
in a step 906. The p.t facilitator responds to this service r.t and at a later

time, the client agent receives the results of the request in a step 908, operations of

Figure 9 being complete in a done step 910.

)
FIGURE 10 depicts operations involved in a client agent responding to a

5 service request in accordance with a preferred embodiment of the present invention.

Once started in a step 1000, the client agent receives the service request in a step

1002. In a next step 1004, the client agent parses the received request from ICL. The

client agent then determines if the service is available in a step 1006. If it is not, the

client agent returns a status report to that effect in a step 1008. If the service is

10 available, control is passed to a step 1010 where the client performs the requested

service. Note that in completing step 1010 the client may form complex goal

expressions, requesting results for these solvables from the facilitator agent. For

example, a fax agent might fax a document to a certain person only after requesting

and receiving a fax number for that person. Subsequently, the client agent either

15 returns the results of the service and/or a status report in a step 1012. The operations

of Figure 10 are complete in a done step 1014.

FIGURE 11 depicts operations involved in a facilitator agent response to a

service request in accordance with a preferred embodiment of the present invention.

The start of such operations in step 1100 leads to the reception of a goal request in a

20 step 1102 by the facilitator. This request is then parsed and interpreted by the

facilitator in a step 1104. The facilitator then proceeds to construct a goal satisfaction

plan in a next step 1106. In steps 1108 and 1110, respectively, the facilitator

determines the required sub-goals and then selects agents suitable for performing the

required sub-goals. The facilitator then transmits the sub-goal requests to the selected

25 agents in a step 1112 and receives the results of these transmitted requests in a step

1114. It should be noted that the actual implementation of steps 1112 and 1114 are

dependent upon the specific goal satisfaction plan. For instance, certain sub-goals

may be sent to separate agents in parallel, while transmission of other sub-goals may

be postponed until receipt of particular answers. Further, certain requests may

30 generate multiple responses that generate additional sub-goals. Once the responses

have been received, the facilitator determines whether the original requested goal has

been completed in a step 1118. If the original requested goal has not been completed,

Attornev Docket No: SRI I PO 1604 77)/BRC/EW J Pa!!e 28 of 59 Page 127 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4256

the facilitator recurs~ repeats the operations 1106 through •. Once the original

requested goal is completed, the facilitator returns the results to the requesting agent

1118 and the operations are done at 1120.

A further preferred embodiment of the present invention incorporates

5 transparent delegation, which means that a requesting agent can generate a request,

and a facilitator can manage the satisfaction of that request, without the requester

needing to have any knowledge of the identities or locations of the satisfying agents.

In some cases, such as when the request is a data query, the requesting agent may also

be oblivious to the number of agents involved in satisfying a request. Transparent

10 delegation is possible because agents' capabilities (solvables) are treated as an abstract

description of a service, rather than as an entry point into a library or body of code.

15

A further preferred embodiment of the present invention incorporates

facilitator handling of compound goals, preferably involving three types of

processing: delegation, optimization and interpretation.

Delegation processing preferably supports facilitator determination of which

specific agents will execute a compound goa1 and how such a compound goal's sub

goals will be combined and the sub-goal results routed. Delegation involves selective

application of global and local constraint and advice parameters onto the specific sub

goals. Delegation results in a goal that is unambiguous as to its meaning and as to the

~ 20 agents that will participate in satisfying it.

Optimization processing of the completed goal preferably includes the

facilitator using sub-goal parallelization where appropriate. Optimization results in a

goal whose interpretation will require as few exchanges as possible, between the

facilitator and the satisfying agents, and can exploit parallel efforts of the satisfying

25 agents, wherever this does not affect the goal's meaning.

Interpretation processing of the optimized goal. Completing the addressing of

a goal involves the selection of one or more agents to handle each of its sub-goals

(that is, each sub-goal for which this selection has not been specified by the

requester). In doing this, the facilitator uses its knowledge of the capabilities of its

30 client agents (and possibly of other facilitators, in a multi-facilitator system). It may

also use strategies or advice specified by the requester, as explained below. The

Attornev Dockel No: SRIIP016(3477)/BRCIEWJ Pae:e 29 of 59 Page 128 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4257

interpretation of a .nvolves the coordination of requests .e satisfying agents,

and assembling their responses into a coherent whole, for return to the requester.

A further preferred embodiment of present invention extends facilitation so the

facilitator can employ strategies and advice given by the requesting agent, resulting in

5 a variety of interaction patterns that may be instantiated in the satisfaction of a

request.

10

A further preferred embodiment of present invention handles the distribution

of both data update requests and requests for installation of triggers, preferably using

some of the same strategies that are employed in the delegation of service requests.

Note that the reliance on facilitation is not absolute; that is, there is no hard

requirement that requests and services be matched up by the facilitator, or that

interagent communications go through the facilitator. There is preferably support in

the agent library for explicit addressing of requests. However, a preferred

embodiment of the present invention encourages employment the paradigm of agent

15 communities, minimizing their development effort, by taking advantage of the

facilitator's provision of transparent delegation and handling of compound goals.

A facilitator is preferably viewed as a coordinator, not a controller, of

cooperative task completion. A facilitator preferably never initiates an activity. A

facilitator preferably responds to requests to manage the satisfaction of some goal, the

20 update of some data repository, or the installation of a trigger by the appropriate agent

or agents. All agents can preferably take advantage of the facilitator's expertise in

delegation, and its up-to-date knowledge about the current membership of a dynamic

community. The facilitator's coordination services often allows the developer to

lessen the complexity of individual agents, resulting in a more manageable software

25 development process, and enabling the creation of lightweight agents.

Maintaining Data Repositories

The agent library supports the creation, maintenance, and use of databases, in

the form of data solvables. Creation of a data solvable requires only that it be

declared. Querying a data solvable, as with access to any solvable, is done using

30 oaa_Solve.

Attornev Docket No: SRIIPOI6(3477l!BRC/EWJ Pae:e 30 of 59 Page 129 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4258

n =

lf

ltd
:;;p,
w
$

Fi
""?'
;f!
1:::":

;!d
~n
<;:;;:

A data solva.s conceptually similar to a relation in .ational database.

The facts associated with each solvable are maintained by the agent library, which

also handles incoming messages containing queries of data solvables. The default

behavior of an agent library in managing these facts may preferably be refined, using

5 parameters specified with the solvable's declaration. For example, the parameter

single_value preferably indicates that the solvable should only contain a single fact at

any given point in time. The parameter unique_values preferably indicates that no

duplicate values should be stored.

Other parameters preferably allow data solvables use of the concepts of

10 ownership and persistence. For implementing shared repositories, it is often

preferable to maintain a record of which agent created each fact of a data solvable

with the creating agent being preferably considered the fact's owner. In many

applications, it is preferable to remove an agent's facts when that agent goes offline

(for instance, when the agent is no longer participating in the agent community,

whether by deliberate termination or by malfunction). When a data solvable is

declared to be non-persistent, its facts are automatically maintained in this way,

whereas a persistent data solvable preferably retains its facts until they are explicitly

removed.

15

20

A further preferred embodiment of present invention supports an agent library

through procedures by which agents can update (add, remove, and replace) facts

belonging to data solvables, either locally or on other agents, given that they have

preferably the required permissions. These procedures may preferably be refined

using many of the same parameters that apply to service requests. For example, the

address parameter preferably specifies one or more-particular agents to which the

25 update request applies. In its absence, just as with service requests, the update request

preferably goes to all agents providing the relevant data solvable. This default

behavior can be used to maintain coordinated "mirror" copies of a data set within

multiple agents, and can be useful in support of distributed, collaborative activities.

Similarly, the feedback parameters, described in connection with oaa_Solve,

30 are preferably available for use with data maintenance requests.

Attornev Docket No: SRIIP016(3477)/BRCfEWJ Paee 31 of 59 Page 130 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4259

A further p.ed embodiment of present invention slorts ability to

provide data solvables not just to client agents, but also to facilitator agents. Data

solvables can preferably created, maintained and used by a facilitator. The facilitator

preferably can, at the request of a client of the facilitator, create, maintain and share

5 the use of data solvables with all the facilitator's clients. This can be useful with

relatively stable collections of agents, where the facilitator's workload is predictable.

Using a Blackboard Style of Communication

In a further preferred embodiment of present invention, when a data solvable

10 is publicly readable and writable, it acts essentially as a global data repository and can

be used cooperatively by a group of agents. In combination with the use of triggers,

this allows the agents to organize their efforts around a "blackboard" style of

communication.

As an example, the "DCG-NL" agent (one of several existing natural language

15 processing agents), provides natural language processing services for a variety of its

peer agents, expects those other agents to record, on the facilitator, the vocabulary to

which they are prepared to respond, with an indication of each word's part of speech,

and of the logical form (ICL sub-goal) that should result from the use of that word. In

a further preferred embodiment of present invention, the NL agent, preferably when it

20 comes online, preferably installs a data solvable for each basic part of speech on its

facilitator. For instance, one such solvable would be:

25

30

solvable(noun(Meaning, Syntax), [], [])

Note that the empty lists for the solvable's permissions and parameters are acceptable

here, since the default permissions and parameters provide appropriate functionality.

A further preferred embodiment of present invention incorporating an Office

Assistant system as discussed herein or similar to the discussion here supports several

agents making use of these or similar services. For instance, the database agent uses

the following call, to library procedure oaa_AddData, to post the noun 'boss', and to

indicate that the "meaning" of boss is the concept 'manager':

oaa_AddData(noun(manager, atom(boss)), [address(parent)])

Auornev Docket No: SRII PO 16(3477)/BRCIEWJ Pa!!:e 32 of 59 Page 131 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4260

g
k!

Autonomous Mon.g with Triggers

A further preferred embodiment of present invention includes support for

triggers, providing a general mechanism for requesting some action be taken when a

set of conditions is met. Each agent can preferably install triggers either locally, for

5 itself, or remotely, on its faci_litator or peer agents. There are preferably at least four

types of triggers: communication, data, task, and time. In addition· to a type, each

trigger preferably specifies at least a condition and an action, both preferably

expressed in /CL. The condition indicates under what circumstances the trigger should

fire, and the action indicates what should happen when it fires. In addition, each

10 trigger can be set to fire either an unlimited number of times, or a specified number of

times, which can be any positive integer.

Triggers can be used in a variety of ways within _preferred embodiments of the

present invention. For example, triggers can be used for monitoring external sensors

in the execution environment, tracking the progress of complex tasks, or coordinating

15 communications between agents that are essential for the synchronization of related

tasks. The installation of a trigger within an agent can be thought of as a

representation of that agent's commitment to carry out the specified action, whenever

the specified condition holds true.

.~ Communication triggers preferably allow any incoming or outgoing event

Vi 20 (message) to be monitored. For instance, a simple communication trigger may say
\0

something like: "Whenever a solution to a goal is returned from the facilitator, send

the result to the presentation manager to be displayed to the user."

Data triggers preferably monitor the state of a data repository (which can be

maintained on a facilitator or a client agent). Data triggers' conditions may be tested

25 upon the addition, removal, or replacement of a fact belonging to a data solvable. An

example data trigger is: "When 15 users are simultaneously logged on to a machine,

send an alert message to the system administrator."

Task triggers preferably contain conditions that are tested after the processing

of each incoming event and whenever a timeout occurs in the event polling. These

30 conditions may specify any goal executable by the local /CL interpreter, and most

often are used to test when some solvable becomes satisfiable. Task triggers are

Attornev Docket No: SRIIPOI6(3477VBRC/EWJ Pa!!e 33 of 59 Page 132 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4261

useful in checking fo.k-specific internal conditions. Althou.n many cases such

conditions are captured by solvables, in other cases they may not be. For example, a

mail agent might watch for new incoming mail, or an airline database agent may

monitor which flights will arrive later than scheduled. An example task trigger is:

5 "When mail arrives for me about security, notify me immediately."

Time triggers preferably monitor time conditions. For instance, an alarm

trigger can be set to fire at a single fixed point in time (e.g., "On December 23rd at

3pm"), or on a recurring basis (e.g., "Every three minutes from now until noon").

Triggers are preferably implemented as data solvables, declared implicitly for

10 every agent. When requesting that a trigger be installed, an agent may use many of the

same parameters that apply to service and data maintenance requests.

A further preferred embodiment of present invention incorporates semantic

support, in contrast with most programming methodologies, of the agent on which the

trigger is installed only having to know how to evaluate the conditional part of the

15 trigger, not the consequence. When the trigger fires, the action is delegated to the

facilitator for execution.· Whereas many commercial mail programs allow rules of the

form "When mail arrives about XXX, [forward it, delete it, archive it]", the possible

actions are hard-coded and the user must select from a fixed set.

U'1 A further preferred embodiment of present invention, the consequence of a

20 trigger may be any compound goal executable by the dynamic community of agents.

25

Since new agents preferably define both functionality and vocabulary, when an

unanticipated agent (for example, a fax agent) joins the community, no modifications

to existing code is required for a user to make use of it - "When mail arrives, fax it to

Bill Smith."

The Agent Library

In a preferred embodiment of present invention, the agent library provides the

infrastructure for constructing an agent-based system. The essential elements of

protocol (involving the details of the messages that encapsulate a service request and

30 its response) are preferably made transparent to simplify the programming

applications. This enables the developer to focus functionality, rather than message

Attornev Docket No: SRIIPOI6(3477VBRCIEWJ Pa!!e 34 of 59 Page 133 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4262

construction details .omrnunication details. For example, .quest a service of

another agent, an agent preferably calls the library procedure oaa_Solve. This call

results in a message to a facilitator, which will exchange messages with one or more

service providers, and then send a message containing the desired results to the

5 requesting agent. These results are returned via one of the arguments of oaa_Solve.

None of the messages involved in this scenario is explicitly constructed by the agent

developer. Note that this describes the synchronous use of oaa_Solve.

In another preferred embodiment of present invention, an agent library

provides both intraagent and interagent infrastructure; that is, mechanisms supporting

10 the internal structure of individual agents, on the one hand, and mechanisms of

cooperative interoperation between agents, on the other. Note that most of the

infrastructure cuts across this boundary with many of the same mechanisms

supporting both agent internals and agent interactions in an integrated fashion. For

example, services provided by an agent preferably can be accessed by that agent

15 through the same procedure (oaa_Solre) that it would employ to request a service of

another agent (the only difference being in the address parameter accompanying the

request). This helps the developer to reuse code and avoid redundant entry points into

the same functionality.

Both of the preferred characteristics described above (transparent construction

20 of messages and integration of intraagent with interagent mechanisms) apply to most

other library functionality as well, including but not limited to data management and

temporal control mechanisms.

Source Code Appendix

Source code for version 2.0 of theOAA software product is included as an

25 appendix hereto, and is incorporated herein by reference. The code includes an agent

library, which provides infrastructure for constructing an agent-based system. The

library's several families of procedures provide the functionalities discussed above, as

well as others that have not been discussed here but that will be sufficiently clear to

the interested practitioner. For example, declarations of an agent's solvables, and their

30 registration with a facilitator, are managed using procedures such as oaa_Declare,

oaa_Undeclare, and oaa_Redeclare. Updates to data solvables can be accomplished

with a family of procedures including oaa_AddData, oaa_RemoveData, and

Anornev Docket No: SRIIP016(3477)/BRC/EWJ Paee 35 of 59 Page 134 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4263

oaa_ReplaceData. S.arly, triggers are maintained using pr.res such as

oaa_AddTrigger, oaa_RemoveTrigger, and oaa_ReplaceTrigger. The provided

source code also includes source code for an OAA Facilitator Agent.

The source code appendix is offered solely as a means of further helping

5 practitioners to construct a preferred embodiment of the invention. By no means is

the source code intended to limit the scope of the present invention.

Illustrative Applications

To further illustrate the technology of the preferred embodiment, we will next

present and discuss two sample applications of the present inventions.

10 Unified Messaging

A further preferred embodiment of present invention incorporates a Unified

.Q Messaging application extending the Automated Office application presented

previously herein with an emphasis on ubiquitous access and dynamic presentation of

the information and services supported by the agent community. The agents used in

15 this application are depicted in Figure 12.

A hypothetical example of realistic dialog using a preferred embodiment of

the present invention can provide insight into how systems may preferably be built

using the present invention. In this scenario, the user, with only a telephone as an

interface, is planning a trip to Boston where he will soon give a presentation.

\!d 20 Capitalized sentences are phrases spoken by the user into the telephone and processed

by a phone agent 452.

Responses, unless otherwise indicated, are spoken by the system using text-to

speech generation agent 454.

25 1.1 Welcome to SRI International. Please enter your
user ID and password.

30

<User enters touchtone ID and password>

Good to see you again Adam Cheyer. I am

listening to you.

Every user interface agent 408, including the telephone agent 452, should

know the identify of its user. This information is used in resolving anaphoric

Attornev Docket No: SRI I PO 16(34 77)/BRC/EWJ Page 36 of 59 Page 135 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4264

:.A
;;;:

rll
fiJ
~fi
'iofi
l'
.r-

\g
t'fi ·:.r.::

references such as ··and "I", and allows multiple user inte.s operated by the

same user to work together.

1.2 WHAT IS TODAY'S SCHEDULE?
Here is today's schedule for Adam Cheyer:

5 At lOam for 1 hour, meeting with Dave.
At 3prn for 1 hour, presentation about software

agents.

End of schedule.

If the user is operating both a graphical user interface and a telephone, as

10 described in conjunction with the Automated Office application, the result of this

spoken request is to display a calendar window containing the current schedule. In

this case, with no graphical display available, the GEN_NL agent 1202 is tasked to

produce a spoken response that can be played over the phone. GEN_NL shares the

same dynamic vocabulary and phrasal rules as the natural language parser DCG_NL

15

20

25

426, and contains strategies for producing responses to queries using either simple or

list-based multimedia utterances.

1.3 FIND FRIDAY'S WEATHER IN BOSTON.
The weather in Boston for Friday is as follows:

Sunny in the morning. Partly cloudy in the
afternoon with a 20

percent chance of thunderstorms late. Highs in the
mid 70s.

In addition to data accessible from legacy applications, content may be

retrieved by web-reading agents which provide wrappers around useful websites.

1.4 FIND ALL NEW MAIL MESSAGES.
There are 2 messages available.
Message 1, from Mark Tierny, entitled 11 0AA meeting."

1.5 NEXT MESSAGE
Message 2, from Jennifer Schwefler, entitled

30 II Presentation Summary. II

1. 6 PLAY IT.
This message is a multipart MIME-encoded message.

There are two parts.
Part 1. (Voicernail message, not text-to speech):

35 Thanks for taking part as a speaker in our
conference.

The schedule will be posted soon on our homepage.
1.7 NEXT PART

Part 2. (read using text-to-speech):
40 The presentation horne page is http://www

1.8 PRINT MESSAGE
Command executed.

Auornev Docket No: SRIIP0160477)/BRCIEWJ Pa2e 37 of 59 Page 136 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4265

Mail messalre no longer just simple text docume.ut often consist of

multiple subparts containing audio files, pictures, webpages, attachments and so forth.

When a user asks to play a complex email message over the telephone, many different

agents may be implicated in the translation process, which would be quite different

5 given the request "print it." The challenge is to develop a system which will enable

agents to cooperate in an extensible, flexible manner that alleviates explicit coding of

agent interactions for every possible input/output combination.

In a preferred embodiment of the present invention, each agent concentrates

only on what it can do and on what it knows, and leaves other work to be delegated to

10 the agent community. For instance, a printer agent 1204, defining the solvable

print(Object,Parameters), can be defined by the following pseudo-code, which

basically says, "If someone can get me a document, in either POSTSCRIPT or text

form, I can print it.".

15 print(Object, Parameters) {
I If Object is reference to "it", find an appropriate

document
if (Object = "ref(it) ")

oaa_Solve(resolve_reference(the, document, Params,
20 Object) , []) ;

1 Given a reference to some document, ask for the
document in POSTSCRIPT

if (Object= "id(Pointer)")
oaa_Solve(resolve_id_as(id(Pointer), postscript,

25 [], Object),[]);
1 If Object is of type text or POSTSCRIPT, we can

print it.
if ((Object is of type Text) or (Object is of type

Postscript))
30 do_print (Object);

}

In the above example, since an email message is the salient document, the

mail agent 442 will receive a request to produce the message as POSTSCRIPT.

Whereas the mail agent 442 may know how to save a text message as POSTSCRIPT,

35 it will not know what to do with a webpage or voicemail message. For these parts of

the message, it will simply send oaa_Solve requests to see if another agent knows

how to accomplish the task.

Attornev Docket No: SRIIP016(3477)!BRCIEWJ Page 38 of 59 Page 137 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4266

i:j

rl!

~-1;

Until now, .ser has been using only a telephone a.r interface. Now, he

moves to his desktop, starts a web browser 436, and accesses the URL referenced by

the mail message.

1.9 RECORD MESSAGE
5 Recording voice message. Start speaking now.

1.10 THIS IS THE UPDATED WEB PAGE CONTAINING THE
PRESENTATION SCHEDULE.

Message one recorded.
1.11 IF THIS WEB PAGE CHANGES, GET IT TO ME WITH NOTE

10 ONE.

15

20

Trigger added as requested.

In this example, a local agent 436 which interfaces with the web browser can

return the current page as a solution to the request "oaa_Solve(resolve_reference(this,

web_page, [],Ref),[])", sent by the NL agent 426. A trigger is installed on a web

agent 436 to monitor changes to the page, and when the page is updated, the notify

agent 446 can find the user and transmit the webpage and voicemail message using

the most appropriate media transfer mechanism.

This example based on the Unified Messaging application is intended to show

how concepts in accordance with the present invention can be used to produce a

simple yet extensible solution to a multi-agent problem that would be difficult to

implement using a more rigid framework. The application supports adaptable

presentation for queries across dynamically changing, complex information; shared

context and reference resolution among applications; and flexible translation of

multimedia data. In the next section, we will present an application which highlights

25 the use of parallel competition and cooperation among agents during multi-modal

fusion.

Multimodal Map

A further preferred embodiment of present invention incorporates the

Multimodal Map application. This application demonstrates natural ways of

30 communicating with a community of agents, providing an interactive interface on

which the user may draw, write or speak. In a travel-planning domain illustrated by

Figure 13, available information includes hotel, restaurant, and tourist-site data

retrieved by distributed software agents from commercial Internet sites. Some

preferred types of user interactions and multimodal issues handled by the application

Attornev Docket No: SRIIPOJ6(3477VBRC/EWJ Pae:e 39 of 59 Page 138 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4267

w
= -::~
~

are illustrated by a b.cenario featuring working examples • from the current

system.

Sara is planning a business trip to San Francisco, but would like to schedule

some activities for the weekend while she is there. She turns on her laptop PC,

5 executes a map application, and selects San Francisco.

2.1 [Speaking] Where is downtown?
Map scrolls to appropriate area.

2.2 [Speaking and drawing region] Show me all hotels
near here.

10 Icons representing hotels appear.
2.3 [Writes on a hotel] Info?

A textual description (price, attributes, etc.)
appears.
2.4 [Speaking] I only want hotels with a pool.

15 Some hotels disappear.
2.5 [Draws a crosscut on a hotel that is too close to a
highway]

Hotel disappears
2.6 [Speaking and circling] Show me a photo of this

20 hotel.

25

30

35

Photo appears.
2.7 [Points to another hotel]

Photo appears.
2.8 [Speaking] Price of the other hotel?

Price appears for previous hotel.
2.9 [Speaking and drawing an arrow] Scroll down.

Display adjusted.
2.10 [Speaking and drawing an arrow toward a hotel]

What is the distance from this hotel to Fisherman's
Wharf?

Distance displayed.
2.11 [Pointing to another place and speaking] And the
distance to here?

Distance displayed.

Sara decides she could use some human advice. She picks up the phone, calls

Bob, her travel agent, and writes Start collaboration to synchronize his display with

hers. At this point, both are presented with identical maps, and the input and actions

of one will be remotely seen by the other.

40 3.1 [Sara speaks and circles two hotels]
Bob, I'm trying to choose between these two hotels.

Any opinions?
3.2 [Bob draws an arrow, speaks, and points]

Well, this area is really nice to visit. You can
45 walk there from

Auornev Docket No: SRilPOI6(3477)/BRCIEWJ Pa!!:e 40 of 59 Page 139 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4268

5

3.3
3.4

3.5

this ho •.
Map scrolls to indicated area. Hotel selected.
[Sara speaks] Do you think I should visit Alcatraz?
[Bob speaks] Map, show video of Alcatraz.
Video appears.

[Bob speaks] Yes, Alcatraz is a lot of fun.

A further preferred embodiment of present invention generates the most

appropriate interpretation for the incoming streams of multiinodal input. Besides

providing a user interface to a dynamic set of distributed agents, the application is

10 preferably built using an agent framework. The present invention also contemplates

aiding the coordinate competition and cooperation among information sources, which

in tum works in parallel to resolve the ambiguities arising at every level of the

interpretation process: low-level processing of the data stream, anaphora resolution,

cross-modality influences and addressee.

15 Low-level processing of the data stream: Pen input may be preferably

interpreted as a gesture (e.g., 2.5: cross-out) by one algorithm, or as handwriting by a

separate recognition process (e.g., 2.3: "info?"). Multiple hypotheses may preferably

be returned by a modality recognition component.

Anaphora resolution: When resolving anaphoric references, separate

0 20 information sources may contribute to resolving the reference: context by object type,

deictic, visual context, database queries, discourse analysis. An example of

information provided through context by object type is found in interpreting an

utterance such as "show photo of the hotel", where the natural language component

can return a list of the last hotels talked about. Deictic information in combination

25 with a spoken utterance like "show photo of this hotel" may preferably include

pointing, circling, or arrow gestures which might indicate the desired object (e.g.,

2.7). Deictic references may preferably occur before, during, or after an

accompanying verbal command. Information provided in a visual context, given for

the request "display photo of the hotel" may preferably include the user interface

30 agent might determine that only one hotel is currently visible on the map, and

therefore this might be the desired reference object. Database queries preferably

involving information from a database agent combined with results from other

resolution strategies. Examples are "show me a photo of the hotel in Menlo Park" and

Attornev Docket No: SRIIPOI6(3477l/BRC/EWJ Pa2e 41 of 59 Page 140 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4269

n =

2.2. Discourse anal.preferably provides a source of infon8n for phrases such

as "No, the other one" (or 2.8).

The above list of preferred anaphora resolution mechanisms is not exhaustive.

Examples of other preferred resolution methods include but are not limited to spatial

5 reasoning ("the hotel between Fisherman's Wharf and Lombard Street") and user

preferences ("near my favorite restaurant").

Cross-modality influences: When multiple modalities are used together, one

modality may preferably reinforce or remove or diminish ambiguity from the

interpretation of another. For instance, the interpretation of an arrow gesture may vary

10 when accompanied by different verbal commands (e.g., "scroll left" vs. "show info

about this hotel"). In the latter example, the system must take into account how

accurately and unambiguously an arrow selects a single hotel.

Addressee: With the addition of collaboration technology, humans and

automated agents all share the same workspace. A pen doodle or a spoken utterance

15 may be meant for either another human, the system (3.1), or both (3.2).

The implementation of the Multimodal Map application illustrates and

exploits several preferred features of the present invention: ·reference resolution and

task delegation by parallel parameters of oaa_Solve, basic multi-user collaboration

handled through built-in data management services, additional functionality readily

20 achieved by adding new agents to the community, domain-specific code cleanly

separated from other agents.

A further preferred embodiment of present invention provides reference

resolution and task delegation handled in a distributed fashion by the parallel

parameters of oaa_Solve, with meta-agents encoding rules to help the facilitator make

25 context- or user-specific decisions about priorities among knowledge sources.

A further preferred embodiment of present invention provides basic multi-user

collaboration handled through at least one built-in data management service. The

map user interface preferably publishes data solvables for elements such as icons,

screen position, and viewers, and preferably defines these elements to have the

30 attribute ".shareable". For every update to this public data, the changes are preferably

Attornev Docket No: SRIIP016(3477)/BRC/EWJ Paee 42 of 59 Page 141 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4270

automatically replic.to all members of the collaborative s.n. with associated

callbacks producing the visible effect of the data change (e.g., adding or removing an

icon).

Functionality for recording and playback of a session is preferably

5 implemented by adding agents as members of the collaborative community. These

agents either record the data changes to disk, or read a log file and replicate the

changes in the shared environment.

10

The domain-specific code for interpreting travel planning dialog is preferably

separated from the speech, natural language, pen recognition, database and map user

interface agents. These components were preferably reused without modification to

add multimodal map capabilities to other applications for activities such as crisis

management, multi-robot control, and the MVIEWS tools for the video analyst.

Improved Scalability and Fault Tolerance

Implementations of a preferred embodiment of present invention which rely

Vi 15 upon simple, single facilitator architectures may face certain limitations with respect
y
' to scalability, because the single facilitator may become a communications bottleneck

and may also represent a single, critical point for system failure.

Multiple facilitator systems as disclosed in the preferred embodiments to this

point can be used to construct peer-to-peer agent networks as illustrated in Figure 14.

20 While such embodiments are scalable, they do possess the potential for

communication bottlenecks as discussed in the previous paragraph and they further

possess the potential for reliability problems as central, critical points of vulnerability

to systems failure.

A further embodiment of present invention supports a facilitator implemented

25 as an agent like any other, whereby multiple facilitator network topologies can be

readily constructed. One example configuration (but not the only possibility) is a

hierarchical topology as depicted in Figure 15, where a top level Facilitator manages

collections of both client agents 1508 and other Facilitators, 1504 and 1506.

Facilitator agents could be installed for individual users, for a group of users, or as

30 appropriate for the task.

Attornev Docket No: SRIIP016C3477l/BRCIEWJ Pa!!:e 43 of 59 Page 142 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4271

Note further •• network work topologies of facilitato.an be seen as

graphs where each node corresponds to an instance of a facilitator and each edge

connecting two or more nodes corresponds to a transmission path across one or more

physical transport mechanisms. Some nodes may represent facilitators and some

5 nodes may represent clients. Each node can be further annotated with attributes

corresponding to include triggers, data, capabilities but not limited to these attributes ..

A further embodiment of present invention provides enhanced scalability and

robustness by separating the planning and execution components of the facilitator. In

contrast with the centralized facilitation schemes described above, the facilitator

1 o system 1600 of Figure 16 separates the registry/planning component from the

execution component. As a result, no single facilitator agent must carry all

communications nor does the failure of a single facilitator agent shut down the entire

system.

Turning directly to Figure 16, the facilitator system 1600 includes a

15 registry/planner 1602 and a plurality of client agents 1612-1616. The registry/planner

1604 is typically replicated in one or more locations accessible by the client agents.

Thus if the registry/planner 1604 becomes unavailable, the client agents can access

the replicated registry/planner(s).

This system operates, for example, as follows. An agent transmits a goal1610

20 to the registry planner 1602. The registry/planner 1604 translates the goal into an

unambiguous execution plan detailing how to accomplish any sub-goals developed

from the compound goal, as well as specifying the agents selected for performing the

sub-goals. This execution plan is provided to the requesting agent which in tum

initiates peer-to-peer interactions 1618 in order to implement the detailed execution

25 plan, routing and combining information as specified within the execution plan.

Communication is distributed thus decreasing sensitivity of the system to bandwidth

limitations of a single facilitator agent. Execution state is likewise distributed thus

enabling system operation even when a facilitator agent fails.

Further embodiments of present invention incorporate into the facilitator

30 functionality such as load-balancing, resource management, and dynamic

configuration of agent locations and numbers, using (for example) any of the

topologies discussed. Other embodiments incorporate into a facilitator the ability to

aid agents in establishing peer-to-peer communications. That is, for tasks requiring a

Attornev Docket No: SRIIP016C3477VBRCIEWJ Pa!!e 44 of 59 Page 143 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4272

sequence of exchan-etween two agents, the facilitator as*e agents in finding

one another and establishing communication, stepping out of the way while the agents

communicate peer-to-peer over a direct, perhaps dedicated channel.

Further preferred embodiments of the present invention incorporate

5 mechanisms for basic transaction management, such as periodically saving the state of

agents (both facilitator and client) and rolling back to the latest saved state in the

event of the failure of an agent.

Attornev Docket No: SRIIP016(3477)!BRCIEWJ Page 45 of 59 Page 144 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4273

\

•

APPENDIX A.I

Source code file named compound. pl.

Page 145 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4274

%%
% File : compound.pl
% Primary Authors David Martin, Adam Cheyer
% Purpose : Provides handling of compound goals by the facilitator.
%
%
% Unpublished-rights reserved under the copyright laws of the United States.
%
%
% Unpublished Copyright (c) 1998, SRI International.
% "Open Agent Architecture" and "OAA" are Trademarks of SRI International.
%

%%

% This is just here so this file can be compiled separately (but its
% official declaration is in oaa.pl):

op (599,yfx,::).

dynamic
binding num/1,
ks num/l,
multiple_ continuation/?

% This file is loaded by facilitator code, and thus no
% module imports are needed here.

%%%
% OVERVIEW
%%%

/*\

These facilitator routines support the use of compound "ICL goals".
An ICLGoal is of the form Sources:Goal: :Params, where both Sources and
Params are optional. Each subgoal of ICLGoal is also of that form.

When an agent calls solve/2, it may specify an ICL goal which is
"incomplete"; that is, ambiguous as to which agents are to solve the
various subgoals. The facilitator then completes the ICL goal, if
necessary, and executes it. Execution involves having all the
subgoals solved by the appropriate agents, assembling the solutions,
and returning them to the requesting agent.

If a agent wants to construct a complete ICL goal, and is willing to
guarantee that it's complete and that all solvers mentioned in it are
currently valid, then that agent (usually a "meta-agent") may call
execute_goal directly. @@ We haven't yet provided library calls for
this.

IMPORTANT NOTE: : has higher precedence than ::. This means that
a:b: :c will unify with X:Y and X:Y: :Z, but NOT with Y: :Z.

Wherever a Sources field appears, it may be any of the following:
built in
facilitator

1

Page 146 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4275

parent
KS
[KSl, KS2, ...]

'built_in• isn't normally specified by a requesting agent although
there's no harm in doing so but is used internally by the
facilitator. KS, KSl, KS2, etc. may be either the name or address of
an agent (client or facilitator). 'facilitator' or 'parent' may also
appear in a list of KS's. If Sources is an empty list or a var, it is
handled just as if there were no Sources field, in which case the
facilitator determines what sources are relevant.

Note that when an ICL goal includes a Sources field, there should not be
Sources fields for any of its subgoals. If there are, they will be
ignored. (®®Need to make sure this works ok.) However, Params fields
may be usefully nested within goals that have Params fields. Certain
nested parameters, such as solution_limit/1, can be used by the
solving agent.

If an ICL goal has parameters, some of them are "inherited" by
subgoals. If there's a conflicting parameter on a subgoal, however,
it overrides an inherited parameter.

PARAMETERS

address(+A) [embedded or global] -Used precisely as if A: prefixes
the relevant goal.

get_address(-S) [embedded] bindS to indicate who provided the
solution. Solver identities will be given as numeric ids. Currently
only works when attached to non-compound (sub)goals.

get_address(-S) [global] -bindS to indicate all sources that were queried
in finding solutions (even if they returned none) .

*/

%%%
% GOAL COMPLETION
%%%

/*\

complete_goal(RequestingKS, Goal, GlobalParams, CompletedGoal).

complete_goal takes in an ICL goal and produces a "complete ICL goal"
(sometimes known as a "plan", but I think we'll reserve that term for
future developments) . The goal and the complete goal have precisely
the same variables - but are not necessarily unifiable.

*/

complete_goal(RequestingKS, Goal, GlobalParams, CompletedGoal)
complete_addressing(RequestingKS, Goal, GlobalParams, AddressedGoal),
complete_concurrency(AddressedGoal, CompletedGoal).

2

Page 147 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4276

/*\

complete_addressing(+RequestingKS, +ICLGoal, +GlobalParams, -AddressedGoal).

AddressedGoal has more-or-less the same form as ICLGoal, but possibly
with some regrouping of subgoals, and the addition of Sources fields
to ICLGoal or its subgoals. The idea is that AddressedGoal contains
complete information as to where its various subgoals are to be sent,
so that no further analysis is needed. Any regrouping of subgoals is
done as an optimization. AddressedGoal shares all variables with
ICLGoal.

®®What other operators (e.g., negation) might we want to support?

*/

complete_addressing(RequestingKS, ICLGoal, GlobalParams, AddressedGoal)
% @@ verify_params(GlobalParams, global, Verified),
complete_sources(RequestingKS, ICLGoal, GlobalParams,

AddressedGoalWithParamsEverywhere) ,

/*\

%®®Here, propagate params, instantiate address request in GlobalParams. ?
remove_empty_params(AddressedGoalWithParamsEverywhere, AddressedGoal).

complete_sources(+RequestingKS, +ICLGoal, +GlobalParams, -AddressedGoal).

Ensures that every subgoal is explicitly covered by one or more
sources. Determines the largest subgoals that can be "chunked"; that
is, grouped together for submission to a source.

In the process, every goal acquires a Params field (wherever there was
no Params field before, the empty list is added). This is done just
to make the definition of complete_sources more readable.

*/

% Here we assume that the goal-writer didn't really mean to put a var,
% because it's not meaningful to do so:

complete_sources(KS, Sources:Goal, GlobalParams, AddressedGoal)
var (Sources) ,

I*

*I

! I

complete_sources(KS, Goal, GlobalParams, AddressedGoal).

) .

AddressedGoal
Sources = A
otherwise ->

A: ->

findall(A, sub_term(A: , AddressedGoal), SubSources),
% ®®More work needed here:
Sources SubSources

% Here we assume that the goal-writer didn't really mean to put [],
% because it's not meaningful to do so:

3

Page 148 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4277

complete_sources(KS, []:Goal, GlobalParams, AddressedGoal)
! I

complete_sources(KS, Goal, GlobalParams, AddressedGoal).

% Sources and Params already specified; we're done:
% ®®But let's verify the sources are valid!

complete_sources(_KS, Sources:Goal: :Params, _GlobalParams,
Sources:Goal: :Params)

! .

% Sources already specified; add empty Params list:
complete_sources(_KS, Sources:Goal, _GlobalParams, Sources:Goal:: [])

! .

% Sure, we'll continue to support an address in Params or GlobalParams:
complete_sources(KS, Goal: :Params, GlobalParams, AddressedGoal)

% ®® verify_params(...) ,
(memberchk(address(Sources), Params) ;

memberchk(address(Sources), GlobalParams)) ,
\+ var(Sources),
! I

complete_sources(KS, Sources:Goal: :Params, GlobalParams, AddressedGoal).

% No Sources or Params specified; add empty Params list before
% proceeding:

complete sources(KS, Goal, GlobalParams, AddressedGoal)
\+ (Goal ::) ,
! I

complete_sources(KS, Goal::[], GlobalParams, AddressedGoal).

% Here we get down to the real work: determining solvers and
% chunking of subgoals:

complete_sources(KS, (\+ Goall) ::Params, GlobalParams, AddressedGoal)
! I

oaa_Name(Facilitator),
complete_sources(KS, Goall, GlobalParams, AddressedGoall),

) .

% If Sl is a SINGLE source, it's OK to send the negation to the source.
% This case also works if Sl == built_in.
(AddressedGoall = [Sl] :Gl: :Pl,
Sl \== Facilitator,
Sl \== facilitator) ->
AddressedGoal Sl: ((\+ Gl): :Pl): :Params

otherwise ->
AddressedGoal (\+ AddressedGoall: :Params)

complete_sources(KS, (Goall, Goal2, Goal3): :Params, GlobalParams,
AddressedGoal)

% This clause is needed because we want built in pred's to be grouped
% with what comes before, not after.
! I

complete_sources(KS, Goall, GlobalParams, AddressedGoall),
complete_sources(KS, Goal2, GlobalParams, AddressedGoal2),
complete_sources(KS, Goal3, GlobalParams, AddressedGoal3),
((AddressedGoall Sl:Gl: :Pl,

AddressedGoal2 = S2:G2: :P2,

4

Page 149 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4278

) .

AddressedGoal3 = S3:G3: :P31
chunkable_sources{[Sll s21 S3] I Sources) I

compatible_params{[Pl 1 P21 P3])) ->

AddressedGoal =Sources: {Gl: :Pl 1 G2: :P2 1 G3: :P3): :Params
{AddressedGoall Sl:Gl: :Pl 1
AddressedGoal2 = S2:G2: :P2 1
AddressedGoal3 = {S3A:G3A: :P3AI Goal3B): :P31
% Goal3B may or may not begin with Source:. icl_GoalComponents
% deals with the precedence issues.
icl_Goa1Components{Goal3B 1 1 G3B 1 P3B) 1
chunkable_sources{[Sl 1 S2 1 S3A] 1 Sources) 1
append{P3A1 P3 1 NewP3A) 1
append{P3B 1 P3 1 NewP3B) 1
compatible_params{[Pl 1 P2 1 NewP3A])) >
AddressedGoal = {Sources: (Gl: :Pl 1 G2: :P2 1 G3A: :NewP3A):: [] 1

G3B: :NewP3B) ::Params
(AddressedGoall Sl:Gl: :Pl1
AddressedGoal2 S2:G2: :P2 1
chunkable_sources(Sll S21 Sources) I

compatible_params([Pl 1 P2])) >
AddressedGoal = (Sources: (Gl: :Pl 1 G2: :P2):: [] 1 AddressedGoal3): :Params

(AddressedGoal2 = S2:G2: :P2 1
AddressedGoal3 = S3:G3: :P31
chunkable_sources{S2 1 S3 1 Sources) 1

compatible_params{[P2 1 P3])) ->

AddressedGoal = (AddressedGoall 1 Sources: (G2: :P2 1 G3: :P3):: []): :Params
(AddressedGoal2 = S2:G2: :P21
AddressedGoal3 = (S3A:G3A::P3AI Goal3B) ::P31
icl Goa1Components(Goal3BI I G3BI P3B) I

chu~kable_sources([S2 1 S3A]~ Sources) 1

append(P3A1 P3 1 NewP3A) 1
append(P3B 1 P3 1 NewP3B) 1
compatible_params([P2 1 NewP3A])) ->

AddressedGoal (AddressedGoall 1 Sources: (G2: :P21 G3A::NewP3A):: (]I

otherwise ->

AddressedGoal

G3B:NewP3B): :Params

(AddressedGoall 1 AddressedGoal2 1 AddressedGoal3): :Params

complete_sources(KS 1 (Goall 1 Goal2): :Params 1 GlobalParamsl AddressedGoal)
! I

complete_sources(KS 1 Goall 1 Globa1Params 1 AddressedGoall) 1

complete_sources(KS 1 Goal2, GlobalParamsl AddressedGoal2) 1

((AddressedGoall = Sl:Gl: :Pl,

) .

AddressedGoal2 S2:G2: :P2 1

chunkable_sources(Sl 1 S2 1 Sources) 1

compatible_params([P1 1 P2])) ->

AddressedGoal Sources: (Gl: :Pll G2: :P2): :Params
otherwise ->

AddressedGoal (AddressedGoall, AddressedGoal2): :Params

%Note: this clause must precede that for disjunction.
complete_sources{KS 1 (Goall -> Goal2 ; Goal3): :Params 1 Globa1Params 1

AddressedGoal)
! I

complete_sources(KS, Goall, GlobalParams, AddressedGoall),
complete_sources(KS, Goal2, Globa1Params 1 AddressedGoal2),

5

Page 150 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4279

complete_sources(KS, Goal3, GlobalParams, AddressedGoal3),
((AddressedGoall Sl:Gl: :Pl,

) .

AddressedGoal2 = S2:G2: :P2,
AddressedGoal3 = S3:G3: :P3,
chunkable_sources([Sl, S2, S3], Sources),
compatible_params([Pl, P2, P3))) ->
AddressedGoal Sources: (Gl::Pl -> G2: :P2 I G3: :P3): :Params

otherwise ->
AddressedGoal

(AddressedGoall -> AddressedGoal2 I AddressedGoal3): :Params

complete_sources(KS, (Goall -> Goal2): :Params, GlobalParams, AddressedGoal)
! I

complete_sources(KS, Goall, GlobalParams, AddressedGoall),
complete_sources(KS, Goal2, GlobalParams, AddressedGoal2),
((AddressedGoall = Sl:Gl: :Pl,

) .

AddressedGoal2 = S2:G2: :P2,
chunkable_sources([Sl, S2], Sources),
compatible_params([Pl, P2))) ->
AddressedGoal Sources: (Gl: :Pl -> G2: :P2): :Params

otherwise ->
AddressedGoal

(AddressedGoall -> AddressedGoal2): :Params

complete_sources(KS, (Goall ; Goal2): :Params, GlobalParams, AddressedGoal)
I . ,
complete_sources(KS, Goall, GlobalParams, AddressedGoall),
complete_sources(KS, Goal2, GlobalParams, AddressedGoal2),
((AddressedGoall = Sl:Gl: :Pl,

) .

AddressedGoal2 = S2:G2: :P2,
chunkable_sources(Sl, S2, Sources),
compatible_params([Pl, P2])) ->

AddressedGoal Sources: (Gl: :Pl; G2: :P2): :Params
otherwise >

AddressedGoal (AddressedGoall; AddressedGoal2): :Params

% To be complete, we will allow for this nonstandard goal form:
complete_sources(KS, Goal: :Paramsl: :Params2, GlobalParams,

AddressedGoal: :Params2)
! ,

complete_sources(KS, Goal: :Paramsl, GlobalParams, AddressedGoal).
complete_sources(_KS, Goal: :Params, _GlobalParams, built_in:Goal: :Params)

icl_Builtin(Goal),
! .
% Here, finally, we determine the agents (or parent facilitator) that
% can solve a non-compound Goal:

complete_sources(KS, Goal, GlobalParams, Sources:Goal)
sources_for_goal(KS, Goal, GlobalParams, Sources).

remove_empty_params(Addr:Goal:: [), Addr:NewGoal)
! I

remove_empty_params(Goal, NewGoal).
remove_empty_params(Addr:Goal: :Params, Addr:NewGoal: :Params)

! I

remove_empty_params(Goal, NewGoal).
rernove_empty_params(Goal:: [], NewGoal)

! I

6

Page 151 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4280

remove_empty_params(Goal, NewGoal).
remove_empty_params(Goal: :Params, NewGoal: :Params)

I
• I

remove_empty_params(Goal, NewGoal).
remove_empty_params(Sources:Goal, Sources:NewGoal)

I
• I

remove_empty_params(Goal, NewGoal).
remove_empty_params((\+ Goal)::[], (\+ NewGoal))

I
• I

remove_empty_params(Goal, NewGoal).
remove_empty_params((Goall, Goal2), (NewGoall, NewGoal2))

I
• I

remove_empty_params(Goall, NewGoall),
remove_empty_params(Goal2, NewGoal2).

remove_empty_params((Goall ; Goal2), (NewGoall
I
• I

NewGoal2))

remove_empty_params(Goall, NewGoall),
remove_empty_params(Goal2, NewGoal2).

remove_empty_params((Goall -> Goal2), (NewGoall -> NewGoal2))
! I

remove_empty_params(Goall, NewGoall),
remove_empty_params(Goal2, NewGoal2).
% Primitive (non-compound) goal:

remove_empty_params(Goal, Goal).

remove_addresses(_Sources:Goal, NewGoal)
! I

remove_addresses(Goal, NewGoal).
remove_addresses((Goall, Goal2), (NewGoall, NewGoal2))

! I

remove_addresses(Goall, NewGoall),
remove_addresses(Goal2, NewGoal2).

remove_addresses((Goall ; Goal2), (NewGoall
! '

NewGoal2))

remove_addresses(Goall, NewGoall),
remove_addresses(Goal2, NewGoal2).

remove_addresses((Goall -> Goal2), (NewGoall -> NewGoal2))
! I

remove_addresses(Goall, NewGoall),
remove_addresses(Goal2, NewGoal2).
% Primitive (non-compound) goal:

remove_addresses(Goal, Goal).

I*\

chunkable_sources(+Sourcesl, +Sources2, -Sources).

Each argument is either: a single KS name (or numeric id); a list of
KS names (where 'facilitator' or 'parent' also count asKS
names), or the atom 'built_in'. (Empty list is OK.)

Sourcesl gives the sources that can solve some goal, Sources2
gives the sources that can solve some other goal, and if this
pred. succeeds, Sources gives a set of sources that can solve
both together.

NOTES ON CHUNKING:

7

Page 152 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4281

%1 A chunk is a sub-goal SG of a Goal such that
(1) There is a nonempty set S of client agents each of which can solve

the entire chunk (that is, every predicate in the chunk is either an
icl_Builtln or one of the agent's solvables), and

{2) Performing the subgoal as (ksl:SQ; ks2:SQ ... , ksN:SQ), where
ks1 ... ksN are all the agents in s, does not in any way violate the
intended semantics of the overall Goal.

NOTE: chunking is done "conservatively", so as to preserve Prolog
semantics. So, for example, the following Goal:

(a(l), b(2)),
where a and b are both solvable by ksl and ks2, will be chunked as
follows:

chunk(a(1), [ksl, ks2)), chunk(b(2), [ks1, ks2])
which amounts to no chunking at all, instead of

chunk ((a (1) , b (2)) , [ks 1, ks2]) .

The former results in execution
(ks1:a(1) ; ks2:a2), (ksl:b(2) ; ks2:b(2))

whereas the latter would result in execution
ks1:(a(1), b(2)); ks2:(a(1), b(2))

We might want to explore under what conditions more extensive chunking
can be done.

*I

% This just allows for single sources, not in a list:
chunkable_sources(Source1, Source2, Sources)

(atomic(Source1) ->
S1 = [Sourcel)
otherwise ->
S1 = Source1

) I

(atomic(Source2) >
S2 = [Source2]
otherwise >
S2 Source2

) I

chunkable_srcs(S1, S2, Sources).

chunkable_srcs(built_in, Sources, Sources)
% at least one element:
Sources = [_ I _l ,
! .

chunkable srcs(Sources, built_in, Sources)
Sourc~s = [_ I _J ,
! .

chunkable_srcs ([), [], [))
! .

chunkable_srcs([Source], [Source], [Source))
! •

chunkable_srcs([Source1], [Source2], [Source1])
(number(Source1), atom(Source2)

number(Source2), atom(Source1)),
! I

find_address(Sourcel, Source),
find_address(Source2, Source).

8

Page 153 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4282

% chunkable sources(+Sourcesin, -SourcesOut).
% Does the same as chunkable_sources/3, but allows for a list
% of sources (length >= 1) as arg 1.

chunkable sources([Sources], Sources).
chunkable=sources([Sourcesl, Sources2 I RestSources], SourcesOut)

chunkable sources(Sourcesl, Sources2, SourcesTemp),
chunkable=sources([SourcesTemp I RestSources], SourcesOut).

% compatible_params(+ParamLists).
% ParamLists is a list of 2 or more ParamLists. This predicate
% succeeds IFF the ParamLists are compatible for purposes of
% chunking.

compatible_params(_).

% sources_for_goal(+RequestingKS, +Goal, +Params, -Sources).
% ®® Here, depending on how the treatment of multiple facilitators evolves,
% we may need to revisit the default use of the facilitator.

sources_for_goal(RequestingKS, ICLGoal, GlobalParams, Sources)
icl_GoalComponents(ICLGoal, _, Goal, Params),
append(Params, GlobalParams, AllParams),
findall(SomeKS,

choose_ks_for_goal(RequestingKS,Goal,_,AllParams,SomeKS,_),
KSList),

KSList = [] ->
%®®Determine if there's a parent facilitator that can handle
% the goal. This needs work; probably should have a local record
% of what the parent can handle.
find_level(AllParams, Level, _NewParams),
((on_exception(_, com:com_Getinfo(parent, fac_id(ParentBB)), fail), Level

> 0) - >

) .

Sources = [ParentBB]
otherwise ->

Sources []

otherwise ->

Sources = KSList

% If Sources is bound, VERIFIES that all the Sources can be used
% on the ICLGoal. If var(Sources), finds all the Sources that can
% be used.

% sources_for_compound_goal(RKS, ICLGoal, GlobalParams, Sources)

I*\

complete_concurrency(+Goal, -ConcurrentGoal).

TBD.

*/

complete_concurrency(Goal, Goal).

9

Page 154 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4283

%%
% GOAL EXECUTION: TOP LEVEL
%%

/*\
execute_goal{+RequestingKS, +OrigGoal, +OrigParams, +CompleteGoal).

origGoal are origParams are exactly as submitted by some client agent
{RequestingKS) . CompleteGoal is the rewriting of OrigGoal that
ensures complete addressing. OrigGoal and ICLGoal contain precisely
the same var's.

See global comments near the top of this file.

Note: the meaning of variable "Goal" and other variables ending in
"Goal" varies with context. In some places they indicate an ICL
goal Source:Goal: :Params {where Source and Params are both optional);
in other places, they indicate just the Goal part of an ICL goal.

*/

execute_goal{RKS, OrigGoal, OrigParams, ICLGoal)

/*\

% Here, ICLGoal may or may not include a Sources component. Either
%way, it gets handled by execute/?.
%@@What if OrigGoal's Params or GlobalParams has vars?
% We remove addresses before calling term_vars only so as to avoid
% a syntax error exception that comes up when ICLGoal = Addr:\+Goal
remove addresses(ICLGoal, TempGoal),
term_v~rs(TempGoal, AllVars, _Singletons, _NonSingletons),
new_goal_id(Id), ·
% This means simply, "When the Solvers and solutions (in the form of
% Bindings for AllVars) are known for Goal, call
% unify_and_return_solutions(...) ."
assert(continuation(Id, Requestees, Solvers, Bindings,

unify_and_return_solutions(Id,RKS,OrigGoal,OrigParams,AllVars,
Requestees,Solvers,Bindings))),

% This means: Find the Solvers and solutions:
execute(Id, RKS, [], [], ICLGoal, OrigParams, AllVars).

* execute(Id, RKS, Requestees, Solvers, Goal, InheritedParams, Vars).

execute/? satisfies the ICL goal Goal. Id is an integer that
identifies a continuation assertion. When the satisfaction of Goal
has been completed, the continuation assertion tells what to do next.
The satisfaction of Goal may be very simple, or may involve a number
of steps, depending on the form of Goal.

Requestees is a list of source id's of all sources asked to
participate in the satisfaction of whatever request contained Goal,
and Solvers is a list of source id's of sources that succeeded in
satisfying some part of the request (so Solvers is a subset of
Requestees. These lists are being accumulated for return to the agent
that submitted the request.

Conceptually, execute/? does this:

10

Page 155 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4284

findall{Vars, Goal, Bindings),
append{Requestees, <list of KSs called on in the findall>, NewRequestees),
append(Solvers, <list of KSs providing solutions in the findall>,

NewSolvers),
continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings)

The behavior of continue_execution, then, depends on a continuation/5
assertion, with Id as the first arg.

The important details have to do with how the satisfaction of the
"findall" part of this strategy may be delayed.

*
*/

execute(Id, RKS, Requestees, Solvers, built_in:ICLGoal, InheritedParams, Vars)

% This handles ICL built-ins, such as <, >, =, member/2, true, false, ...
! I

icl_GoalComponents(ICLGoal, _, Goal, Params),
append(Params, InheritedParams, AllParams),
oaa_Name(Facilitator),
add_element(Facilitator, Requestees, NewRequestees),
% If the requestor wants to know the solver, bind it here:
(memberchk(get_address(Facilitator), Params) ->true I true),

) I

oaa:passes_tests(Params) >
% @@The use of solution limit and elsewhere here needs a close look:
(memberchk(solution_li~it(N), AllParams) >

oaa:findNSolutions(N, Vars, call(Goal), Bindings)
otherwise ->

findall(Vars, call(Goal), Bindings)

otherwise >
Bindings []

(Bindings == [] >
NewSolvers = Solvers

otherwise ->
add_element(Facilitator, Solvers, NewSolvers)

) I

(memberchk(reply(none), AllParams) ->

) .

continue_execution(Id, RKS, NewRequestees, NewSolvers, [Vars])
otherwise >

continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings)

% Empty list of sources:
execute(Id, RKS, Requestees, Solvers, [] :ICLGoal, _InheritedParams, _Vars)

format('WARNING: No solvers for ICL goal or subgoal:-n -q-n',
ICLGoal),

continue_execution(Id, RKS, Requestees, Solvers, []).

% Single KS in a list:
execute(Id, RKS, Requestees, Solvers, [KS] :G, Params, Vars)

! I

11

Page 156 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4285

execute(Id, RKS, Requestees, Solvers, KS:G, Params, Vars).

% Multiple KSs in a list:
execute(Id, RKS, Requestees, Solvers, [KS I Rest] :G, Params, Vars)

I
• I

execute_for_each_ks(Id, RKS, Requestees, Solvers, G, Params,
Vars, [KS I Rest]) .

% Solver is facilitator (me) :
execute(Id, RKS, Requestees, Solvers, Source:ICLGoal, InheritedParams, Vars)

oaa_Name(Facilitator),
(Source = facilitator ; Source = Facilitator) ,
I
• I

icl_GoalComponents(ICLGoal, _, Goal, Params),
% If the requestor wants to know the solver, bind it here:
(memberchk(get_address(Facilitator), Params) ->true I true),
append(Params, InheritedParams, AllParams),
findall(Vars,

oaa:oaa_solve_local(Goal, InheritedParams),
Bindings),

memberchk(reply(none), AllParams) ->
true

otherwise ->
oaa_Name(KSName),
add element(KSName, Requestees, NewRequestees),
(Bindings == [] >

) I

NewSolvers Solvers
otherwise >

add_element(KSName, Solvers, NewSolvers)

continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings)
) .

%Note: this code was inherited from pre-compound-query facilitator.
% One significant change: when a goal is sent to a parent, we used to
% automatically include local blackboard solutions also. We don't
% do this anymore.
%
% ®® Strategy should be re-evaluated at some point. For instance,
% the use of var P2 might now cause things to break (the requesting
% agent might try to unify its copy of Params with P2).

execute(Id, RKS, Requestees, Solvers, Sources:ICLGoal, InheritedParams, Vars)
on_exception(_, com:com_Getinfo(parent, fac_id(ParentBB)), fail),
(Sources== parent ; Sources== ParentBB),
! I

icl_GoalComponents(ICLGoal, _Goal, Params),
% If the requestor wants to know the solver, bind it here:
% NO - it gets bound by the parent facilitator.
% (memberchk(get_address(ParentBB), Params) ->true I true),

append(Params, InheritedParams, AllParams),
%We don't need to check the level here (that's already been done),
% but we do need to decrement its value by 1:
find_level(AllParams, _Level, NewParams),
oaa_TraceMsg('-nRouting goal "solve(-p)" to parent -p.-n',

12

Page 157 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4286

[ICLGoal, ParentBB]),
new_goal_id(Newid),
oaa_PostEvent(ev_post_solve_from_bb(Newid, ICLGoal, NewParams), ·

[address(ParentBB)]),

) .

memberchk(reply(none), NewParams) >
unify_and_continue_execution(Id, RKS, ICLGoal, Vars,

ParentBB, Requestees, Solvers, [ICLGoal])
otherwise ->
% @@Shouldn't there be a time-check here?
oaa:oaa_add_trigger_local(

comm,
event(ev_reply_solved_by_bb(Newid, KS, ICLGoal, _P2,

Solutions),
) I

ev_unify_and_continue_execution(Id, RKS, ICLGoal, Vars,
ParentBB, Requestees, Solvers, Solutions),

[recurrence(when), on(receive)])

% Send the goal to an agent:
execute(Id, RKS, Requestees, Solvers, KS:ICLGoal, InheritedParams, Vars)

! ,
icl_GoalComponents(ICLGoal, _, Goal, Params),
append(Params, InheritedParams, AllParams),
%@®What if the KS' status has changed since it was specified?
% find_address allows for KS to be either numeric or symbolic.
find_address(KS, KSid),
% If the requestor wants to know the solver, bind it here:
(memberchk(get_address(KSid), Params) ->true I true),
% Could do another check of the agent's validity:
% ks_ready(KSid, _),

% relevant_vars(Vars, Goal, GVars),
% OptimizedG = findall(GVars, Goal, All),

% Output trace message:
(oaa:oaa_trace(on) ->

) ,

copy_term(ICLGoal, TraceCopy),
numbervars(Tracecopy, 0, _),

copy_term(InheritedParams, ParamsCopy),
numbervars(ParamsCopy, 0, _),
oaa_TraceMsg(

'%Routing goal to -w:-n% -w -w-n-n',
[KS, TraceCopy, Paramscopy])

otherwise ->
true

new_goal_id(Newid),
% oaa_PostEvent(KS, RKS, solve(Newid, OptimizedG: :Params, [])),

oaa_PostEvent(ev_solve(Newid, ICLGoal, InheritedParams),
[from(RKS), address(KSid)]),

memberchk(reply(none), AllParams) >
unify_and_continue_execution(Id, RKS, ICLGoal, vars,

KSid, Requestees, Solvers, [ICLGoal])
% If time_limit specified in parameters, setup

13

Page 158 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4287

% time_trigger to wakeup if solutions hasn't been returned
% in specified time.

otherwise ->
(memberchk(time_limit(NSecs), AllParams) ->

add_time_check(NSecs, Newid, RKS, Goal,AllParams)
true) ,

oaa:oaa_add_trigger_local(
comm,
event(ev_solved(Newid, _KS, ICLGoal, P2, Solutions), _),
ev_unify_and_continue_execution(Id, RKS, ICLGoal, Vars,

KSid, Requestees, Solvers, Solutions),
[recurrence(when), on(receive)])

% poll_until_all_events([solved(Id, _KS, OptimizedG, P2, Solutions)]),
% Solutions= [findall(GVars, Goal, All)),
% respond query(Id, RKS, Solvers, KS, Goal, P2, Solutions)

% Backtrack over solutions:
% member(GVars, All).

) .

% Negation:
execute(Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars)

icl_GoalComponents(ICLGoal, _, (\+ Gl), Params),
I . '
append(Params, InheritedParams, NewiParams),
new_goal_id(Newid),
assert(

continuation(Newid, NewRequestees, NewSolvers, Bindings,
continue_negation(Id, RKS, NewRequestees, NewSolvers, NewiParams,

Vars, Bindings))),
execute(Newid, RKS, Requestees, Solvers, Gl, NewiParams, Vars).

% Conjunction:
execute(Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars)

icl_GoalComponents(ICLGoal, _, (Gl, G2), Params),

! '
append(Params, InheritedParams, NewiParams),
new_goal_id(Newid),
assert(

continuation(Newid, NewRequestees, NewSolvers, Bindings,
continue_conjunction(Id, RKS, NewRequestees, NewSolvers, G2,

NewiParams,
Vars, Bindings))),

execute(Newid, RKS, Requestees, Solvers, Gl, NewiParams, Vars).

% Local cut with alternative. Note: this clause must precede
% that for disjunction.

execute(Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars)
icl_GoalComponents(ICLGoal, _, (Gl -> G2 I G3), Params),
! I

append(Params, InheritedParams, NewiParams),
new_goal_id(Newid),
assert(

continuation(Newid, NewRequestees, NewSolvers, Bindings,
continue_local_cut(Id, RKS, NewRequestees, NewSolvers, G2, G3,

NewiParams,
Vars, Bindings))),

execute(Newid, RKS, Requestees, Solvers, Gl, NewiParams, Vars).

14

Page 159 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4288

% Local cut:
execute(Id, RKS, Requestees, Solvers, ICLGoal, InheritedParams, Vars)

icl_GoalComponents(ICLGoal, _, (Gl -> G2), Params),
! I

append(Params, InheritedParams, NewiParams),
new_goal_id(Newid),
assert (

continuation(Newid, NewRequestees, NewSolvers, Bindings,
continue_local_cut(Id, RKS, NewRequestees, NewSolvers, G2, false,

NewiParams,
Vars, Bindings))),

execute(Newid, RKS, Requestees, Solvers, Gl, NewiParams, Vars).

% Disjunction:
execute(Id, RKS, Requestees, Solvers, ICLGoal, · InheritedParams, Vars)

icl_GoalComponents(ICLGoal, _, (Gl; G2), Params),
! I

append(Params, InheritedParams, NewiParams),
new_goal_id(Idl),
new_goal_id(Id2),
assert (

multiple_continuation([Idl, Id2), Requestees, AllRequestees,
Solvers, AllSolvers,
[1 , All Bindings,

continue_execution(Id, RKS, AllRequestees, AllSolvers, AllBindings))),
execute(Idl, RKS, Requestees, Solvers, Gl, NewiParams, Vars),
execute(Id2, RKS, Requestees, Solvers, G2, NewiParams, Vars).

% Occasionally, a goal may have the form G: :P (that is, no
% address, and P is not compound), but it is still valid, so
% long as G is valid.
%
%Ex.: ([7):al(l)::[...))::[...)

execute(Id, RKS, Requestees, Solvers, Goal: :Params, InheritedParams, Vars)
! I

append(Params, InheritedParams, NewiParams),
execute(Id, RKS, Requestees, Solvers, Goal, NewiParams, vars).

execute(Id, RKS, Requestees, Solvers, G, Params, Vars)
format('WARNING (execute/?): unrecognized goal-form:-n
continue_execution(Id, RKS, Requestees, Solvers, [)).

-w-n' , [G)) ,

execute_for_each_ks(Id, RKS, Requestees, Solvers, Goal, Params, Vars, KSs)
length(KSs, NumKSs),
new_goal_ids(NumKSs, Ids),
assert (

multiple_continuation(Ids, Requestees, AllRequestees, Solvers,
AllSolvers, [], AllBindings,

continue_execution(Id, RKS, AllRequestees, AllSolvers, AllBindings))),
exec_for_each_ks(NumKSs, Ids, KSs, RKS, Requestees, Solvers, Goal,

Params, Vars) .

%%%
% GOAL EXECUTION: INTERMEDIATE STEPS
% The predicates in this group define intermediate steps in the satisfaction
%of various ICL goal forms.

15

Page 160 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4289

%
% Note: intermediate steps in handling of DISJUNCTION are handled by
% continue_execution, using the multiple_continuation assertion.
%%%

%This is used in satisfying [KSl, KS2, ...] :Goal. Note that this is
%equivalent to a disjunction (KSl:Goal ; KS2:Goal ;) . So we
% are able to use the multiple_continuation assertion to accumulate
% the solutions.
%
% We don't need Solvers, because ...

exec for_each_ks(NumKSs, Ids, KSs, RKS, _Requestees, _Solvers,
Goal, Params, Vars)

retractall(ks_num(_)) ,
assert(ks_num(l)),
repeat,
ks_num (Num),
(Num > NumKSs ->

otherwise ->
nthl(Num, KSs, KS),
nthl(Num, Ids, Id),
% We use a local cut to prevent some (harmless) backtracking.
% This is one place where we don't need to pass Requestees and

) .

% Solvers through to execute (3rd and 4th args), because they are
% filled in by handle_multiple_continuation.

execute(Id, RKS, [], [], KS:Goal, Params, Vars) ->true) ,
NextNum is Num + 1,
retractall(ks_num(_)) ,
assert(ks_num(NextNum)) ,
fail

% This is used in satisfying (\+ Goal) . When this
% pred. is called, Goal has just been completed. Bindings gives
% the solutions to Goal.

continue_negation(Id, RKS, Requestees, Solvers, _Params, Vars, [])
! I

continue_execution(Id, RKS, Requestees, Solvers, [Vars]).
continue_negation(Id, RKS, Requestees, Solvers, _Params, _Vars, _Bindings)

continue_execution(Id, RKS, Requestees, Solvers, []).

% This is used in satisfying (Goall, Goal2). When this
% pred. is called, Goall has just been completed. Bindings gives
% the solutions to Goall.

continue_conjunction(Id, RKS, Requestees, Solvers, _Goal2, _Params, _vars, [))

I
• I

continue_execution(Id, RKS, Requestees, Solvers, []).
continue_conjunction(Id, RKS, Requestees, Solvers, Goal2, Params, Vars,
Bindings)

length(Bindings, NumBindings),
new_goal_ids(NumBindings, Ids),

16

Page 161 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4290

assert (
multiple_continuation(Ids, Requestees, AllRequestees, Solvers,

AllSolvers, [], AllBindings,
continue_execution(Id, RKS, AllRequestees, AllSolvers, AllBindings))),

exec_for_each_binding(NumBindings, Ids, Bindings, RKS, Requestees, Solvers,
Goal2,

Params, Vars).

% We don't need Requestees or Solvers, because they are filled in
% by handle_multiple_continuation.

exec_for_each_binding(NumBindings, Ids, Bindings, RKS, _Requestees, _Solvers,
Goal, Params, Vars)

retractall(binding_num(_)) ,
assert(binding_num(l)),
repeat,
binding_num(Num),
(Num > NumBindings ->

) .

otherwise ->
nthl(Num, Bindings, Binding),
nthl(Num, Ids, Id),
Vars = Binding,
% We use a local cut to prevent some (harmless) backtracking.
% This is one place where we don't need to pass Solvers through
% to execute (3rd arg) :
(execute(Id, RKS, [], [], Goal, Params, Binding) -> true) ,
NextNum is Num + 1,
retractall(binding_num(_)) ,
assert(binding_num(NextNum)) ,
fail

%This is used in satisfying Goall -> Goal2 I Goal3. When this
% pred. is called, Goall has just been completed. Bindings gives
% the solutions to Goall.

% No solutions to Goall:
continue_local_cut(Id, RKS, Requestees, Solvers, _Goal2, Goal3, Params,

Vars, [])
! I

) .

Goal3 false ->
continue_execution(Id, RKS, Requestees, Solvers, [])

otherwise ->

execute(Id, RKS, Requestees, Solvers, Goal3, Params, Vars)

% Some solutions:
continue_local_cut(Id, RKS, Requestees, Solvers, Goal2, _Goal3, Params,

Vars, [Bindingl I_])

) .

new_goal_id(Newid),
assert (

continuation(Newid, NewRequestees, NewSolvers, Bindings,
continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings))),

Vars = Bindingl,
% local cut to prevent some (harmless) backtracking:
(execute(Newid, RKS, Requestees, Solvers, Goal2, Params, Bindingl) ->true

17

Page 162 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4291

%%%
% GOAL EXECUTION: COMPLETION
%%%

% This is called when the goal associated with Id has been completely
% satisfied.

continue execution(Id, RKS, Requestees, Solvers, Bindings)
%Here we are BINDING the Solvers and Bindings var's. in the
% continuation assertion. The var. also appears in Continuation:
retract(continuation(Id, Requestees, Solvers, Bindings, Continuation)) >

call(Continuation)
multiple_continuation(Ids, _, _,) ,
memberchk(Id, Ids) ->
handle_multiple_continuation(Id, Requestees, Solvers, Bindings, Ids)
otherwise ->
format('Internal Error: no continuation with id -w-n', [Id])

) .

handle_multiple_continuation(Id, Requestees, Solvers, Bindings, Ids)
retract(multiple_continuation(Ids, PrevRequestees,

AllRequestees, PrevSolvers, AllSolvers,
PrevBindings, AllBindings,
Continuation)),

del_element(Id, Ids, Newids),
append(PrevBindings, Bindings, NewBindings),
append(PrevRequestees, Requestees, NewRequestees),
append(PrevSolvers, Solvers, NewSolvers),
(Newids = [] ->

) .

AllBindings = NewBindings,
AllRequestees = NewRequestees,
AllSolvers NewSolvers,
call(Continuation)
otherwise ->
assert(multiple_continuation(Newids, NewRequestees, AllRequestees,

NewSolvers, AllSolvers,
NewBindings, AllBindings,
Continuation))

%®®Let's see, if these args included the vars for any
% nested solvers params, we could probably instantiate solvers
% params in Goal ...

unify_and_continue_execution(Id, RKS, Goal, Vars, Requestee, Requestees,
Solvers, Solutions)

add_element(Requestee, Requestees, NewRequestees),
(Solutions == [] ->

NewSolvers = Solvers
otherwise >

add_element(Requestee, Solvers, NewSolvers)
) ,
findall(Vars,

member(Goal, Solutions),
Bindings),

continue_execution(Id, RKS, NewRequestees, NewSolvers, Bindings).

18

Page 163 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4292

%%%
% GENERAL UTILITIES
%%%

term_vars(Term, AllVars, Singletonvars, NonSingletonVars)
with output to chars(portray clause(Term), Chars),
with=input_fro~_chars(-

read_term([variable_names(Names), singletons(Singletons)],
Terml),

Chars),
extract_vars(Names, Singletons, AllVars, SingletonVars, NonSingletonVars),
Term Terml.

extract vars ([], Singletons, [), [] , []) .
extract=vars([Name = Var I RestNames], Singletons, [Var I RestVars],

[Var I RestSV] , NonSingletonVars)
mernberchk(Name = Var, Singletons),
! I

extract vars(RestNames, Singletons, RestVars, RestSV, NonSingletonVars).
extract_var;([_Name = Var I RestNames], Singletons, [Var I RestVars],

RestSV, [Var I NonSingletonVars]) :-
extract_vars(RestNames, Singletons, Restvars, RestSV, NonSingletonVars).

%%%
% DEBUGGING UTILITIES
%%%

% static_test :-
% Class = root,
% KSName = dontcare,
% BBName = dontcare,
% oaa_read_setup_file,
% oaa_init_flags,
% assert(oaa class(Class)),
% oaa_SetupC~mmunication(Class, KSName, BBName, []),
% on_exception(_, oaa_Appinit, true),
% oaa_Ready(true).
%
%connect :-
% % go(leaf, shell, root).
% static test.
%
% ce
%
%
%
%
%
%
%
%
%
% ce

repeat,
oaa_GetEvent(CallingKS, Event, 0),
(Event = timeout ->
I
• I

format(1 No events-n•, [))
I otherwise >

oaa_process_event(CallingKS, Event),
fail
) .

% format (1 No events-n 1 , []) •

%

19

Page 164 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4293

%%%
%
%%%

% OrigGoal must be used in the return event, so that the
% requesting KS will identify it correctly.

unify_and_return_solutions(Id,RKS,OrigGoal,OrigParams,Vars,Requestees,Solvers,Bi
ndings) :-

findall(OrigGoal,
member(Vars, Bindings),
Solutions),

oaa_TraceMsg('-nRouting answers back to -p:-n -p-n',
[RKS,Solutions)),

cancel_time_check(Id),
remove_dups(Requestees, RequesteesSet),
remove_dups(Solvers, SolversSet),
% If present, bind solvers request in OrigParams:
(memberchk(get address(Requesteesset), OrigParams) ->true I true),
(memberchk(get=satisfiers(SolversSet), OrigParams) >true I true) ,
oaa_PostEvent(ev_reply_solved(RequesteesSet, SolversSet, OrigGoal,

OrigParams, Solutions),
[address(RKS)]).

%%%

%%%
%
%%%
%%%
%
%%%

20

Page 165 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4294

APPENDIX A.II

Source code file named fac.pl.

Page 166 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4295

%***
% File : fac.pl
% Primary Authors : Adam Cheyer, David Martin
% Purpose Provides communications and coordination of the activities
% of a dynamic collection of client agents.
% Updated 12/98
%
%
%
%
%

Unpublished-rights reserved under the copyright laws of the United States.

% Unpublished Copyright (c) 1998, SRI International.
% "Open Agent Architecture" and "OAA" are Trademarks of SRI International.

% - --------------------------------
%
%%
%
% fac.pl : the facilitator agent Adam Cheyer
%
%

David Martin

% Provides communications and coordination of the activities of a
% dynamic collection of client agents.
%
% The blackboard can respond to the following external requests:
%
% ev_post_event(AgentiD, Cmd) : sends event to the agent
% ev_post_event(Cmd) : sends event to all
% ev_post_declare(Mode, Solvables, Params)
% : adds, removes or replaces solvables ON
% : .the facilitator
% ev_post_update(Mode, Clause, Params)
%
%
%
%
%
%
%
%
%
%
%
%
%
%

: adds, removes, or replaces data
on appropriate agents

ev_post_trigger_update(Mode,TriggerType,Condition,Action,Params)
: adds or removes a trigger

on appropriate agents
ev_post_solve(Goal, Params): finds agent(s) to solve Goal
connected(Connection) records that a client agent has connected

ev_connect(Agentinfo)

end_of_file(Connection)

: additional information from a client
: agent (having version> 3.0)
records that a client has closed its

connection
ev_register_solvables : records the goals that an agent can solve.

%A facilitator uses the following events internally as trigger actions:
%
%
%
%
%

ev_respond_query(Id,ToKS,ByKS,G,OrigParams,Params,S)
: Sends the result of a query back to KS

%%

use_module(library(lists)).
use_module(library(basics)).
use_module(library(strings}).
use_module(library(charsio}).

1

Page 167 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4296

use_module(library(sets)).
use module(library(samsort)). %for samsort(Ordered,Raw,Sort)
use=module(library(tcp), [tcp_now/1, tcp_time_plus/3,

tcp_schedule_wakeup/2, tcp_cancel_wakeup/2]).

% The file containing the com module is normally specified here. For
%more info, see comments near the top of oaa.pl.

use_module(com_tcp, all).
use_module(oaa, all).

% Whether or not to load translations and compound query code
% is determined right here:
% :- [compound].

[translations] .

multifile oaa_AppDoEvent/2.

dynamic time limit trigger/5.
dynamic goal=count/10.

% time_limit_trigger(Id,When,KS,Goal,Params)
% goal_count(Goalid,Goal,Params,EvParams,

% ToBeCalled,Called,Responders,Solvers,
% Answers,NumAnswers)

dynamic update_count/4.
%

% update_count(Goalid,NumAgentsRequested,
KSs, Updaters)

initial_solvables([
solvable(agent_data(_Id, _Status, _Solvables, Name), [type(data)],

[write(true)]),
% Locations of all facilitators (currently maintained only by the 'root'
% facilitator:

solvable(agent_location(_Id2, _Name2, _Host2, _Port2),

% Host (if known) of each client agent:

[type (data)] ,
[write (true)]),

solvable(agent_host(_Id3, _Name3, _Host3), [type(data)], [write(true)]),
agent_version(_Id1, _Language1, _Versionl),
can solve(Goal4, IdList4),

%-For backwards-compatibility. In translations.pl, some events
% (write_bb, etc.) specify updates to this solvable. Also, old-style
% data triggers refer to it:

solvable (data (Item, _Data) , [type (data)], [write (true)])
l) .

/* Agent specific declarations */

oaa_Appinit :
oaa_SetTimeout(O).

I* This is the event generated by the TCP library. Will be followed
immediately by ev connect/4, which is constructed by the client agent */

oaa_AppDoEvent(connected(Connection),
! ,

format('-nKnowledge source connected: -p-n-n', [Connection]),
Id = Connection,
oaa:oaa_add_data_local(agent_data(Id, open, [], Id), []),
%% Maintain information of currently connected data.
add_connected(Id, Connection).

2

Page 168 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4297

/* For now, the ID of a client agent is the same as its connection (socket) .
This could change in the future, so we store Id and Connection
as two separate entities. */

oaa_AppDoEvent(ev_connect(AgentinfoList), Params)
memberchk(connection_id(Id), Params),

oaa_Name(MyName),
oaa_Id {Myid),
MyLanguage = prolog,
oaa_LibraryVersion{MyVersion),

update_connected{Id, AgentinfoList),

% preferred TCP transfer mechanism
MyFormat = quintus_binary,

% Inform the client of his Id, and info about me.
com_SendData{Id,
event{ev_connected{(oaa_id(Id), fac_id{Myid), fac_name{MyName),

fac_lang(MyLanguage), fac_version(MyVersion),
format(MyFormat)]),

[])) .

/* Removes meta-data for KS when the KS deconnects */
oaa_AppDoEvent(end_of_file(Connection),)

Id = Connection,
remove_connected(Id),
oaa:oaa_remove_data_local{agent_data(Id, _Status, _Solvable, AgentName),

(l) I

format('-nKnowledge source disconnected: -p {-p)-n-n', (Id,AgentName]),
% remove all facts written by the agent

% TBD: Is this getting all relevant triggers (see commented code below)?
oaa:oaa_remove_data_owned_by(Id),

% Do we really want to do this? I think clients who are interested could
% register a trigger on the agent_data predicate.
% Rather, I think we should check to see if any agents are currently waiting
% for this agent to solve some goal -- if the agent disconnects, we can assume
% that it won't be solving the goal anytime soon, and we should send back
% failure to the requesting agent. See OAA 1.0 Facilitator, end_of_file()
% method. (AJC, 11/24/97]

post_to_all_clients(ev_agent_disconnected{Id)).

% fail.
% TBD: This needs update to look at the persistence param.
% oaa_AppDoEvent(end_of_file(KS), _)
% % remove all triggers for KS
% on_exception(_, trigger(KS, Type, Kind, OpMask, Template, Cond, Action),
fail),
% retract{trigger(KS, Type, Kind, OpMask, Template, Cond, Action)),
% fail.
% oaa_AppDoEvent(end_of_file(_KS), _) :- !.

oaa_AppDoEvent(ev_ready(Name), Params)
memberchk{from(Id), Params),

% TBD: Let's have an error message if this fails:
oaa:oaa_remove_data_local(agent_data(Id, _OldStatus, Solvables, _Name),

Params),

3

Page 169 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4298

oaa:oaa_add_data_local{agent_data{Id, ready, Solvables, Name), Params).

/* Stores the goals that a KS knows how to solve */
% Is this obsolete?
oaa_AppDoEvent{ev_register_solvables{Goals), Params)

memberchk{from{KS), Params),
oaa_AppDoEvent{ev_register_solvables(add,Goals,KS, [)), Params), ! .

% IMPORTANT: We assume the Solvables are in standard form and can
% legally be added/removed/replaced for this agent. Also, we take
% care to keep the facilitator's copy of each client's solvables
% identical to that stored at the client. {Compare to code in
% liboaa.pl, pred. oaa_declare_local).

oaa_AppDoEvent{ev_register_solvables{Mode,Solvs,AgentName,EvParams), Params)
memberchk{from{KS), Params),

oaa_Name{KSName),
(oaa:oaa_remove_data_local(agent_data{KS, Status, List, _AgentName),

Params)

format{'STRANGE! register_solvables called by unknown KS!!!: -p-n',
[KS]),

Status ready,
List = [)

) ,
icl_ConvertSolvables(PrettySolvs, Solvs),
(Mode== add, memberchk(if_exists{overwrite), EvParams) ->

NewList = Solvs,

-p-n-n',

) ,

format('-p (-p) can solve: -n -p-n-n', [KS, AgentName,
PrettySolvs])

Mode == add >
append(List, Solvs, NewList),
format('-p (-p) has added solvables: -n -p-n-n',

[KS, AgentName, PrettySolvs])
Mode == remove ->

subtract(List, Solvs, NewList),
format{'-p (-p) has removed solvables: -n -p-n-n',

[KS, AgentName, PrettySolvs])
Mode == replace ->

memberchk(with(NewSolvable), EvParams),
Solvs = [Solvable],
oaa:replace_element(Solvable, List, NewSolvable, NewList),
format('-p (-p) has replaced solvable:-n -p-nwith solvable:-n

[KS, AgentName, Solvable, NewSolvable])

oaa:oaa_add_data_local(agent_data(KS, Status, NewList, AgentName),
Params),

% if a parent exists (not root) , pass goals upward.
(com:com_Getinfo(parent, connection(_C)) ->

! •

oaa_PostEvent(ev_register_solvables(Mode,Solvs,EvParams,KSName),
[address(parent)))

true),

4

Page 170 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4299

I* A client has requested that I declare certain solvables.
TBD: This is still sketchy; should include some validation of the
request, and should ensure the perms and params are right. */

oaa_AppDoEvent(ev_post_declare(Mode, Solvables, Params), EvParams)
memberchk(from(RequestingKS), EvParams),
oaa:oaa_declare_local{Mode, Solvables, Params, NewSolvables),
icl_ConvertSolvables(PrettySolvs, NewSolvables),
oaa_Id(Myid),
oaa_Name(MyName),
format('-p {-p) has added solvables: -n -p-n-n',

[Myi~, MyName, PrettySolvs]),
oaa_PostEvent(

ev_reply_declared{Mode, Solvables,Params, Newsolvables),
[address{RequestingKS)]).

% A client requests a data solvable update operation {add, remove, replace)
% on the .appropriate agents.
oaa_AppDoEvent(ev_post_update{Mode, Clause, Params), EvParams)

(Clause = (Head _Body) ->

) I

true
otherwise ->

Head = Clause

memberchk{from{RequestingKS), EvParams),
% see if the query is addressed using address{KS) in Params
check_address(Params, AddrKS),
choose_agents_for_data{RequestingKS,Head,AddrKS,write,false,KSList),
dispatch_update_request{RequestingKS, Mode, Clause, Params, KSList).

% A client requests a trigger update operation {Mode = add, remove, replace)
%on the appropriate agents. For triggers of type comm' and time', the
% address parameter must be present {otherwise, the request should not
% have come to the facilitator). For the other types, the address is
% optional.

oaa_AppDoEvent(ev_post_trigger_update{Mode, data, Condition,
Action, Params) , EvParams)

! I

memberchk{from{RequestingKS), EvParams),
% see if the query is addressed using address(KS) in Params
check_address{Params, AddrKS),
choose_agents_for_data(RequestingKS,Condition,AddrKS,call,false,KSList),
append(Params, EvParams, AllParams),
dispatch_trigger_request(RequestingKS, Mode, data, Condition, Action,

AllParams, KSList).
oaa_AppDoEvent(ev_post_trigger_update(Mode, task, Condition,

Action, Params), EvParams)
I
• I

memberchk(from(RequestingKS), EvParams),
% see if the query is addressed using address{KS) in Params
check_address(Params, AddrKS),
choose_agents_for_goal(RequestingKS,Condition,AddrKS,Params,false,KSList),
append{Params, EvParams, AllParams),
dispatch_trigger_request{RequestingKS, Mode, task, Condition, Action,

AllParams, KSList).

oaa_AppDoEvent(ev_post_trigger_update(Mode, Type, Condition,

5

Page 171 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4300

Action, Params) , EvParams)
memberchk(from(RequestingKS), EvParams),
check_address(Params, KSList),
is_list (KSList) ,
append(Params, EvParams, AllParams),
dispatch_trigger_request(RequestingKS, Mode, Type, Condition, Action,

AllParams, KSList).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TBD: New for compound goals:

% If satisfaction of a compound goal is requested, and the compound query
% interpreter is not included, signal error condition:
oaa_AppDoEvent(ev_post_solve(Goal, Params), EvParams)

\+ current_predicate(complete_goal, complete_goal(_,_,_,_)),
\+ icl_BasicGoal(Goal),
I
• I

format('ERROR: This facilitator does not support compound goals-n', []),
format(' Returning 0 solutions for goal:-n -w-n•, [Goal]),
oaa_Id(Facilitator),
memberchk(from(RequestingKS), EvParams),
oaa_PostEvent(

ev_reply_solved([Facilitator], [] ,Goal,Params, []),
[address(RequestingKS)]).

% If compound goal capabilities are included, ALL ev_post_solve events are
% handled here. Otherwise, they fall through to later clauses.
oaa_AppDoEvent(ev_post_solve(Goal, Params), EvParams)

current_predicate(complete_goal, complete_goal(_,_,_,_)),
! I

memberchk(from(RequestingKS), EvParams),
complete_goal(RequestingKS, Goal, Params, CompletedGoal),
execute_goal(RequestingKS, Goal, Params, CompletedGoal).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

/* Finds all KSs for a goal, asks them to solve it, then returns */
/* the answers to the calling KS */
oaa_AppDoEvent(ev_post_solve(Goal, Params), EvParams)

memberchk(from(RequestingKS), EvParams),
%see if the query is addressed using address(KS) in Params
check_address(Params, AddrKS),

choose_agents_for_goal(RequestingKS,Goal,AddrKS,Params,true,KSList),

% if none of my agents know how to solve goal, send to parent
(KSList (] >

find_level(Params, Level, NewParams),
((com:com_Getinfo(parent, fac_name(ParentName)),

Level > 0) >
oaa_TraceMsg('-nRouting goal "ev_solve(-p)" to parent -p.-n',

[Goal, ParentName]),

new_goal_id (Id),
oaa_PostEvent(ev_post_solve_from_bb(Id, Goal, NewParams),

[address(parent)]),

6

Page 172 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4301

) .

% if answers requested,
% send parent's answers directly back to requestingKS
% as well as blackboard solutions
(memberchk(reply(none), NewParams) -> true
% No longer valid:
% send_blackboard_solutions(RequestingKS, Goal, Params),
oaa:oaa_add_trigger_local(

comm,
event(ev_reply_solved_by_bb(Id,SomeKS,Goal,Params2,Solutions),

) I

ev_respond_query(Id,RequestingKS,SomeKS,Goal,Params,Params2,
Solutions),

[recurrence(when), on(receive)])

% root blackboard: doesn't know anyone who can solve goal
(memberchk(reply(none), NewParams) -> true I

oaa_Id (KSID),
oaa_PostEvent(

ev_reply_solved([KSID], [] ,Goal,Params, []),
[address(RequestingKS)])

otherwise ->
dispatch_solve_request(RequestingKS, Goal, Params, EvParams, KSList)

/* Finds all KSs for a goal, asks them to solve it, then returns */
/* the answers to the calling BB */
oaa_AppDoEvent(ev_post_solve_from_bb(Id, Goal, Params), EvParams)

memberchk(from(RequestingKS), EvParams),
%see if the query is addressed using address(KS) in Params
check_address(Params, AddrKS),
choose_agents_for_goal(RequestingKS,Goal,AddrKS,Params,true,KSList),

% if none of my agents know how to solve goal, send to parent
(KSList [] >

find level(Params, Level, NewParams),
% try to ask parent
((com:com_Getinfo(parent, fac_name(ParentName)),

com:com_Getinfo(parent, fac id(Parentid)), Level> 0) ->
oaa_TraceMsg('-nRouting goal "ev_solve(-p)" to parent -p.-n',

[Goal, ParentName]),

oaa_PostEvent(ev_post_solve_from_bb(Id, Goal, NewParams),
[address(parent)]),

(memberchk(reply(none), NewParams) ->true I
oaa:oaa_add_trigger_local(

comm,
event(ev_reply_solved_by_bb(Id, _SomeKS, Goal, P2, Solutions),

) I

ev_respond_bb_query(RequestingKS,Parentid,Id,Goal,Params,
P2, Solutions),

7

Page 173 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4302

•.

) .

[recurrence(when), on(receive)])

% root blackboard : knows no solvers
(memberchk{reply(none), Params) -> true

oaa_Name{KSName),
oaa_PostEvent{
ev_reply_solved_by_bb(Id, KSName,Goal,Params, []),
[address(RequestingKS)])

member{SomeKS, KSList), % backtrack over all KSs.
oaa_TraceMsg('-nRouting goal to-p: -p-n',

[SomeKS, Goal]),

oaa PostEvent(ev_solve(Id, Goal, Params),
[address{SomeKS), from{RequestingKS)]),

(memberchk{reply(none), Params) -> fail I
oaa:oaa_add_trigger_local(

comm,
event{ev_solved(Id, SomeKS, Goal, P2, Solutions),) ,
ev_respond_bb_or_post_higher(RequestingKS,SomeKS,Id,
Goal,P2,Solutions),

[recurrence(when), on(receive)])
) I

fail % send events to all KSs that can solve goal.

oaa AppDoEvent{wakeup(time limit{Id)), EvParams)
- retract{time_limit_trigger(Id,_Wh~n,RequestingKS,Goal,Params)),

oaa_TraceMsg('-nTime limit expired. Goal failed:-n -p-n', [Goal]),
oaa_Id(KSid), % get local ksid

% interpret(KSid,
% ev_respond_query{-l,RequestingKS, KSid, Goal, Params, Params, [])).

oaa_Interpret(
ev_respond_query(-l,RequestingKS, KSid, Goal, Params, Params, (]),

[from (KSid)]) .

% When asked by parent blackboard to solve a goal,
%route all answers back using "ev_solved(Id, KS, Goal, Params, Solutions)".
oaa_AppDoEvent(ev_solve(Id, Goal, Params), EvParams)

memberchk(from(ParentBB), EvParams),
oaa_Name{KSName),

%see if the query is addressed using address(KS) in Params
check_address{Params, AddrKS),
choose_agents_for_goal(KSName,Goal,AddrKS,Params,true,KSList),

% if none of my agents know how to solve goal, send empty solutions
(KSList = [) >

(memberchk(reply{none), Params) -> true I
oaa_PostEvent(ev_solved{Id,KSName,Goal,Params, []),

[address{ParentBB)])

8

Page 174 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4303

member(SomeKS, KSList), % backtrack over all KSs.
oaa_TraceMsg('-nRouting goal "ev_solve(-p)" to -p.-n', [Goal,

SomeKS]),

) .

oaa PostEvent(ev solve(Id, Goal, Params),
- [address(SomeKS), from(ParentBB))),

(memberchk(reply(none), Params) > fail I
oaa:oaa_add_trigger_local(

comm,
event(ev_solved(Id, SomeKS, Goal, P2, Solutions),) ,
ev_respond_to_parent(ParentBB,KSName,Id,Goal,Params,

P2, Solutions),
[recurrence(when), on(receive)))

) I

fail % send events to all KSs that can solve goal.

/* If a KS is available, send it the message */
oaa_AppDoEvent(ev_post_event(Event), EvParams)

memberchk(from(KS), EvParams),
choose_ks_for_goal(KS, Event, _, [], SomeKS,) ,

oaa_PostEvent(Event, [address(SomeKS), from(KS)]),
fail.

/* If a KS is available, send it the message */
oaa_AppDoEvent(ev_post_event(KSName, Event), EvParams)

oaa_Name(KSName), !,
% interpret(KS, Event).
oaa_Interpret(Event, EvParams).

oaa_AppDoEvent(ev_post_event(KSName, Event), EvParams)
memberchk(from(KS), EvParams),
% agent must be "ready" to receive messages, or just

% open if it is an agent compiled with old agentlib.
(oaa:oaa_solve_local(agent_data(RealKS, ready, _Solvable,AgentName), [])

oaa:oaa_solve_local(agent_data(RealKS, open, _Solvable,AgentName), []),
oaa_Version(RealKS, _Language, Version),
Version< 2.0),

(match_ks(KSName, RealKS) ; KSName = AgentName),
oaa PostEvent(Event, [address(RealKS), from(KS)]) ,
fail.

% oaa_AppDoEvent(ev_post_event(_KS, _Event), _KS) :- ! .
oaa_AppDoEvent(ev_post_event(_KS, _Event), _EvParams) ! .

% Send back solutions to KS who originally requested them (with ev_post_solve)
%
% 970219: DLM: Added arg. OrigParams. There is now a requirement that
% the params returned in a ev_reply_solved event must be unifiable with the
original
% params (from the corresponding solve event) .
oaa AppDoEvent(ev respond query(Id,RequestingKS, Requestee, Goal, OrigParams,

- - Params,Solutions), _EvParams)
oaa_TraceMsg('-nRouting answers back to -p:-n -p-n',

9

Page 175 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4304

[RequestingKS,Solutions]),
cancel time check(Id),
unify_Farams(OrigParams, Params, UParams),
(Solutions == [] ->

) ,

Solvers = []
otherwise ->

Solvers = [Requestee]

oaa PostEvent(ev reply solved([Requestee], Solvers, Goal, UParams,
Solutionsf, - -

[address(RequestingKS)]), ! .

% Send back solutions to KS who originally requested them (with ev_post_solve)
% If no solutions, ask a higher blackboard
oaa_AppDoEvent(

ev_respond_or_post_higher(RequestingKS, Solver,Id,Goal,P,Solutions),
_EvParams)

((Solutions [] ; oaa:oaa_class (root)) ->

) .

cancel_time_check(Id), !,
return_solutions(RequestingKS, Solver, Id, .Goal,P,Solutions)

% ®®DLM: The following needs work. Must check goal_count status
% before posting higher
% sub-agents found no solutions: post higher
com:com_Getinfo(parent, fac_id(Parentid)),
find_level(P, Level, NewParams),
Level > 0,
oaa_PostEvent(ev_post_solve_from_bb(Id, Goal, NewParams),

[address(parent)]),
oaa:oaa_add_trigger_local(

comm,
event(ev_reply_solved_by_bb(Id, SomeKS, Goal, P2, Solutions),

) ,
ev_respond_query(Id,RequestingKS,Parentid,Goal,P,P2, Solutions),
[recurrence(when), on(receive)])

% Send back acknowledgement to agent that originally requested an update.
oaa_AppDoEvent(

ev_return_update(RequestingKS, Mode, Solver, Id, Clause, Params, Updaters),
_EvParams)

return_update(RequestingKS, Mode, Solver, Id, Clause, Params, Updaters).
% Send back acknowledgement to agent that originally requested a trigger
% update.
oaa_AppDoEvent(

ev_return_trigger_update(RequestingKS, Mode, Solver, Id, Type, Condition,
Action, Params, Updaters),

_EvParams)
oaa TraceMsg('-nRouting trigger updaters back to -p:-n -p-n',

- [RequestingKS,Updaters]),
return_trigger_update(RequestingKS, Mode, Solver, Id, Type, Condition,

Action, Params, Updaters).

% Send back solutions to a blackboard who requested them
% (with ev_post_solve_from_bb)
%

10

Page 176 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4305

% 970219: DLM: Added arg. OrigP. There is now a requirement that
% the params returned in a ev_solved event must be unifiable with the original
% params (from the corresponding solve event) .
oaa_AppDoEvent(ev_respond_bb_query(RequestingBB, Solver, Id,Goal,

OrigP, P,Solutions), _EvParams)
unify_params(OrigP, P, UP),
oaa TraceMsg('-nRouting answers back to blackboard -p:-n -p-n',

- [RequestingBB,Solutions1),
oaa_PostEvent(ev_reply_solved_by_bb(Id,Solver,Goal,UP,Solutions),

[address (RequestingBB) 1) , ! .

% Send back solutions to a blackboard who requested them
oaa_AppDoEvent(

ev_respond_bb_or_post_higher(RequestingBB,Solver,Id,Goal,P,Solutions),
_EvParams)

((Solutions \== [1 ; oaa:oaa_class (root)) ->

) .

oaa_TraceMsg('-nRouting answers back to blackboard -p:-n -p-n',
[RequestingBB,Solutions1),

oaa_PostEvent(ev_reply_solved_by_bb(Id, Solver, Goal, P,Solutions),
[address(RequestingBB)])

% sub-agents found no solutions: post higher
com:com_Getinfo(parent, fac_id(Parentid)),
find_level(P, Level, NewParams),
Level > 0,
oaa_PostEvent(ev_post_solve_from_bb(Id, Goal, NewParams),

[address(parent)]),
oaa:oaa_add_trigger_local(

comm,
event(ev_reply_solved_by_bb(Id, SomeKS, Goal, P2, Solutions),

_)I
ev_respond_bb_query(RequestingBB,Parentid,Id,Goal,P,P2,Solutions),
[recurrence(when), on(receive)1)

% Send back solutions to KS who originally requested them (with ev_post_solve)
%
% 970219: DLM: Added arg. OrigP. There is now a requirement that
% the params returned in a ev_solved event must be unifiable with the original
% params (from the corresponding solve event) .
oaa_AppDoEvent(ev_respond_to_parent(ParentBB,Solver,Id,Goal, OrigP,

P, Solutions), _EvParams)
unify_params(OrigP, P, UP),
oaa_TraceMsg('-nRouting answers back to parent bb -p:-n -p-n',

[ParentBB,Solutions]),
oaa_PostEvent(ev_solved(Id, Solver, Goal, UP, Solutions),

[address (ParentBB) 1), ! .

oaa_AppDoEvent(ev_check_agent_name(KSName), EvParams) :
memberchk(from(KS), EvParams),
findall(KSName, oaa:oaa solve local(agent location(KSID, KSName, ,),

[]) I L) I - - - -

(L== (] ->
% ®®tcp_send shouldn't be used:

tcp_send(KS, 'UNIQUE');
findall(KS1, oaa:oaa_solve_local(agent_location(_, KSl, ,), []), R),

11

Page 177 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4306

tcp_send(KS, R)),!.

oaa_AppDoEvent(ev_register_port_number(Name,Address), EvParams)
+Host

memberchk(from(KS), EvParams),
Address [address, Port, Host],

%+KS, +Port,

oaa:oaa_remove_data_local(agent_location(KS, _Name, _Port, _Host),
[])I! I

oaa:oaa_add_data_local(agent_location(KS, Name, Port, Host), []),
format('Agent -p has Port: -p, Host: -p -n', [KS, Port, Host]),
! •

oaa_AppDoEvent(ev_register_port_number(Name,Address), EvParams)
+Host

memberchk(from(KS), EvParams),

%+KS, +Port,

Address = .. [address, Port, Host],
oaa:oaa_add_data_local(agent_location(KS, Name, Port, Host), []),
format('Agent -p has Port: -p, Host: -p -n', [KS, Port, Host]),
! .

oaa_AppDoEvent(ev_continue_execution(Id, RKS, Requestees, Solvers, Solutions),
_EvParams)

continue_execution(Id, RKS, Requestees, Solvers, Solutions).

% This is called from a trigger set in compound.pl.
oaa_AppDoEvent(

ev_unify_and_continue_execution(Id, RKS, Goal, Vars, Requestee, Requestees,
Solvers, Solutions),

unify_and_continue_execution(Id, RKS, Goal, Vars, Requestee, Requestees,
Solvers, Solutions) .

/* Facilitator solvable: report the version and language of some
connected agent. */

oaa_AppDoEvent(agent_version(Id, Language, Version), _EvParams)
! I

oaa_Version(Id, Language, Version).

/* Facilitator solvable: Find all agents who can solve goal */
oaa AppDoEvent(can solve(Goal, KSList), EvParams)

- (memberchk(from(KS), EvParams) >true I oaa_Id(KS)),
findall(SomeKS, choose_ks_for_goal(KS, Goal, _, [], SomeKS,) , KSList).

%%

% choose_agents_for_goal(RequestingKS,Goal,AddrKS,Params,Sort,Agents).
%
%The first 4 arguments are exactly as expected by choose_ks_for_goal.
% Sort, a boolean, tells whether to sort on utility.

choose_agents_for_goal(RequestingKS,Goal,AddrKS,Params,Sort,Agents)
findall{

) I

p(Agent,Utility),
choose_ks_for_goal(RequestingKS,Goal,AddrKS,Params,Agent,Utility),
Pairs

{ Sort ->
samsort(oaa_utility_compare, Pairs, SortedPairs)
otherwise ->

12

Page 178 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4307

SortedPairs = Pairs
) I

findall(Agent, member(p(Agent,_Utility), SortedPairs), Agents).

% choose_agents_for_data(RequestingKS,Goal,AddrKS,Perm,Sort,Agents).
%
% The first 4 arguments are exactly as expected by choose_ks_for_data.
% Sort, a boolean, tells whether to sort on utility.

choose_agents_for_data(RequestingKS,Goal,AddrKS,Perm,Sort,Agents)
findall (

) ,

p(Agent,Utility),
choose_ks_for_data(RequestingKS,Goal,AddrKS,Perm,Agent,Utility),
Pairs

(sort ->

) ,

samsort(oaa_utility_compare, Pairs, sortedPairs)
otherwise >
SortedPairs = Pairs

findall(Agent, member(p(Agent,_Utility), SortedPairs), Agents).

oaa utility compare(p(Agentl,Utilityl), p(_Agent2,Utility2))
-Utilityl >= Utility2.

I* Finds a KS that knows how to solve Goal */

% backtracks over all KSs that know how to solve
% a particular goal, except for RequestingKS, which is the
% KS who asked for the goal to be solved in the
% first place. (RequestingKS is included if the 'reflexive' Param
% is present.)
% MemberList can be a list used to reduce the set to at most MemberList
% or can be a specific KS to try, or a variable.
% If an address is specified in MemberList, it can be the same as
% RequestingKS (DLM, 96/10/30).
% Solvable lists can contain complex tests (AC, 97/2/5)
% e.g. [goall(Y), (g(X) X> l,X < 10) ,goal2]
% Params is now used to check for •reflexive' (DLM, 97/03/06).
% Utility is the numeric value the KS has associated with the
% solvable.
choose_ks_for_goal(RequestingKS, Goal, MemberList, Params, SomeKS, Utility)

var (MemberList),
! ,

) ,

ks_ready(SomeKS, ListOfGoals),
icl_GetParamValue(reflexive(true), Params) ->

true
otherwise ->

someKS RequestingKS

oaa:oaa_goal_matches_solvables(Goal, ListOfGoals, , Matched),
Matched solvable(_, SolveParams, _),
icl_GetParamValue(utility(Utility), SolveParams).

choose_ks_for_goal(_RequestingKS, Goal, MemberList, _Params, someKs, Utility)
(is_list(MemberList) ->

member(SomeKS, MemberList)
I SomeKS = MemberList),

13

Page 179 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4308

oaa:icl true id{SomeKS, Trueid),
ks_re~dy{T;ueid, ListOfGoals),

oaa:oaa_goal_matches_solvables{Goal, ListOfGoals, , Matched),
Matched= solvable(_, SolveParams, _),
icl_GetParamValue(utility(Utility), SolveParams).

% backtracks over all KSs that know how to write a particular goal (or
% read, though that's not currently used), except for RequestingKS,
% which is the KS who asked for the goal to be solved in the first
% place. RequestingKS is never included, because he does the
% appropriate asserts locally, when appropriate.
%
% Perm is 'read' or 'write'.

choose ks for data(RequestingKS, Goal, MemberList, Perm, SomeKS, Utility)
- v~r{MemberList),
! I

ks ready(SomeKS, ListOfGoals),
SomeKS \== RequestingKS,
oaa:oaa_data_matches_solvables(Goal, ListOfGoals, Perm, , Matched),
Matched= solvable{_, SolveParams,) ,
icl GetParamValue(utility(Utility), SolveParams).

choose ks-for data(RequestingKS, Goal, MemberList, Perm, SomeKS, Utility) :~
(is=list(MemberList) ->

member(SomeKS, MemberList)
I SomeKS = MemberList),

ks ready(SomeKS, ListOfGoals),
oaa:~aa_data_matches_solvables(Goal, ListOfGoals, Perm, , Matched),
Matched= solvable(_, SolveParams,),
icl_GetParamValue(utility(Utility), SolveParams).

% ks_ready(*SomeKS, *ListOfGoals).
% Backtracks over all agents that are ready to solve goals.
% If SomeKS is bound (with an agent's local ID), only that agent is
% considered.
ks_ready(SomeKS, ListOfGoals)

[])

% agent must be "ready" to receive messages, or just
% open if it is an agent compiled with old agentlib.

(oaa:oaa_solve_local(agent_data(SomeKS, ready, ListOfGoals,_AgentName),

oaa:oaa_solve_local(agent_data(SomeKS, open, ListOfGoals,_AgentName),

oaa_Version(SomeKS, _Language, Version),
Version< 2.0).

% Facilitator agents look up their own solvables in oaa_solvables/1.
ks_ready(SomeKS, ListOfGoals)

oaa_Id (SomeKS),
oaa:oaa_solvables(ListOfGoals).

match_ks(all, _KS).
match_ks(KS, KS).

% If params contains a VALID address (symbolic name or id) for one or more
%agents, return the agents' ids.
% If params contains an INVALID address, remove it from the list returned.
% Otherwise, KSAddr should return a variable.
% 97-05-23 (DLM) : The address param now should always contain a list,

14

Page 180 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4309

% but we'll check just to be safe.

check_address(Params, 'KSAddr)
memberchk(address(Addr), Params),
(is_list(Addr) ->

AddrList = Addr
I AddrList = [Addr]),
find_addresses(AddrList, KSAddr),
! .

check_address(_Params, _SomeKS).

find addresses ([], []).
find=addresses ([Addr I Addrs], [Id I Ids])

find_address(Addr, Id),
I
• I

find addresses(Addrs, Ids).
find_add~esses([_Addr I Addrs], Ids)

find_addresses(Addrs, Ids).

%Given an agent id (eg. 5) or a symbolic name (eg. 'interface')
% returns the local id for the reference.
%
% TBD: This does not yet handle remote addresses (associated with a different
% facilitator) .

find_address(addr(Addr), SomeKS) :
com:com_Getinfo(incoming, oaa_addr(Addr)),
% That's me, the facilitator.
! I

oaa_Id(SomeKS).
find_address(addr(Addr, SomeKS), SomeKS) :

com:com Getinfo(incoming, oaa_addr(Addr)),
% One of my clients.
! I

%Make sure it's current:
oaa:oaa solve local(agent data(SomeKS,

find_address{name(Name), SomeKS) :
! I

atom {Name),
oaa:oaa_solve_local{agent_data(SomeKS,

find_address{SomeKS, SomeKS) :
oaa:oaa_solve_local(agent_data{SomeKS,
! .

find_level(Params, Level, NewParams) :-

_ListOfGoals, _AgentName), []).

_ListOfGoals, Name), []).

_ListOfGoals, _AgentName), []),

oaa:remove element(level limit(Level), Params, Params2), !,
(Level > 0-- > -

NewLevel is Level - 1
NewLevel is 0),

NewParams = [level_limit(NewLevel) 1Params2].
find_level(Params, 1, Params).

post_to_all_clients(Event) :
oaa_Id (Facid),
oaa:oaa_solve_local(agent_data(Clientid, ready, _Solvable,_AgentName),

[]) I

15

Page 181 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4310

clientid \== Facid,
oaa PostEvent(Event, [address(Client!d), from(Facid)]) ,
fail.

post_to_all_clients(_Event).

% This is called when length of KSList is > 0.
%
% goal_count{Goalid,Goal,Params,EvParams,ToBeCalled,Called,
% Responders 1 Solvers,Answers,NumAnswers)

dispatch_solve_request{RequestingKS, Goal, Params, EvParams, KSList) :
new_goal_id(Id),
%Note that reply (none) overrides parallel_ok (false). We can't
%provide parallel_ok (false) if no replies come back from solvers.
{ memberchk(reply(none) 1 Params) >

dispatch_solve_events{KSList, Id, RequestingKS, Goal, Params, EvParams)
memberchk(parallel_ok(false), Params) ->

% Dispatch to one KS; save the rest for later.
KSList = [FirstKS I Rest) 1

assert{goal_count{Id 1 Goal, Params, EvParams, Rest,
[FirstKS], [), [) 1 [], 0)),

dispatch_solve_event(Id, RequestingKS, Goal, Params, EvParams, FirstKS)
otherwise ->
%Dispatch to all KSs.
assert{goal_count(Id, Goal, Params, EvParams, [],

KSList, [], [), [], 0)),
dispatch_solve_events(KSList, Id, RequestingKS 1 Goal, Params, EvParams)

) .

dispatch_solve_events{[], _Id, _RequestingKS, Goal, Params, _EvParams).
dispatch_solve_events{[SomeKS I Rest], Id, RequestingKS, Goal,

Params, EvParams)
dispatch solve event(Id, RequestingKS, Goal, Params, EvParams, SomeKS),
dispatch=solve=events(Rest 1 Id, RequestingKS, Goal, Params, EvParams).

dispatch_solve_event(Id, RequestingKS, Goal, Params, EvParams, SomeKS)
oaa_Id (SomeKS),
% That's me, the facilitator.
! I

icl_GoalComponents(Goall _, _, GoalParams),
append(Params, EvParams, InheritedParams),
append(Goa1Params 1 InheritedParams, AllParams),
findall (Goal,

% InheritedParams here is right, not AllParams:
oaa:oaa_solve_local(Goal, InheritedParams),

Solutions) ,
memberchk(reply(none), AllParams) ->

true
otherwise ->

oaa_AppDoEvent(

ev_respond_or_post_higher(RequestingKS,SomeKS,Id,Goal,Params,Solutions),
[))

) .
dispatch_solve_event(Id, RequestingKS, Goal, Params, _EvParams, SomeKS)

oaa_TraceMsg{'-nRouting goal "ev_solve(-p)" to -p.-n', [Goal, SomeKS]),

16

Page 182 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4311

% ask a sub-agent to try and solve goal.
% if solutions are returned, pass them to requestingKS.
% otherwise, ask higher blackboard to try and solve goals.
%note: send ev solve{id{Id,SomeKS), ...) as a means of insuring
% that each e~ solved{) trigger is unique and only matches
% exactly one response. We use _SomeKS in the field indicating
% which agent actually solved the goal because individual
% agents don't necessarily know their internal unique ID #.

oaa PostEvent{ ev solve{id{Id,SomeKS), Goal, Params),

) .

- [address{SomeKS), from{RequestingKS)]),
memberchk{reply{none), Params) ->

true
otherwise ->

% If time_limit specified in parameters, setup
% time_trigger to wakeup if solutions hasn't been returned
% in specified time.

memberchk(time_limit(NSecs), Params) ->

add time check(NSecs, Id, RequestingKS, Goal,Params)
I true)~ -
oaa:oaa_add_trigger_local(

comm,
event(ev solved(id(Id,SomeKS), SomeKS, Goal, P2, Solutions),) ,
ev_respond_or_post_higher(Reque;tingKS,SomeKS,Id,Goal,P2,Solutions),
[recurrence(when), on(receive)])

% return_solutions(+RequestingKS, +Responder, +Id, +Goal, +P, +NewSolutions).
% Having just received solutions from a Responder, take the appropriate action.
%
% Even though the Responder has returned copies of the goal and params,
% we don't need them because we have a local copy in goal_count.
%
% ®®DLM: Unresolved question about streaming: Should we stream the
%responses with 0 solutions? [My thinking is "yes''.]
return solutions(RequestingKS, Responder, Id, Goal, P, NewSolutions)

% ToBeCalled lists solvers not yet called.- PrevC;lled lists
% the called solvers that have yet to respond.
retract(goal_count{Id, Goal, Params, EvParams,

! I

) ,

ToBeCalled, PrevCalled, PrevResponders,
PrevSolvers, PrevSolutions, PrevNumSol)),

%Take Responder out of the called list:
selectchk(Responder, PrevCalled, Called) >

true
otherwise ->

format('ERROR: Inappropriate ev_solved event received:-n', []),
format{' -w -w -w -w-n', [RequestingKS, Responder, Id, Goal]),
Called = PrevCalled

% and put him into the responder list:
append{PrevResponders, [Responder], Responders),

) ,

% The solvers are just the responders that succeeded:
NewSolutions [] ->

NewSolvers = []
otherwise ->

NewSolvers [Responder]

17

Page 183 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4312

append(PrevSolvers, NewSolvers, Solvers),
append(PrevSolutions, NewSolutions, Solutions),
length(NewSolutions, NewNumSol),
NumSol is PrevNumSol + NewNumSol,

) I

% This case means that either: (1) we've gotten responses from all
% solvers; and/or (2} we have reached the desired number of solutions.
% By not saving goal_count, we ensure that any additional returned
% solutions are ignored:
((ToBeCalled == [], Called []) ;
(memberchk(solution_limit(Limit), Params), NumSol >=Limit)) ->

%This test is a place-holder; streaming not yet official:
memberchk(reply(streaming), Params) ->

) I

Return= ev_reply_solved([Responder], NewSolvers, Goal, Params,
NewSolutions)

otherwise ->
Return = ev_reply_solved(Responders, Solvers, Goal, Params,

Solutions)

Save = false
% This case happens with parallel ok(false):
ToBeCalled = [Next I Rest] > -
dispatch_solve_event(Id, RequestingKS, Goal, Params, EvParams, Next},

% This test is a place-holder; streaming not yet official:
memberchk(reply(streaming), Params} >

Return= ev_reply_solved([Responder], NewSolvers, Goal, Params,
NewSolutions) ,

Save = goal_count(Id, Goal, Params, EvParams,

otherwise ->
Return false,

Rest, [Next I Called), [], [], [], NumSol)

Save =goal count(Id, Goal, Params, EvParams,
- Rest, [NextiCalled], Responders, Solvers,

Solutions, NumSol)

% Still waiting for some called solvers to respond:
Called [_ I _l ->

% This test is a place-holder; streaming not yet official:
memberchk(reply(streaming}, Params) ->

Return = ev_reply_solved([Responder], NewSolvers, Goal, Params,
NewSolutions) ,

Save = goal_count(Id, Goal, Params, EvParams,
ToBeCalled, Called, [] , [], [] , NumSol)

otherwise >
Return false,

Save = goal_count(Id, Goal, Params, EvParams,
ToBeCalled, Called, Responders, Solvers,

Solutions, NumSol)

(Save == false ->
true

) I

otherwise ->
assert(Save)

(Return == false ->
true

18

Page 184 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4313

) .

otherwise ->

oaa_TraceMsg('-nRouting answers back to -p:-n -p-n',
[RequestingKS,Return]),

oaa_PostEvent(Return, [address(RequestingKS)])

return_solutions(_RequestingKS, _Responder, _Id, _Goal, _P, _NewSolutions).

dispatch_update_request(RequestingKS, Mode, Clause, Params, [])
% No agents able to perform the requested update:
! I

) .

memberchk(reply(none), Params) ->

true
otherwise ->
Event= ev_reply_updated(Mode, Clause, Params, [], []),
oaa_PostEvent(Event, [address(RequestingKS)])

dispatch_update_request(RequestingKS, Mode, Clause, Params, KSList)
new_goal_id (Id),
length(KSList,NumKSsForGoal),
% if more than one KS can solve the goal, remember so that
% we can collect answers from all of them later
(NumKSsForGoal > 1 ->

) I

assert (update_ count (Id, NumKSsForGoal, [], []))
otherwise ->

true

member(SomeKS, KSList), % backtrack over all KSs.
dispatch_update_event(Id, RequestingKS, Mode, Clause, Params, SomeKS),
fail.

dispatch_update_request(_RequestingKS, _Mode, _Clause, _Params, _KSList).

dispatch_update_event(Id, RequestingKS, Mode, Clause, Params, SomeKS)
oaa_Id (SomeKS),
% That's me, the facilitator.
! I

Mode == add >
Functor = oaa_add_data_local

Mode == replace ->

Functor oaa_replace_data_local
otherwise >

Functor = oaa_remove_data_local
) I

append(Params, [from(RequestingKS)], AllParams),
Goal= .. [Functor, Clause, AllParams],
(call(oaa:Goal) ->

) ,

Updaters [SomeKS]
otherwise ->

Updaters = []

(memberchk(reply(none), Params) ->
true
otherwise ->

% Params must be returned here (not AllParams) :
return_update(RequestingKS,Mode,SomeKS,Id, Clause,Params,Updaters)

) .
dispatch_update_event(Id, RequestingKS, Mode, Clause, Params, SomeKS)

oaa_TraceMsg('-nRouting request "ev_update(-p, -p, -p)" to -p.-n',

19

Page 185 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4314

[Mode, Clause, Params, SomeKS]),
append(Params, [from(RequestingKS)], AllParams),
oaa_PostEvent(

) .

ev update(id(Id,SomeKS), Mode, clause, AllParams),
[address(SomeKS)]),

memberchk(reply(none), Params) ->

true
otherwise ->
% TBD: Do we want to set a time trigger here?
oaa:oaa_add_trigger_local(

comm,
event(ev_updated(id(Id,SomeKS), Mode, Clause, P2, Updaters),) ,

% Params must be returned here (not AllParams) :
ev_return_update(RequestingKS,Mode,SomeKS,Id,

Clause,Params,Updaters),
[recurrence(when), on(receive)])

% Returns, to requesting KS, the addresses of all agents (including
% facilitator if appropriate), that attempted (NewKSs) and that actually
% satisfied (Updaters) an update request.
%
% NewUpdaters is always either [], or a singleton list.
%
% Possible values for Mode: add, remove, replace.
%
%Note: Params must be returned in ev_reply_updated, so it must be
% unifiable with the params embedded in the requesting event (ev_post_event).

return_update(RequestingKS, Mode, Responder, Id, Clause, Params,
NewUpdaters)

retract(update_count(Id, AgentsLeft, PrevKSs, PrevUpdaters)),
append(PrevUpdaters, NewUpdaters, Updaters),
append(PrevKSs, [Responder], NewKSs),
(AgentsLeft > 1 ->

NewAgentsLeft is AgentsLeft - 1,
assert(update_count(Id, NewAgentsLeft, NewKSs, Updaters))

otherwise ->
oaa TraceMsg('-nRouting updaters back to -p:-n -p-n',

- [RequestingKS,Updaters]),
Event = ev_reply_updated(Mode, Clause, Params, NewKSs, Updaters),
oaa_PostEvent(Event, [address(RequestingKS)])

) I ! •
return_update(RequestingKS, Mode, Responder, Id, Clause, Params, Updaters)

oaa_TraceMsg('-nRouting updaters back to -p:-n -p-n',
[RequestingKS,Updaters]),

Event= ev_reply_updated(Mode, Clause, Params, [Responder], Updaters),
oaa_PostEvent(Event, [address(RequestingKS)]).

% No agents able to install this trigger:
dispatch_trigger_request(RKS, Mode, Type, Condition, Action, Params, [])

I
• I

memberchk(reply(none), Params) ->
true
otherwise >
Event = ev_reply_trigger_updated(Mode, Type, Condition, Action, Params,

20

Page 186 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4315

oaa_PostEvent{Event,
) .

[] I [)) I

[address {RKS)])

dispatch_trigger_request{RKS, Mode, Type, Condition, Action, Params, KSList)
new_goal_id{Id),
length{KSList,NumKSsForGoal),
% if more than one KS can solve the goal, remember so that
% we can collect answers from all of them later
{ NumKSsForGoal > 1 ->

assert{update_count{Id, NumKSsForGoal, [], []))
otherwise >

true
) I

member{SomeKS, KSList), %backtrack over all KSs.
dispatch_trigger_event{Id, RKS, Mode, Type, Condition, Action, Params,

SomeKS),
fail.

dispatch_trigger_request{_RKS, _Mode, Type, _Condition, _Action, _Params,
_KSList) .

dispatch_trigger_event{Id, RKS, Mode, Type, Condition, Action, Params,
SomeKS)

oaa_Id {SomeKS),
% That's me, the facilitator.
! I

) I

Mode == add ->
Functor = oaa_add_trigger_local

otherwise ->

Functor = oaa_remove_trigger_local

Goal = .. [Functor, Type, Condition, Action, Params],
{ call{oaa:Goal) ->

) I

Updaters = [SomeKS]
otherwise ->

Updaters = []

{ memberchk{reply{none), Params) ->
true

) .

otherwise ->

return_trigger_update{RKS, Mode, SomeKS, Id, Type,
Condition, Action, Params, Updaters)

dispatch_trigger_event{Id, RKS, Mode, Type, Condition, Action, Params,
SomeKS)

oaa_TraceMsg{'-nRouting request-n ev_update_trigger{-p, -p, -p, -p, -p)-nto
-p. -n',

[Mode, Type, Condition, Action, Params, SomeKS]),
oaa_PostEvent{

ev update trigger{id{Id,SomeKS), Mode, Type, Condition, Action, Params),
[address{SomeKS), from{RKS)]),

memberchk{reply{none), Params) ->
true
otherwise ->
% TBD: Do we want to set a time trigger here?
oaa:oaa_add_trigger_local{

comm,

21

Page 187 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4316

event{ev_trigger_updated(id(Id,SomeKS), _Mode, _Type, _Condition,
_Action, P2, Updaters), _),

) .

ev_return_trigger_update{RKS,Mode,SomeKS,Id,
Type,Condition,Action,P2,Updaters),

[recurrence{when), on(receive)])

% Returns, to requesting KS, the addresses of all agents (including
% facilitator if appropriate) , that attempted (NewKSs) and that actually
% satisfied (Updaters) a trigger update request.
%
% NewUpdaters is always either [], or a singleton list.
%
% Possible values for Mode: add, remove.

return_trigger_update(RequestingKS, Mode, Responder, Id,
Type, Condition, Action, Params, NewUpdaters)

retract(update_count(Id, AgentsLeft, PrevKSs, PrevUpdaters)),
append(PrevUpdaters, NewUpdaters, Updaters),
append(PrevKSs, [Responder], NewKSs),
(AgentsLeft > 1 ->

NewAgentsLeft is AgentsLeft - 1,
assert(update_count{Id, NewAgentsLeft, NewKSs, Updaters))

otherwise ->

Event = ev_reply_trigger_updated(Mode,Type,Condition,Action,
Params, NewKSs, Updaters),

oaa_PostEvent{Event, [address(RequestingKS)])
) I ! •

return_trigger_update(RequestingKS, Mode, Responder, _Id,
Type, Condition, Action, Params, Updaters)

Event = ev_reply_trigger_updated(Mode, Type, Condition, Action,
Params, [Responder], Updaters),

oaa_PostEvent(Event, [address(RequestingKS)]).

% unify_params(+OrigParams, +Params, -UnifiedParams).
%
% There is now (970219) a requirement that the params returned in
% a ev_solved or ev_solved_by_bb event must be unifiable with the original
% params from the corresponding solve request. In some situations*, the
% Params returned to the facilitator by a solver may not unify with
% the OrigParams, but may contain individual elements with variables
% instantiated by the solver. This pred. can be used to save these
% instantiations.
%
% *Such as, when find_level has been used to create a new params list.

unify _params ([] , _Params, []) .
unify_params([OrigParam I Rest], Params, [OrigParam I UnifiedRest])

(memberchk(OrigParam, Params) I true) ,
! I

unify_params(Rest, Params, UnifiedRest).

%%%

% These are extremely simple predicates for maintaining com_connection_info/5,
% which keeps info about the agents to which this agent currently has
% a communications channel.

22

Page 188 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4317

add_connected(Id, Connection)
assert(com:com_connection_info(Id, unknown, child,

[connection(Connection) ,oaa_id(Id)], connected)).

update_connected(Id, Addinfo)
com_Addinfo(Id, Addinfo).

% remove_connected(+Id).
remove_connected(Id)

retractall(com:com_connection_info(Id,)) .

% if the time limit(NSec) parameter is sent, install wakeup on server
% to indicate-the request has failed if not achieved in the correct time.
add_time_check(NSecs, Id, RequestingKS, Goal,Params)

(time limit trigger(Id, When, RequestingKS, Goal, Params) ->
tr;e %-already add;d for this goal req;est -

tcp_now (Now),
tcp_time_plus(Now,NSecs,Soon),
tcp schedule wakeup(Soon, time limit(Id)),
assert(time_limit_trigger(Id,Soon,RequestingKS,Goal,Params)),
oaa_TraceMsg('-nTime limit check added for -p-n', [Goal])

) ' ! .

% if solutions are returned before a time_limit_trigger has expired,
% remove the trigger.
cancel_time_check(Id)

retract(time_limit_trigger(Id 1 When 1 _RequestingKS 1 Goal,_Params)),
tcp cancel wakeup(When 1 time limit(Id)),
oaa-TraceMsg('-nTime limit check removed because solution returned.-n

-p-n' 1

[Goal]), ! •
cancel_time_check(_Id).

/* Generates a unique ID for a goal. *I
I* ID's should be unique across blackboards*/
I* which is why we use the KSName prefix */
/* Goal counters are used to make sure the */
/* solution really matches the query. */

new_goal_id(Newid)
oaa_Name(KSName) I

concat(KSName, _ Tmp),
gensym(Tmp, Newid).

% Returns a list containing Num new goal ids.

new_goal_ids(Num 1 [Newid I Restids])
Num > o,
I
• I

new_goal_id(Newid),
NewNum is Num 1,
new goal ids(NewNum, Restids).

new_goal_ids(_Num 1 []).

23

Page 189 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4318

start :
runtime_entry(start).

runtime_entry(start)
initial_solvables(Solvables) 1

com_ListenAt(incoming 1 Cinfo) 1

format(1 Listening at -p-n-n 1
1 [Cinfo]) I

oaa_RegisterCallback(app_do_event 1 user:oaa_AppDoEvent) 1

oaa_Register(incoming, 'root', Solvables),
on_exception(_, oaa_Appinit, true),
oaa_MainLoop(true).

runtime_entry(abort) :- ! .
% format (1 Closing all connections ... -n 1 , []),

% close all connections.

% If the Facilitator is killed (ctrl-c) before disconnecting
% all clients, it will not free the port.
% This code is an attempt to fix this problem, but it doesn't
% help. Why not???
% close_all_connections :-
% tcp_connected(X,Y),
% tcp_destroy_listener(Y),
% tcp_shutdown(X),
% fail.
% close_all_connections
% tcp_reset, fail.

24

Page 190 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4319

APPENDIX A.III

Source code file named libcom_tcp.pl.

Page 191 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4320

,·

%***
%
%
%
%
%
%

File
Primary
Purpose
Updated

: libcom_tcp.pl
Authors : Adam Cheyer, David Martin

TCP instantiation of lowlevel communication
: 01/98

primitives for OAA

% Unpublished-rights reserved under the copyright laws of the United States.
%
%
% Unpublished Copyright (c) 1993-98, SRI International.
% "Open Agent Architecture" and "OAA" are Trademarks of SRI International.
%
%
%

%***
%* RCS Header and internal version
%***

module(com,
[com Connect/2,
com-Disconnect/1,
com-ListenAt/2,
com-SendData/2,
com-SelectEvent/2,
com-Addinfo/2,
com=:Getinfo/2])

% res version number
rcsid(libcom_tcp, '$Header:
/tmp mnt/home/zuma1/martin/OAA/agents/beta/prolog/RCS/com tcp.pl,v 1.10
1998/0S/06 22:35:36 martin Exp $'). -

use_module(library(sets)).
use_module(library(tcp)).
use_module(library(basics))
use_module(library(lists)).
use_module(library(charsio)).
use_module(library(ask)).
use_module(library(environ}).
use_module(library(files)).
use_module(library(strings)).

dynamic

% for sprintf and with_output_to_chars
% for ask oneof
% read environment vars

% can_open_file
% for concat

com connection info/5, % id, commtype, client/server, comminfo, status
com_already_loaded/1. % filename

%%
% name: com_Connect(+Connectionid, ?Address)
% purpose: Given a connection ID and an address, initiates a client connection
% remarks:

1

Page 192 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4321

% if Address is a variable, instantiates the Address by using
% com_ResolveVariables, which looks in a setup file, command line, and
% environment variables for the required info.
% - stores the connection info for connection ID in com connection info/5.
% - fails if connection can't be made - -
%%
com_Connect(Connectionid, tcp(Host,Port)) :-

ground(Connectionid),
%if variable address, look it up ...
((var(Host) ; var(Port)) ->

com_ResolveVariables([
[cmd (' -oaa_host', Host), cmd (' -oaa_port', Port)),
[env('OAA_HOST', Host), env_int('OAA_PORT', Port)),
[setup(•setup.pl', oaa_host, Host),
setup('setup.pl',oaa_port, Port))

])

true) ,

tcp_connect(address(Port, Host), RootConnection),
assert(com_connection_info(Connectionid, tcp, client,

[addr(tcp(Host,Port)),
oaa_host(Host) ,oaa_port(Port),connection(RootConnection)],

connected)).

%%
%name: com_Disconnect(+Connectionid)
%purpose: Given a connection ID of type 'client', shuts down the connection.
% remarks: Succeeds silently if there is not an open connection having the
% given id.
%%
com_Disconnect(Connectionid)

ground(Connectionid),
com_connection_info(Connectionid, tcp, client, _Info, connected),
com_Getinfo(Connectionid, connection(Connection)),
tcp_shutdown(Connection),
retract(com_connection_info(Connectionid,tcp,client,_Info,connected)),
! .

com_Disconnect(_Connectionid).

%%
%name: com_ListenAt(+Connectionid, ?Address)
% purpose: Given a connection ID and an address, initiate a server connection
% remarks:
% if Address is a variable, instantiates the Address by using
% com_ResolveVariables, which looks in a setup file, command line, and
% environment variables for the required info.
% - stores the connection info for connection ID in com_connection_info/5.
% fails if connection can't be made
%%
com_ListenAt(Connectionid, tcp(Host,Port))

ground(Connectionid),
% if variable address, look it up ...
((var(Host) ; var(Port)) ->

com_ResolveVariables([

2

Page 193 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4322

])

[cmd('-oaa_host',Host), cmd('-oaa_port', Port)),
[env('OAA_HOST', Host), env_int ('OAA_PORT', Port)),
[setup('setup.pl',oaa_host, Host),
setup('setup.pl',oaa_port, Port)]

true) ,

repeat,
(on_exception(E,

) .

tcp_listen_at_port(Port, Host),
Exception = E) ->

var(Exception) ->

assert(com_connection_info(Connectionid, tcp, server,
[addr(tcp(Host,Port)) ,oaa_host(Host) ,oaa_port(Port)],
connected)),

otherwise >
com_ask_about_tcp_exception(Port, Host, Response),
(Response == yes ->

fail
otherwise ->

halt

com_ask_about_tcp_exception(Port, Host, Response),
(Response == yes >

fail
otherwise ->

halt

com_ask_about_tcp_exception(Port, Host, Response)
repeat,
with_output_to_chars(

format('Currently unable to access -w port -w.-n Try again? -w',
[Host, Port, '[y)es, n)o, h)elp) ']),

Chars),
name(Prompt, Chars),
ask_oneof(Prompt, [yes, no, help], Response),
(Response == help ->

com_print_tcp_exception_help,
fail

otherwise >

) .

com_print_tcp_exception_help
write('

I' •ve just attempted to listen on the specified port, but was unable
to gain control of it. This could be because there' 's already a
Facilitator, or some other program, making use of that port. Or, it
could be that a Facilitator using that port was just terminated. In
such cases, the port may be inaccessible for a brief period (usually
only a few seconds, but sometimes more). It may help to kill any

3

Page 194 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4323

client agents which may still be connected to the defunct Facilitator.

If you think the specified port may now be accessible, enter "Y" and
I' '11 try again. You may request retry any number of times.

If you want me to listen on a different port, enter "n", which will
cause me to terminate. Then change your port specification (it' •s
either in a setup file or an environment variable). Then restart me.

I) •

%%
% name: com_SendData(+Connectionid, +Data)
% purpose: Sends data to the specified connection ID
% remarks:
% Checks format for destination connection
%%
com_SendData(Connectionid, Data)

ground(Connectionid);
(com_connection_info(Connectionid, Type, _ClientServer, InfoList 1

connected) ,
(Type= tcp ; Type= unknown) 1 !,
memberchk(connection(Dest), InfoList)

format('-nError: cannot find open connection for -p!-n',
[Connectionid]) ,

fail
) I

(memberchk(format(F) 1 InfoList) ->

true
memberchk(agent_language(c) 1 InfoList) >

F = special_case_c
otherwise ->

F = default
) I

! I

com_send_data_by_format(Dest 1 F 1 Data).

% quintus_binary: for inter-quintus communication
com_send_data_by_format(Dest 1 quintus_binary, Data)

tcp_send(Dest, Data).
% prolog: a synonym for quintus_binary
com_send_data_by_format(Dest, prologl Data)

tcp_send(Destl Data).

% pure_ascii: don't wrap data in term() wrapper
com_send_data_by_format(Dest, pure_ascii 1 Data)

current_output(Currentoutput) 1

flush_output(CurrentOutput),
tcp output stream(Dest 1 TcpOutput) 1

set=output(TcpOutput) I

4

I
• I

! I

! I

Page 195 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4324

WriteParams =
[quoted(true), % make input acceptable for read
ignore_ops(false), %false so list will be printed as '[1,2]'
% ! ! ! could be a problem with+, other opts.
numbervars(true), %print vars as f(A).
character_escapes(false) ,% write actual character, not \255
max_depth(O)], %no depth limit

write_term(Data, WriteParams),

flush_output(TcpOutput),
set_output(CurrentOutput), ! .

% special_case_c: This is the same as default, EXCEPT for the use of
% nl, nl. See comments within the clause for default format.
% Currently we don't understand why it matters.
com_send_data_by_format(Dest, special_case_c, Data) !,

current_output(CurrentOutput),
flush_output(CurrentOutput),
tcp_output_stream(Dest, TcpOutput),
set_output(TcpOutput),

WriteParams =
[quoted(true), % make input acceptable for read
ignore_ops(false), %false so list will be printed as '[1,2]'
% ! ! ! could be a problem with +, other opts.
numbervars(true), %print vars as f(A).
character_escapes(false) ,% write actual character, not \255
max_depth(O)], %no depth limit

write_term(term(Data), WriteParams),
write (' . ') ,
nl, nl,
flush_output(TcpOutput),
set_output(CurrentOutput), ! .

% DefaultOAA: wrap in term() wrapper for easy parsing
com_send_data_by_format(Dest, _DefaultOAA, Data)

current_output(CurrentOutput),
flush output(CurrentOutput),
tcp_o~tput_stream(Dest, TcpOutput),
set_output(TcpOutput),

WriteParams =
[quoted(true), % make input acceptable for read
ignore_ops(false), % false so list will be printed as '[1,2]'
% ! ! ! could be a problem with +, other opts.
numbervars(true), %print vars as f(A).
character_escapes(false) ,% write actual character, not \255
max_depth(O)], %no depth limit

write_term(term(Data), WriteParams),
write('.'),
% nl, nl,

% The preceding does not work between two Quintus agents
% (neither does a single nl, nor does it help to use nl(TcpOutput)),
% so we went to the following. However, the following does not work

5

Page 196 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4325

% when a QP facilitator sends to the C interface agent. For now,
% we'll solve this problem by defining the special_case_c format.
% (DLM, 97-04-09)

put(TcpOutput, 10),
% This causes the agents to disconnect (at least under UNIX) :

% put(TcpOutput, 13),

flush_output(TcpOutput),
set_output(CurrentOutput), ! .

%%
%name: com SelectEvent(+TimeOut, -Event)
% purpose: Waits and returns an incoming event, or 'timeout' if TimeOut expires
% remarks:
% - TimeOut may be a real number, and represents seconds.
%%
com_SelectEvent(O, Event) :- !,

on_exception(E,tcp_select(Event), com_print_err(E)).
com SelectEvent(Seconds, Event) :-

- on_exception(E,tcp_select(Seconds, Event) ,com_print_err(E)).

%%
% name: com_print_err
% purpose: Print error message if problem reading the event
%%
com_print_err(E) :

format('-n=========== READ ERROR!!! ============-n', []),
format(' I Messages in this block are rejected-n', []),
format(' I by the system.-n', []),
format('--n', []),
print_message(error, E),
format('=======================================-n', []), fail.

%%
% name: com_Addinfo
% purpose: Adds or changes information about connection
% remarks:
% Info may be status(S), type(T), protocol(P) or any element (or list
% of elements) to be stored in InfoList.
%%
com_Addinfo(Connectionid, Newinfo) :-

retract{com_connection_info(Connectionid, Protocol, Type,
InfoList, Status)),

(Newinfo status(NewStatus), C =true ; NewStatus =Status),
(Newinfo protocol(NewProtocol), C =true ; NewProtocol =Protocol),
(Newinfo type(NewType), C =true; NewType =Type),
(Newinfo [_HI_T] ->

union([InfoList, Newinfo], NewinfoList)
I (ground(C) ; union([InfoList, [Newinfo]], NewinfoList))

) ,
assert{com_connection_info{Connectionid, NewProtocol, NewType,

6

Page 197 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4326

NewinfoList, NewStatus)), ! .

%%
% name:
% purpose:
% remarks:

com_Getinfo
Looks up information about connection

% Info may be status(S), type(T), protocol(P) or any element stored
% in InfoList.
%%
com_Getinfo(Connectionid, Info) :

com_connection_info(Connectionid, Protocol, Type,
InfoList, Status),

(Info status(Status) ;
Info = type(Type) ;
Info= protocol(Protocol)
memberchk(Info, InfoList)),

! .

%%
%
% name: com ResolveVariables
% purpose: Tries to instantiate the arguments by looking in the command
% line arguments, environment variables, and setup files
% inputs:
% - VarList: A list of lists: the first sublist that completely resolves
% provides the value for com_ResolveVariables.
% remarks:
% sublists may contain elements in the following format:
% env(EnvVar, Val) looks for "EnvVar" in environment vars
% env_int(EnvVar, Val) Returns value for EnvVar as an integer
% cmd(CmdVar, Val) : looks for "CmdVar <Val>" on command line
% setup(File,SVar, Val) reads SVar from setup file File
% example:
% resolves host and port by searching first commandline, then environment
% variables, finally reads setup file.
%
% com_ResolveVariables([
% [cmd('-oaa_host',Host), cmd('-oaa_port', Port)],
% [env('OAA_HOST', Host), env_int('OAA_PORT', Port)],
% [setup('setup.pl',oaa_host, Host),
% setup('setup.pl',oaa_port, Port)]
%])
%
%%
com_ResolveVariables([VarListl_l) :-

com resolve variables(VarList), ! .
com_Resol~eVariables([_VarListiRest])

com_ResolveVariables(Rest).

com_resolve_variables([]).

com resolve variables([env int(Envvar, Val) !Rest]) !,
environ(Envvar, EnvAtom),
name(EnvAtom, EnvChars),

7

Page 198 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4327

•

number_chars(Val, EnvChars),
com_resolve_variables(Rest).

com_resolve_variables([env(Envvar, Val) !Rest)) !,
environ(Envvar, Val),
com_resolve_variables(Rest).

com_resolve_variables([cmd(CmdVar, Val) !Rest]) !,
% get command line arguments
unix(argv(ListOfArgs)),
append(_, [CmdVar, Vali_J, ListOfArgs),
com_resolve_variables(Rest).

com_resolve_variables([setup(File,SVar, Val) !Rest]) !,
% read setup file to load all values
com_read_setup_file(File),
Pred =·. [SVar, Val),

on_exception(_, Pred, fail),
com_resolve_variables(Rest).

%%
% name: com_read_setup_file
% purpose: Finds and loads setup file
% remarks:
% Always succeeds.
% The search path for 'setup.pl' is as follows:
% 1. Current directory
% 2. Home directory for user
%%
com read setup file(File) :-

- co~_already_loaded(File), ! .

com_read_setup_file(File) :-
(absolute file name(File, LocalSetupFile),

can_open=file(LocalSetupFile, read, fail) ->

SetupFile = LocalSetupFile

) ,

concat('-/',File, HomeName),
absolute_file_name(HomeName, UserSetupFile),

can_open_file(UserSetupFile, read, fail) ->

SetupFile = UserSetupFile

(ground(SetupFile) ->

format('Loading setup file:-n -w-n-n', [SetupFile)),
(com_consult(SetupFile, _) ->

assert{com_already_loaded(File))
otherwise ->

format('-w: A problem was encountered in loading the setup file-n',
['WARNING'])

true) .

%%

8

Page 199 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4328

' ~

% name: com_consult(+FilePath, -AbsFileName).
% purpose:
% remarks: We don't use Quintus' builtin consult, because it's too picky
% about associating predicates with files.
%%
com_consult(FilePath, AbsFileName) :-

absolute file name(FilePath, AbsFileName),
can_open=file(AbsFileName, read, fail),
open(AbsFileName, read, Stream),
load_clauses(Stream),
close(Stream).

%%
% name: load_clauses(+Stream).
%purpose:
%%
load_clauses(Stream) :-

repeat,
read_term(Stream, [], Term),
(Term ':-'(_Body) ->

) I

true
Term
true

end_of_file >

otherwise ->
load_clause(Term)

(at_end_of_file(Stream) >

) .

otherwise >
fail

%%
%name: load_clause(+Term).
% purpose:
%%
load_clause(Term) :

assert(Term).

9

Page 200 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4329

APPENDIX A.IV

Source code file named liboaa.pl.

Page 201 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4330

%***
%
%
%
%
%
%

File
Primary
Purpose
Updated

: liboaa.pl
Authors : Adam Cheyer, David Martin

Prolog version of library for the Open
12/98

Agent Architecture

% Unpublished-rights reserved under the copyright laws of the United States.
%

%
% Unpublished Copyright (c) 1998, SRI International.
% "Open Agent Architecture" and "OAA" are Trademarks of SRI International.
% --
%
%
%%
% Note: internal functions use the naming convention oaa_function_name(),
% while public predicates use oaa_PublicPredicate().
%%
%Version 2.0 (change oaa_version assertion)
% - corrects FromKS in do_events by changing event format to include this
% info.
% - messages are only sent to READY agents. For previous versions, an
% agent may be either READY or just OPEN.
%%
%Version 2.1 (change oaa_version assertion)
% - triggers have 2 new arguments, OpMask and Template, and
% more general semantics. Backwards compatibility is provided.
%%
%Version 3.0 (change oaa_version assertion)
% - primitives changed to start with oaa_ (and _icl) prefixes
% - Major restructuring and cleanup, including many new capabilities,
% for first public release (a.k.a. "OAA 2")
%***

module(oaa,
[icl GetParamValue/2,
icl-GetPermValue/2,
icl-BasicGoal/1,
icl-GoalComponents/4,
icl-ConsistentParams/2,
icl~)uil tin/1,
icl ConvertSolvables/2,
oaa-Libraryversion/1,
oaa-Register/3,
oaa-RegisterCallback/2,
oaa-ResolveVariables/1,
oaa-Ready/1,
oaa-MainLoop/1,
oaa-SetTimeout/1,
oaa-GetEvent/3,
oaa-ProcessEvent/2,
oaa-Interpret/2,
oaa=DelaySolution/1,
oaa_ReturnDelayedSolutions/2,
oaa_AddDelayedContextParams/3,

1

Page 202 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4331

oaa PostEvent/2,
oaa-CanSolve/2,
oaa=:version/3,
oaa Ping/3,
oaa-Declare/5,
oaa-DeclareData/3,
oaa-Undeclare/3,
oaa-Redeclare/3,
oaa-AddData/2,
oaa-RemoveData/2,
oaa-ReplaceData/3,
oaa-CheckTriggers/3,
oaa-AddTrigger/4,
oaa-RemoveTrigger/4,
oaa-Solve/2,
oaa-InCache/2,
oaa-AddToCache/2,
oaa-ClearCache/0,
oaa-TraceMsg/2,
oaa-ComTraceMsg/2,
oaa=:rnform/31
oaa Id/11
oaa=:Name/1

)) .

%***
%* RCS Header and internal version
%***

% res version number
rcsid('$Header: /home/trestle4/0AA/src/V2/prolog/RCS/oaa.pl 1V 1.127 1998/12/23
23:14:18 martin Exp cheyer $').

: - op (59 9 I yfx, : :) .

%***
% Include files
%***

use_module(library(basics)).
use_module(library(read_sent)).
use_module(library(lists)).
use_module(library{sets)).
use_module{library{strings)).
use_module(library{files)).
use_module{library{environ)).
use_module(library(ctr)).
use_module(library{charsio)).
use_module(library{ask)).
use_module(library{samsort)).
use_module(library{date))

% read environment vars

% for sprintf and with_output_to_chars
% for ask oneof
% for samsort{Ordered 1Raw 1Sort)
% for now(Time)

use_module{library{tcp) 1 [tcp_now/1 1 tcp_time_plus/3)).

% IMPORTANT: COM module. We don't want to hard code the name of the

2

Page 203 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4332

% file that contains module 'com'. So, when this file is loaded,
% we first check to see if module •com' is already present, then
% we check to see if the file containing •com' has been specified
% on the command line, and if neither of those works, we load the
%default file (./com_tcp).
%
% In the case where the module has already been
% loaded, the .following seems like the right thing to do:
% :-use module(com, File, all).
% BUT when compiling, this approach results in "undefined" errors from
% qcon. Thus, for now, in oaa.pl, we are explicitly using com: with all
% calls to the com module.

) .

current_predicate(_, com:_) >
use_module(com, _File, all)

unix(argv(ListOfArgs)), append(_, ['-com', File I _], ListOfArgs) ->

use_module(File, all)
otherwise >

use_module(com_tcp, all)

%***
% Global variables
%***

dynamic
oaa already loaded/1,

-oaa sol~ables/1,
oaa-trigger/5,

% record if file already loaded
% list of agent capabilities
% a built in solvable

% trace mode: on or off oaa tra-;;-e/1,
oaa-com trace/1, %
oaa-deb-;:;:g I 1,
oaa::::cache/2,

com trace mode: on or off

oaa event buffer/1,
oaa-waiting for/2,
oaa::::waiting::::event/1,
oaa timeout/1,
oaa::::delay_table/5,
oaa delay/2,
oaa-data ref/3,
oaa-current contexts/2,
oaa::::callback/2,

%These may appear in setup.pl:
oaa_host/1,

oaa_port/1.

oaa_LibraryVersion(3.0).

% debug mode: on or off
% cached solutions
% buffer of waiting events
% used for recursive blocking solve
% problem ...
% tcp timeout value (use oaa_SetTimeout)
% table of delayed solutions
% the current goal is delayed
% bookkeeping for 'data' solvables
% Solve parameters to be propagated
% Record of app-specific callbacks

% for root, my host; otherwise,
% host of my parent

% . . . similarly ...

% solvables shared by all agents
% Note: all built-in DATA solvables must be declared dynamic to avoid
% QP warnings and exceptions.

oaa_built_in_solvables([
% ®®DLM: If we do away with Triggerid, we could use param
% unique_values(true).

3

Page 204 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4333

solvable(oaa_trigger(_Triggerid, _Type, _Condition, _Action, _Params),
[type (data)], [write (true)])

]) .

% We'll always have exactly one oaa solvables fact. Note that application
% code should NOT include a declaration or clause for oaa_solvables/1.
oaa_solvables([]).

%***
% Initialization and connection functions
%***

%%
% name: oaa Register
% purpose: One~ a comm link is established, either as a client to a Facilitator
% or as a server for other agents, oaa_Register will setup and registration
% information for this agent.
% inputs:
% - Connectionid: the symbolic connection Id (client or server connection)
% - AgentName: the name of the agent
% - Solvables: solvable list
% remarks:
% The following information is stored about the current connection,
% accessible through com_Getinfo(Connectionid, Info):
%
%
%
%
%
%

oaa_name(Name)
oaa_id(Id) : the

connection(C)

: the name of the current agent
Id for the agent

system-level communications handle
(e.g., socket number)

% if connecting as client, this is also available:
% fac_id(Id) : the Facilitator's Id
% fac_name(Name) : the Facilitator's name
% fac_lang(L) : the Facilitator's language
% fac_version(V) : the version of the Facilitator's agent library
%
% In addition, the following predicates are written to parent Facilitator,
% or locally if the Connectionid is a server connection:
%
% agent_host(Id, Name, Host)
%
% Solvables are also written using oaa_Declare()
%
% It is possible for an agent to create both server and client connections:
% such an agent was classified in OAA 1.0 as an agent of class "node"
% (as opposed to a pure client "leaf" or pure server "root").
%
% examples:
% % connecting to a Facilitator
% MySolvables = [do(something)],
% com_Connect(parent, connectioninfo),
% oaa_Register(parent, my_agent_name, MySolvables).
%
% % connecting as a Facilitator

4

Page 205 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4334

% MySolvables = [] ,
% com_ListenAt(incoming, Connectioninfo),
% oaa_Register(incoming, root, MySolvables).
%
%%

% For client connecting to Facilitator
oaa_Register(Connectionid, AgentName, Solvables)

% succeeds only if exists an open client connection for Connectionid
% as created by com_Connect()
com:com_connection_info(Connectionid, _Protocol, client, Info,

connected) ,

com:com_Addinfo(Connectionid, oaa_name(AgentName)),

% FIXED HACK: default now works thanks to update in com_tcp.pl for
% the default mode
%HACK!!! Why doesn't this work right without it?
% for some reason, when we send the handshaking info in
% default mode (instead of quintus_binary), the facilitator's
% tcp_select(VerySmallTimeout, Event) doesn't timeout!!!!
% So it keeps hanging until some other event (such as disconnect)
% arrives.
com:com_Addinfo(Connectionid, format(default)),

% lookupversion number
oaa_LibraryVersion(Version),

%%% handshaking with Facilitator exchange information ...
% note: for this first communication, no format is defined for the
% connection, so it will be sent using default (ascii) format.
% Information coming back from Facilitator will update the
% format() field for the connection, improving future
% communication.
com:com_SendData(Connectionid,

event(ev_connect([oaa_name(AgentName), agent_language(prolog),
format(quintus_binary), agent_version(Version))), [])),

%% Get the connection acknowledgement:
% potential bug: what if selected event is NOT from Facid connection?
oaa_GetEvent(ConnEvent, _Parms, 0),
ConnEvent = ev_connected(FacinfoList),
com:com_Addinfo(Connectionid, FacinfoList),

oaa_Id (Myid),

% write host
(environ('HOST', MyHost) ->

oaa_AddData(agent_host(Myid, AgentName, MyHost), [address(parent)])
true),

% Declare solvables (and post to parent facilitator) :
%Note: OK if Solvables = [].
oaa_Declare (Solvables, [], [], [if_exists (overwrite)),) .

% For Faciliator serving client agents
oaa_Register(Connectionid, AgentName, Solvables)

5

Page 206 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4335

% succeeds only if exists an open client connection for Connectionid
% as created by com_Connect()
com:com_connection_info(Connectionid, _Protocol, server, _Info,

connected) ,

Agentid 0, % A facilitator's ID is always 0
com:com_Addinfo(Connectionid, [oaa_id(Agentid),oaa_name(AgentName)]),

% The fac. records its own agent_data in the same way as its clients'.
% Note that we can't call oaa_add_data_local until after the solvables
%have been declared, and we can't declare solvables until we're
% open - so we have to bootstrap this assertion:
oaa_assertz(agent_data(Agentid, open, [), AgentName), Agentid, _),

% Note: OK if solvables =
oaa_Declare(Solvables, [],

% write host

[] .
[], [if_exists(overwrite)],) I

(environ('HOST', MyHost) ->
oaa_add_data_local(agent_host(Agentid, AgentName, MyHost), [))

true) .

%%
%

%name: oaa_ResolveVariables(+VariableList)
% purpose: Tries to instantiate the arguments by looking in the command
% line arguments, environment variables, and setup files
% inputs:
% - VarList: A list of lists: the first sublist that completely resolves
% provides the value for oaa_ResolveVariables.
% remarks:
% sublists may contain elements in the following format:
% env(EnvVar, Val) looks for "EnvVar" in environment vars
% env_int(EnvVar, Val) Returns value for EnvVar as an integer
% cmd(CmdVar, Val) looks for "CmdVar <Val>" on command line
% setup(SVar, Val) : reads SVar from setup file
% example:
% resolves host and port by searching first commandline, then environment
% variables, finally reads setup file.
%
% oaa_Resolvevariables([
% [cmd('-oaa host',Host), cmd('-oaa_port', Port)],
% [env('OAA_HOST', Host), env_int('OAA_PORT', Port)],
% [setup(oaa_host, Host), setup(oaa_port, Port)]
%])
%
%%
oaa_ResolveVariables([VarListi_J)

oaa resolve variables(VarList), ! .
oaa_Resol~eVariables([_VarListiRest])

oaa_ResolveVariables(Rest).

oaa_resolve_variables([]).

oaa_resolve_variables([env_int(EnvVar, Val) !Rest]) !,

6

Page 207 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4336

environ(EnvVar, EnvAtom),
name(EnvAtom, EnvChars),
number_chars(Val, EnvChars),
oaa_resolve_variables(Rest).

oaa_resolve_variables([env(EnvVar, Val) !Rest]) !,
environ(EnvVar, Val),
oaa_resolve_variables(Rest).

oaa_resolve_variables([cmd(CmdVar, Val) !Rest]) !,
% get command line arguments
unix(argv(ListOfArgs)),
append(, [CmdVar, Vall_l, ListOfArgs),
oaa_resolve_variables(Rest).

oaa_resolve_variables([setup(SVar, Val) !Rest]) !,
% read setup file to load all values
oaa_read_setup_file,
Pred = .. [SVar, Val],

on_exception(_, Pred, fail),
oaa~resolve_variables(Rest).

%%
% name: oaa_read_setup_file
% purpose: Finds and loads setup file
% remarks:
% Always succeeds.
% The search path for 'setup.pl' is as follows:
% 1. Current directory
% 2. Home directory for user
%%
oaa_read_setup_file :-

oaa_already_loaded(setup), !.
oaa_read_setup_file :-

(absolute_file_name('setup.pl', LocalSetupFile),
can_open_file(LocalSetupFile, read, fail) >

SetupFile = LocalSetupFile
absolute_file_name('-/setup.pl', UserSetupFile),

can_open_file(UserSetupFile, read, fail) ->

SetupFile = UserSetupFile
) I

(ground(SetupFile) ->
format('Loading OAA setup file:-n -w-n', [SetupFile]),
(oaa_consult(SetupFile, _) ->

assert(oaa_already_loaded(setup))
otherwise ->

format('-w: A problem was encountered in loading the setup file-n',
['WARNING'])

true) .

7

Page 208 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4337

%%
% name: oaa_Ready
%purpose: Changes the agent's 'open' status to 'ready', indicating that the
% agent is now ready to receive messages.
% remarks:
% if requested, prints 'Ready' to standard out.
%%
oaa_Ready(ShouldPrint) :-

% replaces 'open' status with 'ready'.
((\+ oaa_class(root), oaa_Name(MySymbolicName)) ->

oaa_PostEvent(ev_ready(MySymbolicName), [])
true),

% if ShouldPrint, print ready
(on_exception(_,ShouldPrint,fail) ->

format ('Ready. -n', [])
I true).

%***
% Classifying and Manipulating ICL expressions
%***

%%
% name: icl_Builtin(+Goal).
% purpose: Test whether an expression is an ICL built in goal.
% remarks:
% - icl Builtin differs significantly from the Quintus Prolog predicate
% built_in, in that here we do not include basic constructors such
% as I I I and I i I •

% - oaa_Interpret/2 must be defined for every goal for which
% icl Builtin succeeds.
%%
icl_Builtin((_A _B)).
icl_Builtin((_A _B)).
icl Builtin((A _B)).
icl-Builtin((-A =<_B)).
icl~)uiltin (CA >= _B)) .
icl_Builtin((_A <_B)).
icl_Builtin((_A >_B)).
icl Builtin(member(,)) .
icl=Builtin(memberchk(_,_)).
icl_Builtin(findall(_,_,_)).
icl_Builtin(icl_ConsistentParams(,)) .

%%
% name: icl_BasicGoal(+Goal).
% purpose: Test whether an expression is an ICL basic (non-compound) goal;
% that is, just a functor with 0 or more arguments.
% remarks:
% - Basic goals include built-in's as well as solvables.
% - This is a syntactic test; that is, we're not checking whether the
% Goal is a declared solvable.

8

Page 209 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4338

%%
icl_BasicGoal(Goal)

var (Goal), ! , fail.
icl BasicGoal(Goal)

-is_list (Goal), ! , fail.
icl_BasicGoal(Goal)

icl compound goal(Goal), !, fail.
icl_BasicGoal(Go~l)

icl_Builtin(Goal),
! .

icl BasicGoal (Goal) :-
-Goal =. . [Functor I) ,

atom(Functor).

%%
%name: icl_compound_goal(+Goal).
% purpose: Test whether an expression is an ICL compound goal.
%%
icl_compound_goal(_X:_Y).
icl compound goal(X:: Y).
icl=compound=goal((\+ =P)).
icl_compound_goal((_P > _Q _R)).
icl compound goal((P -> Q)).
icl=compound=goal((=X, _Yl).
icl_compound_goal((_X; _Y)).

%%
%name: icl_GoalComponents(+ICLGoal, -A, -G, -P).
% icl_GoalComponents(-ICLGoal, +A, +G, +P).
% icl_GoalComponents(+ICLGoal, +A, +G, +P).
% purpose: Assemble, disassemble, or match against the top-level components
% of an ICL goal.
% remarks:
% - The top-level structure of an ICL goal is Address:Goal: :Params,
% with Address and Params BOTH OPTIONAL. Thus, every ICL goal
% either explicitly or implicitly includes all three components.
% - This may be used with any ICL goal, basic or compound.
% - When P is missing, its value is returned or matched as [). When A is
% missing, its value is returned or matched as •unknown'.
%%

% The first 4 clauses handled all cases where the ICL Goal is bound;
% the remainder handle those where it is a var.
icl_GoalComponents(A:G: :P, Address, Goal, Params)

\+ var(A), \+ var(G), \+ var(P),
! ,

Address = A, Goal = G, Params = P.
icl_GoalComponents(A:G, Address, Goal, Params)

\+ var(A), \+ var(G),
! ,

Address = A, Goal = G, Params = (] .
icl_GoalComponents(G: :P, Address, Goal, Params)

\+ var(G), \+ var(P),
I . ,
Address = unknown, Goal G, Params P.

9

Page 210 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4339

icl_GoalComponents(G, Address, Goal, Params)
\+ var(G),
I
• I

Address = unknown, Goal = G, Params = [].
icl_GoalComponents(Goal, unknown, Goal, [])

! .
icl_GoalComponents(Address:Goal, Address, Goal, [])

! .

icl_GoalComponents(Goal: :Params, unknown, Goal, Params)
! .

icl_GoalComponents(Address:Goal: :Params, Address, Goal, Params)
! .

%%
% Permissions and parameter lists
%
% These procedures are used in processing solvables permissions, and
% parameter lists of all kinds (including those used with solvables,
% those contained in events, and those used in calls to various
% library procedures).
%
%All permissions and many parameters have default values.
%
% Permissions and parameters lists have a standard form, as defined by
% the predicates below. To save bandwidth and promote readability, a
% "perm" or "param" list in standard form OMITS default values. For
%easier processing (e.g., comparing/merging param lists), boolean
% params in standard form always include a single argument 'true' or
% 'false'.
%
% In definitions of solvables and calls to documented library
%procedures, it's OK to include default params in a Params list, if
%desired. For boolean params, when the intended value is 'true', it's
% OK just to specify the functor, for example, instead of
% cache(true), it's OK just to include 'cache'.
%
%%

% icl_standardize_perms(+Perms, +KeepDefaults, -Standardized).

icl_standardize_perms([], _KeepDefaults, []).
icl_standardize_perms([Perm I Perms], KeepDefaults, [SPerm I SPerms])

icl_perm_standard_form(Perm, SPerm),
(KeepDefaults ; (\+ icl_perm_default(SPerm))) ,
! I

icl_standardize_perms(Perms, KeepDefaults, SPerms).
icl_standardize_perms([_Perm I Perms], KeepDefaults, SPerms)

icl_standardize_perms(Perms, KeepDefaults, SPerms).

icl_perm_standard_form(Perm, SPerm)
atom(Perm),
! I

SPerm= .. [Perm, true].
icl_perm_standard_form(Perm, Perm).

icl_perm_default(call(true)).

10

Page 211 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4340

icl_perm_default(read(false)).
icl_perm_default(write(false)).

% icl_standardize_params(+Params, +KeepDefaults, -standardized).
%
% Normally there's no need to keep the default value of a param,
% but there are exceptional situations. If KeepDefaults is true,
% default values are kept.

icl_standardize_params ([] , []) .
icl_standardize_params([Param I Rest], KeepDefaults, AllStandardized)

icl_param_standard_form(Param, FullStandardized),
(KeepDefaults >

Standardized = FullStandardized
otherwise ->
icl_remove_default_params(FullStandardized, Standardized)

) I

icl_standardize_params(Rest, KeepDefaults, RestStandardized),
append(Standardized, RestStandardized, AllStandardized).

% icl_param_standard_form(+Param, -StandardParams).
%
% Maps from an element of a parameter list to a list of elements
% in standardized form. The parameter list element can be from
%any context (from a call to Solve, AddTrigger, AddData, etc.).

icl_param_standard_form(reply(false), [reply(none)])
! .
% broadcast has been retained, as a synonym for reply(none):

icl_param_standard_form(broadcast, [reply(none)])
! .

icl_param_standard_form(broadcast(true), [reply (none)])
! .

icl_param_standard_form(broadcast(false), [reply (true)])
! •

icl_param_standard_form(address(Addr), [address(SAddr)])
! I

icl_standardize_address(Addr, SAddr).
icl_param_standard_form(strategy(query), [parallel_ok(true)])

! .
icl_param_standard_form(strategy(action),

[parallel_ok(false), solution_limit(l)])
! •

icl_param_standard_form (strategy (inform),
[parallel_ok(true), reply(none)])

! .
icl_param_standard_form(callback(Mod:Proc), [callback(Mod:Proc)])

! .
icl_param_standard_form(callback(Proc), [callback(user:Proc)])

! •
icl_param_standard_form(Param,

atom (Param) ,
I
• I

[SParam]) : -

SParam =·. [Param, true].
icl_param_standard_form(Param, [Param]).

icl_param_default(from(unknown)).

11

Page 212 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4341

icl_param_default(priority(S)).
icl_param_default(utility(S)).
icl_param_default(if_exists(append)).
icl_param_default(type(procedure)).
icl_param_default(private(false)).
icl_param_default(single_value(false)).
icl_param_default(unique_values(false)).
icl_param_default(rules_ok(false)).
icl_param_default(bookkeeping(true)).
icl_param_default(persistent(false)).
icl_param_default(at_beginning(false)).
icl_param_default(do_all(false)).
icl_param_default(reflexive(true)).
icl_param_default(parallel_ok(true)).
icl_param_default(reply(true)).
icl_param_default(block(true)).
icl_param_default(cache(false)).
icl_param_default(flush_events(false)).
icl_param_default(recurrence(when)).

icl_remove_default_params([], []).
icl_remove_default_params([Param I Rest], Removed)

icl_param_default(Param),
! I

icl_remove_default_params(Rest, Removed).
icl_remove_default_params([Param I Rest], [Param I Removed])

icl_remove_default_params(Rest, Removed).

% icl_GetParamValue(+Param, +ParamList).
%
% Param must have a functor, but its argument(s) can be either ground
%or variables. E.g., persistent(X).
%
% To get or test the value of a parameter that has a default, it is
% best to call icl_GetParamValue. For a parameter that has no default,
% you can use icl_GetParamValue OR memberchk.

icl_GetParamValue(Param, ParamList) :
predicate skeleton(Param, Skel),
memberchk(Skel, ParamList),
! I

Skel = Param.
icl_GetParamValue(Param, _ParamList)

predicate skeleton(Param, Skel),
icl_param=default(Skel),
! I

Skel = Param.

icl_GetPermValue(Perm, PermList) :
predicate skeleton(Perm, Skel),
memberchk(Skel, PermList),
! I

Skel = Perm.
icl_GetPermValue(Perm, PermList) :

predicate_skeleton(Perm, Skel),
icl_perm_default(Skel),
I . ,

12

Page 213 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4342

Skel Perm.

%%
%name: icl_ConsistentParams(+Test, +ParamList)
% purpose: Often used in solvable declarations to filter on a certain
% condition.
% definition:
% Test a param list: if one or more values are given in a parameter
% list for parameter ParamName, then ParamValue must be defined as
% one of the values to succeed. If ParamValue is NOT defined, then
% icl_ConsistentParams succeeds.
% example:
% A natural language parser agent can only handle English definitions:
%
%
%
%

convert(nl, icl,Input,Params,Output)
icl_ConsistentParams(language(english) ,Params).

% if 11 language(english) 11 is defined in parameter list of a solve request,
% the nl agent will receive the request.
% if "language(spanish) 11 is defined in the parameter list, the nl agent
% WILL NOT receive the request.
% if no language parameter is specified, the request WILL be sent
% if 11 language(X) 11 is specified, the request WILL be sent to the nl agent
% remarks:
% Test may contain either a single predicate or a list of test predicates,
% in which case icl_ConsistentParams will execute all consistency tests.
% - Interesting note: icl_ConsistentParams() checks consistency as a
% relation between the two arguments, so it doesn't matter which argument
% specifies the test list and which the parameters to test.
%%

icl_ConsistentParams (_TestList, []) :- ! •

icl ConsistentParams ([), ParamList) :- ! .
ic(~consistentParams ([TestiRTest], [PliRParams]) ! ,

ParamList [PliRParams],
predicate_skeleton(Test, TestWithVars),
(memberchk(TestWithVars, ParamList) ->

memberchk(Test, ParamList)
I true),
icl_ConsistentParams(RTest, ParamList).

% either Test or Params is NOT a list
icl ConsistentParams(Test, Param) :

- (Test = [_I_J ->

NewTest = Test
I NewTest = [Test]),
(Param = [_I_J ->

NewParam = Param
NewParam = [Param]),

icl_ConsistentParams(NewTest, NewParam).

%%
% Agent identity and addressing
%
% Every agent (including facilitators) has a symbolic name, a full address,

13

Page 214 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4343

% and a local address (or "local ID").
% addr(tcp(Host,Port))
% addr(tcp(Host,Port), LocaliD)
%

A full address has the form:
for a facilitator (if TCP is protocol)
for a client agent.

% Even though it doesn't appear in the full address, a facilitator also
% has a local ID, for consistency and convenient reference. The
% local ID of a client agent is assigned to it by its facilitator.
%This, and the facilitator's local ID, are passed to the client at
% connection time.
%
% Full addresses are globally unique, and local addresses are unique with
% respect to a facilitator. Symbolic names are NOT unique in any sense.
%
% The local ID happens to be an integer, but developers should not rely
% on this.
%
% When specifying addresses, in address/1 params for calls to
% oaa_AddData, oaa_Solve, etc., either names or addresses may be used.
%In addition, for convenience, reserved terms •self', 'parent', and
% 'facilitator' may also be used.
%
% More precisely, the address parameter may contain any of the following:
% a full address; a local ID (when the addressee is known to be either
% the facilitator or a peer client); a name, enclosed in the name/1 functor;
%'self'; 'parent'; or 'facilitator'. ('parent' and 'facilitator are
% synonymous .)
%
%Address parameters are standardized as follows: A full address for the
% local facilitator or a peer client is changed to the local ID; all
% other full addresses are left as is. Names are left as is. •self',
% 'parent', and 'facilitator' are changed to the appropriate local ID.
%
%%

% This can only be used AFTER oaa SetupCommunication has been called,
% because of the reliance here on-com:com_connection_info/5.

icl standardize address(Addr, SAddr)
-\+ is_list(Addr),

I
• I

icl_standardize_address([Addr], SAddr).
icl standardize address ([] , []) .
icl=standardize=address([Addr I Addrs], [SAddr I SAddrs])

icl_standardize_addressee(Addr, SAddr),
I
• I

icl standardize address(Addrs, SAddrs).
icl_standardize_add~ess([_Addr I Addrsl, SAddrs)

icl_standardize_address(Addrs, SAddrs).

%%

icl_standardize_addressee(addr(Addr), Parentid)
com:com_Getinfo(parent, addr(Addr)),
com:com_Getinfo(parent, fac_id(Parentid)),
! .

icl_standardize_addressee(addr(Addr), addr(Addr))
! .

icl_standardize_addressee(addr(Addr, LID), LID) :-

14

Page 215 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4344

com:com_Getinfo(parent, addr(Addr)),
! .

icl_standardize_addressee(addr(Addr, LID), LID)
com:com_Getlnfo(incoming, addr(Addr)),
! .

icl_standardize_addressee(addr(Addr, LID), addr(Addr, LID))
! .

icl_standardize_addressee(name(Name), name(Name)) :-
! ,
icl_name (Name) .

icl_standardize_addressee(Name, name(Name))
icl_name (Name) ,
! ,
format('-w (-w): addressee name, in address/1 param, should be specified

as:-n name(-w)-n',
['WARNING', 'liboaa.pl', Name]).

icl_standardize_addressee(Id, Trueid) :
icl_true_id(Id, Trueid),
! .

icl_standardize_addressee(Whatever,) :-
format('-w (-w): Illegal addressee, in address/1 param, discarded:-n -w-n',

['WARNING', 'liboaa.pl', Whatever]),
fail.

icl_true_id(self, Me)
! ,
oaa_Id(Me).

icl_true_id(parent, Parent)
I . ,
com:com_Getinfo(parent, fac id(Parent)).

icl_true_id(facilitator, Parent) :
! ,
com:com_Getinfo(parent, fac_id(Parent)).

icl_true_id(Id, Id) :-
icl_id (Id) .

icl_id (Num) :
integer (Num) ,
Num >= 0.

icl_name(self)
! , fail.

icl_name(parent) :-
!, fail.

icl_name(facilitator)
! , fail.

icl_name(Atom) :
atom (Atom) .

%%
% name:
%
%
% purpose:
% remarks:
% - In

icl ConvertSolvables(+ShorthandSolvables, -StandardSolvables).
icl=ConvertSolvables(-ShorthandSolvables, +StandardSolvables).

Convert between shorthand and standard forms of solvables list.

the standard form, each element is a term solvable(Goal,

15

Page 216 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4345

% Params, Permissions), with Permissions and Params both lists.
% In the Permissions and Params lists, values appear only when they
% are OTHER than the default.
% - In the shorthand form, each element can be solvable/3, as above,
% or solvable(Goal, Params), or solvable(Goal), or just Goal.
% - Note that "shorthand" means "anything goes" - so shorthand
% solvables are a superset of standard solvables.
% - Permissions (defaults in square brackets) :
% call (T_F) [true], read (T_F) [false], write (T_F) [false]
% Params (defaults in square brackets) :
% type(Data_Procedure) [procedure),
% callback(Functor) [no default]
% utility (N) [5]
% synonym(SynonymHead, RealHead) [none]
% rules ok (T F) [false] ,
% single_value(T_F) [false],
% unique_values(T_F) [false],
% private (T_F) [false]
% bookkeeping(T_F) [true]
% persistent (T F) [false]
% - Refer to Agent Library Reference Manual for details on Permissions
% and Params.
% - (®®DLM) This might be the place to check the validity of solvables,
% such as using only built-ins in tests. Also, check for dependencies
% between solvables; e.g., when persistent(false) is there,
% bookkeeping(true) must also be there.
%%
icl_ConvertSolvables(ShorthandSolvables 1 StandardSolvables) :-

var(StandardSolvables)1
! I

icl_standardize_solvables(ShorthandSolvables 1 StandardSolvables).
icl_ConvertSolvables(ShorthandSolvableS 1 StandardSolvables) :

icl_readable_solvables(StandardSolvables1 ShorthandSolvables).

% icl_standardize_solvables(+ShorthandSolvables,
% -StandardSolvables) .

icl standardize solvables ([] 1 []).

icl=standardize=solvables([Shorthand I RestSH] 1 [Standard
icl_standardize_solvable(Shorthand, Standard),
icl_standardize_solvables(RestSH, RestStan).

RestStan])

% icl_standardize_solvable(+Shorthand1 -standard).
icl_standardize_solvable(solvable((Goal :-Test), Params, Perms), Standard)

! I

append([test(Test)], Params, NewParams),
icl_standardize_solvable(solvable(Goal, NewParams, Perms), Standard).

icl standardize_solvable(solvable((Goal :-Test), Params), Standard) :-
I
• I

icl_standardize_solvable(solvable(Goal, [test(Test) I Params], []),
Standard).

icl_standardize_solvable(solvable((Goal :-Test)), Standard) :-
! I

icl_standardize_solvable(solvable(Goal, [test(Test)], []), Standard).
icl_standardize_solvable((Goal :-Test), Standard) :-

! I

icl_standardize_solvable(solvable(Goal, [test(Test)], []), Standard).

16

Page 217 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4346

icl_standardize_solvable(solvable(Goal, Params, Perms),
solvable(Goal, NewParams, NewPerms))

! I

icl_standardize_params(Params, false, NewParams),
icl_standardize_perms(Perms, false, NewPerms).

icl_standardize_solvable(solvable(Goal, Params),
solvable(Goal, NewParams, [])) :-

! I

icl_standardize_params(Params, false, NewParams).
icl_standardize_solvable(solvable(Goal), solvable(Goal, [], [])) ! .

icl_standardize_solvable(Goal, solvable(Goal, [], [])) :- ! .

% icl_readable_solvables(+StandardSolvables,
% -ShorthandSolvables) .
% This is provided for use in "pretty-printing" solvables, in trace
% messages, etc.

icl readable solvables ([], []).
icl=readable=solvables([Standard I RestStan], [Shorthand I RestSh))

icl_readable_solvable(Standard, Shorthand),
icl_readable_solvables(RestStan, RestSh).

% icl readable solvable(+Standard, -Shorthand).
icl readable_solvable(solvable(Goal, [), [)),Goal) :- !.

icl_readable_solvable(solvable(Goal, Params, []), solvable(Goal, Params)) ! .
icl readable solvable(solvable(Goal, Params, Perms),

- - solvable(Goal, Params, Perms)) :- J.

%%
%name: icl minimally instantiate solvables(+ShorthandSolvables,
% - - - -MinimalSolvables).
% purpose: Convert from shorthand (or standard form) to minimally instantiated
% solvables list.
% remarks: - This is special-purpose. It's used to massage a list of solvables
% that are to be UNdeclared, to make sure each of them will unify
% with some existing solvable. Perms and Params are completely
% ignored in the unification; only the Goal is relevant. So each
% minimally instantiated solvable is simply solvable(Goal, _,) .
% Note that "shorthand" means "anything goes" so shorthand
% solvables are a superset of standard solvables.
%%

% icl_minimally_instantiate_solvables(+ShorthandSolvables,
% -solvables) .

icl_minimally_instantiate_solvables([], []).
icl_minimally_instantiate_solvables([Shorthand I RestSH],

[Minimal I RestMin]) :-
icl minimally instantiate solvable(Shorthand, Minimal),
icl=minimally=instantiate=solvables(RestSH, RestMin).

% icl minimally instantiate solvable(+Shorthand, -Minimal).
icl_minimally_instantiate_solvable(solvable((Goal _Test), Params, Perms),

Minimal)
! ,
icl_minimally_instantiate_solvable(solvable(Goal, Params, Perms),

Minimal).
icl_minimally_instantiate_solvable(solvable((Goal _Test), Params),

Minimal)

17

Page 218 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4347

! I

icl minimally instantiate solvable(solvable(Goal, Params, [)), Minimal).
icl_minimally_instantiate_sol~able(solvable((Goal :-_Test)), Minimal)

! I

icl_minimally_instantiate_solvable(solvable(Goal, [), [)), Minimal).
icl_minimally_instantiate_solvable((Goal :-_Test), Minimal)

! 1

icl_minimally_instantiate_solvable(solvable(Goal, [), [)), Minimal).
icl_minimally_instantiate_solvable(solvable(Goal, _Params, _Perms),

solvable(Goal,))
! .

icl_minimally_instantiate_solvable(solvable(Goal, _Params),
solvable (Goal,))

! .
icl minimally instantiate solvable(solvable(Goal), solvable(Goal,)) ! .

icl=minimally=instantiate=solvable(Goal, solvable(Goal, _, _)) !.

%%
%name: oaa_goal_matches_solvables(+Goal, +Solvables,
% -RealGoal, -MatchedSolvable).
% purpose: Determine whether a call to Goal is handled by the agent with
% these Solvables.
% arguments:
% Goal must be non-compound (basic) to match: no address, no params,
% no subgoals.
% - Solvables must be in standard form.
% - RealGoal is what should actually be called, after taking synonyms
% into account.
% - MatchedSolvable is the solvable record corresponding to RealGoal.
% remarks:
% - A solvable's params may contain a single test, but it can
% be compound:
% solvable (g (X), [test ((X > 1, X < 10))), [...)) .
% Tests should contain only prolog builtins.
% Any solvable can be a synonym of another solvable (including a
% synonym of a synonym), but eventually there must be a non-synonym
% solvable. Synonyms must be used with care. If predicate A
% is synonymed to predicate B, there must be a solvable for clause B,
% for A to be usable.
% When a predicate A is synonymed to predicate B, all other params
% and all permissions associated with A are ignored.
% Uses would_unify (and \+ \+) so that any variables in the goal are
% not bound by the solvable, thereby unnecessarily constraining query
% I forget why: I think it was because we had some problems
% matching solutions coming back. However, this has an unusual
% side effect: if your solvable is t(6) and your query is t(X),
% the query arrives at the agent as t(X), not t(6), which might
% be unexpected. Look into this more someday ...
% However, when Goal is a synonym, variables in the synonym param DO
% get unified correctly.
%%
oaa_goal_matches_solvables(Goal, Solvables, RealGoal, RealMatched)

oaa_built_in_solvables(Builtins),
append(Builtins, Solvables, AllSolvables),
oaa_goal_in_solvables(Goal, AllSolvables, Matched),
Matched = solvable(, Params,) ,

18

Page 219 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4348

% See if Goal is a synonym predicate
(icl_GetParamValue(synonym(Goal, SynGoal), Params) ->

oaa_goal_matches_solvables(SynGoal, Solvables, RealGoal, RealMatched)
otherwise >

) '
! .

