
812 IEEE Transactions on Consumer Electronics, Vol. 40, No. 4, NOVEMBER 1994

STATE PROBLEMS IN PROGRAMMING HUMAN-CONTROLLED DEVICES

Joseph A. Konstan
Department of Computer Science

University of Minnesota
Minneapolis, MN 55455

ABSTRACT

Many consumer goods are complicated enough to ben-
efit from programmed control. Today’s home electron-
ics devices support a wide range of options and
controls. At the same time, personal digital assistants
and programmable remote controls are now capable of
learning and generating control sequences to control a
wide range of devices. Unfortunately, most device
interfaces are designed for interactive human control
rather than programmed control.

This paper analyzes state-based obstacles to program-
ming devices designed for interactive human control. It
develops a theory of statelock, a condition in which a
control program is unable to synchronize with the state
machine underlying the controlled device.The paper
also presents design strategies to avoid statelock and
applies these strategies to the home audio/video and
telephone autodialer domains.

KEYWORDS: Device interface, programmable remote
control, automata, user/machine systems, audio/video
control, telephone autodialers.

INTRODUCTION

Many consumer goods are complicated enough to ben-
efit from programmed control. Today’s home electron-
ics devices support a wide range of options and
controls.

At the same time, the emergence of personal digital
assistants has created new possibilities for programmed
device control. Basic PDA’s can dial stored phone
numbers. More advanced ones can also send messages
to computers or facsimile machines, control remote
devices using tone dialing, or even store and play back
infrared control sequences such as are used for control-
ling televisions and other consumer audio/video
devices.

Unfortunately most devices are not designed for pro-
grammed control. Consumer electronics devices can
easily be controlled by a human with an infrared
remote control, but only because the human can
observe the state of the device and act accordingly.
Programmed control units lack state awareness, and
accordingly are generally unable to achieve even sim-
ple goals.

This paper discusses state awareness problems in
building programmable controllers for devices with
interfaces designed for interactive use. The next sec-
tion describes in detail the problems involved with pro-
gramming a controller for home audio/video
equipment. It also formalizes the problems by defining
statelock-a condition that inhibits programmability.
The following sections present theoretical results to
show that state-awareness problems are fundamental
and present design strategies for avoiding statelock.
The last section discusses the results and shows how
they apply to a different control problem-the use of
automatic telephone dialers-- and presents other related
obstacles to building programmable controls for con-
sumer electronics devices.

THE PROBLEM

“How can this ‘universal’ remote be programmed to
enter ‘home theater’ mode?” A learning universal
remote control unit controls multiple devices (e.g.,
televisions, video cassette recorders, stereo systems,
etc.) by learning the infrared commands from those
devices’ individual controls. Many units come with
sequence programming features to allow the user to
define complex operations that are invoked by a single
button. A typical goal is to define a “home theater” but-
ton that turns the television to a designated channel
(typically channel 3 or 4 in the U.S.), turns the VCR on
and sets it to display onto the TV, selects VCR input on
the stereo system, and sets a moderate volume on the
stereo (and no volume on the TV). All together, this

Revised manuscript received September 15, 1994 0098 3063/94 $04.00 1994 IEEE

GOOGLE EXHIBIT 1033Page 1 of 9 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Konstan: State Problems in Programming Human-Controlled Devices 813

mode would control three devices directly and perhaps
others indirectly (selecting VCR input turns off the CD
and cassette players on some models of receiver) to
provide the type of home entertainment so often adver-
tised!

Unfortunately, there is one problem involved in pro-
gramming the home theater button: in most cases, it
cannot be done. In fact, there are many simpler opera-
tions that cannot be programmed. This is not due to the
incompetence of the programmer, nor due to the weak-
ness of the universal remote control device. Rather, the
problem is one of poor programmability in the devices
being controlled.

