
An Open Agent Architecture*
Philip R. Cohen

Adam Cheyer
SRI International

(pcohen~ai.sri.com)

Michelle Wang
Stanford University

Soon Cheol Baeg
ETRI

ABSTRACT
Tile goal of this ongoing project is to develop an
open agent architecture and accompanying user in-
terface for networked desktop and handheld ma-
chines. The system we are building should support
distributed execution of a user’s requests, interop-
erability of multiple application subsystems, addi-
tion of new agents, and incorporation of existing
applications. It should also be transparent; users
should not need to know where their requests are
being executed, nor how. Finally, in order to fa-
cilitate the user’s delegating tasks to agents, the
architecture will be served by a multimodal inter-
face, including pen, voice, and direct manipulation.
Design considerations taken to support this func-
tionality will be discussed below.

INTRODUCTION
Agents are all the rage. "Visioneering" videos, such as
Apple Computer’s Knowledge Navigator, have helped
to popularize the notion that programs endowed with
agency, if not intelligence, are just around the corner.
Soon, users need not themselves wade into the vast
swamp of data in search of information, but rather the
desired, or better yet, needed information will be pre-
sented to the user by an intelligent agent in the most
comprehensible form, at just the right time.

Although rosy scenarios are easy to come by, intel-
ligent agents are considerably more difficult to obtain.
Still, substantial progress is being made on a variety of
aspects of the agent story. At least three general con-
ceptions of agent-based software systems can be found
in current thinking:

1. Agents are programs sent out over the network to be
executed on a remote machine.

2. Agents are programs on a given machine that offer
services to others.

*This paper was supported by a contract from the Elec-
tronics and Telecommunications Research Institute (Korea).
Our thanks are also extended to AT&T for use of their text-
to-speech system.

3. Agents are programs that assist the user in perform-
ing a task.

Each of these models can be found to some extent in
present-day software products, for example, in (1) Gen-
eral Magic’s emerging TELESCRIPT interpreter, (2) Mi-
crosoft’s OLE 2.0 and (3) Apple Computer’s Newton
and Hewlett Packard’s New Wave desktop, respectively.
Given this space of conceptualizations, we need to be
specific about ours.

Definitions and Objectives

Listed below are characteristics of what we are terming
agents followed by an example of those characteristics
as found in our system:

¯ Delegation -- e.g., the ability to receive a task to be
performed without the user’s having to state all the
details

¯ Data-directed Execution -- e.g., the ability to moni-
tor local or remote events, such as database updates,
OS, or network activities, determining for itself the
appropriate time to execute.

¯ Communication -- e.g., the ability to enlist other
agents (including people) in order to accomplish
task.

¯ Reasoning -- e.g., the ability to prove whether its
invocation condition is true, and to determine what
are its arguments.

¯ Planning -- e.g., the ability to determine which agent
capabilities can be combined in order to achieve a
goal.

Our initial prototype includes agents that exhibit as-
pects of all the above capabilities, except planning (but
see [7]). Our goal is to develop an open agent archi-
tecture for networked desktop and handheld machines.
The system we are building should support distributed
execution of a user’s requests, interoperability of mul-
tiple application subsystems, addition of new agents,
and incorporation of existing applications. Finally, it
should be transparent; users should not need to know
where their requests are being executed, nor how.

From: AAAI Technical Report SS-94-03. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

GOOGLE EXHIBIT 1025Page 1 of 8 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

AGENT ARCHITECTURE

Based loosely on Schwartz’s FLiPSiDE system [17], the
Open Agent Architecture is a blackboard-based frame-
work allowing individual software "client" agents to
communicate by means of goals posted on a blackboard
controlled by a "Server" process.

The Server is responsible both for storing data that
is global to the agents, for identifying agents that can
achieve various goals, and for scheduling and main-
taining the flow of communication during distributed
computation. All communication between client agents
must pass through the blackboard. An extension of
Prolog has been chosen as the interagent communica-
tion language (ICL) to take advantage of unification
and backtracking when posting queries. The primary
job of the Server is to decompose ICL expressions and
route them to agents who have indicated a capability
in resolving them. Thus, agents can communicate in
an undirected fashion, with the blackboard acting as
a broker. Communication can also take place also in
a directed mode if the originating agent specifies the
identity of a target agent.