RealGoal = Goal,
RealMatched = Matched

%%
%name: oaa goal in solvables(+Goal, +Solvables, -MatchedSolvable).
% purpose: Determine whether a call to Goal is handled by the agent with
% these Solvables.
% purpose: Determine whether Goal appears in Solvables, with
% appropriate Params and Perms for it to be called.
% arguments:
% - Goal must be non-compound (basic) to match: no address, no params,
% no subgoals.
% Solvables must be in standard form.
% remarks:
% - Should not be called directly; only by oaa_goal_matches_solvables.
%%
oaa_goal_in_solvables(Goal, [solvable(Gl,Params,Perms) I _Rest],

solvable (Gl, Params, Perms)) :.
would_unify(Goal, Gl),

icl_GetParamValue(synonym(Goal, _RealGoal), Params),
! .

oaa goal in solvables(Goal, [solvable(Gl,Params,Perms) I _Rest],
- - - solvable(Gl,Params,Perms))

would_unify(Goal, Gl),
icl_GetPermValue(call(true), Perms),
(icl GetParamValue(test(T), Params) ->

\~ \+ oaa_Interpret ((Goal == Gl, T), [])
otherwise >

) '
! •

true

oaa_goal_in_solvables(Goal, [_!Rest], Matched) :
oaa_goal_in_solvables(Goal, Rest, Matched).

%%
%name: oaa_data_matches_solvables(+Clause, +Solvables, +Perm
% -RealClause, -MatchedSolvable).
% purpose: Determine whether Clause can be read or written by the agent with
% these Solvables, and return the "real" form of the clause that
% takes synonyms into account.
% arguments:
% - Clause must be non-compound (basic) to match: no address, no params,
% no subClauses.
% - Solvables must be in standard form.
% Perm is 'read' or 'write'.
% - RealClause is what should actually be used (asserted, retracted,
% replaced) .
% - MatchedSolvable is the solvable record corresponding to RealClause.
% remarks:

19

Page 220 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4349

% "Writing" means making an assertion.
% "Reading" is different than "calling". "Reading" is retrieving the
% definition clauses of a predicate (including the bodies, if any).
% Reading is not currently supported by any library procedures.
% Any solvable can be a synonym of another solvable (including a
% synonym of a synonym) , but eventually there must be a non-synonym
% solvable. Synonyms must be used with care. If predicate A
% is synonymed to predicate B, there must be a solvable for clause B1

% for A to be usable.
% When a predicate A is synonymed to predicate B, all other params
% and all permissions associated with A are ignored.
%%
oaa_data_matches_solvables(Clause 1 Solvables, Perm, Rea1Clause 1 RealMatched) :

oaa_built_in_solvables(Builtins),
append(Builtins 1 Solvables, AllSolvables),
oaa_data_in_solvables(Clause, AllSolvables, Perm, Matched) 1

Matched= solvable(, Params,) ,
(Clause = (Head Body) ->

) I

true
otherwise >
Head = Clause

% See if Clause is a synonym predicate
(icl_GetParamValue(synonym(Head 1 SynHead), Params) ->

(Clause = (Head :- Body) ->

) I

! .

) I

SynClause = (SynHead Body)
otherwise ->

SynClause = SynHead

oaa_data_matches_solvables(SynClause, Solvables, Perm,
Rea1Clause 1 RealMatched)

otherwise ->
RealClause = Clause,

RealMatched = Matched

%%
%name: oaa data in solvables(+Clause, +Solvables, +Perm, -MatchedSolvable).
% purpose: Determine whether (the Head of) Clause appears in Solvables, with
% appropriate Params and Perms for it to be read or written.
% arguments:
% - Clause must be non-compound (basic) to match: no address, no params,
% no subClauses.
% - Solvables must be in standard form.
% remarks:
% - Should not be called directly; only by oaa_data_matches_solvables.
%%
oaa_data_in_solvables(Clause, [solvable(Gl 1 Params,Perms) I _Rest], _Perm,

) I

solvable(Gl,Params,Perms)) :-
(Clause = (Head _Body) ->

true
otherwise >

Head = Clause

would_unify(Head, Gl) 1

icl_GetParamValue(synonym(Head, _RealHead), Params),

20

Page 221 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4350

% ®®DLM: OK, so it's a synonym, but shouldn't we check
% the permissions and type(data) for the referenced solvable?
! .

oaa_data_in_solvables(Clause, [solvable(Gl,Params,Perms) I _Rest], Perm,
solvable(Gl,Params,Perms))

icl_GetParamValue(type(data), Params),
(Clause = (Head :-_Body) ->

icl_GetParamValue(rules_ok(true), Params)
otherwise ->

Head = Clause
) I

would_unify(Head, Gl),
(Perm == write >

icl_GetPermValue(write(true), Perms)
otherwise ->

icl_GetPermValue(call(true), Perms)
) I

! •

oaa_data_in_solvables(Clause, [_!Rest], Perm, Matched)
oaa_data_in_solvables(Clause, Rest, Perm, Matched).

%***
% Retrieving and managing events
%***

%%
% name: oaa_MainLoop
% purpose: The main event loop for the application.
% Reads an event, executes (interprets) it,
% checks on_receive triggers for the event,
% checks any application-dependent triggers,
%%

oaa_MainLoop(ShouldPrint)

oaa_Ready(ShouldPrint),

repeat,
oaa_GetEvent(Event, Params, 0),
oaa ProcessEvent(Event, Params),

fail. -

%%
% name: oaa_ProcessEvent
% purpose: Interprets an incoming event
% - For a timeout, checks task triggers and calls user's idle procedure
% - Otherwise, oaa Interprets the event, checks on receive comm
% triggers, and then checks task triggers. -
%%
oaa_ProcessEvent(timeout, Params) !,

oaa_CheckTriggers(task, _, _), !,
oaa_call_callback(app_idle, _, []).

oaa_ProcessEvent(Event, Params)

21

Page 222 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4351

(oaa_Interpret(Event, Params) ->true I true) ,
oaa_CheckTriggers(task,), ! .

%%
% name: oaa SetTimeout
% purpose: Sets the timeout value used by oaa_GetEvent
%%
oaa_SetTimeout(NSecs)

% Make sure NSecs is valid number
number(NSecs),
(NSecs < 0 ->

TimeOut 0
TimeOut = NSecs) ,

oaa_TraceMsg('-nSetting event timeout to ''-q' '.-n', [TimeOut]),
on_exception(_,retractall(oaa_timeout(_)), true),
assert(oaa_timeout(TimeOut)).

%%
%name: oaa_GetEvent
% purpose: Return the next event to execute
% remarks:
% - if a oaa_timeout(Secs) is set to a positive real number by
% oaa_SetTimeout, wait Sees for an event.
% If none arrives in this time, return Event = 'timeout'
% - Reads ALL events available on communication stream, sorts the events
% according to priority, chooses the next event to execute,
% and then saves the rest for next time oaa_GetEvent is called.
% - The communication stream is read every time oaa_GetEvent is called, even
% if there are already saved events (a new one might have a higher
% priority!)
% - If saved events exist, return immediately (timeout not considered).
%%
oaa_GetEvent(Event, Params, LowestPriority)

% see if previously saved events to process
(retract(oaa_event_buffer(SavedEvents)) ->

) I

true
otherwise ->

SavedEvents []

% If at least one event can be found with an appropriate priority
% from among the saved events, no timeout needed flush tcp
% buffer, and read_all available
(oaa_choose_event(LowestPriority, SavedEvents, _OneEvent, _Remainder) ->

TimeoutSecs = 0.01

on_exception(_,oaa_timeout(TimeoutSecs) ,TimeoutSecs=O)

TimeoutSecs=O
) I

oaa_read_all_events(TimeoutSecs, MoreEvents, FlushPriority),

% if one of the new events has a flush in it, see if it

22

Page 223 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4352

% flushes any of the saved events
% note: MoreEvents have already been flushed by FlushPriority
oaa_flush_events{SavedEvents, FlushPriority, RemainingSavedEvents),

% These are the events we've read so far and haven't executed yet ...
append{RemainingSavedEvents, MoreEvents, EventList),

{oaa_sort_and_get_event{EventList, LowestPriority, Event, Params) ->

% we are able to find an appropriate event from list
% The event will be returned, so fire triggers on it

oaa_CheckTriggers{comm, event{Event, Params), receive)

% no good event found, return timeout
Event timeout,
Params = []

) I

% This cut is essential to avoid faulty behavior {DLM)
! .

%%
% name: oaa_sort_and_get_event
% purpose: Sort raw events by priority, choose the highest priority event
% or Firstin if equal priority, extract event data and sender,
% and store the rest of events
% remarks:
% The chosen event must be of HIGHER priority than LowestPriority, and
% oaa_sort_and_get_event can fail if no appropriate event is found
%%
oaa_sort_and_get_event{EventList, LowestPriority, Event, Params)

samsort{oaa_priority_compare, EventList, SortedList),
oaa_choose_event{LowestPriority, SortedList, RawEvent, Remainder),
oaa_extract_event{RawEvent, Event, Params),
{Remainder = [] ;
assert(oaa_event_buffer(Remainder))),

! .

oaa_priority_compare(El, E2) :
oaa_extract_event_param(El,
oaa_extract_event_param(E2,
!, Pl >= P2.

, priority{Pl)),
, priority(P2)),

%%
% name: oaa choose event - -
% purpose: Extracts the first event from a list which has a HIGHER priority
% than the required lowest. Fails if none found.
%%
oaa_choose_event{LowestPriority, [EventjRemainder], Event, Remainder) :-

oaa_extract_event_param{Event, , priority(P)),
LowestPriority < P,
! .

oaa_choose_event(LowestPriority, [EjRest], Event, [EjRest2]) :
oaa_choose_event(LowestPriority, Rest, Event, Rest2).

%%

23

Page 224 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4353

% name: oaa read all events
% purpose: Flush the co;munication event queue, reading ALL available events and
% returning a list of them, or empty list if none available.
% remarks:
% Events are retrieved in raw {unextracted) form.
% - We check to make sure the event is Validated {security hook)
% before returning it
% - We check to see if the event is flushed by a later event.
% If so, we notify event sender of the flush and we don't return the
% event.
%%
oaa read all events{TimeOut, Events, FlushPriority)

- oa~_select_event{TimeOut, E), !,

{E == timeout ->

) .

Events = [],
FlushPriority = 0 % lowest event priority: don't flush events

% read one event, so read all the rest
oaa_read_all_events{O.OOOl, RestEvents, RestFlushPriority),

% check if read Event is acceptable {security hook)
{oaa_ValidateEvent{E,OkEvent) ->

oaa_ComTraceMsg{'-n[COM received] :-n -q-n', [OkEvent]),

% get event's priority
oaa_extract_event_param{OkEvent, , priority{P)),

% if less than some higher priority flush event, discard event
% and perhaps notify sender
{P < RestFlushPriority >

I

% event will be removed,
oaa flush notification{OkEvent),
FlushPriority RestFlushPriority,
Events = RestEvents

% keep event: not flushed
Events = [OkEventiRestEvents],

% see if this event adds a flush:
% if so record new flush priority

{oaa_event_param{OkEvent, flush_events{true)) >
FlushPriority P

I FlushPriority = RestFlushPriority)
)

% Not validated, skip event
I Events = RestEvents)

%%
% name: oaa_ValidateEvent
% purpose: Check that an incoming lowlevel event should be processed.
% This is the place to put security checks on events.
% The default behavior defined by the library can be made more
% stringent by individual agents using the callback oaa_AppValidateEvent
% remarks:

24

Page 225 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4354

% oaa_ValidateEvent has the right to modify the incoming event,
% or refuse it altogether by failing.
%%
oaa ValidateEvent(E,OkEvent)

- % if oaa AppValidateEvent is defined, use it.
predicate_property(user:oaa_AppValidateProperty(_,_),) ,
! I

user:oaa_AppValidateProperty(E, OkEvent).
% currently, no security checks are performed
oaa_ValidateEvent(OkEvent,OkEvent).

%%
% name: oaa flush events - -
% purpose: Flushes any events with a lower priority than the FlushPriority
%%
oaa flush events ([], FlushPriority, []).
oaa=flush=events([EventiRestEvents], FlushPriority, RemainingEvents)

oaa_flush_events(RestEvents, FlushPriority, RestSaved),

% get event's priority
oaa_extract_event_param(Event, _, priority(P)),

% if lower priority than we are flushing, notify and remove
(P < FlushPriority ->

oaa_flush_notification(Event),
RemainingEvents RestSaved

RemainingEvents [EventiRestSaved]
) .

%%
% name: oaa_flush_notification
% purpose: Given a raw event, grabs its real event and looks up whether
% a notification should be sent out regarding the event's
% cancellation due to a flush.
%%
oaa_flush_notification(RawEvent) :-

oaa_extract_event(RawEvent, Event, Params),
(oaa_get_flush_notify(Event, NotifyEvent) ->

oaa PostEvent(NotifyEvent, [])
I true), ! .

%%
% name: oaa_get_flush_notify
% purpose: Records a list of events which require a return notification
% if the event is flushed.
% remarks:
% currently, only the ev solve() event returns a message;
% all other events are flushed without notification
%%
% ®®Additional entries needed here:
oaa_get_flush_notify(ev_solve(ID, Goal, Params),

ev_solved(ID, FromMe, Goal, Params, []))

25

Page 226 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4355

(icl_GetParamValue(reply(none), Params) ->

fail
I oaa_Id(FromMe)).

%%
% name: oaa_select_event
% purpose: If a positive timeout is defined, wait N seconds for an event
% to arrive
% Otherwise block-wait until an event arrives.
% remarks: IMPORTANT: Connected/1 gets special handling, because we want
% the connection ID and oaa ID to be assigned immediately.
% Otherwise, oaa_translate_incoming_event and oaa_unwrap_event
% won't always work properly for subsequent events from the
% new connection (or would have to be more complicated) .
%%
oaa_select_event(TimeOut, Event)

com:com_SelectEvent(TimeOut, InEvent),
(InEvent = connected() ->

oaa_ProcessEvent(InEvent, []),
oaa_select_event(Timeout, Event)

otherwise ->

) .
oaa_translate_incoming_event(InEvent, TranslatedEvent),
oaa_unwrap_event(TranslatedEvent, _Connection, Event)

%%
%name: oaa_unwrap_event(+TranslatedEvent, -Connection, -Event).
% arguments: TranslatedEvent: An event from another agent, which has already
% been translated for version compatibility, if necessary.
% Event: An event term in our standard internal format, as required
% by all other library procedures.
% Connection: The CONNECTION of the immediate agent
% from which this message came (note that an agent's CONNECTION
% can be different than its ID) .
% purpose: Remove an event term from its communications wrapper (if any),
% and returns it in our standard internal form:
% 'timeout' OR event(Content, Params).
%%

%timeout is the ONLY event that doesn't get embedded in event/2:
oaa_unwrap_event(timeout, unknown, timeout)

! .

oaa unwrap event(term(Connection, event(Content,Params)), Connectionid,
- - event(Content, NewParams))

! '

) ,

com:com_Getinfo(Connectionid, connection(Connection)) ->
true
otherwise ->
format(

'-w: incoming event from an unrecognized connection (-w) :-n -w-n',
['INTERNAL ERROR', Connection, event(Content,Params)]),
Connectionid = unknown

(memberchk(from(_), Params) ->

NewParams [connection_id(Connectionid) I Params]
Content = ev_connected(InfoList),

26

Page 227 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4356

memberchk(fac_id(Id), InfoList) ->
NewParams = [from(Id), connection id(Connectionid) I Params]

I Connectionid = parent, -

) .

com:com Getinfo(Connectionid, fac id(Id)) ->
NewPa;ams = [from(Id), connection_id(Connectionid) Params]

com:com_Getinfo(Connectionid, oaa_id(Id)) ->

NewParams = [from(Id), connection_id(Connectionid) Params]
otherwise ->
% With current code, this should never happen. But I can
% imagine code changes that might need this (DLM 98/02/18):

NewParams = [from(unknown), connection_id(Connectionid) I Params]

% This handles connected/1, end_of_file/1, wakeup/1:
oaa_unwrap_event(Content, unknown, event(Content, [])).

%%
%name: oaa_translate_incoming_event(+InEvent, -OutEvent).
%purpose: Provides backwards compatibility by calling a hook
% (user:oaa_event_translation/7) that translates incoming events from agents
of
% other versions. Also allows for event differences based on language.
% The idea is to return an event with both format and contents that
% are appropriate for the agent receiving the event.
% remarks: user:oaa_event_translation/7 can be hard-coded, loaded at runtime,
% or whatever. If it's not present, we return the same event.
% Note that the translation hook is somewhat limited. It allows a single
% event to be translated to another single event, and with essentially
% no information about context. This inadequate or awkward for some cases.
% Those cases are handled using extra clauses of user:oaa_AppDoEvent (in
% translations.pl).

%%

% Special cases. There's no need to translate these. And, it could be
% problematical, because we don't yet know the language and version of
% the sender.
oaa_translate_incoming_event(term(Conn, event(Contents, Params)),

! .

Contents
Contents

term(Conn, event(Contents, Params)))
ev_connect() ;
ev_connected()) ,

oaa_translate_incoming_event(term(Connection, InEvent),
term(Connection, OutEvent))

current_predicate(oaa_event_translation,
user:oaa_event_translation(_,_,_,_,_,_,_)),

com:com_Getinfo(Connectionid, connection(Connection)) ->

) I

true
otherwise ->
true

% These assumptions may not always be right, but will
% nearly always get the desired results.

% :
ground(Connectionid),

27

Page 228 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4357

) ,

com:com_Getinfo(Connectionid, agent_version(PriorVersion)) ->
true

otherwise ->

PriorVersion = 2.1

(ground(Connectionid),
com:com_Getinfo(Connectionid, agent_language(PriorLanguage)) ->

) ,

true
otherwise ->

PriorLanguage = c

oaa LibraryVersion(MyVersion),
(MyVersion PriorVersion ; PriorLanguage prolog) ,
user:oaa_event_translation(PriorVersion, PriorLanguage, MyVersion, prolog,

Connection, InEvent, OutEvent),
! .

% This handles timeout/0, connected/1, end_of_file/1, wakeup/1.
% Also passes through any event for which there is no translation.
oaa_translate_incoming_event(Event, Event) ! .

%%
% name: oaa_extract_event
% purpose: Extract the content and parameters from an event term.
% remarks: Always succeeds.

·% The content part of the term is often (loosely) called the Event.
%%

oaa_extract_event(event(Content, Params), Content, Params)
! .

%%
% name: oaa_extract_event_param
% purpose: Extract the content and a parameter value from an event term.
% remarks: Always succeeds - unless you ask for a param that has no default
% value.
% The content part of the term is often (loosely) called the Event.
%%

oaa_extract_event_param(event(Content, Params), Content, Param)
icl_GetParamValue(Param, Params).

I . ,

%%
% name: oaa_event_param
% purpose: Extract a parameter from an event term.
% remarks: This FAILS if the parameter isn't present (unlike
% oaa_extract_event_param) .
%%

oaa_event_param(event(_Content, Params), Param) !,
memberchk(Param, Params).

%***
% Interpreting EVENTS
%***

28

Page 229 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4358

%%
%name: oaa_Interpret(+ICLExpression, +Params)
% purpose: Executes an incoming event
% remarks: Implements a simple meta-interpreter for executing complex goals.
% Agent goals are interpreted by oaa_exec_event().
%
%
%
%
%
%

The contents of Params will vary depending on context.
When oaa_Interpret is called on an incoming event, Params
will (usually) include from(Sender). Calls generated internally
may contain from(self). Additional params may
accumulate through recursive calls to oaa_Interpret.

%%
oaa_Interpret(Goal, _) var(Goal), !, fail. %How could this happen?
oaa_Interpret(true, _) :- ! •
oaa_Interpret (fail, _) :- ! , fail.
oaa Interpret (false,) :- ! , fail.
oaa=Interpret((\+ P) ,-Params) !, \+ oaa_Interpret(P, Params).
oaa_Interpret((P -> Q; _R), Params)

oaa_Interpret(P, Params), !, oaa_Interpret(Q, Params).
oaa_Interpret((_P -> _Q; R), Params) :- !, oaa_Interpret(R, Params).
oaa_Interpret((P > Q), Params) :- !, oaa_Interpret((P -> Q; fail), Params).
oaa_Interpret((X, Y), Params) :- !,

oaa_Interpret(X, Params), oaa_Interpret(Y, Params).
oaa_Interpret((X; Y), Params) :- !,

(oaa_Interpret(X, Params) ; oaa_Interpret(Y, Params)).
oaa_Interpret(findall(Var, Goal, All), Params) :- !,

findall(Var, oaa_Interpret(Goal, Params), All).
oaa_Interpret(P, Params) :- icl Builtin(P), !, call(P).
oaa_Interpret(X, Params) oaa_exec_event(X, Params).

%%
% name: oaa exec event - -
% purpose: Defines execution of events built into all agents
% remarks: Goals that can't be handled by oaa_exec_event are passed to the
% user-declared app_do_event callback, if present.
%%
% turn on trace
oaa exec event(ev trace on,

- abolish(oaa=trace/1),
assert(oaa_trace(on)),
format('-nTrace on.-n', []), ! .

% turn off trace
oaa exec event(ev trace off,

abolish(oaa=trace/1),
assert(oaa_trace(off)),
format (' -nTrace off. -n', []), ! .

% tcp level trace
oaa exec event(ev com trace on,

- abolish(oaa=com=trace/1),
assert(oaa_com_trace(on)),
format('-nCOMMUNICATION PROTOCOL trace on.-n', []), ! .

% tcp level trace

29

Page 230 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4359

oaa exec event(ev com trace off,
- ab;lish(oaa=com=tracefl),

assert(oaa_com_trace(off)),
format(1 -nCOMMUNICATION PROTOCOL trace off.-n 1

, []), !.

% turn on debug
oaa exec event(ev debug on,

- ab;lish(oaa-debugfl),
assert(oaa debug(on)),
format (' -nDebug on. -n 1 , []), ! .

% turn off debug
oaa exec event(ev debug off,

- ab;lish(oaa=debugfl),
assert(oaa_debug(off)),
format (1 -nDebug off. -n 1 , []) , ! •

% Set the timeout value
oaa exec event(ev set timeout(N),

- ab;lish(timeoutfl),
assert(timeout(N)),
format(1 -nTimeout set to -q.-n', [N]), ! .

% Notification that some other agent has disconnected. Currently, this applies
% only to peer client agents, and the arg. will always be a local ID.
oaa_exec_event(ev_agent_disconnected(LID),)

oaa_remove_data_owned_by(LID).

% quit to UNIX
oaa_exec_event(ev_halt,

format('-nDisconnecting ... -n', []),
com:com_Disconnect(parent),
(oaa_call_callback(app_done, [])
halt.

true) ,

oaa_exec_event(ev_update(ID, Mode, Clause, Params), EvParams)
oaa_Id(Agentid),
append(Params, EvParams, AllParams),
(Mode = add ->

Functor = oaa_add_data_local
Mode = remove ->

Functor = oaa remove data local - - -
Mode = replace >

Functor = oaa_replace_data_local
) I

Call= .. [Functor, Clause, AllParams],
(call(Call) ->

) I

Updaters = [Agentid]
otherwise ->

Updaters = []

(icl_GetParamValue(reply(none), AllParams) >true I
oaa_PostEvent(ev_updated(ID, Mode, Clause, Params, Updaters),

[])
) .

30

Page 231 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4360

% add or remove a local trigger
oaa exec event(ev update trigger(ID, Mode, Type,

- - - -Condition, Action, TrigParams) 1

Params)
oaa Id(Agentid) 1

append(TrigParams 1 Params, NewParams),
(Mode == add ->

) I

Functor = oaa_add_trigger_local
Mode == remove ->

Functor = oaa_remove_trigger_local

Call = .. [Functor, Type, Condition, Action, NewParams],
(call (Call) ->

) I

Updaters = [Agentid]
otherwise ->

Updaters = [)

(icl_GetParamValue(reply(none), Params) ->

true

) I

otherwise ->
oaa_PostEvent(ev_trigger_updated(ID, Mode, Type, Condition,

Action, TrigParams, Updaters),
[))

(Mode = add ->

I true
) .

oaa_Inform(trigger, 'trigger_added(-q,-q 1 -q,-q)-n',
[Type, Condition, Action, NewParams])

% When asked to solve a goal, see if you know how to solve
% it, then find all solutions. Send the solutions to the
% caller.
%
% The various params lists must be used with care. Searching different
% lists may be appropriate for different params, depending on their
% meanings. Another consideration is that Solve params and Goal params,
% as returned to the requesting agent, must unify with the original
% lists that came from the requesting agent.

oaa exec event(ev_solve(ID, Ful1Goal 1 SolveParams), Params)
oaa_class(leaf),

icl_GoalComponents(FullGoal, _, _, GoalParams),

% More "local" params take precedence, so they go to the
% beginning of the list:
append([SolveParams 1 Params) 1 InheritedParams),
append([Goa1Params 1 InheritedParams], AllParams) 1

% Assert context:
findall(context(C) 1 member(context(C), AllParams), Contexts) 1

asserta(oaa_current_contexts(ID, Contexts)),

oaa_TraceMsg('-n-nAttempting to solve:-n Goal:-q-n Params:-q-n',
[FullGoal, InheritedParams]),

findall(FullGoal,
oaa_solve_local(FullGoal, InheritedParams),

Solutions) 1

31

Page 232 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4361

oaa_TraceMsg('-nSolutions found for -q:-n
[FullGoal, Solutions]),

-q-n',

% If user has requested to delay the solution (oaaDelaySolution)
% save current userid, Goal and Params in delay table, to be
% sent back in an ev_solved() msg later {oaaReturnDelayedSolutions).

(retract(oaa_delay(ID, Userid)) ->

) I

assert(oaa_delay_table(ID, Userid, FullGoal, SolveParams, AllParams))

(icl_GetParamValue(reply(none), AllParams) -> true
(oaa_Id(FromKS) ; FromKS =unknown), !,

oaa_PostEvent(ev_solved{ID, FromKS, FullGoal, SolveParams,
Solutions), [])

% Retract context:
retractall(oaa current_contexts(ID,) .

% This is for subgoals (of goals passed in solve events) that have
% Params. Subgoals with no params will fall through to the next clause.
oaa_exec_event(Goal: :GoalParams, Params)

oaa_solve_local(Goal: :GoalParams, Params).

% call user events. Must not have a cut, to return all solutions.
oaa_exec_event(Event, Params)

oaa turn on debug,
(oaa_solvables(Solvables) ->true I otherwise -> Solvables = [])I
((oaa_goal_matches_solvables(Event, Solvables, Goal, Matched),

) I

! I

) I

Matched= solvable(_, SolvParams, _),
(icl_GetParamValue(callback(CB), SolvParams)
oaa_callback(app_do_event, CB)))

(oaa_callback{app_do_event, CB),
Goal = Event)

CB = Module:Functor ->
true

otherwise ->
Module = user,
Functor = CB

Call = .. [Functor, Goal, Params],
on_exception{E,

Module:Call,
(oaa_TraceMsg{'WARNING (agent.pl): Exception raised thru callback

handler (-w) :-n -q-n',
[Functor, E]) ,

fail)) ,
oaa_turn_off_debug.

%What to do about test(TEST)?
% if test(TEST) is listed in arguments, solve

32

Page 233 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4362

% it locally.
passes tests(Params)

oaa class(leaf),
icl=GetParamValue(test(Test), Params),
I
• I

oaa_Solve(Test, [level_limit(O)]).
% With compound goals, we also want to allow tests on the facilitator.
% @@DLM: Is this the best way?
passes_tests(Params) :-

(oaa class(root) ;oaa class(node)),
icl_GetParamValue(te;t(Test), Params),
! I

oaa_solve_local (Test, []) .
passes_tests(_Params)

true.

%%
% name: oaa_DelaySolution
% purpose: Requests that the current AppDoEvent not return solutions to the
% current goal until a later time.
% inputs:
% - Id: an Id which will be used to later match solutions to request
%%
oaa_DelaySolution(Id) :-

oaa_current_contexts(Goalid, _Contexts), !,
assert(oaa_delay(Goalid, Id)).

%%
% name: oaa_ReturnDelayedSolutions
% purpose: Returns the list of solutions for a delayed request
% inputs:
% - Id: an Id referring to a previously saved oaa_DelaySolution
%%
oaa_ReturnDelayedSolutions(Id, SolutionList) :-

(retract(oaa delay table(Goalid, Id, Goal, SolveParams,AllParams)) ->

(icl_GetParamValue(reply(none), AllParams) > true I
(oaa_Id(FromKS) ; FromKS =unknown), !,
% make sure all Solutions unify with original goal
findall(Goal, member(Goal,SolutionList), Solutions),

oaa PostEvent(ev solved(Goalid, FromKS, Goal, SolveParams,
- -Solutions),[])

true) .

%%
% name: oaa_AddDelayedContextParams
% purpose: When a goal is delayed using oaa_DelaySolution(), incoming context
% parameters from the original request can not be automatically
% concatenated to outgoing oaa Solve requests -- since an agent can
% manage multiple delayed goal; at the same time, liboaa doesn't
% know the correct context for the outgoing oaa_Solve without explicit
% direction from the programmer. Hence, an agent programmer who
% wants to call oaa_Solve during a delayed goal is expected to
% use this function to add the saved contexts for the delayed goal to

33

Page 234 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4363

% his/her outgoing oaa_Solve parameters.
% inputs:
% - Id: an Id which will be used to later match solutions to request
%
%
%
%
%
%
%
%
%

- Params: Parameters for solve goal
- NewParams: Params augmented by saved contexts.

example:
oaa_AppDoEvent(goal(_X),_Params) oaa_DelayEvent(a_goal).
oaa_AppDoEvent(temp_event(Y) ,_Params)

oaa_AddDelayedContextParams(a_goal, [], P),
oaa_Solve(sub_goal(Y), P).

oaa AppDoEvent(final event(S), Params)
- oaa_ReturnDelayedSolutions(a_goal, [goal(S)]).

%
%%
oaa_AddDelayedContextParams(Id, Params, NewParams)

retract(oaa_delay_table(_Goalid, Id, _Goal, _SolveParams, AllParams)),
findall(context(C), member(context(C), AllParams), Contexts),
append(Contexts, Params, NewParams).

%***
% Agent-Facilitator communication
%***

%%
% name: oaa PostEvent
% purpose: Sends a low-level event to another agent
% remarks:
% Should NOT be used before there's a connection established for
% the destination (such as when a client sends ev connect to its
% facilitator). In such unusual cases, use com SendData directly.
% For application developers, this just means don't call
% oaa_PostEvent until after you've called oaa_Register.
% Parameters may include:
% - priority(P):
% - address(A): specify address of specific server or client agent
% A must be an agent ID, not a name. If caller is a client agent,
% the only meaningful address is that of the client's facilitator.
% - from(KS): where the event originally originated
% IMPORTANT: there may be a different address INSIDE the event;
% these should not be confused!
%%
oaa_PostEvent(Contents, Params)

% see if any params of interest
(memberchk(priority(_P), Params);

memberchk(from(_Agent), Params) ->

SendEvent event(Contents, Params)

SendEvent event(Contents, [])
) I

% find destination: if none, dest = server
(memberchk(address(Dest), Params) ->

true

34

Page 235 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4364

Dest parent
) I

icl_true_id(Dest 1 Destid) 1

oaa_translate_outgoing_event(SendEvent 1 Destid 1 TransEvent) I

oaa_ComTraceMsg('-n[COM send to -q] :-n -q-n' I [Dest I TransEvent]),

oaa_convert_id_to_comm_id(Destid, Commid),
% send event to destination
com:com_SendData(Commid, TransEvent),

% Use SendEvent here, becuase triggers always contain event/2
% to unify with.

oaa_CheckTriggers(comm, SendEvent, send).

oaa_convert_id_to_comm_id(Id, Cid)
com:com_Getinfo(Cid, fac_id(Id)), ! .

oaa_convert_id_to_comm_id(Id, Cid)
com:com_Getinfo(Cid, oaa_id(Id)), ! .

%%
%name: oaa translate outgoing event(+Event, +Destid, -NewEvent).
% purpose: Pro~ides back~ards compatibility by calling a hook
% (user:oaa_event_translation/7) that translates outgoing events to agents of
% other versions. Also allows for event differences based on language.
% remarks: user:oaa_event_translation/7 can be hard-coded, loaded at runtime,
% or whatever. If it's not present, we return the same event.
% See also comments for oaa_translate_incoming_event.
%%

% Special cases. There's no need to translate these. And, it could be
%problematical, because we don't yet know the language and version of
% the receiver. See comments for oaa_unwrap_event.
oaa_translate_outgoing_event(event(Contents, Params), _Destid,

! •

event(Contents, Params))
Contents ev_connect(_) ;
Contents ev_connected()),

oaa_translate_outgoing_event(event(Content, Params), Destid, TransEvent)
current_predicate(oaa_event_translation,

user:oaa_event_translation(_,_,_,_,_,_,_)),
% These assumptions may not always be right, but will

% nearly always get the desired results:
com:com_Getinfo(Connection, oaa_id(Destid)),
(com:com_Getinfo(Connection, agent_version(DestVersion)) ->

true
otherwise ->

DestVersion = 2.1
) I

(com:com_Getinfo(Connection, agent_language(DestLanguage)) ->

true
otherwise ->

DestLanguage c

35

Page 236 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4365

) I

oaa_LibraryVersion{MyVersion),
user:oaa_event_translation{MyVersion, prolog, DestVersion, DestLanguage,

Connection, event(Content, Params), TransEvent),
! .

oaa_translate_outgoing_event{Event, _, Event).

%%
% name: oaa Version
% purpose: Lookup the language and library version number for an agent
% remarks: The default version {if unspecified) is 1.0
%%

oaa_Version(Agentid, Language, Version)
icl_true_id(Agentid, Trueid),
% Asking for my version:
oaa_Id(Trueid),
Language = prolog,
oaa_LibraryVersion(Version),
! •

oaa_Version(Agentid, Language, Version)
icl_true_id(Agentid, Trueid),
(com:com_Getinfo(Commid, oaa_id(Trueid))

com:com_Getinfo(Commid, fac_id(Trueid))) ,
com:com_Getinfo(Commid, agent_language(Language)) ->

) I

true
otherwise ->

Language = unknown

(com:com_Getinfo(Commid, agent_version(Version)) ->

) I

! .

true
otherwise ->

Version = 1.0

oaa_Version(Agentid, Language, Version) :
(oaa_class(leaf) ; oaa class(node)),
icl true id(Agentid, Trueid),

%The-use of caching here could be dangerous - unless we install a
% mechanism for automatic updating of the cache.

oaa Solve(agent version(Trueid, Language, Version),
- [address(parent)J),

! •
oaa_Version(, prolog, 1.0).

%%
% name: oaa CanSolve
% purpose: Asks the Facilitator for a list of agents which could solve a Goal
%%
oaa_CanSolve(Goal,KSList) :

oaa_Solve(can_solve(Goal, KSList), [address(parent))).

%%
% name: oaa_Ping

36

Page 237 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4366

%purpose: Tests whether a given agent is currently responding to requests.
% inputs:
% AgentAddr: address of agent to test
% TimeLimit: Time limit (in seconds) for how long to wait for a response
% outputs:
% TotalResponseTime for round trip (in seconds)
% remarks: Fails if a ping is not returned in TimeLimit amount of time
%%
oaa_Ping(AgentAddr, TimeLimit, TotalResponseTime)

ground(AgentAddr) 1

number(TimeLimit),
TimeLimit >= 0,
tcp_now(Before),
oaa_Solve(true, [address(AgentAddr), time_llmit(TimeLimit)]),
tcp_now(After),
tcp_time_plus(Before, TotalResponseTimeMs, After),
TotalResponseTime is TotalResponseTimeMs I 1000.

%***
% Declaring Solvables
%***

%%
%name: oaa_Declare(+Solvables, +CommonPermissions, +CommonParams, +Params,
% -DeclaredSolvables)
% purpose: Declare solvables for a client or facilitator, and inform the
% parent if appropriate.
% arguments:
% Solvables: A single solvable or a list of solvables, in shorthand or
% standard form.
% CommonPermissions: Permissions to be distributed to each solvable in
% Solvables. This is purely for programming convenience. See
% comments for icl_ConvertSolvables for possible values, and
% solvables documentation for their meanings.
% CommonParams: Params to be distributed to each solvable in Solvables.
% This is purely for programming convenience. See comments for
% icl ConvertSolvables for possible values, and solvables
% doc~mentation for their meanings.
% Params:
% address(X): Where the solvable will exist. X may be either •self'
% or 'parent' (or the appropriate local ids). Default: 'self'.
% if_exists(OverwriteOrAppend): What to do when declaring solvables
% for self, and some already exist. Default: append.
% DeclaredSolvables: Returns a list, in standard form, of all solvables
% successfully declared.
% remarks:
% - Any agent can declare solvables for itself. In addition, a client can
% ask its facilitator to declare solvables. Client-requested facilitator
% solvables will automatically acquire permission write(true) 1 and params
% type(data), rules_ok(false), private(false), and bookkeeping(true).
% - If called by a leaf or node agent, assumes agent is already registered
% with a parent facilitator.
% - Predicates can only be declared once. Changing an existing
% predicate definition should be done with oaa Redeclare. However,

37

Page 238 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4367

% a request to declare a predicate, which is already declared in
% precisely the same way, succeeds transparently.
% ®®Future params may include •num_context_args(N) '.
% - ®®Future solvable params may include 'shared'.
% - synonym predicates can have their own triggers, but share the clause
% database with their master table.
% - views and filters, as provided by the OAA Vl DB agent, are not
% supported as separate params, but the same functionality is available
% using other params.
% - @@Do we want client agents to request declarations on other client
% agents?
%%
oaa_Declare(Solvable, InitialCommonPerms, InitialCommonParams,

InitialParams, DeclaredSolvables)
is_list(Solvable) >
SolvableList Solvable
otherwise ->
SolvableList [Solvable]

.) ,
icl_ConvertSolvables(SolvableList, Solvables),
icl_standardize_perms(InitialCommonPerms, false, CommonPerms),
icl_standardize_params(InitialCommonParams, false, CommonParams),
icl_standardize_params(InitialParams, false, Params),
oaa_distribute_perms(Solvables, CommonPerms, Solvablesl),
oaa_distribute_params(Solvablesl, CommonParams, NewSolvables),
oaa_declare_aux(add, NewSolvables, Params, DeclaredSolvables).

%%
% name: oaa_DeclareData(+Solvables, +Params, -DeclaredSolvables)
% purpose: Declare data solvables for an agent.
%%
oaa_DeclareData(Solv, Params, DeclaredSolvs)

\+ is_list(Solv),
! ,
oaa_DeclareData([Solv], Params, DeclaredSolvs).

oaa_DeclareData(Solvs, Params, DeclaredSolvs)
% It's only necessary to specify the non-default perms and params.
CommonPerms = [write(true)],
CommonParams = [type(data)],
oaa_Declare(Solvs, CommonPerms, CommonParams, Params, DeclaredSolvs).

%%
%name: oaa Undeclare(+Solvables, +Params, -UndeclaredSolvables)
% purpose: Remove solvables from a client or facilitator, and inform the
% parent if appropriate.
% arguments:
% Solvables: A single solvable or a list of solvables, in shorthand or
% standard form. If a solvable is in standard form, however, ONLY
% the goal is considered in selecting the solvables to be removed
% (permissions and parameters are ignored) .
% Params:
% address(X): Where the solvable exists. X may be either 'self'
% or 'parent' (or the appropriate local ids). Default: •self'.
% DeclaredSolvables: Returns a list, in standard form, of all solvables
% successfully removed.

38

Page 239 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4368

% remarks:
% - If called by a leaf or node agent, assumes agent is already registered
% with a parent facilitator.
%%
oaa Undeclare(Solvable, InitialParams, UndeclaredSolvables)

-(is_list(Solvable) ->

SolvableList Solvable
otherwise >
SolvableList [Solvable]

) I

icl_minimally_instantiate_solvables(SolvableList, Solvables),
icl_standardize_params(InitialParams, false, Params),
oaa_declare_aux(remove, Solvables, Params, UndeclaredSolvables).

%%
% name: oaa Redeclare(+Solvable, +NewSolvable, +Params)
% purpose: Replace a solvable on a client or facilitator, and inform the
% parent if appropriate.
% arguments:
% Solvable: A single solvable, in shorthand or standard form. If in
% standard form, however, ONLY the goal is considered in selecting
% the solvable to be replaced (permissions and parameters are ignored) .
% NewSolvable: A single solvable, in shorthand or standard form.
% Params:
% address(X): Where the solvable exists. X may be either 'self'
% or 'parent' (or the appropriate local ids). Default: 'self'.
% remarks:
% - If called by a leaf or node agent, assumes agent is already registered
% with a parent facilitator.
% - FAILS if the operation cannot be completed.
%%
oaa Redeclare(InitialSolvable, InitialNewSolvable, InitialParams) :-

-icl_minimally_instantiate_solvables([InitialSolvable], [Solvable]),
icl_ConvertSolvables([InitialNewSolvable], [NewSolvable]),
icl_standardize_params(InitialParams, false, Params),
oaa_declare_aux(replace, Solvable, [with(NewSolvable) I Params],

RedeclaredSolvables),
RedeclaredSolvables [).

%%
% name: oaa_declare_aux(+Mode, +Solvables, +Params, -DeclaredSolvables)
% purpose: Common code for oaa_Declare, oaa_Undeclare, oaa_Redeclare.
% Mode: add, remove, or replace.
% Solvables: for Mode = add, a list of Solvables in standard form.
% for Mode = remove, a list of Solvables in "minimally instantiated"
% form.
% for Mode = replace, a list containing a single Solvable, in
% "minimally instantiated" form.
% Params: whatever is appropriate for oaa_Declare, _Undeclare, _Redeclare.
% Must already be in standard form.
% DeclaredSolvables: A list of all solvables successfully added (or removed
% or replaced), in standard form.
% remarks:
% A number of params and perms are required when requesting that a
% parent declare solvables (see comments for oaa_Declare) . We could ensure

39

Page 240 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4369

% their presence here, but it's not essential, because the facilitator will
% enforce this.
%%
% Here, a client is asking the facilitator to add, remove, or replace
% solvables.
oaa_declare_aux(Mode, Solvables, Params, DeclaredSolvables)

com:com_Getinfo(parent, fac_id(Parentid)),
memberchk(address([Parentid]), Params),
! I

% Send the request to the Facilitator
oaa_PostEvent(ev_post_declare(Mode, Solvables, Params), [)),
oaa_poll_until_event(

ev_reply_declared(Mode, Solvables, Params, DeclaredSolvables)).

%Leaf, node or root adding, removing or replacing its own solvables:
oaa_declare_aux(Mode, Solvables, Params, DeclaredSolvables)

oaa_Id (Me),
(memberchk(address(Addr), Params) ->

Addr = [Me]
true),

! ,

oaa_declare_local(Mode, Solvables, Params, DeclaredSolvables),

% If I'm a facilitator, I must also "register" my Solvables with myself.
% (If I'm a node, this will also register them with my parent.)
((\+ oaa_class(leaf), DeclaredSolvables \== [)) >

oaa_Name(MyName),
user:oaa_AppDoEvent(

ev_register_solvables(Mode, DeclaredSolvables, MyName, Params),
[from (Me)])

true
) ,

% If I'm a leaf, post public solvables to parent facilitator:
select_elements(DeclaredSolvables, oaa_public_solvable, PublicSolvables),
((oaa_class(leaf), PublicSolvables \== []) >

com:com_Getinfo(parent, oaa_name(MyNameC)),
oaa_PostEvent(

ev_register_solvables(Mode, PublicSolvables, MyNameC, Params),
[])

true) .

% Solvable must be in standard form.
oaa_public_solvable(solvable(_Solvable, Params, _Perms))

icl_GetParamValue(private(false), Params).

% Solvable must be in standard form.
oaa data solvable(solvable(Solvable, Params, _Perms))

-icl_GetParamValue(type(data), Params).

%%
%name: oaa declare local(+Mode, +Solvables, +Params, -DeclaredSolvables)
% purpose: Declare solvables for an agent.
% Mode: add, remove, or replace.
% Solvables: The form they're in depends on the mode. See oaa_declare_aux.

40

Page 241 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4370

% DeclaredSolvables: Returns those members of Solvables for which
% the operation was successful (more specifically, those that should
% be passed up to the parent in ev_register_solvables). Always returned
% in STANDARD FORM.
% Also see: comments for oaa_Declare, oaa_Undeclare, oaa_Redeclare.
% remarks:
%
%

- This performs the local processing needed by calls to oaa_Declare,
and by ev declare events.

- Solvables-and Params must already be in standard form. %
%
% ®®DLM: Could do more careful testing to be sure the solvables are
% all valid for the requested operation.
%%
oaa declare local(Mode, Solvable, Params, DeclaredSolvables)

-\+ is_list(Solvable),
! I

oaa declare local(Mode, [Solvable], Params, DeclaredSolvables).
oaa_declare_loc~l(add, InitialSolvables, Params, DeclaredSolvables)

(icl_GetParamValue(if_exists(overwrite), Params) ->
CurrentSolvables = []

I oaa_solvables(CurrentSolvables) >
true

I CurrentSolvables = []
) I

% This will eliminate those that unify with an already declared
% ®®DLM: Should do more, though: warnings.
solvables_to_be_added(InitialSolvables, CurrentSolvables,

DeclaredSolvables),

solvable.

% Make sure Quintus has the correct properties for each DB solvable.
select_elements(DeclaredSolvables, oaa_data_solvable, DBSolvables),
oaa_declare_for_prolog(DBSolvables),

append(CurrentSolvables, DeclaredSolvables, AllSolvables),
retractall(oaa_solvables(_)),
assert(oaa_solvables(AllSolvables)).

oaa_declare_local(remove, Solvables, _Params, Removedsolvables)
% See which ones are really declared:
(oaa_solvables(Current) ->true I Current= []) ,
solvables_to_be_removed(Solvables, Current, RemovedSolvables),
% Retract all clauses from data solvables:
select_elements(RemovedSolvables, oaa_data_solvable, DBSolvables),
oaa_remove_solvables_data(DBSolvables),
% Assert the new solvables list:
retractall(oaa_solvables(_)),
subtract(Current, RemovedSolvables, New),
assert(oaa_solvables(New)).

oaa declare local(replace, [Solvable], Params, [Solvable])
-memberchk(with(NewSolvable), Params),

% Make sure Solvable is really declared:
(oaa_solvables(Current) ->true I otherwise-> Current []),
memberchk(Solvable, Current),
I
• I

% If a data solvable, maybe retract all its clauses:
(oaa_data_solvable{Solvable) >

41

Page 242 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4371

oaa_remove_solvables_data([Solvable])
true

) I

% Assert the new solvables list:
retractall(oaa_solvables()) ,
replace_element(Solvable, Current, NewSolvable, New),
assert(oaa solvables(New)).

oaa_declare_local(replace, [Solvable], _Params, [])
Solvable = solvable(Goal,) ,
format('-w: Ignoring attempt to replace a non-existent solvable:-n -w-n',

['WARNING', Goal]).

%%
%name: oaa_distribute_params(+Solvables, +CommonParams, -NewSolvables).
% oaa_distribute_perms(+Solvables, +CommonPerms, -NewSolvables).
% purpose: Add CommonParams (CommonPerms) to the Params (Permissions} list of
% each solvable in Solvables.
% Solvables: a solvables list, in standard form.
% remarks: ®®Should warn when a solvables has a param that conflicts with
% CommonParams. Also, should have an arg that says which version of
% of the conflicting param to keep.
%%
oaa_distribute_params([], _CommonParams, []).
oaa_distribute_params([Solvable I Solvables], CommonParams,

[NewSolvable I NewSolvables]}
Solvable= solvable(Goal, Params, Perms),
union(Params, CommonParams, NewParams),
NewSolvable = solvable(Goal, NewParams, Perms),
oaa_distribute_params(Solvables, CommonParams, NewSolvables).

oaa_distribute_perms([], _CommonPerms, []).
oaa_distribute_perms([Solvable I Solvables], CommonPerms,

[NewSolvable I NewSolvables])
Solvable= solvable(Goal, Params, Perms),
union(Perms, CommonPerms, NewPerms),
NewSolvable = solvable(Goal, Params, NewPerms),
oaa_distribute_perms(Solvables, CommonPerms, NewSolvables).

%%
% name: solvables_to_be_added(+ProposedSolvs, +CurrentSolvs, -SolvsToBeAdded).
% purpose: Checks a list of solvables, to make sure they can legally be
% declared.
% ProposedSolvs: Must be in STANDARD FORM.
% CurrentSolvs: This agent's current solvables.
% SolvsToBeAdded: A subset of Proposedsolvs.
%%
solvables to be added([], Current, []).
solvables=to=be=added([Sol~able I Solvables], Current, OKSolvables)

Solvable= solvable(Goal,) ,
memberchk(solvable(Goal,) , Current),
! I

format('-w: Ignoring attempt to declare an already existing solvable:-n
-w-n',

['WARNING', Goal]),
solvables_to_be_added(Solvables, Current, OKSolvables).

42

Page 243 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4372

solvables_to_be_added([Solvable I Solvables], Current,
[Solvable I OKSolvables])

solvables_to_be_added(Solvables, Current, OKSolvables).

%%
% name: solvables_to_be_removed(+ProposedSolvs, +CurrentSolvs,
% -SolvsToBeRemoved) .
% purpose: Checks a list of solvables, to make sure they can legally be
% UNdeclared.
% ProposedSolvs: Must be in MINIMALLY INSTANTIATED FORM.
% CurrentSolvs: This agent's current solvables.
% SolvsToBeRemoved: A subset of ProposedSolvs, but returned in standard form,
% fully instantiated.
%%
solvables to be removed([], Current, []).
solvables=to=be=removed([Sol~able I Solvables), Current,

[Solvable I OKSolvables])
memberchk(Solvable, Current),
I
• I

solvables to be removed(Solvables, Current, OKSolvables).
solvables_to_be_removed([Solvable I Solvables], Current, OKSolvables)

Solvable solvable(Goal, __),
format('-w: Ignoring attempt to remove a non-existent solvable:-n -w-n',

['WARNING', Goal)),
solvables_to_be_removed(Solvables, Current, OKSolvables).

%***
% Updating Data Solvables
%***

%%
% name: oaa_AddData(+Clause, +Params).
% purpose: Add a new clause for a DATA solvable (locally and/or remotely)
% Params:
% address(X): a list including 'self', 'parent', and/or the
% addresses of other client agents. The default (no address)
% behavior is the same as with oaa_Solve.
% reflexive(T_F): Save as with oaa_Solve. Default: true.
% at_beginning(T_F): if true, uses asserta instead of assertz.
% Default: false.
% single_value(T_F): if true, ALL clauses for this predicate are removed
% before adding the new clause.
% Default: false.
% unique_values(T_F): if true, at most one copy of each value is stored.
% Default: false.
% owner(Localid): if bookkeeping(true) for this solvable, record
% Localid as the owner.
% Default: the agent from which the request originated.
% get_address(X): Returns a list of addresses (ids) of agents that
% were sent the request.
% get_satisfiers(X): Returns a list of addresses (ids) of agents that
% successfully completed the request.

43

Page 244 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4373

% reply({true,none}): When data is being added on
% a remote agent or agents, this tells whether reply message(s) are
% desired.
% block(Mode) true: Block until the reply arrives.
% false: Don't block. In
% this case, the reply events (ev_reply_updated)
% can be handled by the user's app_do_event callback
% Default: true. Note that reply(none) overrides
% block(true).
% remarks:
% Clause is normally a fact (no body), but with Prolog agents, and
% with rules_ok(true), it's possible for it to have a body.
% - Triggers will be examined with the on(add) operation mask
%%
oaa_AddData(Clause, Params)

oaa_update(add, Clause, Params).

%%
% name: oaa RemoveData(+Clause, +Params).
% purpose: Remove a clause from a DATA solvable (locally and/or remotely)
% Params:
% address(X): a list including 'self', 'parent', and/or the
% addresses of other client agents. The default (no address)
% behavior is the same as with oaa_Solve and oaa_AddData.
% reflexive(T_F): Save as with oaa_Solve. Default: true.
% do_all(T_F): If true, removes all predicate values that match the Clause
% Default: false (removes only the first)
% get_address(X): Returns a list of addresses (ids) of agents that
% were sent the request.
% get_satisfiers(X): Returns a list of addresses (ids) of agents that
% successfully completed the request.
% owner(Localid): if bookkeeping(true) for this solvable, remove only
% data owned by Localid.
% Default: ignore owner in removing data.
% reply({true,none}): When data is being removed on
% a remote agent or agents, this tells whether reply message(s) are
% desired.
% block(Mode)
%
%
%
%
%
% remarks:

true: Block until the reply arrives.
false: Don't block. In

this case, the reply events (ev_reply_updated)
can be handled by the user's app_do_event callback

Default: true. Note that reply(none) overrides
block(true).

% -Clause is normally a fact (no body), but with Prolog agents, and
% with rules ok(true), it's possible for it to have a body.
% - Triggers will be examined with the 'on_Retract' operation mask.
% - Not for backtracking.
%%
oaa RemoveData(Clause, Params)

oaa_update(remove, Clause, Params).

%---
% name: oaa_ReplaceData(+Clausel, +Clause2, +Params).
% purpose: Change a predicate value to a new one

44

Page 245 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4374

% Clausel: Must be a clause of a writable data solvable.
% Clause2: Must be a clause of a writable data solvable.
% Params:
% address(X): a list including 'self', 'parent', and/or the
% addresses of other client agents. The default (no address)
% behavior is the same as with oaa Solve and oaa AddData. - -
% reflexive(T_F): Save as with oaa_Solve. Default: true.
% do_all(T_F): If, true, changes all predicate values that match the
% Clausel specification
% default is 'false': changes only the first
% at_beginning(T_F): If true, uses asserta instead of assertz
% default is 'false'
% owner(Localid): if bookkeeping(true) for this solvable, record
% Localid as the owner of each new data item. Note: It is not possible
% to specify the owner of the data to be replaced, just that of the
% NEW data.
% Default: the agent from which the request originated.
% get address(X): Returns a list of addresses (ids) of agents that
% were sent the request.
% get_satisfiers(X): Returns a list of addresses (ids) of agents that
% successfully completed the request.
% reply({true,none}): When data is being replaced on
% a remote agent or agents, this tells whether reply message(s) are
% desired.
% block(Mode) true: Block until the reply arrives.
% false: Don't block. In
% this case, the reply events (ev_reply_updated)
% can be handled by the user's app_do_event callback
% Default: true. Note that reply(none) overrides
% block (true) .
% remarks:
% - Clausel and/or Clause2 may be synonym predicates.
% - Clausel and Clause2 are not required to have the same functor.
% Clausel and Clause2 may share variables.
% - Triggers will be examined with the •remove' operation mask with Clausel,
% and the •add' operation mask with Clause2.
% db_replace triggers on the Pred2 argument, not on the Predl arg
% - at_beginning param only used if do_all is false
%---
oaa_ReplaceData(Clausel, Clause2, Params)

oaa_update(replace, Clausel, [with(Clause2) I Params)).

%%
% name: oaa_update (+Mode,. +Clause, +Params).
% purpose: Common code for oaa_AddData, oaaRemoveData, and oaa_ReplaceData.
% Mode: add, remove, or replace.
% Clause, Params: May include whatever is appropriate for oaa_AddData,
% oaaRemoveData, or oaa_ReplaceData.
%%
oaa_update(Mode, Clause, InitialParams)

icl_standardize_params(InitialParams, false, Params),
% Is there a specified address?
(memberchk(address(Addr), Params) ->

true
otherwise ->

Addr = [)

45

Page 246 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4375

) ,

% Decide whether or not to update locally:
oaa_Id (Me),
(memberchk(Me, Addr) ->

delete(Addr, Me, NewAddr),

) ,

replace_element(address(Addr), Params, address(NewAddr), Paramsl),
Self = true

otherwise
NewAddr

>
Addr,

Paramsl = Params

(Addr = [), icl_GetParamValue(reflexive(true), Paramsl) >
% do NOT use remove element here:

) ,

delete(Paramsl, reflexive(true), Params2),
(oaa_solvables(Solvables) >true I otherwise-> Solvables = (]),
(oaa_data_matches_solvables(Clause, Solvables, write,) ->

Self = true
otherwise ->

true

otherwise ->
Params2 = Paramsl

% Update locally if appropriate:
(Self == true ->

) ,

Requesteesl = [Me] ,
(Mode == add ->

Functor = oaa_add_data local
Mode == replace ->

Functor = oaa_replace_data_local
Mode == remove ->

Functor = oaa_remove_data_local
) ,
LocalCall = .. [Functor, Clause, Params2],
(call(LocalCall) ->

Updatersl [Me]
Updatersl = [])

otherwise ->
Requesteesl [] ,
Updatersl = []

% Update remotely if appropriate:
(oaa_class (leaf), (Addr == [) ; NewAddr \== []) ->

% Send the ev_post_update event to the Facilitator
oaa_PostEvent(ev_post_update(Mode, Clause, Params2), []),
% In the return event, Requestee2s lists all agents to whom
% the update request was sent; Updaters2 lists those who succeeded.
((icl_GetParamValue(reply(asynchronous), Params)

icl_GetParamValue(reply(none), Params)) ->
Requestees2 [] ,
Updaters2 = (]

otherwise ->
oaa_poll_until_event(

ev_reply_updated(Mode, Clause, Params2, Requestees2, Updaters2))

46

Page 247 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4376

otherwise ->
Requestees2 [],
Updaters2 = []

} I

append(Updatersl, Updaters2, Updaters),
% Return Updaters if requested:
(memberchk(get_satisfiers(Updaters}, Params} ->true I true},
append(Requesteesl, Requestees2, Requestees),
% Return Requestees if requested:
(memberchk(get_address(Requestees}, Params) -> true I true } .

%%
%name: oaa_add_data_local(+Clause, +Params)
% purpose: Assert a clause for an agent's solvable.
% arguments: See comments for oaa AddData.
% remarks:
% This performs the local processing needed for calls to oaa_AddData, and
% ev_update(add, ... } requests.
% Application code should not call oaa_add_data_local directly, but rather
% oaa_AddData with address(self).
%%
oaa add data local(Clausel, Params} :-

-(oaa_solvables(Solvables) >true I otherwise-> Solvables = []},
oaa_data_matches_solvables(Clausel, Solvables, write, Clause, Matched},
Matched= solvable(Pred, DeclParams, _Perms),
(Clause = (Head Body} ->

} I

true
otherwise ->

Head Clause,
Body = true

append(Params, DeclParams, AllParams},
% If there's no callback, leave Callback a var:
(memberchk(callback(Callback), AllParams} -> true I true } ,

% if single value, erase all old values
(icl_GetParamValue(single_value(true}, AllParams} ->

(\+ icl_GetParamValue(bookkeeping(false), DeclParams} ->
oaa_retractall((Pred } , _OldOwner, Callback}

otherwise ->
retract_all((Pred }}

true),

% if unique_values(true}, make sure fact not already in database
(clause(Head, Body), icl_GetParamValue(unique_values(true), AllParams} >

true
otherwise ->

(\+ icl_GetParamValue(bookkeeping(false), DeclParams) ->
oaa_data_owner(Params, Owner},

(icl GetParamValue(at beginning(true}, AllParams) ->
oaa_asserta(Clause~ Owner, Callback}

oaa_assertz(Clause, Owner, Callback)

47

Page 248 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4377

otherwise ->
(icl_GetParamValue(at_beginning{true), AllParams) ->

asserta(Clause)

assertz(Clause)

) ,
oaa_CheckTriggers(data, Head, add),

! .

%%
% name: oaa_remove_data_local(+Clause, +Params)
% purpose: Retract a clause (or all clauses) from an agent's solvable.
% arguments: See comments for oaaRemoveData.
% remarks:
% This performs the local processing needed for calls to oaaRemoveData, and
% ev_update{remove, ...) requests.
%%
oaa remove data local(Clausel, Params) :-

-(oaa_solvables(Solvables) >true I otherwise
oaa_data_matches_solvables(Clausel, Solvables,
Matched= solvable(_Pred, DeclParams, _Perms),
(Clause = {Head Body) ->

) ,

true
otherwise >

Head Clause,
Body = true

append(Params, DeclParams, AllParams),

-> Solvables []),
write, Clause, Matched) ,

{ memberchk{callback{Callback), AllParams) ->true I true),

) ,

\+ icl_GetParamValue(bookkeeping(false), DeclParams) >
(icl_GetParamValue(owner(Owner), Params) > true I true) ,

(icl_GetParamValue(do_all(true), Params) ->
oaa_retractall(Clause, Owner, Callback)

otherwise ->
oaa_retract(Clause, Owner, Callback)

otherwise ->
(icl_GetParamValue(do_all(true), Params) ->

retract_all{Clause)
otherwise ->

retract{Clause)

oaa_CheckTriggers(data, Head, remove),
! .

%%
%name: oaa_replace_data_local(+Clausel, +Params)
% purpose: Replace one or more clauses from an agent's solvable.
% arguments: See comments for oaa_ReplaceData.

48

Page 249 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4378

% remarks:
% This performs the local processing needed for calls to oaa_ReplaceData, and
% ev_update(replace, ...) requests.
% Clausel is the thing to be replaced. The thing to replace it with must
% be present in Params, as with(Clause2).
%%
oaa_replace_data_local(Clauselin, Params) :

memberchk(with(Clause2In), Params),
(oaa_solvables(Solvables) ->true I otherwise-> Solvables = []),
oaa_data_matches_solvables(Clauselin, Solvables, write, Clausel, Matched),
oaa_data_matches_solvables(Clause2In, Solvables, write, Clause2, _Matched2),
Matched = solvable(_Pred, DeclParams, _Perms),
(Clausel = (Head Body) ->

true
otherwise ->

Head Clausel,
Body = true

) ,

append(Params, DeclParams, AllParams),
(memberchk(callback(Callback), AllParams) >true I true),

% do replace of either one or all occurrences
(\+ icl_GetParamValue(bookkeeping(false), DeclParams) ->

oaa_data_owner(Params, Owner),

) ,

(icl_GetParamValue(do_all(true), Params) >
oaa_replace_all(Clausel, Clause2, Owner, Callback)

otherwise ->
oaa_retract(Clausel, _OldOwner, Callback),
(icl_GetParamValue(at_beginning(true), AllParams) >

oaa_asserta(Clause2, Owner, Callback)
oaa_assertz(Clause2, Owner, Callback)

otherwise ->
(icl_GetParamValue(do_all(true), Params) ->

replace_all(Clausel, Clause2)
otherwise ->

retract(Clausel),
(icl_GetParamValue(at_beginning(true), AllParams) >

asserta(Clause2)
assertz(Clause2)

oaa_CheckTriggers(data, Clausel, remove),
oaa_CheckTriggers(data, Clause2, add),
! .

%%
% name: retract all
% purpose: Remove all clauses matching Clausel
%remarks: Always succeeds. Needed because retractall((func(X) :- Y)) doesn't
% work.
%%
retract_all(Clausel)

retract(Clausel),

49

Page 250 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4379

fail.
retract_all(_Clausel).

%%
% name: replace_all
% purpose: Replace all clauses matching Clausel by Clause2
% remarks: Always succeeds
%%
replace_all(Clausel, Clause2) :-

retract(Clausel),
assert(Clause2),
fail.

replace_all(_Clausel, _Clause2).

%%
% name: oaa_data_owner(+Params, -owner)
% purpose: Determine data ownership from the available params
%%
oaa_data_owner(Params, Owner)

(memberchk(owner(Owner), Params) ->

) .

true
memberchk(from(Owner), Params) ->

true
oaa_Id(Owner) ->

true
otherwise >

Owner unknown

%%
% name: oaa_Id(Myid)
% purpose: Return the Id of the current agent
%%
% if connected to a Facilitator, use this Id
oaa_Id(Myid) :-

com:com_Getinfo(parent, oaa_id(Myid)), ! .
% For root, get any id
oaa_Id(Myid) :-

com:com_Getinfo(Connectionid, type(server)),
com:com_Getinfo(Connectionid, oaa_id(Myid)), ! .

%%
%name: oaa_Name(MyName)
% purpose: Return the name of the current agent
%%
% if connected to a Facilitator, use this Id
oaa_Name(MyName) :-

com:com_Getinfo(parent, oaa_name(MyName)), ! .
% For root, get any id
oaa_Name(MyName) :-

com:com_Getinfo(Connectionid, type(server)),
com:com_Getinfo(Connectionid, oaa_name(MyName)), ! .

%%
%name: oaa_class(MyClass)

50

Page 251 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4380

% purpose: Return the class (leaf, node, root) of the current agent
%%
% if connected to a Facilitator, use this Id
oaa_class(leaf) :

com:com Getinfo(, type(client)),
\+ com:com_Getinfo(_, type(server)), ! .

oaa_class(node) :-
com:com_Getinfo(, type(client)),
com:com_Getinfo(, type(server)), ! .

oaa_class(root) :-
com:com_Getinfo(_, type(server)),
\+ com:com_Getinfo(, type(client)), ! .

%%
% name: oaa_asserta(Clause, Owner, SpecifiedCallback)
% oaa_assertz(Clause, Owner, SpecifiedCallback)
% oaa_retract(Clause, Owner, SpecifiedCallback)
% oaa_retractall(Clause, Owner, SpecifiedCallback)
% oaa replace all(Clausel, Clause2, Owner, SpecifiedCallback)
% purpose: Perform data updates with bookkeeping info (in oaa_data_ref/3)
% remarks: These should only be used with data solvables having param
% bookkeeping(true).
% There are still a couple limitations related to data callbacks.
% First, callbacks don't work when bookkeeping(false).
% Second, oaa_replace_all assumes the same callback is appropriate
% for both the old and new facts.
%%
oaa_asserta(Clause, Owner, Callback) :

asserta(Clause, Ref),
now(Time),
assert(oaa_data_ref(Ref, Owner, Time)),
oaa_call_callback(app_on_data_change, Callback, [add(Clause)]).

oaa_assertz(Clause, Owner, Callback) :
assertz(Clause, Ref),
now(Time),
assert(oaa_data_ref(Ref, Owner, Time)),
oaa_call_callback(app_on_data_change, Callback, [add(Clause)]).

oaa_retract(Clause, Owner, Callback)
(Clause = (Head Body) ->

) ,

true
otherwise ->

Head Clause,
Body = true

clause(Head, Body, Ref),
(retract(oaa_data_ref(Ref, Owner,)) ->

erase(Ref),
oaa_call_callback(app_on_data_change, Callback, [remove(Clause)])

) .

oaa_retractall(Clause, Owner, Callback)
(Clause = (Head Body) ->

true
otherwise ->

51

Page 252 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4381

) I

Head
Body

Clause,
true

clause(Head, Body, Ref),
(retract(oaa_data_ref(Ref, Owner,)) ->

erase(Ref),
oaa_call_callback(app_on_data_change, Callback, [remove(Clause)])

) '
fail.

oaa_retractall(_Clause, _owner, _Callback).

oaa_replace_all(Clausel, Clause2, Owner, Callback)
oaa_retract(Clausel, _OldOwner, Callback),
oaa_assertz(Clause2, Owner, Callback),
% This would be redundant:
% oaa_call_callback(app_on_data_change, Callback, [replace(Clausel,

Clause2)]) ,
fail.

oaa_replace_all(_Clausel, _Clause2, _owner, _Callback).

%***
% Trigger Handling
%***

%%
% name: oaa_CheckTriggers
% purpose: Given a trigger type, a mask and an Op (e.g. [send, receive],
% [add, remove], etc), see if any triggers fire.
%%
oaa_CheckTriggers(Type, Condition, Op)

% for each matching trigger
oaa_solve_local(

oaa_trigger(Triggerid, Type, Condition, Action, Params),
[]) I

(Type== task, \+ var(Condition)) ->
% We don't want this to succeed more than once, so use ->
(oaa_Interpret(Condition, [from(self)]) ->true)

otherwise ->
true

) '

% see if on(Op) has been specified
(memberchk(on(OpSpecified), Params) >

OpMask opspecified
OpMask =) ,

% see if Op is OK
((ground(OpMask), OpMask

memberchk(Op, OpMask)
otherwise ->

Op = OpMask
) I

% test additional conditions

[_l_l) - >

52

Page 253 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4382

(memberchk(test(Test), Params) ->

% We don't want this to succeed more
(oaa_Interpret (Test, [from (self)])
Test= •true'),

than once,
> true)

so use ->

% check recurrence: remove trigger?
{remove_element{recurrence{R), Params, NewParams) ->

{R = whenever ->

) I

true % don't remove trigger if 'whenever'
integer(R), R > 1 ->

R2 is R - 1,
% decrement recurrence count
oaa_remove_data_local{

oaa_trigger{Triggerid, Type, Condition, Action, Params),
[]) I

oaa_add_data_local{
oaa trigger(Triggerid, Type, Condition, Action,

- [recurrence(R2) INewParams]),
[l)

oaa_remove_local_trigger_by_id{Triggerid)

R = when,
oaa_remove_local_trigger_by_id{Triggerid)

oaa_TraceMsg(
•-n-q trigger fired (-q): -q AND -q,-n Action: -q-n',

[Type, Op, Cond, Test, Action]),

(Type \== comm ->
oaa_Inform(trigger,

'trigger_fired(-q,-q,-q,-q)-n',
[Type, Cond, Action, Params))

true),

% FIRE!!!!
oaa_fire_trigger(Action),

% loop back for more triggers
fail.

oaa_CheckTriggers(_Type, _Cond, _Op).

oaa_fire_trigger(oaa_Solve(Goal, Params))
I
• I

memberchk(block() , Params) ->
NewParams = Params
otherwise >
append([block(false)), Params, NewParams)

) I

oaa_Solve(Goal, NewParams).
oaa_fire_trigger{oaa_Solve{Goal))

! I

oaa_Solve(Goal, [block{false)]).
oaa_fire_trigger{oaa_Interpret{Goal, Params))

! I

53

Page 254 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4383

memberchk(from(_), Params) ->

NewParams = Params
otherwise ->
oaa_Id (Me),
append([from(Me)], Params, NewParams)

) I

oaa_Interpret(Goal, NewParams).
oaa_fire_trigger(oaa_Interpret(Goal))

I
• I

oaa_Id (Me),
oaa_Interpret (Goal, [from (Me)]) .

oaa_fire_trigger(Goal)
oaa_Id (Me) ,
oaa_Interpret (Goal, [from (Me)]) .

%%
% name: oaa_AddTrigger
% purpose: Adds a trigger according to parameters
% Type comm, data, task, time
% Condition=
%

comm:event to match, data:data to match, task:solvable to call
time:®®

% Action
%

Can be any of these:
oaa_Solve(Goal, Params)
oaa_Interpret(Goal, Params) %

% Goal [passed to oaa_Interpret with default params]
% Params
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

address(X): a list including 'self', 'parent', and/or the
addresses of other client agents. Default: see below.

test(T): additional tests before trigger will fire [®®needs work?]
on(OP) : operation check: on(add), on(remove), on(receive), etc.
recurrence(R): when, whenever, or integer (#of times to execute)
reply({true,none}): When a trigger is being added on

a remote agent or agents, this tells whether reply message(s) are
desired.

block(Mode) true: Block until the reply arrives.
false: Don't block. In

this case, the reply events
can be handled by the user's app_do_event callback

Default: true. Note that reply(none) overrides
block(true).

get_address(X): Returns a list of addresses (ids) of agents that
were sent the request.

get_satisfiers(X): Returns a list of addresses (ids) of agents that
successfully completed the request.

% Default destination for triggers:
% Data triggers: all agents with solvables matching the Condition
% field.
% All other types: the local agent
%%
oaa_AddTrigger(Type, Condition, Action, InitialParams) :-

oaa_update_trigger(add, Type, Condition, Action, InitialParams).

%%
% name: oaa_RemoveTrigger

54

Page 255 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4384

% purpose: Removes a trigger from a local or remote agent
%%
oaa_RemoveTrigger(Type,Condition,Action,Params) :

oaa_update_trigger(remove, Type, Condition, Action, Params).

oaa update trigger(Mode, Type, InCondition, Action, InParams)
((Type-== comm, \+ InCondition =event(_,_)) >

Condition= event(InCondition,)
otherwise >

Condition = InCondition
) I

icl_standardize_params(InParams, false, Params),
% Is there a specified address?
(memberchk(address(Addr), Params) ->

true
otherwise ->

Addr = []
) I

% Decide whether or not to update locally:
oaa_Id (Me),
(Addr \== [], memberchk(Me, Addr) ->

delete(Addr, Me, NewAddr),

) I

replace_element(address(Addr), Params, address(NewAddr), Paramsl),
Self = true

Addr = [], Type == data, icl_GetParamValue(reflexive(true), Params) ->

% Do NOT use remove element here:
delete(Params, reflexive(true), Paramsl),
NewAddr Addr,
Self = true

Addr = [], Type \== data ->

NewAddr = Addr,
Paramsl = Params,
Self true

otherwise ->
NewAddr Addr,
Paramsl = Params

% Update locally if appropriate:
(Self == true >

) I

Requesteesl = [Me] ,
(Type == add ->

) I

Functor oaa_add_trigger_local
otherwise ->

Functor oaa_remove_trigger_local

LocalCall = .. [Functor, Type, Condition, Action, Paramsl],
(call(LocalCall) ->

Updatersl [Me]
Updatersl = [])

otherwise ->

Requesteesl [),
Updatersl = []

% Update remotely if appropriate:

55

Page 256 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4385

) ,

oaa_class(leaf), ((Addr == [], Type= data) NewAddr \== (]) ->
% Send the request event to the Facilitator
oaa_PostEvent(

ev_post_trigger_update(Mode,Type,Condition,Action,Paramsl), [)),
(icl GetParamValue(reply(asynchronous), Params)
icl-GetParamValue(reply(none), Params)) >
Requestees2 [],
Updaters2 = []

otherwise >
% In the return event, Requestees lists all agents to whom
% the update request was sent; Updaters2 lists those who succeeded.
oaa_poll_until_event(

ev_reply_trigger_updated(Mode, Type, Condition, Action, Paramsl,
Requestees2, Updaters2))

otherwise ->
Requestees2 [],
Updaters2 = []

append(Updatersl, Updaters2, Updaters),
% Return Updaters if requested:
(memberchk(get_satisfiers(Updaters), Params) ->true I true) ,
append(Requesteesl, Requestees2, Requestees),
% Return Requestees if requested:
(memberchk(get_address(Requestees), Params) ->true I true) .

oaa_add_trigger_local(Type, Condition, Action, Params)
gensym(trg, Triggerld),
oaa add data local(

-oaa=trigger(Triggerld, Type, Condition, Action, Params),
[]) .

oaa_remove_trigger_local(Type, Condition, Action, Params)
oaa_remove_data_local(

oaa trigger(Triggerid, Type, Condition, Action, Params),
[]). - -

%%
% name: oaa_remove_local_trigger_by_id
% purpose: Removes a local trigger given its unique identifier
%%
oaa_remove_local_trigger_by_id(Triggerid)

oaa_remove_data_local(oaa_trigger(Triggerid,
! .

I I I) I []) I

%***
% Requesting Services
%***

%%
% name: oaa Solve
% purpose: Sends work or information requests to distributed agents, brokered
% by the Facilitator agent

56

Page 257 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4386

%
% The default behavior (paramlist = [)) is to act like the Prolog primitive
% call(Goal), blocking until Goal is finished, and unifying and backtracking
% over solutions for Goal.
%
% This behavior may be modified by a parameter list, which may contain:
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

cache(T_F) : cache all solutions locally, and if good solutions
already exist in the cache, use the local values
instead of making a distributed request.

Default: false.
level_limit(N) highest number of hierarchical levels to climb for

solutions.
address(Agentid): send request to specific agent, given its name or Addr

If AgentiD is 'self', solves the goal locally
reply(Mode) : true: Reply desired.

: none: No reply desired.
Default: true, except when the call to oaa Solve

is a trigger action, in which case it is
none. •none' is used here instead of false,
because we anticipate some additional values.

block(Mode) true: Block until the reply arrives.
false: Don't block. In
this case, the reply events (ev_reply_solved)
can be handled by the user's app_do_event callback

Default: true, except when the call to oaa_Solve
is a trigger action, in which case it is
false. Note that reply(none) overrides
block(true).

solution_limit(N)
: limits the maximum number of solutions found to N

time_limit(N) : Waits a maximum of N seconds before returning
(failure if no solution found in time) .

context(C) : Passes a context value through any subsequent
solves.

parallel_ok(T_F): if T_F is 'true' (default), multiple agents
that can solve the Goal will attempt to work on it

reflexive(T_F)

in parallel. If 'false•, one agent will be selected
at a time to solve the goal, until the maximum
number of requested solutions (see solution_limit) is
found.

: If T F is 'true•, the Facilitator will consider the
originating agent when choosing agents to solve a
request. Default: true.

priority(P) P ranges from 1 (low priority) to 10 (high priority)
with a default of 5.

flush events(T_F)
Will flush (dispose of) all events of lower priority

currently queued at the destination agent. These
events are lost, and will not be executed.
This parameter should be used with caution!!!

get_address(X)

get_satisfiers(X)

Default: false.
Returns a list of addresses (ids) of agents that
were asked to solve the goal, or one of its subgoals

Returns a list of addresses (ids) of agents that

57

Page 258 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4387

%
%
%
%
%
%
%
%
%

strategy(S)

succeeded in solving the goal, or one of its
subgoals.

Shorthand for certain combinations of the above
parameters. S is one of

query= [parallel_ok(true))
action [parallel_ok(false), solution_limit(l)]
inform= [parallel_ok(true), reply(none)]

% Remarks: Note that certain combinations of parameters are inconsistent,
% and are handled as follows:
% reply(none) overrides block(true)
% reply(none) overrides parallel_ok(false)
%
% All of the above parameters may be used in the "global" parameter
% list (the second argument to oaa_Solve), when Goal is non-compound.
% Most can be used in the global list with compound goals also.
% Some of these parameters can also be used in the NESTED parameter
% lists of compound goals. Uses of these parameters with compound
% goals are documented elsewhere. When that documentation exists,
% this will go there:
% With many compound goals, however, the get_satisfier/1 parameter isn't
% really meaningful. Thus, with compound goals, it is often best to use
% this parameter in a nested parameter list.

%%
oaa_Solve(Goal, InitialParams)

% Trace message
oaa_TraceMsg('-n-nStarting oaa Solve request:-n

[Goal,Params]),
-q [-q) • • • -n I 1

icl_standardize_params(InitialParams, false, Params),
% Check for inappropriate params

) I

(icl GetParamValue(cache(true), Params), icl compound goal(Goal) ->
for~at('-w: -w (-w)-n Goal: -w-n', - -

['WARNING' , ' Ignoring ' 'cache' ' parameter' ,
'cannot be used with compound goal', Goal]),

Compound = true
otherwise ->

Compound = false

% Add context to params
(oaa_current_contexts(, Contexts) >

append(Contexts, Params, NewParams)
otherwise ->

NewParams Params
) I

% check cache
(icl_GetParamValue(cache(true), NewParams), \+ Compound,
on_exception(_, oaa_InCache(Goal, Solutions), fail) ->

oaa_TraceMsg('-n-nSolutions found in cache:-n -q.-n',
[Solutions])

% Should I solve this only locally?
(oaa_Id (Me),

58

Page 259 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4388

) I! I

memberchk(address(Me) 1 Params) >
findall(Goal 1 oaa_solve_local(Goal 1 NewParams) 1 Solutions)

% send request to Facilitator
oaa_cont solve(Goal 1 NewParams 1 Solutions) 1

% print appropriate trace message
(icl_GetParamValue(reply(none), NewParams) ->

oaa_TraceMsg('-n-nMessage broadcast.-n' 1 [))

) I

oaa_TraceMsg('-n-nSolutions returned:-n
[Solutions])

-q.-n' 1

% cache returned solutions if necessary
((icl_GetParamValue(cache(true), NewParams), Solutions\== (]) ->

oaa_AddToCache(Goal 1 Solutions) 1

oaa_TraceMsg('Solutions cached.-n' 1 [])

true)

% backtrack over all solutions
member(Goal 1 Solutions).

oaa_solve_local(Ful1Goal 1 Params)
%Validate the goal:
icl GoalComponents(FullGoal, , Goall, GoalParams),
(o;a_solvables(Solvables) >-true I otherwise-> Solvables []) 1

(icl_compound_goal(Goall) ;
icl_Builtin(Goall) ;
oaa_goal_matches_solvables(Goall, Solvables, Goal, Matched)) ,

! I

% More "local" params take precedence, so they go to the
% beginning of the list:
append([GoalParams, Params], AllParams),

% We don't want tests to be performed repeatedly with compound goals,
% so we remove them after testing.
(passes_tests(AllParams) ->

delete(AllParams, test(_), NewParams),
((\+ var(Matched), Matched = solvable(_, SolvParams,) ,

icl GetParamValue(type(data), SolvParams)) ->
(-memberchk(solution_limit(N), AllParams) ->

call_n(N 1 Goal)
otherwise ->

call (Goal)

otherwise ->
(memberchk(solution_limit(N), AllParams) ->

call_n(N, oaa_Interpret(Goal 1 NewParams))
otherwise ->

oaa_Interpret(Goal, NewParams)

59

Page 260 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4389

) .

otherwise ->
oaa_TraceMsg('-nDoesn' 't pass test in: -q-n' 1 [AllParams]) 1

fail

oaa_solve_local(FullGoal 1 _Params) :-
format('-nError: do not know how to solve: -q-n' 1 [FullGoal]) 1 fail.

%%
%name: oaa_cont_solve
% purpose: Post request for solutions, and if appropriate, poll until
% results are returned.
%%
oaa_cont_solve(Goal, GlobalParams, Solutions)

% Send the ev_post_solve event to the Facilitator
oaa_PostEvent(ev_post_solve(Goal, GlobalParams), []),

% Compound goals may also contain relevant params
icl_GoalComponents(Goal, _, _, Params),

append(Params, GlobalParams, AllParams),

% If delayed reply or no reply OK, succeed immediately
(icl_GetParamValue(reply(false), AllParams) ;

icl GetParamValue(reply(none), AllParams) ;
icl=GetParamValue(block(false), AllParams)) >

Solutions = [Goal] ,
Requestees = [] ,
Solvers = []

% otherwise wait for solutions to return

icl_GetParamValue(priority(P), AllParams),
oaa_poll_until_event(ev_reply_solved(Requestees, Solvers, Goal,

SolvedParams, Solutions),

) I

P) I

% The facilitator is responsible for making SolvedParams
% unifiable with GlobalParams. This msg is to keep facilitator
% writers honest.
(GlobalParams = SolvedParams ->

true
otherwise >

format('-w: -w -w-n -w: -w-n',
['WARNING:', 'Params in solved event don' 't unify',
'with original params•, 'SolvedParams', SolvedParams])

% Return Solvers if requested:
memberchk(get_satisfiers(Solvers), GlobalParams) > true
% Return Requestees if requested:
memberchk(get_address(Requestees), GlobalParams) ->true

true) ,

true) .

%%
% name: oaa_Solve/1
% purpose: Convenience function: oaa_Solve with default parameters
%%

60

Page 261 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4390

oaa_Solve(Goal) oaa_Solve(Goal, (]).

%%
% name: oaa_InCache
% purpose: Retrieve solutions from the cache if the goal we are
% asking for is properly contained in the cache (check subsumption)
%%
oaa_InCache(Goal, Solutions):-

oaa_cache(SomeGoal,) ,
subsumes_chk(SomeGoal, Goal),
! I

findall(Solution, oaa_cache(Goal, Solution) 1 Solutions).

%%
% name: oaa AddToCache
% purpose: Add-each solution to goal one at a time
% so we can retrieve solutions later using findall
%%
oaa_AddToCache(Goal 1 Solutions) :

member(Solution, Solutions) 1

\+ oaa_cache(Goal, Solution),
assert(oaa_cache(Goal 1 Solution)) 1

fail.
oaa_AddToCache(_Goal 1 _Solutions).

%%
% name: oaa ClearCache
% purpose: Clear the cache
%%
oaa_Clearcache :-

retractall(oaa_cache(1)) •

%%
% name: oaa_poll_until_event
% purpose: Block until requested event arrives in oaa_GetEvent
%%

oaa_poll_until_event(Event) :
icl_param_default(priority(P)),
oaa_poll_until_event(Event 1 P).

oaa_poll_until_event(Event 1 Priority)
oaa_poll_until_all_events([Event] ,Priority).

%%
% name: oaa_poll_until_all_events
% purpose: Block until all requested events arrive
%%

%no more events: we're done!

61

Page 262 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4391

oaa_poll_until_all_events([], _Priority) :- ! .

%% ®®Adam - you were apparently working on this; I corrected a syntax
%% error or two, but otherwise left it alone. - Dave
oaa_poll_until_all_events(EventList, Priority)

% If we have a waiting_event, grab it
% see problem description in (oaa_is_waiting_for)
(oaa_grab_waiting_event(EventList, Event) ;
oaa_GetEvent(Event, Params, 0)),

% if timeout returned, check triggers and call user:oaa_Appidle
% then fail (continue with next clause)
(Event = timeout ->

oaa CheckTriggers(task, ,
oaa=call_callback(app_idle, []),
fail

oaa_cont_poll_until_all_events(EventList, Event, Params, Priority)
) I ! •

% if oaa_GetEvent fails (e.g. timeout), just continue waiting
oaa_poll_until_all_events(EventList, Priority)

oaa_poll_until_all_events(EventList, Priority).

oaa_cont_poll_until_all_events(EventList, Event, _Params, Priority)
remove element(Event, EventList, NewEventList), !,
oaa_poll_until_all_events(NewEventList, Priority).

oaa_cont_poll_until_all_events(EventList, Event, Params, Priority)
% if the new event is a ev_reply_solved() message for which we
% are waiting at a higher recursive level, save this for
% a later time, until we pop back out to the correct level.
(oaa_is_waiting_for(Event) ->

assert(oaa_waiting_event(Event))

% record what events we are waiting for on this processing level
gensym(wait, Waitid),
assert(oaa_waiting_for(Waitid, EventList)),

(oaa_ProcessEvent(Event, Params) I true), !,

% level over, remove waiting statement
retract(oaa_waiting_for(Waitid, EventList))

) I

oaa_poll_until_all_events(EventList, Priority).

%***
% Callbacks
%***

%%
% name: oaa_RegisterCallback
% purpose: Declare what procedures should be used for callbacks. These
% are application-defined procedures called by library code.
%%

oaa_RegisterCallback(CallbackiD, CallbackProc)

62

Page 263 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4392

CallbackProc
true
otherwise >
Module = user,

Module:Proc ->

Proc = CallbackProc
) I

retractall(oaa_callback(CallbackiD, _)) ,
assert(oaa_callback(CallbackiD, Module:Proc)) .

oaa_call_callback(CallbackiD, SpecifiedCB, Args) :-
(ground(SpecifiedCB) ->

SpecifiedCB = Module:Functor
otherwise >

oaa_callback(CallbackiD, Module:Functor)
) '
! '
Call =. . [Functor I Args],
on_exception(E,

Module:Call,
(oaa_TraceMsg('WARNING (oaa.pl): Exception raised thru callback

handler (-w) :-n -q-n',
[Module:Functor, E)),

fail)
) .

oaa call_callback(_CallbackiD, _SpecifiedCB, _Args).

%***
% Debugging
%***

%%
% name: oaa_TraceMsg
% purpose: If trace mode is on, display message and arguments
%%
oaa_TraceMsg(FormatString, Args)

(oaa_trace(on) ->

format(FormatString, Args)
% oaa_Inform(trace_info, FormatString, Args)

true).

%%
% name: oaa_ComTraceMsg
% purpose: If com trace mode is on, display message and arguments
%%
oaa_ComTraceMsg(FormatString, Args)

(oaa_com_trace(on) >
format(FormatString, Args)

% oaa_Inform(trace_info, FormatString, Args)

true).

%%
% name: oaa_turn_on_debug
% purpose: start debugging if debug mode is on
% remarks:

63

Page 264 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4393

% Use predicate_property and call so as to avoid errors in
% building and running a Quintus runtime system.
%%
oaa_turn_on_debug :-

(oaa_debug(on) ->
(predicate_property(user:trace, built_in) ->

call(user:trace)
true)

true) .

%%
% name: oaa_turn_off_debug
% purpose: stop debugging if debug mode is on
% remarks:
% Use predicate_property and call so as to avoid errors in
% building and running a Quintus runtime system.
%%
oaa_turn_off_debug :-

(oaa_debug(on) >
(predicate_property(user:nodebug, built_in) ->

call(user:nodebug)
I true)
true) .

%***
% User Interface
%***

%%
% name: oaa Inform
% purpose: sends a typed message to interested agents
%%
oaa_Inform(Typeinfo, FormatString, Args)

oaa_TraceMsg(FormatString, Args),
(oaa_class(leaf) ->

sprintf(Result, FormatString, Args),
oaa Solve(inform(Typeinfo, Result), [strategy(inform)])

I -
true

) I ! •

%***
% Connection primitives
%***

%%% BUG/HACK! ! ! ! !
% tcp_send/1 is not currently defined (new version of quintus)
% so these predicates should fail. This means we can't have
% multilevel facilitators.
% However, if we fix it by the tcp_send/2 version (commented out),
% killing the agent doesn't shut down both connections and the
% facilitator server doesn't register the agent as disconnected.

64

Page 265 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4394

% This must be fixed, but I don't have time now ...

% Ask the root agent for the address of facilitator FacName.
% Either Facid or FacName may be bound.
% IMPORTANT: This assumes the root agent is the only connection when
% this is called.
% ®®Not happy with the use of a Connection number in the address param here.
%Can an address be a connection number as well as an id or name??? [No.]

% get_address(Facid, FacName, Port, Host):
% tcp connected(RootConnection),
% oaa_Sol;e(agent_location(Facid, FacName, Port, Host),
% [address(RootConnection)]}.

%% succeed if FacName has not been registered with the root agent.
%% otherwise, ask user to enter a different name for FacName

% check_name_duplication(MyName, NewMyName} :-
% tcp send(ev check agent name(MyName}},
% oaa=select_~vent(O, X},-
% oaa_extract_event(X, Result, } , %% 'UNIQUE'
% (Result == 'UNIQUE' -> NewMyName MyName
%
%
%
%
%

format('Name is duplicated-n', []},
format('The following are registered -n -q -n', [Result]),
format('Input agent name again:',[]},
read(NewMyName}).

% report_address_to_root(MyName, NewAddress} :-
% tcp_send(register_port_number(MyName, NewAddress}}.

%%
% routines to fix bug:
% blocking solvel
% incoming event generates blocking solve2
% solution to solvel thrown away!!!
% solutions to solve2
% stuck waiting for solvel forever
%%

%%
% name: oaa is waiting for
% purpose: Check to see if the current event is something we are waiting
% for on a higher recursive level

%%
oaa_is_waiting_for(Event}

oaa_waiting_for(_Id, EventList),
memberchk(Event, EventList}.

%%
% name: oaa_grab_waiting_event
% purpose: If one of the delayed events is in the EventList that we are
% waiting for, return this event and remove from delayed list

%%
oaa_grab_waiting_event(EventList, Event) :-

65

Page 266 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4395

oaa_waiting_event(Event) 1

memberchk(Event 1 EventList) 1

I
• I

retract(oaa_waiting_event(Event)).

%***
% OAA Utilities
%***

%%
% name: oaa remove solvables data(Solvables).
% purpose: For-each data solvable, remove all clauses belonging to it.
% remarks: Solvables must be in standard form, and should include only
% data solvables.
% Permissions are ignored.
%%
oaa remove solvables data([]).
oaa=remove=solvables=data([Solvable I Solvables])

Solvable = solvable(Goal, Params, _Perms),
icl GetParamValue(type(data) 1 Params),
\+ memberchk(synonym(_, _), Params),
! ,

% This should have already been done, but to be safe:
(clause(Goal, _, _) -> true I true),
predicate_skeleton(Goal, Skeleton),
(oaa_remove_data_local(Skeleton, [do_all(true)]) ->

) ,

true
otherwise ->

format('-w: Problem in removing all data for solvable: -w-n',
['! ERROR', Goal])

oaa remove solvables data(Solvables).
oaa_remove_sol~ables_data([_Solvable I Solvables])

oaa_remove_solvables_data(Solvables).

oaa remove data owned by(Id) :-
-(oaa_solvables(Solvables) >true I otherwise > Solvables [])I
oaa_built_in_solvables(Builtins),
append(Builtins 1 Solvables, AllSolvables),
oaa_remove_data_owned_by(AllSolvables, Id).

oaa remove data owned by([] 1 Id).
oaa=remove=data=owned=by([Sol~able I Solvables], Id)

Solvable = solvable(Goal, Params, Perms),
icl_GetParamValue(type(data) 1 Params),
\+ icl GetParamvalue(persistent(true), Params) 1

\+ icl=GetParamValue(synonym(_ 1) 1 Params) 1

! ,

% This should have already been done, but to be safe:
(clause(Goal, _, _) ->true I true),
predicate_skeleton(Goal, Skeleton) 1

(oaa_remove_data_local(Skeleton 1 [owner(Id) 1 do_all(true)]) ->
true

otherwise ->
format('-w: Problem in removing data owned by -w for solvable:-n -w-n' 1

['! ERROR', Id, Goal])

66

Page 267 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4396

) I

oaa remove data owned by(Solvables, Id).
oaa_remove_data_owned_by([_solvable I Solvables], Id)

oaa_remove_data_owned_by(Solvables, Id).

%***
% General Utilities
%***

%%
%name: oaa_consult(+FilePath, -AbsFileName).
% purpose:
% remarks: We don't use Quintus' builtin consult, because it's too picky
% about associating predicates with files.
%%
oaa_consult(FilePath, AbsFileName) :-

absolute_file_name(FilePath, AbsFileName),
can_open_file(AbsFileName, read, fail),
open(AbsFileName, read, Stream),
load_clauses(Stream),
close(Stream).

%%
%name: load_clauses(+Stream).
% purpose:
%%
load_clauses(Stream)

repeat,
read_term(Stream, [], Term),
(Term ':-'(_Body) ->

) I

true
Term
true

end of file >

otherwise ->

load_clause(Term)

(at_end_of_file(Stream) ->

) .

otherwise ->

fail

%%
%name: load_clause(+Term).
% purpose:
%%
load_clause(Term) :-

assert(Term).

%%
% name: oaa_declare_for_prolog(Solvables).
% purpose: For each solvable, make sure it's known to Prolog as a dynamic
% predicate. This will prevent exceptions and warnings from

67

Page 268 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4397

% calls and retracts before there have been any asserts.
% remarks: Solvables must be in standard form, and should include only
% data solvables.
% This is probably Quintus-specific.
% We are assuming that none of these predicates are known to
% Prolog as compiled predicates. Would be better to check for this.
%%
oaa_declare_for_prolog([]).
oaa_declare_for_prolog([solvable(Pred, _, _) I Rest])

copy_term(Pred, PredCopy),
(clause(PredCopy, _Body) >true I true),
oaa_declare_for_prolog(Rest).

%%
% name: predicate_skeleton(+Goal, +Skeleton).
%%
predicate_skeleton(Goal, Skeleton) :

functor(Goal, Functor, Arity),
functor(Skeleton, Functor, Arity).

%%
% name: sprintf
% purpose: C-like command formats a string + args into an atom
%%
sprintf(AtomResult, FormatStr, Args) :-

with output to chars(format(FormatStr, Args), Chars),
name(AtomResult, Chars).

%%
% name: memberchk nobind
% purpose: like memberchk, but doesn't bind variables in Elt when doing test.
%%
memberchk_nobind(Elt, [HI_l) :-

would unify(Elt, H), ! •
memberchk_nobind(Elt, [_ITJ) :

memberchk_nobind(Elt, T).

%%
% name: would unify
% purpose: succeeds if X and Y WOULD unify, but doesn't actually do the
% unification (no variables are bound by test)
%%
would_unify(X,Y) :- \+\+X= Y.

%%
% name: remove element
%purpose: Removes the element X from a list
% remarks: Fails if X is not an element in the list
%%
remove_element (X, [X I Rest], Rest) :- ! .

remove_element (X, [Y I Rest] , [Y I Rest2]) :- remove_element (X, Rest, Rest2) .

68

Page 269 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4398

%%
%name: replace element(Elt, List, New, NewList)
% purpose: Replaces the element Elt, if present in List, with the element New
% remarks: If there are multiple occurrences of Elt, only replaces the first
%%
replace_element(Elt, [EltiRest), New, [NewiRest]) !.
replace_element(Elt, [YIRest), New, [YIRest2])

replace_element(Elt, Rest, New, Rest2).

%%
%name: select_elements(List, Selector, NewList)
% purpose: Selects all List elements for which Selector(element) succeeds.
% remarks: If there are multiple occurrences of Elt, only replaces the first
%%
select elements ([) , Selector, []) .
select=elements([Ele;ent I Elements], Selector, [Element I Selected]) :

Test =. . [Selector, Element] ,
call (Test) ,
! I

select elements(Elements, Selector, Selected).
select_ele;ents([_Element I Elements], Selector, Selected)

select_elements(Elements, Selector, Selected).

%%
% name: call_n(+N, +Goal)
% purpose: Call Goal with a limit on the number of solutions generated.
%%

call_n(l, Goal)
call (Goal) ,
! .

call_n(N, Goal)
%Remember the counter's value in case anyone else is using it.
ctr_is(12, CtrOrig),
call_n_aux(N, Goal, CtrOrig).

call_n_aux(N, Goal, CtrOrig) :
N > 1,
ctr_set(12, 1),
call(Goal),
ctr_inc(12, 1, M),
(M =< N ->

true
otherwise ->

ctr_set(12, CtrOrig),
I
• I

fail
) .
% This clause is for when the Goal fails before M > N:

call_n_aux(_N, _Goal, CtrOrig)
ctr_set(12, ctrorig),
! I

fail.

69

Page 270 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4399

% findall with a limit on the number of solutions generated.
findNSolutions(O, _Var, _Predicate, []).
findNSolutions(1, Var, Predicate, [Var])

call (Predicate) , ! .
findNSolutions(1, Var, Predicate, []).
findNSolutions(N, Var, P~edicate, Solutions)

N > 1,
% Save the counter's value in case anyone else is using it.
ctr_is(12, CtrOrig),
ctr_set(12, 1),
findall (Var,

(Predicate, ctr inc(12, 1, M),
(M >= N -> !-otherwise -> true)),

Solutions) ,
ctr_set(12, Ctrorig).

% ==
% No longer used: replaced or obsolete
% ==

% initialize all data flags
% oaa_init_flags :-
% % set appropriate prolog flags
% prolog_flag(fileerrors,_,on),
% prolog flag(syntax errors, ,error),
% % Let'; use retractall so ~s to avoid unknown exceptions when tracing:
% retractall(oaa_cache(_,_)),
% retractall(oaa_already_loaded(_)),
% assert(oaa_trace(off)),
% assert(oaa_debug(off)),
% assert(oaa_com_trace(off)),
% tcp_trace(_,off).

70

Page 271 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4400

t'

APPENDIX A.V

Source code file named translations. pl.

Page 272 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4401

%%
% File : translations.pl
% Primary Authors David Martin, Adam Cheyer
% Purpose : Provides translations for backward compatibility with OAA 1.0
%
%
% Unpublished-rights reserved under the copyright laws of the United States.
%
%
% Unpublished Copyright (c) 1998, SRI International.
% "Open Agent Architecture" and "OAA" are Trademarks of SRI International.
%

%%

% This file is loaded by facilitator code, and thus no
% module imports are needed here.

%Currently, we support a 3.0 facilitator with a mix of 3.0 and/or pre-3.0
% clients.
%A pre-3.0 facilitator with a 3.0 client is NOT supported, and probably
% never will be.

:-multifile oaa_AppDoEvent/2.

%At present we only support the case where the facilitator is 3.0, and
%the client is pre-3.0.

% Here we can ignore the languages.
oaa_event_translation(2.0, L1, 3.0, L2, Connection, Event1, Event2)

oaa_event_translation(2.1, L1, 3.0, L2, Connection, Event1, Event2).
oaa_event_translation(2.1, L1, 3.0, L2, Connection, Event1, Event2)

(Event1 = event(From, Contents1, Priority) ->

Params2 = [from(From), priority(Priority)]
Event1 = event(From, Contents1) >

) ,

Params2 [from(From)]
Event1 = Contents1 ->
Params2 = []

(ev_trans_21_30(Contents1, Contents2) ->

true
otherwise >
Contents2 = Contents1

) I

Event2 = event(Contents2, Params2).

% Here we can ignore the languages.
oaa_event_translation(3.0, L1, 2.0, L2, Connection, Event1, Event2)

oaa_event_translation(3.0, L1, 2.1, L2, Connection, Event1, Event2).
oaa_event_translation(3.0, _L1, 2.1, _L2, _Connection, Event1, Event2)

Event1 = event(Contentsl, Params1),
(ev_trans_30_21(Contents1, Paramsl, Contents2) ->

) I

true
otherwise ->
Contents1 = Contents2

(memberchk(from(KS), Params1) ->

1

Page 273 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4402

) I

! .

Event2 ; event(KS, Contents2)
otherwise ->

Event2 = Contents2

% Anything not specified explicitly stays the same:
oaa_event_translation(3.0, _L1, 2.1, _L2, _Connection, E1, E1).

%%%
% The following could go to or from the facilitator.
%%%

ev_trans_21_30(trace_on, ev_trace_on).
ev_trans_21_30(trace_off, ev_trace_off).
ev_trans_21_30(tcp_trace_on, ev_com_trace_on).
ev_trans_21_30(tcp_trace_off, ev_com_trace_off).
ev_trans_21_30(debug_on, ev_debug_on).
ev_trans_21_30(debug_off, ev_debug_off).
ev trans 21 30(set timeout(N), ev set timeout(N)).
ev=trans=21=30(halt, ev_halt). - -

%%%
%The following are sent only from (pre-3.0) client to facilitator.
%%%

ev_trans_21_30(post_event(Event), ev_post_event(NewEvent)) :
ev_trans_21_30(Event, NewEvent).

ev_trans_21_30(post_event(To, Event), ev_post_event(To, NewEvent))
ev_trans_21_30(Event, NewEvent).

ev_trans_21_30(post_query(Goal, Params),
ev_post_solve(Goal, [reflexive(false) I NewParams)))

params_trans_21_30(Params, NewParams).

% This is the message from a facilitator to its parent facilitator;
% will probably evolve:
% ev_trans_21_30(register_solvable_goals(AGL), register_solvable_goals(AGL)).
%NO, we don't want to translate this. The old form is still handled
% by the new facilitator:
% ev_trans_21_30(register_solvable_goals(Goa1List, KSName),
% ev_register_solvables(add, GoalList, KSName,
% [if_exists(overwrite)))).

ev_trans_21_30(solved(Goa1Id, FromKS, Goal, SolveParams, Solutions),
ev_solved(Goalid, FromKS, Goal, SolveParams, Solutions)).

/* post_trigger/4: retained for backwards compatibility*/
ev_trans_21_30(post_trigger(test, Type, Cond, Action), NewEvent)

ev_trans_21_30(post_trigger(test, Type, unused, unused, Cond, Action),
NewEvent) .

I* post_trigger/4: retained for backwards compatibility*/
ev_trans_21_30(post_trigger(data, Type, Cond, Action), NewEvent)

ev_trans_21_30(post_trigger(data, Type,
[on_write, on_write_replace, on_replace),
Cond, true, Action), NewEvent).

2

Page 274 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4403

/* post_trigger/4: retained for backwards compatibility*/
ev_trans_21_30(post_trigger(event, Type, Cond, Action}, NewEvent}

ev_trans_21_30(post_trigger(event, Type, [on_receive], Cond, true, Action},
NewEvent).

ev_trans_21_30(post_trigger(Kind,Recur,OpMask,Template,Test,Action},
ev_post_trigger_update(add,Mode,Condition,NewAction,Params)}

Kind test -> Mode = task
Kind == event -> Mode = comm
Kind == alarm -> Mode = time
otherwise >Mode= Kind},
Recur == whenever ->
Recurrence= [recurrence(whenever}]
otherwise ->
Recurrence= [recurrence(when)]

} I

template trans 21 30(Kind, Template, Condition},
(var(Test} ->-TestParam = [J I otherwise-> TestParam [test(Test)J),
(Mode== data, ev trans 21 30(Action, NewAction) ->true
I otherwise -> NewAction-= Action) ,
opmask_trans_21_30(0pMask, OpParam},
(Mode data ->

) I

oaa_Id (Facid} ,
Addr = [address(Facid}]
otherwise ->
Addr []

append([Addr, [reply(none) ,reflexive(false}],
Recurrence, TestParam, OpParam), Params).

ev_trans_21_30(post_trigger(KS, Kind,Recur,OpMask,Template,Test,Action),
ev_post_trigger_update(add,Type,Condition,NewAction,Params}}

Kind test -> Type = task
Kind event > Type comm
Kind alarm -> Type = time
otherwise-> Type= Kind},
Recur == whenever ->
Recurrence = recurrence(whenever}
otherwise ->
Recurrence = recurrence(when)

) I

template_trans_21_30(Kind, Template, Condition},
(var (Test) -> TestParam = [] I otherwise -> TestParam [test (Test)]) ,
oaa_Id (Facid) ,
(KS == Facid, ev trans 21_30(Action, NewAction) ->true
I otherwise -> NewAction = Action) ,
opmask_trans_21_30(0pMask, OpParam),
append([[address(KS), reply(none), reflexive(false}],

Recurrence, TestParam, OpParam],
Params) .

params trans 21 30 ([], []).
params=trans=21=30([Param I Params], [NewParam I NewParams])

(param_trans_21_30(Param, NewParam} ->
true
otherwise >
NewParam Par am

) I

3

Page 275 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4404

params_trans_21_30(Params, NewParams).

param_trans_21_30(cache, cache(true)).
param trans 21 30(solution limit(N), solution limit(N)).
param=trans=21=30(reflexiv~, reflexive(true))~
param_trans_21_30(address(A), address(NewA)) :-

(is_list(A) -> NewA =A I otherwise -> NewA = [A]) .
param_trans_21_30(broadcast, reply(none)).
param_trans_21_30(asynchronous, reply(asynchronous)).
% ®®DLM: is this handled?:
param_trans_21_30(test(T), test(T)).
param trans 21 30(level limit(N), level limit(N)).
param=trans=21=30(time_limit(N), time_limit(N)).
% @@DLM: NOT HANDLED!:
param_trans_21_30(and_parallel, and_parallel).
param_trans_21_30(or_parallel, or_parallel).

%%%
% The following could go to or from the facilitator.
%%%

ev_trans_30_21(ev_trace_on, _EvParams, trace_on).
ev_trans_30_2l(ev_trace_off, _EvParams, trace_off).
ev_trans_30_2l(ev_com_trace_on, _EvParams, tcp_trace_on).
ev trans 30 21(ev com trace off, EvParams, tcp trace off).
ev-trans-30-21(ev-deb~g on,- EvParams, debug on). -
ev=trans=30=21(ev=debug=off,-_EvParams, debug_off).
ev_trans_30_21(ev_set_timeout(N), _EvParams, set_timeout(N)).
ev_trans_30_21(ev_halt, _EvParams, halt).

%%%
% The following are sent only from facilitator to client.
%%%

ev_trans_30_21(
ev_solve(ID, Goal, NewParams),

_EventParams,
solve(ID, Goal, Params)) :

params_trans_30_21(Params, NewParams).

ev_trans_30_21(ev_reply_solved(_, Solved, Goal, SolveParams, Solutions),
_EventParams,

) .

solved(FromKS, Goal, SolveParams, Solutions))
Solved = [FromKS] ->
true
otherwise >

FromKS Solved

% OBSOLETE: forget these:
% ev_trans_30_21(add_trigger(data, Type, Cond, Action),
% ev_trans_30_21(add_trigger(event, Type, Cond, Action)
% ev_trans_30_2l(add_trigger(test, Type, Cond, Action)
% ®®DLM: Don't think this is needed:
% ev_trans_30_2l(inform_ui(Typeinfo, Result),))

ev_trans_30_21(

4

Page 276 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4405

ev_update_trigger(_ID, add, Type, Condition, Action, TrigParams),
_EventParams,
add_trigger(Kind, Recur, OpMask, Template, Test, Action)) :
(Type task -> Kind == test
I Type = comm-> Kind == event
I Type = time-> Kind == alarm
I otherwise >Type= Kind),
(memberchk(recurrence(whenever), TrigParams) ->

Recur = whenever
otherwise ->
Recur = when

) ,
Template = Condition,
(memberchk(test(Test), TrigParams) -> true I otherwise ->Test) ,
(memberchk(on(OpParam), TrigParams) ->

) ,

true
otherwise ->
OpParam =

opmask_trans_30_2l(OpParam, OpMask),
(memberchk(test(Test), TrigParams) ->true I true).

params trans 30 21 ([], []) .
params=trans=30=2l([Param I Params], [NewParam I NewParams])

(param_trans_30_2l(Param, NewParam) ->
true
otherwise ->
NewParam = Param

) ,
params_trans_30_21(Params, NewParams).

param_trans_30_21(cache(true), cache).
param_trans_30_21(solution_limit(N), solution_limit(N)).
param_trans_30_21(reflexive(true), reflexive).
% ®®DLM: double-check this:
param_trans_30_21(address(A), address(A)).
param_trans_30_21(reply(none), broadcast).
param_trans_30_21(reply(asynchronous), asynchronous).
% ®®DLM: is this handled?:
param_trans_30_21(test(T), test(T)).
param_trans_30_21(level_limit(N), level_limit(N)).
param_trans_30_21(time_limit(N), time_limit(N)).
% @@DLM: NOT HANDLED!:
param_trans_30_21(and_parallel, and_parallel).
param_trans_30_21(or_parallel, or_parallel).

%%%
%The following are sent only from a pre-3.0 facilitator to a client.
% Backwards compatibility not currently supported.
%%%

% ev_trans_21_30(solved(FromKS, Goal, SolveParams, Solutions),
% ev_reply_solved([FromKS], Solvers, Goal, SolveParams, Solutions))
% (Solutions == [] ->
% Solvers = []
% I otherwise ->

5

Page 277 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4406

% Solvers = [FromKS]
%) I

% (memberchk(get_address(FromKS), SolveParams) ->

% true
% I otherwise ->
% FromKS = unknown
%) •

%%%
% Auxiliary procedures.
%%%

% Returns either a Singleton list or an empty list.
opmask_trans_21_30(0pMask, [)) :-

var (OpMask),
! •

opmask trans 21 30(0pMask, OpParam)
\+-is_li;t(OpMask),
! I

opmask_trans_21_30([0pMask], OpParam).
opmask trans 21 30 ([], []).
opmask=trans=21=30([Elt I Rest], [EltTrans I RestTrans))

opmask_elt_trans_21_30(Elt, EltTrans),
! I

opmask trans 21 30(Rest, RestTrans).
opmask_tra~s_21_3o([_Elt I Rest), RestTrans)

! I

opmask_trans_21_30(Rest, RestTrans).
opmask elt trans 21 30(on send, on(send)).
opmask=elt=trans=21=30(on=receive, on(receive)).
opmask_elt_trans_21_30(on_write, on(add)).
opmask_elt_trans_21_30(on_retract, on(remove)).
opmask elt trans 21 30(on replace, on(replace)).
% This-one-probably-doesn7t have a precise translation:
opmask_elt_trans_21_30(on_write_replace, on(replace)).

opmask trans 30 21(0pMask, OpMask) :
va;;(OpMa;k)-;
!.

opmask trans 30 21(0pMask, OpParam)
\+-is_li;t(OpMask),
! I

opmask_trans_30_21([0pMask), OpParam).
opmask trans 30 21 ([), []) .
opmask=trans=30=21([Elt I Rest], [EltTrans I RestTrans))

opmask_elt_trans_30_21(Elt, EltTrans),
! I

opmask trans 30 21(Rest, RestTrans).
opmask_tra~s_3o_21C[_Elt I Rest), RestTrans)

! I

opmask_trans_30_21(Rest, RestTrans).
opmask elt trans 30 21(on(send), on send).
opmask=elt=trans=30=21(on(receive) ,-on_receive).
opmask_elt_trans_30_21(on(add), on_write).
opmask_elt_trans_30_21(on(remove), on_retract).
opmask_elt_trans_30_21(on(replace), on_replace).
% This one probably doesn't have a precise translation:

6

Page 278 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4407

opmask_elt_trans_30_21(on(replace}, on_write_replace}.

template_trans_21_30(data,

! .

data(ksdata, [Agentid,Status,Solvables,Name]},
agent_data(Agentid,Status,Solvables,Name}}

template_trans_21_30(data, Template, Template} :-
! .

template_trans_21_30(event, Template, Condition}
! I

ev_trans_21_30(Template, Condition}.
template_trans_21_30(_, Template, Template}.

%%%
%Event handlers for selected pre-3.0 events.
%
% In these cases, this approach is easier than providing an event
% translation.
%%%

oaa AppDoEvent(register solvable goals(GoalList}, Params}
- memberchk(connection_id(connection} I Params},

%This hack inherited from b.pl:
oaa_AppDoEvent(register_solvable_goals(GoalList, Connection},

Params}.

oaa_AppDoEvent(register_solvable_goals(GoalList, Name}, Params}

te} J},

memberchk(connection_id(Connection}, Params},
update connected(Connection, [oaa name(Name}]},
icl_Co~vertSolvables(GoalList, Solvables},
oaa_AppDoEvent(ev_register_solvables(add,Solvables,Name, [if_exists(overwri

Params}.

oaa_AppDoEvent(can_solve(Goal}, EvParams} :
memberchk(from(KS}, EvParams},
findall(SomeKS, choose_ks_for_goal(KS, Goal, _, [], SomeKS, _}, AgentList},
oaa_PostEvent(return_can_solve(Goal, AgentList}, [address(KS}]}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BB events
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

oaa_AppDoEvent(write_bb(ksdata, [Id 1 Status,Solvables 1 Name]} I

EvParams} :-
! I

} .

var(Solvables} >
% (Surely this never happens.}

oaa:oaa_add_data_local(agent_data(Id 1 Status 1 Solvables,Name}, [from(Id}]}
otherwise ->

icl_ConvertSolvables(Solvables, FormalSolvables} I

oaa_AppDoEvent(ev_register_solvables(add,FormalSolvables 1 Name,
[if exists(overwrite}]} 1

[from(Id} I EvParams]} -

oaa_AppDoEvent(write_bb(oaa_version, V} 1 EvParams}

7

Page 279 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4408

I
• I

memberchk(from(Id) I EvParams) I

% oaa:oaa_add_data_local(data(oaa_Version 1 V) 1 [from(Id)]),
com Getinfo(Connectionid, oaa id(Id)),
com=Addinfo(Connectionid, agent_version(V)).

oaa_AppDoEvent(write_bb(language, Language) 1 EvParams)
I
• I

memberchk(from(Id), EvParams),
com_Getinfo(Connectionid, oaa_id(Id)),
com Addinfo(Connectionid 1 agent language(Language)).

oaa_AppDoEvent(write_bb(kshost, Host), EvParams) :-
I . ,
memberchk(from(Id), EvParams),
oaa:oaa_solve_local(agent_data(Id, _, _ 1 Name), []),
oaa:oaa add data local(agent host(Id, Name, Host),

- - - [from(Idl-1 EvParams]).
oaa_AppDoEvent(write_bb(Item, Data), EvParams)

I . ,
memberchk(from(Id), EvParams),
oaa:oaa_add_data_local(data(Item, Data), [from(Id)]).

oaa_AppDoEvent(write_once_bb(Item, Data), EvParams)
(Item = ksdata ; Item = oaa_version ; Item = language ; Item = kshost),
! I

oaa_AppDoEvent(write_bb(Item, Data), [single_value(true) I EvParams]).
oaa_AppDoEvent(write_once_bb(Item, Data), EvParams)

! ,
memberchk(from(Id), EvParams),
oaa:oaa_add_data_local(data(Item, Data) 1 [from(Id), single_value(true)]).

oaa_AppDoEvent(write_replace_bb(Item, Data) 1 EvParams)
(Item = ksdata ; Item = oaa_version ; Item = language ; Item = kshost),
! ,

oaa_AppDoEvent(write_bb(Item 1 Data), [unique_values(true) I EvParams]).
oaa_AppDoEvent(write_replace_bb(Item, Data), EvParams)

! ,

memberchk(from(Id) 1 EvParams),
oaa:oaa_add_data_local(data(Item 1 Data), [from(Id) 1 unique_values(true)]).

oaa_AppDoEvent(replace_bb(ksdata, [A,open 1 C,Name] 1 [A 1 ready 1 C,Name]),
EvParams)

! I

oaa_AppDoEvent(ev_ready(Name), EvParams).
oaa_AppDoEvent(replace_bb(ksdata, [Id,Status,Solvables 1 Name],

[Newid,NewStatus,NewSolvables,NewName]) I

I . ,

) .

EvParams)

var(NewSolvables) ->
oaa:oaa_replace_data_local{agent_data{Id 1 Status,Solvables,Name),

[from(Id), with{agent_data(Newid,NewStatus,NewSolvables,NewName))))
otherwise ->

icl_ConvertSolvables(NewSolvables 1 FormalSolvables) 1

oaa_AppDoEvent(ev_register_solvables(add 1 FormalSolvables 1 NewName,
[if exists(overwrite)]),

[from(Newid) I EvParamsJ)

oaa_AppDoEvent(replace_bb(Item, OldData, Newnata), EvParams)

8

Page 280 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4409

! I

memberchk(from(Id), EvParams) 1

oaa:oaa_replace_data_local(data(Iteml OldData) 1

[from(Id) 1 with(data(Item 1 NewData))]).

% ®®DLM: May need more special-purpose clauses starting here:
oaa_AppDoEvent(retract_bb(Item 1 Data), EvParams)

! I

memberchk(from(Id), EvParams),
oaa:oaa_remove_data_local(data(Item 1 Data), [from(Id)]).

oaa_AppDoEvent(read_bb(ksdata, [Agent!d,Status,Solvables,Name]), EvParams)
! I

memberchk(from(Id), EvParams),
findall(read_bb(ksdata, [Agentid,Status,Solvables,Name]),

oaa:oaa_solve_local(agent_data(Agentid,Status,Solvables,Name), []),
Solutions) ,

oaa_simplify_ksdata(Solutions, Simplified),
oaa_PostEvent(return_read_bb(Simplified), [address(Id))).

oaa_AppDoEvent(read_bb(KS,kshost,Host), EvParams)
I
• I

memberchk(from(Id), EvParams),
findall(read_bb(KS, kshost, Host),

oaa:oaa_solve_local(agent_host(KS,_,Host), []),
Solutions),

oaa_PostEvent(return_read_bb(Solutions), [address(Id))).
oaa_AppDoEvent(read_bb(oaa_version,V), EvParams)

! I

memberchk(from(Id), EvParams),
% Not sure if this works (but this clause is probably never called) :
findall(read_bb(oaa_version, V),

(com_Getinfo(Connection!d, oaa_id(_)),
com_Getinfo(Connectionid, agent_version(V))) ,

Solutions) ,
oaa_PostEvent(return_read_bb(Solutions), [address(Id)]).

oaa_AppDoEvent(read_bb(KS,oaa_version,V), EvParams)
I
• I

memberchk(from(Id), EvParams),
findall(read_bb(KS, oaa_version, V),

(com_Getinfo(Connectionid, oaa_id(KS)) 1

com_Getinfo(Connectionid, agent_version(V))) ,
Solutions),

oaa_PostEvent(return_read_bb(Solutions), [address(Id)]).
oaa_AppDoEvent(read_bb(Item,Data), EvParams)

! I

memberchk(from(Id), EvParams),
findall(read_bb(Item, Data),

oaa:oaa_solve_local(data(Item, Data), []),
Solutions) ,

oaa_PostEvent(return_read_bb(Solutions), [address(Id))).
% ®®The owner parameter isn't implemented yet for solve!

oaa_AppDoEvent(read_bb(_KS, Item 1 Data) 1 EvParams)
! I

memberchk(from(Id) 1 EvParams) 1

findall(read_bb(Item, Data) 1

oaa:oaa_solve_local(data(Item, Data), [)) 1

9

Page 281 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4410

..

Solutions),
oaa_PostEvent(return_read bb(Solutions), [address(Id)]).

oaa simplify ksdata ([], []) .
oaa=sirnplify=ksdata([KSData I Rest], [Simplified I RestSimp])

KSData = read_bb(ksdata, [A, B, Solvables, D)),
icl_ConvertSolvables{SimplifiedSolvables 1 Solvables) 1

Simplified= read_bb(ksdatal [A, B, SimplifiedSolvables 1 D)) 1

oaa_simplify_ksdata(Restl RestSimp).

10

Page 282 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4411

INTHECL.S:

~A c puler-implemented method for communication and cooperative task

comp tion among a plurality of distributed electronic agents, comprising the

registering a desc · ption of each active client agent's functional capabilities, using an

expandable, latform-independent, inter-agent language;

receiving a request fo service as a base goal in the inter-agent language, in the form

of an arbitrarily omplex goal expression; and

dynamically interpreting he goal expression, said act of interpreting further

comprising:

generating one or m re sub-goals using the inter-agent language; and

dispatching each of ttl sub-goals to a selected client agent for performance,

based on a mate between the sub-goal being dispatched and the

registered functio al capabilities of the selected client agent.

2. A computer-implemented ethod as recited in claim 1, further including the

2 following acts of:

3 receiving a new request for service as base goal using the inter-agent language, in

4

5

6

the form of another arbitrarily c plex goal expression, from at least one of

the selected client agents in respo e to the sub-goal dispatched to said agent;

and

7 recursively applying the last step of claim 1 i order to perform the new request for

8

2

3

service.

3. A computer· recited in claim 2 wherein the act

of registering a specific ag t further includes:

invoking the speci c agent in order to activat

instantiating an in tance of the specific agent;

transmitting the ew agent profile from the sp cific agent to the facilitator

agent in response to the nstantiation of the specific agent.

4. A com uter implemented method as recited in claim 1 further

2 including the act of de ctivating a specific client agent no longer available to provide

3 services by deleting t e registration of the specific client agent.

5. A co • puter implemented method as recited in claim 1 further

2 comprising the act o providing an agent registry data structure.

Auornev Docket No: SRIIP0160477)/BRCIEWJ Page 46 of 59 Page 283 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4412

6. A colter implemented method as recited .!aim 5 wherein the

2 agent registry data structure includes at 1 stone symbolic name for each active agent.

7. A computer implemented method as recited in claim 5 wherein the

2 agent registry data structure includes a least one data declaration for each active

3 agent.

8. A computer impleme ed method as recited in claim 5 wherein the

() 2 agent registry data structure includ s at least one trigger declaration for one active

3 agent.

9. A computer imple ented method as recited in claim 5 wherein the

2 agent at least one task declaration, and process

3 characteristics for each active a nt.

10. A computer im lemented method as recited in claim 5 wherein the

2 agent registry data structure i ludes at least one process characteristic for each active

3 agent.

11. A computer implemented method as recited in claim 1 further

2 comprising the act of estab shing communication between the plurality of distributed

3 agents.

12. implemented method as recited in claim 1 further

2 comprising the acts of:

3 st for service in a second language differing from the inter-

4 agent language;

5 stered agent capable of converting the second language into the

6

7 e request for service in a second language to the registered agent

8 capable of conve ing the second language into the inter-agent language, implicitly

9 requesting that s ch a conversion be performed and the results returned.

13. computer implemented method as recited in claim 12 wherein the

2 request includ s a natural language query, and the registered agent capable of

3 converting th second language into the inter-agent language service is a natural

4

14. A computer implemented method as recited in claim 13 wherein the

2 uage query was generated by a user interface agent.

Attornev Docket No: SRIIPOI60477VBRCIEWJ Pa!!e 47 of 59 Page 284 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4413

15. A colter implemented me hod as recited in·~ I, wherein the

2 base goal requires setting a trigger having c nditional functionality and consequential

3 functionality.

16. A computer implemented ethod as recited in claim 15 wherein the

2 trigger is an outgoing communications trigger, the computer implemented method

3 further including the. acts o(

4 monitoring all outgoing comm nication events in order to determine whether a

\1\ 5 specific outgoing communication eve t has occurred; and

Q

ru

.~

"' ~·

6 in response to the occurrenc of the specific outgoing communication event,

7 performing the particular action defi ed by the trigger.

2

3

4

5

6

7

8

2

3

4

5

6

7

2

17. A computer implem nted method as recited in claim 15 wherein the

trigger is an incoming communic tions trigger, the computer implemented method

further including the acts of:

monitoring all incoming mmunication events in order to determine whether

a specific incoming communi cat" on event has occurred; and

in response to the occ ence of a specific incoming communication event

satisfying the trigger functionality, performing the particular

consequential functionality de med by the trigger.

18. A computer i plemented method as recited in claim 15 wherein the

trigger is a data trigger, the omputer implemented method further including the acts

of:

monitoring a state fa data repository; and

in response to a p rticular state event satisfying the trigger conditional

functionality, performin the particular consequential functionality defined by the

trigger.

19. puter implemented method as recited in claim 15 wherein the

er, the computer implemented method further including the acts

3 of:

4 for the occurrence of a particular time condition; and

5 in respon e to the occurrence of a particular time condition satisfying the

6 trigger conditio al functionality, performing the particular consequential functionality

7

20. A computer implemented method as recited in claim 15 wherein the

2 trigger is in ailed and executed within the facilitator agent.

Attornev Docket No: SRIIP016C3477)!BRCIEWJ Paee 48 of 59 Page 285 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4414

15. A Gopher implemented me hod as recited in’m 1, wherein the
base goal requires setting a trigger having (1 nditional functionality and consequential

l

3 functionality.

I 16. A computer implemented

ethod as recited in claim 15 wherein the

trigger is an outgoing communications trigger, the computer implemented method

3 further including the, acts ofi

monitoring all outgoing comm nication events in order to determine whether a

5 specific outgoing communication eve thas occurred; and

6 in response to the occurrenc of the specific outgoing communication event,

7 performing the particular action defi ed by the trigger.

1 17. A computer implem nted method as recited in claim 15 wherein the

2 trigger is an incoming communic tions trigger, the computer implemented method

3 further including the acts of:

monitoring all incoming mmunication events in order to determine whether

9.?“this:ll'fll

“LL“.‘53:;ii
34‘I I

ilfiistii‘fiiirii‘iiitiff}?‘il?tiffil‘1“iii?

Page 285 offlaagnev Docket No: SRIIP016t34771/BRC/EWJ

4

5 a specific incoming communicat‘on event has occurred; and

6 in response to the occ ence of a specific incoming communication event

7 satisfying the trigger con itional functionality, performing the particular

8 consequential functionality de med by the trigger.

plemented method as recited in claim 15 wherein the1 18. A computer i

2 trigger is a data trigger, the omputer implemented method further including the acts

3 of:

4 monitoring a state f a data repository; and

5 in response to a p rticular state event satisfying the trigger conditional

6 functionality, perforrnin the particular consequential functionality defined by the

7 trigger.

l 19. A co puter implemented method as recited in claim 15 wherein the

2 trigger is a time triv er, the computer implemented method further including the acts

3 of:

4 monitorin for the occurrence of a particular time condition; and

5 in respon e to the occurrence of a particular time condition satisfying the

6 trigger conditio al functionality, performing the particular consequential functionality

7 defined by the rigger.

1 20. A computer implemented method as recited in claim 15 wherein the

7 trigger is in alled and executed within the facilitator agent.

Petitioner Microsoft Corporationaagx‘iglfiég, p. 4414

= :l"l

""'

21. A colter impleme ted method as recited .aim 15 wherein the

2 trigger is installed and executed wit in a first service-providing agent.

22. A computer imple nted method as recited in claim 15 wherein the

2 conditional functionality of the tri ger is installed on a facilitator agent.

23. A computer impl mented method as recited in claim 22 wherein the

2 consequential functionality is i stalled on a specific service-providing agent other

3 than a facilitator agent.

24. implemented method as recited in claim 15 wherein the

2 conditional functionality of the trigger is installed on a specific service-providing

3

25. A com ter implemented method as recited in claim 15 wherein the

2 consequential functio ality of the trigger is installed on a facilitator agent.

2

2

3

26. A co puter implemented method as recited in claim wherein the

base goal is a comp und goal having sub-goals separated by operators.

27. mputer implemented method as recited in claim 26 wherein the

type of available operators includes a conjunction operator, a disjunction operator,

and a conditiona execution operator.

Attornev Docket No: SRIIP016(3477){8RCIEWJ Pae:e 49 of 59 Page 286 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4415

• •
28. A computer i ; plemented method as recited in claim 27 wherein the type

2 of available operators fu er includes a parallel disjunction operator that indicates that

3 disjunct goals are to be erformed by different agents.

Attorney Docket No: SRIIP016(3477)/BRC/EWJ Page 50 of 59

Page 287 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4416

=plemented method as recited in claim 27 wherein the type

1 28. A computer i

2 of available operators fu or includes a parallel disjunction operator that indicates that

3 disjunct goals are to be erformed by different agents.

.33‘i?!

{Ea3:73:3%...“ii?!ii:iii"!Mirth”ill”.

Attorney Docket No: SR11POl6(3477)/BRC/EWJ Page 50 of 59

Page 287 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4416

2

3

4

5

6

7

8

9

10

II

12

13

14

15

16

17

18

Fi 19

;-.: 20

21
"= !i!il

"'"' :.F: 22 == w
2

3

4

5

6

7

8

9

10

11

A ~-ter progr stored on a compute.dable medium, the

computer program executable to facilitate cooperative task completion within a

distributed computing environmen , the distributed computing environment including

a plurality of autonomous electro ic agents, the distributed computing environment

supporting an Interagent Co munication Language, the computer program

comprising computer executable nstructions for:

providing an agent reg stry that declares capabilities of service-providing

electronic agents currently acti within the distributed computing environment;

interpreting a service r quest in order to determine a base goal that may be a

x base goal, the service request adhering to an

Interagent Communication L guage (ICL), the act of interpreting including the sub

acts of:

determining a y task completion advice provided by the base goal, and

ny task completion constraints provided by the base goal;

constructing a base oal satisfaction plan including the sub-acts of:

whether the requested service is available,

sub-goals required in completing the base goal,

ervice-providing electronic agents from the agent registry

suitable for per£ rming the determined sub-goals, and

a delegation of sub-goal requests to best complete the

implementin the base goal satisfaction plan.

30. A c mputer program as recited in claim 29 wherein the computer

executable instruc on for providing an agent registry includes the following computer

executable instru tions for registering a specific service-providing electronic agent

ng a bi-directional communications link between the specific agent

agent controlling the agent registry;

provid. g a new agent profile to the facilitator agent, the new agent profile

defining pubr ly available capabilities of the specific agent; and

ring the specific agent together with the new agent profile within the

, thereby making available to the facilitator agent the capabilities of the

Allornev Docket No: SRI1POI6(3477)/BRC/EWJ Pa2e 51 of 59 Page 288 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4417

~

31. A colter program as ecited in claim 3~~rein the computer

2 executable instruction for registering a sp cific agent further includes:

3 invoking the specific agent in ord r to activate the specific agent;

4 instantiating an instance of the sp cific agent; and

5 transmitting the new agent pro le from the specific agent to the facilitator

6 agent in response to the instantiation of he specific agent.

32. s recited in claim 29 wherein the computer

2 executable instruction for providing agent registry includes a computer executable

3 instruction for removing a specifi service-providing electronic agent from the

4 registry upon determining that the pecific agent is no longer available to provide

5 services.

33. A computer progra as recited in claim 29 wherein the provided agent

2 registry includes a symbolic na e, a unique address, data declarations, trigger

3 declarations, task declari;'!.tions, an process characteristics for each active agent.

34. A computer progr m as recited in claim 29 further including computer

2 executable instructions for recei ing the service request via a communications link

3 established with a client.

2

3

4

5

6

7

8

9

10

35. ram as recited in claim 29 wherein the computer

executable instruction for prov· ing a service request includes instructions for:

receiving a non-ICL fo at service request;

selecting an active a ent capable of converting the non-ICL formal service

request into an ICL format s rvice request;

forwarding the non- CL format service request to the active agent capable of

converting the non-ICL service request, together with a request that such

receiving an IC format service request corresponding to the non-ICL format

service request.

36. A com uter program as recited in claim 35 wherein the non-ICL

2 format service reques includes a natural language query, and the active agent capable

3 of converting the no -ICL formal service request into an ICL format service request is

4

37. program as recited in claim 36 wherein the natural

2 language query i generated by a user interface agent.

Attornev Docket No: SRIIPOJ6(3477)!BRCIEWJ Page 52 of 59 Page 289 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4418

~

;;;

a ~
if';;=

38. I
.)

A co ter program as r cited in claim 29,Y computer program

2 further including computer executable in tructions for implementing a base goal that

3 requires setting a trigger having conditio al and consequential functionality.

39. A computer program as ecited in claim 38 wherein the trigger is an

2 outgoing communications trigger, the computer program further including computer

3 executable instructions for:

4 monitoring all outgoing co unication events in order to determine whether a

5 specific outgoing communication vent has occurred; and

6 in response to the occurr nee of the specific outgoing communication event,

7 performing the particular action defined by the trigger. '

2

3

4

5

6

7

2

3

4

5

40. A computer pro ram as recited in claim 38 wherein the trigger is an

incoming communications trig er, the computer program further including computer

executable instructions for:

g communication events in order to determine whether

a specific incoming commun·cation event has occurred; and

in response to the o currence of the specific incoming communication event,

performing the particular a ion defined by the trigger.

41. A computer program as recited in claim 38 wherein the trigger is a data

trigger, the computer pro!! am further including computer executable instructions for:

monitoring a stat of a data repository; and

in response to a articular state event, performing the particular action defined

by the trigger.

42. puter program as recited in claim 38 wherein the trigger is a

2 time trigger, the co puter program further including computer executable instructions

3 for:

4 for the occurrence of a particular time condition; and

5 se to the occurrence of the particular time condition, performing the

6 particular actio defined by the trigger.

43. A computer program as recited in claim 38 further including computer

2 structions for installing and executing the trigger within the facilitator

3 agent.

A computer program as recited in claim 38 further including computer

2 executabl instructions for installing and executing the trigger within a first service-

3

Attorne Docket No: SRIJPOJ6(3477)/BRCIEWJ Pa2:e 53 of 59 Page 290 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4419

~

45. A co-er program recited in claim 29 fu. including computer

2 executable instructions for interpreti compound goals having sub-goals separated

3 by operators.

. 46. as recited in claim 45 wherein the type of

2 available operators includes a con unction operator, a disjunction operator, and a

3 conditional execution operator.

47. m as recited in claim 46 wherein the type of

2 available operators further inclu es a parallel disjunction operator that indicates that

3 disjunct goals are to be perfo d by different agents.

4

5

ommunication Language (ICL) providing a basis for

facilitated coopera 've task ompletion within a distributed computing environment

having a facilitator a ent a d a plurality of autonomous service-providing electronic

agents to perform queries of other agents, exchange

nts, set triggers within other agents, an ICL syntax

6 supporting compound go expressions such that goals within a single request

7 provided according to the L syntax may be coupled by a conjunctive operator, a

8 disjunctive operator, a c nd'tional execution operator, and a parallel disjunctive

9 operator parallel disjune ive o erator that indicates that disjunct goals are to be

10

49.

2 independent.

50.

2

51.

An ICL s recited in claim 48, wherein the ICL is computer platform

as recited in claim 48 wherein the ICL is independent of

g languages which the plurality of agents are programmed in.

as recited in claim 48 wherein the ICL syntax supports explicit

2 task completion con traints within goal expressions.

52. An CL as recited in claim 51 wherein possible types of task

2 completion constr ints include use of specific agent constraints and response time

3 constraints.

53. A ICL as recited in claim 51 wherein the ICL syntax supports explicit

2 task completion dvisory suggestions within goal expressions.

54. n ICL as recited in claim 48 wherein the ICL syntax supports explicit

2 task completio advisory suggestions within goal expressions.

Auornev Docket No: SRIIPOI6(3477VBRC/EWJ Paee 54 of 59 Page 291 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4420

ijj

iii

~:;4

55. An ;tas recited in claim 48 wherein ea.utonomous service-

2 providing electronic agent defines and pub ishes a set of capability declarations or

3 solvables, expressed in ICL, that describes s rvices provided by such electronic agent.

56. An ICL as recited in claim 5 wherein an electronic agent's solvables

2 define an interface for the electronic agent.

57. An ICL as recited in clai 56 wherein the facilitator agent maintains

2 an agent registry making available a plu ality of electronic agent interfaces.

58. An ICL as recited in c im 57 wherein the possible types of solvables

2 includes procedure solvables, a proc ure solvable operable to implement a procedure

3 such as a test or an action.

59. An ICL as recited · claim 58 wherein the possible types of solvables

2 further includes data data solvable operable to provide access to a

3 collection of data.

60. An ICL as recit d in claim 58 wherein the possible types of solvables

2 includes data solvables, a dat solvable operable to provide access to a collection of

3 data.

2

3

4

5

6

7

8

9

lO

II

12

2

Y. A facilitator ent arranged to coordinate cooperative task completion

within a distributed comput" g environment having a plurality of autonomous service

providing electronic agents the facilitator agent comprising:

an agent registry that declares capabilities of service-providing electronic

agents currently active thin the distributed computing environment; and

a facilitating en ine operable to parse a service request in order to interpret a

compound goal set fo h therein, the compound goal including both local and global

constraints and contr 1 parameters, the service request formed according to an

Interagent Commu cation Language (ICL), the facilitating engine further operable to

construct a goal s isfaction plan specifying the coordination of a suitable delegation

of sub-goal requ ts to complete the requested service satisfying both the local and

global constrain s and control parameters.

62. facilitator agent as recited in claim 61, wherein the facilitating

able of modifying the goal satisfaction plan during execution, the

3 modifying i tiated by events such as new agent declarations within the agent registry,

4 decisions ade by remote agents, and information provided to the facilitating engine

5

Attorn Docket No: SRIIP016(3477)/BRC/EWJ Pa!!e 55 of 59 Page 292 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4421

las.ilfila

“:“m:

a...).. :3:1L{$911a.
us,‘7.fixii

“iii.“tilli”l
Ts?élifill.

asfir: \OOOQOLII
10

ll

12

WM

Page 292 ohms. Docket No: SRIlPOth3477t/BRC/EWJ

t

55. An I as recited in claim 48 wherein eac utonomous service-

providing electronic agent defines and pub ishes a set of capability declarations or

solvables, expressed in ICL, that describes s rvices provided by such electronic agent.

56. An ICL as recited in claim 5 wherein an electronic agent’s solvables

define an interface for the electronic agent.

57. An ICL as recited in clai 56 wherein the facilitator agent maintains

an agent registry making available a plu ality of electronic agent interfaces.

58. An ICL as recited in c im 57 wherein the possible types of solvables

includes procedure solvables, a proc ure solvable operable to implement a procedure

such as a test or an action.

59. An ICL as recited '

further includes data solvables, a data solvable operable to provide access to a

claim 58 wherein the possible types of solvables

collection of data.

60. An ICL as recit d in claim 58 wherein the possible types of solvables

includes data solvables, a dat solvable operable to provide access to a collection of

ent arranged to coordinate cooperative task completion

within a distributed comput' g environment having a plurality of autonomous service-

providing electronic agents the facilitator agent comprising:

an agent registry that declares capabilities of service-providing electronic

agents currently active thin the distributed computing environment; and

a facilitating en ine operable to parse a service request in order to interpret a

compound goal set fo h' therein, the compound goal including both local and global

constraints and contr 1 parameters, the service request formed according to an

Interagent Commu cation Language (ICL), the facilitating engine further operable to

construct a goal 3 isfaction plan specifying the coordination of a suitable delegation

of sub-goal requ ts to complete the requested service satisfying both the local and

global constrain s and control parameters.

62.

engine is ca able of modifying the goal satisfaction plan during execution, the

facilitator agent as recited in claim 61, wherein the facilitating

modifying i tiated by events such as new agent declarations within the agent registry,

decisions ade by remote agents, and information provided to the facilitating engine

by remote gents.

Petitioner Microsoft Corporationfiagiéslffég, p. 4421
A

63. A fa-tor agent as cited in claim 61 whf the agent registry

2 includes a symbolic name, a unique dress, data declarations, trigger declarations,

3 task declarations, and process characte istics for each active agent.

64. A facilitator agent as r ited in claim 61 wherein the facilitating engine

2 is operable to install a trigger mech nism requesting that a certain action be taken

3 when a certain set of conditions are

65. A facilitator agent s recited in claim 64 wherein the trigger

2 mechanism is a communication tr" gger that monitors communication events and

3 performs the certain action when a c rtain communication event occurs.

66. · A facilitator agent as recited in claim 64 wherein the trigger

2 mechanism is a data trigger that m nitors a state of a data repository and performs the

3 certain action when a certain data tate is obtained.

67. A facilitator agent as recited in claim 66 wherein the data repository is

2 local to the facilitator agent.

68. A facilitator agen as recited in claim 66 wherein the data repository is

2 remote from the facilitator agent

69. as recited in claim 64 wherein the trigger

2 mechanism is a task trigger hav ng a set of conditions.

70. A facilitator ag nt as recited in claim 61, the facilitator agent further

2 including a global database accessible to at least one of the service-providing

3 electronic agents.

"7-r. A software-ba ed, flexible computer architecture for communication

2 and cooperation among distr' uted electronic agents, the architecture contemplating a

3 distributed computing syste comprising:

4 a plurality of service providing electronic agents; and

5 a facilitator agent in bi-directional communications with the plurality of

6 service-providing electroni agents, the facilitator agent including:

7 istry that declares capabilities of service-providing

8

9

10

II

12

electronic agents urrently active within the distributed computing

environment;

g engine operable to parse a service request in order

to interpret an ar itrarily complex goal set forth therein, the facilitating

engine further o erable to construct a goal satisfaction plan including

Attornev Docket No: SRIIP016(3477)/BRCIEWJ Paee 56 of 59 Page 293 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4422

2

3

2

3

2

3

1

2

3

4

\OOOHG
10

ll

12

Page 293 offlfo’fiiev Docket No: SRIIP016(3477)/BRC/EWJ

tr

63. A fat’tor agent as cited in claim 61 wh in the agent registry
includes a symbolic name, a unique dress, data declarations, trigger declarations,

task declarations, and process characte istics for each active agent.

64. A facilitator agent as r ited in claim 61 wherein the facilitating engine

is operable to install a trigger mech nism requesting that a certain action be taken

when a certain set of conditions are et.

65. A facilitator agent 5 recited in claim 64 wherein the trigger

mechanism is a communication tr'gger that monitors communication events and

performs the certain action when a c rtain communication event occurs.

66. - A facilitator agent as recited in claim 64 wherein the trigger

mechanism is a data trigger that m nitors a state of a data repository and performs the

certain action when a certain data tate is obtained.

67. A facilitator agent as recited in claim 66 wherein the data repository is

local to the facilitator agent.

68. A facilitator agen as recited in claim 66 wherein the data repository is

remote from the facilitator agent

69. A facilitator a ent as recited in claim 64 wherein the trigger

mechanism is a task trigger hav ng a set of conditions.

70. A facilitator ag at as recited in claim 61, the facilitator agent further

including a global database accessible to at least one of the service—providing

electronic agents.

7/1”. A software-ba ed, flexible computer architecture for communication

and cooperation among distr' uted electronic agents, the architecture contemplating a

distributed computing syste comprising:

a plurality of service providing electronic agents; and

a facilitator agent in bi-directional communications with the plurality of

service-providing electroni agents, the facilitator agent including:

an agent re istry that declares capabilities of service-providing

electronic agents urrently active within the distributed computing

environment;

a facilitati g engine operable to parse a service request in order

to interpret an ar itrarily complex goal set forth therein, the facilitating

engine further 0 erable to construct a goal satisfaction plan including

Petitioner Microsoft Corporationp9%)§.6filé§, p. 4422

l3

14

2

3

4

5

6

the coordinator a suitable d egation of sub-goal tests to best

complete the requested service.

72. A computer architecture s recited in claim 71, wherein the basis for

the computer architect is an lnterage t Communication Language (ICL) enabling

agents to perform queries of other age ts, exchange information with other agents,

and set triggers within other agents, he ICL further defined by an ICL syntax

supporting compound goal expressio s such that goals within a single request

provided according to the ICL syntax ay be coupled by a conjunctive operator, a

7 disjunctive operator, a conditional e ecution operator, and a parallel disjunctive

8 operator parallel disjunctive operato that indicates that disjunct goals are to be

9 performed by different agents.

73. A computer architect e .as recited in claim 72, wherein the ICL is

2 computer platform independent.

74. A computer architec re as recited in claim 73 wherein the ICL is

2 independent of computer programm ng languages in which the plurality of agents are

3 programmed.

75. A computer archite ure as recited in claim 73 wherein the ICL syntax

~ 2 supports explicit task completion nstraints within goal expressions.
f,{j
iii 76. A computer archit cture as recited in claim 75 wherein possible types

2 of task completion constraints i lude use of specific agent constraints and response

3 time constraints.

77. A computer arch tecture as recited in claim 75 wherein the ICL syntax

2 supports explicit task completi n advisory suggestions within goal expressions.

78. itecture as recited in claim 73 wherein the ICL syntax

2 supports explicit task comple on advisory suggestions within goal expressions.

79. A computer architecture as recited in claim 73 wherein each

2 autonomous service-provi ing electronic agent defines and publishes a set of

3 capability declarations o solvables, expressed in ICL, that describes services

4 provided by such electroni agent.

80. A comput r architecture as recited in claim 79 wherein an electronic

2 agent's solvables define n interface for the electronic agent.

81. er architecture as recited in claim 80 wherein the possible

2 types of solvables inc des procedure solvables, a procedure solvable operable to

3 implement a procedur such as a test or an action.

Attornev Docket No: SRI I PO 16(34 77)/BRC/EW J Page 57 of 59 Page 294 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4423

~?

0:
"'

82. A c-uter architecture recited in claim 'wherein the possible

2 types of solvables further includes data so vables, a data solvable operable to provide

3 access to a collection of data.

2

3

2

3

2

3

2

3

4

5

83.

84.·

85.

A computer architectur as recited in claim 82 wherein the possible
I

types of solvables inc .odes a data solvable operable to provide access

A omputer archi cture as recited in claim 71 wherein the planning

rchitecture as recited in claim 71 wherein the execution

the facilitating engine is distributed across at least two

%. · er providing a transport mechanism for information

puting environment having at least one facilitator

aent, the data wave carrier comprising a signal

representation of an i ter-agent langu ge description of an active client agent's

87. A ata wave carrier as rec ted in claim 85, the data wave carrier further

2 comprising a si est for service in the inter-agent language

3

2

3

2

3

4

88. claim 85, the data wave carrier further

signal representation of a goal disp tched to an agent for performance

A data wave carrier as recited in clai 88 wherein a later state of the

data wa carrier comprises a signal representation o \;esponse to the dispatched

goal in uding results and/or a status report from the age\ for performance to the

facilit or agent. ~

Attornev Docket No: SRIIPOJ6(3477)!BRCIEWJ Pa!!e 58 of 59 Page 295 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4424

'' F

Hi
~·t

5

Software-Base,hitecture for Communication and Cttion Among

Distributed Electronic Agents

ABSTRACT

A highly flexible, software-based architecture is disclosed for constructing

distributed systems. The architecture supports cooperative task completion by

flexible, dynamic configurations of autonomous electronic agents. Communication

and cooperation between agents are brokered by one or more facilitators, which are

responsible for matching requests, from users and agents, with descriptions of the

10 capabilities of other agents. It is not generally required that a user or agent know the

identities, locations, or number of other agents involved in satisfying a request, and

relatively minimal effort is involved in incorporating new agents and "wrapping"

legacy applications. Extreme flexibility is achieved through an architecture organized

around the declaration of capabilities by service-providing agents, the construction of

15 arbitrarily complex goals by users and service-requesting agents, and the role of

facilitators in delegating and coordinating the satisfaction of these goals, subject to

advice and constraints that may accompany them. Additional mechanisms and

features include facilities for creating and maintaining shared repositories of data; the

use of triggers to instantiate commitments within and between agents; agent-based

20 provision of multi-modal user interfaces, including natural language; and built-in

support for including the user as a privileged member of the agent community.

Specialized embodiments providing enhanced scalability are also described.

Attorney Docket No: SR11P016(3477)/BRC/EWJ Page 59 of 59
Page 296 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4425

-
DECL.,TION AND POWER OF AT~EY . -
FOR O!UGINAL U.S. PATENT APPLICATION

Attorney's Docket No. _ _,S""RI'-'=-'l""-P-"0'-'-1~6'---
As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if
plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
SOFIW ARE-BASED ARCHITECTURE FOR COMMUNICATION AND COOPERATION AMONG DISTRIBUTED
ELECTRONIC AGENTS, the specification of which is attached hereto.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as
amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title

37, CFR § 1.56. . I(\(_, ~ih't_ f. "\ Ll'f
f\-'.

5
~ ~~)~ lJ) Q.XffZI\f\j)

And I hereby appoint the law :firm of Hickman & fvfartin~including PaulL. Hickman (Reg. No. 28, 516); L. Keith Stephens
(Reg. No. 32,632); Brian R. Coleman (Reg. No. 39,145); Dawn L. Palmer (Reg. No. 41,238); Jerray Wei (Reg. No. 43,247);

A and Ian L. Cartier (Reg. No. 38,406) as my principal attorneys to prosecute this application and to transact all business in the
~ Patent and Trademark Office connected therewith:

fid Send Correspondence To:

tf;
L;. =-
~
.00
;; Direct Telephone Calls To:

Brian R. Coleman
HICKMAN STEPHENS & COLEMAN, LLP
P.O. BOX 52037
Palo Alto, California 94303-0746

Brian R. Coleman at telephone number (650) 470-7430

-~~ I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and
C belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the
~"'j like so made are punishable by f"me or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that
4i such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

~

Typewritten Full Name of
Sole or First Inventor:

Inventor's signature:

Residence: (City)

Post Office Address:

Typewritten Full Name of
Second Inventor:

Inventor's signature:

Residence: (City)

Post Office Address:

Adam J. Cheyer

David L. Martin

IG/

1

Citizenship: CJSA

Date of Signature:___,/c....}"-'''""-')-+}_q..:...~....:.....----
(State/Country) CA

94306

Citizenship:

Date of Signature: __ I-+/--:5-+/-9.._7-S-----
(State/Country)

~c11\-c. C.\o-co..

CA

Page 297 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4426

i DECL; TION AND POWER OF AT - , Y

,.- FOR ORIGINAL U.S. PATENT APPLICATION
Attorney’s Docket No. SRIIP016 _ _

As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if
plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:
SOF‘l WARE-BASED ARCHITECTURE FOR COMMUNICATION AND COOPERATION AMONG DISTRHBUTED

ELECTRONIC AGENTS, the specification of which is attached hereto.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as
amended by any amendment referred to above.

I acknowledge the duty to disclose information which18Wmaterial to the examination of this applicationIn accordance with Title37, CFR § 1.56 ‘ (/9 Col LL?)figsw‘ “HSMg; mm}
And I hereby appoint the law firm of Hickmans including Paul L. Hickman (Reg. No. 28, 516); L. Keith Stephens
(Reg No. 32,632); Brian R. Coleman (Reg. No. 39,145); Dawn L. Palmer (Reg. No. 41,238); Jerray Wei (Reg. No. 43,247);

is: and Ian L. Cartier (Reg. No. 38,406) as my principal attorneys to prosecute this application and to transact all business in the

E Patent and Trademark Office connected therewith.
re

:3 Send Correspondence To: Brian R. Coleman
5'; HICKMAN STEPHENS & COLEMAN, LLP
5-: RC. BOX 52037

{3 Palo Alto, California 94303-0746

:2:- Direet Telephone Calls To: Brian R. Coleman at telephone number (650) 470—7430

; I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and
: belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the

:3 like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that
if; such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Typewritten Full Name of
Sole or First Inventor: Adam J. Cheyer Citizenship: (Z 55 l

Inventor’s signature: I @ i; . l 4&%4 4 Date of Signature: 2 l, I [OH
Residence: (City) CL 0 (State!Country) CA

Post Office Address: 75 32‘ Car , ’ OJ CA 3 O

Typewritten Full Name of (/l SDavid L. Martin Citizenship: 2 iSecond Inventor:

Inventor’s signature: .-' é: '; i i l W Date of Signature: I [S(Z 2
Residence: (City) E G W)t R Q l a t Cl (State/Country) C A

PostOfiiceAddress: (9'7 CROUW DR. Santa (Nam CR 01505:

Page 297 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4426

C't -- . . .
.:.

Application or 'Docket Number

PATENT· APPUCATION FEE DETERMINATION RECORD
!ift (cZU ;crt Effective 'November 10, 1~~8

CLAIMS AS FILED - PART I SMALL ENTITY OTHER THAN
(Column 1) (Column 2) TYPE c:::J OR SMALL ENTITY

FOR NUMBER FILED NUMBER EXTRA RATE FEE RATE FEE

BASIC FEE 380.00 OR 760.00

TOTAL CLAIMS 9,q minus20= * (cJi' X$9= X$18= 1/.J!.c[z._ OR

INDEPENDENT CLAIMS G minus3 = * '2) X39= OR X78= 'rJ~~-
MULTIPLE DEPENDENT CLAIM PRESENT

+130= OR +260=

* If the difference in column 1 is less than zero, enter ·cr in column 2 TOTAL OR TOTAL l/rl3~
'

kJ(
CLAIMS AS AMENDED- PART II OJHERTHAN

lColumn 1) lColumn2\ lColumn 3\ SMALL ENTIT'(OR SMALL ENTITY
CLAIMS HIGHEST ADDI· ADD I· c REMAINING NUMBER PRESENT

RATE TIONAL RATE TIONAL ~ AFTER PREVIOUSLY EXTRA
w AMENDMENT PAID FOR FEE ·FEE
:IE

Total * f/ Minus ** ,;;2() = ~1' 0~ ~X$18= ~1/-:L-Q X$9= z w Independent * (() Minus - ~ =<. ~X78= lz50'rJ b :IE' X39= OR c FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

+130= OR +260=

TOTAL TOTAL
ADOIT.FEE OR ADDIT. FEE

· (Column 1) . {Column 2) lColumn 31
CLAIMS HIGHEST

ADD I- ADO I-m REMAINING NUMBER PRESENT
1- AFTER PREVIOUSLY EXTRA RATE TIONAL RATE TIONAL z

AMENDMENT PAID FOR FEE FEE w
:IE

Total Minus Q * - = X$9= OR X$18= z w Independent * Minus - = :IE X39= X78= c OR FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

+130= OR +260=

TOTAL TOTAL
ADOIT.FEE OR ADDIT. FEE

lColumn 1) (Column 2\ Column 3'
CLAIMS HIGHEST

(,) REMAINING NUMBER PRESENT ADD I- ADD I-
1- AFTER PREVIOUSLY EXTRA RATE TIONAL RATE TIONAL z AMENDMENT PAID FOR FEE FEE w
:&

Total Minus Q •· ** = X$9= X$18= z OR w Independent * Minus *** = :& X39= X78= c(
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM OR

+130= OR +260::
• If the entry in column 1 is less than the entry in column 2. write "0" in column 3.

TOTAL OR TOTAL .. H th ~ighest Number Previously Paid For" IN THIS SPACE is less than 20. enter "20. •
-tf th "Highest Number Previously Paid F r" IN THIS SPACE is less than 3, enter "3."

AOOIT. FEE ADOIT. FEE

The "Highest Number Previously Paid For" (Total or Independent) is the highest numbel' found in th apprOpriate _box in· COlumn 1.

FORM PTo.875
(Rev. f!.l98l Patent and Trademark Ollice. U.S. DEPARTMENT OF COMMERCE

~
0 -· -=-c
tT co
()
0 u
"<

Page 298 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4427

{\I I;
Q

PATENT'APPLICATION FEE DETERMINATION RECORD

Effective November 10, L998
CLAIMS AS FILED - PART I .

Column 1 Column 2 TYPE [:1 0R SMALL ENTITY

NUMBER FILED NUMBER EXTRA

MULTIPLE DEPENDENT CLAIM PRESENT

" If the difference in column 1 is less than zero, enter '0' in column 2

CLAIMS AS AMENDED - PART II.

Column 1 Column 2 Column 3 SMALL ENTITY OR SMALL ENTITY
' ' M HI H "5

REMAINING NUMBER pnesam ADDI-
AFTER PREVIOUSLY mm , “CNN-

AMENDMENT _ PAID FOR ' E

Independent ”II-ME-
FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

Column 1 I Column 2 Column 3

1.85I.IIIIE_m CLAIM HIGHEST .~ .
REMAINING NUMBER PRESENT

E AFTER PREVIOUSLY exmA RATE
9; AMENDMENT PAID FOR

5 w ‘ -mu-
5 - X518:
3 — m -

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM

-.
TOT

ADDIT. FEE

Column 1 Column 2 Column 3
CLAIMS HIGHEST

REMAINING NUMBER PRESENT
AFTER PREVIOUSLY EXTRA

AMENDMENT PAID FOR

w -m--

FIRST PRESENTATION OF MULTIPLE DEPENDENT CLAIM
asE»? IIIE'SAMENDMENT(5

4.8I?

' "the entry in column 1 is less than the entry in column 2. write ’0' in column 3.
" If m 'Highest Number Previously Paid For' IN THIS SPACE is less than 20. enter '20.’
mn In ’Highest Number Previously Paid F r IN THIS SPACE is less than 3. enter '3." ADD" FEE ADD": FEE

The 'Highést Number Previously Paid For (rota! or Independent) is the highest number‘ found In th Wow h'column .1.

8.4I?

ggwg Of 778 Petiticfi‘a'gPMiE'Nm WoT£§€>W9WWM27

 E‘-e.

Adooegqono/wIsa“;

PATENT APPLICATION SERIAL NO.--------

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

OV19/1999 IIVIWRI 00000027 500384 092251CJI

01 FCI101
02 FCa102
03 FCI103

PT0-1556
(5/87)

760.00 at
234.00 at

1242.00 at

Page 299 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4428

PATENT APPLICATION SERIAL NO.»

US. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

01/19/1909 mm 00000027 500304 09225198

160.00 III
01 M101 834.00‘ 02 “3102 ca

03 FCI103 1202.00 DI

PTO-1556

(5/87)

Page 299 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4428

ARTIFACT SHEET

Enter artifact number below. Artifact number is application number+
artifact type code (see list below)+ sequential letter (A, B, C ...). The first
artifact folder for an artifact type receives the letter A, the second B, etc ..
Examples: 59123456PA, 59123456PB, 59123456ZA, 59123456ZB

D t) z_z_ r J 9 ~Pzt
Indicate quantity of a single type of artifact received but not scanned. Create
individual artifact folder/box and artifact number for each Artifact Type.

~ CD(s) containing: [2']

D
D
D
D
D
D

D

computer program listing
·Doc Code: Computer Artifact Type Code: P
pages of specification
and/or sequence listing D
and/or table
Doc Code: Artifact Artifact-IYPe Code: S
content unspecified or combined U
Doc Code: Artifact Artifact Type Code: U

Stapled Set(s) Color Documents or B/W Photographs
Doc Code: Artifact Artifact Type Code: C

Microfilm(s)
Doc Code: Artifact Artifact Type Code: F

Video tape(s)
Doc Code: Artifact Artifact Type Code: V

Model(s)
Doc Code: Artifact Artifact Type Code: M

Bound Document(s)
Doc Code: Artifact Artifact Type Code: B

Confidential Information Disclosure Statement or Other Documents
marked Proprietary, Trade Secrets, Subject to Protective Order,
Material Submitted under MPEP 724.02, etc.

Doc Code: Artifact Artifact Type Code X

Other, description: ---------------------------------Doc Code: Artifact Artifact Type Code: Z

March 8, 2004

Page 300 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4429

ARTIFACT SHEET

Enter artifact number below. Artifact number is application number+
artifact type code (see list below)+ sequential letter (A, B, C ...). The first
artifact folder for an artifact type receives the letter A, the second B, etc ..
Examples: 59123456PAY-\5J;ll23456PB, 59~?l456ZA, 59123456ZB

u I z..z,<;-')9(
Indicate quantity of a single type of artifact received but not scanned. Create
individual artifact folder/box and artifact number for each Artifact Type.

D
D
D
D
D
D

D

CD(s) containing:
computer program listing
Doc Code: Computer Artifact Type Code: P
pages of specification
and/or sequence listing
and/or table

D
Doc Code: Artifact Artifact-llPe Code: S
content unspecified or combined U
Doc Code: Artifact Artifact Type Code: U

Stapled Set(s) Color Documents or B/W Photographs
Doc Code: Artifact Artifact Type Code: C

Microfilm(s)
Doc Code~ Artifact Artifact Type Code: F

Video tape(s)
Doc Code: Artifact Artifact Type Code: V

Model(s)
Doc .Code: Artifact Artifact Type Code: M

Bound Document(s)
Doc Code: Artifact Artifact Type Code: B

Confidential Information Disclosure Statement or Other Documents
marked Proprietary, Trade Secrets, Subject to Protective Order,
Material Submitted under MPEP 724.02, etc.

Doc Code: Artifact Artifact Type Code X

Other, description:
----~~----~~-----------------

Doc Code: Artifact Artifact Type Code: Z

March 8, 2004

Page 301 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4430

ARTIFACT SHEET

Enter artifact number below. Artifact number is application number 4-

artifact type code (see list below) + sequential letter (A, B, C ...). The first

artifact folder for an artifact type receives the letter A, the second B, etc..

Examples: 59123456PA 5 123456PB, 59 2 4562A, 59123456ZB
39 2/; ‘ t’ '

Indicate quantity of a single type of artifact received but not scanned. Create

individual artifact folder/box and artifact number for each Artifact Type.

CD(s) containing: a
computer program listing
Doc Code: Computer Artifact Type Code: P

pages of specification

and/or sequence listing D
and/or table

Doc Code: Artifact Artifac e Code: S

content unspecified or combined iii)
Doc Code: Artifact , Artifact Type Code: U

Stapled Sct(s) Color Documents or B/W Photographs
Doc Code: Artifact Artifact Type Code: C

Microfilm(s)

Doc Code: Artifact Artifact Type Code: F

Video tape(s)
Doc Code: Artifact Artifact Type Code: V

Model(s)
Doc .Code: Artifact Artifact Type Code: M

Bound Document(s) ,
Doc Code: Artifact Artifact Type Code: B

Confidential Information Disclosure Statement or Other Documents

marked Proprietary, Trade Secrets, Subject to Protective Order,
Material Submitted under MPEP 724.02, etc.

Doc Code: Artifact Artifact Type Code X

Other, description:
Doc Code: Artifact Artifact Type Code: Z

DSUBBED
March 8, 2004

Page 301 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4430

• • PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of:)
) Group: 2755

Cheyer et al.)
) Examiner: Unassigned

Application No.: 09/225,198)
) Atty. Docket No.: SRI1P016

Filed: January 5, 1999)
)

For: SOFTWARE-BASED ARCHITECTURE)
FOR COMMUNICATION AND COOPERATION)

Date: May 11, 1999
RECEIVED

AMONG DISTRIBUTED ELECTRONIC) MAY 2 0 1999
AGENTS)

Gro• •n 2700

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the
United States Postal Service as First Class Mail in an envelope
addressed to: Assistant Commissioner for Patents, Washington, DC
20231 on May II, 1999 ·

Signod' ~ ~
~asu~

INFORMATION DISCLOSURE STATEMENT
UNDER 37 CFR §§1.56 AND 1.97(c)

Assistant Commissioner for Patents
Washington, DC 20231

Dear Sir:

The references listed in the attached PTO Form 1449, copies ofwhich are attached,

may be material to examination of the above-identified patent application. Applicants submit

these references in compliance with their duty of disclosure pursuant to 37 CFR §§1.56 and

1.97. The Examiner is requested to make these references of official record in this

application.

Reference No. Ron Page 4 ofPTO form 1449 contains documents downloaded from

a web site owned by Dejima, Inc. at http://www.dejima.com on April 29, 1999 and March 18,

1999. The applicant makes no representation that this web site has not changed between the

dates of downloading or that this web site will not change in the future.

This Information Disclosure Statement is not to be construed as a representation that a

search has been made, that additional information material to the examination of this

application does not exist, or that these references indeed constitute prior art.

Attny Dkt No. SRI1P016 1

Page 302 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4431

045196;
' . e i ..

i , PATENT #
2-

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of:

Group: 2755

Cheyer et a1.

Examiner: Unassigned

Application No.: 09/225,198

~ Atty. Docket No.: SRIlP016

Filed: January 5, 1999

Date: May 11, 1999

RECEIVED

MAY 2 01999

Gro: In 2700

For: SOFTWARE-BASED ARCHITECTURE

FOR CONEMUNICATION AND COOPERATION

AMONG DISTRIBUTED ELECTRONIC

AGENTS

UVVVVVVVVVVV
CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the
United States Postal Service as First Class Mail in an envelope
addressed to: Assistant Commissioner for Patents, Washington, DC

" 20231 on May H, 1999 ‘

Signed:
J asudevan

INFORMATION DISCLOSURE STATEMENT
UNDER 37 CFR §§1.56 AND 1.971(3)

Assistant Commissioner for Patents

Washington, DC 20231

Dear Sir:

The references listed in the attached PTO Form 1449, copies ofwhich are attached,

may be material to examination of the above-identified patent application. Applicants submit

these references in compliance with their duty of disclosure pursuant to 37 CFR §§l.56 and

1.97. The Examiner is requested to make these references of official record in this ,

application.

Reference No. R on Page 4 of PTO form 1449 contains documents downloaded from

a web site owned by Dejima, Inc. at http://wwwdejimacom on April 29, 1999 and March 18,

1999. The applicant makes no representation that this web site has not changed between the 1

dates of downloading or that this web site will not change in the future.

This Information Disclosure Statement is not to be construed as a representation that a

search has been made, that additional information material to the examination of this

application does not exist, or that these references indeed constitute prior art.

Atmy Dkt No. SRIIP016 1

Page 302 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4431

•
This Information Disclosure Statement is believed to be filed before the mailing date

of a first Office Action on the merits. Accordingly, it is believed that no fees are due in

connection with the filing of this Information Disclosure Statement. However, if it is

determined that any fees are due, the Commissioner is hereby authorized to charge such fees

to Deposit Account 50-0384 (Order No. SRI1P016).

P.O. Box 52037
Palo Alto, CA 94303-0746
Telephone: (650) 470-7430

Attny Dkt No. SRIIP016

Respectfully submitted,

HICKMAN STEPHENS & COLEMAN, LLP

~
Brian R. Coleman
Reg. No. 39,145

2

Page 303 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4432

UNITED STATES PATENT AND 'IRADE:tviARK OFFICE

APPLICATION NO. FILING DATE

09/225,198 01/0511999

25696 7590 07/17/2002

OPPENHEIMER WOLFF & DONNELLY
P. 0. BOX 10356
PALO ALTO, CA 94303

FIRST NAMED INVENTOR

ADAM J. CHEYER

Ur-'l:TED STATES DEPARTIIENT OF COMMERCE
United States Po. tent and Trndcznnrk Office
Addreoo: COMMISSIONER OF PATENTS AND TRADEMARKS

Wao!Ungton, D.C. 20231
www .uspto.gov

ATTORNEY DOCKET NO. CONFIRMATION NO.

SRIIP016 2756

EXAMINER

BULLOCK JR, LEWIS ALEXANDER

ART UNIT PAPER NUMBER

2151

DATE MAILED: 07/17/2002

Please find below and/or attached an Office communication concerning this application or proceeding.

PT0-90C (Rev. 07-01)

Page 304 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4433

UNITED STATES PATENT AND TRADEMARK OFFICE UNITED STATES DEPARTDIENT OF CommRCE
United States Patent and Trademark Office
Address: COWIISSIONER 0F PATENTS AND TRADmARKS

Washington). DC. 20231www.uspw.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

09/225,198 01/05/1999 ADAM J. CHEYER SRIIP016 2756

25696 7590 07/17/2002

OFFENHEIMERWOLMDONNELLY
P. 0. BOX 10356

PALO ALTO, CA 94303 BULLOCK JR, LEWIS ALEXANDER

2151

DATE MAILED: 07/17/2002

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 0701) J

Page 304 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4433

Application No.

09/225,198

Applicant(s)

CHEYER ET AL.

Office Action Summary

Period for Reply

Examiner

Lewis A. Bullock, Jr.
appears on

Art Unit

2151

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE ;l MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however. may a reply be timely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If the period for reply specified above is less than thirty (30) days. a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.

Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S. C.§ 133).
Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)0 Responsive to communication(s) filed on __ .

2a)0 This action is FINAL. 2b)[8J This action is non-final.

3)0 Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4)[8] Claim(s) 1-89 is/are pending in the application.

4a) Of the above claim(s) __ is/are withdrawn from consideration.

5)0 Claim(s) __ is/are allowed.

6)[8] Claim(s) 1-89 is/are rejected.

7)0 Claim(s) __ is/are objected to.

8)0 Claim(s) __ are subject to restriction and/or election requirement.
Application Papers

9)0 The specification is objected to by the Examiner.

10)0 The drawing(s) filed on __ is/are: a)O accepted or b)O objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11)0 The proposed drawing correction filed on __ is: a)O approved b)O disapproved by the Examiner.

If approved, corrected drawings are required in reply to this Office action.

12)0 The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

13)0 Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)O All b)O Some* c)O None of:

1.0 Certified copies of the priority documents have been received.

2.0 Certified copies of the priority documents have been received in Application No. __ .

3.0 Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17 .2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

14)0 Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (fo-~ provisional application).

a) 0 The translation of the foreign language provisional application has been received.
15)0 Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

AHachment(s)

1) [8J Notice of References Cited (PT0-892)

2) [8J Notice of Draftsperson's Patent Drawing Review (PT0-948)

3) [8J Information Disdosure Statement(s) (PT0-1449) Paper No(s) 2.

4) 0 Interview Summary (PT0-413) Paper No(s). __ .

5) 0 Notice of Informal Patent Application (PT0-152)
6) 0 Other:

PT0-326 (Rev. 04-01) Office Action Summary Part of Paper No. 3 Page 305 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4434

 Applicant(s)

09/225,198 CHEYER ET AL.

Examiner Art Unit

Lewis A. Bullock, Jr. 2151

- The MAILING DA TE of this communication appears on the cover sheet with the correspondence address -

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE g MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event. however, may a reply be timely filed

after SIX (6) MONTHS from the mailing date of this communication.
If the period for reply specified above is less than thirty (30) days. a reply within the statutory minimum of thirty (30) days will be considered timely.
If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
Any reply received by the Office later than three months after the mailing date of this communication. even if timely filed. may reduce any
earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)El Responsive to communication(s) filed on

2a)[:] This action is FINAL. 2mg This action is non-final.

3)[:] Since this application is in condition for allowance except for formal matters, prosecution as to the merits is
closed in accordance with the practice under Ex parte Quayle, 1935 CD. 11, 453 0.0:. 213.

Disposition of Claims

4). Claim(s) 1-89is/are pending in the application.

 Application No.

a

- Office Action Summary

 tlil

48) Of the above Claim(s) _______ is/are withdrawn from consideration.

5):] Claim(s)_ is/are allowed.

6)IZ] CIaim(s)1-_89 is/are rejected.

7)[] Claim(s)_ is/are objected to.

8)[:] Claim(s) __ are subject to restriction and/or election requirement.
 Application Papers

9)E] The specification is objected to by the Examiner.

10)[:j The drawing(s) filed on ______ is/are: a)|:] accepted or MD objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

11):} The proposed drawing correction filed on .__.... is: a)[:| approved b)|:] disapproved by the Examiner.

If approved, corrected drawings are required in reply to this Office action.

12)[:] The oath or declaration is objected to by the Examiner,

Priority under 35 U.S.C. §§ 119 and 120

13):] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or .'(f).

a)|:] All b)[:l Some * c)[:l None of:

1.[:l Certified copies of the priority documents have been received.

21:] Certified copies of the priority documents have been received in Application No. __

 3E] Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

14)l:] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (tea provisional application).

a) [:l The translation of the foreign language provisional application has been received.

15)C] Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121. -
Attachment(s)

1) E Notice of References Cited (PTO-892) 4) E] Interview Summary (PTO-413) Paper No(s)___
2) E Notice of Draflsperson'5 Patent Drawing Review (PTO-948) 5) [:1 Notice of Informal Patent Application (PTO-152)
3) E Information Disclosure Statement(s) (PTO-1449) Paper No(s)_2. 6) E] Other:

 U.S. Patent and Trademark Office

~326(Sort—(P Office Action Summary Part of Paper No 3age (gfi)778 Petitioner Microsoft Corporation— EX 1008, p 4434

. Application/Control Number: 09/225,198

Art Unit: 2151

DETAILED ACTION

Claim Rejections - 35 USC § 112

•
Page 2

1. Claim 2 is rejected under 35 U.S.C. 112, second paragraph, as being indefinite

for failing to particularly point out and distinctly claim the subject matter which applicant

regards as the invention. Applicant claims the recursively applying the last step of claim

1, however the Examiner cannot determine which step applicant is referring to.

Applicant is either referring to the dynamically interpreting step and its substep or the

dispatching step of the dynamically interpreting step. Clarification is requested.

2. Claim 3 recites the limitation "from the specific agent to the facilitator agent" in

lines 5-6. There is insufficient antecedent basis for this limitation in the claim. There is

no mention of the facilitator agent anywhere in the parent claims. In review of the

specification the examiner finds the facilitator agent performs the steps of claim 1 ,

however, claim 1 does not detail the facilitator agent as performing the steps. The

examiner request Applicant to amend claim 1 to detail that the facilitator agent performs

the functionality.

3. Claims 84 and 85 are rejected under 35 U.S.C. 112, second paragraph, as being

indefinite for failing to particularly point out and distinctly claim the subject matter which

applicant regards as the invention. Claims 84 and 85 recite the planning and execution

components, however neither component has antecedent basis in the parent claim 71.

Correction is requested.

Page 306 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4435

,
• Application/Control Number: 09/225,198

Art Unit: 2151

•
Page 3

4. Claims 87 and 88 recite the limitation "A data wave carrier as recited in claim 85"

in line 1. There is insufficient antecedent basis for this limitation in the claim. Claims 87

and 88 should be dependent on claim 86 not claim 85 and are further examined as

such.

Claim Rejections- 35 USC§ 102

5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(a) the invention was known or used by others in this country, or patented or described in a printed
publication in this or a foreign country, before the invention thereof by the applicant for a patent.

(b) the invention was patented or described in a printed publication in this or a foreign country or in public
use or on sale in this country, more than one year prior to the date of application for patent in the United
States.

6. Claims 1, 2, 5-11, 15-28, 48-89 are rejected under 35 U.S.C. 1 02(a) as being

anticipated by "Building Distributed Software Systems with the Open Agent

Architecture" by MARTIN.

As to claim 1, MARTIN teaches a computer-implemented method for

communication and cooperative task completion among a plurality of distributed agents

(application agent I meta agent I user interface agent), comprising the acts of:

registering a description of each client agent's functional capabilities (capabilities

specifications), using a platform independent inter-agent language (ICL); receiving a

request for service as a base goal (goals created by requesters of service) in the inter-

agent language, in the form of an arbitrarily complex goal expression; and dynamically

interpreting the goal expression (goals) (via facilitator) comprising: generating one or

Page 307 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4436

J

. Application/Control Number: 09/225,198

Art Unit: 2151

•
Page4

more sub-goals using the inter-agent language; and dispatching each of the sub-goals

to a selected client agent (service providers) for performance, based on a match

between the sub-goal being dispatched and the registered functional capabilities of the

selected client agent (pg. 7, Mechanisms of Cooperation; pg. 12-14, Requesting

Services; Refining Service Requests, and Facilitation).

As to claim 2, MARTIN teaches receiving a new request (subgoal) for service as

a base goal from at least one of the selected client agents in response to the sub-goal

and recursively applying the dynamically interpreting (pg. 13, Refining Service

Requests).

As to claims 5-10, MARTIN teaches providing an agent registry data structure

that can comprise of symbolic names, data declarations, trigger declarations, and task

and process characteristics (pg. 13-14, Facilitation; pg. 7, "In processing a request. .. it

can use ICL to request services of other agents, set triggers, and read or write shared

data on the facilitator. .. ").

As to claim 11, MARTIN teaches establishing communication between distributed

agents (pg. 6, The facilitator is a specialized server agent that is responsible for

coordinating agent communications and cooperative problem-solving.").

Page 308 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4437

. Application/Control Number: 09/225,198

Art Unit: 2151

Page 5

As to claims 15-25, MARTIN teaches the base goal requires setting a trigger

having conditional functionality and consequential functionality which can be stored on

the facilitator agent and/or the service providing agent (pgs. 16-17, Autonomous

Monitoring Using Triggers).

As to claims 26-28, MARTIN teaches the base goal is a compound goal having

sub-goals separated by operators, i.e. conjuction operator, disjunction operator,

conditional operator, and a parallel operator (pg. 12-13, Compound goals).

As to claim 48, MARTIN teaches an Inter-agent Communication Language (ICL)

providing a basis for facilitated cooperative task completion within a distributed

computing environment having a facilitator agent (facilitator) and a plurality of electronic

agents (service providing agents I service requesting agents), the ICL enabling agents

to perform queries of other agents, exchange information with other agents, set triggers

within other agents (pgs. 4-7, Overview of OAA System Structure, Mechanisms of

Cooperation; pg. 8, "OAA agents employ ICL to perform queries, execute actions,

exchange information, set triggers, and manipulate data in the agent community."), an

ICL syntax supporting compound goal expressions such that goals within a single

request provided according to the ICL syntax may be coupled by a conjunctive operator,

a disjunctive operator, a conditional execution operator, and a parallel operator that

indicates that goals are to be performed by different agents (pg. 12, Compound goals).

Page 309 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4438

. Application/Control Number: 09/225,198

Art Unit: 2151

Page 6

As to claim 49 and 50, MARTIN teaches the ICL is platform and language

independent (pg. 8, "OAA's Inter-agent Communication Language (ICL) is the interface,

communication, and task coordination language shared by all agents, regardless of

what platform they run on or what computer language they are programmed in.").

As to claims 51-54, MARTIN teaches the ICL supports task completion

constraints within goal expressions (pg. 9, "A number of important declarations ... we

consider each of these elements.").

As to claims 55-60, MARTIN teaches each electronic agent defines and

publishes a set of capability declarations or solvables that describe services and an

interface to the electronic agent (pg. 9, "A number of important declarations ... we

consider each of these elements.").