To illustrate the fundamental problem in programming
remote-controllable devices, examine the simplest
operation that cannot be programmed on many TV
sets. There is no way to program a button to turn on the
TV. There is a power button, but it operates as a toggle.
It will turn on the TV if it is already off, and it will turn
it off if it is already on. This implementation usually
works well when a live human is operating the remote
control (at worst, an error can be easily corrected), but
a program has no way of knowing whether the TV is on
or off. For the home theater button, the user would
have to either define two buttons, one when starting
with the TV off and another when starting with it on, or
assume the TV is always on (or off) before entering
theater mode (and therefore having to remember to
make it so before pressing the magic key).

The problem, simply stated, is that many TVs, VCRs,
and other devices have internal states that are not
always known to the remote control. Controllable
devices are simple finite state machines and remote
control units generate command tokens that trigger
transitions between states. Figure 1 , for example,
shows the simplest useful devicenne which has two
states, on and off. This state machine could support

-
Figure 1. TV Power State Machine

(a toggle). With ON and OFF, the machine is com-
pletely programmable remotely, since commands can
force it into a specific state regardless of the state in
which the device starts. With POWER only, the
machine is not remotely programmable if the starting
state is not known. Interestingly, a machine with
POWER and either ON or OFF is completely program-
mable (e.g., with POWER and OFF, OFF turns the
machine off, OFF followed by POWER turns it ON) as
long as excess intermediate states do not matter.

An actual home entertainment system has many more
controls and many more states. Most of these states are
made visible to a live user (or can be made visible by
using a display function), though many of them are
hidden until a transition moves the machine into a more
visible state. Figure 2 shows a simplified model of a
typical TV with states corresponding to 3 volume lev-
els, three channels, and power and with transitions for
volume up and down, channel up and down, and power
toggle (adding direct channel access would render the
diagram completely unreadable; an alternative repre-
sentation for complex state machines is presented in
[3]). The states shown in grey are “hidden.” They can-

\ \ I POWER \ \ \

note: unmarked transitions remain in same state

Figure 2. Simple TV State Diagram
three useful command tokens, ON, OFF, and POWER

Page 2 of 9 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

814 IEEE Transactions on Consumer Electronics, Vol. 40, No. 4, NOVEMBER 1994

not be distinguished merely by looking at the device.
They are not the same state, however, since each
encodes a different volumdchannel pair.

The problem of remote programmability is the problem
of creating a sequence of command tokens (i.e., and
input string) that always leave the device@) being con-
trolled in the same desired state. (several analogous
problems are discussed below).

In general, absolute access is easy to program and tog-
gles are hard to program. In an n-dimensional state
space, absolute access can be used along each dimen-
sion to reach the desired state. Relative access can only
be programmed if there are fixed ends (e.g., a mini-
mum and maximum volume) after which the command
token causes the device to remain in the same state.
Any level can be attained by first attaining a fixed level
(e.g., by transmitting a number of VOLUME DOWN
tokens larger than the number of volume levels) and
then moving to the destination level through relative
commands (e.g., VOLUME UP). Relative access in a
cycle, including the two-element toggle, cannot gener-
ally be programmed.

In practice, device state machines are more compli-
cated than this simple model suggests. Even the basic
TV state machine shown in figure 2 has an asymmetry
in it. When the power is off, channel and volume com-
mand tokens do not cause transitions to other states.
Accordingly, any program must first turn the power on
and then use volume and channel commands.

More complicated devices have still more complicated
state machines. A typical VCR has several toggles with
unusual interactions: the POWER toggle, the TVNCR
toggle, the TIMER toggle, and various PLAY/STOP,
RECORD/STOP, and PAUSWSLOW toggles. Figure 3
shows the interaction pattern for the first three of these
states in a particular model, leaving out other states and
transitions such as channel selection and play/record/
stop/pause. Programming the VCR requires a nearly
complete knowledge of the state machine, and some
programs are still not possible because toggles such as
PAUSE and SLOW are time- and context-dependent.

