered agent capable of converting the second language into the inter-agent 

language (broker schema); and forwarding the request for service in a second language 

to the registered agent for conversion to be performed and the results returned (pg. 12-

13, Queries Expressed in a Source Schema). Refer to claim 4 for the motivation to 

combine. 

Page 317 of 778



Application/Control Number: 09/225,198 

Art Unit: 2151 

As to claims 35-37, refer to claims 12-14 for rejection. 

Page 14 

11. Claims 3, 29-34, 38-47,61-71, and 84-89 are rejected under 35 U.S.C. 103(a) as 

being unpatentable over "Developing Tools for the Open Agent Architecture" by 

MARTIN. 

As to claim 3, MARTIN teaches the act of registering and transmitting the new 

agent profile from the specific agent to the facilitator agent (pg. 5, "Every agent 

participating in an OAA-based system defines and publishes a set of capabilities 

specifications, expressed in the ICL, describing the services that it provides."). It would 

be obvious that an agent that is initially created is instantiated in memory before it is 

registered. 

As to claim 29, MARTIN teaches a method to facilitate cooperative task 

completion within a distributed computing environment supporting an Inter-agent 

Communication Language among a plurality of electronic agents (sub-agents I agents) 

comprising: providing an agent registry as disclosed (facilitator storage of published 

sub-agents capabilities); interpreting a service request in order to determine a base goal 

(via facilitator) constructing a base goal satisfaction plan comprising: determining 

whether the requested service is available, determining sub-goals required in 

completing the base goal (determine solutions for a set of goals) selecting suitable 

service-providing electronic agents for performing the sub-goals, and ordering a 

Page 318 of 778



Application/Control Number: 09/225,198 

Art Unit: 2151 

Page 15 

delegation of sub-goal requests to complete the requested service; and implementing 

the base goal satisfaction plan (pg. 5, "The facilitator is responsible for breaking them 

down and for distributing sub-requests to the appropriate agents."). However, MARTIN 

does not explicitly mention that the method is operable in a computer program product 

or the sending of advice or constraints. It would be obvious that since an agent can 

request solutions for a goal to be satisfied under a variety of different control strategies 

(pg. 5) that the control strategies are the advice and/or constraints. It would also be 

obvious to one skilled in the art to generate program code that would entail the method 

of Martin and thereby obvious that the method can be entailed in a computer program 

product. 

As to claims 30 and 31, MARTIN teaches registering a specific agent (agent) into 

the agent registry (list of agents capabilities) comprising: establishing a bi-directional 

communications link between the specific agent and a facilitator agent controlling the 

agent registry; providing a new agent profile to the facilitator agent; and registering the 

specific agent with the profile thereby making the capabilities available to the facilitator 

agent (pg. 5, "Each facilitator records the published capabilities of their subagents ... "; 

"Every agent participating in an OM-based system ... describing the services that it 

provides."). 

As to claim 32, refer to claim 3 for rejection. 

Page 319 of 778



Application/Control Number: 09/225,198 

Art Unit: 2151 

As to claim 33, refer to claim 5 for rejection. 

As to claim 34, refer to claim 11 for rejection. 

As to claims 38-44, refer to claims 15-25 for rejection. 

As to claims 45-47, refer to claims 26-28 for rejection. 

Page 16 

As to claim 61 and 62, reference is made to an agent that performs the method 

of claim 1 above and is therefore met by the rejection of claim 1 above. However, claim 

61 further details an agent register and the construction of a goal satisfaction plan. 

MARTIN teaches every agent participating in an OAA-based system defines and 

publishes a set of capabilities describing the services that it provides and that the 

facilitator records these published capabilities (pg. 5). Therefore, there is an agent 

register of the capabilities of each agent. MARTIN also teaches an agent can request 

solutions for a set of goals to be satisfied under a variety of different control strategies. 

It would be obvious that since solutions are determined based on the goals and control 

strategies that a goal satisfaction plan is created. 

As to claim 63, refer to claim 5 for rejection. 

As to claim 64-69, refer to claims 15-25 for rejection. 

Page 320 of 778



Application/Control Number: 09/225,198 

Art Unit: 2151 

Page 17 

As to claim 70, MARTIN teaches the agent registry (agent library /list of agent 

capabilities) is a database accessible to all electronic agents (pg. 5, A collection of 

agents satisfies requests from users, or other agents ... one or more facilitators."; "An 

agent satisfying a request may require supporting information ... requesting data from 

other agents or from the user."). 

As to claim 71, reference is made to an architecture that encompasses the agent 

of claim 61 above, and is therefore met by the rejection of claim 61 above. However 

claim 71, further details the facilitator agent in bi-directional communication with the 

electronic agents. MARTIN teaches the facilitator can distribute request to the agents 

and the agents can request information via the facilitator (pg. 5), therefore it would be 

obvious that the facilitator and agents are in bi-directional communication. 

As to claims 84 and 85, MARTIN teaches the facilitating engine is distributed 

across at least two processes (pg. 5, "Facilitators can, in turn, be connected as clients 

of other facilitators."). 

As to claim 86, MARTIN teaches system for information communication in a 

distributed computing environment having at least one facilitator agent (facilitator) and 

at least one client agent (sub-agent I agents), the carrier comprising a signal 

representation of an inter-agent language description (ICL registration of capabilities) of 

Page 321 of 778



Application/Control Number: 09/225,198 

Art Unit: 2151 

Page 18 

a client agent's functional capabilities (pg. 5, "Each facilitator records the published 

capabilities of their subagents .. "). It would be obvious that the system has a data wave 

carrier and a transport mechanism for network communication. 

As to claim 87, MARTIN teaches a signal representation of a request for service 

in the inter-agent language from a first agent (client agent sending a query) to a second 

agent (facilitator) (pg. 5). 

As to claim 88, MARTIN teaches a signal representation of a goal dispatched to 

an agent for performance from a facilitator agent (every agent can request solutions for 

a set of goals I facilitator is responsible for breaking them down and for distributing sub-

requests to the appropriate agent) (pg. 5). 

As to claim 89, It is well known in the art to one skilled in the art that an agent 

can send back a response after processing the request. 

12. Claims 4, 12-14, 26-28, 35-37,48-60, 72-83 are rejected under 35 U.S.C. 103(a) 

as being unpatentable over "Development Tools for the Open Agent Architecture" by 

MARTIN1 in view of "Information Brokering in an Agent Architecture" by MARTIN2. 

As to claim 4, MARTIN1 substantially discloses the invention above. However, 

MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches 

deactivating a client agent no longer available to provide services by deleting the 

Page 322 of 778



Application/Control Number: 09/225,198 

Art Unit: 2151 

Page 19 

registration (pg. 9, Source agents that need to go offline ... so that it can unregister the 

source and retract its schema mapping rules."). Therefore it would be obvious to 

combine the teachings of MARTIN1 with the teachings of MARTIN2 in order to provide 

transparent access to a plurality of independent agents (abstract). 

As to claims 12-14, MARTIN1 substantially discloses the invention above. 

However, MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches 

receiving a request for seNice in a second language (source schema); selecting a 

registered agent capable of converting the second language into the inter-agent 

language (broker schema); and forwarding the request for seNice in a second language 

to the registered agent for conversion to be performed and the results returned (pg. 12-

13, Queries Expressed in a Source Schema). Refer to claim 4 for the motivation to 

combine. 

As to claims 26-28, MARTIN 1 substantially discloses the invention above. 

However, MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches 

the base goal is a compound goal having sub-goals (pg. 8, "Queries submitted to the 

Broker are expression ... and backtracking in expressing and processing queries."). It 

would be obvious that since the base goal (query) is broken down and distributed to as 

sub-requests to the appropriate agents or solutions are requested for a set of goals as 

disclosed in MARTIN1 that the base goal as a compound goal is broken down based on 

Page 323 of 778



Application/Control Number: 09/225,198 

Art Unit: 2151 

Page 20 

operators disclosing where it can be broken down. Refer to claim 4 for the motivation to 

combine. 

As to claims 35-37, refer to claims 12-14 for rejection. 

As to claim 48, MARTIN1 teaches an Inter-agent Communication Language (ICL) 

providing a basis for facilitated cooperative task completion within a distributed 

computing environment having a facilitator agent (facilitator) and a plurality of electronic 

agents (sub-agents I agents}, the ICL enabling agents to perform queries of other 

agents, exchange information with other agents, set triggers within other agents (pg. 5, 

Agents share a common communication language ... and may run on any network linked 

platform."). However, MARTIN1 does not teach the ICL supporting compound goal 

expressions. MARTI N2 teaches the query is a base goal stored in as a compound goal 

having sub-goals (pg. 8, "Queries submitted to the Broker are expression ... and 

backtracking in expressing and processing queries."). It would be obvious that since the 

base goal (query) is broken down and distributed to as sub-requests to the appropriate 

agents or solutions are requested for a set of goals as disclosed in MARTIN1 that the 

base goal as a compound goal is broken down based on operators disclosing where it 

can be broken down. Refer to claim 4 for the motivation to combine. 

Page 324 of 778



• Application/Control Number: 09/225,198 

Art Unit: 2151 

Page 21 

As to claim 49 and 50, MARTIN1 teaches the ICL is platform and language 

independent (pg. 5, "The OAA's Inter-agent Communication Language ... they are 

programmed in."). 

As to claims 51-54, MARTIN1 teaches the ICL supports task completion 

constraints (triggers) within goal expressions (pg. 5). 

As to claims 54-60, MARTIN1 teaches each electronic agent defines and 

publishes a set of capability declarations or solvables that describe services and an 

interface to the electronic agent (pg. 5, "Every agent participating in an OAA-based 

system defines and publishes ... we refer to these capabilities specifications as 

solvables."). 

As to claim 72, refer to claim 48 for rejection. 

As to claims 73 and 74, refer to claims 49 and 50 for rejection. 

As to claims 75-78, refer to claims 51-54 for rejection. 

As to claims 79-83, refer to claims 54-60 for rejection. 

Page 325 of 778



. .. 

. Application/Control Number: 09/225,198 

Art Unit: 2151 

Conclusion 

Page 22 

Any inquiry concerning this communication or earlier communications from the 

examiner should be directed to Lewis A. Bullock, Jr. whose telephone number is (703) 

305-0439. The examiner can normally be reached on Monday-Friday, 8:30 am - 5:00 

pm. 

If attempts to reach the examiner by telephone are unsuccessful, the examiner's 

supervisor, Alvin E. Oberley can be reached on (703) 305-9716. The fax phone 

numbers for the organization where this application or proceeding is assigned are (703) 

746-7239 for regular communications and (703) 746-7238 for After Final 

communications. 

Any inquiry of a general nature or relating to the status of this application or 

proceeding should be directed to the receptionist whose telephone number is (703) 305-

0286. 

*** 
July 11, 2002 

Page 326 of 778



,--. .. 

·.-~:{:~~: 
,--~· 

Form PTO 948 (Rev. 8-98) U.S. DEPARTMENT OF COMMERCE • Puent and Trademark Office Application No. 09/z:L$". 198 ; 

NOTICE OF DRAFTSPERSON'S 
PATENT DRAWING REVIEW 

Th< dr~ing(s) filed (inseN datc)/2//0s /99arc: 

A. 121 approved by the Draftsperso~ under 37 CFR 1.84 or 1.152. 
B. D objected to by the Draftsperson under 37 CFR 1.84 or 1.152 for the reasons indicated below. The Examiner will require 
submission of new, corrected drawings when necessary. Corrected drawing must be sumined according to the instructions on the back of this notice. 

l. ORA WINGS. 37 CFR l.84(a): Acceptable categorits of drawings: 
Black ink. Color. 
__ Color drawings are not acceptable until pttiton is granted. 

Fig(s) ---,...-
--Pencil and non black ink not ptrrnilled. Fig(s) ___ _ 

2. PHOTOGRAPHS. 37 CFR 1.84 (b) 
__ I full-tone set is required. Fig(s) -:-----: 

Photographs not proptrly mounted (must use brystol board or 
photographic double-weight paptr). Fig(s) ---

-- Foor quality (half-tone). Fig(s) ----
3. TYPE OF PAPER. 37 CFR l.84(e) 

__ Paptr not flexible, strong, white, and durable. 

Fig(s) -..,.---:--
--Erasures, alterations, overwritings, interlineations. 

folds, copy machine marks not accepted. Fig(s) ---
--Mylar, velum paptr is not acceptable (too thin). 

Fig(s) ~::-:-:::--,:-:. 
4. SIZE OF PAPER. 37 CFR 1.84(1): Acceptablesizes: 

__ 21.0cm by 29.7 em (DIN sizeA4) 
__ 21.6 em by 27.9 em (8 l/2 x II inches) 
__ All drawing sheets not the same size. 

Sheet(s) --:---
--Drawings sheets not an acceptable size. Fig(s) ----

5. MARGINS. 37 CFR l.84(g): Acceptable margins: 

Top 2.5 em Left 2.5cm Right 1.5 em Bouom 1.0 em 
SIZE: A4 Size . 

Top 2.5 em Left 2.5 em Right 1.5 em Bottom 1.0 em 
SIZE: 8 1/2 x II 

Margins not acceptable. Fig(s) -.,-,-,:-:-
___ Top(!) ___ Left(L) 
___ Right (R) ___ Bouom (B) 

6. VIEWS. 37 CFR 1.84(h) 
REMINDER: Specification may require revision to 
contspond to drawing changes. 
PaNial views. 37 CFR 1.84(h)(2) 
__ Brackets needed to show figure as one entity. 

Fig(s) ---:--
--Views not labeled separately or properly. 

Fig(s) ...,-.,..----
·-- Enlargod view nollabeled sepautely or properly. 

Fig(s) ___ _ 

7. SECTIONAL VIEWS. 37 CFR 1.84 (h)(3) 
__ Hatching not indicated for sectional ponions of an object 

Fig( s) -:-~-:--: 
__ S<ctional designalion should be noted with Arabic or 

Roman numbers. Fig(s) ----

COMMENTS 

8. ARRANGEMENT OF VIEWS. 37CFR l.84(i) 
__ Words do not appear on a horizontal, left-lo-right fashion 

when page is eith<r upright or turned so that the top 
becomes abe righl side, rxcept for graphs. Fig(s) ----

9. SCALE. 3 7 CFR 1.84(k) 
Scale not large enough to show mechanism withoul 
crowding when drawing is reduced in size to lwo--thirds in 
reproduction. 

Fig( s)=--=-,----
10. CHARACTER OF LINES, NUMBERS, & LETTERS. 