As to claims 61 and 62, reference is made to an agent that performs the method

of claim 1 above and is therefore met by the rejection of claim 1 above. However, claim

61 further details an agent register and the construction of a goal satisfaction plan.

MARTIN teaches an agent register (knowledge base) (pg. 13-14, Facilitation); and the

construction of a goal satisfaction plan (pg. 13, "When a facilitator receives a compound

goal, its job is to construct a goal satisfaction plan and oversee its satisfaction in the

most appropriate, efficient manner that is consistent with the specified advice.").

Page 310 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4439

. Application/Control Number: 09/225,198

Art Unit: 2151

As to claim 63, refer to claim 5 for rejection.

As to claim 64-69, refer to claims 15-25 for rejection.

•

As to claim 70, MARTIN teaches the agent registry (knowledge base) is a

Page 7

database accessible to all electronic agents (via the facilitator) (pg. 13-14, Facilitation).

As to claim 71, reference is made to an architecture that encompasses the agent

of claim 61 above, and is therefore met by the rejection of claim 61 above. However

claim 71, further details the facilitator agent in bi-directional communication with the

electronic agents. MARTIN teaches the facilitator agent in bi-directional communication

with the electronic agents (fig 1).

As to claim 72, refer to claim 48 for rejection.

As to claims 73 and 74, refer to claims 49 and 50 for rejection.

As to claims 75-78, refer to claims 51-54 for rejection.

As to claims 79-83, refer to claims 54-60 for rejection.

Page 311 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4440

Application/Control Number: 09/225,198

Art Unit: 2151

•
Page 8

As to claims 84 and 85, MARTIN teaches the facilitating engine is distributed

across at least two processes (pg. 6, "Larger systems can be assembled from multiple

facilitator/client groups ... ").

As to claim 86, MARTIN teaches a data wave carrier (system) providing a

transport mechanism (layer of conversational protocol I communication functions) for

information communication in a distributed computing environment having at least one

facilitator agent (facilitator) and at least one client agent (application agent I user

interface agent), the carrier comprising a signal representation of an inter-agent

language description of a client agent's functional capabilities (registering by the service

provider agents) (pg. 6-9).

As to claim 87, MARTIN teaches a signal representation of a request for service

in the inter-agent language from a first agent to a second agent (request for service

from an service requesting agent to the facilitator) (pg. 12, Requesting Services).

As to claim 88, MARTIN teaches a signal representation of a goal dispatched to

an agent for performance from a facilitator agent (pg. 13-14, Facilitation).

As to claim 89, MARTIN teaches a signal representation of a response to the

dispatched goal including results and/or a status report from the agent for performance

to the facilitator agent (pg. 13-14, Facilitation).

Page 312 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4441

. Application/Control Number: 09/225,198

Art Unit: 2151

7. Claims 1, 2, 5-11, and 15-25 are rejected under 35 U.S.C. 102(b) as being

anticipated by "Development Tools for the Open Agent Architecture" by MARTIN.

As to claim 1, MARTIN teaches a computer-implemented method for

Page 9

communication and cooperative task completion among a plurality of distributed agents

(sub-agents I agents), comprising the acts of: registering a description of each client

agent's functional capabilities, using a platform independent inter-agent language (pg.

5, Each facilator records the published capabilities of their subagents ... "); receiving a

request as a base goal in the inter-agent language (ICL form), in the form of an

arbitrarily complex goal expression; and dynamically interpreting the goal expression

comprising: generating one or more sub-goals using the inter-agent language; and

dispatching each of the sub-goals to a selected client agent for performance ("pg. 5,

" ... and when requests arrive (expressed in the Inter-agent Communication Language,

described below), the facilitator is responsible for breaking them down and for

distributing sub-requests to the appropriate agents; "For example, every agent

can ... and request solutions for a set of goals, ... ").

As to claim 2, MARTIN teaches receiving a new request for service as a base

goal from at least one of the selected client agents in response to the sub-goal and

recursively applying the dynamically interpreting (pg. 5, "An agent satisfying a request

may require supporting information, and the OAA provides numerous means of

requesting data from other agents or from the user.").

Page 313 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4442

Application/Control Number: 09/225,198

Art Unit: 2151

Page 10

As to claims 5-10, MARTIN teaches providing an agent registry data structure

that can comprise of symbolic names, data declarations, trigger declarations, and task

and process characteristics (pg. 5, "For example, every agent can install local or remote

triggers on data .. ").

As to claim 11, MARTIN teaches establishing communication between distributed

agents (pg. 5, ... the facilitator is responsible for breaking them down and for distributing

sub-requests to the appropriate agent.").

As to claims 15-25, MARTIN teaches the base goal requires setting a trigger

having conditional functionality and consequential functionality which can be stored on

the facilitator agent and/or the service providing agent (pg. 5, "For example, every agent

can install local or remote triggers on data .. ").

Claim Rejections- 35 USC§ 103

8. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set
forth in section 102 of this title, if the differences between the subject matter sought to be patented and
the prior art are such that the subject matter as a whole would have been obvious at the time the
invention was made to a person having ordinary skill in the art to which said subject matter pertains.
Patentability shall not be negatived by the manner in which the invention was made.

Page 314 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4443

Application/Control Number: 09/225,198

Art Unit: 2151

9. Claims 3, 29-34, and 38-47 are rejected under 35 U.S.C. 103(a) as being

unpatentable over "Building Distributed Software Systems with the Open Agent

Architecture" by MARTIN.

Page 11

As to claim 3, MARTIN teaches the act of registering and transmitting the new

agent profile from the specific agent to the facilitator agent (pg. 7, "When invoked, a

client agent makes a connection to a facilitator ... an agent informs its parent facilitator of

the services it is capable of providing."). It would be obvious that an agent that is

initially created is instantiated in memory before it is registered.

As to claim 29, MARTIN teaches a method to facilitate cooperative task

completion within a distributed computing environment supporting an Inter-agent

Communication Language among a plurality of electronic agents (fig 1) comprising:

providing an agent registry (knowledge base) as disclosed (pg. 13-14, Facilitation);

interpreting a service request in order to determine a base goal (compound goal)

comprising: determining any task completion advice provided by the base goal, and

determining any task completion constraints provided by the base goal (pg. 14, "It may

also use strategies or advice specified by the requester .. "); constructing a base goal

satisfaction plan (pg. 13, "When a facilitator receives a compound goal, its job is to

construct a goal satisfaction plan and oversee its satisfaction in the most appropriate,

efficient manner that is consistent with the specified advice.") comprising: determining

whether the requested service is available, determining sub-goals required in

completing the base goal (delegation), selecting suitable service-providing electronic

Page 315 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4444

. Application/Control Number: 09/225,198

Art Unit: 2151

•
Page 12

agents for performing the sub-goals, and ordering a delegation of sub-goal requests to

complete the requested service; and implementing the base goal satisfaction plan (pg.

13-14, Facilitation). However, MARTIN does not explicitly mention that the method is

operable in a computer program product. It would be obvious to one skilled in the art to

generate program code that would entail the method of Martin and thereby obvious that

the method can be entailed in a computer program product.

As to claims 30 and 31, MARTIN teaches registering a specific agent (service

provider agents) into the agent registry comprising: establishing a bi-directional

communications link between the specific agent and a facilitator agent (facilitator)

controlling the agent registry; providing a new agent profile to the facilitator agent; and

registering the specific agent with the profile thereby making the capabilities available to

the facilitator agent (pgs. 9-10, Providing Services; pg. 7, Mechanisms of Cooperation).

As to claim 32, refer to claim 3 for rejection.

As to claim 33, refer to claim 5 for rejection.

As to claim 34, refer to claim 11 for rejection.

As to claims 38-44, refer to claims 15-25 for rejection.

Page 316 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4445

r.
. Application/Control Number: 09/225,198

Art Unit: 2151

As to claims 45-47, refer to claims 26-28 for rejection.

10. Claims 4, 12-14 and 35-37 is rejected under 35 U.S.C. 103(a) as being

unpatentable over "Building Distributed Software Systems with the Open Agent

Page 13

Architecture" by MARTIN1 in view of "Information Brokering in an Agent Architecture" by

MARTIN2.

As to claim 4, MARTIN1 substantially discloses the invention above. However,

MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches

deactivating a client agent no longer available to provide services by deleting the

registration (pg. 9, Source agents that need to go offline ... so that it can unregister the

source and retract its schema mapping rules."). Therefore it would be obvious to

combine the teachings of MARTIN1 with the teachings of MARTIN2 in order to provide

transparent access to a plurality of independent agents (abstract).

As to claims 12-14, MARTIN1 substantially discloses the invention above.

However, MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches

receiving a request for service in a second language (source shema); selecting a

registered agent capable of converting the second language into the inter-agent

language (broker schema); and forwarding the request for service in a second language

to the registered agent for conversion to be performed and the results returned (pg. 12-

13, Queries Expressed in a Source Schema). Refer to claim 4 for the motivation to

combine.

Page 317 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4446

Application/Control Number: 09/225,198

Art Unit: 2151

As to claims 35-37, refer to claims 12-14 for rejection.

Page 14

11. Claims 3, 29-34, 38-47,61-71, and 84-89 are rejected under 35 U.S.C. 103(a) as

being unpatentable over "Developing Tools for the Open Agent Architecture" by

MARTIN.

As to claim 3, MARTIN teaches the act of registering and transmitting the new

agent profile from the specific agent to the facilitator agent (pg. 5, "Every agent

participating in an OAA-based system defines and publishes a set of capabilities

specifications, expressed in the ICL, describing the services that it provides."). It would

be obvious that an agent that is initially created is instantiated in memory before it is

registered.

As to claim 29, MARTIN teaches a method to facilitate cooperative task

completion within a distributed computing environment supporting an Inter-agent

Communication Language among a plurality of electronic agents (sub-agents I agents)

comprising: providing an agent registry as disclosed (facilitator storage of published

sub-agents capabilities); interpreting a service request in order to determine a base goal

(via facilitator) constructing a base goal satisfaction plan comprising: determining

whether the requested service is available, determining sub-goals required in

completing the base goal (determine solutions for a set of goals) selecting suitable

service-providing electronic agents for performing the sub-goals, and ordering a

Page 318 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4447

Application/Control Number: 09/225,198

Art Unit: 2151

Page 15

delegation of sub-goal requests to complete the requested service; and implementing

the base goal satisfaction plan (pg. 5, "The facilitator is responsible for breaking them

down and for distributing sub-requests to the appropriate agents."). However, MARTIN

does not explicitly mention that the method is operable in a computer program product

or the sending of advice or constraints. It would be obvious that since an agent can

request solutions for a goal to be satisfied under a variety of different control strategies

(pg. 5) that the control strategies are the advice and/or constraints. It would also be

obvious to one skilled in the art to generate program code that would entail the method

of Martin and thereby obvious that the method can be entailed in a computer program

product.

As to claims 30 and 31, MARTIN teaches registering a specific agent (agent) into

the agent registry (list of agents capabilities) comprising: establishing a bi-directional

communications link between the specific agent and a facilitator agent controlling the

agent registry; providing a new agent profile to the facilitator agent; and registering the

specific agent with the profile thereby making the capabilities available to the facilitator

agent (pg. 5, "Each facilitator records the published capabilities of their subagents ... ";

"Every agent participating in an OM-based system ... describing the services that it

provides.").

As to claim 32, refer to claim 3 for rejection.

Page 319 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4448

Application/Control Number: 09/225,198

Art Unit: 2151

As to claim 33, refer to claim 5 for rejection.

As to claim 34, refer to claim 11 for rejection.

As to claims 38-44, refer to claims 15-25 for rejection.

As to claims 45-47, refer to claims 26-28 for rejection.

Page 16

As to claim 61 and 62, reference is made to an agent that performs the method

of claim 1 above and is therefore met by the rejection of claim 1 above. However, claim

61 further details an agent register and the construction of a goal satisfaction plan.

MARTIN teaches every agent participating in an OAA-based system defines and

publishes a set of capabilities describing the services that it provides and that the

facilitator records these published capabilities (pg. 5). Therefore, there is an agent

register of the capabilities of each agent. MARTIN also teaches an agent can request

solutions for a set of goals to be satisfied under a variety of different control strategies.

It would be obvious that since solutions are determined based on the goals and control

strategies that a goal satisfaction plan is created.

As to claim 63, refer to claim 5 for rejection.

As to claim 64-69, refer to claims 15-25 for rejection.

Page 320 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4449

Application/Control Number: 09/225,198

Art Unit: 2151

Page 17

As to claim 70, MARTIN teaches the agent registry (agent library /list of agent

capabilities) is a database accessible to all electronic agents (pg. 5, A collection of

agents satisfies requests from users, or other agents ... one or more facilitators."; "An

agent satisfying a request may require supporting information ... requesting data from

other agents or from the user.").

As to claim 71, reference is made to an architecture that encompasses the agent

of claim 61 above, and is therefore met by the rejection of claim 61 above. However

claim 71, further details the facilitator agent in bi-directional communication with the

electronic agents. MARTIN teaches the facilitator can distribute request to the agents

and the agents can request information via the facilitator (pg. 5), therefore it would be

obvious that the facilitator and agents are in bi-directional communication.

As to claims 84 and 85, MARTIN teaches the facilitating engine is distributed

across at least two processes (pg. 5, "Facilitators can, in turn, be connected as clients

of other facilitators.").

As to claim 86, MARTIN teaches system for information communication in a

distributed computing environment having at least one facilitator agent (facilitator) and

at least one client agent (sub-agent I agents), the carrier comprising a signal

representation of an inter-agent language description (ICL registration of capabilities) of

Page 321 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4450

Application/Control Number: 09/225,198

Art Unit: 2151

Page 18

a client agent's functional capabilities (pg. 5, "Each facilitator records the published

capabilities of their subagents .. "). It would be obvious that the system has a data wave

carrier and a transport mechanism for network communication.

As to claim 87, MARTIN teaches a signal representation of a request for service

in the inter-agent language from a first agent (client agent sending a query) to a second

agent (facilitator) (pg. 5).

As to claim 88, MARTIN teaches a signal representation of a goal dispatched to

an agent for performance from a facilitator agent (every agent can request solutions for

a set of goals I facilitator is responsible for breaking them down and for distributing sub-

requests to the appropriate agent) (pg. 5).

As to claim 89, It is well known in the art to one skilled in the art that an agent

can send back a response after processing the request.

12. Claims 4, 12-14, 26-28, 35-37,48-60, 72-83 are rejected under 35 U.S.C. 103(a)

as being unpatentable over "Development Tools for the Open Agent Architecture" by

MARTIN1 in view of "Information Brokering in an Agent Architecture" by MARTIN2.

As to claim 4, MARTIN1 substantially discloses the invention above. However,

MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches

deactivating a client agent no longer available to provide services by deleting the

Page 322 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4451

Application/Control Number: 09/225,198

Art Unit: 2151

Page 19

registration (pg. 9, Source agents that need to go offline ... so that it can unregister the

source and retract its schema mapping rules."). Therefore it would be obvious to

combine the teachings of MARTIN1 with the teachings of MARTIN2 in order to provide

transparent access to a plurality of independent agents (abstract).

As to claims 12-14, MARTIN1 substantially discloses the invention above.

However, MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches

receiving a request for seNice in a second language (source schema); selecting a

registered agent capable of converting the second language into the inter-agent

language (broker schema); and forwarding the request for seNice in a second language

to the registered agent for conversion to be performed and the results returned (pg. 12-

13, Queries Expressed in a Source Schema). Refer to claim 4 for the motivation to

combine.

As to claims 26-28, MARTIN 1 substantially discloses the invention above.

However, MARTIN1 does not explicitly mention the cited limitation. MARTIN2 teaches

the base goal is a compound goal having sub-goals (pg. 8, "Queries submitted to the

Broker are expression ... and backtracking in expressing and processing queries."). It

would be obvious that since the base goal (query) is broken down and distributed to as

sub-requests to the appropriate agents or solutions are requested for a set of goals as

disclosed in MARTIN1 that the base goal as a compound goal is broken down based on

Page 323 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4452

Application/Control Number: 09/225,198

Art Unit: 2151

Page 20

operators disclosing where it can be broken down. Refer to claim 4 for the motivation to

combine.

As to claims 35-37, refer to claims 12-14 for rejection.

As to claim 48, MARTIN1 teaches an Inter-agent Communication Language (ICL)

providing a basis for facilitated cooperative task completion within a distributed

computing environment having a facilitator agent (facilitator) and a plurality of electronic

agents (sub-agents I agents}, the ICL enabling agents to perform queries of other

agents, exchange information with other agents, set triggers within other agents (pg. 5,

Agents share a common communication language ... and may run on any network linked

platform."). However, MARTIN1 does not teach the ICL supporting compound goal

expressions. MARTI N2 teaches the query is a base goal stored in as a compound goal

having sub-goals (pg. 8, "Queries submitted to the Broker are expression ... and

backtracking in expressing and processing queries."). It would be obvious that since the

base goal (query) is broken down and distributed to as sub-requests to the appropriate

agents or solutions are requested for a set of goals as disclosed in MARTIN1 that the

base goal as a compound goal is broken down based on operators disclosing where it

can be broken down. Refer to claim 4 for the motivation to combine.

Page 324 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4453

• Application/Control Number: 09/225,198

Art Unit: 2151

Page 21

As to claim 49 and 50, MARTIN1 teaches the ICL is platform and language

independent (pg. 5, "The OAA's Inter-agent Communication Language ... they are

programmed in.").

As to claims 51-54, MARTIN1 teaches the ICL supports task completion

constraints (triggers) within goal expressions (pg. 5).

As to claims 54-60, MARTIN1 teaches each electronic agent defines and

publishes a set of capability declarations or solvables that describe services and an

interface to the electronic agent (pg. 5, "Every agent participating in an OAA-based

system defines and publishes ... we refer to these capabilities specifications as

solvables.").

As to claim 72, refer to claim 48 for rejection.

As to claims 73 and 74, refer to claims 49 and 50 for rejection.

As to claims 75-78, refer to claims 51-54 for rejection.

As to claims 79-83, refer to claims 54-60 for rejection.

Page 325 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4454

. ..

. Application/Control Number: 09/225,198

Art Unit: 2151

Conclusion

Page 22

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Lewis A. Bullock, Jr. whose telephone number is (703)

305-0439. The examiner can normally be reached on Monday-Friday, 8:30 am - 5:00

pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Alvin E. Oberley can be reached on (703) 305-9716. The fax phone

numbers for the organization where this application or proceeding is assigned are (703)

746-7239 for regular communications and (703) 746-7238 for After Final

communications.

Any inquiry of a general nature or relating to the status of this application or

proceeding should be directed to the receptionist whose telephone number is (703) 305-

0286.

July 11, 2002

Page 326 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4455

. Application/Control Number: 09/225,198 Page 22

Art Unit: 2151

Conclusion

Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Lewis A. Bullock, Jr. whose telephone number is (703)

305—0439. The examiner can normally be reached on Monday-Friday, 8:30 am - 5:00

pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner’s

supervisor, Alvin E. Oberley can be reached on (703) 305-9716. The fax phone

numbers for the organization where this application or proceeding is assigned are (703)

746-7239 for regular communications and (703) 746-7238 for After Final

communications.

Any inquiry of a general nature or relating to the status of this application or

proceeding should be directed to the receptionist whose telephone number is (703) 305-

0286.

July 11, 2002

Page 326 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4455

,--. ..

·.-~:{:~~:
,--~·

Form PTO 948 (Rev. 8-98) U.S. DEPARTMENT OF COMMERCE • Puent and Trademark Office Application No. 09/z:L$". 198 ;

NOTICE OF DRAFTSPERSON'S
PATENT DRAWING REVIEW

Th< dr~ing(s) filed (inseN datc)/2//0s /99arc:

A. 121 approved by the Draftsperso~ under 37 CFR 1.84 or 1.152.
B. D objected to by the Draftsperson under 37 CFR 1.84 or 1.152 for the reasons indicated below. The Examiner will require
submission of new, corrected drawings when necessary. Corrected drawing must be sumined according to the instructions on the back of this notice.

l. ORA WINGS. 37 CFR l.84(a): Acceptable categorits of drawings:
Black ink. Color.
__ Color drawings are not acceptable until pttiton is granted.

Fig(s) ---,...-
--Pencil and non black ink not ptrrnilled. Fig(s) ___ _

2. PHOTOGRAPHS. 37 CFR 1.84 (b)
__ I full-tone set is required. Fig(s) -:-----:

Photographs not proptrly mounted (must use brystol board or
photographic double-weight paptr). Fig(s) ---

-- Foor quality (half-tone). Fig(s) ----
3. TYPE OF PAPER. 37 CFR l.84(e)

__ Paptr not flexible, strong, white, and durable.

Fig(s) -..,.---:--
--Erasures, alterations, overwritings, interlineations.

folds, copy machine marks not accepted. Fig(s) ---
--Mylar, velum paptr is not acceptable (too thin).

Fig(s) ~::-:-:::--,:-:.
4. SIZE OF PAPER. 37 CFR 1.84(1): Acceptablesizes:

__ 21.0cm by 29.7 em (DIN sizeA4)
__ 21.6 em by 27.9 em (8 l/2 x II inches)
__ All drawing sheets not the same size.

Sheet(s) --:---
--Drawings sheets not an acceptable size. Fig(s) ----

5. MARGINS. 37 CFR l.84(g): Acceptable margins:

Top 2.5 em Left 2.5cm Right 1.5 em Bouom 1.0 em
SIZE: A4 Size .

Top 2.5 em Left 2.5 em Right 1.5 em Bottom 1.0 em
SIZE: 8 1/2 x II

Margins not acceptable. Fig(s) -.,-,-,:-:-
___ Top(!) ___ Left(L)
___ Right (R) ___ Bouom (B)

6. VIEWS. 37 CFR 1.84(h)
REMINDER: Specification may require revision to
contspond to drawing changes.
PaNial views. 37 CFR 1.84(h)(2)
__ Brackets needed to show figure as one entity.

Fig(s) ---:--
--Views not labeled separately or properly.

Fig(s) ...,-.,..----
·-- Enlargod view nollabeled sepautely or properly.

Fig(s) ___ _

7. SECTIONAL VIEWS. 37 CFR 1.84 (h)(3)
__ Hatching not indicated for sectional ponions of an object

Fig(s) -:-~-:--:
__ S<ctional designalion should be noted with Arabic or

Roman numbers. Fig(s) ----

COMMENTS

8. ARRANGEMENT OF VIEWS. 37CFR l.84(i)
__ Words do not appear on a horizontal, left-lo-right fashion

when page is eith<r upright or turned so that the top
becomes abe righl side, rxcept for graphs. Fig(s) ----

9. SCALE. 3 7 CFR 1.84(k)
Scale not large enough to show mechanism withoul
crowding when drawing is reduced in size to lwo--thirds in
reproduction.

Fig(s)=--=-,----
10. CHARACTER OF LINES, NUMBERS, & LETTERS.

37 CFR 1.84(i)
__ Lines, numbers & letters not uniformly thick and well

defined, clean, durable, and black (poor line quality).
Fig(s) ·

II. SHADING. 37 CFR 1.84(m)
__ Solid black areas pale. Fig(s)

Solid black shading not ptrrnit-::te-d:-. -;F::-ig-:(-:s):-____ _

__ Shade lines, pale, rough and blurred. Fig(s) -,---,--
12. NUMBERS, LETTERS, & REFERENCE CHARACTERS.

37 CFR l.84(p)
__ Numbers and reference characters not plain and legible.

Fig(s) -:----:-:--
-- Figure legends are poor. Fig(s) ----::

Numbers and reference characters not oriented in the
same direction as the view. 37 CFR 1.84(p)(l)

Fig(s) :--:-:-:---
-- English alphabet not used. 37 CFR 1.84(p)(2)

Figs:----::--
Numbers, letters and reference characters must be at least
.32 em (1/8 inch) in height. 37 CFR 1.84(p)(3)

Fig(s)_.,----,-,,---
13. LEAD LINES. 37 CFR 1.84(q)

Lead lines cross each other. Fig(s) ---
Lead lines missing. Fig(s) ==-==

14. NUMBERING OF SHEETS OF DRAWINGS. 37 CFR 1.84(t)
__ Sheets not numbered conseculively, and in Arabic numerals

beginning with number I. Sheet(s) :-----
15. NUMBERING OF VIEWS. 37 CFR 1.84(u)

__ Views not numbered consecutively, and in Arabic numerals,
beginning with number I. Fig(s) ----

16. CORRECTIONS. 37 CFR 1.84(w)
__ Corrections not made from prior PT0-948

dated
17. DESIGN DR,...A-:W-1-N""G'"'s-. 37 CFR 1.152

__ Surface shading shown not appropriate. Fig(s) ---
-- Solid black shading not used for color contrast.

Fig(s) ___ _

• REVIEWEK.__,I..,A:.~.·""W!..._ ______ _ DATE 02jJ<l /90 TELEPHONE NO. ___________ _

ATTACHMENT TO PAPER NO. _ __,.3""'----

.-

r
j ..• ·.
····· :r ••••

·~.·.r

~-

!

f.

'

Page 327 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4456

..4-..

Page 327 of:778

Form ri'o 048 (Rev, 8-08)

U.S. DEPARTMENT OF COMMERCE . Patent and Trademark Office Application No. [221 225‘ l 98

NOTICE OF DRAFTSPERSON'S
PATENT DRAWING REVIEW

The dr ing(s) tiled (insert date)fi2[g 2251 92am
A. approved by the Draftsperson under 37 CFR |.84 or l.l52.
B. [:1 objected to by the Draltsperson under 37 CFR 1.84 or l.l52 lor the reasons indicated below. The Examiner will require
submission of new, corrected drawings when necessary. Corrected drawing must be sumitted according to the instructions on the back of this notice.

I. DRAWINGS. 37 CFR 1.84m: Acceptable categories otdrawings:
Black ink. Color.
__ Color drawings are not acceptable until petiton is granted.

Fists)
__ Pencil and non black ink not permitted. Fig(s)

2. PHOTOGRAPHS. 37 CFR l.84 (b)
___ l t‘ullotone set is required. Fig(s)
__ Photographs not properly mounted (must use brystol board or

photographic double~wcight paper). Fig(s)
____ Poor quality (half-tone). Fig(s)

3. TYPE OF PAPER. 37 CPR l.84(e)
__ Paper not flexible, strong. white, and durable.

Fists) . -
__. Erasurcs, attentions. overwritings, intertincations,

folds. copy machine marks not accepted. Fig(s)
_ Mylar. velum paper is not acceptable (too thin).

Fight)
4. SIZE OF PAPER. 37 CFR l.34(f): Acceptable sizes:

__ 21.0 cm by 20.7 cm (DIN size A4)
_ 21.6 cm by 27.9 cm(81/2 x11 inches)
__ All drawing sheets not the same size.

Sheet(s)
_..... Drawings sheets not an acceptable size. Fig(s)

5. MARGINS. 37 CPR 1.84(g): Acceptable margins:

Top 2.5 cm Left 2.50m Right 15 cm Bottom 1.0 cmSIZE: A4 Size '
Top 2.5 cm belt 2.5 cm Right 1.5 cm Bottom 1.0 cm

SIZE: 8 1/2 x 11
Margins not acceptable. Fig(s)

Tap ('1') Left (L)
Right (R) Bortom (B)

6. VIEWS. 37 CFR l.84(h)
REMINDER: Specification may require revision to
correspond to drawing changes.
Partial views. 37 CFR l.84(h)(2)
__ Brackets needed to show figure as one entity.

Fists)
____ Views not labeled separately or properly.

Fists)
,___ Enlarged view not labeled separately or properly.

Fig(s)
7. SECI’IONAL VIEWS. 37 CFR 1.84 (h)(3)

__ Hatching not indicated for sectional portions of an object.
Fi3(5)

mscclional designation should be noted with Arabic or
Roman numbers, Fig(s)

COMMENTS

ATTACHMENT TO PAPER NO. : 3

. ARRANGEMENT OF VIEWS. 37 CFR l.84(i)
Words do not appear on a horizontal. leftoto-right fashion
when page is either upright or turned so that the top
becomes the right side. except for graphs. Pig(s)

. SCALE 37 CFR 134(k)
Scale not large enough to show mechanism without
crowding when drawing is reduced in size to two~thirds in
reproduction.
Fig(s)

. CHARACI'ER OF LINES. NUMBERS. & LETTERS.
37 CF11 1.840)

Lines. numbers & letters not uniformly thick and well
defined. clean. durable, and black (poor line quality).
Fig(s)

. SHADING. 37 CFR 1.84(m)
__ Solid black areas pale. Fig(s)

Solid black shading not permitted. Fig(s)
Shade lines, pale, rough and blurred. Fig(s)

. NUMBERS, LEITERS, & REFERENCE CHARACTERS.
37 CFR 1.234(5))
__ Numbers and reference characters not plain and legible.

Fi3(5)
__ Figure legends are poor. Fig(5)
_ Numbers and reference characters not oriented in the

same direction as the view. 37 CFR 1.Bd(p)(l)
Figts)

__ English alphabet not used. 37 CFR l.84(p)(2)
Figs

__ Numbers, letters and reference characters must be at least
.32 cm (1/8 inch) in height. 37 CFR l.84(p)(3)
Fig(s)

. LEAD LINES. 37 CFR 1.84m)
Lead lines cross each other. Fig(s)

—~« Lead lines missing. Fig(s)
. NUMBERING 0F SHEETS OF DRAWINGS. 37 CFR 1.840)

Sheets not numbered consecutively, and in Arabic numerals
beginning with number I. Sheet(s)

. NUMBERING OF VIEWS. 37 CPR l.84(u)
Views not numbered consecutively, and in Arabic numerals.
beginning with number I. Fig(s)

. CORRECTIONS. 37 cm l.84(w)
Corrections not made from prior Pro—943dated

. DESIGN DRAWINGS. 37 CFR [.152
Surface shading shown not appropriate. Fig(s)
Solid black shading not used for color contrast.
Fi3(5)

" Revnzwen 1 mg DATE Q2 gig (292 TELEPHONE N0.

Petitioner Microsoft Corporation — EX. 1008, p. 4456

*
A

B

c

D

E

F

G

H

I

J

K

L

M

*
N

0

p

Q

R

s
T

*

u

v

w

X

Notice of References Cited

Document Number Date
Country Code-Number-Kind Code MM-YYYY

US-6,338,081 01-2002

US-5,960,404 09-1999

I. US-6,216,173 04-2001

·US-

US-

US-

US-

US-

US-

US-

US-

US-

US-

Document Number Date
Country Code-Number-Kind Code MM-YYYY

.

09/225,198

Examiner

Lewis A. Bullock, Jr.

U.S. PATENT DOCUMENTS

Name

Furusawa et al.

Chaar et al.

Jones et al.

FOREIGN PATENT DOCUMENTS

Country

NON-PATENT DOCUMENTS

Name

Reexamination
CHEYER ET AL.

Art

2151

Include as applicable: Author, TiUe Date, Publisher, Edition or Volume, Pertinent Pages)

Cheyer, Adam. "Mechanisms of Cooperation." October 19, 1998.

DeVoe, Deborah. "SRI distributed agents promise flexibility." lnfoWorld. December 30 1996.

Sycara, Katia et al. "Distributed Intelligent Agents." IEEE. December 1996.

. A copy of th1s reference 1s not bemg fum1shed With thiS Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

Under

Page 1 of 1

Classification

709/202

705/11

135/77

Classification

U.S. Patent and Trademark Office
PT0-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 3

Page 328 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4457

Application/Control No. 0' ~Applicant(s)/Patent Under
Reexamination

09/225,198 CHEYER ET AL. Notice of References Cited . .Examiner Art Unit

Lewis A. Bullock, Jr. 2151 Page 1 of 1
U3. PATENT DOCUMENTS

mm
A

 CC

C

 ccccccc43E”E”‘P(P9"9”9°0)

cQ”

c9"

FOREIGN PATENT DOCUMENTS

Document Number Date
Country Code-Number-Kind Code MM-YYYY

'A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.
US. Patent and Trademrk Office

PTO~892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 3

Page 328 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4457

Form 1449 (Modified)

Information Disclosure
Statement By Applicant

Several Sheets ifNecess

Examiner

Atty Docket No.
SRI1P016
Applicant:
Cheyer et al.
Filing Date:

5. 1999

U.S. Patent Documents

Initial No. Patent No. Date Patentee
A
B
c

•

Class

Serial No.:
09/225,198

Group
2755

Sub-
class

r..n-
w

Filing
Date

(~t-IVEI)

D M~ y 2 0 1999.
E
F Gr)110 2flJl

G
H
I
J
K

F ore1gn p t a ent or u IS e P br h d F ore1gn a en .pp.ICa 10n P t t A r t·
Examiner Document Publication Country or Sub- Translation
Initial No. No. Date Patent Office Class class Yes No

L
M
N
0
p

Other Documents
Examiner
Initial No. Author, Title, Date, Place (e.g. Journal) ofPublication

/M R MORAN, Douglas B. and CHEYER, Adam J., "Intelligent Agent-based
User Interfaces", Article Intelligence center, SRI International

~
s MARTIN, David L., CHEYER, Adam J. and MORAN, Douglas B.,

"Building Distributed Software Systems with the Open Agent Architecture"
T COHEN, Philip R. and CHEYER, Adam, SRI International, WANG,

Michelle, Stanford University, BAEG, Soon Cheol, ETRI, "An Open Agent
Architecture"

Ex~a~jz I Date ~~;Jcidered
?. II 0;;1...

Exammer: Initial citation considered. Draw line through citation if not in conformance and not
considered. Include copy of this form with next communication to applicant.

Page 1 of4

Page 329 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4458

Form 1449 (lVIodified) Atty Docket No. Serial No.:

SR11P016 09/225,198

Applicant:

Cheyer et al.

Filing Date: ' Group
Janu 5. 1999 2755

Information Disclosure

Statement By Applicant

 56 Several Sheets ifNecess

US. Patent Documents

aminer Sub- Filing
Initial No Patent No. Date Patentee Class class Date

ERIE!!!“
Examiner Document

Imtial N

HEB!
Other Documents

aminer

final

-flMORAN, Douglas B. and CHEYER, Adam 1, “Intelligent Agent-basedUser Interfaces”, Article Intelli ence center, SRI International

MARTIN, David L., CHEYER, Adam J. and MORAN, Douglas B.,
‘ ' ' ' ' ent Architecture”

COHENPhilip R. and CHEYER, Adam, SRI International, WANG,
Michelle, Stanford University, BAEG, Soon Cheol, ETRI, “An Open Agent
Architecture”

Exami r Date Considered

%.;flW/’ ’7' it 05L
Examiner: Initial citation considered. Draw line through citation if not in conformance and not

considered. Include copy of this form with next communication to applicant.

Page 1 of 4

Page 329 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4458

Form 1449 (Modified) Atty Docket No.
SRI1P016
Applicant:

Serial No.:
09/225,198

Information Disclosure
Statement By Applicant Cheyer et al.

Filing Date:

Examiner
Initial

Examiner
Initial

Examiner
Initial

~

~

~
E~er
~

Several Sheets if N 5. 1999
Group
2755

U.S. Patent Documents
Sub- Filing

No. Patent No. Date Patentee Class class Date
A
B
c - lr-r"\.

D k""\r""'- .d ·--- IV t::lJ

E UAV ~ n 1000

F
....... v

G r::!.,.... ,..,. ~/'1111 -·-H
I
J
K

F ore1gn p atent or u IS e P bl" h d F ore1gn p a ten tA r t· .pp11ca Ion
Document Publication Country or Sub- Translation

No. No. Date Patent Office Class class Yes No
L
M
N
0
p

Other Documents

No. Author, Title, Date, Place (e.g. Journal} of Publication
R JULIA, Luc E. and CHEYER, Adam J., SRI International "Cooperative

Agents and Recognition Systems (CARS) for Drivers and Passengers",
s MORAN, Douglas B., CHEYER, Adam J., JULIA, Luc E., MARTIN,

David L., SRI International, and PARK, Sangkyu, Electronics and
Telecommunications Research Institute, "Multimodal User Interfaces in the
Open Agent Architecture",

T CHEYER, Adam and LULIA, Luc, SRI International "Multimodal Maps:
An Agent-based Approach",

a~f2 I Date 0.1:dered
7. /(Q,t.

Examiner: Initial citation considered. Draw line through citation if not in conformance and not
considered. Include copy of this form with next communication to applicant.

Page 2 of4

Page 330 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4459

Form 1449 (Modified) ' Serial No.:
09/225,198

 Atty Docket No.
SRIlP016

Applicant:

Cheyer et al.

Filing Date:

Information Disclosure

Statement By Applicant

Group

 se Several Sheets ifNecess

U.S. Patent Documents

m“ I-_---—Initial No No Date Patent Office Class class

———-—--
_----
—----
—----
—----

Examiner

Initial

MORAN, Douglas B., CHEYER, Adam 1., JULIA, Luc E., MARTIN,

David L., SRI International, and PARK, Sangkyu, Electronics and

Telecommunications Research Institute, “Multimodal User Interfaces in the

Ooen A ent Architecture”,

W T CHEYER, Adam and LULLA, Luc, SRI International “Multimodal Maps:
‘ An A_ent-based A roach”,

Ex ' er W Date Considered

Examiner: Initial citation considered. Draw line through citation if not in conformance and not

considered. Include copy of this form with next communication to applicant.

Page 2 of 4

Page 330 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4459

•
Serial No.:
09/225,198

Information Disclosure
Statement By Applicant

Atty Docket No.
SRI1P016
Applicant:
Cheyer et al.
Filing Date:

se Several Sheets ifNecess Janu 5. 1999
Group
2755

U.S. Patent Documents
Examiner Sub- Filing
Initial No. Patent No. Date Patentee Class class Date

A
B
c ,_,_ 1r-r
D 1111:: rJ!.. IV ~L,

E u." n n uluu
F

PIM I;. v .,,,

G r:::.r,. tn ""filii

H -·

I
J
K

F orelgn p atent or u IS e P br h d F oretgn p a tent A r "ppiicatton
Examiner Document Publication Country or Sub- Translation
Initial No. No. Date Patent Office Class class Yes No

L
M
N
0
p

Other Documents
Examiner
Initial No. Author, Title, Date, Place (e.g. Journal) ofPublication

R CUTKOSKY, Mark R., ENGELMORE, RobertS., FIKES, Richard E.,

fo. GENESERETH, Michael R., GRUBER, Thomas R., Stanford University, MARK,
William, Lockheed Palo Alto Research Labs, TENENBAUM, Jay M., WEBER,
Jay C., Enterprise Integration Technologies, "An Experiment in Integrating
Concurrent Engineering Systems",

~
s MARTIN, David L., CHEYER, Adam, SRI International, LEE, Gowang-Lo, ETRl,

"Development Tools for the Open Agent Architecture", The Practical Application
oflntelligent Agents and Multi-Agent Technology (PAAM96), London, April 1996

~ T CHEYER, Adam, MARTIN, David and MORAN, Douglas, "The Open Agent
architecture™", SRI International, AI Center

~:a:~; I Date Co s0ered
'Z ((()jjl..

Examiner: Initial citation considered. Draw line through cttatiOn if not in conformance and not
considered. Include copy ofthis form with next communication to applicant.

Page 3 of4

Page 331 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4460

 Serial No.:

Atty Docket No.

SRIlP016 09/225,198

Information Disclosure Applicant:

Statement By Applicant Cheyer et al.

Filing Date: Group

 se Several Sheets ifNecess Janu 5. 1999 2755

U.S Patent Documents

aminer Sub- Filing

NAo. Patent No. Date Patentee Class class Date

aminer Document Publication Country or Sub—ignitial No. No. Date Patent Office Class class

GENESERETH, Michael R., GRUBER, Thomas R., Stanford University, MARK,

William, Lockheed Palo Alto Research Labs, TENENBAUM, Jay M., WEBER,

Jay C., Enterprise Integration Technologies, “An Experiment in Integrating
Concurrent En ' ' _ S stems”,

CHEYER, Adam, IVLARTIN, David and MORAN, Douglas, “The Open Agent
architecturem”, SRI International, AI Center

Date Co n si ercd -

7 {I 02%

Examiner: Initial citation considered. Draw line through citation if not in conformance and not

considered. Include copy of this form with next communication to applicant.

Page 3 of 4

Page 331 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4460

.. •
Form 1449 (Modified) Atty Docket No.

SRI1P016
Applicant:

Serial No.:
09/225,198

Information Disclosure
Statement By Applicant Cheyer et al.

Filing Date:

Examiner
Initial

Examiner
Initial

Examiner
Initial

~-·

~

~

Several Sheets if 5. 1999
Group
2755

U.S. Patent Documents
Sub- Filing

No. Patent No. Date Patentee Class class Date
A
B
c
D ·-E Ht: .vt:l vr=1
F &ll J t"' n tOOC

G 1"11 I C.VII'

H ,.... ·-I
J
K

F ore1gn a en or u IS e P t t P br h d F ore1~n a en .pp11ca mn P t tA r c
Document Publication Country or Sub- Translation

No. No. Date Patent Office Class class Yes No
L
M
N
0
p

Other Documents

No. Author, Title, Date, Place (e.g. Journal) ofPublication
R Dejima, Inc., http://www.dejima.com/

s COHEN, Philip R, CHEYER, Adam, WANG, Michelle, Stanford
University, BAEG, Soon Cheol ETRI; "An Open Agent Architecture,"
AAAI Spring Symposium, pp1-8, March 1994

T MARTIN, David; OOHAMA, Hiroki; MORAN, Douglas; CHEYER,
Adam; "Information Brokering in an Agent Architecture," Proceeding of
the 2nd International Conference on Practical Application of Intelligent
Agents & Multi-Agent Technology, London, April1997-

~~n~r £; ,4~ JA I Daterfr~f:idered
.7. (C 0.:2..

Examiner: Initial citation considered. Draw line through citation if not in conformance and not
considered. Include copy of this form with next communication to applicant.

Page 4 of4

D

1.
Page 332 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4461

 Atty Docket No. Serial No.:

SRIlPOl6 09/225,198

Applicant:

Cheyer et a1.

Filing Date: Group
Janu. 5. 1999 2755

Form 1449 Modified)

Information Disclosure

Statement By Applicant

 se Several Sheets ifNecess

U.S. Patent Documents
ammer

-—-—-
E———_
-———_

-—-
-—-—-
-———-
-———_mm
-——_-—.m,
-———-‘u

Examiner Document Publication Country or Sub- _ranslation
Initial No. No. Date Patent Office Class class

Examiner

Initial

COHEN, PhilipR, CHEYBR, Adam, WANG, Michelle, Stanford

University, BAEG, Soon Cheol ETRI; “An Open Agent Architecture,”
osium, I l-8, March 1994

MARTIN, David, OOHAMA, Hiroki; MORAN, Douglas; CHEYER,

Adam; “Information Brokeringin an Agent Architecture,” Proceeding of

the 2nd International Conference on Practical Application of Intelligent
A ents & Multi—A - London, Aril 1997 ,

Examiner: Initial citation considered. Draw line through citation if not in conformance and not

considered. Include copy of this form with next communication to applicant.

Page 4 of 4

Page 332 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4461

.w»“um-nan“...

;: ~~·
-• Attom-ocket No. 59501:8016.US01 /

I hereby certify that this correspondence is being deposited with the U.S. Postal Service with sufficient postage ~ { 5!
First Class Mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C., 20231, on:

1 } Date: :....:.Au=g=us=t-=6,-=2=00=2,___ ____ _

;;-~
By~

~QheS

1/Aus 1. ~
~ -

1 3 1ilqz /"f. IN THE UNIT ED STATES PATENT AND TRADEMARK OFFICE
PATENT G)

~il~~t.~~ r IN REAPPLICATION OF: EXAMINER: UNKNOWN ~

01 i-C:12.6

Cheyer ART UNIT: 2755

APPLICATION No.: 09/225,198

FILED: 01/05/1999

FOR: SOFTWARE-BASED ARCHITECTURE FOR
COMMUNICATION AND COOPERATION
AMONG DISTRIBUTED ELECTRONIC
AGENTS

\

RECEIVED
AUG 1 5 Z007..

technology center 21 oo

Information Disclosure Statement After First Office Action but
Before Final Action or Notice of Allowance- 37 CFR 1.97(c)

Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:
\

I. Timing of Submission

The information transmitted herewith is being filed after three months of the filing
date of this application or after the mailing date of the first Office action on the
merits, wh.ichever occurred last, but before the mailing date of either a final
~dian under 37 CFR 1.113 or a Notice of Allowance under 37 CFR 1.311,
whichever occurs first. The references listed on the enclosed Form PTO/SB/08A
may be mate~al to the examination of this application; the Examiner is requested
to make them of record in the application.

1[;0.0:0 CH

(IBY022180] 1

.. Page 333 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4462

Attomeyuocket No. 59501-8016.USO1

I hereby certify that this correspondence is being deposited with the US. Postal Service with sufficient postage {2157
First Class Mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, DC, 20231, on:

.i 5 Date: August 6.20i_____ BYZWM‘
, l P Jamie . Hughes

6//’P\ PATENT
7" 406 7‘7

‘6

all? f IN THE UNITED STATES PATENT AND TRADEMARK OFFICE i/
c,

If"

“Ti/gas ‘" IN RE APPLICATION OF: EXAMINER: UNKNOWN W
Cheyer ART UNIT: 2755

APPLICATION No.: 09/225,198

FILED: 01/05/1999

FOR: SOFTWARE-BASED ARCHITECTURE FOR RECEIVED

COMMUNICATION AND COOPERATION 1 «5 2007
AMONG DISTRIBUTED ELECTRONIC ‘3“ AUG ~ «
AGENTS i Technology Center 2100

Information Disclosure Statement After First Office Action but

Before Final Action or Notice of Allowance - 37 CFR 1.97(c)

Assistant Commissioner for Patents

Washington, DC. 20231

Sir:

1. Timing of Submission

The information transmitted herewith is being filed after three months Of the filing

date of this application or after the mailing date of the first Office action on the

1' ’ merits, whichever occurred last, but before the mailing date of either a final

' action under 37 CFR 1.113 or a Notice of Allowance under 37 CFR 1.311,
whichever occurs first. The references listed on the enclosed Form PTO/SB/OBA

may be material to the examination of this application; the Examiner is requested
to make them of record in the application.

C-Gz’i-WEWE (If; I} 3-} 01363000? 582807 09225198

02. 583128 133.96 or

[/BYO22180] ‘ 1 , m

Page 333 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4462 A

• Attom!ocket No. 59501-8016.US01

2. Cited Information

181 Copies of the following references are enclosed:

181 All cited references

3. Effect of Information Disclosure Statement (37 CFR 1.97(h))

This Information Disclosure Statement is not to be construed as a representation
that: (i) a search has been made; (ii) additional information material to the
examination of this application does not exist; (iii) the information, protocols,
results and the like reported by third parties are accurate or enabling; or (iv) the
cited information is, or is considered to be, material to patentability. In addition,
applicant does not admit that any enclosed item of information constitutes prior
art to the subject invention and specifically reserves the right to demonstrate that
any such reference is not prior art.

4. Fee Payment (37 CFR 1.97(c)) or Certification (37 CFR 1.97(e))

181 Applicant elects to pay the fee under 37 CFR 1.17(p) $180.00.

D Check enclosed for $
181 Please charge the above fee(s) to Deposit Account No. 50-2207

this paper is provided in triplicate.

Correspondence Address:
Customer No. 22918
Perkins Coie LLP
P.O. Box 2168
Menlo Park, California 94026
(650) 838-4300

[/BY022180) 2

Respectfully submitted,
Perkins Coie LLP

Brian R. Coleman
Registration No. 39,145

Page 334 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4463

“ .

2. Cited Information

Attomeygocket No. 59501-8016.USO1

g Copies of the following references are enclosed:

a All cited references

3. Effect of Information Disclosure Statement (37 CFR 1.97(h))

This information Disclosure Statement is not to be construed as a representation

that: (i) a search has been made; (ii) additional information material to the

examination of this application does not exist; (iii) the information, protocols,

results and the like reported by third parties are accurate or enabling; or (iv) the

cited information is, or is considered to be, material to patentability. In addition,

applicant does not admit that any enclosed item of information constitutes prior

art to the subject invention and specifically reserves the right to demonstrate that

any such reference is not prior art.

4. Fee Payment (37 CFR 1.97(c)) or Certification (37 CFR 1.97(e))

le Applicant elects to pay the fee under 37 CFR 1.17(p) $180.00.

III Check enclosed for $.

lZl Please charge the above fee(s) to Deposit Account No, 50-2207

this paper is provided in triplicate.

Respectfully submitted,
Perkins Coie LLP

Dae- (ptgé‘mz M
Brian R. Coleman

Registration No. 39,145

Correspondence Address:
Customer No. 22918

Perkins Coie LLP

PO. Box 2168

Menlo Park, California 94026

(650) 83841300

[/BYO22180] 2

Page 334 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4463

Cited Information

Copies of the following references are enclosed:

All cited references

Effect of Information Disclosure Statement (37 CFR 1.97(h))

This Information Disclosure Statement is not to be construed as a representation
that: (i) a search has been made; (ii) additional information material to the
examination of this application does not exist; (iii) the information, protocols,
results and the like reported by third parties are accurate or enabling; or (iv) the
cited information is, or is considered to be, material to patentability. In addition,
applicant does not admit that any enclosed item of information constitutes prior
art to the subject invention and specifically reserves the right to demonstrate that
any such reference is not prior art.

4. Fee Payment (37 CFR 1.97(c)) or Certification (37 CFR 1.97(e))

~ Applicant elects to pay the fee under 37 CFR 1.17(p) $180.00.

0 Check enclosed for $
~ Please charge the above fee(s) to Deposit Account No. 50-2207

this paper is provided in triplicate.

Correspondence Address:
Customer No. 22918
Perkins Coie LLP
P.O. Box 2168
Menlo Park, California 94026
(650) 838-4300

(/BY022180) 2

Respectfully submitted,
Perkins Coie LLP

Brian R Coleman
Registration No. 39,145

Page 335 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4464

/l/
Cited Information 406‘ 7 _' ED

l2! Copies of the following references are enclosed: ”0/on
”18/

[2| All cited references 2700

Effect of Information Disclosure Statement (37 CFR 1.97(h))

This Information Disclosure Statement is not to be construed as a representation

that: (i) a search has been made; (ii) additional information material to the

examination of this application does not exist; (iii) the information, protocols,

results and the like reported by third parties are accurate or enabling; or (iv) the

cited information is, or is considered to be, material to patentability. in addition,

applicant does not admit that any enclosed item of information constitutes prior

art to the subject invention and specifically reserves the right to demonstrate that

any such reference is not prior art.

4. Fee Payment (37 CFR 197(0)) or Certification (37 CFR 1.97(e))

>2 Applicant elects to pay the fee under 37 CFR 1.17(p) $180.00.

[:1 Check enclosed for $.

E Please charge the above fee(s) to Deposit Account No. 50-2207

this paper is provided in triplicate.

Respectfully submitted,
Perkins Coie LLP

(9553‘le /?/fi
Brian R. Coleman

Registration No. 39,145

Correspondence Address:
Customer No. 22918

Perkins Coie LLP

PO. Box 2168

Menlo Park, California 94026

(650) 83841300

[IBY022180] 2

Page 335 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4464

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the
original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

• BLACK BORDERS

• TEXT CUT OFF AT TOP, BOTTOM OR SIDES

• FADEDTEXT

• ILLEGIBLE TEXT

• SKEWED/SLANTED IMAGES

• COLORED PHOTOS

• BLACK OR VERY BLACK AND WHITE DARK PHOTOS

• GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,
please do not report the images to the

Image Problems Mailbox.

Page 336 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4465

t,·

tr
PCT WORLD INTELLECTUAL P.ROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLJCATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification:

H04N 7/16
A1 (11) International Publication Number:

(43) International Publication Date:

(21) International Application Number: PCT/US99119051

(22) International Filing Date: 20 August 1999 (20.08.1999)

(30) Priority Data:
60/097,538
not furnished

21 August 1998 (2.1.08.1998) US
30 July 1999 (30.07.1999) US

. (60) Parent Application or Grant
UNITED VIDEO PROPERTIES, INC. [I]; Q. ELLIS,
Michael, D. [I]; Q. LEMMONS, Thomas, R. [I]; Q. TIIOMAS,
William, L. [I]; Q. TREVZ, G., Victor; Q.

(54) Title: CLIENT-SERVER ELECTRONIC PROGRAM GUIDE

Published

(54) Titre: GUIDE DE PROGRAMMES ELECfRONIQUE CLIENT-SERVEUR

(57) Abstract

wo 00/11869
02 March 2000 (02.03.2000)

A client-server interactive television program guide system is provided. An interactive television program guide client is
implemented on user television equipment. The interactive television program guide provides users with an opportunity to define
expressions that are processed by the program guide server. The program guide server may provide program guide data, schedules
reminders, schedules program recordings, and parentally locks programs based on the expressions. Users' viewing histories may be
tracked. The program guide server may analyze the viewing histories and generates viewing recommendations, targets advertising,
and collects program ratings information based on the viewing histories.

(57) Abrege

L'invention concerne un systeme de guide de programmes de television interactif entre un client et un serveur. Un client de
guide de programmes de television interactif est mis en application sur !'installation televisuelle d'un utilisateur. Ce guide de
programmes permet aux utilisateurs de definir des expressions traitees par le serveur de guide de programmes. Ce serveur peut
produire des donnees de guide de programmes, des rappels de programmation, des enregistrements de programmes et, de meme,
verrouille des programmes en fonction des expressions. II est possible de rechercher l'historique de visualisation des
utilisateurs. Le serveur de guide de programmes peut analyser les historiques de visualisation et generer des recommandations de
visualisation, des publicites ciblees et recueillir des informations d'evaluation de programmes en fonction de ces historiques de
visualisation.

Page 337 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4466

It PCT WORLD INTELLECTUAL I?I?OPERIY ORGANIZATION
V International Bureau

. INTERNATIONAL APPLICATION PUBLISHED UNDER‘ THE PATENT COOPERATION TREATY '

(11) International Publication Number: WO 00/11869

(43) International Publication Date: 02 March 2000 (02.03.2000)

 (51) International Patent Classification:

H04N 7/16

(21) [ntemational Application Number: PCT/U399“ 9051

Published

(22) International Filing Date: 20 August 1999 (20.08.1999)

(30) Priority Data:

60/097,538 21 August 1998 (21.08.1998) US
not furnished 30 July 1999 (30.07.1999) US

. (60) Parent Application or Grant
UNITED VIDEO PROPERTIES, INC. [I]; O. ELLIS,

Michael, D. [I]; 0. LEMMONS, Thomas, R. [I]; 0. THOMAS,
William, L. [I]; 0. TREYZ, G., Victor; 0.

(54) Title: CLmNT-SERVER ELECTRONIC PROGRAM GUIDE
(54) Titre: GUIDE DE PROGRAMMES ELECTRONIQUE CLENT-SERVEUR

(57) Abstract

A client-server interactive television program guide system is provided. An interactive television program guide client is
implemented on user television equipment. The interactive television program guide provides users with an opportunity to define
expressions that are processed by the program guide sewer. The program guide server may provide program guide data, schedules
reminders, schedules program recordings, and parentally locks programs based on the expressions. Users' viewing histories may be
tracked. The program guide server may analyze the viewing histories and generates viewing recommendations, targets advertising,
and collects program ratings information based on the viewing histories.

(57) Abrégé

L’invention concerne un systeme de guide de programmes de télévision interactif entre un client et un serveur. Un client de
guide de programmes de television interactif est mis en application sur l‘installation télévisuelle d'un utilisateur. Ce guide de

programmes permet aux utilisateurs de définir des expressions traitées par Ie serveur de guide de programmes. Ce serveur peut
produire des données de guide de programmes, des rappels de programmation, des enregistrements de programmes et, de meme,
verrouille des programmes en fonction des expressions. ll est possible de rechercher l’historique de visualisation des
utilisateurs. Le serveur de guide de programmes peut analyser lee historiques de visualisation et générer des recommandations de
visualisation, des publicités ciblées et recueillir des informations d'évaluation de programmes en fonction de ces historiques de
visualisation.

Page.337 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4466

PCT WORLD INTELI..EC'MJAL PROPERTY OROANIZA110N
International Bureau • INTERNATIONAL APPUCATION PUBUSHED UNDER TilE PATENT COOPERATION TREATY (PCT)

(51) International Patent ClnssificatJon 7 : (11) Intemntlonal Publication Number: wo 00111869
AI H04N 7116

(43) International Publication Date: 2 March 2000 (02.03.00)

(21) International Application Number: PCTIUS99/190S I

(22) International Filing Date: 20 August 1999 (20.08.99)

(30) Priority Data:
&JIQC.17 ,538
not furnished

21 August 1998 (21.08.98)
13 August 1999 (13.08.99)

us
us

(71) Applicant: UNITED VIDEO PROPERTIES, INC. [US(!JS);
7140 South Lewis Avenue, Tulsa, OK 74136 (US).

(7l) Inventors: ELLIS, Michael, D.; 1300 Kingwood Place, Boul
der, CO 80304 (US). LEMMONS, Thomas, R.; Route
2, Box 1178, Sand Springs, OK 74063 (US). niOMAS,
William, L.; 11611 South 70th East Avenue, Bixby, OK
74008 (US).

(74) Agents: TREYz, 0., Victor et al.; Fish & Neave, 1251 Avenue
of the Americas, New York, NY 10020 (US).

(54) TIUe: CLIENT-SERVER ELECIRONIC PROGRAM GUIDE

MAIN FACILITY

DATA
SOURCE

~ 41

LOCAL INFORMATION 15
SERVICE .)

(81) Designated States: AB, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK. DM, EE,
ES, PI, GB, GD, GB, GH, GM, HR, HU, ID, fi..,IN, IS,JP,
KE. KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, Sl, SK. SL, TJ, TM, TR, TT, UA. UG, UZ. VN,
YU, ZA, ZW, ARIPO patent (GH, GM, KE. LS, MW, SD,
SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ,
MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE,
DK. l!S, Fl, FR, GB, GR. IE. IT, LU, MC, NL, PT. SE),
OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, ON, GW, ML,
MR, NE. SN, TO, TO).

Published
With interfllJtionaJ search report.

17
INTERACTIVE TELEVISION ~

PROGRAM GUIDE EQUIPMENT

14~----------~
DATA SOURCE ~

(57) Abstract

A client-server interactive television program guide system is provided. An interactive television program guide client is implemented
on user television equipment. The intemctive television program guide provides users with an opportunity to define expressions that are
processed by the program guide server. The program guide server may provide program guide data, schedules reminders, schedules program
recordings, and parentally locks programs based on the expressions. Users' viewing histories may be tracked. The program guide seJVer
may analyz.e the viewing histories and generates viewing recommendations, targets advertising, and collects program ratings information
based on the viewing histoTies. . .

Page 338 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4467

 PCT worm)Wmmomw ORGANIZA’HONInternational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 = (11) International Publication Number: WO 00/11869

“MN 7’16 (43) International Publication Date: 2 March 2000 (02.03.00)

(2]) International Application Number: PCT/US99/l9051 (81) Designated Slam: AB, AL, AM, AT.
BR, BY. CA. CH. CN. CR. CU. DE, DK. DM,

(22) International Filing Date: 20 August I999 (20.08.99) ES, FI. GB. GD. GE. C- GM, rm. HU. ID
KE. KG. KP, KR. Kz, LC. LK,
MG. MK. MN, MW, MX, No.

(30) Priority Data: » SE. SG, SI. SK. SL. TJ, TM, TR, 11‘.
(so/097.538 21 August I993 (21.08.98) us YU, ZA. ZW. ARIPO patent (Gil. G . .
not furnished I3 August I999 (13.08.99) us 31., $2; UG, ZW), Eurasian patent (AM, A

MD. RU. '1‘}. TM), European patent (AT. BE. CH.
DK. ES, FI. FR. GB, GR. 0!. IT. LU. MC. NL.

§8§%$S
Sfi?

U)

55(71) Applicant: UNITED VIDEO PROPERTIES, INC: [USIUS];
7140 South Lewis Avenue. Tulsa, OK 74136 (US). MR, NE, SN, TD. 'PG).

(72) Inventors: ELLIS. Michael. 1).; 1300 Kingwood Place, Boul-
dcr, CO 80304 (US). LEMMONS, Thomas. R.; Route Published
2. Box 1178, Sand Springs, OK 74063 (US). THOMAS. With international march report.
William. 1...; Hon South 70th East Avenue. Bixby. OK

_ 74008 (US).

('74) Agents: TREYY, 0., Victor et ah: Fish & Neave. 1251 Avenue
of the Americas. New York, NY 10020 (US).

(54) Title: CLIENT-SERVER ELECIRONIC PROGRAM GUIDE

.41

MAIN FACILITY

INTERACTIVE TELEVISION
DATA PROGRAM GUIDE EQUIPMENT

SOURCE

14

LOCAL INFORMATION
SERVICE

14
DATA SOURCE

A client—server interactive television program guide system is provided. An interactive television program guide client is implemented
on user television equipment. The interactive television program guide provides users with an opportunity to define expressions that are
processed by the program guide server. The program guide server may provide program guide data. schedules winders. schedules program
recordings. and parentally locks programs based on the expressions. Users‘ viewing histories may be tracked. The program guide server
may analyze the viewing histories and generates viewing remmmendations, targets advertising. and collects program mtingr: information
based on the viewing histories.

(57) Abstract

Page 338 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4467

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCf on the front pages of pamphlets publishing international applications under the PCf.

AL Albania ES Spain LS 1.-dlo Sl Slovmia

AM Armenia Fl finland LT Lithuania SK Slovakia

AT AUSirin FR France LV Luembou'l! SN Seaegal

AU AUSII'llia GA Gabao LV L.llvia sz Swaz.iland

AZ Azerl>aijan GB United Kingdom MC Mo!w:o TD Chad

BA ll<lsnia and Hen~ GE G<oorcl• MD Republic of Moldova TG Togo

BB Bmbadoa Gll Ghana MG Madagascar TJ Tajikislm

BE Belgiwn GN Ouine.a MK 'l1le former Yu,goslav TM TUrlcmenlW!n

BF Bwkina Paso GR 0=«: Repub6c of Macc:dooia TR TUrlcey

BC Bulgnria HU Hungary ML Mall 1T Trinidad and Tobago

8J Benin IE ~lllnd MN Mooj:olia UA Ul:raine

BR Brazil lL rsrul MR Mauritouia UG Uganda

BY Delarw IS lee loud MW Malawi us United St.ms of Ame<lca

CA Canad<l IT IUJy MX Mexico IJZ U>bekirun

CF Central African Republic JP llf"'ll NE Niger VN VIetNam

CG Congo KE Kenya NL Nc:thc::rtallcls YU Yugooslavi.a

CH Swkzmoud KG K)"'D'Z51an NO Norway zw Zimbabwe
Cl C&d'lvoke Kl' Demoaatlc l'ooplc ., NZ New Zealand
CM Cameroon Repub6c of KDfO.> PL Poland
CN CIUm KR R<pub6c or Ktlrea I'T Pllclugal

ClJ Cuba KZ Kuabtan RO ROIIWiia
cz Czech Republic LC Saint Lueia RU ROAi.an Fcderalloo
DE Germ811y u Llcc:lunsloln SD Sudan
DK tlt:omw\ LK Sd Llnko liE Sweden
EE l!slonia Lit Liberia sc Sinppano

Page 339 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4468

Description

5

10

15

20

25

30

35

40

45

50

55

Page 340 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4469

Description

10

15

20

25

30

35

45

Page 340 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4469

5

10

15

20

25

W000/11869 PCf/US991l~l

CLIENT-SERVER ELECTRONIC PROGRAM GUIDE

Background of the Invention

This invention relates to interactive

television program guide systems, and more

30 particularly, to interactive television program guide

35

40

45

50

55

5 systems based on client-server arrangements.

10

15

Cable, satellite, and broadcast television

systems provide viewers with a large number of

television channels. Users have traditionally

consulted printed television program schedules to

determine the programs being broadcast at a particular

time. More recently, interactive television program

guides have been developed that allow television

program information to be displayed on a user's

television. Interactive television program guides,

which are typically implemented on set-top boxes, allow

users to navigate through television program listings

using a remote control. In a typical program guide,

various groups of television program listings are

displayed in predefined or user-selected categories.

20 Program listings are typically displayed in a grid or

Page 341 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4470

5

10

W000/11869 PCTIUS99/19~1

- 2 -

table. On-line program guides have been proposed that

require users to navigate the Internet to access

program listings.

Client-server based program guides have been

5 proposed in which program listings are stored on a

15 server at a cable system headend. The server provides

20

25

30

35

45

50

55

the program listings to program guide clients

implemented on the set-top boxes of a number of users

associated with each headend. As users navigate within

10 a program listings grid, the server provides program

listings to the client for display. such systems, may

be limited in their functionality due to their limited

use of the resources of the server.

15

It is therefore an object of the present

invention to provide an interactive televison program

guide system in which server resources are used to

provide enhanced program guide features not provided by

conventional set-top-box-based or client-server-based

program guides.

20 Summary of the Invention

This and other objects of the present

invention are accomplished in accordance with the

principles of the present invention by providing a

client-server based interactive television program

25 guide system in which a main facility (e.g., a

satellite uplink facility or a facility that feeds such

an uplink facility) provides data from one or more data

sources to a number of television.distribution

facilities such as cable system headends, broadcast

30 ·distribution facilities, satellite television

distribution facilities, or other suitable distribution

facilities. Some of the data sources may be located at

Page 342 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4471

5

10

15

20

25

30

35

40

45

50

55

W000/11869 PCTIUS99/190~1

- 3 -

different facilities and have their data provided to

the main facility for localization and distribution or

may provide their data to the television distribution

facilities directly. The data provided to the

5 television distribution facilities includes television

programming data (e.g., titles, channels, content

information, rating information, program identifiers,

series identifiers, or any other information associated

with television programming), and other program guide

10 data for additional services other than television

program listings (e.g., weather information, associated

Internet web links, computer software, etc.). The main

facility (and other sources) may provide the program

guide data to the television distribution facilities

15 via a satellite link, a telephone network link, a cable

or fiber optic link, a microwave link, an Internet

link, a combination of such links, or any other

suitable communications link.

Each television distribution facility has a

20 program guide server. If desired, program guide

servers may also be located at cable system network

nodes or other facilities separate from the television

distribution facilities or other distribution

facilities. Each program guide server stores the

25 program guide data provided by the main facility and

provides access to the program guide data to program

guide clients implemented on the user television

equipment of a number of users associated with each

television distribution facility. The program guide

30 servers may also store user data, such as user

preference profiles, parental control settings, record

and reminder settings, viewing history, and other

suitable data.

Page 343 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4472

5

10

15

20

25

30

35

45

50

55

W000/11869 PCfiUS99/t9~1

- 4 -

Providing program guide data.with a program

guide server and storing user data on the server may

provide users with opportunities to perform various

functions that may enhance the users' television

5 viewing experience. Users may, for example, set user

preference profiles or other favorites that are stored

by the program guide server and used by the server to

customize the program guide viewing experience for the

user. The program guide server may filter program

10 guide data based on the user preference profiles. Only

data that is of interest to the user may then be

provided to the guide client, thereby tending to

minimize the memory requirements of the user's

television equipment and lessen the bandwidth

15 requirements of the local distribution network.

20

A client-server based architecture may also

provide users with the ability to search and sort

through program related information in ways that might

not otherwise be possible due to the limited processing

and storage capabilities of the users' television

·equipment. If desired, users may be provided with

access to program guide data without requiring them to

navigate the Internet. Users may, for example, define

sophisticated boolean or natural language expressions

25 having one or more criteria for searching through and

sorting program guide data, scheduling reminders,

automatically recording programs and parentally

controlling programs. The criteria may also be derived

by the program guide server or program guide client

30 from user profiles or by monitQring usage of the

program guide. The criteria may be stored on the

program guide server. Users may be provided with an

Page 344 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4473

5

10

15

20

25

30

35

40

45

50

55

W000/11869 PCTIU$9911~1

- 5 -

opportunity to access, modify, or delete the

expressions.

The program guide server may also track the

users' viewing histories to provide a user-~ustomized

5 program guide experience. Programs or series of

episodes users have watched may be identified and used

by the program guide, for example, to inform users when

there are showings in the series that the users have

not watched. The program guide may, for example,

10 provide viewing recommendations based on a user's

viewing history and, if appropriate, on user preference

profiles or other criteria stored by the program guide

server. The program guide may also target

advertisements toward users based on the viewing

15 histories or criteria, and may track the viewing of

programs to generate viewership ratings.

Further features of the invention, its nature

and various advantages will be more apparent from the

accompanying drawings and the following detailed

20 description of the preferred embodiments.

Brief Description of the Drawings

FIG. 1 is a schematic block diagram of an

illustrative system in accordance with the present

invention.

25 FIGS. 2a, 2b, and 2c show illustrative

30

arrangements for the interactive program guide

equipment of FIG. 1 in accordance with the principles

of the present invention.

FIG. 3 is an illustrative schematic block

diagram of a user television equipment of FIGS. 2a and

2b in accordance with the principles of the present

invention.

Page 345 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4474

5

10

15

20

25

W000nt869 PCf/US99/19~1

5

10

- 6 -

FIG. 4 is a generalized schematic block

diagram of portions of the illustrative user television

equipment of FIG. 3 in accordance with the principles

of the present invention.

FIG. 5 is an illustrative main menu screen in

accordance with the principles of the present

invention.

FIG. 6 is an illustrative program listings by

time screen in accordance with the principles of the

present invention.

FIG. 7 is an illustrative program listings by

channel screen in accordance with the principles of the

present invention.

FIGS. Ba-Be are illustrative program listings

15 by category screens in accordance with the principles

of the present invention.

30 FIG.' 9a is an illustrative boolean type

criteria screen in accordance with the principles of

the present invention.

20 FIG. 9b is an illustrative natural language

35 ·Criteria screen in accordance with the principles of

the present invention.

40

45

50

55

FIG. 10 shows an illustrative agents screen

in accordance with the principles of the present

25 invention.

30

FIG. 11 is an illustrative program listings

screen in which program listings found according to the

illustrative expressions of FIGS. 9a and 9b are

displayed in accordance with the principles of the

present invention.

FIG. 12 shows an illustrative setup screen in

accordance with the principles of the present

invention.

Page 346 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4475

5

10

15

W000/11869 PCT/US99119f1!!1

- 7 -

FIGS. 13a-13f show illustrative preference

profile screens in accordance with the principles of

the present invention.

FIG. 14 shows an illustrative profile

5 activation screen in accordance with the principles of

the present invention.

FIG. 15 shows a table containing an

illustrative list of programs that might be available

20 to a user after defining the preference profiles of

10 FIGS. 13a-13f in accordance with the principles of the

present invention.

FIGS. 16a-16c are illustrative program

25 listings screens that may be displayed according to the

30

35

40

45

50

55

preference profiles of FIGS. 13a-13f in accordance with

15 the principles of the present invention.

FIGS. 17a and 17b show illustrative criteria

screens in accordance with the principles of the

present invention.

FIGS. 18 and 19 show illustrative program

20 reminder lists generated according to the expressions

of FIGS. l7a and 17b in accordance with the principles

of the present invention.

FIGS. 20a and 20b show an illustrative viewer

recommendation o.verlay, in accordance with the

25 princip~es of the present invention.

30

FIG. 20c shows an illustrative additional

information screen in accordance with the principles of

the present invention.

FIG. 21 is a flowchart of illustrative steps

involved in providing users with an opportunity to

define preference profiles and access program guide

data according to the preference profiles in accordance

with the principles of the present invention.

Page 347 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4476

5

10

15

20

25

W000/11869 PcrtuS99/1~1

- 8 -

FIG. 22 is a flowchart of illustrative steps

involved in providing users with an opportunity to

search program guide data, other information, and

videos in accordance with the principles of the present

5 invention.

10

FIG. 23 is a flowchart of illustrative steps

involved in processing and using expressions in

accordance with the principles of the present

invention.

FIG. 24 is a flowchart of illustrative steps

involved in tracking and using viewing histories in

accordance with the principles of the present

invention.

Detailed Description of the Preferred Embodiments

15 An illustrative system 10 in accordance with

30 the present invention is shown in FIG. 1. Main

. 35

40

45

50

55

facility 12 may provide program guide data from data

source 14 to interactive television program guide

equipment 17 via communications link 18. There may be

20 multiple program guide data sources in main facility 12

but only one has been shown to avoid over-complicating

the drawing. If desired, program guide data sources

may be located at facilities separate from main

facility 12 such as at local information services 15,

25 and may have their data provided to main facility 12

for localization and distribution. Data sources 14 may

be any suitable computer or computer-based system for

obtaining data (e.g., manually from an operator,

electronically via a computer network or other

30 connection, or via storage medial and placing the data

into electronic form for distribution by main facility

12. Link 18 may be a satellite link, a telephone

Page 348 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4477

5

10

15

20

25

30

35

40

45

50

55

W000/11869 PCT/US99/t90~l

- 9 -

network link, a cable or fiber optic link, a microwave

link, an Internet link, a combination of such links, or

any other suitable communications link. Video signals
may also be transmitted over link 18 if desired.

5 Local information service 15 may be any

10

sui table facility for obtaining data partic.ular to a

localized region and providing the data to main

facility 12 or interactive television program guide

equipment 17 over cpmmunications links 41. Local

information service 15 may be, for example, a local

weather station that measures weather data, a local

newspaper that obtains local high school and college

sporting information, or any other suitable provider of

information. Local information service 15 may be a

15 local business with a computer for providing main

facility 12 with, for example, local ski reports,

fishing conditions, menus, etc., or any other suitable

provider of information. Link 41 may be a satellite

link, a telephone network link, a cable or fiber optic

20 link, a microwave link, an Internet link, a combination

of such links, or any other suitable communications

link. Additional data sources 14 may be located at

other facilities for providing main facility 12 with

non-localized data (e.g., non-localized program guide

25 data) over link 41.

30

The program guide data transmitted by main

facility 12 to interactive television program guide

equipment 17 may include television programming data

(e.g., program identifiers, times, channels, titles,

descriptions, series identifiers, etc.) and other data

for services other than television program listings

(e.g., help text, pay-per-view information, weather

information, sports information, music channel

Page 349 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4478

5

10

15

20

25

30

W000/11869

5

- 10 -

information, associated Internet web links, associated

software, etc.). There are preferably numerous pieces

or installations of interactive television program

guide equipment 17, although only one is shown in

FIG. 1 to avoid over-complicating the drawing.

Program guide data may be transmitted by main

facility 12 to interactive television program guide

equipment 17 using any suitable approach. Data files

may, for example, be encapsulated as objects and

10 transmitted using a suitable Internet based addressing

scheme and protocol stack (e.g., a stack which uses the

user datagram protocol (UDP) and Internet protocol

(IP)). systems in which program guide data is

transmitted from a main facility to television

15 distribution facilities are described, for example, in

Gollahon et al. U.S. patent application Serial No.

09/332,624, filed June 11, 1999 (Attorney Docket No.

UV-106), which is hereby incorporated by reference

herein in its entirety.

20 A client-server based interactive television

35 .program guide is implemented on interactive television

program guide equipment 17. Three illustrative

45

50

55

arrangements for interactive television program guide

equipment 17 are shown in FIGS. 2a-2c. FIG. 2a shows

25 an illustrative arrangement for interactive television

program guide equipment 17 in which a program guide

server obtains program guide data directly from main

facility 12. FIG. 2b shows an illustrative arrangement

for interactive television program guide equipment 17

30 in which a program guide server obtains program guide

data from main facility 12 or some other facility

(e.g., local information service 15) via the Internet.

In either of these approaches, users may be provided

Page 350 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4479

5

10

15

20

25

30

W000/11869 PCf/US99n~l

5

- 11 -

with opportunities to access program guide data without

having to navigate the Internet, if desired. As shown

in FIGS. 2a and 2b, interactive program guide

television equipment 17 may include television

distribution facility 16 and user television

equipment 22.

Television distribution facility 16 may have

program guide distribution equipment 21 and program

guide server 25. Distribution equipment 21 is

10 equipment suitable for providing program guide data

15

from program guide server 25 to user television

equipment 22 over communications path 20. Distribution

equipment 21 may include, for example, suitable

transmission hardware for distributing program guide

data on a television channel sideband, in the vertical

blanking interval of a television channel, using an in

band digital signal, using an out-of-band digital

signal, over a dedicated computer network or Internet

link, or by any other data transmission technique

20 suitable for the type of communications path 20.

35 Analog or digital video signals (e.g., television

programs) may also be distributed by distribution

40 25

45

30

50

55

equipment 21 to user

communications paths

television channels.

television equipment 22 over

20 on multiple analog or digital

Alternatively, videos may be

distributed to user television equipment 22 from some

other suitable distribution facility, such as a cable

system headend, a broadcast distribution facility, a

satellite television distribution facility, or any

other suitable type of television distribution

facility.

Communications paths 20 may be any

communications paths suitable for distributing program

Page 351 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4480

5

10

15

20

25

30

35

40

45

50

55

WOOOIJJ869 PCf/US99/1905.1

5

10

15

- 12 -

guide data. Communications paths 20 may include, for

example, a satellite link, a telephone network link, a

cable or fiber optic link, a microwave link, an

Internet link, a data-over-cable service interface

specification (DOCSIS) link, a combination of such

links, or any other suitable communications link.

Communications paths 20 preferably have sufficient

bandwidth to allow television distribution facility 16

or another distribution facility to distribute

television programming to user television equipment 22.

There are typically multiple pieces of user television

equipment 22 and multiple associated communications

paths 20, although only one piece of user television

equipment 22 and communications path 20 are shown in

FIGS. 2a and 2b to avoid over-complicating the

drawings. If desired, television programming and

program guide data may be provided over separate

communications paths.

Program guide server 25 may be based on any

20 suitable combination of server software and hardware.

Program guide server 25 may retrieve program guide data

or video files from storage device 56 in response to

program guide data or video requests generated by an

interactive television program guide client implemented

25 on user television equipment 22. As shown in FIGS. 2a

and 2b, program guide server 25 may include processing

circuitry 54 and storage device 56. Processing

circuitry 54 may include any suitable processor, such

as a microprocessor or group of microprocessors, and

30 other processing·circuitry such as caching circuitry,

video decoding circuitry, direct memory access (DMA)

circuitry, input/output (I/0) circuitry, etc.

Page 352 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4481

5

10

15

20

25

30

W000/11869 PCfiUS99n9051

- 13 -

Storage device 56 may be a memory or other

storage device, such as random access memory (RAM),

flash memory, a hard disk drive, etc., that is suitable

for storing the program guide data transmitted to

5 television dis~ribution facility 16 by main facility

12. User data, such as user preference profiles,

preferences, parental control settings, record and

reminder settings, viewing histories, and other

suitable data may also be stored on storage device 56

10

15

by program guide server 25. Program guide data and

user data may be stored on storage device 56 in any

suitable format (e.g., a Structured Query Language

(SQL) database). If desired, storage 56 may also store

video files for playing back on demand.

Processing circuitry 54 may process requests

for program guide data by searching the program guide

data stored on storage device 56 for the requested

data, retrieving the data, and providing the retrieved

data to distribution equipment 21 for distribution to

20 user television equipment 22. Processing circuitry 54

35 .may also process storage requests generated by the

program guide client that direct program guide

45

50

55

server 25 to store user data. Alternatively, program

guide server 25 may distribute program guide data to

25 and receive user data from user television equipment 22

directly. If communications paths 20 include an

Internet link, OOCSIS link, or other high speed

computer network link (e.g., lOBaseT, lOOBaseT,

lOBaseF, Tl, T3, etc.), for example, processing

30 circuitry 54 may include circuitry suitable for

transmitting program guide and user data and receiving

program guide data and storage requests over such a

link.

Page 353 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4482

5

10

wo 00/11869 PCT/US99/l9~1

·- 14 -

Program guide server 25 may communicate with

user television equipment 22 using any suitable

communications protocol. For example, program guide.

server 25 may use a communications protocol stack that

5 includes transmission control protocol (TCP) and

15 Internet protocol (IP) layers, sequenced packet

exchange (SPX) and internetwork packet exchange (IPX)

20

25

30

35

40

45

50

55

layers, Appletalk transaction protocol (ATP) and

datagram delivery protocol (DDP) layers, DOCSIS, or any

10 other suitable protocol or combination of protocols.

15

20

User television equipment 22 may also include suitable

hardware for communicating with program guide server 25

over communications paths 20 (e.g., Ethernet cards,

moderns (digital, analog, or cable), etc.)

The program guide client on user television

equipment 22 may retrieve program guide data from and

store user data on program guide server 25 using any

suitable client-server based approach. The program

guide may, for example, pass SQL requests as messages

to program guide server 25. In another suitable

approach, the program guide may invoke remote

procedures that reside on program guide server 25 using

one or more remote procedure calls. Program guide

server 25 may execute SQL statements for such invoked

25 remote procedures.. In still another suitable approach,

client objects executed by the program guide may

communicate with server objects executed by program

guide server 25 using, for example, an object request

broker (ORB). This may involve using, for example,

30 Microsoft's Distributed Component Object Model (DCOMl

approach. As used herein, "record requests" and

"storage requests" are intended to encompass any of

these types of inter-process or inter-object

Page 354 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4483

5

10

15

20

25

30

35

40

WOOO/ll869 PCT/US!1911905.1

- 15 -

communications, or any other suitable type of inter

process or inter-object communication.

FIG. 2b shows an illustrative arrangement for

interactive television program guide equipment 17 in

5 which program guide server 25 obtains program guide

data·via the Internet. The program 9uide data obtained

by program guide server 25 may be provided by main

facility 12 or from some other source (e.g., local

information service 15) and made available on the

10 Internet. Internet service system 61 may use any

suitable combination of hardware and software capable

of providing program guide data from the Internet to

program guide server 25 using an Internet based

approach (e.g., using the HyperText Transfer Protocol

15 (HTTP), File Transfer Protocol (FTP), etc.). FIG. 2b

shows Internet service system 61 as being encompassed

by television distribution facility 16. If desired,

Internet service system 61 may be located at a

facility that is separate from television distribution

20 facility 16. Internet service system 61 may, for

example, be located at main facility 12 or at some

other Internet node suitable for providing program

guide data from the Internet to program guide server

25. The functionality of Internet service system 61

25 and program guide server 25 may be integrated into one

system if desired.

Another suitable arrangement for interactive

television program guide equipment 17 is shown in FIG.

45 2c. Interactive television program guide equipment 17

50

55

30 may include, for example, television distribution

facility 16 having program guide server 25 and Internet

service system 61. A program guide client application

may run on personal computer 23. The client may access

Page 355 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4484

5

10

WOOOnJ869 PCTIUS99119051

- 16 -

program guide server 25 via Internet service system 61

and communications path 20. Personal computer 23 may

include processing c-ircuitry 27, memory 29, storage

device 31, communications device 35, and monitor 39.

5 Processing circuitry 27 may include any

15 suitable processor, such as a microprocessor or group

20

25

30

35

40

of microprocessors, and other processing circuitry such

as caching circuitry, direct memory access (DMA)

circuitry, input/output (I/0) circuitry, etc.

10 Processing circuitry 27 may also include suitable

circuitry for displaying television programming.

Personal computer 23 may include, for example, a PC/TV

card. Memory 29 may be any suitable memory, such as

random access memory (RAMI or read only memory (ROM),

15 that is suitable for storing the computer instructions

and data. Storage device 31 may be any suitable

storage device, such as a hard disk, floppy disk drive,

flash RAM card, recordable CD-ROM drive, or any other

suitable storage device. Communications device 35 may

20 be any suitable communications device, such as a

conventional analog modem or cable modern.

An illustrative arrangement for user

television equipment 22 of FIGS. 2a and 2b is shown in

FIG. 3. User television equipment 22 of FIG. 3

25 receives analog video or a digital video stream and

data, program guide data, or any suitable combination

thereof, from television distribution facility 16 (FIG.

1) at input 26. During normal television viewing, a

45 user tunes set-top box 28 to a desired television

30 channel. The signal for that television channel is

then provided at video output 30. The signal supplied

at output 30 is typically either a radio-frequency (RF)

50 signal on a predefined channel (e.g., channel 3 or 4),

55

Page 356 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4485

5

10

WOOO/ll869 PCfiUS!I!In!IOSl

- 17 -

or a analog demodulated video signal, but may also be a

digital signal provided to television 36 on an

appropriate digital bus (e.g., a bus using the

Institute of Electrical and Electronics Engineers

5 (IEEE) 1394 standard, (not shown}). The video signal

15 at output 30 is received by optional secondary storage

device 32.

20

25

30

35

40

The interactive television program guide

client may run on set-top box 28, on television 36 (if

10 television 36 has suitable processing circuitry and

memory), on a suitable analog or digital receiver

connected to television 36, or on digital storage

device 31 if digital storage device 31 has suitable

processing circuitry and memory. The interactive

15 television program guide client may also run

cooperatively on a suitable combination of these

devices. Interactive television application systems in

which a cooperative interactive television program

guide application runs on multiple devices are

20 described, for example, in Ellis U.S. patent

application Serial No. 09/186,598, filed November 5,

1998, which is hereby incorporated by reference herein

in its entirety.

Secondary storage device 32 can be any

25 suitable type of analog or digital program storage

device or player (e.g., a videocassette recorder, a

digital versatile disc (DVD) player, etc.). Program

recording and other features may be controlled by

45 set-top box 28 using control path 34. If secondary

50

55

30 storage device 32 is a videocassette recorder, for

example, a typical control path 34 involves the use of

an infrared transmitter coupled to the infrared

receiver in the videocassette recorder that normally

Page 357 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4486

5

10

W000/11869 PCf/US99/19051

- 18 -

accepts commands from a remote control such as remote

control 40. Remote control 40 may be used to control

set-top box 28, secondary storage device 32, and

television 36.

5 If desired, a user may record programs,

15 program guide data, or a combination thereof in digital

form on optional digital storage device 31. Digital

20

25

30

35

40

storage device 31 may be a writeable optical storage

device (such as a DVD player capable of handling

10 recordable DVD discs), a magnetic storage device (such

as a disk drive or digital tape), or any other digital

storage device. Interactive television program guide

systems that have digital storage devices are

described, for example, in Hassell et al. U.S. patent

15 application Serial No. 09/157,256, filed September 17,

1998, which is hereby incorporated by reference herein

in its entirety.

20

Digital storage device 31 can be contained in

set-top box 28 or it can be an external device

connected to set-top box 28 via an output port and

appropriate interface. Digital storage device 31 may,

for example, be contained in local media server 29. If

necessary, processing circuitry in set-top box 28

formats the received video, audio and data signals into

25 a digital file format. Preferably, the file format is

an open file format such as the Moving Picture Experts

Group (MPEG) MPEG-2 standard or the Moving Joint

Photographic Experts Group (MJPEG) standard. The

45 resulting data is streamed to digital storage device 31

55

30 via an appropriate bus (e.g., a bus using the Institute

Electrical and Electronics Engineers (IEEE) 1394

standard), and is stored on digital storage device 31.

In another suitable approach, an MPEG-2 data stream or

Page 358 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4487

5

10

15

20

25

30

35

40

45

50

55

W000/11869 PCf/US99/l~l

- 19 -

series of files may be received from distribution

equipment 21 and stored.

Television 36 receives video signals from

secondary storage device 32 via communications path 38.

5 The video signals on communications path 38 may either

be generated by secondary storage device 32 when

playing back a prerecorded storage medium (e.g., a

videocassette or a recordable digital video disc), by

digital storage device 31 when playing back a pre-

10 recorded digital medium, may be passed through from

set-top box 28, may be provided directly to television

36 from set-top box 28 if secondary storage device 32

is not included in user television equipment 22, or may

be received directly by television 36. During normal

15

20

television viewing, the video signals provided to

television 36 correspond to the desired channel to

which a user has tuned with set-top box 28. Video

signals may also be provided to television 36 by set

top box 28 when set-top box 28 is used to play back

information stored on digital storage device 31.

Set-top box 28 may have communications

device 37 for communicating with program guide server

25 over communications path 20. Communications device

37 may be a modem (e.g., any suitable analog or digital

25 standard, cellular, or cable modem), network interface

card (e.g., an Ethernet card, Token ring card, etc.), a

combination of such devices, or any other suitable

communications device. Television 36 may also have

such a suitable communications device if desired.

30 Set-top box 28 may have memory 44. Memory 44

may be any memory or other storage device, such as a

random access memory (RAM), read only memory (ROM),

flash memory, a hard disk drive, a combination of such

Page 359 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4488

WOOOII1869 PCTIUS99/19~t

5
- 20 -

devices, etc., that is suitable for storing program

to guide client instructions and program guide data for

use by the program guide client.

A more generalized embodiment of user

5 television equipment 22 of FIG. 3 is shown in FIG. 4.

15 As shown in FIG. 4, program guide data from television

distribution facility 16 (FIG. 1) and programming are

received by control circuitry 42 of user television

equipment 22. The functions of control circuitry 42
20

25

30

35

40

10 may be provided using the set-top box arrangement of

15

20

FIGS. 2a and 2b. Alternatively, these functions may be

integrated into an advanced television receiver,

personal computer television (PC/TV) such as shown in

FIG. 2c, or any other suitable arrangement. If

desired, a combination of such arrangements may be

used.

User television equipment 22 may also have

secondary storage device 47 and digital storage device

49 for recording programming. Secondary storage device
47 can be any suitable type of analog or digital

program storage device (e.g., a videocassette recorder,

a digital versatile disc (DVDl, etc.). Program

recording and other features may be controlled by

control circuitry 42. Digital storage device 49 may

25 be, for example, a writeable optical storage device

(such as a DVD player capable of handling recordable

DVD discs), a magnetic storage device (s~ch as a disk

drive or digital tape), or any other digital storage

45 device.
30 User television equipment 22 may also have

memory 63. Memory 63 may be any memory or other

storage device, such as a random access memory (RAM),

SO read only memory (ROM), flash memory, a hard disk

55

Page 360 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4489

5

10

W000/11869 PCT/US99/J 9051

- 21 -

drive, a combination of such devices, etc., that is

suitable for storing program guide client instructions

and program guide data for use by control circuitry 42.
User television equipment 22 of FIG. 4 may

5 also have communications device 51 for supporting

15 communications between the program guide client and

20

25

30

35

45

55

program guide server 25 and via communications path 20.

Communications device 51 may b~ a modern (e.g., any

suitable analog or digital standard, cellular, or cable

10 modem), network interface card (e.g., an Ethernet card,

Token ring card, etc.), a combination of such devices,
or any other suitable communications device.

A user controls the operation of user
television equipment 22 with user interface 46. user

15 interface 46 may be a pointing device, wireless remote
control, keyboard, touch-pad, voice recognition system,
or any other suitable user input device. To watch
television, a user instructs control circuitry 42 to

display a desired television channel on display

20 device 45. To access the functions of the program

guide, a user instructs the program guide implemented
on interactive television program guide equipment 17 to

generate a main menu or other desired program guide
display screen for display on display device 45. If

25 desired, the program guide client running on user
television equipment 22 may provide users with access

to program guide features without requiring them to

navigate the Internet.
The program guide may provide users with an

30 opportunity to access program guide features through a

main menu. A main menu screen, such as illustrative

main menu screen 100 of FIG. S, may include menu 102 of

selectable program guide features 106. If desired,

Page 361 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4490

5

10

15

_20

25

30

35

40

45

50

W000/1186!) PCTIUS99/1905J

- 22 -

program guide features 106 may be organized according

to feature type. In menu 102, for example, program

guide features 106 have been organized into three

columns. The column labeled "TV GUIDE" is for listings

5 related features, the column labeled "MSO SHOWCASE" is

for multiple system operator (MSO) related features,

and the column labeled "VIEWER SERVICES" is for viewer

related features. The interactive television program

guide may generate a display screen for a particular

10 program guide feature when a user selects that feature

from menu 102.

Main menu screen 100 may include one or more

selectable advertisements 108. Selectable

advertisements 108 may, for example, include text and

15 graphics advertising pay-per-view programs or other

programs or products. When a user selects a selectable

advertisement 108, the program guide may display

information (e.g., pay-per-view information) or take

other actions related to the content of the

20 advertisement. Pure text advertisements may be

presented, if desired, as illustrated by selectable

advertisement banner 110.

25

30

Main menu screen 100 may also include other

screen elements. The brand of the program guide

product may be indicated, for example, using a product

brand logo graphic such as product brand logo

graphic 112. The identity of the television service

provider may be presented, for example, using a service

provider logo graphic such as service provider logo

graphic 114. The current time may be displayed in

clock display region 116. In addition, a suitable

indicator such as indicator graphic 118 may be used to

indicate to a user that mail from a cable operator is

Page 362 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4491

5

10

15

20

25

30

35

45

50

55

WOOOIIJ869 Pcr/US!I!I/190~1

- 23 -

waiting for a user if the program guide supports

messaging functions.

The interactive television program guide may

provide a user with an opportunity to v~ew television

5 program listings. A user may indicate a desire to view

program listings by, for example, positioning highlight

region 120 over a desired program guide feature 106.

Alternatively, the program guide may present program

listings when a user presses a suitable key (e.g., a

10 "guide" key) on remote control 40. When a user

indicates a desire to view television program listings,

the program guide client requests listings from program

guide server 25 and generates an appropriate program

listings screen for display on display device 45

15 (FIG. 4). Program listings screens may be overlaid on

a program being viewed by a user or overlaid on a

portion of the program in a "browse" mode. Program

listings screens are described, for example, in Knudson

et al. U.S. patent application Serial No. 09/357,941,

20 filed July 16, 1999 (Attorney Docket No. UV-114), which

is hereby incorporated by reference herein in its

entirety.

A program listings screen may contain one or

more groups or lists of program listings organized

25 according to ohe or more organization criteria (e.g.,

by time, by channel, by program category, etc.). The

program guide may, for example, provide a user with an

opportunity to view listings by time, by channel,

according to a number of categories (e.g., movies,

30 sports, children, etc.), or may allow a user to search

for a listing by title. Program listings may be

displayed using any suitable list, table, grid, or

other suitable display arrangement. If desired,

Page 363 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4492

5

to

t5

20

25

30

35

W000/11869 PCf/US99119~1

- 24 -

program listings screens may include selectable

advertisements, product brand logo graphics, service

provider brand graphics, clocks, or any other suitable

indicator or graphic.

5 A user may indicate a desire to view program

listings by time, channel, or category by, for example,

selecting a selectable feature 106 from menu 102. In

response, the program guide client may issue one or

more requests to program guide server 25 for listings

10 in the selected category if such listings are not

already cached in memory 63 (FIG. 4). Program guide

server 25 may retrieve program guide data stored on

storage device 56, on another server, or from Internet

service system 61, and provide the data to the program

15 guide client via program guide distribution

equipment 21.

The program guide client may display program

listings in a suitable program listings screen on user

television equipment 22. FIG. 6 illustrates the

20 display of program listings by time. Program listings

screen 130 of FIG. 6 may include highlight region 151,

which highlights the current program listing 150. A

user may position highlight region 151 by entering

appropriate commands with user interface 46. For

25 example, if user interface 46 has a keypad, a user can

position highlight region 151 using "up" and "down"

arrow keys on remote control 40. A user may select a

listing by, for example, pressing on the "OK" or "info"

45 key on remote control 40. Alternatively, a touch

50

55

30 sensitive screen, trackball, voice recognition device,

or other suitable device may be used to move highlight

region 151 or to select program listings without the

use of highlight region 151. In still another

Page 364 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4493

5

10

W000111869 PCr/US99/190~1

- 25 -

approach, a user may speak a television program listing
into a voice request recognition system. These methods

of selecting program listings are merely illustrative.
Any other suitable approach for selecting program

5 listings may be used if desired.

15 A user may view additional listings for the

20

25

30

35

40

time slot indicated in timebar 111 by, for example,
pressing an "up" or "down" arrow, or .a "page up" or

"page down" key on remote control 40. The user may

10 also see listings for the next 24 hour period, or the

last 24 hour period, by pressing a "day forward" or

"day backward" key on remote control 40, respectively.

If there are no listings starting exactly 24 hours in
the indicated direction, the program guide may pick

15

20

programs starting at either closer or further than 24
hours away. If desired, the program guide may require

a user to scroll through advertisement banner 110. A
user may view program listings for other time slots by,

for example, pressing "right" and "left" arrows on

remote control 40.
FIG. 7 illustrates the display of program

listings by channel. A user may scroll up and down to

view program listings for additional time slots, and
may scroll left and right to view program listings for

25 other channels. If desired, the day for which program
listings are displayed may be included in display

area 147 with the channel number as shown.
The .program guide may provide users with an

45 opportunity to view program listings sorted by

50

55

30 category. A user may, for example, press a special

category key on remote control 40 (e.g., "movies",

"sports", "children", etc.), select a selectable

category feature from main menu screen 100 (FIG. 5), or

Page 365 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4494

5

10

15

20

25

30

35

45

50

55

WOOOnt869 PCTIUS99/19~t

- 26 -

may indicate a desire to view program listings by

category using any other suitable approach. FIG. ·aa is

an illustrative program listings screen in which

program listings for movies are displayed. FIG. 8b is

5 an illustrative program listings screen in which

program listings for sports-related programming are

displayed. FIG. ac is an illustrative program listings

screen in.which program listings for children's

programs are displayed~

10

15

20

In program listings display screens such as

those shown in FIGS. 7a and 8a-8c for example, program

listings within lists 129 may be divided into

predefined time slots, such as into 30 minute time

slots. Between each time slot, separator 128 may be

displayed to indicate to a user that a user has

scrolled or paged program listings from one time slot

to the next. In FIG. 7 for example, a user is

scrolling from program listings in the 11:30 PM to the

12:00 AM time slot. This is indicated by the display of

the name of the next week day. In FIGS. ea-Se, for

example, a user is scrolling from program listings in

the 12:30 PM time slot to program listings in the 1:00

PM time slot. If desired, separators 128 may be

displayed only for those timeslots for which there are

25 listings. When the user scrolls within listings,

highlight region 151 may skip separator 128. FIGS. 6,

7, and ea-Se also illustrate how the program guide may

display· an advertisement banner so that a user is

required to scroll past the banner to access additional

30 program listings.

The program listings screens of FIGS. 6, 7,

Sa, Sb, and Be have also been shown as including

various other screen elements. Program listings

Page 366 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4495

5

10

W000/11869 PCI'/US9911~1

- 27 -

display screens may include, for example, selectable

advertisements, advertisement· banners, brand logos,

service provider logos, clocks, message indicators, or

any other suitable screen element. The program guide

5 may provide user's with access to selectable

15 advertisements in response to, for example, a user

pressing left arrows to move highlight region 151 to

20

25

30

35

40

highlight a selectable advertisement. In the

illustrative program listings screens of FIGS. 6, Sa,

10 Sb, and 8c, the program guide may also adjust the time

displayed in timebar 123 as the user scrolls or pages

through program listings to reflect the time of the

program listing at the top of the list.

The program guide client may provide a user

15 with an opportunity to define sophisticated boolean or

natural language expressions of one or more criteria.

Such criteria may include, for example, attribute type

and attribute information that is provided by program

guide server 25. The user defined expressions may be

20 stored by program guide server 25 for searching through

and sorting program guide data, scheduling reminders,

automatically recording programs, and parentally

controlling programs. Criteria may also be derived by

the program guide server or program guide client from

25 user profiles or by monitoring usage of the program

guide or advertising. Program guide server 25 may also

use expressions to obtain other types of information or

programs. Program guide server 25 may obtain, for

45 example, video-on-demand programs, web site links,

30 games, chat group links, merchandise information, or

any other suitable information or programming from data

sources 14 located.at main facility 12 or other

50 facilities. The program guide client may provide users

55

Page 367 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4496

. 5

10

15

20

W000/11869 PCT/US99/l~l

- 28 -

with an opportunity to access, modify, or delete the

expressions if desired.

A user may indicate a desire to search
program quide data by, for example, selecting

5 selectable Search feature 106 of main menu 102 (FIG.
5) . In response, the program quide client may display

a criteria screen, such as illustrative criteria screen

141 and 149 of FIGS. 9a and 9b. The program guide

client may display criteria screen 141 of FIG. 9a to
10 provide a user·with an opportunity to define a boolean

expression. The user may construct a boolean
expression by selecting criteria such as attribute

types, attributes, logical operators, and sorting
25 criteria. User selectable criteria may also include

30

35

4(}

45

50

55

15 what program guide server 25 searches for such as, for

example, program listings, program information, web

sites, video-on-demand videos, software, or any other
suitable program guide data, other information, or

videos.

20 Users may define expressions by, for example,

arrowing up or down between criteria, arrowing left or

right to choose an attribute, attribute type or logical

operator, and pressing a suitable key to indicate that
the user is finished (~.g., an "OK" key). In the

25 example of FIG. 9a, the user has constructed a boolean

expression for all action programs that have the actor
Bruce Willis, that start between 7:00P and ll:OOP, and
that end between 9:00P and 1:30A on the current day.

FIG. 9a has not been shown as including criteria for

30 selecting what program guide server 25 searches for to

avoid over-complicating the drawing.
The program guide client may display criteria

screen 149 of FIG. 9b to provide a user with an

Page 368 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4497

W000/11869 PCTIUS99n9()!!l

5
- 29 -

opportunity to construct a natural language expression.

10 The user may enter a natural language phrase, such as

"List in alphabetical order all action programs

starring Bruce Willis and that start today between

5 7:00P and ll:OOP and that end between 9:00P and 1:30A"

g using user interface 46 (FIG. 4).

20

25

30

35

45

50

55

The program guide client may submit the user

defined boolean expression or the natural language

expression to program guide server 25 for processing.

10 Program guide server 25 may process the expression, and

provide the resulting program guide data (e.g., program

listings, program information, software, Internet

links, etc.) or video programs to the program guide

client for display. FIG. 11 shows an illustrative

15 program listings screen that may be displayed by the

program guide client in response to the expressions

defined in FIGS. 9a and 9b.

20

25

Users may also indicate a desire to have

program guide server 25 automatically process

expressions by, for example, saving defined expressions

as agents. A user may indicate a desire to save an

expression as an agent by, for example, selecting Save

As Agent selectable feature 147 of FIGS. 9a and 9b

after defining a. boolean or natural language

expression. The program guide client may automatically

highlight save As Agent selectable feature 147 when a

user indicates that the user is finished defining an

expression (e.g., by pressing an "OK" key). If desired

th.e program guide client may provide the user with an

30 opportunity to name the agent.

Users may access saved expressions or agents

by, for example, selecting selectable Agent feature 106

of main menu 102. In response, the program guide

Page 369 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4498

5

10

15

20

25

30

35

40

45

50

55

W000/11869 PCTIUS99119~1

- 30 -

client may display a list of saved expressions or

agents. An illustrative agents screen 1101 is shown in

FIG. 10. A user may indicate a desire to view program

listings by, for example, positioning highlight region

5 151 over the desired expression and pressing an "OK"

key on remote control 40. In response to a user

indicating a desire to access an expression, the

program guide client may submit the user defined

expression to program guide server 25 for processing.

10 Program guide server may process the expression, and

provide program listings to the program guide .client

for display in a program listings screen. For example,

if a user saved the boolean expression of FIG. 9a,

named it "Bruce Willis", and then indicated a desire to

15

20

access listings for the expression the program guide

client may display the listings screen of FIG. 10.

In still another approach, the program guide

client may provide the expression to program guide

server 25 in response to the user saving the expression

as an agent. Program guide server 25 may store the

e.xpression and monitor the data stored on storage

device 56 for program guide listings, program

information, other information, software, videos, etc.,

that match the expression. Program guide server 25 may

25 also query other sources for program guide data and

videos that match the expression via, for example, the

Internet. Program guide server 25 may obtain the

program guide data, other information or videos from

storage device 56 or other sources and provide them to

30 the program guide client when the user indicates a

desire to access the agent. Alternatively, program

guide server 25 may provide the program guide data,

other information, or videos to the program guide

Page 370 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4499

5

10

W000/11869 PCTJUS99119051

- 31 -

client automatically when the user accesses a feature

of the program guide that would display such

information. In still another suitable approach,

program guide server 25 may provide, for example,

5 program identifiers and air times to the program guide

15 client for use in generating program reminders that

20

25

30

35

40

indicate found programs.

The program guide may also provide users with

an opportunity to define user preferences that allow

10 users to customize their program guide experience.

Systems in which interactive television program guides

provide users with opportunities to define user

preference profiles are described, for example, in

Ellis et al. u.s. patent application Serial No.

15 09/034,934, filed March 4, 1998 (Attorney Docket

20

No. UV-43), which is hereby incorporated by reference

herein in its entirety. Users may indicate a desire to

set up user preference profiles, for example, by

selecting a selectable Setup feature 106 from main menu

102 of FIG. 5. When a user selects a selectable Setup

feature 106 from main menu 102, the program guide

client may display a setup screen, such as illustrative

setup screen 411 of FIG. 12.
Setup screen 411 may provide a user with an

25 opportunity to set up various guide features, set

parental control features, set features of set-top box

28 (FIG. 3), set audio features, set the screen

position, set user preference profiles, or to set up

45 any other feature or suitable combination of features.

50

55

30 The user may indicate a desire to set up a user

preference profile by, for example, selecting User

Profile feature 417. When the user indicates a desire

to set up a user preference profile, the program guide

Page 371 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4500

5

10

15

20

25

30

35

45

50

55

WOOOIIJ869 PCTIUS9911~l

- 32 -

client may display a user preference profile setup

screen, such as the preference profile setup screens

shown in FIGS. 13a-13f. This method of defining user

profiles is only illustrative, as any suitable method

5 may be used.

In practice, there may be multiple users

associated with each user television equipment 22. The

program guide may provide users with the ability to set

up multiple user preference profiles. Users may switch

10 between user preference profiles by, for example,

selecting preference profile selector 109 and arrowing

right or left to select the desired user preference

profile. In FIGS. 13a-13f, for example, the user has

selected Preference profile #1, which may correspond to

15 a particular user.

20

User preference profiles may include criteria

such as .preference attributes 104 and preference levels
106. Preference attributes 104 may be organized by

type. Attribute types and attributes may be programmed

into the program guide client, or may be retrieved by

the program guide client from program guide server 25.

In the former approach, the available attribute types

and attributes may remain static until the program

guide client is updated. In the latter approach, the

25 available attribute types a.nd attributes may be

dyn~c. Suitable attribute types and attributes may

be provided at any time by main facility ~2 or

television di.stribution facility 16. Each time a user

indicates a desire to set up a user preference profile,

30 the program guide client may query program guide server

25 for the available attribute types and attributes.

When a user indicates a desire to set up a user

preference profile in either approach, the program

Page 372 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4501

5

10

15

20

25

30

35

W000/11869 PCTIU$9911~1

- 33 -

guide client may query program guide server 25 for the

user preference profiles associated with that program

guide client.

FIGS. 13a-13f show six illustrative views of

5 preference profile setup screens in which the user has

selected attribute types by, for example, selecting

attribute selector 111 and arrowing right or left until

a desired preference attribute type is displayed. For

example, FIGS. 13a-13f illustrate how the program guide

10 may provide a user with an opportunity to set

preference levels for series, genres, channels, actors

and actresses, ratings, and other types of preference

attributes, respectively. The user may ·select

preference attributes by, for example, arrowing down

15 after selecting an attribute type. The user may then

arrow right or left until a desired attribute is.

displayed. After the desired preference attribute is

displayed, the user may, for example, arrow down to set

a preference level ·for the attribute. The user may

20 then, for example, arrow right or left to select a

suitable preference level.

Preference levels that may be used to

indicate the user's interest or disinterest in a given

preference attribute include strong like, weak like,

25 strong dislike, weak dislike, mandatory (appropriate,

e.g., for closed-captioning for a deaf person), illegal

(appropriate, e.g., for R-rated programs for a child)

and don't care (neutral). After the user indicates

45 that he or she is finished defining a profile (e.g., by

50

55

30 pressing an "OK" key or remote control 40), the program

guide client may provide the preference profile data to

program guide server 25 for use in providing program

guide data. The user may arrow down again to select

Page 373 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4502

5

10

W000/11869 PCfiUS9911~1

- 34 -

additional criteria, or arrow up to edit criteria that

has already been selected. The user may delete an

attribute by, for example, setting its preference level

to "don't care."

5 The user may activate or deactivate one or

15 more defined preference profiles by, for example,

selecting selectable Profile feature 106 from main menu

20

25

30

35

102 of FIG. 5. The program guide client may respond

by, for example, querying program guide server 25 for

10 any defined preference profiles, providing the user

with a list of preference profiles, and providing the

user with an opportunity to activate or deactivate one

or more preference profiles as shown in FIG. 14. A

user may deactivate a preference profile by, for

15

20

example, setting the profile to non-active. A user may

set a preference profile as active to varying degrees.

For example, a user may set a profile as active by

setting the profile to "wide", "moderate", or "narrow"

scope.
The program guide client may also indicate to

program guide server 25 which profiles are activated or

deactivated. The program guide server may use, for

example, the attributes of one or more user preference

profiles as additional criteria when retrieving data in

25 response to data requests from the program guide

client. If multiple preference profiles are used

simultaneously, program guide server 25 may reconcile

any conflicts using any suitable approach. Interactive

45 television program guide systems that resolve conflic.ts

50

55

30 among multiple active user preference profiles are

described, for example, in above-mentioned Ellis et al.

U.S. patent application Serial No. 09/034,934, filed

March 4, 1998.

Page 374 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4503

5

10

W000/11869 PCf/VS99/19~1

- 35 -

FIG. 15 is a table containing an illustrative

list of·prograros that might be available to a user.

The results that appear under the columns labeled

"narrow scope", "moderate scope", and "wide scope",

5 show which programs satisfy the preference attributes

15 and preference levels of, for example, Profile #1 as

illustratively defined in FIGS. l3a-13f. In practice,

20

25

30

35

40

a listings screen generated based on a profile that is

set to widest scope may typically include a larger

10 number of program listings depending on the mandatory

attributes set by the user.

When the user activates Profile #1 and sets

it to the widest scope, program guide server 25 may

provide program guide data for programs that have all

15 mandatory att·ributes and no illegal attributes. For

example, Seinfeld, The Shining, ER, Terminator, and My

Stepmother is an Alien are included in the widest

preference scope because they have the only mandatory

attribute that is specified in Profile #l -- closed-

.20 captioning (as set in FIG. 13f). In addition, they

have no preference attributes with a preference level
of illegal (R rating, TV-MA rating, or NC-17 rating (as

set in FIG. 13e) . The Night at the Opera is not

included because it does not have a mandatory attribute

25 (closed-captioning). Dante's Peak is not included

because it has a illegal rating (R). An illustrative

program listings screen that may be displayed by the

program guide client with such limited data is shown in

45 FIG. 16a (ER has not been listed because, presumably,

50

55

30 it would be in a different time block) .

When the user activates Profile #1 and sets

it to the moderate scope, program guide server 25 may

provide program guide data for programs that have no

Page 375 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4504

5

tO

W000/11869 PCTIUS991l~1

- 36 -

preference attributes with an associated preference

level of disliked, that have all mandatory attributes,

and that have no illegal attributes. The Shining is

not included because horrors have a preference level of

5 "weak dislike" (as set in FIG. 13bl. Dante's Peak is

15 not included because it has an R-rating, which has an

attribute level of illegal (as set in FIG. 13e). Night

20

25

30

35

40

at the Opera is not included because it is not closed

captioned, which is a mandatory attribute !as set in

10 FIG. 13f). The Terminator, for example is not within

the moderate scope of Profile #1 because the preference

attribute of horror in Profile #1 has an associated

preference level of "weak dislike" and the preference

attribute of Schwarzenegger (an actor in the program

15 Terminator) has an associated preference level of

"strong dislike" (as set in FIGS. 13b and 13d,

respectively). Seinfeld and ER are included because

they do not have any disliked attributes.

When faced with two different preference

20 levels associated with the same program, the program

guide uses the stronger of the two. My Stepmother is

an Alien is included, for example, because it has a

"strong like" preference attribute that outweighs the

"weak dislike". An illustrative program listings

25 screen that may be displayed by the program guide

client with such limited program guide data is shown in

FIG. l6b. In practice, a listings screen generated

based on a profile that is set to moderate scope may

45 typically include a larger number of program listings

50

55

30 depending on the mandatory attributes set by the user.

When the user activates Profile #1 and sets

it to the narrow preference scope, program guide server

25 may provide program guide data for all liked

Page 376 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4505

10

15

20

25

30

35

40

45

50

55

WOOO/ll869 PCTIUS99119~1

- 37 -

programs that are not more disliked and that have all

mandatory attributes and no illegal attributes. The

Shining is not included because it has a weakly

disliked attribute, horror. Terminator is not included

5 because it has a strongly disliked attribute, Arnold

Schwarzenegger. My Stepmother is an Alien is included

because the strongly liked attribute of comedy has

priority over the weakly disliked attribute of horror.

Dante's Peak is not included because it has a rating of

10 R. Night at the Opera is not included because it is

not closed-captioned. ER is not within the narrow

scope because it does not have any liked attributes.

It is at best, neutral. An illustrative program

listings screen that may be displayed by the program

15 guide client with such limited program guide data is

shown in FIG. 16c.

The program guide may also provide users with

an opportunity to schedule reminders using boolean or

natural language expressions having one or more

20 criteria. If desired, program guide server 25 may

schedule reminders based on user preference profiles

and agents. Reminders may be scheduled for individual

programs or series of programs. Systems in which

reminders are set for series of programs are described,

25 for example, in Knudson et al. U.S. patent application

Serial No. 09/330,792, filed June 11, 1999 (Attorney

Docket No. UV-56), which is hereby incorporated by

reference herein in its entirety.

A user may indicate a desire to schedule a

30 reminder by, for example, selecting a selectable

Reminders feature 106 from main menu 100 of FIG. 5. In

response, the program guide may display a criteria

screen. Illustrative criteria screens 161 and 169 are

Page 377 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4506

5

10

15

20

25

30

35

40

45

50

55

W000/11869 PCTIUS9911~1

- 38 -

shown in FIGS. 17a and 17b. The program guide client

may display criteria screen 161 of FIG. 17a to provide

a user with an opportunity to set reminders according

to a boolean type expression. The user may construct a

5 boolean expression by selecting criteria such as

attribute types, attributes, and logical operators.

The user may make such selections, for example, using

any suitable combination of right, left, up, or down

arrow key sequences to sequence through the attribute

10 types, attributes and logical operators. In the

example of FIG. 17a, the user has defined a boolean

expression to schedule reminders for comedies that star

Gary Shandling and that have a rating less than R. In

the example of FIG. 17b, the user has defined a similar

15

20

natural language expression.

The program guide client may submit the user

defined boolean or natural language expression to

program guide server 25 for processing. Program guide

server 25 may process the expression and schedule

reminders for all of the programs that meet the

expression. Program reminders may be scheduled using

any suitable approach. In one suitable approach,

program guide server 25 may store program identifiers

and air times and send messages to the program guide

25 client at an appropriate time before·a program starts.

In another suitable approach, program guide server 25

may process an expression and provide program

identifiers and air times to the program guide client.

The program guide client may, for example, maintain a

30 list of program identifiers and display program

reminders at an appropriate time before the programs

start.

Page 378 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4507

5

10

WOOOnt869 PCT/US99/19~1

- 39 -

The program guide may remind a user that a

program is airing at the time a program airs. In an

alternative approach, the program guide may remind a

user at some predetermined period of time before the

5 program airs that a program is going to air. FIGS. 18

15 and 19 show illustrative program reminder lists 171.

20

25

30

35

40

45

50

55

In FIG. 18, reminder list 171 is overlaid on top of the

currently display television program to provide a user

with the opportunity to view a reminder while still

10 viewing a portion of the television program that a user

is watching. In FIG. 19, reminder list 171 is shown

overlaid on top of a program listings display screen.

The program guide may provide a user with an

opportunity to scroll through reminder list 171 by, for

15 example, using remote control arrow keys. The program

guide may hide the reminder list when, for example, a

user selects hide reminder feature 172. The guide may

also display reminder list 171 if, for example, the

user presses an "OK" key at any time while watching TV.

20 The program guide may also provide users with

an opportunity to schedule programs for recording by

secondary storage device 47 or digital storage device

49 (FIG. 4) using boolean or natural language

expressions. If desired, program guide server 25 may

25 schedule programs for recording based on user

preference profiles or agents. Programs may also be

scheduled for recording by program guide server 25.

Program guide systems in which programs are recorded by

a remote server are described, for example, in Ellis et

30 al. U.S. patent application Serial No. 09/332,244,

filed June 11, 1999 (Attorney Docket No. UV-84), which

is hereby incorporated by reference herein in its

entirety.

Page 379 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4508

5

10

W000/11869 PCT/US99/19~1

- 40 -

A user may indicate a desire to schedule a

program for recording by, for example, selecting a

selectable Record feature 106 from main menu 102 of

FIG. 5. In response, the program guide may display a

5 criteria screen, such as illustrative criteria screens

15 161 and 169 of FIGS. 17a and 17b. The program guide

20

25

30

35

client may display criteria screen 161 of FIG. 17a to

provide a user with an opportunity to schedule a

program for recording according to a boolean type

10 expression. The user may construct a boolean

expression by selecting criteria such as attribute

types, attributes, and logical operators. The user may

make such selections, for example, using any suitable

combination of right, left, up, or down arrow key

15

20

sequences to sequence through the attribute types,

attributes and logical operators. In the example of

FIG. 17a, the user has defined a boolean expression to
schedule for recording comedies that star Gary

Shandling and that have a rating less than R. In the

example of FIG. 17b, the user has defined a similar

natural language expression with similar criteria.

The program guide client may submit the user

defined boolean or natural language expression to

program guide server 25 for processing. Program guide

25 server 25 may process the expression and schedule all

of the programs that meet the expression for recording.

Recording by progr~ guide server 25 may be performed,

for example, as described in above-mentioned Ellis et

45 al. U.S. patent application Serial No. 09/332,244,

50

55

30 filed June 11, 1999 (Attorney Docket No. UV-84). In

another suitable approach, program guide server 25 may

process the expression and provide program identifiers

and air times to the program guide client. The program

Page 380 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4509

5

10

15

20

25

30

35

40

W000/1J869 PCTIUS99/J~1

- 41 -

guide client may, for example, maintain a list of

program identifiers and program air times and may

instruct optional secondary storage device 47 or

digital storage device 49 to record the programs.

5 The program guide may also provide users with

an opportunity to parentally control titles, programs,

or channels using boolean or natural language

expressions. ·If desired, program guide server 25 may

parentally control programs based on user preference

10 profiles. A user may indicate a desire to parentally

control titles, programs, or channels by, for example,

selecting a selectable Parents feature 106 from main

menu 102 of FIG. 5. In response, the program guide may

display a criteria screen, such as illustrative

15 criteria screens 161 and 169 of FIGS. 17a and 17b. The

program guide client may display criteria screen 161 of

FIG. 17a to provide a user with an opportunity to

control programs, for example, according to a boolean

type expression. The user may construct a boolean type

20 expression by selecting criteria such as attribute

types, attributes, and logical operators. The user may

make such selections, for example, using any suitable

combination of right, left, up, or down arrow key

sequences to sequence through the attribute types,

25 attributes and logical operators. In the example of

FIG. 17a, the user has defined a boolean expression to

lock out comedies that star Gary Shandling and that

have a rating less than R. In the example of FIG. 17b,

45 the user has defined a similar natural language

50

55

30 expression with similar criteria.

The program guide client may submit the user

defined boolean or natural language expression to

program guide server 25 for processing. Program guide

Page 381 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4510

5

10

15

20

25

30

35

40

W000/11869 PCT/US99/l~l

- 42 -

server 25 may process the expression, determine all of

the programs that meet the expression, and indicate the

programs that are locked to the program guide client
when providing program listings to the program guide

5 client using a suitable indicator (e.g., "locked" tag

contained in the listings information) . The program

guide client may, for example, indicate that a program
is locked by displaying lock indicator 161 when

displaying locked listings in a listing screen, as
10 shown, for example, in FIG. 7. By placing the

processing and storage burdens of locking programs on

program guide server 25 instead of user television

equipment 22, more titles may be locked than would
otherwise because of the limited processing and storage

15 resources of user television equipment 22. If desired,
titles, programs, or channels may also be locked using

conventional parental control techniques. Program
guide systems that provide users with an opportunity to
parentally control titles, programs, or channels are

20 described, for example, in above-mentioned Knudson et
al. U.S. patent application Serial No. 09/357,941 filed

July 16, 1999 (Attorney Docket No. UV-114).

Program guide server 25 may also record the
viewing histories of users on storage device 56.

25 Viewing histories may be created using any suitable
approach. The program guide client may, for example,

keep track of all of the programs that a user watches

for longer than a predefined time, and record the

45 household that the guide client is running in, the

50

55

30 current active preference profile or profiles, the

program (or its identifier), and how long the user
watched the program. The program guide client may also

track when users order pay-per-view programs, record

Page 382 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4511

5

10

15

20

25

30

35

40

WOOOfll869 PCTIUS991190Sl

- 43 -

programs, and schedule reminders for programs, and may

also provide this information to program guide server

25 as part of the viewing histories. Other types of

information may also be included in the viewing

5 histories. User defined expressions, for example, may

be stored by program guide server 25 to track what

types of programs users search for. In addition, user

demographic values may be calculated by program guide

server 25 and used to more accurately target

10 advertisements or recommend programs. Systems'in which

user demographic values are calculated are described,

for example, in Knudson et al. U.S. patent application

Serial No. 09/139,777, filed August 25, 1998 (Attorney

Docket NO. UV-58), which is hereby incorporated by

15

20

reference herein in its entirety.

The program guide client may provide the

viewing history information to program guide server 25

continuously (e.g., each time the program guide client

determines that a user has watched a program for the

predefined time), periodically, in response to polls or

requests from program guide server 25, or with any

other suitable frequency. If desired, the program

guide client may also monitor advertisement usage, such

as what selectable advertisements users have selected.

25 Program guide systems in which user viewing activities

and advertisement usage are tracked are described, for

example, in Thomas et al. u.s. patent application

Serial No. 09/139,798, filed August 25, 1998 (Attorney

45 Docket No. UV-57), which is hereby incorporated by

50

55

30 reference herein in its entirety.

The program guide may process user profiles

along with the viewer histories to present a more

customized viewing experience to the user. The program

Page 383 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4512

5

10

WOOO/U869 PCT/US99/l~l

- 44 -

guide may, for example, identify which programs or

series episodes users have watched. Program guide

server 25 may, for example, identify episodes that

users have not yet watched and may indicate such

S episodes to the program guide client when the program

15 guide client requests program listings. The program

20

25

30

35

40

guide client in turn may indicate that a program is new

to a household by, for example, displaying a suitable

icon or changing the display characteristics of a

10 listing (e.g., changing its color). FIG. 7 shows, for

example, the display of New indicator 159 in list 129

to indicate to a user that the user has not seen a

particular episode of Saturday Night Live. Program

guide server 25 may also calculate ratings, such as

lS Nielsen ratings, based on the viewing histories and

provide such information to interested parties.

20

The program guide may also use the viewing

histor·y and user preferences to target the user with

advertisements. Program guide systems in which users

are targeted with advertisements are described, for

example, in Knudson et al. u.s. patent application

Serial No. 09/034,939, filed March 4, 1998 (Attorney

Docket No. UV-42), which is hereby incorporated by

reference herein in its entirety. Targeted

25 advertisements may contain text, graphics, or video.

Targeted advertisements may also be active objects

containing various user-selectable options. For

example, a targeted advertisement may allow the user to

45 request that additional information on a product be

50

55

30 mailed to the user's home, may allow the user to

purchase a product, or may allow the user to view

additional information on a product using the program

guide. Targeted advertisements may be displayed in any

Page 384 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4513

5

10

W000/11869 PCTIUS9911905l

- 45 -

suitable program guide display screen. The program

guide client may, for example, display targeted

advertisements in criteria or profile screens based on
a displayed criteria, profile, .or agent. Selectable

5 advertisements 109 and advertisement banner 110, for

15 example, may be targeted advertisements.

20

25

30

35

40

The program guide may make personalized
viewing recommendations based on the viewing histories,

preference profiles, or any suitable combination
10 thereof. Program guide server 25 may, for example,

construct relationai database expressions from the

viewing histories that define expressions for the

program categories and ratings for programs that users
have watched, scheduled reminders for, searched for, or

15 ordered the most. Program guide server 25 may then

apply user preference profile criteria to the prog~ams,

and generate personal viewing recommendations. In
still another suitable approach, program guide server

25 or the program guide client may filter viewing

20 recommendations that are generated by main facility 12
or television distribution facility 16 based on similar

expressions, profiles, viewing histories, etc.

Assume, for the purpose of illustration, that

a user has run the expression illustrated in FIGS. 9a

25 and 9b, and has set the user profiles of FIGS. 13a-13f,
program guide server 25 may determine that the movie

Armageddon meets the criteria of the expression that

was run, and also meets the criteria of the current

45 user profile. Armageddon is a movie· (strong like), an

50

55

30 action (strong like), and does not have an illegal

rating (it is rated PG-13). Program guide server 25

may indicate the movie Armageddon (or its identifier)

and its air time to the program guide client and

Page 385 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4514

5

10

W000/11869 PCI'/US!W/19~1

- 46 -

indicate to the client (e.g., using a second

identifier) that a viewer recommendation for the movie

is to be displayed. The program guide client may

display a viewer recommendation overlay, such as

5 overlay 2111 shown in FIGS. 20a and 20b, over a program

15 the user is watching or over a program guide display

20

25

30

35

40

screen, respectively. The user may press a suitable

key on remote control 40 (e.g., an "info" key) to

access additional information for a recommended

10 program. An illustrative additional information screen

is shown in FIG. 20c. Additional program information

screens are described, for example, in above-mentioned

Knudson et al. U.S. patent Application Serial

15
No. 09/357,941 filed July 16, 1999 (Attorney Docket

No. UV-114). The program guide client may tune user

television equipment 22 to the channel on which a

recommended viewing is aired when, for example, a user

selects "Yes". If desired, recommendations may include

a suitable graphic, such as a graphic indicating the

20 recommended program.

FIGS. 21-24 show flowcharts of illustrative

steps involved in performing various aspects of the

present invention. The steps shown in FIGS. 21-24 are

only illustrative, and may be performed in any suitable

25 order.

FIG. 21 shows a flowchart of illustrative

steps involved in storing preference profiles on

program guide server 25. If desired, the steps shown

45 may be performed in a client-server interactive program
30 guide system in which users are not required to

navigate the Internet. At step 2000, the program guide

client running on user television equipment 22 provides

a user with an opportunity to define a preference

Page 386 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4515

5

10

15

20

25

30

35

40

wo 00111869 PCTJUS99119051

- 47 -

profile. The preference profile may include user

selected or defined levels of desirability of various

program characteristics, such as genre and rating.

Users may define preference profiles by, for example,

5 selecting a profile (step 2002) and selecting criteria

(step 2004) such as attribute types (step 2006) and

attributes (step 2008). Preference profiles may, for

example, be created as database files (e.g., SOL files)

containing suitable database expressions that are

10 provided to program guide server 25. Program guide

server 25 may store the preference profiles at step

2012.

Program guide data is provided from program

guide server 25 to the program guide client and is

15 displayed by the program guide client at steps 2020 and

2030, respectively. Program guide server 25 or the

program guide client may use preference profiles to

filter out undesirable program guide data. This may be

accomplished using any suitable approach. Program

20 guide server 25 may, for example, only provide' program

listings information or other program guide data that

meets the preference profile or profiles to the program

guide client (step 2025). Alternatively, program guide

server 25 may provide program guide data, other

25 information, or videos to the program guide client and

the program guide client may filter the data, other

information, or videos by displaying only those

elements that meet the preference profile or profiles

45 (step 2035).

50

55

30 Program guide server 25 may perform

additional functions based on preference profiles if

desired. Program guide server 25 may, for example,

lock programs according to preference profiles (step

Page 387 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4516

5

10

15

20

25

30

35

40

45

50

55

W000/11869

- 48 -

2040), automatically record programs according to

preference profiles (step 2050), schedule reminders

based on preference profiles (step 2060), or target

advertising based on preference profiles (step 2070).

viewing recommendations based on preference profiles at

step 2080. Step 2080 may also include filtering

viewing recommendations based on preference profiles

provided by main facility 12 or television distribution

10 facility 16 (step 2085) .

15

FIG. 22 is a flowchart of illustrative steps

involved in providing users with an opportunity to

search program guide data in accordance with the

principles of the present invention. If desired, the

steps shown may be performed in a client-server

interactive program guide system in which users are not

required to navigate the Internet. At step 2100, the

program guide client provides a user with an

opportunity to define an expression, such as a boolean

20 or natural language expression. This may include, for

example, providing a user with an opportunity to select

attribute types, attributes, and logical operators

(steps 2102, 2104, and 2106, respectively) . The user

may also be provided with an opportunity to save the

25 expression as an agent (step 2110) . The program guide

client provides the expression to program guide server

25 for processing at step 2120. The program guide

client may for example, provide a boolean or natural

language expression in a text file. Alternatively, the

30 program guide client may construct suitable database

expressions and provide the expressions to program

guide server 25 as one or more suitable database files

(e.g., as SQL files).

Page 388 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4517

W000/11869 PCTIUS99n~l

5

- 49 -

If the user indicated a desire to save an

10 expression as an agent at step 2110, program guide

server 25 may save the expression as an agent at step

2130. Otherwise, program guide server 25 may process

5 the expression (step 2140) using any suitable approach.

15 This may depend on.how the expression was provided by

the program guide client. If boolean or natural

language expressions were provided as text files, for

20

25

30

35

40

example, program guide server 25 may parse the

10 expressions and construct a suitable database

15

expression. Alternatively, database expressions may

have been provided by the program guide client. In

either approach, program guide server 25 may search its

database or databases at other facilities for program

guide data (e.g., program listings, additional program

information, etc.), other information (e.g., software,

Internet links, etc.), or videos (e.g., video-on-demand

videos) and may provide the results to the program

guide client at step 2150. At step 2160 the program

20 guide client may display the results on user television

equipment 22.

If the user indicated a desire to save the

expression as an agent at step 2110. Program guide

server 25 may save the expression as an agent using any

25 suitable approach. Agents may be maintained, for

example, in a database that program guide server 25

monitors periodically. If desired, the agent may be

forwarded to other servers at other facilities, thereby

45 providing a user with the ability to monitor multiple

30 databases for program guide data, other information, or

videos. Agents may be run automatically (e.q.,

databases may be queried) on one or more servers at

~ step 2145. Step 2145 may be performed periodically,

55

Page 389 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4518

5

10

15

20

25

30

35

40

45

50

55

5

WOOOnt869 PCTIUS99/l ~1

- 50 -

each time a database is updated, or with any other

suitable frequency. Program guide server 25 may

provide its results and the results of other servers

(if desired) to the program guide client at step 2155.

The program guide client may display the results at

2165. The results may be displayed, for example, in

the form of reminders for which reminder information

was provided at step 2155.

FIG. 23 shows a flowchart of illustrative

10 steps involved in processing and using expressions on

15

program guide server 25 in accordance with the

principles of the present inventio~. If desired, the

steps shown may be performed in a client-server

interactive program guide system in which users are not

required to navigate the Internet. The program guide

client provides users with an opportunity to define an

expression (e.g., boolean or natural language

expressions) at step 2100. This may include, for

example, providing a user with an opportunity to select
20 attribute types, attributes and logical operators

(steps 2102, 2104, and 2106, respectively). The

program guide client provides the expression to program

guide server 25 for processing at step 2210 as any

sui table type of file. The program guide client may

25 for example, provide a boolean or natural language

expression in a text file. Alternatively, the program

guide client may construct suitable database

expressions and provide the expressions to program

guide server 25 as one or more suitable database files

30 (e.g., as SQL files).

Program guide server 25 may process the

expression (step 2220) using any suitable approach

depending on how the expression was provided to program

Page 390 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4519

5

10

15

20

25

30

35

40

45

50

55

W000/11869 PCTIUS9911~1

- 51 -

guide server 25 from the program guide client. If

boolean or natural language expressions were provided

as text files, for example, program guide server 25 may

parse the expressions and construct a suitable database

5 expression. Alternatively, database expressions may

have been provided to program guide server 25 from the

program guide client. In either approach, program

guide server 25 may search its database or databases at

other facilities and may provide the results to the

10 program guide client or use the results to perform any

suitable program guide function.

15

Reminders may be scheduled based on the

results of the search (step 2230). Program guide

server 25 may, for example, store reminder information

(e.g., program identifie-rs and air times) at step 2235

and send messages to the program guide client at an

appropriate time before a program starts. In another

suitable approach, program guide server 25 may process

an expression and provide program identifiers and air

20 times to the program guide client. The program guide

client may, for example, maintain a list of program

identifiers and display program reminders at an

appropriate time before the programs start.

Programs may also be automatically recorded

25 by program guide server 25 or user television equipment

22 based on the results of the expression (step 2240) .

30

Program guide server 25 may, for example, provide

program identifiers and air times to the program guide

client. The program guide client may, for example,

maintain a list of program identifiers and program air

times and may instruct optional secondary storage

device 47 or digital storage device 49 to record the

programs at the appropriate time.

Page 391 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4520

5

10

W000/11869 PCTIUS99119~1

- 52 -

Programs may be parentally locked based on

the expression results (step 2250). Program guide

server 25 may, for example, store parental control

information (e.g., program identifiers in a database,

5 table, or list of programs to be locked) at step 2260.

15 Program guide server 25 may indicate to the program

20

25

30

35

40

guide client that programs are locked when providing

program listings to the program guide client.

Alternatively, program guide server 25 may indicate to

10 the program guide client the programs that were found

as a result of the expression. The program guide

client may lock the programs locally using any suitable

approach. The program guide client may, for example,

indicate that a program is locked by displaying lock

15 indicator 161 when displaying locked listings in a

listing screen, as shown, for example, in FIG. 7.

FIG. 24 shows a flowchart of illustrative

steps involved in tracking and using viewing histories

in accordance with the principles of the present

20 invention. If desired, the steps shown may be

~erformed in a client-server interactive program guide

system in which users are not required to navigate the

Internet. Viewing histories are tracked at step 2300.

This may include tracking programs that users watch

25 (step 2310), tracking reminders scheduled by a user

with program guide server 25 or using conventional

techniques (step 2320), tracking pay-per-view programs

that the user orders (step 2330), advertisement usage

45 (step 2335), track recorded ·programs (step 2337), track

50

55

30 any other suitable user activity, or any suitable

combination thereof. The program guide client may

provide the viewing history information to program

guide server 25 continuously (i.e., each time the

Page 392 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4521

5

10

15

20

25

30

35

40

5

W000/11869

- 53 -

program guide client determines that a user has watched

a program for the predefined time), periodically, in

response to polls or requests from program guide server

25, or with any other suitable frequency.

The viewing history tracked in steps 2310-

2335 may be stored on program guide server 25 at step

2340. If desired, user-defined expressions that are

processed by program guide server 25 may also be stored

on program guide server 25 (step 2345) • User

10 demographic values may be calculated by program guide

15

server 25 at step 2347. The viewing history and its

expressions and user demographic values may be used by

program guide server 25 to perform any suitable

function. Program guide server 25 may, for example,

collect program rating information (step 2350), or

target advertising (step 2360) .

Program guide server 25 may search its or

another server's database for programs that are

consistent with the viewing history (step 2370). If

20 · desired, program guide server 25 may find programs that

are also consistent with preference profiles stored by

program guide server 25 (step 2375). Program guide

server may perform any suitable function using the

results of the search. Program guide server 25 may,

25 for example, identify episodes of programs that are new

to a user (step 2380), or provide viewing

recommendations in the form of, for example, reminders

or recommendations for non-program items (e.g.,

45 software, Internet links, etc.) (step 2390).

55

30 The foregoing is merely illustrative of the

principles of this invention and various modifications

can be made by those skilled in the art without

departing from the scope and spirit of the invention.

Page 393 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4522

Claims

5

10

15

20

25

30

35

40

45

50

55

Page 394 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4523

Claims

10

15

20

25

30

35

45

Page 394 Of 778 Petitioner Microsoft Corporation — EX. 1008, p. 4523

5

10

15

20

25

30

35

40

45

50

55

W000/11869
PCT/US99/l~l

- 54 -

What is claimed is:

1. A method for use in a client-server

interactive television program guide system compri$ing:

providing a user with an opportunity to

define user preferences using an interactive television

program guide client that is implemented on user

television equipment, without requiring the user to

navigate the Internet;

providing the user preferences to a

program guide server; and

providing program guide data to the

program guide client according to the user preferences.

2. The method defined in claim 1 further

comprising:

generating a viewing recommendation

based on the user preferences with the program guide

server; and

displaying the user preferences with the

interactive television program guide client on the user

television equipment.

3. The method defined in claim 1 wherein

providing a user with an opportunity to define user

preferences comprises providing a user with an

opportunity to designate a preference level for a

plurality of preference attributes.

4. The method defined in claim 1 further

comprising providing software to the program guide

client according to the user preferences.

Page 395 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4524

5

10

15

20

25

30

35

40

45

50

55

WOOO/l1869 PCFIUS99/l~l

- 55 -

5. The system defined in claim 1 further

comprising providing Internet links to the program

guide client according to the user preferences.

6. A method for use in a client-server

interactive television program guide system for

scheduling reminders according to user defined

expressions, comprising:

providing a user with an opportunity to

define an expression with an interactive television

program guide client implemented on user television

equipment without requiring .the user to navigate the

Internet;

storing the expression on a program

guide server;

processing the expression with the

program guide server to find programs that satisfy the

expression; and

scheduling with the program guide server

reminders for programs that satisfy the expression.

7. The method defined in claim 6 wherein

scheduling with the program guide server reminders for

programs that satisfy the expression comprises

providing at least one message from the program guide

server to the program guide client before each of the

programs that satisfy the expression begin.

a. The method defined in claim 6 wherein

scheduling with the program guide server reminders for

programs that satisfy the expression comprises

providing program identifiers for each of the programs

Page 396 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4525

5

10

15

20

25

30

35

40

45

50

55

WOOO/ll869 PCT/US99/t905_1

- 56 -

that satisfy .the expression from the program guide

server to the program guide client.

9. A method for use in a client-server

interactive television program guide system for

scheduling programs for recording according to user

defined expressions, comprising:
(

providing a user with an opportunity to

define an expression with an interactive television

program guide client implemented on user television

equipment without requiring the· user to navigate the

Internet;

storing the expression on a program

guide server;

processing the expression with the

program guide server to find programs that satisfy the

expression; and

scheduling with the program guide server

the programs that satisfy the expression for recording.

10, The method defined in claim 9 wherein

scheduling with the program guide server the programs

that satisfy the expression for recording comprises

scheduling with the program guide server the programs

that satisfy the expression for recording by the user

television equipment.

11. The method defined in claim 9 wherein

scheduling with the program guide server the programs

that satisfy the expression for recording comprises

scheduling with the program guide server the programs

that satisfy the expression for recording by the

program guide server.

Page 397 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4526

5

10

15

20

25

30

35

40

45

50

55

W000/11869 PCT/US99n9051

- 57 -

12. A method for use in a client-server

interactive television program guide system for

parentally controlling programs according to user

defined expressions, comprising:

providing a user with an opportunity to

define an expression with an interactive television

program guide client implemented on user television

equipment without requiring the user to navigate the

Internet;

storing the expression on a program

guide server;

processing the expression with the

program guide server to find programs that satisfy the

expression; and

locking with the program guide server

programs that satisfy the expression.

13. The method defined in claim 12 wherein

locking with the program guide server programs that

satisfy the expression comprises indicating to the

program guide client that the programs that satisfy the

expression are locked.

14. A method for use in a client-server

interactive television program guide system for

tracking a user's viewing history, comprising:

tracking a user's viewing .history;

storing the user's viewing history on a

program guide server;

finding programs with the program guide

server that are consistent with the user's viewing

history; and

indicating on user television equipment

the programs found by the program guide server that are

consistent with the user's viewing history and that the

Page 398 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4527

5

10

15

20

25

30

35

40

45

50

55

W000/11869 PCT/US99n~l

- 58 -

user has not watched, with an interactive television

program guide client implemented on the user television

equipment.

15. The method defined in claim 14 wherein

storing the user's viewing history comprises storing a

user defined expression with the program guide server.

16. The method defined in claim 14 wherein

storing the user's viewing history comprises

calculating user demographic values with the program

guide server.

17. The method defined in claim 14 further

comprising:

providing a user with an opportunity to

define a user preference profile with the interactive

television program guide client implemented on user

television equipment;

storing the user preference profile on a

program guide server; and

finding programs with the program guide

server that are consistent with the user preference

profile, wherein:

indicating on user television equipment

the programs found by the program guide server that are

consistent with the user's viewing history and that the

user has not watch~d comprises indicating on user

television equipment the programs found by the program

guide server that are consistent with the user's

viewing history and the user preference profile and

that the user has not watched.

18. The method defined in claim 14 further

comprising:

Page 399 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4528

5

10

15

20

25

30

35

40

45

50

55

W000/11869 PCT/US!il!il/19~1

- 59 -

targeting advertising with the program

guide server based on the user's viewing history; and

displaying the advertising with the

interactive television program guide client on the user

television equipment.

19. The method defined in claim 14 further

comprising collecting program ratings information with

the program guide server based on the user's viewing

history.

20. A client-server interactive television

program guide system comprising:

means for providing a user with an

opportunity to define user preferences using an

interactive television program guide client that is

implemented on user television equipment, without
requiring the user to navigate the Internet;

means for providing the user preferences

to a program guide server; and

means for providing program guide data

from the program guide server to the program guide

client according to the user preferences.

21. The system defined in claim 20 further

comprising:

means for generating a viewing

recommendation based on the user preferences with the

program guide server; and

means for displaying the user

preferences with the interactive television program

guide client on the user television equipment.

22. The system defined in claim 20 wherein

the means for providing a user with an opportunity to

Page 400 of 778 Petitioner Microsoft Corporation - Ex. 1008, p. 4529

=c..... c-o _~: ----= 0 -
__.- c:
-..1- m PROVISIONAL APPLICATION COVER SHEET ,-:a
...a= o-i
...0 %-us transmittal and the documents and/or fees itemized Attorney Docket No.: SRI1P023+
h~and attached hereto have been deposited as "Express Mail
Post Office to Addressee" in accordance with 37 C.F.R. §1.10 with First Named Inventor: CHEYER, Adam J.
Express Mail Mailing Label Number EL285395871 US

Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

D Duplicate for
fee processing

Sir: This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53(c).

INVENTOR(S)/APPLICANT(S)
RESIDENCE (CITY AND

LAST NAME FIRST NAME MIDDLE INITIAL EITHER STATE OR FOREIGN
COUNTRY)

CHEYER Adam J. Menlo Park, CA
JULIA Luc E. Menlo Park, CA

jg TITLE OF INVENTION (280 characters max)
[d USING A COMMUNITY OF DISTRIBUTED ELECTRONIC AGENTS TO SUPPORT A HIGHLY MOBILE, AMBIENT
p.'k COMPUTING ENVIRO.Nl\'IENT

CORRESPONDENCE ADDRESS

IDCKMAN STEPHENS & COLEMAN, LLP
P.O. Box 52037

Palo Alto, CA 94303-0746
(650) 470-7430

ENCLOSED APPLICATION PARTS (check all that a I)

Number of Pages __ Small Entity Statement

__ Drawing(s) Number of Sheets ____ _ X Other (specify) 13 Pages of White Paper Article

X A check or money order is enclosed to cover the Provisional filing fees. Provisional Filing Fee Amount $150

X The commissioner is hereby authorized to charge any additional fees which
may be required or credit any overpayment to Deposit Account No. 50-0384
(Order No. SRI1P023+).

The inventions made by an agency of the United States Government or under a contract with an agency of the United States Government.

____ No

Respectfully Submitted,

SIGNATURE

TYPED NAME

____ Yes, the name of the U.S. Government agency and the contract number are:

DATE 3/17/99

Brian R. Coleman REGISTRATION NO. _ ___,3"""'9_,_,1,_,4=5 __ _

PROVISIONAL APPLICATION FILING ONLY

GOOGLE EXHIBIT 1009Page 1 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4530

PROVISIONAL APPLICATION COVER SHEET AK"”1!!"I1‘l.'""'!lllll_66/11/20
__ ofhis transmittal and the documents andlor fees itemized Attorney Docket Na; SR11P023+

hm'and attached hereto have been deposited as “Express Mail

Post Office to Addressee” in accordance with 37 C.F.R. §1.10 with First Named Inventor: CHJEYER, Adam].
Express Mail Mailing Label Number EL285395871US

Assistant Commissioner for Patents El Duplicate for
Box Patent Application fee prOCSSSing 52 \
Washington, DC 20231 fi\§

Sir: This is a request for filing a PROVISIONAL APPLICATION under 37 CPR 153(0).

INVENTOR(S)/APPLICANT(S)
RESIDENCE (CITY AND

LAST NAME FIRST NAME MIDDLE INITIAL EITHER STATE OR FOREIGN
COUNTRY) CI—EBYER Adam J. Menlo Park, CA

IULIA Luc E. Menlo Park, CA

; TITLE OF INVENTION (280 characters max)

a” CORRESPONDENCE ADDRESS

HICKMAN STEPHENS & COLEIVIAN, LLP
PO. Box 52037

Palo Alto, CA 94303—0746

(650) 470-7430

ENCLOSED APPLICATION PARTS (check all that a I)

__ Specification Number of Pages Small Entity Statement

Drawing(s) Number of Sheets X Other (specify) 13 Pages of White Paper Article

A check or money order is enclosed to cover the Provisional filing fees. Provisional Filing Fee Amount $150

X The commissioner is hereby authorized to charge any additional fees which

may be required or credit any overpayment to Deposit Account No. 50—0384
(Order No. SR11P023+).

The inventions made by an agency of the United States Government or under a contract with an agency of the United States Government

No Yes, the name of the US. Government agency and the contract number are:

Respectfully Submitted,
/

SIGNATURE ’ DATE 3/17/99

TYPED NAME Brian R. Coleman REGISTRATION NO. 39 145

PROVISIONAL APPLICATION FILING ONLY

Page 1 Of 14 Petitioner Microsoft nggagh‘da— %¥1116§8¥1p1&98

TITLE OF THE INVENTION:

Using a Community of Distributed Electronic Agents to Support a Highly Mobile,
Ambient Computing Environment

ABSTRACT

Douglas Engelbart asked 30 years ago, at SRI: How can knowledge workers (both
individuals and groups) get maximum leverage from personal, networked,
interactive computing devices? The twist in the present invention is to
redirect this inquiry to the emerging post-desktop world of ubiquitous, highly
mobile "information appliances" and PDA's. For example, what sort of computing
environment will best serve the PDA-equipped knowledge worker away from the
desktop in his/her car, airplane seat, or in a conference room with others? And
what software architecture is required to provide that environment effectively?
We believe that an "OM-style" archictecture (facilitated collaboration among
distributed agents with declared capabilities in a high-level interagent
communication language) has tremendous potential for addressing this challenge.
The present invention envisions a new of this collaborative
architecture to address the post-desktop, mobile/ubiquitous computing
environment, by incorporating elements like: (a) GPS agents, (b) speech

(+ other hands-free UI, multi-modal UI), and (c) opportunistic
connectivity among meeting participants (e.g., think of docked or IR-linked
PDA's, not just Internet sites). In the specific context of such emerging,
ambient computing environments, the distinctive advantages of OM-style
architecture (contrasted with lower-level distributed object approaches like
COREA standing alone), especially with respect to hands-free and multi-modal UI,
are even more pronounced.

SUPPLEMENTAL INFORMATION

A November, 1988 OZCHI paper written by Adam Cheyer and Luc Julia entitled:
"Cooperative Agents and Recognition Systems (CARS) for Drivers and Passengers"
(copy attached) illustrates one example of a possible automobile-based
realization of this including GPS and multi-modal UI.

The attached OM "Scenario" one-page PowerPoint slide illustrates some scenarios
for potential interaction and collaboration among PDA-holders in a non-desktop
environment like a car (or a conference room), using the technology of the
present invention.

A description of multi-modal
is also attached and may be helpful
invention.

collaboration (entitled "SCRIBE")
embodiments of the present

patent serial no. to SRI (docket no.
3949-2) provides a detailed description of the underlying OM platform
architecture, and also specific descrpitions of several applications including
"multi-modal maps" which may be helpful in preferred embodiments. The
referenced pending patent application is incorporated herein by reference in its
entirety.

The published paper Multimodal Maps: An Agent-based Approach, Cheyer & Julia,
International Conference on Cooperative Multimodal Communication (CMC/95), 24-26
May 1995 (Eindhoven, The Netherlands), may also be useful for preferred
embodiments, and is also incorporated herein by reference in its entirety.

Page 2 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4531

TITLE OF THE INVENTION:

Using a Community of Distributed Electronic Agents to Support a Highly Mobile,
Ambient Computing Environment

ABSTRACT

Douglas Engelbart asked 30 years ago, at SRI: How can knowledge workers (both

individuals and groups) get maximum leverage from personal, networked,

interactive computing devices? The twist in the present invention is to

redirect this inquiry to the emerging postwdesktop world of ubiquitous, highly

mobile "information appliances" and PDA's. For example, what sort of computing

environment will best serve the PDA—equipped knowledge worker away from the
desktop in his/her car, airplane seat, or in a conference room with others? And

what software architecture is required to provide that environment effectively?

We believe that an “OAA~style" archictecture (facilitated collaboration among

distributed agents with declared capabilities in a high—level interagent
communication language) has tremendous potential for addressing this challenge.

The present invention envisions a new application of this collaborative

architecture to address the post—desktop, mobile/ubiquitous computing

environment, by incorporating elements like: (a) GPS agents, (b) speech

recognition (+ other hands~free UI, multi-modal UI), and (c) opportunistic

connectivity among meeting participants (e.g., think of docked or IR-linked
PDA's, not just Internet sites). In the specific context of such emerging,

ambient computing environments, the distinctive advantages of OAA—style

architecture (contrasted with lower-level distributed object approaches like

CORBA standing alone), especially with respect to hands—free and multi-modal UI,
are even more pronounced.

SUPPLEMENTAL INFORMATION

A November, 1988 OZCHI paper written by Adam Cheyer and Luc Julia entitled:

"Cooperative Agents and Recognition Systems (CARS) for Drivers and Passengers"

(copy attached) illustrates one example of a possible automobile—based
realization of this invention, including GPS and multi-modal UI.

The attached OAA “Scenario“ one—page PowerPoint slide illustrates some scenarios

for potential interaction and collaboration among FDA—holders in a non—desktop
environment like a car (or a conference room), using the technology of the

present invention.

A description of multi—modal whiteboard—style collaboration (entitled "SCRIBE")

is also attached and may be helpful in preferred embodiments of the present
invention.

Pending patent application serial no. assigned to SRI (docket no.

3949—2) provides a detailed description of the underlying 0AA platform

architecture, and also specific descrpitions of several applications including
“multi—modal maps" which may be helpful in preferred embodiments. The

referenced pending patent application is incorporated herein by reference in its
entirety.

The published paper Multimodal Maps: An Agentmbased Approach, Cheyer & Julia,
International Conference on Cooperative Multimodal Communication (CMC/95), 24-26

May 1995 (Eindhoven, The Netherlands), may also be useful for preferred
embodiments, and is also incorporated herein by reference in its entirety.

Page 2 Of 14 Petitioner Microsoft Corporation — EX. 1008, p. 4531

P-3967
Cooperative Agents and Recognition Systems (CARS) for Drivers and Passengers

LucE. JULIA
STAR Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

USA
julia@speech.sri.com

Abstract

In this paper we present SRI's vision of the human
machine interface for a car environment. This interface
leverages our work in human-computer interaction,
speech, speaker and gesture recognition, natural
language understanding, and intelligent agents
architecture. We propose a natural interface that allows
the driver to interact with the navigation system, control
electronic devices, and communicate with the rest of the
world much as would be possible in the offtee
environment. Passengers would be able to use the system
to watch 1Y or play games in their private spaces. The
final prototype will be fully conjigurable (languages,
voice output, and so forth), and will include speaker
recognition technology for resetting preferences and/or
for security.

Keywords

Multimodal Interfaces, Speech and Speaker Recognition,
Gesture Recognition, Natural Language Understanding,
Cooperative Agents.

1. Introduction

New technologies such as Global Positioning System
(GPS), wireless phones or wireless internet and electronic
controls inside cars are available to improve the way we
drive and manage the time spent in our automobiles. To
manage this heavy flow of data and to keep the cognitive
load as low as possible for the driver, we propose a
solution based on our previous developments: a small,
speech-enabled, touch display device that provides a
combination of the best features of several interfaces we
have developed over the past few years. This device can
be used according to the specific task that has to be
completed by the driver or the passenger.

Adam J. CHEYER
Artificial Intelligence Center

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

USA
cheyer@ai.sri.com

The interfaces we have developed are the front ends to
SRI's powerful framework, the Open Agent Archi
tecture™ (OAA) [18], which allows a community of
intelligent agents to work together to achieve user goals.
To build multimodal systems, the key agents are those that
recognize human signals such as speech or gestures and
those that extract the meaning: the natural language
understanding agent and the multimodal interpretation
agent, for instance.

2. Natural Interfaces

The flrst prototype we built using Java™ combines
different reused interfaces that were chosen according to
the task. For each section of the system, we reference the
full project for which it was developed. The user can
select the tabs using both speech or deictic gestures. Each
panel provides its own vocabulary and set of commands in
addition to the main commands that allow navigation
between the tabs.

2.1. Navigation System

The Multimodal Maps [1] allow the user to navigate
maps naturally and query associated databases using
speech, handwriting, and 2D gestures in a synergistic
fashion on a pen computer. Using the same interface
(replacing the pen with the finger) to query the navigation
system and to display the GPS information gives the
driver or the passengers the ability to plan the route and to
get information from local or remote databases displayed
on the map ("I want to go to Menlo Park." "Show me the
restaurants around here.") (Figure 1). The GPS system
guides the car along the chosen route using both the map
display and a text-to-speech output. The interactions
among all the agents belonging to the system, even if they

SRI INTERNATIONAL

li<TtLLECilJAL ?ROPERTY o;:;::,c::
Page 3 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4532

do not seem to be in use by the current visual interface,
enables a great degree of proactivity from the system. For
example, it could ask questions such as: "The tank is
almost empty; would you like to find the nearest gas
stationT'. As well as a multimodal synergistic input
interface, the system provides multimedia outputs such as
iconic sounds, discriminative talking voices, images, or
videos.

mApplet V1ewer· SRI.class !J!il £!

Figure 1. Navigation Panel

2.2. Electronic Device Control

Most of the cars will have numerous electronic devices
that are accessible through a serial port using a predefined
protocol. By connecting a computer and its multimodal
interface, it will then be possible for the driver to control
critical electronic devices such as cruise control or lights,
and for everyone in the car to access comfort devices such
as air conditioning, windows, sound, and entertainment
("Play CD 2, track 1.") (Figure 2).

Priority should be given to the driver, possibly through
speaker identification. Moreover, an interesting study [11]
has shown that it is also possible to use the touch screen in
blind condition (for the driver) to enter simple command
gestures (down arrow to turn the volume down for
instance).

P-3967
~AppletViewer: SRI.ctass 11!11~£!

Figure 2. Sound System Panel

2.3. Communication Center

The communication center is a remote office accessible
by voice (Figure 3).

Figure 3. Communication Center Panel

This is an instance of the Automated Office (Unified
Messaging), developed to show some capabilities of OAA
[18]. The driver or passengers are able to browse the
incoming emails by voice (even multipart/multimedia
MIME messages), make phone calls, or send spoken
notes. As basic features of OAA, filtering and triggering
capabilities are included in each connected agent: "If
email arrives for me about OzCHI, read it to me."
Plugging in an agent using speaker identification tech-

SRI INTERNATIONAL

Page 4 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4533

do not seem to be in use by the current visual interface,

enables a great degree of proactivity from the system For

example, it could ask questions such as: “The tank is

almost empty; would you like to find the nearest gas

station?”. As well as a multimodal synergistic input
interface, the system provides multimedia outputs such as

iconic sounds, discriminative talking voices, images, or
videos.

Applet started.

Figure 2. Sound System Panel

2.3. Communication Center

The communication center is a remote office accessible

by voice (Figure 3).

Figure 1. Navigation Panel

2.2. Electronic Device Control

Most of the cars will have numerous electronic devices

that are accessible through a serial port using a predefined

protocol. By connecting a computer and its multimodal

interface, it will then be possible for the driver to control

critical electronic devices such as cruise control or lights,

and for everyone in the car to access comfort devices such

as air conditioning, windows, sound, and entertainment

(“Play CD 2, track 1.”) (Figure 2).

Priority should be given to the driver, possibly through , -, p _
speaker identification. Moreover, an interesting study [11] Applelstarted.

has shown that it is also possible to use the touch screen in . _ ‘
blind condition (for the driver) to enter simple command Figure 3' communication Center Panel
gestures (down arrow to turn the volume down for

instance). This is an instance of the Automated Office (Unified
Messaging), developed to show some capabilities of 0AA

[18]. The driver or passengers are able to browse the

incoming emails by voice (even nmltipart/multimedia

MIME messages), make phone calls, or send spoken

notes. As basic features of 0AA, filtering and triggering

capabilities are included in each connected agent: “If
email arrives for me about OZCHI, read it to me."

Plugging in an agent using speaker identification tech—

SRI INTERNATIONAL

Page 4 Of 14 Petitioner Microsoft CorpgratmfiyaLER‘GI-‘imgifflfififi33-aeuv

niques allows commands such as "If voicemail arrives for
me from Larry, send an email to Patti" [9]. Intelligent
cross-media conversion and adaptability to the current set
of available or desired output channels is a key
characteristic of the Unified Messaging prototype.

2.4. Recreation Area

The recreation center gathers some of the innovative
speech-enabled prototypes developed by SRI
International. Passenger-oriented, it assumes that each
passenger creates a private multimodal/multimedia area
(close talking microphone, personal touch screen and
headsets). The passenger can play impressive 3D games
enhanced with speech commands, search the Internet by
voice, talk to an animated avatar, and watch TV in a more
interactive way by asking naturally for the available
programs with specific features. In addition, speech
based educational systems, such as WebGraderTM [16],
provide a fun and effective way to learn foreign languages
and their pronunciations (Figure 4).

. ~~L~?~j·:.;;t,1~-~~:,~':~·0'1-~ · ~~:~1~k~r~~f1
~~ .. \ '

Figure 4. Recreation Panel

2.5. Technical Information Access

The entire documentation of the car will be available
on the Internet, making it easy to keep it up to date and
possibly to personalize (via cookies) and control (via
certificates) data for the car. This section extends the idea
of the dialog with an avatar, or actor, implemented using
the Microsoftn~ Agent graphics [19].

If a warning message appears from a monitored device,
a dialog with an automobile expert, played by the actor,
will help to diagnose and fix the problem (Figure 5). The

P-3967
expert may also answer common questions such as "How
much air should I put in my tires?" or "How should I talk
to you?"

mAppletViewer: SRI class J!llll!J£!
: ~:.:·, :,;':;'\:;/<,~::-··:c:>:f~~;·~~~' .:'::~ ~:,:,:,:-.··:;:~~:.'.
N~dattorrl~~~fciffcetc;;a· me -~~R~~rJ

Figure 5. Diagnostic Panel

2.6. Setups

Speaker verification techniques can be used to access
the setup panel and private areas (to configure and define
the passwords for email and voice mail accounts, for
instance). It will also be used to automatically retrieve the
preferences for the current driver with respect to seat
position, radio selections, temperature, mirror direction,
and so forth.

.r Frangai$. ·

Apolet started.

Figure 6. Setup Panel

SRl INTERNATIONAL

Page 5 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4534

niques allows commands such as “If voicemail arrives for

me from Larry, send an email to Patti” [9]. Intelligent

cross«media conversion and adaptability to the current set

of available or desired output channels is a key

characteristic of the Unified Messaging prototype.

2.4. Recreation Area

The recreation center gathers some of the innovative

speech—enabled prototypes developed by SRI

International. Passengerworiented, it assumes that each

passenger creates a private multimodal/multimedia area

(close talking microphone, personal touch screen and

headsets). The passenger can play impressive 3D games

enhanced with speech commands, search the Internet by
voice, talk to an animated avatar, and watch TV in a more

interactive way by asking naturally for the available

programs with specific features. In addition, speech-

based educational systems, such as WebGraderTM [16},

provide a fun and effective way to learn foreign languages

and their pronunciations (Figure 4).

EfiAppiet Viewer SRLclass

Appletstarted.

Figure 4. Recreation Panel

2.5. Technical Information Access

The entire documentation of the car will be available

on the Internet, making it easy to keep it up to date and

possibly to personalize (via cookies) and control (via
certificates) data for the car. This section extends the idea

of the dialog with an avatar, or actor, implemented using

the MicrosoftTM Agent graphics [19].

If a warning message appears from a monitored device,

a dialog with an automobile expert, played by the actor,

will help to diagnose and fix the problem (Figure 5). The

P-3967

expert may also answer common questions such as “How

much air should I put in my tires?” or “How should I talk
to you?”

O

‘ . W..gummnmmlll
Figure 5. Diagnostic Panel

2.6. Setups

Speaker verification techniques can be used to access

the setup panel and private areas (to configure and define

the passwords for email and voice mail accounts, for

instance). It will also be used to automatically retrieve the

preferences for the current driver with respect to seat

position, radio selections, temperature, mirror direction,
and so forth.

,Entail

Annie! started.

Figure 6. Setup Panel

SR! lNTERNATlONAL

lN'EHECTo‘AL PROPERYY OFFJCE
Page 5 Of 14 Petitioner Microsoft Corporation — EX. 1008, p. 4534

3. Behind the Scene: the Agents

The functionality described above requires multiple
Artificial Intelligence (AI) technologies (e.g .• speech and
gesture recognition. natural language understanding) to
interact with each other and with commercial. off the shelf
components such as email systems. map databases, and
car electronics. SRI's Open Agent Architecture provides
an infrastructure for integrating distributed components in
a more flexible way than can be done through other
distributed technologies such as CORBA. COM, or Java's
RMI. The key difference in OAA's approach is that
instead of components writing code to specifY (and fix)
their interactions and dependencies with other compo
nents, each agent (component) expresses its capabilities
and needs in terms of a higher-level Interagent Commu
nication Language (ICL). Each request for information or
action is handled by one or more "facilitator agents," who
break the request into subtasks, allocate subtasks to agents
able to perform them. and then coordinate the flow of data
and control among the participants. The architecture
offers built-in support for creating natural user interfaces
to the distributed services, since the logic-based ICL can
be translated from and to natural language; users can
speak a request in English, and the request can be acted
upon by the community of agents, without requiring the
user to specify or even know which agents are involved.

The advantages of the OAA approach include true
plug-and-play, with new agents able to join the commu
nity of services at runtime; managed coordination of
cooperative and competitive parallelism among com
ponents; heterogeneous computing, with components
existing on diverse platforms. written in many pro
gramming languages; and enhance code reuse. Since
components do not have hard-code dependencies written
into them, we will be able to incorporate many existing
agents from previous OM-enabled systems [13. 18].

4. Recognition and Interpretation

4.1. Speech Recognition

Speech recognition, along with natural language, is a
huge component of the multimodal user interface. While it
is possible to use any speech recognition product available
on the market to make an agent. we prefer the Nuance
Communications! recognizer. Nuance is a real-time
version of the SRI STAR Laboratory's continuous speech
recognition system using context-dependent genonic

1 SRI spin-off: http://www.nuance.com

P-3967
hidden Markov models (HMMs) [4]. This technology
recognizes natural speech without requiring the user to
train the system in advance (i.e., speaker-independent
recognition) and can be distinguished from the few other
leading-edge speech recognition technologies by its
detailed modeling of variations in pronunciation and its
robustness to background noise and channel distortion.
We plan to investigate automobile environments in more
detail.

4.2. Natural Language Understanding

In most OAA-based systems. prototypes are initially
constructed with relatively simple natural language (NL)
components, and as the vocabulary and grammar com
plexities grow, more powerful technologies can be incre
mentally added. It is easy to integrate different levels of
NL understanding, depending upon the requirements of
the system, just by plugging in an adequate engine. The
available engines are two of our low-end NL systems:
Nuance's template-slot tools and DCG-NL, a Prolog
based top-down parser. SRI's GEMINI [5] and FASTUS
[7) are more powerful tools. used for complex NL tasks.
To design the dialog on the fly, a visual tool is under
development (Figure 7). It simulates the behaviors of the
NL engine and creates the necessary code and data for the
fmal NL agent.

Figure 7. Visual Design Tool

4.3. Speaker Identification

Speaker identification technology has seen significant
progress over the past several years. Although good
performance can be achieved, several parameters affect
accuracy. For example, systems trained on larger amounts
of speech from the users will be more accurate. Similarly,
variety in the training data (collecting over several days)
will improve system robustness, and accuracy is higher for

SRI INTERNATIONAL

Page 6 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4535

3. Behind the Scene: the Agents

The functionality described above requires multiple

Artificial Intelligence (AI) technologies (cg, speech and

gesture recognition, natural language understanding) to
interact with each other and with commercial, off the shelf

components such as email systems, map databases, and

car electronics. SRl's Open Agent Architecture provides

an infrastructure for integrating distributed components in

a more flexible way than can be done through Other

distributed technologies such as CORBA, COM, or Java’s

RM. The key difference in OAA's approach is that
instead of components writing code to specify (and fix)

their interactions and dependencies with other compo-

nents, each agent (component) expresses its capabilities

and needs in terms of a higher-level interagent Commu‘

nication Language (ICL). Each request for information or

action is handled by one or more " facilitator agents," who

break the request into subtasks, allocate subtasks to agents

able to perform them, and then coordinate the flow of data

and control among the participants. The architecture

offers built-in support for creating natural user interfaces

to the distributed services, since the logic-based ICL can

be translated from and to natural language; users can

speak a request in English, and the request can be acted

upon by the community of agents, without requiring the

user to specify or even know which agents are involved.

The advantages of the 0AA approach include true

plug-andeplay, with new agents able to join the commu~

nity of services at runtime; managed coordination of

cooperative and competitive parallelism among com»

ponents; heterogeneous computing, with components

existing on diverse platforms. written in many pro—

gramming languages; and enhance code reuse. Since

components do not have hardcode dependencies written

into them, we will be able to incorporate many existing
agents from previous OAA-enabled systems [13, 18].

4. Recognition and Interpretation

4.1. Speech Recognition

Speech recognition, along with natural language, is a

huge component of the multimodal user interface. While it

is possible to use any speech recognition product available

on the market to make an agent, we prefer the Nuance

Communications1 recognizer. Nuance is a real-time
version of the SR1 STAR Laboratory’s continuous speech

recognition system using context~dependent genonic

I SR1 spincff: http://www.nuance.com

Page 6 of 14

P~3%7

hidden Markov models (HMMS) [4]. This technology

recognizes natural speech without requiring the user to

train the system in advance (i.e., speaker—independent
recognition) and can be distinguished from the few other

leading-edge speech recognition technologies by its

detailed modeling of variations in pronunciation and its
robustness to background noise and channel distortion.

We plan to investigate automobile environments in more
detail.

4.2. Natural Language Understanding

In most OAA-based systems, prototypes are initially

constructed with relatively simple natural language (NL)

components, and as the vocabulary and grammar com-

plexities grow, more powerful technologies can be incre~

mentally added. It is easy to integrate different levels of

NL understanding, depending upon the requirements of

the system, just by plugging in an adequate engine. The

available engines are two of our low-end NL systems:

Nuance’s template-slot tools and DCG-NL, a Prolog-

based top-down parser. SRI’s ammo [51 and FASTUS ‘
[7] are more powerful tools, used for complex NI. tasks.

To design the dialog on the fly, a visual tool is under

development (Figure 7). It simulates the behaviors of the

NL engine and creates the necessary code and data for the
final NL agent.

Figure 7. Visual Design Tool

4.3. Speaker Identification

Speaker identification technology has seen significant

progress over the past several years. Although good

performance can be achieved, several parameters affect

accuracy. For example, systems trained on larger amounts

of speech from the users will be more accurate. Similarly,

variety in the training data (collecting over several days)

will improve system robustness, and accuracy is higher for

SR! INTERNATIONAL

Petitioner Microsoft Corpggagqn — Egot.|_, ,:..... luriwtu anspasmL’.

longer test utterances. Computational limitations of the
onboard platform will also be a performance factor.
Perhaps the most significant of the factors is the variety in
training data. The effects of mismatches between training
and testing conditions can be dramatic [17]. A severe
example, in the context of cars, of mismatching conditions
would occur when a user trains the system with the engine
off, in the garage, and then uses it 'With the top down on
the freeway at high speed. We have made significant
progress in reducing adverse effects of mismatches
between training and testing conditions. In particular, SRI
has developed a technology that reduces the effect from a
factor of 30 to a factor of less than 3 [6]. The technology
enables the user to train in a single session (one acoustic
environment).

4.4. Gesture Recognition

The gesture modality is usually used in conjunction
with speech to add spatial or deictic data to issue
commands to the system. But sometimes a gesture (like a
crossout) can carry both a location and semantic content.
A set of current gestures (Figure 8) can be recognized
using algorithms developed in [8).

.. 0
Figure a. Gesture Set

In our experience [2], most gestures produced by users
fall into this set. Since handwriting has rarely been used
but we want to provide as many modalities as possible, we
incorporated Communications Intelligence Corporation
(CIC2) recognition routines. The handwriting recognizer
is of interest in the navigation task where out-of
vocabulary names may appear, which are normally
difficult for speech recognition systems to handl~. Both
the gesture recognizer and the handwriting recognizer are
competing on the same data to flnd the right meaning.

4.5. Multimodal Fusion

Even if we consider speech as a privileged modality
[10}, numerous user studies [e.g., 12] have shown that
most subjects prefer combinations of spoken and gestural
inputs. In such examples, whereas speech plays a strong
role in the acquisition of commands, combining it with a
pointing device provides significant (8%) improvement in

2 SRI spin-off: http://www.cic.com/

P-3967
performance (recognition and understanding) over the use
of speech in isolation. Not surprisingly, gestures provide a
fast and accurate means of locating specific objects, while
voice commands are more appropriate for selecting
describable sets of objects or for referring to objects not
visible on the screen. Many of these studies also attempt
to enumerate and classify the relationships between the
modalities arriving for a single command (complemen
tary, redundancy, transfer, equivalence, specialization,
contradiction). To model interactions where blended and
unsorted modalities may be combined in a synergistic
fashion with little need for time stamping, we first
proposed a three-slot model known as vo*v* (Figure 9),
such that

V or Verb is a word or a set of words expressing
the action part of a command.

o* or Object[s] is zero or more objects to which
the verb applies (zero if it is a system command).

v* or Variable[s] is zero or more attributes or
options necessary to complete the command.

Contnll Agent & Aflll!ICiltlon Cote

Y~ jpomplete Command

INTERPRET AT!~~'
I I I 11 <5.

0
YIN

[Objectr [Variable]* '\
t ~ -"" ';,

tloodomles~ i ~ _....,... I I
~y ...
jA Q
' WOUT
/

Figure 9. VO*V* Model

Input modalities produced by the user (handwriting,
speech, gestures) fill slots in the model, and interpretation
occurs as soon as the triplets produce a complete
command. A multimedia prompting mechanism is also
provided to assist the user in fulfilling an incomplete
command. In addition, multiple information sources may
compete in parallel for the right to fill a slot, given scored
modality interpretations. This model has been shown to be
easily generalizable, and has been applied to various
application domains

SRI INTERNATIONAL

Page 7 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4536

longer test utterances. Computational limitations of the

onboard platform will also be a performance factor.

Perhaps the most significant of the factors is the variety in
training data. The effects of mismatches between training

and testing conditions can be dramatic [17]. A severe

example, in the context of cars, of mismatching conditions
would occur when a user trains the system with the engine

off, in the garage, and then uses it with the top down on

the freeway at high speed. We have made significant

progress in reducing adverse effects of mismatches

between training and testing conditions. In particular, SR1
has developed a technology that reduces the effect from a

factor of 30 to a factor of less than 3 [6]. The technology

enables the user to train in a single session (one acoustic

environment).

4.4. Gesture Recognition

The gesture modality is usually used in conjunction

with speech to add spatial or deictic data to issue

commands to the system. But sometimes a gesture (like a

crossout) can carry both a location and semantic content.

A set of current gestures (Figure 8) can be recognized

using algorithms developed in [8].

O-exé

Figure 8. Gesture Set

In our experience [2], most gestures produced by users

fall into this set. Since handwriting has rarely been used

but we want to provide as many modalities as possible, we

incorporated Communications Intelligence Corporation

(ClCZ) recognition routines. The handwriting recognizer
is of interest in the navigation task where out-of—

vocabulary names may appear, which are normally

difficult for speech recognition systems to handle. Both

the gesture recognizer and the handwriting recognizer are

competing on the same data to find the right meaning.

4.5. Multimodal Fusion

Even if we consider speech as a privileged modality

[10], numerous user studies [e.g., 12] have shown that

most subjects prefer combinations of spoken and gestural

inputs. In such examples, whereas speech plays a strong
role in the acquisition of commands, combining it with a

pointing device provides significant (8%) improvement in

2 SRI spin-off: http://www.cic.com/

Page 7 of 14

P3967

performance (recognition and understanding) over the use

of speech in isolation. Not surprisingly. gestures provide a

fast and accurate means of locating specific objects, while
voice commands are more appropriate for selecting

describable sets of objects or for referring to objects not

visible on the screen. Many of these studies also attempt

to enumerate and classify the relationships between the

modalities arriving for a single command (complemen-

tary, redundancy, transfer, equivalence, specialization,
contradiction). To model interactions where blended and

unsorted modalities may be combined in a synergistic

fashion with little need for time stamping, we first

proposed a three~slot model known as V0*V'(F1gure 9),
such that

V or Verb is a word or a set of words expressing

the action part of a command.

0’ or Object[s] is zero or more objects to which
the verb applies (zero if it is a system command).

V‘ or Variable[s] is zero or more attributes or

options necessary to complete the command.

INTERPRETATIBNO\

UU a.
Verb [Objectj‘ [Variable]* ‘

Figure 9. VO*V* Model

Input modalities produced by the user (handwriting,

speech, gestures) fill slots in the model, and interpretation

occurs as soon as the triplets produce a complete

command. A multimedia prompting mechanism is also

provided to assist the user in fulfilling an incomplete

command. In addition, multiple information sources may

compete in parallel for the right to fill a slot, given scored

modality interpretations. This model has been shown to be

easily generalizable, and has been applied to various

application domains

%
fi/ [‘55

SR] INTERNATIONAL

INTELLECTU‘a- F.QCPERC.’

Petitioner Microsoft Corporation — EX. 1008, p. 4536

//‘.1
n

IV I"

5. Evaluation

When building complex systems, it is important to
perform user experiments to validate the design and
implementation of the application. As described in [2], we
have developed a novel ''hybrid Wizard-of-Oz" approach
for evaluating how well the implemented system functions
for an experienced user, while simultaneously gathering
information about future extensions or improvements as
dictated by new users. The technique promotes incre
mental development of a complex system, from initial
prototype through tested product, and provides a means
for logging user interactions and quantifying system
improvements at every stage of development.

6. Conclusions and Future Work

The unique feature of the proposed approach is that we
integrate several very distinctive pieces, thanks to the
OAA. even though they were not intended for this
purpose. Further, we unify those pieces through a
common, natural, multimodal interface using as much as
possible human-to-human communication to avoid adding
cognitive overload to the user. We achieved most of this
aim by using good recognition systems and effective
fusion and presentation techniques But to improve the
reliability and robustness of the speech recognizer in real
cars, we still have to address considerable noise and
speaker adaptation issues (see, e.g. [3, 14, 15]). Finally,
within a short period of time we plan to hook up real GPS
and navigation systems and install our system in a moving
car so that we can conduct user testing in real-life
conditions.

7. Acknowledgments

Many thanks to Patti Price, Director of the Speech
Technology and Research lab who spent a lot of time
helping to design the CARS system.

8. References

[lJ A. CHEYER and L. nJI.JA, "Multimodal Maps: An Agent
based Approach," Proc. of Cooperative Multimodal
Communication (CMC'95): Eindhoven, The Netherlands, 1995.

[2] A. CHEYER, L. nJLIA and J. C. MARTIN, "A Unified
Framework for Constructing Multimodal Experiments and
Applications." Proc. of Cooperative Multimodal Commu
nication (CMC'98): Tilburg, The Netherlands, 1998.

P-3967
[3] V. DIGALAKIS and L. NEUMEYER, "Speaker Adaptation
Using Combined Transformation and Bayesian Methods," Proc.
of Inti. Conference on Acoustics, Speech and Signal Processing
(ICASSP'95): Detroit, USA, 1995

[4] V. DIGALAKIS, P. MONACO and H. MURVEIT,
"Genones: Generalized Mixture Tying in Continuous Hidden
Markov Model-Based Speech Recognizers," IEEE Transactions
of Speech and Audio Processing, Vol.4, Num. 4, 1996

[5] J. DOWDING, J.M. GAWRON, D. APPELT. J. BEAR, L.
CHERNY, R. MOORE and D. MORAN, "GEMINI: A natural
language system for spoken-language understanding," Proc. of
31st Annual Meeting of the Association for Computational
Linguistics (ACL'96): Columbus, USA, 1996.

(6] L. HECK and M. WEINTRAUB, "Handset dependent
background models for robust text-independent speaker
recognition," Proc. of Inti. Conference on Acoustics, Speech
and Signal Processing (ICASSP'97): Munich, Germany, 1997.

[7] J. HOBBS, D. APPELT, J. BEAR, D. ISRAEL. M.
KAMEYAMA, M. STICKEL. and M. TYSON, "FASTUS: a
cascaded finite-state transducer for extracting information from
natural-language text," in Finite State Devices for Natural
Language Processing (E. Roche and Y. Schabes, eds.) :MIT
Press, Cambridge, USA, 1996.

[8] L. JUUA and C. FAURE, "Pattern Recognition and
Beautification for a Pen Based Interface," Proc. of Inti.
Conference on Document Analysis and Recognition
(ICDAR'95): Montreal, Canada. 1995.

[9] L. JULIA, L. HECK and A CHEYER, "A Speaker
Identification Agent," Proc. Audio and Video-based Biometric
Person Authentication (A VBP A'97): Crans-Montana,
Switzerland, 1997.

[10] L. JUUA and A CHEYER, "Speech: A Privileged
Modality," Proc. ofEuroSpeech'97: Rhodes, Greece, 1997.

[11] J. F. KAMP, F. POIRIER and P. DOIGNON, "A New Idea
to Efficiently Interact with In-Vehicle Systems. Study of the use
of the Touchpad in ''Blind Condition," Poster Proc. of Human
Computer Interaction (HCI'97): San Francisco, USA, 1997.

[12] B.A MELLOR, C. BABER and C. TUNLEY. "In goal
oriented multimodal dialogue systems," Proc. of Inti.
Conference on Spoken Language Processing (ICSLP'96):
Philadelphia, USA, 1996.

[13] D. MORAN, A. CHEYER. L. JUUA D. MARTIN and S.
PARK. '"The Open Agent Architecture and Its Multimodal User
Interface," Proc. of Intelligent User Interfaces (IUI'97): Orlando,
USA, 1997.