An agent consists of a Prolog meta-layer above a
knowledge layer written in Prolog, C or Lisp. The
knowledge layer, in turn, may lie on top of existing stan-
dalone applications (e.g. ’mailers, calendar programs,
databases). The knowledge layer can access the func-
tionality of the underlying application through the ma-
nipulation of files (e.g., mail spool, calendar datafiles),
through calls to an application’s API interface (e.g.
MAPI in Microsoft Windows), through a scripting lan-
guage, or through interpretation of an operating sys-
tem’s message events (Apple Events or Microsoft Win-
dows Messages).

Individual agents can respond to requests for infor-
mation, perform actions for the user or for another
agent, and can install triggers to monitor whether a
condition is satisfied. Triggers may make reference to
blackboard messages (e.g. when a remote computation
is completed), blackboard data, or agent-specific test
conditions (e.g. "when mail arrives...").

The creation of new agents is facilitated by a client
library furnishing common functionality to all agents.
This library provides methods for defining an agent’s
capabilities (used by the blackboard to determine when
this agent should participate in the solving of a sub-
goal), natural language vocabulary (used by the inter-
face agent), and polling status. It also provides func-
tionality allowing an agent to read and write informa-
tion to the blackboard, to receive requests for informa-
tion or action, and to post such requests to the black-
board, a specific agent, or an entire population of ap-
propriate agents.

When attempting to solve a goal, an agent may find
itself lacking certain necessary information. The agent
can either post a request of a specific agent for the infor-
mation, or it may post a general request on the black-

board. In the latter case, all agents who can contribute
to the search will send solutions to the blackboard for
routing to the originator of the request. The agent ini-
tiating the search may choose either to wait until all
answers return before continuing processing, or may set
a trigger indicating that when the remote computation
is finished, a notification should interrupt local work in
progress. An agent also has access to primitives per-
mitting distributed AND and OR-parallel solving of a
list of goals.

Distributed Blackboard Architecture

As discussed above, the Open Agent Architecture con-
tains one blackboard "server" process, and many client
agents; client agents are permitted to execute on differ-
ent host machines. We are investigating an architecture
in which a server may itself be a client in a hierarchy
of servers; if none of its client agents can solve a par-
ticular goal, this goal may be passed further along in
the hierarchy. Following Gelerntner’s LINDA model [8],
blackboard systems themselves can be structured in a
hierarchy, which could be distributed over a network
(see Figure 1).1

When a goal (G) is requested to be posted on a local
blackboard (BB1), and the blackboard server agent
BB1 determines that none of its child agents has the
requisite capabilities to achieve the goal, it propagates
the goal to a more senior blackboard server agent (BB4)
in the hierarchy. BB4 maintains a knowledge base of
the predicates that its lower level blackboards can eval-
uate. When a senior server receives such a request, it in
turn will propagate the request down to its subsidiary
servers. These subsidiary servers either have immediate
client agents who can evaluate the goal, or can them-
selves pass on the goal to another subsidiary server. In
the case illustrated in Figure 1, BB4 determines that
none of its subsidiary blackboards can handle the goal,
and thus sends the goal to its superior agent (BB5).
BB5 passes the goal to BB6, who in turn passes it to
BB9. When such a referred goal is passed through the
hierarchy of blackboards, it is accompanied by informa-
tion about the originating blackboard (indicated by the
BB1 subscript on G), including information identifying
its input port, host machine, etc. This continuation
information will enable a return communication (with
answers or failure) to be routed to the originating black-
board. Also, the identity of the responding knowledge
source BB9 can be sent back to the originator, so that
future queries of the same type from BB1 may be ad-
dressed directly to BB9 without passing through the
hierarchy of blackboards.

Operational Agents

A variety of agents have been integrated into the Open
Agent Architecture:

1This is referred to as a ~federation architecture" in [9].

Page 2 of 8 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

GBBI?~

~ GBBI?

f

1 ~ GBBI?

Figure h Hierarchy of Blackboard Servers

¯ a User-interface agent that accepts spoken or typed
(and soon, handwritten) natural language queries
from the user and presents responses to the queries.

¯ a Dalabase agent, written in C, that interacts with a
remote X.500 Directory System Agent database con-
taining directory information.

¯ a Calendar agent, which can report upon where a
person might be, or when they might be perform-
ing a particular action. This information is retrieved
from data created by Sun Microsystem’s CalenTool
application.

¯ a Mail agent that can monitor incoming electronic
messages, and forward or file them appropriately.
The mail agent works with any Unix-compatible mail
application (e.g. Sun’s MailTool).