37 CFR 1.84(i) 
__ Lines, numbers & letters not uniformly thick and well 

defined, clean, durable, and black (poor line quality). 
Fig(s) · 

II. SHADING. 37 CFR 1.84(m) 
__ Solid black areas pale. Fig(s) 

Solid black shading not ptrrnit-::te-d:-. -;F::-ig-:(-:s):-____ _ 

__ Shade lines, pale, rough and blurred. Fig(s) -,---,--
12. NUMBERS, LETTERS, & REFERENCE CHARACTERS. 

37 CFR l.84(p) 
__ Numbers and reference characters not plain and legible. 

Fig(s) -:----:-:--
-- Figure legends are poor. Fig(s) ----::

Numbers and reference characters not oriented in the 
same direction as the view. 37 CFR 1.84(p)(l) 

Fig(s) :--:-:-:---
-- English alphabet not used. 37 CFR 1.84(p)(2) 

Figs:----::--
Numbers, letters and reference characters must be at least 
.32 em (1/8 inch) in height. 37 CFR 1.84(p)(3) 

Fig(s)_.,----,-,,---
13. LEAD LINES. 37 CFR 1.84(q) 

Lead lines cross each other. Fig(s) ---
Lead lines missing. Fig(s) ==-== 

14. NUMBERING OF SHEETS OF DRAWINGS. 37 CFR 1.84(t) 
__ Sheets not numbered conseculively, and in Arabic numerals 

beginning with number I. Sheet(s) :-----
15. NUMBERING OF VIEWS. 37 CFR 1.84(u) 

__ Views not numbered consecutively, and in Arabic numerals, 
beginning with number I. Fig(s) ----

16. CORRECTIONS. 37 CFR 1.84(w) 
__ Corrections not made from prior PT0-948 

dated 
17. DESIGN DR,...A-:W-1-N""G'"'s-. 37 CFR 1.152 

__ Surface shading shown not appropriate. Fig(s) ---
-- Solid black shading not used for color contrast. 

Fig(s) ___ _ 

• REVIEWEK.__,I..,A:.~.·""W!..._ ______ _ DATE 02jJ<l /90 TELEPHONE NO. ___________ _ 

ATTACHMENT TO PAPER NO. _ __,.3""'----

.-

r
j ..• ·. 
····· :r •••• 

·~.·.r 

~-

! 

f. 

' 

Page 327 of 778



* 
A 

B 

c 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

* 
N 

0 

p 

Q 

R 

s 
T 

* 

u 

v 

w 

X 

Notice of References Cited 

Document Number Date 
Country Code-Number-Kind Code MM-YYYY 

US-6,338,081 01-2002 

US-5,960,404 09-1999 

I. US-6,216,173 04-2001 

·US-

US-

US-

US-

US-

US-

US-

US-

US-

US-

Document Number Date 
Country Code-Number-Kind Code MM-YYYY 

. 

09/225,198 

Examiner 

Lewis A. Bullock, Jr. 

U.S. PATENT DOCUMENTS 

Name 

Furusawa et al. 

Chaar et al. 

Jones et al. 

FOREIGN PATENT DOCUMENTS 

Country 

NON-PATENT DOCUMENTS 

Name 

Reexamination 
CHEYER ET AL. 

Art 

2151 

Include as applicable: Author, TiUe Date, Publisher, Edition or Volume, Pertinent Pages) 

Cheyer, Adam. "Mechanisms of Cooperation." October 19, 1998. 

DeVoe, Deborah. "SRI distributed agents promise flexibility." lnfoWorld. December 30 1996. 

Sycara, Katia et al. "Distributed Intelligent Agents." IEEE. December 1996. 

. A copy of th1s reference 1s not bemg fum1shed With thiS Office action. (See MPEP § 707.05(a).) 
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign. 

Under 

Page 1 of 1 

Classification 

709/202 

705/11 

135/77 

Classification 

U.S. Patent and Trademark Office 
PT0-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 3 

Page 328 of 778



Form 1449 (Modified) 

Information Disclosure 
Statement By Applicant 

Several Sheets ifNecess 

Examiner 

Atty Docket No. 
SRI1P016 
Applicant: 
Cheyer et al. 
Filing Date: 

5. 1999 

U.S. Patent Documents 

Initial No. Patent No. Date Patentee 
A 
B 
c 

• 

Class 

Serial No.: 
09/225,198 

Group 
2755 

Sub-
class 

r..n-
w 

Filing 
Date 

(~t-IVEI ) 

D M~ y 2 0 1999. 
E 
F Gr )110 2flJl 

G 
H 
I 
J 
K 

F ore1gn p t a ent or u IS e P br h d F ore1gn a en .pp.ICa 10n P t t A r t· 
Examiner Document Publication Country or Sub- Translation 
Initial No. No. Date Patent Office Class class Yes No 

L 
M 
N 
0 
p 

Other Documents 
Examiner 
Initial No. Author, Title, Date, Place (e.g. Journal) ofPublication 

/M R MORAN, Douglas B. and CHEYER, Adam J., "Intelligent Agent-based 
User Interfaces", Article Intelligence center, SRI International 

~ 
s MARTIN, David L., CHEYER, Adam J. and MORAN, Douglas B., 

"Building Distributed Software Systems with the Open Agent Architecture" 
T COHEN, Philip R. and CHEYER, Adam, SRI International, WANG, 

# Michelle, Stanford University, BAEG, Soon Cheol, ETRI, "An Open Agent 
Architecture" 

Ex~a~jz I Date ~~;Jcidered 
?. II 0;;1... 

Exammer: Initial citation considered. Draw line through citation if not in conformance and not 
considered. Include copy of this form with next communication to applicant. 

Page 1 of4 

Page 329 of 778



Form 1449 (Modified) Atty Docket No. 
SRI1P016 
Applicant: 

Serial No.: 
09/225,198 

Information Disclosure 
Statement By Applicant Cheyer et al. 

Filing Date: 

Examiner 
Initial 

Examiner 
Initial 

Examiner 
Initial 

~ 

~ 

~ 
E~er 
~ 

Several Sheets if N 5. 1999 
Group 
2755 

U.S. Patent Documents 
Sub- Filing 

No. Patent No. Date Patentee Class class Date 
A 
B 
c ...... - .... lr-r"\. 

D k""\r""'- .d ·--- IV t::lJ 

E UAV ~ n 1000 

F 
....... ..... v 

G r::!.,.... ,..,. ~/'1111 -·-H 
I 
J 
K 

F ore1gn p atent or u IS e P bl" h d F ore1gn p a ten tA r t· .pp11ca Ion 
Document Publication Country or Sub- Translation 

No. No. Date Patent Office Class class Yes No 
L 
M 
N 
0 
p 

Other Documents 

No. Author, Title, Date, Place (e.g. Journal} of Publication 
R JULIA, Luc E. and CHEYER, Adam J., SRI International "Cooperative 

Agents and Recognition Systems (CARS) for Drivers and Passengers", 
s MORAN, Douglas B., CHEYER, Adam J., JULIA, Luc E., MARTIN, 

David L., SRI International, and PARK, Sangkyu, Electronics and 
Telecommunications Research Institute, "Multimodal User Interfaces in the 
Open Agent Architecture", 

T CHEYER, Adam and LULIA, Luc, SRI International "Multimodal Maps: 
An Agent-based Approach", 

a~f2 I Date 0.1:dered 
7. /( Q,t. 

Examiner: Initial citation considered. Draw line through citation if not in conformance and not 
considered. Include copy of this form with next communication to applicant. 

Page 2 of4 

Page 330 of 778



• 
Serial No.: 
09/225,198 

Information Disclosure 
Statement By Applicant 

Atty Docket No. 
SRI1P016 
Applicant: 
Cheyer et al. 
Filing Date: 

se Several Sheets ifNecess Janu 5. 1999 
Group 
2755 

U.S. Patent Documents 
Examiner Sub- Filing 
Initial No. Patent No. Date Patentee Class class Date 

A 
B 
c ,_,_ 1r-r 
D 1111:: rJ!.. IV ~L, 

E u." n n uluu 
F 

PIM I;. v .,,, 

G r:::.r,. tn ""filii 

H -· .... 

I 
J 
K 

F orelgn p atent or u IS e P br h d F oretgn p a tent A r "ppiicatton 
Examiner Document Publication Country or Sub- Translation 
Initial No. No. Date Patent Office Class class Yes No 

L 
M 
N 
0 
p 

Other Documents 
Examiner 
Initial No. Author, Title, Date, Place (e.g. Journal) ofPublication 

R CUTKOSKY, Mark R., ENGELMORE, RobertS., FIKES, Richard E., 

fo. GENESERETH, Michael R., GRUBER, Thomas R., Stanford University, MARK, 
William, Lockheed Palo Alto Research Labs, TENENBAUM, Jay M., WEBER, 
Jay C., Enterprise Integration Technologies, "An Experiment in Integrating 
Concurrent Engineering Systems", 

~ 
s MARTIN, David L., CHEYER, Adam, SRI International, LEE, Gowang-Lo, ETRl, 

"Development Tools for the Open Agent Architecture", The Practical Application 
oflntelligent Agents and Multi-Agent Technology (PAAM96), London, April 1996 

~ T CHEYER, Adam, MARTIN, David and MORAN, Douglas, "The Open Agent 
architecture™", SRI International, AI Center 

~:a:~; I Date Co s0ered 
'Z ( ( ()jjl.. 

Examiner: Initial citation considered. Draw line through cttatiOn if not in conformance and not 
considered. Include copy ofthis form with next communication to applicant. 

Page 3 of4 

Page 331 of 778



.. • 
Form 1449 (Modified) Atty Docket No. 

SRI1P016 
Applicant: 

Serial No.: 
09/225,198 

Information Disclosure 
Statement By Applicant Cheyer et al. 

Filing Date: 

Examiner 
Initial 

Examiner 
Initial 

Examiner 
Initial 

~-· 

~ 

~ 

Several Sheets if 5. 1999 
Group 
2755 

U.S. Patent Documents 
Sub- Filing 

No. Patent No. Date Patentee Class class Date 
A 
B 
c 
D ·-E Ht: .vt:l vr=1 
F &ll J t"' n tOOC 

G 1"11 I C.VII' 

H ,.... ·-I 
J 
K 

F ore1gn a en or u IS e P t t P br h d F ore1~n a en .pp11ca mn P t tA r c 
Document Publication Country or Sub- Translation 

No. No. Date Patent Office Class class Yes No 
L 
M 
N 
0 
p 

Other Documents 

No. Author, Title, Date, Place (e.g. Journal) ofPublication 
R Dejima, Inc., http://www.dejima.com/ 

s COHEN, Philip R, CHEYER, Adam, WANG, Michelle, Stanford 
University, BAEG, Soon Cheol ETRI; "An Open Agent Architecture," 
AAAI Spring Symposium, pp1-8, March 1994 

T MARTIN, David; OOHAMA, Hiroki; MORAN, Douglas; CHEYER, 
Adam; "Information Brokering in an Agent Architecture," Proceeding of 
the 2nd International Conference on Practical Application of Intelligent 
Agents & Multi-Agent Technology, London, April1997-

~~n~r £; ,4~ JA I Daterfr~f:idered 
.7. (C 0.:2.. 

Examiner: Initial citation considered. Draw line through citation if not in conformance and not 
considered. Include copy of this form with next communication to applicant. 

Page 4 of4 

D 

1. 
Page 332 of 778



;: ~~· 
-• Attom-ocket No. 59501:8016.US01 / 

I hereby certify that this correspondence is being deposited with the U.S. Postal Service with sufficient postage ~ { 5! 
First Class Mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C., 20231, on: 

1 } Date: :....:.Au=g=us=t-=6,-=2=00=2,___ ____ _ 

;;-~ 
By~ 

~QheS 

1/Aus 1. ~ 
~ -

1 3 1ilqz /"f. IN THE UNIT ED STATES PATENT AND TRADEMARK OFFICE 
PATENT G) 

~il~~t.~~ r IN REAPPLICATION OF: EXAMINER: UNKNOWN ~ 

01 i-C:12.6 

Cheyer ART UNIT: 2755 

APPLICATION No.: 09/225,198 

FILED: 01/05/1999 

FOR: SOFTWARE-BASED ARCHITECTURE FOR 
COMMUNICATION AND COOPERATION 
AMONG DISTRIBUTED ELECTRONIC 
AGENTS 

\ 

RECEIVED 
AUG 1 5 Z007.. 

technology center 21 oo 

Information Disclosure Statement After First Office Action but 
Before Final Action or Notice of Allowance- 37 CFR 1.97(c) 

Assistant Commissioner for Patents 
Washington, D.C. 20231 

Sir: 
\ 

I. Timing of Submission 

The information transmitted herewith is being filed after three months of the filing 
date of this application or after the mailing date of the first Office action on the 
merits, wh.ichever occurred last, but before the mailing date of either a final 
~dian under 37 CFR 1.113 or a Notice of Allowance under 37 CFR 1.311, 
whichever occurs first. The references listed on the enclosed Form PTO/SB/08A 
may be mate~al to the examination of this application; the Examiner is requested 
to make them of record in the application. 

1[;0.0:0 CH 

(IBY022180] 1 

.. Page 333 of 778



• Attom!ocket No. 59501-8016.US01 

2. Cited Information 

181 Copies of the following references are enclosed: 

181 All cited references 

3. Effect of Information Disclosure Statement (37 CFR 1.97(h)) 

This Information Disclosure Statement is not to be construed as a representation 
that: (i) a search has been made; (ii) additional information material to the 
examination of this application does not exist; (iii) the information, protocols, 
results and the like reported by third parties are accurate or enabling; or (iv) the 
cited information is, or is considered to be, material to patentability. In addition, 
applicant does not admit that any enclosed item of information constitutes prior 
art to the subject invention and specifically reserves the right to demonstrate that 
any such reference is not prior art. 

4. Fee Payment (37 CFR 1.97(c)) or Certification (37 CFR 1.97(e)) 

181 Applicant elects to pay the fee under 37 CFR 1.17(p) $180.00. 

D Check enclosed for $ 
181 Please charge the above fee(s) to Deposit Account No. 50-2207 

this paper is provided in triplicate. 

Correspondence Address: 
Customer No. 22918 
Perkins Coie LLP 
P.O. Box 2168 
Menlo Park, California 94026 
(650) 838-4300 

[/BY022180) 2 

Respectfully submitted, 
Perkins Coie LLP 

Brian R. Coleman 
Registration No. 39,145 

Page 334 of 778



Cited Information 

Copies of the following references are enclosed: 

All cited references 

Effect of Information Disclosure Statement (37 CFR 1.97(h)) 

This Information Disclosure Statement is not to be construed as a representation 
that: (i) a search has been made; (ii) additional information material to the 
examination of this application does not exist; (iii) the information, protocols, 
results and the like reported by third parties are accurate or enabling; or (iv) the 
cited information is, or is considered to be, material to patentability. In addition, 
applicant does not admit that any enclosed item of information constitutes prior 
art to the subject invention and specifically reserves the right to demonstrate that 
any such reference is not prior art. 

4. Fee Payment (37 CFR 1.97(c)) or Certification (37 CFR 1.97(e)) 

~ Applicant elects to pay the fee under 37 CFR 1.17(p) $180.00. 

0 Check enclosed for $ 
~ Please charge the above fee(s) to Deposit Account No. 50-2207 

this paper is provided in triplicate. 

Correspondence Address: 
Customer No. 22918 
Perkins Coie LLP 
P.O. Box 2168 
Menlo Park, California 94026 
(650) 838-4300 

(/BY022180) 2 

Respectfully submitted, 
Perkins Coie LLP 

Brian R Coleman 
Registration No. 39,145 

Page 335 of 778



This Page Is Inserted by IFW Operations 
and is not a part of the Official Record 

BEST AVAILABLE IMAGES 

Defective images within this document are accurate representations of the 
original documents submitted by the applicant. 

Defects in the images may include (but are not limited to): 

• BLACK BORDERS 

• TEXT CUT OFF AT TOP, BOTTOM OR SIDES 

• FADEDTEXT 

• ILLEGIBLE TEXT 

• SKEWED/SLANTED IMAGES 

• COLORED PHOTOS 

• BLACK OR VERY BLACK AND WHITE DARK PHOTOS 

• GRAY SCALE DOCUMENTS 

IMAGES ARE BEST AVAILABLE COPY. 