(14] L. NEUMEYER and M. WEIN1RAUB, "Probabilistic
Optimum Filtering for Robust Speech Recognition," Proc. of
Intl. Conference on Acoustics, Speech and Signal Processing
(ICASSP'94): Adelaide, Australia, 1994.

SRI INTERNATIONAL

INTELLECTUAL PROPERTY OFriCE Page 8 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4537

[15] L. NEUMEYER and M. WEINTRAUB, "Robust Speech
Recognition in Noise Using Adaptation and Mapping
Techniques," Proc. of Inti. Conference on Acoustics, Speech
and Signal Processing (ICASSP'95): Detroit, USA, 1995.

[16] L. NEUMEYER, H. FRANCO, V. ABRASH, L. JULIA,
0. RONEN, H. BRATI, J. BING and V. DIGALAKIS,
"W ebGrader: A multilingual pronunciation practice tool;' Proc.
of Speech Technology in Language Learning (ST1LL'9S):
Stockholm, Sweden, 1998.

[17] NIST Speaker Recognition Workshop: Linthicum Heights,
USA. 1996.

[18] SRI International web site on the Open Agent Architecture:
http://www.ai.sri.com/-oaalapplications.html

[191 Microsoft web site about their agents and their animations:
http://www.microsoft.com/work:shoprllledia/agent/

P-3967

SRI INTERNATIONAL

Page 9 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4538

Copyright 1998 IEEE. Published in the Proceedings of OZCHI'98,
29 November~ 3 December 1998 in Adelaide. South Australia.

Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works, must be obtained from the IEEE.
Contact: Manager, Copyrights and Permissions I IEEE Service

Center /445 Hoes Lane I P.O. Box 1331/ Piscataway, NJ
08855~1331, USA. Telephone: +Inti. 732~562-3966.

P-3967

SRI INTERNATIONAL

INTELLeCTUAL Pi<OPci'Hl' Ori'iCE.

Page 10 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4539

A first step toward the MAGIC*: P-3967
SMARTMeetings

You don{t have to be miles away to collaborate, but if you are thatfs OK!

PAST

SRI INTERNATIONAL

Page 11 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4540

VISION
P-3967

• - W¢2

I

The SMARTMeetings room: each seat provides an internet connection and a pen tablet. The
large screen display is the shared space. A broader vision accepts heterogeneous machines

(PCs, PalmPilots, etc ...)

The SCRIBE system, a reactive board metaphor. It gives immediate, beautified, feedback on
the collaborative space for handwriting-and drawings. Erase/Correction functions are
available through natural gestures. Usage of colors possible.

The leader of the meeting, a privileged user, interacts with the board at the podium, and can
also gather information from the other participants by giving them electronic access to the
board in order to share their ideas. He or she is the facilitator.

More informal meetings as well as many meeting styles are falling in this paradigm. For
instance, every attendant might be a privileged user who talks, writes and draws carefully
around the table in order to be well understood by the other participants, and the recognizers.
The shared, collaboratively built, document is projected

Location of the attendants is indifferent, they need a connected pen/multimedia computer.

SRI INTERNATIONAL

JNTELc"-Cii.JAL ?:lOPE:i<TY OFF:C:: Page 12 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4541

F-Bgtfl
VISION

The SMARTMeetings room: each seat provides an internet connection and a pen tablet. The

a large screen display is the shared space. A broader vision accepts heterogeneous machines
(PCs, PalmPilots, etc...)

The SCRIBE system, a reactive board metaphor. It gives immediate, beautified, feedback on

the collaborative space for handwriting and drawings. Erase/Correction functions are

available through natural gestures. Usage of colors possible.

The leader of the meeting, a privileged user, interacts with the board at the podium, and can

also gather information from the other participants by giving them electronic access to the
board in order to share their ideas. He or she is the facilitator.

More informal meetings as well as many meeting styles are falling in this paradigm. For

instance, every attendant might be a privileged user who talks, writes and draws carefully

around the table in order to be well understood by the other participants, and the recognizers.

The shared, collaboratively built, document is projected

Location of the attendants is indifferent, they need a connected pen/multimedia computer.

SR! lNTERNATIONAL

Page 12 0f 14 Petitioner Microsoft Comoiatiasronxaorecspfisr4541

•

P-3967
Automatic production of clean documents, minutes, etc ... History of production available.
Immediate distribution, copies are stored on attendants computers. Users can import pre
meeting notes, specific backgrounds (maps, charts, etc ...) in order to produce nicer
documents. But we anticipate that most of the time all data will be produced on site, during
the meeting.

TECHNOLOGIES

Collaborative Application.

Handwriting Recognition.

Drawing Recognition- Boxes, charts, tables ... - Meta gestures (erase, move, etc ...).

Speech Recognition(? Or limited)- Speaker ID.

(?Stereo) Vision - 3D gestures, meeting layout.

OUTCOMES

Working prototype.

Patent for the (ri's ollaborative, eactive and ntelligent oard nhancer).

BACKGROUND

The CDL is a good start. Tablets and Internet hub to add.

~ In Multimodal Maps, using OAA, we have some sharing/collaboration mechanisms.

Avery-Dennison "smart pen" idea. Pieces were there, but wasn't the technology too complex?

CIC provides good Handwriting Recognition engine. Already integrated in most projects.

STAR's Speech Recognition and Speaker ID expertise.

Gesture Recognition in use in all SRI's Multimodal projects.

-----------~-;:;=> ---

Multimodal fusion, resolving ambiguities, algorithms competition and complementary

TAPAGE and DERAPAGE: on the fly graphics recognition and semantic interpretation.

SRI INTERNATIONAL

INTELLECTUAL i"~O?ER' Y Cri':CE Page 13 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4542

41 '

P-3967
'

~ --
)

_-'~(" \ -
'

\.
1

ultimodal ccess and eneration for nteraction and ollaboration

ICl
Computer Human Interaction Crew

Send comments and suggestions to Dr. Luc JULIA Luc.Julia@sri.com

Copyright@ 1998 SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025 USA. All rights reserved.

SRI INTERNATIONAL

Page 14 of 14 Petitioner Microsoft Corporation - Ex. 1008, p. 4543

ultimodal ccess and eneration for nteraction and ollaboration

GHICL
Computer Hfiman Interaction Crew

Send comments and suggestions to Dr. Luc JULIA Luc.Julz‘a@sri.com

Copyright © 1998 SRI International, 333 Ravenswood Ave" Menlo Park, CA 94025 USA. All rights reserved.

SR! lNTERNATEONAL

IfiaLLsafm. PROPERW OFFICE

Page 14 0f 14 Petitioner Microsoft Corporation — EX. 1008, p. 4543

·66/LL/£0
\\\\Ill\ \11\1\\\\\1\\\\\\\1\ Ill\\ 111\11 I

Old ·s·n otgor PROVISIONAL APPLICATION COVER SHEET

Attorney Docket No.: SRI1P025+ This transmittal and the documents and/or fees itemized
hereon and attached hereto have been deposited as "Express Mail
Post Office to Addressee" m accordance with 3 7 C.F.R. § 1.10 with
Express Mail Mailing Label Number EL285395899US

First Named Inventor: CHEYER ET AL.

Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

D Duplicate for
fee processing

Sir: This is a request for filing a PROVISIONAL APPLICATION under 37 CPR 1.53(c).

INVENTOR(S)IAPPLICANT(S)
RESIDENCE (CITY AND

LAST NAME FIRST NAME MIDDLE INITIAL EITHER STATE OR FOREIGN
COUNTRY)

CHEYER Adam J. Menlo Park, California
JULIA Luc E. Menlo Park, California

GUZZONI Didier None Menlo Park, California

"' TITLE OF INVENTION (280 characters max)
, ~ USING A COMMUNITY OF DISTRIBUTED ELECTRONIC AGENTS TO DYNAMICALLY MONITOR AND SUPORT
· ~ THE NEGOTIATION OF ELECTRONIC TRANSACTIONS

CORRESPONDENCE ADDRESS

HICKMAN STEPHENS & COLEMAN, LLP
P.O. Box 52037

Palo Alto, CA 94303-07 46
(650) 470-7430

ENCLOSED APPLICATION PARTS (check all that a I)

__ Specification

__ Drawing(s)

Number of Pages

Number of Sheets ____ _

__ Small Entity Statement

X Other: White Paper+ Cover Sheet (20 Pages)

X A check or money order is enclosed to cover the Provisional filing fees. Provisional Filing Fee Amount $150

X The commissioner is hereby authorized to charge any additional fees which
may be required or credit any overpayment to Deposit Account No. 50-03 84
(Order No. SRIIP025+).

The inventions made by an agency of the United States Government or under a contract with an agency of the United States Government.

____ No

Respectfully Submitted,

SIGNATURE

TYPED NAME

____ Yes, the name of the U.S. Government agency and the contract number are:

DATE 3/17/99

Brian R. Coleman REGISTRATION NO. ---==3'-"-9~14...:..::5'-----

PROVISIONAL APPLICATION FILING ONLY

GOOGLE EXHIBIT 1010Page 1 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4544

HUSH

’ \“mfl‘mfl‘wWEN\ PROVISIONAL APPLICATION COVER SHEET NWT)
hereon and attached hereto have been deposited as “Express Mail
Post Office to Addressee” in accordance with 37 CPR. §l.10 with First Named Inventor; CHEYER ET AL_
Express Mail Mailing Label Number EL285395899US

Assistant Commissioner for Patents El Duplicate for
Box Patent Application fee processing

Washington, DC 20231
Sir: This is a request for filing a PROVISIONAL APPLICATION under 37 CPR 1.53(c).

INVENTOR(S)[APPLICANT(S)

LAST NAME FIRST NAME MEDDLE INITIAL EITHER STATE OR FOREIGN
COUNTRY)

CHEYER Adam J. Menlo Park, California
JULIA Luc E. Menlo Park, California

GUZZONI Didier None Menlo Park, California

TITLE OF INVENTION (280 characters max)
USING A COMIVIUNITY OF DISTRIBUTED ELECTRONIC AGENTS TO DYNAMICALLY MONITOR AND SUPORT

THE NEGOTIATION OF ELECTRONIC TRANSACTIONS

CORRESPONDENCE ADDRESS

HICKMAN STEPHENS & COLEMAN, LLP
PO. Box 5203'!

Palo Alto, CA 94303-0746

(650) 470—7430
ENCLOSED APPLICATION PARTS (check all that a a u IV)

V Specification Number of Pages Small Entity Statement Drawing(s) Number of Sheets X Other: White Paper + Cover Sheet (20 Pages)

X A check or money order is enclosed to cover the Provisional filing fees. Provisional Filing Fee Amount $150

X The commissioner is hereby authorized to charge any additional fees which

may be required or credit any overpayment to Deposit Account No. 50-03 84
(Order NO. SRIIP025+}.

The inventions made by an agency of the United States Government or under a contract with an agency of the United States Government.

No Yes, the name of the US. Government agency and the contract number are:

Respectfully Submitted, M
SIGNATURE DATE 3/17199

TYPED NANIE Brian R. Coleman REGISTRATION NO. 39 145

PROVISIONAL APPLICATION FILING ONLY

Page 1 0f 21 Petitioner Microsoft C(ggqg’iorlla— EXIIgSEITpLghg

TITLE OF THE INVENTION

Using a Community of Distributed Electronic Agents to Dynamically Monitor and
Support the Negotiation of Electronic Transactions

ABSTRACT

Complex transactions entail multiple steps over time, possibly non-linear path,
with dynamic decisions at each point among multiple alternatives. For example,
consider the process of buying a product available at different simultaneous
auctions; or an online mortgage loan; or or real
estate. Currently dominant paradigm of automated support for electronic
transactions is typically linear/static: search for prospects, display list, and
user is then on his/her own. But numerous alternatives and decisions are
possible during the period between the placing of a bid/reservation/application
and the closing of the transaction, and there is a real need for on-going
monitoring of changing alternatives and for analytical decision support.

The present invention uses "OAA-style" collaborating distributed agents
(facilitated collaboration among distributed agents with declared capabilities
in a high-level interagent communication language) to monitor and support the
negotiation of electronic transactions. One way to outline the work flow in
such a system could be:

business)

define a purchase order profile for a desired product;
search database(s) for product availability
enter one or more "bids" (a formal offer or application to transact

automatically continue to periodically monitor databases for new
information about

alternatives and status
analyze the new information with respect to triggers, notify user and

present options
sometimes interactively decide to change/withdraw bid or enter new bid,

based on the new informatio/triggers
==> preferably this last step is fully automatic

in some cases (bidding agents)

SUPPLEMENTAL INFORMATION

A detailed write-up of a preferred embodiment, in the context of online
auctions, is attached.,

Pending patent application serial no. assigned to SRI (docket no.
3949-2) provides a detailed description of the underlying OAA platform
architecture, and also of several applications including
"multi-modal maps" which may be helpful in preferred embodiments. The
referenced pending patent application is incorporated herein by reference in its

Page 2 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4545

TITLE OF THE INVENTION

Using a Community of Distributed Electronic Agents to Dynamically Monitor and

Support the Negotiation of Electronic Transactions

ABSTRACT

Complex transactions entail multiple steps over time, possibly non—linear path,
with dynamic decisions at each point among multiple alternatives. For example,
consider the process of buying a product available at different simultaneous

auctions; or obtaining an online mortgage loan; or buying or renting real

estate. Currently dominant paradigm of automated support for electronic

transactions is typically linear/static: search for prospects, display list, and
user is then on his/her own. But numerous alternatives and decisions are

possible during the period between the placing of a bid/reservation/application
and the closing of the transaction, and there is a real need for onwgoing

monitoring of changing alternatives and for analytical decision support.

The present invention uses "OAA—style" collaborating distributed agents

(facilitated collaboration among distributed agents with declared capabilities

in a high—level interagent communication language) to monitor and support the
negotiation of electronic transactions. One way to outline the work flow in

such a system could be:

- define a purchase order profile for a desired product;

- search multiple, heterogeneous database(s) for product availability

- enter one or more "bids" (a formal offer or application to transact
business)

w automatically continue to periodically monitor databases for new
information about

alternatives and status

- analyze the new information with respect to triggers, notify user and
present options

— sometimes interactively decide to Change/withdraw bid or enter new bid,

based on the new informatio/triggers

==> preferably this last step is fully automatic

in some cases (bidding agents)

SUPPLEMENTAL INFORMATION

A detailed write—up of a preferred embodiment, in the context of online
auctions, is attached,

Pending patent application serial no. assigned to SRI (docket no.
3949-2) provides a detailed description of the underlying 0AA platform
architecture, and also specific descrpitions of several applications including

"multi—modal maps" which may be helpful in preferred embodiments. The
referenced pending patent application is incorporated herein by reference in its
entirety.

Page 2 Of 21 Petitioner Microsoft Corporation — EX. 1008, p. 4545

MetaAuction Draft Design SRI Confidential

MetaAuction Alpha Preliminary Design P-3970
SRI International

Overview

Online auctions are increasingly popular on the Internet- more than one hundred web
sites exist simply to help buyers and sellers exchange goods through auction-based
mechanisms. Although auction meta-sites are beginning to emerge (e.g.
www.bidfmd.com), these sites provide only search engine capabilities. Simply finding
an auction site to participate in, although useful, is not enough: managing the auction
process is a time-consuming effort. We believe that a more thorough automation of the
auction-buying process is technically feasible, and could be provided as a mass-market
service through portal such as the proposed MetaAuction.

SRI carried out an approximately 10 man-week background study and software
prototyping effort to guide the MetaAuction design. The resulting system design, based
on SRI's Open Agents Architecture™, will provide MetaAuction customers with the
following services:

Product finding. Locate candidate products and their auction sites through familiar
hierarchical and/or keyword searches. Provide links to manufacturer product
descriptions, as well as pricing information, including average cost via auction and prices
on fixed price sites for purposes of comparison.

Automated bidding. Execute multi-auction bidding strategy against user-selected
products and sites. Automatically registers customers on auction sites and carries out bid
placement.

Auction monitoring. Provide real-time reports on bid status and product availability.
Monitors both specific items and auctions currently of interest to users, as well as global
status of closing prices and other data of interest for all other items within MetaAuction 's
product categories.

Visual monitoring of auction status at the MetaAuction website.

• Phone/pager/e-mail notification of major change of status (e.g., when one
successfully buys).

• Phone/pager/e-mail notification when items meeting interest criteria come available

SRI INTERNATIONAL
SRI Confidential

INTELLECTUAL PRGPEiHY OF;'JCE

Page 3 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4546

MetaAuction Draft Design SR! Confidential

MetaAuction Alpha Preliminary Design Q "' 33 g 7 O

SRI International

Overview

Online auctions are increasingly popular on the Internet — more than one hundred web

sites exist simply to help buyers and sellers exchange goods through auction-based

mechanisms. Although auction meta-sites are beginning to emerge (e.g.

wwwbidfmdcom 1, these sites provide only search engine capabilities. Simply finding

an auction site to participate in, although useful, is not enough: managing the auction

process is a time-consuming effort. We believe that a more thorough automation ofthe

auction-buying process is technically feasible, and could be provided as a mass-market

service through portal such as the proposed MetaAuction.

SR1 carried out an approximately l0 man-week background study and software

prototyping effort to guide the MetaAuction design. The resulting system design, based

on SRl’s Open Agents Architecnirem, will provide MetaAuction customers with the

following services:

Product finding. Locate candidate products and their auction sites through familiar

hierarchical and/or keyword searches. Provide links to manufacturer product

descriptions, as well as pricing information, including average cost via auction and prices

on fixed price sites for purposes of comparison.

Automated bidding. Execute multi-auction bidding strategy against user-selected

products and sites. Automatically registers customers on auction sites and carries out bid

placement.

Auction monitoring. Provide real-time reports on bid status and product availability.

Monitors both specific items and auctions currently of interest to users, as well as global

status of closing prices and other data of interest for all other items within MetaAaction '3

product categories.

Visual monitoring of auction status at the MetaAuction website.

‘ Phone/pager/e-rnail notification ofmajor change of status (eg, when one

successfully buys).

- Phone/pager/e—mail notification when items meeting interest criteria come available

_ _ SR1 INTERNATIONAL
SR! Confidential

INTE LL EC TUAL PROPER TY OF305

Page 3 Of 21 Petitioner Microsoft Corporation — EX. 1008, p. 4546 ., 7

MetaAuction Draft Design SRI Confidential

Functional Requirements

User Interactions

Registration

1. UI for profile entry/review/editing.

• name/password

• credit card

• ship-to, bill-to

• notification means (e-mail, pager, phone)

2. Secure (SSL) communications to user browser.

Product Finder

1. UI for product location

• Hierarchical selection of products

• keyword search (require search engine capability)

2. Rapid lookup & presentation of product information

• description

• sku

• current bid price

• current best fixed-price

• auction sites

• links to manufacturer information sites.

3. Bid control

• product/auctions to pursue .

• bidding behavior: start, max bid price; agressiveness

Monitoring/Notification Service

P-3970

Multi-modal notification: webpage, banner, e-mail, pager, phone (text-to-speech)

1. Change of status of existing auction actions (buy, lose)

2. Periodic status updates (current bid price, auction sites)

3. As new items become available [optional for Alpha]

SRI INTERNATIONAL
SRI Confidential

INTELL::CTl;AL ?RCPERTY OFf' iCE

Page 4 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4547

-

P-3970
MetaAuction Draft Design SRI Confidential

Data Management Tasks

Product Database

1. Information on preselected products and auction sites

2. Product query support

3. Periodic information updates via web crawler

Bid/monitoring management agents

1. Coordinate bids across multiple auction sites

2. Automatically schedule monitoring and bid updates

Decisions about when a bid should be considered based on user-definable
"aggressiveness" parameters, time remaining until the auction closes,
importance of a particular auction is based on a prediction of potential success,
etc.

User profile database

Maintain secure database of user profiles with links to current auction status.

1.

2.

3.

4.

5.

User name/password

Credit card

Ship-to, Bill-to, account status

Historic (audit trail)

[user preferences, personalized homepage layout ..]

Information Extractors

1. Site-specific information extraction in support of bidding, monitoring and crawling
(product database)

2. Multi-threaded (multiple simultaneous access)

3. Page and information caching

Other Design Issues

1. Browser compatibility (standards: HTML & httpd rev, use of Java applets and
JavaScript vs. server-side HTML generation, etc.)

2. Modem/network load (bandwidth)

3. MetaAuction server scaling

SRI INTERNATIONAL
SRI Confidential

INTELLECTUAL PROPERTY OFt'ICE

Page 5 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4548

MetaAuction Draft Design SRI Confidential

•
•
•

500,000-1,000,000 registered users

50,000-100,000 simultaneous bidders

10,000-100,000 monitored products

4. MetaAuction security
• Customer (browser-server link)

• Site security (site firewall, etc)

5. Extensibility for future services

• New sites, products (mods probably on weekly basis)

P-3970

• Adaptations to new auction software (direct auction database access, Xtv1L, etc.)

• Speech interface

• Phone notification (text to speech)

• Phone-based monitoring, eventually bidding (speech recognition, NLU)
• Physical telephony requirements (Tl lines vs. Digital terminals, etc.)

• Advanced bidding strategies
• Optimized for single bidder
• Optimized for blocks of bidders

• Natural language understanding
• Product information parsing
• User description of product

• Other.

6. Flexibility to support new processing architectures (e.g., highly distributed with
significant client-side processing)

Proposed Alpha System Design

Goal: Rapid, low-risk /low-cost, rapid development of an operational MetaAuction site.
Maximize the code carryover to beta version. Provide full suite of features for evaluation
and demonstration.

Strategy: Make extensive use ofOAA rapid-prototyping capability. Focus on new
functionality for MetaAuction application, minimize system integration effort.

Scalability: Implement web page and site information caching to enhance performance
for large-scale deployments. Modules compatible with later (beta) integration under
OAA, CORBA, or blend where appropriate.

Security: Alpha architecture firewall-ready, relies on Proxy, SSL communications for
sensitive information.

SRI INTERNATIONAL
SRI Confidential

!NTELLC:CTU;'IL rROPi:RTY OFFiCE

Page 6 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4549

P-3970
MetaAuction Draft Design SRI Confidential

Theory of Operation

The user interactions in the proposed system design parallels the stages of the general
buying process, prefaced with user re-entry or registration:

MetaAuction Site Entry. MetaAuction users will be greeted by a main page with
MetaAuction branding, advertising, and either a login/password, or registration request
for new users (including entry as a limited Guest). The opening page may also provide
the product finder interface, major status information for that user (active bids, etc.), and
links to help pages. Current users will be able to step into the main bidding channels;
new users will be required to input name/password, credit card, ship-to/bill-to, and
notification information (e-mail address, pager number, etc.).

Product Search. Locate products based on key-word search, hierarchical product
definitions or combination thereof (similar to Junglee or Jango). MetaAuction will carry
out a search of its local product/auction database and respond with a scrolling list of
items meeting user objectives. List will include short product description, auction site,
current bid prices, and links to vendor information. For reference, prices on similar items
at fixed-cost sites can also be included (in this way, MetaAuction could essentially
supersede Jango and Junglee). The system will allow the user to refine their search while
viewing the current results in a fashion similar to the commercial search engines.

Bid launch. A user establishes what amounts to a Purchase Order (PO) for a product
The PO specifies the list of acceptable products (that is, what the user considers
interchangeable) and auction sites. Parameters for aggressiveness, max bid price, and
bidding end date will also be established.

Auction monitoring. The auction monitor provides status information on current active
bids for this user, showing the site where recent bids have been placed, the corresponding
bid amounts, and times. This view will also allow cancellation of any active PO (within
limitations of auction site rules, and the status of that user's outstanding bids).

A more thorough Use Case analysis for these tasks will be carried out during the detailed
design phase of the Alpha development program.

System Design Overview

Design Overview

The system design follows the client/server model standard for web applications. The
client-side user interfaces provides monitoring and control over a server side that carries
out the product/auction finding, extraction, and bidding services of the system.

The Open Agent Architecture™ (OAA ™) was selected as the integration framework for
MetaAuction. OAA provides two major features relevant to intelligent, web-based
applications. First, its use of independent, cooperating agents and an open interface
enables new capabilities to be inserted with minimum effort, and without system
reconfiguration or downtime. This feature will allows MetaAt:lction to add support for
new auction sites, new bidding strategies, and new user interfaces as a matter of course.

SRI Confidential
SRI INTERNATIONAL

INTELLECTUAL ?RGPERTY OFFICE

Page 7 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4550

MetaAuction Draft Design SRI Confidential
P-3970

Second, OAA is based on a collaborative problem-solving scheme, and has great long
term promise as more complex auction negotiations and user interactions are required.
Finally, OAA also brings a wealth of existing tools (agents) to provide important user
services, including multi-modal input, output (text-to-speech, paging, etc), natural
language understanding, along with sophisticated planning/reasoning tools.

In short, OAA provides short-term development cost reductions, and in the longer term,
the opportunity for more sophisticated capabilities to be quickly integrated as necessary.

General Architecture

The MetaAuction design, sketched in Figure 1, is based on the OAA ™ model for
collaborative problem solving. In this context the problem is locating and buying one or
more user-selected item from a (potentially vast) list of suppliers. To achieve these ends,
the system must elicit information from the user, maintain a database of information on
current auction sites and their products, and place and monitor bids according to some
buying strategy.

Two basic layouts are possible within the OAA framework. The first, and probably most
practical for near-term application, is a coarse-grained architecture. In this design, each
agent is a specialist in some aspect of the product monitoring and buying process, and
simultaneously manages all purchase order requests. Multi-threaded processing allows
each agent to efficiently manage thousands ofPOs in their various stages. If additional
parallelism is required, multiple identical agents can be operated across processors on a
network. This parallelism can be achieved at both a single site, or from multiple points of
presence on the internet.

An alternative design approach achieves parallelism at the PO level. In this realization an
independent family of cooperating agents is instantiated for each bidding request. The
functionality of the agents would be identical to that in the coarse design, with the
exception that each agent would be somewhat lighter as it need only manage a single
buying thread. The primary advantage of this design, beyond general elegance, is its
extensibility to highly distributed processing. For example, this would directly support
client-side auction processing. This feature may one day be important as consumers are
afforded full-time connectivity to the internet.

SRI Confidential
SRI INTERNATIONAL

INTELLECTUAL PROPERTY OffiCE

Page 8 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4551

P-3970
MetaAuction Draft Design SRI Confidential

Customers
onSale.com

Auction sites (via the web)

www.metaAuction.com

httpd

Facilitator Aaent

Ul Agent

(servlet/OAA agent)

• HTML page generation

• Product search control

• Registration/re-entry

onSale.com

Site-specific

Crawler

agent

pager

Mode-specific

notification agents

Future

capabilities

Figure 1: A coarse grained agent-based MetaAuction architecture.

Agents

Page Scrapers. Implements parsing and text submission required for interaction with
specific auction sites. (1 per site)

Auction Crawler control. Creates the product information database. Maintains a list of
auction sites that are visited periodically and searched for products of interest.

UI. Controls access and interaction with users. Implemented as both an OAA agent and
Java Servlet, thus coupling httpd facilities directly within OAA framework.

SRIINTERNATJON.A,L
SRI Confidential

INTELLECTUAL ::qoPERTY OFfiCE

Aggresive

Algorithm
specific

bidding agents

Page 9 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4552

§~397O
MetaAuction Draft Design SR! Confidential

Customers ll-
{Via the web) A action sites

www.metaAuction.com

Impd

Facilitator Aaent‘ ‘ 555:5?954

Ul Agent

(servleb’OAA agent)

e

° HTML page generation

0 Product search control
. . . Algorithm—

“ Registration/reentry Site—Specgfz‘c Mode-specific specific
“ " " ” notification agents bidding agents

Future

capabilities . . .
Figure 1: A coarse grained agent-based MetaAuction architecture.

Agents

Page Scrapers. Impiements parsing and text submission required for interaction with

specific auction sites. (I per site)

Auction Crawler control. Creates the product information database. Maintains a fist of

auction sites that are Visited periodically and searched for products of interest.

UI. Commie access and interaction with users. Implemented as both an 0AA agent and

Java Servlet, thus coupling httpa’ facilities directly within 0AA framework.

_ SR1 iNTERNATIONAL
SR! Confidentiai

NFELLECTUAL PROPERTY OFFQCE

Page 9 Of 21 Petitioner Microsoft Corporation — EX. 1008, p. 4552

•

P-3970
MetaAuction Draft Design SRI Confidential

Bid strategy. Implements bidding process. Expected to be a rather fluid module with
frequent updates and augmented with adjunct agents as strategies are refined. (1 per
product category and/ or strategy)

Product/auction search. Controls searches of Web and local database to satisfy user
requests for product availability information.

Notification. Automatically notifies metaAuction users of major changes in their bids or
product availability, including successful purchases and newly available items. (1 per
modality)

Major Data Stores

User database. User ID/passwords, bill-to/ship-to, account status, list of active bids.

Product database. Store of product and corresponding auction site information.
Maintained for both the items under bid, as well as speculative requests for products of
general interest posted by the crawler agent.

Both databases could be implemented by conventional commercial RDBMS products.
Regardless of the parallel-processing architecture, the agents will place heavy demand on
a central database of product information, user profiles, and cached web pages. Although
we can take advantage of parallelism in data processing, a transaction processing
bottleneck will still exist. Careful attention should be given to the choice of database
product, the manner in which it is accessed, and the specific data models used.
Maintaining speedy database access for common transactions and cached pages at the
MetaAuction server site will reduce the apparent latency to the user and compensate for
delays in accessing remote auction sites. This problem is not unique to the meta-auction
problem, and a variety of commercial products and widely accepted approaches exist for
tackling it. However, the success or failure of the final design will hinge on how well it
is handled. Anticipating this fundamental problem in the design phase, and applying best
practices to its solution, will smooth the way for scalability as the system grows.

Scaling Issues

Communications between extractors and their web sites. To address this problem we
propose a two-level caching scheme that minimizes downloads from auction websites, as
well as processing for 'scraping' (Figure 2). In this design, information gleaned from
pages is time-stamped and stored in an intermediate database. A second level of cache
provides rapid access to entire (time-stamped). web pages. While this strategy will
provide limited benefit to light user loads, it should recoup significant gain as hundreds
or thousands of simultaneous users review or bid on similar products.

OAA scalability. Our initial design will make full use of the OAA fast prototyping
capabilities. After the alpha design gels, however, we may pursue performance gains by
combining smaller agents and other streamlining. OAA will still provide the system
framework for adding new functionality and carrying out more advanced problem-
solving tasks. '

SRI INTERNATIONAL
SRI Confidential

INTELlECTUAL ?RO?ERTY OFFICE

Page 10 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4553

P-3970
MetaAuction Draft Design SRI Confidential

Security Issues

Site Security. We recommend that a firewall stand between the MetaAuction system and
the internet. The proxy web-server, used in conjunction with the firewall, will also
improve site security.

MetaAuction-auction site and browser-MetaAuction communications. The Alpha system
will rely on SSL to secure user information and bid transactions. SSL support is currently
required by most auction sites, and is standard on all widely used commercial browsers.
MetaAuction would be registered with VeriSign® or other verification/authentication
services.

www.metaAuction.com

SSI. 11 .·
Firewall [i..·

bd
Product search

User

profile

database.

IJ
D

on&zle.com

Proxy

-

Page caching,
.~ecuritv

I
I

I

Bid/monitor

Figure 2: Major data storage components and data flow.

SRI Confidential SRI !NTERNP..TIONAL

Page 11 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4554

573-5976
MetaAuction Draft Design SR! Confidential

Security Issues

Site Security. We recommend that a firewall stand between the MetaAuction system and

the internet. The proxy web-server, used in conjunction with the firewall, will also

improve site security.

MetaAuction—auction site and browser-MeraAucrz’on communications. The Alpha system

will rely on SSL to secure user information and bid transactions. SSL support is currently

required by most auction sites, and is standard on all widely used commercial browsers.

MetaAuction would be registered with VeriSign® or other verification/authentication
services.

 RSI .

Firewall

L9 V

Page caching,
Product search .cemmrv

E
prndufitUser

profile

database. -

Figure 2: Major data storage components and data flow.

. _ S I r- LSR! Confidential R1 NTERNATIONA

mm a FCTI ml manna-ow newt:

Page 11 Of 21 Petitioner Microsoft Corporation — EX. 1008, p. 4554

P~3970
MetaAuction Draft Design SRI Confidential)

I

APPENDIX: A MetaAuction PROTOTYPE

Adam Cheyer, Luc Julia, Didier Guzzoni

To better understand the requirements, feasibility and design alternatives for
MetaAuction, SRI implemented an experimental prototype known as F AAAB (for "Find
All Auctions And Bid"). FAAAB was developed within the Open Agents
Architecture™ (OAA ™) and implements key elements for Product Finding and Auction
Monitoring, and their corresponding user interface. This prototype demonstrated the
general feasibility of automatically locating available products, as well as monitoring the
bidding process. The F AAAB prototype also provided important experience on user
interface issues, and provides the basis for the current UI design.

Problem Statement

The F AAAB prototype effort investigated the feasibility of applying agent technology to
an electronic auction domain. Automated software agents would be responsible for
providing the following capabilities to users of the service:

1. Find online auctions selling products the user is interested in.

2. Find the best market price available from commercial vendors for these products -
this gives the user a baseline value against which to compare the value of an
auctioned item.

3. Monitor relevant auction sites, acquiring knowledge about the patterns ofbuying and
selling at that site (e.g., how often does a user truly fmd a bargain at a particular site).

4. Manage a collection of automated bidding agents who cooperate to achieve the user's
objectives in obtaining products at a good price.

The ideas outlined here have been implemented in the F AAAB prototype system, which
demonstrates (and allows experimentation with) many of the facets required for
accomplishing the vision.

Requirements

To implement auction finding and bidding service, at least the following major
components are required:

• web crawlers and information extractors to retrieve information about and from
auction sites;

• a user interface to enable users to task and control monitoring and bidding agents;

• and a sophisticated agent scheduler to efficiently coordinate the efforts across auction
agents.

SRI Confidential
SRI INTERNATIONAL

INTELLECTUAL PROPERTY OFFICE

Page 12 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4555

P-3970
MetaAuction Draft Design SRI Confidential)

Crawlers and Extractors

There are at least two types of web data involved in our auction process: data which is
highly dynamic in nature (e.g., an ongoing auction changes frequently as new bidders
take action), and data which is more stable (e.g., the structure of a given auction site, or
the set of auction sites themselves). The more static data can be efficiently cached by
web-crawlers which refresh the cache every day or two, while the more dynamic data
must be retrieved on demand from the source web page (by extractors). Crawlers
generally have an associated database which caches their findings to allow rapid access.

Except for when the information to be extracted is generic in nature, such as a URL or
email finder, or a keyword-based search index, knowledge will need to be generated
about the format of the information to extract from a particular web site. Since most of
the development time associated with this effort is related to encoding this knowledge,
having the right tools and languages with which to do so is essential.

Domain-specific knowledge encodes two types of information : how to navigate web
sites (e.g., go to URL X, find a button labeled Y and click on it, and then fill out a form at
the resulting page with the specified information); and how to extract information found
at the site. Encoding languages should be able to represent both sorts of knowledge in as
readable and concise a form as possible.

It is desirable that the tools that interpret or execute the domain-specific knowledge have
the following properties:

• Multi-threaded (or multi-tasking) to be able to manage many knowledge-extraction
requests simultaneously

• Replicate-able and/or mobile, so that new instances can be created and distributed
according to load requirements

• Able to communicate with other components of the system, such as databases for
caching information, user interfaces, etc.

User Interface

The User Interface (UI) to the target system should have the following properties:

• Be portable and accessible from any modem web browser.

• Be rich enough to visually express a complex space of information: many agents will
bid and monitor at auctions with changing prices, varied closing dates, etc. A user
should have a global understanding of the current status of an entire multi-agent
auction portfolio, and the ability to modify or control any aspect of the process.

• Intermittent operation: a user should be able to disconnect and reconnect at will.

• Lightweight: Additional low-profile Uis (e.g., banners) can update the user of
portfolio events without requiring connection to the full user interface or focused
attention by the user.

SRI INTERNATIONAL
SRI Confidential

INTELLECTUAL fORGP:::;<TY OFi=ICE

Page 13 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4556

P--3970
MetaAuction Draft Design SRI Confidential

Agent Scheduler

An agent-scheduler must be imbued with the ability to efficiently manage and schedule
information retrieval tasks for the auction monitoring and bidding agents. The s~heduler
will make decisions about when a bid should be considered based on user-defimlble
"aggressiveness" parameters, the amount of time remaining until the auction closes, how
important a particular auction is based on a prediction of potential success, etc.

Implementation

The ideas and requirements have, for the most part, been implemented in a prototype
system called F AAAB (for "Find All Auctions And Bid"). Features and issues not yet
accomplished by this prototype are discussed in the next section.

Integration Framework

From our requirements section, it is clear that the implemented system must use a
client/server model, with client user interfaces providing monitoring and control of a
server side that provides the finding, extraction, and bidding services of the system.

The Open Agent Architecture™ (OAA ™) was selected as the integration framework for
F AAAB, as the OAA enables rapid development of both Java-based client user interfaces
and complex server applications made out of distributed components.

Crawlers and Extractors

In the requirements section, we spoke of the need for both tools and languages for
expressing domain-specific extraction and navigational logic. After evaluating several
in-house (DIFF-parse, DCG-parse, plus web agents) and commercial (AgentSoft's
LiveAgent Pro [2]), we chose Digital's WebL product [3] as the best tool and language
for our needs. Implemented in Java, WebL provides powerful features (parallelism
concepts, markup algrebra combining query sets over regular expressions and structured
HTiv1L and XML representations, specialized web-related exception handling, and so
forth). In addition, source code is provided for free, allowing us to easily incorporate the
technology as an OAA agent, and to make extensions to it as necessary (e.g., add
mobility).

The WebLOAA agent provides a generic OAA-enabled tool which can dynamically load
knowledge scripts encapsulating a particular web site or service; each script becomes an
agent in the OAA sense. Scripts can serve both as extractors, and when used in

1

SRI Confidential
SRI INTERNATIONAL

INTELLECTUf1L ?RGPi:RTY OFFiC~

Page 14 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4557

MetaAuction Draft Design SR! Confidential

Agent Scheduler

An agent-scheduler must be imbued with the ability to efficiently manage and schedule

information retrieval tasks for the auction monitoring and bidding agents. The scheduler
will make decisions about when a bid should be considered based on user-definable

“aggressiveness” parameters, the amount of time remaining until the auction closes, how

important a particular auction is based on a prediction of potential success, etc.

Implementation

The ideas and requirements have, for the most part, been implemented in a prototype

system called FAAAB (for “Find All Auctions And Bid”). Features and issues not yet

accomplished by this prototype are discussed in the next section.

Integration Framework

From our requirements section, it is clear that the implemented system must use a

client!server model, with client user interfaces providing monitoring and control ofa

server side that provides the finding, extraction, and bidding services of the system.

:3, The Open Agent ArchitectureTM (OAATM) was selected as the integration framework for
a ' FAAAB, as the 0AA enables rapid development ofboth Java-based client user interfaces

and complex server applications made out of distributed components.

Crawlers and Extractors
in the requirements section, we spoke of the need for both tools and languages for

expressing domain-specific extraction and navigational logic. After evaluating several

iii-house (DIFF-parse, DCG—parse, plus web agents) and commercial (AgentSoft’s

LiveAgent Pro [2]), we chose Digital’s WebL product [3] as the best tool and language
for our needs. Implemented in Java, WebL provides powerful features (parallelism

concepts, markup algrebra combining query sets over regular expressions and structured

HTML and XML representations, specialized web-related exception handling, and so

forth). In addition, source code is provided for free, allowing us to easily incorporate the

technology as an 0AA agent, and to make extensions to it as necessary (cg, add

mobility).

The WebLOAA agent provides a generic OAA-enabled tool which can dynamically load

knowledge scripts encapsulating a particular web site or service; each script becomes an

agent in the 0AA sense. Scripts can serve both as extractors, and when used in

. , SR! lNTERNATIONAL
SR! Confidential

lNTELLECTUhL FRGPERTY Oi‘é‘iSE

Page 14 0f 21 Petitioner Microsoft Corporation — EX. 1008, p. 4557

P-3970
MetaAuction Draft Design SRI Confidential

conjunction with an OAA database agent, crawlers, which cache their results for fast
retrieval.

Auction Finders

The first task of the F AAAB prototype requests a user to input a description of a product
that they are interested in, and then attempts to find auctions which are selling
comparable products. This task was accomplished in two ways:

1. an extractor agent for an existing auction search site, BidFind.com [4];

2. a web crawler for a site not currently indexed by BidFind (www.webauction.com [5])
to demonstrate that we need not be reliant on the BidFind service.

Both the WebAuction agent and the BidFind agent were rapidly implemented as WebL
scripts managed by the WebLOAA agent. See Appendix A for source code of the
BidFind extractor agent, to get a sense of the power and elegance of the WebL language
for web wrapping and extraction tasks.

Market Price Finder

Once a list of interesting auctions have been returned and displayed to the user, he or she
should choose which sites are to be managed by F AAAB auction agents. For each
auction returned, the user may visit the website or may request a search for the real
market price of the auctioned object. Note that even though most auctions returned for a
given search will offer relatively similar products, the products may have varying brands,
optional features, and so forth, so it might be desirable to find the market price for each
individual auction and not just for the group.

Even though product search engines are starting to appear (e.g., Jango [6], Junglee [7]),
finding a good guess for the real market price of an object given only its description is
not an easy task. Here is the approach that we are using for the moment:

Given a description of an object for sale at an auction, we first try to guess the major
category (e.g., desktop computer, camera, flowers, etc.) for the product. Jango, the best
product finder currently available, uses a yahoo-like hierarchical category scheme, with
pulldown menus for different choices. For instance, iflooking for a laptop computer, you
choose this category and then select criteria such as brand, model and processor speed
from a preselected list. These criteria, both headings and values, are different for each
category.

To guess the product category, we wrote a WebLOAA crawler that traverses all of the
categories from Jango and pulls out the criteria and values for each category. Then for
the given object description, we choose its category by taking the one which has the
highest number of values present in the object description. The values are augmented by
a hand-coded synonym list to increase the likelihood of positive matches. Note: a future
enhancement would be to automatically generate pertinent keywords from the corpus of
category items using statistical methods.

SRI INTERNATIONAL
SRI Confidential

Page 15 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4558

iii-3970
MetaAuction Draft Design SR1 Confidential

conjunction with an 0AA database agent, crawlers, which cache their results for fast
retrieval.

Auction Finders

The first task ofthe FAAAB prototype requests a user to input a description ofa product

that they are interested in, and then attempts to find auctions which are selling

comparable products. This task was accomplished in two ways:

I. an extractor agent for an existing auction search site, BidFindcom [4];

2. a web crawler for a site not currently indexed by BidFind (wwwehauctioncom {5})
to demonstrate that we need not be reliant on the BidFind service.

Both the WebAuction agent and the BidFind agent were rapidly implemented as WebL

scripts managed by the WebLOAA agent. See Appendix A for source code of the

BidFind extractor agent, to get a sense of the power and elegance of the WebL language

for web wrapping and extraction tasks.

Market Price Finder

Once a list of interesting auctions have been returned and displayed to the user, he or she

should choose which sites are to be managed by FAAAB auction agents. For each

. auction returned, the user may visit the website or may request a search for the real
«.5 market price of the auctioned object. Note that even though most auctions returned for a

*4 given search will offer relatively similar products, the products may have varying brands,

a optional features, and so forth, so it might be desirable to find the market price for each

individual auction and not just for the group.

Even though product search engines are starting to appear (cg, Jango {6], Junglee {7]},

finding a good guess for the real market price of an object given only its description is

not an easy task. Here is the approach that we are using for the moment:

Given a description of an object for sale at an auction, we first try to guess the major

category (e. g., desktop computer, camera, flowers, etc.) for the product. Jango, the best

product finder currently available, uses a yahoo-like hierarchical category scheme, with

pulldown menus for different choices. For instance, if looking for a laptop computer, you

choose this category and then select criteria such as brand, model and processor speed
from a preselected list. These criteria, both headings and values, are different for each

category.

To guess the product category, we wrote a WebLOAA crawler that traverses all of the

categories from Jango and pulls out the criteria and values for each category. Then for

the given object description, we choose its category by taking the one which has the

highest number ofvalues present in the object description. The values are augmented by

a hand-coded synonym list to increase the likelihood of positive matches. Note: a future

enhancement would be to automatically generate pertinent keywords from the corpus of

category items using statistical methods.

. . SRE ENTERNATIONAL
SR! Confidential

lNTELLECTUS‘xL 3:20.952“! DP} ICE

Page 15 0f 21 Petitioner Microsoft Corporation — EX. 1008, p. 4558

P-3970
MetaAuction Draft Design SRI Confidential

Once the major category has been determinecL the find.MarketPrice agent tries to fill out
the search form for that category with relevant criteria taken from the target description.
Resulting descriptions are then compared against the target description for similarity, and
the price, description and URL of the best guess are returned to the user interface for
display to the user. Note: this step is still under development, and in the meantime, a
simple price-by-category result is returned as the answer.

Agent Scheduler

The agent scheduler, implemented in Prolog, is responsible for efficiently managing
update requests for an entire community of auction bidding and monitoring agents and
for webcrawler agents. As auction agents are created or modified, the agent scheduler
plans future checkup times for the site based on:

•

•

•
•

•

Closing date: scheduled checkup times are proportional to the amount of time
remaining until the auction closes. If the auction closes in a week from now, it
doesn't make sense to check the auction page every minute. However as the deadline
approaches, more frequent checks are necessary.

Auction importance: some auctions are more desirable than others for a variety of
reasons. For instance, if one site has 500 copies of a product to sell and another site
only has one, placing a winning bid at the first site is much more interesting because
500 other users will need to bid higher before your bid is surpassed.

Users might also indicate a preference for a particular auction object over another .

Agressiveness parameter: a user can tailor an aggresiveness parameter which
influences how often an auction agent bids.

Real-world notifications: some auctions send an email when someone has outbid you,
and an email agent could reschedule an immediate counter-bid (not yet implemented).

User Interface

The user interface design reflects three key phases in the auction buying process: product
location, bid selection, and monitoring. In the setup phase ofthe FAAAB prototype
(Figure 1), users find and evaluate potential auctions of interest, and then create auction
agents to monitor and bid on these auctions. The Setup tab of the user interface retrieves
auction information from the auction site crawlers. Users may then choose to view the
original web page featuring the auction or to search for the best online market price for
the product offered by that specific auction. Note that multiple .. tabs" can be created,
each representing a group of agents (currently limited to 10 per group) acting upon
auctions in a given "domain" (e.g., Pentium computers, cameras, sunglasses, etc.)

SRIINTERNA TIQi--1.1'1) .•

SRI Confidential
INTELLeCTUAL f'ROPi:.'H'I !JFJCE

Page 16 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4559

533970
MetaAuction Draft Design SRI Confidential

Once the major category has been determined, the findMarketPiice agent tries to fill out

the search form for that category with relevant criteria taken from the target description.

Resulting descriptions are then compared against the target description for similarity, and

the price, description and URL of the best guess are returned to the user interface for

display to the user. Note: this step is still under development, and in the meantime, a

simple price-by-category result is returned as the answer.

Agent Scheduler

The agent scheduler, implemented in Prolog, is responsible for efficiently managing

update requests for an entire community of auction bidding and monitoring agents and

for webcrawler agents. As auction agents are created or modified, the agent scheduler

plans future checkup times for the site based on:

° Closing date: scheduled checkup times are proportional to the amount of time

remaining until the auction closes. If the auction closes in a week from now, it

doesn’t make sense to check the auction page every minute. However as the deadline

approaches, more frequent checks are necessary.

' Auction importance: some auctions are more desirable than others for a variety of

reasons. For instance, if one site has 500 COpies of a product to sell and another site

only has one, placing a winning bid at the first site is much more interesting because

500 other users will need to bid higher before your bid is surpassed.

° Users might also indicate a preference for a particular auction object over another.

' Agressiveness parameter: a user can tailor an aggresiveness parameter which

influences how often an auction agent bids.

' Real-world notifications: some auctions send an email when someone has outbid you,

and an email agent could reschedule an immediate counter-bid (not yet implemented).

User Interface

The user interface design reflects three key phases in the auction buying process: product

location, bid selection, and monitoring. In the setup phase of the FAAAB prototype

(Figure 1), users find and evaluate potential auctions of interest, and then create auction

agents to monitor and bid on these auctions. The Setup tab of the user interface retrieves

auction information from the auction site crawlers. Users may then choose to View the

original web page featuring the auction or to search for the best online market price for

the product offered by that specific auction. Note that multiple “tabs” can be created,

each representing a group of agents (currently limited to 10 per group) acting upon

auctions in a given “domain” (e.g., Pentium computers, cameras, sunglasses, etc.)

SR? lNTERNAiiQNAL

SR! Confidential

lNTELLECYUAL PROPER TY UFFJCE

Page 16 0f 21 Petitioner Microsoft Corporation — EX. 1008, p. 4559

MetaAuction Draft Design

jpentium

_Apptet started.

P-3970
SRI Confidential

I j·:,i~Searc(a.> ~'l FAAABI

1m • :
. .

' ,_ •' '

~1000

OSHIBA PORTEGE 650CT PENTIUM 13:JMHZ 1.2GB •
OSHIBA EQUIUM 52000 PENTIUM 200MMlC 2.5GB -·
OSHIBA !NANIA 7201 PENTIUM 2DOMMX 32MB 3.11-
0SHIBAEQUIUM6200M PENTIUM PRO 2DOMHZ 4-
0SHIBAEQUIUM5160DPENTDJM166UMX2.1GB-

Figure 1. Creating auction agents for "Pentium" computers

For each domain tab createc.L a user can graphically view progress and results of auction
agents (Figure 2). Agents are classified either as monitor agents, who simply record
progress of a particular auction, or bidding agents, who autonomously make bids
according to user instructions. The market price (actually, the highest market price for all
auction products) and the (highest) max bid are displayed on a gauge. As the auctions
unfold, the agents graphically move up the meter, displaying their current prices. Agents
who have surpassed their max bid are colored with a red background.

An agent editor enables the user to tailor various properties of the auction agent, such as
max bid and aggressiveness. Additional information is also available, such as the bidding
history to the current moment, market price for the product, etc.

SRI INTERNATIONAL
SRI Confidential

JNTELL!:CTUAL FRGPE:RIY OFFICE

Page 17 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4560

MetaAuction Draft Design SR! Confidential

I»? pole! Viewer Faaab class

 ACTIONBOO
DELL [AWL ’ oaumquWeMuEEn 33241998Llsflihttpjmw:

Lwflg§§§10§WebALgctiun =8 26 199816 a origami»
..J-...Lll

GAEWAYPL.‘ 8818508LWebAUcflon {32‘1L1998168h JJWWWW.
HP PENTlU... EL 0008188; Wechtion 82419981S0;htinmm:

Hgggqogjf- . 3998 ,161} mummy _
TO§Ij13§fOrL , .u . , toasts stem

00 001.00: WebAuction i824139816Jh11pimw
H? 2800 FE

UM 31 8Q... L68..981 8.8,? Webeuction i8241998?—1 6...Lhttpzimw.}¥:

x
i
x

.. -----. .L ...--.- v. -..--.1. ---.-....‘4. -.1

995/5510 PR. 00258DULerbAuchcn .‘s‘ 24tsaeggot:1thw__.
UMAXACTlO. * 00um 00f WenAucuan :3241998,,1801hflpJfi/6WW '_ .. .-."...F.......S--...'. ._ .-._.-...Jx...'..-._‘.-.._. _._ _-_..—
Em PR44.. 88D4988' WebAuciion L324,1398‘35Of_thfipdhww
INTEL EARL... 8388‘! 8118 Weizmann?! 23 23 199818..lhfipmw_._—...... ...~.L~.M..L-—>~J—~.L.-—.J~——...._.......__.._..

FIG MOTHE... l 8883308: WebAuction 1824L99818... ihfiflfllww.w

TC438HXM- i 38,081 884 WeMucilon:,8 24199816. '
. ... '....-_.-.. ...“.-..............s..'_.'.,._..}.....'

 OSHIBA EQUIJII 52080 PBTHUM 200mm 2.563 .:

 051an “FIN“! 1'2!" PEHTIUM 2mm 32MB 3.0..
OS'IBAEQWHGZWM PEN'HUM PRO 20m 4.... 3
0581811 EQLIIJM 51.0 PENTIJM 165mm 2.163 .. 1

LWehAuttion88.131.88’

WenAucron

..-. 'I "‘39,?“ng
TQSHIEIMN... ’ ‘ 80,2;28

80,131 885 WehAuchon :8241__;8__98168' in)”r: 08923825.mmmlozr 3

. fie: solutianis) were four!!! for the query

Moist started.

Figure 1. Creating auction agents for “Pentium” computers

For each domain tab created, a user can graphically View progress and results of auction

agents (Figure 2). Agents are classified either as monitor agents, who simply record

progress of a particular auction, or bidding agents, who autonomously make bids
according to user instructions. The market price (actually, the highest market price for all

auction products) and the (highest) max bid are displayed on a gauge. As the auctions

unfold, the agents graphically move up the meter, displaying their current prices. Agents

who have surpassed their max bid are colored with a red background.

An agent editor enables the user to tailor various properties of the auction agent, such as

max bid and aggressiveness. Additional information is aiso available, such as the bidding

history to the current moment, market price for the product, etc.

SRI lNTERNATiONAL

SR! Confidential

INTELLECTURLFQSPWEIYOFFJCE

Page 17 0f 21 2 Petitioner Microsoft Corporation — EX. 1008, p. 4560

P-3970
MetaAuction Draft Design SRI Confidential

FAAAB!

~Da!a Sheet fo1 TOSHIBA INFINIA ... 11!11~£3

WebAuction

Price: $222
' --- -~ .i .Ciosing_date: _ 812411998-16110 •...

;_-~bid: 400

.ArW~B-. .:.:-.. - ~ ij -·~ .. !J(
a :. -· Desaiplion• ---

iOSH18A ll>FlNIA 7201 PENTJUM 200MMX •
_ , 321\46 3.006 t;.!)(CD-P.OM 33.6 MODEM- •

Refl.lflj. ... _. __ _

Next action: 8!23!1999-211111
• i"'-'· .-,Bid~:: ·:j

. Registfy - .

Figure 2. Bidding and monitoring agents for "pentium" auctions

Alternate interfaces are also possible. Figure 3 displays a lightweight .. banner" interface
which unobtrusively keeps the user informed as to updates by his or her auction agents.

Figure 3. A lightweight banner interface displaying updates

SRllNTERNATl"''" '·
SRI Confidential

iNTELLECTUAL :ORCPERTY GFriCE

Page 18 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4561

MetaAuction Draft Design SR! Confidential

FAAAB!
Final All Auctions And Bid!

5:30am Sheet lo: TOSHIBA mrmm BBI,

: . - WeMuction
'- . ..®a:ama .Gmiaorj g

% Price: $222 .

.§ Lansngdatei' , momma"_:_s

, Description. . ,. ,
= rmsmmrzm mumszuomm . :’

man was 12:4 mean 33.8MQDE51- - *
REM'b_, .‘ ..,-_ ,

umactlm: manséezuin
Figure 2. Bidding and monitoring agents for “pentiurn” auctions

Alternate interfaces are also possible. Figure 3 displays a lightweight “banner” interface

which unobtrusively keeps the user informed as to updates by his or her auction agents.

Figure 3. A lightweight banner interface displaying updates

SRl lNTERNAT‘M‘“?

SR! Confidential

iNTELLECTUAL FRCSERTY UFFiCE

Page 18 0f 21 Petitioner Microsoft Corporation — EX. 1008, p. 4561

P-3970
MetaAuction Draft Design SRI Confidential

Prototype Architecture

Figure 3 illustrates the architectural layout of the F AAAB components within the OAA.
This section details a few notes on information flow and data storage choices
implemented in the prototype.

FAAAB!
FAAAB User Interface

FAAAB Banner U f

WebLOAA Shell
WebAucAgt crawler
BidFind extractor
ftndMarketPrice extractor
WebAucAgt extractor

EMail

WebAuction Database
Cache data from WebAucAgt

Agent Scheduler

FAAAB Database
Auction Agent Definitions
Auction Agent State
Auction Site Information
User-Site. Information

Figure 3. Architecture of FAAAB Prototype

The main F AAAB user interface is accessed from a web browser. According to the
F AAAB operational concept, a user will begin by issuing searches for auctions selling
interesting products. The results of these searches come from cached data stored in the
WebAuction database, and recalculated-on-demand data retrieved by the Bid.Find
extractor agent WebCrawler caches updates are managed by the Agent Scheduler.

For a given auction found by the above process, the user can query market price
information about its products using the find.MarketPrice extractor, and view full
information about the auction using the m browser.

A user then selects a subset of auctions to monitor using F AAAB agents -- information
about each auction agent is stored in the F AAAB database. A user can edit and tailor
agent specific information using the editor provided by the UI.

The Agent Scheduler is notified through OAA's trigger mechanisms of new or modified
auction agent definitions. For each auction agent, the scheduler generates a monitoring
plan based on auction closing date, importance of the auction site, user-tailorable
agressiveness parameters, etc.

SRI INTERNATIONAL
SRI Confidential

.
INTEllECTUAL .ORC?::R ~' Or .-ICE

Page 19 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4562

P-39.70
MetaAuction Draft Design SRI Confidential

When an auction agent "checkup" time arrives, the scheduler sends a request for an
extractor to read the auction site and retrieve all information about it. If a bid should be
made according to the optimal bidding strategies for the user's portfolio, a request is
made to available bidding wrapper agents. The results of monitoring and bidding are
written to the AucAgtState predicates in the F AAAB database.

The F AAAB user interface and banner user interface both receive update notifications
about change in agent state, and display the results accordingly.

An email agent can be used for sending final reports about history and results when an
auction closes, and for detecting real-world notifications that another user has outbid you.

Note: the system is extensible and can operate in disconnected mode. As new bidding
and monitoring extractor and crawler agents are dynamically added to the system, they
will automatically be integrated into the F AAAB process. Disconnected operation is
available because both the user interface agents and agent scheduler store all state
information in persistent databases and reload this information upon connection at a later
time.

Conclusions

The F AAAB prototype illustrates that the construction of an automated meta-auction site
management service is a feasible endeavor. The key contributions of the effort are:

• Design and implementation of multiple user interfaces that enable ubiquitous,
disconnected access and control to the auction agents.

• Design and implementation of bidding and monitoring strategies and scheduling.

• Integration within a flexible architecture that facilitates light client Uis and complex,
distributed, extensible server implementations.

• Selection of a representation language (WebL) for encoding navigational and
extraction knowledge for web sites.

SRI INTERNATIONAL
SRI Confidential

INTELLECTUAL ~RO?EiFY Oi':'iCE

Page 20 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4563

P--3970
MetaAuction Draft Design SRI Confidential

Related Work & Resources

1. MIT Media Lab • s KASBAH experiment: multi-agent implementation of a
commercial marketplace, where both buyers and sellers are represented by agents.
What we can learn: parameters and algorithms for automated buying agents.
http://ecommerce.media.mit.edu/Kasbahl

2. AgentSoff s LiveAgenl Pro: A scripting language for automating the web. Semi
automatic generation of scripts through construction through example. Cumbersome
to use ...
http://www.agentsoft.com/

3. Digital/Compaq's WebL language: A scripting language implemented in Java which
contains powerful "Markup Algebra" and exception handling features. Free!
http://www.research. digital.com/SRC/WebL

4. BidFinder: An auction meta-site search engine, allowing users to find current auctions
for products (from keywords).
http://www. bidfinder. com/

5. WebAuction: One of the most popular and large online auction sites.
http://www.webauction.com/

6. Jango: Bought by Excite, the premier product finder on the web. Spinoff from
University of Washington (Etzioni & Weld).
httn://www.jango.com/

7. Junglee: Similar to Jango but currently only for resume selling/buying.
http://www.junglee.com/

SRI Confidential

Page 21 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4564

MetaAuction Draft Design SR! Confidential

Related Work & Resources

1. NET Media Lab’s KASBAH experiment: multi-agent implementation ofa

commercial marketplace, where both buyers and sellers are represented by agents.

What we can learn: parameters and algorithms for automated buying agents.

h@://ecommerce.media.mitedu/Kasbahf

2. AgentSoft’s LiveAgent Pro: A scripting language for automating the web. Semi-

automatic generation of scripts through construction through example. Cumbersome
to use...

http://wwwagentsoft com/

3. Digital/Compaq’s WebL language: A scripting language implemented in Java which

contains powerful “Markup Algebra” and exception handling features. Free!

http://www.research.digitalcom/SRC/WebL

4. BidFinder: An auction meta-site search engine, allowing users to find current auctions
for products (from keywords).

ht_tp://www.bidfinder.com/

5, WebAucticn: One of the most popular and large online auction sites.

http://ww.webauction.com/

6. Jango: Bought by Excite, the premier product finder on the web. Spinoff from

University ofWashington (Etzioni & Weld).

hfipzl/wwwjangocom!

7. Junglee: Similar to Jango but currently only for resume sellingflauying.

hflpt/lwwwjungleecom/

, , SR! tNTERNAWWM
SR! Confidential

mt’ELLa'chAL PECXRST‘ om:

Page 21 Of 21 Petitioner Microsoft Corporation — EX. 1008, p. 4564

66/tl/£0
1111111111111111111~1111111111111111111

Old ·s·n ot9::>r PROVISIONAL APPLICATION COVER SHEET

Attorney Docket No.: SRI1P024+ This transmittal and the documents and/or fees itemized
hereon and attached hereto have been deposited as "Express Mail

·'Pnst Office to Addressee" in accordance with 37 C.F.R. § 1.10 with
Express Mail Mailing Label Number EL285395885US

First Named Inventor: CHEYER, Adam J.

Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

D Duplicate for
fee processing

Sir: This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53(c).

INVENTOR(S)I APPLICANT(S)
RESIDENCE (CITY AND

LAST NAME FIRST NAME MIDDLE INITIAL EITHER STATE OR FOREIGN
COUNTRY)

CHEYER Adam J. Menlo Park, CA

TITLE OF INVENTION (280 characters max)
AN "INVISIBLE" USER INTERFACE PROVIDING A HIGH DEGREE OF INTEGRATION ACROSSS MULTIPLE

APPLICATIONS INA PERSONAL COMPUTER ENVffiONMENT

CORRESPONDENCE ADDRESS

HICK1\1AN STEPHENS & COLE~N, LLP
P.O. Box 52037

Palo Alto, CA 94303-0746
(650) 470-7430

ENCLOSED APPLICATION PARTS (check all that a I)

__ Specification

< -) __ Drawing(s)

Number of Pages

Number of Sheets ____ _

__ Small Entity Statement

X Other: Title. Abstract and Supp. Info. (8 Pages)

X A check or money order is enclosed to cover the Provisional filing fees. Provisional Filing Fee Amount $150

X The commissioner is hereby authorized to charge any additional fees which
may be required or credit any overpayment to Deposit Account No. 50-0384
(Order No. SRI1P024+).

The inventions made by an agency of the United States Government or under a contract with an agency of the United States Government.

____ No

Respectfully Submitted,

SIGNATURE

TYPED NAME

____ Yes, the name of the U.S. Govermnent agency and the contract number are:

DATE 3117/99

Brian R. Coleman REGISTRATION NO. _ _,3"""9__,__,1"-'4'"""5 __ _

PROVISIONAL APPLICATION FILING ONLY

GOOGLE EXHIBIT 1011Page 1 of 9 Petitioner Microsoft Corporation - Ex. 1008, p. 4565

156311 {ED

llllllllllllllllllllllllllllllllllllll
0.1.1 '51; ovgor PROVISIONAL APPLICATION COVER SHEET

This transmittal and the documents and/or fees itemized Attorney Docket Na; SR11P024+ A \ 9
' hereon and attached hereto have been deposited as “Express Mail

“Post Office to Addressee” in accordance with 37 CFIR. §l.10 with First Named Inventor; CI—EYER, Adam J.
Express Mail Mailing Label Number EL285395885US

r ' P

Assistant Commissioner for Patents [:1 Duplicate for “3;;
Box Patent Application fee processing :3" E“
Washington, DC 20231 *9 _———“

I'll

Sir: This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1538:).

INVENTOR(S)/APPLICANT(S)
RESIDENCE (CITY AND

LAST NAME FIRST NAME MIDDLE INITIAL EITHER STATE OR FOREIGN

COUNTRY) —— “Warm

TITLE OF INVENTION (280 characters max)
AN “INVISIBLE” USER INTERFACE PROVIDING A HIGH DEGREE OF INTEGRATION ACROSSS MULTIPLE

APPLICATIONS INA PERSONAL COMPUTER ENVIRONMENT

CORRESPONDENCE ADDRESS

HICKMAN STEPHENS & COLEMAN, LLP
PO. Box 52037

Palo Alto, CA 94303—0746

(650) 470-7430

ENCLOSED APPLICATION PARTS (check all that a n I)

Specification Number of Pages Small Entity Statement

Drawing(s) Number of Sheets X Other: Title, Abstract and Supp. Info. g8 Pages!

X A check or money order is enclosed to cover the Provisional filing fees. Provisional Filing Fee Amount $150

X The commissioner is hereby authorized to charge any additional fees which

may be required or credit any overpayment to Deposit Account No. 50-03 84
(Order No 81111130244»)

The inventions made by an agency of the United States Government or under a contract with an agency of the United States Government.

No Yes, the name of the US. Government agency and the contract number are:

Respectfully Submitted, f
SIGNATURE DATE 3/17/99

TYPED NAME Brian R. Coleman REGISTRATION NO. 39 145

-» PROVISIONAL APPLICA TI0N FILING ONLY

Page 1 Of 9 Petitioner Microsoft Cgrggzglh‘rla— %¥Il16§8¥1p1&153

TITLE OF THE INVENTION

An "Invisible" User Interface Providing a High Degree of Integration Across
Multiple Applications in a Personal Computer Environment

ABSTRACT

Let's say a user is doing some interactive document authoring, and wants to
insert some information that exists somewhere in electronic form but is
currently external to the document. User wants this to be a highly integrated
process, i.e., doesn't want to shift attention away from the working document
and temporarily adjust to a different interaction mode, and shouldn't have to
waste time on menial, repetitive steps simply to move information around that is
already inside the computer.

In accordance with the present invention, an "OAA-style" architecture
(facilitated collaboration among distributed agents with declared capabilities
in a high-level interagent communication language) can be used to seamlessly
("invisibly") the document authoring application and other auxiliary
applications, such as information applications. For example, here is
an outline for one possible interactive scenario:

1) User is running an interactive document authoring application

2) User signals for OAA attention (e.g., function key, like invoking a "help"
coach)

3) User requests insertion of desired information, e.g. (using natural
language) "Insert the directory listings for Adam Cheyer").

4) Request is parsed as needed by NL agents.

5) Appropriate auxil agent(s) is(are) selected, and the Request is
., automatically dispatched in appropriate form to the selected agent(s) (e.g.,

local address book, Internet search engine, local file manager)

6) agent(s) the desired data.

7) The retrieved data is presented to the document authoring application and
inserted into the working document.

Authoring "invisible"-style integration of selected
auxiliary applications -- that are pre-selected and "hardwired" for anticipated
patterns of likely use-- are becoming quite popular, e.g., spelling and grammar
checkers, more specialized citation checkers, and even the merger/integration of
Web/desktop file management. But architecture provides great
potential benefit over such alternatives, in part because it is not a hardwired
architecture. With OAA-style architecture, many different possible auxiliary
application-agents can each declare their capabilities, and user requests are
intelligently processed and dynamically -- so that new agents can be
plugged in over time. Such a structure, in accordance with the present
invention, can effectively provide the primary UI to an entire personal
computing environment rather than just for a single specialized application. In
addition, with the likely future growth of speech-driven user interfaces, the
value added by a UI-integration technology based on OAA-style architecture in
accordance with the present invention is even more pronounced.

Page 2 of 9 Petitioner Microsoft Corporation - Ex. 1008, p. 4566

TITLE OF THE INVENTION

An "Invisible“ User Interface Providing a High Degree of Integration Across

Multiple Applications in a Personal Computer Environment

ABSTRACT

Let's say a user is doing some interactive document authoring, and wants to
insert some information that exists somewhere in electronic form but is

currently external to the document. User wants this to be a highly integrated

process, i.e., doesn't want to shift attention away from the working document

and temporarily adjust to a different interaction mode, and shouldn‘t have to

waste time on menial, repetitive steps simply to move information around that is
already inside the computer.

In accordance with the present invention, an "OAA—style“ architecture

(facilitated collaboration among distributed agents with declared capabilities

in a high—level interagent communication language) can be used to seamlessly
("invisibly") integrate the document authoring application and other auxiliary
applications, such as information gathering applications. For example, here is

an outline for one possible interactive scenario:

1) User is running an interactive document authoring application

fit 2) User signals for 0AA attention (e.g., function key, like invoking a "help“
coach)

3) User requests insertion of desired information, e.g. (using natural
language) "Insert the directory listings for Adam Cheyer").

4) Request is parsed as needed by NL agents.
5) Appropriate auxiliary agent(s) is(are) selected, and the Request is

automatically dispatched in appropriate form to the selected agent(s) (e.g.,
local address book, Internet search engine, local file manager)

as

6) Designated agent(s) retrieves/processes the desired data.

7) The retrieved data is presented to the document authoring application and

inserted into the working document.
Authoring applications featuring "invisible"—style integration of selected

auxiliary applications -— that are presselected and "hardwired" for anticipated

patterns of likely use —— are becoming quite popular, e.g., spelling and grammar
checkers, more specialized citation checkers, and even the merger/integration of

Web/desktop file management. But OAA-style architecture provides great

potential benefit over such alternatives, in part because it is not a hardwired
architecture. With OAA—style architecture, many different possible auxiliary
application-agents can each declare their capabilities, and user requests are

intelligently processed and delegated dynamically —~ so that new agents can be
plugged in over time. Such a structure, in accordance with the present

invention, can effectively provide the primary UI to an entire personal

computing environment rather than just for a single specialized application. In
addition, with the likely future growth of speech-driven user interfaces, the

value added by a UI-integration technology based on OAA-style architecture in

accordance with the present invention is even more pronounced.

Page 2 Of 9 Petitioner Microsoft Corporation — EX. 1008, p. 4566

SUPPLEMENTAL INFORMATION

Sample source code excerpts for implementing a simple embodiment of the present
invention are attached.

Pending patent application serial no. assigned to SRI (docket no.
3949-2) provides a detailed description of the underlying OAA platform
architecture, and also specific of several applications including
"multi-modal maps" which may be helpful in preferred embodiments. The
referenced pending patent application is incorporated herein by reference in its

Page 3 of 9 Petitioner Microsoft Corporation - Ex. 1008, p. 4567

unit main;

(***
* Unit: Main
* --------------------- ------·----
* Purpose:
*

Program body for "KeyCap Agent", which provides an "invisible"
or "ubiquitous" user interface to a community of OAA agents.

*
*
*
*
*
*

From any Windows program, a natural language query (e.g. "phone
number of bill smith's manager") can be typed and copied to the
Windows clipboard. When a key (e.g. F12) is hit, this agent takes
the English request, requests translation and execution from the
OAA community, and then posts the result back on the clipboard with
an audial confirmation ("ding"). If the result couldn't be

executed,
* the user hears a failure sound ("bong"). In this way, requests
* many agents and programs can be accessed transparently
* from ANY Windows application at any time, without having to call up
* separate user interfaces for each of the involved apps.
* Authors: Adam Cheyer
* Version: 1.0
* Copyright 1998 by SRI International, all rights reserved.
**)

(* === *)
(* Interface: exported declarations *)
(* === *)

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Menus, OleCtrls, isp3, OAAAgent, ComCtrls, FngKbdNtfy, StdCtrls, MPlayer;

type
TfrmMain = class(TForm)

MainMenu1: TMainMenu;
oaa: TAgent;
tcp: TTCP;
mnuFile: TMenuitem;
mnuExit: TMenuitem;
mnuConnect: TMenuitem;
Status: TStatusBar;
keyCap: TFnugryKeyboardNotify;
txtTest: TEdit;
MediaPlayerl: TMediaPlayer;
Labell: TLabel;
procedure mnuConnectClick(Sender: TObject);
procedure tcpClose(Sender: TObject);
procedure tcpDataArrival(Sender: TObject; bytesTotal: Integer);
procedure tcpConnect(Sender: TObject);
procedure oaaSendData(Sender: TObject; data: String);
procedure mnuExitClick(Sender: TObject);
function oaaOAAEvent(Sender: TObject; ks, func, args: PChar;

var ans: PChar): Boolean;
procedure keyCapKeyboardMessage(Sender: TObject; Key, lParam: Integer;

var £Discard: Boolean);
procedure FormCreate(Sender: TObject);
procedure Play(fname: String);
procedure ButtonlClick(Sender: TObject);

Page 4 of 9 Petitioner Microsoft Corporation - Ex. 1008, p. 4568

private
{ Private· declarations
function (s: PChar) PChar;

public
busy: Boolean;
{ Public declarations
procedure ReadCmdLine;

end;

var
frmMain: TfrmMain;

implementation

uses connect, clipbrd;

{$R *.DFM}

procedure TfrmMain.ReadCmdLine;
var

i: Integer;
StartOAA: Boolean;
host: String;
port: integer;

begin
i :::: 1;
StartOAA False;
oaa.ReadSetupFile(host, port);
tcp.RemoteHost := host;
tcp.RemotePort : port;
While i <= ParamCount do begin

if ParamStr(I) = '-oaa_host' then begin
i := i + 1;
StartOAA : True;
tcp.RemoteHost := ParamStr(I)

end else
if ParamStr(I) '-oaa_port' then begin

I : I + 1;
StartOAA := True;
tcp.RemotePort := StrToint(ParamStr(I))

end else
if ParamStr(I) = '-oaa' then

StartOAA := True
else
if ParamStr(I) '-oaa_name' then begin

I : I + 1;
oaa.AgentName .- ParamStr(I)

end;
I : I + 1

end;
If StartOAA then begin

frmConnect.txtHost.Text tcp.RemoteHost;
frmConnect.txtPort.Text IntToStr(tcp.RemotePort);
tcp.Connect(frmConnect.txtHost.Text,

end;
end;

StrToint(frmConnect.txtPort.Text));

procedure TfrmMain.mnuConnectClick(Sender: TObject);
begin

2

Page 5 of 9 Petitioner Microsoft Corporation - Ex. 1008, p. 4569

private
{ Private declarations }

function ResolveArg(s: PChar) : PChar;

public

busy: Boolean;
{ Public declarations }

procedure ReadedLine;
end;

var

frmMain: TfrmMain;

implementation

uses connect, clipbrd;

{$R * .DFM}

procedure TfrmMain.ReadedLine;
var

i: Integer;
StartOAA: Boolean;

host: String;

port: integer;
begin

i z: 1;
StartOAA := False;

oaa.ReadSetupFile(host, port);

tcp.RemoteHost := host;
tcp.RemotePort := port;

While i <= ParamCount do begin

if ParamStr(I) = '«oaa_host' then begin
i :2 i + l;
StartOAA := True;

tcp.RemoteHost := ParamStr(I)
end else

if ParamStr(I) = ‘«oaa_p0rt’ then begin
I z: I + l;
StartOAA := True;

tcp.RemotePort :2 StrToInt(ParamStr(I))
end else

if ParamStr(I) = ‘—0aa' then
StartOAA := True

else

if ParamStr(I) = 'woaa_name' then begin
I := I + l;

oaa.AgentName := ParamStr(I)
end;
I := I + 1

end;

If StartOAA then begin

frmConnect.txtHost.Text 2: tcp.RemoteHost;
frmConnect.tXtPort.Text := IntToStr(th.RemotePort);

tcp.Connect(frmConnect.txtHost.Text,
StrToInt(frmConnect.txtPort.Text));

end;
end;

procedure TfrmMain.mnuConnectClick(Sender: TObject);
begin

Page 5 Of 9 Petitioner Microsoft Corporation — EX. 1008, p. 4569

if not oaa.Connected then begin
frmConnect.txtHost.Text := tcp.RemoteHost;
frmConnect.txtPort.Text := IntToStr(tcp.RemotePort);
if frmConnect.ShowModal mrOK Then begin

tcp.RemoteHost : frmConnect.txtHost.Text;
tcp.RemotePort : StrToint(frmConnect.txtPort.Text);
mnuConnect.Caption := 'Disconnect from OAA';
Status.SimpleText : 'Connecting to ' + tcp.RemoteHost + ' ' +

IntToStr(tcp.RemotePort) + ' ... ';
tcp.Connect(tcp.RemoteHost, tcp.RemotePort)

end
end
else begin

mnuConnect.Caption := 'OAA &Connect';
tcp.Close;
Status.SimpleText 'Disconnected'

end
end;

procedure TfrmMain.oaaSendData(Sender: TObject; data: String);
begin

tcp.SendData(data)
end;

procedure TfrrnMain.tcpConnect(Sender: TObject);
begin

Status.SimpleText : 'Connected: ' + tcp.Remotehost + ' ' +
IntToStr(tcp.RemotePort) + . ';

oaa.Connect;
end;

procedure TfrmMain.tcpDataArrival(Sender: TObject; bytesTotal: Integer);
var

data: OleVariant;
* begin

tcp.GetData(data, VarOleStr, bytesTotal);
oaa.OnDataRead(data)

end;

procedure TfrrnMain.tcpClose(Sender: TObject);

Status.SimpleText .- 'Disconnected.';
oaa.Disconnect

end;

procedure TfrrnMain.mnuExitClick(Sender: TObject);
begin

Halt
end;

procedure TfrmMain.Play(fname: String);
begin

try
MediaPlayerl.FileName := fname;
MediaPlayerl.Open;
MediaPlayerl.Play;

except
end

end;

3

Page 6 of 9 Petitioner Microsoft Corporation - Ex. 1008, p. 4570

-.
(* Returns true if this callback handles incoming event, false otherwise *)
{* ans should be a list of solutions, with the empty list "[]" *)
(* representing failure. *)
function TfrmMain.oaaOAAEvent(Sender: TObject; ks, func, args: PChar;

var ans: PChar): Boolean;
var goal, a, a2: PChar;
begin

Result : True;
a := nil;
a2 :o:= nil;
goal :"' nil;
(* Default answer: return success *)

Ans : = FStr (' [%s (%s) J ' , [func, args) , [func, args]) ;

(* Results are returned asynchronously from the Facilitator in
a "solved" message. If there are results to a query, paste
them to the clipboard and succeed, otherwise fail. *)

if (StrComp(func, 'solved') = 0) and (ListLen(args) "'4) then begin
NthElt(args, 2, goal);
NthElt(args, 4, a);
ListToTerms (a);
if StrComp(a, '') <> 0 then begin

Argument(a, 2, a2);
RemoveQuotes(a2);
Clipboard.SetTextBuf(UndoubleQuotes(a2));
Play ('good. wav');

end
else begin

Play('bad.wav');
end;

end

StrFree(a);
StrFree (a2);
StrFree(goal);
busy :"' False;
keyCap.Enabled
Result := false

else Result :o:= false
end;

true;

function addVariable(s: PChar)
var f, args, p: PChar;
begin

Functor(s, f, args);

PChar;

if ListLen(args) = 1 then begin
p :o:= FStr('%s(%s, X)', [f,args], [f,args])

end
else p : StrNew(s);
StrFree(f);
StrFree(args);
addVariable p

end;

function TfrmMain.ResolveArg(s: PChar)
var f, args, p, a: PChar;
begin

s := StrNew(s);
Functor(s, f, args);

PChar;

4

Page 7 of 9 Petitioner Microsoft Corporation - Ex. 1008, p. 4571

(* Returns true if this callback handles incoming event, false otherwise *)

(* ans should be a list of solutions, with the empty list "[]“ *)
(* representing failure. *)

function TfrmMain.oaaOAAEvent(Sender: TObject; ks, func, args: PChar;
var ans: PChar): Boolean;

var goal, a, a2: PChar;

begin
Result := True;

a := nil;

a2 := nil;

goal := nil;

(* Default answer: return success *)

Ans := FStr('[%s(%s)]', [func, args], [func, argSJ);

(* Results are returned asynchronously from the Facilitator in

a "solved" message. If there are results to a query, paste

them to the clipboard and succeed, otherwise fail. *)

if (StrComp(func, 'solved') 2 O) and (ListLen(args) = 4) then begin
NthElt(args, 2, goal);
NthElt<args, 4, a);
ListToTerms(a);

if StrComp(a, ") <> 0 then begin
Argument(a, 2, a2);
RemoveQuotes(a2);

Clipboard.SetTextBuf(UndoubleQuotes(a2));
Play('good.wav');

end

else begin

Play('bad.wav');
end;
StrFree(a);

StrFree(a2);

StrFree<goal);

busy := False;

keyCap.Enabled :2 true;
Result := false

end
else Result := false

end;

function addVariable(s: PChar) : PChar;

var f, args, p: PChar;
begin

Functor(s, f, args);

if ListLen(args) = 1 then begin

p := FStr('%s(%s, X)',[f,args],[f,args])
end

else p z: StrNew(s);
StrFree(f);

StrFree(args);

addVariable :2 p
end;

function TfrmMain.ResolveArg(s: PChar) : PChar;
var f, args, p, a: PChar;

A begin
’ s := StrNew(s);

Functor(s, f, args);

Page 7 Of 9 Petitioner Microsoft Corporation — EX. 1008, p. 4571

..
. ~

if ListLen(args) 1 then begin
if (StrPos(args, '(') <>nil) then

p := AddVariable(args);
oaa. Solve (p, [nil], [nil],' []', a);
StrFree(p);
ListToTerms(a);

end

if StrComp(a,' ') <> 0 then begin
StrFree(s);
Term(a, p, s);
StrFree (a);
Argument(p, 2, a);

end

s := FStr('%s(%s)',[f,a],[f,a]);
StrFree(a)

end;
StrFree(f);
StrFree(args);
ResolveArg .- s;

end;

(* Procedure executed when the Target key is
Finds a query on the clipboard, tries to translate
the English request to an ICL task, and then send
the ICL to the Facilitator agent for execution.
Fail if an ICL translation can't be found. *)

procedure TfrmMain.keyCapKeyboardMessage(Sender: TObject; Key,
lParam: Integer; var fDiscard: Boolean);

var
s: array[O .. 300) of char;
answers, p, p2: PChar;

begin
answers : nil;
p : nil;
p2 :o::o nil;
£Discard :""' False;
if (Key $7B) and // FS key
not busy
and (Clipboard.GetTextBuf(s, sizeof(s)) > O)
then begin

keyCap.Enabled : False;
busy : True;
answers := nil;
if oaa.Connected then begin

OAAAgent.DoubleQuotes(s, p2);
oaa.solve('convert_to_LF(' '%s' ',LF) ', [p2], [p2],' []', answers);
StrFree(p2);
if StrComp(answers,' [] ') ""'0 then begin

Play('bad.wav');
busy := False;
keyCap.Enabled .- true;

end
else begin

Play(' step.wav');
ListToTerms(answers);
Argument(answers, 2, p);
StrFree(answers);
if (StrPos(p, 'send(') = p) then begin

Argument(p, 1, answers);
txtTest.text := Strpas(answers);

5

Page 8 of 9 Petitioner Microsoft Corporation - Ex. 1008, p. 4572

if ListLen(args) = 1 then begin
f (StrPos(args, '(') <> nil) then begini

p := AddVariable(args);
oaa.Solve(p. [nil],[nil],'[]', a);

StrFree(p);
ListToTerms(a);

if StrComp(a,") <> 0 then begin
StrFree(s);

Term(a, p, s);
StrFree(a);

Argument(p, 2, a);
s z: FStr('%s(%S)',[f,a],[f,a]);
StrFree(a)

end

end

end;

StrFree(f);

StrFree(args);
Reso

end;
lveArg := s;

(* Procedure executed when the Target key is pressed.
Finds a query on the clipboard, tries to translate

English request to an ICL task, and then send
the ICL to the Facilitator agent for execution.

the

var

begin

9 1:

p2
fDis

if (
not

3: array[0..300] of char;
answers, p, p2: PChar;

answers := nil;

nil;
2: nil;
card .2 False;

Key = $78) and // F5 key

busy

and (Clipboard.GetTextBuf(s, sizeof(s))
then begin

keyCap.Enabled := False;

busy :2 True;
answers := nil;
i

Page 8 of 9

f oaa.Connected then begin

OAAAgent.Doub1eQuotes(s, p2);
oaa.solve(‘convertmto_LF("%e",LF)‘

StrFree(p2);

Fail if an ICL translation can't be found. *)

procedure TfrmMain.keyCapKeyboardMessage(Sender: TObject; Key,
lParam: Integer; var fDiscard: Boolean);

> 0)

,[p21. [p21, ' [] ', answerS);

if StrComp(answers,'[]') = 0 then begin

P1ay('bad.wav');
busy := False;

keyCap.Enabled := true;
end

elee begin

Play('step.wav‘);
ListToTerms(answers);

Argument(anewers, 2, p);
StrFree(answers);

if (StrPos(p, 'send(') = p) then begin

Argument(p, 1, answers);
txtTest.text 2: Strpas(answers);

Petitioner Microsoft Corporation — EX. 1008, p. 4572

end
end;

if (StrPos(answers, 'post_query(show(') =answers) then begin
StrFree (p);
Argument(answers, 1, p); StrFree(answers); // show(email())
Argument(p, 1, answers); StrFree(p); II email('a');
p := ResolveArg(answers); StrFree(answers);
p2 := AddVariable(p); StrFree(p);
answers := FStr('post_query(%s, []) ', [p2], [p2]);
StrFree(p2)

end;
oaa.PostEvent(answers, [nil], [nil])

end
else begin

Status.Simpletext := 'Strange: LF not wrapped in send()';
busy : = False;
keyCap.Enabled := true;

end;
StrFree(p)

end;
StrFree(answers)

end

procedure TfrrnMain.FormCreate(Sender: TObject);
begin

busy .- False;
end;

procedure TfrrnMain.ButtonlClick(Sender: TObject);
var d: Boolean;
begin

keyCapKeyboardMessage(Sender, $7B, 0, d);
end;

end.

6

Page 9 of 9 Petitioner Microsoft Corporation - Ex. 1008, p. 4573

Multimodal Maps� An Agent�based Approach

Adam CHEYER and Luc JULIA

SRI International

��� Ravenswood Ave

Menlo Park� CA ����� 	 USA

June ��
���

Abstract

In this paper� we discuss how multiple input modalities may be combined to produce more nat�

ural user interfaces� To illustrate this technique� we present a prototype map�based application for

a travel planning domain� The application is distinguished by a synergistic combination of hand�

writing� gesture and speech modalities� access to existing data sources including the World Wide

Web� and a mobile handheld interface� To implement the described application� a distributed net�

work of heterogeneous software agents was augmented by appropriate functionality for developing

synergistic multimodal applications�

� Introduction

As computer systems become more powerful and complex� e�orts to make computer inter�

faces more simple and natural become increasingly important� Natural interfaces should be

designed to facilitate communication in ways people are already accustomed to using� Such

interfaces should allow users to concentrate on the tasks they are trying to accomplish� not

worry about what they must do to control the interface�

In this paper� we begin by discussing what input modalities humans are comfortable

using when interacting with computers� and how these modalities should best be combined

in order to produce natural interfaces� In section three� we present a prototype map�based

application for the travel planning domain which uses a synergistic combination of several

input modalities� Section four describes the agent�based approach we used to implement

�

GOOGLE EXHIBIT 1012Page 1 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4574

the application and the work on which it is based� In section �ve� we summarize our

conclusions and future directions�

� Natural Input

��� Input Modalities

Direct manipulation interface technologies are currently the most widely used techniques

for creating user interfaces� Through the use of menus and a graphical user interface�

users are presented with sets of discrete actions and the objects on which to perform them�

Pointing devices such as a mouse facilitate selection of an object or action� and drag and

drop techniques allow items to be moved or combined with other entities or actions�

With the addition of electronic pen devices� gestural drawings add a new dimension

direct manipulation interfaces� Gestures allow users to communicate a surprisingly wide

range of meaningful requests with a few simple strokes� Research has shown that multi�

ple gestures can be combined to form dialog� with rules of temporal grouping overriding

temporal sequencing �	
�� Gestural commands are particularly applicable to graphical or

editing type tasks�

Direct manipulation interactions possess many desirable qualities� communication is

generally fast and concise input techniques are easy to learn and remember the user has

a good idea about what can be accomplished� as the visual presentation of the available

actions is generally easily accessible� However� direct manipulation su�ers from limitations

when trying to access or describe entities which are not or can not be visualized by the

user�

Limitations of direct manipulation style interfaces can be addressed by another inter�

face technology� that of natural language interfaces� Natural language interfaces excel

in describing entities that are not currently displayed on the monitor� in specifying tem�

poral relations between entities or actions� and in identifying members of sets� These

strengths are exactly the weaknesses of direct manipulation interfaces� and concurrently�

the weaknesses of natural language interfaces �ambiguity� conceptual coverage� etc�� can

be overcome by the strengths of direct manipulation ����

Natural language content can be entered through di�erent input modalities� including

typing� handwriting� and speech� It is important to note that� while the same textual con�

	

Page 2 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4575

tent can be provided by the three modalities� each modality has widely varying properties�

� Spoken language is the modality used �rst and foremost in human�human interactive

problem solving ���� Speech is an extremely fast medium� several times faster than

typing or handwriting� In addition� speech input contains content that is not present

in other forms of natural language input� such as prosidy� tone and characteristics of

the speaker �age� sex� accent��

� Typing is the most common way of entering information into a computer� because it

is reasonably fast� very accurate� and requires no computational resources�

� Handwriting has been shown to be useful for certain types of tasks� such as performing

numerical calculations and manipulating names which are di�cult to pronounce ����

	��� Because of its relatively slow production rate� handwriting may induce users to

produce di�erent types of input than is generated by spoken language abbreviations�

symbols and non�grammatical patterns may be expected to be more prevalent amid

written input�

��� Combination of Modalities

As noted in the previous section� direct manipulation and natural language seem to be

very complementary modalities� It is therefore not surprising that a number of multimodal

systems combine the two�

Notable among such systems is the Cohen�s Shoptalk system ���� a prototype manufac�

turing and decision�support system that aids in tasks such as quality assurance monitor�

ing� and production scheduling� The natural language module of Shoptalk is based on the

Chat��� natural language system �	�� and is particularly good at handling time� tense� and

temporal reasoning�

A number of systems have focused on combining the speed of speech with the reference

provided by direct manipulation of a mouse pointer� Such systems include the XTRA

system ���� CUBRICON ����� the PAC�Amodeus model ����� and TAPAGE ��� �	��

XTRA and CUBRICON are both systems that combine complex spoken input with

mouse clicks� using several knowledge sources for reference identi�cation� CUBRICON�s

domain is a map�based task� making it similar to the application developed in this paper�

However� the two are di�erent in that CUBRICON can only use direct manipulation to

Page 3 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4576

indicate a speci�c item� whereas our system produces a richer mixing of modalities by

adding both gestural and written language as input modalities�

PAC�Amodeus systems such as VoicePaint and Notebook allow the user to synergis�

tically combine vocal or mouse�click commands when interacting with notes or graphical

objects� However� due in part to the selected domains� the natural language input is very

simple� generally of the style �Insert a note here��

TAPAGE is another system that allows true synergistic combination of spoken input

with direct manipulation� Like PAC�Amodeus� TAPAGE�s domain provides only simple

linguistic input� However� TAPAGE uses a pen�based interface instead of a mouse� allow�

ing gestural commands� TAPAGE� selected as one of the �building blocks� for our map

application� will be described more in detail in section ��	�

Other pertinent work regarding the simultaneous combination of handgestures and gaze

can be found in �	� �
��

� A Multimodal Map Application

In this section� we will describe a prototype map�based application for a travel planning

domain� In order to provide the most natural user interface possible� the system permits

the user to simultaneously combine direct manipulation� gestural drawings� handwritten�

typed and spoken natural language When designing the architecture for the system� other

criteria were considered as well�

� The user interface must be light and fast enough to run on a handheld PDA while

able to access applications and data that may require a more powerful machine�

� Existing commercial or research natural language and speech recognition systems

should be used�

� Through the multimodal interface� a user must be able to transparently access a wide

variety of data sources� including information stored in HTML form on the World

Wide Web�

The map functionality� interface design� and classes of input data of the system pre�

sented here is based on a design by Oviatt and Cohen� used by them in a wizard�of�oz

simulation system designed to explore complex interactions of modalities ����� The agent�

based architecture used to realize Oviatt and Cohen�s design is new� as is its application

�

Page 4 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4577

Figure �� Multimodal Application for Travel Planning

to travel planning�

As illustrated in Figure �� the user is presented with a pen sensitive map display on

which drawn gestures and written natural language statements may be combined with

spoken input� As opposed to a static paper map� the location� resolution� and content

presented by the map change� according to the requests of the user� Objects of interest�

such as restaurants� movie theaters� hotels� tourist sites� municipal buildings� etc� are

displayed as icons� The user may ask the map to perform various actions� For example �

� distance calculation � e�g� �How far is the hotel from Fisherman�s Wharf��

� object location � e�g� �Where is the nearest post o�ce��

� �ltering � e�g� �Display the French restaurants within � mile of this hotel��

� information retrieval � e�g� �Show me all available information about Alcatraz��

The application also makes use of multimodal �multimedia� output as well as input�

video� text� sound and voice can all be combined when presenting an answer to a query�

During input� requests can be entered using gestures �Figure 	�� handwriting� voice� or

a combination of pen and voice� For instance� in order to calculate the distance between

two points on the map� a command may be issued using the following�

� gesture� by simply drawing a line between the two points of interest�

� voice� by speaking �What is the distance from the post o�ce to the hotel���

�

Page 5 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4578

Figure 	� Sample gestures

� handwriting� by writing �dist p�o� to hotel��

� synergistic combination of pen and voice� by speaking �What is the distance from here

to this hotel�� while simultaneously indicating the speci�ed locations by pointing or

circling�

Notice that in our example of synergistic combination of pen and voice� the arguments

to the verb �distance� can be speci�ed before� at the same time� or shortly after the

vocalization of the request to calculate the distance� If a user�s request is ambiguous or

underspeci�ed� the system will wait several seconds and then issue a prompt requesting

additional information�

The user interface runs on pen�equipped PC�s or a Dauphin handheld PDA ����� using

either a microphone or a telephone for voice input� The interface is connected either

by modem or ethernet to a server machine which will manage database access� natural

language processing and speech recognition for the application� The result is a mobile

system that provides a synergistic pen�voice interface to remote databases�

In general� the speed of the system is quite acceptable� For gestural commands� which

are handled locally on the user interface machine� a response is produced in less than one

second� For handwritten commands� the time to recognize the handwriting� process the

English query� access a database and begin to display the results on the user interface is

less than three seconds �assuming an ethernet connection� and good network and database

response�� Solutions to verbal commands are displayed in three to �ve seconds after the end

of speech has been detected partial feedback indicating the current status of the speech

recognition is provided earlier�

�

Page 6 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4579

� Approach

In order to implement the application described in the previous section� we chose to aug�

ment a proven agent� based architecture with functionalities developed for a synergistically

multimodal application� The result is a �exible methodology for designing and implement�

ing distributed multimodal applications�

��� Building Blocks

����� Open Agent Architecture

The Open Agent Architecture �OAA� ��� provides a framework for coordinating a society of

agents which interact to solve problems for the user� Through the use of agents� the OAA

provides distributed access to commercial applications� such as mail systems� calendar

programs� databases� etc�

The Open Agent Architecture possesses several properties which make it a good candi�

date for our needs�

� An Interagent Communication Language �ICL� and Query Protocol have been devel�

oped� allowing agents to communicate among themselves� Agents can run on di�erent

platforms and be implemented in a variety of programming languages�

� Several natural language systems have been integrated into the OAA which convert

English into the Interagent Communication Language� In addition� a speech recog�

nition agent has been developed to provide transparent access to the Corona speech

recognition system�

� The agent architecture has been used to provide natural language and agent access

to various heterogeneous data and knowledge sources�

� Agent interaction is very �ne�grained� The architecture was designed so that a number

of agents can work together� when appropriate in parallel� to produce fast responses

to queries�

The architecture for the OAA� based loosely on Schwartz�s FLiPSiDE system�	��� uses a

hierarchical con�guration where client agents connect to a �facilitator� server� Facilitators

provide content�based message routing� global data management� and process coordination

for their set of connected agents� Facilitators can� in turn� be connected as clients of other

�

Page 7 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4580

facilitators� Each facilitator records the published functionality of their sub�agents� and

when queries arrive in Interagent Communication Language form� they are responsible for

breaking apart any complex queries and for distributing goals to the appropriate agents�

An agent solving a goal may require supporting information and the agent architecture

provides numerous means of requesting data from other agents or from the user�

Among the assortment of agent architectures� the Open Agent Architecture can be

most closely compared to work by the ARPA knowledge sharing community ����� The

OAA�s query protocol� Interagent Communication Language and Facilitator mechanisms

have similar instantiations in the SHADE project� in the form of KQML� KIF and various

independent capability matchmakers� Other agent architectures� such as General Magic�s

Telescript ����� MASCOS �	��� or the CORBA distributed object approach ���� do not

provide as fully developed mechanisms for interagent communication and delegation�

The Open Agent Architecture provides capability for accessing distributed knowledge

sources through natural language and voice� but it is lacking integration with a synergistic

multimodal interface�

����� TAPAGE

TAPAGE �edition de Tableaux par la Parole et la Geste� is a synergistic pen�voice system

for designing and correcting tables�

To capture signals emitted during a user�s interaction� TAPAGE integrates a set of

modality agents� each responsible for a very specialized kind of signal ���� The modality

agents are connected to an �interpret agent� which is responsible for combining the inputs

across all modalities to form a valid command for the application� The interpret agent

receives �ltered results from the modality agents� sorts the information into the correct

�elds� performs type�checking on the arguments� and prompts the user for any missing in�

formation� according to the model of the interaction� The interpret agent is also responsible

for merging the data streams sent by the modality agents� and for resolving ambiguities

among them� based on its knowledge of the application�s internal state� Another function

of the interpret agent is to produce re�exes� re�exes are actions output at the interface

level without involving the functional core of the application�

The TAPAGE system can accept multimodal input� but it is not a distributed system

its functional core is �xed� In TAPAGE� the set of linguistic input is limited to a verb

�

Page 8 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4581

object argument format�

��� Synthesis

In the Open Agent Architecture� agents are distributed entities that can run on di�erent

machines� and communicate together to solve a task for the user� In TAPAGE� agents are

used to provide streams of input to a central interpret process� responsible for merging

incoming data� A generalization of these two types of agents could be �

Macro Agents� contain some knowledge and ability to reason about a domain� and

can answer or make queries to other macro agents using the Interagent Communication

Language�

Micro Agents� are responsible for handling a single input or output data stream� either

�ltering the signal to or from a hierarchically superior �interpret� agent�

The network architecture that we used was hierarchical at two resolutions � micro

agents are connected to a superior macro agent� and macro agents are connected in turn

to a facilitator agent� In both cases� a server is responsible for the supervision of its client

sub�agents�

In order to describe our implementation� we will �rst give a description of each agent

used in our application and then illustrate the �ow of communication among agents pro�

duced by a user�s request�

Speech Recognition �SR� Agent� The SR agent provides a mapping from the Interagent

Communication Language to the API for the Decipher �Corona� speech recognition system

���� a continuous speech speaker independent recognizer based on Hidden Markov Model

technology� This macro agent is also responsible for supervising a child micro agent whose

task is to control the speech data stream� The SR agent can provide feedback to an

interface agent about the current status and progress of the micro agent �e�g� �listening��

�end of speech detected�� etc�� This agent is written in C�

Natural Language �NL� Parser Agent� translates English expressions into the Interagent

Communication Language �ICL�� For a more complete description of the ICL� see ����

The NL agent we selected for our application is the simplest of those integrated into the

OAA� It is written in Prolog using De�nite Clause Grammars� and supports a distributed

vocabulary each agent dynamically adds word de�nitions as it connects to the network� A

current project is underway to integrate the Gemini natural language system ���� a robust

�

Page 9 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4582

bottom up parser and semantic interpreter speci�cally designed for use in Spoken Language

Understanding projects�

Database Agents� Database agents can reside at local or remote locations and can be

grouped hierarchically according to content� Micro agents can be connected to database

agents to monitor relevant positions or events in real time� In our travel planning ap�

plication� database agents provide maps for each city� as well as icons� vocabulary and

information about available hotels� restaurants� movies� theaters� municipal buildings and

tourist attractions� Three types of databases were used� Prolog databases� X���� hierar�

chical databases� and data loaded automatically by scanning HTML pages from the World

Wide Web �WWW�� In one instance� a local newspaper provides weekly updates to its

Mosaic�accessible list of current movie times and reviews� as well as adding several new

restaurant reviews to a growing collection this information is extracted by an HTML

reading database agent and made accessible to the agent architecture� Descriptions and

addresses of new restaurants are presented to the user on request� and the user can choose

to add them to the permanent database by specifying positional coordinates on the map

�eg� �add this new restaurant here��� information lacking in the WWW database�

Reference Resolution Agent� This agent is responsible for merging requests arriving

in parallel from di�erent modalities� and for controlling interactions between the user

interface agent� database agents and modality agents� In this implementation� the reference

resolution agent is domain speci�c� knowledge is encoded as to what actions must be

performed to resolve each possible type of ICL request in its particular domain� For a

given ICL logical form� the agent can verify argument types� supply default values� and

resolve argument references� Some argument references are descriptive ��How far is it

to the hotel on Emerson Street��� in this case� a domain agent will try to resolve the

de�nite reference by sending database agent requests� Other references� particularly when

contextual or deictic� are resolved by the user interface agent ��What are the rates for this

hotel���� Once arguments to a query have been resolved� this agent agent coordinates the

actions and calculations necessary to produce the result of the request�

Interface Agent� This macro agent is responsible for managing what is currently being

displayed to the user� and for accepting the user�s multimodal input� The Interface Agent

also coordinates client modality agents and resolves ambiguities among them � handwriting

and gestures are interpreted locally by micro agents and combined with results from the

��

Page 10 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4583

Figure
� Agent Architecture for Map Application

speech recognition agent� running on a remote speech server� The handwriting micro�agent

interfaces with the Microsoft PenWindows API and accesses a handwriting recognizer by

CIC Corporation� The gesture micro� agent accesses recognition algorithms developed for

TAPAGE�

An important task for the interface agent is to record which objects of each type are

currently salient� in order to resolve contextual references such as �the hotel� or �where I

was before�� Deictic references are resolved by gestural or direct manipulation commands�

If no such indication is currently speci�ed� the user interface agent waits long enough to

give the user an opportunity to supply the value� and then prompts the user for it�

We shall now give an example of the distributed interaction of agents for a speci�c query�

In the following example� all communication among agents passes transparently through

a facilitator agent in an undirected fashion this process is left out of the description for

brevity�

�� A user speaks� �How far is the restaurant from this hotel��

	� The speech recognition agent monitors the status and results from its micro agent�

sending feedback received by the user interface agent� When the string is recognized�

a translation is requested�

� The English request is received by the NL agent and translated into ICL form�

��

Page 11 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4584

�� The reference resolution agent �RR� receives the ICL distance request containing one

de�nite and one deictic reference and asks for resolution of these references�

�� The interface agent uses contextual structures to �nd what �the restaurant� refers

to� and waits for the user to make a gesture indicating �the hotel�� issuing prompts

if necessary�

�� When the references have been resolved� the domain agent �RR� sends database re�

quests asking for the coordinates of the items in question� It then calculates the

distance according to the scale of the currently displayed map� and requests the user

interface to produce output displaying the result of the calculation�

� CONCLUSIONS

By augmenting an existing agent�based architecture with concepts necessary for synergistic

multimodal input� we were able to rapidly develop a map�based application for a travel

planning task� The resulting application has met our initial requirements� a mobile� syn�

ergistic pen�voice interface providing good natural language access to heterogeneous dis�

tributed knowledge sources� The approach used was general and should provide a means

for developing synergistic multimodal applications for other domains�

The system described here is one of the �rst that accepts commands made of synergistic

combinations of spoken language� handwriting and gestural input� This fusion of modalities

can produce more complex interactions than in many systems and the prototype application

will serve as a testbed for acquiring a better understanding of multimodal input�

In the near future� we will continue to verify and extend our approach by building other

multimodal applications� We are interested in generalizing the methodology further work

has already begun on an agent�building tool which will simplify and automate many of the

details of developing new agents and domains�

� Acknowledgements

The work reported here would not have been possible without the inspiration of Sharon

Oviatt and Phil Cohen under whose direction we worked for a year on a project �NSF

Grant No� IRI��	�
��	� in which the combination of modalities contained in the inter�

face presented here was crystallized and studied via simulations� Neither they nor their

�	

Page 12 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4585

sponsors� of course� are responsible for the work presented here�

References

��� Allegayer� J� Jansen�Winkeln� R�� Reddig� C� and Reithinger� N� �Bidirectional use of

knowledge in the multi�modal NL access system XTRA�� In Proceedings of IJCAI����

Detroit� pp� ���	������

�	� Bolt� R� �Put that there� Voice and Gesture at the Graphic Interface�� Computer

Graphics� ���
�� ����� pp� 	�	�	���

�
� Bellik� Y� and Teil� D� �Les types de multimodalites�� In Proc� IIM��	 �Paris�� pp�

		�	��

��� Cohen� M�� Murveit� H�� Bernstein� J�� Price� P�� Weintraub� M�� �The DECIPHER

Speech Recognition System�� ���� IEEE ICASSP� pp� ������

��� Cohen� P�R�� Cheyer� A�� Wang� M� and Baeg� S�C� �An Open Agent Architecture�� In

Proc� AAAI��� � SA �Stanford�� pp� ����

��� Cohen� P� �The role of natural language in a multimodal interface�� Proceedings of

UIST��	� ��
�����

��� Dauphin DTR�� User�s Manual� Dauphin Technology� Inc�

� E� Butter�eld Rd�� Suite

���� Lombard� Ill ������

��� Dowding� J�� Gawron� J�M�� Appelt� D�� Bear� J�� Cherny� L�� Moore� B� and Moran

D�� �Gemini� A natural language system for spoken�language understanding�� Technical

Note �	�� AI Center� SRI International�

 Ravenswood Ave�� Menlo Park� CA ���	��

April ���
�

��� Faure� C� and Julia� L� �An Agent�Based Architecture for a Multimodal Interface�� In

Proc� AAAI��� � IM�S �Stanford�� pp� �	����

���� Genesereth� M� and Singh� N�P� �A knowledge sharing approach to software interop�

eration�� Computer Science Department� Stanford University� unpublished ms�� �����

���� General Magic� Inc�� �Telescript Product Documentation�� �����

��	� Julia� L� and Faure� C� �A Multimodal Interface for Incremental Graphic Document

Design�� HCI International ��
� Orlando�

�

Page 13 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4586

��
� Koons� D�B�� Sparrell� C�J�� and Thorisson� K�R� �Integrating Simultaneous Input

from Speech� Gaze and Hand Gestures�� In Intelligent Multimedia Interfaces� Edited by

Mark Maybury� Menlo Park� CA� AAAI Press� ���
�

���� Maybury� M�T� �ed��� Intelligent Multimedia Interfaces� AAAI Press�MIT Press�

Menlo Park� Ca� ���
�

���� Neal� J�G�� and Shapiro� S�C� �Intelligent Multi�media Interface Technology�� In In�

telligent User Interfaces� Edited by J� Sullivan and S� Tyler� Addison�Wesley Pub� Co��

Reading� MA� �����

���� Nigay� L� and Coutaz� J� �A Design Space for Multimodal Systems� Concurrent Pro�

cessing and Data Fusion�� In Proc� InterCHI��
 �Amsterdam�� ACM Press� pp� ��	�����

���� Object Management Group� �The Common Object Request Broker� Architecture and

Speci�cation�� OMG Document Number ����	��� December �����

���� Oviatt� S� �Toward Empirically�Based Design of Multimodal Dialogue Systems�� In

Proc� AAAI��� � IM�S �Stanford�� pp�
��
��

���� Oviatt� S� �Multimodal Interactive Maps� Designing for Human Performance�� Forth�

coming journal publication�

�	�� Oviatt� S� and Olsen� E� �Integration Themes in Multimodal Human�Computer In�

teraction�� Proceedings of ICSLP���� Yokohama� pp� ��������

�	�� Park� S�K�� Choi J�M�� Myeong�Wuk J�� Lee G�L�� and Lim Y�H� �MASCOS � A

Multi�Agent System as the Computer Secretary�� Submitted for publication�

�		� Pfa�� G� and Ten Hagen� P�J�W� Seeheim workshop on User Interface Management

Systems �Berlin�� Springer� Verlag�

�	
� Rhyne J� �Dialogue Management for Gestural Interfaces�� Computer Graphics� 	��	��

����� pp� �
����	�

�	�� Schwartz� D�G� �Cooperating heterogeneous systems� A blackboard�based meta ap�

proach�� Technical Report �
���	� Center for Automation and Intelligent Systems Re�

search� Case Western Reserve University� Cleveland Ohio� April ���
� Unpublished PhD�

thesis�

�	�� Sullivan� J� and Tyler� S� �eds��� Intelligent User Interfaces� Addison�Wesley Pub� Co��

Reading� MA� �����

��

Page 14 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4587

�	�� Warren� D� and Pereira� F�� �An E�cient Easily Adaptable System for Interpreting

Natural Language Queries�� in American Journal of Computational Linguistics� ��
��

���	� pp� �����	
�

�	�� Wauchope� K�� �Eucalyptus� Integrating Natural Language with a Graphical User In�

terface�� Naval Research Laboratory Technical Report NRL�FR�������������� in press�

�����

��

Page 15 of 15 Petitioner Microsoft Corporation - Ex. 1008, p. 4588

United States Patent [19]

Shwartz et al.

111111 11111U10 IIIIIM 111111970110151AIIIIIIIIIIIII I III 11iii
US005 197005A

[11] Patent Number: 5,197,005
[45] Date of Patent: Mar. 23, 1993

[54] DATABASE RETRIEVAL SYSTEM HAVING
A NATURAL LANGUAGE INTERFACE

[75] Inventors: Steven Shwartz, Orange; Claudio
Fratarcangeli, Trumbull; Richard E.
Cullingford, Monroe; Gregory S.
Aimi, North Haven; Donald P.
Strasburger, Stratford, all of Conn.

[73] Assignee: Intelligent Business Systems,
Milford, Conn.

[21] Appl. No.: 345,966

[22] Filed: May 1, 1989

[51] Int. CI.5 G06F 15/40
[52] U.S. C 364/419; 395/600;

364/DIG. 1; 364/274; 364/274.2; 364/274.3;
364/274.8

[58] Field of Search 364/513, 419, 200 MS File,
364/900 MS File; 395/600, 12

[56] References Cited

U.S. PATENT DOCUMENTS

4,736,296
4,811,207
4,839,853
4,914,590
4,930,071
4,931,935
4,943,933
4,974,191
4,994,967

4/1988
3/1989
6/1989
4/1990
5/1990
6/1990
7/1990

11/1990
2/1991

Katayama et al 364/419
Hikita et al 364/900
Deerwester et al 364/900
Loatman et al 364/419
Tou et al 314/300
Ohira et al 364/419
Miyamoto et al 364/513
Amirghodsi et al 395/700
Asakawa 364/419

FOREIGN PATENT DOCUMENTS

63-219034 9/1988 Japan.

OTHER PUBLICATIONS

Winston, "Natural Language Understanding", Artificial
Intelligence, CH. 9, pp. 291-334.
Rich, "Natural Language Interfaces", IEEE Computer,
Sep. 1984, pp. 39-47.
Kao et al., Providing Quality Responses with Natural
Language Interfaces: the Null Value Problem, IEEE
Trans. Software Eng., vol. 14, No. 7, 1988.
"Natural Language Interfaces: Benefits, Requirements,
State of the Art and Applications", by John L. Manfer-
delli, A. . East, Oct. 1987.

"Inside Computer Understanding", Schank and Ries-
beck, Erlbaum Press, 1981, Chapter 14.
"The LIFER Manual: A Guide to Building Practical
Natural Language Interfaces", by Gary G. Hendrix,
SRI International, Technical Note 138, Feb. 1977.
"Human Engineering for Applied Natural Language
Processing", by Gary G. Hendrix, SRI International,
Technical Note 139, Feb. '77.
"Applied Natural Language Processing", Shwartz,
Steven C., Petrocelli Books, Princeton, N.J., 1987.

Primary Examiner-Michael R. Fleming
Assistant Examiner-Debra A. Chun
Attorney, Agent, or Firm-Barry R. Lipsitz

[57] ABSTRACT

A database retrieval system having a natural language
interface is provided. A database developer creates a
knowledge base containing a structural description and
semantic description of an application database from
which data is to be retrieved. A database independent,
canonical internal meaning representation of a natural
language query is produced. An expert system accesses
structural and semantic description information in the
knowledge base and, in accordance with predefimed
rules, identifies database elements from said information
that are necessary to satisfy the query represented by
the internal meaning representation. A database query is
generated among the database elements, enabling the
retrieval and aggregation of data from the database to
satisfy the natural language query. A debugging facility
derives an external meaning representation from the
internal meaning representation. The external meaning
representation is database-independent, canonical, and
easily understandable to the database developer. The
external meaning representation enables the database
developer to comprehend the internal meaning repre-
sentation and verify that a natural language query is
properly interpreted by the system to effect the accu-
rate retrieval and aggregation of data from the database.
The external meaning representation comprises entities
and constraints relating to the entities, without refer-
ence to factual or linguistic relationships between enti-
ties that would prevent the external meaning represen-
tation from being easily understood.

41 Claims, 11 Drawing Sheets

Microfiche Appendix Included
(11,603 Microfiche, 47 Pages)

GOOGLE EXHIBIT 1013Page I of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4589

U.S. Patent

FIG. I

Page 2 of 29

591979005Mar. 23, 1993 Sheet 1 of 11

Petitioner Microsoft Corporation - Ex. 1008, p. 4590

U.S. Patent

32,

FIG 2

Page 3 of 29

0 0 0

591979005Sheet 2 of 11Mar. 23, 1993

Petitioner Microsoft Corporation - Ex. 1008, p. 4591

Mar. 23, 1993 Sheet 3 of 11

DISPLAY TO DEVELOPER

F/G 3

Page 4 of 29

U.S. Patent 5,197,005

Petitioner Microsoft Corporation - Ex. 1008, p. 4592

U.S. Patent 5,197,005

FIG 4a
Page 5 of 29

Mar. 23, 1"3 Sheet 4 of 11

Petitioner Microsoft Corporation - Ex. 1008, p. 4593

US. Patent Mar. 23, 1993 Sheet 4 of 11 5,197,005

46%?

ENTER

44cz?

ANALYZE ADD DELETE,
DATA MODIFY 4’8
DICTIONARY COLUMNS

«46»:

DEFINE - DELETE 4Qfl?
JOIN TABLES
CRITERIA

4c»;

MODIFY DELETE
COLUMN APPLICATION 4ua?
CHARACTERISTICS DATABASES

4cm?
<Ha4

DEFINE D ETE .DATA GROUPS NSDES

‘3fl9

ASSOCIATE ADD DELETE, qua;
NORDS AND MODIFY
PHRASES INDICIES

4A2

ESTABLISH SUBTYPE 4Efl9
USER PROFILES MAINTENANCE

4A4

DEFINE DBM REFINE 430
AUTHORIZATION COLUMN
NAMES REFERENCES

‘Pns

ESTABLISH 432
SYSTEM

PROFILE

FIG: 40

Page 5 of 29
Petitioner Microsoft Corporation — EX. 1008, p. 4593

U.S. Patent

ROW COUNT
448 MAINTENANCE

FIG. 4b

Page 6 of 29

5,197,005Mar. 23, 1993 Sheet 5 of 11

Petitioner Microsoft Corporation - Ex. 1008, p. 4594

U.S. Patent

540.

FIG 5

r558

Page 7 of 29

591979005Mar. 23, 1993 Sheet 6 of 11

Petitioner Microsoft Corporation - Ex. 1008, p. 4595

U.S. Patent Mar. 23, 1993 Sheet 7 of 11 5,197,005

.600

LOCATE INITIAL
INDEXED COLUMNS

JOIN COLUMINCOMN EXPAND CANDIDATE
COLUMN ABSENT SET TO INCLUDE

NO 6061
[TEST SUBTYPES F608

RESTRICTION CONCEPT\-,DOES QUERY CONTAIN CONSTRAINT
,ON NEXT COLUMN "? /-rOR DIRECT REFERENCE '?

YES
LAST COLUMN ?

FIG. 6a

Page 8 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4596

U.S. Patent 5,197,005

F ROM 68

636 638

1 MATC TvMF rn~cTPATT -- 4

I''' ' '''L " '"" "' I "" 644t ,,..-642

/REC TIME MAC YES _DELETE COLUMNS
PEFEC. IMEMACH / ---- WITHOUT PERFECT

NOt!- MATCH

IF POSSIBLE GROUP COLUMNS
TO MAKE PERFECT MATCH, -.646
DELETE THOSE NOT USED

L. -

ITEST MASTER TABLE QUANTIFIERS 648
5

TEST FOR DETAIL FILE
PREFERENCE

r652

SELECT MASTER FILES

FOR CONCEPTS THAT
INDEX THE PRIMARY KE
COLUMN THERE F Y1
WHERE NO PRIMARY
KEY INDEXED, DO NOT
CHOOSE COLUMNS FROM
ABOVE TABLES

654

J 656

DETAIL CONSTRAINT
ATTACHED TO CONCEPT ?

PRESERVE COLUMNS
FROM TABLES.
SELECTED AT
BOX 618

664

FIG. 6b

Page 9 of 29

]

|

- [

Mar. 23, 1993 Sheet 8 of 11

<

Petitioner Microsoft Corporation - Ex. 1008, p. 4597

U.S. Patent Mar. 23, 1993 Sheet 9 of 11 5,197,005

FROM
664 666

t 668
TEST FOR SUMMARY _ 672
FILE REFERENCE

670 SELECT COLUMNS WITH

-5 ES TI ME ATTRIBUTESNLESSDO ANY CANDIDATE COLS. YES TABLE FOROTHER COLUMN
\INCLUDE TIME ATTRIBUTES ? WAS SELECTED

"r AT BOX 618I ,j ELMNT FOEGNKY
ONLY TABLES 674

j, ;, _,678 6 8o
/CANDIDATE COLUMNS YES,/NON-FOREIGN\YS ,

FROM >I TABLE ? KEY FIELD ? FROM KEY ONLY TABLES

FRO MUTIPE TBLEPOSIBEROMATION YTBE

NO OT

M IN IM IZE TABLES --

FROM > 1 TABLE ? /8tWITH HIGHEST SLOT COUNT

FI4 686

SELECT OPTIMAL 688
NAVIGATION PATH6969

DCONCEPTS WITH COLUMNS YES ,CREATE SET OF ALL

FRM MUTPETBE POSSIBLE COMBINATIONS
REMAIN ?,!OF TABLES

694 696

.F1G 6c

Page 10 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4598

U.S. Patent Mar. 23, 1993 Sheet 10 of 11 5,197,005

FROM
6914 6-98

FROM 70696 70700

E ABLES YES TEST ONLY PATHS
SELECTED BY WITH ALL SUCH

70 CONCEPT RULE TABLES
NO

711A

ORDER CANDIDATE
PATHS BY RULES

DELETE COLUMNS FROM TABLES
NOT IN BEST PATH

I' L 7

NAVIGATION
"k706

L708
V

TO BE DISPLAYED k7/O

NEW TABLES INTRODUCED

COMPUTE BREAK LEVELS

STORE BREAK LEVELS

72

YES GO TO
? Y688
-7/2 7/4

N-716

h718

FIG. 6d

Page 11 of 29

IADD COLUMNS

,, !

t . II

j V _

| |

Petitioner Microsoft Corporation - Ex. 1008, p. 4599

U.S. Patent Mar. 23, 1993 Sheet 11 of 11 5,197,005

D

i-

C-

Page 12 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4600

500,791,

5BEER84554”.555KGFKmo.m:._4>.mm4P285”.545::
z:.26..

u84-8075C4520.5.._cm00<|HUQL...—ZQPUZD...:10...—H84.5mCu"vKvA “.5952
5.44528wSmECN348484.306E48moo4.P4:.4wh4wnm85.4umonmi:$4.8-20mE4a58$05-2023owaméom2854428/.$8.52m/mo245szwSQEE4:54, mm...=omamQ2:.EESom482:24:34ozwoz4_.wozwmwumoo“EEG”.m/\x_xE3228235..._/._\ou_MPEPEEPSSszz;.um:4._ouSQEE85%?5.48504Pmm_/\=.,.m_~_t momkfiowuzou--moz=2.Ewozou«\0332awokA\.Ewozoo

Ps“U

Petitioner Microsoft Corporation — EX. 1008, p. 4600
Page 12 of 29

5.197.005

DATABASE RETRIEVAL SYSTEM HAVING A
NATURAL LANGUAGE INTERFACE

This application includes a microfiche appendix, hav-
ing 47 fiche with a total of 11,603 frames.

BACKGROUND OF THE INVENTION

The present invention relates to a database retrieval
system, and more particularly to such a system having a
natural language interface.

Business managers and staff require information to
run their companies. Data processing departments of
companies have been attempting to meet this informa-
tion need since the early 1950's. The record keeping of
most organizations is now computerized, and an abun-
dance of data of all kinds, often describing transactions
in minute detail, resides on the central computers of
these organizations. In theory, all this data is available
for review by employees of such companies. In prac-
tice, however, users of such information have faced
serious obstacles in retrieving the information they
need.

A frequent response to a user s request for data from
a database is that the data is not stored in a way that
enables it to be used to meet a user's need. Additionally,
the complexity of current database systems requires a
trained specialist to figure out how the data requested
by a user can be retrieved from the database. This spe-
cialist must interpret the user's request or "query", de-
termine exactly what it is the user is looking for, and
figure out how to get that information from the data-
base. Then, once the data is retrieved, it must be format-
ted into a report that the user can use and understand.

In recent years, a type of database known as a "rela-
tional database" has come into widespread use within
the business community. An "entity-relationship"
model is often used when mapping a real world system
to a relational database management system. The entity-
relationship model characterizes all elements of a sys-
tem as either an entity (e.g., a person, place, or thing) or
a relationship between entities. Both constructs are
represented by the same structure, referred to as a "ta-
ble".

A table is a collection of data organized into rows and
columns, and represents a unit of a relational database.
In an order-entry system, for example, entities will in-
dlude parts and orders. Such information may be repre-
sented in two different tables. The relationship of which
parts are requested by an order may be represented by
a third table.

Thus, in applying the entity-relationship model, the
entities of a system are identified and tables are con-
structed to represent entities. Then, relationships be-
tween the entities are identified and the current tables
are extended (or new tables created) to represent these
relationships. Finally, the attributes of each entity are
identified and the tables are extended to include such
attributes. Those skilled in the art are well familiar with
the application of the entity-relationship model to rela-
tional database management systems.

In recent years, there have been proposals for provid-
ing a natural language interface to relational databases.
An English language interface, for example, would
enable unskilled users of a database to query the data-
base for desired information, and receive such informa-
tion without the need to rely on a trained specialist to
interpret the query, access the database, generate a

v7--.

Page 13 of 29

2
report, and communicate the report to the end user.
Thus, a natural language interface would save enor-
mous time and money for companies using relational
databases, and would enable users with little or no corn-

5 puter experience to use a sophisticated database system
by merely inputting (e.g., via a keyboard) a natural
language (e.g., English) question.

An example of a natural language interface proposed
in the past can be found in the article entitled Natural

10 Language Interfaces: Benefitx Requirements, State of the
Art and Applications, by John L. Manferdelli, A.L East,
October, 1987. This article describes a system in which
an English sentence is converted into a grammatical
structure ("parsed"), much like a sentence diagram. The

15 diagrammed sentence is then translated into a "repre-
sentation language" that is a hybrid of a semantic net-
work and first order predicate logic. The representation
represents time dependent facts, quantified statements,
tense information and general sets, and is based on con-

20 cepts contained in the original English sentence.
The representation language provided by the prior

art system referenced above is complex, and not easily
understandable even to a skilled user of the system.
Thus, it is difficult for such a system to be implemented

25 as a general purpose interface for any application data-
base that might be desired. Customization of the inter-
face to specific application databases was difficult and
time consuming, and no means were provided for en-
abling a skilled user to easily comprehend the represen-

30 tation language produced by the natural language inter-
face for a given query. Without such means, the build-
ing and testing of an interface for a particular applica-
tion is extremely difficult and costly.

Various other articles have been published concern-
35 ing software that is currently available to enable a natu-

ral language, such as English, to be translated into a
representation language that can be used by a computer
system to respond to a natural language query. For
example, a program known as "McELI" is available for

40 this purpose and discussed in Inside Computer Under-
standing, Schank and Riesbeck, Erlbaum Press, 1981.
Another program known as "LIFER" is described in
the article LIFER: A Natural Language Interface Facil-
ity, by Gary G. Hendrix, SIGART Newsletter. Issue 61,

45 1977, pp. 25-26. Each of these programs will translate a
natural language into another formal syntax, such as a
representation language. However, to date the repre-
sentation language syntaxes have been complicated and
difficult to understand. Therefore, no means have been

50 available to enable anyone but the most sophisticated
computer programmers to utilize such languages in
providing a natural language interface "capability to
desired applications, such as the retrieval of information
from a database.

55 A particular problem in providing a natural language
interface for a database resides in enabling the system to
locate data responsive to a natural language query re-
gardless of the words used in the original query. A
primary objection of end users of most prior art data-

60 base retrieval systems is that they have to learn the
names of the database elements, i.e., if the term "salary"
is used in the database, the end user would have to use
the same term in order to retrieve salary information,
and could not use synonyms such as "wage", "earns",

65 "makes", or "pay". This problem is referred to as the
"synonym problem".

Some products have attempted to solve this problem
by having the system programmers define all of the

Petitioner Microsoft Corporation - Ex. 1008, p. 4601

5,197,005

synonyms that can be thought of for each database
element, and to program these synonyms into the sys-
tem. Such a requirement makes the setup procedure of
a natural language interface extremely cumbersome,
and often impractical. 5

Another problem with providing a natural language
interface for database retrieval stems from the fact that
the end user does not know where desired information
resides in the database. For example, some information
would have to be retrieved from detail-level columns in 10
the database, whereas other data would have to come
from summary-level columns. The choice of which
column(s) to use must be made by the system, since the
end user is unable to specify the data location. This
problem is referred to as the "data location problem". 15

The assignee of the present application has marketed
a product in the past which attempted to resolve the
data location and synonym problems. That product
included a built-in database expert system containing
rules to resolve a many-to-one relationship between 20
words/phrases and concepts, and also to resolve one-to-
many relationships between concepts represented in a
natural language query and database columns. For ex-
ample, words such as sales, sell, bought, purchases, and
revenues contained in a query would be mapped to a 25
concept known as "sales". Then, the concept "sales"
would be mapped to the various columns of a specific
database containing sales information. The specific
product involved was a turnkey wholesale distribution
application that provided a natural language interface to 30
a specific database. The natural language interface was
custom designed for the specific database, and was not
database independent. The system did not provide
means to enable a skilled user thereof to tailor the inter-
face for any other database. The representation lan- 35
guage provided by the natural language interface was
not easily understandable to a skilled user. Thus, it will
be appreciated that the prior system was not a general
purpose database retrieval system.

It would be advantageous to provide a truly general 40
purpose natural language interface for database re-
trieval, allowing skilled users (who are not experts in
artificial intelligence computer theory and application)
to easily custom tailor the interface to a specific applica-
tion database. Such a system should solve both the data 45
location problem and the synonym problem inherent in
prior art natural language interfaces.

It would be further advantageous for such a system to
generate a representation language, or "meaning repre-
sentation" that is easily understandable, database inde- 50
pendent, and canonical (i.e., two different queries hav-
ing the same meaning must have the same final meaning
representation, and two queries having different mean-
ings must have different final meaning representations).
Such a meaning representation should capture, at a 55
conceptual level, the information requirement ex-
pressed in the natural language query.

It would be further advantageous to provide such a
system in which a skilled user or "developer" builds a
knowledge base, pertaining specifically to an applica- 60
tion database, that enables the system to efficiently and
economically retrieve and report data that is a proper
response to a natural language query entered by an
unskilled user. Such a system should interpret the
query, use the knowledge captured in its database ex- 65
pert system to locate the relevant data tables and col-
umns from a database, and then transparently generate
the most efficient code (e.g., structured query lan-

guage-"SQL") to produce a report instantly. No
knowledge of SQL, database field names, or other tech-
nical jargon should be required of the end user.

The present invention provides such a database re-
trieval system and method for retrieving data from a
database.

SUMMARY OF THE INVENTION

In accordance with the present invention, a database
retrieval system having a natural language interface is
provided. The system comprises a computer processor,
and a natural language interface coupled to the com-
puter processor. Tool kit means are also provided to
enable a database developer to create a knowledge base
containing a structural description and a semantic de-
scription of a database from which data is to be re-
trieved. First means operatively associated with the
computer processor, produces a database-independent,
canonical, internal meaning representation of a natural
language query entered into the natural language inter-
face. Second means, operatively associated with the
computer processor, identifies database elements that
are necessary to satisfy the query represented by the
meaning representation. Third means, operatively asso-
ciated with the computer processor, generates a data-
base query among database elements identified by the
second means, to enable the retrieval and aggregation of
data from a database to satisfy the natural language
query. Debugging means derive an easily understand-
able representation from the internal meaning represen-
tation. The external meaning representation enables the
database developer to comprehend the internal meaning
representation, and verify that a natural language query
entered into the natural language interface is properly
interpreted to effect the correct retrieval and aggrega-
tion of data from the database.

The meaning representation comprises entities and
constraints relating to the entities, without reference to
factual or linguistic relationships between entities that
would prevent the meaning representation from being
easily understood to a system developer.

The second means of the database retrieval system
comprises an expert system coupled to access structural
and semantic description information in the knowledge
base, and identifies the database elements from the
structural and semantic description information in ac-
cordance with predefined rules. The rules comprise
steps for identifying an optimal set of database elements
to satisfy the query represented by the meaning repre-
sentation.

The structure of a database used in connection with
the system of the present invention may be columnar,
and the semantic description information can comprise
a concept index of database columns. The semantic
description can further comprise the time frame, value
,unit of measure, and aggregation level of database col-
umnns.

Means, operatively associated with the computer
processor, can be provided for generating a formatted
report containing data responsive to a natural language
query. The debugging means can be used by a database
developer to view the external meaning representation.
A developer can also view a representation of the data-
base elements identified by the second means. The de-
bugging means can further enable the database devel-
oper to view the database query generated by the third
means.

Page 14 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4602

5,197,005
5

In order to identify an optimal set of database ele-
ments, the system can locate initial indexed columns,
test subtypes, test data class-to-table rules, match char-
acteristics and constraints, match time constraints,
choose master table quantifiers, test for detail file col- 5
umns, test for summary file preference, eliminate fo-
reign-key-only tables, minimize tables, and then select
the optimal navigation path through the database for
satisfying a query. Data retrieved from a database in
response to a natural language query can be displayed 10
on a user's workstation, or printed for later reference.

In building the knowledge base, the database devel-
oper is able to enter join criteria, column semantics, data
group definitions, and word and phrase associations into
the knowledge base. The database developer can also 15
build and modify the knowledge base by adding, delet-
ing, and modifying subtypes; refining column refer-
ences; adding, deleting, and modifying word-to-data
class rules; adding, deleting, and modifying data class-
to-table rules; and adding, deleting, and modifying nom- 20
inal data definitions. Much other information can also
be entered into the knowledge base and manipulated by
the database developer.

BRIEF DESCRIPTION OF THE DRAWINGS 25

FIG. 1 is a block diagram of the system of the present
invention;

FIG. 2 is a diagrammatic illustration of a relational
database;

FIG. 3 is a flowchart depicting the translation of a 30
natural language query to an internal meaning represen-
tation and an external meaning representation which is
database independent, canonical, and easily understand-
able to a system developer;

FIGS. 4a and 4b comprise a flowchart of the steps a 35
system developer takes to create and maintain a knowl-
edge base in accordance with the present invention;

FIG. 5 is an entity-relationship diagram for a knowl-
edge base created in accordance with the present inven-
tion; 40

FIGS. 6a, 6b, 6c, and 6d comprise a flowchart of the
column selection process used by the system of the
present invention to identify an optimal set of database
elements necessary to satisfy a query; and

FIG. 7 is a semantic network diagram of the various 45
concepts which can be included in an internal meaning
representation.

DETAILED DESCRIPTION OF THE
INVENTION 50

The present invention provides a database indepen-
dent natural language interface for information re-
trieval. Unlike prior art systems, the present system can
deal with large databases having complex semantics.
For example, an item such as year-to-date dollars may 55
be labelled in several tables of a complex database. The
system of the present invention determines exactly
where to get data in response to a specific request. The
data may come, for example, from a table that contains
summary-level or detail-level values. The system in- 60
cludes two key components; namely, a developer tool
kit and a query system. The developer tool kit enables a
system developer to build, test, and maintain a knowl-
edge base containing information about an application
database that the system will be used to query. The 65
developer does not need to have any expertise in the
computer science field of artificial intelligence, since the
system produces external meaning representations that

6
are easily understandable to the developer without such
knowledge.

The query system allows users with little or no com-
puter experience to enter a conversational English (or
other natural language) query. A natural language inter-
face interprets the query and reduces it into an internal
meaning representation used by the system, and the
external meaning representation that is easily under-
standable to the developer.

The system also includes a context expert system that
fills in the implicit meanings of a query. Then, the data
responsive to the query is located using a database ex-
pert system that enables retrieval of the data from
proper tables and columns in the database. The database
expert system is essentially an artificial intelligence en-
gine that understands the database through the knowl-
edge base set up by the developer, and through this
understanding is able to find things in the database.

Turning now to FIG. 1, the system of the present
invention is depicted in block diagram form. A user,
which can be either a developer (a high level user with
some computer experience) or an end user (typically a
manager or administrator with little or no computer
experience) accesses the system through a workstation
10. Any number of workstations 10 can be provided to
enable various system developers and end users to inter-
act with the system.

A computer processor 12, coupled to workstation 10,
controls the overall operation of the system. The ele-
ments generally designated 14 in FIG. 1 comprise the
developer tool kit, which is used by system developers
to communicate their knowledge of application data-
bases to the system. It is important to recognize that the
overall system of the present invention is database inde-
pendent, and can be used with any application database
once a developer builds a knowledge base containing
information about the application database.

The elements generally designated 16 in FIG. 1 com-
prise the query system which is used to process a natural
language query input by an end user, and to extract
relevant information in response to the query.

A system developer accesses the developer tool kit 14
through a series of windows and menus displayed on
workstation 10. In building a knowledge base, the sys-
tem developer goes through a series of steps which are
described in detail below in connection with FIGS. 4a
and 4b. Generally, the steps taken by a developer in-
clude setting up a profile of the end user(s) as indicated
at box 18 in FIG. 1, running a data dictionary analyzer
20, editing the knowledge base through editor 22, run-
ning and formatting reports through knowledge base
reporter 24, running a nominal data analyzer 26, and
debugging the knowledge base using debugger 28.

Data dictionary analyzer 20 automatically reads the
relational database management system ("DBMS") cat-
alog for the application database to learn all about the
database structures such as tables, fields (i.e., "col-
umns"), and data formats. Knowledge base editor 22 is
used by the developer to give the system an understand-
ing of the semantics, or meaning, of the data. For exam-
ple, knowledge base editor 22 is used to provide the
knowledge base with information as to how the DBMS
tables are related to one another, and to define whether
columns in the tables contain summary-level or detail-
level data. Time and other attributes (i.e., information)
for the columns is also entered through the knowledge
base editor.

Page 15 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4603

5,197,005

The knowledge base reports function 24 provides the
developer with detailed information in printed form
about the structural and conceptual data contained in
the knowledge base. Nominal data analyzer 26 automat-
ically reads nominal data values and sets up necessary 5
definitions to enable queries to reference these data
values by name. The term "nominal data" refers to
columns in the application database that contain data
whose values are names of things, such as products or
customers. 10

The debugger 28 provided in accordance with the
present invention is particularly powerful, due to the
fact that it provides an external meaning representation
for a query in an easy to understand form, and enables
the developer, who typically has no knowledge of arti- 15
ficial intelligence principles, to follow the processing of
the query by the query system at any point from the
generation of the internal meaning representation,
through the generation of the structured query lan-
guage ("SQL") or other code that is ultimately pro- 20
duced by the query system to retrieve information from
the database. The external meaning representation is
provided to enable the developer to comprehend the
interpretation of a query by the natural language inter-
face. 25

Once a developer has entered the information neces-
sary to build a knowledge base, the information is com-
piled to provide a run-time knowledge base 30 used by
the query system to determine what data to access in
response to a natural language query. One or more 30
developers can build knowledge bases for different
application databases 32 that can be accessed by the
system.

The query system elements 16 depicted in FIG. 1
include a natural language interface 34, a database ex- 35
pert system ("DBES") 36, a navigator and query lan-
guage generator 38, a reporter and database access sys-
tem 40, and a context expert system 42. Natural lan-
guage interface 34 comprises a natural language parser
of a type known in the art, such as that available from 40
Cognitive Systems, Inc. of New Haven, Conn., U.S.A.

The output of natural language interface 34 is used to
produce an internal meaning representation that is used
by the database expert system, but is not easily under-
standable. Thus, the internal meaning representation 45
would be of little or no use to a developer.

Subsequently, and in accordance with the present
invention, the internal meaning representation is trans-
formed into an external meaning representation which
is easily understandable to a developer. This process is 50
depicted in the block diagram of FIG. 3. The external
meaning representation enables the developer to debug
and validate that portion of the knowledge base that is
used by the natural language interface in connection
with its query interpretation function. 55

As shown in FIG. 3, an end user inputs a natural
language query 300 to natural language interface 34.
Software ("code") 302 is provided for use by natural
language interface 34 to enable the production of the
internal meaning representation 304. Code 302 is based 60
on the grammar for the internal meaning representation.
The grammar for the internal meaning representation of
a preferred embodiment of the present invention is set
forth in Appendix A hereto. The notation of the gram-
mar in Appendix A is in a standard form well known to 65
those skilled in the art, and will enable a skilled pro-
grammer to generate code 302. A semantic network
diagram 700 of various concepts that can be included in

the internal meaning representation is provided in FIG.
7. Each line in the network diagram represents an
"ISA" link. For example ISA link 702 specifies that
minor-concept 706 is an attribute of concept 704.

The internal meaning representation 304 is con-
verted, in accordance with the present invention, to an
easily understood external meaning representation 308
by debugger 28 in the developer tool kit. The external
meaning representation is database independent, canon-
ical, and easily understandable. The feature of under-
standability enables a developer to comprehend how
the natural language interface 34 has interpreted the
query. With this comprehension, the developer can
refine the knowledge base, as necessary, to ensure that
the interpretation of a query by the natural language
interface will be proper and that as a result, information
retrieved by a query will properly reflect the intent of
the end user.

Debugger 28 derives the external meaning represen-
tation from the internal meaning representation by find-
ing all the entities in the internal meaning representation
and placing them to the left of a colon. All of the con-
straints associated with the entities in the internal mean-
ing representation are then located, and placed to the
right of the colon, to form the external meaning repre-
sentation. Thus, in a preferred embodiment the external
meaning representation takes the form:

ENTITY: CONSTRAINT

In the external meaning representation, the hierarchy
of the constraints in the internal meaning representation
is ignored, as this information is not pertinent to the
developer, and its inclusion would defeat the desired
characteristic of easy understandability. Factual (i.e.,
"real world") and linguistic relationships between enti-
ties in the internal meaning representation, that would
prevent the external meaning representation from being
easily understood, are also ignored.

An example of an internal meaning representation,
which would be produced by natural language interface
34 in response to the query "show total year-to-date
sales dollars by customer", is as follows:

(Retrieve Reference (DB-REFERENCE
Constrained-Slots

((SALES st ((YTD)
(DOLLAR)
(TOTAL)))

(CUSTOMER st ((SORT Number (1)))))))

The same query will produce the following external
meaning representation:

SALES: YTD, DOLLAR, TOTAL
CUSTOMER: SORT (1)

As will be appreciated, the internal meaning repre-
sentation is not easily understandable, and would not
enable a developer to comprehend how the natural
language interface has interpreted a query. The external
meaning representation, however, is quite clear, and
will enable a developer to assess the accuracy of the
natural language interface's query interpretation.

In accordance with the present invention, an external
meaning representation can comprise several compo-
nents; namely, display concepts, selection criteria, for-
matting directions, semantic modifiers, and time con-
cepts. Examples of each of these, along with the vocab-

Page 16 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4604

5.197,005
9

ulary that produces them, are set forth in Appendix B
hereto.

Turning again to FIG. 1, the internal meaning repre-
sentation output from natural language interface 34 is an
explicit meaning representation of the query. In the 5
explicit meaning representation, ambiguities have been
eliminated according to disambiguation rules, but infer-
ences that fill in implicit meaning (e.g., ellipses) have
not been made. Therefore, a context expert system 42 is
provided to fill in ellipses and produce a final, implicit 10
meaning representation that is then passed to database
expert system 36. The context expert system 42 would
be used, for example, for a query that concerns custom-
ers (e.g., "show customers") and then states "with ad-
dress" without explicitly indicating that the address 15

desired is that of each customer. The context expert
system will refer back to the customer concept, and
infer that the addresses desired are those of the custom-
ers.

By accessing semantic and structural information 20

pertaining to an application database and residing in
knowledge base 30, DBES 36 provides a retrieval speci-
fication that lists the tables and columns chosen, in ac-
cordance with column selection rules, for the retrieval 25
of information from the application database in response
to a query represented by the meaning representation.
A navigator and query language generator 38 is used to
define optimal navigation paths through the database
tables and columns to respond to the query, and to 30
generate a meta-query language ("MQL"). The meta-
query language is used by a reporter and database ac-
cess system 40 to generate the code (e.g., structured
query language ("SQL") code) to actually retrieve the
information from the application database. Reporter 40 35
also generates the reports which are displayed on the
end user's workstation 10, or printed out for future
reference.

FIG. 2 depicts the structure of a typical application
database 32. Such a database includes various tables 52, 40
54, 56, each of which is a data structure holding data in
the database. An example of such a table in greater
detail is generally designated by reference numeral 58.
As shown, table 58 includes a plurality of rows 66, 68,
70 and columns 60, 62, 64. In a typical sales database, a 45
table designated "SALES" might contain columns for
customer numbers, product numbers, year-to-date dol-
lar sales, etc. Another table, designated "SALES-
MAN" might contain columns for salesman numbers,
salesman names, and year-to-date dollar sales for each 5(
salesman. Similarly, there may be additional tables for
"products", "customers", and more detailed informa-
tion including "line items" and "orders". Each row in
the table defines data for a different entity, such as dif-
ferent customers, different salesmen, different products, 5!
etc. By accessing a specific row and column, a particu-
lar piece of data can be retrieved.

Indexes can be provided in a relational database to
provide quick access to rows in a table, and to enforce
the uniqueness of rows within a table. Unique indexes 6(
enforce the requirement that rows not be duplicated
within a table.

A "primary key" of a table is used to uniquely iden-
tify each row in the table and is comprised of one or
more columns of a table. The value of a primary key 6!
uniquely identifies one row of a table. Therefore, for
every primary key value there is exactly one row, and
for every row there is exactly one primary key value.

Relationships between entities are often represented
through primary keys.

"Foreign keys" represent relationships between ta-
bles. Such keys consist of a column or group of columns
whose values are derived from the primary key of a
table, which can be another table or the same table in
which the foreign key resides. The existence of a for-
eign key implies that the table with the foreign key is
related to the primary key table from which the foreign
key is derived.

Other characteristics of relational databases are well
known to those skilled in the art.

In order to enable the system of the present invention
to retrieve data from an application database, the data-
base must first be defined by a developer, and the defini-
tion stored in the knowledge base. A knowledge base
built by a developer is subdivided into related groups of
tables, and each of these groups is also called a knowl-
edge base. These knowledge bases include a structural
knowledge base, a semantic knowledge base, a report
knowledge base, a system knowledge base, and a utility
knowledge base. The structural knowledge base con-
tains structural role information about the application
databases. Such information defines database nodes,
databases, tables, columns, keys and domains, and in-
dexes.

The semantic knowledge base contains dictionary
information used by the language processing facility,
and conceptual information about application data-
bases. This knowledge base includes dictionary entries,
concepts (i.e., "data classes", specifically "data groups"
and "data categories"), calendars, column entries, struc-
tural element attributes (column "attributes" or "infor-
mation", specifically report information, column de-
scriptions, and characteristics including semantic data
type, aggregation, and time specification), rules (includ-
ing data class-to-table rules and word-to-data class
rules) and nominal data information.

The report knowledge base contains information that
facilitates report generation, such as saved requests for
reports.

The system knowledge base includes security and
configuration information, as well as logs of system
operations. The utility knowledge base includes utility
structures used by the system's internal knowledge base
access system.

Various types of integrity rules apply to the knowl-
edge base, including relation integrity rules that are
referential integrity rules and special integrity rules.

I Referential integrity deals with the prevention of incon-
sistencies that may occur in the knowledge base because
of foreign keys. Special integrity involves rules and
procedures that must be observed to maintain consisten-
cies between columns of the same or different tables
when these consistencies cannot be expressed by refer-
ential integrity rules. Integrity rules that fall outside the
category of relational integrity include domain integrity
rules, rules specifying that the values in a set of columns
are unique, and rules regarding the number of rows in a
table.

The steps taken by a developer in b'ilding a knowl-
edge base using the developer tool kit are shown in the
flowchart of FIGS. 4a and 4b. It is noted that although
the developer tool kit is depicted in terms of a flowchart
for purposes of explanation, the preferred embodiment
provides the developer with access to the tool kit
through the use of windows and menus. Therefore, the
flowchart is not meant to imply that use of the tool kit

Page 17 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4605

5,197,005
11

is in any way dictated by the order of functions as they
appear in the flowchart.

After entering the developer tool kit at box 400, a
developer can run the data dictionary analyzer as indi-
cated at box 402. The data dictionary analyzer analyzes
the DBMS data dictionary to determine the structure of
the data in the database by extracting table, column, and
index information. After the system has completed this
analysis, and stored the relevant database structural
information, the developer is given an opportunity to
define join criteria at box 404.

A join is the mechanism by which the relationship
that exists between two or more tables is defied. A join
is defined when a key in one table and a key in another
table are given the same join name. As noted above, a
key is a column or set of columns in a table by which the
table is related to one or more other tables. The data
contained in the key column(s) in one of the related
tables is the same as the data contained in the key co-
lumn(s) in each of the other related tables. One or more
keys can be defined in any table, and can be composed
of one or more columns.

To join two tables, the developer defines a primary
key in one of the tables and one or more foreign keys in
the other table, and specifies the same join name for
each key. To join more than two tables, a primary key
is defined in one of the tables, and one or more foreign
keys are defined in each of the other tables. Then, the
same join name is specified for each key. The primary
key and all of the foreign keys that have the same join
name belong to the same join. The relationship between
each foreign key and its related primary key must also
be defined by the developer. The relationship can be
either one-to-one or one-to-many. If a foreign key can
have the same value in two or more rows, the relation-
ship is one-to-many. Otherwise, the relatiorship is one-
to-one.

In defining join criteria, the developer can add a new
join, delete a join, specify additional foreign keys, or
remove existing foreign keys. After all the join criteria
are specified, the developer is given the opportunity at
box 406 to modify column characteristics.

The data dictionary analyzer (box 402) creates a col-
umn characteristics definition for each column that it
analyzes. This definition becomes column reference
entry number one for the column. The data dictionary
analyzer also assigns the fully qualified column name to
the column description field of the column characteris-
tics definition. The column description becomes a direct
column reference, such that if the column description is
used in a query, the system retrieves data from that
column for the report it displays in response to the
query. A developer can delete from the knowledge base
information about those columns that will never be
selected when a query is being processed and will never
be displayed on a report.

Column descriptions are used by the present system
in two ways. First, if the word or phrase specified in the
column description is used in a query, the column is
considered for selection. Second, the column descrip-
tion specifies what is included in the query paraphrase if
the column is selected. A query paraphrase is a reformu-
lation of the query, which may be displayed to the sys-
tem user, in order to verify that the system properly
understands the query as originally input.

When a query is submitted, it is analyzed and reduced
to an internal meaning representation and an external
meaning representation. In the first step of the column

Page 18 of 29

12
selection process, each column that is referenced by an
entity in the external meaning representation is identi-
fied. In this way, one or more columns can be identified
as candidates for selection. In the second step of the

5 column selection process, the constraints present in the
query are used by matching them with the column char-
acteristics defined by a developer, in order to eliminate
some of the columns that have been identified. This
refinement or optimization process utilizes semantic

10 data type, aggregation, and time information input to
the knowledge base by the developer. The columns that
are not eliminated are then selected to compose the
report that the system ultimately produces in response
to a query. At step 406, the developer is permitted to

15 modify the column characteristics definition, but may
not delete it.

After the modification of column characteristics, the
developer can define data groups as indicated at box
408. In simple applications, column descriptions speci-

20 fled in column characteristics definitions can be used to
find the column or columns that contain the data that
must be retrieved in response to a query. For complex
applications, further definition is required to enable the
system to locate the data. This is accomplished by

25 grouping the columns of an application into data
groups. After data groups have been defined, words and
phrases can be associated with the data groups, as indi-
cated at box 410. When an end user includes one of the
associated words or phrases in a query, the system con-

30 siders the columns in the data group for selection. A
developer can add or delete data groups, and add or
delete one or more columns to a previously defined data
group. The developer can associate words or phrases
with data groups and data categories.

35 At box 412, the developer establishes user profiles for
each end user. Such profiles are used when an end user
logs into the system to determine which values have
been assigned to certain parameters and whether certain
operations are authorized for the user.

40 At box 414, the developer defines database manager
("DBM") authorization names to make it possible for a
user for whom a user profile is added to access the
proper tables in the application database.

At box 416, the developer can establish the system
45 profile to specify information such as the type of auto-

matic logging that is to take place and the type of infor-
mation that is to be logged, whether error logging and-
/or query trapping is to be enabled, and to define cer-
tain defaults such as time type, current fiscal year, and

50 current period. The concept of query trapping is dis-
cussed below in connection with box 448 of FIG. 4b.

At box 418, the developer can add, delete, and mod-
ify columns without re-running the data dictionary
analyzer. Similarly, tables may be deleted at box 420

55 without re-running the data dictionary analyzer. Delet-
ing a table from the knowledge base automatically de-
letes all keys, indexes, table characteristics definitions,
columns, column characteristics definitions, and col-
umn reference definitions that are associated with the

60 table.
At box 422, application databases may be deleted

without running the data dictionary analyzer. At box
424, nodes can be deleted from the knowledge base
without running the data dictionary analyzer. Deleting

65 a node automatically deletes all of the databases, tables,
keys, indexes, table characteristics definitions, columns,
column characteristics definitions, and column refer-
ence definitions associated with the node.

Petitioner Microsoft Corporation - Ex. 1008, p. 4606

5,197,005

At box 426, the developer can add, delete, and mod-
ify indices without running the data dictionary analy-
zer.

Subtype maintenance is provided at box 428. A sub-
type (sometimes referred to as a "restriction concept" 5
or "modifier") limits or qualifies the meaning of a data
group or data category. Subtypes are used in column
reference definitions and the data class-to-table rules to
control the column selection process. Before a subtype
can be used in a column reference or a data class-to- 10
table rule, it must be defined. A subtype definition con-
tains an arbitrary name for the subtype and the words or
phrases that are associated with it.

At box 430, the developer is provided with an oppor-
tunity to refine column references. Column references 15
(or "column-choice entries") give the system additional
information it needs to determine which columns of
data to retrieve in response to a query. A column refer-
ence provides a developer with a means of refining the
column selection criteria. For example, a developer 20
could specify that one column is to be preferred if the
end user uses words or phrases that refer to the subtype
"open", and another column is to be preferred if the end
user uses words or phrases that refer to the subtype
"closed". 25

In analyzing a query, the system of the present inven-
tion separates the query into three components; namely,
data classes (data groups and data categories), column
descriptions, and direct column references, each of
which appear as entities in the external meaning repre- 3C
sentation. Identification of the three components listed
is accomplished by analyzing the words and phrases in
the query. A data group or data category is identified if
either a term that has been associated with the data
group or data category is used in the query, or a word 3!
or phrase that is used to define an application term is
used in the query. A column description is identified if
either the column description specified in a column
characteristics definition is present in the query, or an
application term that refers to the column description is 44
used in the query. A direct column reference is identi-
fied by a column description, or a word or phrase (not
a data class) that has been specified in the reference field
of a column reference. In accordance with the present
invention, the data groups, data categories, colun 4
descriptions, and direct column references can be
viewed by the developer by requesting a final concep-
tual query representation when in the debug mode of
the developer tool kit.

When column descriptions are found in a query, no 5
additional information is necessary for the system to
determine which columns to select. However, for data
classes, additional information is required, and is en-
tered at box 430 through the column reference refine-
ment procedure. It will be apparent that a data group or 5
data category refers to a column if either the column
can be referred to by combining a word that is associ-
ated with the data group or data category with a data
specification, a unit of measure, a level of computation,
or a time-related value; or, the column is one in a set of f
columns that should be retrieved in response to a query
such as "show customers" (in which "customers" is a
data group or data category). Multiple column refer-
ences can be defined for a column, and each reference
provides a different means by which the column can be
selected. For example, a column can be selected by a
column description, direct column reference, data
group, or data category. Thus, at step 430, a developer

can add, modify, or delete a reference to a column by a
data group; add, modify, or delete a reference to a col-
umn by a data category; and add, modify, or delete a
reference to a column by a word or phrase.

After refining column references, the flowchart pro-
ceeds to box 436 of FIG. 4b via boxes 432 and 434. At
box 436, a developer defines table characteristics for
each of the tables contained in the application database.
Table characteristics definitions are used to specify the
columns in the table that are always displayed in re-
ports, whenever any column in the table is chosen by
the system during the processing of a query submitted
by an end user. Table characteristics definitions also
specify calendar information and time information.
Table characteristics definitions can be added, modi-
fied, and deleted by the developer.

At box 438, the developer specifies application terms
which are words or phrases that are defined in terms of
a word or phrase already existing in the application
dictionary. When an application term is used alone, it is
exactly equivalent to the word or phrase that defines it.
However, if an application term is used as part of a
phrase (or, if the term is a phrase, as part of a larger
phrase), it is not necessarily equivalent to the word or
phrase that defines it. For example, if a developer adds
the term CUST and gives it the definition CUS-
TOMER, then the term CUST can be substituted for
the word CUSTOMER in a query and the result will be
the same. However, if the term BEST CUSTOMER
has also been defined, the phrase BEST CUST may not
be substituted for the term BEST CUSTOMER with
the same result. To define two terms that have the same
definition, the same full definition can be specified for
both terms, or the full definition may be specified for

5 one term and then that term may be specified as the
definition of the other term.

Abbreviations are specified by the developer at box
440. An abbreviation is a word or phrase that is equiva-
lent to another word or phrase. The equivalence exists

0 whether the abbreviation is used alone or as part of a
phrase. Thus, in the example above, if CUST is defined
as an abbreviation for CUSTOMER, then BEST CUST
can be substituted for BEST CUSTOMER with the
same result.

5 At box 442, the developer may define word-to-data
class rules (sometimes referred to as "word-to-concept
rules"). These rules are used by the system when a word
or phrase that has been used in a query points to two or
more data classes. Only one word-to-data class rule can

0 be defined for any word or phrase.
An example of an instance where a word-to-data class

rule would be necessary is where end users may formu-
late several different queries that include the word
"owe". Some may be concerned about how much

5 money their company owes one of its vendors, others
may be concerned about how much money their cus-
tomers owe. Examples of such queries might include
the following:

1. Does anyone owe us money?
io 2. Who do we owe money?

3. What is owed?
In the first query, which is concerned with money owed
by customers, the word "owe" is followed by the word
"us". In the second query, which is concerned with

65 money owed to vendors, the word "owe" is preceded
by the word "we". In the third query, it is not clear
whether the word "owed" relates to "owing" or to
"being owed".

Page 19 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4607

5,197,005
15

In this situation, the developer will create a word-to-
data class rule for the word "owe" that takes into ac-
count all of the above possible queries. The following
rule is an example:

IF WORD-FOLLOWS (ME, US)
THEN CUST-BALANCE

ELSE IF WORD-PRECEDES (I, WE)
THEN VEND-BALANCE

ELSE QUERY-USER ("OWED BY CUSTOMERS",
"OWED TO VENDORS", CUST-BALANCE,
VEND-BALANCE)

Using this rule, the system uses the data class CUST-
BALANCE for the first query and uses the data class
VEND-BALANCE for the second query. For the
third query, the user is asked to specify either "owed by
customers" or "owed to vendors". If the user specifies
"owed by customers", the data class CUSTBAL-
ANCE is used. If the user specifies "owed to vendors",
the data class VEND-BALANCE is used.

In addition to defining word-to-data class rules as
described above, a developer can also define data class-
to-table rules (sometimes referred to as "concept-to-
table rules") as indicated at box 444 of FIG. 4b. A data
class-to-table rule is necessary when a data class refers
to columns in more than one table. Such a situation is
created by specifying the same data class when column
references for columns are defined in two different
tables. However, it is not necessary to define a data
class-to-table rule if the two tables have been joined.
Only one data class-to-table rule can be defined for any
data class.

For example, if a data class SALES has been defined
that points to both the CUSTOMER table (for month-
to-date sales) and the SALESHIST table (for year-to-
date sales), the system needs a data class-to-table rule to
be able to handle a query such as: "show sales". In this
case, the developer must decide whether the user is
more likely to want month-to-date or year-to-date infor-
mation in response to such a query. If the most likely
situation (the default) requires year-to-date information,
the following data class-to-table rule permits the query
to be handled:

DATA CLASS=SALES;
IF WORD-PRESENT (MTD)
THEN CUSTOMER
ELSE SALESHIST;
At box 446, the developer may specify calendar defi-

nitions. Generally, the time related data in an applica-
tion database relates to a normal annual calendar with
quarters that start on January 1, April 1, July 1, and
October 1. If a fiscal calendar is desired, or a calendar
with a number of periods peculiar to a particular appli-
cation is necessary, the appropriate information is speci-
fied by the developer.

At box 448, a scheme referred to as "row count main-
tenance" can be implemented. Some of the tables in an
application database may contain a very large number
of rows. A query submitted by an end user may cause a
column or columns from such a table to be selected.
Extracting data from such a column or columns to pre-
pare a report in response to the query may tie up the
system for quite some time, and be expensive. Thus, the
developer can enable expensive query trapping. In this
mode, the system estimates the number of rows that
must be processed to answer each query and saved
request. To do this, it must know approximately how
many rows are contained in each table. A developer can

specify the approximate number of rows in each table
by using the row count maintenance feature. Generally,
this feature should be used before expensive query trap-
ping is enabled and whenever the number of rows in

5 one of the tables changes significantly.
At box 450, the system can be instructed to analyze

nominal data, i.e., columns in the application database
that contain data whose values are names of things, such
as products or customers. The nominal data analyzer

10 automatically reads nominal data values and sets up the
necessary definitions so that queries can reference these
data values by name. Once the nominal data analyzer
has been run, any one of the words used in a description

15 composed of several words will, if used in a query,
cause information about the nominal data to be dis-
played.

At box 452, a query log and error log provided by the
system can be maintained by a developer. At box 454,

20 the developer can generate knowledge base reports.
Such reports are useful to provide the developer with
detailed information in printed form about the struc-
tural and conceptual data contained in the knowledge
base.

25 At box 456, the developer can enter the debugger
provided in the present system. Although part of the
developer tool kit, the debugger is entered when the
developer is using the query processor. As noted above,
this feature enables the developer to view the process-

30 ing of a query throughout each stage of the query pro-
cessor. The debugger converts the internal meaning
representation used by the query processor to an easily
understandable meaning representation that enables the
developer to comprehend the processing of a query.

35 When in the debugging mode of operation, the devel-
oper can input test queries to the query processor, ex-
plore their interpretation by the query processor (via
the external meaning representation, the MQL, and the
SQL), and analyze the data reports generated by the

40 system to determine if natural language queries retrieve
the correct information.

The developer tool kit routine ends at box 458.
When a developer has completed the task of building

a knowledge base, or has completed modifications to an
45 existing knowledge base, the information is compiled.

During the compilation, navigation paths and join col-
umn domains are generated. At the same time, the appli-
cation dictionary, structural information, and indexed
rules are checked for validity. After compilation, the

50 developer can test the new knowledge base and if un-
successful, modifications can be made by again entering
the developer tool kit, and repeating the process until a
satisfactory knowledge base has been completed.

55 FIG. 5 is an entity relationship diagram for a knowl-
edge base constructed in accordance with the present
invention. This diagram illustrates the mappings of
words, concepts, columns, and tables within the data-
base and the relationships between these entities and the

60 attributes and rules defined by a developer. For exam-
ple, word 502 maps onto abbreviation 500, expression
504, concept index 508 (which maps to concept 512),
word-to-data class rule 50, and column attributes 520.
Concept 512 maps to data class-to-table rule 510, table

65 548, nominal data definition 514, column entry attribute
518, and column attributes 520. The mappings of each of
the other entities and other attributes is apparent from
FIG. 5.

Page 20 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4608

5.197.005
17

As noted in connection with FIG. 1, after the knowl-
edge base 30 has been built for an application database
32, the query processor 16, and particularly database
expert system 36, uses the information stored in the
knowledge base to locate data from the application
database 32 that is responsive to a query. In a preferred
embodiment of the present invention, an initial set of
candidate columns from the database is identified by the
database expert system, and that candidate set is then
narrowed down to identify an optimal set of database
elements to satisfy the query. The column selection and
optimization routine is shown in the flowchart of FIGS.
6a to 6d. The routine is entered at box 600, at which
point every attribute referenced in the final meaning
representation for the query is gathered and built into a
table of the columns that should be used to resolve each
attribute. Then, a sequential execution of the heuristic
rules designated at boxes 602, 608, 618, 630, 640, 648,
656, 668, 674, 682, 688, 710, and 716 proceeds.

At box 602, an initial candidate set of columns is
located. This candidate set has one entry for each basic
concept (i.e., data group or data category) or direct
column reference inside a query concept. Each entry is
composed of the data group or data category, plus all
column entries indexed by that concept or direct col-
umn reference. For every join column domain column
in the candidate set, the candidate set is expanded to
include any equivalent join column domain columns
that may not have a column entry. This procedure is
indicated at boxes 604 and 606. A "join column domain
column" is a set of semantically equivalent columns
derived from primary and foreign key information
about an application database.

After the expansion of the initial candidate set is com-
plete, control passes to box 608 where subtypes are
tested. The testing procedure can proceed on a column
by column basis throughout the initial candidate set,
and as indicated at box 610, a determination is made for
each column as to whether a restriction concept is spec-
ified. If so, control passes to box 612 where a determina-
tion is made as to whether the query contains a con-
straint on the concept or a direct reference to the col-
umn. If not, the column is deleted at box 614. Other-
wise, control flows directly to box 616 where a determi-
nation is made as to whether the last column in the
candidate set has been tested. If not, a loop continues
until all columns have been tested. Thus, the rule for
testing subtypes eliminates any columns from the candi-
date set for which (i) a restriction concept is specified
for the column, and (ii) the restriction concept is not
present as a constraint on the concept or a direct col-
umn reference in the concepts identified from the query.

The next rule applied tests data class-to-table rules, as
indicated at box 618. These are database specific rules
entered by the developer when the knowledge base is
built, and they take priority over everything except the
subtype rules dealt with at box 608. It is noted that the
subtype rules are also defined by the developer in creat-
ing the knowledge base. At box 620, a determination is
made as to whether a rule has been specified for the next
data class present in the query. If so, the rule will return
either a list of tables or a NIL. The list of tables are the
preferred tables for the data class. If the candidate col-
umns for the data class include one or more of these
tables, all columns not from any of the tables are de-
leted. If a NIL is returned, it means that the rule does
not apply to the current query and its result should not
effect the candidate set. A concept without a data class-

18
to-table rule is treated as if its rule returned a NIL.
Accordingly, if at box 620 a determination is made that
a rule has been specified for the next data class tested,
and the rule returns tables at box 622, then control flows

5 to box 624 to determine whether the candidate columns
include such tables. If so, all columns not from those
tables are deleted at box 628. Box 626 determines if the
last data class in the query has been tested, and if not, a
loop continues until the testing is complete.

10 At box 630, characteristics and constraints are
matched. The best candidate column(s) is selected for
each data class in the candidate set according to the
following procedure:

1. Each candidate column is scored by counting one
15 point for each semantic descriptor of the column

that matches one of the constraints or specifiers in
the query concepts attached to the data class.

2. Then, the column with the highest score (or the set
of columns that tie for the highest score) is found.

20 If the concept has no specifiers or constraints, all
indexed columns tie with the score of zero.

3. If there are more than one highest score columns,
then, within a table, any that have been marked as
default columns by the developer are preferred.

25 4. If any of the candidates have an AUTO descriptor,
or a constraint to be output, or are a component of
the primary key, then they are selected also.

This procedure is used to find the best semantic matches
between a query and candidate columns. For example,

30 if the query asks for year-to-date information, and such
information is available directly from a column, then
corresponding month-to-date columns for the informa-
tion are eliminated.

Box 632 designates the determination as to whether
35 several columns tie for the highest score. If so, then the

preferred columns are selected a, box 634. As noted
above, preferred columns include those marked default,
those with an AUTO descriptor, those with a constraint
to be output, and those which are a component of the

40 primary key. From box 632, control passes to box 640
via boxes 636 and 638. At box 640 columns are selected
on the basis of the best time match. A perfect time
match is preferred. Thus, for example, if year-to-date
information is requested, and available directly from a

45 column in the candidate set (e.g., YTD-SALES), this
column is preferred to a partial match such as month-to-
date sales. This determination is made at box 642. If a
perfect match is found, columns without a perfect
match are deleted at box 644.

50 If no perfect time match is found at box 642, then at
box 646 columns are grouped, if possible, to make a
perfect match. Those not used are deleted.

At box 648, master table quantifiers are tested. If
quantification is present in the query, as determined at

55 box 650, then two preferences are necessary. First, at
box 652, master files are selected for concepts that index
the primary key column of the master file. For concepts
within the chain of quantification, or that are con-
strained but do not index the primary key column of a

60 master file, it is preferred not to choose columns from
the tables chosen at box 652. This is indicated at box
654.

The selection of master table quantifiers depicted at
boxes 648 to 654 can be better understood by reference

65 to several examples. If the query is "What customers
have no sales this month?", then a master file for CUS-
TOMER (e.g., CUST.CUST#) is preferred and a table
other than CUST is preferred for SALES.

Page 21 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4609

5,197,005

If the query is "show salesmen all of whose sales were
in Connecticut", then a master file for SALESMEN
(e.g., SALESMEN.SLM#) is preferred, and a table
other than SALESMEN is preferred for SALES and
for STATE. Note that choosing STATE from the 5
SALESMEN table would be an error (sales of all Con-
necticut salesmen) that would be difficult for a user to
detect.

In another example, the query might be "what cus-
tomers have bought every product this month?". A 10
master file for CUSTOMER and for PRODUCT
would be preferred, and a table other than either CUST
or PROD would be preferred for SALES.

After the master table quantifiers are tested, the sys-
tem tests for detail file preference at box 656. For each 15

concept, detail file columns (i.e., a column from a table
that has at least one column with a DATE data type or
a data value meaning of DAY, WEEK, MONTH,
QUARTER, PERIOD, or YEAR) are preferred if any
detail constraint such as COUNT, AVERAGE, TO- 20

TAL, MINIMUM, MAXIMUM or EACH is attached
to the data class in the query concepts. A determination
as to whether a detail constraint is attached to a concept
is made at box 658. If so, at box 660 the detail file col-
umn is chosen. However, columns from tables selected 25
by any data class-to-table rule are not deleted, as indi-
cated at box 662. Thus, for example, if the query states
"show max, min, average invoice for March" and
"show each sales for March", the test for detail file 30
preference rule will select the SALES-DATE column
from the sales transaction file over the MARCH-
SALES column from a similar summary file. After the
detail file preference testing, control is passed to box
668 via boxes 664 and 666. 35

At this point, the remaining candidate columns are
tested for summary file preference. Summary file col-
umns with an associated time frame are preferred to
transaction file columns with a time data type. As indi-
cated at box 670, a determination is made as to whether 40
any candidate columns include time attributes. The time
attribute may be either a relative or absolute time. If so,
control passes to box 672 and the columns from tables
with such columns are preferred over columns from
tables without time attributes, unless the table was se- 45
lected by a data class rule (i.e., at box 618 of FIG. 6a).
The result of a summary file preference rule test is illus-
trated by the query "show year-to-date sales by prod-
uct". The summary file preference rule will select the
YTD-SALES-$ column from the sales summary file 50
over the SALES-DATE column from the sales transac-
tion file.

The next heuristic rule results in the elimination of
foreign-key-only tables as indicated at box 674. For
each concept, if there are candidate columns for more 55
than one table, and at least one of the candidate columns
is a non-foreign key field, then any candidate columns
from key-only tables are eliminated. These steps are
indicated at boxes 676, 678, and 680 of FIG. 6c. This
rule helps to minimize the number of selected tables by 60
selecting columns from key-only tables only where
there are no candidate columns from non-key-only ta-
bles. The rule is necessary to prevent errors during table
minimization in the next rule (box 682). The application
of the eliminate key-only tables rule is illustrated by the 65
query "count salesmen and customers", where
SALESBYCUST columns are eliminated from con-
sideration and the preferred candidate set will be:

CUSTOMER - CUST.CUST#, SALES-BYCUST.CUST#
SALESMAN - SLM.SLM#, SALES-BY-CUSTSLM#

The next rule, indicated at box 682, minimizes the
remaining tables. For each table in the candidate set, a
number of slots that contain at least one candidate col-
umn data structure from the table (among the candidate
columns remaining in the candidate set) is counted. For
each concept, if there are candidate columns for more
than one table, the columns in the table with the highest
count are chosen. These steps are indicated at boxes 684
and 686 of FIG. 6c.

After the tables are minimized, the best navigation
path is chosen as indicated at box 688. In accordance
with this rule, a determination is made at box 690 as to
whether concepts with columns from multiple tables
remain. If so, at box 692 the set of all possible combina-
tions of tables is created At box 702 of FIG. 6d, a deter-
mination is made as to whether multiple tables were
selected by a concept (e.g., data class-to-table rule), and
if so only navigation paths with all those tables are
tested as indicated at box 704. Then, at box the candi-
date navigation paths are ordered in accordance with
the following rules, which are successively applied until
only one final path remains:

1. candidates for which an actual navigation path is
found;

2. candidates with fewer tables in the navigation path;
3. candidates with more primary key columns in the

navigation path (e.g., select SLM# from SLM
Master rather than CUST Master);

4. candidates for which the total number of primary
key columns in all tables of the path is fewest;

5. candidate paths for which the sum of the candidate
column-join column domain levels (i.e., hierarchy
levels) of the candidate columns is lowest; and

6. candidate paths for which the sum of the estimated
number of rows in the tables is fewest.

Any candidate columns from tables not satisfying the
rule set forth are deleted at each step in the above order-
ing. This step is indicated at box 708 of FIG. 6d. If, after
applying all of these rules, more than one candidate
path remains, any one of the remaining paths may be
chosen arbitrarily.

At box 710, the columns to be displayed in response
to the query are added. This is essentially a formatting
routine so that the report produced will be in a form
predefined by the database developer when the knowl-
edge base is built. Interestingly, this step may introduce
new tables for the navigator, and as a result, the naviga-
tor will have to be called once more to produce the final
navigation path. Thus, at box 712 a determination is
made as to whether new tables have been introduced,
and if so, control returns back to box 688 as indicated at
box 714.

Finally, the break levels for the columns are com-
puted at box 716, and stored at box 718, to establish the
ordering of the output of data responsive to the query.
The query language generator 38 (FIG. 1) will make
use of the break level data in producing the meta query
language.

At box 720, the column selection routine ends. It is
noted that throughout the column selection routine,
rules are successively applied to columns to narrow
down the candidate set to an optimal set, deleting un-
necessary, redundant columns along the way.

Page 22 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4610

5,197,005
21

It will now be appreciated that the present invention
provides a versatile database retrieval system having a
natural language interface. End users need only de-
scribe the information they want as the request would
be described to another person. There is no need for a 5
database manager to provide technical support, and the
end user does not need technical expertise in query
syntax or database structure and nomenclature. Access
to data in response to a natural language query is imme-
diate. 10

Using a concept known as "conceptual dependency",
the system interprets questions posed in a natural lan-
guage, such as conversational English. It infers not only
what is asked, but what is needed to answer the query.
Appropriate data is located in the database, efficiently
retrieved, and an intelligible report is presented immedi-
ately. These results are accomplished largely through
the meaning representation of the information sought.
The meaning representation is provided in both an in- 20
ternal form for use by the system, and in an external
form which is easily understandable to a developer. In
addition to being easily understandable, the external
meaning representation (like the internal meaning repre-
sentation) is canonical and database independent. The 25
provision of such an external meaning representation is
a significant advance in the art, enabling a database
developer with no experience in artificial intelligence
principles to provide a knowledge base that successfully
enables the proper data to be retrieved in response to a 30
natural language query.

The system and method of the present invention also
provide a sophisticated developer tool kit enabling a
database developer to build an application specific
knowledge base, as well as a set of heuristic rules for
identifying an optimal set of database elements to satisfy
a query.

The information in the knowledge base includes de-
scriptions of all the columns and tables in the database,
using the same symbols as the external meaning repre-
sentation. In addition, rules for aggregating the data
elements and matching them to the meaning representa-
tion are provided in order to generate an efficient report
program. In generating the optimal retrieval program to
find the data required to satisfy a query, the system
captures the knowledge in the knowledge base to create
a conceptual road map of the database which guides the
retrieval process.

A software listing implementing the system of the
present invention is attached hereto as a microfiche
appendix. The program listing is a hexadecimal dump of
the object code, and is implemented for use with the
ORACLE relational database management system on
DEC VAX and Micro VAX computers available from
Digital Equipment Corporation of Maynard, Mass.,
under the VMS operating system.

Although the present invention has been described in
connection with a preferred embodiment thereof, many
variations and modifications can be made. It is intended
to cover all such variations and modifications that fall
within the scope of the present invention, as defined in
the following claims.

APPENDIX A

Internal MeaninQ Representation Grammar

mr - request-cd j retrieve-cd

request-cd (REQUEST) I (REQUEST request-slot-filler-pair+)

request-slot-filler-pair - request-attribute request-attribute-value

request-attribute - REFERENCE I AGGREGATE

request-attribute-value - (reference-value-cd+) (aggregate-value-cd)
I (comparison-agg-cd) I ()

reference-value-cd - (ch-reference (ref-slot-filler-pair+) I ()

ch-attribute - attributes-in-ch-attribute-defobj I db-att
ch-attribute-value

ch-reference - DB-REFERENCE

ref-slot-filler-pair

ref-slot

ref-slot (ref-slot-value-cd+)

- DISPLAY-SLOTS I CONSTRAINED-SLOTS

display-slots-ref-slot-value-cd - (ch-attribute FILLER ch-attribute)

constrained-slots-ref-slot-value-cd - (ch-attribute
(ch-attribute ST

FILLER
constraint-def))

Page 23 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4611

23 5,197,005 24
constraint-def - (constraint+) I (OR ARG (constraint constraint+))

constraint - comparison-constraint I superlative-constraint
time-constraint I specifier

comparison-constraint - (comparison-constraint-type ARG constraint-
value)
(comparison-constraint-type ARG constraint-
value BY constraint-by-value)

constraint-value - (number) I constant I reference-value-cd

constraint-by-value - (number) constant

APPENDIX B

External Meaning Representation

DISPLAY CONCEPTS

The external meaning representation indicates what developer-
defined concepts are referred to in the query. The following
example contains the concepts CUSTOMER and CUST-BALANCE:

Ouery Meaning Representation

"Show customer balances" CUSTOMER:
CUST-BALANCE:

SELECTION

Selection criteria are displayed following the concept, e.g.

Ouer Meaning Representation

"Show products with quantity PRODUCT:
on hand > 500" "quantity on hand": > 500

FORMATTING

Formatting requests are indicated as follows:

Query Meaning Representation

"Show sales by customer and SALES:
product" CUSTOMER: SORT(I)

PRODUCT: SORT(2)

Query Meaning Representation

"List customers by sales SALES: SORT(1),DESCENDING
in descending order" CUSTOMER:

Ouery Meaning Representation

"Rank my best 5 customers SALES: SORT(1),DESCENDING,TOP(5)
in terms of sales" CUSTOMER:

Page 24 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4612

5,197,005

Appendix A

constant - (constant-type = literal-value)

literal-value - (number) I (string)

constant-type - ALPHA I PERCENT I LOCI LENGTH I CURRENCY I NUMBER

comparison-constraint-type - < I <= I = I >= <>

superlative-constraint QUALITY-AVERAGE I
SORT-SPEC sort-spec-slot-filler-pair+
SORT-SPEC

sort-spec-slot-filler-pair - (TO number-constant)? I (DIR ((BOTTOM-UP)
I (TOP-DOWN) I (NORMAL) I (REVERSE)))?

(SHOWING reference-value-cd)? I
(EXPLICIT { (EXPLICIT) I (RANK)))? I
(SORT-ORDER number constant)?

time-constraint - (TB-CURRENT) I (TB-WTD) I(TB-WEEK) ORIGIN (-? number)
MTD MONTH
YTD YEAR
QTD DAY
LYTD PERIOD
PYTD QUARTER

(TIME {FROM date-value)? (TO date-value)?) I
(TB-RANGE-REL FROM date-value TO date-value UNIT
time-unit
(TB-LENGTH = (number) UNIT (time-unit))
(TB-DAY-OF-WEEK DAY (number) ORIGIN (number))

time-constraint - POINT I RANGE

aggregate-value-cd - (ch-aggregate RESULT-NAME ((string))
OPl (aggregate I comparison-agg I

reference-value-cd)
OP2 (aggregate I comparison-agg I

reference-value-cd})

comparison-agg-cd - (ch-comparison-agg RESULT-NAME ((string))
OPl (aggregate I comparison-agg

I reference-value-cd)
OP2 (aggregate I comparison-agg

I reference-value-cd)
BY constant

ch-aggregate ADD I SUBTRACT I MULTIPLY I DIVIDE I PERCENT
AVERAGE I COMPARISON I ABS-VAL-OF

ch-comparison-agg - GT-AGG I LT-AGG I GT-PCT-AGG I LT-PCT-AGG

Appendix B

MODIFIERS

Modifiers are semantic modifiers that are represented similarly
to constraints. For example:

Ouery Meaninq Representation

"List each invoice" INVOICE: EACH
Examples of modifiers that could be built into the General
English Lexicon of the system include:

Words Modifier

"detail" DETAIL
"each", "every" EACH

Page 25 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4613

27
"all"
"location", "where"
"should I", "can I",
"last"
"number"
"status", "flag"
"frequent", "frequenc
"rate"
"total"
"unit"
"history"
"type", "class", "kir

"sort of"
"code"
"future"
"miscellaneous"

5,197,005

ALL
LOCATION

"will I" EXPERT
LAST
NUMBER
STATUS

y"l FREQUENT
RATE
TOTAL
UNIT
HISTORY

CLASS
CODE
FUTURE
MISCELLANEOUS

Modifiers can also be developer-defined.