Problem Summary

Most devices designed for human control model state
machines with internal state and externally defined
command tokens. The user selects command tokens
based on the externally visible state attributes of the
machine. Programmable control, however, is more dif-
ficult because the start state of the machine is

Figure 3. VCR State Interaction

unknown. Accordingly, many such devices cannot be
programmed to reach a specific state.

The term statelock is used to refer to this lack of pro-
grammability. There are four conditions for statelock:

Controlled devices must have internal state.
The remote control program cannot determine the
state of the device.
There is no fixed string of command tokens to
bring the device to a known state.
The device state can change without the program
being aware.

The first three conditions were discussed above.

Even with these conditions, however, it is possible to
synchronize the device and the remote control program
if the program is always made aware of any com-
mands. A programmable remote control for a televi-
sion, for example, could be synchronized with the
television at a certain channel, volume, power status,
etc. This possibility leads to the fourth condition which
states that external agents can change the device state
without the program’s knowledge (e.g., a user can con-
trol the device manually or the device state can be
altered by environmental conditions such as power fail-
ure).

It is also useful to include an assumption that any state
can be reached from any other through a sequence of
command tokens. Without this assumption, statelock
could occur simply by leaving the device in a state
from which the goal state is inaccessible. For practical

Page 3 of 9 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Konstan: State Problems in Programming Human-Controlled Devices 815

purposes, this assumption is true for almost any con-
sumer device. Some notable exceptions are discussed
at the end of this paper.

The four conditions of statelock are formulated so as to
allow programmability to be established by nullifying a
single condition. The first condition is fundamental to
both the home audiohide0 example and the telephone
example discussed below, and is likely to be true for
any interesting device. The other three conditions,
however, can be avoided. The next section presents
prior theoretical work on determining whether a given
device can be forced into a known state with a fixed
command string. The following section discusses
device and command set design options that avoid
statelock by nullifying each of the last three conditions.

THEORETICAL BACKGROUND

While little theoretical research has been done on
remote control applications themselves, results in
automata theory and its applications can be applied to
the remote control problem. The second and third con-
ditions of statelock (Le., unknown state and no fixed
string to lead to a known state) correspond to the distin-
guishing sequence and synchronizing sequence prob-
lems for finite state machines [2].

The distinguishing sequence problem seeks either a
string of tokens that generates a different output for
each initial state in a finite state machine. Not every
finite state machine has a preset distinguishing
sequence (and it is a PSPACE-complete problem to
find a preset distinguishing sequence). Adaptive distin-
guishing sequences, which change the input string
based on output, can be found in polynomial time and
have a bounded length of O(n2) [6]. Remote control
devices cannot generally take advantage of the
machines that have distinguishing sequences, even
when the sequences are known, since they are not
capable of observing and analyzing output.

Synchronizing sequences are strings of input tokens
that take a finite state machine to a specific state
regardless of the initial state. Any machine with a syn-
chronizing sequence can be programmed by fist using
the synchronizing sequence to reach the known state
and then sending a command string to reach the goal
state from the known state.

Not all finite state machines have synchronizing
sequences. Further, those synchronizing sequences that
exist have a length bounded by O(n3) which is imprac-
tical for use with most current consumer electronic

devices (e.g., a mid-range television typically has at
least 3200 states: 80 channels * 10 volume levels * 2
power states * 2 mute states). Because of this impracti-
cality, the third condition for statelock can be extended
to state that there is no short fixed string of command
tokens to bring the device to a known state. “Short” can
be defined by context as the number of command
tokens that can be transmitted, received, and processed
in a suitable time interval (e.g., three to five seconds if
a user activates the option, perhaps a minute if the
option is timer-activated).

Since finite state machine theory cannot nullify the sec-
ond and third conditions of statelock, and since it does
not address the first and fourth conditions, it is neces-
sary to design more restrictive interfaces or automata to
ensure programmability.

DESIGN STRATEGIES

This section presents four design strategies for ensur-
ing programmability of remote controlled devices by
avoiding statelock.