As rescanning documents will not correct images, 
please do not report the images to the 

Image Problems Mailbox. 

Page 336 of 778



t,· 

tr 
PCT WORLD INTELLECTUAL P.ROPERTY ORGANIZATION 

International Bureau 

INTERNATIONAL APPLJCATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) 

(51) International Patent Classification: 

H04N 7/16 
A1 (11) International Publication Number: 

(43) International Publication Date: 

(21) International Application Number: PCT/US99119051 

(22) International Filing Date: 20 August 1999 (20.08.1999) 

(30) Priority Data: 
60/097,538 
not furnished 

21 August 1998 (2.1.08.1998) US 
30 July 1999 (30.07.1999) US 

. (60) Parent Application or Grant 
UNITED VIDEO PROPERTIES, INC. [I]; Q. ELLIS, 
Michael, D. [I]; Q. LEMMONS, Thomas, R. [I]; Q. TIIOMAS, 
William, L. [I]; Q. TREVZ, G., Victor; Q. 

(54) Title: CLIENT-SERVER ELECTRONIC PROGRAM GUIDE 

Published 

(54) Titre: GUIDE DE PROGRAMMES ELECfRONIQUE CLIENT-SERVEUR 

(57) Abstract 

wo 00/11869 
02 March 2000 (02.03.2000) 

A client-server interactive television program guide system is provided. An interactive television program guide client is 
implemented on user television equipment. The interactive television program guide provides users with an opportunity to define 
expressions that are processed by the program guide server. The program guide server may provide program guide data, schedules 
reminders, schedules program recordings, and parentally locks programs based on the expressions. Users' viewing histories may be 
tracked. The program guide server may analyze the viewing histories and generates viewing recommendations, targets advertising, 
and collects program ratings information based on the viewing histories. 

(57) Abrege 

L'invention concerne un systeme de guide de programmes de television interactif entre un client et un serveur. Un client de 
guide de programmes de television interactif est mis en application sur !'installation televisuelle d'un utilisateur. Ce guide de 
programmes permet aux utilisateurs de definir des expressions traitees par le serveur de guide de programmes. Ce serveur peut 
produire des donnees de guide de programmes, des rappels de programmation, des enregistrements de programmes et, de meme, 
verrouille des programmes en fonction des expressions. II est possible de rechercher l'historique de visualisation des 
utilisateurs. Le serveur de guide de programmes peut analyser les historiques de visualisation et generer des recommandations de 
visualisation, des publicites ciblees et recueillir des informations d'evaluation de programmes en fonction de ces historiques de 
visualisation. 

Page 337 of 778



PCT WORLD INTELI..EC'MJAL PROPERTY OROANIZA110N 
International Bureau • INTERNATIONAL APPUCATION PUBUSHED UNDER TilE PATENT COOPERATION TREATY (PCT) 

(51) International Patent ClnssificatJon 7 : (11) Intemntlonal Publication Number: wo 00111869 
AI H04N 7116 

(43) International Publication Date: 2 March 2000 (02.03.00) 

(21) International Application Number: PCTIUS99/190S I 

(22) International Filing Date: 20 August 1999 (20.08.99) 

(30) Priority Data: 
&JIQC.17 ,538 
not furnished 

21 August 1998 (21.08.98) 
13 August 1999 (13.08.99) 

us 
us 

(71) Applicant: UNITED VIDEO PROPERTIES, INC. [US(!JS); 
7140 South Lewis Avenue, Tulsa, OK 74136 (US). 

(7l) Inventors: ELLIS, Michael, D.; 1300 Kingwood Place, Boul
der, CO 80304 (US). LEMMONS, Thomas, R.; Route 
2, Box 1178, Sand Springs, OK 74063 (US). niOMAS, 
William, L.; 11611 South 70th East Avenue, Bixby, OK 
74008 (US). 

(74) Agents: TREYz, 0., Victor et al.; Fish & Neave, 1251 Avenue 
of the Americas, New York, NY 10020 (US). 

(54) TIUe: CLIENT-SERVER ELECIRONIC PROGRAM GUIDE 

MAIN FACILITY 

DATA 
SOURCE 

~ 41 

LOCAL INFORMATION 15 
SERVICE .) 

(81) Designated States: AB, AL, AM, AT, AU, AZ, BA, BB, BG, 
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK. DM, EE, 
ES, PI, GB, GD, GB, GH, GM, HR, HU, ID, fi..,IN, IS,JP, 
KE. KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, 
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, 
SE, SG, Sl, SK. SL, TJ, TM, TR, TT, UA. UG, UZ. VN, 
YU, ZA, ZW, ARIPO patent (GH, GM, KE. LS, MW, SD, 
SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, 
MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, 
DK. l!S, Fl, FR, GB, GR. IE. IT, LU, MC, NL, PT. SE), 
OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, ON, GW, ML, 
MR, NE. SN, TO, TO). 

Published 
With interfllJtionaJ search report. 

17 
INTERACTIVE TELEVISION ~ 

PROGRAM GUIDE EQUIPMENT 

14~----------~ 
DATA SOURCE ~ 

(57) Abstract 

A client-server interactive television program guide system is provided. An interactive television program guide client is implemented 
on user television equipment. The intemctive television program guide provides users with an opportunity to define expressions that are 
processed by the program guide server. The program guide server may provide program guide data, schedules reminders, schedules program 
recordings, and parentally locks programs based on the expressions. Users' viewing histories may be tracked. The program guide seJVer 
may analyz.e the viewing histories and generates viewing recommendations, targets advertising, and collects program ratings information 
based on the viewing histoTies. . . 

Page 338 of 778



FOR THE PURPOSES OF INFORMATION ONLY 

Codes used to identify States party to the PCf on the front pages of pamphlets publishing international applications under the PCf. 

AL Albania ES Spain LS 1.-dlo Sl Slovmia 

AM Armenia Fl finland LT Lithuania SK Slovakia 

AT AUSirin FR France LV Luembou'l! SN Seaegal 

AU AUSII'llia GA Gabao LV L.llvia sz Swaz.iland 

AZ Azerl>aijan GB United Kingdom MC Mo!w:o TD Chad 

BA ll<lsnia and Hen~ GE G<oorcl• MD Republic of Moldova TG Togo 

BB Bmbadoa Gll Ghana MG Madagascar TJ Tajikislm 

BE Belgiwn GN Ouine.a MK 'l1le former Yu,goslav TM TUrlcmenlW!n 

BF Bwkina Paso GR 0=«: Repub6c of Macc:dooia TR TUrlcey 

BC Bulgnria HU Hungary ML Mall 1T Trinidad and Tobago 

8J Benin IE ~lllnd MN Mooj:olia UA Ul:raine 

BR Brazil lL rsrul MR Mauritouia UG Uganda 

BY Delarw IS lee loud MW Malawi us United St.ms of Ame<lca 

CA Canad<l IT IUJy MX Mexico IJZ U>bekirun 

CF Central African Republic JP llf"'ll NE Niger VN VIetNam 

CG Congo KE Kenya NL Nc:thc::rtallcls YU Yugooslavi.a 

CH Swkzmoud KG K)"'D'Z51an NO Norway zw Zimbabwe 
Cl C&d'lvoke Kl' Demoaatlc l'ooplc ., NZ New Zealand 
CM Cameroon Repub6c of KDfO.> PL Poland 
CN CIUm KR R<pub6c or Ktlrea I'T Pllclugal 

ClJ Cuba KZ Kuabtan RO ROIIWiia 
cz Czech Republic LC Saint Lueia RU ROAi.an Fcderalloo 
DE Germ811y u Llcc:lunsloln SD Sudan 
DK tlt:omw\ LK Sd Llnko liE Sweden 
EE l!slonia Lit Liberia sc Sinppano 

Page 339 of 778



Description 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

Page 340 of 778

Description

20

25

30

35

4§

Page 340 of 778



5 

10 

15 

20 

25 

W000/11869 PCf/US991l~l 

CLIENT-SERVER ELECTRONIC PROGRAM GUIDE 

Background of the Invention 

This invention relates to interactive 

television program guide systems, and more 

30 particularly, to interactive television program guide 

35 

40 

45 

50 

55 

5 systems based on client-server arrangements. 

10 

15 

Cable, satellite, and broadcast television 

systems provide viewers with a large number of 

television channels. Users have traditionally 

consulted printed television program schedules to 

determine the programs being broadcast at a particular 

time. More recently, interactive television program 

guides have been developed that allow television 

program information to be displayed on a user's 

television. Interactive television program guides, 

which are typically implemented on set-top boxes, allow 

users to navigate through television program listings 

using a remote control. In a typical program guide, 

various groups of television program listings are 

displayed in predefined or user-selected categories. 

20 Program listings are typically displayed in a grid or 

Page 341 of 778



5 

10 

W000/11869 PCTIUS99/19~1 

- 2 -

table. On-line program guides have been proposed that 

require users to navigate the Internet to access 

program listings. 

Client-server based program guides have been 

5 proposed in which program listings are stored on a 

15 server at a cable system headend. The server provides 

20 

25 

30 

35 

45 

50 

55 

the program listings to program guide clients 

implemented on the set-top boxes of a number of users 

associated with each headend. As users navigate within 

10 a program listings grid, the server provides program 

listings to the client for display. such systems, may 

be limited in their functionality due to their limited 

use of the resources of the server. 

15 

It is therefore an object of the present 

invention to provide an interactive televison program 

guide system in which server resources are used to 

provide enhanced program guide features not provided by 

conventional set-top-box-based or client-server-based 

program guides. 

20 Summary of the Invention 

This and other objects of the present 

invention are accomplished in accordance with the 

principles of the present invention by providing a 

client-server based interactive television program 

25 guide system in which a main facility (e.g., a 

satellite uplink facility or a facility that feeds such 

an uplink facility) provides data from one or more data 

sources to a number of television.distribution 

facilities such as cable system headends, broadcast 

30 ·distribution facilities, satellite television 

distribution facilities, or other suitable distribution 

facilities. Some of the data sources may be located at 

Page 342 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 PCTIUS99/190~1 

- 3 -

different facilities and have their data provided to 

the main facility for localization and distribution or 

may provide their data to the television distribution 

facilities directly. The data provided to the 

5 television distribution facilities includes television 

programming data (e.g., titles, channels, content 

information, rating information, program identifiers, 

series identifiers, or any other information associated 

with television programming), and other program guide 

10 data for additional services other than television 

program listings (e.g., weather information, associated 

Internet web links, computer software, etc.). The main 

facility (and other sources) may provide the program 

guide data to the television distribution facilities 

15 via a satellite link, a telephone network link, a cable 

or fiber optic link, a microwave link, an Internet 

link, a combination of such links, or any other 

suitable communications link. 

Each television distribution facility has a 

20 program guide server. If desired, program guide 

servers may also be located at cable system network 

nodes or other facilities separate from the television 

distribution facilities or other distribution 

facilities. Each program guide server stores the 

25 program guide data provided by the main facility and 

provides access to the program guide data to program 

guide clients implemented on the user television 

equipment of a number of users associated with each 

television distribution facility. The program guide 

30 servers may also store user data, such as user 

preference profiles, parental control settings, record 

and reminder settings, viewing history, and other 

suitable data. 

Page 343 of 778



5 

10 

15 

20 

25 

30 

35 

45 

50 

55 

W000/11869 PCfiUS99/t9~1 

- 4 -

Providing program guide data.with a program 

guide server and storing user data on the server may 

provide users with opportunities to perform various 

functions that may enhance the users' television 

5 viewing experience. Users may, for example, set user 

preference profiles or other favorites that are stored 

by the program guide server and used by the server to 

customize the program guide viewing experience for the 

user. The program guide server may filter program 

10 guide data based on the user preference profiles. Only 

data that is of interest to the user may then be 

provided to the guide client, thereby tending to 

minimize the memory requirements of the user's 

television equipment and lessen the bandwidth 

15 requirements of the local distribution network. 

20 

A client-server based architecture may also 

provide users with the ability to search and sort 

through program related information in ways that might 

not otherwise be possible due to the limited processing 

and storage capabilities of the users' television 

·equipment. If desired, users may be provided with 

access to program guide data without requiring them to 

navigate the Internet. Users may, for example, define 

sophisticated boolean or natural language expressions 

25 having one or more criteria for searching through and 

sorting program guide data, scheduling reminders, 

automatically recording programs and parentally 

controlling programs. The criteria may also be derived 

by the program guide server or program guide client 

30 from user profiles or by monitQring usage of the 

program guide. The criteria may be stored on the 

program guide server. Users may be provided with an 

Page 344 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 PCTIU$9911~1 

- 5 -

opportunity to access, modify, or delete the 

expressions. 

The program guide server may also track the 

users' viewing histories to provide a user-~ustomized 

5 program guide experience. Programs or series of 

episodes users have watched may be identified and used 

by the program guide, for example, to inform users when 

there are showings in the series that the users have 

not watched. The program guide may, for example, 

10 provide viewing recommendations based on a user's 

viewing history and, if appropriate, on user preference 

profiles or other criteria stored by the program guide 

server. The program guide may also target 

advertisements toward users based on the viewing 

15 histories or criteria, and may track the viewing of 

programs to generate viewership ratings. 

Further features of the invention, its nature 

and various advantages will be more apparent from the 

accompanying drawings and the following detailed 

20 description of the preferred embodiments. 

Brief Description of the Drawings 

FIG. 1 is a schematic block diagram of an 

illustrative system in accordance with the present 

invention. 

25 FIGS. 2a, 2b, and 2c show illustrative 

30 

arrangements for the interactive program guide 

equipment of FIG. 1 in accordance with the principles 

of the present invention. 

FIG. 3 is an illustrative schematic block 

diagram of a user television equipment of FIGS. 2a and 

2b in accordance with the principles of the present 

invention. 

Page 345 of 778



5 

10 

15 

20 

25 

W000nt869 PCf/US99/19~1 

5 

10 

- 6 -

FIG. 4 is a generalized schematic block 

diagram of portions of the illustrative user television 

equipment of FIG. 3 in accordance with the principles 

of the present invention. 

FIG. 5 is an illustrative main menu screen in 

accordance with the principles of the present 

invention. 

FIG. 6 is an illustrative program listings by 

time screen in accordance with the principles of the 

present invention. 

FIG. 7 is an illustrative program listings by 

channel screen in accordance with the principles of the 

present invention. 

FIGS. Ba-Be are illustrative program listings 

15 by category screens in accordance with the principles 

of the present invention. 

30 FIG.' 9a is an illustrative boolean type 

criteria screen in accordance with the principles of 

the present invention. 

20 FIG. 9b is an illustrative natural language 

35 ·Criteria screen in accordance with the principles of 

the present invention. 

40 

45 

50 

55 

FIG. 10 shows an illustrative agents screen 

in accordance with the principles of the present 

25 invention. 

30 

FIG. 11 is an illustrative program listings 

screen in which program listings found according to the 

illustrative expressions of FIGS. 9a and 9b are 

displayed in accordance with the principles of the 

present invention. 

FIG. 12 shows an illustrative setup screen in 

accordance with the principles of the present 

invention. 

Page 346 of 778



5 

10 

15 

W000/11869 PCT/US99119f1!!1 

- 7 -

FIGS. 13a-13f show illustrative preference 

profile screens in accordance with the principles of 

the present invention. 