DATATYPES

Certain words are interpreted by the Natural Language Interface
as referring to datatypes. Examples include the following:

Words

"value", "dollar",
"amount", "$", "buck"

"amount", "size", "count",
"quantity", "number of",
"volume"

"percent", "%"

Datatype

DOLLAR

COUNT

PERCENT

TIME

The time period covered by a column is represented as follows:

Meaning Representation

"Show ytd sales" SALES: TIME(YTD)

Legal time specifications include:

Words Time

"n days ago"
"n days from now"
"n weeks ago"
"n weeks from now"
"n months ago"
"n months from now"
"n periods ago"
"n periods from now"
"n quarters ago"
"n quarters from now"
"n years ago"
"n years from now"
"since ..."

<time> is any of above
"before ..."

<time> is any of above
"from ... to ..."

<timel> and <time2> are
any of above values

DAY (-n)
DAY (+n)
WEEK (-n)
WEEK (+n)
MONTH (-n)
MONTH (+n)
PERIOD(-n)
PERIOD(+n)
QUARTER(-n)
QUARTER(+n)

YEAR (-n)
YEAR(+n)
SINCE,<time>

BEFORE,<time>

RANGE,<timel>,<time2>

Page 26 of 29

Ouery

Petitioner Microsoft Corporation - Ex. 1008, p. 4614

5,197,005

"wtd", "week to date"
"mtd", "month to date"
"qtd", "quarter to date"
"ptd", "period to date"
"ytd", "year to date"
"lytd", "last year to date"
"pytd", "previous year to

date"
"January 1", "from Sept

to Oct", ... (e.g. "Jan.
1, 1985 - Feb. 15" --- >
ABSOLUTE (1/1/85, 2/15/85)

What is claimed is:
1. A database retrieval system having a natural lan-

guage interface, said system comprising:
a computer processor;
a natural language interface coupled to said computer

processor;
first means operatively associated with said computer

processor for producing a database-independent,
canonical, internal meaning representation of a
natural language query entered into said natural
language interface;

second means operatively associated with said com-
puter processor for identifying database elements
that are necessary to satisfy the query represented
by said internal meaning representation;

third means operatively associated with said com-
puter processor for generating a database query
among database elements identified by said second
means, said database query enabling the retrieval
and aggregation of data from a database to satisfy
said natural language query; and

debugging means for deriving an external meaning
representation from said internal meaning repre-
sentation, wherein said external meaning represen-
tation is provided in a form that can be easily un-
derstood by a database developer;

said external meaning representation enabling a data-
base developer to comprehend the internal mean-
ing representation and verify that a natural lan-
guage query entered into the natural language in-
terface is properly interpreted to enable the correct
retrieval and aggregation of data from said data-
base.

2. The database retrieval system of claim 1 wherein
said external meaning representation comprises entities
and constraints relating to the entities, without refer-
ence to factual or linguistic relationships between enti-
ties that would prevent the external meaning represen-
tation from being easily understood by a database devel-
oper.

3. The database retrieval system of claim 2 further
comprising:

means for displaying the external meaning represen-
tation to the database developer.

4. The database retrieval system of claim I further
comprising:

tool kit means coupled to said computer processor for
enabling the database developer to create a knowl-
edge base containing a structural description and a
semantic description of a database from which data
is to be retrieved; and

wherein said second means comprises an expert system
coupled to access structural and semantic description
information in said knowledge base and identify said

WTD
MTD
QTD
PTD
YTD
LYTD

PYTD

ABSOLUTE, dd/mm/yy, dd/mm/yy

15 database elements from said information in accordance
with predefmed rules.

5. The database retrieval system of claim 4 wherein
said database structure is columnar, and said semantic
description comprises a concept index of database col-

20 umns.
6. The database retrieval system of claim 5 wherein

said semantic description further comprises a time
frame, value unit of measure, and aggregation level of
database columns.

25 7. The database retrieval system of claim 4 further
comprising:

means for enabling a database developer to view the
external meaning representation produced by said
debugging means.

30 8. The database retrieval system of claim 7 wherein
said debugging means comprise means for producing a
representation of the database elements identified by
said second means for viewing by a database developer.

9. The database retrieval system of claim 8 wherein
35 said debugging means also enables a database developer

to view the database query generated by said third
means.

10. The database retrieval system of claim 4 wherein
said external meaning representation comprises entities

40 and constraints relating to the entities, without refer-
ence to factual or linguistic relationships between enti-
ties that would prevent the meaning representation
from being easily understood by a database developer.

11. The database retrieval system of claim 10 further
45 comprising:

means for enabling a database developer to view the
external meaning representation produced by said
debugging means.

12. The database retrieval system of claim 4 wherein
50 said rules comprise steps for identifying an optimal set

of database elements to satisfy the queiy. represented by
the internal meaning representation.

13. The database retrieval system of claim 12 further
comprising:

means operatively associated with said computer
processor for generating a formatted report con-
taining data from said database responsive to said
natural language query.

14. The database retrieval system of claim 12 wherein
said steps for identifying an optimal set of database
elements include:

locating initial indexed columns;
testing subtypes;

65 testing data class-to-table rules;
matching characteristics and constraints;
matching time constraints;
testing master table quantifiers;
testing for detail file columns;

Page 27 of 29
Petitioner Microsoft Corporation - Ex. 1008, p. 4615

5,197,005

eliminating foreign-key-only tables;
minimizing tables; and
selecting the optimal navigation path for satisfying a

query.
15. A database retrieval system having a natural lan- 5

guage interface, said system comprising:
a computer processor;
tool kit means coupled to said computer processor for

enabling a database developer to create a knowl-
edge base containing a structural description and a 10
semantic description of a database from which data
is to be retrieved;

a natural language interface coupled to said computer
processor;

means operatively associated with said computer 15

processor for producing a database-independent,
canonical, internal meaning representation of a
natural language query entered into said natural
language interface;

expert system means for accessing structural and 20

semantic description information in the knowledge
base, and using said information to identify data-
base elements that are necessary to satisfy the
query represented by said internal meaning repre- 25
sentation; and

means operatively associated with said computer
processor for generating a database, query among
database elements identified by said expert system
means, said database query enabling the retrieval 30
and aggregation of data from a database to satisfy
said natural language query.

16. The database retrieval system of claim 15 wherein
said tool kit means comprises means for enabling a data-
base developer to enter join criteria into said knowledge 35
base.

17. The database retrieval system of claim 15 wherein
said tool kit means comprises means for enabling a data-
base developer to enter data group definitions into said
knowledge base. 40

18. The database retrieval system of claim 15 wherein
said tool kit means comprises means for enabling a data-
base developer to enter word and phrase associations
into said knowledge base.

19. The database retrieval system of claim 15 wherein 45
said tool kit means comprises means for enabling a data-
base developer to add, delete, and modify subtypes in
said knowledge base.

20. The database retrieval system of claim 15 wherein
said tool kit means comprises means for enabling a data- 50
base developer to add, modify and delete column refer-
ences in said knowledge base.

21. The database retrieval system of claim 15 wherein
said tool kit means comprises means for enabling a data-
base developer to add, delete, and modify word-to-data 55

class rules in said knowledge base.
22. The database retrieval system of claim 15 wherein

said tool kit means comprises means for enabling a data-
base developer to add, delete, and modify data class-to-
table rules in said knowledge base. 60

23. The database retrieval system of claim 15 wherein
said tool kit means comprises means for enabling a data-
base developer to add, delete, and modify nominal data
definitions in said knowledge base.

24. A method for retrieving data from a database 65
comprising the steps of:

inputting a natural language query to a computer
processor;

Page 28 of 29

32
processing said query in said processor to produce an

internal meaning representation thereof;
identifying database elements that are necessary to

satisfy the query represented by said internal mean-
ing representation;

generating a database query among the identified
database elements, for use in the retrieval and ag-
gregation of data from an application database to
satisfy said natural language query; and

deriving an external meaning representation from
said internal meaning representation, to enable a
database developer to comprehend the internal
meaning representation and verify that a natural
language query is properly processed to enable the
correct retrieval of data from said database.

25. The method of claim 24 wherein said database
elements comprise tables and columns in a relational
database, and said identifying step comprises the steps
of:

locating an initial set of candidate columns that con-
tain data responsive to the query represented by
said internal meaning representation; and

eliminating candidate columns from said initial set
that:
(a) contain a restriction not specified in said inter-

nal meaning representation, and
(b) are also not directly referenced by a concept in

the internal meaning representation.
26. The method of claim 25 wherein said identifying

step comprises a plurality of additional steps subsequent
to the identification of said database elements, said sub-
sequent steps including:

locating concepts in said internal meaning representa-
tion that have associated data class-to-table rules
which specify tables applicable to the query repre-
sented by said internal meaning representation;

testing candidate columns for each concept located in
the preceding step to determine if they are included
in at least one table specified by the associated data
class-to-table rule; and

eliminating candidate columns tested in said testing
step that are not included in at least one table speci-
fied by the associated data class-to-table rule.

27. The method of claim 26 wherein said identifying
step comprises, after the eliminating step of claim 26,
the subsequent step of:

eliminating candidate columns that provide semantic
matches which are not as close as semantic matches
provided by other candidate columns for each
concept in said internal meaning representation.

28. The method of claim 27 wherein said identifying
step comprises, after the eliminating step of claim 27,
the subsequent steps of:

determining whether any candidate columns contain
an exact time match for a time period specified in
the query represented by said internal meaning
representation; and if so,

eliminating redundant candidate columns that do not
contain an exact time match.

29. The method of claim 28 wherein said identifying
step comprises, after the eliminating step of claim 28,
the subsequent steps of:

determining if quantification is present in the query
represented by the internal meaning representation;
and if so:
(i) locating concepts within a chain of quantifica-

tion;

Petitioner Microsoft Corporation - Ex. 1008, p. 4616

5 197.005
33

(ii) determining if any concepts located in step (i)
index a primary key column of a table;

(iii) selecting any table to which step (ii) pertains as
a source of data responsive to the associated
concept; and 5

(iv) selecting tables other than those selected in
step (iii) as sources of data responsive to con-
cepts located in step (i) that do not index a pri-
mary key column of a table.

30. The method of claim 29 wherein said identifying 10
step comprises, after the steps of claim 29, the subse-
quent steps of:

locating concepts that have a detail constraint associ-
ated therewith;

selecting candidate columns having detail attributes
as a source of data responsive to concepts located 15
in the preceding step; and

eliminating redundant candidate columns as sources
of data responsive to concepts referred to in the
preceding step unless the candidate columns are in
tables previously selected on the basis of said data 20
class-to-table rules.

31. The method of claim 30 wherein said identifying
step comprises, after the eliminating step of claim 30,
the subsequent steps of:

locating candidate columns that include time attri- 25
butes;

noting tables in which the candidate columns located
in the preceding step reside;

eliminating redundant candidate columns from tables
other than those: 30
(i) noted in said noting step, or
(ii) which are selected on the basis of said data

class-to-table rules.
32. The method of claim 31 wherein said identifying

step comprises, after the eliminating step of claim 31,
the subsequent steps of: 35

locating concepts that have candidate columns from
more than one table;

noting any candidate columns for a concept located
in the preceding step that are non-foreign key
fields; and 4C

if any columns are noted in the immediately preced-
ing step, eliminating any candidate columns for the
concept referred to in the immediately preceding
step that are from key only tables.

33. The method of claim 32 wherein said identifying 4!
step comprises, after the steps of claim 32, the subse-
quent steps of:

determining, for each concept, if there are candidate
columns from more than one table; and if so,

eliminating redundant candidate columns from tables 5(
other than those with the highest count of such
candidate columns.

34. The method of claim 33 wherein said identifying
step comprises, after the steps of claim 33, the subse-
quent step of: 5:

choosing a navigation path among the remaining
tables and candidate columns for satisfying the
query represented by the internal meaning repre-
sentation.

35. The method of claim 34 wherein said step of
choosing the navigation path comprises the steps of: 6

determining if there still exist concepts that have
candidate columns from multiple tables; and if so:
(a) creating a set of all of the possible combinations

of such tables, each combination representing a
candidate navigation path, 6

(b) determining whether the multiple tables associ-
ated with a concept were selected on the basis of
a data class-to-table rule, and if so, deleting can-

wo - 7

Page 29 of 29

34
didate navigation paths that do not include all of
the tables required by the data class-to-table rule,

(c) ordering the remaining candidate navigation
patphs in accordance with predefined navigation
path rules to obtain said navigation path for satis-
fying the query represented by the meaning rep-
resentation.

36. The method of claim 35 wherein said predefined
navigation path rules comprise:

(i) giving priority to paths within tables that have a
predefined navigation path,

(ii) giving priority to paths containing fewer tables;
(iii) giving priority to paths with more primary key

columns;
(iv) giving priority to paths in which the total number

of primary key columns in all tables in the path is
fewest;

(v) giving priority to paths for which the sum of the
hierarchy levels of the candidate columns is lowest;

(vi) giving priority to paths for which the sum of the
estimated number of rows in the tables is fewest;
and

eliminating any candidate columns from tables that
are not included in the highest priority navigation
path resulting from the application of the above
navigation path rules.

37. The method of claim 36 comprising, after the
eliminating step of claim 36, the subsequent steps of:

adding table and column level columns to data from
said database to be displayed;

determining if the adding step introduced new tables;
and if so:
applying said navigation path rules again to pro-

duce a final navigation path.
38. The method of claim 24 comprising the further

steps of:
building a knowledge base representative of said ap-

plication database; and
enabling the developer to modify the knowledge

base, to correct an erroneous query interpretation
represented by the external meaning representa-
tion.

39. A method for deriving, from an internal meaning
representation produced by a natural language com-
puter interface, an external meaning representation for
use in debugging said interface by allowing a human

5 being to comprehend a query interpretation represented
by said internal meaning representation, comprising the
steps of:

identifying entities contained in the internal meaning
representation;

identifying constraints associated with the entities in
the internal meaning representation; and

combining said entities and constraints into an exter-
nal meaning representation that can be easily com-
prehended by a human being.

40. The method of claim 39 comprising the further
step of:

deriving said internal meaning representation from a
database query;

wherein said external meaning representation is canoni-
cal, indicative of said database query, and is database

0 independent.
41. The method of claim 39 comprising the further

step of:
ignoring factual or linguistic relationships between

entities in the internal meaning representation that
5 would prevent the external meaning representation

from being easily comprehended by a human being
if included therein.

Petitioner Microsoft Corporation - Ex. 1008, p. 4617

1111111 11111 111 11111111111111111 1111117 Igl
US005748974A

United States Patent [19]
Johnson

[11] Patent Number:

[451 Date of Patent:

5,748,974
May 5, 1998

[54] MULTIMODAL NATURAL LANGUAGE
INTERFACE FOR CROSS-APPLICATION
TASKS

[75] Inventor: David Edward Johnson. Peekskill,
N.Y

[73] Assignee: International Business Machines
Corporation, Armonk. N.Y

[21] Appl. No.: 354,987

[22] Filed: Dec. 13, 1994

[511 Int. C .6 G 06F 9/45
[521 U.S. CI .. 3951759; 395fl00
[58] Field of Search 364/419.08, 419.01,

364/419.02, 419.03, 419.04; 395/155, 156,
161, 375. 934. 700, 759

References Cited

U.S. PATENT DOCUMENTS

Katayama 364/419
Tennenbaum 3451156
Rohra Suda 364/419.08
Linnett 395/l00
Namba 364/419.08
Lamberti 364/419.08
Luciw 364/419.08
Tanashi 364/419.08

Attomey; Agen or Firm-Whitham, Curtis, Whitham &
McGinn; Stephen J. Kaufman

[57] ABSTRACT

A multimodal natural language interface interprets user
requests combining natural language input from the user
with information selected from a current application and
sends the request in the proper form to an appropriate
auxiliary application for processing. The multimodal natural
language interface enables users to combine natural lan-
guage (spoken. typed or handwritten) input selected by any
standard means from an application the user is running (the
current application) to perform a task in another application
(the auxiliary application) without either leaving the current
application, opening new windows, etc., or determining in
advance of running the current application what actions are
to be done in the auxiliary application. The multimodal
natural language interface carries out the following func-
tions: (1) parsing of the combined multimodal input; (2)
semantic interpretation (i.e., determination of the request
implicit in the pars); (3) dialog providing feedback to the
user indicating the systems understanding of the input and
interacting with the user to clarify the request (e.g., missing
information and ambiguities); (4) determination of which
application should process the request and application pro-
gram interface (API) code generation; and (5) presentation
of a response as may be applicable. Functions (1) to (3) are
carried out by the natural language processor. function (4) is
carried out by the application manager, and function (5) is
carried out by the response generator.

8 Claims, 7 Drawing Sheets

.Speech
Pop Up
Paste In

Video

etc.

GOOGLE EXHIBIT 1014

4,736,296
5,252,951
5,282265
5,301,326
5,321,608
5,377,103
5,390,281
5,442,780

4/1988
10/1993

1/1994
4/1994
6/1994

12/1994
2/1995
8/1995

Primary Examiner-IJeffery Hofsass
Assistant Examiner-Albert K, Wong

Page I of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4618

U.S. Patent May 5, 1998 Sheet 1 of 7 5,748,974

Page 2 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4619

May 5, 1998 Sheet 2 of 7

Speech

Pop Up
Paste In

FIG.2

Page 3 of 12

U.S. Patent 597489974

Petitioner Microsoft Corporation - Ex. 1008, p. 4620

U.S. Patent

Non-Speech Input (focus)

'44 South Broadway, White Plains, NY"

FIG.3

Page 4 of 12

597489974May 5, 1998 Sheet 3 of 7

Petitioner Microsoft Corporation - Ex. 1008, p. 4621

May 5, 1998 Sheet 4 of 7

Non-Speech Input

55

Ask-It System

1. 609-921-9521

2. There are 2 such names. Do you mean:
1. Joe A. Smith
2. Joe B. Smith?

Please select one.

3. There is no Joe Smith in your phonebook.
Should I look elsewhere?

FIG.4

Page 5 of 12

Kind of
Answers:

U.S. Patent 597489974

Petitioner Microsoft Corporation - Ex. 1008, p. 4622

U.S. Patent

Item-in-Focus

I 1 I2

Natural Language
Processor

FIG.5

John Smith

aphone

"Phone John Smith

F1G.5A

Page 6 of 12

User
Input

Concatenate
I1 and 12 r56

_ -45

5,7489974May 5, 1998 Sheet 5 of 7

Petitioner Microsoft Corporation - Ex. 1008, p. 4623

U.S. Patent

C,,

-- -----w

0

-a

May 5, 1998 Sheet 6 of 7

tO
CO

5,748,974

Page 7 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4624

U.S. Patent

App

ConA . A ... Ar

Person V/ V/
Phone

FIG.6A

Page 8 of 12

5,7489974May 5, 1998 Sheet 7 of 7

Petitioner Microsoft Corporation - Ex. 1008, p. 4625

5,748,974

1
MULTIMODAL NATURAL LANGUAGE

INTERFACE FOR CROSS-APPLICATION
TASKS

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention generally relates to user interfaces

for computer systems and, more particularly, to a multimo-
dal natural language interface that allows users of computer
systems conversational and intuitive access to multiple
applications. The term "multimodar' refers to combining in
put from various modalities; e.g.. combining spoken, typed
or handwritten input from the user.

2. Description of the Prior Art

Since the introduction of the personal computer, it has
been a goal to make using such a computer easier. This goal
recognizes that greater numbers of people are using com-
puters in their daily lives and business and that the majority
of the people using computers have little training in their
use. The term "user friendly" was coined to describe appli-
cations running on computers which required minimal train-
ing for a user to be able to effectively use those applications
and become productive. In a business context, training
employees in the use of a computer can be a very expensive
overhead cost to the business.

The graphic user interface (GUI) was introduced by the
Xerox Palo Alto Research Center (PARC) and made popular
by the Apply Macintosh computers. The GUI is often
described as a "point-and-click" interface because a cursor
pointing device, such as a mouse, trackball or the like, is
used to move a cursor on the display to an icon or command
bar where the user simply "clicks" or, in some cases, double
"clicks" a mouse button, for example. This is in contrast to
typing in carefully composed commands, a process which is
anything but intuitive. The GUI is now the de facto standard
in such operating systems and International Business
Machines (IBM) Corporation's OS/2 operating system and
the forthcoming Mircosoft Windows 95 operating system.

While the GUI has been a major improvement in com-
puter interfaces, the effective use of applications running
under operating systems supporting a GUI still requires a
knowledge of procedures to effectively use applications
running on those operating systems. For example, users
running an application (current application) frequently want
to perform some unanticipated task in another application
(auxiliary application) based in part on information in the
current application. Currently, performing such tasks is
time-consuming and cumbersome, requiring the user to
determine what auxiliary application needs to be accessed.
open a new window, import information from the current
application, and other related tasks. Thus, as important as the
GUI has been in making computer systems "user friendly",
there still remains much improvement to be made to facili-
tate use of computers by an increasingly large number
people.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
a multimodal natural language interface that interprets
requests combining natural language input from the user
with information selected from the current application and
sends the request in the proper form to the appropriate
application for processing.

According to the invention, there is provided a multimo-
dal natural language interface that enables users to combine

natural language (spoken, typed or handwritten) input
selected by any standard means from an application the user
is running (the current application) to perform a task in
another application (the auxiliary application) without either

5 leaving the current application, opening new windows, etc.,
or determining in advance of running the current application
what actions are to be done in the auxiliary application.

The invention carries out the following functions: (1)
parsing of the combined multimodal input; (2) semantic

10 interpretation (i.e., determination of the request implicit in
the parse); (3) dialog providing feedback to the user indi-
cating the systems understanding of the input and interacting
with the user to clarify the request (e.g.. missing information
and ambiguities); (4) determination of which application

15 should process the request and application program interface

(API) code generation; and (5) presentation of a response as
may be applicable. Functions (1) to (3) are carried out by the
natural language processor, function (4) is carried out by the
application manager, and function (5) is carried out by the

20 response generator.

The invention allows the use of multimodal (spoken.
typed, handwritten) natural language input supplied by the
user combined with information selected from a current
application via any standard technique. The invention fur-

25 ther provides a unique combination and application of
techniques from artificial intelligence and computational
linguistics that have been used in other applications, e.g.,
natural language database query and machine translation, in
the area of user interfaces supporting cross-application

30 tasks. Together, these go beyond current state-of-the-art user
interfaces supporting cross-application tasks.

BRIEF DESCRIPTION OF THE DRAWINGS

35 The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings. in which:

FIG. 1 is a block diagram showing a hardware configu-
40 ration on which the subject invention may be implemented;

FIG. 2 is a block diagram of the multimodal system
architecture according to the present invention;

FIG. 3 is a block diagram of a first example of the
45 operation of the multimodal system shown in FIG. 2;

FIG. 4 is a block diagram of a second example of the
operation of the multimodal system shown in FIG. 2;

FIG. 5 is a flow diagram showing the logic of the
combining multimodal linguistic input function of the dis-

50 patcher;
FIG. 5A is an example of the combining multimodal

linguistic input function of the dispatcher;

FIG. 6 is a flow diagram showing the logic of the
application manager; and

55 FIG. 6A is an example of a concept/application registra-

tion table used by the application manager.

DETAILED DESCRIFION OF A PREFERRED
EMBODIMENT OF THE INVENTION

60

Referring now to the drawings, and more particularly to
FIG. 1, there is shown a representative hardware environ-
ment on which the subject invention may be implemented.
This hardware environment may be a personal computer,

65 such as the IBM's PS/2 family of Personal Computers,
running an operating system capable of supporting
multitasking, such as IBM's OS/2 operating system. The

Page 9 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4626

5.748,974

hardware includes a central processing unit (CPU) 10, which
may conform to Intel's X86 architecture or may be a reduced
instruction set computer (RISC) microprocessor such as
IBM's PowerPC® microprocessor. The CPU 10 is attached
to a system bus 12 to which are attached a read/write or
random access memory (RAM) 14, a read only memory
(ROM) 16, an input/output (I/O) adapter 18, and a user
interface adapter 22. The RAM 14 provides temporary
storage for application program code and data, while ROM
16 typically includes the basic input/output system (BIOS)
code. The IO adapter 18 is connected to one or more Direct
Access Storage Devices (DASDs), here represented as a disk
drive 20. The disk drive 20 typically stores the computer's
operating system (OS) and various application programs.
each of which are selectively loaded into RAM 14 via the
system bus 12. The user interface adapter 22 has attached to
it a keyboard 24, a mouse 26, a speaker 28, a microphone 32,
and/or other user interface devices (not shown). The per-
sonal computer also includes a display 38, here represented
as a cathode ray tube (CR1) display but which may be a
liquid crystal display (LCD) or other suitable display. The
display 38 is connected to the system bus 12 via a display
adapter 34. Optionally, a communications adapter 34 is
connected to the bus 12 and to a network, for example a local
area network (LAN), such as IBM's Token Ring LAN.
Alternatively, the communications adapter may be a modem
connecting the personal computer or workstation to a tele-
phone line as part of a wide area network (WAN).

The preferred embodiment of the invention is imple-
mented on a hardware platform as generally shown in FIG.
1. The architecture of the multimodal natural language
interface according to the invention will now be described
followed by specific examples of its operation. The multi-
modal natural language interface is linked to applications
permitting users, from within a current application, to per-
form actions in an auxiliary application without the neces-
sity of opening new windows or similar procedures. The
term "multimodal" refers to the feature of combining input
from various modalities; e.g., combining spoken, typed, or
handwritten input from the user with input selected from an
application the user is running by any standard means,
including point-and-click, touch, and keyboard selection.

With reference now to FIG. 2 there is shown the basic
architecture of the system. The user input may be spoken,
typed, handwritten, mouse controlled cursor, touch, or any
other modality. In the illustrated example, speech is input via
microphone 32 (FIG. 1). The speech input, "Find address",
is supplied to a speech recognizer 41 which generates an
output. At the same time, the user may also provide non-
speech input; e.g., by keyboard 24, mouse 26, a touch screen
(not shown) attached to display 38, or the like. As mentioned
the multimodal input contemplates handwritten input as
well, and this may be accommodated by means of a stylus
and tablet (not shown) or the mouse 26. This non-speech
input is received by the screen manager 42, such as the
Presentation Manager (PM) of the OS/2 operating system.
The screen manager 42 also provides the a display window
for application A, the current application, here shown as
being accessed from a direct access storage device (DASD)
43, such as the hard disk 20 (FIG. 1). Within the window for
application A, there is an "Item-in-Focus", such as text or a
graphic.

The output of the speech recognizer 41 and the non-
speech input received by the screen manager 42 are sent to
a dispatcher 44 which combines the inputs and directs the
combined input to first of all a natural language processor
45. The natural language processor 45 directs the combined

4
multimodal input to a parser/semantic interpreter 46 which
accesses grammars and dictionaries on DASDs 47 and 48,
which may be the same or different hard disk 20 (FIG. 1) on
which application A resides. The parsed input is subjected to

5 further semantic interpretation by the dialog manager 49.
again with the aid of the grammars and dictionaries on
DASDs 47 and 48. The natural language processor 45
provides feedback to the user via the dispatcher 44 to
indicate the system's understanding of the input. If

1(necessary, the natural language processor 45 interacts with
the user to clarify any missing information or ambiguities in
the request. The techniques employed by the natural lan-
guage processor 45, parser 46 an dialog manager 49 are
common in the area of natural language query database

15 systems. Examples of commercially available natural lan-
guage query database systems are IBM's "LanguageAccess"
and NRI's "Natural Language" products.

Based on the output of the natural language processor 45,
the dispatcher 44 invokes the application manager 51 to

20 determine which application should process the request.
Note that in the prior art the application manager of the
operating system would have to be invoked by the user to
first open a window for a selected application and then the
application would have to be started and run in that window.

25 The user would then have to access the requested informa-
tion and then, using a clipboard function, copy and paste the
information into the original application window. According
to the invention, this is all done automatically without any
intervention by the user. For example, the application man-

30 ager 51 may access any of applications B to Z on DASDs 52
to 53, again which may be the same or different hard disk 20
(FIG. 1) on which application A resides. The application
accessed is the auxiliary application. The application man-
ager 51 determines which of applications B to Z has the

35 requested information. The application manager 51 may
determine that a database program say application B, con-
tains an address file where the requested information resides.
The application manager 51 sends semantic representation
of the request to the API code generator for application B

40 which, in turn, generates the application program interface
(API) code required to access the requested information.
This is done without opening a window. The auxiliary
application (e.g., the database program) is opened in the
background and the API code (e.g., query) is generated to

45 retrieve the requested information. Once the information has
been accessed by the application manager 51, the requested
information is supplied to the dispatcher 44 which then
dispatches the information to the response generator 54. The
response generator 54 then generates a response appropriate

50 to the nature of the request and the current application. This
response can be speech, from a synthesizer (not shown), text
in a pop up window, text or a graphic which is pasted into
the current application, a video clip, or the like.

Consider now a specific example with reference to FIG.
55 3. If the current application (application A) is a word

processor and the user is writing a letter to Joe Smith, after
typing John Smith's name via keyboard 24, the user may
provide the speech input, "Find address". The combined
multimodal input, the typed name of Joe Smith ("Item-in-

60 Focus" in FIG. 1) and the spoken request "Find address", is
processed by the natural language processor 45 and supplied
by the dispatcher 44 to the application manager 51, here
represented by the "Ask-It" block 55. In the example
described, the combined input is "Find address (of) Joe

65 Smith". The function performed is to access a names and
addresses file 56 via a database program on DASD 52 and
retrieve Joe Smith's address. The appropriate response is to

Page 10 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4627

5,748,974

paste the retrieved address of Joe Smith in the letter being
written by the word processor application (application A).

Consider next the example shown in FIG. 4. The user has
typed in Joe Smith's name, but now instead of requesting an
address, the user provides the speech input "Phone". There
are several possible answers illustrated in the example of
FIG. 4. The first is to retrieve Joe Smith's telephone number.
However, if there are two Joe Smiths in the database, then
there is an ambiguity that must be clarified before a final
response can be generated. The dialog manager 49 (FIG. 2)
will provide a choice to the user, perhaps in a pop-up
window, and request the user to select one of the choices. On
the other hand, there may be no Joe Smith listed in the
phonebook, in which case there is not enough information in
the request to process it. The dialog manager 49 would then
inform the user that there is no Joe Smith listed and ask for
more information, such as "Should I look elsewhere". This
response could be a text display in a pop up window, for
example, or synthesized speech. Ultimately, when the tele-
phone number is located, the response could be either a
listing of the number itself or the number would be dialed
via the communications adapter 34 (FIG. 1).

The functions which support the multimodal natural lan-
guage interface are the dispatcher 44 and the application
manager 51 shown in FIG. 2. With reference now to FIG. 5,
the dispatcher function is illustrated by way of a flow
diagram. The user input, I1, and the item-in-focus input, 12,
from the current application are simply concatenated in
function block 56 as "user input"+"item-in-focus". The
grammar and semantic interpretation rules used in the natu-
ral language processor 45 insure the intended meaning is
recovered. As mentioned, various state of the art natural
language processing systems can be used to perform the
function of the natural language processor 45. Even if the
concatenated input to the natural language processor 45 does
not match the natural order of the natural language
processed, the natural language processor will still recover
the intended meaning. For example, if the concatenated
input were "send to Mary"+<filename>, meaning "send to
Mary financial data", the natural language processor 45
would understand this by the correct English expression
"send <filename> to Mary", meaning "send financial data to
Mary" since the natural language processor can analyze
unusual word orders by supplying the appropriate gramnati-
cal rules. A significant ease of use advantage of this system
is that the user input and the input supplied from the current
application can be input in either temporal order or even
overlap in time.

FIG. 5A provides another example of the operation of the
dispatcher function 56. In this case, the user input is "phone"
and the application input is "John Smith". The dispatcher
concatenation function is to output "phone John Smith" to
the natural language processor.

The flow diagram of the application manager 51 is shown
in FIG. 6, to which reference is now made. For a given input,
the application manager first finds all concepts in the seman-
tic representation provided by the natural language proces-
sor 45 in function block 61 and then, in function block 62,
determines from the semantic representation each applica-
tion that is registered with every concept in the semantic
representation. This determination is made by referencing a
conceptlapplication table 63. Some concepts might be stipu-
lated to be application independent, and those would not
need to be considered. Such concepts could be identified by
a flag set in a dictionary. Each application-specific concept
is listed along with the names of the applications registered
with that concept in the concept/application registration

6
table 63. This is logically just a table where, without loss of
generality, the columns are labeled with application names
and the rows with concept names. An example is shown in
FIG. 6A. Once the set of application-specific concepts is

5 determined, each such concept is looked up in the concept!
application registration table, and the associated set of
registered application names is returned. Each concept thus
results in a set of application names being produced, which
may be referred to as a "Concept-Application Set". After

io each concept has been processed, the result is a collection of
Concept-Application Sets, one set of application names for
each application-specific concept looked up in the concept/
application registration table 63. The name of each applica-
tion that occurs in every Concept-Application Set derived

15 from the input semantic representation is determined.
Logically, this can be done by simple set intersection. The
result is a set of application names (Application Set), all of
which are registered with each application-specific concept
derived from the semantic representation of the input.

20 Next, in function block 64. the application manager sends

the semantic representation to the API code generator 65 of
each such application. Typically, there will be only one, but
nothing precludes more than one application name occurring
in the Application Set. In such a case, the input is truly

25 ambiguous and the system could either report this to the user
via the dispatcher or simply submit the semantic represen-
tation to each of the named application API code generators
or both. Nothing in the architecture hinges on this choice and
parameter could be set to determine the actual behavior of

30 the system in particular circumstances. It is also possible that
the Application Set is empty, corresponding to an input that
was not meaningful with respect to the applications regis-
tered with the system in the concept/application registration
table 63. This event would be reported back to the dispatcher

35 for further processing, e.g., interaction with the user to
determine the next action, if any. Assuming that an appli-
cation is found and the semantic representation is sent to that
application's API code generator in function block 65, the
application then acts on the code in function block 66 to

40 retrieve the data requested.
While the invention has been described in terms of a

single preferred embodiment, those skilled in the art will
recognize that the invention can be practiced with modifi-
cation within the spirit and scope of the appended claims.

5 Having thus described my invention, what I claim as new
and desire to secure by Letters Patent is as follows:

1. A multimodal natural language interface for a computer
system which interprets user requests combining natural
language input from the user with information selected from
a current application running on the computer system and
sends the request in proper form to an appropriate auxiliary
application for processing, the multimodal natural language
interface comprising:

a dispatcher receiving a natural language input from the
user and combining the natural language input with
input information selected from a current application to
form a combined multimodal request;

a parser receiving the combined multimodal request for
60 parsing the combined multimodal request;

a natural language processor performing semantic inter-
pretation of the parsed combined multimodal request
and generating a semantic representation of the com-
bined multimodal request;

65 an application manager receiving the semantic represen-
tation from the natural language processor for deter-
mining which auxiliary application should process the

Page 11 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4628

5.748,974

request, said application manager invoking the auxil-
iary application and generating application program
interface (API) code to access requested information
via the auxiliary application, the accessed requested
information being supplied to said dispatcher; and

a response generator receiving the accessed requested
information from the dispatcher for generating a
response as may be applicable to the user's request.

2. The multimodal natural language interface recited in
claim 1 further comprising a dialog manager providing
feedback to the user indicating the system's understanding
of the input and interacting with the user to clarify the
request, if necessary.

3. The multimodal natural language interface recited in
claim 2 wherein said dispatcher forms the combined multi-
modal request by concatenating the user natural language
input with the input information selected from the current
application running on the system.

4. The multimodal natural language interface recited in
claim 3 wherein the application manager includes a concept/
application registration table, said application manager find-
ing all concepts in the semantic representation from the
natural language processor and then finding all applications
registered in said concept/application registration table for
those concepts.

5. A method implemented in a computer system for
interpreting user requests by combining natural language
input from a user with information selected from a current
application running on the computer system comprising the
steps of:

receiving a natural language input from the user and
combining the natural language input with input infor-

8
mation selected from a current application to for a
combined multimodal request;

parsing the combined multimodal request;

5 performing semantic interpretation of the parsed com-
bined multimodal request to generate a semantic rep-
resentation of the combined multimodal request;

determining of which auxiliary application should process
the request;

10 invoking the auxiliary application and generating appli-

cation program interface (API) code to access
requested information via the auxiliary application; and

receiving the accessed requested information and gener-

15 ating a response as may be applicable to the user's
request.

6. The method recited in claim 5 further comprising the
step of providing feedback to the user indicating the sys-
tem's understanding of the input and interacting with the

20 user to clarify the request. if necessary.
7. The method recited in claim 6 wherein the step of

combining is performed by concatenating the user natural
language input with the input information selected from the
current application running on the system.

25 8. The method recited in claim 7 further comprising the
steps of:

generating a concept/application registration table;

finding all concepts in the semantic representation; and

then finding all applications registered in said conceptl
30 application registration table for those concepts.

Page 12 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4629

I IIIII IIIIIIII Ill lllll lllll lllll lllll lllll lllll lllll lllll 111111111111111111
US006188985Bl

(12) United States Patent
Thrift et al.

(10) Patent No.:
(45) Date of Patent:

US 6,188,985 Bl
Feb.13,2001

(54) WIRELESS VOICE-ACTIVATED DEVICE
FOR CONTROL OF A PROCESSOR-BASED
HOST SYSTEM

5,796,394 * 8/1998 Wicks et al. 345/329
5,802,526 * 9/1998 Fawcett et al. 707/104
5,890,122 * 3/1999 Van Kleeck et al. 704/275
5,890,123 * 3/1999 Brown et al. 704/275

(75) Inventors: Philip R. Thrift, Dallas; Charles T. 6,075,575 * 6/2000 Schein et al. 348/734

(73)

(*)

Hemphill, Allen, both of TX (US)

Assignee: Texas Instruments Incorporated,
Dallas, TX (US)

Notice: Under 35 U.S.C. 154(b), the term of this
patent shall be extended for O days.

OTHER PUBLICATIONS

Holmes "Speech Synthesis and Recognition" Chapman Hill,
p. 109, 1988. *
Ballou "Handbook for Sound Engineers" Howard Sams, p.
376, 1987.*
Dragon "Dragon Dictate 1.0 for Windows" Dragon systems,
pp. 140, 13.*

(21) Appl. No.: 08/943,795 * cited by examiner

(22)

(60)

(51)
(52)
(58)

(56)

Filed: Oct. 3, 1997

Related U.S. Application Data

Primary Examiner-David R. Hudspeth
Assistant Examiner-Harold Zintel

Provisional application No. 60/034,685, filed on Jan. 6,
1997.

Int. Cl.7 GlOL 15/00; H04N 5/44
U.S. Cl. ... 704/275; 348/734
Field of Search 704/275, 270;

348/734, 738

References Cited

U.S. PATENT DOCUMENTS

4,661,659 * 4/1987 Nishimura 455/462
5,199,080 * 3/1993 Kimura et al. 381/110
5,247,580 * 9/1993 Kimura et al. 704/275
5,636,211 * 6/1997 Newlin et al. 370/465
5,737,491 * 4/1998 Allen et al. 704/270
5,774,628 * 6/1998 Hemphill 704/255

(74) Attorney, Agent, or Firm-Robert L. Troike; Frederick
J. Telecky, Jr.

(57) ABSTRACT

A hand-held wireless voice-activated device (10) for con
trolling a host system (11), such as a computer connected to
the World Wide Web. The device (10) has a display (10a),
a microphone (10b), and a wireless transmitter (10g) and
receiver (10h). It may also have a processor (lOe) and
memory (10.t) for performing voice recognition. A device
(20) can be specifically designed for Web browsing, by
having a processor (20e) and memory (20.t) that perform
both voice recognition and interpretation of results of the
voice recognition.

18 Claims, 3 Drawing Sheets

VOICE-ACTIVATED CONTROL UNIT HOST COMPUTER

\ 8 10,

_.r10g .,r11
10

VOICE INPUT PROCESSOR
TRANSMITIER -

~ WWW
10b 10c 10h

I
110

/

PJ
DATA -f--

RECEIVER
11 b

10d /
MEMORY MEMORY ~------ -------

PROCESSOR VOICE VOICE
10e/ RECOGNIZER CONTROL

GRAMMAR INTERPRETER

FILES GRAMMAR

10f _/ DYNAMIC
FILES

GRAMMAR WEB
GENERATOR BROWSER

GOOGLE EXHIBIT 1015Page 1 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4630

U.S. Patent Feb.13,2001 Sheet 1 of 3 US 6,188,985 Bl

VOICE-ACTIVATED CONTROL UNIT HOST COMPUTER

DISPLAY
V 10a

10 \
v10g v11

VOICE INPUT
~ PROCESSOR TRANSMITIER -

~
10b 10c i. I
~ 10h 11 a

WWW

/

pl DATA -RECEIVER -

11 b
10d ')

MEMORY MEMORY ------- 1---------
PROCESSOR VOICE VOICE

10e_/ RECOGNIZER CONTROL

GRAMMAR INTERPRETER

FILES GRAMMAR
1 Of/ DYNAMIC FILES

GRAMMAR WEB
GENERATOR BROWSER

FIG. 1

54 52
62

GRAMMAR VOCABULARY CONSTRAINTS
68

ONLINE
PRONUNCIATIONS CONTEXT DICTIONARY

56 SPEAKER INDEPENDENT
CONTINUOUS SPEECH

PHONETIC MODELS 66

60 FIG. 5

Page 2 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4631

U.S. Patent Feb. 13,2001 Sheet 2 of 3 US 6,188,985 Bl

20 \
VOICE -ACTIVATED CONTROL UNIT HOST COMPUTER /21

20a "\
DISPLAY . PROCESSOR -- - WWW

SIGNAL

20b/0--
INTERFACE (

21a

20d~

21b
I

MEMORY \ r--------

20g

2Qe/ PROCESSOR WEB
BROWSER

MEMORY
i--------

VOICE
RECOGNIZER

20f ./
VOICE

CONTROL
INTERPRETER

GRAMMAR
FILES

DYNAMIC
GRAMMAR

GENERATOR

FIG. 2

Page 3 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4632

Ser: 1.4623: Sec: 2.18, 1.12 PU, 0.51 xRT: Mem: 5567 max: 440.12 av
O

.
I Push lo Start I what's the current value af gz stock? I~ I
D Listen Toggle <J 1 1 [> I v I

41

"Show me my speakable command

"Show me my speakable hotlist"

~ BREAKING NEWS

San Jose Mercury
News web

FIG. 3
40
~

list"

Lost updated Tuesday, December 12 at 5:05AM PST. Click for HELP or MAIN MENU.

BUSINESS TRAVEL COSTS GOING UP
Led by Hotel rates, travel costs should 3 percent to 4 percent next year. American
Express said in its annual travel forecast out Tuesday.
DIANA IN N.Y. FOR DINNER AWARD
NEW YORK-Diana, the princess of Whales, fresh from the television interview in

FIG. 4

Help I 31

Quit I

~30

d
•
r:JJ.
•
~
~
~ =

"'!"j
~

?'
"'"" ~~
N
C
C

"'""

'JJ.

=~
~
~

0,
~

e
rJ"J.

-..a-..
i,
~
~

\0
~
(It

~
i,-

Page 4 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4633

US 6,188,985 Bl
1

WIRELESS VOICE-ACTIVATED DEVICE
FOR CONTROL OF A PROCESSOR-BASED

HOST SYSTEM

2
such as a computer connected to the World Wide Web. A
compact hand-held unit has a microphone, a wireless audio
input transmitter, a wireless data receiver, and a display. The

This application claims benefit of Ser. No. 60/034,685 5

filed Jan. 6, 1997.

microphone receives voice input from a user, thereby pro
viding an audio input signal. The audio transmitter wire
lessly transmits data derived from the audio signal to the

TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to voice recogni
tion devices, and more particularly to a wireless voice
controlled device that permits a user to browse a hypermedia
network, such as the World Wide Web, with voice com
mands.

RELATED PATENT APPLICATIONS

This patent application is related to the following patent
applications, each assigned to Texas Instruments Incorpo
rated.

host system. After the host acts on the audio input, it delivers
some sort of response in the form of image data wirelessly
delivered to the receiver. A display generates and displays

10 images represented by the image data.

15

Variations of the device can include a speaker for audio
output information. The device can also have a processor
and memory for performing front-end voice recognition
processes or even all of the voice recognition.

An advantage of the invention is that it makes information
on the Web more accessible and useful. Speech control
brings added flexibility and power to the Web interface and
makes access to information more natural.

U.S. patent U.S. Pat. No. 5,774,628 entitled "Speaker- 20

Independent Dynamic Vocabulary and Grammar in
Speech Recognition"

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates one embodiment of a wireless voice
activated control unit in accordance with the invention.

U.S. patent application Ser. No. 08/419,229, entitled
"Voice Activated Hypermedia Systems Using Gram-
matical Metadata" 25

FIG. 2 illustrates another embodiment of a wireless voice
activated control unit, specially configured for translating
and interpreting audio input from the user.

BACKGROUND OF THE INVENTION

The Internet is a world-wide computer network, or more
accurately, a world-wide network of networks. It provides an
exchange of information and offers a vast range of services.
Today, the Internet has grown so as to include all kinds of
institutions, businesses, and even individuals at their homes.

FIG. 3 illustrates an example of a display provided by the
speakable command process.

FIG. 4 illustrates a portion of a Web page and its speak-
3o able links.

FIG. 5 illustrates a process of dynamically creating gram
mars for use by the voice recognizer of FIGS. 1 and 2.

DETAILED DESCRIPTION OF THE
INVENTION

The invention described herein is directed to a wireless
voice-activated device for controlling a processor-based host
system. That is, the device is a voice-activated remote
control device. In the example of this description, the host
system is a computer connected to the World-Wide Web and
the device is used for voice-controlled web browsing.
However, the same concepts can be applied to a voice
controlled device for controlling any processor-based sys-

The World-Wide Web ("WWW" or "Web") is one of the
services available on the Internet. It is based on a technology 35

known as "hypertext", in which a document has links to its
other parts or to other documents. Hypertext has been
extended so as to encompass links to any kind of information
that can be stored on a computer, including images and
sound. For example, using the Web, from within a document 40

one can select highlighted words or phases to get definitions,
sources, or related documents, stored anywhere in the world.
For this reason, the Web may be described as a "hyperme
dia" network.

45 tern that provides display or audio information, for example,
a television. The basic unit in the Web is a "page", a (usually)

text-plus-graphics document with links to other pages.
"Navigating" the Web primarily means moving around from
page to page.

The idea behind the Web is to collect all kinds of data
from all kinds of sources, avoiding the problems of incom
patibilities by allowing a smart server and a smart client
program to deal with the format of the data. This capability
to negotiate formats enables the Web to accept all kinds of
data, including multimedia formats, once the proper trans
lation code is added to the servers and clients. The Web
client is used to connect to and to use Web resources located
on Web servers.

One type of client software used to access and use the
Web is referred as "web browser" software. This software
can be installed on the user's computer to provide a graphic
interface, where links are highlighted or otherwise marked
for easy selection with a mouse or other pointing device.

SUMMARY OF THE INVENTION

One aspect of the invention is a wireless voice-activated
control unit for controlling a processor-based host system,

Various embodiments of the device differ with regard to
the "intelligence" embedded in the device. For purposes of
the invention, the programming used to recognize an audio

50 input and to interpret the audio input so that it can be used
by conventional web browser software is modularized in a
manner that permits the extent of embedded programming to
become a matter of design and cost.

FIG. 1 illustrates one embodiment of a wireless voice-
55 activated control unit 10 in accordance with the invention. It

communicates with a host system 11. As stated above, for
purposes of this description, host system 11 is a computer
and is in data communication with the World-Wide Web.

Control unit 10 has a display 10a and a microphone 10b.
60 Display 10a is designed for compactness and portability, and

could be an LCD. Microphone 10b receives voice input from
a user. It may have a "mute" switch 10c, so that control unit
10 can be on, displaying images and even receiving non
audio input via an alternative input device such as a keypad

65 (not shown), but not performing voice recognition. Micro
phone 10b may be a microphone array, to enhance the ability
to differentiate the user's voice from other sounds.

Page 5 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4634

US 6,188,985 Bl
3

In the embodiment of FIG. 1, control unit 10 performs all
or part of the voice recognition process and delivers speech
data to host computer 11 via transmitter 10g. Host computer

4
display on display 10a or for output by speaker 10d. Thus,
the data received from host system 11 may be graphical
(including text, graphics, images, and videos or audio.

FIG. 2 illustrates an alternative embodiment of the 11 performs various voice control interpretation processes
and also executes a web browser. However, in its simplest
form control unit would transmit audio data directly from
microphone 10b to host system 11, which would perform all
processing.

In the case where control unit 10 performs all or part of
the voice recognition process, control unit 10 has a processor
lOe. Memory 10/ stores voice recognition programming to

5 invention, a wireless voice-activated control unit 20 that
performs voice control interpretation as well as voice rec
ognition. The voice control interpretation is specific to
browsing a hypermedia resource, such as the Web. The host
system 21 is connected to the hypermedia resource.

10 Control unit 20 has components similar to those of control

be executed by processor lOe. An example of a suitable
processor 10a for speech recognition is a signal processor,
such as those manufactured by Texas Instruments Incorpo
rated. Where microphone 10b is a microphone array, pro
cessor 10a may perform calculations for targeting the user's
vmce.

unit 10. However, its processor 20e performs additional
programming stored in memory 20/ Specifically, the voice
control interpretation processes may comprise a speakable
command process, a speakable hotlist process, or a speak
able links process. These processes and their associated

15 grammar files reside on control unit 20.

If control unit performs only some voice processing, it
may perform one or more of the "front end" processes, such
as linear predictive coding (LPC) analysis or speech end
pointing.

20

25

The speakable command process displays a command
interface on display 20a and accepts various Web browsing
commands. The process has an associated grammar file for
the words and phrases that may be spoken by the user.

FIG. 3 illustrates an example of a display 30 provided by
the voice control interpretation process. One speakable
command is a "Help" command, activated with a button 31.
In response, the command process displays a "help page"
that describes how to use voice-controlled browsing.

Another speakable command is, "Show me my speakable
command list". Speaking this command displays a page
listing a set of grammars, each representing a speakable
command. Examples are pagedown_command, back_

If control unit 10 performs all voice recognition
processes, memory 10/ stores these processes (as a voice
recognizer) as well as grammar files. In operation, the voice
recognizer receives audio input from microphone 10b, and
accesses the appropriate grammar file. A grammar file han
dler converts the grammar to speech-ready form, creating a
punctuation grammar, and loading the grammar into the
voice recognizer. The voice recognizer uses the grammar file
to convert the audio input to a text translation.

The grammar files in memory 10/ may be pre-defined and
stored or may be dynamically created or may be a combi
nation of both types of grammar files. An example of
dynamic grammar file creation is described below in con
nection with FIG. 5. The grammars may be written with the
Backus-Naur form of context-free grammars and can be
customized. In the embodiment of FIG. 1, and where unit 10

30 command, and help_command. When the command pro
cess receives a translation of one of these commands, it
performs the appropriate action.

FIG. 3 also illustrates a feature of the voice recognizer
that is especially useful for Web browsing. The user has

is used for Web browsing, host computer 11 delivers the
HTML (hyertext markup language) for a currently displayed
Web page to unit 10. Memory 10/ stores a grammar file
generator for dynamically generating the grammar. In alter
native Web browsing embodiments, host 11 could dynami
cally generate the grammar and download the grammar file

35 spoken the words, "What is the value of XYZ stock?" Once
the voice recognizer recognizes an utterance, it determines
the score and various statistics for time and memory use. As
explained below, the request for a stock value can be a hotlist
item, permitting the user to simply voice the request without

40 identifying the Web site where the information is located.
Another speakable command is "Show me my speakable

hotlist", activated by button 33. A "hotlist" is a stored list of
selected Uniform Resource Locators (URLS), such as those
that are frequently used. Hotlists are also known as book-

to control unit 10. 45 marks. URLs are a well known feature of the Web, and
The output of the voice recognizer is speech data. The

speech data is transmitted to host system 11, which performs
voice control interpretation processes. Various voice control
interpretation processes for voice-controlled Web browsing
are described in U.S. patent application Ser. No. 08/419,229, 50
entitled "Voice Activated Hypermedia Systems Using
Grammatical Metadata", assigned to Texas Instruments
Incorporated and are incorporated herein by reference. As a
result of the interpretation, the host system 11 may respond
to the voice input to control unit 10 by executing a command 55
or providing a hypermedia (Web) link.

provide a short and consistent way to name any resource on
the Internet. A typical URL has the following form:

http://www.ncsa.uiic.edu/General/NCSAHome.html
The various parts of the URL identify the transmission
protocol, the computer address, and a directory path at that
address. URLs are also known as "links" and "anchors".

The speakable hotlist process permits the user to construct
a grammar for each hotlist item and to associate the grammar
with a URL. To create the grammar, the user can edit an
ASCII grammar file and type in the grammar using the BNF
syntax. For example, a grammar for retrieving weather
information might define phrases such as, "How does the
weather look today?" and "Give me the weather". The user
then associates the appropriate URL with the grammar.

The hotlist grammar file can be modified by voice. For
example, a current page can be added as a hotlist item.
Speaking the phrase, "Add this page to my hotlist" adds the
title of the page to the grammar and associates that grammar
with the current URL. Speaking the phrase, "Edit my

An example of voice control interpretation other than for
Web browsing is for commands to a television, where host
system 11 is a processor-based television system. For
example, the vocal command, "What's on TV tonight?", 60

would result in a display of the television schedule. Another
example of voice control interpretation other than for Web
browsing is for commands for computer-based household
control. The vocal command, "Show me the sprinkler sched
ule" would result in an appropriate display. 65 speakable hotlist", permits the user to edit the grammar by

adding additional phrases that will cause the page to be
retrieved by voice.

After host system 11 has taken the appropriate action, a
wireless receiver 10h receives data from host system 11 for

Page 6 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4635

US 6,188,985 Bl
5 6

Speech Phonetic Models module 60, input into the User
Agent 64. In addition, the Speech module 66 inputs the
user's speech into the User Agent 64. In parallel, the Context
module 68 gets inputs from the screen 40 and inputs into the

The speakable hotlist process is activated when the voice
recognizer recognizes a hotlist translation from the hotlist
grammar file and passes the translation to the hotlist process.
The hotlist process looks up the associated URL. It passes
the URL to the browser residing on host computer 11 (via
wireless communication), so that the Web page may be
retrieved and transmitted to the voice control unit 10 for
display on display 10a.

5 User Agent 64.
An existing RGDAG (Regular Grammar Directed Acyclic

Graph) may dynamically accommodate new syntax and
vocabulary. Every time the screen 40 changes, the user agent
64 creates a grammar containing the currently visible under-The grammar files for speakable commands and the

speakable hotlist are active at all times. This permits the user
to speak the commands or hotlist links in any context. A
speakable links process may also reside in memory 20e of
voice control unit 20. Selected information in a Web page
may provide links, for access to other web pages. Links are
indicated as such by being underlined, highlighted, differ
ently colored, outlined as in the case of pictures, or other
wise identified. Instead of using a mouse or other pointing
device to select a link, the user of voice control unit 10 may
speak a link from a page being display on display 10a.

10 lined phrases (links). From this grammar, the user agent 64
tokenizes the phrases to create phrase grammars that can
include, for example, optional letter spelling and deleted/
optional punctuation. From the tokens, the user agent 64
creates phonetic pronunciation grammars using a combina
tion of online dictionaries and a text-to-phoneme mapping.

15 The voice recognition process then adds the grammars
created. This involves several simple bookkeeping opera
tions for the voice recognizer, including identifying which
symbols denote "words" to output. Finally, global changes
are implemented to incorporate the new/changed grammars.

FIG. 4 illustrates a portion of a Web page 40 and its links.
For example, the second headline 41 is a link.

The grammar for speakable links includes the full phrase
as well as variations. In addition to speaking the full phase,
the speaker may say "Diana in N period Y period" (a literal
variation), "Diana in NY", or "Diana in New York".

20 For this, the grammars are connected in an RGDAG rela
tionship. In addition, the maximum depth for each symbol is
computed. It is also determined whether the voice recognizer
requires parse information by looking for ancestor symbols
with output. Then the structure of the grammar for efficient

25 parsing is identified.

Making a link speakable first requires obtaining the
link/URL pair from its Web page. Because a Web page in
HTML (hypertext markup language) format can have any
length, the number of candidate link/URL pairs that the
recognizer searches may be limited to those that are visible 30

on a current screen of display 20a. A command such as,
"Scroll down", updates the candidate link/URL pairs. Once
the link/URL pairs for a screen are obtained, a grammar is
created for the all the links on the current screen. Next,
tokens in the links are identified and grammars for the tokens 35

are created. These grammars are added to the recognizer's
grammar files. Correct tokenization is challenging because
link formats can vary widely. Links can include numbers,
acronyms, invented words, and novel uses of punctuation.

Other challenges for speakable links are the length of 40

links, ambiguity of links in the same page, and graphics
containing bit-mapped links. For long links, the speakable
links process permits the user to stop speaking the words in
a link any time after N words. For ambiguity, the process
may either default to the first URL or it may offer a choice 45

of URLs to the user. For bit-mapped links, the process uses
an <ALT> tag to look for link information.

The grammars for speakable links may be dynamically
created so that only the grammar for a current display is
active and is updated when a new current display is gener- 50

ated. Dynamic grammar creation also reduces the amount of
required memory 10/

FIG. 5 illustrates a suitable process of dynamically cre
ating grammar files. This is the process implemented by the
dynamic grammar generator of FIGS. 1 and 2. As explained 55

above, dynamic grammar files are created from current Web
pages so that speakable links may be recognized. U.S. patent
U.S. Pat. No. 5,774,628, incorporated by reference above,
further describes this method as applied to a voice
controlled host system 11, that is, voice control without a 60

separate remote control device 10.
A display, such as the display 40 of FIG. 4, affects

grammar constraints 52. The grammar constraints 52 are
input into a vocabulary 54 and the user agent 64. In turn, the
vocabulary 54 feeds the online dictionary 56, which inputs 65

into the pronunciations module 58. The pronunciations
module 58, as well as the Speaker Independent Continuous

Other Embodiments
Although the invention has been described with reference

to specific embodiments, this description is not meant to be
construed in a limiting sense. Various modifications of the
disclosed embodiments, as well as alternative embodiments,
will be apparent to persons skilled in the art. It is, therefore,
contemplated that the appended claims will cover all modi
fications that fall within the true scope of the invention.

What is claimed is:
1. A wireless voice-activated control system comprising:
a remote processor-based host system;
a voice recognition processor operable to perform a voice

recognition process and a memory that stores said voice
recognition process and grammar files; and

a voice activated control unit for remotely controlling said
remote processor-based host system comprising:
a microphone operable to receive voice command input

from a user, thereby providing an audio input signal;
said microphone operably coupled to said voice
recognition processor, said memory and said gram
mar files for voice recognition of said voice com
mands;

an audio transmitter operable to wirelessly transmit
data derived from said audio input signal to said host
system to control said host system;

a data receiver operable to wirelessly receive image
data from said host system representing voice com
manded display images; and

a display operable to generate and display said voice
commanded images represented by said image data.

2. The control unit of claim 1, wherein said microphone
is switchable to an on or off state separately from said
display.

3. The control unit of claim 1, wherein said microphone
is a multi-element microphone array.

4. The system of claim 1, wherein said voice recognition
process comprises linear predictive coding analysis, and
wherein said transmitter is operable to transmit the results of
said analysis.

5. The system of claim 1, wherein said grammar files are
dynamically created, wherein said processor is further oper
able to perform a dynamic grammar generation process.

Page 7 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4636

US 6,188,985 Bl
7

6. The system of claim 1, wherein said voice recognition
processor comprises speech and pointing analysis and
wherein said transmitter is operable to transmit the result of
said analysis.

8
9. The system of claim 7, wherein said voice recognition

processor comprises linear predictive coding analysis, and
wherein said transmitter is operable to transmit the results of
said analysis.

7. A wireless voice-activated control system for voice- 5

control of a remote processor-based host system in data
communication with a hypermedia resource to permit a user

10. The system of claim 7, wherein said voice recognition
processor comprises speech end pointing analysis, and
wherein said transmitter is operable to transmit the results of
said analysis. to browse a hypermedia network, comprising:

said remote processor-based host system including a web
browser and in data communication with a hypermedia
resource;

a voice recognition processor operable to perform a voice
recognition process and a memory that stores said voice
recognition process and grammar files; and

a voice-activated control unit for remotely controlling
said remote processor-based host system comprising:

11. The system of claim 7, wherein said grammar files are
10 dynamically created, wherein said processor is further oper

able to perform a dynamic grammar generation process.
12. The system of claim 7, further comprising a processor

operable to perform voice control processes and a memory

15 that stores said voice control processes.

a microphone operable to receive voice browser com
mands input from a user, thereby generating an audio
input signal; said microphone operably coupled to

20
said voice recognition processor, said memory and
said grammar files for voice recognition of said voice
commands;

13. The system of claim 12, wherein said voice control
processor comprise a speakable commands process such that
said user may vocally direct the operations of said host
system.

14. The system of claim 12, wherein said voice control
processor comprise a speakable hotlist process such that said
user may vocally request a particular one of said resources
to be retrieved by said host system.

an audio transmitter operable to wirelessly transmit
data representing browser commands derived from
said audio input signal to said remote processor
based host system to cause said host system to
browse said hypermedia network and retrieve
selected web page;

a data receiver operable to wirelessly receive image
data representing a selected web page from said
remote host system; and

a display operable to generate and display web page
images represented by said image data and retrieved
from said hypermedia resource by said host system.

8. The system of claim 7, wherein said voice recognition
processor, said memory, and said grammar files are in said
control unit.

15. The of claim 12, wherein said voice control processes
25 comprise a speakable links process such that said user may

vocally request that a link on a current page being displayed
on said display be retrieved by said host system.

16. The system of claim 7, further comprising a processor
operable to perform dynamic grammar creation processes,

30 and memory that stores said processes.
17. The system of claim 7, wherein said host system

performs voice control processes.
18. The system of claim 7, wherein audio data from the

35
microphone is sent to the host system which performs all
processing.

* * * * *

Page 8 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4637

(12) United States Patent
Dureau

(54) INTERACTIVE TELEVISION SYSTEM AND
METHOD FOR CONVERTING
NON-TEXTUAL INFORMATION TO
TEXTUAL INFORMATION BY A REMOTE
SERVER

(75) Inventor: Vincent Dureau, Palo Alto, CA (US)

(73) Assignee: OpenTV, Inc., Mountainview, CA (US)

(*) Notice: This patent issued on a continued pros
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 09/176,611

(22) Filed: Oct. 21, 1998

(51) Int. Cl.7 .. H04N 7/173
(52) U.S. Cl. .. 725/116; 725/133
(58) Field of Search 348/1, 2, 6, 10,

348/12, 13, 14; 455/2, 3.1, 6.1, 5.1, 6.2,
6.3; 345/327; 382/187, 189; 704/235; 725/131,

132, 116, 139, 140, 151, 152, 133

(56) References Cited

U.S. PATENT DOCUMENTS

5,528,743 A * 6/1996 Tou et al. 707/541
5,546,538 A * 8/1996 Cobbley et al. 395/200.01
5,812,931 A * 9/1998 Yuen 455/5.1
5,831,664 A * 11/1998 Wharton et al. 348/13
5,861,881 A * 1/1999 Freeman et al. 345/302
5,875,448 A * 2/1999 Boys et al. 707/531

TV PROGRAM COMP/PKT. SOURCE
11 14

M
APPLICATION COMP/PKT. u

SOURCE X
12 15

SERVER COMP/PKT.
13 16

18

10

I IIIII IIIIIIII Ill lllll lllll lllll lllll lllll lllll lllll lllll 111111111111111111

EP
EP
EP

US006345389Bl

(10) Patent No.:
(45) Date of Patent:

US 6,345,389 Bl
*Feb.5,2002

FOREIGN PATENT DOCUMENTS

0 633 661
0 689 155
0 838 945

1/1995
7/1996
4/1998

OTHER PUBLICATIONS

"Speech Recognition Methods for Controlling Cable Tele
vision," IBM Technical Disclosure Bulletin, vol. 38, No. 8,
Aug. 1995,pp. 285-287.

International Search Report, Application No. PCT/US99/
24710, mailed Feb. 15, 2000.

* cited by examiner

Primary Examiner-Chris Grant
(74) Attorney, Agent, or Firm-Conley, Rose & Tayan, PC

(57) ABSTRACT

A system and method for providing user input to an appli
cation executing on an interactive television system wherein
a user provides non-textual information to the interactive
television system and this information is converted by a
server to textual information which is provided to the
application. In one embodiment, a digitizer pad coupled to
a set-top box is used to digitize the user's handwriting. The
digitized information is conveyed to a remote server which
converts the digitized handwriting data into textual infor
mation. The textual information is conveyed to the set-top
box, where it is input to an application executing on the
set-top box. In another embodiment, a microphone is
coupled to a set-top box. The microphone allows the user to
input voice information which is digitized and conveyed to
the server for conversion into textual information. The
textual information is conveyed back to the set-top box and
is input to an application executing on the set-top box.

22 Claims, 3 Drawing Sheets

~8

' ' ' ' ' ' '

SET-TOP BOX INPUT DEVICE
22 24

19 21 TV
23

20

GOOGLE EXHIBIT 1016Page 1 of 11 Petitioner Microsoft Corporation - Ex. 1008, p. 4638

TV PROGRAM I I COMP/PKT. I SOURCE ..,. 14
11 - '\ I

M

APPLICATI01 EM. P/PKT. , ~ ~ SOURCE ..,. 15
12 - -_ I ._, 17

SERVE~ I COMP/PKT. I
13 ..,. ~ I

10

/ 1-

r---

I

0
E
M
u
X

18

~8
I \

I \
I \

I \
I \

I \
): J

19

-
~

~

21

SET-TOP BOX - INPUT DEVICE
22 - 24 - -

' TV
23 -

20

FIG. 1

d
•
r:JJ.
•
~
~
~ =

"'!"j

~
Ul
~

N
C
C
N

'JJ.

=~
~

"'""
0,
~

e
rJ'l
O'I
~
,I;;..
(It

~
~

'°
~
i,-

Page 2 of 11 Petitioner Microsoft Corporation - Ex. 1008, p. 4639

U.S. Patent

BROADCAST
SIGNAL

Feb.5,2002 Sheet 2 of 3 US 6,345,389 Bl

,--,
1 22

TUNER
.31.

CPU
35

USER INPUT

PROCESS
32

ROM
36

/
/

/

RAM
37

FIG. 2

DISPLAY .5..1

DECOMP.
33

DISPLAY ~-- TO TV
34

MODEM
38

GRAPHICS TO PHONE
TABLET LINE

39

USER INPUT

/

..__D_IG_IT_IZ~E_R_52---+-_,//

PROC.
53

FIG. 3

Page 3 of 11 Petitioner Microsoft Corporation - Ex. 1008, p. 4640

U.S. Patent Feb.5,2002 Sheet 3 of 3 US 6,345,389 Bl

START SEGMENT
APPLICATION IMAGE

61 71 - -

• • PROMPT USER
62
-

SELECT
CHARACTER
CANDIDATES • 72

-

INPUT • HANDWRITING
63
-

CLASSIFY
CANDIDATES

• 73
-

TRANSFER
HANDWRITING

DATA
64 -

• RECOGNIZE
HANDWRITING

65
-

l
TRANSFER

TEXTUAL DATA
66 -

l
UTILIZE

• ORGANIZE
CANDIDATES

74 -

• DICTIONARY
LOOKUP

75 -

• ACCEPTABILITY
CHECK

76 -

• TEXTUAL DATA USER CHECK
67 77

--

FIG. 4 FIG. 5

Page 4 of 11 Petitioner Microsoft Corporation - Ex. 1008, p. 4641

US 6,345,389 Bl
1

INTERACTIVE TELEVISION SYSTEM AND
METHOD FOR CONVERTING NON

TEXTUAL INFORMATION TO TEXTUAL
INFORMATION BY A REMOTE SERVER

BACKGROUND OF THE INVENTION

1. Field of the Invention
The invention relates generally to interactive television

systems and more particularly to means and methods for
using a server to convert user-provided information into a
data format which can be used by an interactive television
application.

2. Description of the Relevant Art
Interactive television systems can be used to provide a

variety of services to users. These systems are capable of
displaying text and graphic images to facilitate viewer
interaction as well as the audio and video streams associated
with ordinary television programs. Interactive television
systems enable viewer interaction and thereby allow the
systems to be used for marketing and educational purposes
in addition to extending the entertainment capabilities of an
ordinary television. Viewers can order advertised products
or services, request information regarding particular
programs, or send electronic messages (e-mail).

In a typical interactive television system, a broadcast
service provider generates an interactive television signal for
transmission to a viewer's television. The interactive tele
vision signal includes an audio-video portion consisting of a
television program, as well as an interactive portion con
sisting of application code or control information. The
broadcast service provider combines the audio-video and
interactive portions into a single signal for transmission to a
receiver connected to the user's television. The signal is
typically compressed prior to transmission and transmitted
through broadcast channels such as cable television (CATV)
lines or direct satellite transmission systems.

2
choice from a menu. The application may, however, also
require the user's name or shipping information which
cannot simply be selected from a menu. Another example of
an application which requires textual information is a mes-

s saging application for which the viewer must provide the
message, as well as information identifying the addressee of
the message. Some means is therefore necessary to enter this
textual information.

One option for entering text would be to use a keyboard.
10 This might not be the best solution, however, because some

users may not feel comfortable using a keyboard. One of the
attractions of interactive television systems is the ease with
which they may be used. Interactive television applications
are designed to provide simplified user interfaces and many

15 require no more input than can be provided using a basic
remote control. The requirement of entering textual infor
mation via a keyboard may make the interactive television
system less attractive to users because of the additional
hardware which is required for the system, the perceived

20 complexity of the system or the difficulty which may be
experienced by some users in typing the necessary informa
tion. Further, in some languages (e.g., Chinese,) the com
plexity of the written language makes text entry via a
keyboard difficult even for experienced users.

25 Other options for providing textual information to an
application may involve means for converting non-textual
information into a textual form. For example, using voice
recognition technology, a user's voice can be sampled and
compared to previously sampled speech patterns to deter-

30 mine the words spoken by the user. The words can then be
output by the speech recognition system as text. Handwrit
ing recognition systems could also be used to generate
textual information for the application. These systems per
form the same process on images of the user's handwriting

35
(entered via a graphics tablet or similar input device) to
determine the text written by the user. While these technolo
gies have evolved to the point that they can reliably generate
accurate textual information from the user's voice or
handwriting, they require a great deal of computer resources.

40 The applications may be very large and they need large
amounts of processing time to perform the required pattern
matching. These technologies therefore cannot be imple
mented in current set-top boxes, which have very limited
storage and processing capacity.

The interactive functionality of the interactive television
system is controlled by a set-top box connected to the
television. The set-top box receives the signal transmitted by
the broadcast service provider, separates the interactive
portion from the audio-video portion and decompresses the
respective portions of the signal. If the interactive portion of
the signal comprises an interactive application, the applica
tion may be executed while the audio-video information (the
normal television signal) is conveyed to the television. The
set-top box may combine the audio-video information with
interactive graphics or audio generated by the interactive
application prior to conveying the information to the tele
vision. The interactive graphics and audio may present so
additional information to the viewer or may prompt the
viewer for input and may be designed to function in response

45

SUMMARY OF THE INVENTION

One or more of the problems outlined above may be
solved by the various embodiments of the invention. The
invention comprises a system and method for enabling a
user to provide non-textual information which is converted
by the system to a textual form in which it can be used by
the interactive application. The non-textual information is
entered by the user at the set-top box of a receiving station
and this information is transmitted to a server which may be
located at a broadcast station. The server converts the

to signals in the broadcast or actions taken by the viewer. An
interactive television system may also run applications that
present the user only with the audio and graphics relating to ss
the interactive application. In other words, this information
may be displayed in place of the normal television signal,
rather than adding to the signal.

information into textual data so that it can be used by the
system. In one embodiment, the server transmits the textual
data back to the receiving station, where it can be used by There are various examples of interactive applications

which require viewer input. One example is a televised
buying service in which a series of products are displayed
via a television program and the viewer utilizes the inter
active functions of the television system to purchase the
displayed products. The viewer must identify the product he

60 an application executing in the set-top box. In other
embodiments, the textual data can be used at the server or
transmitted to a part of the system other than the set-top box.

or she wishes to purchase and may also need to provide size, 65

color, and other information descriptive of the product. This
information may be provided by selecting the appropriate

One embodiment comprises an interactive television sys
tem comprising a broadcast station and a receiving station.
The broadcast station transmits an interactive television
application to the receiving station, which then executes the
application. The application requires textual data from the

Page 5 of 11 Petitioner Microsoft Corporation - Ex. 1008, p. 4642

US 6,345,389 Bl
3 4

user. The rece1vmg station includes a set-top box which
executes the application and a graphics tablet which is
coupled to the set-top box for entering information. The user
provides the information by writing on the graphics tablet,
which generates an image file. The image file is transmitted 5

from the set-top box to the broadcast station. The broadcast
station includes a server which uses handwriting recognition
software to convert the image file into character or textual
data. The textual data is transmitted back to the application

are shown by way of example in the drawings and will
herein be described in detail. It should be understood,
however, that the drawing and detailed description thereto
are not intended to limit the invention to the particular form
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

at the set-top box, which uses the data as if it had been typed 10

in directly by the user.
One embodiment of the inventive method is described in

detail below. In this embodiment, an interactive television
system transmits an audio-video-interactive signal from a
broadcast station to a receiving station via a broadcast
channel. ("Broadcast" is used herein to refer to transmission
of a single signal to all subscribing receivers.) The broadcast

Because the handwriting recognition software resides on
the server computer instead of the set-top box, more
resources are available for execution of the software. The
server typically has more available memory and more pro- 15

cessing power than the set-top box and consequently pro
vides much faster recognition of handwriting images. The
greater available resources enable the software to provide channel may comprise a direct satellite transmission channel

or any known means for broadcasting a signal, including for recognition of additional, complex languages (e.g.,
Chinese) and extended character sets (e.g., unicode). Since 20

the recognition software is maintained on the server, the
software can be quickly and easily updated with the latest
handwriting recognition technology, and it does not have to

non-satellite, cable, telco, MMDS (microwave) and terres
trial transmissions. (A "direct" satellite transmission as used
herein means a transmission received by the interactive
television receiver directly from the satellite.). The receiving
station in this embodiment is additionally configured to be distributed to the individual subscribers' set-top boxes.

In one embodiment, the textual data need not be sent back
to the set-top box, but may instead be used at the server or
another location remote from the set-top box. For example,
a user may place an order for a product by entering oral or
handwritten information and the order may be confirmed
later by e-mail or other means. In another embodiment, the
server could consist of a human operator who receives the
audio or image data and manually transcribes it into textual
information. The audio or image data may alternately be
converted into textual information by automated means
operating under human supervision.

In an alternate embodiment, the interactive television
system includes a microphone rather than a graphics tablet
for entry of information to the system. The microphone is
used to provide voice data, which is recorded and transmit
ted to a server equipped with a voice recognition application.
The voice recognition application converts the voice data
into textual data, which is then transmitted back to the
application executing on the set-top box.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will
become apparent upon reading the following detailed
description and upon reference to the accompanying draw
ings in which:

FIG. 1 is a block diagram illustrating one embodiment of
a system for distribution of interactive television applica
tions and television programs from their sources to a series
of viewers.

FIG. 2 is a block diagram of a set-top box in one
embodiment of the invention.

FIG. 3 is a block diagram illustrating the components of
a graphics tablet in one embodiment of the invention.

FIG. 4 is a flow diagram illustrating the flow of
handwritten/textual information in one embodiment of the
invention.

FIG. 5 is a flow diagram illustrating the manner in which
the server's handwriting recognition application processes
the image data to produce textual data in one embodiment of
the invention.

While the invention is susceptible to various modifica
tions and alternative forms, specific embodiments thereof

25 receive signals via a modem connection to the broadcast
station.

The audio-video-interactive signal broadcast to the
receiving station may contain both television programming
and interactive information such as control signals or inter-

30 active applications. When the broadcast signal is received, it
is separated into its components and processed (e.g.,
decompressed) to reconstruct the respective television pro
gramming and interactive signals. An interactive application
which was broadcast to the receiving station or which was

35 resident in the receiving station is executed on the micro
processor of the set-top box. The application is one which
requires textual data from the user. The user, however, is
allowed to input the data in a non-textual form. "Non
textual" as used herein means a form handled by the system

40 as something other than a series of alphanumeric characters,
such as the ASCII character set. A graphical representation
of handwriting, although textual in nature, is handled as an
image or as vectorized handwriting information and not as
the characters or words which are written. "Textual," on the

45 other hand, means one or more characters or words. If the
system is set up for an English-speaking user, the characters
may be from the ASCII character set. If the system is set up
for a non-English-speaking user, the characters will be from
the character set of the user's language (e.g., Kanji charac-

50 ters for a Japanese user).
The set-top box of the receiving station is configured with

a device for non-textual data entry. In one embodiment, this
device is a graphics tablet on which the user can inscribe
(write) the information required by the application. The

55 graphics tablet digitizes the user's handwriting and stores
the digitized data as an image file. The set-top box transmits
the file containing the digitized data to the broadcast station
for conversion into a textual form. (The image data need not
all be contained in a single file, and may be transmitted to

60 the server in segments to spread out the processing load.)
The broadcast station includes a server which is configured
to transform image data into textual data using handwriting
recognition algorithms. The broadcast station then transmits
the textual data back to the receiving station. The application

65 executing on the set-top box identifies the received textual
data as corresponding to the image data which it earlier
transmitted to the broadcast station. The set-top box accord-

Page 6 of 11 Petitioner Microsoft Corporation - Ex. 1008, p. 4643

US 6,345,389 Bl
5

ingly utilizes the textual data as if it had been entered as text
by the user of the set-top box and continues execution of the
interactive television application.

Referring to FIG. 1, a block diagram illustrating a system
for distribution of interactive television applications and 5

television programs from their sources to a series of viewers
is shown. Broadcast station 10 has a television program
source 11 and an interactive application source 12. The
television program source may include remote broadcast
network feeds, videotape recorders, computers, data storage

10
devices, and the like. Interactive application sources 12 may
provide interactive applications, control information or
audio or video information which is to be included in the
interactive television signal. Additionally, broadcast station
10 includes a server 13, which is used to process non-textual
data received at the broadcast station and generate textual 15

data. The information generated by the television program
source 11, interactive application source 12 and server 13 is
typically processed by compression/packetization units
14-16 before it is broadcast. Usually, the information is also
compressed in order to conserve bandwidth. (It should be 20

noted that while this embodiment comprises a digital broad
cast system, other embodiments may comprise analog
broadcast systems in conjunction with means for transmit
ting digital application data. The analog broadcast systems
may include existing television networks, and the means for 25

transmitting the application data may include transmissions
in the vertical blanking interval or parallel transmissions via
telephone lines or out-of-band cable signals.)

Any of a number of compression algorithms, such as one
of the Motion Picture Expert Group (MPEG) compression 30

standards, may be used if appropriate for a particular pro
gram or application. The information is packetized to enable
error checking, interleaving of data and other transmission
related functions. Additional data may accordingly be
appended to the application and programming data. For 35

example, error check sums may be appended for error
detection/correction and time stamps may be included for
the purpose of synchronizing associated audio and video
signals. The packetized information from compression/
packetization units 14-16 is fed into multiplexing unit 17, 40

which intersperses the packets prior to transmission. The
interspersed packets are then broadcast to the receiving
stations 20. (Although only one receiving station is shown in
the figure, it is contemplated that the audio-video-interactive
signal is broadcast to a group of subscribing receiving 45

stations.) In the figure, the audio-video-interactive signal is
depicted as being transmitted via satellite broadcast through
antenna 19.

6
In addition to the broadcast channel between the broad

cast station and receiving station, there may be other
channels, such as a modem channel (which may also be
referred to as an http channel, or hypertext transfer protocol
channel.) These types of channels serve two functions in the
system: they allow the set-top box to provide data to the
broadcast station; and they provide an alternate path for
from sources 11-13 to be delivered to receiving station 20.
It should also be noted that, if receiving station 20 and server
13 are connected via a transmission medium other than the
broadcast station's broadcast channel and return path, the
server is not constrained to be located at the broadcast
station. It may be more convenient to locate server 13 at a
site which is separate from broadcast station 10 in order to
reduce the workload of the broadcast station, to more
efficiently convey data between the receiving station and the
server, or for other reasons.

Referring to FIG. 2, a block diagram of a set-top box 22
in one embodiment is shown. The broadcast signal is
received and fed into tuner 31. Tuner 31 selects the channel
on which the broadcast audio-video-interactive signal is
transmitted and passes the signal to processing unit 32.
(Tuner 31 may be replaced by other means, all collectively
referred to herein as input ports, for receiving signals from
various signal sources.) Processing unit 32 demultiplexes
the packets from the broadcast signal if necessary and
reconstructs the television programs and/or interactive
applications embodied in the signal. The programs and
applications are then decompressed by decompression unit
33. The audio and video information associated with the
television programs embodied in the signal is then conveyed
to display unit 34, which may perform further processing
and conversion of the information into a suitable television
format, such as NTSC or HDTV audio/video. Applications
reconstructed from the broadcast signal are routed to random
access memory (RAM) 37 and are executed by micropro-
cessor 35. Graphics tablet 39 provides a means for the user
to supply handwritten information for conversion to text and
subsequent use by the applications. (In other embodiments,
graphics tablet 39 may be replaced by a microphone for
supplying voice data or some other type of input device for
supplying non-textual information to the system.)

Microprocessor 35 may comprise various types of
microprocessors, microcontrollers, digital signal processors
(DSPs), or other types of software instruction processing
devices, as are appropriate to the particular design. RAM 37
may include memory units which are static (e.g., SRAM),
dynamic (e.g., DRAM), volatile or non-volatile (e.g., Flash
memory), as required to support the functions of the set-top The broadcast signal is relayed by communications sat

ellite 28 and received by receiving station 20. Although the
figure illustrates a satellite transmission, it is contemplated
that any broadcast medium (e.g., CATV or direct satellite
transmission) may be used. Receiving station 20 is contem
plated to be one of a number of such stations which are
subscribers of the broadcast service provider operating
broadcast station 10. The broadcast signal is collected by
receiving antenna 21 and fed to set-top box 22. Set-top box

50 box. When power is applied to the set-top box, micropro
cessor 35 executes operating system code which is stored in
ROM 36. (In some embodiments, ROM 36 may comprise
Flash memory or EEPROMs.) The operating system code
executes continuously while the set-top box is powered in

22 processes the packetized signal to reconstruct the televi
sion programs and interactive applications embodied in the
signal. The reconstructed applications are executed in the
set-top box, while the reconstructed television programs are
passed to television 23, where they are displayed. (It is noted
that television 23 can be any suitable monitor or display
device.) The interactive applications may generate graphics

55 the same manner the operating system code of a typical
personal computer (PC) and enables the set-top box to act on
control information and execute interactive and other appli
cations. The set-top box also includes modem 38. Modem 38
provides both a return path by which viewer data can be

60 transmitted to the broadcast station and an alternate path by
which the broadcast station can transmit data to the set-top
box.

or audio which are combined with the television program 65

prior to being displayed. The interactive applications may
also be displayed in place of the television programming.

Although the term "set-top box" is used herein, it is
understood that this term refers to any receiver or processing
unit for receiving and processing a transmitted signal and
conveying the processed signal to a television or other
monitor. The set-top box may be in a housing which

Page 7 of 11 Petitioner Microsoft Corporation - Ex. 1008, p. 4644

US 6,345,389 Bl
7

physically sits on top of a television, it may be in some other
location external to the television (e.g., on the side or back
of the television or remotely located from the television), or
it may be incorporated into the television itself.
Alternatively, the functionality of the set-top box may be 5
entirely removed from the television and placed in a more
remote location, such as outside a house in which the settop
box is located. Set-top box 22 serves to demodulate (if
necessary) the signal received from broadcast station 10 and
to separate the components of the signal, such as different 10
television programs and interactive applications. Other
embodiments of the set-top box may have different compo
nents or interconnections than those shown in FIG. 2.
Similarly, television 23 may be a television or a video
monitor employing any suitable television format (e.g., 15
NTSC or HDTV), or it may be replaced by other devices,
such as a video recorder, depending on the particular
embodiment.

Referring to FIG. 3, a block diagram illustrating the
components of a graphics tablet 50 is shown. The main 20
components of graphics tablet 50 are display 51, digitizer 52
and processor 53. Graphics tablet 50 can have a wide range
of sizes, from several inches across (as used in pen com
puting systems) to several feet across (as used in some CAD
systems). It is contemplated that the most convenient size for 25
the graphics tablet will be the size of a small or medium
sized notepad. The surface of graphics tablet 50 should be
flat and smooth to facilitate use as a writing surface.
Although graphics tablet 50 is contemplated to be connected
to set-top box 22 by a data cable, infrared transmission or 30
any other suitable transmission means may also be used to
transmit data between graphics tablet 50 and set-top box 22.
To the extent that graphics tablet 50 is not constrained by
these data transmission means, the user should be able to
move the tablet to a convenient and comfortable writing 35
position.

Display 51 and digitizer 52 are overlaid so that the path

8
microprocessor 35, it is contemplated that a single device
may be sufficient to perform both functions.

Digitizer 52 may also be constructed using one of a
number of technologies. Although early technologies often
used opaque structures, technologies used in modem digi
tizers are more likely to incorporate transparent panels
which are designed to be used in conjunction with overlaid
displays. Digitizer 52 may use electrostatic, resistive film or
capacitive/electrostatic film technologies. Various embodi
ments of the invention may incorporate different ones of the
technologies which are best suited to the particular embodi-
ments. Digitizer 52 senses the position of the digitizer pen
and transmits the corresponding X-Y coordinates to the
set-top box. In one embodiment, this X-Y data is recorded
as a series of darkened pixels in a bitmap image of the text
written by the user. The image is then transmitted to the
server for processing and recognition of the written data.
The recognition of the bitmap image is sometimes referred
to as off-line recognition.

In an alternate embodiment, digitizer 52 may sense not
only X-Y position, but also the direction of the pen's path,
the pen's angle, speed and acceleration, and other informa
tion which forms a vectorized representation of the user's
handwriting. This vectorized information can be transmitted
to the server as it is produced so that recognition can be
performed as the user is writing. The use of vectorized
information to recognize handwritten information is some-
times referred to as on-line recognition.

The receiving station is operatively connected to the
broadcast station by a broadcast channel. This broadcast
channel can utilize various transmission media and is con
templated to include media such as coaxial cable and free
space (e.g., as used for direct satellite transmissions.) The
broadcast channel forms a transmission path between the
broadcast station and the receiving station. The broadcast
station and receiving station are also connected by a return
path. The return path typically consists of a pair of modems,
one in the receiving station and one in the broadcast station,
each connected to a standard telephone line. Other means for
establishing a return path (e.g., using a portion of the

of a digitizer pen (not shown) can be displayed as the user
writes on the tablet, thereby simulating writing on a notepad.
Display 51 is contemplated to be a flat panel display using
LCD (liquid crystal diode) or similar technologies. These
technologies use substances this those between two plates of
glass to control the amount of light which passes through the
display. Depending upon the chosen technology, the display
may simply control the amount of light from any source
behind the display, or it may generate varying amounts of
light from each pixel in the display. The display can be
configured to provide feedback to the user by displaying his

40 bandwidth of the broadcast channel) are also contemplated.
The system illustrated in FIG. 1 utilizes the broadcast
channel to establish a return path for communicating data
from the receiving station to the server.

In one embodiment, an application is transmitted from the

or her handwriting, or it may display icons or other images
representative of the user's input. The display may also be
configured to display forms, or other prompts, in response to
which the user can provide handwritten information. In an
alternate embodiment, graphics tablet 50 may be simplified

45 broadcast station to the receiving station, where it is recon
structed and executed. In alternate embodiments, the appli
cation may be resident in the set-top box or may be provided
to the set-top box by means other than the broadcast channel
(e.g., flash card.) FIG. 4 is a flow diagram illustrating the

50 flow of handwritten/textual information in the system. While
the application is executing 61, it prompts the user for some
sort of textual information 62. The user enters the informa
tion on the graphics tablet 63, writing the information in his

by eliminating display 51. In such an embodiment, the user
could instead receive visual feedback, including prompts, 55

forms, handwriting and other images through television 23.
The combination of display 51 and digitizer 52 should be

selected to provide sufficient resolution to allow an accurate
digital representation of the user's handwriting. It is con
templated that the resolution of the digitizer and display 60

should be roughly equivalent to that of a fairly high-quality
printer. The combination should also provide display quality
(e.g., brightness and contrast) which makes the handwritten
information easy for the user to see. Microprocessor 53
should be fast enough that the path of the digitizer pen is 65

displayed without any substantial delay as it is drawn by the
user. Although microprocessor 53 is shown separately from

or her normal handwriting. The graphics tablet digitizes the
image of the user's writing and conveys the digitized data to
the set-top box, which transmits the information to the server
64 via the return path to the broadcast station. The image
data is received by the broadcast station and passed on to the
server. The server processes the image data 65, recognizing
characters and/or words in the image and producing the
equivalent textual data. This textual data is then transmitted
back to the receiving station 66, either via the broadcast
channel or via the return channel. The textual data is then
utilized by the application executing in the set-top box 67 as
if the text had been directly entered by the user.

FIG. 5 is a flow diagram illustrating the manner in which
the server's handwriting recognition application processes

Page 8 of 11 Petitioner Microsoft Corporation - Ex. 1008, p. 4645

US 6,345,389 Bl
9

the image data to produce textual data. An off-line, bitmap
recognition system is used in this embodiment. It is assumed
in this instance that the user's handwriting is not contained

10
may segment the image data and then convert the data to
text, or it may convert the entire image to text and then parse
the text to determine the recipient 's address. In an alternate
embodiment, only the address of the message is converted to in a form, but is instead free-form input to the graphics

tablet. Further, in one embodiment, the handwriting image is
transmitted to the server in segments as they are generated
by the graphics tablet. This may serve both to reduce the
peak loading of the server resulting from recognition of the
image and to allow the server to provide simultaneous
feedback (i.e., recognized characters) to the user.
("Simultaneous" as used here means that some recognized
text is transmitted to the set-top box as the user continues to
write on the graphics tablet so that the user can see the
results of the handwriting recognition.) If the image instead
combines text with a known form, the form is first identified
and removed. Then, if the handwriting was confined to
several boxes or fields on the form, these fields are isolated
and handled individually. (Free-form handwritten entries
may be distinguished from each other in the same manner as
form entries by providing different dialog boxes in which the
user can write the entries.)

5 text while the body of the message is transmitted to the
recipient as an image. Although the address of the e-mail
must be computer-readable so it can be properly routed to
the recipient, the body of the message need not be converted
to text-the recipient can read the message embodied in the

10
image whether or not it is converted to text data. In fact, it
may in some cases be preferable to deliver some messages
as image data so that the sender can communicate drawings
or other non-textual data. Delivery of the image of a
handwritten note may also be preferable because simple text

15
messages may be considered impersonal.

The user may be given the option of selecting an
addressee from an address book or a list of previous address
ees. A menu can be presented to the user via the graphics
tablet to allow selection of one of these addressees. New

20 addressees which are handwritten can be added to the user's

The handwriting in a field is recognized by first breaking
the image into segments showing characters or pieces of
characters 71. The individual image segments and combi
nations of these image segments are selected as character 25
candidates 72. These character candidates are assigned char
acter classes and associated values representative of the
confidence with which the recognition application places the
segment in the associated character class 73. The character
candidates are organized into groups for which a dictionary 30
look-up algorithm can be performed 74. A dictionary look-
up determines the word entries which best match the groups
of character candidates 75 and may assign a level of con
fidence to each word. If desired, an acceptability check can
be performed to determine whether the confidence level of 35
the recognized words is sufficiently high 76. If the confi
dence level is too low, the word can be rejected and the
image will be considered unrecognizable. The user can also
be given the option of checking the textual output of the
recognition application and accepting or rejecting all or part 40
of the output 77. After the user has verified the accuracy of
the recognized text, the data can be provided to the appli
cation executing in the set-top box. It should be noted that
the description is intended to be illustrative rather than
restrictive and that the process of recognizing vectorized 45
handwriting data or voice data will differ from the foregoing
description.

The recognition of the user's handwriting may be assisted
by the association of contextual information with the hand
writing. If the user's handwriting comprises entries on a 50

form, identifying the type of information requested for each
entry may make it easier to interpret the entry itself. For
example, an entry in a box requesting a social security
number should contain nine digits. A character in this entry
which might be interpreted as a "1", an "I" or and "1" must 55

be the numeral "l". The identification of keywords such as
"to" or "cc:" may likewise distinguish the handwriting
which follows as a name or address.

address book. The user can also select other options (e.g.,
sending an image versus sending text only) in the same
manner as selecting an addressee. The information which the
user enters via the graphics tablet may therefore be a mix of
handwriting and selection of particular predefined inputs. A
system which uses a microphone for non-textual input may
also be configured to allow selection of predefined inputs by
using audio prompts and corresponding menus.

In another embodiment, the system may be configured to
send faxes instead of e-mail. The foregoing description of
the e-mail-configured system is in large part applicable to
the fax-configured system. The user can enter a destination
fax number and/or addressee via the graphics tablet, and this
information can then be transmitted to the server for con-
version into textual information. The textual information is
then transmitted back to the set-top box and used by the fax
application to dial the destination fax. As for the e-mail
configured system, the transmitted fax may be an image of
the user's handwriting, or it may be an image of textual
information corresponding to the user's handwriting. (It
should be noted that in this instance, the system may convert
the user's handwriting to textual information so that the
information is more legible than handwriting or so that more
information will fit on a page, but the transmitted fax will by
its nature consist of image data rather than textual data.)

Another example of an application with which the system
can be employed is electronic commerce service. Electronic
commerce services are those through which the user can buy
items or otherwise conduct business. These services include
online catalogs and home shopping services. When using an
online catalog, the user can browse through the catalog to
determine which products he or she would like to order. The
user can provide item information via menu entries, but must
enter non-standardized information such as a shipping
address via the graphics tablet.

In another embodiment, the user can enter his information
by voice. The user can use a microphone or a telephone
handset to provide voice data to the system. The microphone
may a special-purpose microphone for use with the interac-The system described above can be used with a number of

different applications. For example, an interactive television
service provider may wish to provide e-mail service to
subscribers. The user can select the e-mail application
furnished by the service provider and proceed to write the
message which he or she wishes to send on the graphics
tablet. In the message, the user writes the address of the
intended recipient and the message to be sent to the recipi
ent. The graphical data is transmitted to the server, which

60 tive television system or it may be a telephone handset. A
special-purpose microphone may be connected to the set-top
box, or it may be built into a remote control for the system.
A telephone handset may be connected to the set-top box, or
it may be connected directly to the return path (i.e., tele-

65 phone line.) The voice data is transmitted to the server,
which uses voice recognition software to convert the voice
data into textual data. The textual data is returned to the

Page 9 of 11 Petitioner Microsoft Corporation - Ex. 1008, p. 4646

US 6,345,389 Bl
11

set-top box, where it can be displayed to the user. The user
can correct the text or confirm that the text has been
accurately generated from the voice data.

While the present invention has been described with
reference to particular embodiments, it will be understood 5

that the embodiments described above are illustrative and
that the scope of the invention is not limited to these
embodiments. Many variations, modifications, additions and
improvements to the described embodiments are possible.
These variations, modifications, additions and improve- 10
men ts are intended to be within the scope of the invention as
detailed within the following claims.

What is claimed is:
1. An interactive television system comprising:
a receiving station (20) configured to receive a broadcast 15

signal, wherein said receiving station is configured to
receive executable interactive application code corre
sponding to an interactive application via said broad
cast signal, wherein said receiving station (20) is con
figured to execute said interactive application, wherein 20

said interactive application includes a function which
requires input in a textual format, and wherein said
receiving station includes an input device configured to
receive non-textual information from a user; and

a remote server coupled to said receiving station by a 25

transmission medium, wherein said server is configured
to receive said non-textual information from said
receiving station and to convert said non-textual infor
mation into textual information, wherein said server is
further configured to provide said textual information 30

to said interactive application.
2. The interactive television system of claim 1 further

comprising a broadcast station coupled to said receiving
station by a broadcast channel.

3. The interactive television system of claim 2 wherein 35

said server is coupled to said broadcast station and wherein
said transmission medium comprises a return path between
said broadcast station and said receiving station.

4. The interactive television system of claim 3 wherein
said receiving station includes a first modem, wherein said 40

broadcast station includes a second modem and wherein said
return path comprises a telephone line coupled to said first
and second modems.

5. The interactive television system of claim 3 wherein
said return path comprises a portion of the bandwidth of said 45

broadcast channel between said broadcast station and said
receiving station.

6. The interactive television system of claim 1 wherein
said input device comprises a graphics tablet.

7. The interactive television system of claim 6 wherein 50

said graphics tablet comprises a digitizer configured to
generate data corresponding to handwriting inscribed
thereon.

8. The interactive television system of claim 7 wherein
said graphics tablet further comprises a display overlaid with 55

said digitizer and configured to display an image of said
handwriting as said handwriting is inscribed on said digi
tizer.

9. The interactive television system of claim 1 wherein
said receiving station further comprises a display and 60

wherein said receiving station is configured to present said
textual information on said display for verification of said
textual information by said user.

10. The interactive television system of claim 1 wherein
said input device comprises a microphone. 65

11. A set-top box for use in an interactive television
system, said system having a remote server configured to

12
convert non-textual information to corresponding textual
information, the set-top box comprising:

receiving means (31) configured to receive executable
interactive application code corresponding to an inter
active application via a broadcast signal;

a microprocessor configured to execute said interactive
application, wherein said interactive application
includes a function which requires textual information
from a user;

an input device for receiving non-textual information
from said user; and

transmitting means coupled to said input device for trans
mitting said non-textual information to said remote
server; and

wherein said receiving means is configured to receive said
corresponding textual information from said server,
and convey said corresponding textual information to
said microprocessor for use by said interactive appli
cation.

12. The set-top box of claim 11 wherein said input device
comprises a graphics tablet configured to receive handwrit
ing inscribed thereon by said user and wherein said non
textual information comprises digitized information corre
sponding to said handwriting.

13. The set-top box of claim 11 wherein said input device
comprises a microphone configured to receive voice infor
mation.

14. The set-top box of claim 11 wherein said transmitting
means comprises a modem.

15. The set-top box of claim 11 wherein said receiving
means comprises a broadcast receiver.

16. The set-top box of claim 11 wherein said micropro
cessor is configured to prompt said user for said non-textual
information, to receive said non-textual information and to
provide said non-textual information to said transmitting
means.

17. A method in an interactive television system for
providing textual input to an interactive application execut
ing in a set-top box of said system, the method comprising:

receiving a broadcast signal, wherein said broadcast sig
nal comprises executable interactive application code
corresponding to an interactive application, wherein
said interactive application includes a function which
requires textual input;

executing said interactive application;

providing information in a non-textual form to said inter
active application in said set-top box;

conveying said information in said non-textual form from
said set-top box to a server;

converting said information from said non-textual form to
a textual form in said server;

providing said information in said textual form to said
interactive application.

18. The method of claim 17:
wherein said non-textual form of said information com

prises images of characters; and

wherein providing said information in said non-textual
form comprises drawing said images on a graphics
tablet coupled to said interactive television system.

19. The method of claim 17:
wherein said non-textual form of said information com

prises digitized image data; and

Page 10 of 11 Petitioner Microsoft Corporation - Ex. 1008, p. 4647

US 6,345,389 Bl
13

wherein providing said information in said non-textual
form comprises drawing images of characters on a
graphics tablet coupled to said interactive television
system and digitizing said images and produce said
digitized image data.

20. The method of claim 17:
wherein said non-textual form of said information com

prises images of characters; and

wherein converting said information from said non
textual form to said textual form comprises executing a
handwriting recognition application on said server and
providing said images to said application to produce
said textual form of said information.

5

14
21. The method of claim 17:
wherein said non-textual form of said information com

prises voice data; and

wherein providing said information in said non-textual
form comprises speaking into a microphone coupled to
said interactive television system and said microphone
producing said voice data from spoken words.

22. The method of claim 17 wherein converting said
information from said non-textual form to a textual form in

10 said server comprises converting said non-textual form of
said information to ASCII characters.

* * * * *

Page 11 of 11 Petitioner Microsoft Corporation - Ex. 1008, p. 4648

United States Patent [19]
Simmers

[54] APPLICATION OF SPLIT- AND DUAL-
SCREEN LCD PANEL DESIGN IN
CELLULAR PHONES

[75] Inventor: Charles Russell Simmers, Phoenix,
Ariz.

[73] Assignee: Intel Corporation, Santa Clara, Calif.

[21] Appl. No.: 749,486

[22] Filed: Nov. 15, 1996

[51] Int. Cl. 6 G09G 5/00; G09G 3/36;
G06F 1/00; G06F 1/16

[52] U.S. Cl 345/211; 345/103; 364/705.05;
364/707; 364/708.1

[58] Field of Search 345/211, 103,
345/104, 98, 100, 131, 156, 173; D14/137,

138; 364/705.05, 707, 708.1; 379/433,
428, 440; 395/750, 750.04; 455/556, 566,

574, 575, 89, 90

References Cited

U.S. PATENT DOCUMENTS

D. 370,673 6/1996 Happo et al D14/138

SHARED MEMORY5

ADDRESS BUSt A [524--,

__ DATA BUS 526---
m - -

CONTROL BUS 1 528---

BUS CONTROL HANDSHAKE(REQUEST/GRANT)

US005841431A

[11] Patent Number:

[45] Date of Patent:

D. 374,227
D. 377,341

4,816,816
5,189,632
5,392,058
5,410,329
5,534,892
5,548,765
5,663,745

10/1996
1/1997
3/1989
2/1993
2/1995
4/1995
7/1996
8/1996
9/1997

5,841,431
Nov. 24, 1998

W illiam s D 14/138
Im ai et al D 14/138
Usui.
Paajanen et al 364/705
Tagaw a 345/104
Tagawa et al 345/104
Tagaw a 345/104
Tsunoda et al 395/750
Ishikawa et al 345/98

Primary Examiner-Steven J. Saras
Assistant Examiner-David L. Lewis
Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafman

[57] ABSTRACT

An apparatus for conserving power in information devices
with dual functions. A single display panel is logically split
into two sub-panels. Each sub-panel can be powered up or
down separately as is required by the function of the device.
The display panel has a plurality of improved segment
drivers which are provided power signals enabling the set of
segment drivers corresponding to a sub-panel to be sepa-
rately powered. In systems with two separate display panels,
each of the panels may be powered up or down by the use
of similar improved segment drivers as necessary.

11 Claims, 6 Drawing Sheets

LCD
DISPLAY

'ONTROLL

DISPLAY ,-540
DATA [PRIMARY~GRAPHICS

536 LCD
DISPLAY

ETMT PANEL

5E PO R SEL

CONTROL
BLOCK

560

ECTER
LINE
564

GOOGLE EXHIBIT 1017

520

HOST
CPU

I I I I I

Page I of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4649

U.S. Patent Nov. 24, 1998 Sheet 1 of 6 5,841,431

0-

w

CL

LL

Page 2 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4650

U.S. Patent Nov. 24, 1998 Sheet 2 of 6 5,841,431

6
U-

Page 3 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4651

U.S. Patent Nov. 24, 1998 Sheet 3 of 6 5,841,431

-j
uiz

CN

CW)

CM

iW coI

0000
000

Dooo

Page 4 of 12

LU

0 Lu

0
-3I

6
U-.

-J

J

z
z
j

uit,-J

I- U) 0

-J

0

Nl-

OZO

13_

Petitioner Microsoft Corporation - Ex. 1008, p. 4652

U.S. Patent Nov. 24, 1998 Sheet 4 of 6 5,841,431

U)
C',

-J

m

-101

0

XE

StL

10-3

E1j LL

Page 5 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4653

U.S. Patent

FIG. 5

Page 6 of 12

5,841,431Nov. 24, 1998 Sheet 5 of 6

Petitioner Microsoft Corporation - Ex. 1008, p. 4654

U.S. Patent Nov. 24, 1998 Sheet 6 of 6 5,841,431

4-)

CYndU

LU-

LU

0

C)C%

ul)

C,
U)
D

Li

w
O

0

z
0
0
ci,

Lu

-jic
w

LUU,

0)

-LJ

(0M

0

0

FIG. 6

Page 7 of 12

LU

0

z

tN

4-
4-

cn
(0

ui

U)I
wv

en

J !

Petitioner Microsoft Corporation - Ex. 1008, p. 4655

5,841,431
1

APPLICATION OF SPLIT- AND DUAL-
SCREEN LCD PANEL DESIGN IN

CELLULAR PHONES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of display
devices. More specifically, the present invention relates to
graphical displays connected to information devices.

2. Description of Related Art

In high-end "smart" cellular phones, which function both
for telecommunications and for storing and retrieving infor-
mation (e.g., a Personal Digital Assistant (information
device)), it is often necessary to provide two displays, one
for each function. The smaller of the displays, used for the
telecommunications function, commonly consists of
between ten and twenty characters across (columns) and
three to eight rows. The larger of the displays, used for the
information device function, is a graphical display with a
resolution of typically 640 pixel columns across by 240
pixel rows.

Traditionally, each display was treated as a separate
system since the smaller display operates continuously,
while the larger display operates more sparingly. In periods
of non-use, the large display is powered-down.
Disadvantageously, each display has its own controller to
convert information into displayable pixels and its own
integrated circuits which drive the pixels to be output on the
display panels. In battery-operated and power-conscious
devices such as PDAs, the redundancy of having two sets of
drivers, integrated circuits and controllers is expensive and
can also increase the mean-time-between-failure for the
devices. Further, where a single display is used for both
functions, the entire display must be active, even when only
a small sub-panel of the display is required to operate (i.e.,
for telecommunications). In such a circumstance, the power
drain is excessive for the function served, and, therefore,
highly inefficient.

Thus, there is a need to reduce the power drain of such
devices by allowing independent operation of only one
display, in the case of two separate displays, and a sub-panel
in the case of single physical display.

SUMMARY

In the case of some dual-function information devices
such as a cellular phone with PDA, two separate physical
displays are controlled by a single video controller. The
video controller provides a plurality of control signals to
drivers which drive pixels onto the displays. The invention
provides a power control block which is coupled to those
drivers to selectively power-down drivers for the larger of
the two displays, while keeping powered-up the smaller of
the displays. The power control block can be programmed
by a user/software to power-up or power down the displays
as dictated by the use of the Information device. The power
control block is, therefore, coupled to a CPU or other such
processor from which it receives commands regarding
which display to keep powered-up and which to power
down.

Alternatively, in dual-function information devices where
there is only one physical display for the information device,
a similar power control block can be programmed by
instructions being entered by the CPU to selectively power-
down certain pixel drivers for the display and thereby create
a logical "sub-panel". A single display screen may be split

into two or more logical sub-panels, each of which has
corresponding drivers which output pixels to their portion of
the display, and are independently powered-up or down as
the application requires.

5
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an operational diagram of a typical LCD display
according to the prior art.

10 FIG. 2 is an operational diagram of a split screen LCD

display according to one embodiment of the invention.

FIG. 3 is an illustration of how a split screen LCD display
may be utilized in a information device.

FIG. 4 is an operational diagram of a dual screen LCD
15 display according to one embodiment of the invention.

FIG. 5 is a system diagram of a computer system with a
dual LCD panel display system according to one embodi-
ment of the invention.

FIG. 6 is a system diagram of a computer system with a
20 split-screen LCD panel according to one embodiment of the

invention.

DETAILED DESCRIPTION OF THE DRAWINGS

25 FIG. 1 is an operational diagram of a typical LCD display
according to the prior art.

FIG. 1 shows a 640 by 240 dot-matrix liquid crystal
display (LCD) panel 100 which is driven by two inputs 1100
and 1150 for rows running down the vertical axis of panel

30 100 and also by four inputs-1200, 1220, 1240 and 1260-
driving pixels in columns across the horizontal axis of panel
100. Thus, on a 640 by 240 pixel display such as LCD panel
100, input 1100 is responsible for the first 120 rows of pixels
and input 1150 is responsible for the last 120 rows of pixels.

35 For LCD panel 100, input 1200 drives the first 160 columns
of pixels, input 1220 the second 160 columns of pixels, input
1240 the third 160 columns of pixels and input 1260 the last
160 columns of pixels of LCD panel 100. LCD panel 100
may be used on a notebook computer, a personal digital

40 assistant (PDA), cellular phone or for use in any information
device capable of utilizing an LCD output.

The output of such LCD panels are typically driven by
"segment" drivers driving the pixel columns on the hori-
zontal axis and by "common" drivers which enable pixel

45 rows on the vertical axis of the panel. The physics of driving
pixel output on display panels is well-known in the art and
will not be described in depth. Common driver 110 and
common driver 115 generate input signal 1100 and input
signal 1150, respectively, while segment driver 120, seg-

50 ment driver 122, segment driver 124 and segment driver 126
generate input signals 1200, 1220, 1240 and 1260, respec-
tively. Each of these segment drivers convert serial data into
parallel data and generate for output level translator signals
which map an incoming digital signal into certain voltage

55 levels which the LCD panel converts into pixel intensities
based on the voltage level differentials. The common drivers
activate a particular row for displaying output generated by
the segment drivers.

Also shown in FIG. 1 are several control signals origi-
6o nating from the display controller of the cellular phone,

information device or computer system that utilize the
display capability of LCD panel 100. Shown are a display
off control (DISPOFF) signal 140, a display data
(DISPDATA) signal 150, a display clock (DISPCLK) signal

65 160, a line latch clock (LLCLK) signal 170, and a first line
marker (FLM) signal 180. Also input to the drivers are two
voltage signals, VL 197 and VSS 190. These voltage signals,

Page 8 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4656

5,841,431

VL 197 and VSS 190, can be used to indicate different logic
levels to the pins they supply.

DISPDATA 150 is a signal comprised of four or eight
bits-0, 1, 2 and 3 or 0 through 7-which are transmitted in
parallel and represent light/color intensity levels to be output
on LCD panel 100 and originates from a display controller
device. DISPDATA deviate 150 is output on LCD panel 100
with bit 0 in the upper left corner of the screen and bits 1,
2 and 3 output on the same row from left to right starting
after bit 0. The serial to parallel conversion of DISPDATA
150 is carried out by the timing signal DISPCLK 160 which
originates from a clocking mechanism. DISPCLK 160
clocks the 4 bits of DISPDATA 150 into shift registers
contained in the segment drivers. Once the shift registers in
segment driver 120 are full, then another or similar clocking
mechanism asserts the line latch clock (LLCLK) 170 signal
to common driver 110. As shown in FIG. 1, the line latch
clock is also connected to a latch pulse (LP) pin or input on
segment drivers 120, 122, 124 and 126, such that when the
shift registers are filled with bits of display data and the
LLCLK signal 170 has been asserted, the bits stored in the
shift registers are latched and transferred over input line
1200 to LCD panel 100. The LLCLK signal 170 which
essentially loads an entire row of pixels to LCD panel 100,
also clocks the common driver incrementing the shift reg-
ister of the common driver 110 by one such that the LCD
panel can enable the next row of the panel for pixels driven
by the segment drivers once a row has been completed.
DISPDATA 150 transmits a four-bit signal (in parallel),
corresponding to four pixels for the LCD panel, to the
segment drivers.

Once all of the rows of pixels have been output in this
manner, such that the display of pixels is completed for one
image frame, a first line marker (FLM) signal 180 is again
asserted, which is also clocked with the line latch clock
LLCLK 170. First line marker signal 180 propagates
through all of the shift registers of all common and segment
drivers resetting the shift registers to zero, such that the
common driver 110 is set to enable the next new row of pixel
data to be output by the segment drivers. Likewise, segment
drivers 120, 122, 124, 126 are also reset to receive the next
set of pixel data from DISPDATA 150.

The DISPOFF signal 140 shown in FIG. 1, when driven
active, disables the output for all pins and thereby blanks
LCD panel 100 such that no pixels are output to the panel.
FLM 180 is also divided by two by a divider circuit 185 to
periodically reverse the polarity of the pins where inputs
1200, 1220, 1240, 1260 and inputs 1100 and 1150 are output
by the segment and common drivers. Periodically, reversing
polarity is necessary because the typical LCD requires an
alternating current (AC) signal such that the liquid crystal
does not "plate-out" against the electrodes and turn black.
Thus, the FR pin is periodically reversed and sets the
internal shift registers at one, rather than zero. Other pins
shown in the segment drivers 120, 122, 124 and 126 are an
XCK pin, which receives the DISPCLK signal 160, the
DISPOFF pin, which receives the DISPOFF signal 140, and
an output pin labeled Y1-Y160, which transmits the pixels
which are stored in the shift registers of the segment drivers
to the LCD panel 100. Also shown in FIG. 1 are external
input/output expansion pins EIO-1 and EIO-2 for each of the
segment drivers 120, 122, 124 and 126.

The expansion pins EIO-1 and EIO-2 are connected
together such that the EIO-1 pin of segment driver 120 loads
a ground or loads a negative voltage value from EIO-1 of
segment driver 120 to EIO-2 of segment driver 122, indi-
cating that the first 160 pixels have been output by segment

driver 120 and that the next 160 pixels of the row may be
output by segment driver 122. This daisy-chaining is pro-
vided also for the segment drivers 122 to 124 and 124 to 126
by propagating either ground/negative value to these seg-

5 ment drivers to complete the pixel row. Likewise, on com-
mon drivers 110 and 115 are pins DIO-1 and DIO-2, which
are daisy-chained together such that when the first 120 rows
of pixels enabled by common driver 110 are completed,
common driver 115 receives the remainder of the data and

10 completes pixel rows 121 through 240. The FR pin, or frame
pulse pin, of common drivers 110 and 115 operate similarly
to the FR pins of segment drivers 120, 122 124 and 126 and
will not be described further. Likewise, the DISPOFF pins of
the common drivers 110 and 115 operate similarly to the
DISPOFF pins of segment drivers 120, 122, 124 and 126 and

15 will not be described further. Common driver 110 has a CK
pin which is driven from LLCLK signal 170 and, in a given
time index, represents the number of rows which have been
output to the LCD panel 100. The SHL pin of the segment
drivers 120, 122, 124 and 126, as well as the SHL pin of

20 common drivers 110 and 115 serve to indicate in which
direction pixels representing the image are output to the
display, whether left to right, right to left or, in the case of
the common drivers, top to bottom, or bottom to top.

Further, a mode pin is provided on all of the segment
25 drivers and the common drivers which, when input a certain

logic level from VSS 190, indicates a mode in which the
drivers operate. VL 197 is shown as an input level to the
SHL pins of the segment drivers and by its logic level
indicates what direction the image is being output in. The

30 physics underlying the liquid crystal display is well known
in the art and will not be described so as not to obscure the
invention. According to the prior art, therefore, the entire
bank of segment drivers 120, 122, 124 and 126 is always
powered-up and enabled for output. There is no signal or

35 mechanism to power separately, any of the segment drivers.
Thus, when only a portion of the panel has displayable
output such as when the information device functions as a
telecommunications device, the power consumed by the rest
of the panel and their segment drivers is wasted.

40 FIG. 2 illustrates an operational diagram of a split screen
LCD panel according to one embodiment of the invention.

All pins of the segment and common drivers, input and
control signals which toggle them as described with respect
to FIG. 1 with identical reference numbers operate similarly

45 with regard to this embodiment of the invention and will not
be repeated. However, the invention provides for additional
control by way of VCC pins on each of the segment drivers
as well as splitting VCC into separate signals VCC1 195 and
VCC2 193. Thus, a typical segment driver circuit would

5o need to be modified as follows to provide for split panel
LCD operation.

According to the embodiment shown in FIG. 2, a single
640 by 240 resolution dot matrix LCD panel 200, which is
similar to the 640 by 240 resolution LCD panel 100 of FIG.

55 1, is split logically into a 160 by 240 size sub-panel 210 and
a 480 by 240 size sub-panel 204. By logically splitting a
single LCD panel into two sub-panels, it is possible to save
power by powering down the sub-panel of LCD panel 200
which is not being used. As shown in FIG. 1, the DISPOFF

60 signal powers down the entire panel and does not allow
powering down a sub-panel (i.e., certain segment drivers) of
the entire panel. The power savings results from certain of
the segment drivers no longer being clocked and no longer
consuming power. Further power savings and probably the

65 greater proportion of power savings is gained from not
having to drive or toggle the states of the pixels in sub-panel
204.

Page 9 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4657

5,8z

5
The invention provides an improved segment driver cir-

cuit with the capability of being enabled or powered inde-
pendent of other segment drivers. Specifically, a VCC pin is
provided to each of the modified segment drivers 120a,
122a, 124a and 126a. These VCC pins are the positive
power rails to each segment driver.

As shown in FIG. 2, sub-panel 202 has all 240 rows of
pixels but occupies only 120 pixel columns. Thus, to inde-
pendently operate sub-panel 202, only segment driver 120a,
which drives the first 120 pixel columns (see description of
similar driver 120 of FIG. 1), needs to be controlled.

Therefore, the invention provides control of VCC2 193
coupled to the VCC pin of segment driver 120a. When
VCC2 193 is enabled (on), the VCC pin on segment driver
120a will power-on the segment driver to output pixels.
When VCC2 193 is disabled (switched off), the segment
driver 120a is powered-down or off and cannot drive pixel
output to the display panel.

Likewise, another signal VCC1 195 is coupled to the
VCC pins of each segment drivers 122a, 124a and 126a,
which drive pixels on the other sub-panel 204. When VCC1
195 is on, the segment drivers 122a, 124a and 126a are all
powered on and enabled to drive pixel output to the panel
200 (in sub-panel 204). When VCC 195 is off, all of the
segment drivers 122a, 124a and 126a are powered down and
cannot drive pixels to the display panel. The three segment
drivers 122a, 124a and 126a all utilize a single source for
their VCC pins since, according to the embodiment, they
drive the same sub-panel.

Thus, sub-panel 202 and sub-panel 204 are capable of
being independently powered, and thereby selected by the
use of separate signals. VCC1 195 and VCC2 193 will be on
when both sub-panels must be powered. One skilled in the
art will recognize that a single panel may be split into as
many logical sub-panels as segment drivers will allow. In
this case, panel 200 may be split into four logical sub-panels,
one for each segment driver, each segment driver powered
by its own VCC signal.

The power source VCC1 195 and VCC2 193 are con-
trolled from some software/hardware which selects the
functionality of the panel, and therefore, indicates which
sub-panels are to be powered (see power control block 660
of FIG. 6).

FIG. 3 shows the casing structure for an information
device according to one embodiment of the invention. The
information device is capable of functioning both as a
cellular phone for telecommunications and as a PDA. The
LCD panel 200, is split logically into sub-panel 204 and
sub-panel 202. The information device has a top outer shell
320 and a bottom outer shell 322 as well as a top inner shell
310 and a bottom inner shell 312. Top inner shell 310 and its
obverse side top outer shell 320 bounds and contains LCD
panel 200 and is connected to joint 350 about which the top
information device is able to fold. Likewise bottom inner
shell 312 with its obverse side bottom outer shell 322, is also
able to fold about joint 350. Bottom inner shell 312 and
bottom outer shell 322 may both contain input keys such as
alpha-numeric and function keys with which a user can input
data, make telephone calls and/or control operation of the
information device. Top inner shell 310 has an open area 300
which may be open aperture or some transparent panel
which closed upon LCD panel 200, makes visible the image
in sub-panel 204, thus allowing monitoring of the friction for
which sub-panel 202 is intended.

The information device is "closed" when bottom inner
shell 312 and top inner shell 310 abut one another by folding

the Information device about joint 350. When the informa-
tion device is closed, the open area 300 closely abuts the area
of sub-panel 204 such that the image contents (pixels) on
output sub-panel 204 are visible to the user. When closed,

5 the outer shell 320, which may or may not be transparent
(excepting open area 320), covers sub-panel 202 which is
contained in inner shell 312. Upon closing the information
device, a switch, relay or contact disposed about or within
joint 350 will operate to power down the driver(s) for

10 sub-panel 202 while leaving the driver(s) for sub-panel 204
powered-up. This relay or contact will toggle the VCC pins
of the appropriate segment drivers as discussed in FIG. 2.
Thus, when the information device is closed, sub-panel 204
is operational while sub-panel 202 is disabled thereby saving

15 power and screen life. This still allows the user to monitor
the telecommunications function of the information device.
Further, by using one physical display rather than two
separate physical displays, the information device saves by
reducing device complexity and cost.

20 As shown in FIG. 3, when closed, sub-panel 204 shows a

telephone number, a "BAT" indicator indicating the level of
battery life in the device and a "SIG" indicator all which are
still visible to the user. Underneath, the portion of LCD
panel 200 covered by outer shell 320, i.e., sub-panel 202, is

25 powered down and inoperative. Thus, the telecommunica-
tions display of the information device can be viewed on a
sub-panel while the information device one display is closed
and data sub-panel is powered down.

When the information device is in the "open" position,
30 both sub-panels 202 and 204 are powered. In this mode, both

the data function and telecommunications functions can be
displayed on panel 200. Thus, all segment drivers are
powered when the Information device is open. In this
embodiment, the selection of individual sub-panels via

5 software is not needed since the position of the information
device makes the selection.

FIG. 4 shows a information device with two separate
displays, according to one embodiment of the invention.

40 When an information device, by design has two separate
displays located on different physical planes, the invention
provides for powering down one display, while keeping the
other active, depending on what function is being carried out
on the device. Shown in FIG. 4 is a first LCD panel 100 and

45 a second display LCD panel 400. LCD panel 400, if it is to
use the same controller signals as the LCD panel 100, must
have an equal number of rows of pixels as LCD panel 100,
and consequently, the same duty cycle. Without the same
vertical resolution, the controller would need to refresh to

50 the larger of the two resolutions thereby undermining bus
bandwidth, memory resources and frame rates.

System software and the video controller would treat the
combination of LCD panel 100, which has a 640 by 240
resolution, and LCD panel 400 with a 160 by 240 resolution,

55 as a single logical panel of 800 by 240. Segment driver 420
which drives LCD panel 400 receives the first set of the
input data bits from DISPDATA signal 150 and upon filling
its shift registers, propagates a daisy-chaining command to
segment driver 121. Segment driver 121 is modified from

60 segment driver 120a of FIG. 2 in that the E102 pin is
extended to EIO1 output pin of segment driver 420. VSS is
now connected to E102 so that segment driver 420 receives
the input stream before segment drivers of LCD panel 100.

The separate display panels 100 and 400 are controlled
65 similar to the split-screen (sub-panel) embodiment described

above for FIG. 2. Each of the segment drivers 121, 123, 125
and 127 of panel 100 and segment driver 420 is provided

Page 10 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4658

5,8L
7

with separate VCC pins. The invention also provides a
power source VCC2 493 coupled to the VCC pin of segment
driver 420. When VCC2 493 is on, the VCC pin on segment
driver 420 will power-on the segment driver 420 to output
pixels to panel 400. When VCC2 493 is off, the segment
driver 420 is powered-down or off and cannot drive pixel
output to panel 400.

Likewise, another power source VCC1 495 is coupled to
the VCC pins of each segment drivers 121, 123, 125 and
127, which drive pixels on display panel 100. When VCC1
495 is on, the segment drivers 121, 123, 125 and 127 are all
powered on and enabled to drive pixel output to the panel
100. When VCC1 495 is off, all of the segment drivers 121,
123, 125 and 127 are powered down and cannot drive pixels
to the display panel. The three segment drivers 121, 123, 125
and 127 all utilize a single signal for their VCC pins since,
according to the embodiment, they drive the same sub-panel.

Thus, display panels 100 and 400 are capable of being
independently powered, and thus, independently selected.
VCC1 495 and VCC2 493 will be on when both display
panels must be powered.

FIG. 5 is a system diagram of a computer system in which
a dual LCD panel display system according to one embodi-
ment of the invention may be utilized.

FIG. 5 shows well known elements of a computer system
such as a host CPU 520, a shared memory 510 and a display
controller 530. In this embodiment, LCD display controller
530 drives and controls a primary graphics LCD display
panel 540 and a secondary LCD panel 550. Display con-
troller 530 provides the signals shown in FIG. 4 such as
DISPDATA 150. Specifically, display data 535 of FIG. 5
corresponds to DISPDATA 150 of FIG. 4 and control clocks
537 of FIG. 5 refer to all other controller signals, such as
FLM 180 which are provided to the LCD. Primary graphics
LCD display panel 540 and secondary LCD panel 550 are
shown as single blocks in FIG. 5, but include all necessary
segment drivers and common drivers, as well as internal
input lines and dividers, as shown in FIG. 4 to enable output
to the actual LCD panels.

Shared memory 510 services both host CPU 520 and LCD
display controller 530 by way of an address bus 524.
Address bus 524 carries memory addresses of shared
memory 510 to/from CPU 520 and display controller 530.
Data bus 526 is capable of sending and receiving to either
the CPU 520 or the display controller 530. Data bus 526
delivers raw data to the LCD display controller 530 from
which display controller 530 can generate actual display
data 535 which are pixels to be output on LCD panels 540
and 550. Control bus 528 is used to control the flow of
information from shared memory 510 which is delivered
over data bus 526. A bus control (handshake) line transmits
request and grant pairs to arbitrate use of the address, control
and data bus between CPU 520 and display controller 530.

CPU 520 is a central processing unit, such as the Intel
Pentium T

M processor and is capable of processing informa-
tion according to code delivered to it by software or hard-
ware through data bus 526, address bus 524 and control bus
528. The structural detail and functioning of CPU 520 as
well as shared memory 510, display controller 530, address
bus 524, data bus 526 and control bus 528 are well known
to one reasonably skilled in the art of computer systems and
will not be described further.

FIG. 5 shows a key feature of the invention which is
power control block 560. Power control block 560 may be
composed of multiplexers, switches, and transistors and is
implemented in accordance with the specifications of CPU

520 and system architecture. Power control block 560 cen-
trally controls the selection and thus, powering of primary
LCD panel 540 and secondary LCD panel 550 through the
use of selector lines 562 and 564. Power control block 560

5 drives selector line 562 active when secondary LCD panel
550 is to be enabled for output. If both primary display panel
540 and secondary LCD panel 550 are to be enabled for
output, then power control block 560 will also activate
selector line 564, such that the primary graphics display

10 panel 540 will also be enabled for output. In the case where
the user or software only requests that secondary LCD panel
550 be enabled but not primary LCD panel 540, the power
control block 560 will deactivate selector line 564.

The signals VCC1 495 and VCC2 493 of FIG. 4 may
15 originate directly from selector lines 564 and 562, respec-

tively. When selector lines 564 and 562 dictate that both
panels 540 and 550 are to be enabled for output, VCC1 495
and VCC2 493 of FIG. 4 will be enabled. Likewise, when
only secondary LCD panel 550 is to be enabled, selector line

20 564 can enable VCC2 493 and disable VCC1 495, thereby
powering down the primary graphics LCD display panel
540.

CPU 520, when instructed that only the telecommunica-
tions function of the information device is to be used, will

25 send a command to power control block 560. A transistor-
implemented switching mechanism or multiplexer will then
drive selector line 562 active, while inactivating selector line
564. The switching mechanism or multiplexer(s) are capable
of necessary control signals from the CPU in response to a

30 change in function of the information device. The selector
lines are independently switched on/off within the power
control block allowing more control over power usage.

FIG. 6 is a system diagram of a computer system in which
a dual LCD panel display system according to one embodi-
ment of the invention may be utilized.

Where a split-screen LCD panel embodiment is desired,
a system similar to that shown in FIG. 2 may be equipped
so that selector lines 662 and 664 control enabling of certain

40 segments by providing signals VCC1 195 and VCC2 193,
respectively (see FIG. 1 and associated description). For
instance, when both selector lines 662 and 664 set high both
VCC1 195 and VCC2 193, all four segment drivers and,
consequently, both sub-panels 643 and 645 will powered.

45 When VCC2 193 is set high (by selector line 662) and VCC1
195 is set low, only segment driver 120 and consequently,
sub-panel 645 will be powered. Within power control block
660, the selector lines 662 and 664 are independently
switched using transistor or multiplexors upon receiving

50 commands from CPU 520 regarding device function.
Power control block 660 which generates the signals on

selector lines 662 and 664 is coupled to host CPU 520 and
consists of components similar to those shown in and
described for FIG. 5. Further, CPU 520, shared memory 510,

55 address bus 524, data bus 526, control bus 528 and bus
control handshake 529 operate similar to their counterparts
shown in and described for FIG. 5 and will not be repeated.
LCD display controller 630 of FIG. 6 may be slightly
different from counterpart controller 530 in that controller

60 630 has only one physical display to drive (as opposed to
two) and thus, may not require the hardware/software com-
plexity of controller 530 of FIG. 5.

While the present invention has been particularly
described with reference to the various figures, it should be

65 understood that the figures are for illustration only and
should not be taken as limiting the scope of the invention.
Many changes and modifications may be made to the

Page 11 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4659

5,841,431

invention, by one having ordinary skill in the art, without
departing from the spirit and scope of the invention.

What is claimed is:
1. In an information device having a CPU, display con-

troller and a display panel, said display panel split logically
into sub-panels, an apparatus comprising:

a plurality of segment drivers coupled between said
display panel and said display controller, said segment
drivers receiving input data from said controller, said
segment drivers translating said data into pixels dis-
playable on said display panel; and

a power control block coupled to said CPU and to said
segment drivers to disable a first power source which
powers down a first set of said segment drivers, said
powering down disabling a first set of sub-panels of
said display panel from outputting pixels, said power
control block disabling said first power source upon
receiving a command from said CPU that said first set
of sub-panels are to be powered down, said information
device functioning as one of a cellular communications
device and a personal digital assistant, said first set of
sub-panels displaying information relevant to said per-
sonal digital assistant function, further wherein said
display panel includes a second set of sub-panels
displaying information relevant to said cellular com-
munications functions.

2. An apparatus according to claim 1 wherein said power
control block disables a second power source which powers
down a second set of said segment drivers, said powering
down disabling a second set of sub-panels from outputting
pixels, said power control block disabling said second power
source upon receiving a command from said CPU that said
second set of sub-panels are to be powered down.

3. An apparatus according to claim 2 wherein said first
power source and said second power source are indepen-
dently switched by said power-control block to enable
outputting of pixels on said first set of sub-panels and said
second set of sub-panels, respectively.

4. An apparatus according to claim 1 wherein said infor-
mation device has a normally open latch, said power control
block to disable said first power source when said latch is
closed.

5. In an information device having a CPU, display
controller, and two display panels, an apparatus comprising:

a first set of segment drivers coupled to said display
controller to receive as input a first set of data, said first
set of segment drivers translating said first set of data
into pixels output on a first of said display panels;

a second set of segment drivers coupled to said display
controller and said first set of segment drivers to
receive a second set of data, said second set of segment
drivers translating said second set of data into pixels
output on a second of said display panels; and

a power control block coupled to said CPU and to said
first and second set of segment drivers to disable a first
power source which powers down said second set of
segment drivers, said powering down disabling said
second display panel from outputting pixels, said infor-
mation device functioning as one of a cellular commu-
nications device and a personal digital assistant, said
second displaying panel displaying information relative
to said personal digital assistant function, further
wherein said first display panel displaying information
relevant to said cellular communications function.

6. An apparatus according to claim 5 wherein said power
control block disables a second power source which powers

down said first set of segment drivers, said powering down
disabling said first display panel.

7. An information device having a single display panel
logically split into a first and second sub-panel, said device

5 comprising:
a top shell including a top inner shell and top outer shell,

said top outer shell on the opposing side of said top
inner shell, said top inner shell containing said display
panel:

10 a joint coupled to said top shell for folding said device;
and

a bottom shell coupled to said top shell through said joint,
said bottom shell including a bottom inner shell and a
bottom outer shell, said bottom outer shell on the

15 opposing side of said bottom inner shell, said bottom
shell having an open area, wherein said open area
leaves visible said first sub-panel and hides said second
sub-panel when said device is closed about said joint,
wherein when said device is closed, a first power signal

20 is disabled to power down said second sub-panel and a
second power signal is enabled to power said first
sub-panel, said information device functioning as one
of a cellular communication device and a personal
digital assistant, said second sub-panel displaying

25 information relevant to said personal digital assistant
function, and said first sub-panel displaying informa-
tion relevant to said cellular communications function.

8. An information device according to claim 7 wherein
when said device is open, said first signal is enabled to

30 power said second sub-panel and said second power signal
is enabled to power said first sub-panel.

9. An information device according to claim 7 wherein
said information device is capable of performing a certain
function when closed about said joint, said function moni-

35 tored through said open area.
10. An information device having a two separate display

panels, each display panel on separate physical planes, said
device comprising:

a top shell including a top inner shell and a top outer shell,
40 said top outer shell on the opposing side of said top

inner shell, said top inner shell containing both said
display panels;

a joint coupled to said top shell for folding said device;
and

45 a bottom shell coupled to said top shell through said joint
including a bottom inner shell and a bottom outer shell,
said bottom outer shell on the opposing side of said
bottom inner shell, said bottom shell having an open
area, wherein said open area leaves visible said first

50 display panel and hides said second display panel when
said device is closed about said joint, wherein when
said device is closed, a first power signal is disabled to
power down said second display panel and a second
power signal is enabled to power said first display

55 panel, said information device functioning as one of a
cellular communications device and a personal digital
assistant, said second display panel displaying infor-
mation relevant to said personal digital assistant
function, and said first display panel displaying infor-

60 mation relevant to said cellular communications func-
tion.

11. An information device according to claim 10 wherein
when said device is open, said first power signal is enabled
to power said second display panel and said second power

65 signal is enabled to power said first display panel.

Page 12 of 12
Petitioner Microsoft Corporation - Ex. 1008, p. 4660

United States Patent [19]
Haberman et al.

[54] METHOD AND SYSTEM FOR PROVIDING A
HANDOFF FROM A CDMA CELLULAR
TELEPHONE SYSTEM

[75] Inventors: Michael Haberman, Morris Plains;
Glenn Pierson, East Hanover, both of
N.J.

[73] Assignee: Cellco Partnership, Bedminster, N.J.

[21] Appl. No.: 08/366,352

[22] Filed: Dec. 29, 1994

[51] Int. C l.7 ... H 04Q 7/20
[52] U.S. CI 455/439; 455/432; 455/436;

370/331
[58] Field of Search 379/58, 59, 60;

455/33.1, 33.2, 54.1, 422, 432, 434, 435,
436, 437, 438, 439, 442, 517, 524, 525;

375/216, 200, 205, 206; 370/18, 331, 332,
335, 465

[56] References Cited

U.S. PATENT DOCUMENTS

Eizenh6fer.
Schmidt.
Gilhousen et al.
Kaufmann et al.
Dahlin.
Gilhousen et al 379/60
Gilhousen et al.
Onoda et al..
D'Amico et al.
Omura.
Schilling.
Bolliger et al.
Dahlin.
Schaeffer et al.
Schilling.
Miller et al.
Omura.
Bodin et al.

US006035197A

[11] Patent Number: 6,035,197
[45] Date of Patent:

5,243,598
5,257,401
5,267,261
5,276,906
5,278,892
5,278,991
5,285,469
5,289,499
5,295,153
5,301,356
5,309,503
5,313,489
5,317,623
5,323,446
5,327,574
5,327,577
5,345,467

9/1993
10/1993
11/1993

1/1994
1/1994
1/1994
2/1994
2/1994
3/1994
4/1994
5/1994
5/1994
5/1994
6/1994
7/1994
7/1994
9/1994

Mar. 7,2000

Lee .
Dahlin et al 455/33.2
Blakeney, II et al.
Felix.
Bolliger et al.
Ramsdale et al.
Vanderpool.
Weerackody.
Gudmundson.
Bodin et al..
Bruckert et al.
Menich et al.
Sakamoto et al.
Kojima et al.
Monma et al.
Uddenfeldt.
Lom p et al 375/1

Primary Examiner-Dwayne D. Bost
Assistant Examiner-Nay Maung
Attorney, Agent, or Firm-vlcDermott, Will & Emery

[57] ABSTRACT

A mobile assisted handoff of a mobile station transitioning
from a CDMA portion of a cellular telecommunication
network to an analog portion of the network is provided as
a function of a CDMA pilot signal transmitter located at each
analog cell in the analog portion of the network. The mobile
station monitors a CDMA pilot signal transmitted from each
CDMA cell and each analog cell of the cellular telecommu-
nication network, measures the signal strength of each
received CDMA pilot signal and transmits the signal
strength to the MTSO. The MTSO determines whether the
pilot signal is associated with a CDMA base station or an
analog base station. When the mobile station receives a pilot
signal from an analog cell whose signal strength is above a
first predetermined threshold and the received signal
strengths of all pilot signals of the CDMAbase stations with
which the mobile station is currently in communication are
below a second predetermined threshold, the MTSO directs
a CDMA to analog handoff message to the mobile station.

13 Claims, 3 Drawing Sheets

GOOGLE EXHIBIT 1018

4,754,453
4,765,753
4,901,307
4,984,247
5,042,082
5,101,501
5,109,390
5,117,502
5,127,100
5,164,958
5,179,571
5,195,090
5,200,957
5,210,771
5,224,120
5,228,053
5,235,615
5,241,685

6/1988
8/1988
2/1990
1/1991
8/1991
3/1992
4/1992
5/1992
6/1992

11/1992
1/1993
3/1993
4/1993
5/1993
6/1993
7/1993
8/1993
8/1993

Page I of I11
Petitioner Microsoft Corporation - Ex. 1008, p. 4661

U.S. Patent

Page 2 of 11

690359197Mar. 7,2000 Sheet I of 3

Petitioner Microsoft Corporation - Ex. 1008, p. 4662

U.S. Patent

FIG. 2

Page 3 of 11

6,035,197Mar. 7, 2000 Sheet 2 of 3

Petitioner Microsoft Corporation - Ex. 1008, p. 4663

Mar. 7, 2000 Sheet 3 of 3

FIG. 3

Page 4 of 11

U.S. Patent 690359197

Petitioner Microsoft Corporation - Ex. 1008, p. 4664

6,035,197
1

METHOD AND SYSTEM FOR PROVIDING A
HANDOFF FROM A CDMA CELLULAR

TELEPHONE SYSTEM

FIELD OF THE INVENTION 5

The present invention relates generally to wireless tele-
communication systems. More particularly, the present
invention relates to a method and system for providing
handoff of a mobile telephone from a CDMA cellular
telecommunication system to an analog cellular telecommu- 10

nication system.

BACKGROUND INFORMATION

Wireless telecommunication systems provide information
services traditionally provided by land-line or copper wire
systems. Examples of wireless communications applications
include Advanced Mobile Phone Service (AMPS) analog
cellular service and AMPS-D digital cellular service in
North America, and Group Speciale Mobile (GSM) cellular
service in Europe.

Although the particular application may vary, the com-
ponents of a wireless communication system are generally
similar. For example, a wireless communication system
usually includes a radio terminal or mobile station, a radio 25
base station, a switch or network control device, often
referred to as a mobile telephone switching office (MTSO),
and a network to which the wireless communications system
provides access, such as the Public Switched Telephone
Network (PSTN). 30

The various wireless communication applications use
different modulation techniques for transmitting information
to more efficiently utilize the limited available frequency
spectrum. For example, frequency division multiple access
(FDMA), time division multiple access (TDMA) and code 35
division multiple access (CDMA) modulation techniques
are used to build high-capacity multiple access systems.
Telecommunication systems designed to communicate with
many mobile stations occupying a common radio spectrum
are referred to as multiple access systems. 40

For example, in an FDMA analog cellular system, such as
an AMPS analog cellular radio system, the available fre-
quency spectrum is divided into a large number of radio
channels, e.g., pairs of transmit and receive carrier
frequencies, each of which corresponds to a message trans- 45
mission channel. The bandwidth of each transmit and
receive frequency channel is narrowband, generally 25-30
kHz. Thus, the FDMA system permits information to be
transmitted in a bandwidth comparable to the bandwidth of
the transmitted information, such as a voice signal. The 5o
cellular service area in the FDMA system is generally
divided into a plurality of cells, each cell having a set of
frequency channels selected so as to minimize co-channel
interference between cells.

Frequency division is often combined with time division 55
so that transmission circuits are trunked in both the fre-
quency and time domain, e.g., a FD/TDMA system. In a
digital FD/TDMA (commonly referred to as TDMA) cellu-
lar system, a narrowband frequency channel is reformatted
as a digital transmission path which is divided into a number 60
of time slots. The data signals from different calls are
interleaved into assigned time slots and sent out with a
correspondingly higher bit rate, the time slot assigned to
each mobile station being periodically repeated. Although
the TDMA bandwidth may be somewhat larger than the 65
FDMA bandwidth, a bandwidth of approximately 30 kHz is
generally used for AMPS-D digital TDMA cellular systems.

A very different approach to cellular multiple access
modulation is CDMA. CDMA is a spread spectrum tech-
nique for transmitting information over a wireless commu-
nication system in which the bandwidth occupied by the
transmitted signal is significantly greater than the bandwidth
required by the baseband information signal (e.g., the voice
signal). Thus, CDMA modulation spectrally spreads a nar-
rowband information signal over a broad bandwidth by
multiplex modulation, using a codeword to identify various
signals sharing the same frequency channel. Recognition of
the transmitted signal takes place by selecting the spectrally-
coded signals using the appropriate codeword. In contrast to
the narrowband channels of approximately 30 kHz used in
FDMA and TDMA modulation techniques, a CDMA system
generally employs a bandwidth of approximately 1.25 MHz
or greater.

Regardless of the modulation technique used in a cellular
telecommunication system, when a mobile station is in
communication with its base station, for example to provide
telephone service between a mobile station and a calling
party, the cellular system must maintain uninterrupted ser-
vice for the call despite movement of the mobile station
through the cellular system. For example, in an analog
cellular system, when the mobile station transitions from
one cell to another cell, the mobile station must change
frequencies because each cell supports a different set of
frequencies. The process by which a cellular telecommuni-
cations system enables a mobile station to maintain an
established connection when moving through cells of a
cellular system is referred to as "handoff," and is generally
controlled by the MTSO.

In a conventional analog cellular system, a handoff is
triggered when the base station currently providing the link
between the mobile station and the MTSO detects that the
received signal strength from the mobile station has dropped
below a predetermined level. The low signal strength from
the mobile station usually indicates that the mobile station is
approaching the boundary of the cell. When the received
signal strength is below the predetermined value, the base
station requests the MTSO determine whether another base
station, e.g., a neighboring base station, is receiving a
stronger signal from the mobile station than the current base
station.

In response to the request from the current base station,
the MTSO sends a message to the appropriate neighboring
base stations to measure the received signal strength from
the mobile station. The neighboring base stations, using a
scanning receiver, monitor the frequency channel of the
mobile station and measure the received signal strength, if
possible. The measurements made by the neighboring sta-
tions are reported to the MTSO. If one of the neighboring
base stations receives the mobile station signal above a
predetermined level, then the MTSO directs a handoff of the
mobile station from its current base station to a new base
station in an adjoining cell. In particular, the MTSO informs
the mobile station of a new frequency to be used with the
new base station, while the MTSO also switches the call
from the current base station to the new base station. If the
handoff is unsuccessful, however, the call will be lost, e.g.,
terminated. This type of handoff is often referred to as a
system-assisted handoff because the cellular system controls
the detection of the need for, and the execution of, the
handoff.

Another type of handoff is referred to as a mobile-assisted
handoff (MAHO). For example, in a digital CDMA cellular
system, each base station transmits a CDMA pilot signal on
a common frequency, each pilot signal being differentiated

Page 5 of 11
Petitioner Microsoft Corporation - Ex. 1008, p. 4665

6,035,197

by its phase offset compared to other pilot signals. A mobile
station located in a digital CDMA cellular system regularly
monitors the pilot signal strength received from the various
pilot signals of neighboring base stations. The mobile station
detects when the received signal strength of a pilot signal
from its current base station has dropped below a predeter-
mined level and the received signal strength of a neighbor-
ing base station pilot signal exceeds a predetermined level.
The mobile station transmits these signal strength measure-
ments to the MTSO via the base station with which the
mobile station is in communication. The MTSO directs a
handoff from one base station to another base station based
on the signal strength measurements made by the mobile
station.

A conventional narrowband analog cellular system, such
as an AMPS FDMA cellular system, cannot support MAHO
because in the analog system there is no pilot signal, the
mobile station does not take measurements of the signals
transmitted by the analog base station, and the handoff is
controlled by the base stations and MTSO. Moreover, a 30
kHz analog cell base station cannot transmit a 1.25 MHz
CDMA pilot signal.

Similar to the CDMA system MAHO, in a digital TDMA
cellular system, each base station can transmit a unique 30
kHz beacon signal that is received and measured by the
mobile station and reported to the MTSO. Based on the
frequency of the beacon signal, the MTSO can identify the
cell site associated with each beacon signal. When the
received beacon signal strength drops below a predeter-
mined value, then the mobile station reports the measure-
ment to the MTSO, via a base station, and the MTSO can
direct a handoff of the mobile station to another base station,
either analog or digital TDMA, associated with a sufficiently
strong beacon signal.

A TDMA to analog handoff is possible because both the
TDMA system and the analog system are narrowband sys-
tems using 30 kHz frequency channels. Thus, a 30 kHz
analog cell base station can support a TDMA MAHO
handoff using a 30 kHz TDMA pilot signal. The TDMA
MAHO has problems with false handoffs, however, because
a mobile station can receive a 30 kHz signal that is not a
beacon signal but rather is a communication signal from
another mobile station. For example, a mobile station at a
high elevation may transmit a 30 kHz signal on the same
frequency as a particular beacon signal that is mistakenly
detected as a beacon signal by another mobile station at a
lower elevation, thus causing an unwarranted handoff and
possibly a lost call.

In CDMA cellular telecommunication systems, a handoff
is usually accomplished via a "soft handoff" from one base
station to another base station. In a soft handoff, the mobile
station is in communication with more than one base station
simultaneously, and thus the mobile station performs a
"make before break" transition from one base station to
another base station. The soft handoff is possible because in
CDMA cellular telecommunication systems, numerous
mobile stations communicate with each base station on the
same frequency channel, each mobile station having a
unique spreading code for distinguishing the information
signals broadcast by the numerous mobile stations. Thus,
when a mobile station moves from one CDMA cell to
another CDMA cell, the same frequency is used in each
CDMA cell and the unique spreading code identifies the
mobile station to the new base station.

In contrast to the soft handoff used in CDMA cellular
systems, narrowband frequency modulation systems, such

as FDMA and TDMA systems, employ a "hard handoff."
The hard handoff, which is a "break before make"
connection, is necessary in narrowband cellular systems
because each mobile station is communicating with a base

5 station on a particular narrowband frequency channel. The
available frequency channels in adjoining cells differ, and
thus when a mobile station moves from one cell to another
cell, a new frequency channel must be used.

The advantage of employing a narrowband modulation
10 scheme, such as FDMA, would be defeated if such a system

utilized a soft handoff. For example, a narrowband FDMA
cellular telecommunication system using a soft handoff
would require that the mobile station simultaneously com-
municate with at least two base stations in adjoining cells on

15 either the same or different frequencies. If the mobile station
communicated on the same frequency to two adjoining base
stations, co-channel interference would result from two base
stations broadcasting on the same frequency to the mobile
station, precisely the type of interference the narrowband

20 system was designed to avoid. Alternatively, requiring the
mobile station transmit its communication signal to at least
two base stations in adjoining cells on two separate frequen-
cies simultaneously is not possible because such simulta-
neous communication capability is not possessed by con-

25 ventional mobile stations.

As spread spectrum modulation techniques, such as
CDMA, are implemented within existing cellular telecom-
munications systems, compatibility issues arise regarding
the integration of CDMA cell sites into existing analog

30 cellular telecommunications systems. The commercial suc-
cess of a cellular service provider is dependent in part on the
provider's ability to provide seamless integration of new
CDMA cell sites into existing analog systems, and in
particular, the ability to have unnoticeable handoffs as a

3 mobile station transitions from the CDMA portion of the
system into the analog portion of the system.

One problem with integrating CDMA cells into existing
analog cellular systems is the inability of conventional

40 mobile stations to support CDMA and analog communica-
tions simultaneously. Conventional mobile stations provide
a dual mode capability for generating and receiving spread
spectrum and narrowband signals. The mobile stations,
however, can operate in only one mode at a time. Therefore,
while a mobile station is communicating on the cellular
system via a CDMA channel, e.g., a 1.25 MHz channel, it is
not possible for the mobile station to simultaneously com-
municate via a narrowband channel of the system, e.g., a 30
kHz channel.

50 Another problem is that a narrowband base station cannot
receive a spread spectrum CDMA signal to measure the
received signal strength necessary to perform a system-
assisted handoff, as the CDMA signal is spread over a
bandwidth that is larger than the narrowband channel which

55 the narrowband base station is designed to receive. Also, a
narrowband base station transmits a narrowband signal, e.g.,
a 30 kHz signal, and thus cannot provide a CDMA pilot
signal to be received and measured by the mobile station to
facilitate a MAHO to an analog base station. The handoff of

60 a mobile station from a CDMA cell site to an analog cell site
represents one of the more significant problems with inte-
grating CDMA cell sites into existing cellular systems.

Current approaches to the problem of handoff of a mobile
station from a CDMA portion of a cellular telecommunica-

65 tions network to an analog portion of the telecommunica-
tions network are inefficient and affect performance. For
example, an additional analog cell can be placed in the

Page 6 of 11
Petitioner Microsoft Corporation - Ex. 1008, p. 4666

6,02
5

CDMA cell for an internal handoff of the mobile station
prior to handoff of the mobile station to the existing analog
system.

Under this approach, when a handoff of a mobile station
from the CDMA portion of the system to the analog portion
is necessary, a handoff is first performed from the CDMA
base station to the additional analog base station in the same
cell, i.e., the CDMA cell is actually a digital/analog cell,
capable of supporting both types of modulation. Assuming,
however, that the mobile station is transitioning beyond the
boundary of the digital/analog cell to an analog cell, another
handoff is required to an analog base station of the existing
analog system. Thus, two hard handoffs are required for the
transition of a mobile station across only one boundary,
whereas only one handoff would be desirable.

In addition to requiring an unnecessary handoff within the
CDMA cell, the above approach presents other problems.
For example, the handoff from the CDMAbase station to the
analog base station in the same cell is a "blind handoff." As
described above, the bandwidths of spread spectrum and
narrowband frequency channels are incompatible, as are the
types of modulation techniques. Thus, the CDMA to analog
handoff in the same cell site is directed without the benefit
of knowing that the target analog base station is indeed the
best target base station, or with what strength the commu-
nication signals from the mobile station will actually be
received by the target analog base station. As a result of the
lack of information on the suitability of the handoff, it is
possible that the handoff might not be properly executed,
resulting in a lost call, e.g., termination of the call.

Another problem with this approach to CDMA to analog
handoffs is the necessity of reducing the available coverage
area of the CDMA cell. A benefit of a CDMA cell, as well
as digital cells generally, is that the cellular service area
provided by the CDMA cell, often referred to as its
"footprint," is larger than the footprint of conventional
analog cells. However, in order to perform a CDMA to
analog handoff within the CDMA cell that has a significant
chance of success, the footprint of the CDMA cell must be
reduced so that there is sufficiently strong analog coverage
when the CDMA to analog handoff in the same cell site
actually occurs.

A further problem with this approach to CDMA to analog
handoff is unwarranted handoffs to the analog portion of the
cellular telecommunications system. For example, using the
MAHO scheme that is implemented in a CDMA cellular
system, a handoff is directed when the received signal
strength of the pilot signal from a base station with which the
mobile station is in communication drops below a predeter-
mined level. Thus, a mobile station may enter an area within
the coverage area of a CDMA cell but for some reason, the
CDMA pilot signals received by the mobile station are
attenuated. For example, the mobile station could enter an
underground parking garage. If the pilot signals are below
the predetermined value, then the MTSO will direct a
handoff to the analog portion of the cellular system. The
handoff, however, generally will not solve the problem of
the mobile statiom's poor reception in the underground
parking garage, and thus prematurely takes the mobile
station off the CDMA portion of the cellular system. In
conventional cellular systems having analog and CDMA
portions, there is generally no provision for handoff from an
analog portion of the system back to the CDMA portion of
the system. Therefore, this approach to CDMA to analog
handoff allows unwarranted and unnecessary handoffs to the
analog portion of a cellular telecommunications system
when the actual preference of the cellular system is to keep
the mobile station on the digital portion of the system as long
as possible.

Another approach to CDMA to analog handoff is a direct
handoff from the CDMA cell site to the desired analog cell
site, thus avoiding an interim analog handoff. This approach,
however, has some of the same problems as the above

5 CDMA to analog handoff method. In particular, the direct
handoff approach is a blind handoff to the analog cell site
due to the lack of information available to the mobile station
about the analog base station while the mobile station is in
communication with the CDMA cell site.

10 Therefore, a need exists for a method of directing a
handoff of a mobile station from a spread spectrum portion
of a cellular system to an analog portion of the cellular
system which minimizes additional equipment costs, avoids
unnecessary handoffs to the analog portion of the system,

15 and ensures continuation of an existing call in the analog
portion of the system upon completion of the handoff.

SUMMARY OF THE INVENTION

The method according to the present invention provides a

20 mobile assisted handoff of a mobile station transitioning
from a CDMA portion of a cellular telecommunications
network to an analog portion of the network utilizing a
CDMA pilot signal transmitter located at each analog cell in
the analog portion of the network.

25 According to the present invention, the mobile station
constantly monitors the CDMA pilot signal transmitted from
each CDMA cell. The mobile station also monitors the
CDMA pilot signal transmitted from each analog cell. The
mobile station measures the signal strength of each received

30 CDMA pilot signal and transmits the signal strength to the
MTSO via the base station(s) with which the mobile station
is currently in communication. The MTSO includes the
capability of distinguishing which base station, e.g., a
CDMA base station or an analog base station, with which

35 each pilot signal is associated based on the phase offset of
the pilot signal relative to a time standard of the cellular
system.

When the mobile station receives a pilot signal from an
analog cell whose signal strength is above a first predeter-

40 mined threshold level, and the received signal strengths of
all pilot signals of the CDMA base station with which the
mobile station is currently in communication are below a
second predetermined threshold level, the MTSO directs a
CDMA to analog handoff message to the mobile station. As

45 a result, the mobile station is handed off to the appropriate
analog base station in the analog portion of the system.

The method according to the present invention minimizes
the additional equipment expenses needed for implementing
an efficient and reliable CDMA to analog handoff by placing

50 a conventional CDMApilot signal transmitter at each analog
cell site and providing the MTSO with the capability of
recognizing and processing measurements made by a mobile
station of CDMA pilot signals broadcast from analog cell
sites. In addition, the method according to the present

55 invention prevents unwarranted handoffs by directing a
CDMA to analog handoff only when the CDMA pilot signal
from an analog cell site is the best candidate for handling the
mobile station compared to other CDMA cell pilot signals.

In further embodiments of the present invention, the
60 method provides for handoff of a mobile station from a

CDMA cellular telecommunications system to a personal
communications system (PCS) or to a digital TDMA cellular
telecommunications system.

65 BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a mobile station transitioning through a
cellular telecommunication system according to the present

Page 7 of 11
Petitioner Microsoft Corporation - Ex. 1008, p. 4667

6,02
7

invention including a CDMA portion of the cellular tele-
communication system and an analog portion of the cellular
telecommunication system.

FIG. 2 shows a block diagram of a pilot signal transmitter
according to the present invention.

FIG. 3 is an illustrative flowchart of the CDMA to analog
handoff method according to the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 shows a cellular telecommunication system 1
according to the present invention having a digital portion
1A and an analog portion lB. The digital portion 1A includes
a plurality of (for example, five) digital cells 22, labeled D1
to D. A digital cell 22 supports cellular telecommunication
using digitally modulated signals, such as CDMA signals.
The digital cells 22 also can be digital/analog cells, which
have the capability of supporting both digital cellular com-
munications and analog cellular communications. The ana-
log portion 1B includes a plurality of (for example, eleven)
analog cells 21, labeled A1 to A,,. An analog cell 21 supports
cellular telecommunication using analog signals, such as
FDMA modulated signals. Each digital cell 22 includes a
base station 12 and a digital pilot signal transmitter 51. Each
analog cell 21 includes a base station 11 and a digital pilot
signal transmitter 50 according to the present invention.

FIG. 2 shows an exemplary digital pilot signal transmitter
50 according to the present invention that can be placed in
an analog cell 21. The pilot signal transmitter 50 includes,
for example, an input/output (I/0) device 61 which allows
connection via, for example, a dedicated phone line or
wireless connection, to the MTSO 30 for parameter modi-
fication and for monitoring operation of the pilot signal
transmitter 50. Coupled to the I/0 device 61 is a line card
shelf 62. Contained in the line card shelf 62 are a pilot signal
line card 63, a synchronization line card 64 and a paging
signal line card 65. The pilot signal line card 63 generates a
pilot signal compatible with the modulation architecture
used in the digital portion 1B of the cellular system 1, e.g.,
CDMA modulation. The synchronization line card 64 pro-
vides for synchronization of the pilot signal generated by the
pilot signal line card 63. The paging signal line card 65
provides for the generation of paging signals. The line cards
63, 64 and 65 are powered by a power supply included in
line card shelf 62.

A synchronization source 66 is coupled to the synchro-
nization line card 64 for providing accurate timing for
operation of the pilot signal transmitter 50. The synchroni-
zation source 66 can be, for example, a Global Positioning
System (GPS) receiver, a LORAN receiver or a rubidium
oscillator. The pilot signal transmitter 50 also includes a
transmitter/low power amplifier stage 67 for taking the pilot
signal generated by the pilot signal line card 63 from its
baseband frequency to a radio frequency at the desired
power level. A filter circuit 68 eliminates any unnecessary
noise signals and limits out-of-band emissions. A transmit
antenna 69 is coupled to the filter circuit 68 for broadcasting
the pilot signal generated by the pilot signal transmitter 50.

The pilot signal transmitter 51 can have, for example, a
similar construction to the pilot signal transmitter 50. The
CDMA pilot signals generated by the pilot signal transmit-
ters 50, 51 are similar except for the phase offset used to
identify the location of each pilot signal transmitter.

As shown in FIG. 1, the base stations 11, 12 are coupled
to a Mobile Telephone Switching Office (MTSO) 30 via a
dedicated telephone line, cable, optical fiber or microwave

link 25. The MTSO 30 typically provides system control to
the base stations 11, 12. The MTSO 30 also controls the
routing of telephone calls from a public switched telephone
network (PSTN) to the appropriate base stations 11, 12 for

5 transmission to a mobile station 40.
A mobile station 40 is located in a vehicle 45 that is

currently in a digital cell 22 and moving towards an analog
cell 21. Thus, the mobile station 40 is transitioning from the
digital portion 1A of the cellular system to the analog portion

10 lB of the system. The mobile station 40 constantly monitors
the pilot signals transmitted by each pilot signal transmitter
50, 51, both during idle time, i.e. no telephone call being
processed, and busy times.

While the mobile station 40 is located in the digital

15 portion 1A of the cellular system 1, the mobile station 40
receives a digitally modulated telephone call routed from the
MTSO 40 through a digital base station 12 to the mobile
station 40. The signal transmitted to the mobile station 40
can be, for example, a CDMA signal. As the mobile station

20 40 moves across the boundary from its current digital cell 22
to a new candidate digital cell 22, for example from cell D 2
to D1 , the mobile station 40 moves closer to the candidate
digital cell D1 base station 12. Accordingly, a handoff is
necessary from the current base station in cell D 2 to the

25 candidate base station in cell D1 to maintain the established
connection for the telephone call.

The handoff of the mobile station 40 from its current
digital cell D2 to the candidate digital cell D1 involves a
mobile-assisted handoff (MAHO) wherein the mobile sta-

30 tion 40 receives the pilot signal transmitted by each pilot
signal transmitter 51 located in each digital cell 22 which is
sufficiently strong to reach the mobile station 40. The pilot
signal transmitter 51 can be incorporated into the base
station 12 equipment or it can be a stand-alone device. The

35 mobile station 40 measures the phase offset and power level
(signal strength) of each received pilot signal and transmits
the measurements to the MTSO 30, via its current base
station 12, so that the MTSO 30 can direct a handoff. The
handoff is typically a soft handoff wherein the mobile station

40 40 communicates simultaneously with two or more base
stations 12. Thus, the mobile station 40 transmits only one
signal which may be received by multiple base stations 12,
but signals to the mobile station 40 can be transmitted from
multiple base stations 12. Based on the signal strength

45 measurements made by the mobile station 40 and transmit-
ted to the MTSO 30, the mobile station 40 establishes and/or
terminates communications with base stations 12 upon
direction from the MTSO 30, thus completing the soft-
handoff.

5o As the mobile station 40 continues to move across the
boundary from a digital cell 22 to an analog cell 21, for
example, from cell D1 to cell All, a handoff is necessary
from the CDMA digital portion 1A of the cellular system to
the analog portion 1B of the system in order to maintain the

55 established connection for the telephone call involving the
mobile station 40. Unlike the transition of the mobile station
40 from one digital cell 22 to another digital cell 22, when
the mobile station 40 is crossing the boundary from a CDMA
digital cell 22 to an analog cell 21, a soft handoff is not

60 possible because the mobile station 40 cannot simulta-
neously communicate via a CDMA channel with a base
station 12 and also via an analog channel with a base station
11. Thus, the MTSO 30 must provide a handoff message to
the mobile station 40 for handoff to the analog base station

65 11.
The message format for directing a handoff of a mobile

station between CDMA cells and also from a CDMA cell to

Page 8 of 11
Petitioner Microsoft Corporation - Ex. 1008, p. 4668

6,035,197

an analog cell is provided by the industry standard specifi-
cation IS-95, for example. To facilitate CDMA handoffs,
IS-95 classifies the pilot signal offsets of the CDMA pilot
signals associated with each base station 12 into one of three
sets: the ACTIVE SET; the CANDIDATE SET; and the
REMAINING SET.

The ACTIVE SET identifies the pilot signal offsets of the
pilot signals associated with base stations 12 through which
the mobile station 40 is to communicate. The CANDIDATE
SET identifies the pilot signal offsets of the pilot signals
associated with the base station 12 with which communica-
tion is likely or for which pilot signals have been received
at the mobile station 40 with sufficient signal strength to be
placed in the ACTIVE SET, but have not yet been placed in
the ACTIVE SET. The REMAINING SET identifies the
pilot signal offsets of the pilot signals associated with the
remaining base station 12 in the cellular system 1, excluding
those pilot signal offsets currently in the ACTIVE and
CANDIDATE sets. By providing the mobile station 40 with
the pilot signal offset information, the mobile station 40
knows during which time period it should be receiving a
pilot signal.

The MTSO 30 provides the mobile station 40 with an
initial ACTIVE SET list of at least one pilot signal offset of
a pilot signal from a pilot signal transmitter 51 associated
with a base station 12 with which the mobile station is to
communicate. The MTSO 30 also provides the mobile
station 40 with a CANDIDATE SET list of pilot signal
offsets corresponding to base stations 12 with which com-
munication is likely. For example, base stations which are in
a geographic area near the mobile station 40 are placed in the
CANDIDATE SET.

According to the present invention, a CDMA pilot signal
transmitter 50 is placed in each analog cell 21, thus associ-
ating a CDMA pilot signal with each analog base station 11.
The MTSO 30 can identify the phase offset of the pilot
signals broadcast from the analog cells 21 received by the
mobile station 40 and transmitted to the MTSO 30, and thus
associate the pilot signal with the analog base station 11.
Therefore, the phase offsets of the pilot signals transmitted
from the analog cells 21 can be incorporated into the IS-95
classifications. Pilot signal offsets associated with the pilot
signals broadcast by pilot signal transmitters 50 located in
the analog cells 21, however, cannot be placed in the
ACTIVE SET until the mobile station 40 is actually handed
off to the analog base station 11 and communications with
any base stations 12 have been terminated because a mobile
station 40 cannot simultaneously communicate with digital
base station 12 and an analog base station 11.

The cellular system 1 according to the present invention
thus includes a CDMA pilot signal transmitter 50 in each
analog cell 21 for facilitating handoff of mobile station 40
from a CDMA cell 22 directly to an analog cell 21.
Accordingly, the handoff method according to the present
invention minimizes the additional equipment necessary for
providing CDMA to analog handoffs and the possibility of
lost calls.

FIG. 3 is an illustrative flowchart of the process for
handoff of the mobile station 40 as the mobile station 40
crosses the boundary from the digital cell 22 to the analog
cell 21 according to the present invention.

In step SO, the mobile station 40 is processing a CDMA
modulated telephone call between the mobile station 40 and
a calling party via the digital portion 1B of the cellular
system 1. In step S1, the mobile station 40 receives a pilot
signal transmitted from a base station 11, 12 in the cellular

system 1. The mobile station 40 measures the phase offset
and the power level of the pilot signal and transmits the
offset and signal strength measurements to the MTSO 30 via
the base stations 12 with which the mobile station is in

5 communication.

The mobile station 40 continuously scans for pilot signals
and can perform, for example, continuous measurements of
the pilot signals transmitted by pilot signal transmitters 50,
51. In step S2, the MTSO 30 determines whether the signal

10 strength of the pilot signal measured by the mobile station 40
exceeds a first predetermined threshold value, Threshold1,
and therefore is eligible to be added to the ACTIVE SET or
CANDIDATE SET. If the signal strength of the pilot signal
measured by the mobile station 40 is less than Threshold1,

15 the pilot signal offset is not eligible to be added to the
ACTIVE SET.

If the signal strength of the pilot signal from a base station
12 with which the mobile station 40 is in communication

20 drops below a second predetermined threshold value, Tdrop,
then the pilot signal is dropped from the ACTIVE SET. In
step S3, the MTSO 30 can direct termination of communi-
cations between the mobile station 40 and the base station 12
corresponding to the pilot signal having a signal strength
measurement below Tdrop. The mobile station 40 then
returns to step S1 and continues measuring the offset and
signal strength of received pilot signals and forwarding the
measurements to the MTSO 30 via the base stations 12.

If the signal strength of a pilot signal received by the
30 mobile station 40 exceeds Threshold1 , in step S4 the MTSO

30 determines whether the pilot signal is associated with a
digital cell 22 or an analog cell 21. Based on the phase offset
measurement made by the mobile station 40, the MTSO 30
can identify the pilot signal and its associated base station

35 11, 12, (i.e., a CDMA base station 12 or an analog base
station 11). If the pilot signal is associated with a CDMA
digital cell 22, in step S5 the pilot signal offset is denoted by
the MTSO 30 as eligible for inclusion in the ACTIVE SET
or CANDIDATE SET stored in the mobile station 40.

40 Depending on the availability of the base station 12 of the
CDMA cell 22, the MTSO 30 directs the mobile station 40
to establish communication with the new base station 12 via,
for example, a soft handoff. The mobile station 40 then
continues monitoring for pilot signals in step 51.

45 If the pilot signal has a signal strength which exceeds
Threshold and is associated with an analog cell 21, the pilot
signal offset can be included in the CANDIDATE SET. In
step S6 the MTSO 30 determines whether the signal strength
of any of the pilot signals in the ACTIVE SET exceed the

50 second predetermined threshold value, Tdaop. If any of the
pilot signals in the ACTIVE SET exceed Tdrop, then the
mobile station 40 remains on the digital portion 1B of the
cellular system and in step S7 the mobile station 40 returns
to step S1 to continue monitoring the pilot signals.

55 If, however, no pilot signals in the ACTIVE SET exceed
Tdrop, in step S8 the MTSO sends a handoff message to the
mobile station 40, via at least one of the base stations 12,
directing the mobile station 40 to terminate communications
with base stations 12 and to tune to an analog frequency of

60 the analog cell 21. The MTSO 30 also directs the analog cell
21 base station 11 to tune a receiver to the same frequency
provided to the mobile station 40 and the MTSO 30 reroutes
the telephone call through the analog base station 11. Once
the handoff of the mobile station 40 from the digital base

65 station 12 to the analog base station 11 is completed, call
processing is handled in a manner similar to call processing
in conventional analog cellular systems.

Page 9 of 11
Petitioner Microsoft Corporation - Ex. 1008, p. 4669

6,035,197

Although the present invention has been described with
respect to handoff of a mobile station from a CDMA cell to
an analog cell, the principles of the present invention also
can be used for handoff of a mobile station from a CDMA
cell to another wireless communication system or portion 5
thereof having a different frequency band or modulation
technique than the CDMA cell with which the mobile station
is currently in communication. For example, the method
according to the present invention can be used for handoff of
a mobile station from a CDMA cellular telecommunications lo
system to a personal communications system (PCS) or to a
digital TDMA cellular telecommunications system.

What is claimed is:
1. A method for handoff of a mobile station from a code

division multiple access (CDMA) portion of a cellular 15
telecommunication system to a non-CDMA portion of the
cellular telecommunication system, the method comprising
the steps of:

receiving, in the mobile station, a first CDMA pilot signal
compatible with the CDMA portion of the cellular 20
telecommunication system, the first CDMA pilot signal
being transmitted from a CDMA transmitter in the
non-CDMA portion of the cellular telecommunication
system; and

directing a handoff of the mobile station from the CDMA 25

portion of the cellular telecommunication system to the
non-CDMA portion of the cellular telecommunication
system as a function of the first CDMA pilot signal
received by the mobile station.

2. The method according to claim 1, 30

wherein the receiving step includes
detecting a phase offset value of the first CDMA pilot

signal and a signal strength value of the first CDMA
pilot signal, and

transmitting the first CDMA pilot signal detected phase 5
offset and signal strength values to a controller of the
cellular telecommunication system, and

wherein the directing step includes
determining, in the controller, whether to handoff the 40

mobile station from the CDMA portion of the cel-
lular telecommunication system to the non-CDMA
portion of the cellular telecommunication system as
a function of the first CDMA pilot signal detected
phase offset and signal strength values. 45

3. The method according to claim 2, further comprising
the step of:

receiving, in the mobile station, a second CDMA pilot
signal compatible with the CDMA portion of the cel-
lular telecommunication system and transmitted from 50
the CDMA portion of the cellular telecommunication
system; and

wherein the step of receiving the second CDMA pilot
signal includes
detecting a phase offset value of the second CDMA 55

pilot signal and a signal strength value of the second
CDMA pilot signal, and

transmitting the second CDMA pilot signal detected
phase offset and signal strength values to the con-
troller of the cellular telecommunication system. 60

4. The method according to claim 3,
wherein the directing step further includes

determining whether the signal strength of the first
CDMA pilot signal exceeds a first threshold value,

determining whether the first CDMA pilot signal is 65
associated with one of a CDMA base station and a
non-CDMA base station,

determining whether the second CDMA pilot signal is
associated with one of the CDMA base station and
the non-CDMA base station, and

if the second CDMA pilot signal is associated with the
CDMA base station, determining whether the signal
strength of the second CDMA pilot signal exceeds a
second threshold value.

5. The method according to claim 4,

wherein the directing step further includes
if the first CDMA pilot signal is associated with the

non-CDMA base station and the signal strength of
the second CDMA pilot signal exceeds the second
threshold value, maintaining communication of the
mobile station on the CDMA portion of the cellular
telecommunication system, and

if the first CDMA pilot signal is associated with the
non-CDMA base station and the signal strength of
the second CDMA pilot signal is at least as small as
the second threshold value, directing handoff of the
mobile station to the non-CDMA portion of the
cellular telecommunication system.

6. The method according to claim 1, wherein the non-
CDMA portion of the cellular telecommunications network
includes an analog cellular telecommunication system.

7. The method according to claim 1, wherein the non-
CDMA portion of the cellular telecommunications network
includes a personal communications system (PCS).

8. The method according to claim 1, wherein the non-
CDMA portion of the cellular telecommunications network
includes a time-division multiple access cellular telecom-
munication system.

9. A cellular telecommunication system providing cellular
service to a mobile station, the cellular telecommunication
system having a code division multiple access (CDMA)
portion and a non-CDMA portion, comprising:

a CDMAbase station in the CDMAportion of the cellular
telecommunication system;

a first CDMA pilot signal transmitter associated with the
CDMA base station for transmitting a unique first
CDMA pilot signal, the first CDMA pilot signal trans-
mitter being in the CDMA portion of the cellular
telecommunication system;

a non-CDMA base station in the non-CDMA portion of
the cellular telecommunication system;

a second CDMA pilot signal transmitter associated with
the non-CDMA base station for transmitting a unique
second CDMA pilot signal, the second CDMA pilot
signal transmitter being in the non-CDMA portion of
the cellular telecommunication system; and

a controller in communication with the CDMA base
station and the non-CDMA base station, wherein the
controller provides for a handoff of the mobile station
from the CDMA portion of the cellular telecommuni-
cation system to the non-CDMA portion of the cellular
telecommunication system as a function of the unique
first CDMA pilot signal and the unique second CDMA
pilot signal.

10. The cellular telecommunication system according to
claim 9, wherein the non-CDMA portion includes an analog
cellular telecommunication system.

11. The cellular telecommunication system according to
claim 9, wherein the non-CDMA portion of the cellular
telecommunications network includes a personal communi-
cations system (PCS).

12. The cellular telecommunication system according to
claim 9, wherein the non-CDMA portion of the cellular

Page 10 of 1I
Petitioner Microsoft Corporation - Ex. 1008, p. 4670

6,035,197

telecommunications network includes a time-division mul-
tiple access cellular telecommunication system.

13. The method according to claim 1, wherein the non-
CDMA portion of the cellular telecommunication system

includes a CDMA pilot signal transmitter for transmitting
the first CDMA pilot signal from the non-CDMA portion.

Page 11 of 11
Petitioner Microsoft Corporation - Ex. 1008, p. 4671

June 26, 2017

VIA CM/ECF & HAND DELIVERY

The Honorable Richard G. Andrews
United States District Court for the District of Delaware
844 North King Street
Wilmington, Delaware 19801

Re: IPA Technologies, Inc. v. Alco Electronics, Ltd., C.A. No. 16-1169-RGA,
IPA Technologies, Inc. v. Dish Network Corp., et al., C.A. No. 16-1170-RGA,
IPA Techs., Inc. v. TCL Comm’cn Tech. Holdings, Ltd., et al., C.A. No. 16-1236-RGA,
IPA Technologies, Inc. v. Amazon.com, Inc., et al., C.A. No. 16-1266-RGA,
IPA Technologies, Inc. v. Sony Electronics, Inc., et al., C.A. No. 17-55-RGA,
IPA Technologies, Inc. v. LG Electronics Inc., et al., C.A. No. 17-121-RGA,
IPA Technologies, Inc. v. Lenovo Group, Ltd., et al., C.A. No. 17-235-RGA,
IPA Technologies, Inc. v. Huawei Technologies Co., Ltd., et al., C.A. No. 17-248-RGA,
IPA Technologies, Inc. v. Kyocera International, Inc., C.A. No. 17-263-RGA
IPA Technologies, Inc. v. nVidia Corp., C.A. No. 17-287-RGA

Dear Judge Andrews,

Plaintiff IPA Technologies, Inc. (“IPA”) provides the following proposed claim
constructions for certain terms in the claims of the asserted patents and explanations of how they
illustrate patent-eligibility, pursuant to the Court’s Order. (C.A. No. 16-1266-RGA, D.I. 21.) In the
context of motions to dismiss, the Court should adopt non-movant IPA’s proposals as correct for
purposes of the pending Section 101 motions.1

1 IPA provides these claim construction proposals solely for purposes of consideration of the
pending Section 101 motions at the pleadings stage. Discovery has not yet begun, and Defendants
have not produced any documents concerning the accused instrumentalities. The parties have not
exchanged contentions, identified claim terms for construction, or provided proposed claim
constructions. IPA reserves its rights to modify or withdraw any of the claim construction
proposals herein, if necessary, in the claim construction exchange process later in the case.

222 Delaware Avenue ● Suite 900 Writer’s Direct Access:
P.O. Box 25130 ● Wilmington, DE 19899 (302) 429-4232
Zip Code For Deliveries 19801 sbrauerman@bayardlaw.com

Case 1:17-cv-00287-RGA Document 14 Filed 06/26/17 Page 1 of 3 PageID #: 111

GOOGLE EXHIBIT 1019Page 1 of 3 Petitioner Microsoft Corporation - Ex. 1008, p. 4672

The Honorable Richard G. Andrews
June 26, 2017

Page 2

Claim Term Proposed Construction
navigation query an electronic query, form, series of menu

selections, or the like; being structured
appropriately so as to navigate a particular data
source of interest in search of desired
information

electronic data source source of information in numerical form that
can be digitally transmitted or processed and
that is implemented on or by means of a
computing device

rendering an interpretation of the spoken
request

determining a meaning of the spoken request
using a computing device, such as that
provided by extracting speech data from
acoustic voice signals or data and linguistically
parsing the speech data

constructing a navigation query based upon
the interpretation

/
constructing at least part of a navigation
query based upon the interpretation

combining or arranging elements of (at least
part of) the navigation query based upon the
interpretation

IPA’s proposed constructions for these terms, which appear in the claims of all three
asserted patents, demonstrate how the claimed inventions are directed to patent-eligible
technological solutions or improvements specific to navigating electronic data sources, rather than
an abstract idea of using speech to obtain any kind of information. See Alice Corp. Pty. Ltd. v. CLS
Bank Int’l, 134 S. Ct. 2347, 2358 (2010) (claims that “solve a technological problem” or “improve[]
an existing technological process” are eligible under Section 101); DDR Holdings, LLC v.
Hotels.com, L.P., 773 F.3d 1245 (Fed. Cir. 2014) (claims are patent-eligible where “the claimed
solution is necessarily rooted in computer technology in order to overcome a problem specifically
arising in the realm of computer networks”).

The construction of “navigation query” flows from the express definition of the term in the
specification, (see ’021 Patent at 8:55-62), and places the claimed invention firmly in the realm of
electronic navigation of data sources. IPA previously proposed the construction for “navigation
query” and discussed how it grounds the claimed technological solutions to technological problems
specific to existing computing-based systems. (C.A. No. 16-1266-RGA, D.I. 15 at 7-8.) The term
“electronic data source” underscores the focus of the claims on specific technological solutions, as
“data” is unpacked based on its plain meaning as information in numerical form that can be digitally
transmitted or processed, and “electronic” is further unpacked as implemented on or by means of a
computing device. The construction encompasses the range of electronic data sources discussed in
the specification, including “database(s), Internet/web site(s), … multimedia content, such as
movies or other digital video and audio content, other various forms of entertainment data, or other
electronic information.” (’021 Patent at 4:11-20.)