¯ a News agent that scans Internet newsgroups search-
ing for specified topics or articles.

¯ a Telephone agent, that can dial a telephone using
a ComputerPhone controller, and can communicate
with users in English, using NewTTS, AT&T’s text-
to-speech system.

Communication Language
The key to a functioning agent architecture is the in-
teragent communication language. We explain ours in
terms of its form and content. Regarding the former,

three speech act types are currently supported: Solve
(i.e., a question), Do (a request) and Pos% (an asser-
tion to the blackboard). For the time being, we have
adopted little of the sophisticated semantics known to
underlie such speech acts [5, 18, 19]. However, in at-
tempting to protect an agent’s internal state from being
overwritten by uninvited information, we do not allow
one agent to change another’s internal state directly --
only an agent that chooses to accept a speech act can do
so. For example, a fact posted to the blackboard does
not necessarily get placed in the database agent’s files
unless it so chooses, by placing a trigger on the black-
board asking to be notified of certain changes in certain
predicates (analogous to Apple Computer’s Publish and
Subscribe protocol).

Although our interagent communication language is
still evolving, we have adopted Horn clauses as the ba-
sic predicates that serve as arguments to the speech act
types. However, for reasons discussed below, we have
augmented the language beyond ordinary Prolog to in-
clude temporal information.

Because delegated tasks and rules will be executed
at distant times and places, users may not be able sim-
ply to use direct manipulation techniques to select the
items of interest, aa those items may not yet exist, or
their identities may be unknown. Rather, users will
need to be able to describe arguments and invocation

3Page 3 of 8 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

conditions, preferably in a natural language. Because
these expressions will characterize events and their rela-
tionships, we expect natural language tense and aspect
to be heavily employed [6]. Consequently, the mean-
ing representation (or "logical form")produced by the
multimodal interface will need to incorporate temporal
information, which we do by extending a Horn clause
representation with time-indexed predicates and tem-
poral constraints. The blackboard server will need to
decompose these expressions, distribute pieces to the
various relevant agents, and engage in temporal rea-
soning to determine if the appropriate constraints are
satisfied.

With regard to the content of the language, we need
to specify the language of predicates that will be shared
among the agents. For example, if one agent needs to
know the location of the user, it will post an expression,
such as solve (location (user, U)), that another agent
knows how to evaluate. Here, agreement among agents
would be needed that the predicate name is local±on,
and its arguments are a person and a location. The
language of nonlogical predicates need not be fixed in
advance, it need only be common. Achieving such com-
monality across developers and applications is among
the goals of the ARPA "Knowledge Sharing Initiative,"
[13] and a similar effort is underway by the "Object
Management Group" (OMG) CORBA initiative to de-
termine a common set of objects.

A difficult question is how the user interface can know
about the English vocabulary of the various agents.
When agents enter the system, they not only register
their functional capabilities with the blackboard, they
also post their natural language vocabulary to the the
blackboard, where it can be read by the user interface.
Although conceptually reasonable for local servers (and
somewhat problematic for remote servers) the merg-
ing of vocabulary and knowledge is a difficult problem.
In the last section, we comment on how we anticipate
building agents to enforce communication and knowl-
edge representation standards.

Example Scenario

The following is an example of an operational demon-
stration scenario that illustrates inter-agent communi-
cation (see Figure 2).

The user tells the interface agent (in spoken lan-
guage) that "When mail arrives for me about a security
break, get it to me". The interface agent translates this
statement into a logical expression, and posts the ex-
pression to the blackboard. The blackboard server de-
termines that a trigger should be installed on the mail
agent, causing it to poll the user’s mail database. Once
the mail agent has determined that a message matching
the requested topic has arrived for the user, it posts a
query to find out the user’s current location. The calen-
dar agent responds, noting that the user is supposed to
be in a meeting which is being held in a particular room;

the database agent is then queried for the phone number
of the room. Finally, the telephone agent is instructed
to call the number, ask for the user (using voice synthe-
sis), perform an identification verification by requesting
a touchtone password, and then read the message to the
user. We intend to add agents that would increase the
number of ways in which a user might be contacted:
agents to control fax machines, automatic pagers, and
a notify agent that uses planning to determine which
communication method is most appropriate in a given
situation.