FIG. 14 shows an illustrative profile 

5 activation screen in accordance with the principles of 

the present invention. 

FIG. 15 shows a table containing an 

illustrative list of programs that might be available 

20 to a user after defining the preference profiles of 

10 FIGS. 13a-13f in accordance with the principles of the 

present invention. 

FIGS. 16a-16c are illustrative program 

25 listings screens that may be displayed according to the 

30 

35 

40 

45 

50 

55 

preference profiles of FIGS. 13a-13f in accordance with 

15 the principles of the present invention. 

FIGS. 17a and 17b show illustrative criteria 

screens in accordance with the principles of the 

present invention. 

FIGS. 18 and 19 show illustrative program 

20 reminder lists generated according to the expressions 

of FIGS. l7a and 17b in accordance with the principles 

of the present invention. 

FIGS. 20a and 20b show an illustrative viewer 

recommendation o.verlay, in accordance with the 

25 princip~es of the present invention. 

30 

FIG. 20c shows an illustrative additional 

information screen in accordance with the principles of 

the present invention. 

FIG. 21 is a flowchart of illustrative steps 

involved in providing users with an opportunity to 

define preference profiles and access program guide 

data according to the preference profiles in accordance 

with the principles of the present invention. 

Page 347 of 778



5 

10 

15 

20 

25 

W000/11869 PcrtuS99/1~1 

- 8 -

FIG. 22 is a flowchart of illustrative steps 

involved in providing users with an opportunity to 

search program guide data, other information, and 

videos in accordance with the principles of the present 

5 invention. 

10 

FIG. 23 is a flowchart of illustrative steps 

involved in processing and using expressions in 

accordance with the principles of the present 

invention. 

FIG. 24 is a flowchart of illustrative steps 

involved in tracking and using viewing histories in 

accordance with the principles of the present 

invention. 

Detailed Description of the Preferred Embodiments 

15 An illustrative system 10 in accordance with 

30 the present invention is shown in FIG. 1. Main 

. 35 

40 

45 

50 

55 

facility 12 may provide program guide data from data 

source 14 to interactive television program guide 

equipment 17 via communications link 18. There may be 

20 multiple program guide data sources in main facility 12 

but only one has been shown to avoid over-complicating 

the drawing. If desired, program guide data sources 

may be located at facilities separate from main 

facility 12 such as at local information services 15, 

25 and may have their data provided to main facility 12 

for localization and distribution. Data sources 14 may 

be any suitable computer or computer-based system for 

obtaining data (e.g., manually from an operator, 

electronically via a computer network or other 

30 connection, or via storage medial and placing the data 

into electronic form for distribution by main facility 

12. Link 18 may be a satellite link, a telephone 

Page 348 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 PCT/US99/t90~l 

- 9 -

network link, a cable or fiber optic link, a microwave 

link, an Internet link, a combination of such links, or 

any other suitable communications link. Video signals 
may also be transmitted over link 18 if desired. 

5 Local information service 15 may be any 

10 

sui table facility for obtaining data partic.ular to a 

localized region and providing the data to main 

facility 12 or interactive television program guide 

equipment 17 over cpmmunications links 41. Local 

information service 15 may be, for example, a local 

weather station that measures weather data, a local 

newspaper that obtains local high school and college 

sporting information, or any other suitable provider of 

information. Local information service 15 may be a 

15 local business with a computer for providing main 

facility 12 with, for example, local ski reports, 

fishing conditions, menus, etc., or any other suitable 

provider of information. Link 41 may be a satellite 

link, a telephone network link, a cable or fiber optic 

20 link, a microwave link, an Internet link, a combination 

of such links, or any other suitable communications 

link. Additional data sources 14 may be located at 

other facilities for providing main facility 12 with 

non-localized data (e.g., non-localized program guide 

25 data) over link 41. 

30 

The program guide data transmitted by main 

facility 12 to interactive television program guide 

equipment 17 may include television programming data 

(e.g., program identifiers, times, channels, titles, 

descriptions, series identifiers, etc.) and other data 

for services other than television program listings 

(e.g., help text, pay-per-view information, weather 

information, sports information, music channel 

Page 349 of 778



5 

10 

15 

20 

25 

30 

W000/11869 

5 

- 10 -

information, associated Internet web links, associated 

software, etc.). There are preferably numerous pieces 

or installations of interactive television program 

guide equipment 17, although only one is shown in 

FIG. 1 to avoid over-complicating the drawing. 

Program guide data may be transmitted by main 

facility 12 to interactive television program guide 

equipment 17 using any suitable approach. Data files 

may, for example, be encapsulated as objects and 

10 transmitted using a suitable Internet based addressing 

scheme and protocol stack (e.g., a stack which uses the 

user datagram protocol (UDP) and Internet protocol 

(IP)). systems in which program guide data is 

transmitted from a main facility to television 

15 distribution facilities are described, for example, in 

Gollahon et al. U.S. patent application Serial No. 

09/332,624, filed June 11, 1999 (Attorney Docket No. 

UV-106), which is hereby incorporated by reference 

herein in its entirety. 

20 A client-server based interactive television 

35 .program guide is implemented on interactive television 

program guide equipment 17. Three illustrative 

45 

50 

55 

arrangements for interactive television program guide 

equipment 17 are shown in FIGS. 2a-2c. FIG. 2a shows 

25 an illustrative arrangement for interactive television 

program guide equipment 17 in which a program guide 

server obtains program guide data directly from main 

facility 12. FIG. 2b shows an illustrative arrangement 

for interactive television program guide equipment 17 

30 in which a program guide server obtains program guide 

data from main facility 12 or some other facility 

(e.g., local information service 15) via the Internet. 

In either of these approaches, users may be provided 

Page 350 of 778



5 

10 

15 

20 

25 

30 

W000/11869 PCf/US99n~l 

5 

- 11 -

with opportunities to access program guide data without 

having to navigate the Internet, if desired. As shown 

in FIGS. 2a and 2b, interactive program guide 

television equipment 17 may include television 

distribution facility 16 and user television 

equipment 22. 

Television distribution facility 16 may have 

program guide distribution equipment 21 and program 

guide server 25. Distribution equipment 21 is 

10 equipment suitable for providing program guide data 

15 

from program guide server 25 to user television 

equipment 22 over communications path 20. Distribution 

equipment 21 may include, for example, suitable 

transmission hardware for distributing program guide 

data on a television channel sideband, in the vertical 

blanking interval of a television channel, using an in

band digital signal, using an out-of-band digital 

signal, over a dedicated computer network or Internet 

link, or by any other data transmission technique 

20 suitable for the type of communications path 20. 

35 Analog or digital video signals (e.g., television 

programs) may also be distributed by distribution 

40 25 

45 

30 

50 

55 

equipment 21 to user 

communications paths 

television channels. 

television equipment 22 over 

20 on multiple analog or digital 

Alternatively, videos may be 

distributed to user television equipment 22 from some 

other suitable distribution facility, such as a cable 

system headend, a broadcast distribution facility, a 

satellite television distribution facility, or any 

other suitable type of television distribution 

facility. 

Communications paths 20 may be any 

communications paths suitable for distributing program 

Page 351 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

WOOOIJJ869 PCf/US99/1905.1 

5 

10 

15 

- 12 -

guide data. Communications paths 20 may include, for 

example, a satellite link, a telephone network link, a 

cable or fiber optic link, a microwave link, an 

Internet link, a data-over-cable service interface 

specification (DOCSIS) link, a combination of such 

links, or any other suitable communications link. 

Communications paths 20 preferably have sufficient 

bandwidth to allow television distribution facility 16 

or another distribution facility to distribute 

television programming to user television equipment 22. 

There are typically multiple pieces of user television 

equipment 22 and multiple associated communications 

paths 20, although only one piece of user television 

equipment 22 and communications path 20 are shown in 

FIGS. 2a and 2b to avoid over-complicating the 

drawings. If desired, television programming and 

program guide data may be provided over separate 

communications paths. 

Program guide server 25 may be based on any 

20 suitable combination of server software and hardware. 

Program guide server 25 may retrieve program guide data 

or video files from storage device 56 in response to 

program guide data or video requests generated by an 

interactive television program guide client implemented 

25 on user television equipment 22. As shown in FIGS. 2a 

and 2b, program guide server 25 may include processing 

circuitry 54 and storage device 56. Processing 

circuitry 54 may include any suitable processor, such 

as a microprocessor or group of microprocessors, and 

30 other processing·circuitry such as caching circuitry, 

video decoding circuitry, direct memory access (DMA) 

circuitry, input/output (I/0) circuitry, etc. 

Page 352 of 778



5 

10 

15 

20 

25 

30 

W000/11869 PCfiUS99n9051 

- 13 -

Storage device 56 may be a memory or other 

storage device, such as random access memory (RAM), 

flash memory, a hard disk drive, etc., that is suitable 

for storing the program guide data transmitted to 

5 television dis~ribution facility 16 by main facility 

12. User data, such as user preference profiles, 

preferences, parental control settings, record and 

reminder settings, viewing histories, and other 

suitable data may also be stored on storage device 56 

10 

15 

by program guide server 25. Program guide data and 

user data may be stored on storage device 56 in any 

suitable format (e.g., a Structured Query Language 

(SQL) database). If desired, storage 56 may also store 

video files for playing back on demand. 

Processing circuitry 54 may process requests 

for program guide data by searching the program guide 

data stored on storage device 56 for the requested 

data, retrieving the data, and providing the retrieved 

data to distribution equipment 21 for distribution to 

20 user television equipment 22. Processing circuitry 54 

35 .may also process storage requests generated by the 

program guide client that direct program guide 

45 

50 

55 

server 25 to store user data. Alternatively, program 

guide server 25 may distribute program guide data to 

25 and receive user data from user television equipment 22 

directly. If communications paths 20 include an 

Internet link, OOCSIS link, or other high speed 

computer network link (e.g., lOBaseT, lOOBaseT, 

lOBaseF, Tl, T3, etc.), for example, processing 

30 circuitry 54 may include circuitry suitable for 

transmitting program guide and user data and receiving 

program guide data and storage requests over such a 

link. 

Page 353 of 778



5 

10 

wo 00/11869 PCT/US99/l9~1 

·- 14 -

Program guide server 25 may communicate with 

user television equipment 22 using any suitable 

communications protocol. For example, program guide. 

server 25 may use a communications protocol stack that 

5 includes transmission control protocol (TCP) and 

15 Internet protocol (IP) layers, sequenced packet 

exchange (SPX) and internetwork packet exchange (IPX) 

20 

25 

30 

35 

40 

45 

50 

55 

layers, Appletalk transaction protocol (ATP) and 

datagram delivery protocol (DDP) layers, DOCSIS, or any 

10 other suitable protocol or combination of protocols. 

15 

20 

User television equipment 22 may also include suitable 

hardware for communicating with program guide server 25 

over communications paths 20 (e.g., Ethernet cards, 

moderns (digital, analog, or cable), etc.) 

The program guide client on user television 

equipment 22 may retrieve program guide data from and 

store user data on program guide server 25 using any 

suitable client-server based approach. The program 

guide may, for example, pass SQL requests as messages 

to program guide server 25. In another suitable 

approach, the program guide may invoke remote 

procedures that reside on program guide server 25 using 

one or more remote procedure calls. Program guide 

server 25 may execute SQL statements for such invoked 

25 remote procedures.. In still another suitable approach, 

client objects executed by the program guide may 

communicate with server objects executed by program 

guide server 25 using, for example, an object request 

broker (ORB). This may involve using, for example, 

30 Microsoft's Distributed Component Object Model (DCOMl 

approach. As used herein, "record requests" and 

"storage requests" are intended to encompass any of 

these types of inter-process or inter-object 

Page 354 of 778



5 

10 

15 

20 

25 

30 

35 

40 

WOOO/ll869 PCT/US!1911905.1 

- 15 -

communications, or any other suitable type of inter

process or inter-object communication. 

FIG. 2b shows an illustrative arrangement for 

interactive television program guide equipment 17 in 

5 which program guide server 25 obtains program guide 

data·via the Internet. The program 9uide data obtained 

by program guide server 25 may be provided by main 

facility 12 or from some other source (e.g., local 

information service 15) and made available on the 

10 Internet. Internet service system 61 may use any 

suitable combination of hardware and software capable 

of providing program guide data from the Internet to 

program guide server 25 using an Internet based 

approach (e.g., using the HyperText Transfer Protocol 

15 (HTTP), File Transfer Protocol (FTP), etc.). FIG. 2b 

shows Internet service system 61 as being encompassed 

by television distribution facility 16. If desired, 

Internet service system 61 may be located at a 

facility that is separate from television distribution 

20 facility 16. Internet service system 61 may, for 

example, be located at main facility 12 or at some 

other Internet node suitable for providing program 

guide data from the Internet to program guide server 

25. The functionality of Internet service system 61 

25 and program guide server 25 may be integrated into one 

system if desired. 

Another suitable arrangement for interactive 

television program guide equipment 17 is shown in FIG. 

45 2c. Interactive television program guide equipment 17 

50 

55 

30 may include, for example, television distribution 

facility 16 having program guide server 25 and Internet 

service system 61. A program guide client application 

may run on personal computer 23. The client may access 

Page 355 of 778



5 

10 

WOOOnJ869 PCTIUS99119051 

- 16 -

program guide server 25 via Internet service system 61 

and communications path 20. Personal computer 23 may 

include processing c-ircuitry 27, memory 29, storage 

device 31, communications device 35, and monitor 39. 

5 Processing circuitry 27 may include any 

15 suitable processor, such as a microprocessor or group 

20 

25 

30 

35 

40 

of microprocessors, and other processing circuitry such 

as caching circuitry, direct memory access (DMA) 

circuitry, input/output (I/0) circuitry, etc. 

10 Processing circuitry 27 may also include suitable 

circuitry for displaying television programming. 

Personal computer 23 may include, for example, a PC/TV 

card. Memory 29 may be any suitable memory, such as 

random access memory (RAMI or read only memory (ROM), 

15 that is suitable for storing the computer instructions 

and data. Storage device 31 may be any suitable 

storage device, such as a hard disk, floppy disk drive, 

flash RAM card, recordable CD-ROM drive, or any other 

suitable storage device. Communications device 35 may 

20 be any suitable communications device, such as a 

conventional analog modem or cable modern. 

An illustrative arrangement for user 

television equipment 22 of FIGS. 2a and 2b is shown in 

FIG. 3. User television equipment 22 of FIG. 3 

25 receives analog video or a digital video stream and 

data, program guide data, or any suitable combination 

thereof, from television distribution facility 16 (FIG. 

1) at input 26. During normal television viewing, a 

45 user tunes set-top box 28 to a desired television 

30 channel. The signal for that television channel is 

then provided at video output 30. The signal supplied 

at output 30 is typically either a radio-frequency (RF) 

50 signal on a predefined channel (e.g., channel 3 or 4), 

55 

Page 356 of 778



5 

10 

WOOO/ll869 PCfiUS!I!In!IOSl 

- 17 -

or a analog demodulated video signal, but may also be a 

digital signal provided to television 36 on an 

appropriate digital bus (e.g., a bus using the 

Institute of Electrical and Electronics Engineers 

5 (IEEE) 1394 standard, (not shown}). The video signal 

15 at output 30 is received by optional secondary storage 

device 32. 