The specification addresses the claim phrase “rendering an interpretation of the spoken
request” in a passage stating that “[w]hen a spoken input request is received from a user, it is
interpreted, such as by using a speech recognition engine to extract speech data from acoustic voice
signals, and using a language parser to linguistically parse the speech data.” (’021 Patent at 2:30-
34.) The specification’s description of using a speech recognition engine—a software solution for

Case 1:17-cv-00287-RGA Document 14 Filed 06/26/17 Page 2 of 3 PageID #: 112

Page 2 of 3 Petitioner Microsoft Corporation - Ex. 1008, p. 4673

The Honorable Richard G. Andrews
June 26, 2017

Page 3

extracting speech data from acoustic voice signals—is incorporated into the construction, as is the
use of a language parsing software solution. The focus on data is a highlight of the specification
passage and further grounds the claimed inventions as technological solutions. The specification
goes on to explain, as reflected in the construction, that “[t]he interpretation of the spoken request
can be performed on a computing device locally with the user or remotely from the user.” (Id. at
2:34-36.) The construction of the claim phrase “constructing a navigation query based upon the
interpretation” also reflects the software outputs of rendering an interpretation, because the
navigation query is constructed by combining or arranging elements of the navigation query based
on outputs of the software that interprets the spoken request. Both of these constructions show how
the claimed inventions address the technological problem of speech-based navigation of complex
and heterogeneous electronic data sources: software can extract and parse the speech data, and then
can construct navigation queries that meaningfully connect the interpreted spoken request to
electronic repositories of digital information.

In sum, IPA’s proposed constructions demonstrate for all the asserted patents that the
claimed inventions are directed to specific technological solutions or improvements in the context
of computing devices. Courts have rejected patent-eligibility challenges to such claimed solutions
rooted in computing technologies. Enfish, LLC v. Microsoft Corp., 822 F.3d 1327, 1337-38 (Fed.
Cir. 2016); DDR Holdings, 773 F.3d at 1255-59; see also cases cited at Case No. 16-1266-RGA,
D.I. 15 at 11-12 & n.6. This Court should similarly reject the patent-eligibility challenges here.

Respectfully submitted,

/s/ Stephen B. Brauerman

Stephen B. Brauerman (sb0922)

cc: All counsel of record

Case 1:17-cv-00287-RGA Document 14 Filed 06/26/17 Page 3 of 3 PageID #: 113

Page 3 of 3 Petitioner Microsoft Corporation - Ex. 1008, p. 4674

From: IAAI-97 Proceedings. Copyright© 1997, AAAI (www.aaai.org). All rights reserved.

Building Brains for Rooms:
Designing Distributed Software Agents

Michael H. Coen

MIT Al Lab
545 Technology Square
Cambridge, MA 02139

mhcoen@ai.mit.edu

Abstract
This paper argues that complex, embedded software agent
systems are best constructed with parallel, layered
architectures. These systems resemble Minskian Societies of
Mind and Brooksian subsumption controllers for robots,
and they demonstrate that complex behaviors can be had via
the aggregates of relatively simple interacting agents. We
illustrate this principle with a distributed software agent
system that controls the behavior of our laboratory's
Intelligent Room,

Introduction
This paper argues that software agent systems that interact
with dynamic and complex worlds are best constructed
with parallel, layered architectures. We draw on Brooks'
subsumption architecture (Brooks, 1985) and Minsky's
Society of Mind (Minsky, 1986) theory to dispel the notion
that sophisticated and highly capable agent systems need
elaborately complex and centralized control.

Towards this end, we present an implemented system of
software agents that forms the backbone of our
laboratory's "Intelligent Room" (Torrance, 1995). These
agents, known collectively as the Scatterbrain, control an
environment very tenuously analogous to the intelligent
rooms so familiar to Star Trek viewers --- i.e., rooms that
listen to you and watch what you do; rooms you can speak
with, gesture to, and interact with in other complex ways.

The Scatterbrain consists of approximately 20 distinct,
intercommunicating software agents that run on ten
different networked workstations. These agents' primary
task is to link various components of the room (e.g.,
tracking cameras, speech recognition systems) and to
connect them to internal and external stores of information
(e.g., a person locator, the World Wide Web). Although an

lCopyright © 1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

2This material is based upon work supported by the Advanced Research

Projects Agency of the Department of Defense under contract number
F30602-94--C0204, monitored through Rome Laboratory and
Griffiss Air Force Base.

individual agent may in fact perform a good deal of
computation, we will focus our interest on the ways in
which agents get connected and share information rather
than how they internally manipulate their own data. And
while the Intelligent Room is a fascinating project in itself,
we will treat it here mainly as a test-bed to learn more
about how software agents can interact with other
computational and real entities.

Our approach has also been modeled on a somewhat
unorthodox combination of the Brooks (Brooks, 1991) and
Minsky approaches to core Al research. As pointed out in
(Kautz et. al., 1994), it is difficult to find specific tasks for
individual agents that are both feasible and useful given
current technology. Many of the non-trivial tasks we
would like software agents to perform are simply beyond
the current state of the art. However, taking our cue from
Minsky, we realize interesting and complex behaviors can
be had via the aggregates of simpler ones; groups of simple
agents can be combined to do interesting things. We also
found Brooks' subsumption architecture useful for guiding
the creation of the Scatterbrain, particularly for building
parallel layers of bchaviors that allow the room to process
multiple events simultaneously and to change contexts
quickly. In many ways, the room is similar to a
disembodied robot, so it comes as no surprise that the
robotics community can provide insight into how the
room's brain should be designed. We argue, however, that
this does not preclude insights obtained in creating the
Scatterbrain from applying to other distributed software
agents systems. Rather, as argued by Etzioni (Etzioni,
1994, 1996; Etzioni et al. 1994), even agents who solely
interact with the online world (and don't have cameras for
eyes and microphones for ears) can be viewed as a kind of
simulated, virtual robot. More important than its
connection with the real world, what the Scatterbrain
shares with Brooks' robots is its organizational structure
and its lack of central processing; all of the Scatterbrain's
agents work together in parallel with different inputs and
data being processed simultaneously in different places.

The next section of this paper describes the Intelligent
Room's physical infrastructure. After this, we introduce
the room's most recent application, a Tour Guide agent
that helps a person present our lab's research to visitors.

EMERGING APPLICATIONS 971

GOOGLE EXHIBIT 1020Page I of 7
Petitioner Microsoft Corporation - Ex. 1008, p. 4675

Next, we present in detail the room's software agent
architecture, including the design and implementation of
several components of the Scatterbrain and Tour Guide
agents. We also contrast our approach with several earlier
monolithic efforts taken in our lab to program and control
the behavior of the Intelligent Room.

Part of the motivation for this work has been to push the
envelope of software agent design. Much has been made
over the lack of obvious "killer applications" for software
agents. After all, how many automated meeting schedulers
does the world need? We are interested in exploring new
realms of complex interactions for software agents which
in and of themselves constitute these "killer apps" that
have been seemingly so elusive from the single-agent
perspective. Minsky argues that societies of agents can do
things that seem inordinately complex when their behavior
is viewed as the work of a single entity. Our experiments
with fairly large assemblies of software agents mark an
early attempt towards establishing that this is indeed the
case.

The Intelligent Room

The Intelligent Room project explores new forms of
interaction and collaboration between people and
computers. Our objective is to create a new kind of
environment capable of interpreting and contributing to
activity within it. On a grand scale, we are examining a
paradigmatic shift in what it means to use a computer.
Rather than view a computer as a box with a keyboard and
monitor used for traditional computational tasks, we
envision computers being embedded in the environment
and assisting with ordinary, traditionally non-
computational activity. For example, if I lose my keys in
the Intelligent Room, I'd someday simply like to ask the
room where I left them.

The Intelligent Room is an excellent environment in
which to conduct core AL research according to the criteria
of both Brooks (Brooks, 1991) and Etzioni (Etzioni, 1994),
The room is "physically" grounded in the real-world. The
room's cameras and microphones allow it to deal allow it
to deal with the kinds of complex, unpredictable and
genuine phenomena that Brook's argues is essential for a
core AI research testbed. However, the room also
processes abstract, symbolic information that actually
represents something extant, thereby satisfying Etzioni's
desiderata. For example, if a person asks the room, What
is the weather in Boston?, the room needs to recognize
more than a meaningless weather token - it needs to get
that information and display it to the user. This is done
using a variety of information retrieval systems available
on the World Wide Web.

This section first describes the room's physical
infrastructure. We then present the room's most recent
application, a Tour Guide agent that helps a person present
our lab's research to visitors. In the next section, we
discuss in detail the room's software agent architecture,
including the design and implementation of the

Scatterbrain and Tour Guide agents.

infrastructure - From the bottom up

Figure I diagrams the room's physical layout. The
Intelligent Room's infrastructure consists of several
hardware and software systems that allow the room to
observe and control its environment in real-time. The
positions of people in the room are determined using a
multi-person tracking system. Hand pointing actions are
recognized by two separate gesture recognition systems.
The one used in the application described below allows the
room to determine where someone is pointing on either of
two images projected on a room wall from high-intensity,
ceiling mounted VGA projectors. A speech recognition
system developed by (Zue, 1994) allows the room to listen
to its inhabitants, and it is used in conjunction with a
speech generator to enable to the room to engage in
sustained dialogues with people. The room interfaces with
the START natural-language information retrieval system
(Katz, 1990) to enhance its ability to understand complex
linguistic input. The room also controls two VCRs and
several other video displays in addition to the ceiling
mounted projectors. A matrix switcher allows arbitrary
connections between the room's audio/visual inputs and
outputs.

The room's hardware systems are directly interfaced
with low-level C programs to insure their real-time
operation. For example, the room's tracking cameras have
30 Hz frame rates and their data streams need to be
synchronously processed using direct operating system
calls.

Pointing Cameras

Displays

Microphone
Receiver

Traking 'Cam a

Figure 1 - Intelligent Room Floor Plan

The Tour Guide Agent

The room's most recent application provides support for
someone giving tours of our laboratory. These tours
typically involve a group of visitors meeting with a
graduate student who discusses and answers questions
about the lab's research and shows several video clips.
Rather than have these presentations given in an ordinary

972 INNOVATIVE APPLICATIONS

Page 2 of 7
Petitioner Microsoft Corporation - Ex. 1008, p. 4676

conference room, we have decided to have them in the
Intelligent Room so the room can assist the human tour
guide. A typical dialogue between the room and student
tour guide is:

Tour guide: Computer, load the Al Lab tour.
Room: I am loading the AI Lab tour. Right projector now
displays a Netscape browser window with a special Lab Tour
home page.
Tour guide: Using hand, points at link to a research project
displayed on the wall and says, Computer, follow this link
Room: Loads the indicated page into the browser.
Tour guide: Computer, show me the Intelligent Room home
page.
Room: Loads the URL corresponding to the name of the page.
Then says, I have a video clip for this research. Would you like
to see it?
Tour guide: Computer, yes.
Room: Moves appropriate video casettetape to correct position
and starts the clip playing on left projector.
Tour guide: (watches video for a few seonds) Computer, stop the
video. Computer, play the Virtual Surgery clip.
Room: Performs requested action. Stops video when clip is done.
Tour guide: Computer, how many graduate students are there at
the Al Lab ?
Room: I am asking the START system for the answer... The
Laboratory's 178 members include 17faculty members, 26
academic staff, 29 research and support staff, and 106 graduate
students. Also displays web page with elaborated answer.

Other applications include a control center for planning
huricane disaster relief and an intelligent living room.

Control Architectures

The room has been discussed so far at its most concrete
and most abstract: namely, its hardware infrastructure and
its high-level software applications. How these applications
are actually created on top of this infrastructure, i.e., how
the room actually works, is the subject of this section.

Monolithic Control
In its early stages of development, each of the room's
components was wrapped inside a TCP client or server that
connected with a monolithic C-language program that
controlled the room's behavior. Figure 2 contains this
controller along with each of the programs it connected
with. (Included in parentheses with each component is the
name of the workstation it ran on.)

From a conceptual point of view, the most serious flaw
with the centralized controller was that it failed to
distinguish between basic functioning common to all room
contexts -such as noticing when someone came through
the doorway - and unique activities associated with a
particular room application. Furthermore, adding new
functionality to the room required modifying the
monolithic controller and manually determining the
interactions and conflicts between old and new room

Figure 2 - The Monolithic Controller

functions. There was no way to modularly add new room
capabilities on top of old ones and assume everything
would continue working as expected.

Also, directing the information flow among the room's
various components -one of the main functions of the
controller - was overly difficult in a language like C. We
needed higher-level mechanisms for describing how room
information moved among its producers and consumers,

From a practical point of view, the monolithic controller
also made it difficult to reconfigure the room dynamically
or restart pieces of the room independently of others. We
often found while working on the room that in order to
restart one component, it was necessary to restart the entire
room. This was particularly frustrating because starting the
room required the coordinated activity of several people to
start particular programs (in a predetermined order) and
configure various room hardware. It was also difficult to
move components of the room to different workstations
because that required modifying hard-coded machine
dependencies in the code.

SodaBot
Although we managed to use the monolithic approach

for several very simple applications, it seemed unlikely to
scale to the more complex interactions we had in mind for
the room. Our initial dissatisfaction with this architecture
led to the adoption of the SodaBot software agent platform
(Coen, 1994) for duplicating the functionality of our initial
monolithic room controller with a system of distributed
software agents.

SodaBot provides both a programming language and
runtime platform for software agents, and it simplifies
writing interactive programs by providing high-level
primitives for directing flows of online information. For
example, it provides mechanisms for writing agent-
wrappers that interface with preexisting software either via
text-based or graphical user interfaces (X-windows and
Windows 95/NT).

For example, we created a SodaBot Netscape Agent that
controls interactions with a Netscape browser. It offers
functions to other agents such as those listed below.

EMERGING APPLICATIONS 973

Page 3 of 7
Petitioner Microsoft Corporation - Ex. 1008, p. 4677

Function Purpose
New (host) Runs a new browser on given host
Load(url) Loads URL in browser
Pagewatch0 Arranges for notification (of URL) to

another agent whenever browser loads new
page

LinkwatchO Arranges for notification to another agent
when a new page is loaded containing its
URLlanchor text pairs

Text Returns text of current page
Page(direction) Moves browser scroll-bar in given

direction

For the Intelligent Room, we use SodaBot agents as
computational glue for interconnecting all of the room's
components and moving information among them.
Initially, we simply duplicated the room's monolithic
controller using SodaBot's high-level programming
language. Most notably, SodaBot simplified description of
room functioning and interaction with remote TCP-based
clients and servers by removing networking and hardware
details. However, this new room controller, dubbed the
Brain, was still a computational bottleneck, and we had yet
to distinguish between a general behavioral infrastructure
for the room (i.e. its core functionality) and the more
complex, application specific interactions we built on top
of it. This led to the development of the room's current
control system, the Scatterbrain, which is the subject of the
next section.

Distributed Room Control

The Scatterbrain (Figure 3) is platform on top of which
room applications can be layered. In the figure, each circle
represents a distinct SodaBot software agent that is
wrapped around and interfaced with an external
application. (The layer containing these "base applications"
is not shown.) Each of the Scatterbrain agents is
responsible for a different room function. For example, the
Speechin Agent, runs and interfaces with our speech
recognition systems. Once started, Speechln allows other
agents to submit context-free grammars corresponding to
spoken utterances they are interested in. As they do, it
updates the speech recognition systems to contain the
current set of valid utterances. When a sentence is heard
by one of the speech systems, SpeechIn then notifies those
agents who indicated they were interested in it. As another
example, the Netscape Agent connects to the Display Agent
to make sure that when web pages are loaded, the browser
is actually displayed somewhere in the room where people
can see.

The Scatterbrain agents are distributed among 10
different workstations and rely on SodaBot interagent
communication primitives to locate and communicate with
each other. The lines in the figure represent default
interactions the room manifests in all applications, such as
having various agents connect with the speech recognition
agents and making sure the tracking system notices when

someone comes in the room. Essentially, the Scatterbrain
implements the Intelligent Room's reflexes.

O 0 . LaserPointing
/ peechino., Speitu Net cape -

/ Q) Tracking",

S / Sum it FingerPointing /

/ Dragon(Displ -o- 1 Enhanced
VideoMux VCR X-Control SGI Setup Reality

Figure 3 - The Agents of the Scatterbrain

The room no longer has a central controller. A small
startup agent runs all of the Scatterbrain agents which then
autonomously move to the machines on which they are
supposed to run. All the Scatterbrain agents then work
together in parallel with different inputs and data being
processed simultaneously in different places. This makes
the room robust to failure in one of its sub-systems and
allows us to restart sections of the room independently.
Also, the SodaBot system allows real-time data
connections between agents to be broken and resumed
invisibly. For example, if the Tracking Agent is updating
another agent in real-time, either one of them can be
stopped and restarted and they will be automatically
reconnected.

Layerd on top of the Scatterbrain, we created higher-
level agents that rely on the Scatterbrain's underlying
behaviors. Figure 4 contains the room's intermediate
information-level applications such as a Weather Agent
that can obtain forecasts and satellite maps for particular
places. By relying on the previously described interaction,
if the Weather Agent uses the Netscape Agent to display
information, it doesn't need to be concerned with insuring
the browser is displayed in a place where the user is
looking.

,7 -'*"- 5 RT ------- Slides 7
/ wsather-- -------. Ierfaee .- "/ Sorm \

/ .. : <,, / ..--" // Interface

.... hi -LaserPo nting

FingerPointing -racking'",/ ,Summuit } 0/.

/ Dragon snhd

VideoMux - vcR X-Controi Sqt Sletupl Re a lt.ty

Figure 4 - Information Agents

We then created specific room application agents that
relied on the lower-level, general-purpose agents in the
room. Figure 5 contains a diagram of several room
applications and how they connect to the room's
underlying architecture. Note that all of the objects in the
figure represent SodaBot software agents and many of

974 INNOVATIVE APPLICATIONS

Page 4 of 7
Petitioner Microsoft Corporation - Ex. 1008, p. 4678

them connect to non-displayed external applications. The
next section explores two of the application agent
interactions in more detail.

aster Relief Talk Web
cenario Presentatio Su

Fi aIntelligent Room Soarm
Aet ntra rfac

T s s htn exmineshow w can Laetroo nung

Summrstingehaior bylayer FingerPointing T faeain
Dragon @ Disp .

oter W eamn to seaaero ehvoruncd te

d VideoMux VCR X-Cont rod SG Setup Ruelti

Figure 5- Intelligent Room Software Agents

Agent Interaction

This section examines how we can get the room to exhibit
interesting behavior by layering agents on top of each
other. We examine two separate room behaviors and then
discuss how they combine to produce greater functionality.

We have a system in the room called Storm, used in a
disaster relief planning scenario, that can display scalable
maps of the Carribean. People can interact with Storm
using pointing and speech. For example,

User: Computer, display Storm on the left projector.
(User now points at Puerto Rico.)
User: Computer, zoom in.
(User now points at San Juan.)
User: Computer, what is the weather here?
(The room then displays a weather forecast for San Juan
inside a Netscape browser on the other projector.)

To see how this scenario works, we first examine pointing
recognition as an example of simple agent interaction. We
then look at a more complex scenario from the Tour Guide
agent presented earlier.

By default, the room's projectors are set by the Display
Agent to show portions of the screens of two of our SGI
workstations. If someone points someplace close to one of
these projected displays, the display's mouse cursor moves
to that position. Although this seems like a trivial process,
there is a fair amount of effort behind it, as shown in
Figure 6. The person moving his finger is reflected in the
camera images received by the neural network pointing
software. This reconciles the images to produce new
pointing information. These new data are passed to the
FingerPointing Agent which is responsible for handling all
such events in the room. By default, the Scatterbrain has
all pointing events on the each display sent to an agent

called the X-Server that controls the actual SGI workstation
generating the display. This X-Server agent then moves
the mouse cursor to the appropriate position, which is
reflected in the displayed image. However, the Storm
Agent overrides this default behavior and redirects
pointing events on the Storm display to itself. Upon receipt
of a pointing event, it updates the Storm application's
internal cursor, which moves intelligently between salient
geographical features. For example, pointing near San
Juan will cause the Storm program to register the city with
the Storm Agent, rather than a point three pixels to its left.
Finally, note that the various agents are responsible for
translating between the room's many coordinate systems,
as shown along the connections.

Display

/ -Nnge Pointing 0-J*tc

(.creet X X-Control
Storm rnStPoram Interface i onig!(x",y"t

ointing
Program

104o~ Neural: me
Net

VideoMux

VideoMux

Figure 6 - Pointing in the Room

When someone in the room says What's the weather here?,
the Speechin Agent notifies the room's Disaster Relief
Planning Agent because this utterance is contained in the
grammar that agent had registered when first run. The
Storm Agent is then contacted to determine what
geographical entity is closest to where the person was
pointing close to the time they asked the question. (Low-
level room events are time-stamped by agents in order to
facilitate multimodal reconciliation.) This process is
shown in Figure 7.

Disaster Relief
Scenario

-Fnge Potnting----- 0

Storm)

a t nthea e Pointing
Neural -g

Speechin /e l

"What's the weather here?" V idoMux

Figure 7 - Multimodal Resolution

EMERGING APPLICATIONS 975

Page 5 of 7
Petitioner Microsoft Corporation - Ex. 1008, p. 4679

has any additional information about the content of the
(D newly loaded web page.3 In this case, it announces that it

Disaster Relief Netscape 0 has a relevant video. If the user indicates he wants to see
Scenario " Display the clip, the VCR agent announces that it is cueing to the

START appropriate tape position and then plays the segment.
Interface The Scatterbrain architecture combines these two

Weathe 4
/0 (x' behaviors to allow the room, for example, to notify us if

i-- Pointing G we have additional information about things being
(screen# xy) -Control referenced during other interactions. For example, the

,Tnterface Pointing show video clips about San JuanNeural- '' (x ~room can volunteer to so ie
Neural

Sp Z4 when a person asks for the weather there. This entire

Speechin / interaction is contained in Figure 10, which simply
VideoMux i overlaps Figures 8 and 9.

SpeeehOutMu +

Scenario Web V

Figure 8 - Loading Weather in Browser / Surfer Display

When the Disaster Relief Agent is told what region's " I Interfac
weather is being queried, the Weather Agent is then asked Weather '// gX

to display the requisite information. After consultation inge oi rng

with the START Agent to find an appropriate URL which - (/c X o r,i o m I-

contains this information, it asks the Netscape Agent to teyface rPointing X
load the given page as shown in Figure 8, which also / Nel
displays the complete agent interaction for handling the
user's question. Speechin vdeorx

Ao ut.....
A separate interaction from the Tour Guide Agent echt

presented earlier is shown in Figure 9. Here's someone
asks the room to load a particular web page, e.g., "What's the weather here?" VideoMux

Computer, load the Intelligent Room home page.
Figure 10 - Combining Behaviors

ED
Netscape Web One of our primary interests is making the room an

Display active partner in applications rather than a passive servant
/ ART ,Dpthat simply responds to explicit commands. The video-
/In terface"/ notify behavior discussed here is an early effort towards

this. By layering behaviors on top of the Scatterbrain that
are indirectly triggered by room activity rather than by
direct user instruction, the room can autonomously become

; / 7 .involved in its ongoing activities and thereby appear more///

spontaneous and intelligent to users.
Spe chin Note that although the Scatterbrain is not actually a

SpeechOut VideoMux subsumption system, the influence of subsumption
architecture is clear. The room is controlled by multiple

'Load the Intelligent VideoMux layers of behaviors in which higher-level agents rely on the
Room Home Page" activity of lower-level ones. When appropriate, these

higher-level agents can also override the specific behaviors
of other agents. The Scatterbrain architecture also supports

Figure 9 - Video Notification combination of agent behaviors to get enhanced
functionality.

After the Netscape Agent receives this request from the

SpeechIn Agent, it loads the URL in the netscape browser.
Whenever the Netscape Agent loads a new page, it also 3 Note that this information is not contained within the page
notifies the Web Surfer Agent that it is doing so. The Web itself.
Surfer Agent consults with the Start Agent to check if it

976 INNOVATIVE APPLICATIONS

Page 6 of 7 Petitioner Microsoft Corporation - Ex. 1008, p. 4680

Conclusion

Motivated by Minsky's Society of Mind and Brooks'
subsumption approach to building robots, we have argued
that software agent systems that interact with complex and
dynamic worlds are best created from distributed
collections of simple agents with parallel, layered
architectures.

The complexity of the overall system comes from the
interactions of these agents, even though no individual
agent is in itself particularly complex and no single agent
centralizes the system's control. This approach allows us
to build robust, reusable, and behaviorally sophisticated
systems that are capable of interacting with the ever-
changing real and online worlds. To demonstrate this
approach, we presented the Scatterbrain - a distributed
collection of software agents that control our laboratory's
Intelligent Room.

Acknowledgements
Development of the Intelligent Room has involved the
efforts of many people. Professors Tomas Lozano-Perez,
Lynn Stein and Rodney Brooks were principally
responsible for the room's conception and construction.
Mark Torrance led the project during its first year and
wrote the room's earliest monolithic controllers. The
room's many vision systems are due to the efforts of
Jeremy De Bonet, Chris Stauffer, Sajit Rao, Tomas
Lozano-Perez, Darren Phi Bang Dang, JP Mellor, Gideon
Stein, and Kazuyoshi Inoue. Polly Pook contributed to the
design of the room's distributed computation and has
worked on modeling the room's functionality as a cognitive
process. Josh Kramer wrote large sections of the
Scatterbrain and participated in the development of the
SodaBot system. All of the above mentioned were also
responsible for designing room applications, and many of
the above hacked on various room components. Kavita
Thomas, along with help from Mark, Polly, and Tomas,
configured Victor Zue's speech recognition system. (Jim
Glass provided assistance in getting the system running.)
Boris Katz and Deniz Yuret provided much support in
interfacing with and customizing the START natural
language system. Mike Wessler created one of the room's
earliest applications and wrote invaluable graphical
interfaces for much of the room's hardware.

References

Brooks R. 1985: A Robust Layered Control System for a
Mobile Robot, AI Lab Memo 864, Massachusetts Institute
of Technology. Cambridge, MA.

Brooks R. 1991: Intelligence without Representation, in
Special Volume: Foundations of Artificial Intelligence,
Artificial Intelligence, 47(1-3).

Coen, M. 1994. SodaBot: A Software Agent Environment
and Construction System. Al Lab Technical Report 1493.
Massachusetts Institute of Technology. Cambridge, MA.

Etzioni, 0. 1994: Intelligence without Robots, Al
Magazine, Winter 1994.

Etzioni, 0.; Levy, H.; Segal, R.; and Thekkath,C, 1994. OS
Agents: Using Al Techniques in the Operating System
Environment. Technical Report 93-04-04. Dept. of
Computer Science. University of Washington. Seattle,
WA.

Etzioni, 0, 1996: Moving Up the Information Food Chain:
Deploying Softbots on the World Wide Web, in
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, AAAI Press/MIT Press, Cambridge,
MA, pp. 13 2 2 -1326, 1996.

Kautz, H.; Selman, B.; Coen, M.; and Ketchpel, S. 1994.
An Experiment in the Design of Software Agents. In
Proceedings of the Twelfth National Confcrcncc on
Artificial Intelligence, AAAI Press/MIT Press,
Cambridge, MA.

Katz, B. 1990. Using English for Indexing and Retrieving.
In Artificial Intelligence at MIT.- Expanding Frontiers.
Winston, P.; and Shellard, S. (editors). MIT Press,
Cambridge, MA. Volume 1.

Minsky, M. 1986. Society of Mind. New York. Simon
and Schuster.

Torrance, M. 1995. Advances in Human-Computer
Interaction: The Intelligent Room, In Working Notes of
the CHI 95 Research Symposium, May 6-7, 1995, Denver,
Colorado.

Zue, V. 1994. Human Computer Interactions Using
Language Based Technology, IEEE International
Symposium on Speech, Image Processing & Neural
Networks, Hong Kong..

EMERGING APPLICATIONS 977

Page 7 of 7
Petitioner Microsoft Corporation - Ex. 1008, p. 4681

Hing-Yan Lee Hiroshi Motoda (Eds.)

PRICAI'98: Topics in
Artificial Intelligence

5th Pacific Rim International Conference
on Artificial Intelligence
Singapore, November 22-27, 1998
Proceedings

Springer

GOOGLE EXHIBIT 1021Page 1 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4682

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh , PA, USA
J6rg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Hing-Yan Lee
Knowledge Lab., Kent Ridge Digital Labs
21 Heng Mui Keng Terrace, Singapore 119613
E-mail: hingyan@krdl.org .sg

Hiroshi Motoda
The Institute of Scientific and Industrial Research
Osaka University
8-1 Mihogaoka, Ibaraki, Osaka 57, Japan
E-mail: motoda@ar.sanken.osaka-u .ac.jp

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - ClP-Einheitsaufnahme

Topics in artificial intelligence : proceedings I PRICAI '98, 5th
Pacific Rim International Conference on Artificial Intelligence,
Singapore, November 22 - 27, 1998. Hing-Yan Lee; Hiroshi Motoda
(ed.). - Berlin ; Heidelberg; New York ; Barcelona ; Hong Kong; ·
London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1998

(Lecture notes in computer science ; Vol. 1531 : Lecture notes in
artificial intelligence)
ISBN 3-540-65271-X

CR Subject Classification (1998): I.2

ISBN 3-540-65271-X Springer-Verlag Berlin Heidelberg New York

Thi s work is subject to copyri ght. All ri ghts are reserved , whether the whole or part of the materi al is
concerned, specifica ll y the ri ghts of tran slation, reprinting, re-use of illustrati ons, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted onl y under the provisions of the German Copyright Law of September 9, 1965,
in its current version , and permi ssion for use mu st always be obtained from Springer-Verlag. Vi ola ti ons are
liable fo r prosecution under the German Copyri ght Law.

© Springer-Verlag Berlin Heidelberg 1998
Printed in Germany

Typesettin g: Camera ready by author
SPIN 10692922 06/3 142 - 5 4 3 2 I 0 Printed on acid-free paper

Page 2 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4683

An Adaptive Agent Oriented Software Architecture*

Babak Hodjat Christopher J. Savoie Makoto Amamiya

Department of Intelligent Systems
Graduate School of Information Science and Electrical Engineering

Kyushu University
6-1 Kasugakoen, Kasuga-shi

Fukuoka 816, Japan
http://www_al.is.kyushu-u.ac.jp/-bobby/index.html

Abstract. A new approach to software design based on an agent
oriented architecture is presented. Unlike current research, we
consider software to be designed and implemented with this
methodology in mind. In this approach agents are considered
adaptively communicating concurrent modules which are
divided into a white box module responsible for the
communications and learning, and a black box which is the
independent specialized processes of the agent. A distributed
Learning policy is also introduced for adaptability.

Topics: Agent Architectures, Agents Theories.

Keywords: Agent-oriented systems, Multi-Agent Software
architectures, Distributed Learning,

1. Introduction

The classic view taken with respect to Agent Oriented Systems is to consider each
agent an autonomous individual the internals of which are not known and that
conforms to a certain standard of communications and/or social laws with regard to
other agents [5]. Architectures viewing agents as such have had to introduce special
purpose agents (e.g., broker agents, planner agents, interface agents ...) to shape the
structure into a unified entity desirable to the user [2] . The intelligent behavior of
these key agents, with all their complexities, would be vital to the performance of the
whole system.

• This paper describes a new adaptive, multi-agent approach to software architecture, currently
being investigated as an on going project at Kyushu University.,

Page 3 of 16 Petitioner Microsoft Corporation - Ex. 1008, p. 4684

34

A other trend in this view is to give the possibility to the agents to query each other 's
· nt nal knowledge and states through the communications protocols, while at the
m er · f h I · bl d f " · same time conserving the black-box ~1ew o t e agents . nev1ta y, e ming and

ntrolling such issues as conflicts of interest between agents, honesty, helpfulness,
~~d gullibility, have had to be taken into account and dealt with [4]. The most
important aspect of this dominant view is that agent architectures are considered to
be unifiers of pre-written, separate modules (heterogeneity) [3]. Each of these
modules was probably designed without having this higher structure in mind, and is
completely different (be it in the code, the machine it is implemented upon, the
designer, or the purpose of design). Agent-based Software Engineering was
originally invented to facilitate the creation of software able to interpolate in such
settings and application programs were written as software agents [6] . On the other
hand, methodologies dealing with the internal design of agents tend to view them
primarily as intelligent, decision-making beings. In these methodologies, techniques
in Artificial Intelligence, Natural Language Processing, machine learning, and
adaptive behavior seem to overshadow the agent's architecture, in many cases
undermining the main purpose of the agent [7][13].
For instance, one can view agents as reinforcement learning agents with a set of tools
to_be chosen with respect to environmental senses. Such a view, however well suited
for agent learning techniques, may not be readily applied to more algorithmic
applications, thus misleading one to assume that such applications should not be or
could not be implemented as agents.

In this paper, we wish to present an agent-oriented methodology, which can be
universally applied to any software design. The Adaptive Agent Oriented Software
Architecture (AAOSA) builds upon and extends the widely accepted object oriented
approach to system design. The primary difference sited between Agent-oriented and
Object oriented programming has been the language of the interface [6]. In this paper
we will suggest an approach in which communication between agents can be done
independent of language. This language independent communication will still hold as
the main difference with the Object oriented methodology. Another aspect that makes
agents more attractive to use in software than objects is their quality of volition.
Using AI techniques, adaptive agents are able to judge their results, then modify their
behavior (and thus their internal structure) to improve their perceived fitness. First
we will clarify our definition of agents, which is somewhat relaxed with respect to
the classic definitions. Then the steps by which software should be designed using
AAOSA methodology are described. Some suggestions as to how adaptive learning
and communication language independence can be achieved are briefly presented
next. To clarify the AAOSA methodology, we present an example application in the
form of a simple multimodal map program and show some of the resulting features.

2. Our Definition of Agents

Our definition of agents is more in line with the ones given by [12] and [2] , and we
classify our agents as having the following properties [5]: reactivity, autonomy,
temporal continuity, communicative capabilities, team orientation, mobility, learning

Page 4 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4685

35

(adaptive), and flexibility. The resulting multi-agent system we have in mind is a
partially connected one [5] . A direct communication specification-sharing approach
is taken here to enhance collaboration. Instead of using assisted coordination, in
which agents rely on special system programs (facilitators) to achieve coordination
[2], in our approach new agents supply other agents with information about their
capabilities and needs. To have a working system from the beginning, the designers
preprogram this information at startup. This approach is more efficient because it
decreases the amount of communication that must take place, and does not rely on
the existence, capabilities, or biases of any other program [6].

Adaptive agents are adaptively communicating, concurrent modules. The modules
therefore consist of three main parts: A communications unit, a reward unit, and a
specialized processing unit. The first two units we will call the white box and the
third the black box parts of an agent (Figure 1). The main responsibilities of each unit
follow:

The communications unit: This unit facilitates the communicative functions of the
agent and has the following sub-systems:
• Input of received communication items: These items may be in a standard agent

communication language such as KQML. Later in this paper we will see that
only a small subset is needed here.

• Interpreting the input: Decides whether the process unit will need or be able to
process certain input, or whether it should be forwarded to another agent (or
agents) . Note that it is possible to send one request to more than one agent, thus
creating competition among agents.

• Interpretation Policy: (e.g., a table) Determines what should be done to the
input. This policy could be improved with respect to the feedback received for
each interpretation from the rewards unit. Some preset policy is always desirable
to make the system functional from the beginning. In the case of a system reset,
the agent will revert to the basic hard-coded startup information. The
interpretation policy is therefore comprised of a preset knowledge base, and a
number of learned knowledge bases acquired on a per-user basis. A learning
module will be responsible for conflict resolutions in knowledge base entries
with regard to feedback received on the process of past requests. Past requests
and what was done with them are also stored until in anticipation of their
feedback.

• Address-Book: keeps an address list of other agents known to be useful to this
agent, or to agents known to be able to process input that can not be processed
by this agent. Requests to other agents may occur when:
>- The agent has received a request it does not know how to handle,
>- The agent has processed a request and a number of new requests have been

generated as a result.
This implies that every agent have an address and there be a special name server
unit present in every system to provide agents with their unique addresses (so
that new agents can be introduced to the system at run time). This address list
should be dynamic, and therefore adaptive. It may be limited; it may also contain

Page 5 of 16 Petitioner Microsoft Corporation - Ex. 1008, p. 4686

36

information on agents that normally send their requests to this agent. In many
cases the Address-book could be taken as an extension of the Interpretation
Policy and therefore implemented as a single module.

• Output: Responsible for sending requests or outputs to appropriate agents, using
the Address-book. A confidence factor could be added to the output based on the
interpretations made to resolve the input request or to redirect it. We shall see
later in the paper that this could be used when choosing from suggestions made
by competing agents by output agents.

The rewards unit: Two kinds of rewards are processed by this module: outgoing and
incoming. An agent is responsible for distributing and propagating rewards being fed
back to it'. This unit will determine what portion of the incoming reward it deserves
and how much should be propagated to requesting agents. The interpreter will update
its interpretation policy using this feedback. The rewards will also serve as feedback
to the Address-book unit, helping it adapt to the needs and specifications of other
agents. The process unit could also make use of this feedback.
The rewards may not be the direct quantification of user states and in most cases will
be interpretations of user actions made by an agent responsible for that. We will
further clarify this point later in the paper.

The process unit: This unit is considered a black box by our methodology. The
designer can use whatever method it deems more suitable to implement the processes
unique to the requirements of this agent. The only constraints being that the process
unit is limited to the facilities provided by the communications unit for its
communications with other agents. The process unit also may use the rewards unit to
adapt its behavior with regard to the system. Note that each agent may well have
interactions outside of the agent community. Agents responsible for user I/O are an
example of such interactions. These agents generally generate requests or initiate
reward propagation in the community, or simply output results.

The white box module can easily be added to each program module as a transducer.
According to definition [6] the transducer mediates between the existing program
(the process unit) and other agents. The advantage of using a transducer is that it
requires no knowledge of the program other than its communication behavior.

We mentioned the process unit as being able to conduct non-agent I/O. It is easy to
consider I/O recipients (e.g. files or humans) as agents and make the program redirect
its non-agent I/O through its transducer. Other approaches to agentification (wrapper
and rewriting) are discussed in [6].

• A special purpose agent is responsible for the interpretation of user input as feedback to
individual user requests. This agent will then initiate the reward propagation process.

Page 6 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4687

37

3. Software design

The software as a whole should be thought of as a society, striving to accomplish a
set of requests. The input requests are therefore propagated, processed by agent
modules that may in turn create requests to other agents. Again, it is up to the
designers to break down the system, as they feel suitable. Hierarchies of agents are
possible and agents can be designed to be responsible for the minutest processes in
the system. It is advisable that each agent be kept simple in its responsibilities and be
limited in the decisions it needs to make to enhance its learning abilities. The
overhead of the required units (the white box) should be taken into consideration.

Other
Agents

Other
Agents

White box

Input • Interpreter

Interpretation
Policy

Temporary
Request
storage

Useful Output
Agents

Rewards

Black box

Process

Non-Agent
Fig. 1. Each agent is comprised of a black box section (specialties)
and a white box section (communications).

Other
Agents

Other
Agents

Agents can be replaced at run-time with other more complete agents. The
replacement can even be a hierarchy or network of new agents breaking down the
responsibilities of their predecessor. This feature provides for the incremental design
and evaluation of software.

We recommend each agent's responsibilities and actions to be clearly defined at
design time. As stated in the previous section, many aspects of the white box units

Page 7 of 16 Petitioner Microsoft Corporation - Ex. 1008, p. 4688

38

should also be preset for each agent according to its definition. To have a working
system from the beginning, it is also necessary to define the preliminary
communication links between the agents at design time. It should be noted that these
communications might change through time, for instance in the case of the
introduction of newer agents . Thus, the most important phase in the design of
software with this methodology will be to determine the participating agents and their
capabilities, although the precise details of how they will eventually communicate
with each other may not be known at design time.

There are a number of ways by which the designer can limit the changes that his
design may undergo in the future or at run time to guarantee a certain degree of
functionality for the design. Introduction of new agents could be constrained in the
Address Book of critical agents stopping them from passing requests to alien agents.
Certain special purpose agents such as the input or output agents could also serve to
limit unwanted future changes to the system.

3.1. Special purpose agents

Some special purpose agents may be used depending on the application, for example,
agents directly involved with input and output, or an agents which interprets the
actions of the user as different levels of reward to different system output' (Figure 2)

Input Agents
Inputs to the system may be from more than one source. In such systems, one, or a
network of special purpose input agents should be considered, which:
• Unify inputs from different sources into one request, and/or
• Determine commands that all fall into a single request set.
For example if the user's Natural Language (NL) input is: "Information on this" and
the mouse is then pointed at an item on the display, these two inputs should be
unified as a single request. Interactive input would also require the input agents to
determine the end of an input stream. For instance in NL input a phrase (e.g., Do! or
Please!) or a relatively long pause, could determine the end of the stream. A different
policy here would be to interpret the input in real-time and redirect it to the
appropriate agent. As seen in figure 2, agents can redirect the input back to the input
agents once this data is no longer relevant to the responding agent.

Output Agents
This special purpose agent decides which response suggested by various agents
should be actuated, thus ensuring competition between agents. The decision may be
made based on a combination of different criteria and may depend on a specific
request. The criteria may be speed, confidence, or other checks that could in turn be
made by quality assurance agents. After the final choice has been made, the output
agent will ask the specific suggesting agent to actualize its suggestion, or the decision
may be redirected to actuator agents. The output agents may be more than one, thus

• One of these agents may be the reward agent itself, thus tuning itself with the user.

Page 8 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4689

39

breaking the decision making process into a hierarchy. For instance, competing
agents could have an output agent decide between them and the output agents in turn
could have a higher-level output agent. Safety mechanisms to ensure the requests will
not be stuck in cycles of infinite deadlock loops between the agents could be another
responsibility of the output agents . Special purpose safeguard agents could also be

used.

Feedback Agents
Any adaptive system needs a reward feedback that tells it how far from the optimum
its responses have been. This reward could be explicitly input to the system, or
implicitly judged from input responses by the system itself. In the case of implicit
rewarding, an agent could be responsible for the interpretation of the input behavior
and translating it into rewards. The criteria that could be used depend on the system.
For instance in an interactive software application a repeat of a command, remarks
indicating satisfaction or dissatisfaction, user pause between requests or other such
input could be translated into rewards to different output. The feedback agents could
also be more than one depending on the different judgement criteria and a hyper
structure [8] or hierarchy might be designed to create the rewards. One way of
propagating the feedback reward through the system would be to be aware of the
different output and to pass the interpreted reward to the final (output) layer, which
will, in turn, pass it back to the previous agents involved in that particular output.

A name server unit is also required to make possible the dynamic introduction of new
agents to the system. Each new agent will have to obtain its name (or address) from
this name server so that conflicts do not occur and so agents can be referred to
throughout the system. Input requests (commands) to the system should be tagged
with the user-id that has issued them because interpretation is done on a per-user
basis. Reward fed back to the system should also incorporate the request-id to which
the reward belongs.

4. Communication Language

In Agent-Based Software Engineering [6], Agents receive and reply to requests for
services and information using a declarative knowledge representation language KIF
(Knowledge Interchange Format), a communication language KQML (Knowledge
Query and Manipulation Language) and a library of formal ontologies defining the
vocabulary of various domains. KQML [4] is a superset of what is needed as a
communication language between the AAOSA agents and may well be used
effectively. The stress on adaptability eliminates the need for elaborate languages and
even a simple message passing protocol between the agents should be sufficient.
The main request string may be made of different types of information (e.g.,
Character strings, voice patterns, images, etc ...). Various standard information may
be passed along with the main request string including: The originator agent, sender
agent, the user initiating this request, request id, and/or a time stamp. The request
string itself could be comprised of any item of information ranging from natural
language requests from the user, to specialized inter-agent messages. Introductory

Page 9 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4690

40

messages sent by new agents (introduced to the system at run time), could also be
incorporated in the request string, or sent under preset standards such as those
provided by KQML. Other specialized (and possibly standardized) information that
should be passed includes the reward propagation data.

5. An Example: A multimodal map [1]

Multiple input modalities may be combined to produce more natural user interfaces.
To illustrate this technique [1] presents a prototype map-based application for a
travel-planning domain. The application is distinguished by a synergistic
combination of handwriting, gesture and speech modalities; access to existing data
sources including the World Wide Web; and a mobile handheld interface. To
implement the described application, a distributed network of heterogeneous software
agents was augmented by appropriate functionality for developing synergistic
multimodal applications. We will consider a simplified subset of this example to
show the differences of the two approaches. A map of an area is presented to the user
and she is expected to give view port requests (e.g., shifting the map or
magnification), or request information on different locations on the map. For
example, a user drawing an arrow on the map may want the map to shift to one side.
On the other hand the same arrow followed by a natural language request such as:
"Tell me about this hotel." May have to be interpreted differently.

[Cheyer et al 96] use the Open Agent Architecture (OAA) [2] as a basis for their
design. In this approach, based on a "federation architecture" [9], the software is
comprised of a hierarchy of facilitators and agents. The facilitators are responsible
for the coordination of the agents under them so that any agent wanting to
communicate with any other agent in the system must go through a hierarchy of
facilitators (starting from the one directly responsible for it). Each agent, upon
introduction to the system, provides the facilitator above it with information on its
capabilities (Figure 3). No explicit provision is given for learning.

An example design based on AAOSA is shown in figure 4. It must be noted here that
the design shown in figure 4 is not rigid and communication paths may change
through time with the agents adapting to different input requests. The NLP and
pointer input agents determine the end of their respective inputs and pass them on to
the input regulator. This agent in turn determines whether these requests are related
or not. It then passes it down to the agent it considers more relevant to the request.
The output agents hierarchically sift the outputs suggested by the shifting,
magnification, hotels, restaurants and general information agents . Note that
combinations of these output suggestions could also be chosen for actuation. The
feedback agent provides the system with rewards interpreted from user input. Some
of the differences in the two designs are given below:
• The AAOSA design is much more distributed and modular by nature and many

of the processes concentrated in the facilitator agents in figure 3 are partitioned
and simplified in figure 4.

Page 10 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4691

41

• AAOSA is more of a network or hyper-structure [8] of process modules as
opposed to the hierarchical tree like architecture in the OAA design.

• AI behavior such as natural language processing and machine learnjng are
incorporated on the architecture rather than introduced as new agents (as is the
case with the natural language macro agent in figure 3).

It must be stressed that AAOSA like architectures could be achieved with an OAA if
we take each OAA facilitator and its macro agents as one agent and add learning
capabilities to each facilitator. Another point worth mentioning is that agents in OAA
are usually pre-programmed applications linked together through facilitators . The
designers have a lesser say over the software architecture as a whole because they are
forced to use what has already been designed, possibly without the new higher-level
framework in mind.

Input Process Output

Fig. 2. Example of agent-oriented software architecture. Input agent B may redirect input that
does not belong to it to agent A (dotted arrow). This redirection may even happen in later
stages (e.g., from C to A). Output suggestions from agents D, E, and F are considered in the
output agent and one (in this case D's) is chosen for actuation. The feedback agent uses input
directives or indirect behavioral assumptions to calculate a numerical representation of the
reward for each output. This reward is then fed back to the agents (e.g., double line arrows) .

Page 11 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4692

42

Fig. 3. A structural view of the multimodal map example as designed using OAA in [l].
Boxes represent Facilitators, ellipses represent macro agents and circles stand for
modality agents.

6. Interpretation policy

Each agent matches the input pattern with its stored key patterns and finds the closest
match and a degree of confidence for it. If this degree of confidence is lower than a
threshold, the agent will forward the request to other agents for whom it is confident
of their ability to process the request. If no other agent is known with these
specifications, either a random action (weighted by the confidence on that action) is
chosen, or the request is forwarded to another agent.

In the simplest case the pattern matching process is comprised of checking the
presence or absence of certain segments (e.g., words) to determine the course of
action that needs to be taken. In more complicated forms patterns should be
discovered in the context of the input (e.g., grammar or semantics). This is one
reason why if each agent is kept simple in the range of the decisions it needs to make
based on its input, the matching and learning process is simplified. A simple pattern
matching may be enough to determine the course of action needed. For instance the
occurrence of a pointer drag or word patterns including such phrases as "go", or
"shift" could cause the map agent in our example (Figure 4) to redirect the request to
the shifting agent. Whereas words such as "bigger", "smaller", "magnify", "I can't
see" may cause it to send the request to the magnification agent (Figure 5).

Techniques such as those given in (10) could help sort the patterns according to their
information value. The nature of the information depends on the application and the
agent specializing in it. For example such information as the time between inputs and
the loudness or general pattern of the input speech wave could be useful for the
feedback agent. The information value of patterns varies depending on the agent
(Figure 5).
We will not offer any solutions as to how the interpretation policy of each agent
should be stored and ·updated. Some points that should be taken into consideration
while pondering a solution follow:

Page 12 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4693

•

•

•

•

43

It is very important for the interpreter agent to be able to load pre-defined
policies at start-up. These are not learned, but hard wired by the engineers. The
engineers also determine how much of this initial policy could be undermined
through learning.
It is of equal importance for other agents to be able to contribute to this policy,
for instance introducing themselves to the Address-book as possible references.
The interpretation policy should be dynamic to allow learning of new
interpretation rules.
In many cases the learned policies should be stored on a per-user basis .

Fig. 4. The multimodal map example as designed based on AAOSA.

Page 13 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4694

44

7. Learning

Adaptability in AAOSA materializes in three forms:
• The ability of the system to accept new agents at run time,
• The ability of each agent to accept unexpected input or requests,
• The ability of each agent to adapt its behavior according to the feedback it

receives (i.e., learning).
Some features of a pattern learning algorithm that may be suitable for AAOSA are
briefly mentioned in this section.

Each agent upon the input of a new request goes through the following steps. It must
be noted again that the choices mentioned here might be either internal processes or
other agents to direct the request to.
• Scan input request for stored patterns estimating a confidence value for each

match.
• Choose nearest pattern's choice.
• Keep track of patterns being thrown away in the process of matching as low

information patterns [10].
• In case of close ties, choose at random between higher confidence options.
• In case of no reliable match, choose at random between all options· .
• Store request-choice decided upon for adjusting weights and learning until the

feedback arrives (delayed reward).
In case of negative reward, patterns in request with highest conflict resolution value
should be stored as new decision criteria. These new patterns will be stored according
to the user so different users will receive different responses based on their profile in
each agent. For example in figure 5 if the input request is slightly changed to: "Shift
the view to the right", a contradiction will occur. This contradiction could be resolved
if the agent identifies the pattern "view" as a higher information value pattern and a
new interpretation policy based on the absence or presence of this pattern is
conceived.

8. Conclusion

Viewing software as a hyper-structure of Agents (i.e., intelligent beings) will result in
designs that are much different in structure and modularization. Some of the benefits
of this approach are noted here, some of which are also achievable in object oriented
design.
• Flexibility: There is no rigid predetermination of valid input requests.
• Parallelism: The independent nature of the agents creates a potentially parallel

design approach.
• Multi platform execution: Agents can run and communicate over networks of

computers (on the Internet for instance).
• Runtime addition of new agents and thus incremental development of software.

• Random functions may be weighted according to confidence.

Page 14 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4695

45

Software additions by different designers: Different designers can introduce
different agents to compete in the software, making this design methodology
attractive for commercial applications.

Down
Under
South

Shift the map to the right

Shift the map to the right

Up
Top

North

Shifting

East
Right

"Mouse on right
border"

Move
Shift
Show

"Mouse
drag"

East
Right

"Mouse on right
border"

Bigger
Smaller
Magnify
"Mouse

Fig. 5. Each agent needs to identify a small subset of the information in the request and
act upon that. This is also an example of distributed Natural Language Processing.
Low information (throwaway) patterns (shown in italic) vary depending on the agent.

Page 15 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4696

46

• Reusability of agents .
• Incremental design and evaluation.
• Learning and Intelligence: The distributed nature of learning introduced in this

paper suggests a powerful adaptive software design that potentially breaks down
an application to a hyper-structure of simple learning modules [8]. Another AI
technique that could readily be incorporated into the agents is artificial evolution
[11). The mere presence of a reward for each agent makes the introduction of
death (removal of an agent from the software) possible. This will make way for
other agents, perhaps with better learning techniques, to take over. There will
also inevitably be numerous variables to be fine-tuned for each agent. These
variables may be thought of as the agent's genes and optimized through this
evolutionary process.

References

1. A. Cheyer, L. Julia, Multimodal Maps: An Agent-based Approach,
http://www.ai.sd .com/-cheyer/papers/mmap/mmap.html, 1996.

2. P. R. Cohen, A. Cheyer, M. Wang, S. C. Baeg, OAA: An Open Agent Architecture,
AAAI Spring Symposium, 1994.

3. S. Cranefield, M. Purvis, An agent-based architecture for software tool coordination, in
the proceedings of the workshop on theoretical and practical foundations of intelligent
agents, Springer, 1996.

4. T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. McKay, J. McGuire, S.
Shapiro, C. Beck, Specification of the KQML Agent-Communication Language, 1993.

5. S. Franklin, A. Graesser, Is it an Agent or just a Program? A Taxonomy for Autonomous
Agents, in: Proceedings of the Third International Workshop on Agents Theories,
Architectures, and Languages, Springer-Verlag, 1996.

6. M. R. Genesereth, S. P. Ketchpel, Software Agents, Communications of the ACM, Vol.
37, No. 7, July 1994.

7. B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, M. Balabanovic, A domain-specific
Software Architecture for adaptive intelligent systems, IEEE Transactions on Software
Engineering, April 1995.

8. B. Hodjat, M. Amamiya, The Self-organizing symbiotic agent, http://www al.is.kyushu
u.ac.jp/-bobby/l stpaper.htm, 1998.

9. T. Khedro, M. Genesereth, The federation architecture for interoperable agent-based
concurrent engineering systems. In International Journal on Concurrent Engineering,
ResearchandApplications, Vol. 2, pages 125-131, 1994.

10. R. R. Korfhage, Information Storage and Retrieval, John Wiley & Sons, June 1997.
11. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.
12. D. C. Smith, A. Cypher, J. Spohrer, KidSim: Programming Agents without a

programming language, Communications of the ACM, Vol. 37, No. 7, pages 55-67, 1994.
13. Y. Shoham, Agent-oriented programming, Artificial Intelligence, Vol. 60, No. 1, pages

51 -92, 1993.

Page 16 of 16Petitioner Microsoft Corporation - Ex. 1008, p. 4697

l 111111 III1111111 111 1 11111 11111 11111 11111 11111 1111 1111111 I 111
US005584024A

[11] Patent Number:

[45] Date of Patent:

5,584,024
Dec. 10, 1996

[54] INTERACTIVE DATABASE QUERY SYSTEM
AND METHOD FOR PROHIBITING THE
SELECTION OF SEMANTICALLY
INCORRECT QUERY PARAMETERS

[75] Inventor: Steven P. Shwartz, Orange, Conn.

[73] Assignee: Software AG, Germany

[21] Appl. No.: 217,099

[22] Filed: Mar. 24, 1994

[51] Int. Cl. 6 G06F 17/30; G06F 17/27
[52] U.S. Cl 395/604; 395/922; 395/757;

364/274.2; 364/275.4; 364/283.3; 364/DIG. 1;
364/972.2; 364/974.6; 364/DIG. 2

[58] Field of Search 395/600, 922;
364/419.01, 419.07, 974.6, 972.2, 274.2,

274.7, 275.1, 275.4, 283.3, 282.1

References Cited

U.S. PATENT DOCUMENTS

4,506,326
4,688,195
4,689,737
4,736,296
4,811,207
4,829,423
4,839,853
4,914,590
4,930,071
4,931,935
4,943,933
4,974,191
4,994,967
5,099,426
5,175,814
5,197,005
5,204,947
5,237,502
5,255,386
5,265,014
5,265,065
5,349,526
5,386,556

3/1985
8/1987
8/1987
5/1988
3/1989
5/1989
6/1989
3/1990
5/1990
5/1990
7/1990

11/1990
2/1991
3/1992

12/1992
3/1993
4/1993
8/1993

10/1993
11/1993
11/1993
9/1994
1/1995

Shaw et al 364/300
Thompson et al 364/300
Grant 364/200
Katayama et al 364/419
Hikita et al 364/200
Tennant et al 364/200
Deerwester et al 364/900
Loatman et al 364/419
Tou et al 364/300
Ohira et al 364/419
Miyamoto et al 364/513
Amirghodsi et al 364/900
Asakawa 364/419
Carlgren et al 364/419
Anick et al 395/161
Shwartz et al 395/600
Bemstein et al 395/157
White et al 364/419
Prager 395/600
Haddock et al 364/419
Turtle 395/600
Potts, Sr. et al 364/419.1
Hedim et al 395/600

FOREIGN PATENT DOCUMENTS

0287310 10/1988 European Pat. Off. G06F 15/40
0387226 9/1990 European Pat. Off. G06F 15/38

63-219034 9/1988 Japan G06F 7/28

OTHER PUBLICATIONS

Wu, "A Knowledge-Based Database Assistant With A Menu
Based Natural Language User-Interface" 10 Oct. 1993,
IEICI: Trans. Inf. & Syst. V. E76-D N. 10 pp. 1276-1287.

(List continued on next page.)

Primary Examiner-Wayne Amsbury
Assistant Examiner-Jack M. Choules
Attorney, Agent, or FirmHowrey & Simon; C. Scott
Talbot; Thomas G. Woolston

[57] ABSTRACT

A database query system includes a query assistant that
permits the user to enter only queries that are both syntac-
tically and semantically valid (and that can be processed by
an SQL generator to produce semantically valid SQL).
Through the use of dialog boxes, a user enters a query in an
intermediate English-like language which is easily under-
stood by the user. A query expert system monitors the query
as it is being built, and using information about the structure
of the database, it prevents the user from building seman-
tically incorrect queries by disallowing choices in the dialog
boxes which would create incorrect queries. An SQL gen-
erator is also provided which uses a set of transformations
and pattern substitutions to convert the intermediate lan-
guage into a syntactically and semantically correct SQL
query.

The intermediate language can represent complex SQL
queries while at the same time being easy to understand. The
intermediate language is also designed to be easily con-
verted into SQL queries. In addition to the query assistant
and the SQL generator, an administrative facility is provided
which allows an administrator to add a conceptual layer to
the underlying database making it easier for the user to query
the database. This conceptual layer may contain alternate
names for columns and tables, paths specifying standard and
complex joins, definitions for virtual tables and columns,
and limitations on user access.

27 Claims, 26 Drawing Sheets

User

3

Database

GOOGLE EXHIBIT 1022

United States Patent [19]
Shwartz

Page I of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4698

5,584,024
Page 2

OTHER PUBLICATIONS

Wu et al, "KDA: A Knowledge-Based Database Assistant
With Query Guiding Facility" 5 Oct. 1992, pp. 443-453,
IEEE Transactions On Knowledge & Data Eng. V. 4 N. 5.
Cha, "Kaleidoscope: A Cooperative Menu Guided Query
Inerface (SQL Version)," 1990, IEEE, Artifical Intelligence
Applications.
Whitaker and Bonnell "Functional Modelling Of Intelligent
Systems Using A Blackboard Model" 1992, pp. I to 12, The
Journal Of Knowledge Eng. V 5, N. 1.
Winston, P., "Language Understanding," Artificial Intelli-
gence, 9:291-334 (1984).
Rich, E., "Natural Lanugage Interfaces," Computer pp.
39-47 (Sep. 1984).
Manferdelli, J. L., "Natural Language Interfaces: Benefits,
Requirements, State of the Art and Applications," Al East,
Oct. 1987.
Schank, R. C., et al, "Inside Computer Understanding: Five
Programs Plus Miniatures," 14:354-372, LEA, Publishers,
Hillsdale, NJ (1981).
Hendrix, G., "The Lifer Manual: A Guide to Building
Practical Natural Language Interfaces" (Technical Note
138); SRI International, Feb. 1977.

Hendrix, G., "Human Engineering for Applied Natural Lan-
guage Processing" (Technical Note 139); SRI International,
SRI Project 740D32 CTC, Feb 1977.

Kao, M., et al, "Providing Quality Responses with Natural
Language Interfaces: The Null Value Problem," IEEE 14:7,
959-984, Jul., 1988.

Chapter 6, "Queries," Building Access ZApplications, 1995.

Chapter 8, "Using Query by Example," Using Access 2 for
Windows, Sp. Ed.

Chapter 9, "Querying Your Data," Inside Paradox 5 for
Windows, 1994.

Cinque, L., et al, "An Expert Visual Query System," J. Vis.
Lang. and Comp., 2:101-113 (1991).

Meng, W., et al. "A Theory of Translation From Relational
Queries to Hierarchial Queries," IEEE Transactions on
Knowledge and Data Engineering, 7:2, 228-245, Apr. 1995.

Jakobson, G., et al, "CALIDA: A System for Integrated
Retrieval from Multiple Heterogeneous Databases," Pro-
ceedings of the 3rd Int'l Conf. on Data and Knowledge
Bases: Improving Usability and Responsiveness, Jun.
28-30, Jerusalem, Israel.

Page 2 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4699

U.S. Patent Dec. 10, 1996 Sheet 1 of 26 5,584,024

CUSTOMERS
CUSTO- NAME CITY STATE ZIP_ SALES CREDIT_ BALANCE
MER# CODE PERSON# LIMIT

1 American New Haven CT 16516 1 65000 85000
Butcher Block

2 Barn Door New York NY 11019 1 50000 75000
Furniture

3 Bond Dinettes Boston MA 22827 1 50000 500
4 Carroll Cut-Rate Los Angeles CA 23019 2 50000 0
5 Porch and Patio SanFrancisco CA 24082 3 65000 0

6 Railroad Bridgeport CT 26444 4 30000 750Salvage

7 Sheffield Brooklyn NY 12018 5 50000 12050
Showrooms

8 Spector New Bedford MA 22451 5 50000 100
Furniture

9 Vista Designs Stamford CT 26565 5 30000 4300
10 Milford Furniture Milford CT 26460 5 50000 0

FIG. 1A

PRODUCTS
PRO- NAME GROUP_ TYPE_ ABC_ PRICE VENDOR ALT
DUCT# ID ID CODE # VENDOR

1 Executive Desk 100 300 A 4995 1 2
2 Colonial Bedroom Set 100 600 B 3495 1 --:13
3 Children's Bedroom 100 300 C 1195 2

,Set
4 5 Pc. Living Room Set 100 500 A 4895 2 4
5 Crib / Dresser Set 100 400 B 985 3 3
6Bunk Bed 100 400C 795 3
7 3 Pc. Dining Room Set 100 500 A 3995 4
8 4 Pc. Office Set 200 300 B 2995 4 2
9 Child's Desk 100 400 C 899 5 1

10 4 Pc. Occasional 100 500 B 1299 5 1
Tables Set

FIG. 1 B

Page 3 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4700

Dec. 10, 1996 Sheet 2 of 26

FIG. 1C

SALESPEOPLE
SALESPERSON# NAME STATE

1 Paul Williams NC
2 Bill Smith KY
3 Wendy Jones MA
4 Pam Johnson CT
5 Sam Rogers NY

FIG. 1 D

CODES
CODE iD CODE TEXT

100 Home Furnishings
200 Office Furnishings
300 Desks
400 Juvenile Furnishings
500 Occasional Furnishings

FIG. 1E

Page 4 of 63

VENDORS
VENDOR# NAME PHONE

1 Chapel Hill Furniture 412-748-2929
2 Barnet Furniture 314-345-6789
3 Basset Inc. 218-324-9288
4 Seal Corporation 509-929-2222
51Juvenile Warehouse 413-345-5656

U.S. Patent 5,5849024

Petitioner Microsoft Corporation - Ex. 1008, p. 4701

U.S. Patent Dec. 10, 1996 Sheet 3 of 26 5,584,024

ORDERS
ORDER CUSTO ORDER_ ORDER_ FREIGHT_ SALES- SHIP_ STATUS

-MER# DATE DOLLARS DOLLARS PERSON DATE

1000001 1 1992-1-5 36115 124 1 1992-1-15
1000002 1 1992-4-5 7514 124 1 1992-10-24
1000003 1 1992-7-5 39540 124 1 1992-7-15
1000004 2 1992-2-15 47320 124 2 1992-2-24 B
1000005 2 1992-5-15 76195 124 2 1992-5-15 B
1000006 2 1992-8-15 6010 124 2 1992-9-15
1000007 3 1992-3-25 3225 124 3 1992-3-27
1000008 3 1992-6-25 12005 124 3 1992-7-2_
1000009 3 1992-9-25 36240 0 3 1992-10-15_
1000010 4 1992-2-5 8115 62 4 1992-2-15
1000011 4 1992-5-15 20150 124 4 1992-5-24
1000012 4 1992-8-25 25110 124 4 1992-8-29_
1000013 5 1992-3-4 72115 124 4 1992-3-22B
1000014 5 1992-6-14 83550 124 4 1992-6-28
1000015 5 1992-9-24 67015 124 4 1992-10-10
1000016 6 1992-4-2 12105 124 1 1992-4-10
1000017 6 1992-7-12 18105 124 1 1992-7-29
1000018 6 1992-10-22 7350 124 1 1992-11-12
1000019 6 1992-5-1 2660 124 1 1992-5-15
1000020 6 1992-8-11 45250 124 1 1992-8-22
1000021 7 1992-11-11 21500 124 2 1992-11-22
1000022 7 1992-6-5 6150 62 2 1992-6-25
1000023 7 1992-8-15 73595 124 2 1992-8-25
1000024 9 1992-11-16 6100 124 3 1992-11-24
1000025 9 1992-1-20 3250 124 3 1992-1-24
1000026 9 1992-4-22 28190 124 3 1992-4-26
1000027 9 1992-7-25 24250 124 3 1992-7-29
1000028 10 1992-2-7 3620 124 5 1992-2-27 B
1000029 10 1992-5-17 107620 62 5 1992-5-26

FIG. IF

Page 5 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4702

Dec. 10, 1996 Sheet 4 of 26

LINE-ITEMS ___II__ I

ORDER# LINE# PRODUCT# QTY_ QTYBACK- WAREHOUSE#
ORDERED ORDERED

1000001 1 1 2 5 1
1000001 2 2 0 3 1
1000002 1 3 2 6 1
1000003 1 4 0 8 1
1000004 1 5 0 2 1
1000004 2 6 3 3 1
1000004 3 7 0 5 2
1000004 4 8 2 7 2
1000004 5 9 0 2 2
1000005 1 10 2 8 2
1000005 2 1 2 3 1
1000005 3 2 9 9 1
1000005 4 3 4 4 1
1000005 5 4 0 3 1
1000006 1 5 0 6 1
1000007 1 6 0 4 1
1000008 1 7 0 3 2
1000009 1 8 0 12 2
1000010 1 9 0 9 2
1000011 1 10 0 15 2
1000012 1 1 0 5 1
1000013 1 2 0 9 1
1000013 2 3 0 7 1
1000013 3 4 4 4 1
1000013 4 5 5 5 1
1000013 5 6 7 7 1
1000014 1 7 0 2 2
1000014 2 8 0 6 2
1000014 3 9 0 1 1
1000014 4 10 0 8 1
1000014 5 1 0 9 2

FIG. IG

Page 6 of 63

U.S. Patent 59584,024

Petitioner Microsoft Corporation - Ex. 1008, p. 4703

Dec. 10, 1996 Sheet 5 of 26

LINE-ITEMS
ORDER# LINE# PRODUCT# QTY_ QTYBACK- WAREHOUSE#

ORDERED ORDERED
1000015 1 2 0 4 2
1000015 2 3 0 7 2
1000015 3 4 0 4 2
1000015 4 5 0 7 1
1000015 5 6 0 9 1
1000016 1 7 0 3 1
1000017 1 8 0 6 2
1000018 1 9 0 8 2
1000019 1 10 0 2 1
1000020 1 1 0 9 1
1000021 1 2 0 6 1
1000022 1 3 0 5 2
1000023 1 4 0 15 2
1000024 1 5 0 6 1
1000025 11 6 0 4 1
1000026 1 7 0 7 1
1000027 1 8 0 8 1
1000028 1 9 0 4 2
1000029 1 10 0 8 2
1000029 2 1 0 5 1
1000029 3 2 0 9 1
1000029 4 3 0 6 1
1000029 5 4 0 4 1
1000029 6 5 0 9 1
1000029 7 6 0 3 2

FIG. 1G (Continued)

Page 7 of 63

U.S. Patent 595849024

Petitioner Microsoft Corporation - Ex. 1008, p. 4704

Dec. 10, 1996 Sheet 6 of 26

TablesQuery Builder
Tables

CUSTOMER.DB

Sort Order

Io. O I Cancel IE
Figure 2A

IOK I Fcancel I elp I
Figure 2B

Page 8 of 63

Fields

Query Builder
FieldsTables

Conditions

U.S. Patent 5,584,024

Petitioner Microsoft Corporation - Ex. 1008, p. 4705

U.S. Patent

Figure 2C

Conditions
Conditions
CREDIT > 50000

Connector
AND

Field

IZ- I
Operator ExpressionI --- I

IoTK I tcancel I
Figure 2D

Page 9 of 63

Edit Query
SQL
SELECT

NAME
STATE
BALANCE

FROM
CUSTOMER.DB

ORDER BY
NAME
STATE

[K oK icancel I IHelp I

IHeIn I

5,584,024Dec. 10, 1996 Sheet 7 of 26

Petitioner Microsoft Corporation - Ex. 1008, p. 4706

U.S. Patent

Figure 2E

Queryl
NAME STATE BALANCE
American Butcher CT 85000
Block
Porch And Patio CA 0

Figure 2F

Page 10 of 63

595849024Dec. 10, 1996 Sheet 8 of 26

Petitioner Microsoft Corporation - Ex. 1008, p. 4707

U.S. Patent

oK I lcancel I IHelp!
Figure 2G

Join Tables
CUSTOMER.DB
ICUSTOMER#

NAME

CITY
STATE
ZIPCODE
SALESPERSON#
CREDIT
BALANCE

Figure 2H

Page I I of 63

Query Builder
Tables

Sort Order
NAME
STATE

Fields
NAME
STATE

BALANCE

ORDER.DB
ORDER#
CUSTOMER#
ORDERDATE
ORDERDOLLARS
FREIGHTDOLLARS
SALESPERSON#
SHIPDATE
STATUS

59584,024Dec. 10, 1996 Sheet 9 of 26

Petitioner Microsoft Corporation - Ex. 1008, p. 4708

Dec. 10, 1996 Sheet 10 of 26

Figure 3A

Page 12 of 63

Natural Language
File Questions Report Column/Table Configure Query Graph Help

Natural Language
: What were the 5 most common defects last month?
What were the 5 defects that occurred the most in June, 1991

Defect Count
Contamination 1213
Damage in handling 516
Surface finish 423
Bad soldering 315
Cracked board 273

Show the SQL
List the query.
Query for: What were the 5 most common defects last month?

select repair.def cd, count(repair.mod-pn)
from repair
where repair.tstrstrt>='6/1/1991'

and repair.tstrstrt<'7/1/1991'
group by repairdefcd
order by 2 desc;

U.S. Patent 5 5849024

Petitioner Microsoft Corporation - Ex. 1008, p. 4709

U.S. Patent Dec. 10, 1996 Sheet 11 of 26 5,584,024

Figure 3B

Page 13 of 63

Questions
File Edit Questions Notes Topics Configure Help

Questions
Issue Question [iQuestion Show all rowe

I Questions Questions

Which products are manufactured in Biloxi?
How many repairs did we perform last week?
List the top 5 defects last month.
Compare total defects this month to last month.
Which station performed the most repairs?
List all the sources of bolts.
Who supplies the best panels?
When was control plan z-557 updated?
How many units were produced after 6/1/91
When is xz989 due for calibration?
Show the yields for each factory.
Pie chart the total units produced by each factory.

Petitioner Microsoft Corporation - Ex. 1008, p. 4710

U.S. Patent Dec. 10, 1996 Sheet 12 of 26 5,584,024
)r User

Context Natural
Expert Language
System Interface

Oracle Meaning

DBMS RepresentatiionTables

~Database

Expert
System

Retrieval

Specification

Navigator/
MQL
Generator

MQL

Oracle SQL
Fig. 4 Generator

SQL

Page 14 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4711

U.S. Patent Dec. 10, 1996 Sheet 13 of 26 5,584,024

User

3

Database

FIG. 5

Page 15 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4712

Dec. 10, 1996 Sheet 14 of 26

T

FIG. 6

Page 16 of 63

595849024U.S. Patent

Petitioner Microsoft Corporation - Ex. 1008, p. 4713

U.S. Patent Dec. 10, 1996 Sheet 15 of 26 5,584,024

Blackboard

13

(QAES)
Query Assistant Expert System 12

Query Assistant 10

FIG. 7

Page 17 of 63

Query Assistant
User Interface
(QAUI)

11

Petitioner Microsoft Corporation - Ex. 1008, p. 4714

U.S. Patent Dec. 10, 1996 Sheet 16 of 26 5,584,024

64

i Yes

Page 18 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4715

U.S. Patent

File Query Options Window Help 118

User Query SQL Query

112 114

Result

116

110

Fig. 9

Page 19 of 63

595849024Dec. 10, 1996 Sheet 17 of 26

Petitioner Microsoft Corporation - Ex. 1008, p. 4716

U.S. Patent Dec. 10, 1996 Sheet 18 of 26 5,584,024

121

130f '... 130gFIG. 10A30

Page 20 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4717

U.S. Patent Dec. 10, 1996

121

/
129

Sheet 19 of 26 5,584,024

120

.122a

130I

FIG. 10B

Page 21 of 63

Create "Show..." Clause

F"Show ..." Template Run Q
0 Show... 0 For... 0 Sorted By...

l With % of Total... C Cancel

Computation...

Select Items For Show Clause
Tables Columns Select Set All
CUSTOMERS THE COUNT OF CUSTOMERS
ORDERS CREDIT LIMIT
PRODUCTS CUSTOMER BALANCE

CUSTOMER CITY
CUSTOMER NAME

Description

Customer Records.

Modify Selected Columns

CSTMDeletaANEe .elete All

Petitioner Microsoft Corporation - Ex. 1008, p. 4718

U.S. Patent Dec. 10, 1996 Sheet 20 of 26 5,584,024

Create "Show..." Clause

F"Show ..." Template Run Query
0 Show... 0 For... 0 Sorted By...

Li With % of Total... C Cancel
ICO-mp utation''' I

Select Items For Show Clause

Tables Columns Select

LCUSTOMERS THE COUNT OF CUSTMR S
PRODUCTS CUSTOMER BALANCE

CUSTOMER CITY
IIC USTOMER NAME

Description

The Customer's credit limit.

Modify Selected Columns

THE AVERAGE CUSTOMER BALAN [Delete I [Delete All

IE Toa Av:] ED

FIG 10C

Page 22 of 63

,- 130b

Petitioner Microsoft Corporation - Ex. 1008, p. 4719

U.S. Patent Dec. 10, 1996 Sheet 21 of 26 5,584,024

135

FIG 10D

Page 23 of 63

Computation

Select a column

0 Total 0 Minimum

O A verage O M axim um _ _ _ _ _ _

Tables Columns Ieet
CUSTOMERS THE COUNT OF CUSTOMERS A
9RDERS CREDITJ4LIf-iT,
PRODUCTS CUSTOMER BALANCE

USTOMER CITY
' US TOMER NAME

CU_ USTOMER NUMBER

9 8 7 +

6 5 4 F 111
3 2 1 *

DEL 0 . /

Computation: tCl

Petitioner Microsoft Corporation - Ex. 1008, p. 4720

U.S. Patent Dec. 10, 1996 Sheet 22 of 26 5,584,024

140

FIG IOE

Page 24 of 63

Create "Sorted By..." Clause["Show ..." Template R
0 Show... 0 For... 0 Sorted By...

0l With % of Total... Clear Cancel

Select Items

Tables Columns elect
CUSTOMERS THE COUNT OF CUSTOMERS

: : P : 8 : . .; .
PRODUCTS CUSTOMER BALANCE

USTOMER CITY
_USTOMER NAME

Select Items Already in the Show Clause

THE AVERAGE CUSTOMER BALANCE

Modify Selected Columns

[Delete
] I Ascending [

', I Decending]

Petitioner Microsoft Corporation - Ex. 1008, p. 4721

U.S. Patent Dec. 10, 1996 Sheet 23 of 26 5,584,024

Create "For..." Clause

-Snow ... " Iemplate
0 Show... 0 For...

E With % of Total...

O Sorted By ... Run ()uety I
[Clear Can cel

Choose one of the following

THAT HAVE
THAT DO NOT HAVE

/
151

FIG 10F

Page 25 of 63

Select

Backu !

Hell)I

150

Petitioner Microsoft Corporation - Ex. 1008, p. 4722

U.S. Patent Dec. 10, 1996 Sheet 24 of 26 5,584,024

Create "For..." Clause

""Show ... ' lemplate
0 Show... 0 For...

l With % of Total...

0 Sorted By ... I Run 0uery
Clear I[acel

160

FIG lOG

Page 26 of 63

-Select an Item

0 Total 0 Minimum
Select

0 Average 0 Maximum Backup

[Computation... [

Tables Columns
"e. 7ifl NT OF CUSTOMES

ORDERS CREDIT LIMIT
PRODUCTS CUSTOMER BALANCE

USTOMER CITY
CUSTOMER NAME

Description

Petitioner Microsoft Corporation - Ex. 1008, p. 4723

U.S. Patent Dec. 10, 1996 Sheet 25 of 26

402

5,584,024

Intermediate
Language Query

404

410

YES

Convert WHERE by
pattern subsitution

416

YES

420

422

424

FIG. 11A

Page 27 of 63

Recursively call
SQL generator
for each view

SQL Generator/

Petitioner Microsoft Corporation - Ex. 1008, p. 4724

U.S. Patent Dec. 10, 1996 Sheet 26 of 26 5,584,024

426

430
Convert ORDER BY
to positional notation

FIG. 11B

436

Add tables to
FROM clause

Add GROUP BY and
SUM if necessary

446
Convert internal
format to SQL - SQL QUERY

Page 28 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4725

5,584,024
1

INTERACTIVE DATABASE QUERY SYSTEM
AND METHOD FOR PROHIBITING THE

SELECTION OF SEMANTICALLY
INCORRECT QUERY PARAMETERS

BACKGROUND OF THE INVENTION

The invention relates to a database querying tool, and
specifically to a database querying tool which will guide a
user to interactively create syntactically and semantically
correct queries.

In this example, the SELECT command defines which
fields to use, the WHERE command defines a condition by
which database records are selected, and ORDER BY key-

5 words define how the output should be sorted. The FROM
keyword defines in which tables the fields are located.
Unfortunately, only a relatively small percentage of infor-
mation required can be satisfied with such simple SQL

10 Most information needs, even very simple queries, require
complex SQL queries. For example, the SQL statement
required to generate a list of orders that have more than two
products on backorder, is:

(2) SELECT Ti.ORDER#, T1.ORDER DATE, T1ORDER DOLLARS
FROM ORDERS TI
WHERE 2 <(

SELECT COUNT (*)
FROM PRODUCTS T2, LINE ITEMS T3
WHERE T3.QTY BACKORDERED > 0

AND T2.PRODUCT# = T3.PRODUCT#
AND T1.ORDER# = T3.ORDER#)

End user workstations are being physically connected to 25
central databases at an ever increasing rate. However, to
access the information contained in those databases, users
must create queries using a standardized query language
which in most instances is Structured Query Language 30
(SQL). Most information system organizations consider it lo
unproductive to try and teach their users SQL. As a result
there is an increasing interest in tools that create SQL for the
user using more intuitive methods of designating the infor-
mation desired from the database. These tools are generally 35

called SQL Generators.

Most SQL Generators on the market today appear to hide
the complexities of SQL from the user. In reality, these tools
accomplish this by severely limiting the range of informa- 40
tion that can be retrieved. More importantly, these tools
make it very easy for users to get incorrect results. These
problems arise out of the reality that SQL is very difficult to
learn and use. Existing technologies designed to shield users
from the complexities of SQL can be grouped into three 45
categories: point-and-shoot menus; natural language sys-
tems; and natural language menu systems. Each of these
three categories of product/technology have architectural
deficiencies that prevent them from truly shielding users
from the complexities of SQL. 50

Limitations of SOL As An End User Query
Language 55

SQL is, on the whole, very complex. Some information
requirements can be satisfied by very simple SQL state-
ments. For example, to produce from a database a list of
customer names and phones for New York customers sorted
by zip code, the following SQL statement could be used: 60

(1) SELECT NAME, PHONE
FROM CUSTOMERS
WHERE STATE = 'NY'
ORDER BY ZIP-CODE 65

This SQL statement contains two SELECT clauses, one
nested with the other. For a user to know that this informa-
tion requirement needs an SQL query involving this type of
nesting (known as a correlated subquery) implies some
understanding by the user of the relational calculus. How-
ever, except for mathematicians and people in the computer
field, few users have this skill. The following are some
examples of database queries that require more complex
SQL constructs:

GROUP BY: Approximately 75% of all ad hoc queries
require a GROUP BY statement in the SQL. Examples
include:

Show total sales by division.
Show January sales of bedroom sets to Milford Furniture.
Subqueries: The following are examples of database

queries that require subquery constructs which appear as
nested WHERE clauses in SQL:

Show customers that have children under age 10 and do
not have a college fund.

Show orders that have more than 2 line items on backo-
rder.

HAVING: The following are examples of database que-
ries that require the HAVING construct:

Show ytd expenses by employee for divisions that have
total ytd expenses over 15,000,000.

Show the name and manager of salesmen that have total
outstanding receivable of more than $100,000.

CREATE VIEW: The following are examples of database
queries that require the

CREATE VIEW syntax:
Show ytd sales by customer with percent of total.
What percent of my salesmen have total ytd sales under

$25,000?
UNION: The following are examples of database queries

that require the UNION construct:
Show ytd sales for Connecticut salesmen compared to

New York salesmen sorted by product name.
Show Q1 sales compared to last year Q1 sales sorted by

salesman.
Thus, common information needs require complex SQL

that is likely to be far beyond the understanding of the
business people that need this information.

Page 29 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4726

5,584,024
3

A greater problem than the complexity of SQL is that
syntactically correct queries often produce wrong answers.
SQL is a context-free language, one that can be fully
described by a backus normal form (BNF), or context-free,
grammar. However, learning the syntax of the language is 5
not sufficient because many syntactically correct SQL state-
ments produce semantically incorrect answers. This problem
is illustrated by some examples using the database that has
the tables shown in FIGS. 1A-G. If the user queries the
database with the following SQL query:

4
produce an incorrect result. When the Line Item table is not
included in the query, the proper result is obtained. Unless
the users understand the manner in which the database is
designed and the way in which SQL performs its query
operations, they cannot be certain that this type of error in
the result will or will not occur. Whenever a query may
utilize more then two tables, this type of error is possible.

Most information systems users would be reluctant to use
a database query tool that could produce two different sets
of results for what to them is the same information require-

(3) SELECT CUSTOMERS.NAME, SUM(ORDERS.ORDER DOLLARS),
SUM(LINE ITEMS.QTY ORDERED)

FROM CUSTOMERS, ORDERS, LINE ITEMS
WHERE CUSTOMERS.CUSTOMERI = ORDERS.CUSTOMER#

AND ORDERS.ORDER# = LINE ITEMS.ORDER#

The following results are produced:

SUM(ORDER SUM(QTY
NAME DOLLARS) ORDERED

1 American Butcher Block 119284 22
2 Barn Door Furniture 623585 52
3 Bond Dinettes 51470 19
4 Carroll Cut-Rate 53375 29
5 Milford Furniture 756960 48
6 Porch and Patio 1113400 89
7 Railroad Salvage 85470 28
8 Sheffield Showrooms 101245 26
9 Vista Designs 61790 25

The second column of this report appears to show the total
order amount for each customer. However, the numbers are
incorrect. In contrast, the following query

ment (i.e. total order dollars for each customer). Virtually
20 every known database query tool suffers from this short-

coming.
A more formal statement of this problem is that the set of

acceptable SQL statements for an information system is
much smaller than the set of sentences in SQL. This smaller

25 set of sentences is almost certainly not definable as a
context-tree grammar.

Point-And-Shoot Query Tools

30 Most SQL generator products are "point-and-shoot"
query tools. This class of products eliminates the need for
users to enter SQL statements directly by offering users a
series of point-and-shoot menu choices. In response to the
user choices, point-and-shoot query tools create SQL state-
ments, execute them, and present the results to the user,

(4) SELECT CUSTOMERS.NAME, SUM(ORDERS.ORDER-DOLLARS)
FROM CUSTOMERS, ORDERS
WHERE CUSTOMERS.CUSTOMER# = ORDERS.CUSTOMER#

produces the correct result:

NAME SUM(ORDER DOLLARS) 45

1 American Butcher Block 83169
2 Barn Door Furniture 129525
3 Bond Dinettes 51470
4 Carroll Cut-Rate 53375
5 Milford Furniture 111240 50
6 Porch and Patio 222680
7 Railroad Salvage 85470
8 Sheffield Showrooms 101245
9 Vista Designs 61790

Both SQL queries are syntactically correct, but only the 55

second produces correct numbers for the total order dollars.
The problem arises from the fact that before performing the
selection and totaling functions, the SQL processor performs
a cross-product join on all the tables in the query. In the first
query above, three tables are used: Customer (a list of 60
customers with customer data): Order (a list of orders with
dollar amounts); and Line Item (a list of the individual line
items on the orders). Since the Order table has the total
dollars and there are multiple line items for each order, the
joining scheme of the SQL processor creates a separate 65
record containing the total dollars for an order for each
instance of a line item. When totaled by Customer, this can

appearing to hide the complexities of SQL from the user.
Examples of this class of product include Microsoft's
Access, Gupta's Quest, Borland's Paradox, and Oracle's
Data Query.

Although such products shield users from SQL syntax,
they either limit users to simple SQL queries or require users
to understand the theory behind complex SQL constructs.
Moreover, because they target the context-free SQL gram-
mar discussed above, it is easy and common for users to get
incorrect answers. A point-and-shoot query tool is illustrated
below with several examples showing a generic interface
similar to several popular query tools representative of this
genre. The screen of FIG. 2A appears after the user has
chosen the customer table of FIG. 1A out of a pick list. This
screen shows the table chosen and three other boxes, one for
each of the SELECT, WHERE, and ORDER BY clauses of
the SQL statement. If the user selects either the "Fields" box
or the "Sort Order" box, a list of the fields in the customer
table appears. The user makes choices to fill in the "Fields"
and "Sort Order" boxes. In this example, the user chooses to
display the NAME. STATE, and BALANCE fields, and to
sort by NAME and STATE. This produces the screen of FIG.
2B.

At any time, the user can choose to view the SQL
statement that is being created as shown in FIG. 2C. There
is a one-to-one correspondence between user choices and the

Page 30 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4727

5,584,024

SQL being generated. To fill in the WHERE clause of the
SQL statement being compiled, the user chooses the "Con-
ditions" box and fills in the dialog box of FIG. 2D to enter
a condition. This produces the completed query design
shown in FIG. 2E. The user then chooses the "OK" button 5
to run the query and see the results shown in FIG. 2F.

For queries that involve only a simple SELECT, WHERE,
and ORDERBY statement for a single table, a user can
readily create and execute SQL statements without knowing
SQL or even viewing the SQL that is created. 10

Unfortunately, only a small proportion of user queries are
this simple. Most database queries involve more complex
SQL. To illustrate this point, consider a user who wishes to
see the same information as in the above example, but to
limit the data retrieved to customers of salespersons with 15

total outstanding balance of all the salesperson's customers
greater then $80,000. If the user realizes that this query
requires two additional SQL clauses (a GROUP BY clause
and a HAVING clause) the query (shown in FIG. 2G) can be
readily constructed. However, few users are sufficiently 20
familiar with SQL to do so.

Most point-and-shoot query tools cannot handle other
complex SQL constructs such as subqueries. CREATE
VIEW and UNION. They offer no way (other than entering 25
SQL statements directly) for the user to create these other
constructs. Those products that do offer a way to generate
other complex constructs require the user to press a "Sub-
query" or "UNION" or "CREATE VIEW" button. Of
course, only users familiar enough with the relational cal- 30
culus to know how to break a query up into a subquery or
use another complex SQL construct would know enough to
press the right buttons.

Additional complexity is introduced when data must be
retrieved from more than one table. As shown in FIG. 2H, 35
the user may be required to specify how to join the tables
together. The typical user query will involve at least three
tables. Problems that can arise in specifying joins include:

the columns used to join tables may not have the same
name; 40

the appropriate join between two tables may involve
multiple columns;

there may be alternative ways of joining two tables; and
there may not be a way of directly joining two tables, 45

thereby requiring joins through other tables not otherwise
used in the query.

In summary, point-and-shoot query tools shield users
from syntactic errors, but still require users to understand
SQL theory. The other critical limitation of point-and-shoot 50
menu products is that they target the context-free SQL
language discussed above. A user seeking total order dollars
could as easily generate incorrect SQL statement (3) as
correct SQL statement (4) above. Thus, these products
generate syntactically correct SQL, but not necessarily 55
semantically correct SQL. Only a user that understands the
relational calculus can be assured of making choices that
generate both syntactically correct and semantically correct
SQL. However, most information system users do not know
relational calculus. Moreover, when queries require joins, 60
there are numerous way of making errors that also produce
results that have the correct format, but the wrong answer.

Natural Language Query Tools

Natural language products use a different approach to 65
shielding users from the complexities of SQL. Natural
language products allow a user to enter a request for

information in conversational English or some other natural
language. The natural language product uses one mechanism
to deduce the meaning of the input, a second mechanism to
locate database elements that correspond to the meaning of
the input, and a third mechanism to generate SQL.

Examples of natural language products include Natural
Language from Natural Language Inc. and EasyTalk from
Intelligent Business Systems (described in U.S. Pat. No.
5,197,005 to Shwartz et al.).

FIG. 3A shows a sample screen for a natural language
query system which shows a user query, the answer, another
query requesting the SQL, and the SQL.

The sequence of interaction is:
(1) The user types in a free-form English query <"What

were the 5 most common defects last month?").
(2) The software paraphrases the query so that the user

can verify its correctness "What were the 5 defects that
occurred the most in June, 1991?").

(3) If there are spelling errors or if the user query contains
ambiguities, the software interacts with the user to clarify
the query. (not needed in above example).

(4) The software displays the results.
The attraction of a natural language query tool is that

users can express their requests for information in their own
words. However, they suffer from several shortcomings.
First, they only answer correctly a fraction of the queries a
user enters. In some cases, the paraphrase is sufficient to help
the user reformulate the query; however, users can become
frustrated seeking a formulation that the system will accept.
Second, they are difficult to install, often requiring months
of effort per application and often requiring consulting
services from the natural language vendor. One of the
biggest installation barriers is that a huge number of syn-
onyms and other linguistic constructs must be entered in
order to achieve anything close to free-form input.

As a compromise, many natural language vendors rec-
ommend that, during installation, specific queries are coded
and made available to users via question lists. For example.
FIG. 3B shows a simple screen containing a list of pre-
defined queries. Users can choose to run queries directly
from the list or make minor modifications to the query
before running it. Of course, the more they change a query,
the more likely it is that the natural language system will not
understand the query.

To illustrate the operation natural language products, the
architecture of the natural language system described in
Shwartz, et al. is used as an example. The system architec-
ture is shown in FIG. 4. The Meaning Representation is the
focus of Shwartz et al. The Meaning Representation of a
query is designed to hold the meaning of the user query,
independent of the words (and language) used to phrase the
query and independent of the structure of the database.

The same Meaning Representation should be produced
whether the user says "Show total ytd sales for each cus-
tomer?", "What were the total sales to each of my client's
this year to date?", or "Montrez les vendes... " (French).
Moreover, the same Meaning Representation should be
produced whether: (1) there is a field that holds ytd sales in
a customer table in the database; (2) each individual order
must be searched, sorted, and totaled to compute the ytd
sales for each customer: or (3) ytd sales by customer is
simply not available in the database.

The primary rationale for this architecture is that it
provides a many-to-one mapping of alternative user queries
onto a single canonical form. Many fewer inference rules are

Page 31 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4728

5,584,024

then needed to process the canonical form than would be
needed to process user queries at the lexical level. This topic
is addressed in more detail in Shwartz, "Applied Natural
Language", 1987.

The NLI (Natural Language Interface) is responsible for 5
converting the natural language query into a Meaning Rep-
resentation. The Query. Analyzer itself contains processes
for syntactic and semantic analysis of the query, spelling
correction, pronominal reference, ellipsis resolution, ambi-
guity resolution, processing of nominal data, resolution of 1t
date and time references, the ability to engage the user in
clarification dialogues and numerous other functions. Once
an initial Meaning Representation is produced, the Context
Expert System analyzes it and fills in pronominal referents,
intersentential referents, and resolves other elliptical ele- 15
ments of the query. See S. Shwartz, for a more detailed
discussion of this topic.

The Meaning Representation for the query "Show ytd
sales dollars sorted by salesrep and customer" would be: 20

SALES: TIME (YTD), DOLLARS, TOTAL
SALESMAN: SORT(l)
CUSTOMER: SORT(2)
Again, this meaning representation is independent of the

actual database structure. The Database Expert takes this 25
meaning representation, analyzes the actual database struc-
ture, locates the database elements that best match the
meaning representation, and creates a Retrieval Specifica-
tion. For a database that has a table, CUSTOMERS, that
contains a column holding the total ytd sales dollars, YTD 30
SALES$, the Retrieval Specification would be:

CUSTOMER.YTD SALES $:
SALESMAN.NAME:SORT(l)
CUSTOMERS.NAME:SORT(2) 35
The Retrieval Specification would be different if the

YTD SALES$ column was in a different table or if the
figure had to be computed from the detailed order records.

The functions of the NLI (and Context Expert) and DBES
are necessary solely because free-form, as opposed to for- 40
mal, language input is allowed. If a formal, context-free
command language was used rather than free-form natural
language, none of the above processing would be required.
The Retrieval Specification is equivalent to a formal, con-
text-free command language. 45

The Navigator uses a standard graph theory algorithm to
find the minimal spanning set among the tables referred to
in the Retrieval Specification. This defines the join path for
the tables. The MQL Generator then constructs a query in a
DBMS-independent query language called MQL. The SQL 50
Generator module then translates MQL into the DBMS-
specific SQL. All of the expertise required to ensure that
only syntactically and semantically valid SQL is produced is
necessarily part of the MQL Generator module. It is the
responsibility of this module to reject any Retrieval Speci-
fications for which the system could not generate syntacti-
cally and semantically valid SQL.

Natural Language Menu Systems 60

A Natural Language Menu System is a cross between a
point-and-shoot query tool and a natural language query
tool. A natural language menu system pairs a menu interface
with a particular type of natural language processor. Rather
than allowing users to input free-form natural language, a 65
context-free grammar is created that defines a formal query
language. Rather than inputting queries through a command

8
interface, however, users generate queries in this formal
language one word at a time. The grammar is used to
determine all possible first words in the sentence, the user
chooses a word from the generated list, and the grammar is
then used to generate all possible next words in the sentence.
Processing continues until a complete sentence is generated.

A natural language menu system will provide a means of
ensuring that the user only generates syntactically valid
sentences in the sublanguage. However, it can only guaran-
tee that these sentences will be semantically valid for the
class of sublanguages in which all sentences are semanti-
cally valid. Another difficulty with this class of tool is that
it is computationally inadequate for database query. The
computational demands of the necessarily recursive algo-
rithm required to run the grammar are immense. Moreover,
if the grammar is sufficient to support subqueries, the
grammar would probably have to be a cyclic grammar,
adding to the computational burden. Finally, the notion of
restricting users to a linear sequence of choices is incom-
patible with modem graphical user interface conventions.
That is, users of this type of interface for database query
would object to being forced to start with the first word of
a query and continue sequentially until the last word of a
query. They need to be able to add words in the middle of
a query without having to back up and need to be able to
enter clauses in different orders.

SUMMARY OF THE INVENTION

The drawbacks of the prior art are overcome by the
system and method of the present invention, which hides the
complexity of SQL from the user without limiting the range
of information that can be retrieved. Most importantly,
incorrect results are avoided

In accordance with the principles of the invention, a
Query Assistant is provided that permits the user to enter
only queries that are both syntactically and semantically
valid (and that can be processed by the SQL Generator to
produce semantically valid SQL). The user is never asked to
rephrase a query entered through the Query Assistant.
Through the use of dialog boxes, a user enters a query in an
intermediate English-like language which is i) easily under-
stood by the user. A Query Expert system monitors the query
as it is being built, and using information about the structure
of the database, it prevents the user from building seman-
tically incorrect queries by disallowing choices in the dialog
boxes which would create incorrect queries. An SQL Gen-
erator is also provided which uses a set of transformations
and pattern substitutions to convert the intermediate lan-
guage into a syntactically and semantically correct SQL
query.

The intermediate language can represent complex SQL
queries while at the same time being easy to understand. The
intermediate language is also designed to be easily con-
verted into SQL queries. In addition to the Query Assistant
and the SQL Generator an administrative facility is provided
which allows an administrator to add a conceptual layer to
the underlying database making it easier for the user to query
the database. This conceptual layer may contain alternate
names for columns and tables, paths specifying standard and
complex joins, definitions for virtual tables and columns,
and limitations on user access.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A to 1G are tables of a sample database used in the
examples in the specification.

Page 32 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4729

5,584,024

FIGS. 2A to 2H are typical screen displays for a point-
and-shoot query tool.

FIG. 3A is a typical screen display for a natural language
query tool.

FIG. 3B is a typical screen display for a natural language
database query tool with predefined queries.

FIG. 4 is a block diagram of the high level architecture of
a natural language query tool.

FIG. 5 is a block diagram of the high level architecture of
the invention.

FIG. 6 is a graphic depiction of the tables in FIGS. 1A-1G
and their relationships.

FIG. 7 is a block diagram of the Query Assistant.
FIG. 8 is a flow chart of the flow of control of the Query

Assistant User Interface.
FIG. 9 is a depiction of the initial screen of the user

interface.
FIGS. 10A to 10G are depictions of dialog boxes used to

interact with the user to build a query using the Query
Assistant.

FIGS. 11A and llB are a flow chart depicting the flow of
control of the SQL Generator.

DETAILED DESCRIPTION

I. OVERVIEW 30

FIG. 5 shows a high level block diagram of an intelligent
query system that embodies the principles of the invention.
It is composed of two parts, the Query System 1 and
Conceptual Layer 2. Conceptual Layer 2 is composed of 35
information derived from database 3, including table and
column information, and information entered by an admin-
istrator to provide more intuitive access to the user. Query
System 1 uses the information from Conceptual Layer 2 as
well as general knowledge about SQL and database querying 40
to limit the user in building queries to only those queries
which will produce semantically correct results.

Query System I is further composed of two main com-
ponents: Query Assistant 10 and the SQL Generator 20.
Users create queries using the menu-based Query Assistant 45
10 which generates statements in an intermediate query
language that take the form of easy to understand sentences.
SQL Generator 20 transforms the intermediate language into
a target language (in the illustrated embodiment, SQL). To
fulfill the requirement that a user never be asked to rephrase 50
(or reconstruct) a query, the expertise concerning what is and
what is not a valid SQL query is placed in Query Assistant
10.

SQL Generator 20 does not contain this expertise.
Although users can pose queries directly to SQL Generator 55
20, there is no assurance that semantically valid SQL will be
produced. It is logically possible to put some of this exper-
tise into SQL Generator 20. However, to assure users that
only valid SQL would be generated would require natural
language capabilities not presently available. 60

II. CONCEPTUAL LAYER

A database may be composed of one or more tables each 65
of which has one or more columns, and one or more rows.
For example:

Name State Zip

John VA 22204
5 Mary DC 20013

Pat MD 24312

In this small example, there is one table containing three
columns, and three rows. The top row is the column names

io and is not considered a row in the database table. The term'row' is interchangeable with the term 'record' also often
used in database applications, and 'column' is interchange-
able with the term 'field'. The primary distinction between
the two sets of terms is that row and column are often used

15 when the data is viewed in a list or spreadsheet table style
view, and the terms field and record are used when the data
is viewed one record at a time in a form style view.

A database may have more then one table. To this simple
example, another table can be added called Purchases which

20 lists purchases made by each Person.

Name Product Quantity

John apple 6
John orange 4
Mary kiwi 2
Pat orange 12
Pat kiwi 5
Pat mango 10

Stored along with a database is some structure informa-
tion about the tables contained within the database. This
includes the name of the tables, if there are more then one,
the names of the columns of the tables, and the structure of
the data stored in the columns. In the above example, the
first table is titled (for purposes of this example) "Person"
and the second table "Purchases." In the Person table there
are three columns: "Name", containing alphanumeric data;
"State" containing two characters of alphanumeric data: and
"Zip", which may be stored as five characters of alphanu-
meric data or as numeric data. In the Purchases table there
are also three columns: "Name", containing alphanumeric
data; Product, containing alphanumeric data: and Quantity,
containing numeric data.

Also, stored along with the database are the primary keys
for each of the tables. In most database systems each row
must be uniquely identifiable. One or more columns together
create the primary key which when the contents of those
columns are combined uniquely identity each row in the
table. In the Person table above, the column Name is unique
in each row and Name could be the primary key column.
However, in the Purchases table, "Name" does not uniquely
identify, each row since there are multiple Johns and Pats. In
that table, both the "Name" and "Product" columns together
uniquely identify each row and together form the primary
key.

In the above example, there is an implied relationship
between the two tables based on the common column title
"Name". To determine how many oranges Virginians buy, a
user could look in the Person table and find that John is the
only Virginian and then go to the Purchases table to find that
he bought four oranges. Some database managers explicitly
store information about these relationships, including situ-
ations where the relationship is between two columns with
different names.

The example above is very simple, and a user could
readily understand what information the database held and

Page 33 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4730

5,584,024
11

how it was related. However, real world problems are not
that simple. Though still rather simplistic compared to the
complexity of many real world problems, the example
database represented in FIGS. 1A-G begins to show how
difficult it might be for a user to understand what is con- 5
tained in the database and how to draft a meaningful query.
This is particularly difficult if the real meaning of the
database is contrary to the naming conventions used when
building it. For example, the Customer Table of FIG. 1A is
not related directly to the Product Table of FIG. 1B even 10
though they both have columns entitled NAME. However,
they are related via the path CUSTOMER=>ORDER=
>LINE ITEM<-PRODUCT (i.e. a customer has orders, an
order has line items, and each line item has a product).

To shield the user from the complexity of the underlying 15
database, a knowledgeable administrator may define a con-
ceptual layer, which in addition to the basic database struc-
ture of table names and keys, and column names and types,
also may include: foreign keys, name substitutions, table and
column descriptions, hidden tables and columns, virtual 20
tables, virtual columns, join path definitions and non-
equijoins.

All of the forms of information that make up the concep-
tual layer can be stored alongside the database as delimited
items in simple text files, in a database structure of their 25
own, in a more compact compiled format, or other similar
type of information storage. When a database is specified to
be queried Query Assistant 1 has access to the basic structure
of the database, which the database manager provides, to aid
the user in formulating semantically correct queries. Option- 30
ally the user may choose to include the extended set of
conceptual information which Query Assistant 1 can then
use to provide a more intuitive query tool for the end user.

The conceptual layer information is stored internally in a
set of symbol tables during operation. Query Assistant 10
uses this information to provide the user a set of choices
conforming to the environment specified by the Adminis-
trator, and SQL Generator 20 uses the information, through
a series of transformations, to generate the SQL query. 40

1. Foreign keys
A table's foreign keys define how they relate to other

tables. Two tables are joined by mapping the foreign key of
one table to the primary key of the second table. A foreign
key is defined by the columns within the first table that make 45
up the foreign key, and the name of the second table which
can join with the first table by matching its primary key with
the first table's foreign key.

In the example above, the Purchases table with the foreign
key "Name" can join the Person table with the primary key 50
"Name."

Purchases Person

foreign key Name < -...... Name primary key
Product State
Quantity Zip

If the two tables are joined based on their foreign and
primary keys, the following new table is created:

Name State Zip Product Quantity

John VA 22204 apple 6
John VA 22204 orange 4
Mary DC 20013 kiwi 2
Pat DC 20013 orange 12
Pat MD 24312 kiwi 5
Pat MD 24312 mango 10

Rows from each of the two tables with the same value in
their respective "Name" column were combined to create
this new table. This is referred to as a One-to-Many rela-
tionship. For every one Person row there can be many
Purchases rows. A relationship can also be One-to-One,
which indicates that for every row in one table, there can be
only one related row in another table. Both One-to-Many
and One-to-One relationships may be optional or required.
If optional, then there may not be a related row in a second
table. In the illustrated embodiment, along with the foreign
key in the conceptual layer an administrator may designate
which of these four types of relationships (i.e. one-to-many,
one-to-many optional, one-to-one, one-to-one optional)
exists between the tables joined by the foreign key. In some
database management systems, it is possible for a table to
have multiple primary keys, in which case, the administrator
must also designate to which primary key the foreign key is
to be joined. FIG. 6 is a graphical representation of the
relationships between the tables in FIGS. 1A-1G. Each line
represents a relationship between two tables and an arrow at
the end of the line indicates a one-to-many optional rela-
tionship. The end with the arrow is the "many" end of the
relationship. For example, between the SALESPEOPLE and
CUSTOMERS tables there is a one-to-many relationship
with multiple customers handled by each salesperson. Using
the example tables of FIGS. 1A-G and the relationships
illustrated in FIG. 6 a definition in the conceptual layer for
the foreign keys would be:

Relationship Primary
Table Foreign Key Second Table Type Key

CUSTOMERS SALESPERSON# SALESPEOPLE 1-to-many opt. I
LINE ITEMS ORDER# ORDERS 1-to-many opt. 1
LINE ITEMS PRODUCT# PRODUCTS 1-to-many opt. 1
ORDERS CUSTOMER# CUSTOMERS 1-to-many opt. I
ORDERS SALESPERSON# SALESPEOPLE 1-to-many opt. 1
PRODUCTS GROUP ID CODES 1-to-many opt. I
PRODUCTS TYPE ID CODES 1-to-many opt. I
PRODUCTS ALT-VENDOR# VENDORS 1-to-many opt. I
PRODUCTS VENDOR# VENDORS 1-to-many opt. I

Page 34 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4731

5,584,024

The above chart represents the foreign key data which
may be present in the conceptual layer. The chart is
described by way of an example. According to the first row
below the headings of the chart, there is a table CUSTOM-
ERS with a foreign key defined by the column SALESPER- 5
SON#. This foreign key relates to the first primary key (note
the I in the primary key column) of the SALESPEOPLE
table by a one-to-many optional relationship. In other words,
for every row in the SALESPEOPLE table there are zero or
more related rows in the CUSTOMERS table according to
SALESPERSON#.

The (2) next to the lines between CODES and PROD-
UCTS and VENDORS and PRODUCTS in FIG. 6 indicates
that there are actually two one-to-many relationships
between those tables. This can be seen in the foreign key 15
chart above. There are two sets of foreign keys linking
PRODUCTS to VENDORS and PRODUCTS to CODES.

2. Name substitution
Name substitution is the process by which a table's or

columns name as defined in the database structure is sub- 20
stituted with another more intuitive name for presenting to
the user. This is particularly useful when dealing with a
database management system which only provides limited
naming capabilities (i.e. only one word). This process serves
two primary purposes. First it allows an administrator to 25
make the information available to the user in a given
database more readily understandable, and second, it can be
used to distinguish columns from different tables which have
the same name, but are not related (i.e. column "Name" in
the CUSTOMERS table (FIG. 1A) and column "Name" in 30
the PRODUCTS table (FIG. 1B). In addition, it is possible
to provide plural and singular names for tables.

For example, using the table in FIG. 1A it is possible to
define the singular and plural names for the table as CUS-
TOMER and CUSTOMERS, and to rename the fields to 35
provide more guidance to the user and distinguish conflicts
as follows:

Column New Name 40

CUSTOMER# Customer Number
NAME Customer Name
CITY Customer City
STATE Customer State
ZIP CODE Customer Zip Code
SALESPERSON# Salesperson Number 45

CREDIT LIMIT Credit Limit
BALANCE Customer Balance

3. Table and column descriptions
Descriptions of the various tables and columns can be

included in the conceptual layer to provide better under-
standing for the user. For example, The CUSTOMER table
may have an associated description of "Records containing
address and credit information about our customers." Then
when the user highlights or otherwise selects the CUS-
TOMER table while building a query, the description will
appear on a status line of the user interlace or something
similar. The same type of information can be stored for each
of the columns which display when the columns are high- 60
lighted or otherwise selected for possible use in a query.

4. Hidden tables and columns
In the design of a database, it is often necessary to add

columns that are important in relating the database tables but
that are not used by the end user who will be forming queries 65
on the database. For example, the SALESPERSON# column
in the tables of FIGS. 1A, ID, and 1E are not important to

14
the end user, who need only know that Paul Williams is the
salesperson for American Butcher Block and Barn Door
Furniture. The end user need not know that his internal
number for use in easily relating the tables is 1. Accordingly,
as part of the conceptual layer, an administrator can hide
certain columns so that the user cannot attempt to display
them or use them in formulating a query. When a column is
hidden, it can still be used to join with another table. This
same techniques can be used to prevent end users from
displaying private or protected data, and to shield the user
from the details of the database which might be confusing
and unnecessary.

In some cases, there are tables which are used to link other
tables together or are unimportant to the end user. Therefore,
as part of the conceptual layer, an administrator can also hide
certain tables so that the user cannot attempt to display them
or use them in formulating a query. A hidden table, however,
can still be used by the query system to perform the actual
query-it is just a layer of detail hidden from the end user.
In addition, as described in more detail below, when virtual
column and table techniques are used, columns may be
included, for display to the end user, as elements of other
tables. By hiding the original columns and/or tables, the
administrator can, in effect, move a column from one table
to another.

When designating elements that an end user can include
in generating a semantically correct query, the Query Assis-
tant will not designate the hidden tables and columns.

5. Virtual tables
Virtual tables are constructs that appear to the user as

separate database tables. They are defined by the Adminis-
trator as a subset of an existing database table limited to
rows that meet a specific condition. Initially, the virtual table
has all the fields within the actual table upon which it is
based, but it only contains a subset of the records. For
example, the Administrator could define the virtual table
BACKORDERS which includes all the records from the
ORDERS table where the Status field contains the character
"B". Then, when a user queries the BACKORDERS table,
the user would only have access to those orders with
backorder status.

The Administrator defines the virtual table according to a
condition clause of the target language (in this case, SQL).
In the above example, the table BACKORDERS would be
defined as "ORDERS WHERE ORDERS.STATUS='B"'. In
this way, the SQL generation portion of the virtual table is
accomplished by a simple text replacement. Similarly, the
condition could be stored in an internal representation
equivalent to the SQL or other target language condition.

It is possible to define a virtual table without the condition
clause. In that case, a duplicate of the table on which it is
based is used. However, the Administrator can hide columns
and add virtual columns to the virtual table to give it distinct
characteristics from the table upon which it is based. For
example, a single table could be split in two for use by the
end user by creating a virtual table based on the original and
then hiding half of the columns in the original table, and half
of the columns in the virtual table.

6. Virtual columns
The conceptual layer may also contain definitions for

virtual columns. Virtual columns are new columns which
appear to the user to be actual columns of a table. Instead of
containing data, the values they contain are computed when
a query is executed. It is possible to add fields which perform
calculations or which add columns from other tables. There
are six primary uses for virtual columns:

Page 35 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4732

5,584,024

(1) Moving/copying items from one table to another.
Often due to various database design factors, there are more
tables in the physical database then in the user's conceptual
model. In the example in FIGS. 1A-1G, an end user might
not consider orders as being multiple rows in multiple tables
as is required with the LINE-ITEM, ORDER distinction of
the example. The Administrator can specify in the concep-
tual layer that the user should see the field of LINE ITEM
(i.e. product, qty ordered, qty backordered, warehouse,
etc.) as being part of the order table. Columns can be moved
from one table to another with only one limitation that a
primary key/foreign key relationship exist between the table
the column is being moved from and the table the column is
being moved to. These relationships are indicated in FIG. 6
as the lines with the arrows.

(2) Creating a virtual column defined by a computation.
Virtual columns can be created by an administrator which
are computations on existing columns in a table. For
example, we could add a TURNAROUND column to the
ORDERS table of FIG. IF defined as "SHIP DATE-
ORDER DATE". This would allow a user to easily create
a query which asked to show what the turnaround time was
for orders without having to actually specify the calculation
in the query.

(3) Creating a virtual column defined using DBMS spe-
cific functions. The target language of the Data Base Man-
agement System (DBMS) being used may have specific
formatting or other data manipulation operations which
could be used to present information to the user in a
particular way. Even though the SQL Generator is designed
to produce SQL, implementations of SQL differ from
DBMS to DBMS.

By the addition of a Lookup function, explicit joins can be
defined in order to add columns from other tables or
instances of the same table. The Lookup function can be
used to define a virtual column and takes as parameters: a
foreign key column (which is a foreign key column for the
table where the virtual column is being placed, or a base
table if it is a virtual table); and a reference column (which
is a column in the table that the foreign key references). The
remaining three uses employ this function to avoid com-
plexities which are not addressed by current query systems.

(4) Eliminating complexity caused by alternate foreign
keys. Tables often have multiple ways of joining, repre-
sented by alternate foreign keys. This can be a source of
confusion for the user. For example, using the tables of
FIGS. 1A-1G, the PRODUCT table (FIG. 1B) has two
foreign keys, VENDOR# and ALT VENDOR#. To aid the
user in accessing the database, the Administrator would
define virtual columns within the PRODUCT table for
Vendor Name and Alternate Vendor Name, so that it appears
to the user that they can easily find the vendor's names
without resorting to looking in multiple tables for the
information. However, this would generally confuse a query
system because their are two foreign keys for use in joining
the tables. By using the Lookup function for each of the
Vendor Name and Alternate Vendor Name virtual columns,
different foreign key joins can be specified for each of the
columns, giving the user both the vendor and alternate
vendor names. The definition of the virtual columns would
be:

Virtual
Table Column Type Definition

5 PRODUCTS VNAME A Lookup(PRODUCT.VENDOR#,
VENDORNAME)

PRODUCTS AVNAME A Lookup(PRODUCT.ALT
VENDOR#,VENDOR.NAME)

10 (5) Eliminating complexity caused by code tables
This is a special case of the alternate foreign keys case (4)

above. Many databases have a code table whose purpose is
to store the name and other information about each of
several codes. The tables themselves only contain the code

15 identifications. If a single table has multiple code columns
which use the same table for information about the codes
there is a potential for the alternate foreign key problem. The
user instead of asking for products with "status id='007'
and type id='002"' would prefer to ask for products with

20 "status='open' and type='wholesale"'. Using the Lookup
scheme, two virtual columns for the textual status and type
can be added to the products table.

(6) Eliminating complexity caused by self-referencing
tables

25 For example, each employee in an employee table may
have a manager who himself is an employee-the manager
column refers back to the employee table. Using the Lookup
function, virtual columns for each employees managers
name, salary, etc. can be added to the employee table. To

30 perform the actual query, a self join will be required. Using
the employee table example for a table called EMP and a
column MGR being a foreign key relating to the EMP table,
the virtual column definitions would be:

35
Virtual

Table Column Type Definition

EMP MNAME A Lookup(EMP.MGR, EMP.LNAME)

EMP MSAL N Lookup(EMP.MGR, EMPSAL)

40

7. Join path definitions
In certain circumstances it is possible to join two tables by

multiple paths. For example, in the tables shown in FIGS.
1A-1G, the SALESPEOPLE table can be joined with the

45 ORDERS table by two different paths. This is easiest to see
in FIG. 6. By following the direction of the arrow, SALES-
PEOPLE are connected directly to ORDERS or they can be
connected to ORDERS via CUSTOMERS. In a query of the
database, the manner in which the join is performed yields

50 different results with different meanings.
(1) If SALESPEOPLE is joined directly with the

ORDERS table, the result will indicate which salesperson
actually processed the order.

55 (2) If SALESPEOPLE is joined to ORDERS via CUS-
TOMERS, the result will indicate the current salesperson for
the customer on the order.

The Administrator can add to the conceptual layer a set of
join paths for each pair of tables if desired. If multiple join

60 paths are defined, a textual description of each join is also
included. When the query is being generated, the system will
prompt the user for which type of join the user prefers in an
easy to understand manner. In the above example, when a
user creates a query which joins the SALESPEOPLE and

65 ORDERS tables the Query Assistant will generate the fol-
lowing dialog box:

Page 36 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4733

5,584,024
17

Please clarify your query by indicating which of the follow-
ing choices best characterizes the data you wish displayed:
1. Use the salesperson that actually processed the order.
2. Use the current salesperson for the customers on the order

where the text in the choices is defined by the Adminis- 5
trator and correlates with the join path taken and used by the
system.

If no join paths are defined for a given pair of tables, the
shortest path is used by the system when creating a query.
This can be determined by using a minimal spanning tree i0
algorithm or similar techniques commonly known in the art.

8. Non-equijoins
The table joins discussed in the preceding examples have

been equijoins. They are called equijoins because the two
tables are combined or joined together based on the equality 15
of the value in a column of each table (i.e. SALESPER-
SON#=SALESPERSON#, however, the column names need
not be the same). In the illustrated embodiment, the Admin-
istrator can also provide in the conceptual layer definitions
for non-equijoin relationships between tables which will join 20
rows from two different tables when a particular condition is
met. For example, another table ORDTYPE could be added
to the example of FIG. 1A-1G that provides different
classifications for orders of dollar amounts in different
ranges: 25

Low High Type

0 10000 Small
10000 50000 Medium 30
50000 1000000 Huge

Using a non-equijoin, a record from the ORDERS table
could be joined with a record from the ORDTYPE table
when ORDER DOLLARS<=LOW (from ORDTYPE 35
table)<=HIGH. Instead of an equality relationship, there is a
relationship based on a range of values.

The Administrator codes the non-equijoin as an SQL
condition. For the above example, the Administrator would
specify that ORDERS should be joined with ORDTYPE 40
"Where ORDERS.ORDER DOLLARS>=ORD-
TYPE.Low AND ORDERS,ORDER
DOLLARS<ORDTYPE.High". It will also become evident
that the procedures for specifying non-equijoins could be
implemented in a manner similar to Query Assistant 10 to 45
ensure correctness. The condition is stored in SQL so as to
be directly used during the conversion from the intermediate
language to the target language SQL. However, it is obvious
to an artisan that the condition could be stored in an internal
representation equivalent to the SQL condition or other 50
target language.

III. QUERY ASSISTANT

FIG. 7 shows a block diagram of the Query Assistant 10.
It has two components: The Query Assistant User Interface
(QAUI) 11 and the Query Assistant Expert System (QAES)
12. QAUI 11 performs the functions of displaying the
current state of the query to the user and providing a set of
choice to the user for constructing a semantically correct 60
query.

B. Query Assistant User Interface (QAUI)
QAUI 11 interacts with the user and QAES 12 to formu-

late a query in the intermediate language. Through the
interface, the user initiates a query, formulates a query, runs 65
a query, and views the results. FIG. 8 shows the basic flow
of control of QAUI 11. When a user initiates a query at step

18
50, QAUI 11 calls QAES 12 to initialize the blackboard at
step 52, then, in steps 54-58, continuously presents to the
user a set of choices based on the current context in the
query, as limited by the rules in QAES 12. After the user
makes a selection at step 60, the system QAUI 11 determines
whether the user selected to clear the query (step 62), and,
if not, whether the user selected to run or cancel the query
(step 66), the blackboard is updated at step 68 and an
intermediate language representation is updated at step 70.
This continues until the user either clears the query (at step
62, in which case the intermediate language representation
is cleared at step 64) or cancels or runs the query (at step 66),
in which case the appropriate action is taken.

FIG. 9 shows the initial screen 110 presented by QAUI 11
to the user. Initial screen 110 has four areas: User Query
window 112 (where the query in the intermediate language
is built up); SQL Query window 114 (where the SQL
equivalent of the User Query is displayed after the User
Query is formulated); Result window 116 (where the result
is displayed after the SQL Query is applied to the Database
Management System); and menu bar 118 (providing access
to a set of drop down menus that allow the user to select
databases, select conceptual layers, interface to report gen-
erators, save and load queries, clear the current query, run
the current query, set system defaults, etc.).

The user can invoke Query Assistant 10 by selecting it
from a drop down menu under the Query heading. This
brings up a query selection menu listing the various types of
queries Query Assistant 10 can handle. This is based on the
range of queries the intermediate language is capable of
handling and the query generation routines built into Query,
Assistant 10. Optionally, the administrator can limit the
types of queries which the user can use on a given database
by so specifying in the conceptual layer. If the user is limited
to a single kind of query, then the query list is bypassed. In
the illustrated embodiment, the query selection menu
includes:

Show...
What percent of ... have..
Compare... against...
Show . . . as a percentage of...

The "Show... " query, covers approximately 99% of all
queries and is the basic command to view certain columns
or calculations thereon. The other queries are special types
for percentage and comparison calculations. The type of
result desired is obvious from the query excerpt in the
display. This is in part due to the design of the intermediate
language to make difficult query concepts easy to under-
stand.

When the user selects the "Show... " query, the Create
Show Clause dialog box 120 (shown in FIG, 10A) is
displayed. This is the primary means for interaction between
the user and the Query Assistant. For purposes of illustration
in the figures, items that can be selected by the user are in
bold face, and items which cannot be selected are in italics.
Other ways of distinguishing selectable items include: 'gray-
ing out' unselectable items by displaying them in lighter
shades or different color: or inhibiting the display of non-
selectable items so that only selectable items are displayed.
The selections status (whether or not an item can be
selected) is specified either by QAUI 11 or by a call to QAES
12. Procedural rules are governed by the QAUI and expert
system rules which define the selectable tables, columns,
and operations are governed by QAES 12. Procedural rules
include, but are not limited to:

1. conditions or sort order on a query, cannot be specified
until something for display has been specified:

Page 37 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4734

5,584,024
19

2. an individual column cannot be selected until it is
highlighted;

3. a query cannot be run before something has been
entered; and

4. items cannot be deleted until there is at least one item 5
to delete.

The section designation window 121 of Create Show
Clause dialog box 120 allows the user to designate what
section or clause of the query is being entered. Window 121
includes Show, For, Sorted By, and With % of Total sections i0
121a-d, respectively. The user need not designate the sec-
tions in any specific order except that at least one column
must be designated to be shown before the other clauses can
be specified. However, the user may move back and forth
between the sections. For example, a user may specify one 15
column to show, then fill in For section 121b, return to
designate more columns to be shown, then designate a
Sorted By column by selecting Sorted By section 121c, etc.

The control section 122 of dialog box 120 includes a set
of selection buttons 122a-d by which the user can direct the 20
system to run the query, clear the query, cancel creating a
query, and create a column to show a computation. Com-
putations are discussed in more detail below.

In item selection window 123, the user can select tables
and columns as specified in the conceptual layer, including 25
any virtual tables or columns and any name substitutions.
Any hidden tables or columns are hidden. Item selection
window 123 includes table selection window 124, column
selection window 125, description box 126, and Select and
Select All buttons 127a and 127b. For purposes of example, 30
FIG. 10A uses the tables of FIGS. 1A-IG with several tables
hidden, the columns renamed, and a generated column
"THE COUNT OF CUSTOMERS" defined in the virtual
layer as a Count on the table CUSTOMERS. By moving the
highlighted bar from table to table in table selection window 35
124, the list of available columns for the highlighted table is
displayed in column selection window 125. The Select and
Select All buttons 127a. 127b allow the user to select a
column to show. Description box 126 shows a description
for the highlighted table or column if a description is present 40
in the conceptual layer.

The user can modify selected columns in the column
modification window 128. Columns selected for the Show
clause are listed in display window 129. The user can apply
aggregate computations (i.e. count, total, average, mini- 45
mum, and maximum) to the selected columns or unselect
them via aggregate buttons 130a-h.

After the user makes a selection (of a table in table
selection window 124 or a column in column selection
window 125), QAUI 11 communicates with QAES 12 to 50
update blackboard 13 and to request a new set of allowable
selections. In addition, User Query window 112 of initial
screen 110 is updated to reflect the query at that point in the
intermediate language. If the selection made by the user
causes certain items to become selectable or nonselectable, 55
dialog box 120 is updated to reflect that. For example, FIG.
10B shows dialog box 120 after the user has selected the
CUSTOMER BALANCE column of the CUSTOMERS
table to display and has further selected to modify the
column (indicated by the column being shown in display 60
window 129). In response, QAUI 11 has modified dialog
box 120 in several ways. First, aggregate buttons 130a-h are
now selectable. QAES 12 has informed QAUI 11 that these
buttons can be selected based on the determination that
CUSTOMER BALANCE is numeric and that placing an 65
aggregate on it would not create a semantically incorrect
query. Had the user selected CUSTOMER NAME instead,

QAES 12 would only have made Count button 130c and
None button 130h selectable since the other types of aggre-
gates require a numeric column. Also, For and Sorted By
sections 121b, 121c, in section designation window 121 are
now selectable, as is the Run Query command 122a in
control section 122 since the Show section has something to
show. User Query window 112 of initial screen 110 would
now contain the string "SHOW CUSTOMER BALANCE".

FIG. 10C shows the state of dialog box 120 after the user
has asked to find the average of CUSTOMER BALANCE
(via Average button 130e) and is preparing to select another
column for display. Since the average aggregate has been
placed on a numeric column, all the rows will be averaged
together. Therefore, no joins to one-to-many tables are
allowed and only other numeric columns which can be
similarly aggregated can be selected. This has been deter-
mined by QAES 12 upon request by QAUI 11 and can be
seen in dialog box 120 where all other tables and all non
numeric columns have been made nonselectable. Had there
been a virtual numeric column from another table present it
also would not be selectable since a join is not allowed. If
the user selects CREDIT LIMIT, QAUI 11 will be notified
by QAES 12 that an aggregate is required and will put up a
dialog box requesting which aggregate the user would like
to use.

The user may also ask to see results that are actually
computed from existing columns. In that case, the user can
select Computation button 122d. This selection causes
QAUI 11 to display computation dialog box 135, shown in
FIG. 10D. Computation dialog box b allows the user to build
computations of the columns. QAUI 11 requests of QAES
12 which tables, columns and operations are selectable here
as well. The state of computation dialog box b as shown in
FIG. 10D is as it would be at the start of a new query.
However, all non-numeric fields are not selectable since
computations must occur on numeric columns. This rule is
stored in QAES 12.

When the user selects Sort By section 121e of section
designation window 121, QAUI 11 displays Sorted By
dialog box 140, shown in FIG. 10E. This dialog box is very
similar to Create Show Clause dialog box 120. As with the
other dialog boxes, QAUI 11 works with QAES 12 to
specify what columns can be selected by the user for use in
the "Sort By..." section. Note, the generated column THE
COUNT OF CUSTOMERS is not selectable since it is
actually an aggregate computation that cannot be used to
sort the results of the query.

The For section, which is used to place a condition on the
result, is more procedural in nature. If the user selects For
section 121b in section designation window 121, QAUI 11
presents the user with a series of Create For Clause dialog
boxes of the form shown in FIG. 10F, which provide a list
of available choices in the creation of a "For... " clause.
FIG. 10F shows the first Create For Clause dialog box 150.
A list of available choices is presented in choice window
151. The displayed list changes as the user moves through
the For clause. In dialog box 150, the user can select to place
a condition to limit the result of a query to rows 'THAT
HAVE" or "THAT HAVE NOT"' the condition. When the
user is required to enter a column in formulating the con-
dition, the second Create For Clause dialog box 160, shown
in FIG. 10G, is displayed, with the tables, columns and
operations designated as either selectable or nonselectable in
a manner similar to the prior dialog boxes. In this way the
user builds a condition clause from beginning to end. The
With percent of total section is simply a flag to add "WITH
PERCENT OF TOTAL" to the end of the query. This

Page 38 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4735

5,584,024
21

provides a percent of total on a numeric field for every row
in the result, if the query is sorted by some column. The
other three types of queries have similar sections which are
handled by QAUI in a similar way:
1. What percent of . . .have ...queries have three 5

sections, the "What percent of... " section, the "With
.. "section and the "Have... " section. In the "What

percent of... " section the user is requested to select
any table in the database as seen through the conceptual
layer. Both the "With... "and "Have..." section ask 10
for conditions as in the "For.. clause mentioned
above.

2. Compare ...against . . . queries have the following
sections: "Compare... ", "Against... ", "Sort By... ",
and two "For ..." sections. The query compares two 15
numeric columns or computations which can have a condi-
tion placed on them in their respective "For... " sections.
Also the result can be sorted similarly to the "Show... "
query. QAUI 11 handles each section similarly to the "Show

... ", "For... ", and "Sort By..." sections discussed above, 20
with additional conditions placed on what can be selected set
by QAES 12.

3. Show ... as a percentage of... is treated the same by
QAUI 11 as the Compare . . . query above except that
"Compare" is replaced with "Show", and "against" is 25
replace with "as a percentage of'. This query is a special
kind of comparison query.

The sections of the queries relate to the various portions
of the target language SQL, however the actual terms such
as "Show", "Compare", "That Have", etc. are a character- 30
istic of the intermediate language used. As discussed more
fully below, the intermediate language is designed in terms
of the target language. Therefore QAUI 11 is designed with
the specific intermediate language in mind in order to guide
the user in creating only semantically correct queries. 35

B. Query Assistant Expert System (QAES) QAES 12 is
called by QAUI 11 to maintain the internal state information
and to determine what are allowable user choices in creating
a query. Referring to FIG. 7, QAES 12 contains Blackboard
13 and Query Expert 14 which, based on the state of 40
Blackboard 13, informs QAUI 11 what the user can and
cannot do in formulating a semantically correct query. Query
Expert 14 provides QAUI 11 access to the blackboard and
embodies the intelligence which indicates, given the current
state of Blackboard 13, what choices are available to the user 45
for constructing a semantically correct query.
1. Blackboard
A blackboard is a conceptual form of data structure that

represents a central place for posting and reading data. In the
present invention. Blackboard 13 contains information about 50
the current state of the system. As a query is being formu-
lated by the user, Blackboard 13 is modified to reflect the
selections made by the user.

Within the listed variables. Blackboard 13 maintains the
following information: 55

whether or not a query is being created.
the type of query (Show, what % of, etc.)
the current clause (Show, For, Subquery, Sorted By,

etc.)
the current set of choices of what can be selected by the 60

user (for backup capability)
the set of tables selected for each of the current clause,

whole query, and any subqueries
the table involved in a Count operation, if any (there

can only be one) 65
the table involved in an aggregate operation (there can

only be one)

the table involved in a computation operation (there can
only be one)

the base table / virtual table relationship for any virtual
table columns

a string defining each condition clause (i.e. For, With,
Have)

To access and manipulate the data, the following routines
are provided:

Initialize Blackboard (This sets all of the variable to
zero or null state prior to the start of a query)

Set Query Type
Set Current Clause
Backup current set of selectable tables, columns, and

operations.
Restore backup of set of selectable tables, columns, and

operations.
Add table to set of tables selected for each of the

current clause, whole query, and any subqueries
Remove table from set of tables selected for each of the

current clause, whole query, and any subqueries
Read list of tables selected for each of the current

clause, whole query, and any subqueries
Read/Write/Clear table involved in Count operation
Read/Write/Clear table involved in aggregate operation
Read/Write/Clear table involved in computation opera-

tion
Read/Write any base table <-> virtual table relationship

for any virtual columns
Add/Remove text from string containing the whole

intermediate language query and each condition
clause (i.e. For, With, Have)

Possible methods for physical implementation of the
blackboard include, but is not limited to, a set of encapsu-
lated variables, database storage, or object storage, each with
appropriate access routines.

After the user makes each selection in the process of
building a query, Blackboard 13 is updated to reflect the
current status of the query and Query Expert 14 can use the
updated information to determine what choice the user
should have next.

1. Query Expert
Query Expert 14 utilizes information stored on Black-

board 13 and information from the conceptual layer about
the current database application to tell QAUI 11 what are the
available tables, columns, and operations that the user can
next select when building a query. Query Expert 14 makes
this determination through the application of a set of rules to
the current data. Although the rules used by the system are
expressed in the illustrated embodiment by a set of If..
.Then... statements, it should be evident to the artisan that
the rules may be implemented procedurally, through a
forward or backward chaining expert system, by predicate
logic, or similar expert system techniques.

Query Expert 14 examines each table and each column in
each table to determine whether it can be selected by the user
based on the current state of the query. Query Expert 14 also
determines whether a selected table and/or column can be
used in aggregate or computation operations. In addition,
during the creation of a conditional "For... "clause, Query
Expert 14 addresses further considerations.

Query Expert 14 uses some similar and some different
rules during construction of each of the sections of a query.
For each section of the "Show..." query described above,
the rules employed by the Query Expert to designate what
tables, columns, and operations the user can select in gen-
erating a semantically correct query are set forth below.

1. The "Show... " section. Below is a set of rules used
to determine what tables, columns and operations are select-

Page 39 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4736

5,584,024
23

able by the user. The term "current clause" used within the
rules refers to the entire Show ... query. The current clause
becomes important in the other three types of queries which
have two separate sections used in comparisons. Each of
those sections are separate clauses for the purpose of the rule 5

base.
TABLES: For each Table(x) in the database, if the fol-

lowing Table rules are all true, then the table is selectable.
A role of the form If ... Then TRUE has an implied Else 10
FALSE at the end, and there is similarly an implied Else
TRUE after an If... Then FALSE. A table which is hidden,
according to the conceptual layer, is not presented to the user
for selection, but is processed by the rules in case virtual
columns in non hidden tables are based on the hidden tables. 15
If the hidden table cannot be selected, then any virtual table
relying upon it cannot be selected.

Rule 211
20

24
-continued

Table(x) only through a more detailed table then there is a conflict)
Then FALSE
Rule 214

IF Table(x) is following an aggregate command, and
(there are no tables in the query;
there is another aggregate present and either Table(x) already has
an
aggregate operation applied or has a one-to-one relationship with
the
already aggregated table; or
there is not another aggregate present, and Table(x) is the most
detailed
table in the query (in one-to-many relationships, the many side is
more
detailed then the one side)

Then TRUE

COLUMNS: For all Column(x) in a Table(x), if all the

following Column rules are not false, the columns are

selectable, else they are not.

IF the current clause is empty;
Table(x) is a table already included in the current clause;
there is only one other table in the current clause, and it can be
joined
with Table(x); or
more then one table already exists in the current clause, and adding 25
the
new table results in a navigable set (There is a single common
most
detailed table between the tables.)

Then TRUE

Rule 221
IF Table(x) is not selectable
Then FALSE
Rule 222
IF Column(x) is a virtual column; and

the table on which the column is based is not selectable
Then FALSE
Rule 223
IF There exists an aggregate on a Column(y);

Column(y) is based on the same table as Column(x) or is based on a table
with a one-to-one relationship with the table on which column(x) is based;
and
Column(x) is non-numeric

Then FALSE

-continued

Rule 212

IF Table(x) is the base table of a virtual table with a condition clause;
and
the virtual table has already been selected

Then FALSE
Rule 213

IF There is an aggregate being performed in the current clause; and
Table(x) conflicts with the table that the aggregate is being applied
to (If
Table(x) is more detailed then the aggregate table or is joinable
with

COMPUTATIONS: The same rules apply to the use of
tables and columns in computations accept for additional
Computation rule 231, on Column(x) which must be true.

50
Rule 231
IF Column(x) is selectable; and

Column(x) is numeric.
Then TRUE

55 AGGREGATE OPERATIONS: For each aggregate
operation Aggregate(x) (i.e., count, total, min, max, average)
to be selectable for a selected column, Column(y), the
following Aggregate rules must be true.

Rule 241
IF Column(y) is numeric; or

Column(y) is non-numeric and Aggregate(x) = COUNT
Then TRUE
Rule 242
IF There exists an aggregate on a Column(z);

Column(z) is based on the same table as Column(y) or is based on a table

Page 40 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4737

5,584,024

-continued

with a one-to-one relationship with the table Column(y) is based on.
Then TRUE
Rule 243
IF applying Aggregate(x) to Table(x) would cause a conflict with another

table in the current clause (If Table(x) is less detailed then another table in
the current clause then there is a conflict)

Then FALSE

SPECIAL RULE: Special rules 251 is applied when a 10
Column(x) is selected for display. Special rule 251 requires
the user to enter an aggregate operation on the selected
column.

the user may: clear the query (which will clear the black-
board and start over); backup a step (which will undo the last
choice made); or run the query (if at an appropriate point).
The pseudocode is shown to cover a certain set of condition

Rule 251
IF There exists an aggregate on a Column(y);

Column(y) is based on the same table as Column(x) or is based on a table
with a one-to-one relationship with the table Column(x) is based on.;
Column(x) is selectable; and
Column(x) is selected.

Then Column(x) must have an aggregate applied, and the QAUI, at the
direction of the QAES, will request one from the user.

2. The "Sort By . . . " section. No computations or
aggregates are allowed on the columns selected to sort the
query by. Otherwise, the rules are similar to the "Show...
"section, with some minor changes. Table rules 210 are the
same, while Computation, Aggregate, and Special rules 231,
240, and 251 are not applied. Finally, Column rule 223 is not
applied since the "Sort By . . . " section helps define a
grouping order and will cause the aggregates to group by the
Sort By columns. Therefore, even though an aggregate is
already applied, the Sort By column cannot, and should not,
be aggregated. It does not matter whether the column is
numeric or non-numeric provided the table is selectable.

25 clause types, however, it will be apparent to the artisan how

additional condition types can readily be added. According

to the pseudocode, QAUI 11 calls the For ClauseTop-

Level-Control procedure to initiate the creation of a For
30 clause. The Choose entity function below is used to select

a table or column and is described in more detail below.
Procedure For Clause Top-LevelControl 310 is a

loop that creates conjunctive portions of the For clause until
35 there are no more ANDs or ORs to be processed.

Procedure For Clause Top-LevelControl
Repeat

ITEM = Choose Entity ("Entity, NMD")
Display [THAT HAVE, THAT HAVE NOT] to the user and get a response
RESULT =Call Make-For Clause
Fix parentheses if necessary
If RESULT is no AND or OR selected, Then

Display [AND , OR] to the user and get a response
(user can also choose to switch to a different clause or run a query)

Until RESULT says the last item selected is not an AND or OR and the user has
switched to a different clause selected to run a query (i.e., "For. or "Sort By..

End Procedure

3. The "For... " section is somewhat different from the
previous two sections. Upon selecting a For condition, the
user is led though a series of dialog boxes providing a set of
choices to continue. Different rules apply at different points
in the process of building a condition. Therefore, the knowl- 55
edge as to what items are selectable by a user is contained
in two forms. First, there is a procedural list of instructions,
which direct the user in building a For clause, and second,
there is a set of rules that are applied at specific times to
tables, columns, and operations in a similar manner to the 60
Show and Sort By clauses.

Pseudocode representations of the procedural knowledge
used in directing a user to create a For clause is shown
below. Although not explicitly stated in the pseudocode,
after every selection made by the user, Blackboard 13 is 65
updated, and the current query is updated for display to the
user. Also, at any time during the creation of the For clause,

Function Make For Clause 320 handles some special
types of For clauses by itself and sends the general type of
For clause constructs (i.e. constraints) to function Make

Constraint 330. The result of the function is an indication as

to whether there is a pending And or Or in the query.

Page 41 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4738

5,584,024
27 28

Function Make For Clause
CHOICE = Display ['Place a condition', 'other conditions', '('] to the user and get a

response
If CHOICE ='('Then

RESULT = Call Make For Clause
Add ')' to query
Return RESULT

Elseif CHOICE = 'Place a condition' Then
Return the result of Make-Constraint ("Attribute, NMD", False)

Elseif CHOICE = 'other conditions' Then
CHOICE = Display j>,<,=,<>,>=,<=, '... FOR EVERY ...', '... OF ANY ... ', 'EVERY ..

to user and get a response
If CHOICE is from the set [>,<,=,<>,>=,<=1 Then

Get a value
ITEM = Choose Entity ("Entity, Detail, ForTable")
CHOICE = Display [THA'f HAVE, THAT HAVE NOT, AND, OR] to user and get

response
If CHOICE is from the set [THAT HAVE, THAT HAVE NOT] Then

Return the result of CALL Make-For-Clause
Elseif CHOICE is from the set [AND, OR] Then

Return an And or Or is selected
Endif

Elseif CHOICE is from the set ['... FOR EVERY ...', '... OF ANY ..'] Then
ITEM1 = Choose-Entity ("Entity, Detail, ForTable")
ITEM2 = Choose-Entity ("Entity, NLD,NOTENT")
Return no And or Or selected

Elseif CHOICE = 'EVERY ...' Then
Return the result of Make-Constraint ("Attribute, Detail, ForTable", True)

Endif
Endif

End Function

Function Make Constraint 330 is the heart of the cre- 30 part of the For clause is already present when this function
ation of the "For" clause. It takes as parameters some QAES is called. The result of the function is an indication whether
rule parameters and a flag which indicates whether every or not the last thing selected was an AND or Or.

Function Make-Constraint (RULEPATTERN, EVERYCLAUSEFLAG)
ITEM = Choose-Entity (RULE-PATTERN)
If ITEM is numeric Then SELECTION includes [<,>,<>,=,>=,<=, Between]
Endif
If ITEM is alphanumeric Then

SELECTION includes [<,>,<>,=,>=,<=, Between, Begins with, Ends with, Contains]
Endif
If ITEM is a date Then

SELECTION includes [Specific date, Since, Before, Between]
Endif
SELECTION = SELECTION + [is Blank, Is Not Blank]
CHOICE = Display SELECTION to user and get response
If CHOICE is from the set [Is Blank, Is Not Blank] Then

Return no And or Or selected.
Elseif CHOICE is numeric or alphanumeric 'Between' Then

Get before value linited to proper data type
Got after value limited to proper data type
Return no And or Or selected.

Elseif CHOICE is from the set [Begins with, Ends with, Contains] Then
Get alphanumeric value
Return no And or Or selected.
Elseif CHOICE is from the set [Specific date, Since, Before] Then

Get date value
Return no And or Or selected.

Elseif CHOICE is date 'Between' Then
Get first date
Get second date
Return no And or Or selected.

Elseif CHOICE is from the set j<,>,<>, , ,<=] Then
If EVERY CLAUSE FLAG is TRUE Then

Get value
Return no And or Or selected.

Else CHOICE = Display ['Enter a value', 'Place a condition', Total, Average,
Maximum, Minimum] to user and get response

If CHOICE = 'Enter a value' Then
Get value
Return no And or Or selected.

Elseif CHOICE = 'Place a condition' Then
ITEM = Choose-Entity (RULE-PATTERN)
CHOICE = Display [OF, AND, OR] to user and get response

Page 42 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4739

5,584,024

-continued

If CHOICE = OF Then
ITEM = Choose-Entity ("Entity, OFENT")
CHOICE = Display [THAT HAVE, THAT HAVE NOT, AND, OR! to

user and get response
If CHOICE is from the set [THAT HAVE, THAT HAVE NOT]

Then
Return the result of CALL Make-For-Clause

Elseif CHOICE is from the set IAND, OR] Then
Return an And or Or is selected

Endif
Elseif CHOICE is from the set [AND, OR] Then

Return an And or Or is selected
Endif

Elseif CHOICE is from the set [Total, Average, Maximum, Minimum] Then
If CHOICE is from the set [Total, Average] Then

ITEM = Choose Entity("Numeric Attribute, OFENT, NMD")
Else ITEM = ChooseEntity("Affribute, OFENT, NMD")
Endif

Endif
ITEM = Choose-Entity ("Entity, OFENT")
CHOICE = Display [THAT HAVE, THAT HAVE NOT, AND, OR] to user and get

response
If CHOICE is from the set [THAT HAVE, THAT HAVE NOT] Then

Return the result of CALL Make For Clause
Elseif CHOICE is from the set (AND, OR] Then

Return an And or Or is selected
Endif

Endif
Endif

End Function

In the above pseudocode, the function Choose Entity is
not defined. This function uses the second type of knowl-
edge. The function is called with a set of parameters, and
based on those parameters, the user is asked to choose either
a table or column. As with the other clauses, this information
is presented to the user in a manner to distinguish which
choices the user can make. QAES 12 determines what
selection the user may make by applying a set of rules to the
tables and columns as in the other clauses.

There is an additional element, however, in the rule base
for the For clause. The rule base is expanded to include
special circumstances which are specified by a parameter
Choose-Entity. The parameter, in the pseudocode, takes the
form of a list of conditions in a string separated by commas.
There are two types of condition, those which inform QAES
12 what type of dialog item the user will be selecting and
therefore what type of dialog box to display, and those which
are conditions in the rules. Types of item parameters include:

Entity-indicates that the user needs to select a table;
Attribute-indicates that the user needs to select a col-

umn; and
Numeric Attribute-indicates that the user can only select

a numeric column.
If the user needs to select a table, then the rules will not

be applied to the columns, since they will not be displayed.
The condition type parameters are:

NMD The table can be No More Detailed then any other
30 table in the current clause

NLD The table can be No Less Detailed Then any other
table in the current clause

Detail The table must be the most detailed table in the
current clause

ForTable The table must be Identical or one-to-one with
any tables in the For clause

OFENT The table must be Identical or one-to-one with
any table in current clause

40 NOTENT The table must not be identical or one-to-one
with any table in current clause.

In a one-to-many relationship, the table on the many side
of the relationship is more detailed then the table on the one

45 side. As discussed previously, the term "current clause"
actually refers to the entire query in a Show ... query. The
current clause becomes important in the other three types of
queries which have two separate section used in compari-
sons. Each of those sections are separate clauses for the50
purpose of the rule base. The rule base used in the For clause
is set out below.

TABLES: Table rules 211-214 are applied. In addition,
the following Table Parameter rules are applied.

Rule 311
IF Parm contain "NMD"; and

a less detailed table then Table(x) is already in the current clause
Then FALSE
Rule 312
IF Parm contains "NLD"; and

a more detailed table then Table(x) is already in the current clause
Then FALSE
Rule 313
IF Parm contains "Detail"; and

(there is a more detailed table then Table(x) in the current clause;
Table(x) already exists in the current clause; or

Page 43 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4740

5,584,024

-continued

a table with a one-to-one relationship with Table(x) exists in the current
clause and it is aggregated)

Then FALSE
Rule 314
IF Parm contains "ForTable";

Table(x) doesn't exist in the For clause; and
Table(x) does not have a one-to-one relationship with any table in the For
clause

Then FALSE
Rule 315
IF Parm contains "OFENT";

Table(x) doesn't exist in the current clause; and
Table(x) does not have a one-to-one relationship with any table in the
current clause

Then FALSE
Rule 316
IF Parm contains "NOTENT"; and

(Table(x) exists in the current clause; or
Table(x) has a one-to-one relationship with any table in the current
clause)

Then FALSE

COLUMNS: In addition to Column rules 221-223, the
following Column Parameter rule is applied.

Rule 321 25
IF Parm contains "Numeric Attribute";

Column(x) is non-numeric
Then FALSE

Computation rule 231 is also applied. 30
4. "With percent of Total" check box. The user can add

this phrase to the end of a query if two things are true: (1)
the last item in the Show clause was numeric; and (2) there
is a sort specified in the Sort By clause.

The same set of rules are used in the equivalent sections
of the other three query types as discussed in the earlier 35
section on QAUI 11. These queries are considered two
clause queries with each clause represented by the ellipses in
the queries. Blackboard 13 is set to the current clause, and
the rules which refer to current clauses use the clause being
built by the user. The rules are primarily the same as the 40
Show ... query with the following caveats:

1. In the What percent of... have ... queries, the "What
percent of... "section is limited to one table in the database,
so there are no real rules applied. The "With... and "Have

... " sections are then the same as the "For... section in 45
the Show ... query.

2. In the Compare ... against... queries, the "Compare
... " and "Against... " sections are limited to a numeric

columns, including aggregates and computations. Also in
each of the sections, there can be only one column, aggre- 50
gate or computation. The "For..." and "Sort By... "clause
use the same rule sets as those in the Show . . . queries.

3. In the Show . . . as a percentage of. . . queries, the
"Show... "and "as a percentage of..." sections are limited
to a numeric columns, including aggregates and computa- 55
tions. Also in each of the sections, there can be only one
column, aggregate or computation. The "For..." and "Sort
By... clause use the same rule sets as those in the Show
... queries.

To illustrate how Query Assistant 10 prevents the user 60
from having the opportunity to formulate the incorrect query
involving the three tables CUSTOMERS. ORDERS and
LINE ITEMS from FIGS. IA, IF, and 1G, respectively,
with the relations shown in FIG. 6, the steps that the user
would take to attempt the incorrect query are described. 65
First, the user would invoke Query Assistant 10 and select
a Show... query. At this point all of the tables and columns

would be selectable since nothing has yet been selected,
however, the Run Query box is not selectable, and the other
sections of the query are not selectable until there is some-
thing in the Show section. Next, the user would select the
column Name in the CUSTOMERS table for display. Again,
after applying the rules, all of the tables and columns are
selectable. This is indicated by the rule base because all
tables can be joined with CUSTOMERS, and there has not
been an aggregate defined. Next, the user would select Order
Dollars from the ORDERS table to display. All tables and
columns are still selectable for the same reason.

Next, the user would select to modify Order Dollars. After
applying the rules, QAES 12 would indicate that any of the
aggregates can be applied to Order Dollars since Order
Dollars is numeric and there are no other aggregates. Next,
the user would select a Total on Order Dollars. Alter
applying the rules, QAES 12 would determine that the
LINE ITEMS, PRODUCT, CODE, and VENDOR tables
are no longer selectable because of Table rule 213. Also,
only numeric columns are selectable in the ORDERS table
and they must be aggregated as dictated by Column rule 223
and Special rule 251.

Finally, columns in the CUSTOMERS table are select-
able, but cannot be aggregated because of Aggregate rule
242. The user is not allowed to select the LINE ITEMS
table once an aggregate is placed on ORDER DOLLARS so
the incorrect query cannot be formulated. Similarly, if a
column in the LINE ITEMS table had been selected prior
to placing the Total on Order Dollars, Order Dollars could
not be aggregated because of Aggregate rule 243.

More complex queries are handled in the same way. After
each user selection, QAES 12, through QAUI 11, provides
a list of available choices based on knowledge it has about
databases and the information it contains in the conceptual
layer. It applies rules to all applicable tables, columns, and
operations to determine the list of selectable items. During
the creation of a For clause, a procedural component is
introduced, but the method of operation is substantially the
same.

IV. INTERMEDIATE LANGUAGE

As discussed earlier, because the set of semantically valid
queries cannot be described by a context-free grammar, a
grammar is not given for the intermediate language, and one
is not used to create user choices. Rather, the intermediate

Page 44 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4741

5,584,024
33

language is defined by the templates and choices presented
to the user by Query. Assistant 10. The templates are screen
definitions whose contents (i.e. picklist contents and active
vs. inactive elements) are governed by QAES 12. Condition
clause generation is driven by a separate module in QAES 5
12. The definition of the intermediate language is precisely
those queries that can be generated by Query Assistant 10.

The design of the intermediate language, however, is
driven from the bottom (SQL Generator 20) and not the top
(Query. Assistant 10). The architecture of Query System 1 is 10
designed to minimize the amount of processing by SQL
Generator 20 by making the intermediate language as simi-
lar as possible to the target language (SQL) while providing
a more easily understandable set of linguistic constructs.
Building upon the design of the language, Query Assistant 15
10 is built to implement the production of semantically
correct queries using the linguistic constructs of the lan-
guage, which in turn can further simplify the design of SQL
Generator 20.

In natural language systems, the problem lies in conven- 20
ing a representation of a natural language to a target lan-
guage, such as SQL. In the present invention, conversion of
the intermediate language to a target language is straight-
forward because the intermediate language was designed to
accommodate this process. The intermediate language is 25
designed by starting with the target language (n the illus-
trated embodiment, SQL), and making several modifica-
tions.

First, the grouping and table specification constructs,
which in SQL are specified by the GROUP BY, HAVING, 30
and FROM clauses respectively, are deleted, so that the user
need not specify them. Rather, this information can be
inferred readily from the query. For example, if the user
selects a column for display, the table from which the
column comes needs to be included in the table specification 35
(i.e. FROM clause). When a user selects to view columns in
a table without selecting a primary key, the user would likely
want to see the column results grouped together, so that like
values are in adjacent rows of the output and duplicates are
discarded. This is specified in the GROUP BY clause of 40
SQL, but it can be inferred. In SQL, the HAVING clause is
a special clause which operates as a WHERE clause for
GROUP BY items. This is also readily inferred from which
columns are grouping columns and if they have specified
conditions. 45

Second, join specifications are deleted from the condition
clause. SQL requires an explicit definition of the joins in its
WHERE clause (i.e. WHERE CUSTOMER.CUS-
TOMER#--ORDER.CUSTOMER#). This information can
be inferred or specifically requested when creating a query 50

if necessary, but it does not form a part of the intermediate
language query.

Third, specific and readily understandable patterns are
defined for each type of subquery supported by the inter-
mediate language. For example, the English pattern "MORE
THAN 2<category>" can be defined to have a specific SQL
subquery expansion.

Fourth, the remainder of the target language is replaced
with easily understandable words or phrases that, when 60
strung together, form a comprehensible sentence. For
example, using SQL, "SELECT" is replaced with "Show".
"WHERE" is replaced with "For", "ORDER BY" is
replaced with "Sorted By" and so on.

Finally, synonyms are provided for various words, 65
phrases and constructs. Target language constructs may look
differently in the intermediate language depending on the

34
type of query to be formed if the query is to be an easily
understood sentence. This also allows the user multiple ways
of specifying concepts, including, but not limited to: dates
(i.e. Jan. 1, 1994 v. 01/01/94. etc.), ranges (between x and y,
>x and <y, last month, etc.); and constraints (>, Greater
Then. Not Less Than or Equal).

V. SQL GENERATOR

Given the design of the intermediate language described
above, SQL Generator 20 need only perform two basic
functions. First, it needs to inter the implicit portions of the
query that are explicitly required in the target language, such
as the GROUP BY clause in SQL, or the explicit joins in the
WHERE clause. This information is easily inferred because
of the design of the intermediate language. Second, SQL
Generator 20 needs to resolve synonyms and transform the
more easily understood intermediate language into the more
formal target language through a series of transformations
by pattern substitution. It is this set of patterns that give the
intermediate language its basic look and feel.

Internally, the intermediate language has a component
that is independent of the database application, and a com-
ponent that is specific to the database application. The
application independent component is represented by the
sets of patterns used in the pattern substitution transforma-
tions and the set of routines used to infer implicit informa-
tion. The application specific component is represented by
the conceptual layer which contains information used in
both basic functions of SQL Generator 20.

SQL Generator 20 has no expertise concerning what is
and is not a semantically valid query in the intermediate
language. If the user bypasses Query Assistant 10 to directly
enter a query using the syntax of the intermediate language,
the user can obtain the same incorrect results that can be
obtained with conventional point-and-shoot query tools.

A. Flow of Control

FIGS. 11A and llB depict a flowchart of the flow of
control of SQL Generator 20. Each of the steps is described
in detail below. SQL Generator 20 applies a series of
transformations to the intermediate language input to pro-
duce a resulting SQL statement. If one of these transforma-
tions fails, an error message will be displayed. An error
message is only possible if the input query is not part of the
intermediate language (i.e. was not, and could not be gen-
erated by Query Assistant 10). SQL Generator 20 takes as
input an intermediate language query and produces an SQL
statement as output by applying the steps described below.

In step 402, the intermediate language query is tokenized,
i.e. convened to a list of structures. Each structure holds
information about one token in the query. A token is usually
a word, but can be a phrase. In this step, punctuation is
eliminated, anything inside quotes is convened to a string,
and an initial attempt is made to categorize each token.

In steps 404 and 406, the intermediate language query is
converted to an internal lexical format. The conversion is
done via successive pattern matching transformations. The
clause is compared against a set of patterns until there are no
more matched patterns. The lexical conversion pattern
matcher is discussed in more detail below. The resulting

Page 45 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4742

5,584,024
35

internal format differs from the intermediate language for-
mat in several ways:

(a) Synonyms within the intermediate language for the
same construct are resolved to a single consistent
construct (i.e., "HAS" and "HAVE" become "HAVE").

(b) Synonyms for tables and columns are resolved, uti-
lizing the names specified in the conceptual layer and
by converting column names to fully qualified column
names in the form of Table Name. Column Name

(c) Dates are converted to a Julian date format
(d) Extraneous commas and ANDs (except those in con-

dition clauses) are deleted
(e) Condition clauses are transformed to match one or

more predefined WHERE clause patterns stored as
ASCII text in an external file

(0D Special symbol are inserted to demarcate the beginning
and middle of "what percent of.. " "show... as a %
of... ", and "compare... " queries.

(g) A special symbol is inserted to demarcate the object of
every FOR clause.

(h) Certain words designated as Ignore words are elimi-
nated. (i.e. The, That, etc.)

When no further patterns can be matched, control trans-
fers to step 408, where it is determined whether CREATE
VIEW statements are necessary. If so, in steps 410 and 412,
SQL Generator 20 is called recursively as a subroutine to
generate the required views. As the view is generated the
recursive call to SQL Generator 20 is terminated. CREATE
VIEW (an SQL construct) is required for queries in the
intermediate language which call for percentage calculations
or otherwise require two separate passes of the database (i.e.
comparisons). The types of queries that Query Assistant 10
can produce that require a CREATE VIEW statement are of
a predetermined finite set, and SQL Generator 20 includes
the types of queries which require CREATE VIEW genera-
tion. An example type of query where it is required is
"Compare X against Y" where X and Y are independent
queries that produce numeric values. Within each recursive
call to SQL Generator 20, pattern matching is conducted to
resolve newly introduced items. Control then passes to step
414.

In step 414, the internal lexical format is converted into an
internal SQL format, which is a set of data structures that
more closely parallel the SQL language. The internal SQL
format partitions the query into a sets of strings conforming
to the various SQL statement elements including: SELECT
columns. WHERE clauses, ORDER BY columns, GROUP
columns, Having clause flag, FROM table/alias pairs,
JOINs. In this step, the SELECT, and ORDER BY sections
are populated, but WHERE clauses are maintained in lexical
format for processing at the next step. The other elements are
set in the following steps if necessary.

In the ensuing steps 416 and 418, the lexical WHERE
phrases are compared with a set of patterns stored in an
external ASCII text file. If a match is found, a substitution
pattern found in the external file is used for representing the
structure in an internal SQL format. In this way, the WHERE
clause is transformed from the intermediate language to the
internal SQL format equivalent.

If any table references have been introduced into the
internal SQL structure as columns, they are converted to
column references in step 420. This can occur on queries like

36
"show customers". Virtual table references are also
expanded in this step using the conceptual layer information
to include the table name and the virtual table condition, if
present, which is added to the internal structure.

5 If there are any columns in the ORDER BY clause that are
not in the SELECT, they are added to the SELECT in step
422. In step 424, Julian dates are converted to dates specified
in appropriate SQL syntax. Next, in step 426, virtual col-
umns are expanded into the expressions defined in the

10 conceptual layer by textual substitution. This is why virtual
column expressions are defined according to SQL expres-
sions or other expressions understood by the DBMS. In this
step, the expression of a virtual column will be added to the

WHERE clause-a Lookup command will simply mac
another join condition in the WHERE clause.

In step 428, the FROM clause of the SQL statement is
created by assigning aliases for each table in the SELECT
and WHERE clauses, but ignoring subqueries that are

2o defined during the pattern matching of steps 416 and 418. In
step 430, the ORDER BY clause is converted from column
names to positional references. Some SQL implementations
will not accept column names in the ORDER BY clause-
they require the column's position in the SELECT clause

25 (i.e. 1, 2 etc.). This step replaces the column names in the
ORDER BY clauses with their respective column order
numbers.

In step 432, the navigation path is computed for required
30 joins. This is done using a minimal spanning tree as

described above. This is a technique commonly used for
finding the shortest join path between two tables, but other
techniques will work equally well. If additional tables are
required then they are added. Also, by default, the shortest

35 join path is created. However, if the user designated a
different join path which was predefined by the administra-
tor and put in the conceptual layer, that path is used. If it is
determined in step 434 that new tables are required, they are

40 added in step 436 to the FROM clause. Then, in step 438, the
WHERE clause join statements are created in the internal
SQL structure.

In step 440, SELECT is converted to SELECT DIS-
TINCT, if necessary. This is required if the query does not

45 include the primary key in the Show clause of the query and
there are only non-numeric columns (i.e. "Show Customer
State and Customer City"). The primary keys are defined as
Customer Number and Customer Name in the CUSTOM-
ERS table. SELECT DISTINCT will limit the query to
distinct sets and will group the results by columns in the
order listed. Using SELECT alone will result in one output
line for every row in the table.

In step 442, the GROUP BY clause is added to internal
55 SQL (if necessary), as are any inferred SUMs. This is

required if the query does not include the primary key in the
Show clause of the query and there are numeric columns (i.e.
"Show Customer State and Customer Balance"). The pri-
mary key is the Customer Number in the CUSTOMERS

60 table and here Customer Balance is a numeric field. What the
user wants is to see the balance by state. Without including
Group By and SUM, there will be a resulting line for every
row in the CUSTOMERS table. This step places any

65 numeric fields in SUM expression and places all non-
numeric fields in a GROUP BY clause. For example, the
above query would produce the following SQL.

Page 46 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4743

5,584,024

(5) SELECT TI.STATE, SUM (T1.BALANCE)
FROM CUSTOMERS TI
GROUP BY T1STATE

In step 444, COUNTs are converted to COUNT (*), if

necessary. This is required, as an SQL convention, where the

user requests a count on a table. For example, the query

38
as the most recently read pattern (i.e. all patterns have the
same priority until the next priority designation)

PATTERN is what is compared against the query to find
5 a match. Textual elements which match directly with words

in the query along with the following key symbols:

{ } or
I I a single phrase

optional
!???x variable that matches anything, x is a number.
!ENTx table variable which matches any table name, x is a number in case of

multiple tables in the pattern.
!ATTx column variable which matches any column name, x is a number in

case of multiple columns in the pattern.
!VALx value variable which matches any numeric value, x is a number for

multiple values in the pattern.
!FUNCTIONx function variable which matches a function that can be

applied to a column (i.e. SUM, AVG, etc.), x is a number for multiple
functions in the pattern.

"Show The Count of Customers" produces the SQL code 25

(6) SELECT COUNT (*)
FROM CUSTOMERS TI

Finally, in step 446, the internal SQL format is converted
into textual SQL by passing it through a simple parser.

B. Pattern Matching
Steps 404 and 416 transform the intermediate language

query using pattern matching and substitution techniques.
These steps help to define the intermediate language more
then any other steps. By modifying these pattern/substitution
pairs the intermediate language could take on a different
look and feel using different phrases. Accordingly, Query
Assistant 10 would need to be able to produce those phrases.
Further, by adding patterns, the user can be given more ways
of entering similar concepts (when not using Query Assis-
tant 10), and more types of subqueries can be defined. For
every new type of subquery defined as a pattern, the Where
clause generation function of Query Assistant 10 would need
to be modified to provide the capability.

Two types of patterns used in SQL Generator 20. The first,
used in step 404, is a simple substitution, while the second,
used in converting Where clauses in step 416, is more
complex because it can introduce new constructs and sub-
queries.

1. Lexical conversion pattern matching
In the lexical conversion pattern matching of step 404, a

text string of the query is compared to a pattern, and if a
substring of the query matches a pattern, the substring is
replaced with the associated substitution string. Patterns take
the form of:

PRIORITY SUBSTITUTION<-PATTERN

PRIORITY is a priority order for the patterns which takes
the form of #PRIORITY-? with ? being a whole number
greater then or equal to 0. This provides an order for the
pattern marcher with all #PRIORITY-0 patterns being pro-
cessed before #PRIORITY-1 patterns and so on. Within a
given priority, the patterns are applied in order listed. If the
pattern does not begin with a priority, it has the same priority

SUBSTITUTION is the replacement text. Every, instance

of !???, !ENTx, !AT'x, or !VALx is replaced with the table,
column or value bound to the variable in the PATTERN.

40 As an example, the pattern "PRIORITY-0 AND THAT
HAVE <- {[AND HAVE] [AND HAS]}" indicates that the
phrases "AND HAVE" and "AND HAS" are synonyms for

the phrase "AND THAT HAVE" and will be accordingly
45 substituted. The brackets signify phrases. The braces signify

multiple synonyms. The "#PRIORITY-0" entries define the

pattern as having a priority of 0 so that this rule would apply
before any priority 1 rules. etc.

50 Another example pattern is "(!ATI>=!???1 and

!ATT1<=!???2)<- {[!ATT1 BETWEEN !???I AND !???2]
[!ATT1 FROM !???I TO !???2]}". In this case the pattern

would match substrings of the form of "BALANCE
55 BETWEEN 10000 AND 50000" or "BALANCE FROM

10000 TO 50000" and would substitute it with "BALANCE

>=10000 AND BALANCE<=50000". As is evident from the

form of the patterns, the intermediate language which is
60 understandable to the SQL Generator can be simply varied

by changing these patterns or adding new patterns to rec-
ognize different words or phrases.

The set of patterns used in step 404 of the illustrated65
embodiment (i.e., for one instance of an intermediate lan-

guage) is shown below.

Page 47 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4744

5,584,024
39 40

Pattern 501
#PRIORITY-0 AND THAT HAVE <- {[AND HAVE][AND HAS[}
Pattern 502
#PRIORITY-0 AND THAT DO NOT HAVE <- {[AND DO NOT HAVEJIAND DOES NOT HAVE]I
Pattern 503
#PR!ORITY-0 WHERE NOT <- {WITHOUT [THAT DO NOT HAVE][THAT DOES NOT HAVE]I
Pattern 504
#PRIORITY-0 HAVE NOT <- {[DO NOT HAVE][DOES NOT HAVE]I
Pattern 505
#PRIORITY-2 !ENT1, !ENT2 <- [!ENTI !ENT2
Pattern 506
#PRIORITY-5 !ENTI , !ATTI <- [!ENTI !ATT1]
Pattern 507
#PRIORITY-0 PCT TOTAL <- [WITH { % PERCENT PERCENTAGE] OF TOTAL I
Pattern 508
#PRIORITY-0 !Al PCT TOTAL <-

[!ATT1 WITH { % PERCENT PERCENTAGE] OF TOTAL SUBTOTAL
Pattern 509
#PRIORITY-0 WHAT PERCENTBEGIN <- [WHAT 1% PERCENT PERCENTAGE] - OF[
Pattern 510
#PRIORITY-0 AS PCT MIDDLE <- [AS A {% PERCENT PERCENTAGE] OF]
Pattern 511
#PRIORITY-0 COMPARE-BEGIN <- COMPARE
Pattern 512
#PRIORITY-2 OFENTITY!! !ENT1 WHERE

<- [FOR {[!ENT1 THAT HAVE]
[!ENTI THAT HAS]
[!ENTI CANTFOLLOW XDATE[]}

Pattern 513
#PRIORITY-2 OFENTITY!! "ENTI WHERE <- {[WHERE !ENTI HAVE][WHERE !ENT1 HAS]]
Pattern 514
#PRIORITY-2 !ATT1 = !VALl <- [!ATTI = "!VALl "I
Pattern 515
#PRIORITY-2 XDATE MTH !MTH1 ENDPT <- !MTH1
Pattern 516
#PRIORITY-2 XDATE MTH !VAL1 DAY !VAL2 CYR !VAL3 ENDPT <- [!VALI/!VAL2/!VAL3]
Pattern 517
#PRIORITY-2 XDATE MTH XDATE MTH !MTHI DAY VALI CYR !VAL2 ENDPT <- [!MTH1 !VALl -, !VAL2
Pattern 518
#PRIORITY-2 XDATE MTH !MTH1 CYR !VAL1 ENDPT <- [!MTH1 -, !VALl]
Pattern 519
PRIORITY-2 XDATE XDATE RDAY 0 ENDPT <- TODAY
Pattern 520
PRIORITY-2 XDATE RDAY -1 ENDPT <- YESTERDAY
Pattern 521
PRIORITY-2 XDATE RWEEK 0 ENDPT <- [THIS WEEK]
Pattern 522
#PRIORITY-2 XDATE RWEEK -I ENDPT <- [LAST WEEK]
Pattern 523
#PRIORITY-2 XDATE RMTH 0 ENDPT <- I [THIS MONTH] MTD}
Pattern 524
#PRIORITY-2 XDATE RMTH -1 ENDPT <-[LAST MONTH]
Pattern 525
#PRIORITY-2 XDATE RCYR 0 ENDPT <--{[THIS YEAR I YTD}
Pattern 526
#PRIORITY-2 XDATE ROTR 0 ENDPT <-[THIS QUARTER]
Pattern 527
#PRIORITY-2 XDATE RQTR -1 ENDPT <- [LAST QUARTER]
Pattern 528
#PRIORITY-2 XDATE RQTR - !VAL1 ENDPT <- [!VAL1 QUARTERS AGO]
Pattern 529
#PRIORITY-2 XDATE RQTR - !VALl POINT2 RQTR -1 ENDPT <- [LAST !VALl QUARTERS]
Pattern 530
#PRIORITY-2 XDATE RCYR -1 ENDPT <- [LAST YEAR]
Pattern 531
#PRIORITY-2 XDATE RDAY - !VAL1 ENDPT <- [!VAL1 DAYS AGO]
Pattern 532
#PRIORITY-2 XDATE RDAY - !VALl POINT2 RDAY -1 ENDPT <- [LAST !VAL1 DAYS]
Pattern 533
#PRIORITY-2 XDATE RWEEK - !VALl ENDPT <- [!VAL1 WEEKS AGO]
Pattern 534
#PRIORITY-2 XDATE RWEEK - !VALl POINT2 RWEEK -1 ENDPT <-[LAST !VALl WEEKS]
Pattern 535
#PRIORITY-2 XDATE RMTH - !VALl ENDPT - [!VAL1 MONTHS AGO]
Pattern 536
#PRIORITY-2 XDATE RMTH - !VALl POINT2 RMTH -1 ENDPT <-[LAST !VALl MONTHS]
Pattern 537
#PRIORITY-2 XDATE RCYR - !VALl ENDPT <-[!VALl YEARS AGO]
Pattern 538
#PRIORITY-2 XDATE RCYR - !VALl POINT2 RCYR -1 ENDPT <- [LAST !VALl YEARS]

Page 48 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4745

5,584,024
41 42

-continued

Pattern 539
#PRIORITY-2 !ATTI XDATE !VALl -1 <- [!ATT1 >= XDATE !VALl !VAL2]
Pattern 540
#PRIORITY-2 !ATT1 XDATE !VALl -1 <- [!ATT1 {SINCE >} XDATE VALl !VAL2]
Pattern 541
#PRIORITY-2 !ATTI XDATE -1 VALl <- [!ATII <= XDATE !VALl !VAL2]
Pattern 542
#PRIORITY-2 !ATT1 XDATE -1 !VALl <- [!ATTI {BEFORE <} XDATE !VALl !VAL2]
Pattern 543
#PRIORITY-2 !ATT1 XDATE !VALl !VAL2 <- [!ATT1 = XDATE !VALl !VAL2]
Pattern 544
#PRIORITY-2 !ATTI XDATE !ALl !VAL4

<- {[!ATTI BETWEEN XDATE !VALl !VAL2 AND XDATE !VAL3 !VAL4]
!ATT1 FROM XDATE !VAL1 !VAL2 TO XDATE !VAL3 !VAL4

Pattern 545
#PRIORITY-2 SUM <- {TOTAL [SUM OF] I
Pattern 546
#PRIORITY-2 COUNT<- [HOW MANY]
Pattern 547
#PRIORITY-2 AVG <- {AVERAGE AVEI
Pattern 548
#PRIORITY-2 MIN <- MINIMUM
Pattern 549
#PRIORITY-2 MAX <- MAXIMUM
Pattern 550
#PRIORITY-2 !!FUNCTION (!ATTI) <- [!!FUNCTION !ATTI]
Pattern 551
#PRIORITY-1 SELECT COUNT <- [COUNT FIRSTWORD I
Pattern 552
PRIORITY-2 !!FUNCTIONI (!!FUNCTION2 (!ATTI))

<- {[(!!FUNCTION1 !!FUNCTION2 !ATTI]
[!ATTI !!FUNCTION1 !!FUNCTION2]}

Pattern 553
PRIORITY-0 SELECT COUNT <- [COUNT FIRSTWORD]
Pattern 554
PRIORITY-2 COUNT (DISTINCT!ATT1) <- [COUNT !ATT 1]
Pattern 555
PRIORITY-2 COUNT (!ENT1) <- [COUNT !ENTI]
Pattern 556
!ENTI WHERE <-[!ENT1 {FOR [THAT HAVE][THAT HAS] HAVING}]
Pattern 557
#PRIORITY-2 !ATTI WHERE !ATT1 <- [WHERE !ATT1 WHERE !ATTI]
Pattern 558
#PRIORITY-2 WHERE !ATT1 <- [WHERE !ATTI WHERE]
Pattern 559
#PRIORITY-2 !ENT1 WHERE <- [!ENTI THAT {HAVE HAS }I]
Pattern 560
#PRIORITY-2 (!ATTI >= !???1 AND !ATT1 <= !???2) <-

{[!ATTl BETWEEN !???1 AND !???2) <-
[!ATTl FROM !???I TO !???211

Pattern 561
#PRIORITY-2 SELECT <- [{WHERE IS DO AM WERE ARE WAS WILL HAD HAS HAVE DID
DOES CAN I LIST SHOW GIVE PRINT DISPLAY OUTPUT FORMAT PLEASE RETRIEVE
CHOOSE FIND GET LOCATE COMPUTE CALCULATE HOW WHOSE DO WHAT WHO WHEN
HOW WHOSE [WHAT {IS ARE}I} FIRSTWORDI
Pattern 562
NOT NULL <-{[IS NOT NULL][IS NOT BLANK]
Pattern 563
NULL <- [IS BLANK]
Pattern 564
=<- IS
Pattern 565
#PRIORITY-2 <><- {NEQ!= [NOT EQUAL -TO]}
Pattern 566
><- {OVER GREATER [GREATER THAN][MORE THAN] ABOVE

[NOT LESS THAN OR EQUAL - TO] I
Pattern 567
#PRIORITY-2 >= <- {[GREATER THAN OR EQUAL - TO][GT OR EQ -TO[]AT LEAST] =>
[NOT LESS THAN[]GTE - TO[]MORE THAN OR EQUAL - TO] }
Pattern 568
#PRIORITY-2 < <-{ [LESS [LESS THAN] I BELOW UNDER [NOT MORE THAN OR EQUAL - TO]
I
Pattern 569
#PRIORITY-2 <= <- {[LESS THAN OR EQUAL - TOJI[LT OR EQ - TO[[AT MOST] =<
[NOT MORE THAN][LTE - TO] }
Pattern 570
#PRIORITY-2 I <- { [EQUAL - TO]I
Pattern 571
ORDERBY <- [- AND {BY [SORTED BY]}[
Pattern 572

Page 49 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4746

5,584,024

-continued

#PRIORITY-5 ORDERBY <- [ORDER BY]
Pattern 573
#PRIORITY-0 DESC <- {(DESCENDING [IN {DECREASING DESCENDING} ORDER] }
Pattern 574
#PRIORITY-0 ASC <- {ASCENDING [IN {INCREASING ASCENDING} ORDER[I
Pattern 575
#PRIORITY-0 THATBEGINWITH ? <- [BEGINS WITH !???]
Pattern 576
#PRIORITY-0 THATENDWITH !??? <- [ENDS WITH !???]
Pattern 577
#PRIORITY-0 THATCONTAIN ?? <- [CONTAINS !??]
Pattern 578
#PRIORITY-0 THATSOUNDLIKE !??? <- [- THAT SOUNDS LIKE !???]
Pattern 579
HAVE <- HAS
Pattern 580
#PRIORITY-5 WHERE <- {HAVING [THAT HAVE1[THAT HAS]
Pattern 581
#PRIORITY-5 >= 1 <- [{FOR OFllANY SOME}j
Pattern 582
#PRIORITY-5 SELECT <- [SELECT EVERY]
Pattern 583
#PRIORITY-2 !ENTI WHERE EVERY <- [!ENT1 EVERY]
Pattern 584
EVERY <- {ALL EACH}
Pattern 585
!ENT1 WHERE <- [!ENT1 {ARE FOR WITH WHICH HAVE [THAT HAVE][THAT HAS] HAVING}
Pattern 586
#PRIORITY-2 !ATT1 EVERY !ENT1 <- [EVERY !ATT - OFENTITY!! !ENTI]
Pattern 587
>= <- { SINCE FOLLOWING AFTER I
Pattern 588
<= <- {BEFORE[PRIOR TOIPRECEEDINGI
Pattern 589
#PRIORITY-2 WHERE <- [WHERE WHERE]

When SQL Generator 20 is initiated, the patterns above
are read from an external text file. The patterns are stored in
a structure which, for each pattern, contains a priority, the
pattern as a text string, and the substitution as a text string.
Construction and operation of binding pattern matchers are
well known in the art and any of the many techniques that
provide the aforementioned capabilities is within the scope
of this invention.

2. Conversion of lexical WHERE to internal SQL format
In step 416, a set of patterns is used to convert the Where

clause of a query into SQL. These patterns help expand the
type of queries the intermediate language can handle, and
often map to SQL structures which require subqueries. By
adding additional patterns, the intermediate language can be
expanded to represent more types of complex SQL queries.

Similarly to the prior pattern matching step, this step
compares a text string of the Where clause of a query against
a pattern. The Where clause is compared from left to right
with the patterns. When there is a match, the matched
substring is removed from the Where clause string, and the
internal SQL format is supplemented according to the
defined substitution. This proceeds until the Where clause
string is empty. Patterns are applied in a pre-specified order.
Patterns take the form of:

PATTERN[] SUBSTITUTION **

PATTERNS are similar to those in the prior pattern
matcher accept that, since there has already been a pass
through the prior pattern matcher, there is no need for the {
} symbols or the [] phrase symbols. Here, [] and ** are
simply symbols used to mark the different portions of the
pattern and replacement. In addition to the !???x, !ENTx,
!ATTx, !VALx, and !FUNCTIONx binding variables, there
are also !!NUM CONSTRx which are numeric constraint

variables that match any numeric constraint (i.e. >, <, <-,
>=, <>), and NUM ATTx which match numeric columns.

35 SUBSTITUTION contains the elements to be added to the
internal SQL structure, including SELECT tables, FROM
table/alias pairs, WHERE clauses, JOINs. There are also
several keywords used in the substitution section.

BIND !ENTx The pattern matcher successively matches

40 the Where clause string against the patterns removing
portions that have been matched and then matching the
remainder. This binds the table held in the binding
variable !ENTx to the variable LAST-ENTITY for use
in matching the rest of the Where string.

45 LAST-ENTITY This contains the last table found in the
most recently matched pattern prior to the current
pattern match. Thus, this is the last table that is matched
in the last pattern that was matched. A pattern can set
what the LAST-ENTITY will be for the next matched

50 pattern by using the BIND command. At the start of the
pattern matcher, it is set to the last table processed by
the SQL generator.