Ask and Ye Shall Know

One way to avoid statelock is to allow the remote con-
trol program to determine the state of the controlled
device. Some high-end video products (specifically
frame addressable video disk and video cassette play-
ers) provide a two-way communication link (generally
serial RS232 communications) between the device and
a controlling computer. The command set includes
state queries (e.g., what frame is displayed, what is the
play/pause/stop status, etc.) that generate replies.
Remote control programs operate by querying the
device state and sending appropriate commands to
reach the goal state.

A full communication interface not only solves the
statelock problem but also has other programming ben-
efits. The remote control device can include condi-
tional execution (e.g., eject only if there is a tape or
disk loaded) and can be given access to any informa-
tion available in the device itself.

Full communication interfaces, however, are much
more expensive and complicated to implement. They
require a two-way communication link between the
remote control and the controlled device. Wire links
are economical, but they limit portability and mobility.
Worse yet, the programming complexity requires that
either the remote control or the program itself accu-
rately model the state machine of the controlled device
in order to determine the correct sequence of com-

Page 4 of 9 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

816 IEEE Transactions on Consumer Electronics, Vol. 40, No. 4, NOVEMBER 1994

man& needed to reach the goal state.

Riding the Bus

remote-control access. No communication interface or
command bus is needed. The remote control system
merely learns the commands that the device under-

receiver input and dso selects STOP on other devices). Centralized control also has several disadvantages.
First, there are situations in which centralized conkol
loses synchronization with the Even when
user inputs are reliably directed to the central control-
ler, certain state changes occur directly at the device
level. Power failures, for examDle, tend to force state

Programmable remote control devices could be
designed to monitor this command bus. In doing so,
they could prevent statelock by preventing the device
‘Om changing the program being aware*

changes (even when the device k merely unplugged for

ers have physical state to the presence of
Unfortunately, there are three major obstacles prevent- a few minutes). similarly, tape and disk player/remrd- ing widespread use of bus-monitoring remote controls:

busses, 2) even devices that support a command bus

nents-volume control and other “local” commands

same complexity and wire interface as full communica-
tion without presenting any significant long-term
advantages.

‘1 the majority Of devices do not Yet (and perhaps writeability of) a tape or disk.

Only Of interest to Other compo- Second, centralized control is inherenfly non-portable.
Centralized control also requires expensive hardware

manual command access method with which most
u ~ r s are familiar.

are not and 3, bus-monitoring requires the and extensive software and removes the customary

Accordingly, centralized control is best suited for envi-
ronments where home automation is a design priority.
Centralized controllers can use two-way communica-
tion when available and also provide interfaces to tele-
phone input, sensors, and other home automation

Taking Control

Centralized control interfaces are a more practical
alternative for ensuring that the remote control pro-
gram is aware of all state changes and thereby avoiding
statelock. Centralized control interfaces force all components.
device commands to be routed to the remote control
first, and then relayed to the controlled device. Several Starting From Scratch

The final solution requires redesigning the command
set and state used in remote controlled

possible nor feasible to find a reset sequence for the
state machine associated with an arbitrary device. It is
possible, however, to design machines with easily-
accessible reset sequences and more regular state
machines. Doing so nullifies the third condition for
statelock.

vendors sell components for assembling these inter-
faces for home automation. The typical kit includes

puter hardware and ’Oftware to the devices’
User actions transmit signals to the computer program
which then formulates an implementation and trans-
mits commands to the individual devices. Interference
between user-computer and computer-device commu-
nications is avoided either by physically isolating the
infrared receptors of the devices or by using different

infrared and receptors with ‘Om- devices. It has already been shown that it is neither

frequencies &d patterns. Users also must beprevented
from using any manual controls on the device itself.

Centralized control has several advantages. First, it can
be implemented to control any device that supports

There are approaches to this solution. First, one
can simply define a ground state and implement a
RESET command that always causes a transition to the
ground state. On a television set, for example, the

Page 5 of 9 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