20 

25 

30 

35 

40 

The interactive television program guide 

client may run on set-top box 28, on television 36 (if 

10 television 36 has suitable processing circuitry and 

memory), on a suitable analog or digital receiver 

connected to television 36, or on digital storage 

device 31 if digital storage device 31 has suitable 

processing circuitry and memory. The interactive 

15 television program guide client may also run 

cooperatively on a suitable combination of these 

devices. Interactive television application systems in 

which a cooperative interactive television program 

guide application runs on multiple devices are 

20 described, for example, in Ellis U.S. patent 

application Serial No. 09/186,598, filed November 5, 

1998, which is hereby incorporated by reference herein 

in its entirety. 

Secondary storage device 32 can be any 

25 suitable type of analog or digital program storage 

device or player (e.g., a videocassette recorder, a 

digital versatile disc (DVD) player, etc.). Program 

recording and other features may be controlled by 

45 set-top box 28 using control path 34. If secondary 

50 

55 

30 storage device 32 is a videocassette recorder, for 

example, a typical control path 34 involves the use of 

an infrared transmitter coupled to the infrared 

receiver in the videocassette recorder that normally 

Page 357 of 778



5 

10 

W000/11869 PCf/US99/19051 

- 18 -

accepts commands from a remote control such as remote 

control 40. Remote control 40 may be used to control 

set-top box 28, secondary storage device 32, and 

television 36. 

5 If desired, a user may record programs, 

15 program guide data, or a combination thereof in digital 

form on optional digital storage device 31. Digital 

20 

25 

30 

35 

40 

storage device 31 may be a writeable optical storage 

device (such as a DVD player capable of handling 

10 recordable DVD discs), a magnetic storage device (such 

as a disk drive or digital tape), or any other digital 

storage device. Interactive television program guide 

systems that have digital storage devices are 

described, for example, in Hassell et al. U.S. patent 

15 application Serial No. 09/157,256, filed September 17, 

1998, which is hereby incorporated by reference herein 

in its entirety. 

20 

Digital storage device 31 can be contained in 

set-top box 28 or it can be an external device 

connected to set-top box 28 via an output port and 

appropriate interface. Digital storage device 31 may, 

for example, be contained in local media server 29. If 

necessary, processing circuitry in set-top box 28 

formats the received video, audio and data signals into 

25 a digital file format. Preferably, the file format is 

an open file format such as the Moving Picture Experts 

Group (MPEG) MPEG-2 standard or the Moving Joint 

Photographic Experts Group (MJPEG) standard. The 

45 resulting data is streamed to digital storage device 31 

55 

30 via an appropriate bus (e.g., a bus using the Institute 

Electrical and Electronics Engineers (IEEE) 1394 

standard), and is stored on digital storage device 31. 

In another suitable approach, an MPEG-2 data stream or 

Page 358 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 PCf/US99/l~l 

- 19 -

series of files may be received from distribution 

equipment 21 and stored. 

Television 36 receives video signals from 

secondary storage device 32 via communications path 38. 

5 The video signals on communications path 38 may either 

be generated by secondary storage device 32 when 

playing back a prerecorded storage medium (e.g., a 

videocassette or a recordable digital video disc), by 

digital storage device 31 when playing back a pre-

10 recorded digital medium, may be passed through from 

set-top box 28, may be provided directly to television 

36 from set-top box 28 if secondary storage device 32 

is not included in user television equipment 22, or may 

be received directly by television 36. During normal 

15 

20 

television viewing, the video signals provided to 

television 36 correspond to the desired channel to 

which a user has tuned with set-top box 28. Video 

signals may also be provided to television 36 by set

top box 28 when set-top box 28 is used to play back 

information stored on digital storage device 31. 

Set-top box 28 may have communications 

device 37 for communicating with program guide server 

25 over communications path 20. Communications device 

37 may be a modem (e.g., any suitable analog or digital 

25 standard, cellular, or cable modem), network interface 

card (e.g., an Ethernet card, Token ring card, etc.), a 

combination of such devices, or any other suitable 

communications device. Television 36 may also have 

such a suitable communications device if desired. 

30 Set-top box 28 may have memory 44. Memory 44 

may be any memory or other storage device, such as a 

random access memory (RAM), read only memory (ROM), 

flash memory, a hard disk drive, a combination of such 

Page 359 of 778



WOOOII1869 PCTIUS99/19~t 

5 
- 20 -

devices, etc., that is suitable for storing program 

to guide client instructions and program guide data for 

use by the program guide client. 

A more generalized embodiment of user 

5 television equipment 22 of FIG. 3 is shown in FIG. 4. 

15 As shown in FIG. 4, program guide data from television 

distribution facility 16 (FIG. 1) and programming are 

received by control circuitry 42 of user television 

equipment 22. The functions of control circuitry 42 
20 

25 

30 

35 

40 

10 may be provided using the set-top box arrangement of 

15 

20 

FIGS. 2a and 2b. Alternatively, these functions may be 

integrated into an advanced television receiver, 

personal computer television (PC/TV) such as shown in 

FIG. 2c, or any other suitable arrangement. If 

desired, a combination of such arrangements may be 

used. 

User television equipment 22 may also have 

secondary storage device 47 and digital storage device 

49 for recording programming. Secondary storage device 
47 can be any suitable type of analog or digital 

program storage device (e.g., a videocassette recorder, 

a digital versatile disc (DVDl, etc.). Program 

recording and other features may be controlled by 

control circuitry 42. Digital storage device 49 may 

25 be, for example, a writeable optical storage device 

(such as a DVD player capable of handling recordable 

DVD discs), a magnetic storage device (s~ch as a disk 

drive or digital tape), or any other digital storage 

45 device. 
30 User television equipment 22 may also have 

memory 63. Memory 63 may be any memory or other 

storage device, such as a random access memory (RAM), 

SO read only memory (ROM), flash memory, a hard disk 

55 

Page 360 of 778



5 

10 

W000/11869 PCT/US99/J 9051 

- 21 -

drive, a combination of such devices, etc., that is 

suitable for storing program guide client instructions 

and program guide data for use by control circuitry 42. 
User television equipment 22 of FIG. 4 may 

5 also have communications device 51 for supporting 

15 communications between the program guide client and 

20 

25 

30 

35 

45 

55 

program guide server 25 and via communications path 20. 

Communications device 51 may b~ a modern (e.g., any 

suitable analog or digital standard, cellular, or cable 

10 modem), network interface card (e.g., an Ethernet card, 

Token ring card, etc.), a combination of such devices, 
or any other suitable communications device. 

A user controls the operation of user 
television equipment 22 with user interface 46. user 

15 interface 46 may be a pointing device, wireless remote 
control, keyboard, touch-pad, voice recognition system, 
or any other suitable user input device. To watch 
television, a user instructs control circuitry 42 to 

display a desired television channel on display 

20 device 45. To access the functions of the program 

guide, a user instructs the program guide implemented 
on interactive television program guide equipment 17 to 

generate a main menu or other desired program guide 
display screen for display on display device 45. If 

25 desired, the program guide client running on user 
television equipment 22 may provide users with access 

to program guide features without requiring them to 

navigate the Internet. 
The program guide may provide users with an 

30 opportunity to access program guide features through a 

main menu. A main menu screen, such as illustrative 

main menu screen 100 of FIG. S, may include menu 102 of 

selectable program guide features 106. If desired, 

Page 361 of 778



5 

10 

15 

_20 

25 

30 

35 

40 

45 

50 

W000/1186!) PCTIUS99/1905J 

- 22 -

program guide features 106 may be organized according 

to feature type. In menu 102, for example, program 

guide features 106 have been organized into three 

columns. The column labeled "TV GUIDE" is for listings 

5 related features, the column labeled "MSO SHOWCASE" is 

for multiple system operator (MSO) related features, 

and the column labeled "VIEWER SERVICES" is for viewer 

related features. The interactive television program 

guide may generate a display screen for a particular 

10 program guide feature when a user selects that feature 

from menu 102. 

Main menu screen 100 may include one or more 

selectable advertisements 108. Selectable 

advertisements 108 may, for example, include text and 

15 graphics advertising pay-per-view programs or other 

programs or products. When a user selects a selectable 

advertisement 108, the program guide may display 

information (e.g., pay-per-view information) or take 

other actions related to the content of the 

20 advertisement. Pure text advertisements may be 

presented, if desired, as illustrated by selectable 

advertisement banner 110. 

25 

30 

Main menu screen 100 may also include other 

screen elements. The brand of the program guide 

product may be indicated, for example, using a product 

brand logo graphic such as product brand logo 

graphic 112. The identity of the television service 

provider may be presented, for example, using a service 

provider logo graphic such as service provider logo 

graphic 114. The current time may be displayed in 

clock display region 116. In addition, a suitable 

indicator such as indicator graphic 118 may be used to 

indicate to a user that mail from a cable operator is 

Page 362 of 778



5 

10 

15 

20 

25 

30 

35 

45 

50 

55 

WOOOIIJ869 Pcr/US!I!I/190~1 

- 23 -

waiting for a user if the program guide supports 

messaging functions. 

The interactive television program guide may 

provide a user with an opportunity to v~ew television 

5 program listings. A user may indicate a desire to view 

program listings by, for example, positioning highlight 

region 120 over a desired program guide feature 106. 

Alternatively, the program guide may present program 

listings when a user presses a suitable key (e.g., a 

10 "guide" key) on remote control 40. When a user 

indicates a desire to view television program listings, 

the program guide client requests listings from program 

guide server 25 and generates an appropriate program 

listings screen for display on display device 45 

15 (FIG. 4). Program listings screens may be overlaid on 

a program being viewed by a user or overlaid on a 

portion of the program in a "browse" mode. Program 

listings screens are described, for example, in Knudson 

et al. U.S. patent application Serial No. 09/357,941, 

20 filed July 16, 1999 (Attorney Docket No. UV-114), which 

is hereby incorporated by reference herein in its 

entirety. 

A program listings screen may contain one or 

more groups or lists of program listings organized 

25 according to ohe or more organization criteria (e.g., 

by time, by channel, by program category, etc.). The 

program guide may, for example, provide a user with an 

opportunity to view listings by time, by channel, 

according to a number of categories (e.g., movies, 

30 sports, children, etc.), or may allow a user to search 

for a listing by title. Program listings may be 

displayed using any suitable list, table, grid, or 

other suitable display arrangement. If desired, 

Page 363 of 778



5 

to 

t5 

20 

25 

30 

35 

W000/11869 PCf/US99119~1 

- 24 -

program listings screens may include selectable 

advertisements, product brand logo graphics, service 

provider brand graphics, clocks, or any other suitable 

indicator or graphic. 

5 A user may indicate a desire to view program 

listings by time, channel, or category by, for example, 

selecting a selectable feature 106 from menu 102. In 

response, the program guide client may issue one or 

more requests to program guide server 25 for listings 

10 in the selected category if such listings are not 

already cached in memory 63 (FIG. 4). Program guide 

server 25 may retrieve program guide data stored on 

storage device 56, on another server, or from Internet 

service system 61, and provide the data to the program 

15 guide client via program guide distribution 

equipment 21. 

The program guide client may display program 

listings in a suitable program listings screen on user 

television equipment 22. FIG. 6 illustrates the 

20 display of program listings by time. Program listings 

screen 130 of FIG. 6 may include highlight region 151, 

which highlights the current program listing 150. A 

user may position highlight region 151 by entering 

appropriate commands with user interface 46. For 

25 example, if user interface 46 has a keypad, a user can 

position highlight region 151 using "up" and "down" 

arrow keys on remote control 40. A user may select a 

listing by, for example, pressing on the "OK" or "info" 

45 key on remote control 40. Alternatively, a touch 

50 

55 

30 sensitive screen, trackball, voice recognition device, 

or other suitable device may be used to move highlight 

region 151 or to select program listings without the 

use of highlight region 151. In still another 

Page 364 of 778



5 

10 

W000111869 PCr/US99/190~1 

- 25 -

approach, a user may speak a television program listing 
into a voice request recognition system. These methods 

of selecting program listings are merely illustrative. 
Any other suitable approach for selecting program 

5 listings may be used if desired. 

15 A user may view additional listings for the 

20 

25 

30 

35 

40 

time slot indicated in timebar 111 by, for example, 
pressing an "up" or "down" arrow, or .a "page up" or 

"page down" key on remote control 40. The user may 

10 also see listings for the next 24 hour period, or the 

last 24 hour period, by pressing a "day forward" or 

"day backward" key on remote control 40, respectively. 

If there are no listings starting exactly 24 hours in 
the indicated direction, the program guide may pick 

15 

20 

programs starting at either closer or further than 24 
hours away. If desired, the program guide may require 

a user to scroll through advertisement banner 110. A 
user may view program listings for other time slots by, 

for example, pressing "right" and "left" arrows on 

remote control 40. 
FIG. 7 illustrates the display of program 

listings by channel. A user may scroll up and down to 

view program listings for additional time slots, and 
may scroll left and right to view program listings for 

25 other channels. If desired, the day for which program 
listings are displayed may be included in display 

area 147 with the channel number as shown. 
The .program guide may provide users with an 

45 opportunity to view program listings sorted by 

50 

55 

30 category. A user may, for example, press a special 

category key on remote control 40 (e.g., "movies", 

"sports", "children", etc.), select a selectable 

category feature from main menu screen 100 (FIG. 5), or 

Page 365 of 778



5 

10 

15 

20 

25 

30 

35 

45 

50 

55 

WOOOnt869 PCTIUS99/19~t 

- 26 -

may indicate a desire to view program listings by 

category using any other suitable approach. FIG. ·aa is 

an illustrative program listings screen in which 

program listings for movies are displayed. FIG. 8b is 

5 an illustrative program listings screen in which 

program listings for sports-related programming are 

displayed. FIG. ac is an illustrative program listings 

screen in.which program listings for children's 

programs are displayed~ 

10 

15 

20 

In program listings display screens such as 

those shown in FIGS. 7a and 8a-8c for example, program 

listings within lists 129 may be divided into 

predefined time slots, such as into 30 minute time 

slots. Between each time slot, separator 128 may be 

displayed to indicate to a user that a user has 

scrolled or paged program listings from one time slot 

to the next. In FIG. 7 for example, a user is 

scrolling from program listings in the 11:30 PM to the 

12:00 AM time slot. This is indicated by the display of 

the name of the next week day. In FIGS. ea-Se, for 

example, a user is scrolling from program listings in 

the 12:30 PM time slot to program listings in the 1:00 

PM time slot. If desired, separators 128 may be 

displayed only for those timeslots for which there are 

25 listings. When the user scrolls within listings, 

highlight region 151 may skip separator 128. FIGS. 6, 

7, and ea-Se also illustrate how the program guide may 

display· an advertisement banner so that a user is 

required to scroll past the banner to access additional 

30 program listings. 

The program listings screens of FIGS. 6, 7, 

Sa, Sb, and Be have also been shown as including 

various other screen elements. Program listings 

Page 366 of 778



5 

10 

W000/11869 PCI'/US9911~1 

- 27 -

display screens may include, for example, selectable 

advertisements, advertisement· banners, brand logos, 

service provider logos, clocks, message indicators, or 

any other suitable screen element. The program guide 

5 may provide user's with access to selectable 

15 advertisements in response to, for example, a user 

pressing left arrows to move highlight region 151 to 

20 

25 

30 

35 

40 

highlight a selectable advertisement. In the 

illustrative program listings screens of FIGS. 6, Sa, 

10 Sb, and 8c, the program guide may also adjust the time 

displayed in timebar 123 as the user scrolls or pages 

through program listings to reflect the time of the 

program listing at the top of the list. 