ADD TO SELECT !ATTx or !NUM ATIx This
specifies to add the column in the !ATTx or !NUM

55 ATTx variable to the SELECT clause of the internal
SQL representation.

!ALIASx In SQL, the FROM clause defines the table
from which information comes, and if there is more
than one table it generally requires that an alias be

60 assigned to the table for use by the other clauses. The
general convention is for an alias to be of the form Tx
where x is a number. For example a FROM clause will
typically have the format "FROM Customer T1, Order
T2" where T1 and T2 are aliases. The SELECT clause

65 may then have the format "SELECT NAME.T1,
ORDER DOLLAR.T2". This prevents confusion if
columns from different tables have the same names.

Page 50 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4747

5,584,024
45

When !ALIASx is encountered in the substitution, an
alias is generated for storage in the SQL structure.
Since there are generally multiple aliases, x is a num-
ber. For each different x, a different alias is generated.

PKT !ENTx This returns either the table in !ENTx or the 5
base table if !ENTx contains a virtual table defined in
the conceptual layer.

PK !ENTx This returns the Primary Key of the table in
!ENTx variable.

COL At this stage, columns stored in !ATTx and !NUM 10
ATTx variables are fully qualified in the form of
table.column. COL !ATTx returns the column portion.

TABLE TABLE !ATYx or !NUM ATTx returns the table
portion of the fully qualified column name.

As an example, refer to the following pattern: 15

/* customers with orders of any product */
1 !ENTI >= I !ENT2 1]
2 FROM PKT LAST-ENTITY !ALIAS 1
3 WHERE EXISTS 20
4 SELECT*
5 FROM PKT!ENT2 !ALIAS2
6 WHERE EXISTS
7 SELECT *
8 FROM PKT !ENTI !ALIAS3
9 JOIN !ENT2 !ALIAS2 25
10 JOIN LAST-ENTITY !ALIASI
11 BIND !ENT2 **

Line 1 contains the pattern to match-it will match a
string containing "Table refl >=1 Table ref2" where the
table refs are names of tables or virtual tables stored in the

conceptual layer. The string is put in this format during the
prior pattern matching and substitution in step 404. Line 2
creates a FROM statement with the base table of the last
table referenced by SQL Generator 20 before matching this
pattern and create an alias. Line 5 creates a FROM clause
with the base table of !ENT2 with an alias distinct from the
prior alias. Line 8 is similar to lines 2 and 5. Lines 9 and 10
specify the Joins in internal SQL that will be required. The
tables specified in lines 8 and 9 with their respective aliases
need to be joined to the table specified in the FROM clause
in line 8. Finally, in line 11, !ENT2 is bound as the
LAST-ENTITY for any further pattern matching.

Therefore, if the clause being matched contains
"ORDERS>=1 PRODUCTS" and the last table referenced
as stored in LAST-ENTITY is CUSTOMERS, the resulting
internal SQL format would contain:

FROM CUSTOMERS TI
WHERE EXISTS

SELECT*
FROM PRODUCTS T2
WHERE EXISTS

SELECT*
FROM ORDERS T3
JOIN PRODUCTS T2
JOIN CUSTOMERS TI

BIND PRODUCTS**

The set of patterns employed in step 416 of the illustrated
embodiment (i.e., for one instance of an intermediate lan-
guage) is shown below.

Page 51 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4748

5,584,024
47 48

FROM CUSTOMERS T I

WHERE EXISTS

SELECT*

FROM PRODUCTS T2

WHERE EXISTS

SELECT *

FROM ORDERS T3

JOIN PRODUCTS T2

JOIN CUSTOMERS TI

10 BIND PRODUCTS **

Page 52 of 63 Petitioner Microsoft Corporation - Ex. 1008, p. 4749

5,584,024
49 50

Pattern 601
15 /* order date = january 1, 1993 */

!ATT1 XDATE !VAL1 !VAL2 []
FROM TABLE !ATT1 !ALIAS1
WHERE !ALIAS1. COL !ATT1 XDATE !VAL1 !VAL2

20 Pattern 602
/* balance between 100 and 500 */
!NUM-ATTI BETWEEN WALl AND !VAL2 [-
FROM TABLE !NUM-ATTI1 !ALIAS1
WHERE !ALIAS1 COL !NUM-ATT1 BETWEEN !VAL1 AND !VAL2

25
Pattern 603
/* balance > 500 */
!NUM-ATT1 !NUM-CONSTR1 !VAL1 []
FROM TABLE 1NUM-ATTI !ALIAS1

30 WHERE !ALIASI. COL INUM-ATT1 !NUM-CONSTR1 !VAL1 **

Pattern 604
/* customers with orders of every product *
!ENT1 WHERE EVERY !ENT2 []

35 FROM PKT LAST-ENTITY !ALIAS1
WHERE NOT EXISTS

SELECT *

FROM PKT !ENT2 !ALIAS2
WHERE NOT EXISTS

40 SELECT*
FROM PKT !ENT1 !ALIAS3
JOIN !ENT2 !ALIAS2

JOIN LAST-ENTITY !ALIAS1
BIND !ENT1 **

45

Page 53 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4750

5,584,024
51 52

Pattern 605
/* customers with orders of any product "/
!ENT1 >= 1 [ENT2 [-
FROM PKT LAST-ENTITY !ALIAS1

5 WHERE EXISTS
SELECT *

FROM PKT !ENT2 !ALIAS2
WHERE EXISTS

SELECT *

10 FROM PKT!ENT1 !ALIAS3
JOIN !ENT2 !ALIAS2
JOIN LAST-ENTITY !ALIAS1

BIND !ENT2 **

15 Pattern 606
/* salesmen that have at least I order */
>= 1 !ENT1 [
FROM PKT LAST-ENTITY !ALIAS1
WHERE EXISTS

20 SELECT*
FROM PKT !ENT1 !ALIAS2
JOIN LAST-ENTITY !ALIAS1

BIND !ENT1 **

25 Pattern 607
/* salesmen that have at least 2 orders k/

lNUM-CONSTR1 !VAL1 !ENT1 [
FROM PKT LAST-ENTITY 1ALIAS1
WHERE REVERSE !NUM-CONSTR1 !VAL1

30 SELECT COUNT (*)
FROM PKT !ENT1 !ALIAS2
JOIN LAST-ENTITY !ALIAS1

BIND !ENT1

35 Pattern 608/* customers that have every orderdate since january 1 */

EVERY !ATT1 XDATE !VAL1 !VAL2 []
FROM PKT LAST-ENTITY !ALIAS1
WHERE NOT EXISTS

40 SELECT*
FROM TABLE !ATT1 !ALIAS2
JOIN LAST-ENTITY !ALIAS1
WHERE NOT !ALIAS2. COL !ATT1 XDATE lVAL1 !VAL2

45 Pattern 609
/* salesmen that have every order-amount between 10 and 50 */
EVERY !ATT1 BETWEEN !VAL1 AND !VAL2 [
FROM PKT LAST-ENTITY !ALIAS1
WHERE NOT EXISTS

50 SELECT*
FROM TABLE !ATT1 !ALIAS2
JOIN LAST-ENTITY !ALIAS1
WHERE !ALIAS2. COL !ATTI NOT BETWEEN !VAL1 AND !VAL2 **

Page 54 of 63 Petitioner Microsoft Corporation - Ex. 1008, p. 4751

5,584,024

53 54

Pattern 610
/* salesmen that have every orderamount > 50 */
EVERY !ATT1 !NUM-CONSTR1 !VAL1 []
FROM PKT LAST-ENTITY !ALIAS1

5 WHERE NOT EXISTS
SELECT *

FROM TABLE !ATT1 !ALIAS2
JOIN LAST-ENTITY !ALIAS1
WHERE !ALIAS2. COL !ATTI1 REVERSE-PROPER !NUM-CONSTR1 !VAL1 **

10
Pattern 611
/* salesmen that have every custname that
* sounds like smith */
EVERY !ATTI THATSOUNDLIKE!??? f

[5 FROM PKT LAST-ENTITY !ALIAS1
WHERE NOT EXISTS

SELECT *
FROM TABLE !ATT1 !ALIAS2
JOIN LAST-ENTITY !ALIAS1

20 WHERE SOUNDEX (!ALIAS2. COL !ATT1)
<> SOUNDEX (' NOSPACESON !???' NOSPACESOFF) **

Pattern 612
/* salesmen that have every cname that contains s */

25 EVERY !ATT1 THATCONTAIN!??? [1
FROM PKT LAST-ENTITY !ALIAS1
WHERE NOT EXISTS

SELECT *

FROM TABLE !ATT1 !ALIAS2
30 JOIN LAST-ENTITY !ALIAS1

WHERE NOT !ALIAS2. COL !ATT1 LIKE' NOSPACESON %
!??? %' NOSPACESOFF **

Pattern 613
35 /* salesmen that have every cname that begins with s */

EVERY !ATT1 THATBEGINWITH!??? f
FROM PKT LAST-ENTITY !ALIAS1
WHERE NOT EXISTS

SELECT *

40 FROM TABLE !ATT1 !ALIAS2
JOIN LAST-ENTITY !ALIAS1
WHERE NOT !ALIAS2. COL 1ATT1 LIKE' NOSPACESON !??? %
NOSPACESOFF **

45 Pattern 614
/* salesmen that have every cname that ends with s /
EVERY !ATTI THATENDWITH!??? f-
FROM PKT LAST-ENTITY !ALIAS1
WHERE NOT EXISTS

50 SELECT *
FROM TABLE !ATTl !ALIAS2
JOIN LAST-ENTITY !ALIAS1
WHERE NOT !ALIAS2. COL !ATT1 LIKE' NOSPACESON %!???'

NOSPACESOFF **
55

Page 55 of 63 Petitioner Microsoft Corporation - Ex. 1008, p. 4752

5,584,024
55 56

Pattern 615
/* salesmen that have every cname = smith */
EVERY !ATT1 =!??? a
FROM PKT LAST-ENTITY !ALIAS1

5 WHERE NOT EXISTS
SELECT *

FROM TABLE ATTi1 !ALIAS2
JOIN LAST-ENTITY !ALIAS1
WHERE !ALIAS2. COL !ATT1 <> 'NOSPACESON !???'

10 NOSPACESOFF **

Pattern 616
/* every order where state = ct */
EVERY !ENT1 WHERE [I

15 FROM PKT LAST-ENTITY !ALIAS 1
WHERE NOT EXISTS

SELECT *

FROM PKT !ENTI !ALIAS2
JOIN LAST-ENTITY !ALIAS1

20 BIND !ENT1 **

Pattern 617
/* salary > salary of at least 1 employee */
!NUM-ATT1 !NUM-CONSTR1 !NUM-ATT2 >= 1 1ENT1 U

25 FROM TABLE 1NUM-ATT1 !ALIAS1
WHERE ANY

SELECT*
FROM TABLE !NUM-ATT2 !ALIAS2
WHERE !ALIAS1. COL !NUM-ATT1 >

30 !ALIAS2. COL !NUM-ATT2
BIND !ENT1 **

Pattern 618
/* salary > salary of at least 6 employees */

35 !NUM-ATT1 !NUM-CONSTR1 !NUM-ATT2 !NUM-CONSTR2 !VAL1 !ENT1
FROM TABLE !NUM-ATT1 !ALIASI
WHERE REVERSE 'NUM-CONSTR2 !VAL1

SELECT COUNT (*)
FROM TABLE !NUM-ATT2 !ALIAS2

40 WHERE !ALIAS1 . COL !NUM-ATT1 !NUM-CONSTR1
!ALIAS2. COL !NUM-ATT2

BIND 1ENT1 **

Pattern 619
45 /* salary > salary of the manager of that employee /

!NUM-ATT1 !NUM-CONSTR1 !NUM-ATT2 !ATT1 !ENT1 []
FROM TABLE !NUM-ATT1 !ALIAS1
WHERE !NUM-ATT1 !NUM-CONSTR1 ALL

SELECT !NUM-ATT2
50 FROM TABLE !NUM-ATT2 !ALIAS2

WHERE !ALIAS1. COL !ATT1 = !ALIAS2. PK !ENT1
BIND !ENT1

Pattern 620
55 /* salary > salary of employees [having name='smith'] /

!NUM-ATT1 !NUM-CONSTR1 !NUM-ATT2 WHERE E
FROM TABLE !NUM-ATT1 !ALIAS1
WHERE !NUM-ATT1 !NUM-CONSTR1 ALL

SELECT !NUM-ATT2
60 FROM TABLE !NUM-ATT2 !ALIAS2

Page 56 of 63 Petitioner Microsoft Corporation - Ex. 1008, p. 4753

5,584,024
57 58

Pattern 621
/* salary > salary employees [having name='smith'] */
!NUM-ATT1 tNUM-CONSTR1 !NUM-ATT2 !ENT1 [3
FROM TABLE !NUM-A-rT !ALIAS1

5 WHERE !NUM-ATTI!NUM-CONSTRI ALL
SELECT !NUM-ATT2
FROM TABLE !NUM-ATT2 !ALIAS2
BIND !ENT1

10 Pattern 622
/* salary > salary of every employee [having state=ct] */
!NUM-ATT1 !NUM-CONSTR1 !NUM-ATT2 EVERY !ENT1 [
FROM TABLE !NUM-ATT1 !ALIAS1
WHERE !NUM-ATT1 !NUM-CONSTR1 ALL

15 SELECT !NUM-ATT2
FROM TABLE !NUM-ATT2 !ALIAS2
BIND !ENT1

Pattern 623
20 /* salary > average salary of employees [having name='smith'] */

!ATT1 !NUM-CONSTRI !!FUNCTION1 (!ATT2) !ENT1 []
FROM TABLE !ATTI !ALIAS1
WHERE !ATT1 !NUM-CONSTRi

SELECT !!FUNCTIONI (!ATT2)
25 FROM TABLE !ATT2 !ALIAS2

BIND !ENT1

Pattern 624
/* salary > average salary of all employees [having state = ct] */

30 !AT1 !NUM-CONSTRI !!FUNCTION1 (!ATT2) EVERY !ENTI U
FROM TABLE !ATT1 !ALIAS1
WHERE !ATT1 !NUM-CONSTR1

SELECT !!FUNCTION1 (!ATT2)
FROM TABLE !ATT2 !ALIAS2

35 BIND !ENT1 **

Pattern 625
/* salesman that have the same state '/
SAME !ATT1 []

40 FROM TABLE !ATT1 !ALIAS1
WHERE !ALIAS1. COL ATTI1 IN

SELECT !ATTI
FROM TABLE !ATT1 !ALIAS2
WHERE !ALIAS1 . PK LAST-ENTITY <>

45 !ALIAS2. PK LAST-ENTITY **

Pattern 626
/P salesmen that have no orders /
NO !ENT1 [a

50 FROM PKT LAST-ENTITY !ALIAS1
WHERE NOT EXISTS

SELECT *

FROM PKT !ENT1 !ALIAS2
JOIN LAST-ENTITY !ALIAS1

55 BIND !ENT1 **

Pattern 627
/* balance > 500 */
!NUM-ATT1 !NUM-CONSTRI lVAL1 [I

60 FROM TABLE !NUM-ATTI !ALIAS1
WHERE !ALIAS1. COL lNUM-ATTI 1NUM-CONSTR1 !VAL1

Page 57 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4754

5,584,024
59 60

Pattern 628
/* balance > credit limit */
NUM-ATT1 !NUM-CONSTR1 !NUM-ATT2 E]
FROM TABLE !NUM-ATT1 !ALIAS1

5 WHERE INUM-ATTI !NUM-CONSTR1 !NUM-ATT2

Pattern 629
/* balance > (credit limit * 10) */
!NUM-ATT1 !NUM-CONSTR1 !COMP1 [1

10 FROM TABLE !NUM-ATT1 !ALIAS1
WHERE !NUM-ATT1 !NUM-CONSTR1 !CMP1

Pattern 630
/* (balance*5) > (credit limit * 10) */

15 !COMP1 'NUM-CONSTR1 !COMP2 []
WHERE 1COMP1 !NUM-CONSTR1 !COMP2

Pattern 631
/* balance > sum(order$) */

20 NUM-ATT1 !NUM-CONSTR1 NFUNCTION1 (!NUM-ATT2) f]
FROM TABLE [NUM-ATTI !ALIAS1
WHERE NUM-ATT-I !NUM-CONSTR1 !!FUNCTION1 (!NUM-ATT2) **

Pattern 632
25 /* sum(order$) > balance */

!!FUNCTION1 (!NUM-ATTI) !NUM-CONSTR1 !NUM-ATT2 [
FROM TABLE INUM-ATT1 ALIASI
WHERE !!FUNCTION1 (!NUM-ATT1) !NUM-CONSTR1 !NUM-ATT2

30 Pattern 633
/* sum(order$) > avg(freight) */
!!FUNCTION1 (!NUM-ATTI) !NUM-CONSTR1 !!FUNCTION2 (!NUM-ATT2) []
FROM TABLE 1NUM-ATT1 !ALIAS1
WHERE !!FUNCTION1 (!NUM-ATT1) !NUM-CONSTR1 !!FUNCTION2

35 (!NUM-ATT2)

Pattern 634
/* customer names that sound like ab */
!ATT1 THATSOUNDLIKE !??? TESTSOUNDEX U

40 FROM TABLE !ATT1 !ALIAS1
WHERE SOUNDEX (!ATT1)

= SOUNDEX ('NOSPACESON!??? 'NOSPACESOFF)

Pattern 635
45 /* customer names that contain ab */

!ATT1 THATCONTAIN !??? I
FROM TABLE !ATT1 !ALIAS1
WHERE !ALIAS1. COL]ATTI- LIKE 'NOSPACESON % !??? % 'NOSPACESOFF **

50 Pattern 636
/* customer names that begin with ab */
!ATT1 THATBEGINWITH !??? []
FROM TABLE !ATT1 !ALIAS1
WHERE ALIAS1 .COL ATTI LIKE 'NOSPACESON !??? % 'NOSPACESOFF **

55
Pattern 637
/* customer names that end with yz */
!A771 THATENDWITH !??? []
FROM TABLE 1ATT1 !ALIAS1

60 WHERE !ALIAS1. COL lATT1 LIKE' NOSPACESON % !???' NOSPACESOFF **

Page 58 of 63 Petitioner Microsoft Corporation - Ex. 1008, p. 4755

5,584,024

61 62

Pattern 638
/* cust.onum = ord.cnum */
!ATT1 !NUM-CONSTR1 !ATT2 []
FROM TABLE !ATT1 !ALIAS1

5 WHERE !ATTI !NUM-CONSTR1 !ATT2

Pattern 639
/* state = ct */
!ATT1 =!???

10 FROM TABLE !ATT1 !ALIAS1
WHERE !ALIAS1. COL !ATT1 = 'NOSPACESON !??? 'NOSPACESOFF **

Pattern 640
/* (ytd-sales - ytd-cost) between 100 and 500 */

15 !COMP1 BETWEEN !VAL1 AND !VAL2 0
WHERE !COMP1 BETWEEN !VAL1 AND !VAL2 **

Pattern 641
/* (ytd-sales - ytd-cost) > 500 */

20 !COMP1 !NUM-CONSTR1 !VAL1 []
WHERE !COMP1 'NUM-CONSTR1 !VAL1

Pattern 642
/* customer number = 100 /

25 !ALPHA-ATT1 !NUM-CONSTR1 !VAL1 []
FROM TABLE !ALPHA-ATT1 !ALIAS1
WHERE !ALIAS1. COL !ALPHA-ATT1 !NUM-CONSTR1 'NOSPACESON !VALl
NOSPACESOFF

30 Pattern 643
/* customer names > aa */
!ATT1 !NUM-CONSTRI !??? rl
FROM TABLE !ATT1 !ALIAS1
WHERE !ALIAS1 COL !ATT1 !NUM-CONSTR1 'NOSPACESON !??? 'NOSPACESOFF **

35
Pattern 644
/* names that are null /
!ATT1 NULL []
FROM TABLE !ATT1 !ALIAS1

40 WHERE !ALIAS1. COL !ATTI IS NULL**

Pattern 645
P names that are not null */
!ATT1 NOT NULL L_

45 FROM TABLE !ATT1 !ALIAS1
WHERE NOT (!ATT1 IS NULL) **

Pattern 646
/* same as product 100 */

50 = !VAL1 []
WHERE PK LAST-ENTITY = !VAL1 **

Pattern 647
/* where salesman have /

55 1ENT1 WHERE 0
BIND !ENT1 **

Pattern 648
/* of salesmen */

60 OF-ENTITY!! !ENT1 WHERE Fl
BIND 1ENT1 **

Page 59 of 63 Petitioner Microsoft Corporation - Ex. 1008, p. 4756

5,584,024
63

When SQL Generator 20 is initiated, the patterns are read
from an external text file. The patterns are stored in a
structure which, for each pattern contains, the pattern string
and the substitution string. Construction and operation of
binding pattern marchers are well known in the art and any 5
of the many techniques that provide the aforementioned
capabilities is within the scope of this invention. The pattern
marcher is recursively called when it encounters nested
Where clauses in the case of parentheticals.

C. Join Path 10
Steps 432-436 call for the computation of join paths, the

addition of any new tables to the FROM clause, and inclu-
sion of the explicit joins in the WHERE clause. The com-
putation of the join paths will produce the shortest join path
between two tables unless the administrator has defined 15
alternate join paths in the conceptual layer for the user to
choose from. With a database structure as shown in FIG. 6,
where the direction of the arrows show primary key ->for-
eign key relationships, the shortest join path can be readily
computed as follows. 20

First, a table of primary key tables is constructed, foreign
key tables following all primary key -> foreign key links, the
next table in the join chain if not the foreign key table, and
the number of joins it takes to get from the primary key table
to the foreign key table. This table can be constructed using 25
the foreign key information from the conceptual layer, or by
querying the user as to the relationships among the tables.

Second, the navigable paths are computed for the tables to
be joined by following the primary key -> foreign key pairs
in the table. The Least Detailed Table (LDT) common to the 3o
primary key -> foreign key paths of the two tables to join is
then found. The LDT is the table up on the graph. In a
one-to-many relationship, the one is the least detailed table.
If through multiple paths, there are multiple LDTs, the table
where the sum of the number of joins is the least is selected.
If the number of hops from table to table is equal, it is
particularly appropriate for the administrator to define the
join paths for user selection. If nothing is defined, one of the
paths is arbitrarily chosen. Finally, the join path can be
computed by following the primary key -> foreign key 40
relations down to the LDT and then, if necessary, backwards
following foreign key -> primary key back up to the second
table of the join if neither table is the common LDT.

Using the above procedure, the following table can be 45
constructed for the database of FIG. 6.

Number of
Primary table Foreign table Next Table Joins

50
SALESPEOPLE CUSTOMERS I
SALESPEOPLE ORDERS 1
SALESPEOPLE LINE ITEMS ORDERS 2
CUSTOMERS ORDERS 1
CUSTOMERS LINE ITEMS ORDERS 2
ORDERS LINE ITEMS 1
VENDORS PRODUCTS 1

VENDORS LINE ITEMS PRODUCTS 2
CODES PRODUCTS 1
CODES LINE ITEMS PRODUCTS 2
PRODUCTS LINE ITEMS 1

60
To find the join path from SALESPEOPLE to ORDERS

given the above table, the navigable paths are first com-
puted. For SALESPEOPLE, there are two navigable paths,
[SALESPEOPLE CUSTOMER ORDERS LINE ITEMS]
and [SALESPEOPLE ORDERS LINE ITEMS]. For 65
ORDERS, there is one path [ORDERS LINE ITEMS]. The
common LDT for SALESPEOPLE and ORDERS using

64
either of the paths found for SALESPEOPLE is ORDERS.
since there are two paths from SALESPEOPLE to
ORDERS, we calculate the number of hops to be one using
the [SALESPEOPLE ORDERS] path and two using the
[SALESPEOPLE CUSTOMERS ORDERS] path. Without
any path definitions in the conceptual layer, the SQL gen-
erator will use the shorter path.

As another example, to find the join path from ORDERS
to PRODUCTS, the navigable paths are first computed in the
same way. This yields the path [ORDERS LINE ITEMS]
for ORDERS, and [PRODUCTS LINE ITEMS] for
PRODUCTS. The common LDT for these paths is LINE
ITEMS. Following the table from ORDERS to LINE
ITEMS and then back up to PRODUCTS, the join path
[ORDERS LINE ITEMS PRODUCTS] is computed. This
technique is one of several well know in the art and
calculation of the join path is not limited to this technique in
the present invention.

In the last example above, the LINE ITEMS table is
introduced in creating the join path. Step 436 adds any new
tables introduced in the process of calculating the join path
to the FROM clause in the internal SQL structure. Also
included is an alias for the new table.

SQL requires the joins to be explicitly provided in the
WHERE clause, and step 436 implements this. The primary
and foreign key columns are stored in the conceptual layer
either by the administrator or by Query System 1 after
querying the user. Using the information, the following
statement can be included in the WHERE clause to express
the join of the above example if the alias for ORDERS,
PRODUCTS and LINE-NUMBERS is T1, T2, and T3:
"WHERE T1.PRODUCT#=T2.PRODUCTS# AND
T2.PRODUCT#=T3.PRODUCT#"

D. Example Conversion of the Intermediate Language to
SQL

The example below shows the steps in the conversion of
a query in the intermediate language of the form "SHOW
CUSTOMER NAME FOR CUSTOMERS THAT HAVE
ORDERS OF ANY PRODUCT SORTED BY CUSTOMER
CITY" to SQL code. First, in step 402, the query is token-
ized into individual units, here marked by < >

<SHOW> <CUSTOMER NAME> <FOR> <CUSTOMERS>
<THAT HAVE> <ORDERS> <OF ANY> <PRODUCT>
<SORTED BY> <CUSTOMER CITY>

These are the words and phrases made into tokens. This
distinction continues, but for purposes of the following
steps, the < > around the tokens are not included. Next, in
steps 404 and 406, the query is applied against the first set
of patterns. The above query matches patterns 512, 556, 559,
571, and 581.

The patterns are applied in order of priority first and then
order of location in the external text file. Since all patterns
are either priority 2 or 5, the order in which the patterns
above are listed are the order in which they are applied.
Therefore, pattern 512 is applied, and the query becomes:

SHOW CUSTOMERS.NAME OFENTITY!! CUSTOMERS
WHERE ORDERS OF ANY PRODUCTS SORTED BY CUS-
TOMERS.CITY

The OFENTITY!! keyword is later used in converting to
the internal SQL format and indicates that CUSTOMER-
S.NAME is a column of entity (table) CUSTOMERS. After
the last pattern is applied, patterns 556 and 559 no longer
match. Also, no new patterns match so patterns 571 and 581
remain. By Applying pattern 571, which has a higher
priority, the query becomes:

Page 60 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4757

5,584,024
65

SHOW CUSTOMERS.NAME OFENTITY!! CUSTOMERS
WHERE ORDERS OF ANY PRODUCTS ORDERBY CUS-
TOMERS.CITY

No new patterns are matched, and them is only one more
pattern to match which, when applied, yields:

SHOW CUSTOMERS.NAME OFENTITY!! CUSTOMERS
WHERE ORDERS >=1 PRODUCTS ORDERBY CUSTOM-
ERS. CITY

Steps 408-412 are not applicable to this query, since there
is no CREATE VIEW command needed for this type of
query. If it were one of a specific set of queries which require 15
CREATE VIEW SQL syntax, SQL Generator 20 would be
called recursively to create the views. Since CREATE VIEW
is not necessary, no new words or phrases for conversion
were introduced.

In step 414, the query is broken into SQL components. 20
The query then becomes:

SELECT CUSTOMERS.NAME WHERE ORDERS>=I PROD-
UCTS ORDER BY CUSTOMERS.CITY

The LAST-ENTITY variable is set to CUSTOMERS,
since the last table added to the select clause is from the table
CUSTOMERS. The OFENTITY!! keyword introduced in
the last pattern match is helpful in determining the LAST-
ENTITY.

In steps 416-418, the Where clause "ORDERS>=I
PRODUCTS" is applied to the patterns shown above, result-
ing in one match, with pattern 605. By applying this pattern,
the internal SQL structure for the query becomes:

SELECT CUSTOMERS.NAME
FROM CUSTOMERS TI
WHERE EXISTS

SELECT *
FROM PRODUCTS T2
WHERE EXISTS

SELECT *
FROM ORDERS T3
JOIN PRODUCTS T2
JOIN CUSTOMERS TI

ORDER BY CUSTOMERS.CITY

The LAST-ENTITY variable is assigned the table PROD-
UCTS.

In step 420, f there were any table names in the SELECT
portion it would expand to include all of the tables columns.
Also any virtual table would be expanded. Neither are 50
present in this example, but are performed by simple sub-
stitution.

In step 422, any columns in the SORT BY portion are
added to SELECT if not present. This step converts the
SELECT portion of the internal SQL to: 55

SELECT CUSTOMERS.CITY, CUSTOMERS.NAME

The date conversion function of step 424 is not applicable,
since there are no dates in this example. Similarly, there are 60
no virtual columns for expansion in step 426.

If any aliases need to be specified to the FROM clause,
they are made in step 428. This query created the alias
during the application of the Where rules, and no other tables
were added to the from clause. The aliases are then substi- 65
tuted into the other sections as well. The internal SQL
becomes:

SELECT T1CITY TI.NAME
FROM CUSTOMERS T1
WHERE EXISTS

5 SELECT *
FROM PRODUCTS T2
WHERE EXISTS

SELECT *

FROM ORDERS T3
JOIN PRODUCTS T2

10 JOIN CUSTOMERS TI
ORDER BY T1CITY

In step 430, the ORDER BY clause is converted to:

ORDER BY I

In step 432, required joins are computed from the internal
SQL. They are represented here by the "JOIN Table Alias"
statement, and indicates that those tables need to join the
table listed in the FROM clause above it. From the prior
discussion on join path calculations, the join paths created
from the statements:

FROM ORDERS T3

JOIN PRODUCTS T2

JOIN CUSTOMERS T1

are [CUSTOMERS ORDERS] and [ORDERS LINE-
30 ITEMS PRODUCTS].

Then, in steps 434 and 436, since the join path calculation
introduced a new table, LINE ITEMS, the table needs to be
added to the FROM clause with an alias to make:

FROM ORDERS T3, LINE ITEMS T4
35 In step 438, the joins are created and added to the where

clause from the join paths and foreign key information in the
conceptual layer to produce the following Where clause:

WHERE T3.ORDER#=T4.ORDER#

AND T2.PRODUCT#=T4.PRODUCT#

AND T1.CUSTOMER#=T3.CUSTOMER#

Steps 440-444 are not applicable to this example. Finally,
in step 446, the internal SQL structure, which is now
represented as:

SELECT T.CITY TI.NAME

FROM CUSTOMERS T1

WHERE EXISTS
SELECT *
FROM PRODUCTS T2
WHERE EXISTS

SELECT *
FROM ORDERS T3.LINE ITEMS T4
WHERE T3.ORDER# = T4.ORDER#

AND T2.PRODUCT# = T4.PRODUCT#
AND TI.CUSTOMER# = T3.CUSTOMER#

ORDER BY 1

is convened to textual SQL. The above representation of the
internal SQL structure is in proper textual structure for a
query. The process of conversion to the textual query from
the internal structure is a trivial step of combining the
clauses and running through a simple parser.

Page 61 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4758

5,584,024
67

What is claimed is:
1. A database query system for interactively creating, with

a user, a syntactically and semantically correct query for a
relational database having a plurality of tables, each of said
tables having a plurality of columns and having a predeter- 5
mined relationship to another of said tables, said system
comprising:

a conceptual layer manager for storing conceptual infor-
mation about the relational database, said conceptual
information including structural information concern- 10
ing the identity of each of the tables and columns and
the directionality and cardinality of the relationships
between the tables;

a query assistant user interface ("QAUI") presenting to
the user a selectable table set of selectable tables from 15
among the tables in the database, a selectable column
set of selectable columns from among the columns of
each of said tables in the database, and a selectable
column operations set of selectable column operations
on the columns, from which the user may select tables,
columns, and column operations to construct a database 20
query for said database in an intermediate query lan-
guage, said QAUI further accepting from the user
selections of tables, columns, and column operations;

a query assistant expert ("QAES") coupled to said QAUI
to receive from said QAUI the identity of each table, 25
column, or column operation selected by the user, said
QAES returning to the QAUI after each selection by
the user an updated version of said selectable table set,
said selectable column set, and said selectable column
operations set, said QAES excluding from said select- 30
able sets any table, column, or column operation which,
if selected by the user, would, based on the then-current
state of the database query and said conceptual infor-
mation, produce a semantically incorrect query.

2. The database query system of claim 1 wherein said 35
QAES includes:

a storage system for maintaining state information about
the current state of a database query; and

a query expert logic system specifying to said QAUI said
selectable sets by analyzing said state information 40
maintained in said storage system and said conceptual
information stored by said conceptual layer manager.

3. A database query system according to claim 2 wherein
said storage system includes:

a set of state variables; and 45

a set of access routines for adding deleting and modifying
said state variables.

4. A database query system according to claim 2 wherein
said storage system includes:

a state database, said state database containing said state 50
information; and

a set of database access routines for adding to, deleting
from and modifying said state database.

5. A database query system according to claim 2 wherein
said query expert logic system is composed of procedural 55
logic.

6. A database query system according to claim 2 wherein
said query expert logic system is a rule-based expert system.

7. A database query system according to claim 2 wherein
said conceptual information further comprise one or more of 60
the following: foreign keys, table join paths, table join
expression for non-equijoins, virtual table definitions, vir-
tual column definitions, table descriptions, column descrip-
tions, hidden tables, and hidden columns.

8. A database query system according to claim 2 wherein 65
said conceptual information further comprises table join
expression for non-equijoins.

9. The database query system of claim 2 wherein if said
current state of said database query includes an aggregate
column operation on a column in a first table, said query
expert logic system excludes from said selectable table set
any other of said tables that is more detailed than said first
table or is joinable with said first table only through another
more detailed table.

10. The system of claim 2 wherein the database includes
at least four tables and wherein if in the then-current state of
said database query two of the tables are selected, said query
expert logic system excludes from said selectable table set
any other of said tables that does not form in combination
with said two selected tables a navigable set.

11. The system of claim 2 wherein said query expert logic
system excludes from said selectable column set for any
selected one of said tables any numeric column for which,
if in said current state of said database query an aggregate
column operation is applied to another column based on said
selected table or based on another table having a one-to-one
relationship with said selected table.

12. A database query system according to claim 2 wherein
said conceptual information further comprises virtual col-
umn definitions.

13. A database query system according to claim 12
wherein said virtual column definition contains primary key
and foreign key references to define a join operation.

14. A database query system according to claim 1 wherein
said each of said selectable table set, said selectable column
set, and said selectable column operation set is mutually
exclusive to a corresponding nonselectable table set, non-
selectable column set, and nonselectable column operation
set and is a subset of all tables, columns, and column
operations, respectively, maintained by said conceptual
layer manager which the user may next select in building a
semantically correct database query.

15. A database query system according to claim 14
wherein said QAUI indicates to the user said selectable sets
set of permissible selections and not displaying said nonse-
lectable sets.

16. A database query system according to claim 14
wherein said QAUI displays said nonselectable sets and
visually differentiates said selectable sets from said nonse-
lectable sets.

17. A database query system according to claim 16
wherein said QAUI visually differentiates said sets by color.

18. A database query system according to claim 16
wherein said QAUI visually differentiates said selectable
and nonselectable sets by type characteristic.

19. The database query system of claim 1 further com-
prising a query generator coupled to said QAUI to receive
from said QAUI a completed database query in said inter-
mediate query language, said query generator converting,
said query from said intermediate query language into a
target query language different from said intermediate query
language.

20. A database query system according to claim 19
wherein said target query language is Structured Query
Language (SQL).

21. A database query system according to claim 19
wherein said query generator converts said intermediate
language query into said target language by a set of succes-
sive transformations.

22. A database query system according to claim 21
wherein at least one of said set of successive transformations
is transformation by pattern substitution.

23. A database query system according to claim 21
wherein said set of transformations comprises:

Page 62 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4759

5,584,024
69

a set of structural transformations;
a set of transformation to include inferred information;

and
a set of transformations by pattern substitution.
24. A method for interactively building a syntactically and 5

semantically correct query of a relational database from
selections by a user, said database having a plurality of
tables, each of said tables having a plurality of columns and
having a predetermined relationship to another of said
tables, said method comprising the steps of: 10

presenting to the user a selectable table set of selectable
tables from among the tables in the database;

receiving from the user a selection of a first one of said
selectable tables; 15

presenting to the user a selectable column set of selectable
columns from among the columns based on said first
selected table;

receiving from the user a selection of a first selected
column from among said selectable columns; 20

presenting to the user a selectable column operation set of
selectable column operations applicable to said first
selected column;

receiving from the user a selection of one of said column 25
operations;

presenting to the user a first updated version of said
selectable table set from which the user may select a
second selected table, said selectable table set exclud-
ing any table that is more detailed than said first 30
selected table on which said selected column operation
is applied or that is joinable with said first selected table

only through a more detailed table if said selected
column operation is an aggregate operation.

25. The method of claim 24 wherein said first updated
version of said selectable table set further excludes any table
that is not joinable with said first selected table.

26. The method of claim 25 wherein the database includes
at least four tables and further comprising the steps of:

receiving from the user a selection of a second selected
table from said first updated version of said selectable
table set; and

presenting to the user a second updated version of said
selectable table set from which the user may select a
third selected table, said selectable table set excluding
any table the selection of which does not form in
combination with said first and second selected tables
a navigable set.

27. The method of claim 26 further comprising the steps
of:

receiving from the user a selection of a second selected
table from said first updated version of said selectable
table set; and

presenting to the user an updated version of said select-
able column set based on said second selected table,
said selectable columns set excluding any column that
contains non-numeric information if said second
selected table is the same as said first selected table or
has a one-to-one relationship with said first selected
table.

Page 63 of 63
Petitioner Microsoft Corporation - Ex. 1008, p. 4760

MVIEWS: Multimodal Tools for the Video Analyst

Adam Cheyer
Artificial Intelligence Center

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

+14158594119
cheyer@ai.sri.com

ABSTRACT

Full-motion video has inherent advantages over still
imagery for characterizing events and movement. Military
and intelligence analysts currently view live video imagery
from airborne and ground-based video platforms, but few
tools exist for efficient exploitation of the video and its
accompanying metadata. In pursuit of this goal, SRI has
developed MVIEWS, a system for annotating, indexing,
extracting, and disseminating information from video
streams for surveillance and intelligence applications.
MVIEWS is implemented within the Open Agent
Architecture, a distributed multiagent framework that
enables rapid integration of component technologies; for
MVIEWS, these technologies include pen and voice
recognition and interpretation, image processing and
object tracking, geo-referenced interactive maps,
multimedia databases, and human collaborative tools.

Keywords

Multimodal pen and voice user interfaces, image
processing and object tracking, video analysis and
annotation, agent architecture.

INTRODUCTION

Although sophisticated tools are now starting to appear
that assist an image analyst in manipulating still photos,
few systems exist to help an operator efficiently exploit
fill-motion video. Given video’s inherent advantages for
characterizing events and movement in a scene, the role of
video analysis is taking on increased importance in
military, intelligence, and surveillance domains. By
considering how video can be best exploited in these
contexts, we realize that video analysis poses new
challenges and opportunities:

Permission to make digital/hard copies ofall or part ofthis material for
personal or classroom use is graoted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the eopy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission ofthe ACM, Inc. To copy other&e,
to republish, to post on servers or to redistribute to lii requires specific
permission awl/or fee.
IUI 98 San Francisco CA USA
Copyright 1998 ACM 0.89791-955-6198/01..%3.50

Luc Julia
STAR Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

+14158594269
julia@speech.sri.com

At the 1996 Atlanta Olympics, after a bomb went off
inside of Olympic Park, investigators had to deal with
the task of thoroughly searching for clues within some
600 amateur videos related to the incident. Had there
been better tools available for indexing, time
stamping, annotating, classifying and cross-
referencing the videos, this process would have been
much more manageable.

The U.S. military, as part of peacekeeping and
intelligence missions, routinely sends unmanned
Predator airplanes over target sites of interest. While
pilots remotely guide the airplane over the terrain, a
second team of analysts is responsible for extracting
information of relevance from the video and
associated metadata. Although all results of these
missions are recorded on videocassette, there is
currently no automated method for querying this data
repository at a later date. A searchable index would
help ensure that this resource is not wasted, and
providing the ability to replay audio and written
annotations would heIp the anaIysts reviewing a video
to quickly establish context for what they are seeing.

In many surveillance or security-related tasks, a single
operator is responsible for monitoring the output of
many cameras distributed throughout the site. Object
detection and tracking, in conjunction with automated
alerts and sensor management, can augment the
operator’s ability to efficiently comprehend and fuse
numerous information streams.

In this paper, we present a demonstration system called
MVIEWS, for Multimodal Video Imagery Exploitation
Workstation, that attempts to address some of these
challenges by bringing together multiple commercial and
research technologies into a single toolset. Although each
technology is interesting by itself, it is the inregrared use
of these capabilities that can greatly enhance the
effectiveness of a video analyst.

55

GOOGLE EXHIBIT 1023Page 1 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4761

Figure 1. Video Player. Moving objects in surveillance
regions are tracked (plane). Multimodal commands can

target specific objects (boat).

SYSTEM DESCRIPTION AND DESIGN

Design Approach,

The original design for MVIEWS was based on a vision
and on a set of guiding principles. The vision can be
described as follows.

Imagine a single operator at a terminal, exploiting ten
ground and aerial video sensors. Software agents are
providing real-time object detection, alerts, queuing,
tracking, and information fusion. The operator uses only
voice commands and an electronic pen to control the
workstation and sensors, to add multimodal annotations to
the video streams, and to collaborate with operations and
intelligence specialists at remote locations. As a situation
develops, agents and humans work together on assessment
and characterization, while documenting the process
through semiautomatically generated reports.

When setting out in pursuit of this vision, we tried to also
keep in mind a few frequently overlooked design criteria:

l People are indispensable. They are good at processing
complex visual problems, but they are subject to
fatigue and boredom. Automation is an aid, not a
replacement.

l User interfaces for complex tasks can quickly become
complex. We needed to create as natural, invisible
and efficient an interface as possible, combining
graphical user interface (GUI) techniques when
effective with other, more fluid modalities, such as
speech and pen.

0 The utility of information greatly increases in
conjunction with other supporting information. Thus,

56

Figure 2. Multimodal Map. Objects tracked in a video
are simultaneously displayed on a geo-referenced map.

we required an open and extensible system that places
the needed information and tools at the operator’s
fingertips.

System Description

The first public demonstration of MVIEWS was given at
the Exploitation Technology Symposium (ETS-97) held at
Naval Research and Development (NRAD) headquarters
in San Diego. Describing this event will provide a good
overview of how the current MVIEWS implementation can
be used.

Given the visuals provided by NRAD’s location, we chose
to exhibit MVIEWS using a border patrol scenario. After
securing the necessary permits, we installed a camera on
the roof of the demonstration building, such that it
overlooked activity in the harbor below and at a nearby
military airport. Our video analyst could investigate the
movements of small recreational boats, an occasional
commercial or military ship, plenty of windsurfers, and a
few airplanes and helicopters.

Inside the exposition’s demonstration facilities, an
operator was seated in front of a Sun1 Ultrasparc 1
computer, monitoring the live video feed. The operator
interacts with MVIEWS by using pen and voice (Figure l),
to perform one of the following functions:

l Add annotations, simply by speaking and drawing
directly on top of the video. As an example, a
surveillance operator might speak ‘The movements of