Comparison with Other Agent
Architectures
The most similar agent architectures are FLiPSiDE
[17] and that of Genesereth and Singh [9]. Like FLIP-
SiDE (Framework for Logic Programming Systems with
Distributed Execution), our Open Agent Architecture
uses Prolog as the interagent communication language,
and introduces a uniform meta-layer between the black-
board Server and the individual agents. Some aspects
of FLiPSiDE’s blackboard architecture are more com-
plex than in our system. It uses a multi-level locking
scheme to try to reduce deadlock and minimize conflicts
in blackboard access during moments of high concur-
rency. The system also uses separate knowledge sources
for controlling triggers, ranking priorities and schedul-
ing the executing of knowledge sources, whereas we in-
corporate these sorts of actions directly into the black-
board server. Some features important to our system
that are not addressed by FLiPSiDE are the ability to
handle temporal contraints over variables, and the pos-
sibility for an agent to explicitly request AND and OR-
parallel solvingof a list of distributed goals.

Genesereth and Singh’s architecture is more ambi-
tious than ours in its employing a full first-order logic
as the interagent communication language. As yet,
we have not needed to expand our language beyond
Horn clauses with temporal constraints, but this step
may well be necessary. Genesereth and Singh use KIF
(Knowledge Interchange Format) [13] as their basic lan-
guage of predicates and as a knowledge integration
strategy. Because of our user interface considerations,
which in turn are heavily influenced by the form-factor
constraints of future handheld devices, we will need to
be able to merge contributions by different agents of
their natural language vocabulary, related pronuncia-
tions, and semantic mappings of those vocabulary items
to underlying predicates.

MAIL MANAGEMENT
In our earlier scenario, the mail agent was rather lim-
ited. To test our user interface and agent architecture
more fully, we are creating a more substantive mail
management agent, MAILTALK.

It has become common to develop mail managers that
manipulate messages as they arrive according to a set

Page 4 of 8 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

about security, Appli ation PHONE
getit to me. c

I I I I

Agent Agent Agent Agent J

I .I~g~al i°rm l~ R°°m 17 T~x1234 T
[B ,’l:a c k b o a:g d i 1

Trigger is user?

Mail AgentMail [
pplicatioti

~ mmmmmmmmmmml

’ ~
Mail ""¯ ool ¯

m- mm mmmmm mmm mmlm

Call use~ at x1234,
verify identity,/read message

Figure 2: Example of agent interaction

of user-specified rules. The virtue of such systems is
that users can make mail management decisions once,
rather than consider each message in turn. However, a
number of problems exist for such systems, as well as
for all agent systems that we know of, especially when
considered as tools for the general population.

End users cannot easily specify the rules. In a num-
ber of current systems, a scripting language needs to
be employed [1, 20], and in one system, users were
required to write rules in a temporal query language
[10]. We believe such methods for rule creation ef-
fectively eliminates the class of nontechnical users.
Other systems employ templates that the user fills
out [12]. Although this technique may work in many
cases, it limits the power of the rules that users can
create because they must search for an icon at which
to point in order to specify the contents of a slot.
Otherwise, they need to know or select the special
syntax or concept name required. However, the selec-
tion of items from long menus is infeasible for hand-
held devices with little screen territory.

End users cannot determine in advance how the col-
lection of rules will behave once a new rule is added.
This lack of predictability and the lack of debugging
tools will undermine the utility of agent-based sys-
tems, especially in a networked environment.

¯ End users cannot easily determine what happened.
Generally, little or no history of the database of
events and rule firings is kept, and few tools are pro-
vided for reviewing that historyfl

¯ The mail manager is a special purpose system, inter-
acting loosely, if at all, with other components. With-
out tighter integration, the architecture and user in-
terface for dealing with mail rules may diverge from
what is offered for other agents.

Our prototype MAILTALK Was built to address these
concerns.

Rule specification. Based on technology developed
for the SHOPTALK factory simulation system [2, 3, 4],
MAILTALK permits users to specify rules by describ-
ing complex invocation conditions, and arguments
with a multimodal interface featuring typed and spo-
ken natural language, combined with direct manip-
ulation. For example, the user can delegate to the
mail agent as follows: "When Jones replies to my
message about ’acl tutorials’, send his reply to the
members of my group." Here, Jones’s reply cannot
be selected or pointed at since it does not yet ex-
ist. The English parser produces expressions in the
temporal logic, which are evaluated against various

2An exception to this is the use of "Mission Status Re-
ports" in the Envoy agent framework [15].

5

Page 5 of 8 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