The program guide client may provide a user 

15 with an opportunity to define sophisticated boolean or 

natural language expressions of one or more criteria. 

Such criteria may include, for example, attribute type 

and attribute information that is provided by program 

guide server 25. The user defined expressions may be 

20 stored by program guide server 25 for searching through 

and sorting program guide data, scheduling reminders, 

automatically recording programs, and parentally 

controlling programs. Criteria may also be derived by 

the program guide server or program guide client from 

25 user profiles or by monitoring usage of the program 

guide or advertising. Program guide server 25 may also 

use expressions to obtain other types of information or 

programs. Program guide server 25 may obtain, for 

45 example, video-on-demand programs, web site links, 

30 games, chat group links, merchandise information, or 

any other suitable information or programming from data 

sources 14 located.at main facility 12 or other 

50 facilities. The program guide client may provide users 

55 

Page 367 of 778



. 5 

10 

15 

20 

W000/11869 PCT/US99/l~l 

- 28 -

with an opportunity to access, modify, or delete the 

expressions if desired. 

A user may indicate a desire to search 
program quide data by, for example, selecting 

5 selectable Search feature 106 of main menu 102 (FIG. 
5) . In response, the program quide client may display 

a criteria screen, such as illustrative criteria screen 

141 and 149 of FIGS. 9a and 9b. The program guide 

client may display criteria screen 141 of FIG. 9a to 
10 provide a user·with an opportunity to define a boolean 

expression. The user may construct a boolean 
expression by selecting criteria such as attribute 

types, attributes, logical operators, and sorting 
25 criteria. User selectable criteria may also include 

30 

35 

4(} 

45 

50 

55 

15 what program guide server 25 searches for such as, for 

example, program listings, program information, web 

sites, video-on-demand videos, software, or any other 
suitable program guide data, other information, or 

videos. 

20 Users may define expressions by, for example, 

arrowing up or down between criteria, arrowing left or 

right to choose an attribute, attribute type or logical 

operator, and pressing a suitable key to indicate that 
the user is finished (~.g., an "OK" key). In the 

25 example of FIG. 9a, the user has constructed a boolean 

expression for all action programs that have the actor 
Bruce Willis, that start between 7:00P and ll:OOP, and 
that end between 9:00P and 1:30A on the current day. 

FIG. 9a has not been shown as including criteria for 

30 selecting what program guide server 25 searches for to 

avoid over-complicating the drawing. 
The program guide client may display criteria 

screen 149 of FIG. 9b to provide a user with an 

Page 368 of 778



W000/11869 PCTIUS99n9()!!l 

5 
- 29 -

opportunity to construct a natural language expression. 

10 The user may enter a natural language phrase, such as 

"List in alphabetical order all action programs 

starring Bruce Willis and that start today between 

5 7:00P and ll:OOP and that end between 9:00P and 1:30A" 

g using user interface 46 (FIG. 4). 

20 

25 

30 

35 

45 

50 

55 

The program guide client may submit the user 

defined boolean expression or the natural language 

expression to program guide server 25 for processing. 

10 Program guide server 25 may process the expression, and 

provide the resulting program guide data (e.g., program 

listings, program information, software, Internet 

links, etc.) or video programs to the program guide 

client for display. FIG. 11 shows an illustrative 

15 program listings screen that may be displayed by the 

program guide client in response to the expressions 

defined in FIGS. 9a and 9b. 

20 

25 

Users may also indicate a desire to have 

program guide server 25 automatically process 

expressions by, for example, saving defined expressions 

as agents. A user may indicate a desire to save an 

expression as an agent by, for example, selecting Save 

As Agent selectable feature 147 of FIGS. 9a and 9b 

after defining a. boolean or natural language 

expression. The program guide client may automatically 

highlight save As Agent selectable feature 147 when a 

user indicates that the user is finished defining an 

expression (e.g., by pressing an "OK" key). If desired 

th.e program guide client may provide the user with an 

30 opportunity to name the agent. 

Users may access saved expressions or agents 

by, for example, selecting selectable Agent feature 106 

of main menu 102. In response, the program guide 

Page 369 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 PCTIUS99119~1 

- 30 -

client may display a list of saved expressions or 

agents. An illustrative agents screen 1101 is shown in 

FIG. 10. A user may indicate a desire to view program 

listings by, for example, positioning highlight region 

5 151 over the desired expression and pressing an "OK" 

key on remote control 40. In response to a user 

indicating a desire to access an expression, the 

program guide client may submit the user defined 

expression to program guide server 25 for processing. 

10 Program guide server may process the expression, and 

provide program listings to the program guide .client 

for display in a program listings screen. For example, 

if a user saved the boolean expression of FIG. 9a, 

named it "Bruce Willis", and then indicated a desire to 

15 

20 

access listings for the expression the program guide 

client may display the listings screen of FIG. 10. 

In still another approach, the program guide 

client may provide the expression to program guide 

server 25 in response to the user saving the expression 

as an agent. Program guide server 25 may store the 

e.xpression and monitor the data stored on storage 

device 56 for program guide listings, program 

information, other information, software, videos, etc., 

that match the expression. Program guide server 25 may 

25 also query other sources for program guide data and 

videos that match the expression via, for example, the 

Internet. Program guide server 25 may obtain the 

program guide data, other information or videos from 

storage device 56 or other sources and provide them to 

30 the program guide client when the user indicates a 

desire to access the agent. Alternatively, program 

guide server 25 may provide the program guide data, 

other information, or videos to the program guide 

Page 370 of 778



5 

10 

W000/11869 PCTJUS99119051 

- 31 -

client automatically when the user accesses a feature 

of the program guide that would display such 

information. In still another suitable approach, 

program guide server 25 may provide, for example, 

5 program identifiers and air times to the program guide 

15 client for use in generating program reminders that 

20 

25 

30 

35 

40 

indicate found programs. 

The program guide may also provide users with 

an opportunity to define user preferences that allow 

10 users to customize their program guide experience. 

Systems in which interactive television program guides 

provide users with opportunities to define user 

preference profiles are described, for example, in 

Ellis et al. u.s. patent application Serial No. 

15 09/034,934, filed March 4, 1998 (Attorney Docket 

20 

No. UV-43), which is hereby incorporated by reference 

herein in its entirety. Users may indicate a desire to 

set up user preference profiles, for example, by 

selecting a selectable Setup feature 106 from main menu 

102 of FIG. 5. When a user selects a selectable Setup 

feature 106 from main menu 102, the program guide 

client may display a setup screen, such as illustrative 

setup screen 411 of FIG. 12. 
Setup screen 411 may provide a user with an 

25 opportunity to set up various guide features, set 

parental control features, set features of set-top box 

28 (FIG. 3), set audio features, set the screen 

position, set user preference profiles, or to set up 

45 any other feature or suitable combination of features. 

50 

55 

30 The user may indicate a desire to set up a user 

preference profile by, for example, selecting User 

Profile feature 417. When the user indicates a desire 

to set up a user preference profile, the program guide 

Page 371 of 778



5 

10 

15 

20 

25 

30 

35 

45 

50 

55 

WOOOIIJ869 PCTIUS9911~l 

- 32 -

client may display a user preference profile setup 

screen, such as the preference profile setup screens 

shown in FIGS. 13a-13f. This method of defining user 

profiles is only illustrative, as any suitable method 

5 may be used. 

In practice, there may be multiple users 

associated with each user television equipment 22. The 

program guide may provide users with the ability to set 

up multiple user preference profiles. Users may switch 

10 between user preference profiles by, for example, 

selecting preference profile selector 109 and arrowing 

right or left to select the desired user preference 

profile. In FIGS. 13a-13f, for example, the user has 

selected Preference profile #1, which may correspond to 

15 a particular user. 

20 

User preference profiles may include criteria 

such as .preference attributes 104 and preference levels 
106. Preference attributes 104 may be organized by 

type. Attribute types and attributes may be programmed 

into the program guide client, or may be retrieved by 

the program guide client from program guide server 25. 

In the former approach, the available attribute types 

and attributes may remain static until the program 

guide client is updated. In the latter approach, the 

25 available attribute types a.nd attributes may be 

dyn~c. Suitable attribute types and attributes may 

be provided at any time by main facility ~2 or 

television di.stribution facility 16. Each time a user 

indicates a desire to set up a user preference profile, 

30 the program guide client may query program guide server 

25 for the available attribute types and attributes. 

When a user indicates a desire to set up a user 

preference profile in either approach, the program 

Page 372 of 778



5 

10 

15 

20 

25 

30 

35 

W000/11869 PCTIU$9911~1 

- 33 -

guide client may query program guide server 25 for the 

user preference profiles associated with that program 

guide client. 

FIGS. 13a-13f show six illustrative views of 

5 preference profile setup screens in which the user has 

selected attribute types by, for example, selecting 

attribute selector 111 and arrowing right or left until 

a desired preference attribute type is displayed. For 

example, FIGS. 13a-13f illustrate how the program guide 

10 may provide a user with an opportunity to set 

preference levels for series, genres, channels, actors 

and actresses, ratings, and other types of preference 

attributes, respectively. The user may ·select 

preference attributes by, for example, arrowing down 

15 after selecting an attribute type. The user may then 

arrow right or left until a desired attribute is. 

displayed. After the desired preference attribute is 

displayed, the user may, for example, arrow down to set 

a preference level ·for the attribute. The user may 

20 then, for example, arrow right or left to select a 

suitable preference level. 

Preference levels that may be used to 

indicate the user's interest or disinterest in a given 

preference attribute include strong like, weak like, 

25 strong dislike, weak dislike, mandatory (appropriate, 

e.g., for closed-captioning for a deaf person), illegal 

(appropriate, e.g., for R-rated programs for a child) 

and don't care (neutral). After the user indicates 

45 that he or she is finished defining a profile (e.g., by 

50 

55 

30 pressing an "OK" key or remote control 40), the program 

guide client may provide the preference profile data to 

program guide server 25 for use in providing program 

guide data. The user may arrow down again to select 

Page 373 of 778



5 

10 

W000/11869 PCfiUS9911~1 

- 34 -

additional criteria, or arrow up to edit criteria that 

has already been selected. The user may delete an 

attribute by, for example, setting its preference level 

to "don't care." 

5 The user may activate or deactivate one or 

15 more defined preference profiles by, for example, 

selecting selectable Profile feature 106 from main menu 

20 

25 

30 

35 

102 of FIG. 5. The program guide client may respond 

by, for example, querying program guide server 25 for 

10 any defined preference profiles, providing the user 

with a list of preference profiles, and providing the 

user with an opportunity to activate or deactivate one 

or more preference profiles as shown in FIG. 14. A 

user may deactivate a preference profile by, for 

15 

20 

example, setting the profile to non-active. A user may 

set a preference profile as active to varying degrees. 

For example, a user may set a profile as active by 

setting the profile to "wide", "moderate", or "narrow" 

scope. 
The program guide client may also indicate to 

program guide server 25 which profiles are activated or 

deactivated. The program guide server may use, for 

example, the attributes of one or more user preference 

profiles as additional criteria when retrieving data in 

25 response to data requests from the program guide 

client. If multiple preference profiles are used 

simultaneously, program guide server 25 may reconcile 

any conflicts using any suitable approach. Interactive 

45 television program guide systems that resolve conflic.ts 

50 

55 

30 among multiple active user preference profiles are 

described, for example, in above-mentioned Ellis et al. 

U.S. patent application Serial No. 09/034,934, filed 

March 4, 1998. 

Page 374 of 778



5 

10 

W000/11869 PCf/VS99/19~1 

- 35 -

FIG. 15 is a table containing an illustrative 

list of·prograros that might be available to a user. 

The results that appear under the columns labeled 

"narrow scope", "moderate scope", and "wide scope", 

5 show which programs satisfy the preference attributes 

15 and preference levels of, for example, Profile #1 as 

illustratively defined in FIGS. l3a-13f. In practice, 

20 

25 

30 

35 

40 

a listings screen generated based on a profile that is 

set to widest scope may typically include a larger 

10 number of program listings depending on the mandatory 

attributes set by the user. 

When the user activates Profile #1 and sets 

it to the widest scope, program guide server 25 may 

provide program guide data for programs that have all 

15 mandatory att·ributes and no illegal attributes. For 

example, Seinfeld, The Shining, ER, Terminator, and My 

Stepmother is an Alien are included in the widest 

preference scope because they have the only mandatory 

attribute that is specified in Profile #l -- closed-

.20 captioning (as set in FIG. 13f). In addition, they 

have no preference attributes with a preference level 
of illegal (R rating, TV-MA rating, or NC-17 rating (as 

set in FIG. 13e) . The Night at the Opera is not 

included because it does not have a mandatory attribute 

25 (closed-captioning). Dante's Peak is not included 

because it has a illegal rating (R). An illustrative 

program listings screen that may be displayed by the 

program guide client with such limited data is shown in 

45 FIG. 16a (ER has not been listed because, presumably, 

50 

55 

30 it would be in a different time block) . 

When the user activates Profile #1 and sets 

it to the moderate scope, program guide server 25 may 

provide program guide data for programs that have no 

Page 375 of 778



5 

tO 

W000/11869 PCTIUS991l~1 

- 36 -

preference attributes with an associated preference 

level of disliked, that have all mandatory attributes, 

and that have no illegal attributes. The Shining is 

not included because horrors have a preference level of 

5 "weak dislike" (as set in FIG. 13bl. Dante's Peak is 

15 not included because it has an R-rating, which has an 

attribute level of illegal (as set in FIG. 13e). Night 

20 

25 

30 

35 

40 

at the Opera is not included because it is not closed

captioned, which is a mandatory attribute !as set in 

10 FIG. 13f). The Terminator, for example is not within 

the moderate scope of Profile #1 because the preference 

attribute of horror in Profile #1 has an associated 

preference level of "weak dislike" and the preference 

attribute of Schwarzenegger (an actor in the program 

15 Terminator) has an associated preference level of 

"strong dislike" (as set in FIGS. 13b and 13d, 

respectively). Seinfeld and ER are included because 

they do not have any disliked attributes. 

When faced with two different preference 

20 levels associated with the same program, the program 

guide uses the stronger of the two. My Stepmother is 

an Alien is included, for example, because it has a 

"strong like" preference attribute that outweighs the 

"weak dislike". An illustrative program listings 

25 screen that may be displayed by the program guide 

client with such limited program guide data is shown in 

FIG. l6b. In practice, a listings screen generated 

based on a profile that is set to moderate scope may 

45 typically include a larger number of program listings 

50 

55 

30 depending on the mandatory attributes set by the user. 

When the user activates Profile #1 and sets 

it to the narrow preference scope, program guide server 

25 may provide program guide data for all liked 

Page 376 of 778



10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

WOOO/ll869 PCTIUS99119~1 

- 37 -

programs that are not more disliked and that have all 

mandatory attributes and no illegal attributes. The 

Shining is not included because it has a weakly 

disliked attribute, horror. Terminator is not included 

5 because it has a strongly disliked attribute, Arnold 

Schwarzenegger. My Stepmother is an Alien is included 

because the strongly liked attribute of comedy has 

priority over the weakly disliked attribute of horror. 

Dante's Peak is not included because it has a rating of 

10 R. Night at the Opera is not included because it is 

not closed-captioned. ER is not within the narrow 

scope because it does not have any liked attributes. 

It is at best, neutral. An illustrative program 

listings screen that may be displayed by the program 

15 guide client with such limited program guide data is 

shown in FIG. 16c. 

The program guide may also provide users with 

an opportunity to schedule reminders using boolean or 

natural language expressions having one or more 

20 criteria. If desired, program guide server 25 may 

schedule reminders based on user preference profiles 

and agents. Reminders may be scheduled for individual 

programs or series of programs. Systems in which 

reminders are set for series of programs are described, 

25 for example, in Knudson et al. U.S. patent application 

Serial No. 09/330,792, filed June 11, 1999 (Attorney 

Docket No. UV-56), which is hereby incorporated by 

reference herein in its entirety. 

A user may indicate a desire to schedule a 

30 reminder by, for example, selecting a selectable 

Reminders feature 106 from main menu 100 of FIG. 5. In 

response, the program guide may display a criteria 

screen. Illustrative criteria screens 161 and 169 are 

Page 377 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 PCTIUS9911~1 

- 38 -

shown in FIGS. 17a and 17b. The program guide client 

may display criteria screen 161 of FIG. 17a to provide 

a user with an opportunity to set reminders according 

to a boolean type expression. The user may construct a 

5 boolean expression by selecting criteria such as 

attribute types, attributes, and logical operators. 

The user may make such selections, for example, using 

any suitable combination of right, left, up, or down 

arrow key sequences to sequence through the attribute 

10 types, attributes and logical operators. In the 

example of FIG. 17a, the user has defined a boolean 

expression to schedule reminders for comedies that star 

Gary Shandling and that have a rating less than R. In 

the example of FIG. 17b, the user has defined a similar 

15 

20 

natural language expression. 

The program guide client may submit the user 

defined boolean or natural language expression to 

program guide server 25 for processing. Program guide 

server 25 may process the expression and schedule 

reminders for all of the programs that meet the 

expression. Program reminders may be scheduled using 

any suitable approach. In one suitable approach, 

program guide server 25 may store program identifiers 

and air times and send messages to the program guide 

25 client at an appropriate time before·a program starts. 

In another suitable approach, program guide server 25 

may process an expression and provide program 

identifiers and air times to the program guide client. 

The program guide client may, for example, maintain a 

30 list of program identifiers and display program 

reminders at an appropriate time before the programs 

start. 

Page 378 of 778



5 

10 

WOOOnt869 PCT/US99/19~1 

- 39 -

The program guide may remind a user that a 

program is airing at the time a program airs. In an 

alternative approach, the program guide may remind a 

user at some predetermined period of time before the 

5 program airs that a program is going to air. FIGS. 18 

15 and 19 show illustrative program reminder lists 171. 

20 

25 

30 

35 

40 

45 

50 

55 

In FIG. 18, reminder list 171 is overlaid on top of the 

currently display television program to provide a user 

with the opportunity to view a reminder while still 

10 viewing a portion of the television program that a user 

is watching. In FIG. 19, reminder list 171 is shown 

overlaid on top of a program listings display screen. 

The program guide may provide a user with an 

opportunity to scroll through reminder list 171 by, for 

15 example, using remote control arrow keys. The program 

guide may hide the reminder list when, for example, a 

user selects hide reminder feature 172. The guide may 

also display reminder list 171 if, for example, the 

user presses an "OK" key at any time while watching TV. 

20 The program guide may also provide users with 

an opportunity to schedule programs for recording by 

secondary storage device 47 or digital storage device 

49 (FIG. 4) using boolean or natural language 

expressions. If desired, program guide server 25 may 

25 schedule programs for recording based on user 

preference profiles or agents. Programs may also be 

scheduled for recording by program guide server 25. 

Program guide systems in which programs are recorded by 

a remote server are described, for example, in Ellis et 

30 al. U.S. patent application Serial No. 09/332,244, 

filed June 11, 1999 (Attorney Docket No. UV-84), which 

is hereby incorporated by reference herein in its 

entirety. 

Page 379 of 778



5 

10 

W000/11869 PCT/US99/19~1 

- 40 -

A user may indicate a desire to schedule a 

program for recording by, for example, selecting a 

selectable Record feature 106 from main menu 102 of 

FIG. 5. In response, the program guide may display a 

5 criteria screen, such as illustrative criteria screens 

15 161 and 169 of FIGS. 17a and 17b. The program guide 

20 

25 

30 

35 

client may display criteria screen 161 of FIG. 17a to 

provide a user with an opportunity to schedule a 

program for recording according to a boolean type 

10 expression. The user may construct a boolean 

expression by selecting criteria such as attribute 

types, attributes, and logical operators. The user may 

make such selections, for example, using any suitable 

combination of right, left, up, or down arrow key 

15 

20 

sequences to sequence through the attribute types, 

attributes and logical operators. In the example of 

FIG. 17a, the user has defined a boolean expression to 
schedule for recording comedies that star Gary 

Shandling and that have a rating less than R. In the 

example of FIG. 17b, the user has defined a similar 

natural language expression with similar criteria. 

The program guide client may submit the user 

defined boolean or natural language expression to 

program guide server 25 for processing. Program guide 

25 server 25 may process the expression and schedule all 

of the programs that meet the expression for recording. 

Recording by progr~ guide server 25 may be performed, 

for example, as described in above-mentioned Ellis et 

45 al. U.S. patent application Serial No. 09/332,244, 

50 

55 

30 filed June 11, 1999 (Attorney Docket No. UV-84). In 

another suitable approach, program guide server 25 may 

process the expression and provide program identifiers 

and air times to the program guide client. The program 

Page 380 of 778



5 

10 

15 

20 

25 

30 

35 

40 

W000/1J869 PCTIUS99/J~1 

- 41 -

guide client may, for example, maintain a list of 

program identifiers and program air times and may 

instruct optional secondary storage device 47 or 

digital storage device 49 to record the programs. 

5 The program guide may also provide users with 

an opportunity to parentally control titles, programs, 

or channels using boolean or natural language 

expressions. ·If desired, program guide server 25 may 

parentally control programs based on user preference 

10 profiles. A user may indicate a desire to parentally 

control titles, programs, or channels by, for example, 

selecting a selectable Parents feature 106 from main 

menu 102 of FIG. 5. In response, the program guide may 

display a criteria screen, such as illustrative 

15 criteria screens 161 and 169 of FIGS. 17a and 17b. The 

program guide client may display criteria screen 161 of 

FIG. 17a to provide a user with an opportunity to 

control programs, for example, according to a boolean 

type expression. The user may construct a boolean type 

20 expression by selecting criteria such as attribute 

types, attributes, and logical operators. The user may 

make such selections, for example, using any suitable 

combination of right, left, up, or down arrow key 

sequences to sequence through the attribute types, 

25 attributes and logical operators. In the example of 

FIG. 17a, the user has defined a boolean expression to 

lock out comedies that star Gary Shandling and that 

have a rating less than R. In the example of FIG. 17b, 

45 the user has defined a similar natural language 

50 

55 

30 expression with similar criteria. 

The program guide client may submit the user 

defined boolean or natural language expression to 

program guide server 25 for processing. Program guide 

Page 381 of 778



5 

10 

15 

20 

25 

30 

35 

40 

W000/11869 PCT/US99/l~l 

- 42 -

server 25 may process the expression, determine all of 

the programs that meet the expression, and indicate the 

programs that are locked to the program guide client 
when providing program listings to the program guide 

5 client using a suitable indicator (e.g., "locked" tag 

contained in the listings information) . The program 

guide client may, for example, indicate that a program 
is locked by displaying lock indicator 161 when 

displaying locked listings in a listing screen, as 
10 shown, for example, in FIG. 7. By placing the 

processing and storage burdens of locking programs on 

program guide server 25 instead of user television 

equipment 22, more titles may be locked than would 
otherwise because of the limited processing and storage 

15 resources of user television equipment 22. If desired, 
titles, programs, or channels may also be locked using 

conventional parental control techniques. Program 
guide systems that provide users with an opportunity to 
parentally control titles, programs, or channels are 

20 described, for example, in above-mentioned Knudson et 
al. U.S. patent application Serial No. 09/357,941 filed 

July 16, 1999 (Attorney Docket No. UV-114). 

Program guide server 25 may also record the 
viewing histories of users on storage device 56. 

25 Viewing histories may be created using any suitable 
approach. The program guide client may, for example, 

keep track of all of the programs that a user watches 

for longer than a predefined time, and record the 

45 household that the guide client is running in, the 

50 

55 

30 current active preference profile or profiles, the 

program (or its identifier), and how long the user 
watched the program. The program guide client may also 

track when users order pay-per-view programs, record 

Page 382 of 778



5 

10 

15 

20 

25 

30 

35 

40 

WOOOfll869 PCTIUS991190Sl 

- 43 -

programs, and schedule reminders for programs, and may 

also provide this information to program guide server 

25 as part of the viewing histories. Other types of 

information may also be included in the viewing 

5 histories. User defined expressions, for example, may 

be stored by program guide server 25 to track what 

types of programs users search for. In addition, user 

demographic values may be calculated by program guide 

server 25 and used to more accurately target 

10 advertisements or recommend programs. Systems'in which 

user demographic values are calculated are described, 

for example, in Knudson et al. U.S. patent application 

Serial No. 09/139,777, filed August 25, 1998 (Attorney 

Docket NO. UV-58), which is hereby incorporated by 

15 

20 

reference herein in its entirety. 

The program guide client may provide the 

viewing history information to program guide server 25 

continuously (e.g., each time the program guide client 

determines that a user has watched a program for the 

predefined time), periodically, in response to polls or 

requests from program guide server 25, or with any 

other suitable frequency. If desired, the program 

guide client may also monitor advertisement usage, such 

as what selectable advertisements users have selected. 

25 Program guide systems in which user viewing activities 

and advertisement usage are tracked are described, for 

example, in Thomas et al. u.s. patent application 

Serial No. 09/139,798, filed August 25, 1998 (Attorney 

45 Docket No. UV-57), which is hereby incorporated by 

50 

55 

30 reference herein in its entirety. 

The program guide may process user profiles 

along with the viewer histories to present a more 

customized viewing experience to the user. The program 

Page 383 of 778



5 

10 

WOOO/U869 PCT/US99/l~l 

- 44 -

guide may, for example, identify which programs or 

series episodes users have watched. Program guide 

server 25 may, for example, identify episodes that 

users have not yet watched and may indicate such 

S episodes to the program guide client when the program 

15 guide client requests program listings. The program 

20 

25 

30 

35 

40 

guide client in turn may indicate that a program is new 

to a household by, for example, displaying a suitable 

icon or changing the display characteristics of a 

10 listing (e.g., changing its color). FIG. 7 shows, for 

example, the display of New indicator 159 in list 129 

to indicate to a user that the user has not seen a 

particular episode of Saturday Night Live. Program 

guide server 25 may also calculate ratings, such as 

lS Nielsen ratings, based on the viewing histories and 

provide such information to interested parties. 

20 

The program guide may also use the viewing 

histor·y and user preferences to target the user with 

advertisements. Program guide systems in which users 

are targeted with advertisements are described, for 

example, in Knudson et al. u.s. patent application 

Serial No. 09/034,939, filed March 4, 1998 (Attorney 

Docket No. UV-42), which is hereby incorporated by 

reference herein in its entirety. Targeted 

25 advertisements may contain text, graphics, or video. 

Targeted advertisements may also be active objects 

containing various user-selectable options. For 

example, a targeted advertisement may allow the user to 

45 request that additional information on a product be 

50 

55 

30 mailed to the user's home, may allow the user to 

purchase a product, or may allow the user to view 

additional information on a product using the program 

guide. Targeted advertisements may be displayed in any 

Page 384 of 778



5 

10 

W000/11869 PCTIUS9911905l 

- 45 -

suitable program guide display screen. The program 

guide client may, for example, display targeted 

advertisements in criteria or profile screens based on 
a displayed criteria, profile, .or agent. Selectable 

5 advertisements 109 and advertisement banner 110, for 

15 example, may be targeted advertisements. 

20 

25 

30 

35 

40 

The program guide may make personalized 
viewing recommendations based on the viewing histories, 

preference profiles, or any suitable combination 
10 thereof. Program guide server 25 may, for example, 

construct relationai database expressions from the 

viewing histories that define expressions for the 

program categories and ratings for programs that users 
have watched, scheduled reminders for, searched for, or 

15 ordered the most. Program guide server 25 may then 

apply user preference profile criteria to the prog~ams, 

and generate personal viewing recommendations. In 
still another suitable approach, program guide server 

25 or the program guide client may filter viewing 

20 recommendations that are generated by main facility 12 
or television distribution facility 16 based on similar 

expressions, profiles, viewing histories, etc. 

Assume, for the purpose of illustration, that 

a user has run the expression illustrated in FIGS. 9a 

25 and 9b, and has set the user profiles of FIGS. 13a-13f, 
program guide server 25 may determine that the movie 

Armageddon meets the criteria of the expression that 

was run, and also meets the criteria of the current 

45 user profile. Armageddon is a movie· (strong like), an 

50 

55 

30 action (strong like), and does not have an illegal 

rating (it is rated PG-13). Program guide server 25 

may indicate the movie Armageddon (or its identifier) 

and its air time to the program guide client and 

Page 385 of 778



5 

10 

W000/11869 PCI'/US!W/19~1 

- 46 -

indicate to the client (e.g., using a second 

identifier) that a viewer recommendation for the movie 

is to be displayed. The program guide client may 

display a viewer recommendation overlay, such as 

5 overlay 2111 shown in FIGS. 20a and 20b, over a program 

15 the user is watching or over a program guide display 

20 

25 

30 

35 

40 

screen, respectively. The user may press a suitable 

key on remote control 40 (e.g., an "info" key) to 

access additional information for a recommended 

10 program. An illustrative additional information screen 

is shown in FIG. 20c. Additional program information 

screens are described, for example, in above-mentioned 

Knudson et al. U.S. patent Application Serial 

15 
No. 09/357,941 filed July 16, 1999 (Attorney Docket 

No. UV-114). The program guide client may tune user 

television equipment 22 to the channel on which a 

recommended viewing is aired when, for example, a user 

selects "Yes". If desired, recommendations may include 

a suitable graphic, such as a graphic indicating the 

20 recommended program. 

FIGS. 21-24 show flowcharts of illustrative 

steps involved in performing various aspects of the 

present invention. The steps shown in FIGS. 21-24 are 

only illustrative, and may be performed in any suitable 

25 order. 

FIG. 21 shows a flowchart of illustrative 

steps involved in storing preference profiles on 

program guide server 25. If desired, the steps shown 

45 may be performed in a client-server interactive program 
30 guide system in which users are not required to 

navigate the Internet. At step 2000, the program guide 

client running on user television equipment 22 provides 

a user with an opportunity to define a preference 

Page 386 of 778



5 

10 

15 

20 

25 

30 

35 

40 

wo 00111869 PCTJUS99119051 

- 47 -

profile. The preference profile may include user 

selected or defined levels of desirability of various 

program characteristics, such as genre and rating. 

Users may define preference profiles by, for example, 

5 selecting a profile (step 2002) and selecting criteria 

(step 2004) such as attribute types (step 2006) and 

attributes (step 2008). Preference profiles may, for 

example, be created as database files (e.g., SOL files) 

containing suitable database expressions that are 

10 provided to program guide server 25. Program guide 

server 25 may store the preference profiles at step 

2012. 

Program guide data is provided from program 

guide server 25 to the program guide client and is 

15 displayed by the program guide client at steps 2020 and 

2030, respectively. Program guide server 25 or the 

program guide client may use preference profiles to 

filter out undesirable program guide data. This may be 

accomplished using any suitable approach. Program 

20 guide server 25 may, for example, only provide' program 

listings information or other program guide data that 

meets the preference profile or profiles to the program 

guide client (step 2025). Alternatively, program guide 

server 25 may provide program guide data, other 

25 information, or videos to the program guide client and 

the program guide client may filter the data, other 

information, or videos by displaying only those 

elements that meet the preference profile or profiles 

45 (step 2035). 

50 

55 

30 Program guide server 25 may perform 

additional functions based on preference profiles if 

desired. Program guide server 25 may, for example, 

lock programs according to preference profiles (step 

Page 387 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 

- 48 -

2040), automatically record programs according to 

preference profiles (step 2050), schedule reminders 

based on preference profiles (step 2060), or target 

advertising based on preference profiles (step 2070). 

viewing recommendations based on preference profiles at 

step 2080. Step 2080 may also include filtering 

viewing recommendations based on preference profiles 

provided by main facility 12 or television distribution 

10 facility 16 (step 2085) . 

15 

FIG. 22 is a flowchart of illustrative steps 

involved in providing users with an opportunity to 

search program guide data in accordance with the 

principles of the present invention. If desired, the 

steps shown may be performed in a client-server 

interactive program guide system in which users are not 

required to navigate the Internet. At step 2100, the 

program guide client provides a user with an 

opportunity to define an expression, such as a boolean 

20 or natural language expression. This may include, for 

example, providing a user with an opportunity to select 

attribute types, attributes, and logical operators 

(steps 2102, 2104, and 2106, respectively) . The user 

may also be provided with an opportunity to save the 

25 expression as an agent (step 2110) . The program guide 

client provides the expression to program guide server 

25 for processing at step 2120. The program guide 

client may for example, provide a boolean or natural 

language expression in a text file. Alternatively, the 

30 program guide client may construct suitable database 

expressions and provide the expressions to program 

guide server 25 as one or more suitable database files 

(e.g., as SQL files). 

Page 388 of 778



W000/11869 PCTIUS99n~l 

5 

- 49 -

If the user indicated a desire to save an 

10 expression as an agent at step 2110, program guide 

server 25 may save the expression as an agent at step 

2130. Otherwise, program guide server 25 may process 

5 the expression (step 2140) using any suitable approach. 

15 This may depend on.how the expression was provided by 

the program guide client. If boolean or natural 

language expressions were provided as text files, for 

20 

25 

30 

35 

40 

example, program guide server 25 may parse the 

10 expressions and construct a suitable database 

15 

expression. Alternatively, database expressions may 

have been provided by the program guide client. In 

either approach, program guide server 25 may search its 

database or databases at other facilities for program 

guide data (e.g., program listings, additional program 

information, etc.), other information (e.g., software, 

Internet links, etc.), or videos (e.g., video-on-demand 

videos) and may provide the results to the program 

guide client at step 2150. At step 2160 the program 

20 guide client may display the results on user television 

equipment 22. 

If the user indicated a desire to save the 

expression as an agent at step 2110. Program guide 

server 25 may save the expression as an agent using any 

25 suitable approach. Agents may be maintained, for 

example, in a database that program guide server 25 

monitors periodically. If desired, the agent may be 

forwarded to other servers at other facilities, thereby 

45 providing a user with the ability to monitor multiple 

30 databases for program guide data, other information, or 

videos. Agents may be run automatically (e.q., 

databases may be queried) on one or more servers at 

~ step 2145. Step 2145 may be performed periodically, 

55 

Page 389 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

5 

WOOOnt869 PCTIUS99/l ~1 

- 50 -

each time a database is updated, or with any other 

suitable frequency. Program guide server 25 may 

provide its results and the results of other servers 

(if desired) to the program guide client at step 2155. 

The program guide client may display the results at 

2165. The results may be displayed, for example, in 

the form of reminders for which reminder information 

was provided at step 2155. 

FIG. 23 shows a flowchart of illustrative 

10 steps involved in processing and using expressions on 

15 

program guide server 25 in accordance with the 

principles of the present inventio~. If desired, the 

steps shown may be performed in a client-server 

interactive program guide system in which users are not 

required to navigate the Internet. The program guide 

client provides users with an opportunity to define an 

expression (e.g., boolean or natural language 

expressions) at step 2100. This may include, for 

example, providing a user with an opportunity to select 
20 attribute types, attributes and logical operators 

(steps 2102, 2104, and 2106, respectively). The 

program guide client provides the expression to program 

guide server 25 for processing at step 2210 as any 

sui table type of file. The program guide client may 

25 for example, provide a boolean or natural language 

expression in a text file. Alternatively, the program 

guide client may construct suitable database 

expressions and provide the expressions to program 

guide server 25 as one or more suitable database files 

30 (e.g., as SQL files). 

Program guide server 25 may process the 

expression (step 2220) using any suitable approach 

depending on how the expression was provided to program 

Page 390 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 PCTIUS9911~1 

- 51 -

guide server 25 from the program guide client. If 

boolean or natural language expressions were provided 

as text files, for example, program guide server 25 may 

parse the expressions and construct a suitable database 

5 expression. Alternatively, database expressions may 

have been provided to program guide server 25 from the 

program guide client. In either approach, program 

guide server 25 may search its database or databases at 

other facilities and may provide the results to the 

10 program guide client or use the results to perform any 

suitable program guide function. 

15 

Reminders may be scheduled based on the 

results of the search (step 2230). Program guide 

server 25 may, for example, store reminder information 

(e.g., program identifie-rs and air times) at step 2235 

and send messages to the program guide client at an 

appropriate time before a program starts. In another 

suitable approach, program guide server 25 may process 

an expression and provide program identifiers and air 

20 times to the program guide client. The program guide 

client may, for example, maintain a list of program 

identifiers and display program reminders at an 

appropriate time before the programs start. 

Programs may also be automatically recorded 

25 by program guide server 25 or user television equipment 

22 based on the results of the expression (step 2240) . 

30 

Program guide server 25 may, for example, provide 

program identifiers and air times to the program guide 

client. The program guide client may, for example, 

maintain a list of program identifiers and program air 

times and may instruct optional secondary storage 

device 47 or digital storage device 49 to record the 

programs at the appropriate time. 

Page 391 of 778



5 

10 

W000/11869 PCTIUS99119~1 

- 52 -

Programs may be parentally locked based on 

the expression results (step 2250). Program guide 

server 25 may, for example, store parental control 

information (e.g., program identifiers in a database, 

5 table, or list of programs to be locked) at step 2260. 

15 Program guide server 25 may indicate to the program 

20 

25 

30 

35 

40 

guide client that programs are locked when providing 

program listings to the program guide client. 

Alternatively, program guide server 25 may indicate to 

10 the program guide client the programs that were found 

as a result of the expression. The program guide 

client may lock the programs locally using any suitable 

approach. The program guide client may, for example, 

indicate that a program is locked by displaying lock 

15 indicator 161 when displaying locked listings in a 

listing screen, as shown, for example, in FIG. 7. 

FIG. 24 shows a flowchart of illustrative 

steps involved in tracking and using viewing histories 

in accordance with the principles of the present 

20 invention. If desired, the steps shown may be 

~erformed in a client-server interactive program guide 

system in which users are not required to navigate the 

Internet. Viewing histories are tracked at step 2300. 

This may include tracking programs that users watch 

25 (step 2310), tracking reminders scheduled by a user 

with program guide server 25 or using conventional 

techniques (step 2320), tracking pay-per-view programs 

that the user orders (step 2330), advertisement usage 

45 (step 2335), track recorded ·programs (step 2337), track 

50 

55 

30 any other suitable user activity, or any suitable 

combination thereof. The program guide client may 

provide the viewing history information to program 

guide server 25 continuously (i.e., each time the 

Page 392 of 778



5 

10 

15 

20 

25 

30 

35 

40 

5 

W000/11869 

- 53 -

program guide client determines that a user has watched 

a program for the predefined time), periodically, in 

response to polls or requests from program guide server 

25, or with any other suitable frequency. 

The viewing history tracked in steps 2310-

2335 may be stored on program guide server 25 at step 

2340. If desired, user-defined expressions that are 

processed by program guide server 25 may also be stored 

on program guide server 25 (step 2345) • User 

10 demographic values may be calculated by program guide 

15 

server 25 at step 2347. The viewing history and its 

expressions and user demographic values may be used by 

program guide server 25 to perform any suitable 

function. Program guide server 25 may, for example, 

collect program rating information (step 2350), or 

target advertising (step 2360) . 

Program guide server 25 may search its or 

another server's database for programs that are 

consistent with the viewing history (step 2370). If 

20 · desired, program guide server 25 may find programs that 

are also consistent with preference profiles stored by 

program guide server 25 (step 2375). Program guide 

server may perform any suitable function using the 

results of the search. Program guide server 25 may, 

25 for example, identify episodes of programs that are new 

to a user (step 2380), or provide viewing 

recommendations in the form of, for example, reminders 

or recommendations for non-program items (e.g., 

45 software, Internet links, etc.) (step 2390). 

55 

30 The foregoing is merely illustrative of the 

principles of this invention and various modifications 

can be made by those skilled in the art without 

departing from the scope and spirit of the invention. 

Page 393 of 778



Claims 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

Page 394 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 
PCT/US99/l~l 

- 54 -

What is claimed is: 

1. A method for use in a client-server 

interactive television program guide system compri$ing: 

providing a user with an opportunity to 

define user preferences using an interactive television 

program guide client that is implemented on user 

television equipment, without requiring the user to 

navigate the Internet; 

providing the user preferences to a 

program guide server; and 

providing program guide data to the 

program guide client according to the user preferences. 

2. The method defined in claim 1 further 

comprising: 

generating a viewing recommendation 

based on the user preferences with the program guide 

server; and 

displaying the user preferences with the 

interactive television program guide client on the user 

television equipment. 

3. The method defined in claim 1 wherein 

providing a user with an opportunity to define user 

preferences comprises providing a user with an 

opportunity to designate a preference level for a 

plurality of preference attributes. 

4. The method defined in claim 1 further 

comprising providing software to the program guide 

client according to the user preferences. 

Page 395 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

WOOO/l1869 PCFIUS99/l~l 

- 55 -

5. The system defined in claim 1 further 

comprising providing Internet links to the program 

guide client according to the user preferences. 

6. A method for use in a client-server 

interactive television program guide system for 

scheduling reminders according to user defined 

expressions, comprising: 

providing a user with an opportunity to 

define an expression with an interactive television 

program guide client implemented on user television 

equipment without requiring .the user to navigate the 

Internet; 

storing the expression on a program 

guide server; 

processing the expression with the 

program guide server to find programs that satisfy the 

expression; and 

scheduling with the program guide server 

reminders for programs that satisfy the expression. 

7. The method defined in claim 6 wherein 

scheduling with the program guide server reminders for 

programs that satisfy the expression comprises 

providing at least one message from the program guide 

server to the program guide client before each of the 

programs that satisfy the expression begin. 

a. The method defined in claim 6 wherein 

scheduling with the program guide server reminders for 

programs that satisfy the expression comprises 

providing program identifiers for each of the programs 

Page 396 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

WOOO/ll869 PCT/US99/t905_1 

- 56 -

that satisfy .the expression from the program guide 

server to the program guide client. 

9. A method for use in a client-server 

interactive television program guide system for 

scheduling programs for recording according to user 

defined expressions, comprising: 
( 

providing a user with an opportunity to 

define an expression with an interactive television 

program guide client implemented on user television 

equipment without requiring the· user to navigate the 

Internet; 

storing the expression on a program 

guide server; 

processing the expression with the 

program guide server to find programs that satisfy the 

expression; and 

scheduling with the program guide server 

the programs that satisfy the expression for recording. 

10, The method defined in claim 9 wherein 

scheduling with the program guide server the programs 

that satisfy the expression for recording comprises 

scheduling with the program guide server the programs 

that satisfy the expression for recording by the user 

television equipment. 

11. The method defined in claim 9 wherein 

scheduling with the program guide server the programs 

that satisfy the expression for recording comprises 

scheduling with the program guide server the programs 

that satisfy the expression for recording by the 

program guide server. 

Page 397 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 PCT/US99n9051 

- 57 -

12. A method for use in a client-server 

interactive television program guide system for 

parentally controlling programs according to user 

defined expressions, comprising: 

providing a user with an opportunity to 

define an expression with an interactive television 

program guide client implemented on user television 

equipment without requiring the user to navigate the 

Internet; 

storing the expression on a program 

guide server; 

processing the expression with the 

program guide server to find programs that satisfy the 

expression; and 

locking with the program guide server 

programs that satisfy the expression. 

13. The method defined in claim 12 wherein 

locking with the program guide server programs that 

satisfy the expression comprises indicating to the 

program guide client that the programs that satisfy the 

expression are locked. 

14. A method for use in a client-server 

interactive television program guide system for 

tracking a user's viewing history, comprising: 

tracking a user's viewing .history; 

storing the user's viewing history on a 

program guide server; 

finding programs with the program guide 

server that are consistent with the user's viewing 

history; and 

indicating on user television equipment 

the programs found by the program guide server that are 

consistent with the user's viewing history and that the 

Page 398 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 PCT/US99n~l 

- 58 -

user has not watched, with an interactive television 

program guide client implemented on the user television 

equipment. 

15. The method defined in claim 14 wherein 

storing the user's viewing history comprises storing a 

user defined expression with the program guide server. 

16. The method defined in claim 14 wherein 

storing the user's viewing history comprises 

calculating user demographic values with the program 

guide server. 

17. The method defined in claim 14 further 

comprising: 

providing a user with an opportunity to 

define a user preference profile with the interactive 

television program guide client implemented on user 

television equipment; 

storing the user preference profile on a 

program guide server; and 

finding programs with the program guide 

server that are consistent with the user preference 

profile, wherein: 

indicating on user television equipment 

the programs found by the program guide server that are 

consistent with the user's viewing history and that the 

user has not watch~d comprises indicating on user 

television equipment the programs found by the program 

guide server that are consistent with the user's 

viewing history and the user preference profile and 

that the user has not watched. 

18. The method defined in claim 14 further 

comprising: 

Page 399 of 778



5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

W000/11869 PCT/US!il!il/19~1 

- 59 -

targeting advertising with the program 

guide server based on the user's viewing history; and 

displaying the advertising with the 

interactive television program guide client on the user 

television equipment. 

19. The method defined in claim 14 further 

comprising collecting program ratings information with 

the program guide server based on the user's viewing 

history. 

20. A client-server interactive television 

program guide system comprising: 

means for providing a user with an 

opportunity to define user preferences using an 

interactive television program guide client that is 

implemented on user television equipment, without 
requiring the user to navigate the Internet; 

means for providing the user preferences 

to a program guide server; and 

means for providing program guide data 

from the program guide server to the program guide 

client according to the user preferences. 

21. The system defined in claim 20 further 

comprising: 

means for generating a viewing 

recommendation based on the user preferences with the 

program guide server; and 

means for displaying the user 

preferences with the interactive television program 

guide client on the user television equipment. 

22. The system defined in claim 20 wherein 

the means for providing a user with an opportunity to 

Page 400 of 778