1 All product or company names mentioned in this
document are the trademarks of their respective holders.

Page 2 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4762


~~~~~~~-~~.~~~~~~:_i_,l 
R 
Figure 3. Media Track Editor. A video is replayed with 
multimedia overlays, and indexed fields are located in 

the video or the video database. 

this motorboat appear unusual” while drawing a circle 
around the vessel and tracing its path using the pen. 

l Generate reports, constructed from multimodal input 
and multimedia data. A typical interaction might 
contain: “Report, convoy of three vehicles, heading 
rapidly west along access road.” This information 
would be saved with the video frame and associated 
metadata, including time, date, camera type, and 
spatial coordinates. 

l ,Specifr commands to the system, involving object 
tracking (e.g., “Track this boat”), image processing 
(e.g., “Stabilize image”, “Grab this region”), and 
setting alerts (e.g., “Notify me if this object moves” or 
“If more than three objects enter this region, alert 
me”). 

l Collaborate with remote participants, for example 
“Bob, can you identify this vehicle type?” 

In addition to the video display, the operator could call up 
an interactive map (Figure 2), simultaneously displaying 
any objects tracked in the video as geo-referenced points in 
2D space. The map display, also controlled through pen 
and voice, provided additional information about the 
region. For example, in the Predator UAV domain, the 
map allows the operator to examine the terrain ahead of 
the plane’s path, and call up supplementary data (e.g., 
“Show me all military bases near here”). 

As a means of attracting further attention to our ETS 
demonstration, we sent out a person carrying a wireless 
handheld pen computer to mingle with a reception 
gathering nearby. After targeting a small group, the 
demonstrator would show them the map display, look over 
the balcony and say, “See that boat down there? It’s being 
automatically tracked by software agents from a live video 
image, and this computer is receiving the reports. Why 
don’t you go in there and check it out?’ 

Near the first workstation, we positioned another computer 
where a second analyst could work collaboratively with the 

r ! 
AGENT FACILiTATOR / 

Figure 4. MVIEWS architecture. 

first. While one operator monitored and annotated the 
continuously advancing live video feed, the second was at 
liberty to provide more detailed analyses of recorded 
segments of the video. Using the Media Track Editor 
(Figure 3) as his primary interface, the analyst navigated 
within the video segment, requested image enhancements, 
performed timing and distance measurements, and queried 
the multimedia database for other video segments of 
interest. The Media Track Editor is structured as a 
timeline, with annotations, extracted frames and clips, and 
recognized speech and pen clearly highlighted. By 
providing an interface for quickly skimming through a 
video clip and replaying selected sections along with their 
multimodal annotations, MVIEWS establishes context for 
what the analyst is examining, accenting what was 
important to the operator at the time the video was 
recorded. Instead of fast forwarding through the entire’ 
video clip to understand its content, an analyst can save 
time by perusing annotations from the timeline at different 
granularities of detail. 

IMPLEMENTATION 

To implement MVIEWS, we needed to quickly integrate 
numerous technologies, written in a variety of 
programming languages, some requiring specialized 
computer hardware. To facilitate a loosely coupled, 
dynamic, heterogeneous and distributed integration, we 
took advantage of the services provided by the Open Agent 
Architecturen’ (OAAm).2 

The Open Agent Architecture 

Similar in objective to distributed object frameworks such 
as OMG’s CORBA or Microsoft’s DCOM, a distributed 
agent architecture such as the OAA can provide 
integration of components written in different 

2For more information about the OAA, see 
http://www.ai.sri.com/-oaa/ 

57 

Page 3 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4763



programming languages3 and running on different 
platforms.4 However, OAA agents possess qualities 
beyond ordinary distributed objects. Agent interactions are 
more flexible and adaptable than tightly bound IDL5 
method calls in CORBA or DCOM, and are able to take 
advantage of parallelism and dynamic execution of 
complex goals. Instead of preprogrammed unitary method 
calls to known object services, an agent can express its 
requests in terms of a high-level logical description of 
what it wants done, along with optional constraints 
specifying how the task should be performed. This 
information is processed by one or more Facilitator agents, 
which plan, execute and monitor the coordination of the 
subtasks required to accomplish the end goal. 

The OAA has been used to implement more than twenty 
different applications, including 

l Multi-robot control and coordination [4] 

l Oftice automation and unified messaging [2] 

l Collaborative multimodal user interfaces [l, 121 

l Frontends [8] and backends [ 1 l] for the Web 

l Development tools [lo] for creating and assembling 
new agents with the OAA 

Each OAA project can take advantage of the core services 
provided by the architecture as well as of the growing 
number of technologies now accessible through an agent 
interface. These services and technologies include speech 
recognition, natural language understanding, text 
extraction, multimodal fusion and reference resolution, 
reactive planning, virtual reality, image processing, web- 
related technologies, user modeling, and collaboration 
tools. 

The core services of the OAA are implemented by an agent 
library, which has been ported to several different 
programming languages, working closely with a 
Facilitator agent, responsible for domain-independent 
coordination and routing of information and goals. These 
basic services can be classified into three areas: agent 
communication and cooperation, distributed data services, 
and trigger management. 

lnteragent Communication Language 
The Interagent Communication Language (XL) provides 
the means for interaction among agents. When an agent 

3 Programming languag es: C, C++, Prolog, Lisp, Java, 
Borland Delphi, and Microsoft Visual Basic. 

4 Platforms: UNIX (SunOs, Solaris, Lynx), Windows (3.1, 
95, NT), all Java platforms. 

5 Interface Definition Language: specifies an object’s 
methods using a &+-like header file. 

wants to make a request of the agent community, it 
describes the goal it wants achieved as well as parameters 
specifying constraints on how the goal is to be 
accomplished. The request is sent to a Facilitator agent, 
which uses the declarative specifications it stores about 
each agent’s capabilities, and the parameters defined for 
the incoming goal, to produce a fully specified execution 
plan detailing tasks for distributed agents to perform. The 
Facilitator agent is then responsible for monitoring and 
coordinating the execution of the plan, by routing requests 
(potentially to agents in parallel), collecting results, 
backtracking when subgoals fail, and finally providing the 
results to the requesting agent. 

ICL requests are expressed using the syntax and semantics 
of Prolog, a decision influenced by our desire to involve 
the user as closely as possible in agent interactions. ICL 
expressions can be generated from the Prolog-based logical 
forms produced by many natural language parsers, 
allowing the user to make requests of the agent community 
in plain English. As a simple example, the English 
request “What is the telephone number of John Bear’s 
manager?” would be converted to the ICL expression: 

oaa-Solve( (manager('John Bear', M), 
phone-number(M, P)), 
[cwery(var(P) )I 1. 

Parameters can specify both low-level constraints or high- 
level advice. Examples of low-level constraints might 
include the maximum amount of time for the solution, the 
maximum number of solutions returned for a query, how 
the information should be returned (e.g., as a blocking call 
or asynchronous streamed response), and rarely, which 
agents are allowed to participate in the computation. 

As an example of high-level advice parameters, notice that 
the way parallelism should occur depends on the type of 
task being solved. If three email agents are available on 
the network, the request ‘Send this by email to Luc” 
should probably not be sent to all three agents at once, but 
rather if the first doesn’t succeed, the others should be 
tried in succession. Compare this with a database query, 
where it might be very desirable to send the request in 
parallel to as many available agents as possible. When 
solving a math problem, different answers returned by 
different mathematicians could signal a problem, whereas 
if the participants are students composing poems, varied 
answers are a requirement. 

Data Management 
OAA’s distributed data facilities share much in common 
with the distributed goal resolution process described in 
the previous section. In the same way that agents register 
the tasks they are capable of performing, agents also 
declare descriptions of the data they manage. An agent 
can then add, delete, change, or query a data value, and 

58 

Page 4 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4764



this request will be automatically routed by the Facilitator 
agent to the appropriate agent or agents. 

Data declarations and functions also make use of the 
notion of parameter lists. In this case, parameters specify 
information about permissions, scoping, persistence, 
whether duplicate values are allowed, and so forth. Data 
parameters are also used provide synchronous 
collaboration features to OAA applications; the ‘shareable’ 
attribute determines whether a data value is synchronized 
among all participants of a distributed collaborative 
session. 

Triggers 
Triggers allow an agent, or set of agents, to monitor some 
potentially complex state in the world, performing an 
action if the trigger’s test conditions become true. 

Triggers or rules exist in many commercial systems today; 
for instance, mail programs often allow the user to define 
actions (e.g., delete, archive, forward) to perform if an 
email of a certain type arrives. However, in these systems, 
the action must be predefined and fixed. With OAA 
triggers, the action part of a trigger may be any compound 
task executable by the dynamic community of agents. As 
new, perhaps unanticipated, agents connect to the system 
at runtime, what the user can say and do literally changes. 
For instance, if a new fax agent suddenly becomes 
available, the user can now say or write “If email 
arrives..., fax it to Bill,‘, even if this action had never been 
conceived of by the original developers of the application. 

Four types of triggers are currently defined by the OAA: 

1. 

2. 

3, 

4. 

Data triggers: “Ifthe airlineflight time changes... ” 
Time triggers: “In ten minutes...“, “every Thursday 
from now until Christmas... ” 
Communication triggers: “Zfany agent sends Msg... ” 
Task triggers (specific to the domain of a particular 
agent): “If mail arrives about...“, “If this Web page 
changes . . . ” 

Triggers are stored using the data management facilities, 
so they can be added, deleted, inspected, protected, and 
automatically distributed like any other database predicate. 

MVIEWS Component Technologies 

The MVIEWS application is implemented as a collection 
of OAA agents, as depicted in Figure 4; we’ll now take a 
closer look at each of the component technologies. 

Video Player 
Two separate video players have been adapted for use with 
the MVIEWS system, each with slightly different 
properties. The first is a public domain UNIX-based 
program called XAnim, a software-based player capable of 

displaying numerous video tile formats, including MPEG 
and AVI. The second, MP, was written to take advantage 
of special libraries provided by Sun to access their 
hardware video boards. MP can play either from MPEG 
files or a video source (e.g., live camera or VCR). We are 
considering integrating yet a third player to provide a 
Windows PC solution. 

The video players were adapted to work within the OAA 
framework by including the OAA agent library, and by 
publishing the video players’ capabilities using the ICL 
formalism. In addition, the programs were extended to 
permit drawing on top of the video by using a mouse or 
electronic pen. 

Speech Recognition 
Speech recognition (SR) is used both for entering 
commands to the system and for extracting content from a 
user’s verbal annotations for video indexing and report 
generation. The SR technology used by MVIEWS is a 
large vocabulary, continuous speech, speaker-independent 
system developed at SRI’s STAR Laboratory and then 
commercialized by a spin-off company, Nuance 
Communications.6 The recognizer is based on a hidden 
Markov model approach, and takes as input a set of 
models either compiled from a regular expression 
grammar notation, or constructed through a learning 
process over a large corpus of data. In the current 
demonstration system, a grammar defines the set of 
possible spoken commands, as well as the set of keywords 
and phrases that can be recognized from annotations or 
verbal reports. 

Natural Language 
Two aspects of natural language (NL) processing are used 
within the MVIEWS system to handle the results from the 
speech recognition process: NL understanding, to interpret 
commands to the system, and information extraction from 
text, to produce indices, summarizations, and reports from 
spoken annotations. 

The OAA is often used to integrate different levels of NL 
understanding, depending upon the requirements of the 
system. In most OAA-based systems, prototypes are 
initially constructed using relatively simple NL 
components, and as the vocabulary and grammar 
complexities grow, more powerful technologies can be 
incrementally added. The current MVIEWS 
demonstration system has a relatively limited set of 
commands that are processed by two of our low-end NL 
systems: Nuance’s template-slot tools and DCG-NL, a 
Prolog-based top-down parser. As the MVIEWS prototype 
matures, more efficient NL systems can be added, such as 

6 http:llwww.nuancecom.coml 

59 

Page 5 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4765



Pointing Selecting Arrow 
(objects or region) (direction) (mtking) 

Figure 5. Gesture set. 

Gemini, a robust bottom-up parser based on unification 
grammars, which interleaves syntax and semantics. 

A current DARPA-funded project, which will be folded 
into the MVIEWS system, focuses on the information 
extraction task in the Predator domain. Applying SRI’s 
FASTUS [6] and adding better domain coverage for 
speech recognition will be an improvement over the 
current implementation, which is based on simple keyword 
spotting and a hand-coded grammar defining possible 
reported utterances. 

Pen Recognition and Annotation 
The pen modality is used in conjunction with speech to 
add multimodal annotations to a video document, and to 
issue commands to the system. For commands, a set of 
pen gestures (Figure 5) can be recognized using algorithms 
developed in [9]. 

In our experience, most pen annotations made by users 
also fall into the class of gestures, usually supplemented by 
a descriptive audio annotation. Since handwriting has 
rarely been used, incorporating handwriting recognition 
into the system has been a low-priority task. However, 
UNIX-based handwriting recognition libraries have been 
obtained from Communications Intelligence Corporation 
(CIC7 ), another SRI spin-off company, and may play an 
important role for labeling objects with out-of-vocabulary 
names, a task difficult for speech recognition systems. 

Image Processing and Object Tracking 
The problem with most image processing and object 
tracking algorithms is that they are often highly 
specialized, working well for certain situations and not at 
all in others. An image and video analyst needs to have an 
entire library of routines at his or her call. 

In the current MVIEWS prototype, we have integrated 
several image functions, such as stabilization and 
extraction of selected regions, as well as two object 
tracking algorithms. 

The first of the two tracking algorithms is adapted for 
detecting fast-moving, relatively small objects within 
specified surveillance regions in the image. This process 

7 http:/lwww.cic.coml 

requires specialized hardware, running on a Datacube Max 
Video 200 pipeline image processing system (MVZOO) 
with a Motorola 68040 host processor. The Lynx 
operating system on the MV200 is capable of reading and 
writing directly in the image memories, using a VME bus. 
The signal from the incoming video stream is digitized 
into 256 gray levels and then processed at close to 15 
frames per second. Each processing step involves 
detection of motion between adjacent image frames, 
followed by temporal correspondence to correlate the 
moving segments in the video sequence. The strength of 
the approach is in the temporal association process, which 
is capable of handling occlusions of moving targets and 
false ahurns from the motion algorithm. As moving 
targets are detected, their position and ID are passed 
through the OAA to all interested agents. 

The second tracking algorithm, running locally on the Sun 
Ultrasparc workstation, is good at tracking slow-moving 
objects, given their initial position (e.g., ‘Track this car”, 
or ‘Tf this boat moves, notify me”). This routine works by 
comparing via convolution a small subimage of the current 
video frame with a same-sized subimage from the previous 
ffame. Tracking is initiated by selection of a seed 
subimage covering the object to be tracked. In our 
experiments, these subimages ranged in size from 11x11 to 
27x27 pixels, depending on the size of the object to be 
tracked. The object model is formed by storing the 
lccation=of the subimage within the frame along with the 
pixel values of the subimage and the square root of the 
sum of all pixel values within the subimage. 

To find the location of the tracked object in a new frame, 
we find the local maximum of convolution scores by 
shifting the model subimage around the neighborhood of 
its previous location. When a local maximum is found, the 
pixel values of the subimage centered at that location in 
the new frame are taken as the new model. The model is 
updated every frame. The benefit is that the model can 
adapt to changing views of the tracked object. The 
drawback is that the algorithm can sometimes be fooled 
when a tracked object moves into a region where it cannot 
be distinguished from the background. 

Multimodal Map 
The multimodal map (MMAP) component of the 
MVIEWS system allows a user to interact with a dynamic 
map display through a natural combination of speaking, 
writing, and drawing directly on the map surface, 
Multiple modalities may be entered simultaneously or in 
any sequential order, and merged to produce a command 
or request. This fusion makes use of the inherent 
parallelism of the OAA, with multiple agents competing 
and cooperating to resolve ambiguities arising during the 
interpretation process. 

60 

Page 6 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4766



The multimodal map has been used in various OAA 
applications, such as providing a natural user interface to 
travel-related sources on the Web [l], and for guiding and 
monitoring multiple mobile robots [4]. Adding MMap’s 
functionality as part of the MVIEWS application 
demonstrates OAA’s extensibility and flexibility, in that 
no code had to be written to incorporate the technology 
into the MVIEWS domain. 

Human Collaborative Tools 
Within the OAA, a human user will typically interact with 
distributed software agents, and the agents themselves will 
communicate and cooperate with each other. A natural 
extension to this paradigm is to allow multiple human 
users to work with each other in a collaborative fashion. 

The OAA has been extended to include services that 
facilitate adding synchronous collaborative functionality to 
any O&4-based user interface. The session management, 
state replication and an activity-based floor mechanism are 
provided in a peer-to-peer topology by the Synchronous 
Collaborative Object Oriented Toolkit (SCOOT) [3], 
developed by SRI’s Augmented Collaboration Croup, or 
alternatively by a purely OAA-based collaboration 
mechanism (centralized). 

Lessons Learned 

Although we have not yet run formal experiments to 
evaluate the utility of the MVIEWS system, our 
experiences do suggest several lessons. 

The first is simply that that there is a strong need in the 
Intelligence community for better tools to help an analyst 
interact more efficiently with video. Video’s role in the 
analysis process is growing: in the case of the Predator 
UAV, its camera was originally intended strictly as sensor 
for the pilot to guide the plane, but ended up playing a role 
in battlefield assessment. In general, the MVIEWS 
concept has been well received at ETS and elsewhere, and 
many viewers have suggested domains to which it could be 
applied. 

On the implementation side, two important questions 
were: how much and what kind of information should flow 
among distributed agents; and how should we deal with 
inaccuracies in technologies such as speech recognition or 
image processing. 

Regarding information routing, we chose to limit 
interagent exchange to messages containing semantic 
representations of the data, not the data itself (instead of 
moving video across a network, we split the physical 
cables so each machine could have a local input source). 
Agents registered triggers, filters and constraints on 
broadcast data (as described in the section on OAA) and 
simple heuristics were inserted for regulating the rate with 
which information needed to be updated: a fast moving 

object requires more frequent updates, than a slow one. 
Clearly, our simple prototype has not solved all hard 
problems in this area; however the facilitated approach 
seems promising for managing an efficient data flow. 

Regarding recognition technologies, we found that speech 
and pen are currently reliable enough to be of use for 
controlling tasks in the user interface, but that for other 
tasks (speech: transcription of annotations; image 
processing: object tracking), recognition technologies 
produce imperfect results given a broad class of input. We 
chose to design MVIEWS such that as these technologies 
mature, they can take on an increased role. Multimedia 
annotation and playback are reliable and useful features by 
themselves, and provide data on which transcription and 
classification technolgies can act in the future. An analyst 
can apply image functions such as stabilization and 
enhancement with confidence, and then get a sense of 
when this can be augmented by object tracking or 
detection. With image processing, a single algorithm will 
not be sufficient for all input, so we incorporated multiple 
algorithms, with their use under the direction of the 
human user. Eventually, we may be able to automate the 
decision about under which conditions each should be 
used. 

RELATED WORK 

Commercially available tools provide much useful 
functionality for video manipulation and annotation. One 
good example is ZNideoware from Z Microsystems.8 
ZNideoware allows a user to play digital video clips and 
add audio annotations. It possesses an innovative feature 
that tries to classify the video by examining the closed- 
caption text embedded within, and then sorting the video 
appropriately into different folders. 

Another example of a system for video annotation and 
analysis is VANNA [5]. This application provides a 
highly tailorable user interface, and an efficient system for 
annotating the video, using a variety of input devices, such 
as mouse, trackball, keyboard, touch screen and electronic 
pen. 

Although commercial systems provide some of the 
functionality that one would want for video annotation, 
they are missing features that we feel are required for 
effective video exploitation, such as collaboration, natural 
user interfaces, and the ability to call up a variety of 
related data and tools from the same user interface. 
Although several research systems attempt to apply more 
advanced technologies to image processing [13], we are 
not aware of such systems focusing on video. 

One effort that has a great deal in common with MVIEWS 

8 Z Microsystems’ homepage: http://www.zmicro.coml 

61 

Page 7 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4767



is a DARPA-funded project called QuickTurn [7], by 
MITRE and Carnegie Mellon University. MVIEWS and 
QuickTurn share many of same goals (an integrated 
environment combining advanced user interfaces with 
tools and databases for the intelligence analyst) and 
technologies (collaboration, mediated databases, maps, 
image tools). However, MVIEWS attempts to focus its 
solutions within the context of the video analyst (e.g., 
object tracking, indexed search on pen and voice 
annotations). 

CONCLUSIONS AND FUTURE DIRECTIONS 

The current version of MVIEWS can only be considered a 
working prototype system, but this IR&D project has 
already shown potential for enhancing the tools and 
techniques available in the domain of video exploitation 
and analysis. By using an open, distributed approach as 
the underlying architecture, we were able to rapidly bring 
together pertinent technologies, and facilitate the future 
development of the system as components are added, 
improved or replaced. Although MVIEWS consists of a 
number of capabilities that are interesting by themselves, it 
is the integrated use of these capabilities that can greatly 
enhance the effectiveness of the operator. 

Improvements and extensions will be made to the system. 
One comparatively large project is already under way to 
improve the speech recognition and data extraction from 
annotations in the Predator domain, by combining robust 
speech recognition and the FASTUS text extraction 
software. Other improvements to MVIEWS will involve a 
wider use of the collaboration technology, adding more 
object tracking and image processing techniques, and 
identifying and integrating additional video-related 
technologies. We will also pursue the opportunity to 
perform user experiments to better quantify benefits of the 

3. 

4. 

pages l-8. Stanford University, March 1994. 

Craighill, E., Fong, M., Skinner, K., Lang, R., and 
Gruenefeldt, K. SCOOT: AnObject-Oriented Toolkit 
for Multimedia Collaboration. In Proc. ACM 
Multimedia ‘94, pages 4149, San Francisco, 
October 1994. 

Guzzoni, D., Cheyer, A., Julia, L., and Konolige, K. 
Many Robots Make Short Work. AI Magazine, Vol. 
18, Number 1, pages 55-64. Spring 1997. 

5. Harrison, B. L. and Baecker, R. M. Designing Video 
Annotation and Analysis Systems. In Proc. of the 
Graphics Intet$xe 92 Conference, pages 157-166. 
Vancouver, B.C., May ll-15,1992. 

6. Hobbs, J., Appelt, D., Bear, J., Israel, D., Kameyama, 
M., Stickel, M., and Tyson, M. ‘FASTUS: a cascaded 
finite-state transducer for extracting information from 
natural-language text,” in Finite State Devices for 
Natural Language Processing (E. Roche and Y. 
Schabes, eds.), Cambridge MA: MIT Press, 1996. 

7. Holland, Roderick. QuickTurn: Advanced Interfaces 
for the Imagery Analyst. DARPALITO Intelligent 
Collaboration & Visualization (K&V) Program PI 
Meeting. Dallas, Texas, October 10, 1996. 
http://www.ito.darpa.mil?Proceedings/icv/agenda.html 

8. Julia, L., Cheyer, A., Neumeyer, L., Dowding, J., and 
Charafeddine, M. 
HTTP://WWW.SPEECH.SRI.COM/DEMOS/ATIS. In 
AAAZ Spring Symposium, pages 72-76. Stanford 
University, March 1997. 

9. Julia, L., and Faure, C. Pattern recognition and 
beautification for a pen-based interface. In 
ICDAR’95, pages 58-63, Montreal, Canada, 1995. 

system. 

ACKNOWLEDGMENTS 

This IR&D-funded project is the result of contributions 
from many talented people spanning six centers within 
SRI. The participants include: Jeff DeCurtins, Gopalan 
Ravichandran, Bikash Sabata (video and image 
processing), Greg Myers, Bob Bolles, Eric Rickard, Joel 
Cain (vision, design and direction), Luc Julia, Adam 
Cheyer (agent architecture, speech, gesture, handwriting). 

development tools for the open agent architecture. In 
10. Martin, D., Cheyer, A., and Lee, GL. Agent 

Proc. of the International Conference on the Practical 
Application of Intelligent Agents and Multi-Agent 
Technology (PAAM). London, April 1996. 

REFERENCES 

1. Cheyer, A. and Julia, L. Multimodal maps: An agent- 

11. Martin, D., Oohama, H., Moran, D., and Cheyer, A. 
Information brokering in an agent architecture. In 
PAAM’97. London, April 1997. 

12. Moran, D., Cheyer, A., Julia, L., and Park, S. 
Multimodal user interfaces in the Open Agent 
Architecture. In Proc. of WI-97, pages 61-68. 
Orlando, Jan. 1997. 

based approach. In Proc. of the International 
Conference on Cooperative Multimodal 

13. Srihara, R., Zhang, Z., and Chopra, R. Show & Tell: 

Communication (CMC/95), Eindhoven, May 1995. 
Using Speech Input for Image Interpretation and 
Annotation. In AAAI-97 Spring Symposium, Workshop 

2. Cohen, P., Cheyer, A., Wang, M., and Baeg, S. An on Intelligent Integration and Use of Text, Image, 
open agent architecture. In AAAI Spring Symposium, Video and Audio Corpora, pages 17-24. Stanford 

University, March 1997. 

62 

Page 8 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4768



On Representing Salience and Reference in Multimodal
Human-Computer Interaction

Andrew Kehler 1, Jean-Claude Martin2, Adam Cheyer1, Luc Julia 1, Jerry R. Hobbs1

and John Bear1

1 SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
2 LIMSI-CNRS, BP 133, 91403 Orsay Cedex, France

Abstract

We discuss ongoing work investigating how humans in-
teract with multimodal systems, focusing on how suc-
cessful reference to objects and events is accomplished.
We describe an implemented multimodal travel guide
application being employed in a set of Wizard of Oz
experiments from which data about user interactions
is gathered. We offer a preliminary analysis of the
data which suggests that, as is evident in Huls et al.’s
(1995) more extensive study, the interpretation of re-
ferring expressions can be accounted for by a rather
simple set of rules which do not make reference to the
type of referring expression used. As this result is
perhaps unexpected in light of past linguistic research
on reference, we suspect that this is not a general re-
sult, but instead a product of the simplicity of the
tasks around which these multimodal systems have
been developed. Thus, more complex systems capable
of evoking richer sets of human language and gestural
communication need to be developed before conclu-
sions can be drawn about unified representations for
salience and reference in multimodal settings.

Introduction
Multimodal systems are particularly appropriate for
applications in which users interact with a terrain
model that is rich in topographical and other types
of information, containing many levels of detail. Ap-
plications in this class span the spectrum from travel
guide systems containing static, two-dimensional mod-
els of the terrain (e.g., a map-based system), to crisis
management applications containing highly complex,
dynamic, three-dimensional models (e.g., a forest fire
fighting system). We are currently investigating how
humans interact with multimodal systems in such set-
tings~ focusing on how reference to objects and events
is accomplished as a user communicates by gestur-
ing with a pen (by drawing arrows, lines, circles, and
so forth), speaking natural language, and handwriting
with a pen.

In this report, we begin to address the question of
how knowledge and heuristics guiding reference reso-
lution are to be represented. Is it possible to have
a unified representation for salience that is applicable
across multimodal systems, or do new tasks require

new representations? Can constraints imposed by the
task be modularized in the theory, or are they inher-
ently strewn within the basic mechanisms? Can lin-
guistic theories of reference, which typically treat ges-
tural and spoken deixis as a peripheral phenomenon,
be naturally extended to the multimodal case, in which
such deixis is the norm?

A Fully Automated Multimodal Map
Application

The basis for our initial study is an implemented pro-
totype multimodal travel guide application (Cheyer ~z
Julia 1995) that was inspired by a multimodal Wiz-
ard of Oz simulation (Oviatt 1996). The system pro-
vides an interactive interface on which the user may
draw, write, or speak. The system makes available in-
formation about hotels, restaurants, and tourist sites
that have been retrieved by distributed software agents
from commercial Internet World Wide Web sites.

The types of user interactions and multimodal issues
handled can be illustrated by a brief scenario featuring
working examples. Suppose Mary is planning a busi-
ness trip to Toronto, but would like to schedule some
activities for the weekend. She turns on her laptop PC,
executes a map application, and selects Toronto.

To determine the most appropriate interpretation
for the incoming streams of multimodal input, our ap-
proach employs an agent-based framework to coordi-
nate competition and cooperation among distributed
information sources, working in parallel to resolve the
ambiguities arising at every level of the interpretation
process. With respect to interpreting anaphora, such
as in the command "Show photo of hotel", separate
information sources may contribute to the resolution:

¯ Context by object type: The natural language com-
ponent can return a list of hotels talked about.

¯ Deictic: Pointing, circling, or arrow gestures might
indicate the referent, which may occur before, dur-
ing, or after an accompanying verbal command.

¯ Visual context: The user interface agent might de-
termine that only one hotel is currently visible.

33

From: AAAI Technical Report WS-98-09. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 

GOOGLE EXHIBIT 1024Page 1 of 7 Petitioner Microsoft Corporation - Ex. 1008, p. 4769



[Speaking] Wnere is do.nto.n?
Map scrolls to appropriate area.
[Speaking and drawing region]
Show me all hotels near here.
Icons representing hotels appear.

N: [Writes on a hotel] Info?
A textual description appears.

M: [Speaking] I only .ant hotels .ith a pool.
Some hotels disappear.

M: [Dra.s a oronsout on a hotel near a high.ay]
Hotel disappears.

M: [Speaking and circling]
Show me a photo of this hotel.
Photo appears.

M: [Points to another hotel]
Photo appears.
[Speaking] Price of the other hotel?
Price appears for previous hotel.

M: [Speaking and dra.ing an arro.] Scroll do.n.
Display adjusted.

M: [Speaking and dra.ing an arro. to.ard a hotel]
What is the distance from here to China To.n?
A line and number representing distance displayed.

¯ Database queries: Information from a database
agent can be combined with results from other res-
olution strategies, such as location information for
the hotel asked about.

¯ Discourse analysis: The discourse history provides
information for interpreting phrases such as "No, the
other one."

The map application is implemented within a multi-
agent framework called the Open Agent Architecture
(OAA). 3 The OAA provides a general-purpose infras-
tructure for constructing systems composed of multi-
ple software agents written in different programming
languages and running on different platforms. Simi-
lar in spirit to distributed object frameworks such as
OMG’s CORBA or Microsoft’s DCOM, agent interac-
tions are more flexible and adaptable than the tightly
bound object method calls provided by these architec-
tures, and are able to exploit parallelism and dynamic
execution of complex goals. Instead of preprogrammed
single method calls to known object services, an agent
can express its requests in terms of a high-level logi-
cal description of what it wants done, along with op-
tional constraints specifying how the task should be
performed. This specification request is processed by
one or more Facilitator agents, which plan, execute
and monitor the coordination of the subtasks required
to accomplish the end goal (Cohen et hi. 1994).

Open Agent Architecture and OAA are trademarks of
SRI International. Other brand names and product names
herein are trademarks and registered trademarks of their
respective holders.

Application functionality in the map application
is thus separated from modality of user interaction.
The system is composed of 10 or more distributed
agents that handle database access, speech recogni-
tion (Nuance Communications Toolkit or IBM’s Voice-
Type), handwriting (by CIC) and gesture (in-house 
gorithms) recognition, and natural language interpre-
tation. These agents compete and cooperate to inter-
pret the streams of input media being generated by the
user. More detailed information regarding agent inter-
actions for the multimodal map application and the
strategies used for modality merging can be found in
Cheyer and Julia (1995) and Julia and Cheyer (1997).

Data Collection

Despite the coverage of the system’s current anaphora
resolution capabilities, we are interested in collecting
naturally-occurring data which may include phenom-
ena not handled by our system. We therefore designed
a Wizard of Oz (WOZ) experiment around the travel
guide application. In WOZ experiments, users believe
they are interacting directly with an implemented sys-
tem, but in actuality a human "wizard" intercepts the
user’s commands and causes the system to produce the
appropriate output. The subject interface and wizard
interface are depicted in Figure 1.

Experiment Description Subjects were asked to
plan activities during and after a hypothetical busi-
ness trip to Toronto. They planned places to stay,
sights to see, and places to dine using speech, writing,
and pen-based gestures. The task consisted of four
subtasks. To provide experience using each modality
in isolation, during the first two tasks subjects planned
half days using speech only and pen only respectively.
In the third task, subject planned two half-days using
any combination of these modalities they wished. Fi-
nally, the subjects completed a direction giving task,
begun by picking up a phone placed nearby. On the
other end was an experimenter who told the subject
that he wants to meet for dinner, providing the name
of the hotel at which he is staying and the restaurant
at which they are to meet. The subject then inter-
acted with the system to determine directions to give
to the experimenter. For all tasks, the subjects were
given only superficial instruction on the capabilities of
the system. The tasks together took an average of 40
minutes. At the end of a session, the subjects were
given surveys to determine whether they understood
the task and the modalities available to them, and to
probe their thoughts on the quality of the system.

The interactions were recorded using video, audio,
and computer storage. The video displays a side-by-

34
Page 2 of 7 Petitioner Microsoft Corporation - Ex. 1008, p. 4770



Figure 1: The Wizard Interface (left) and the Subject Interface (right)

side view with the subject on one side and the map
interface on the other. The video and audio records
are used for transcription, and the computer storage
for reenacting scenarios for evaluation.

Coevolut|on of Multimodal and Wizard-of-Oz
Systems In our quest for unconstrained, naturally-
occurring data, we sought to place as few assumptions
on the user interactions as possible. Unfortunately,
WOZ experiments using simulated systems often ne-
cessitate such assumptions, so that facilities allowing
the wizard to respond quickly and accurately can be
encoded. We have improved upon this paradigm by
having the wizard use our implemented and highly ca-
pable multimodal system to produce the answers to
the user.

As described by Cheyer et al. (1998), our multi-
modal map application already possessed two qualities
that allowed it to be used as part of a WOZ experi-
ment. First, the system allows multiple users to share
a common workspace in which the input and results of
one user may be seen by all members of the session.
This enables the Wizard to see the subject’s requests
and remotely control the display. Second, the user in-
terface can be configured on a per-user basis to include
more or fewer graphical user interface (GUI) controls.
Thus, the Wizard can use all GUI command options,
and also work on the map by using pen and voice.
Conversely, the subject is presented with a map-only
display. To extend the fully automated map applica-
tion to be suitable for conducting WOZ simulations, we
added only three features: a mode to disable the auto-
matic interpretation of input from the subject, domain-
independent logging and playback functions, and an
agent-based mechanism for sending WOZ-specific in-

structions (e.g., Please be more specific.) to the user
with text-to-speech and graphics.

The result is a hybrid WOZ experiment: While a
naive user is free to write, draw, or speak to a map
application without constraints imposed by specific
recognition technologies, the hidden Wizard must re-
spond as quickly and accurately as possible by using
any available means. In certain situations, a scroll-
bar or dialog box might provide the fastest response,
whereas in others, some combination of pen and voice
may be the most efficient way of accomplishing the
task. In a single experiment, we simultaneously col-
lect data input from both an unconstrained new user
(unknowingly) operating a simulated system - provid-
ing answers about how pen and voice are combined in
the most natural way possible - and from an expert
user (under duress) making full use of our best auto-
mated system, which clarifies how well the real system
performs and lets us make comparisons between the
roles of a standard GUI and a multimodal interface.
We expect that this data will prove invaluable from an
experimental standpoint, and since all interactions are
logged electronically, both sets of data can be applied
to evaluating and improving the automated processing.

Performing such experiments and evaluations in a
framework in which a WOZ simulation and its corre-
sponding fully functional end-user system are tightly
intertwined produces a bootstrap effect: as the auto-
mated system is improved to better handle the cor-
pus of subject interactions, the Wizard’s task is made
easier and more efficient for future WOZ experiments.
The methodology promotes an incremental way of de-
signing an application, testing the design through semi-
automated user studies, gradually developing the au-
tomated processing to implement appropriate behavior

35
Page 3 of 7 Petitioner Microsoft Corporation - Ex. 1008, p. 4771



for input collected from subjects, and then testing the
finished product while simultaneously designing and
collecting data on future functionality - all within one
unified implementation. The system can also be used
without a Wizard, to log data about how real users
make use of the finished product.

Data Analysis

At the time of this writing, 17 subjects out of a planned
25 have completed the tasks. We are currently in the
process of transcribing and analyzing this data, and so
we limit our discussion to a subset of 10 of the sessions.
Our conclusions must therefore remain preliminary.

Our analysis of the data covers a broad range
of factors concerning modality use. In addition to
classical metrics used for analyzing multimodal cor-
pora (monomodal features, temporal relationship be-
tween speech and gesture), we are analyzing the com-
mands using a typology based on types of cooper-
ation: specialization, equivalence, redundancy, com-
plementarity, concurrency, and transfer (Martin 1997;
Martin, Julia, ~ Cheyer 1998). Our focus here, how-
ever, concerns the use of referring expressions, and we
therefore restrict our analysis to this issue.

Models of linguistic reference generally consist of two
components. The first is the evolving representation of
the discourse state, or "discourse model", which usu-
ally includes a representation of the salience of previ-
ously introduced entities and events. For instance, en-
tities introduced from an expression occupying subject
position are generally considered as being more salient
for future reference than those introduced from the di-
rect object or other positions. The second component
is a representation of the properties of referring expres-
sions which dictates how they should be interpreted
with respect to the discourse model (Prince 1981;
Gundel, Hedberg, & Zacharski 1993). For instance,
pronouns have been claimed to refer to entities that
are highly salient or ’in focus’, whereas full definite
noun phrases need not refer to salient entities, or even
ones that have been mentioned at all. Similarly, the
choice among different deictic expressions (i.e., ’this’
vs. ’that’) is presumably guided by factors relating to
the relative places at which their antecedents reside
within the discourse model. Within this picture, the
representation of discourse state and the interpretation
of referring expressions against it are kept distinct; fur-
thermore, they are considered independent of the task
underlying the interaction.

An alternative embodied in some multimodal sys-
tems, including ours, could be termed the ’decision
list’ approach. Here, heuristics are encoded as a de-
cision list (i.e., a list of if-then rules applied sequen-

tially) which do not necessarily enforce a strict sep-
aration between the representation of multimodally-
integrated salience factors and the identities and prop-
erties of particular referring expressions. Furthermore,
these rules might even query the nature of the task be-
ing performed or the type of command being issued,
if task analyses would suggest that such differences be
accounted for (Oviatt, DeAngeli, & Kuhn 1997).

A unified, modularized theory of reference which is
applicable across multimodal applications is presum-
ably preferable to a decision list approach. Huls et
al. (1995) in fact take this position and propose such
a mechanism. They describe data arising from ses-
sions in which subjects interacted with a system using
a keyboard to type natural language expressions and
a mouse to simulate pointing gestures. To model dis-
course state, they utilize Alshawi’s (1987) framework,
in which context factors (CFs) are assigned significance
weights and a decay function according to which the
weights decrease over time. Significance weights and
decay functions are represented together via a list of
the form [Wl,...,wn,0], in which wl is an initial signifi-
cance weight which is then decayed in accordance with
the remainder of the list. The salience value (SV) 
an entity inst is calculated as a simple sum of the sig-
nificance weights W(CF~):

i=l

Four "linguistic CFs" and three "perceptual CFs"
were encoded. Linguistic CFs include weights for being
in a major constituent position ([3,2,1,0]), the subject
position ([2,1,0], in addition to the major constituent
weight), a nested position ([1,0]), and expressing a 
lation ([3,2,1,0]). Perceptual CFs include whether the
object is visible ([1,...,1,0]), selected ([2,...,2,0]), and 
dicated by a simultaneous pointing gesture ([30,1,0]).
The weights and decay functions were determined by
trial and error.

To interpret a referring expression, the system
chooses the most salient entity that meets all type con-
straints imposed by the command and by the expres-
sion itself (e.g., the referent of "the file" in "close the
file" must be something that is a file and can be closed).
This strategy was used regardless of the type of refer-
ring expression. Huls et al. tested their framework on
125 commands containing referring expressions, and
compared it against two baselines: (i) taking the most
recent compatible reference, and a pencil-and-paper
simulation of a focus-based algorithm derived from
Grosz and Sidner (1986). They found that all 125 re-
ferring expressions were correctly resolved with their
approach, 124 were resolved correctly with the Grosz

35
Page 4 of 7 Petitioner Microsoft Corporation - Ex. 1008, p. 4772



and Sidner simulation, and 119 were resolved correctly
with the simple recency-based strategy.

The fact that all of the methods do very well, includ-
ing a rather naive recency-based strategy, indicates a
lack of difficulty in the problem. Particularly notewor-
thy in light of linguistic theories of reference is that this
success was achieved with resolution strategies that
were not tied to choice of referring expression. That is,
well-known differences between the conditions in which
forms such as "it", "this", "that", "here", and "there"
are used apparently played no role in interpretation.

We were thus inclined to take a look at the refer-
ence behavior shown in our corpus. Table 1 summa-
rizes the distribution of referring expressions within
information-seeking commands for our 10 subjects.
(Commands to manipulate the environment, such as
to scroll the screen or close a window, were not in-
cluded.) On the vertical axis are the types of referential
form used. The symbol ¢ denotes "empty" referring
expressions corresponding to phonetically unrealized
arguments to commands (e.g., the command "Infor-
mation", when information is requested for a selected
hotel). Full NPs are noun phrases for which interpre-
tation does not require reference to context (e.g., "The
Royal Ontario Museum"), whereas definite NPs are re-
duced noun phrases that do (e.g., "the museum").

On the horizontal axis are categories indicating the
information status of referents. We first distinguish be-
tween cases in which an object was gestured to (e.g.,
by pointing or circling) at the time the command was
issued, and cases in which there was no such gesture.
"Unselected" refers to a (visible) object that is not
selected. "Selected Immediate" includes objects that
were selected and mentioned in the previous command,
whereas "Selected Not Immediate" refers to objects
that have remained selected despite intervening com-
mands that have not made reference to it (e.g., due to
intervening commands to show the calendar or scroll
the screen). There was also one outlying case, in which
the user said "Are there any Spanish restaurants here",
in which "here" referred to the area represented by the
entire map.

These data show a divergence between the distri-
bution of referring expressions and the heuristics one
might use to resolve them. On one hand, there are dis-
tributional differences in even our admittedly limited
amount of data that accord roughly with expectations.
For instance, unselected entities, which are presumably
not highly salient, were never referred to with pronom-
inal forms without an accompanying gesture. Instead,
nonpronominal noun phrases were used (20 full NPs
and 2 definite NPs), and in all cases the content of
the noun phrase constrained reference to one possible

antecedent (e.g., "the museum" when only one mu-
seum was visible). Also, the antecedents of empty re-
ferring expressions were almost always highly-focused
(selected, immediate) objects when no accompanying
gesture was used, and "it" always referred to a se-
lected, immediate antecedent. Finally, in accordance
with their generally deictic use, "this NPs" (e.g., "this
museum") and "this" were usually accompanied by 
simultaneous gesture. "Here" was only used when ac-
companied by such a gesture, whereas "there" was used
for all types of selected referents.

Certain other facets of the distribution are more con-
trary to expectation. For instance, in 36 cases a full
NP was used to refer to a selected, immediate object
which, as such, was a candidate for a reduced refer-
ential expression. In four of these cases, the user also
gestured to the antecedent, resulting in an unusually
high degree of redundancy. We suspect that such us-
age may result from a bias some users have regarding
the ability of computer systems to interpret natural
language.

Despite the distributional differences among the ref-
erential forms, a simple algorithm can be articulated
which handles all of the data without making reference
to the type of referential expression used nor its distri-
butional properties. First, the algorithm narrows the
search given any type constraints imposed by the con-
tent (vs. the type) of the referring expression, as when
full and definite NPs are used. As indicated earlier,
in these cases the constraints narrowed the search to
the correct referent. The remaining cases are captured
with two simple rules: if there was a simultaneous ges-
ture to an object, then that object is the referent; oth-
erwise the referent is the currently selected object.

While our preliminary findings accord with Huls et
al., we have articulated our rules in decision list form
rather than a salience ordering scheme. In fact, at
least part of the Huls et al. analysis appears to be of
the decision list variety, albeit cast in a salience order-
ing format. For instance, they found, as did we, that
all referring expressions articulated with simultaneous
gesturing to an object refer to that object. While they
encode this preference with a very large weight (30),
this value is chosen only to make certain that no other
antecedent can surpass it.

To conclude, the question of whether a unified view
of salience and reference for multimodal systems can
be provided remains open. It appears that the nature
of the tasks used in our experiments and by Huls et
al. makes for a relatively easy resolution task. This
could be due to two reasons: either reference is gen-
erally so constrained in multimodal interactions that
the distinctions made by different referring expressions

Page 5 of 7 Petitioner Microsoft Corporation - Ex. 1008, p. 4773



No Gesture Simultaneous Gesture
Form Unselected I Selected Selected Unselected Selected Selected Total

Immediate Not Immediate Immediate Not Immediate
Full NP 2O 32 5 10 4 0 71

Definite NP 2 1 1 0 0 0 4
"here" 0 0 0 5 3 0 8

"there" 0 7 3 0 3 1 14
"this" NP 0 0 0 2 10 0 12
"that" NP 0 1 0 0 0 0 1

"this" 0 4 0 8 5 0 17
"they" 0 1 0 0 0 0 1

"it"

¢
0 6 0 0 2 0 8
0 22 2 13 1 0 38

TOTAL 22 74 11 38 28 1 II 174

Table h Distribution of Referring Expressions

become unimportant for understanding, or the sys-
tems that have been developed have not been complex
enough to evoke the full power of human language and
gestural communication. We expect that in fact the
latter is the case, and are currently designing systems
in more complicated domains to test this hypothesis.

Conclusions and Future Work

We have described an implemented multimodal travel
guide application be!ng used in a WOZ setting to
gather data on how successful reference is accom-
plished. We presented a preliminary analysis of data
which suggests that, as is evident in Huls et al.’s (1995)
more extensive study, the interpretation of referring ex-
pressions can be accounted for by a set of rules which
do not make reference to the type of expression used.
This is contrary to previous research on linguistic refer-
ence, in which the differences between such forms have
been demonstrated to be crucial for understanding.

We suspect that this not a general result, but in-
stead a product of the simplicity of the tasks around
which these multimodal systems have been developed.
We are currently planning the development of a cri-
sis management scenario which would involve expert
or trainee fire-fighters directing resources to objectives
while using a multimodal computerized terrain model.
This model will be three-dimensional and dynamic, in
contrast to the two-dimensional, static map applica-
tion. We expect that the complexity of the task will
evoke much richer interactions, and thus may serve to
clarify the use of reference in these settings.

Acknowledgements
This work was supported by National Science Founda-
tion Grant IIS-9619126, "Multimodal Access to Spa-
tial Data", funded within the Speech, Text, Image,
and MULtimedia Advanced Technology Effort (STIM-
ULATE).

References
Alshawi, H. 1987. Memory and Context for Language
Interpretation. Cambridge University Press.

Cheyer, A., and Julia, L. 1995. Multimodal maps:
An agent-based approach. In Proceedings of CMC95.
103-113.

Cheyer, A.; Julia, L.; and Martin, J.-C. 1998. A
unified framework for constructing multimodal exper-
iments and applications. In Proceedings of CMC98,
63-69.

Cohen, P.; Cheyer, A.; Wang, M.; and Baeg, S. 1994.
An open agent architecture. In AAAI Spring Sympo-
sium. 1-8.

Grosz, B., and Sidner, C. 1986. Attention, inten-
tions, and the structure of discourse. Computational
Linguistics 12(3): 175-204.

Gundel, J. K.; Hedberg, N.; and Zacharski, R. 1993.
Cognitive status and the form of referring expressions
in discourse. Language 69(2):274-307.

Huls, C.; Bos, E.; and Classen, W. 1995. Automatic
referent resolution of deictic and anaphoric expres-
sions. Computational Linguistics 21(1):59-79.

Julia, L., and Cheyer, A. 1997. Speech: a privileged
modality. In Proceedings of EUROSPEECH’9Z 103-
113.

38
Page 6 of 7 Petitioner Microsoft Corporation - Ex. 1008, p. 4774



Martin, J.-C. 1997. Towards intelligent cooperation
between modalities. The example of a system enabling
multimodal interaction with a map. In Proceedings
of the IJCAI-97 Workshop on Intelligent Multimodal
Systems. 63-69.

Martin, J.-C.; Julia, L.; and Cheyer, A. 1998. A
theoretical framework for multimodal user studies. In
Proceedings of CMC98, 104-110.

Oviatt, S. 1996. Multimodal interfaces for dynamic
interactive maps. In Proceedings of CHI96. 95-105.

Oviatt, S.; DeAngeli, A.; and Kuhn, K. 1997. In-
tegration and synchronization of input modes during
multimodal human-computer interaction. In Proceed-
ings of CHI9Z 415-422.

Prince, E. 1981. Toward a taxonomy of given-new in-
formation. In Cole, P., ed., Radical Pragmatics. New
York, NewYork: Academic Press. 223-255.

Page 7 of 7 Petitioner Microsoft Corporation - Ex. 1008, p. 4775



An Open Agent Architecture*
Philip R. Cohen

Adam Cheyer
SRI International

(pcohen~ai.sri.com)

Michelle Wang
Stanford University

Soon Cheol Baeg
ETRI

ABSTRACT
Tile goal of this ongoing project is to develop an
open agent architecture and accompanying user in-
terface for networked desktop and handheld ma-
chines. The system we are building should support
distributed execution of a user’s requests, interop-
erability of multiple application subsystems, addi-
tion of new agents, and incorporation of existing
applications. It should also be transparent; users
should not need to know where their requests are
being executed, nor how. Finally, in order to fa-
cilitate the user’s delegating tasks to agents, the
architecture will be served by a multimodal inter-
face, including pen, voice, and direct manipulation.
Design considerations taken to support this func-
tionality will be discussed below.

INTRODUCTION
Agents are all the rage. "Visioneering" videos, such as
Apple Computer’s Knowledge Navigator, have helped
to popularize the notion that programs endowed with
agency, if not intelligence, are just around the corner.
Soon, users need not themselves wade into the vast
swamp of data in search of information, but rather the
desired, or better yet, needed information will be pre-
sented to the user by an intelligent agent in the most
comprehensible form, at just the right time.

Although rosy scenarios are easy to come by, intel-
ligent agents are considerably more difficult to obtain.
Still, substantial progress is being made on a variety of
aspects of the agent story. At least three general con-
ceptions of agent-based software systems can be found
in current thinking:

1. Agents are programs sent out over the network to be
executed on a remote machine.

2. Agents are programs on a given machine that offer
services to others.

*This paper was supported by a contract from the Elec-
tronics and Telecommunications Research Institute (Korea).
Our thanks are also extended to AT&T for use of their text-
to-speech system.

3. Agents are programs that assist the user in perform-
ing a task.

Each of these models can be found to some extent in
present-day software products, for example, in (1) Gen-
eral Magic’s emerging TELESCRIPT interpreter, (2) Mi-
crosoft’s OLE 2.0 and (3) Apple Computer’s Newton
and Hewlett Packard’s New Wave desktop, respectively.
Given this space of conceptualizations, we need to be
specific about ours.

Definitions and Objectives

Listed below are characteristics of what we are terming
agents followed by an example of those characteristics
as found in our system:

¯ Delegation -- e.g., the ability to receive a task to be
performed without the user’s having to state all the
details

¯ Data-directed Execution -- e.g., the ability to moni-
tor local or remote events, such as database updates,
OS, or network activities, determining for itself the
appropriate time to execute.

¯ Communication -- e.g., the ability to enlist other
agents (including people) in order to accomplish 
task.

¯ Reasoning -- e.g., the ability to prove whether its
invocation condition is true, and to determine what
are its arguments.

¯ Planning -- e.g., the ability to determine which agent
capabilities can be combined in order to achieve a
goal.

Our initial prototype includes agents that exhibit as-
pects of all the above capabilities, except planning (but
see [7]). Our goal is to develop an open agent archi-
tecture for networked desktop and handheld machines.
The system we are building should support distributed
execution of a user’s requests, interoperability of mul-
tiple application subsystems, addition of new agents,
and incorporation of existing applications. Finally, it
should be transparent; users should not need to know
where their requests are being executed, nor how.

From: AAAI Technical Report SS-94-03. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved. 

GOOGLE EXHIBIT 1025Page 1 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4776



AGENT ARCHITECTURE

Based loosely on Schwartz’s FLiPSiDE system [17], the
Open Agent Architecture is a blackboard-based frame-
work allowing individual software "client" agents to
communicate by means of goals posted on a blackboard
controlled by a "Server" process.

The Server is responsible both for storing data that
is global to the agents, for identifying agents that can
achieve various goals, and for scheduling and main-
taining the flow of communication during distributed
computation. All communication between client agents
must pass through the blackboard. An extension of
Prolog has been chosen as the interagent communica-
tion language (ICL) to take advantage of unification
and backtracking when posting queries. The primary
job of the Server is to decompose ICL expressions and
route them to agents who have indicated a capability
in resolving them. Thus, agents can communicate in
an undirected fashion, with the blackboard acting as
a broker. Communication can also take place also in
a directed mode if the originating agent specifies the
identity of a target agent.

An agent consists of a Prolog meta-layer above a
knowledge layer written in Prolog, C or Lisp. The
knowledge layer, in turn, may lie on top of existing stan-
dalone applications (e.g. ’mailers, calendar programs,
databases). The knowledge layer can access the func-
tionality of the underlying application through the ma-
nipulation of files (e.g., mail spool, calendar datafiles),
through calls to an application’s API interface (e.g.
MAPI in Microsoft Windows), through a scripting lan-
guage, or through interpretation of an operating sys-
tem’s message events (Apple Events or Microsoft Win-
dows Messages).

Individual agents can respond to requests for infor-
mation, perform actions for the user or for another
agent, and can install triggers to monitor whether a
condition is satisfied. Triggers may make reference to
blackboard messages (e.g. when a remote computation
is completed), blackboard data, or agent-specific test
conditions (e.g. "when mail arrives...").

The creation of new agents is facilitated by a client
library furnishing common functionality to all agents.
This library provides methods for defining an agent’s
capabilities (used by the blackboard to determine when
this agent should participate in the solving of a sub-
goal), natural language vocabulary (used by the inter-
face agent), and polling status. It also provides func-
tionality allowing an agent to read and write informa-
tion to the blackboard, to receive requests for informa-
tion or action, and to post such requests to the black-
board, a specific agent, or an entire population of ap-
propriate agents.

When attempting to solve a goal, an agent may find
itself lacking certain necessary information. The agent
can either post a request of a specific agent for the infor-
mation, or it may post a general request on the black-

board. In the latter case, all agents who can contribute
to the search will send solutions to the blackboard for
routing to the originator of the request. The agent ini-
tiating the search may choose either to wait until all
answers return before continuing processing, or may set
a trigger indicating that when the remote computation
is finished, a notification should interrupt local work in
progress. An agent also has access to primitives per-
mitting distributed AND and OR-parallel solving of a
list of goals.

Distributed Blackboard Architecture

As discussed above, the Open Agent Architecture con-
tains one blackboard "server" process, and many client
agents; client agents are permitted to execute on differ-
ent host machines. We are investigating an architecture
in which a server may itself be a client in a hierarchy
of servers; if none of its client agents can solve a par-
ticular goal, this goal may be passed further along in
the hierarchy. Following Gelerntner’s LINDA model [8],
blackboard systems themselves can be structured in a
hierarchy, which could be distributed over a network
(see Figure 1).1

When a goal (G) is requested to be posted on a local
blackboard (BB1), and the blackboard server agent 
BB1 determines that none of its child agents has the
requisite capabilities to achieve the goal, it propagates
the goal to a more senior blackboard server agent (BB4)
in the hierarchy. BB4 maintains a knowledge base of
the predicates that its lower level blackboards can eval-
uate. When a senior server receives such a request, it in
turn will propagate the request down to its subsidiary
servers. These subsidiary servers either have immediate
client agents who can evaluate the goal, or can them-
selves pass on the goal to another subsidiary server. In
the case illustrated in Figure 1, BB4 determines that
none of its subsidiary blackboards can handle the goal,
and thus sends the goal to its superior agent (BB5).
BB5 passes the goal to BB6, who in turn passes it to
BB9. When such a referred goal is passed through the
hierarchy of blackboards, it is accompanied by informa-
tion about the originating blackboard (indicated by the
BB1 subscript on G), including information identifying
its input port, host machine, etc. This continuation
information will enable a return communication (with
answers or failure) to be routed to the originating black-
board. Also, the identity of the responding knowledge
source BB9 can be sent back to the originator, so that
future queries of the same type from BB1 may be ad-
dressed directly to BB9 without passing through the
hierarchy of blackboards.

Operational Agents

A variety of agents have been integrated into the Open
Agent Architecture:

1This is referred to as a ~federation architecture" in [9].

Page 2 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4777



GBBI?~

~ GBBI?

f

1 ~ GBBI?

Figure h Hierarchy of Blackboard Servers

¯ a User-interface agent that accepts spoken or typed
(and soon, handwritten) natural language queries
from the user and presents responses to the queries.

¯ a Dalabase agent, written in C, that interacts with a
remote X.500 Directory System Agent database con-
taining directory information.

¯ a Calendar agent, which can report upon where a
person might be, or when they might be perform-
ing a particular action. This information is retrieved
from data created by Sun Microsystem’s CalenTool
application.

¯ a Mail agent that can monitor incoming electronic
messages, and forward or file them appropriately.
The mail agent works with any Unix-compatible mail
application (e.g. Sun’s MailTool).

¯ a News agent that scans Internet newsgroups search-
ing for specified topics or articles.

¯ a Telephone agent, that can dial a telephone using
a ComputerPhone controller, and can communicate
with users in English, using NewTTS, AT&T’s text-
to-speech system.

Communication Language
The key to a functioning agent architecture is the in-
teragent communication language. We explain ours in
terms of its form and content. Regarding the former,

three speech act types are currently supported: Solve
(i.e., a question), Do (a request) and Pos% (an asser-
tion to the blackboard). For the time being, we have
adopted little of the sophisticated semantics known to
underlie such speech acts [5, 18, 19]. However, in at-
tempting to protect an agent’s internal state from being
overwritten by uninvited information, we do not allow
one agent to change another’s internal state directly --
only an agent that chooses to accept a speech act can do
so. For example, a fact posted to the blackboard does
not necessarily get placed in the database agent’s files
unless it so chooses, by placing a trigger on the black-
board asking to be notified of certain changes in certain
predicates (analogous to Apple Computer’s Publish and
Subscribe protocol).

Although our interagent communication language is
still evolving, we have adopted Horn clauses as the ba-
sic predicates that serve as arguments to the speech act
types. However, for reasons discussed below, we have
augmented the language beyond ordinary Prolog to in-
clude temporal information.

Because delegated tasks and rules will be executed
at distant times and places, users may not be able sim-
ply to use direct manipulation techniques to select the
items of interest, aa those items may not yet exist, or
their identities may be unknown. Rather, users will
need to be able to describe arguments and invocation

3Page 3 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4778



conditions, preferably in a natural language. Because
these expressions will characterize events and their rela-
tionships, we expect natural language tense and aspect
to be heavily employed [6]. Consequently, the mean-
ing representation (or "logical form")produced by the
multimodal interface will need to incorporate temporal
information, which we do by extending a Horn clause
representation with time-indexed predicates and tem-
poral constraints. The blackboard server will need to
decompose these expressions, distribute pieces to the
various relevant agents, and engage in temporal rea-
soning to determine if the appropriate constraints are
satisfied.

With regard to the content of the language, we need
to specify the language of predicates that will be shared
among the agents. For example, if one agent needs to
know the location of the user, it will post an expression,
such as solve (location (user, U)), that another agent
knows how to evaluate. Here, agreement among agents
would be needed that the predicate name is local±on,
and its arguments are a person and a location. The
language of nonlogical predicates need not be fixed in
advance, it need only be common. Achieving such com-
monality across developers and applications is among
the goals of the ARPA "Knowledge Sharing Initiative,"
[13] and a similar effort is underway by the "Object
Management Group" (OMG) CORBA initiative to de-
termine a common set of objects.

A difficult question is how the user interface can know
about the English vocabulary of the various agents.
When agents enter the system, they not only register
their functional capabilities with the blackboard, they
also post their natural language vocabulary to the the
blackboard, where it can be read by the user interface.
Although conceptually reasonable for local servers (and
somewhat problematic for remote servers) the merg-
ing of vocabulary and knowledge is a difficult problem.
In the last section, we comment on how we anticipate
building agents to enforce communication and knowl-
edge representation standards.

Example Scenario

The following is an example of an operational demon-
stration scenario that illustrates inter-agent communi-
cation (see Figure 2).

The user tells the interface agent (in spoken lan-
guage) that "When mail arrives for me about a security
break, get it to me". The interface agent translates this
statement into a logical expression, and posts the ex-
pression to the blackboard. The blackboard server de-
termines that a trigger should be installed on the mail
agent, causing it to poll the user’s mail database. Once
the mail agent has determined that a message matching
the requested topic has arrived for the user, it posts a
query to find out the user’s current location. The calen-
dar agent responds, noting that the user is supposed to
be in a meeting which is being held in a particular room;

the database agent is then queried for the phone number
of the room. Finally, the telephone agent is instructed
to call the number, ask for the user (using voice synthe-
sis), perform an identification verification by requesting
a touchtone password, and then read the message to the
user. We intend to add agents that would increase the
number of ways in which a user might be contacted:
agents to control fax machines, automatic pagers, and
a notify agent that uses planning to determine which
communication method is most appropriate in a given
situation.

Comparison with Other Agent
Architectures
The most similar agent architectures are FLiPSiDE
[17] and that of Genesereth and Singh [9]. Like FLIP-
SiDE (Framework for Logic Programming Systems with
Distributed Execution), our Open Agent Architecture
uses Prolog as the interagent communication language,
and introduces a uniform meta-layer between the black-
board Server and the individual agents. Some aspects
of FLiPSiDE’s blackboard architecture are more com-
plex than in our system. It uses a multi-level locking
scheme to try to reduce deadlock and minimize conflicts
in blackboard access during moments of high concur-
rency. The system also uses separate knowledge sources
for controlling triggers, ranking priorities and schedul-
ing the executing of knowledge sources, whereas we in-
corporate these sorts of actions directly into the black-
board server. Some features important to our system
that are not addressed by FLiPSiDE are the ability to
handle temporal contraints over variables, and the pos-
sibility for an agent to explicitly request AND and OR-
parallel solvingof a list of distributed goals.

Genesereth and Singh’s architecture is more ambi-
tious than ours in its employing a full first-order logic
as the interagent communication language. As yet,
we have not needed to expand our language beyond
Horn clauses with temporal constraints, but this step
may well be necessary. Genesereth and Singh use KIF
(Knowledge Interchange Format) [13] as their basic lan-
guage of predicates and as a knowledge integration
strategy. Because of our user interface considerations,
which in turn are heavily influenced by the form-factor
constraints of future handheld devices, we will need to
be able to merge contributions by different agents of
their natural language vocabulary, related pronuncia-
tions, and semantic mappings of those vocabulary items
to underlying predicates.

MAIL MANAGEMENT
In our earlier scenario, the mail agent was rather lim-
ited. To test our user interface and agent architecture
more fully, we are creating a more substantive mail
management agent, MAILTALK.

It has become common to develop mail managers that
manipulate messages as they arrive according to a set

Page 4 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4779



about security, Appli ation PHONE
getit to me. c

I I I I

Agent Agent Agent Agent J

I .I~g~al i°rm l~ R°°m 17 T~x1234 T
[ B ,’l:a c k b o a:g d i 1

Trigger is user?

Mail AgentMail [
pplicatioti

~ mmmmmmmmmmml

’ .... ~
Mail ""¯ ool ¯

m- mm mmmmm mmm mmlm

Call use~ at x1234,
verify identity,/read message

Figure 2: Example of agent interaction

of user-specified rules. The virtue of such systems is
that users can make mail management decisions once,
rather than consider each message in turn. However, a
number of problems exist for such systems, as well as
for all agent systems that we know of, especially when
considered as tools for the general population.

End users cannot easily specify the rules. In a num-
ber of current systems, a scripting language needs to
be employed [1, 20], and in one system, users were
required to write rules in a temporal query language
[10]. We believe such methods for rule creation ef-
fectively eliminates the class of nontechnical users.
Other systems employ templates that the user fills
out [12]. Although this technique may work in many
cases, it limits the power of the rules that users can
create because they must search for an icon at which
to point in order to specify the contents of a slot.
Otherwise, they need to know or select the special
syntax or concept name required. However, the selec-
tion of items from long menus is infeasible for hand-
held devices with little screen territory.

End users cannot determine in advance how the col-
lection of rules will behave once a new rule is added.
This lack of predictability and the lack of debugging
tools will undermine the utility of agent-based sys-
tems, especially in a networked environment.

¯ End users cannot easily determine what happened.
Generally, little or no history of the database of
events and rule firings is kept, and few tools are pro-
vided for reviewing that historyfl

¯ The mail manager is a special purpose system, inter-
acting loosely, if at all, with other components. With-
out tighter integration, the architecture and user in-
terface for dealing with mail rules may diverge from
what is offered for other agents.

Our prototype MAILTALK Was built to address these
concerns.

Rule specification. Based on technology developed
for the SHOPTALK factory simulation system [2, 3, 4],
MAILTALK permits users to specify rules by describ-
ing complex invocation conditions, and arguments
with a multimodal interface featuring typed and spo-
ken natural language, combined with direct manip-
ulation. For example, the user can delegate to the
mail agent as follows: "When Jones replies to my
message about ’acl tutorials’, send his reply to the
members of my group." Here, Jones’s reply cannot
be selected or pointed at since it does not yet ex-
ist. The English parser produces expressions in the
temporal logic, which are evaluated against various

2An exception to this is the use of "Mission Status Re-
ports" in the Envoy agent framework [15].

5

Page 5 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4780



When: A message from someone
in the AIC has been read

ARCHIVE
Which message(s): it
In .hich file: <AIC-MaiI>

Figure 3: Creating a mail rule

databases (e.g., tile mail database, or a simulation
database).

Predicting behavior. By giving end users the power
to write their own rules means we have given them
the freedom to make their own mistakes. Before let-
ting a potentially erroneous collection of agents loose
on one’s mail (or, more generally, the network), 
encourage users to simulate the behavior of those
agents. Included with MAILTALK is a knowledge-
based simulation environment that allows users to
create hypothetical worlds, and permits them to send
test messages or re-examine old mail files. In re-
sponse, the system fires the relevant rules, and up-
dates a simulation database with the events that have
happened. This database can extend the actual mail
file, permitting expressions that depend on the entire
database to be evaluated (e.g., "when more than 
messages from cohen are in < point to icon for mail
file>, move them to <icon for ’unimportant mail’>).

Reviewing History. In order to determine if the re-
sulting behavior was in fact desired, users can ask
questions about the results of the simulation, can
view the simulation graphically, and can rewind the
history to interesting times (e.g., when a message was
read, or when a message was forwarded to a member
of a given mail group). When satisfied with the re-
sulting behavior of the collection of rules, users can
install them in the real world to monitor the real mail
file. Moreover, users can ask questions about the real
mail database, such as "Who has replied to my mes-
sage of November 26 about budgets?"

Example

The following is an example of the kind of processing
found in MA1LTALK. First, the user determines that
she wants to test out a mail management rule before
installing it. She creates a new "hypothetical world,"
and proceeds to create a rule by selecting the Archive
action from a menu. This results in a template’s being
presented, which she fills out as shown in Figure 3.

The user enters an English expression as the invoca-
tion condition, points at the icon for a file (AIC-Mail),
and deposits it into the destination field.3 This rule

SFor a discussion of the usability advantages of such tem-
plates over simply entering the above in one sentence, please
see [3, 14].

definition is parsed into a Prolog representation, aug-
mented with temporal information and constraints.

The user then proceeds to digesI an old mail file,
which simulates the sending of the old messages, updat-
ing the simulated mail database. The animated simu-
lation indicates that the rule has been fired, but just to
be certain that the appropriate messages were put into
the desired file, the user asks "When did I read a mes-
sage from someone in the AIC?", followed by "Where
are those messages now?" When satisfied, she transfers
this rule to the real world, and requests that incoming
mail be monitored.

It should be noted that the reading of a message cre-
ates an event that triggers a rule. In general, that verb
(i.e., ’read’) could be one that results from an agent’s
action (e.g., forwarding), and thus a cascade of rule
activations would ensue. It is to ensure that users un-
derstand such complexities that we offer the simulation
facility.

Comparison with Other Mail Managers

Numerous mail managers exist, and space precludes a
comprehensive survey. Only the more comparable ones
will be discussed below.

The mail management system most similar to our
is ISCREEN [16]. It allows a keyword and forms-based
creation of rules, and offers a simple simulation ca-
pability in which a user can pose test messages. In
response, the system applies its rules and explains in
English what it would have done. Because mail is fil-
tered using a boolean combination of keywords in var-
ious fields, ISCREEN can detect that various rules will
conflict, and can ask the user for a prioritization. The
user can employ organizational expressions (e.g., "man-
ager"), which the system resolves based on a Prolog-
based Corporate Directory database. Our use of the
X.500 Directory System Agent offers the same capabil-
ity based oll an emerging international standard.

The TAPESTRY mail system [10] incorporates a mail
database (as opposed to just a mail file), that is queried
by a temporal query language. MAILTALK share this ba-
sic underlying model, but rather than have users write
temporal queries, the user interface creates the tempo-
ral logic expressions through English language descip-
tions, which are then evaluated over the mail database.

The INFORMATION LENS system [12] provides vari-
ous message types, which can enter into filtering rules
(e.g., when a message of type Weekly Sales Report
arrives, forward it to ...), or can become arguments
for other actions (e.g., opening a spreadsheet). This
approach takes the first step to integrating mail with
other agent-like behavior, but a more fuller integration
is possible once it is realized that rule-based mail man-
agement is analogous to database monitoring (as shown
in TAPESTRY), and that a more general agent architec-
ture can subsume mail management as a special case. It
is this latter approach that we are following by embed-

Page 6 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4781



ding the mail manager as an agent in the architecture.

IMPLEMENTATION
An initial implementation of each of the "pieces de-
scribed above has been developed (in Prolog and C) 
a Unix platform, with the exception of the pen/voice
interface, which is being implemented now. Communi-
cation is based on TCP/IP. The blackboard architec-
ture has been ported to Windows/NT, and agents that
encapsulate Microsoft API’s will be deve]oped. Also
planned is a port of the blackboard interpreter to the
Macintosh. When completed, the architecture will sup-
port multiple hardware and software platforms in a dis-
tributed environment.

FUTURE PLANS
In addition to the integration activities discussed above,
a number of future research activities are needed. In or-
der that an agent be invocable, its capabilities need to
be mapped into terms understood by the ensemble of
agents, and also by users. Moreover, as discussed ear-
lier, the natural language vocabulary needed to invoke
an agent’s services, including lexical, syntactic, and se-
mantic properties, will also be posted on the blackboard
for use by the user interface. In general, however, this
advertising of vocabulary can lead to conflicts among
definitions. We intend to develop an API Description
Tool, with which the agent designer describes the ser-
vices provided by that agent. The tool will produce
mappings of expressions in ICL into those services, in-
eluding vocabulary and knowledge representations that
can be merged into a common whole. Techniques used
in developing natural language database porting tools
(e.g., TV.AM [11]) will be investigated.

In order to generalize the simulation approach in
MAILTALK to encompass the entire collection of agents,
the API Description Tool also needs to supply informa-
tion sufficient to allow the agent architecture to simu-
late an agent’s behavior. It will need to characterize the
preconditions and effects of agent actions, thereby also
providing a basis for a server’s planning to incorporate
the agent into a complex action that satisfies a user’s
stated goal [7].

Finally, an interesting question is where to situate the
temporal reasoning subsystem. Currently, it is located
with the blackboard server, but it could also be dis-
tributed as part of the agent layer, enabling other agents
to accept complex expressions for evaluation and/or
routing. We intend to experiment with various archi-
tectures.

References
[1] S.-K. Ch’ang and L. Leung. A knowledge-based

message management system. ACM Transac-
tions on Office Information Systems, 5(3):213-236,
1987.

[2] P. R. Cohen. Integrated interfaces for decision sup-
port with simulation. In B. Nelson, W. D. Kelton,
and G. M. Clark, editors, Proceedings of the Win-
ter Simulation Conference, pages 1066-1072. Asso-
ciation for Computing Machinery, December 1991.
invited paper.

[3] P. R. Cohen. The role of natural language in a mul-
timodal interface. In The ~nd FRIEND21 Inter-
national Symposium on Next Generation Human
Interface Technologies, Tokyo, Japan, November
1991. Institute for Personalized Information Envi-
ronment. Also appears in Proceedings of UIST’92,
ACM Press, New York, 1992, 143-149.

[4] P. R. Cohen, M. Dalrymple, D. B. Moran, F. C. N.
Pereira, J. W. Sullivan, R. A. Gargan, J. L.
Schlossberg, and S. W. Tyler. Synergistic use of di-
rect manipulation and natural language. In Human
Factors in Computing Systems: CH1’89 Confer-
ence Proceedings, pages 227-234, New York, New
York, April 1989. ACM, Addison Wesley Publish-
ing Co.

[5] P. R. Cohen and H. J. Levesque. Rational interac-
tion as the basis for communication. In P. R. Co-
hen, J. Morgan, and M. E. Pollack, editors, Inten-
tions in Communication. MIT Press, Cambridge,
Massachusetts, 1990.

[6] M. Dalrymple. The interpretation of tense and as-
pect in English. In Proceedings of the 26th Annual
Meeting of the Association for Computational Lin-
guistics, Buffalo, New York, June 1988.

[7] O. Etzioni, N. Lesh, and R. Segal. Building soft-
bots for UNIX. Department of Computer Science
and Engineering, University of Washington, un-
published ms., November 1992.

[8] D. Gelernter. Mirror Worlds. Oxford University
Press, New York, 1993.

[9] M. Genesereth and N. P. Singh. A knowledge shar-
ing approach to software interoperation. Computer
Science Department, Stanford University, unpub-
lished ms., January 1994.

[10] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaboratorive filtering to weave an infor-
mation tapestry. Communications of the ACM,
35(12):61-70, December 1992.

[11] B. J. Grosz, D. Appelt, P. Martin, and F. Pereira.
Team: An experiment in the design of trans-
portable natural language interfaces. Artificial In-
telligence, 32(2):173-244, 1987.

[12] T. W. Malone, K. R. Grant, F. A. Turbak, S. A.
Brobst, and M. D. Cohen. Intelligent information-
sharing. Communications of the ACM, 30(5):390-
402, May 1987.

Page 7 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4782



[13] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patti,
T. Senator, and W. Swartout. Enabling technology
for knowledge sharing. AI Magazine, 12(3), 1991.

[14] S. L. Oviatt, P. R. Cohen, and M. Wang. Reduc-
ing linguistic variability in speech and handwrit-
ing through selection of presentation format. In
K. Shirai, editor, Proceedings of the International
Conference on Spoken Dialogue: New Directions in
Human-Machine Communication, Tokyo, Japan,
November 1993.

[15] M. Palaniappan, N. Yankelovitch, G. Fitzmaurice,
A. Loomis, B. I-Iaan, :l. Coombs, and N. Mey-
rowitz. The Envoy framework: An open architec-
ture for agents. A CM Transactions on Information
Systems, 10(3):233-264, July 1992.

[16] S. Pollock. A rule-based message filtering system.
ACM Transactions on Office Information Systems,
6(3):232-254, July 1988.

[17] D. G. Schwartz. Cooperating heterogeneous sys-
tems: A blackboard-based meta approach. Techni-
cal Report 93-112, Center for Automation and In-
telligent Systems Research, Case Western Reserve
University, Cleveland, Ohio, April 1993. Unpub-
lished Ph.D. thesis.

[18] J. R. Searle. Speech acts: An essay in the phi-
losophy of language. Cambridge University Press,
Cambridge, 1969.

[19] Y. Shoham. Agent-oriented programming. Artifi-
cial Intelligence, 60(1):51-92, 1993.

[20] R. Turlock. SIFT: A Simple Information Filtering
Tool. Bellcore, Mountain, New Jersey, 1993.

Page 8 of 8 Petitioner Microsoft Corporation - Ex. 1008, p. 4783



PAAM97

I Q q 7 Proceedings of the Second International Conference on
the Practical Application of

Intelligent Agents and Multi-Agent Technology

Conference Organisation
The Practical Application Company

Conference and Programme Chair
Barry Crabtree

Sponsorship Co-ordinator

Clive Spenser

21st-23rd April 1997

Westminster Central Hall, London , UK

No part of this book may be reprinted or reproduced without the written

consent of the organiser and publisher.

PAAM, P.O. Box 137, Blackpool, Lancashire, FY2 9UN, UK

Tel: +44 (0)1253 358081, Fax: +44 (0)1253 353811

Email: proceedings@pap.com

ISBN 0 9525554 6 8

Published by The Practical Application Company Ltd

GOOGLE EXHIBIT 1026

/ /-~2
/ /

/
/ ~ ~---

Page I of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4784



Information Brokering in an Agent Architecture

David Martin Hiroki Oohama

Artificial Intelligence Center Laboratory of Information Technology

SRI International NTT Data
martin@ai.sri.com hama@lit.rd.nttdata.co.jp

Douglas Moran Adam Cheyer

Artificial Intelligence Center Artificial Intelligence Center
SRI International SRI International
moran@ai.sri.com cheyer@ai.sri.com

Abstract

To date, document identification based on keyword matching strategies has been
the basis of most efforts to provide assistance in accessing information resources on
the Internet. However, in view of the limitations on human browsing time and the
evolution of more capable software agents, we can expect rapid expansion in the use
of fully queryable information sources (such as databases and knowledge bases) and
semiqueryable sources (such as form-based query pages on the World Wide Web, and
collections of Web pages that are structured by textual markups).

The ability to obtain information from a wide variety of queryable and semi-
queryable sources is a prerequisite for the success of many types of software agents.
Providing access to these sources - whether for end users or for software agents act-
ing on behalf of users - poses a number of interesting challenges, many of which can
themselves be addressed using agent-based approaches.

This paper describes a working prototype Information Broker system, developed
within the Open Agent Architecture framework, that provides transparent access to
a variety of information sources, each encapsulated as an independent agent. In this
system, a broker meta-agent provides flexible mediation services, accepting queries
expressed in broker or source schemas, gathering and integrating all available responses

from the relevant sources, and allowing for the addition or deletion, at runtime, of
participating information sources. Other broker features support the use of conversions,

normalizations, and other basic domain knowledge in queries, and persistent queries (for
which the Broker notifies requestors of changes in information sources that could affect

their results). Source agents implement caching and retrieval strategies that alleviate
problems related to the long access times and unreliability of Internet sources.

Page 2 of 21
Petitioner Microsoft Corporation - Ex. 1008, p. 4785



1 Introduction

The rapid growth of the World Wide Web and other forms of Internet and intranet access,
and the need for automated assistance in making use of these resources, are now widely
appreciated. The most immediate need, and the one receiving the greatest attention to
date, is in the area of document retrieval; that is, the identification of textual documents
that are relevant to some topic of interest. The topic of interest is generally indicated by
an expression containing keywords, and the goal of the retrieval is to locate documents from
which a human reader can extract useful information. A number of systems - such as NTT
Data's InterInfol in the commercial realm and Amalthaea [11] in the realm of agent research
- are providing increasingly sophisticated approaches to document retrieval.

1.1 Structured and Semistructured Information Sources

An equally important set of challenges, but one that has not yet become as widely recognized,
exists in the area of structured and semistructured information sources. By structured infor-
mation sources, we mean sources that can be queried by using well-defined, general query
languages, such as relational databases, object-oriented databases, and knowledge bases.

By semistructured information sources, we include a variety of sources that contain sufficient
structure to be treated as databases, even though they do not provide the full generality and
power of a query language. In the context of the World Wide Web, this structure is usually
provided in one (or both) of two ways: by an informal form-based query interface or by the
presence of HTML (HyperText Markup Language) markups and other textual markers used
according to site-specific conventions.

We refer to a semistructured source that provides an informal form-based query interface as
a semiqueryable source. It should be apparent that, even when such an interface is provided,
its "query" capability usually falls far short of the power and generality of a structured
information source. When a source provides structure by textual markers, we call that a
semistructured textual source.

An example of a semistructured source - in which both types of structure are present -
begins with a Web page that allows one to ask for hotels by filling in one or more of the
following items: a location, a hotel chain, or a class of accommodation (economy, standard,
luxury). This page is semiqueryable, because even though it allows for the construction
of certain simple queries, there are many others that cannot be constructed.2 The result
of this query is a list of hypertext links to hotel pages, each of which contains the same
basic data in more or less the same format. Each of these pages is a semistructured textual
source of information, and each can be transformed into a set of data records, using parsing
techniques, given that the format is known.

'All product names mentioned in this document are the trademarks of their respective holders.
2For instance, one cannot ask, in a single query, for luxury hotels in Amsterdam and economy hotels in

Paris.

Page 3 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4786



1.2 The Need for Information Brokering

An information brokering system is one that provides coordinated access to a heterogeneous
collection of structured and semistructured information sources. There are three key reasons
why structured and semistructured information sources - and thus, information brokering
systems - will be of rapidly increasing importance in the Internet and intranet worlds. First,
human browsing time is both limited and, at least in the workplace, extremely expensive.
Whereas document retrieval returns a body of text from which a human browser can extract
some required data, data retrieval from structured and semistructured sources returns the
required data itself. Thus, in performing tasks where the data requirements are well defined,
there is significant economic pressure to make use of structured and semistructured sources.

Second, enterprises have large investments in legacy databases, and naturally want to lever-
age these in the context of the World Wide Web. This is especially true in light of the
decentralization of corporate resources, and other trends in business process engineering.
One straightforward way to leverage existing databases is simply to make them accessible to
employees via Web interfaces. But the potential for leverage goes much further, when one
considers the variety of ways in which legacy databases can be used in combination with
other enterprise information resources, and with information from sources on the Internet.
One role of information brokering systems is to facilitate the creation and maintenance of
applications that rely on such combinations of information sources.

Third, queryable information sources are an essential requirement for the evolution of soft-
ware agents that provide services within the context of the Internet or an intranet. By
services, we refer not just to document retrieval, but to the full gamut of services that can
be built around networked information. To provide a travel planning service or a stock
tracking service, an agent must be able to retrieve data about a specific domain, in a form
it can make use of - which requires access to structured and semistructured information.
(Although natural language processing technologies have made impressive advances in recent
years, there is still a long way to go before a program could reliably obtain this required data
from unstructured text.) Moreover, many agents will need to access a wide and changing
variety of information sources (consider, for example, an agent that finds the best available
price for some product). As new sources become available, they will need to quickly acquire
access to those sources. Information brokering systems can provide this access in a way that
can be reused by numerous application agents.

1.3 Information Brokering and Agent Technology

Software agents will be very active consumers of the services provided by information bro-
kering systems. We also argue that agent technology yields a promising approach to con-
structing the providers of these services. That is, the individual information sources as well
as the brokering component(s) can very naturally be instantiated as agents, and their efforts
coordinated by using the mechanisms of an agent architecture.

One other general observation may be made here regarding the relationship between infor-

Page 4 of 21
Petitioner Microsoft Corporation - Ex. 1008, p. 4787



mation brokering and agent technology: challenges encountered in coordinating access to
information agents may be viewed as special cases of those encountered in coordinating the
activities of all types of agents. Thus, many of the techniques developed to coordinate the
satisfaction of a query by multiple agents may well be applicable to the more general problem
of facilitating the activities of agents in completing various other types of tasks.

To summarize, the role of queryable information sources will expand rapidly in the context
of Internet and intranet resources. Their use in these contexts poses several interesting chal-
lenges. Addressing these challenges is the focus of the Information Broker project, developed
within the framework of the Open Agent Architecture (OAA). Following a brief discussion of
these challenges in the next section, the remainder of this paper describes the system that
has been developed in the initial work on this project. Section 3 provides an overview of
the system, with background information about the OAA. Section 4 describes the system's
architecture, and subsequent sections describe its individual components.

2 Challenge Areas

Our focus in this work has been on providing capabilities in two areas: mediation allows
for the transparent interoperation of heterogeneous information sources; flexible retrieval
strategies address issues such as long access times and unreliability of Internet resources.

2.1 Mediation

Mediation is a process that permits a requestor to get information from a wide variety of
sources, without having to be aware of the identities, locations, schemas, access mechanisms,
or contents of those sources. A component that performs mediation presents a single schema
to its requestors, accepts queries expressed in that schema, and handles all the details of
getting the appropriate data from the relevant information sources - each of which is likely
to operate with a different schema.

The capabilities provided by a mediator may be broken down into three subareas: delegation,
translation, and optimization. Delegation is the process of selecting the appropriate sources
from which to satisfy each subquery of a given query. Translation of each subquery into the
schemas of the selected sources must take place before the subqueries are sent to the sources
- and results returned from the sources must be translated back into the schema of the
original query. Optimization results in a query execution plan that obtains results from the
selected sources as efficiently as possible, and exploits parallelism wherever possible.

It should be noted that, in their essence, the problems of mediation are not unique to
networked environments. Some of these problems have already been studied for some time,
under the heading of heterogeneous databases. However, the emergence of the Internet has
triggered a renewed interest in these problems.3 This is not only due to the massive volume

3 Other projects currently exploring these issues are described in [1], [5], [6], [7], [8], [12], and [13].

Page 5 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4788



of data that is now becoming accessible over the Internet, but also because of new aspects
of these problems that occur in the context of the Internet.

For example, the rapid creation (or discovery) of new information sources on the Internet,
and frequent restructuring of existing sources, make it very valuable for a mediator to be
able to accommodate new sources without going offline for reconfiguration. The absence
of any centralized control over information sources implies that a mediator must be able
to accommodate considerable variation in their schemas. The overhead involved in making
HTTP connections to a number of different sites requires that a mediator be able to plan a
retrieval so that it requires a minimal number of different sources.

2.2 Retrieval Strategies

In addition to the problems of mediation, Internet and intranet environments pose a number
of other challenges for integrated information systems. For instance, the unreliability and
uneven quality of Web sources may call for the exploitation of redundant or overlapping sites.
Wide variation inthe access mechanisms of semistructured sources suggests that strategies
are needed to insulate the mediation component from this variation.

The use of semistructured textual sources on the Web also introduces a new set of time
factors, because first, a very large number of URL (Universal Resource Locator) accesses
may be required to process a single query, and second, parsing the text from a single site
can itself be time consuming.

Our approach to addressing these issues includes the use of caching for Web-based sources,
and several related retrieval strategies, which may be specified by information requestors.
The use of caching raises additional issues, such as when cache updates should take place,
and at what level of granularity.

3 The Information Broker System

To explore relevant issues, we created an information brokering architecture that integrates
elements from software agent technology, database technology, and Internet retrieval tech-
nology. To demonstrate this approach, we constructed a prototype system, in which a Broker
agent coordinates access to a variety of information resources in the domain of travel.

The prototype system illustrates two different ways in which the Broker agent can be used:

* A direct query interface allows the user to enter specific queries about hotels, relays the
queries to the Broker, and formats the results for the user. In the prototype system,
this interface is provided by a Web page.

e A service-providing agent insulates the user from query details, and can employ a user
model in obtaining and evaluating the information needed for a specific task. In the

Page 6 of 21
Petitioner Microsoft Corporation - Ex. 1008, p. 4789



prototype system, this is demonstrated by the Travel Planner Agent (TPA), which
accepts some basic trip constraints from the user, obtains hotel and flight data from
the Broker, and uses that data to formulate desirable itineraries.

In both cases, the Broker obtains and integrates the requested information from several
heterogeneous sources, each of which participates in the system as an independent agent.
These include several Web-based sources providing hotel information, a relational database
of flight information, a Web-based source that provides the latest available rates of currency
exchange, and a corporate database listing rates for hotel chains which grant a discount.

Broker features allow for expression of queries in broker or in source schemas, the use of
conversions, normalizations, and other basic domain knowledge in queries, flexibility in the
means of retrieval, and persistent query capabilities. These features are explained in greater
detail below.

The following subsection gives a brief overview of the OAA, the framework in which the
agents of the brokering system operate.

3.1 The Open Agent Architecture

The Open Agent Architecture provides a framework for integrating a society of software
agents, each possessing a high degree of independence and autonomy, within a distributed
environment. A collection of agents satsifies requests from users, or other agents, by acting
cooperatively, under the direction of one or more facilitators (which are themselves agents
of a special type).

The system's architecture uses a hierarchical configuration in which each application agent
connects as a client of a facilitator. Facilitators provide content-based message routing, global
data management, and process coordination for their set of connected agents. Facilitators
can, in turn, be connected as clients of other facilitators.

Agents share a common communication language and a number of basic structural charac-
teristics and capabilities. An agent library provides this common functionality. For example,
every agent can install local or remote triggers on data, events or messages; manipulate global
data stored by facilitators; and request solutions for a set of goals, to be satisfied under a
variety of different control strategies. In addition, the agent library provides functionality
for parsing and translating expressions in the Interagent Communication Language, and for
managing network communication using TCP/IP.

The OAA's Interagent Communication Language (ICL) is the interface language shared by
all agents, no matter what machine they are running on or what computer language they
are programmed in. The ICL has been designed as an extension of the Prolog programming
language, in order to take advantage of unification and backtracking during interactions
among agents.

The OAA is described in greater detail in [3], [9], and [10].

Page 7 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4790



4 System Architecture

As shown in Figure 1, the central functionality of the system is provided by the Information
Broker agent, working in close cooperation with the OAA Facilitator. The Broker accepts
requests (queries) from either a direct query interface or a service-providing (helper) agent,
as shown at the left of the figure. While the demonstration system includes only one of each
type, there is no limit in principle to the number of requestors the Broker can serve, except
for the constraints imposed by processing time and communications bandwidth.

Multimedia
Ms Source

Figure 1: Information Broker system architecture

The Broker delegates, translates, and relays the appropriate subqueries to the available
source agents (shown at the right of Figure 1), and then accepts the results and reintegrates
them for return to the requestor. Each source agent is an encapsulation, as an OAA agent,
of some information source. Web-based source agents make use of an HTTP retrieval agent,
which is shown at the top of the figure.

In the figure, BQ (Broker Query) and BR (Broker Response) refer to items expressed in
the broker schema, whereas SQ (Source Query) and SR (Source Response) refer to items
expressed in a source schema - as explained in the next section. RDB abbreviates Relational

Page 8 of 21
Petitioner Microsoft Corporation - Ex. 1008, p. 4791



DataBase, and KB abbreviates Knowledge Base. 4

5 The Broker Agent

The Broker agent provides transparent access to a collection of heterogeneous information
sources in a given domain. Transparent means that an information requestor (a query in-
terface agent or some other agent) need not be concerned with any details regarding the
Broker's information sources. The Broker publishes a fixed schema, the broker schema, that
is used in constructing queries, and this schema is all that is needed by a requestor to make
use of the Broker's services.

Schema, here, is essentially the same as a relational database schema. From the developer's
point of view, equivalently, it may be thought of as a collection of Prolog predicates.5 With
respect to the broker schema, some of these predicates are implemented locally, at the Broker,
whereas others are implemented remotely, at the sources.

Queries submitted to the Broker are expressions in the Interagent Communication Language
(ICL), the language of the OAA. Each query is syntactically the same as a Prolog goal,
usually a compound goal. For an OAA developer using the Broker's services, the ICL has two
advantages: first, it is easily understood, and familiar to anyone who knows Prolog or the
logical style of expressing database queries; second, it allows the developer to take advantage
of Prolog-style unification and backtracking in expressing and processing queries.

When the Broker receives a query, it uses schema mapping rules to determine which parts of
the query should go to which sources, and then to translate each subquery into the schemas
of those sources to which it will be sent. (This process is described in greater detail below.)
After the responses to the subqueries are received, the Broker translates them into the broker
schema and integrates them into a single response, which is then returned to the requestor.

Thus, the Broker insulates an information requestor from the heterogeneity of schemas that
is likely to be present in any collection of information sources. The Broker has this core
functionality in common with heterogeneous database systems. However, the Broker goes
further than many existing systems, in that it allows for the addition or removal of in-
formation sources at runtime. This can include sources of which the Broker has no prior
knowledge.

To permit this dynamism in the participation of available information sources, the Broker
makes use of capabilities provided by the OAA. When an information source agent comes
online, it registers its presence with the Broker by calling one of the Broker's agent interface
procedures, broker-register-source. As one of the arguments to this procedure, the source
agent passes to the Broker a set of schema mapping rules, which contain the knowledge that

4The prototype system does not currently include knowledge base or multimedia sources.
5For this reason, we use the term predicate, where some readers with a database background might prefer

relation. In most places in this paper, these two terms can be used interchangeably.

Page 9 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4792



is needed by the Broker to translate between the broker schema and the source schema.6

This approach to schema mapping means that the Broker need have no prior knowledge of

the schema of any of the participating information sources. What is required is that the

developer of the source agent be aware of the Broker's schema, which, as mentioned earlier,

has been fixed and "published". Thus, to allow for the dynamic participation of sources, an

important part of the Broker's knowledge originates with the sources, each of which provides

the mapping rules for its schema.

At the same time, because the schema mapping rules are used at the Broker, rather than

at the source agent, it is possible to bring a source online with minimal changes to the

original data or to the original capabilities of the source. This may be done by creating an

agent wrapper around the original source component - an approach that is supported by

the underlying OAA libraries and development tools.

Source agents that need to go offline may do so in an orderly fashion by calling another of

the Broker's agent interface procedures, broker-unregister-source, to inform the Broker that

the source is no longer available. However, it is also important to allow for sources that may

die or become unavailable unexpectedly. Here again, the Broker uses mechanisms provided

by the OAA Facilitator. To do this, the Broker installs a trigger on the Facilitator, for each

source agent, which is set to fire whenever that source agent dies or becomes unavailable for

any reason. The effect of the trigger is to send a notification message to the Broker, so that

it can unregister the source and retract its schema mapping rules.

5.1 Domain Specialization

A Broker agent may be specialized for a given domain, by incorporating domain knowledge.

To illustrate, our prototype Broker agent is specialized with basic knowledge relevant to

travel, such as distances between major cities'- data that is not likely to be included in

any of the participating sources, but that is very likely to be useful in conjunction with

the sources' data. Questions about this domain knowledge can then be included in queries

submitted to the Broker. For example, using the direct-query hotel interface, it is possible to

ask about hotels that are in a given city C, or in nearby cities (cities within a certain distance

from C). By filling in knowledge gaps in this way, it is possible for the Broker to provide a

retrieval capability that is greater than the sum of the individual information sources.

Procedures for converting and normalizing units represent another type of domain knowledge

that is useful in a Broker. For example, in the travel domain, our prototype Broker provides

procedures for converting and normalizing units of currency and the formatting of addresses,

which vary widely from country to country. These procedures can be used in schema mapping

rules, to ensure that results are returned in units and formats that are appropriate for the

current user. This alleviates the need for each information source to provide these conversions

6These and other communications between the Broker and the source agents are handled through the ser-

vices of the OAA Facilitator. We illustrate this, in Figure 1, by showing the Facilitator partially surrounding

the Broker.

Page 10 of 21
Petitioner Microsoft Corporation - Ex. 1008, p. 4793



and normalizations, and thus makes it easier to prepare information sources to work with
the Broker.

5.2 Schema Mapping Rules

Delegation and translation of queries by the Broker are determined by schema mapping rules,
which are provided at runtime by each information source that connects to the Broker.

There are several types of schema mapping rules, the most important of which is the broker
predicate rule. A broker predicate rule, which provides a partial definition of some predicate
in the broker schema, has the syntax of a Prolog rule, and essentially the same semantics.
Each mapping rule takes the form

S (X) +- S, (71),. •_•, S. (7.)

where

1. B(X) is a predicate in the broker schema.

2. Each of S1, ... , S,, may be taken from any of the following sets:

" predicates in the source schema (i.e., the source providing the rule)

" broker domain predicates

* ICL (Interagent Communication Language) built-in predicates, including

- standard comparison operators such as < /2, </2, > /2, and > /2

- a small set of utility predicates such as member/2 and append/2

3. As in an ordinary Prolog clause, each element of the argument lists X, Z 1,..., Z,,, may
be a variable or an instantiated value.

Broker domain predicates provide domain-specific knowledge, and most are purely
extensional. For example, in the travel domain of the prototype system,
city-distance(Cityl, City2, Miles) provides a table of distances between given cities.

An information source may be associated with multiple rules defining the same broker pred-
icate, and multiple sources can define the same broker predicate.

Although the body of the broker predicate rule is characterized as a conjunction of predicates,
it should be noted that in practice, these rules, like ordinary Prolog rules, are not strictly
limited to conjunction. Disjunction, negation (that is, Prolog-style negation as failure), and a
few other control operators are also allowed, but for any rule body containing these, standard
equivalences of logic may be used to find an equivalent set of conjunctive rules.

Page 11 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4794



5.3 Query Processing

The Broker's strategy in handling a query is to provide all possible answers, given its current
schema mapping rules. It does this in such a way as to maintain Prolog semantics in
performing query evaluation, and incorporates several straightforward optimizations that
are important, considering the distributed nature of the information sources.

Of these optimizations, the most important is called chunking. The goal of chunking is
simply to identify the largest subqueries that can be sent to an information source (after
translation, as explained below) without changing the meaning of the original query. A
chunk may contain broker predicates that are known to be satisfiable by the source, and ICL
built-in predicates, but not broker domain predicates.

Chunking has three advantages. First, it requires that fewer communications occur be-
tween the Broker and an information source, reducing the overhead required to establish
and complete communications. Second, it allows the information source to make better use
of whatever optimization capabilities it may provide. Finally, it can significantly reduce
the amount of data returned from a source, by allowing joins and other operations to be
performed at the source, rather than at the Broker.

When the Broker receives a query, it takes the following steps to produce a query execution
plan:

" Determine, for each predicate in the query that is not an ICL built-in, what set of
sources provides solutions for that predicate.

- If the predicate is a broker predicate, this is done by testing for unification of the
predicate against the heads of the broker predicate rules. If it unifies with the
heads of one or more of the rules associated with a given source, that source is
placed in the set of sources for the predicate.

- If the predicate is a broker domain predicate, then the Broker itself is regarded
as the sole source of solutions.

* Determine which are the largest subqueries that can be treated as chunks, and which
sources can handle each chunk. In this process, as an optimization, ICL built-in pred-
icates (including arithmetic comparisons) are included with chunks to be solved by
sources, wherever possible, rather than being solved by the Broker itself.

" For each chunk, rewrite it as a disjunction of translated subqueries, where each disjunct
is the translation of the subquery for one of the sources that can handle that chunk.
The translation of a chunk for a given source is obtained by substituting, for each
broker predicate in the chunk, the disjunction of the bodies of the broker predicate
rules, for that source, whose heads unify with the predicate.

In the resulting query execution plan, each translated subquery is labeled with the name
of the source by which it is to be solved. The plan is then interpreted according to Pro-

Page 12 of 21
Petitioner Microsoft Corporation - Ex. 1008, p. 4795



log semantics, except that each translated subquery is solved remotely, by the appropriate
information source.

5.4 Persistent Queries

An extremely useful service provided by the Broker agent is the persistent query. A persistent
query is one that the Broker initially answers in the normal way, but then remembers and
monitors against changes in the available information sburces. When an information source
is added, removed, or updated, the Broker checks the persistent queries to see if their results
may have been affected by the change.

As mentioned in section 5, the Broker detects additions of sources by calls made to bro-
ker-register-source, and removals by calls to broker-unregister-source, or by the firing of a
trigger installed on the Facilitator. Updates of sources are brought to the Broker's atten-
tion, with an indication of the source predicates involved, by means of triggers installed on
the sources. In each of these cases, the Broker performs a straightforward analysis of each
persistent query, using the schema mapping rules for the source in question, to determine if
it may have been affected.

If so, the Broker sends a change notification to the user or agent that submitted the persistent
query. For example, in the case of our direct-query interface, the result of a persistent query
change notification is an email message to the user who entered the query. The email message
informs the user that the relevant data has changed, reconstructs the user's query input, and
allows him to resubmit his query with a single button push, so as to obtain the latest available
results for that query. (The interactive nature of the email message is achieved by using a
multipart MIME format for the message, and reading it using the mail handling component
of a Web browser.)

The TPA deals with persistent query change notifications in a more comprehensive fashion,
as explained in section 7.

5.5 Queries Expressed in a Source Schema

The Broker also provides the capability of answering queries that are expressed in the schema
of an information source, rather than in the broker schema. This capability can have great
value in systems where one or more information sources are provided by legacy databases.

The need for this capability arises when a legacy database provides a well-developed user
interface to which users are accustomed, and it is desirable to retain that interface, while at
the same time integrating the legacy database with the Broker's services. In this case, the
goal is for the user to formulate a query using the legacy interface (which generates queries
in the source schema of the legacy database), but to have that query answered by all the
Broker's information sources, with the results returned to the legacy interface. This is made
possible, with a minimum of new engineering effort, by arranging for the Broker to handle

Page 13 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4796



queries in that source schema.

In this situation, the legacy database becomes one of the Broker's sources, and participates
along with other sources in answering queries submitted to the Broker in the broker schema.
But in addition, this legacy source may also act as an information requestor, submitting
queries that are formulated in terms of its source schema. (A syntactic translation may be
needed to place the query in ICL syntax, but in most cases, this is relatively straightforward
to implement.) To make this possible, the legacy source must first submit, to the Broker,
a collection of source predicate rules, which contain the knowledge needed by the Broker to
translate queries from the source schema into the broker schema. These rules are similar to
broker predicate rules, except that their heads are predicates from the source schema, and
their bodies are compositions of predicates from the broker schema.

When a query expressed in a source schema is submitted, the Broker uses the source predicate
rules to translate it into a query in the broker schema, and then solves that query in its
usual way, with respect to all sources other than the legacy source. These results are then
translated into the schema of the legacy source. The legacy source is not included in the
Broker's normal mediation algorithms. Rather, the Broker submits the original query back
to the legacy source just as it was. Finally, the Broker integrates all the responses and
returns them to the source.

6 Source Agents

An information source agent that works with a Broker agent may be of several different
types. The primary requirements are first, that it be able to handle the Prolog-style query
syntax that the Broker generates, and second, that it be able to characterize its contents in
terms of schema mapping rules. The first requirement is not a very restrictive one, as it is
considered straightforward to translate from a Prolog-style syntax to SQL or other relational
query languages. The second requirement means, roughly, that a source can be presented in
terms of a relational model. (Although it should be possible to accommodate some sources
that are inherently object-oriented or knowledge-based, this support has been left for future
work.)

In meeting the second requirement, one must consider the origin and access mechanisms of
the source's data, which can vary widely between information sources. For instance, some
may be traditional relational databases, whereas others may contain data extracted from
the Web. In the case of Web data, several types of data sources may be identified for our
purposes. First, there are fully structured sources - relational databases that are accessible
via a completely general query language, such as SQL. These are relatively uncommon at
present. Second, there are semistructured sources. As mentioned in the Introduction, these
may be either semiqueryable (accessible via a form-based query page), semistructured textual,
or some combination of the two. semistructured textual sources are Web sites that include
large collections of pages, each having enough structure, in HTML markups, headings, and/or
other textual clues, to allow for extraction of a set of data elements.

Page 14 of 21
Petitioner Microsoft Corporation - Ex. 1008, p. 4797



In addition to traditional relational databases, implemented as Prolog databases, the proto-
type system makes use of several semistructured textual Web sources. To extract the data
from the relevant pages, parsing techniques, based on context-free grammars, are used. A
library of reusable code has been developed in support of these techniques.

6.1 Caching and Retrieval Strategies

As mentioned earlier, Web-based sources introduce challenges for data retrieval. Foremost
among these are long access times (especially relevant to semistructured sources) and low
reliability. In the Information Broker system, these are addressed through a combination of
caching and flexible retrieval strategies.

6.2 Caching

Caching is accomplished both by batch update procedures and by update procedures that
result from individual queries. A batch update procedure is one that runs offline (that is,
independently of the source's activities in response to queries), and regenerates a complete
cache. For a semistructured data source, a batch update could involve accessing hundreds
or thousands of pages and parsing each one for relevant data, so this could easily take hours.
Each of the Web-based information sources has been initialized in this way, and is set up so
that query processing can continue normally by one agent, while a batch update is performed
by a separate agent.

Cache updates can also be triggered by normal query processing. Whenever a query is
satisfied (or partially satisfied) with data retrieved directly from the Web, this data is used
to update the cache.

6.3 Retrieval Strategies

Flexible retrieval strategies are used to determine whether a query is satisfied entirely from
a cache, directly from the Web at query time, or from a combination of the two. A request
that comes in to the Broker can include, in addition to the query itself, a specification
of a retrieval strategy, which will be propagated to each source agent that is employed in
answering the query.

Data records in a cache are time-stamped, and some strategies are implemented in relation
to these time stamps. In addition, a source agent can specify a default longevity for each
predicate that it caches. For example, since room rates are relatively stable for hotels in
our Web sources, the longevity for the relevant predicates is specified as two weeks. For
the agent that provides current monetary exchange rates, however, longevities are set at 24
hours.

Page 15 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4798



Currently, four retrieval strategies are supported. All-from-web calls for retrieval of all data
from the Web, at query time, regardless of how long it might take. All-from-cache calls for
retrieval exclusively from the cache. From-web-if-expired means that for each data element
that is accessed in answering the query, its time-stamp is checked, and if it is older than
the default longevity for that predicate, then the element is updated from the Web. From-
web-if-older-than(N) is similar, except that the longevity is specified (as N seconds) for that
particular query.

Consistent implementation of caching and retrieval strategies by the various source agents
is supported by a library of reuseable code.

7 The Travel Planner Agent

Even though a Broker provides a general, transparent means of accessing multiple data
sources with a single query, there is still much that can be done to assist the user in making
good use of the information provided by the Broker. A variety of service-providing com-
ponents can be envisioned, which access the Broker on behalf of the user, thus insulating
her from the details of query construction altogether. The instantiation of the Broker as
a software agent helps to make this possible, because the Broker's services are thus made
readily available to a wide variety of agents that come online.

The Travel Planner Agent provides an example of a high-level service-providing agent that
insulates the user from formulating Broker queries. TPA's function is to formulate a list
of possible itineraries for a trip, given a few basic trip constraints that are supplied by a
user. These trip constraints include such things as dates of departure and return, destination
city, and overall budget. Each itinerary prepared by TPA includes complete details about a
possible choice of flights and hotel stays for the trip, and itineraries are scored and ranked
according to user preferences.

To evaluate alternative itineraries, TPA maintains a user model indicating the user's prefer-
ences about a variety of travel parameters. For example, with respect to air travel selections,
these parameters include such things as airline, class of travel, alternative airports, and time
of day for departure. The presence of the user model also allows TPA to minimize the
amount of new information required from the user when formulating an information request.

To minimize the user's effort in maintaining the user model, TPA has the capability of
questioning the user about her experiences after a trip has been completed. Once a trip
has been scheduled, TPA remembers the return date. Shortly after that date, using services
provided by other OAA agents, TPA will send a questionnaire to the user by email, asking
that she provide ratings for some of the parameters of the trip, such as a specific hotel or
hotel chain. If a trip parameter has previously been rated by the user, she will be given an
opportunity to update the rating; otherwise, she will be prompted to select a new rating.7

The questionnaire is presented as an HTML form, and a "Submit" button causes the user's
7 For most parameters, ratings are integers between -5 and +5.

Page 16 of 21
Petitioner Microsoft Corporation - Ex. 1008, p. 4799



responses to be returned to TPA, for incorporation into the user model.'

TPA also provides a persistent query service, based upon that provided by the Broker. When
it receives a persistent query change notification from the Broker, the TPA determines what
set of itineraries was based on that query, automatically resubmits the queries relevant to
those itineraries, obtains the new results, and recomputes the requested itineraries based on
these results. It compares these itineraries to the results of the original request, which it has
saved, to determine whether the resulting itineraries have been affected in any way. If so, it
sends the new itineraries to the end user by email.

Note that TPA's persistent query service is more comprehensive than that of the Broker, in
that compares its newly generated itineraries against the previous ones, before generating a
user notification. By contrast, when the Broker provides a persistent query change notifica-
tion, it is based on advice from one of the Broker's sources that its data has changed in some
way, and indicates that the query results may have been affected by the change. That is,
the Broker does not determine with certainty whether the query results have been affected,
but it gives the requesting user or agent the opportunity to make that determination. The
reason for this difference is that the Broker is intended to handle large numbers of queries
from (potentially) a large number of agents. Thus, it is not reasonable to expect the Broker
to save the results of all queries handled.

8 Future Directions

Although it has not yet been exploited, our architecture allows for cooperation between
multiple broker agents. This can be done by having one broker register as an information
source with respect to another, and present mapping rules that allow its broker schema to
be regarded as a source schema. These relationships between brokers could be organized
around the structure of the relevant domains. For example, whereas our Broker directly
uses sources in the subdomains of air travel and accommodations, among others, it would
be natural to have these two subdomains handled by independent brokers.

The storage and use of broker predicate rules at the Broker, rather than at the individual
sources, raises an opportunity for further simplifying the introduction of new information
sources. Currently, each source has to be given the ability to process the ICL query syntax.
Although this is easy when working with an implementation language for which the agent
library is available, it could be a significant obstacle in other contexts. As a substitute, if
a source agent exists without this ability, it would be possible for the Broker to perform
the interpretation of the query syntax on behalf of that agent, in such a way that the agent
need only respond to atomic requests (that is, where each request consists only of a single
predicate). On the other hand, for those source agents which do handle the ICL syntax,
but do not possess the ability to perform any optimizations, the Broker could provide more
sophisticated optimizations of the compound requests that go to those agents.

More can be done, in the Broker, to ensure effective utilization of information sources.
8As of this writing, the implementation of the questionnaire capability is incomplete.

Page 17 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4800



Currently, the use of a source in answering a subquery is determined by unification of the
subquery predicates against the heads of broker predicate rules. Although this provides
a useful degree of discrimination of sources, greater discrimination could be achieved by
attaching additional characterizations of source contents. For example, it should be possible
to specify that a source selection depends on an argument of a subquery predicate being a
member of some fixed set of values, or within a certain range, if numeric. In addition, rules
could be annotated with an approximate indication of what portion of the available data the
source can provide, if known. This would allow the Broker, in some cases, to avoid sending
requests to two or more sources that are likely to return the same data.

Finally, we would like the Broker to provide estimates of retrieval times to interested re-
questors. That is, it should be possible for a requestor to find out how long the wait might
be for the results to a a given query, with a given retrieval strategy. This would assist the
requestor in selecting a retrieval strategy, and, assuming the requestor is a software agent,
would allow it to manage its interactions with users more effectively.

9 Related Work

The growth of the Web has contributed to a renewal of interest in the problem of providing a
uniform interface to multiple information sources, which has received considerable attention
recently in both the AI and Database literature. Within this body of work, the Information
Broker project is characterized by its emphasis on the following: dynamic availability of
sources, supported by modular sets of schema mapping rules; ease of bringing new and
legacy information sources online; transparent access to semistructured sources, supported by
caching and retrieval strategies; and thorough integration with an existing agent framework.

In the database community, several systems are being built around the notion of a mediator,
including CARNOT [4], TSIMMIS [2], and HERMES [14]. Broadly speaking, for each of
a chosen set of queries, these systems provide a procedure to answer the query using the
available sources. Given a new query, these systems attempt to answer it by relating it to the
set of known queries. In the Information Broker, sources are described independently of the
queries for which they will be used, which is less restrictive as to which queries are answerable,
and also makes it easier to add or remove sources. TSIMMIS has also given attention to the
use of semistructured sources, with an approach based on yacc-style recognition grammars.

The Information Manifold [8] shares our emphasis on dynamic addition and removal of
sources. It too employs modular sets of source description rules, but relies on a different
form of rule, where source schema predicates are characterized in terms of broker predicates
(whereas, in the Information Broker, broker predicates are defined in terms of source predi-
cates). There are interesting tradeoffs between the two approaches. In particular, although
Information Manifold characterizations provide the broker with more information regarding
the contents of each source, and thus allow for greater optimization in the selection of the
sources that are relevant to a query, their use is computationally expensive, and the form of
the rules must be more tightly restricted.

Page 18 of 21
Petitioner Microsoft Corporation - Ex. 1008, p. 4801



In the Al community, systems such as SIMS [1] and InfoMaster [61 are also based on explicit
representations of the contents of information sources. In SIMS, these are based on mappings
of source schemas to classes and attributes specified in the description logic language LOOM,
and planning technology is used to generate query plans appropriate for the sources. SIMS'
transformation rules, which guide the planning process, do not guarantee that a query-
answering plan will be found if one exists. In addition, defining mappings using arbitrary
logic rules, as in the Information Broker, provides greater flexibility than in SIMS. In the
RETSINA (Reusable Task Structure-based Intelligent Network Agents) architecture [15],
information agents play a role corresponding to that of our Broker agents, and use KQML
in much the same way that our agents use ICL. In InfoSleuth [7], which employs KQML
and KIF for communications, this role is implemented jointly by an Execution Agent and a
Broker Agent.

10 Summary

Structured and semistructured information sources will be increasingly important as we learn
to use the Internet and intranets in more sophisticated ways. Transparently coordinated
access to heterogeneous, rapidly changing collections of these sources is a prerequisite for the
evolution of many types of software agents.

We have described an approach and a prototype system that provide this access, within the
context of an agent framework, the Open Agent Architecture. Information consumers and
providers are instantiated as agents, and interact through the services of a Broker agent,
which include mediation, dynamic addition and deletion of sources, and persistent queries.
Provider agents present a variety of information sources as queryable databases, hiding details
of access and storage, and provide caching and flexible retrieval strategies.

Our approach to information brokering fits naturally into the agent paradigm, and benefits
from the autonomy it allows for individual providers and consumers, and the flexibility of
interactions between them. In addition, the agents are able to take advantage of specific
capabilities provided by the agent framework, including communication and coordination
mechanisms, the Interagent Communication Language, triggers, and support provided for
creating wrappers around legacy applications implemented in a variety of languages.

References

[1] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving and
integrating data from multiple information sources. International Journal on Intelligent
and Cooperative Information Systems, 2(2):127-158, 1993.

[2] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland, Yannis
Papakonstantinou, Jeffrey Ullman, , and Jennifer Widom. The TSIMMIS project: In-

Page 19 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4802



tegration of heterogeneous information sources. In Proceedings of the IPSJ Conference,
Tokyo, Japan, October 1994.

[3] P. R. Cohen, A. Cheyer, M. Wang, and S. C. Baeg. An open agent architecture. In 0. Et-
zioni, editor, Proceedings of the AAAI Spring Symposium Series on Software Agents,
pages 1-8, Menlo Park, California, March 1994. American Association for Artificial
Intelligence.

[4] C. Collet, M. N. Huhns, and W Shen. Resource integration using a large knowledge
base in CARNOT. IEEE Computer, 55(62), 1991.'

[5] Hector Garcia-Molina, Dallan Quass, Yannis Papakonstantinou, Anand Rajaraman,
Yehoshua Sagiv, Jeffrey D. Ullman, and Jennifer Widom. The TSIMMIS approach
to mediation: Data models and languages. In Proceedings of the Second International
Workshop on Next Generation Information Technologies and Systems (NGITS '95),
Naharia, Israel, June 1995.

[6] Infomaster home page. Available via World Wide Web URL
http ://infomaster. stanford. edu/.

[7] Infosleuth project index. Available via World Wide Web URL
http://www.mcc. com/projects/infosleuth/.

[8] Thomas Kirk, Aon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava. The information
manifold. In Proceedings of the AAAI Spring Symposium on Information Gathering in
Distributed Heterogeneous Environments, Stanford, California, March 1995.

[9] David L. Martin, Adam Cheyer, and Gowang-Lo Lee. Agent development tools for the
open agent architecture. In Proceedings of the First International Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology, pages 387-404,
Blackpool, Lancashire, UK, April 1996. The Practical Application Company Ltd.

[10] Douglas B. Moran, Adam J. Cheyer, Luc E. Julia, and David L. Martin. The open agent
architecture and its multimodal user interface. In Proceedings of the 1997 International
Conference on Intelligent User Interfaces (IU197), Orlando, Florida, 6-9 January 1997.

[11] Alexandros Moukas. Amalthaea: Information discovery and filtering using a multiagent
evolving ecosystem. In Proceedings of the First International Conference on the Practical
Application of Intelligent Agents and Multi-Agent Technology, pages 421-436, Blackpool,
Lancashire, UK, April 1996. The Practical Application Company Ltd.

[12] Xiaolei Qian. Semantic interoperation via intelligent mediation. Final Report CDRL
A009, Computer Science Laboratory, SRI International, Menlo Park, California, 1996.
Unpublished project report.

[13] Michael Stonebraker, Paul M. Aoki, Avi Pfeffer, Adam Sah, Jeff Sidell, Carl Staelin,
and Andrew Yu. Mariposa: A wide-area distributed database system. Sequoia 2000
Technical Report 95/63, University of California, Berkeley, CA, June 1995. Appeared
in VLDB Journal 5, 1 (January 1996), pp. 48 - 63.

Page 20 of 21
Petitioner Microsoft Corporation - Ex. 1008, p. 4803



[14] V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, . Lu, A. Rajput, T. Rogers, R. Ross,
and C. Ward. HERMES: A heterogeneous reasoning and mediator system. Technical
report, University of Maryland, 1995.

[15] K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng. Distributed intelligent
agents. In IEEE Expert, December 1996.

Page 21 of 21 Petitioner Microsoft Corporation - Ex. 1008, p. 4804



Vol.14 No.1 JANUARY 1996

oOO(LE EXHIBIT 1027Page I ot-22 Petitioner Microsoft Corporation - Ex. 1008, p. 4805



The BT Technology Journal is a quarterly periodical of technical papers pub-
lished by British Telecommunications plc to promote an awareness, among
workers in similar fields world-wide, of the Research and Development under-
taken by BT in telecommunications and related sciences.

EDITORIAL BOARD

G White BSc PhD CEng FIEE SMIEEE, Chairman
J R W Ames MSc CEng MIEE
E L Cusack BSc PhD
I G Dufour Eurlng CEng FIEE
P G Flavin CEng MIEE
P W France MSc PhD
J R Grierson MA PhD CEng FIEE
R C Nicol PhD CEng FIEE
S G Stockman BA PhD
A M Jell BA, Editor
D N Clough MA, Assistant Editor

Enquiries to the Editor: (01473) 623232, facsimile (01473) 620915, e-mail: bttj@ipswich.sac.co.uk
Internet access to the BT Laboratories information pages is available on: http://www.labs.bt.com

Unless otherwise stated, copyright of the papers appearing in the Journal is reserved by British
Telecommunications plc. The views of contributors are not necessarily those of the Editorial Board, do
not necessarily represent BT policy, nor reflect an endorsement for any commercial products.

The BT Technology Journal is distributed by Chapman and Hall, 2-6 Boundary Row, London SEI 8HN,
UK.

The Journal is published four times per year in January, April, July and October. Subscription prices for
1996 are: print + Internet access: $214 (USA/Canada) £126 (EU) £140 (all other countries); print only:
$185 (USA/Canada) £108 (EU) £122 (all other countries). Subscription prices for individuals are (print
only): $95 (USA/Canada) £54 (EU) £54 (all other countries). Individual subscriptions must be paid for by
personal cheque or credit card.

Any payment in US$ should be made to Routledge, Chapman and Hall Dollar Account: 051-70700-4,
Barclays Bank New York Ltd., 300 Park Avenue, New York, NY 10022, USA.

Subscription rates to USA include airfreight to New York and second class postage thereafter. All other
territories outside UK and Europe will be served by accelerated surface post.

Second class postage paid at Rahway, NJ. Postmaster: send address corrections to The BT Technology
Journal, c/o Mercury Airfreight International Ltd Inc., 2323 Randolph Avenue, Avenel, NJ 07001, USA
(US mailing agent).

All subscription enquiries should be made to Chapman and Hall Subscriptions Department.

All enquiries concerning editorial matters should be made to the Editor, SAC Technographic Ltd,
38 Anson Road, Martlesham Heath, Ipswich, Suffolk IP5 7RG (for voice, fax, e-mail details, see above).

BT Laboratories
Martlesham Heath Ipswich Suffolk England IP5 7RE

Page 2 of 22 Petitioner Microsoft Corporation - Ex. 1008, p. 4806



BT Technology journat
Vol.14 No.1 JANUARY 1996

THEME Speech technology for telecommunications

Foreword by C Wheddon

Editorial by F A Westall, R D Johnston and A V Lewis

F A Westall, R D Johnston and Speech technology for telecommunications 9
A V Lewis

Speech is the easiest, most expressive and most natural means of
human communication. Most of us have received intensive training in

using it from the day we were born! But speech is more than just a way
of transmitting words or ideas - it conveys the essence of human
emotion, moods, and personality. It is BT's core business, accounting

for over 90% of revenues. It is also our primary means to access the
26 million customers of the UK telephone networks, and to around a
half a billion telephone users world-wide. This paper introduces the
key speech technologies, described in detail in the associated papers

in this issue, and makes some personal predictions about future trends
and challenges in this important, exciting and far-reaching field.

W TK Wong Low rate speech coding for telecommunications 28

Over the last decade major advances have been made in speech cod-

ing technology which is now widely used in international, digital
mobile and satellite networks. The most recent techniques permit
telephone network quality speech transmission at 8 kbit/s, but there
are still demands for even lower rates and more flexible, good quality

coding techniques for various network applications. This paper
reviews the developments so far, and describes a new class of speech
coding methods known as speech interpolation coding which has the
potential to provide toll-quality speech coding at or below 4 kbit/s.

P A Barrett, R M Voelcker and Speech transmission over digital mobile radio channels 45
A V Lewis

The design of a speech channel for digital mobile radio applications is

a trade-off between the key performance dimensions of speech quality,

robustness to errors, delay, complexity and bit rate. An appropriate

balance is often difficult to achieve, but is vital to customer

satisfaction. This paper identifies the considerations in selecting a

speech codec for mobile telephony applications, outlines techniques

for robust and efficient speech transmission over a digital mobile

radio channel and discusses how the resulting performance can be

assessed. Throughout the paper, the half-rate GSM digital mobile

radio system is used as an example.

BT Technol J Vol 14 No 1 January 1996

Page 3 of 22 Petitioner Microsoft Corporation - Ex. 1008, p. 4807



Spoken language systems - beyond prompt and
response

P J Wyard, A D Simons, S Appleby, E Kaneen, S H Williams and K R Preston

Spoken language systems allow users to interact with computers by speaking to them. This paper focuses on the most
advanced systems, which seek to allow as natural a style of interaction as possible. Specifically this means the use of
continuous speech recognition - natural language understanding to interpret the utterance, and an intelligent dialogue
manager which allows a flexible style of 'conversation' between computer and user. This paper discusses the architecture of
spoken language systems and the components of which they are made, and describes both a variety of possible approaches
and the particular design decisions made in some systems developed at BT Laboratories. Three spoken language systems in
the course of development are described - a multimodal interface to the BT Business Catalogue, an e-mail secretary which
can be consulted over the telephone network, and a multimodal system to allow selection of films in the interactive TV
environment.

1. Introduction

N o science fiction image of the future is complete withoutthe ever-present personable computer which can under-
stand every word said to them. In spite of these popular media
images, the goal of completely natural interaction between
humans and machines is still some way off.

Interactive voice response (IVR) systems, which
provide services over the telephone network, have been
available since the mid-1980s. Initially they were restricted
to interactive TouchTone® input with voice providing the
response to the user. The use of such services was therefore
limited to the population with TouchTone keypads. More
recently applications using automatic speech recognition
(ASR) have been developed. These often simply allow the
option of spoken digit recognition as an alternative to
keypad entry, thus allowing the service to be launched even
in areas where TouchTone penetration is poor. Moving on
from such systems the words which are spoken can be
matched to the service. This allows these ASR-based
services to be more user-friendly than their TouchTone
counterparts because the user can directly answer the
question: 'Which service do you require?' with 'weather' or
'sport' rather than 'for weather press 1 for sport press 2',
etc. However, they still rely on selection from a
predetermined menu of items at any point in the dialogue.

More sophisticated services are now becoming possible
using emerging larger vocabulary speech recognition
technology. However, it is not sensible to simply extend the
menu-based approach to accommodate larger vocabularies.

Although well-engineered simple applications may be easy
to use, more advanced services are likely to have
complicated menu structures. If information can only be
provided one item at a time, using a 'prompt and response'
dialogue, rigid interaction styles may steer the user through
a complex dialogue. This can result in the user becoming
lost, or ending up with the wrong information. These
problems are particularly significant for inexperienced
users. On the other hand, experienced users may become
bored by the large number of responses needed when they
know exactly what they want. The menu-based structure
required by systems which rely on isolated word input is
often the limiting factor for new services. This limitation of
the user interface is one of the greatest barriers to the
usability of many IVR services.

Moving beyond the menu-style interaction towards
conversational spoken language will allow users to express
their requirements more directly and avoid tedious
navigation through menus. This approach will also allow
the user to take control of the interaction rather than using
the more common 'prompt and response' dialogue.

BT is interested in the development of spoken language
systems (SLS) to provide a key competitive advantage.
SLSs allow users to interact with computers using
conversational language rather than simply responding to
system prompts with short or one word utterances. With the
rapid increase in competition, service differentiation
becomes a key factor in gaining market share. Systems

BT Technol J Vol 14 No I January 1996

Page 4 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4808



SPOKEN LANGUAGE SYSTEMS

which allow users 24-hour remote access to information
provide a very useful service for people who are in different
time zones, or away from their office, or who need
information immediately during unsocial hours. SLSs can
be used to automate such services and also those which
currently require human operators, thus freeing their time to
deal with difficult situations where more complex, or more
personalised advice is needed.

Current trends in information networking and the
phenomenal growth of the Internet bring their attendant
problems for our customers in keeping up with technology,
finding what they need, and using information to their best
advantage. Spoken language system technology can greatly
enhance our customers' ease of access to information, thus
increasing network revenue through new and increased
usage. Systems which combine several modes of input and
output, such as speech, graphics, text, video, mouse-control,
touch and virtual reality, are known as multimodal spoken
language systems. These allow far greater freedom of
expression for users who, as a result, should feel more
comfortable and less as though they are 'talking to a
computer'. They are able to point, use gestures, speak, type;
whatever comes most naturally to them. Spoken language
systems will become increasingly important in the near
future as progress in technology becomes more widely
available.

The goal is to be able to build systems which are not
restricted only to those motivated users who are prepared to
spend time learning the language the machine understands.
These new systems can be used by anyone who wants
occasional access to a particular service. They will also help
the user successfully gain the information or service they
require by simply calling a number and asking for what they
want. In fact, the aim is to put back some of the intelligence
which existed in the network 50 years ago when a user
simply lifted the handset and asked to be connected to the
service or number required.

This paper discusses the design and implementation of
spoken language systems and is organised as follows.
Section 2 gives an outline of the architecture of an SLS.
Section 4 describes the components of an SLS in some
detail, giving concrete examples from current systems.
Section 3 discusses some of the systems currently under
development at BTL. These include a multi-modal system
for access to the BT Business Catalogue, a speech-in/
speech-out system for remote e-mail access and a system
for accessing information about films. Section 5 discusses
future work which needs to be carried out to improve the
quality and usability of SLSs, and section 6 draws some

188 conclusions.

2. System overview

T his section outlines a typical spoken language system
architecture, from the information processing point of

view (platform and inter-process communication issues are
not dealt with to any great extent in this paper). The archi-
tecture and the key processing components are outlined.

The most basic form of SLS, a speech-in/speech-out
(rather than multimodal) system, requires at least the
following major components (described briefly below and
in more detail in section 4).

" Speech recognition - to convert an input speech
utterance to a string of words.

* Meaning extraction - to extract as much of the
meaning as is necessary for the application from the
recogniser output and encode it into a suitable meaning
representation.

* Database query - to retrieve the information specified
by the output of the meaning extraction component.
Some applications (e.g. home banking) may require a
specific transaction to occur. Many applications may
be a mixture of database query and transaction
processing.

* Dialogue manager - this controls the interaction or
'dialogue' between the system and the user, and co-
ordinates the operation of all the other system
components. It uses a dialogue model (generic
information about how conversations progress) to aid
the final interpretation of an utterance. This may not
have been achieved by the 'meaning extraction'
component, because the interpretation relies on an
understanding of the conversation as a whole.

* Response generation - to generate the text to be
output in spoken form. Information retrieved by the
database query component will be passed to the
response generation component, together with
instructions from the dialogue manager about how to
generate the text (e.g. terse/verbose, polite/curt, etc).

" Speech output module (text-to-speech synthesis or
recorded speech).

At its simplest, processing consists of a linear sequence
of calls to each component, as shown in Fig 1. A typical
output of each stage from an application which accesses the
BT Business Catalogue is shown. It is not necessary to
understand the output of the 'meaning extraction'
component in detail to realise that meaning extraction can
be a non-trivial exercise. The simple linear sequence shown
in Fig 1 is, in general, too inflexible. It is better if the
dialogue manager is given greater control, to call the other
components in a flexible order, according to the results at

BT Technol J Vol 14 No I January 1996

Page 5 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4809



SPOKEN LANGUAGE SYSTEMS

dialogue manager I

find all products P1,
where P1 is a phone,
the price of P1 is
Pricel, and Pricel is
less than Price2,
where Price2 is the
price of the Duet 100

Fig 1 Example of a linear process flow in a spoken language system.

each stage. This leads to an architecture of the type shown
in Fig 2.

The need for this more flexible architecture is illustrated
by the processing sequence in Fig 3 which shows the
dialogue manager as control centre, calling each component
in an order determined by the results of processing at each
stage. Although every processing stage is passed through
the dialogue manager, this is not included in the sequence
unless some non-trivial decision or action is taken. The
example given in Fig 3 is largely driven by limitations of
the recogniser, but the need for this sort of flexible
architecture goes far beyond this. It will eventually enable
the dialogue manager to act in an intelligent manner, co-
ordinating the components and combining their outputs in a
nonlinear manner.

So far in this section, the discussion has covered speech
in/speech out systems. However, systems such as the BT

Business Catalogue access system (see section 3.1) are
multimodal and require a screen and a means of inputting
text and mouse clicks and outputting text and graphics.
These components must be added to the architecture shown
in Fig 2 and the dialogue manager and response generator
must be upgraded to deal with the extra modalities.
However, most of the discussion of this section applies
equally to multimodal systems.

3. Example systems

n this section three spoken language systems under
development at BT Laboratories are described:

S access to the BT Business Catalogue, known as BusCat
- this was the first multimodal continuous speech
input spoken language system,

Fig 2 Role of a dialogue manager in a spoken language system.

BT Technol J Vol 14 No 1 January 1996

Page 6 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4810



SPOKEN LANGUAGE SYSTEMS

an e-mail access system, which is speech in/speech out
only, but has the conversational features described in
this paper - it is also a dial-up service over the tele-
phone network,

a film access system, in which users will be able to
select films and videos using continuous speech and
button pushes on a remote control handset - this
system is targeted at the interactive TV environment.

user dialogue component action
input manager action

Fig 3 Nonlinear process flow in spoken language systems.

3.1 BusCat

The SLS BusCat provides direct access to a subset of
the BT Business Catalogue, which covers a range of
products such as telephones, answering machines and phone
systems. The user has a screen displaying a Netscape
WWW browser and speech input/output facilities. All the
normal WWW browser features are present, such as the
ability to click on links to other pages, and a display
consisting of mixed text and graphics (see Fig 4).

7"r-7-

Fig 4 The SLS BusCat system in use.

Additionally, in this system users may use continuous
speech input, type questions into a free-text window, and
listen to speech output generated by a text-to-speech (TTS)
system. This multimodal interface enables users to request
specific information about the products in the catalogue, or
to browse through the catalogue.

The overall structure of the system is shown in Fig 5.
The system can cope with multiple simultaneous users.

In addition to its internal knowledge bases, the system
has the capability to access external databases across a
network. One application for this might be to provide a
multimodal interface for such databases. Another is to allow
the internal knowledge bases to be periodically updated
from an external database.

The speech recogniser used is BT's Stap recogniser [1],
and the text-to-speech system is BT's Laureate [2] system.

The example in Table 1 gives a flavour of what it feels
like to interact with the system. Here the user is already
logged on to the system. From each WWW page there is a
choice of:

BT Technol J Vol 14 No 1 January 1996

Page 7 of 22 Petitioner Microsoft Corporation - Ex. 1008, p. 4811



SPOKEN LANGUAGE SYSTEMS

prolog database

user
Fig 5 Architectu

Table 1 An example session with BusCat.

User input System response

'What is on-hook dialling?' Textual (and optionally spoken)

explanation of on-hook dialling:

'Time spent waiting for someone to
answer the phone can often be lost

time. But with this feature, you can

dial without picking up the phone

handset, leaving you free to carry

on with something else until the

second your call connects,' and a
list of five phones which have this

feature: Vanguard 10c, Relate 200,
Relate 300, Relate 400, Converse

300.

'Which phones have on-hook dial- Text: 'The following products meet

ling and cost less than 60 pounds?' your requirements,' and a list of

four phones, each with a small pic-

ture, a short description and a price
(Vanguard 10c, Relate 200, Relate

300, Converse 300).

'Which ones come in grey?' Text: 'The following products meet

your requirements,' and a list of

three phones, each with a small pic-

ture, a short description and a price

(Vanguard 10c, Relate 200, Relate

300).

The user clicks on the link next to The system responds with a large

the picture of the Relate 200. picture of the Relate 200, a full

description including all its features

and a price.

* speaking to the system,

" clicking on a link,

* typing into the free-text field.

dialogue information

re of BusCat.

In the interaction the user wants to know what on-hook

dialling is. Having received an explanation of this feature,
he decides he wants a phone with on-hook dialling which
costs less than £60. Then he remembers he also wants it in
grey to match his living room. He finally selects the Relate
200 telephone.

3.2 E-mail access

BT is very interested in the mobile telephony market.
Speech-only natural language systems are very attractive to

this market because people want to be able to keep in touch
while on the move. They are likely to only have a mobile
phone with which to do so. Speech access to information
can have an added safety advantage over TouchTone
interfaces as well as helping to improve the usability of the
service.

E-mail has been chosen as the vehicle for producing a
speech in/speech out natural language system because the
information source (the users own e-mail) is readily

available. An existing system allows selected users to
access their e-mail using TouchTone commands, thus
providing information on whether natural language access
confers real benefits to the users. It will certainly enable
queries which are not possible currently, such as: 'Do I have
any messages from John?'

The main differences between the e-mail service and the
BusCat service are as follows. The e-mail service uses
telephony speech only, rather than a multimodal system.
The dialogue is more robust to errors and will allow the user

or the system to take the inititive whereas the Business
Catalogue system is based on the user taking the initiative.
The e-mail system architecture is being designed to
decouple domain-independent and domain-dependent parts
of the system, and the same approach is being used for the 191

BT Technol J Vol 14 No 1 January 1996

Page 8 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4812



SPOKEN LANGUAGE SYSTEMS

film access system (see section 3.3). This means that in the
future there will be a good level of confidence in being able
to produce spoken language systems for new domains more
quickly than at present.

An example of a dialogue the system might have with
the user is shown in Table 2.

Table 2 An example session with an e-mail service.

User System Note

(dials up system) Good morning Alison. The default startup is to
You have ten new mes- tell the user how many
sages and 20 old mes- old and new messages
sages. Your first new there are and to start
message is from Mike listing the new ones.
Harper, regarding,
Thanks for demo.

Read it. Message is: 'Thank
you for your demo yes-
terday. The customers
were most impressed.'

Forward it to Peter Sandra Jones is already Resolution of partially
Smith and Sandra on the distribution list specified name. Check

on preconditions for
forwarding

Forwarding message to
Peter Smith

Next message is from System assumes you
Colin North, regarding, want to carry on listing
Team Meeting. new messages unless

you tell it otherwise.

Forward to Language Forwarding message to Does not confirm on
Group all the people on your forwarding a message.

distribution list called
'Language Group'.

Next message is from
Laurence Cooper:
Plans for Workshop

Let's hear it. Message is: 'Hi Alison,
Have you completed the
plans yet?'

Reply I have four possible Choice of several stock
responses, yes, OK, no, replies
or I'll call you.

Tell him yes Reply to Laurence Confirms before send-
Cooper: Text is 'Yes'. ing a reply
Please confirm.

OK Reply sent. Next mes-
sage is from...

Stop. ... OK. What would Detection of user speak-
you like? ing terminates prompt.

Listing new messages
ended by user.

Have I any recent mess- In the last week you Slightly more complex
ages from Steve Brown have received 5 mes- user query. System
or Steve Clark sages from Steve Brown makes explicit what it

and 4 from Steve Clark thinks of as 'recent'.

List the ones from Message I is about Resolution of partial
Clark. Meeting on the 31st specified name.

Message 2 is about
Agenda for team
meeting

3.3 Film access for interactive multimedia services

Interactive multimedia services (IMS) are currently
being implemented by BT in Colchester and Ipswich [3].
The usability of the interface is still constrained to
navigation using a TV remote control. This means that
multiple layers of menus need to be traversed to get to the
information required. Spoken language access would allow
users to go straight to the information they are searching for,
without requiring them to learn complex navigation
procedures.

The video-on-demand subset of the IMS, which consists
of over 4000 hours of material, including films, educational
programmes, children's programmes, etc, was chosen. The
SLS will allow users to give instructions such as: 'I want a
comedy film starring Harrison Ford'. Part of the benefit of
developing such a system, is to ensure that the generic SLS
framework is truly domain independent.

There is currently a text-based interface to the Internet
movie database [4]. This allows users to enter queries such
as: 'Tell me the ratings of comedy movies starring Harrison
Ford'. The system performs the meaning extraction using a
caseframe parser (section 4.2). This allows it to pick out the
salient information from among extraneous words.

It seems likely, from human analysis of typical queries
about films, that this method is suitable.

An issue yet to be addressed is how to best reconcile the
advantages of using speech, with the limitations of current
recognition technology. This is clearly illustrated in the
present example, since the text-based interface can query
the database of over 50 000 films and 100 000 cast names.
No speech recogniser yet built can cope with this range of
vocabulary. The obvious solution is to restrict the size of the
database. A possible step in the right direction would be to
couple the 'meaning extraction' component and recogniser
much more closely, so that meaning extraction and
recognition happen simultaneously. This might enable the
recogniser to cut down the vocabulary size 'on the fly'. For
example, given the input sentence: 'Which comedy movies
star Burt Lancaster,' it could be established straightaway
that the user was talking about comedies, then only about
cinema films, and finally that the user was only interested in
an actor. Therefore, by the time the recogniser gets to the
name 'Burt Lancaster,' the number of possible words has
reduced considerably.

This is the subject of further research and is discussed in
more detail in the next section.

BT Technol J Vol 14 No 1 January 1996

Page 9 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4813



SPOKEN LANGUAGE SYSTEMS

4. Components of a spoken language system

4.1 Speech recognition

T he job of a speech recogniser is typically thought of as
converting a speech utterance into a string of text. The

internal workings of speech recognisers are explained in

some depth elsewhere [5]. This section looks at the recog-

niser's place within an SLS, and, in particular, at the lan-

guage model (LM) the recogniser uses and the form of
output that it provides.

A language model embodies information about which

words or phrases are more likely than others at a given point
in a dialogue.

One might imagine that in a system that accepts fluent
language, for example an automated travel agent, the speech
recogniser might need only one language model, that of the
entire English language. It could then recognise anything
that anyone said to it (assuming they are speaking English)
and could inform the dialogue manager accordingly. Speech
recognition is not yet accurate enough and a model of the
entire English language does not exist. Instead, to get a
working system, the recogniser must be given as much help
as possible. It must be given hints about what the user is
likely to say next to improve the chances of correctly
recognising what has been said. If the dialogue manager
knows that the customer wants to go on a cruise and has just
asked them where they would like to go, it should prime the
recogniser to be expecting a response that may well concern
one of a number of specified cruise ports and, by the same
token, is unlikely to have anything to do with backpacking
in Nepal.

Recognisers use a language model to hold this
information. There are a number of ways that the dialogue
manager can update the information that the recogniser is
using. The simplest option is just to tell the recogniser
which of a predefined set of language models to use. Then
there is a range of possibilities for updating or modifying
predefined language models. Certain portions of a grammar
can be made more likely than others, e.g. phrases to do with
the time of day might be expected at one stage in the
dialogue, while requests concerning holiday destinations
might be more likely at another, and the language model can
be adjusted accordingly. Alternatively, the recogniser might
have a grammar, a portion of which allows the sequence
'from <airport> to <city>' where the range of possible
airports and cities is specified by the dialogue manager only
immediately prior to recognition. This could be dependent,
say, on which country is under discussion.

The following subsections discuss in more detail:

0 language models,

0 perplexity of a language model,

* advantages and disadvantages of language models,

* loading language models into the recogniser,

" output from the recogniser.

4.1.1 Language models for the recogniser

The primary knowledge source for the speech
recognition component is a set of statistical models, known
as hidden Markov models or HMMs, which encode how
likely a given acoustic utterance is, given a string of spoken
words. A recogniser can decode a speech utterance purely
on the basis of this acoustic-phonetic knowledge, and this is
basically what happens in the case of single isolated-word
recognition. However, in the case of recognising a string of
words (which form part of a spoken language), the
recogniser can use a second knowledge source, namely the
intrinsic probability of the given string. This second
knowledge source is known as the language model.

To take a classic example, a given utterance may have
almost equal acoustic-phonetic probabilities of being
'recognise speech' or 'wreck a nice beach'. However, the
intrinsic probability of the first string is likely to be higher
than that of the second, particularly if this utterance came
from the domain of a technical journal on speech
technology.

This can be expressed mathematically as follows. Let X
be the acoustic utterance and let S be the sentence to be
recognised. The task is to find the sentence S for which the
posterior probability p(SISX) is a maximum. Using Bayes'
rule this can be rewritten as a requirement to find:

argmax {p(S) * p(XIS) }
S

In this formula, p(S) is the prior probability of the
sentence according to the language model, and p (XIS) is the
conditional probability of observing the acoustic utterance
given the sentence (encoded in the HMMs of the
recogniser).

In general, the language model in a recogniser consists
of all the language information to which it has access in
order to help constrain the recognition, by making certain
word strings less likely than others, or indeed impossible.
This language information may be the same information as
used in the 'meaning extraction' component of the system
(see section 4.2). For example, when the grammar in the
meaning extraction component is compiled down to a finite
state network (FSN) for use in the recogniser. Figure 6 gives
an example of a recogniser FSN. More commonly, the 193

BT Technol J Vol 14 No 1 January 1996

Page 10 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4814



SPOKEN LANGUAGE SYSTEMS

language information in the recogniser is represented by a
statistical model, possibly derived from the same corpus
data as the language information in the 'meaning extraction'
component, but generally only employing recent context
(one or two words). This type of model is known as an n-
gram model. Such models are easy to integrate with the
standard acoustic decoding architecture in speech
recognisers, but ignore some of the available language
information which might improve accuracy.

N-gram models can be word n-grams, class n-grams or a
hybrid of the two. n is typically 2 or 3, and these models are
referred to as bigrams and trigrams respectively. A word
bigram model gives the probability of all possible next
words on the basis of the current word only, i.e. it is of the
form p(w2 w1). A trigram model is based on two words of
context, p(w31WlW 2). The probability of a sentence such as
'delete that one' is obtained by multiplying the probabilities
for each word, given its predecessor(s), e.g. for a bigram
model:

p(Sent) = p(deletelstart) * p(thatldelete) * p(onelthat) *

p(endlone)

A class n-gram model is one in which the words are
grouped into classes before computing the n-gram statistics.
These classes may be syntactic categories such as nouns or
verbs, hand-crafted semantic categories (e.g. all days of the
week might be grouped together, all names of people, etc),
or automatically learnt classes. The probability of a word
w3, given two previous classes, c, c2, is given by:

p(w 3 cI C2) = p(c 3 1c1 C2) * p(w 31c 3)

The advantage of a class n-gram model is that there are
fewer parameters to estimate. The disadvantage is that a
word is predicted only on the basis of the class history, so
some distinctions which may be present in the training data
are lost; for example, 'Monday morning' may be more
likely than 'Monday afternoon', whereas for all the other
days of the week, 'DAY morning' and 'DAY afternoon'
may be equally likely.

An FSN gives all possible word sequences in the
language model, and it may have probabilities attached to
the transitions if reliable statistics for these can be obtained.
For example, a fragment of a FSN LM is shown in Fig 6.

Both n-gram and FSNs give a probability for the next
word w, given a word history w, ...... w,_ . In the case of n-

194 grams, the history is only one or two words, as stated above

(e.g. i = n - 2 for a trigram model). In the case of FSNs, the
history extends back to the start of the sentence (i.e. i = 1).

delete

start

Fig 6 A recogniser finite state network.

4.1.2 Perplexity

In some cases, the constraints imposed by the language
model are so great that the job of acoustic decoding
becomes much easier than one would have imagined from
the size of the vocabulary. This is because the LM is
effectively ruling out many possible strings from the search
space in which the acoustic decoder is operating. It is
possible to calculate a figure called the perplexity
associated with a given LM, which is a measure of how
difficult the acoustic matching task for the recogniser is.
Usually, the lower the perplexity, the higher the recognition
accuracy. Perplexity can be roughly defined as the average
branching factor, i.e. the average number of words which
are allowed to follow a given word. Perplexity may either
be calculated intrinsic to the LM (for an FSN, perplexity is
literally the average branching factor of the FSN), or with
reference to a test corpus, which is the way one usually
calculates the perplexity of an n-gram LM. In the latter case,
perplexity is defined as the reciprocal of the geometric
mean of the probability of the next word, for all words in the
test corpus. Intuitively, perplexity is low if the language
model tends to know what is coming next, which means that
the next word probabilities are relatively high. The formula
for test set perplexity is:

[ ]-11N[F= JPV(w,)] /

where P(w,) is the probability of the ith word,
N is the number of words in the test set,
and the index i runs over each word in the test set.

Typical values of perplexity may range from about 40 to
several hundred in current research systems.

4.1.3 Advantages and disadvantages of FSNs and n-gram
LMs

An advantage of FSNs is that they have a fairly low
perplexity, i.e. the number of legal following words is
usually a small subset of the entire vocabulary. They can

BT Technol J Vol 14 No I January 1996

Page 11 of 22 Petitioner Microsoft Corporation - Ex. 1008, p. 4815



SPOKEN LANGUAGE SYSTEMS

also be constructed manually, before a proper training

corpus for the domain exists.

One disadvantage of FSN language models is that they

can easily be over- restrictive, ruling out many perfectly

valid input strings, simply because of the impossibility of

anticipating all the different things users will want to say.

This disadvantage can be mitigated by making the FSN

more flexible, with liberal use of optional phrases (as in

BusCat), or going some way to turning it into an

unconstrained phrase network, where any phrase (a few

words) can follow any phrase. This of course has the effect

of increasing the perplexity, and at a certain point it

becomes preferable to move to an n-gram LM. A second

disadvantage of FSN language models is that as one moves
towards a broader, more habitable user language, they very

quickly become large, making the recognition time

unacceptably long. The FSNs themselves become
cumbersome and difficult to maintain.

N-gram language models, on the other hand, usually
have a higher perplexity than FSNs, because all words may
be legal followers of the current word, albeit many of them
having low probabilities.

The disadvantage of n-gram LMs is that they are not as
constraining as FSN LMs, which means that if the acoustic
match accuracy is not good enough, the output of the
recogniser may be so poor that the meaning extraction
component has little chance of interpreting it, however
robust its algorithm.

4.1.4 Loading the LM into the recogniser

The LM(s) may be loaded into the recogniser:

0 once at the start of an application,

* repeatedly, according to where the user is in the
dialogue immediately prior to recognition,

* during a recognition by the recogniser.

These three possibilities represent increasing degrees of
sophistication. In the first case, there is just one LM for the
whole application. In the second case, use is made of the
fact that at different points in the dialogue the relative
probabilities of different words will change greatly. For
example, if the system asks: 'Which day do you wish to
travel on?', there is higher probability than normal that the
user's answer will contain a day of the week. Similarly, if it
has already been established that the user wishes to travel
from Ipswich, there is a higher probability than normal that
the destination will be somewhere in the Anglia region.

In the third case, the LM is changing 'on the fly', during
the decoding of the speech utterance. For example, if the
first words in the sentence are 'I want to go from Ipswich
to..', then the LM can increase the probabilities of stations
which have direct trains from Ipswich before recognising
the rest of the sentence.

The LM(s) passed to the recogniser may be complete
models or modifications to the current model. A
modification to a current model might consist of:

* a list of words to be added or deleted,

* modified probabilities for words which are already
within the language model.

4.1.5 Output from the recogniser

If the job of a speech recogniser is to convert a speech

utterance into a string of text, then, when someone says:
'What time does the flight leave?' it is hoped that the
recogniser might come up with the string: 'What time does

the flight leave'. In practice the recogniser's best guess may
not be correct, but it may be able to give a number of scored
alternative possibilities which the analysis module might
use if the top choice does not make sense, for example:

1 'what time does the white leaf' 1245.6

2 'what time does the flight leave' 1250.1

3 'what time does a flight leave' 1252.3

4 'what time did the flight leave' 1270.1

5 'what time did a flight leave' 1272.3

The analysis module may then use its own rules to re-
rank the list of possibilities or extract those portions that
carry useful information (perhaps taking account of the
recogniser scores or perhaps ignoring them).

There are, however, significant drawbacks in

representing the recogniser output as a ranked list of word
strings. The list can become very long indeed, containing
large numbers of sentences that only differ by one or two
words.

A much more compact representation of the same
information can be achieved through the use of directed
graphs (see Fig 7).

A third option that is sometimes used is the word lattice

(see Fig 8). This consists of a lattice with entries, each of
which specifies a possible word, its start time and its end
time (but not which other words it follows or precedes). The
benefit of the word lattice is also its weakness. It can offer
in a compact form for storing a very large number of
candidate sentences - sentences can be generated by
connecting any sequence of words such that one word starts
where the previous one finishes. Unfortunately this allows
one to generate sentences that the recogniser did not
consider very likely, e.g. 'what time did a flight leaf'.

BT Technol J Vol 14 No 1 January 1996

Page 12 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4816



SPOKEN LANGUAGE SYSTEMS

or even more compactly

Fig 7 Directed graph for recogniser output.

Fig 8 Word lattice for recogniser output.

4.2 Meaning extraction

4.2.1 Purpose of the meaning extraction component

The input to this component is a representation of the
user's utterance that is the output from the speech
recogniser. This representation may take one of several
forms as described in the previous section. The meaning
extraction component of the SLS converts the input to a
representation of the meaning of the utterance, which is

196 used to determine the next step in the dialogue.

The user's utterance will contain several pieces of
information, some of which will need to be represented in
the output from the 'meaning analysis' component. One
piece is the type of utterance that the user made, e.g. an
instruction, a statement or a particular kind of question.
Another concerns the expectations present in the user's
utterance. These are often expectations about the result of a
query and are not usually intended to be used as constraints
on the query itself (such as the use of a plural form to
indicate that the user is expecting more than one item to
satisfy a request). A third piece of information consists of

BT Technol J Vol 14 No 1 January 1996

Page 13 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4817



SPOKEN LANGUAGE SYSTEMS

the entities referred to in the user's utterance, and the
relationship between them. These will form the basis of the
constraints on the database query. The purpose of the
'meaning extraction' component is to make some of this

information explicit so that it may be more easily processed
by subsequent components.

Although the role of this component can be described
simply enough, the task is daunting. There are at least two
main difficulties that need to be overcome during meaning
extraction in SLS:

* ambiguity,

* ill-formed input.

Ambiguity [6] may be present in words as lexical
ambiguity (e.g. 'saw' can either be a noun or a verb) or
sense ambiguity (e.g. 'bank' may be a place in which to
store money, or from which to fish), or it can be present in
the relationship between phrases as structural ambiguity. To
take the ubiquitous example:

'The man saw the boy with the telescope in the park.'

This sentence is structurally ambiguous in what was
seen, the instrument of seeing, and the location of the
person seeing. Often, this type of ambiguity cannot be
resolved by the meaning extraction component, and has to
be maintained in the meaning representation, to be
deciphered by later components.

Ambiguity is inherent in all natural language, while ill-
formedness can be caused by misrecognition in the speech
recogniser, or by the user making an ungrammatical
utterance (as defined by the system). Speech recognisers are
becoming increasingly competent, but they still mishear
quite often. This is particularly a problem with recognisers
which use an n-gram language model which are less
restricted in the ordering of the words they can recognise.
For example, in a 'hotel enquiry' domain [7], the parser was
faced with input such as:

'do the noise outsiders use your lake'

when the user actually said:

'there is a noise outside that keeps me awake'

It is doubtful that any meaning extraction component
would be able to cope with such a discrepancy between the
actual utterance and the recognised one, but there are
mechanisms by which simpler ill-formed utterances can be
analysed [8]. These will be explored in more detail below,
but essentially they attempt to pick out those bits which can
be analysed, and put them together in the best way possible.

If meaning extraction is viewed as performing a
translation between an input text and its meaning, then,
quite apart from the two particular problems described
above, the difficulty of defining the translation is faced.
This is a many-to-many mapping, since many English
sentences can have essentially the same meaning (in the
sense that they are true in the same situations) and some
sentences can have more than one meaning. For instance,
the following two sentences, to all intents and purposes,
mean the same, but have a different structure:

'Romeo loves Juliet' and 'Juliet is loved by Romeo'

Assuming that all of the above problems can be
overcome, a suitable representation for the output meaning
must be chosen. The issues to be considered are:

" suitability for successive stages of processing -

whether the representation encodes all the information
necessary for further processing,

" explicitness versus conciseness - whether one
representation can encode all unresolved ambiguity,
while maintaining a clear meaning,

* extendibility - whether the representation will only
cope with the particular sentences chosen for de-
velopment.

The representation generally depends on the technology
used, but various logics [9] are popular forms of
representation. This is because they are well-understood,
and fully-specified. Perhaps more importantly, a meaning
represented in logic can be reasoned with, using the proof
calculus of that logic. This is useful in database query
systems [10]. The other main representation is to use a
frame which encodes predefined meanings (such as the act
of 'seeing') [11]. These frames will take arguments to fill in
the details ('who', 'what', 'where', etc).

The rest of this section is devoted to a particular
representation based on a logical representation. This
representation, which is referred to as an extended logical
form (ELF), has three fields corresponding to three types of
information present in the user's utterance. An example
ELF, representing the utterance 'read the message from
John' is given in Table 3.

Table 3 Fields in an extended logical form representation.

Field name Field content

Type read(A),

Expectations salient(A), singular(A)

Entities and relationships message(A), named(B john), from

(AB)

BT Technol J Vol 14 No I January 1996

Page 14 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4818



SPOKEN LANGUAGE SYSTEMS

The type field is used to indicate the type of the
utterance, such as imperative, indicative, question, among
others.

The expectations field contains a list of constraints that
are the user's assumptions. In the example above, the user is
presupposing that there is only one message from someone
called John, therefore 'singular(A)' will be an item on the
list of expectations. The constraint, 'salient(A)', is used to
indicate that the user has assumed that there is some specific
(usually recently mentioned) message that is the object of
the instruction. This contrasts with 'read a message from
John' where there would not be a 'salient(A)' constraint on
the list.

The entities and relationships field of the ELF contains a
list of conjunctive constraints which express the entities
referred to in the user's utterance and the relationships
between them.

The frame representation and the logical representation
are indicative of the separation between different meaning
extraction technologies. The logical form of representation
tends to be used by grammar-based parsers, while the frame
form tends to be used by caseframe parsers. These different
types of parser will be described in the next two sections.

4.2.2 Grammar-based parsers

Traditionally, schoolchildren who are given the exercise
of analysing English sentences according to a prescribed
grammar of English have been doing parsing [12]. Parsing
has the purpose of assigning a structure to an input
utterance. This can be done by hand, but is now more often
done using an automatic parser. More precisely, what has
just been described would be a syntactic parser, performing
a syntactic analysis. Here, the sentence is being analysed
according to a syntactic grammar [13], where the
relationship between nouns and verbs, for example, is made
explicit. Syntactic analysis gives no representation of the
meaning of the sentence. Indeed, the following two
sentences would be assigned the same syntactic structure
[14]:

'Bright red buses drive quickly' and 'Colourless green
ideas sleep furiously'.

Of course, they clearly have a different meaning, and
semantic analysis [15] is concerned with providing such a
meaning, solely from the combination of the meaning of the
individual words.

Grammar-based parsers take a linguistic grammar of,
say, English, and assign a structure to the sentence based
upon that grammar. Two stages are necessary - first,
assign each word a part of speech (POS), such as noun, and,

198 secondly, from these POS apply the grammar rules.

So, given the phrase:

'the man'

the lexicon which contains the following rewrite rules:

'the'

'man'Noun

and the grammar rule:

NounPhrase Det Noun

the parser would build the syntactic structure:

NounPhrase

Det Noun

I I'm n
'the' man

Syntactic analysis is not sufficient for meaning
extraction as mentioned previously, and a semantic analysis
stage is needed. This can either take place after the syntactic
analysis or concurrently with the syntactic analysis. Indeed,
semantics is often built up in parallel with the syntax, using
the rule-rule hypothesis [15]. This basically states that
syntactic and semantic rules should only exist in pairs, the
semantic analysis being built by 'piggy-backing' on the
syntactic analysis. This means that every part of the
sentence contributes to its overall meaning, and that fine-
grained syntax produces fine-grained semantics. Extremely
complex grammars can be written [16], encapsulating fine
points of language. These details may be important in some
systems, and are thus represented in the final meaning
representation.

The primary problem with grammar-based parsers, from
the point of view of SLSs, is that they need to analyse the
whole utterance before they can produce a representation.
As has already been stated, there is quite a high likelihood
of misrecognition, thereby producing input which is outside
the scope of the grammar (ungrammatical input). One
option is to constrain the speech recogniser using a finite-
state network which mirrors the grammar of the meaning
analysis component (section 4.1), thereby forcing the
'speech recognition' component to produce only those
sentences which can be analysed using the grammar. An
alternative is to dispense with the grammar-based approach
altogether and use a caseframe parser.

4.2.3 Caseframe parsers

An alternative view of parsing has emerged as
researchers have begun to use natural-language processing
in practical applications. Caseframe parsers [17] do not use

BT Technol J Vol 14 No I January 1996

Page 15 of 22 Petitioner Microsoft Corporation - Ex. 1008, p. 4819



SPOKEN LANGUAGE SYSTEMS

an intermediate syntactic stage of processing, but attempt to
go straight from the input representation to a representation
of its meaning. This is done by assuming that phrases in the
sentence have meaning, but only in the context of a
predefined frame, or meaning template. An example of a
frame is shown in Table 4. As many as possible of the slots
of the frame are filled in, using simplistic syntactic analysis,
from the phrases of the input sentence. This means that the
phrases can appear in the middle of any amount of
extraneous information, because only the particular phrases
which are relevant to the frame are analysed. This approach
is more robust than the grammar-based technique. For
example, the following three sentences would be mapped on
to the 'spilling' frame as shown.

'the waiter spilled the wine on the couple'

'It is the case, I believe, that earlier last week the waiter,
what an appalling employee, spilled some of the wine
which we use for only our best customers, on the couple
visiting for the first time.'

'when waiter spilled the wine on the couple food'

Table 4 An example of a frame.

However, there is a step in the above description that is
obviously missing - how to pick the correct frame for the
given utterance. This is usually done on the basis of the
information contained in the sentence. One method of
choosing the correct frame is to allow each piece of
information within a sentence to vote for a particular frame.
The frame used is the one which has the most votes for the
given sentence.

A circular process can develop, however, where only
the required information to fill the frame is analysed, but all
the information needs to be analysed to pick the right frame.
For this reason, caseframe parsers are generally only used in
limited domains, where only a small number of frames are
considered.

Caseframe parsers are not capable of the fine detail
which a good grammar-parser can produce. This may be
unnecessary in most applications, but could lead to
confusion if the kind of input encountered really can only be
distinguished using detailed analysis.

4.2.4 A hybrid approach

If grammar-based parsers are good at producing detailed
analyses but poor at handling ill-formed input, while
caseframe parsers are good with ill-formed input but unable
to produce highly detailed analyses, then a combination of
the two would seem ideal. Stallard and Bobrow [18]
propose a two-stage process, combining a grammar-based
parser followed by a caseframe parser, using a chart [19] as
the intermediate representation.

Charts are used by a particular kind of grammar-based
parser called a chart parser (this is something of a
misnomer, since it is parsing words, not charts). This kind
of parser produces all possible analyses of the text, storing
intermediate results in a chart. This means that if there is no
known analysis for the whole of the input, then there is the
potential to look in the chart for incomplete analyses, which
will represent those parts of the sentence which can be
analysed by the grammar-based parser.

A nice way of combining these fragments is to build
them into a frame. A caseframe parser can then be used to
extract the meaning of the input utterance, not from the
words, but from the chart produced in the first stage. This
frame will then provide a meaning representation with as
much detail as the grammar will allow, thus improving on
the standard performance of caseframe parsers.

4.3 Dialogue manager

The dialogue manager (DM) is the central controller for
an SLS. On receiving input from the speech recogniser, the
DM manages and co-ordinates calls to the rest of the
components in the system (see Fig 2).

The DM knows about the generic structure of
conversations. It uses a conversational modeller to build up
a dynamic model of the conversation between a user and the
system as it progresses. It models conversational turns from
both participants matching questions with their answers,
instructions with acknowledgements, and so on. The
syntactic and semantic analysis of individual utterances (or
sentences) produced by the 'meaning extraction' component
is used as a base and the DM goes beyond these single-
sentence analyses to produce a dialogue model, which could
be thought of as a grammar for the dialogue.

4.3.1 System-driven, user-driven, and mixed-initiative
dialogues

Conversations with existing IVR dialogue systems, such
as telephone banking systems, can be frustrating for callers
because the conversation must always follow a strict
pattern. A caller cannot say anything he or she wants, but is
forced to give the correct reply at the appropriate time,

BT Technol J Vol 14 No 1 January 1996

Page 16 of 22

199

Petitioner Microsoft Corporation - Ex. 1008, p. 4820



SPOKEN LANGUAGE SYSTEMS

otherwise the interaction cannot proceed. In this kind of
dialogue, the system takes all the initiative and callers are
not allowed to ask questions, or say anything which is not
specifically asked for. In other words, the dialogue is
entirely system-driven.

At the other end of the scale are user-driven systems
where the user takes all the initiative. The interface to the
BT Business Catalogue (see section 3.1), operates in this
way. The system accesses the World Wide Web (WWW)
and waits until the user inputs a query.

Dialogue managers are now being developed that allow
more natural conversations to take place between humans
and machines. The intention is to produce a two-way flow
of communication where the initiative can be taken either
by a user, or by the system, and information may be given,
asked for, and received by either party. Here is an example
mixed-initiative conversation with an imaginary movie
database query system of the future:

User: I'd like to see a film starring Meryl Streep.
System: There are quite a few of them. Are you

interested in thrillers, comedies or historical
dramas?

User: What about that one where she plays a Danish
farmer.

System: Do you mean 'Out of Africa'?
User: Yes, that's the one.

The user instructs the system to find it a film starring
Meryl Streep (user-initiative), but the system finds there is
more than one and decides to ask the user what category of
film (system-initiative). The user chooses not to answer this
question directly, e.g. 'comedies', but gives instead some
more information about a particular film (user-initiative).
Now the system has enough information to pinpoint the film
and the user confirms the system is correct.

4.3.2 Ellipsis and anaphoric reference resolution

Speakers use words or phrases to refer to things in the
real world. Anaphoric references are a specific type of
referring expression and are used when a speaker refers
back to something mentioned earlier, e.g. 'he', 'him', 'her',
'that one', 'that way', 'the house' can all be anaphoric
reference expressions:

User:
System:
User:

Are there any messages from Peter?
You have two messages from Peter Wyard.
Read his second one.

In the above exchange, the user's second utterance
contains two anaphoric references: 'his' and 'second one'.
Assuming a grammar-based parser, it will represent 'Read
his second one' as an ELF (see section 4.2). The ELF below

200 shows that there is something salient and singular (A) which

is to be read, it is the second one, and it is from a masculine
person of unknown name:

ELF:

read(A),
[salient(A),singular(A)],

[ord(A,2),named(B,C),gender(B,masculine),from(AB)]

It is the reference resolution process which fills in
missing information in the ELF. It does this by searching
back through the preceding conversation to find something
which can be read, and a masculine person. It is assumed
that the last masculine person mentioned will be referred to
as 'his', although this might not always be the case. The
ELF output by the meaning extraction component is thus
converted into a resolved extended logical form (RELF)
where the missing information (message(A) and name
(B,peter)) is filled in:

RELF:

read(A),
[salient(A),singular(A)],

[message(A),from(A,B),ord(A,2),name(B,peter),
gender(B,masculine)]

Ellipses occur when something is left out of an utterance
which can be determined from what has gone before:

User:
System:
User:

Do I have any messages from Peter?
You have two messages from Peter Wyard.
And David?

Here the user has left out: 'Do I have any messages
from..' and has simply said: 'And David?' The 'meaning
extraction' component will produce an extended logical
form:

ELF:

A,
[],

[name(B,david)]

and the RELF will include the missing information which
was found in the previous logical form:

RELF:

list(A),
[],
[message(A),from(A,B),name(B,david),
gender(B,masculine)]

4.3.3 Co-operative responses

Much of the ground work on the nature of conversation
has been carried out by philosophers of language such as
Grice. Grice devised a set of maxims, or co-operative
principles, to which he considered people generally

BT Technol J Vol 14 No I January 1996

Page 17 of 22 Petitioner Microsoft Corporation - Ex. 1008, p. 4821



SPOKEN LANGUAGE SYSTEMS

conform when participating in a conversation [20]. Four of
the most important maxims are of quality (be truthful and
avoid statements for which you have too little evidence),
quantity (be as informative as necessary, but do not give too
much information), relation (do not give irrelevant
information), and manner (do not present information in a
way that is obscure, ambiguous or too lengthy). People tend
to be co-operative in conversation for many reasons, for
instance:

* to make the conversation flow more easily,

* to assist understanding,

* to pass information efficiently avoiding irrelevant
information, false information, or too much detail,

* to promote good social relations.

If the maxims were ignored, then conversation would
become very difficult. Of course there are many examples
where the maxims are deliberately broken for the sake of
humour, pathos or sarcasm. At present, these are outside the
scope of this work and, unfortunately, the DMs do not have
a sense of humour!

The DM tries to be as co-operative as it can in
responding to the user - it tries to obey at least the maxims
of quality, quantity and manner. It does this by being as
brief in its responses as it can, by ensuring the database is
accurate and up-to-date, and by supplying helpful
information. The maxim of relation can be harder to satisfy
in that the DM cannot always be sure that the information it
is giving is maximally relevant to the user. For instance, if
the database query finds nothing, then rather than just
saying 'none found', the DM attempts to give some
information which the user might find helpful. For instance:

User: Do I have any e-mails from Anna about aardvarks?
System: Unfortunately you have no matching message,

however, you have one message about aardvarks.
User: OK, but do I have any e-mails at all from Anna?

Here there are no e-mails from Anna about aardvarks,
but the system finds a message which is not from Anna but
is about aardvarks. The DM does this by generalising the
query it is making to the database. In order to do so it must
decide which parts of the user's specification are the most
important. Is it most important that the e-mail is from Anna
or is it most important that the message is about aardvarks?
Or are the two equally important? Here it wrongly assumes
that the user is primarily interested in aardvarks. Our DM at
present works from a priority list compiled from intuition
about what might be most important to a user. The whole
area of co-operation is one which we intend to investigate
further in the future.

When the database query is generalised with a
successful result, the DM produces another logical form, the
co-operative extended logical form (CoopELF). For the
above example, the RELF and CoopELF are as follows:

RELF:

list(A),
[plural(A)]
[message(A),from(A,B),name(B,anna),
gender(B,feminine),
about(A,aardvarks)]

CoopELF:

list(A),
[plural(A)] [message(A),about(A,aardvarks)]

Both logical forms are then sent to the response module
(see section 4.5).

4.3.4 Error recovery

There are several reasons why a system may not
understand a user's request - speech recognition errors,
meaning extraction errors, and conversational modelling
errors.

Unfortunately speech recognisers are not 100% accurate
and a user does not always use phrases the computer can
understand. It can be frustrating for a user if the system
simply keeps repeating 'Sorry I didn't understand that'.
Sometimes asking a user to repeat an utterance will result in
a successful recognition, if, for example, a quiet utterance or
background noise resulted in a recognition error. However,
sometimes the user will need to rephrase the question, or
speak later, or earlier, etc. It is necessary to have an error
recovery dialogue which helps the user to try different
strategies when difficulties occur, and which seems helpful
rather than repetitive.

Sometimes conversational modelling errors occur; for
instance, when a user says 'Read her e-mail' and the DM
has no record of a female person being mentioned
previously, the DM must then ask the user an appropriate
question, e.g. 'Who do you mean?'

4.4 Database query

When the DM has prepared the query, it will be passed
to the database query component. The database query
component's purpose is to convert the query from the DM
into one or more queries which can be used to find the
required information from within the database. Having
established the queries, the database query component then
extracts the actual information from the database.

BT Technol J Vol 14 No I January 1996

Page 18 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4822



SPOKEN LANGUAGE SYSTEMS

This is not as straightforward as it sounds and may
involve a number of steps.

" Using general and domain-specific knowledge to
attempt to satisfy the query - an example of this is the
use of class taxonomies. If a user asked about
'reptiles', but the database knew about 'snakes', then
the database query component could look down a
reptiles taxonomy to realise that there is a link between
query and data. Similarly, a user asking about 'turtles'
from a database of 'terrapins' could have the query
satisfied by the database query component if it looked
sideways in a reptiles taxonomy.

" Optimising the query - by carefully arranging the
order of execution of subqueries with a query, the
speed of getting a result can be improved dramatically.
To do this, the database query component will need to
rank the severity of each of the constraints in the query.
The query will execute optimally when the most severe
constraints are applied first.

Of course, neither of these operations ensure that there
will be a result from the query, i.e. there may be no answer
to the query. Therefore the database query component will
pass as much information to the dialogue manager as
possible about a query which failed, so that the DM can
decide what to do next.

Ultimately, the database querying module provides a
means of separating the actual database query (in SQL, for
example) from the internal representation in the DM. This
should mean, in theory, that the dialogue manager need not
be aware of the database used, and that using a different
database management system only involves changing the
internal mapping used by the database query component.

4.5 Response generation

In spoken language systems, responses are normally
thought of as being provided using speech. However, in the
case of multimodal systems, the response can also be in a
graphical or pictorial form. This section is therefore divided
into three parts - the generation of text, the synthesis of
speech, and the generation of graphics.

4.5.1 Text generation

Text generation is the task of putting into words the
information that is to be sent to the user. It can be as trivial
or as complex a process as is appropriate for any particular
SLS.

At the trivial end of the scale, text generation can be
avoided altogether by using canned-text sentences. These

202 work well if the application is very simple and there are

only a very limited number of things the system will need to
say.

The next step up from this is to have carrier or template
sentences where relevant information can be slotted. This
allows a little more scope for personalising the messages to
the user and has been used successfully in ELIZA [21], the
famous artificial intelligence program which attempts to
fool people into believing they are communicating with a
psychologist. ELIZA recognises and scores certain patterns
in the user's input and uses the highest scoring pattern as a
filler in its template output, transposing personal pronouns
and possessives such as 'I' for 'you', and 'my' for 'your'.
For instance:

User: I am worried about my mother.
ELIZA: Tell me more about your mother.

The template output sentence is 'Tell me more about...'
and ELIZA has transposed 'my' for 'your' in the pattern
'my mother' to give the filler 'your mother'.

The most flexible method is to generate the most
appropriate responses as and when necessary. Just as
grammars can be used for analysis, most can equally well be
used for generation. However, the flexibility of a text
generator depends on the size of the grammar and lexicon
used. If they are very small, the effect is little better than
using template sentences.

Text generation is the reverse process of parsing. A
parser converts a string of text to some kind of knowledge
representation, whereas a text generator converts a
knowledge representation to a string of text. For the e-mail
assistant SLS, the RELF which has been instantiated after a
successful database query is used for generation. If the
initial database query was unsuccessful, then the
uninstantiated RELF and the CoopELF are both used for
generation. Furthermore, the presuppositions part of the
RELF is used to reply in an appropriate way depending on
the assumptions made by the user. Thus if the user was
expecting more than one e-mail as in 'Read me my
messages from Peter' and only one exists, then the system
can reply 'There is only one, the message reads:...'

4.5.2 Graphics generation

Multimodal systems are enhanced by graphs and/or
pictures incorporated into the text. A graph or picture can
show at a glance what would often take many paragraphs to
describe in words.

BusCat (see section 3.1) builds WWW pages on-the-fly
in order to answer a user's query. The WWW pages include
pictures of BT products relevant to the user.

BT Technol J Vol 14 No 1 January 1996

Page 19 of 22 Petitioner Microsoft Corporation - Ex. 1008, p. 4823



SPOKEN LANGUAGE SYSTEMS

A consideration when (automatically) collating material
to be shown on a computer screen is size of images and
graphs. It is desirable to try to fit the information within the
limits of the screen rather than forcing the user to scroll
down to view the whole page. The interface to the BT
Business Catalogue uses different sized images to attempt
to achieve this.

4.5.3 Speech synthesis or text-to-speech

BT's SLS systems all use the Laureate speech
synthesiser [2] whenever TTS is required. When a text for
synthesis is being generated automatically by the response
module, information about the structure of the text will
already be known. This opens up the possibility of
providing Laureate with details of what kind of utterance it
is (declarative, interrogative, or imperative), where the
pauses should be, where the strongest emphasis ought to be
placed, and so on. This is an area for future research.

5. Futures

T here is a considerable amount of work to be done in
taking the demonstration systems described in section

3 and turning them into applications which can be used by
customers. To a certain extent this is the normal process of
downstreaming, addressing issues such as thorough cover-
age of the application domain, robustness of software in the
hands of naive users, and a well-designed user interface.
However, there is also further work to be done on the under-
lying technology to make continuous spoken-language sys-
tems which will be really effective. Three such technology
areas are highlighted in this final section. These technolo-
gies are all aimed at improving the quality of the system by
making it more user-friendly and more intelligent.

5.1 Speech recognition

SLSs of the kind described in this paper place great
demands on the recognition component, and these demands
will increase as the coverage of the system is extended,
because the recogniser must still work with sufficient speed
and accuracy with a larger vocabulary and higher perplexity
of language. In addition to these fundamental requirements,
there are some other features which would help improve
performance.

Spontaneous speech recognition - this involves a
number of different areas, each of them trying to
enable better recognition of speech from naive users in
a real application situation, as opposed to experts
running a controlled demonstration. Non-speech
sounds, such as breath noises, hesitations, coughs, etc,
must be accommodated, together with out-of-
vocabulary words (because it will never be possible to

create a recogniser vocabulary which covers every
word to be spoken by real users), and the disfluencies,
hesitations and restarts of spoken language.

Confidence measures - the recogniser should be able
to give the dialogue manager an idea of how confident
it is that it has recognised an input utterance correctly,
and beyond this, its confidence in particular parts of the
recognised string. For example, the recogniser might
say that it has recognised 'which films are UNK by
Clint Eastwood', in which it is highly confident about
everything except the unknown word UNK.

Speaker adaptation - in many cases it is anticipated
that SLSs will be used regularly by the same
individual, in which case they may be willing to train a
speaker-adaptive system to their voice before using the
system. If this is not possible, the dialogues with SLS
are usually long enough to make speaker adaptation
during the dialogue a useful proposition.

LM adaptation - it is important that the recogniser can
efficiently update its language model during the course
of the dialogue, as explained in section 3.1.

Prosodic information - in the context of a spoken
dialogue, there is considerable prosodic information in
the user's utterances (stress, intonation, etc) which
could help the recogniser, but is currently ignored.

5.2 User-centred language

The ideal would be for users to be able to speak to an
SLS in a language which is natural to them, although it is
realised that people will be prepared to adapt to the system
to a certain extent. To do this the way real users actually say
things must be studied, and incorporated as far as possible
into the recogniser and grammar. However, user-centred
language also requires more sophisticated processing in
analysing the input sentence and translating it to a suitable
database query. To take a very ambitious example, a user
might say: 'How can we cut the cost of getting bulky
documents from Edinburgh to London?', which would
ideally be translated into a database query about faxes and
ISDNs. This kind of translation requires considerable
knowledge bases in the system, both domain-specific and
general world knowledge, and it also requires a powerful
inference engine to make effective use of the knowledge
bases. In the shorter term, such queries may be beyond our
capabilities, but users will not expect to have to phrase
everything in exactly the terms encoded in the database
which contains the required information.

BT Technol J Vol 14 No I January 1996

Page 20 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4824



SPOKEN LANGUAGE SYSTEMS

5.3 More flexible and intelligent dialogues

The dialogues discussed are already considerably more
flexible than the traditional prompt and response dialogues.
However, there are two areas where dialogues could be
enhanced:

* greater use of mixed-initiative dialogues, where the
system sometimes takes the initiative - for instance to
give the user some background information it has
inferred they may be unaware of, or to make a 'sales
pitch' for a particular product or service, if, for
example, the user has been spending a lot of time
asking questions about it,

* more use of user and life-style profiles - these are
knowledge bases which the system has built up about
the particular user, and the category to which the user
belongs, the dialogue manager then being able to use
this information both to help it interpret user input, and
to decide on suitable initiatives to take, as discussed
above.

6. ConclusionS poken language systems are likely to be of great impor-
tance in the future development of computer technology

and its adoption by large numbers of people in the informa
tion age. This is becuase language is one of our primary
means of communicating with each other, and unless
humans change fundamentally in a short time, the use of
natural language will be an important element in facilitating
communication between humans and computers.

This paper has discussed the components of spoken
language systems in general terms, and described three
systems which are under development at BT Laboratories.
There are a variety of spoken language systems, from pure
speech-in/speech-out systems to multimodal systems which
aim to combine spoken language with other modalities,
such as typed text and mouse clicks, in order to achieve the
most user-friendly interface possible.

As for the future of spoken language systems, the
current state of the art is that they are on the verge of
commercial deployment in some domains. However, it will
be some time before we approach the scenarios envisaged in
'2001: A Space Odyssey' or 'Star Trek' where one can talk
to a computer system in a completely natural way.

References

I Scahill F et al: 'Speech recognition - making it work for real', BT
204 Technol J, 14, No 1, pp 151-164 (January 1996).

2Edgington M E et al: 'Overview of current text-to-speech techniques:
Parts I and II', BT Technol J, 14, No 1, pp 68-99 (January 1996).

3 Bissell R A and Eales A: 'The set-top box for interactive services', BT
Technol J, 13, No 4, pp 66-77 (October 1995).

4 http://www.cm.cf.ac.uk.inovies

5 Power K J: 'The listening telephone - automating speech recognition
over the PSTN', BT Technol J, 14, No 1, pp 112-126 (January 1996).

6 Gazdar G and Mellish C: 'Natural language processing in Prolog',
Wokingham, England, Addison-Wesley, pp 169-174 (1989).

7 Rayner M and Wyard P: 'Robust parsing of n-best speech hypothesis
lists using a general grammar-based language model', in 4th
Eurospeech Conference on Speech Communication and Technology,
EUROSPEECH '95, pp 1793-1796 (1995).

8 Special Issue on 'Ill-formed input', American Journal of
Computational Linguistics (1983).

9 Hodges W: 'Logic', Hamondsworth, England, Penguin Books (1977).

10 Warren D H D and Pereira F: 'An efficient, easily adaptable system for
interpreting natural language queries', American Journal of
Computational Linguistics, 8, No 3-4, pp 100-119 (1982).

11 Fillmore C: 'The case for case', in 'Universals in Linguistic Theory',
New York, Holt, Rinehart and Winston, pp 1-90 (1968).

12 Beardon C, Lumsden D and Holmes G: 'Natural language and
computational linguistics', Chichester, England, Ellis Horwood, pp
150-156 (1991).

13 Allen J: 'Natural language understanding', The Benjamin/Cummings
Publishing Company, p 41 (1987).

14 Chomsky N: 'Syntactic structures', The Hague, Mouton Publishers, p
15, (1957).

15 Cann R: 'Formal semantics', Cambridge, England, Cambridge
University Press, p 5 (1993).

16 Alshawi H (Ed): 'The core language engine', London, England, MIT
Press (1992).

17 Carbonell J G and Hayes P J: 'Robust parsing using multiple
construction-specific strategies', in BoIc L (Ed): 'Natural language
parsing systems', Springer-Verlag, Berlin, pp 1-32 (1987).

18 Stallard D and Bobrow R: 'Fragment processing in the DELPHI
system', Proc of Speech and Natural Language Workshop, DARPA, pp
305-310 (1992).

19 Earley J: 'An efficient context-free parsing algorithm',
Communications of the ACM, 13, No 2, pp 94-102 (1970).

20 Grice H P: 'Logic and conversation', in Cole P and Morgan J L (Eds):
'Syntax and Semantics', 3, SpeechActs, pp 41-58, New York,
Academic Press (1975).

21 Weizenbaum J: 'ELIZA - A computer program for the study of
natural language communication between man and machine',
Communications of the ACM, 9, No 1, pp 34-45 (1966).

BT Technol J Vol 14 No 1 January 1996

Page 21 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4825



Peter Wyard obtained an honours degree in
theoretical physics from Cambridge
University and an MSc in astronomy from the
University of Sussex. After ten years teaching
physics in India and the UK, he took an MSc
in digital systems from Brunel University and
joined BT Laboratories in 1988. He first
worked on connectionist natural language
processing. After a period as project leader
for speech technology evaluation, he returned
to the language group where he now leads the
work on developing spoken language
systems.

Alison Simons joined BT in 1982 as a
sponsored student. After receiving the degree
of BSc in Computer Science from the
University of Manchester in 1986, she joined
BT Laboratories and began work in the
speech synthesis research team.

She subsequently switched to speech
, recognition where she led a research team

developing BT's first sub-word unit speech
recognisers. She currently leads a team which
is developing spoken language systems for
accessing information sources and has
recently completed the BT MSc in

Telecommunications Engineering.

Steve Appleby joined BT in 1983 to
investigate methods for locating buried plant
after gaining an honours degree in Physics
with Musical Acoustics from the University
of Surrey. After working in the copper access
group on various problems related to copper
network maintenance he joined the Systems

' J Research Division to work on a wide variety
of topics including fractal population
modelling and mobile agents.

Currently, he works in the natural language
I- group on semantic aspects of natural

language processing and is completing a PhD
in fractal population modelling.

SPOKEN LANGUAGE SYSTEMS

Ed Kaneen began work for BT in 1990 as a
sponsored student, and joined the language
group full-time in 1994, having gained an
MEng in Computer Systems and Software
Engineering from the University of York. He
worked initially on prosody for text to speech,
before returning to the work of his MEng, on
the parsing of ungrammatical language. This
has continued with the language group,
focusing particularly on the interface with
speech recognition.

Sandra Williams' early career was varied and
. included seismic survey analysis, customer

relations work, and stained glass craftwork.
She joined BT Laboratories in 1988 after

-graduating from Sussex University with a BA
degree in Artificial Intelligence. She joined
the natural language group to work on
automatic text summarisation.

In 1992, she obtained an MPhil degree in
Jf Computer Speech and Language Processing

from Cambridge University, which was sponsored by BT. Since 1992, she has been part of

the language group in Systems Research. Her
specialist work interests include automatic text summarisation, and
discourse and dialogue analysis. She is developing dialogue managers to
handle ever more natural conservations between humans and computer.

Keith Preston gained a BSc(Hons) in Applied
. Physics and Electronics from the University

of Durham in 1978. After joining BT he was
involved in pioneering work in optical
communications, and has many publications
and patents in this area. He was also
responsible for the design and prototyping of
a commercial range of advanced laser
transmitter products. In 1992 he moved into

~the area of advanced software and now heads
a the natural language group at BT

Laboratories.

BT Technol J Vol 14 No I January 1996

Page 22 of 22
Petitioner Microsoft Corporation - Ex. 1008, p. 4826



Page 1 of 272 GOOGLE EXHIBIT 1028Petitioner Microsoft Corporation - Ex. 1008, p. 4827



Sresenting
MAGIC CAPTM

A Guide to General Magic's
Revolutionary Communicator Softwaree

Barbara Knaster

A

Addison-Wesley Publishing Company
Reading, Massachusetts ° Menlo Park, California

New York * Don Mills, Ontario * Wokingham, England
Amsterdam * Bonn - Sydney Singapore e Tokyo

Madrid * San Juan * Paris ° Seoul * Milan
Mexico City 9 Taipei

Page 2 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4828



distinguish their products are claimed as trademarks.Where those
designations appear in this book, and Addison-Wesley was aware
of a trademark claim, the designations have been printed in initial
capital letters or all capital letters.

The author and publishers have taken care in preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs
contained herein.

Library of Congress Cataloging-in-Publication Data

Knaster, Barbara.
Presenting Magic Cap :a guide to General Magic's \A(

revolutionary communicator software / Barbara Knaster.

p. cm.r
o Ot index.

ISE -40740-X

gications software. 2. Magic cap. I. Title.
NQR T('T51 9.K5 1994

8u69-dc20 93-46018~CIP

Copyright © 1994 by Barbara Knaster

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in
the United States of America. Published simultaneously in Canada.

Sponsoring Editor: Martha Steffen
Project Manager: Joanne Clapp Fullagar
Production Coordinators: Vicki Hochstedler * Gail McDonald

Jordan
Cover design: Grand Design/Boston
Set in 11 point Serifa Light by Total Concept Associates

1 2 3 4 5 6 7 8 9-ARM-9897969594
First printing, February 1994

Addison-Wesley books are available for bulk purchases by corporations,
institutions, and other organizations. For more information please
contact the Corporate, Government and Special Sales Department
at (800) 238-9682.

Page 3 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4829



Contents

Preface: About Magic Cap v

Acknowledgments xvi

Chapter 1 Getting Started 1

Chapter 2 Electronic Mail 19

Chapter 3 General Features 59

Chapter 4 Datebook 77

Chapter 5 Name Cards 113

Chapter 6 Phone 141

Chapter 7 Notebook 159

Chapter 8 File Cabinet 185

Chapter 9 Other Features 211

Chapter 10 Construction 233

Index 249

iii

Page 4 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4830



For my boys,
Scott and Jess

Page 5 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4831



?r eface

*About Magic Cap
Why Me?

I don't love technology. I don't hate it either, but I
don't welcome it into my life unless I can figure out how
it will make me happier or more efficient. I think of this as
being very practical, but since I live in Silicon Valley,
some people consider me almost primitive for having this
attitude.

When I first heard about General Magic's dream of
creating a personal communicator, I was impressed by
the team of programming and'user interface legends who
had been assembled to build this portable box that kept
you in touch all the time. At the same time, I wondered
why most people would want one of these things. These
communicators were going to let you send messages to
anyone from anywhere, and they were going to be as
easy to use as a telephone. Well, I already had a tele-
phone, and I sometimes found it more intrusive than in-
dispensable.

A personal communicator would also be an electronic
datebook and notepad. There were plenty of electronic
organizers already; would this one be just another expen-
sive toy? I seemed to have no trouble at all being skepti-
cal, wondering whether this idea of "reinventing tele-
phony" would have much of an impact in the real world
outside Silicon Valley, even with the impressive track
record of the wizards at General Magic.

V

Page 6 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4832



Of course, the list of companies that helped get
General Magic rolling (Sony, Motorola, and Apple) and
the others who joined along the way (AT&T, Philips, and
Matsushita) added a lot to this tiny start-up company's
credibility. Eventually, I became a guinea pig in official
tests of the software in General Magic's lab and unoffi-
cial tests at home, courtesy of my husband, who joined
the team as employee number 14. As the communicator
shaped up, I started to see for the first time how it might
fit into my life.

I also became intrigued by the powerful culture of this
unique company: dedicated workaholics collaborated with
engineers who had families, sharing an almost fanatical
need to make magic. Watching this culture work to make
practical tools helped convert my skepticism into enthu-
siasm. General Magic's dreams developed into two soft-
ware platforms: Magic Cap and Telescript.

Origins of General Magic

The original idea for personal communicators
sprouted in Apple's Advanced Technology Group. A re-
search group led by Marc Porat observed three central
trends that showed how people spent their work and
personal time. First was the need to communicate easily
and conveniently--with co-workers in the same office,
with a spouse running errands, with clients in other parts
of the world. Second, people increasingly require infor-
mation on demand-stock quotes, movie schedules, how
the home team fared. The third trend was remembering
all this information-who to meet, where to be, when to
be there. Porat also proposed the theory that people don't
always clearly separate the personal and business parts
of their day, which is the root of what he calls whole
person thinking.

vi

Page 7 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4833



Creating a product for this model was the challenge.
The code name Paradigm was chosen for the project (you
can't do anything in Silicon Valley without a code name).
When Apple realized that it couldn't devote enough re-
sources to the Paradigm project, General Magic was cre-
ated in 1990. The founders of the company were Marc
Porat, the visionary who nurtured the ideas and put to-
gether the astonishing alliance of consumer electronics
manufacturers and communications giants; Bill Atkinson,
the legendary programmer and user interface designer
who created HyperCard and the original graphics soft-
ware in the Macintosh; and Andy Hertzfeld, the software
wizard who programmed much of the original Macintosh.
In subsequent years, many talented programmers and
designers who worked on other successful products joined
General Magic to form a world-class engineering group.

It's the Communication

The whole idea of Magic Cap is communication. A
personal organizer is cool, but it's been done. An elec-
tronic datebook and address book combination is really
useful, but it's not necessarily more special than its pa-
per counterpart. Electronic mail and information services
aren't just trendy, last-minute additions to Magic Cap;
from the beginning of the project, everything in Magic
Cap was designed around the idea of enabling people to
communicate powerfully and easily.

When you turn on a Magic Cap communicator, you
see a picture of a desk, laid out to simulate the way people
work (see Figure P-i). There's a telephone, a datebook, a
file for names and addresses, a notebook for writing and
drawing. But right in the middle of the desk is a postcard
and pencil, a subtle reminder of what Magic Cap is all

vii

Page 8 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4834



about. The in box and out box are also located in the
center of the communicator's screen, their prominent
positions drawing your eyes and attention.

FIGURE P-1. The Magic Cap desk

Placing the postcard and other kinds of stationery in
the desk drawer, Magic Cap encourages you to use elec-
tronic mail for every purpose: business letters to prospec-
tive clients, personal notes to your mom, invitations to
meetings, birthday greetings to a friend in another state,
and electronic orders for goods and services. You can use
Magic Cap's electronic communication for many of the
things you're used to doing with your telephone or postal
service.

Every Magic Cap device is truly a communicator and
not a message pad, an organizer, or a personal digital
assistant. Every Magic Cap communicator comes ready
to connect to a telephone line: there's a modem built in.
Some also include two-way radios for wireless communi-

viii

Page 9 of 272 Petitioner Microsoft Corporation - Ex. 1008, p. 4835



cation, but at the least, every Magic Cap communicator
is only a standard telephone jack away from connecting
you to the world of electronic networks.

Your communicator does a great job of replacing your
address book, but it has another purpose for the names
and addresses it knows: It can help you send messages
to the people and companies it lists. Magic Cap also simu-
lates your appointment book; and you can use it to con-
tact the participants in your meetings to invite them to
attend. Because Magic Cap's smart communication fea-
tures connect you to the world outside, you can actually
tell a news service what kinds of stories you're interested
in, and those stories will be culled automatically and de-
livered for you to read at your convenience. Information
providers may someday offer news, up-to-the-minute
sports scores, movie and television schedules, road di-
rections for many major cities, and lots of other services
that somebody somewhere is dreaming up right now. It's
like a home shopping network in the palm of your hand.

It's for Everybody

The engineers and interface designers at General
Magic worked hard to make Magic Cap very easy to use.
They wanted to make a consumer electronics product,
not a computer, and so it had to be far easier to use than
the simplest personal computer. There are lots of things
that personal computers do very well, including keeping
track of big chunks of data, publishing documents, and
crunching numbers. Even though Magic Cap can handle
some of those things, it was born to communicate.

Sending messages using AT&T's new PersonaLink
service or conventional electronic mail and fax is intu-
itively simple with a communicator. Receiving mail is

ix

Page 10 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4836



also easy-a matter of simply connecting and collecting.
Because Magic Cap communicators are electronics prod-
ucts designed for general consumer use, they may not be
as powerful as many personal computers, but they are
certainly more friendly.

Magic Cap's designers conducted scores of user tests
to refine the way it works. Features that were confusing
to novice users were tweaked or simplified. For example,
at one time users could move objects around on the desk
just by sliding them. This was disconcerting to people
who didn't have computer experience-they just wanted
to open the datebook, but it kept scooting away instead.
The designers made a trade-off: Users had to enter an
explicit mode to be able to slide the permanent features
on their desks, so savvy users could redecorate, but be-
ginners wouldn't be startled by something happening
unexpectedly.

Computer veterans and other knowledgeable users had
suggestions for ways to increase power, and many of
those suggestions were added to Magic Cap, but never
at the expense of friendliness. Magic Cap's inventors in-
cluded many features that make it easier for power users,
but those features are designed to stay out of the way of
beginners.

Magic Cap's navigation system is an example of the
designers' focus on simplicity. It lets users work with a
desk, rooms in a hallway, and a downtown street. Novice
users inevitably love Magic Cap's navigation, and pun-
dits often criticize its appearance as too simplistic and
playful. Many experts also criticized the friendly, playful
Macintosh interface when it appeared in 1984. Now, of
course, most personal computer users work with win-
dows, icons, menus, and other elements that were dis-
paraged on the first Macintosh. We'll have to wait and
see what the eventual response is to Magic Cap's inter-
face.

X

Page 11 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4837



Designers of products that are supposed to be easy to
use often talk about whether "your parents" could use it.
Magic Cap may not be as easy as a telephone, but it's
designed so that most parents could quickly figure out
how to use it to send a message to their children asking
why they never write anymore.

Telescript Inside

Magic Cap integrates many tools that people use to
communicate for work and play. At the core of this plat-
form is Telescript, a communication-oriented program-
ming language also developed by General Magic. There
are several elements in the communication heart of
Telescript. Foremost is its smart-messaging capability.
As the foundation for sending and receiving electronic
mail, Telescript actually turns each message into an agent,
or independent program, that can carry personalized in-
formation with it.

Because each message is really a Telescript program,
these "smart messages" can perform functions besides
just expressing your words. If you use your
communicator's datebook to schedule a meeting with
your colleague Tony, you can also automatically create
an invitation for him to attend the meeting, send it to
him, and then have the message complete a series of
reactions based upon his response; he can use it to cre-
ate and deliver his acceptance or regrets, and even sched-
ule the meeting in his datebook.

Telescript messages travel in "smart envelopes," which
are Telescript programs that include a way to tell the
message how to deliver itself. An electronic mail network
based on Telescript can let you tell the message to wait
in Tony's mailbox until 5 P.M., and if he doesn't pick it up
by then, to fax it to him at home. The mailboxes that the

xi

Page 12 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4838



message passes through are also Telescript programs,
meaning that they're also smart and can carry personal
preferences.

Using a Telescript-based network, you can stamp your
message to Tony as urgent. Meanwhile, because his
mailbox is also a Telescript program, he has instructed it

to let him know immediately when he receives an urgent
message. A conventional electronic mail system may also

have some of these "smart" features, but if they weren't

built into the original engineering, it would be impos-
sible for users to add them later. If a Telescript system
needs to add features, users of the mail system can add

and revise them.
As more Telescript-based systems are created, they'll

help extend the power of Magic Cap. A smart network

would provide a handy way to interact with a store that
has an electronic location downtown. If you wanted to

send flowers to your Aunt Dorothy, you could visit the
flower store downtown, then send a message to the flo-

rist that you wanted a bouquet of flowers for $35 to be

delivered today in Kansas. Your order could automati-
cally attach your name for billing and your aunt's name

and address for delivery information. The flower shop's

mailbox could have special rules set up for receiving such

orders that would expedite having the flowers delivered
in time for her birthday. So far, Magic Cap's engineers

haven't figured out how to have the flowers themselves

come through a communicator, but just wait.

Families of Products

There are several different models of Magic Cap com-

municators from different manufacturers, and each one

provides ways to communicate. Some Magic Cap com-

municators need to be plugged into a phone line; others

xii

Page 13 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4839



take advantage of wireless transmission via radio waves.
There may be additional options like telephone handsets
that plug into your communicator or cellular phones that
can be added. Every one of these, though, has one thing
in common: Magic Cap. Communication A la Magic Cap
is the foundation; your distinctive model of communica-
tor provides the access.

Design Goals

General Magic engineers worked together with their
alliance partners in designing various models of commu-
nicators that had to meet important goals. Communica-
tors have to be small enough to be carried around all the
time and easy enough for people to figure them out with-
out hours of study. Magic Cap's designers compensated
for small screen size by making items look simple and
easily touchable. Performing various tasks in Magic Cap
is intuitive and easy: touch the screen to activate items
on a desk, go into a hallway of rooms filled with other
features, or go to a downtown street with buildings rep-
resenting remote services.

The immaturity of touch-screen technology provides
another design challenge. Screens of current models are
often difficult to see, another reason that the desk items
are spaced far apart and well defined. Because it's hard
to touch an exact point, Magic Cap allows for an impre-
cise touch to act precisely.

Magic Cap uses an on-screen keyboard as its main
source of input; its interface doesn't require handwriting
recognition. Because an on-screen keyboard is unwieldy,
Magic Cap includes a large set of features to speed up
typing. These features include trying to automatically
complete words in well-known categories (names, cities,
states, and so on), automatically guessing whether to

xiii

Page 14 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4840



shift the keyboard to uppercase, and cross-referencing
information (for example, learning which cities match
which ZIP codes). Magic Cap interprets handwriting as

ink and doesn't try to translate it into text.

Magic Cap Is for Communication

Magic Cap is a software platform designed specifi-
cally for communication, as shown in this classic mes-

sage that helped inspire the Magic Cap team. In the spring

of 1990, Bill Atkinson received this electronic postcard
from his young daughter, Laura, who used an early soft-

ware prototype to convey her thoughts simply and cre-

atively, and her dad was able to read and enjoy her mes-

sage at his convenience (see Figure P-2). This is what

Magic Cap does best: personal communication.

Idear bill I think post cards~ &
peradime wil be-egerat& lots of[ ®

pepoi wil uoosi t i am looking
foerd too wen it wil bee done I
can pitcher nmi mind a poersin I
walking along with one of this t6: Bill Atkinson
things & then all of a sadin al i fm: Laura Atkinson
got a post card 66J: post cards

i aura )COXO

FIGURE P-2. "A! I got a postcard"

AiV

Page 15 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4841



About This Book

By the time you read this book, you may already
have a Magic Cap communicator, or not. You don't need
to have a communicator for the book to be useful. If you
have one, you can use this book as a complementary
tutorial, and you might use the examples as a spring-
board for your own ideas. If you don't have a communica-
tor yet, this book shows what Magic Cap can do and how
you might be able to use it.

This book explains the concepts of Magic Cap and
shows some practical examples of its use. Many of the
scenarios are completely realistic and can be accom-
plished with the first Magic Cap commurnicators. You
may find yourself using your communicator in exactly
the same way, with only the names changed. Some other
examples show how Magic Cap might develop over time,
a kind of wishful thinking that could happen if communi-
cators become popular. This book is pretty specific in
stating what Magic Cap can do now, and what it might
do in the future.

Magic Cap software was substantially done before this
book was written, but some small details may have
changed since then.

Xv

Page 16 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4842



J.lcnovoledfgments

I didn't realize how many people were vitally impor-
tant in publishing a book until I wrote one.

Everyone I worked with at Addison-Wesley was won-

derful, even the people I never met who were responsible
for the cover and art design. Martha Steffen was extremely

helpful in explaining the publishing process, negotiating
a breakneck schedule, suggesting ways to improve the

manuscript, and calming down a nervous author. Every

author should have an editor like Martha.
Joanne Clapp Fullagar managed all the production de-

tails so smoothly and completely from both coasts that
the schedule seemed hectic but not impossible. I really

appreciated her encouragement and suggestions.
Keith Wollman and Steve Stansel took a chance on

publishing a book by an unproven writer about software
still being written.

Tema Goodwin provided thorough and thoughtful

copyediting that considerably improved the book.
Bill Fallon and Bob Garnet from AT&T reviewed parts

of the manuscript, offering their suggestions and insight.
The folks at General Magic were encouraging and help-

ful. Curtis Sasaki and Jane Anderson helped get the

project started, and Joanna Hoffman gave continuing
support. Along with Curtis, Lynn Franklin, Susan Rayl,

Terry Moody, Kevin Lynch, and John Sullivan also re-

viewed the manuscript to make sure I got things right.

xvi

Page 17 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4843



David Hendler, a most literate writer, is also reviewing
the book.

Bill Atkinson and Laura Atkinson gave me permission

to reprint the wonderful postcard Laura sent to her dad.

Bill also let me borrow his extensive collection of post-

cards sent and received in early 1990 to give me an ex-

cellent perspective on the evolution of Magic Cap.
The Magic Cap engineers offered their encouragement,

and I thank them for answering all of my questions about

how things worked (or didn't) and why they worked that

way (or didn't). I am grateful to them for letting me share
the magic.

My family, as always, was very supportive. Helen

Schulman kept telling me that she always knew I would

write a book someday, and I'm glad I could prove her
right. Thanks, Mom.

Gene Schulman kept asking how the book was com-

ing while he reminded me to take care of myself, and I

know he is a very proud father right now. Thanks, Dad.

Louis and Jennifer Schulman came for a visit right in

the middle of this frenzy. That weekend helped me keep
my sanity.

Jess Knaster was very understanding about not get-

ting to go anywhere for several weekends in a row be-

cause of "Mom's book." He waited as patiently as an

eight-year-old can wait for his parents to take a break

from work to play with him. He even let me use him in

some examples in the book. Thanks, Jess. You're a great

kid.

Scott Knaster was (and still is) my inspiration. He was

the technical reviewer of this book, and he helped create

xvii

Page 18 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4844



all the figures. He was also the source of the General
Magic anecdotes. He micro-scheduled every page sc this
book could be finished in an amazingly short time, and
he worked beside me on many late nights making this
book better. He told me I could do it and then helped me
actually do it. I'm so lucky to be married to my best friend.

xviii

Page 19 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4845



Chapter 1
;,Getting Started

The First Time

You're probably interested in personal communica-
tors because you've always been one of the first to get
your hands on the newest technology-the industry calls
you an early adopter, or a heat-seeker. Maybe your boss
suggested that using one while you're traveling is good
business, or you have an incredibly understanding spouse
who bought you one for your birthday. On the other hand,
maybe you haven't decided to take the plunge yet, but
you want to know what it feels like to have one. Whatever
the circumstance, you've joined the brave new world of
personal communicators.

The first few minutes with a communicator are among
the most important in your relationship, kind of like the
experience between nervous job applicant and thorough
interviewer. When you take it out of the box and start
using it, you should feel good about the experience, not
uncomfortable. You shouldn't feel overwhelmed by in-
comprehensible setup procedures or three different thick
manuals, each of which says "read me first." General
Magic and its alliance partners worked hard to make your
beginning experiences pleasant, friendly, and reassur-
ing. In this chapter, we'll go through the process of un-
packing and setting up a new Magic Cap communicator.

1

Page 20 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4846



Basics

Although Magic Cap communicators come in vari-
ous models from several different manufacturers, they all
have many features in common. Most important is that
all Magic Cap communicators are operated by touching
pictures of objects on the screen. You don't have to use
lots of different gestures when touching the screen to
make things happen. There are really just two actions
you have to learn: touch and slide. To touch, just place
your finger or stylus on an object, and then let go. To
slide, touch any object and move it along the screen, as if
you were sliding it aside. Everything in Magic Cap oper-
ates with those two actions.

To help you figure out what you're doing, Magic Cap
creates a little world inside your communicator. This world
is filled with familiar objects, such as a desk, a telephone,
a datebook, an in box, and a clock. To learn to use Magic
Cap, you start with what you already know about work-
ing with these and other familiar objects.

When you look at a Magic Cap communicator, you'll
see that it comes with just one physical key, labeled op-
tion. If you hold down the option key while touching cer-
tain objects on the screen, you can make an alternate or
advanced action take place. These optional movements
are often used to take advantage of shortcuts for actions-
they're never used for common or required functions.

Every Magic Cap communicator has a jack where you
can plug in a telephone line. This is how you'll use your
communicator to send and receive electronic mail, make
phone calls, and send faxes. Some communicators also
have built-in two-way data radios for sending and receiv-
ing information without having to connect a phone line.

2

Page 21 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4847



Getting Started

Your first step should be installing the batteries in
your communicator. Putting them in at the factory would
drain some of their power during shipping and shelf time,
so you get to have fresh batteries by installing them your-
self. Every communicator has at least three sources of
power: a main battery, a backup battery, and a wall
adapter. Power is vitally important to your communica-
tor-if it ever loses power completely, it will lose the in-
formation you entered! Magic Cap has an elaborate warn-
ing system to tell you when your main and backup bat-
teries are running down.

Once you've installed the batteries, the next step is to
turn on your communicator. The first images you'll see
are the logo of the manufacturer and the Magic Cap rab-
bit-in-the-hat logo, and the provocative instruction to
Touch the screen to begin. Your first action will be to
teach the communicator about how hard your touch is
and to fine-tune the screen's alignment. Magic Cap puts
a bull's-eye target in the upper-left corner and asks you
to touch it. When you touch it, the communicator's
speaker sounds an approving pop and the target hops
around to two other locations on the screen, calibrating
your touch so that it will be more responsive to it.

While you're aligning the touch screen by tapping the
targets, you're subtly experiencing three of the key ele-
ments of using Magic Cap. First, almost everything is
accomplished by touching pictures you see on the screen.
Second, when something changes its location on the
screen, you'll usually see animation that makes it move
rather than just having to figure out that it's gone from
one place to another. This animation reinforces what
you're seeing so that you're not surprised when the item
appears in a new location.

3

Page 22 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4848



Third, the targets make a popping sound when you

touch them. In Magic Cap, most actions make sounds.
As you get familiar with Magic Cap, these sounds will
become reassuring and will help you confirm your ac-
tions. Of course, if you find the sounds annoying or you
don't want to disturb people nearby, you can change
them or turn them off completely.

a Just a Touch. Magic Cap communicators come with a
stylus, a sort of pen with no ink, but Magic Cap's hard-
ware and software were designed to let you use your
finger if you prefer. The stylus is required for only two
functions: the alignment targets, since they need to be.
touched as precisely as possible to set the screen, and
for handwriting, which is really tough to do well with
your finger. You can do everything else with a stylus or
your finger.

Magic Cap tries to be generous in deciding where you
can touch things to activate them. Some items have an
invisible halo around them so you can actually miss them
by just a little when you use your fingertip to touch or
slide. Some items require more precision, such as when
you're typing on the keyboard; you can use your finger-
nail to get a better shot at them. As you use your commu-
nicator, you'll have a better idea of whether you want to
use your finger or a stylus.

Magic Cap's manuals and information windows use
two different words, tap and touch, to describe the
action of placing your finger on an item on the screen
and then removing your finger. Although tap is more
appropriate for a button and touch is often used with
other kinds of objects, the terms are completely inter-
changeable, and this book follows suit.

4

Page 23 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4849



After you finish target practice, you get your first look
at the desk and you see your first information window, as
shown in Figure 1-1. The window suggests that you touch
its Getting Started button to set up your communicator,
but if you're not ready for that, you can touch the x in the
upper-right corner of the window to close it and post-
pone the Getting Started stuff.

You cank alasg akt etn tre Hnlyour

Magic Cap TM 1.0 [

Touch the (D in the upper-left corner of the
screen to show or hide messages like this one.

now, enl~touch 0 ....................etting Started

Getting Started .idp

FIURE -1. The desk with its information window open

You can always go back to Getting Started when you're
ready by touching the circled question mark next to the
word Desk in the upper-left corner of the screen, then
tapping Getting Started in the window that appears. In
fact, you can get information about any screen or win-

dow by touching that circled question mark. It's a good
idea to run through Getting Started as the first thing you
do with your new communicator.

There are three kinds of actions in the Getting Started
process. First, there are vital setup tasks you must do to
personalize your communicator before you can do almost

5

Page 24 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4850



anything useful. The second kind are actions that you
should do before proceeding but that aren't absolutely
required. Third, there are instructive lessons that teach

skills you might pick up on your own as you're using
Magic Cap but that help cut down on any apprehension
you might feel when you begin.

Starting the Lessons

There are two things you must do to personalize

your communicator before getting much of anything done:
You have to tell it who you are and where you are. Get-
ting Started provides lessons that help you enter this

important information. When you enter your name and
location, it's important to recognize that these are not
just practice examples; the information you give is saved
and should be the real stuff.

What happens if you try to skip ahead and avoid enter-
ing your name or location before continuing? Many func-

tions work fine whether they know your name or not: You
can use the calculator, write in the notebook, or play a
game without filling in your name. If you try to write a
message, though, Magic Cap will gently remind you to
enter your name first (it even says please).

Doing the Time Warp. During Magic Cap's testing,
many users thought that Getting Started was just a
teaching tour of Magic Cap that let them practice doing
things, not realizing that setup information entered there
was very real. This led to lots of communicators being
set up by people named Frank N. Furter and Bugs Bunny.
Be sure to type the real information when you go through
Getting Started.

6

Page 25 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4851



If you touch Getting Started, instructions will lead you
into the hallway, then down to the library where the Get-
ting Started book waits for you. You'll be directed to tap
the Getting Started book, as pictured in Figure 1-2, and
you'll see the opening pages of the book.

wry ..... ...- .

ili~iiii~~i! ,i',iii ................................................ ..i!!i~im -iiii"+ iiiiiiiiiiiiiii~iiiii .:a '.,,.:. :.... --,,. .-++...,........ -i

.........iii~ iiii .~ m m t ... .. .....
...................... .......... ...... ii~ ii% iiil~iiii!iiiiiiii~ii~ii....... ......-. .. ....... + +F+ all p ' ig[i[[i[[
........... ............... .... ..................... l liiiiiii++i+!~iili~iii

. m. .- ...... ...

.:+' ... .............. .l .. .. :.| ++........... .. ++: ++ . ............ ++++'

FIGURE 1-2. Just about to open the Getting Started book

When you start a lesson, you'll see the number of steps

you'll need to follow to complete the lesson, and you'll

know many you've done so far. The steps also tell you

exactly what you're supposed to do and why, rather than

just doing it for you. When a lesson step tells you to tap

something, the step's window has a tail pointing to the

item so you really get the idea behind the action as well

as its consequences.
The first lesson is about the book itself, explaining

each feature and action that you can expect. It intro-

duces the buttons that you'll use to move from one step

to another and the stop sign that all steps have in case

you want to quit the lesson. If you stop a lesson, you will

..........

Page 26 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4852



go back to where you started. Even if you stop, you can

complete the lesson at any time; in fact, when you go

back to the library, the Getting Started book even re-

members what page you were on.
The next four lessons are about general user features

like the top and bottom of the screen and the keyboard.

You can finish these lessons sequentially, which will help

you feel more comfortable using your communicator by

the time you reach the vital lessons that you must com-

plete. If you want, you can skip directly to the lesson

about what you must do to personalize your communica-

tor-making a name for yourself.

Required Setup

Before you can make an appointment, create a mes-

sage, or register for a mail service, the communicator

needs to know who you are. There are nine steps to this

process, but four of them are navigation steps that take

you from place to place, and one step is just an explana-

tion of what you're about to do, so it's easier than it
sounds.

If you follow the lessons in order, you'll know about

typing by the time you get to the lesson that helps you

enter your name. You'll know that the on-screen key-

board appears on the screen when you need to type in

some information, and that Magic Cap shows where
you're going to type when you need to enter your name,

address, and phone number. You may notice that

some of your entries are finished automatically, because
Magic Cap knows some words and tries to guess what

you want to enter so you don't have to type as much. If

Magic Cap guesses wrong or you don't even notice that

it has guessed, you can continue to type without having

8

Page 27 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4853



to do anything else-your typing will replace Magic Cap's
guess. You can find out more about this automatic word-
completion feature in Chapter 5.

As soon as you touch the done button after filling in
your name, Magic Cap puts up an announcement telling
you that it's personalizing the communicator for you and
that it may take a couple of minutes. You'll also see a
spinning hat, which tells you that the communicator is
actually busy thinking, not just waiting for you to do some-
thing.

e Spinning Its Wheels. When Magic Cap personalizes
your communicator, it often takes a couple of minutes.
What on earth is it doing all thattime? It's calculating a
security code that will be used to prove that you're who
you say you are when you communicate with other
people and services. It takes so long because it's a very
big number that's undergoing a lot of calculating, and
Magic Cap communicators were designed to be great
communicators, not super-fast number-crunching
monsters. The good news is that it only has to do this
calculation once when you set up your communicator.

Next you'll be directed to fill in your address, and then
your phone number. You don't even have to put the pa-
rentheses around the area code or the hyphen after the
first three numbers; it will take care of that for you. How-
ever, you do need to enter your area code. If you don't,
Magic Cap will make an upset noise, insert the empty
parentheses before your phone number, and place the
typing point there for you.

Magic Cap's designers knew that an undersize on-
screen keyboard is not the world's easiest way to enter

9

Page 28 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4854



information, so they made sure that Magic Cap is en-
gaged in a never-ending battle to help you enter informa-
tion more quickly. For example, when you're asked to fill
in your address, Magic Cap guesses that your address
starts with a number, so it sets the keyboard to its num-
ber mode automatically. If your address is a post office
box, or something else that begins with a letter, you can
easily switch it back to see the standard keyboard.

In addition, the keyboard also makes smart guesses
about capitalization. After you've typed the numbers, the
keyboard not only switches back to showing letters, but
it also shifts to uppercase for you. After you type the first
letter, the shift is removed and the letters are lowercase
again.

Before you can send a message or even make a phone
call, there is one more must-do task: You have to tell the
communicator where you're calling from so it knows
whether to include area codes and country codes when
dialing numbers. You should definitely follow the Getting
Started lesson for this one, because it's not the most
intuitive process in Magic Cap.

Set up dialing is the way to tell Magic Cap about the
places you expect to be when you connect a phone line.
Your communicator can feel when you plug in a phone
line, and it will ask your location every time it gets con-
nected. Phone numbers must be dialed differently de-
pending on where you are; for example, when you dial
your home number from outside your own area, you must
dial the area code first; when you call from inside your
own area, dialing your own area code first will prevent
the call from going through.

Again, don't let the number of steps fool you-four of
the seven steps are just navigation to get to and from the
Getting Started book. While you're setting up the dialing
locations, you'll get to see the stamper, which is one of

10

Page 29 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4855



the buttons that's always available on the bottom of the
screen. You'll learn that the stamper contains lots of rub-
ber stamps that you can use throughout Magic Cap, plus
special-use stamps like the ones that fill out name cards
and locations.

The standard stamps for locations are home, work, and
hotel, but each stamp lets you customize the name, so
you can have more than one office, add more hotels as
you travel, or come up with other locations. When you set
up your dialing location, you'll be asked to choose a stamp
that matches your actual location.

After typing the name of your location, you'll enter
your country, area code, and whether you need to dial a
prefix to get an outside line first. If you've already filled
out your name card with a phone number, Magic Cap
will guess that you're in that number's area code, an
example of Magic Cap's smart integration. You can read
more about this phone location business in Chapter 6.

After you touch done, you will have completed the
only two tasks required to start using Magic Cap. Every
other lesson is just enhancement and teaching, but you'll
probably want to complete most of them anyway.

If these two setup tasks are so important, why aren't
they the first lessons in Getting Started? Before Magic
Cap lets you complete these setup lessons, it teaches you
how to use the skills you'll need to do them. It wants to
make sure you know how to type, use the stamper, and
navigate from place to place before asking you to do real
work with those skills.

More Setting Up

After you finish the two required lessons, setting
the time and date is a good lesson to go through next.
Your communicator will let you do everything it can do

11

Page 30 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4856



without making you set the time and date, but it won't
be very accurate. For example, it wouldn't be very useful
to have an appointment set to the wrong date or to send
mail that has the wrong time in its postmark.

You can turn the pages in the Getting Started book
until you find the lesson entitled Set the time and date.
Once again, the 15 steps listed make it sound tedious,
but 4 are for moving around in Magic Cap, and each time
you set a number or time zone, touching the accept but-
ton to move on counts as a step as well, so it'll seem
much easier than that. Figure 1-3 shows the first step in
the lesson that sets the time and date.

(D Getting Started Thursday, January 6 11:1o a.m. it2' Library

Set the time and date Your communicator contains
a clock and calendar. They
need to be set.

Set time & date - step I of 16
To set them, touch the 'set

Tap the desk button to go to the ime & date button below.
desk.

FIGURE 1-3. Starting to set the clock and calendar

As with some other lessons, the first thing you need to
do is go back to the desk by touching the desk image on
the bottom of your screen. By touching the clock behind
the desk, it zooms up close enough for you to set it. The
first thing you're asked to do is select a city in your time
zone. Magic Cap wants to know this so it can adjust the

12

Page 31 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4857



clock if you go to other cities. Your exact location may
not show up in the list of cities you can choose from, so
you can select any city that's in the same time zone.
After the communicator knows what time zone it's in, it
asks you to tell it what time it is.

After you set the time, you get to set the calendar to
today's date. To set the date, you'll see a calendar page
that lets you choose the year, month, and date. You'll use
left and right arrows to help you move forward and back-
ward in time. You finish up the lesson in the same way
you've finished other lessons-you go back to the Get-
ting Started book and tap done. Your communicator has
learned a lot today; it knows who you are, where you're
calling from, and the date and time.

The next lesson to go through signs you up for AT&T's
PersonaLink service. This is another one that you should
do, but you might choose to skip. As with all the others,
you can either step through it with the help of the lesson,
try its task yourself, or skip it altogether. This one is pretty
straightforward, so if you're feeling really comfortable with
your communicator, you might want to try flying solo on
this one, going without the lesson. The only prerequisite
is that you should be connected to a phone line to com-
plete this process.

When you turn on your communicator, you'll find one
or more messages in the in box above the desk-the
exact number and the messages vary depending on which
communicator you have. Some of these messages are
offers from information networks to provide electronic
mail and other services for your communicator, includ-
ing one from AT&T.

When you tap an offer message to open it, you'll see
that it has a button to request the signup materials from
the service. If you're connected to a phone line, tap the
button; the request will be answered with a return

13

Page 32 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4858



message that includes the rest of the registration materi-
als. Taking this lesson not only helps you register for a
mail service that will give you a much more powerful
communicator, it also helps you successfully and easily
send your first message.

Lessons that Teach

We have now covered what you must do and what
you should do to effectively and efficiently set up your
new communicator. The other lessons found in the Get-
ting Started book are more instructive than task-oriented:
They teach you about the top and bottom of the screen
and how to use the keyboard. By going through. them,
you'll have a better understanding of Magic Cap, its tools
and commands, the places you can go in Magic Cap, and
what you'll be able to do with your communicator.

The lesson about the top of the screen is short and
sweet. It points out the areas along the top of the screen
and describes each one. You'll learn that the top of the
screen tells you where you are in the Magic Cap world,
what the date is, and how much battery power you have
remaining.

The lesson about the bottom of the screen is more
detailed, pointing out the commands and tools that are
available throughout Magic Cap. As each button is pre-
sented, it appears in its place along the bottom of the
screen. The lesson describes each button in general terms:
the desk button, the stamper, the lamp, the tote bag, the
tool holder, the keyboard button, and the garbage truck.
You can find out about all these things as you're working,
but the lessons are like a shortcut to knowing how to use
Magic Cap more effectively.

14

Page 33 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4859



Making the Scene. The space between the top and
bottom of the screen is called the current scene. Com-
mon scenes include the desk, items on the desk such as
the name file or a notebook page, the hallway and rooms
in the hallway, the street downtown, or buildings on the
street. For example, when you open the name file, a
name card fills the screen; that's the name card scene.
When you want to set the clock, you touch it and it
zooms up close so that you can see it and nothing else;
that's the clock scene. When you want to write a
message, you touch the postcard at the center of the
desk. This is like pulling the new card up so close that
you actually see only the postcard scene. Magic Cap
also includes windows, which are rectangles that float
above the scene and are filled with items to help you
perform actions or enter information. There's more about
this stuff in Chapter 3.

The keyboard lesson has the most steps, but if you're
going to be typing lots of information, the lesson is a few
minutes' time well spent. As the keyboard opens, the
lesson describes all the features built into the keyboard
as it leads you step by step in typing a few words. You'll
learn about the keyboard's smart capitalization and the
switch that lets you change the keyboard from letters to
numbers and symbols. The lesson also tells you about the
typing point, the vertical line that shows Magic Cap where
you want to begin typing.

The next lesson, Add your signature, is kind of fun to
complete. You'll get a better feel for using the stylus as a
writing tool on the screen as you sign your name. If you
don't do this lesson right away, you can always add your
signature at another time. Once you've completed this

15

Page 34 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4860



lesson, you'll find stamps with your signature on them in
the stamper when you're writing a message.

If you haven't added your signature but you decide
you really want to sign your name on a message you're
writing, you'll find empty signature stamps in the stamper.
When you drop one of these stamps on your message,
you'll go directly to the signature entry form, where you
can sign on the dotted line. If you decide later that you're
not happy with your signature, you can always repeat
the lesson to change it.

e Clip n' Save. Sometimes Magic Cap has to provide a
visual representation of things that don't have a real
physical metaphor, such as a few words of text or a
particular style of shadow for an item on the screen. For
such situations, Magic Cap provides coupons, complete
with dotted-line borders, that represent those intangible
things. For example, a coupon that represents a shadow
style is good for one shadow in that style; you just drop it
on an item and the item gets the new shadow. Before
you sign your name, the signature stamps are really
coupons that are redeemable for one stamp with your
signature. When you put one on a message, Magic Cap
will ask you to sign your name.

The last two teaching lessons in Getting Started actu-
ally step you through sequences that demonstrate the
heart of Magic Cap, communication. One lesson helps
you make a phone call to someone, and the other walks
through the steps necessary to send a message. Once
you're registered for the AT&T service, you can send a
message to someone. You can use the phone lesson right
away.

16

Page 35 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4861



When you do the Phone someone you know lesson,

you will be able to hear the call being dialed through the

speaker in your communicator, but you'll have to use a
handset or telephone to talk. After you've entered the

phone number from the Magic Cap keypad, you can touch

dial to have your communicator call for you. You'll get a

Phone status window that lets you adjust the volume,

and you'll see a timer that shows the duration of the call.

You can have a person-to-person conversation through

the standard telephone, and then use the communicator
to hang up. To complete the lesson, you can save the

phone number by making a new name card for the per-
son you called so you'll have the number handy the next

time you want to call. Touch done, and you're back in the
library ready to go on.

The last page of Getting Started congratulates you for

finishing the lessons. If you tap put away, the book closes

and hops back onto the shelf until you need to read it

again. When you reach the end of Getting Started, you

have finished setting up your communicator. You have

also made a name card, used the phone, sent a message,
written your name, and learned all the skills you'll need to

get the most out of your communicator.

Lessons Learned

When you finish each lesson, the text on that page

of the book is updated to reflect the completion of the
series of steps, and the button changes to repeat lesson,

which you can do whenever you want. After you finish

the lesson, you will also get directions on what to do
next.

The lessons try hard to protect you from straying and

doing anything else that might cause unnecessary frus-

tration. If you touch the wrong item at any lesson step,

17

Page 36 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4862



you'll hear a gentle reminder sound and see the proper
location blinking on the screen. If you don't finish the
required lessons, you can always complete the tasks on
your own if you're the kind of person who learns best by
experimenting, rather than by following a preset se-
quence.

Remember that if you don't complete the lessons, and
you don't finish the setup manually, you won't be able to
do most substantive tasks. When you try, a window ap-
pears and reminds you to personalize your communica-
tor with your name or location; it even includes a button
for returning you to the lesson with a single touch. And it
says please.

The Getting Started book shows you how to use many
of the tools and features available in your communicator
and helps you set up vital information like your name and
location. After completing the lessons, you'll feel more
comfortable with the way Magic Cap works. Most impor-
tant, if you've completed the Getting Started book, you've
learned how to use your communicator for what it does
best-communicate!

18

Page 37 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4863



Chapter 2
Electronic Mail

Keep in Touch

Using technology to keep in touch used to mean
picking up the phone, speaking to an operator, and ask-
ing her (yes, it was always her) to ring Grandpa Dave's
house. As more people got telephones and the technol-
ogy moved forward, customers felt more comfortable with
phone numbers that looked like FLorida 5-2379 or
KEystone 7-9855. Amazing advances let people use a
telephone in their home to call someone in another city,
or state, or even country. Telephones in public places
worked by depositing coins, helping people stay in touch
without having to stay at home.

Now, technology offers services that the venerable
Alexander Graham Bell probably couldn't have imagined.
We have phones that work without wires, giving you the
freedom to call from your car, on a camping trip, or over
the Rocky Mountains (although a lot of those conversa-
tions probably consist of "That's right-I'm calling from
the airplane!").

As people became more mobile and used phones while
they were away from home, they started to worry more
that while they were away, someone might be calling
them. Answering machines and voice mail were at first
considered unacceptably rude-I used to think that if I
wanted to call my friend, she should at least have the

19

Page 38 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4864



decency to stay home and wait for my call, and I never
liked leaving a message. Now many people consider it
poor etiquette not to have voice mail or an answering
machine, as an unanswered telephone inconveniences
the caller.

Many people who resisted answering machines ulti-
mately recognized that they give you freedom as both a
caller and a receiver of calls. As a caller, you can fulfill
your urge to communicate even if you can't reach any-
one. When you're called, you can miss the call without
missing its content.

This is the foundation of Magic Cap: power, flexibility,
and convenience for the sender and the receiver. I want
to communicate with you right now, but you may not be
willing or able to hear from me right now. I can tell you
what I need and go back to the rest of my life. You're free
to get my communication at your convenience. Magic
Cap expands this communication to cover electronic mail
that contains digital information like words, pictures,
sounds, cartoons, appointments, sketches, and more,
along with the more-familiar phone calls and faxes.

This chapter covers four important scenes in Magic
Cap: the in box, the out box, the AT&T building, and
most important, the message-writing scene, which is
where all new messages are created.

Communication at Heart

There are several elements at the heart of a Magic
Cap communicator. The core of Magic Cap's communi-
cation features is the built-in Telescript language. While
Telescript is transparent to you as a user, its communica-
tion features help Magic Cap deliver electronic mail fea-
tures that you'll use in lots of different ways.

When you get a Magic Cap communicator, you can
sign up for an electronic mailbox with one or more

20

Page 39 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4865



services. In fact, AT&T has built a brand-new network
service, AT&T PersonaLink Services, that is based on
Telescript. Sending and receiving electronic mail is one
of PersonaLink's key features.

Lots of people already have electronic mailboxes with
other, existing services and networks, such as America
Online, CompuServe, and Internet. Magic Cap lets you
communicate with most of these existing services, even
if you don't have mailboxes on those systems. It's kind of
like this: You can use an automated teller machine that
belongs to a bank where you don't have an account, as
long as your bank has an agreement to talk to the other
bank. As long as you're registered with PersonaLink, you
can exchange mail with people on lots of other services.
This communication between services happens through
communication gateways.

Any time you enter a different world, which is what
happens when you go through a gateway, you have to
play by the rules of the new world. Sometimes, stuff gets
left at the door and you can only send in what the other
service can understand. For example, most electronic mail
services don't know how to have pictures or sounds in
their messages, so if you include those items in your
messages, they probably won't get delivered to recipi-
ents on other services. Even with these limitations, be-
ing able to send mail to someone on another service
without having to subscribe to it is very usaful.

Some of the conventional mai servives provide spe-
cial software packages that let, you use Magic Cap to
connect to them drsctly; If you 'me one of these pack-
ages, you can use, your com uicator to talk to the ser-
vice for mail and other information. Whether you're
connected to PersonaLinr or a conventional service, you
can use Magic Cap to keep in touch with colleagues,
family, and friends.

21

Page 40 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4866



AT&T PersonaLink Services

Just what is PersonaLink? Why should you register
for it? How can PersonaLink get in touch with people on
other services? That's a lot of questions for some service
from New Jersey. Users can send, receive, and store their
messages with PersonaLink, and they can also use the
gateways that PersonaLink offers to other conventional
mail services. Electronic mail is only one feature of
PersonaLink. AT&T's network service will take advan-
tage of Telescript's intelligent agents to offer other kinds
of communicating packages and information services.

Mostly Cloudy. A Telescript-based service such as
PersonaLink consists of one or more computers running
one or more Telescript engines, or programs that
understand Telescript. Engineers often refer to the
computers and Telescript engines together as "the
cloud." In honor of this nickname, the sky over Magic
Cap's downtown always has a puffy cloud floating down
the street.

When you first get your communicator, you'll find a
message or two waiting in the in box when you turn it
on-registration offers for PersonaLink and other services.
After you've personalized your communicator with your
name and phone number, you'll probably take a look at
those messages. You'll find the signup procedure pretty
straightforward. Depending on your model of communi-
cator and the service you're signing up for, you might
have to make sure you're connected to a phone line first.
Then, tap get sign up form at the bottom of the offer letter.
A sample of one of these service offer messages appears
in Figure 2-1.

22

Page 41 of 272 Petitioner Microsoft Corporation - Ex. 1008, p. 4867



:----AT&T PersonaLink Mail 10t619

Welcome! AT&T

Touch the button below
to request a signup form
for AT&T PersonaLink Mail. discaraoda

to: jaromir jagr
from: AT&T PersonaLink

about: Joining PersonaLink file

FIGURE 2-1. Request card for PersonaLink signup materials

When you tap the button, Magic Cap sends a message
to the mail service requesting a signup form. You see
the new message hop to the out box, and then watch a
progress bar as the message is sent from your communi-
cator to the service. When your communicator finishes,
there's a new message in your in box-the signup form
you asked for.

When you reply to the offer (again, you should plug
into a phone line if your communicator and the service
don't support wireless messages), your name card infor-
mation is sent to the company providing the service so it
can respond by sending you registration materials. If
you're not connected to a phone line and you don't have
wireless hardware when you respond, the message hops
into the out box, waiting to be sent. Then, you can send
the message when you connect to a phone line later.

Once you've signed up with a mail service, you can
start sending messages right away.

23

Page 42 of 272

(D card from AT&T PersonaLink 1/6 1116 a.m. jT91 In box

Petitioner Microsoft Corporation - Ex. 1008, p. 4868



Sending a Message

Because communicating is at the center of Magic
Cap, the image of the postcard and pencil is right in the
middle of the desk. To start making a new message, you
just tap that postcard. There's also a desk drawer that
holds a variety of stationery for other kinds of messages.

Magic Cap was designed around whole person think-
ing, which contends that people don't strictly separate
their days into business and personal parts; instead, they
weave them together, acting on impulses and needs as
they come up. If Magic Cap succeeds, electronic mail
will become popular for individuals as well as for busi-
nesses. Magic Cap provides clues to this focus. First, the
devices are called personal communicators, and second,
Magic Cap is factory-set to use postcards, not business
letters, as the standard form of electronic mail, although
you can easily switch to business letters instead.

With that in mind, let's go through a couple of elec-
tronic mail scenarios, a personal example and a business
example.

Getting Personal

Imagine an old friend, Sheryl, whom you've known
since grade school or maybe even kindergarten. Now,
even though you live in different states, you still like to
keep in touch beyond just birthday and holiday cards. A
fact of your lives, though, is that while you might often
think about her, it's difficult for you (and for her) to coor-
dinate your time well enough to have a reasonable tele-
phone conversation.

By writing an electronic message, you can jot down all
the things you want to tell her about your life and ask her
about hers, all while you're waiting for a staff meeting to

24

Page 43 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4869



begin. When you connect to a phone line, you can let her

know you've been thinking about her without having to

worry about time zone differences. She can read your

message and respond when her time is less complicated.

Sheryl won't have to try to find a time when you're both

home and not busy at the same time. In fact, this even

works if she's out of town on business or vacation, be-

cause she'll certainly have her communicator with her.
To make the message, touch the postcard, and a new,

blank message hops onto the desk and then zooms open
to fill the screen. The new message also automatically

opens the name chooser, a window that lists everybody

in your name file, so you can choose your friend's name

from the list (see Figure 2-2). If your friend isn't in your

name file yet, you can add a new card for her by tapping

new-you don't have to go to the name file to add a

name. If you're not sure whom to address the message to

right now, you can tap the x to close the name chooser.

FIGURE 2-2. New message scene with name chooser

Page 44 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4870



To address the message, touch your friend's name,
and then touch accept to close the name chooser. You'll

see that Sheryl's name has been added to the postcard as
the addressee, and your name appears as the sender.

You'll also find that Magic Cap has guessed that you'll
want to start the message with a standard salutation, so

it has typed Dear Sheryl, in the upper-left corner of the

postcard. Of course, you can change this salutation if you
want.

Magic Cap lets you choose between typing (for letter-

perfect text) and writing (for drawings or a more personal

feel). This is likely to be a fairly long letter, so you will
probably want to type most of it. You can touch the key-
board image on the bottom of the screen to open the on-

screen keyboard. If you find that you usually prefer to
type messages rather than write them, you can custom-

ize Magic Cap so that it opens the keyboard instead of

selecting a pencil when you make a new message.
When the keyboard opens, you can start typing di-

rectly below the salutation, or you can move to any other

spot on the postcard where you might want to begin.

Because it's been a while since the two of you spoke, you
have a lot to tell your friend. After you've typed in your

news and asked about her family, you might notice that

Magic Cap has automatically enlarged the postcard for

you so you can write as much as you need to without

worrying about running out of room (see Figure 2-3). You

can tell because an arrow pointing up appears when you

reach the bottom of the card, but you can still type as if

you had unlimited space, which you do. It would be great

if paper postcards worked like that-then we wouldn't
have to worry about writing so small. In the future, maybe

there will be postcards for Magic Cap that have nice

pictures on the back and we'll just send those instead.

26

Page 45 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4871



(0 Card to Sheryl Thursday, January 6 3:39 p.m. I" Desk

running for city council, o: Sheryl Lynn
channeling for a tram: Vicki Rosen send
pre-Columbian deity, and about: exhausting life
volunteering on graffiti
paint-over duty, I've had to do address
most of the domestic stuff
around here.

theiscard

It's actually been a nice break
from working all the time, but yin
it's making me even more tired er y ase
than work does. I'm not sure
whycthat is - it sure seems like y kJ
more fun, and yet, you never sm hgip tnd

FIGURE 2-3. Longer text automatically extends the length of
the card

When you're done typing, you can open the stamp
drawer so you can stamp your signature and a sleeping
face stamp (the theme of your postcard is "I'm working

real hard and I'm tired"). If you want, you can touch about
to open the keyboard and fill in a description for the post-

card, which would let Sheryl know if the card is just gen-
eral news or if you really need something in particular,
like her recipe for pickles.

Mailing the Card
As soon as you addressed the card, a stamp show-

ing how the card will be delivered (that is, whether by
fax, PersonaLink, America Online, or whatever) appeared
in the upper-right corner. If you want to change the de-
livery choice, you can tap the stamp and choose another
method. Magic Cap knows to list only the delivery choices

that will actually work for the recipient; in other words, if

27

Page 46 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4872



your friend doesn't have a CompuServe account,
CompuServe isn't listed as a delivery choice. When you've
made the right choice, tap send, and the postcard zooms

down onto the desk and hops into the out box.

If you're connected to a phone line or have wireless

access to the delivery choice you selected, Magic Cap
will mail the postcard right away. If you can't connect,
the mail will wait in the out box. Then, when a phone line

is handy, you can open the out box, tap mail, and watch

the message fly off to Sheryl. The next time she checks
her mail, your message will be waiting for her.

Electronic mail has a different feel than a phone call.

It's certainly not as interactive, but it can be more thought-
ful, and you can communicate and keep in touch without

having to find a time when you're both focused and unin-

terrupted. You get to write a letter with no pen, paper,
envelope, stamp, or post office involved; it's delivered
very quickly; and your friend gets to read and respond

easily and at her convenience.

Replying and Forwarding

Of course, after Sheryl reads the message, you hope
she'll want to respond. She can use a built-in shortcut for

replying to your message. The command buttons along

the right side of your message include choices for reply

and forward. If you look at Figure 2-4, you can see these

buttons along with the rest of the card as it looks when
Sheryl receives it.

28

Page 47 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4873



0 Card from Vicki 5of 6 ~ j~' In box

Dear Sheryl,

Hi! How have you been? How
are Jay and the boys? You can't
possibly imagine how busy I've i
been the last few months. Mike
has been so busy with his work,
school meetings, karate classes,

3:48

running for city council, to: Sheryl Lynn
channeling for a from: Vicki Rosen Li
pre-Columbian deity, and about: exhausting life tile
volunteering on graffiti
paint-over duty, I've had to do
most of the domestic stuff

FIGURE 2-4. Message has been received and opened

When Sheryl is ready to respond, she can ask Magic
Cap to create a new card by tapping reply. Because it's a
shortcut, reply also fills in the address (back to you, the
sender), guesses the salutation, opens the keyboard, and
positions the typing point. A reply stamp appears at the
bottom of the card, and an appropriate delivery choice is
selected. Of course, she can change any of this stuff as
she writes her reply. The next time you check your mail,
her reply is there.

If the message wasn't just gossipy, but really was a
request for the pickle recipe, you might also want to for-
ward her reply to your friend Phil. To do that, tap forward
on the right side of the screen while you're looking at her
reply. Tapping forward makes a new card, opens the name
chooser to let you address it, and attaches a copy of her
message with the recipe. Once again, Magic Cap makes
a delivery choice based on the information in the name
file, and you can change the choice if you want.

29

Page 48 of 272

Q) Card from Vicki <a5of 6 c
F 1 b x

Petitioner Microsoft Corporation - Ex. 1008, p. 4874



Staying In Touch on the Road

One of the most frustrating situations in business is
when you're out of your office and you need to communi-
cate with someone else who is also out of the office. Your
voice mail systems can have one-sided conversations,
but there are times when communication needs to be
more substantive and immediate. Electronic mail pro-
vides a thoughtful, reflective medium for getting your
thoughts down just as you want them, a nice alternative
to the ticking clock and live recording of voice mail.

Let's say you're the assistant director for an animation
art gallery, and your gallery in Denver is just two days
away from the opening of a big show. You're in Chicago,
ready to accompany the animation cels from the corpo-
rate warehouse to Denver. The gallery director, Helen, is
in Los Angeles, ready to accompany the artist on his
flight to that show. Neither of you is in your gallery office,
and neither of you is very reachable by telephone (just
multiply the problems of getting messages from hotel
operators by two). This is a job for Magic Cap.

Opening your communicator's desk drawer, you can
begin a business letter to send to your boss by touching
its image. When you touch the business letter, it hops
out of the drawer and onto your desk, automatically open-
ing the name chooser so you can address it to Helen. As
with a postcard, you can always just touch the x to close
the name chooser without picking an addressee right
away.

The business letter automatically includes the sender's
name in the upper-right corner of the letter (like letter-
head), adds today's date, and then the salutation to the
addressee, in this case Dear Helen. It also opens the key-
board and places the typing point for you. You need to
ask her about which art pieces should be sent for the

30

Page 49 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4875



show, as well as what kind of wine and hors d'oeuvres to
serve at the opening, and when the artist will be avail-
able for interviews with the local press.

Consistent with other pieces of "paper" in Magic Cap,
a business letter can be extended if you need more room
at the bottom. After you finish your message, you close
the keyboard. You can see the completed letter in Figure
2-5. If you've already addressed the letter and you agree
with the delivery choice Magic Cap suggests, you can
tap send to mail the letter.

(D Letter to Helen Thursday, January 6 11:58 a.m. LP Desk

Susan Kerr
Thursday, January 6, 1994 send

Dear Helen,
address

I just wanted to double-check the pieces to take from the
warehouse for our show: 16 Disney cels from Aladdin; 12
from Chuck Jones; 12 from Friz Freleng; and the 6 different discard
serigraphs from Hanna-Barbera.

I told Sharon to get some red and white wine boxes, some ea
pretzels, and some yogurt-covered raisins. I told her to
expect 200-250 guests.

FIGURE 2-5. Business letter automatically adds heading
information

Unlike the postcard, where you can see the postage
stamp that tells how the message will be delivered, let-
ters put that information on their envelopes. By touching
address on the right side of the screen, you'll get the
standard options to add or replace addressees, and you'll
also be able to tap a special button labeled show enve-
lope. If you do, you're switched to a different view that

31

Page 50 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4876



resembles the front of an envelope with a company logo
in the upper-left comer (see Figure 2-6). You can stamp
anything you want on the envelope, or take it off com-
pletely by sliding it to the trash.

0 Letter Thursday, January 6 4:31 pm. IW Desk

f Triangle Gallery "A

address

to: Helen Schulman
from: Susan Kerr discard

about upcoming show O

-7.

FIGURE 2-6. Envelope for the business letter

The envelope also has the postage stamp message in
the appropriate place h th upper-right corner, and the
recipient's name (as w!aeyours, and an about: descrip-
tion) in the center of the envelope. Here's where you can
choose how to send your letter. When you communicate
with Helen, you usually send a fax because you're typi-
cay oit of the office while she's at the gallery. This time,
you .11 use her electronic mail address to send the letter,
and you'll also stamp it urgent. You might guess that you
should stamp urgent on the envelope and not the letter
itself, but the urgent stamp will alert Helen's mailbox
whether it's on the envelope or on the letter.

After you've switched delivery choices, you can touch
address again, then hide envelope to switch back to the

32

Page 51 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4877



letter. If you're done, you can touch send while you're
looking at either the letter or the envelope to mail your
message. Since Helen has set her in box to alert her when
an urgent message comes in, and her communicator has
a two-way radio for wireless access to electronic mail,
she's able to read your message and respond within min-
utes. Your mind is eased much more quickly than if you
had to wait for her to get back to her hotel, pick up your
phone message (if she received it at all) and try to call you
back in Chicago. You've helped ensure the success of
the big event.

e Following the Metaphor. The differences between
Magic Cap letters and postcards are very similar to the
differences between actual letters and postcards.
Postcards give you a smaller amount of space to write in,
your writing isn't hidden inside an envelope, and the
addressee's name is printed on the right side of a line
that bisects your message. Letters start with a plain
piece of paper (although Magic Cap business letters
automatically add items you would expect on a business
letter), and the address is written on the envelope that
holds your message. These are subtle differences, but
they're important, especially if you recall Marshall
McLuhan's adage aboutthe medium being the message.

Group Therapy

As roads get clogged and gas prices increase,
carpools are becoming more popular. Carpools that drive
kids to school can be challenging enough to deal with,
but for serious hassles, try coordinating a carpool for adults
who work in the same office building. Let's see how Magic
Cap might help you manage a carpool that takes five
people to work each morning.

33

Page 52 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4878



You're responsible for driving four other people to work
one morning each week (because of your varying depar-
ture times, you each find another way home at the end of
the day). You just found out that you will be out of the
office for a week (starting tomorrow) overseeing the be-
ginning of a client's construction project. You need to let
the other people know that you'll miss your regular turn
driving, as well as not needing a ride the other four days
of the week. Everytime something like this comes up, it
means trying to catch up with four other busy profes-
sionals to rearrange the carpool. You could make four
different phone calls, one to each of them, but Magic Cap
has a way to let you be more efficient.

Magic Cap helps you handle these kinds of problems
by letting you collect name cards together into groups.
Any set of names with something in common can form a
group. We'll create a group to help manage our carpool.
Tap the name file on the desk to open it, tap new, then
group, and then type Carpool to name the group. Tap add
to put people into the group. The result is a filled-out
group card, as you can see in Figure 2-7. You can find out
more about name cards in Chapter 5.

Now that all the carpool members are reachable on
electronic mail or via fax, you can send one message to
four people detailing your change in plans.

34

Page 53 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4879



FIGURE 2-7. Group name card helps manage multiple
addressees

After you tap the postcard to start writing a new mes-
sage, you can pick Carpool as the addressee. The name
chooser lists all groups in boldface to make them stand
out. You can verify that all the recipients are included in
the group by option-tapping Carpool in the addressee
area, which opens a window listing the members of the
group. If you then touch a name in the window, the deliv-
ery choice stamp will change to show how the message
will be sent to that addressee. Magic Cap lets you have a
different delivery choice for each member of a group.

When you tap send, the message will go to each mem-
ber of the group using the delivery choice that Magic
Cap guessed was right, or that you corrected. In this
case, two copies will go by PersonaLink, one by America
Online via a PersonaLink gateway, and one to a work fax
number. There are four addressees and three different
delivery choices, but you only have to send one message.

35

Page 54 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4880



Testing Patience. The General Magic team ran into an
unexpected and embarrassing problem while testing
PersonaLink. A General Magic tester plugged a commu-
nicator into a phone line that didn't go through General
Magic's switchboard, but mistakenly instructed the
communicator to dial 9 for an outside line before calling
any numbers. When the communicator called AT&T's
access number, which begins with 1-800, it actually
started by dialing 9-1-800. Naturally, the telephone
network responded with a message to "please dial a 1,"
determining thatthe communicator was calling a long
distance number in area code 918.

The diligenttester took the message at its word.
Thinking that Magic Cap had somehow forgotten to dial
the initial 1, the tester cleverly told Magic Cap to dial a 9
for an outside line, then a 1, and then AT&T's number.
The next time the communicator tried calling AT&T, it
dialed the extraneous 9, then an equally inappropriate 1,
followed by the proper 1-800 number. That makes 9-1-1,
then 800 and the rest of the number. The PersonaLink
service didn't answer, so the tester tried again a few
times.

When the police officers and firefighters arrived, they
were stern but understanding.

Choosing How Messages Are Delivered

Let's look at the many ways you can send a mes-
sage. When you create a new message and address it to
someone in your name file, Magic Cap puts a postage
stamp in the upper-right corner of the message. The post-
age stamp shows how the message will be delivered to
the addressee. That information is called the delivery

36

Page 55 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4881



choice. If you've entered delivery information on the
addressee's name card, such as a fax number or elec-
tronic mail address, the postage stamp shows one of the
ways that you can get a message to the addressee.

If an addressee has more than one way to get mail, you
can tap the postage stamp to see a choice box that lists
the addressee's delivery choices. This works for multiple
addressees, too; you can touch the name of an individual
addressee to set the delivery choice for just that addressee.
As you touch each addressee's name in turn, the postage
stamp changes to show the delivery choice for that ad-
dressee.

How does Magic Cap decide which delivery choices
to offer for a particular addressee? The easy answer is
this: It offers all the valid ways of getting the message
from you to the addressee. The full answer is more com-
plex. To learn all the valid ways of sending the message,
Magic Cap must consider which services you belong to
and which services the addressee belongs to. For ex-
ample, if the addressee has a Prodigy account, Prodigy
will appear as a delivery choice only if you have some
way of getting mail to Prodigy, either with your own
Prodigy account or a gateway to Prodigy from a service
you belong to.

So, when building the list of delivery choices, Magic
Cap compares the services that you and the addressee
belong to, also considering gateways that might get a
message flowing between the two of you. But wait, there's
more. If the addressee has any fax numbers, they're al-
ways listed as delivery choices, because every Magic
Cap communicator can send faxes.

Finally, Magic Cap checks to see if you belong to any
electronic mail services that know how to look up their
members' addresses. Given an addressee's name, these
services can check to see if the addressee has a mailbox

37

Page 56 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4882



with them. This feature in an electronic mail service is
called directory lookup. If you belong to any services that
have directory lookup, Magic Cap will add those services
to the list of delivery choices for all addressees.
PersonaLink is an example of a service that does direc-
tory lookup, so once you're registered for PersonaLink, it
will appear as a delivery choice every time you address a
message.

Here's a summary of how Magic Cap makes its list of
delivery choices:

1. Magic Cap checks your name card and the
addressee's name card to see if there are any ser-
vices that you both belong to. If so, those services are
added to the list of delivery choices. For example, if
you're both CompuServe members, CompuServe be-
comes a delivery choice.

2. Magic Cap checks your name card and the ad-
dressee's name card to see if any gateways offered
by services you belong to can communicate with any
gateways or services that the addressee belongs to. If
so, those choices are valid too. For example, if you
have an Internet account and the addressee has an
MCI Mail account, Magic Cap can determine that
MCI Mail has an Internet gateway, so MCI Mail via
Internet will be added to the list of delivery choices.

3. Magic Cap checks the addressee's name card for any
fax numbers. They're added to the list of delivery
choices.

4. Magic Cap checks your name card to see if you be-
long to any services that offer directory lookup. If so,
those services are added to the list of delivery choices.
For example, if you're a PersonaLink member,

38

Page 57 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4883



PersonaLink (trying directory) will be added to the
list of delivery choices for this and every other ad-

dressee.

If you know that an addressee belongs to a particular

service, but you don't have the addressee's account num-

ber, you can send a message to that addressee only if the

service offers directory lookup. PersonaLink's directory
lookup feature is particularly powerful and provides sev-

eral advanced features.
If you're registered with PersonaLink and you want to

send a message to your cousin Arturs Irbe, who is also on

PersonaLink, you can send the message and ask

PersonaLink to look him up. When you address the mes-

sage, you can tap the postage stamp and pick the

PersonaLink (trying directory) delivery choice. As detailed,

the delivery choices will also include any services that

can get mail from you to him, including his fax numbers.

Because you picked the PersonaLink (trying directory)

stamp, the message will be delivered to the big

PersonaLink cloud in the sky. PersonaLink looks for any

members it has who are named Arturs Irbe. It even looks

phonetically, in case you're a bad Latvian speller. If

PersonaLink finds nobody who matches, you'll get an

electronic return to sender message back from

PersonaLink. If there's exactly one person with that name,

PersonaLink will go ahead and deliver the message, and

also send you a new and improved name card with his

account number.
If PersonaLink finds more than one match, which cer-

tainly could happen, PersonaLink returns the message to

you along with a list of the matching names it found,

including additional information like area codes to help

identify the correct person. Because cousin Arturs lives

in San Jose, the person with the 408 area code is most

39

Page 58 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4884



likely to be him. After you decide which one is right, you
can resend the message to him and Magic Cap auto-
matically updates your name file. Hey, this is even better
than calling directory assistance.

You don't have to send a message to someone in order
to have PersonaLink look them up. You can also go down-
town to the PersonaLink building and get a directory
lookup form there. Fill out the information as completely
as you can and send it in to PersonaLink. If there's a
match, PersonaLink will send you the name card. Figure
2-8 shows a directory lookup form.

(D Letter 1/6 12:08 p.m. IrT' PersonaLink'" Center

Directory request "end

AT&T PersonaLink

If you know the area code or phone number, it will help
find the right person. discard

........... ........................... ............................... ................ e r a s e

The address card for this person will be sent back to you the
next time you get your mail. -----

FIGURE 2-8. PersonaLink directory lookup form

Fax and Beam

Although the folks at General Magic and AT&T prob-
ably wish it weren't so, it will probably take a short while
before you can reach everyone you know on electronic
mail. Until then, you'll sometimes have to factor in more

40

Page 59 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4885



traditional means of communication. Most offices, plenty
of homes, and even a few cars have fax machines. Your
communicator can easily send messages via fax. If you're
telecommuting and you need to send something to the
office, faxing it might be the easiest and fastest way to
get it there.

If it's just a short message, write a postcard or letter
and address it to the office fax machine. This is a good
excuse for you to enter a name card for your office. Your
office's fax number entered there will show up as a deliv-
ery choice, and your communicator will send the mes-
sage just as if it were full-fledged electronic mail. You'll
also find a fax command always available inside the lamp.
If you sketch a floor plan in the notebook and want to
send it to your architect for her advice, you don't have to
attach it to a letter. Just tap the lamp, then fax, and you'll
see the fax window, which lets you choose exactly what
to send, who to send it to, and whether you want to
include a cover page. When you're ready, tap send fax to
deliver your sketch to the architect's fax machine. Figure
2-9 shows the fax window.

Magic Cap offers another way to send information
that's fast and cheap: infrared beaming. Every Magic
Cap communicator has an infrared transmitter and re-
ceiver that you can use to send messages, notebook
pages, name cards, and other items. Of course, you have
to be within a few feet of your recipient's communicator,
but that's how infrared technology works.

To send via infrared beam, tap the lamp to open it,
then tap beam. You'll get a list of what you can send and
who you can send it to, as your communicator locates
all recipients who are in range. Tap send to beam your
information.

41

Page 60 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4886



() Notebook Thursday, January 6 12:16 p.m. U1P Desk

Faxw

Notecard

optionssend fax

FIGURE 2-9. Fax is available everywhere in Magic Cap

Customizing for New Messages

When you make a new message, Magic Cap opens
the name chooser and asks you to address the new mes-
sage as it zooms open. If you don't want to address the
message right away, you can touch the x to close the
name chooser and address the message later. If you never
want to address messages as soon as they're created,
you can ask Magic Cap not to show the name chooser
when you make a new message. To do this, tap the lamp,
then rules, then tap rule 1, Address new messages right
after creating them. to turn it off.

Every kind of stationery can be set to choose a particu-
lar tool when you create a new message on that kind of
paper. For example, when you create a new postcard,
Magic Cap chooses the thin pencil tool. If you want to
change this behavior, you can set a rule to choose a

Page 61 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4887



particular tool, such as the thick pencil, when you create
a new postcard. If you prefer to type your postcards, you
can turn the rule off.

When you're addressing a message, you might want
to change the addressee, or add another addressee. When
you tap the address button on the right side of the screen,
you can add a new addressee to those already listed, or
you can replace the entire list, (see Figure 2-10). If you tap
replace addressees, the name chooser appears and you
can pick a new addressee.

yohan tap add new addressee adc rotee nam

od to odd Jrat nae aes

leav th nam choserope tood more ams

Darr Ro

FIGUR 2-1. Adresin coa nds wid

The n ae choserd as inuessa olile bxaetss
you pckta diern addressee pes Chices includhe thme

hooerf you wto adde moreptneaddresse ea

tiere's I Ihrct Touc a e n hnoto-

lver t Fam Zhoe ope Noad ren s
The~~~~~~~~~~~ naecose loinldsachiebx htlt

yoGuREpick drnadreess types. winoicsicldwh

Page 62 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4888



standard to:; cc: for carbon copy (and it's amazing that
this term is still around, since nobody actually makes
carbon copies anymore); bcc: for blind carbon copy, when
you want to send a message to someone without show-
ing that it's going to that addressee; and reply to; which
lets you specify someone else to receive replies to the
message. If you're sending a letter rather than a post-
card, the Addressing commands window also provides a
button that lets you see the envelope and hide it once
you've opened it.

Just because the plain postcard is located in the middle
of your desk doesn't mean you have to use it every time.
It's often appropriate for a quick message or a personal
note, but if you're sending a business letter, you'll prob-
ably want to use more formal stationery. A postcard has
the written message out in the open on the left side of the
card, and the addressing information on the right side,
just like a real postcard. If you tap the drawer on the left
side of the desk, you'll find stationery inside. The letters,
both plain and business, come with envelopes. The en-
velopes carry addressing information, a postage stamp,
and a postmark. Letters and postcards look different in
your in box, but when each is opened, its message ap-
pears. Take a look at Figure 2-11 to see what's in the
stationery drawer.

When you make a new business letter, Magic Cap
prints your name at the top of the page; it then adds the
date, the name and address of the addressee, and the
salutation, and also opens the keyboard. If you option-tap
the business or plain letter, you can edit the stationery
itself, not just a sheet of it. You can change the informa-
tion you want to appear automatically when you make a
new letter. For example, if you're sending a business
letter, you might want to use your company's name rather
than your own.

44

Page 63 of 272 Petitioner Microsoft Corporation - Ex. 1008, p. 4889



FIGURE 2-11. Different kinds of stationery in the desk drawer

When you option-touch business letter, you can see
where it auto-types the sender name. If you change that

to your company's name, every time you send a business
letter, it will appear to be from your company. You can
also edit the other information it automatically types, if
you want.

To send a personal letter, you can touch plain letter in

the stationery drawer. It's the image that resembles pa-
per and an envelope. Letters appear in the stationery
drawer as pieces of paper, not as postcards. There's also
an urgent postcard if you want to make sure the message
is read right away. The urgent postcard has urgent
stamped on it, which will cause special handling when
the addressee receives it. The urgent stamp is also avail-
able in the stamper, if you decide to make your message
urgent after you've written it on a plain postcard. The

urgent stamp on the postcard, letter, or envelope causes
the special handling, whether it's automatically stamped
or manually added.

45

Page 64 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4890



If you use your communicator primarily for work, you
might want to replace the plain postcard in the middle of
your desk with the business letter. You can do this easily,
and you can change it again whenever you need to. To
change it, open the desk drawer where the stationery is
kept and then slide a business letter out onto the desk.
You can then option-slide the business letter onto the
postcard in the middle of your desk, and the business
letter replaces it as the standard kind of new message. Of
course, you can always open the drawer and pick an-
other kind of stationery.

Pay Attention. If you watch closely when you tap.the

new message image in the center of the desk, you'll see
that the message springs out of the stationery drawer
instead of zooming out of the new message image itself
as you might expect. This is intentional. The idea is to
draw your attention to the stationery drawer so that
you'll go exploring there. By having the new message
hop out of the drawer, Magic Cap's designers hope to
lure you into learning about the different kinds of
stationery.

If you don't find the kind of stationery you need, you
can make your own custom stationery to keep in the
desk drawer, the ultimate way to personalize your letters.
When you create your own stationery, you can make origi-
nal drawings or scribblings, or you can use the goodies
that Magic Cap provides, such as stamps and anima-
tions. Start with a plain piece of paper by tapping plain
letter in the stationery drawer; then close the name
chooser, leaving the new message unaddressed and
blank. Design your stationery to look however you want.

Page 65 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4891



You might add a nice face from the stamper's faces

drawer. If you're really hip, you might choose to stamp

your stationery with the animated character that sits,

sleeps, hops, and spins. After you've finished, you can

slide the letter to the stationery drawer and it will snap

into place. You can option-tap the keyboard image to

open the keyboard with label maker, then type a name

for your stationery and drop the label on it to give it a

name. You'll have a new kind of paper that you can use

when you want to send a letter with a personal and funny

touch-and when was the last time you could send some-
one a letter that hops?

Out Box: Where Messages Go

Let's go over what happens when a message is sent,

besides just the communication from you to someone

else. Your communicator has an out box, which is a

launching pad for messages on their way out. If there are

messages waiting in your out box, you can open it to see

them, or slide them out to stop them from being sent. Tap

the out box to see the messages that are inside it. Figure

2-12 shows you what the inside of an out box might look
like.

Although you can open the out box to see the mes-
sages inside, and even open the messages themselves,

it's not a great place to peruse your mail. That's because

mail in the out box might be getting sent while you're

looking at it, and it's liable to get filed away while you're

in there. If you really want to look at mail that's in the out

box, you're probably better off sliding it out onto the desk,

which will prevent it from being sent while you're look-

ing at it.

47

Page 66 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4892



(D Out box Thursday, January 6 12:40 p.m. F:R' Desk
About

Brian Dewan My Eye!

John Flansburgh memo to myself

Jerry Goodman Second-hand smoke
Bjbrk Gudmundsd6ttir definitely no logic

Ana Ng meeting with Linnell

Benmont Tench piano lessons?

FIGURE2-12. Messages in out box

You might think of the out box as a pretty simple place
that just sends messages on their way, but Magic Cap
and its Telescript components let you control your out
box's behavior in a number of interesting ways. This con-
trol falls into two general areas: when messages in the
out box are actually sent, and how they're handled after
they're sent. These settings are controlled by rules in the
out box.

When to Send Messages

Usually, you'd like messages that go to the out box
to get the heck out of the communicator as soon as pos-
sible so they can get to their addressees. That's why the
rule for when to empty the out box is set at the factory to
send everything as soon as possible. If you're in the habit
of making a bunch of messages at a time, you might
want to change this rule so that you can write all your
messages and then send them all at once.

418

Page 67 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4893



If you're not plugged into a phone line and you don't
have wireless hardware and mail access, this rule doesn't
take effect until you're plugged in, and the out box holds
all the messages until you're connected. Once you're
plugged into a phone line, you can tap the out box to
open it, then tap mail to send any messages that have
been waiting around.

The out box also has a rule you can set that will empty
the out box as soon as you send an urgent message. This
one lets you keep the usual "send everything" rule turned
off, but then sends everything when you fire off some-
thing urgent.

What Happens After Messages Are Sent

Whenever you send a message, the fact that you
sent something is automatically logged with the time
and date of sending, as well as a description of the mes-
sage. The log is available by tapping log on the name
card of the message's addressee. After you send the note,
you could open the name card in the name file and then
tap log to see when you sent the message and its de-
scription.

The out box includes several rules that determine what
happens to mail after you send it. If you want to keep
more than just a log, you can use rules to help file the
messages themselves in folders in the file cabinet. There
are three kinds of rules you can set for filing outgoing
messages. You can file according to text in the message,
you can file based on attributes set by stamps on the
message (urgent, confidential, and so on), or you can set
a catchall rule that will file everything not handled by the
other rules. Figure 2-13 shows the three rules for out box
filing that are set at the factory.

49

Page 68 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4894



Thursday, lanuary 6 12:40 p.m.

FIGURE 2-13. Out box rules for filing sent mail

You might make a folder for health information and
then set a rule to file everything containing the word
"health" in that folder. You could have a folder just for
urgent mail, which will provide you with a file to explain
to your boss why you deserve a great performance re-
view and raise. If only you could find a person this effi-
cient to file the rest of the stuff in your life!

In Box: Where Messages Arrive

When you collect your mail from any services that
you belong to, your messages arrive at the in box. To see
your mail, you tap the in box to open it, then touch a
message to read it. When you're looking at a message in
the in box, you'll see the familiar arrows at the top of the
screen that let you move to the next or previous mes-
sage, assuming you have more than one message in your
in box. There's a picture of this in Figure 2-14.

50

Page 69 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4895



Dear Carl,

10:39
I have reviewed the contract, pm
and I find everything
acceptable except the payment orwI'd
schedule. I prefer to be paid
monthly, not annually. I'm sure
we can work this out.

to: Carl Scheer
Looking forward to hearing from: Jan van Breda Koiff
from you. aout: Proposed Contract L ile

Jan

FIGURE 2-14. Open message shows how many messages are
in the in box

When you open the in box, you can collect your mail
by tapping mail along the right side of the screen. When
you tap mail, Magic Cap connects to the mail service and
gets your mail.

When you're looking at messages in the in box index,
the messages' images change depending on whether
they've been read and whether they're postcards or let-
ters. Messages that have been read have an empty gray
rectangle, while messages you haven't opened yet have
a filled-in white image. You can sort the messages in
your in box by any of the headings (sender, date received,
and subject) just by touching a heading..

You can file all the messages at once by tapping file all.
You might want to file messages individually as you read
them, but file all is a great option for people who like to
set up specific rules for where mail gets filed, which you
can do in the file cabinet itself. When you file with file all,
all the messages go into the received mail drawer in the

51

Page 70 of 272

(D Card from Jan 405of 6

Petitioner Microsoft Corporation - Ex. 1008, p. 4896



file cabinet, winding up in folders that you have set up to
hold certain kinds of messages. See Chapter 8 for more
information about setting up folders in the file cabinet.

If you're registered for PersonaLink, you can open the
lamp and use the summary button to get a quick list of
the mail waiting for you at the post office. You can choose
which ones to have delivered to your in box, which to
leave alone for a while, and which to throw away un-
opened. If you want to get rid of all your undelivered mail,
the clear button does just that-it removes all the items
addressed to you without bothering to get them.

In the real world, you don't have to bother with getting
a summary of the mail that's waiting for you at the post
office, and if you want to throw anything away, you can
do so after it's delivered. Why do these commands exist?
Delivering electronic mail costs you money and takes
time, especially on a wireless network. This harsh reality
requires commands like summary and clear that give you
more control over which messages you receive.

Announcing Incoming Mail

Magic Cap's in box lets you exercise some power
about how you want to handle incoming mail. There are
two sets of rules that help you deal with your mail as it
arrives. You use the first set to determine how Magic
Cap informs you that you've got mail, and the second set
lets you sort your incoming mail into folders in the file
cabinet if you prefer to organize your mail before you
read it.

You can set a rule to play a special sound for certain
senders, with another rule playing a different sound when
a message from just anybody arrives. You can set as many
different "special sender sound" rules as you want. An-
other rule lets you instruct Magic Cap to display an

52

Page 71 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4897



announcement when you get a message with a certain
attribute, such as urgent.

Sorting Incoming Mail

If you like, you can get your in box to sort your mail
before you even open it. You can tell your in box to look
for mail with certain special attributes, like urgent or con-
fidential, and file those messages in a particular folder as
soon as they arrive. Setting this rule tells Magic Cap to
file your mail as soon as it's collected, before you even
read it. This automatic sorting and filing feature can be
very useful to people who get a lot of mail and need to

prioritize how they read it.
You can set a rule that looks for some particular text

and puts messages that contain that text into specific
folders. This works for text in the message as well as
certain senders. It's interesting to note that one of the
places you can automatically "file" mail is the trash, which
might be something you'll do if you get inundated with
junk mail.

If you're a PersonaLink member, you can ask Magic
Cap to collect your mail automatically at a set time each
day. This lets you plug your communicator into a charger/
phone line before you go to bed and tell your communica-
tor to go to the post office for you and pick up your mail
(of course, it really just calls up PersonaLink and gets the
messages stored there for you, but saying it that way
sounds more like real life and is more fun).

Going Downtown

In addition to telling your in box and out box how to
behave, you can also go directly to the source and set
rules for handling your mail before it gets to your commu-
nicator. You can go downtown to get to the AT&T

53

Page 72 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4898



PersonaLink building (tap the upper-right corner to go to
the hallway, and then tap it again to go downtown). Knock
once on the building to open its doors and go inside.
From the lobby of the building, you can perform several
tasks, including checking or setting some mail-handling
rules.

Telescript-based electronic mail services have a store-
and-forward capability, which means that they hold onto
your mail for you (that's the store part) and then send it
along to you when you want it (that's forward). The mail
service's building represents the place that does the stor-
ing and forwarding: It holds onto your mail until you're
ready for it, at which point it sends mail to your in box,
kind of like a post office would.

While you're in the PersonaLink building, you can set
some preferences about how you want it to work for you.
There are two sets of rules. One automatically forwards
mail that meets certain criteria, and another automati-
cally throws away certain mail. You can tap the mailbox
rules sign to customize those settings. You can set a rule
to forward copies of all messages from a designated sender
to a designated recipient.

You can also arrange to forward messages about a
certain topic to a specific recipient, such as forwarding a
copy of all messages about baseball to Darin Adler. You
can tell PersonaLink to discard certain messages before
you've even collected them. If you're really sure that you
don't ever want to read messages from a particular sender,
or about a certain topic, you can set rules to toss them
unopened. You'd better be really sure, though, because
once they're discarded, they're gone. You can't even dig
them out of the trash.

If you have a pager, you can set rules that tell
PersonaLink to page you. For example, you might want

54

Page 73 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4899



to be paged for a message stamped urgent or any mes-
sage from a particular sender.

Downtown of the Future

If Magic Cap succeeds, downtown will be a swing-
ing place where you can use your communicator to con-
nect to all kinds of information services and stores. You
might imagine being able to visit a travel agent, request
information on flights to Cleveland for a sales conference,
and also find out about taking your family to Walt Disney
World afterward. You might still prefer to talk to your
brother the travel agent during his business hours, but if
you suddenly need to make your reservations at 10:30 at
night, you could use your communicator to take care of
it. A clever Telescript-based news agency downtown
could know about your interests, collecting and forward-
ing just the news that you asked it to find.

You can imagine that if you wanted to get more infor-
mation about health care reform, foreign investment in
Germany, and Pierce Brosnan, you could ask the news
service to keep an eye out for those topics and send only
articles that cover those topics. Then, depending on the
rules you set for your in box, you could have these articles
filed automatically into folders set up just for them, let-
ting you read them at your convenience.

If you're one of the millions of people who loves shop-
ping with catalogs or televised shopping channels, you'll
definitely want to try going to an online store to browse
or buy things. Zarko's Department Store could have pic-
tures and descriptions of dozens of items for sale and
include an easy way to use the communicator to send an
order or dial a customer service operator. You might also
specify what items you're looking for, such as gold ear-
rings or flannel nightshirts, and then ask the store to let

55

Page 74 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4900



you know when those things go on sale or when new
merchandise comes in.

Summary

Magic Cap was created for communication.
Telescript, which is built into Magic Cap, offers smart
messaging features that Magic Cap uses to make com-
municating easy. In addition, Telescript will be the foun-
dation for information services, which will then be able to
offer even more powerful communication features for
Magic Cap users. One such service is AT&T PersonaLink,
which takes full advantage of Magic Cap's features.
PersonaLink also offers gateways to other conventional
electronic services, such as CompuServe and Internet. If
you subscribe to PersonaLink, you'll be able to contact
anyone else on these and other services through the
PersonaLink gateways. There will already be one or two
messages waiting in the in box when your communica-
tor first comes to life, and one will be a signup request for
PersonaLink.

Making a new message is the central feature of Magic
Cap. The postcard is the central item on the desk, and
when you make a new message, it actually hops out of
the desk drawer, showing you that there are other kinds
of stationery for you to use. The stationery forms look
very much like their counterparts in the real world. Post-
cards show the addressee on the right, and you can put
your message on the left side (Magic Cap lets you extend
the postcard's length as much as you need to). Letters
can have business headings, and plain letters are just
blank pieces of paper, but both have envelopes that handle
the addresses and delivery choices.

Consistent with Magic Cap's strong integration of fea-
tures, you can add an addressee to your name file while

56

Page 75 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4901



you're making a new message, and even add a delivery
route (fax number, electronic address) while you're there.
You can also send messages to multiple addressees and
groups from the name file. It's easy to choose different
delivery choices for each addressee, even for different
members of a group.

Lists of delivery choices are constructed from the con-
tact information listed on an addressee's card, as well as
information from your name card about which services
you subscribe to and whether those services have gate-
ways to other systems. All fax numbers will be listed as
delivery choices, because all Magic Cap communicators
can send a fax. If you know someone has an account on a
system that you subscribe to (or can reach via a gateway)
and you don't know the address, you may be able to use
a directory lookup feature of that particular service. You
can address the message to just a single person, to mul-
tiple addresses, or to a group, and you can also send
copies. Messages can be carbon copied and blind carbon
copied, and you can even have replies forwarded to some-
one else.

Although the image that sits in the middle of the desk
is a postcard, you can change it to anything else that's in
the stationery drawer or that you make yourself just by
sliding the desired paper out of the drawer and dropping
it onto the image of the postcard while you hold down
the option key. You can choose from a plain postcard,
urgent postcard, plain letter, or business letter. The busi-
ness letter automatically adds business-like headings to
the top of your letter, but you can edit this by option-
tapping the stationery to change the automatic typing.
You can also stamp your company logo, or write in your
company name and address as letterhead at the top of
the business letter or the envelope. You can even design

57

Page 76 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4902



entirely new kinds of stationery to keep in the drawer for
special occasions.

Your out box is customizable with rules that tell it when
to send messages, as well as what happens to your cop-
ies of the sent mail. The in box also has rules you can
customize. You can instruct it when to automatically col-
lect your mail from information services, how to sort mail
before or after it's read, and how to alert you to certain
kinds of messages; for example, an urgent message should
always tell you it's arrived-otherwise, urgent doesn't
really mean anything.

PersonaLink acts as the post office, and it, too, has
customizable rules for handling mail. You can ask it to
sort your mail by certain senders or stamped attributes
(urgent or confidential) or even to discard it before you've
seen it. All of these different ways to handle mail may be
a bit tedious when you're setting them up, but they let
you tell your communicator when to "go" to the post of-
fice to collect the mail, to look for urgent messages and
-send them immediately, to watch for certain kinds of
mail and file it directly into your junk mail folder, and to
have the rest sorted by sender and delivered to your in
box. The best part is that it all works just fine even if you
don't change the factory settings.

You can take advantage of electronic information ser-
vices that are available downtown. News retrieval ser-
vices that can be customized to send you articles only
about topics you have selected and retail and service
outlets that offer you electronic shopping or airline reser-
vations are just some of the possibilities available in a
well-developed Magic Cap downtown, where everything
revolves around the ease of communicating.

58

Page 77 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4903



Chapter 3
SGeneral Features

What You See Is What You Get

I never heard this funny word interface until com-
puters came into my life. Not only did personal comput-
ers change the way people work and spend their leisure
time, the computer culture added many new words and
new meanings of familiar words to the language. Well-
known old words like window, menu, and mouse now
need to be understood in context so that they're not con-
fused with a glass opening, something to read at a res-
taurant, or a small furry rodent. The definition of interface
in my slightly out-of-date dictionary reads, "a surface that
lies between two parts of matter or space and forms their
common boundary." Huh?

Nowadays, though, interface has spread beyond com-
puters and is commonly used to refer to the part of a
machine that connects with the person using it. Inter-
face designers can be found everywhere there is a need
to learn and understand how people use things, then
integrate that knowledge into a product or process. Magic
Cap was created using the premise of whole person think-
ing as discussed in the Preface, and every engineering
decision along the way was made considering the effect
it would have on the life of that whole person.

If you're reading this book from beginning to end, you
may have wondered about the order of the chapters. The

59

Page 78 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4904



chapter before this one expects you to understand and
use electronic mail even though it comes before this gen-
eral explanation of Magic Cap features and concepts.
There are two reasons the chapters are presented in this
order. First, you shouldn't be bombarded with definitions
and explanations before you've even tried to do some-
thing real with your communicator. It's much better to
get some practical experience first before trying to un-
derstand the theory.

Second, you don't have to know all the definitions and
explanations to do something with your communicator.
If you've finished the Getting Started lessons, or if you've
just played around with some of the items on the desk,
you've learned enough about Magic Cap to know how to
move around to different places and how to use the key-
board to send a message or make an appointment. The
ability to figure things out easily is a hallmark of a well-
designed interface. Now that you have actually done
something practical, reading about some of Magic Cap's
features in greater detail will be more meaningful to you.

Navigation, Scenes, and Windows

Magic Cap was designed to imitate how and where
people work and communicate in the physical world. As
mentioned earlier, Magic Cap creates its own world in-
side your communicator to represent familiar objects and
places, and it lets you move from place to place to work
with objects. This movement is called navigation.

Magic Cap begins by showing you items on a desk. By
touching any item, you can use it, send it, open it, or
work with it in some way. You can slide some items to
move them to other places. You'll also see that some
items hop when they're moving to different places, like a
new message on its way to the out box. You can leave the

60

Page 79 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4905



desk and go down the hallway, seeing other rooms in the
house. You gain access to those other rooms by opening
the door with a touch. You can even leave home to find
other buildings and storefronts outside on a street down-
town.

Most of the screen (everything between the top bar
and the bottom bar) is the current scene. The scene fo-
cuses your attention on the task you're doing right now
by filling the screen. Some scenes correspond to places
that you go in Magic Cap, such as the hallway or down-
town. Other scenes are close-up views of items that let
you work with them. For example, when you touch the
clock to set it, the clock zooms up close and fills the
screen; what you're seeing is the clock scene, as shown
in Figure 3-1.

(F Clock Thursday, January 6 12:42 p.m. th Desk

JanuaryI

2 2 7 i8

10 111 1 12 13 114 T 5 7

16 17 18 [19 0 21 2

23T 24 25 126 27 28 29 S n F w c s o S 11 _
3 0 31

1994

FIGURE 3-1. The clock scene is a close-up view of the clock

61

Page 80 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4906



Some Magic Cap features must be made available with-
out changing the scene. For example, when you're ad-
dressing a new message, you're looking at the message
scene, but you also need to see the list of available names
so you can choose your addressee. Magic Cap handles
this situation by displaying a window that floats above
the scene. Windows can perform additional actions or
display information necessary to that scene. Figure 3-2
shows the name chooser, an important window that lists
names.

( Card Thursday. lanuary 6 1:21 p.m.

Anderson, Jane
AT&T PersonaLink
Errey, Bob
Fadell, Tony
Faneyte, Rikkert
Feldman, Lisa
Goldman, Phil
Hendler, David
Horowitz, Steve
Megan & Josh

FIGURE 3-2. The name chooser window helps you address a
message

The name chooser shows you all the names in the
name file and even lets you add new ones when you're
writing a new message. Another kind of window is for
announcements, which tell you about events or situa-
tions that require attention. For example, when you get
an urgent message, you'll see a window that announces

62

Page 81 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4907



the message, as in Figure 3-3. When you see an announce-
ment window, you just read the announcement and then
close the window.

FIGURE 3-3. Announcing the arrival of an urgent message

You'll also see windows with confirmation announce-

ments. These windows are shown when you're about to

do something irreversible, like removing a name card

from the file. You'll receive a warning in a window with

fancy borders and buttons that give you the opportunity

to change your mind. For example, when you discard a

name card, you'll see a confirmation window like the one

shown in Figure 3-4. If you'd rather avoid these confirma-

tion messages, you can turn them off; see Chapter 9 for

details.

63

Page 82 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4908



() Name cards -4 13 of 25 * E:P Desk

AB C f
Do you want to throw away this whole card

S or page?

ho

3 Yzer discard kephag
Grosse
USAI
*** America Online logu

Re~ing(313) 555-6521ARed Wing

FIGURE 3-4. Windows ask you to confirm destructive actions

e7Windowitis. Windows are a fine solution for organizing
lots of information on a personal computer screen, but a
communicator's screen is so small that piling up lots of
windows would quickly create a confusing mess. Magic
Cap's solution is using scenes, rather than windows, as
the foundation for each related set of features. The
alternative to scenes would be stacking up a window
each time the user moved around, which would make a
big mess. Windows are used sparingly in Magic Cap.

Most windows close automatically when they're no
longer needed. Many windows have a button labeled ac-
cept that lets you signal that you're done with it. When
you tap accept, the window closes. Windows also have
an x with a box around it in the upper-right corner. Touch-
ing this box closes the window. Because Magic Cap tries

64

Page 83 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4909



to help you work faster, it often closes windows for you
automatically, as when you switch scenes.

Magic Cap has another user interface goodie called a
choice box. This one displays an option from a list and
lets you pick what you want by touching arrows to move
through the options one at a time. If you're impatient and
you want to see all your choices at once, you can tap the
label-like area in the middle that's surrounded by arrows,
then touch the one you want. You already saw choice
boxes in action when you selected different ways to send
your messages in Chapter 2.

Smart Integration and Consistency

One of the main elements of Magic Cap is the tight
integration of information across various scenes. If you
find that you need to add a name to your list of contacts,
you can do so without having to go to the name file scene.
You can make new name cards while using the phone or
the datebook, while making a new message, or from the
name file itself. You can make a phone call while in any
scene by using the contact button in the lamp, and then
continue the call while you move on to other scenes. If
you make an appointment for a meeting in the datebook,
you can send a message inviting the participants with-
out ever closing the datebook.

Magic Cap's designers worked hard to make features
consistent and predictable. Things that look the same
should behave the same, or users get confused and frus-
trated. Every time you learn about a feature, you will find
that not only is its use consistent throughout Magic Cap,
but you'll probably be able to guess about other elements
of the feature by applying information you've already
learned about other similar features.

65

Page 84 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4910



Sound and Visual Effects

As soon as you start using your communicator, you'll
notice that Magic Cap uses sound effects. These sounds
help reinforce your actions as you take them, confirming
that something has happened. Although most actions
have accompanying visual effects, the sounds are a subtle
reinforcement that you're getting what you expect. You
hear a high-pitched sound when you make a new mes-
sage and a pop when you touch the x to close a window.
You hear the Magic sound at the beginning of the Get-
ting Started lessons. When you discard something, there's
a deep clunk. When you want to slide an object into the
tote bag, you can be sure it's there when you hear the
slurp sound.

As you use your communicator, you'll come to recog-
nize the sounds that accompany familiar actions. Of
course, you'll use your communicator in some settings
that aren't appropriate for sounds, so you can easily turn
down the volume. Because Magic Cap lets you custom-
ize your environment, you can also change the sound
effects that are used for confirming actions.

In addition to sound effects, Magic Cap uses visual
effects to confirm your actions. When you touch some-
thing, you can tell you hit the right spot because of the
cross hair you see. Some objects highlight by displaying.
a kind of starburst effect that looks like cartoon motion
lines. A simpler highlight effect, the one used by most
buttons, is to invert the image-the background becomes
lighter while the image becomes darker. While these high-
lighting effects sound strange when described, they're
so intuitive that you'll probably understand their mean-
ing right away without having to read about them first.

66

Page 85 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4911



Magic Cap is filled with lots of other visual effects and
animations that confirm your actions. In addition to mail
that hops to the out box when it's sent, as already men-
tioned, discarded items often hop to the trash, filed mail
hops into the file cabinet, and books hop onto shelves
when you're done with them.

Top of the Screen

The very top and bottom of the screen contain things
that you can always count on, no matter what scene
you're in or what you're doing. The top provides various
pieces of information about the scene and the communi-
cator itself. The bottom has buttons that perform vital
actions. This section presents a closer look at all the things
that are available at the top and bottom of the screen.

The top-left corner of the screen always has the name
of the current scene. There's usually a circled question
mark next to the scene name that you can touch to get a
description of that scene and instructions for the actions
you can take there. The top-right corner of the screen
always has a pointing hand and the name of a related
scene. You can touch this hand or scene name to go
there. Because tapping the hand or scene name often
takes you back to the last scene you were in, this move is
called stepping back.

As you become an expert navigator, you'll take advan-
tage of a helpful shortcut built into the step-back hand. If
you hold down the option key and touch the hand, you'll
see a list of everywhere you've been (see Figure 3-5). You
can get back to any scene instantly by touching its name
in that list.

67

Page 86 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4912



FIGURE 3-5. You can step back to any scene you've visited

In between the important areas at the left and right, the
top center of the screen shows today's day and date, the
current time, and the power level of your communicator's
main battery. You can choose to display or hide any of
these three items; details are in Chapter 9. If your commu-
nicator has some action that is ongoing, such as a mes-
sage being sent or a phone call in progress, the top of the
screen will also contain small images to remind you about
those actions.

Bottom of the Screen

The bottom of the screen contains seven buttons
that are also always visible, no matter where you are or
what you're doing. Take a look at Figure 3-1, or virtually
any other screen, to see the buttons at the bottom of the
screen. The button in the bottom left corner has the im-
age of a desk, and whether you're wandering around

68

Page 87 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4913



ainlessly exploring Magic Cap or you remember that you

need to check your datebook while you're browsing in
the library, you can always touch this desk button to

return quickly to the familiarity of your desk. Because the
desk button is always there and it always takes you to the

desk, you know that whatever you're doing in Magic
Cap, you're always just one touch away from a comfort-

able scene.
Next along the bottom of the screen is the stamper, a

button with an image of a rubber stamp. The stamper

holds drawers filled with stamps, animated cartoons,

sounds, and even songs that you can put on messages
and other pages (see Figure 3-6). Some stamps in the
stamper also perform actions or assign attributes, like

the phone number stamps in the name file, orthe urgent
stamp on a message. Each scene can add fta oWn cus-

tom drawers, like the signature stamps that are seen only
when creating a new message, or the label drawers in

the name cards scene.

URGE P TRR !

PWU LOCAL

ASAP?! 0mi

FIGURE 3-6. The strapov holds drawers of stamps

69

Page 88 of 272 Petitioner Microsoft Corporation - Ex. 1008, p. 4914



The lamp has buttons that help you communicate and
do other important actions. Because the lamp is always
there, you can perform these actions no matter what scene
you're in (see Figure 3-7). The lamp includes mail and fax
buttons to send the page you're seeing. You will also find
the infrared beam button in the lamp, which you may
remember from Chapter 2.

--I ir~ Hallway

FIGURE 3-7. The lamp contains buttons that are always
available

Another button in the lamp is contact, kind of a short-
cut path to various means of communicating with some-
one. If you're in the middle of writing a letter to a client
and you need to call your assistant to verify some infor-
mation before you send it, you can touch contact, which
then lets you use the phone or electronic mail, or you can
quickly look up a name card without changing the scene.
Like all other Magic Cap shortcuts, you don't need to
know about or ever even use it; it's just another way to
get there.

70

Page 89 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4915



There are some other buttons in the lamp that perform
general actions that aren't necessarily communication-
related. The find button helps you track down informa-
tion anywhere in Magic Cap. For example, after you've
entered some appointments in the datebook (much more
about that in the next chapter), you may want to go back

and find one meeting in particular. If you don't remember
the meeting's date, you can use find to search for it.

Touching find opens a window and the keyboard for
you to type in what you're looking for. You can instruct it
where to search and then unleash an animated basset
hound (no, really!) to find it for you. The dog will search
through the items on your desk until he sniffs it out in

your datebook, opening to the correct date. When he's
done, he hops back into the lamp until you call him again.
If you just can't deal with an animated dog looking for
your stuff, there's an option in the Find window that
performs the search without showing the dog.

7 Sniffy the Wonder Dog. The dog that searches for your
stuff is probably one of the most controversial aspects of
Magic Cap. The designers of Magic Cap have a sense of
humor but would never allow silliness to get in the way
of the best possible experience for the user. People
expect a dog to be able to search and find things, but not
to be able to show human judgment; this expectation
matches what happens when you search in Magic Cap,
so the designers decided to use a dog. In practice, users
either love or hate the dog, with very little gray area.

There is a file button in the lamp to move things into
the file cabinet and onto memory cards; you can find out
much more about filing in Chapter 8. The lamp also has a
print button that lets you print information when your

71

Page 90 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4916



communicator is connected to a printer directly or through
a personal computer.

The final button in the lamp is called revert, and it's
there to make a last-ditch effort to retrieve something
you thought was irretrievable. The revert button removes
any changes you made to the scene before your current
visit to it, saving you if you've done something you want
to reverse.

In addition to these buttons that are always available,
each scene can add its own buttons in the lamp that
work only inside that scene. For example, when you're
looking at a message, the lamp includes a button that
measures how much the card "weighs" in bytes, giving
you an idea about how long it will take to send. The lamp
also includes rules that set policies for each scene. For
example, the datebook has rules that tell how to remind

you when an appointment is coming up and when the
communicator should throw away old appointments.

Next to the lamp along the bottom of the screen is the
image of a tote bag (Magic Cap's designers considered
using a suitcase, a satchel, and even a pocket before
settling on a tote bag). Think of the tote bag as the place
where you can put something if you need to carry it from
one scene to another. When you put something in the
bag, you'll see the bag bulging a bit, a graphic reminder
that there's something in there. When you take every-
thing out of the bag, it shrinks back to normal size until
the next time you need to carry something.

The next item along the bottom of the screen is the
tool holder, which represents all the different tools you
can use for writing and drawing. This is where you can
choose from among different pens that you use for writ-
ing on the screen, when you make a new message. There

are even some magical pens that draw all sorts of

72

Page 91 of 272 Petitioner Microsoft Corporation - Ex. 1008, p. 4917



perfectly proportioned shapes, and others that draw lines
that are always straight. Chapter 7 goes into greater de-
tail about how to use the tools.

The next item is the button that opens Magic Cap's
on-screen keyboard. You already know quite a bit about
the keyboard if you followed the Getting Started lessons
or if you've done any typing in any other scene. You've
probably noticed some of the features that help you speed
up your typing, such as smart capitalization and auto-
matic completion of words. The keyboard lesson in Get-
ting Started shows how to switch the keyboard from letters
to numbers.

If you hold down the option key and touch this key-
board button, you'll get the extended keyboard, which
lets you type letters, numbers, and special symbols like
accented letters (Rene6) and international symbols
(ihola!). The extended keyboard also has a label maker
that hangs off the top-right side. As you touch each key,
the label prints out one letter at a time. When you're
done, you can tear off the label and it becomes a text
coupon that you can use to change an item's name. This
is the process we used in Chapter 2 to name the custom
stationery.

There are a few other keyboard goodies you haven't
used yet, like the expand key. There will be more details
about the expand key in Chapter 9, but briefly, you can
use it to ask Magic Cap to guess the right word when
you've only typed the first few letters. You can also set up
abbreviations so you can touch a minimum number of
keys while you're typing something, and then expand it
to the full entry with the touch of one key.

The final button on the bottom of the screen shows the
image of a garbage truck. As you might guess, this is
where you throw things away when you. don't want them

73

Page 92 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4918



any more. You can trash an item by sliding it into the
truck; it makes a slurping sound when you drop it in
there. As a precaution, the last few items you throw away
are stored in the trash (its image changes to show that it
has something inside) until you empty the trash by open-
ing the truck and touching its empty button. If you're
really desperate to recover something you've tossed, re-
fer back to the explanation of revert for more details on
whether it's really gone.

You can hold down the option key when you touch
some of the buttons on the bottom of the screen to make
them do other things. When you option-touch the key-
board, you get the extended keyboard and label maker.
Option-touching the lamp lets you set the volume or go
directly to the control panel. If you option-touch the
stamper or tool holder, the window will open to the same
setting it had when you last closed it. For example, if you
have the faces drawer of stamps open and you choose a
face stamp, and then decide you want another face, you
can option-touch the stamper to go directly to that drawer.

cz2- In the Corner Pocket. The corners of the screen are

precious real estate. Because you can figure out where
they are without really looking, it's a good design idea to
put very commonly used things there, and the desk
button and the trash qualify. After you use Magic Cap for
a while, you won't even think about the desk button-
you'll just reach for the lower-left corner when you want
to feel well grounded. Similarly, you'll get used to sliding
things to the extreme lower right when you want to
throw them away-and you won't even have to look to
make sure they've reached the trash.

74

Page 93 of 272 Petitioner Microsoft Corporation - Ex. 1008, p. 4919



Construction

The engineers at General Magic had such a good
time constructing the software that it seems they wanted
you to be able to share in the fun. They realized that they
couldn't possibly include everything that every user of a
Magic Cap communicator might want to do, so they built
a way for people to construct things on their own. The
hallway includes a control panel that lets you put your
communicator into construction mode. When you turn
on construction mode, you'll get a magic hat that has an
endless supply of goodies for building your own scenes:
buttons, switches, choice boxes, sounds, borders, and
lots more. If you just can't wait to find out about con-
struction, check Chapter 10 for more details.

Summary

Magic Cap is designed to let you communicate eas-
ily with a minimum of instruction and background knowl-
edge. The main scene is a desk, with several familiar
items that help you communicate. You can go down a
hallway to visit other rooms, like the library or the store-
room. You can go beyond the hallway and wind up down-
town, where you'll find AT&T's building and other
storefronts. As services become available, downtown will
have more stores selling merchandise and services that
will provide you with customized information.

The space between the top and the bottom of the
screen is filled by the current scene. You'll see windows
that provide more information, announcements, or con-
firmation buttons that let you double-check before you
do something destructive.

75

Page 94 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4920



The information you enter into your communicator is
available in all applicable scenes. For example, you can
enter a new name while you're using the phone, or send
a message while you're working in the datebook. In addi-
tion, features behave predictably and consistently
throughout Magic Cap. Magic Cap uses sound and vi-
sual effects as cues to help confirm your action when you
touch the screen.

The top of the screen displays information needed for
navigation, including the name of the scene, the name of
a related scene that you can go to, and possibly the time
and date and battery level.

The bottom of the screen has buttons that are avail-
able in every scene. The stamper contains drawers of
stamps that can be used for decoration or to assign at-
tributes necessary for sending or filing. The lamp holds
commands that can be used anywhere in Magic Cap as
well as rules that set policies in every scene. The tote bag
is used to carry items from place to place, and it alter-
nately bulges and shrinks, depending on what's inside.
The tool holder contains various implements for writing
and drawing.

The keyboard is used for typing, your main way of
getting information into Magic Cap. The keyboard can
type letters, numbers, and special symbols. The keyboard
can also type text onto a label maker, producing coupons
that let you give names to objects on the screen. You can
throw things away by sliding them into the garbage truck,
making the image change from an empty truck to a full
one. You can retrieve recently tossed items from the trash
until you empty it.

Magic Cap includes construction mode, a way for ad-
vanced users to put together their own buttons, switches,
and other fancy features.

76

Page 95 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4921



Chapter 4

_Datebook

The Last Datebook You'll Need

Before I started using Magic Cap, I already knew
how much I depended on my datebook to keep my life
running smoothly. I noted business meetings, doctor ap-
pointments, work deadlines, carpool schedules, and the
delivery schedule for bottled water. You probably have
lots of other reasons for trusting your calendar. Because
datebooks are such personal things, appointments are
often written cryptically in personalized secret code, with
start or stop times that don't necessarily match the lines
they're written on, or directions to places that seem to be
on other planets. Magic Cap makes it easy (yes, even fun)
to enter appointments in a datebook so they'll be de-
scriptive and complete, yet still personal.

The folks at General Magic built lots of shortcuts into
Magic Cap's datebook to make entering appointments a
snap. Like everything else in Magic Cap, the datebook
and its appointments are easily customizable, and you
can arrange and add items that fit your needs. When you
enter a new appointment, lists of choices are offered for
every part of an entry. There are several different kinds of
appointment types with various descriptions and options.
You can add notes, stamps, and alarms to any kind of
appointment. Each kind of appointment also has its own
identifying image, which you can change if you want to.

77

Page 96 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4922



When you shop for an old-fashioned datebook in a sta-
tionery store, you can choose the style that best fits how
you work-seeing a day, week, or month at a time. You
might like to see a week at a time if you have enough
entries to need more space than a monthly book con-
tains. If you're really busy, you might have to put up with
the bulk of a daily appointment book. Magic Cap lets you
switch between all of those options with a touch.

In Magic Cap, you can enter new appointments while
looking at a day, week, month, or even year. Switching
between different views is easy, and appointments en-
tered in one view show up in the others, of course. Figure
4-1 shows the datebook's day view. The first thing many
people do when they get a new datebook is go through
and enter important dates-birthdays, work events, an-
niversaries, vacations. Let's do that now with Magic Cap.

(D Datebook <22 Thursday, Jan. 6, 1994 1 IE0 Desk
7M 8.9 10 11 121 2 3 4,5 6 78

.. ...... bank

1130 am. ke yn o-t e- with -B-ill & A n dy atED1
-12:30 pm. Moscone toda

2 p.m. meeting with Lynn Franklin
5fl in suite 2948 _____ we(ek

7:30 p~m. m dinner at Yet Wah

FIGURE 4-1. The datebook shows information about
today's appointments

78

Page 97 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4923



When you touch the datebook on the desk, Magic Cap
automatically opens the datebook to today's page. When
you touch year, Magic Cap displays the whole year, with
today's date highlighted. The top of the screen shows
the year, in case you've forgotten, and you can even wan-
der off and look at other years if you want. When you
touch a month, the month's view zooms open. As you
might expect, the name of the month is also displayed at
the top of the screen with arrows that move to the previ-

ous or following month. Figure 4-2 shows an example of a
month view.

(D Datebook January 1994 0 'i Desk
S M T W T F Si new, 7

2 3 4 5_ nt ~ 7  8 r
Tttoday

9 0 11 12 _m. 13 14 15 A

16 17 18 19 20 _ _ 21 22 ee
)

23 24 __ 25 26 27 28 29

30 31 .. I

FIGURE 4-2. Month view in the datebook

Like most paper calendars, Magic Cap comes with
some holidays already entered, both by name and by

picture. You can change a holiday's picture or get rid of
the occasion completely if you're a real curmudgeon. The
datebook also includes appointments for turning daylight
savings time on and off in the communicator's built-in

clock. When the days arrive for starting or ending

79

Page 98 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4924



daylight savings, the clock is automatically adjusted, un-
touched by human hands.

Holidays and daylight savings time aren't the only spe-
cial days the datebook knows. For example, the datebook
offers a friendly reminder of what you need to do on April
15. Finally, you can set the datebook to have the month
view show the phases of the moon if you're lunarly in-
clined.

Entering Appointments

When you tap new, Magic Cap offers several choices
for appointment types. You can tap birthday (which is
represented by a little piece of cake with a candle) to see
the month and date, then pick the birthday person from
the name file. If you don't have that person in the file yet,
you can make a new name card right on the spot without
having to go to the name file. When you tap accept, the
new person is filled in as the birthday boy or girl, and
there's a name card for the new person, who also be-
comes the current contact. If you want, you can attach
notes to the birthday entry about how old the person is or
what kind of presents you should buy. When you tap
save, the birthday goes into the calendar. Because it's a
birthday, the datebook automatically repeats that entry
for each following year.

There's probably no better way to break in your new
datebook than by adding your mother's birthday. Let's
assume her birthday is December 24. After you've added
Mom, you can enter your spouse's birthday; let's say it
happens to be two days later, on December 26. Here's a
cool shortcut for doing that: Hold down the option key
and slide Mom's birthday entry to the tote bag. By hold-
ing down the option key while sliding, Magic Cap makes
a copy of the birthday while leaving the original birthday
in its place. Figure 4-3 demonstrates this.

80

Page 99 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4925



(1) Datebook Saturday, Dec. 24, 1994 c B:P' Desk

AMft
i new

Mom's birthday

To~te bag

Mom's

FIGURE 4-3. Option-slide the birthday to the tote bag to
copy it

Next, tap twice on the right arrow at the top of the
screen to move to December 26, watching the Christmas
tree go by as December 25 passes. The bulging tote bag
is a reminder that a copy of the birthday is still inside.
When you slide the birthday out of the tote bag, it pops
into place. It still has Mom's name, though, so you can
tap it to open, and then tap who and give the birthday
your spouse's name. Not that you'd ever forget Mom's or
your honey's birthday, of course.

The next appointment to enter is a favorite anniver-
sary, such as your wedding. Start by tapping year, then
tap to get to the right month and date. Tap new to make
a new appointment, then tap special day. The special
day appointment includes a what button; when you tap
it, you'll see a list that includes business trip, holiday,
and the one you're looking for: anniversary. (It also in-
cludes hibernation, an appointment that might be more

81

Page 100 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4926



appropriate for a bear's datebook.) After picking anniver-
sary, just tap save, and the special day is set. You can see
Magic Cap's list of special days in Figure 4-4.

(D Special day Lk Datebook

w QO$Choose a description
anniversary save
business trip . . .conference D.F

hibernation GHI removeholiday
m eeting A_L
retreat MNOtvacation pQR

STUJ

-- alarm +

FIGURE 4-4. List of special days

; Making a List. The datebook has several situations
where you get to pick an item from a list, as when you
set a special day appointment. In most of these lists, you
can pick one of the built-in options, or you can add your
own, usually by tapping the newbutton. When you add a
new choice, Magic Cap is smart enough to remember
the new option and will list it every time that list appears
in the future.

If you want to add a new option quickly and bypass
the list of items, you can tap the keyboard image atthe
bottom of the screen. The keyboard opens and you can
type the new option immediately. Of course, the new
option you create will be added to the list for future

82

Page 101 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4927



appointments. You can also remove options that you
think you'll never use. If hibernation isn't in your plans,
just tap it and remove; it won't bother you again.

Recurring Appointments

After adding all the birthdays and anniversaries to

the datebook, you're ready to put in some of the other
appointments that fill your time. You can start by adding
the items that repeat, like staff meetings (twice a week)

and school meetings (once a month). To make appoint-
ments that repeat, you start out by entering the first of

the repeating events.
You'll enter appointments for staff meetings at the same

time every Monday and Thursday. To put them in the

datebook, you can just make one appointment for Mon-

day and one for Thursday, setting each appointment to

repeat every week. Go to the next Monday, tap new, and

then tap general purpose, which is an appointment type

that lets you pick the date, start and end times, what,
where, and who. When you tap what and where, lists of

choices appear; as usual, you can add your own. If you
don't know (or don't care) about any of the information,

such as location or end time, you can just leave it blank.

(see Figure 4-5).
After you've filled in what you know, you're ready to

set the appointment to repeat every week. To turn on the

repeat feature, tap repeat. You can flip through the re-

peat choices until you see the right one: repeat weekly.
When you save the appointment, it's entered for every

Monday for the next year.

83

Page 102 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4928



AMf isave

_Nt on. I/10 ti e O1:30 am, - 12:00 p.m. I
remove

what staff meeting

r Escondido room

FIGURE 4-5. General appointment entry screen

Now you can set up the same appointment for every
Thursday. You could just move to Thursday and enter the
same appointment again, but let's try a shortcut. By hold-
ing down the option key, you can slide a copy of the
appointment you just made into the tote bag. Then, move
three days ahead, to Thursday. Slide the appointment
copy out of the tote bag and just drop it on the day.
That's it! Not only does it set up the new appointment,
but Magic Cap is also smart enough to figure out that
you want it to repeat every Thursday, since the original
appointment was set to repeat every week.

School Daze

Now let's enter another repeating appointment, a
school meeting. Once a month, on the third Wednesday,
we'll enter a class meeting for the third grade class at
Christa McAuliffe School. The meeting is always at 7
P.M. at school, and like many meetings, you never know
when it will end. When you enter the appointment in the

84

Page 103 of 272

Datebook

Petitioner Microsoft Corporation - Ex. 1008, p. 4929



datebook, fill in 7:00 as the start time and just don't bother
with an end time. The datebook's designers understood
that lots of appointments and meetings don't have a
scheduled ending time, so you don't have to pretend that
there is one.

Because this meeting happens on the third Wednes-
day of every month, you'd hope to use the datebook's
repeating appointments feature to add the meeting to
each month's calendar automatically. By using the re-
peat monthly by day option, the datebook understands
that this meeting is always on the third Wednesday and
schedules it there for future months. It suggests repeat-
ing the meeting for a year in the future, which you can
adjust to May instead. In addition to monthly appoint-
ments that repeat by day, the datebook also lets you set
up appointments that fall on the same date every month.

In this way, you can enter the meeting for a single
Wednesday night and easily have it repeated for the whole
school year. The subsequent meetings are each individual
appointments, so you can change them or remove them
as necessary without affecting any others. This makes
the datebook flexible enough to handle the inevitable
postponed or canceled meeting without messing up all
the others.

Engraved Invitations

Because I work freelance, timely scheduling of meet-
ings has a direct impact on my income. If you're like
most modern communication cowpokes, telephone tag
drives you crazy when you're trying to get together with
someone. To help with this problem, Magic Cap includes
a slick system for setting up meetings that is centered
around the datebook. We'll use this system to get a meet-
ing going.

85

Page 104 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4930



To set up the meeting, tap new, then meeting to get
the appointment entry scene. As with other kinds of ap-
pointments, you can set the date and time. The where
button produces a list of possible locations for the meet-
ing. As always, you can choose one of those listed, or add
your own. You could choose my home or my office, but
it's always more fun to have meetings at restaurants-
after all, that means you get to eat.

When you're ready to choose the participants in the
meeting, Magic Cap shows off how it integrates all the
information in the communicator. When you tap who,
you'll see a window listing the people you can choose for
the meeting (see Figure 4-6). This isn't just any list of
people, though-it's the same names that appear in the
name file. Magic Cap uses the name file as the center for
any kind of communication, including meetings, mes-
sages, phone calls, and faxes.

( General appointment [17 Datebook

date AT&T PersonaLink DEF IIB.A.A.S. 'I nw
~Draganic, Zarko HI emv

Fox, Pearl KL
Friedlander, Jim MNO
Hoffman, Joanna
Knaster, Shirley POR

who Lynch, Kevin STU
Patterson, Libby -
Rodrigue, Ren~e acp
Sullivan, John , + z

FIGURE 4-6. The name chooser is used to select names
for an appointment

86

Page 105 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4931



What if you need to make an appointment with some-
one who's not listed in the name file? The window that
lists names includes a new button. You can tap that but-
ton to enter a new name card quickly, and you can then
add that new name to the meeting. You even have ac-
cess to the name file from the datebook, and you can add
any name to the file for future lunch possibilities.

We'll set this up as a meeting at Seafood Sam's with
three people, Martha, Steve, and Keith, and because this
is a brand-new communicator, none of them is listed in
the name file yet. By adding them now, you get to list
them in the appointment, and you'll also have them in
the name file for any future communication. To enter the
new names, tap new and add the information for each
person's name card in turn.

> Choosing Names. The window that lets you pick from
the name file is called the name chooser. It has a few
other features that are especially useful as the list of
names grows larger. There are tabs running down the
right side of the list that let you jump quickly to any set of
three letters-for example, if you tap the STUtab, the
name chooser will make sure that the names starting
with S (and T and U, if there's room) are on the screen.

The name chooser also includes a choice box that lets
you see all the names, or only certain sets of names if
you want. You can look at only the people, or just the
companies, or you can choose to see only the members
of a single group. One other note aboutthe name
chooser: The groups are shown in boldface so that you
can spot them easily.

After you've entered the three names into the name
file (without ever leaving the datebook and having to

87

Page 106 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4932



open the name file), you're ready to add the three new
folks to the meeting. Magic Cap remembers that Keith
was the last name card entered, so Keith becomes the
current contact-Magic Cap will have Keith's name se-
lected when the name chooser opens. If that's who you
want, you can just tap accept, or you can choose another
name, which will then become the current contact.

The current contact feature is handy here, because
you do want Keith in the meeting. When you tap accept,
the window closes and Keith is added to the meeting.
This is OK, but now you have to tap who again to add
Steve and Martha to the meeting. To make things a bit
faster, Magic Cap defines this nice shortcut: If you hold
down the option key while tapping accept, the chosen
person is added to the meeting, but the list of names
stays open. This little trick lets you pick all the meeting
participants quickly. That's a perfect example of an op-
tion-key shortcut: If you know about it, you can work a
little more quickly; if you don't, you can accomplish the
same task with a more obvious (but longer) list of steps.

As the last step in setting up the meeting, you can use
the priority and status features to set the meeting as
tentative, but high priority. The tentative setting adds a
question mark on the meeting's display in the day view
and the high priority is designated by an exclamation
point.

When you're done adding the three people to the
meeting and putting in all the details, all three names
appear next to who on the appointment entry screen, as
shown in Figure 4-7. Of course, if you're having a typically
busy day, you may find that you won't be next to a
telephone for more than 10 minutes at a time, so trying to
reach three people, confirm the details, and possibly
change them would be tough. The people you need to talk
to might be somewhere on the road during a long com-

88

Page 107 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4933



mute, or maybe staying at a hotel and having meetings of
their own in several cities. It would be great if this new
communicator could help you get in touch with everyone.

() General appointment rp, Datebook
718 >9 10%) 1 121 2'3 4 56 7 8 9

AM save

dae)on. 1/10 7:30 p.m.
~remfOVe

-/ = meeting

6 ~~ere Seafood Sam's notes

Martha Barrett
Keith Moreland repeat
Steve Sax

alarmn +

FIGURE 4-7. Meeting being entered with multiple
participants

Here's how you can do it: Once you've chosen the
meeting participants, a new button labeled invite ap-
pears on the appointment entry, with a suggestive little
picture of an envelope. When you tap invite, Magic Cap
automatically presents a new postcard that spells out the
details of the meeting, addresses it to the people you
want at the meeting, and asks for their response. The
message uses the details of date, time, and place that
you completed earlier, and even attaches any notes that
you've entered along with the meeting information.

Not only does Magic Cap send a postcard separately
to each invitee, but it also individually addresses each
one, taking a good guess at the best way to contact each

89

Page 108 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4934



person (that is, via PersonaLink, fax, America Online, or
whatever). Best of all, Magic Cap makes handy yes and
no buttons for the meeting invitees to use when respond-
ing. Figure 4-8 shows the postcard that the datebook
creates.

(D Card to Martha 7/15 2:14p.m. IIP' General appointment

Dear Martha,

I would like to see you on
Thursday, August 11, 1994 at to[
7:30 p.m. Can you make it? address
Press 'yes' or 'no' to let meknow. to: Martha Barrett •__

Keith Moreland
Stee axdiscardSincerely, Steve Sax

Bill Swift from: Bill Swift X
about: meeting Thu. 8/11

ytap for details~extend

FIGURE 4-8. Automatically generated invitation for
meeting

The postcard that Magic Cap creates is all written
(very literately, I might add), addressed, and ready to go.
If there's something about the message that you don't
like, you can easily change it: You can write something
with one of the writing tools, change the text by typing,
or add a stamp or two. You can also change something
more substantive, like the way that the card will be sent
to any or all of the invitees.

You can mess around with the message for as long as
you like. When you're finally happy with the message,
you can send it. When you send, the message card hops
into the out box, and a progress window shows what's
going on as the message is sent. When the meeting

90

Page 109 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4935



invitees get their messages, there's a copy of the ap-
pointment attached for them to examine. Each invitee
can simply tap the yes or no button on the message card
to respond.

If an invitee answers yes, several intelligent things
happen. First, Magic Cap automatically creates and sends
a return message telling you that that person can come,
adding a thumbs-up stamp to the return card (see Figure
4-9). Next, the attached appointment that you created
pops into place in the invitee's Magic Cap datebook,
substituting your name for the invitee's (that is, it doesn't
give Martha an appointment that says "meeting with
Martha").

FR Card from Martha I of 6 with tbp In box

fwill attend the meeting su mrieproposed on Thursday, Auust i

p with areathe iaett11,~~ 19941 at7:0ndm

Mred, Bandre t naiemeigsqeto aie

placed with theregulr-o-fac Maeth atre set

a confirmed meeting.

91

Page 110 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4936



If an invitee taps no, Magic Cap throws away the

invitee's copy of the appointment and then creates and

sends a response telling you that that invitee can't come,

stamping thumbs down on the response message. Of

course, when you get the negative RSVP, the meeting

stays tentative instead of being confirmed. If only one

person responds yes, the meeting is confirmed, as Magic

Cap errs on the side of caution, figuring that you'll want

to go ahead with the meeting even if only one other per-

son can make it.
This magical scenario of automatic response works

great when both the sender and the recipient have Magic

Cap, but what if one or more of the meeting invitees is

using some other brand of communicator? If a message

is received by a classic kind of mail, such as AppleLink or

CompuServe, that doesn't know about buttons or

datebooks, the automatic response and scheduling stuff

obviously can't work-the invitee will have to send a

response back manually. Magic Cap's electronic mail is

smart enough to work wonderfully when communicating

with advanced Telescript-based services like

PersonaLink, and it works as well as possible when con-

necting to conventional services.
By using Magic Cap, you and the meeting's invitees

don't need to rely on voice mail, answering machines, or

hotel operators-the messages can be received and an-

swered when it's convenient for the recipient. You don't

even have to wait until the messages are sent before you

can use other features, because Magic Cap lets you keep

on working on other things while it's sending messages.
Also, the meeting invitees don't have to have Magic

Cap to get the messages. As long as an invitee has one of

the many electronic mail services that you can reach, or

even just a fax machine, Magic Cap can get the word

out. Now you can look forward to that dinner with your

associates!

92

Page 111 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4937



Integration

After all this inviting and responding, the appoint-
ment shows up in the datebook's day view as a meeting
with Martha and others (it actually uses those human-
sounding words) at Seafood Sam's at 7:30 P.M. This little
exercise demonstrates one of the best features of Magic
Cap-the amazingly tight integration of different kinds
of information and communication. You opened the
datebook and made an appointment, obviously some-
thing a datebook should be able to do. But while you
were there, you added three people to the name file with-
out having to actually open the name file. Then, you sent
electronic mail messages to those people without having
to go to the mail scene. This well-designed integration
lets you get work done smoothly and quickly without
having to fuss around with details of getting from one
place to another.

To Do Lists

You probably don't have the luxury of being able to
concentrate on just one thing at a time in your life-if
you did, you wouldn't be interested in Magic Cap. Most
people have a work life, a home life, a social life, and
maybe a few other lives, and they need to remember
different things for each one. Work life includes dead-
lines, schedules, and meetings; social life means sports,
concerts, and parties; home life involves family, friends,
personal finances, errands, and relaxation.

An old-fashioned appointment book is barely adequate
for writing down where you have to be and when, and it
usually has no place at all for keeping track of what you
have to do. Many people like to make lists of what they're
supposed to do and what they need to buy, and of course,
they usually leave those lists at home when they need

93

Page 112 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4938



them most. Magic Cap provides help in remembering
what needs to be done without having to buy cases of
sticky notes.

Magic Cap's datebook lets you build and maintain lists
of tasks that you have to do. When you're in the datebook,
tap new, then to do, to enter information about a new
task to be done. Let's make a task that's a reminder to go
to the bank during today's lunch hour to deposit the
checks that Junior got for his birthday from his grandpar-
ents. When you tap what, there's a list of descriptions for
the task, and it's the same list that the datebook always
shows when you have to fill in a description for any ap-
pointment. There's nothing in the descriptions about
going to the bank, so you can type in a new description,
bank. As bank is entered for the task, this new descrip-
tion is added to the list that will be offered whenever you
enter a new appointment.

After you fill in the description, you get to choose the
starting date and the deadline for the task. The new task
suggests today as the start date, but you can tap start to
see the date chooser and then use the arrows and the
calendar page to move to a different date. The new task
suggests one year from today for the deadline, but that's
a little too long for this one; surely your mother-in-law
would call long before the year was up, wondering why
her check hadn't cleared. Again, by tapping deadline,
it's easy enough to change the month, year, and date
with the arrows at the bottom of the date chooser. Let's
set the deadline for tomorrow. You can see the finished
product in Figure 4-10.

94

Page 113 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4939



bank save

today remove

( E tomorrow
notes

completed:

FIGURE 4-10. To do appointment entry

It might also be a good idea to add notes to remind
yourself which account to put the checks in, plus re-
minders for other banking transactions you might want
to make, like transferring money from the savings to the
checking account to cover that check you wrote for car
insurance. You can do this by tapping notes on the right
to open the notes window. Then, write the notes, or tap
the keyboard and type the notes if you're one of the many
people who can't always read their own writing.

As you finish the notes and close the notes window,
you can review the details of the task to make sure they're
right. The task reveals another magical touch that's a
welcome relief from the digital mindset of computers:
The starting date for the task reads today, rather than
giving today's date. (The datebook is also on a first-name
basis with tomorrow and yesterday, but that's it-no day
after tomorrow or a month from next Tuesday.) Like so
much of Magic Cap, the datebook knows that most hu-
mans would use the word today when referring to an
appointment that takes place on the current day.

95

Page 114 of 272

(2) To do j:R Datebook

Petitioner Microsoft Corporation - Ex. 1008, p. 4940



You can make the same kind of entries for other er-

rands and tasks, such as a trip to a customer's office to

check on an order, a visit to the city government building
to renew a business license, or a quick stop at the gro-

cery store to get stuff for dinner. When a task is all filled

in, you can tap save to put it into your datebook. The task

is added to your list of appointments for the day, which

you can see in Figure 4-11.

(1) Dntebook < Wednesday, Mar. 16, 1994 c> i Desk

7M 8910,1 2 3,4 ,5,.6,7 .89
new

...... bank

D] ...... post office today

...... Campbell City Hall

LI Quito Market

FIGURE 4-11. Day view of datebook with to do
appointments

After you've completed a task, you can mark it off with

the handy check box that appears next to the item in the

datebook's day view. If you don't complete a task, it au-

tomatically reappears the next day, and the next, until

the deadline comes. After the deadline passes, the task

stops carrying forward. In the week and month view of

the calendar, to do items are identified by a picture of

paper and pencil at the top of the date, reminding you

96

Page 115 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4941



that there are things that need to be done that don't
really qualify as appointments. The space below the date
is reserved for real appointments.

Seeing into the Future. If you're wondering why the

suggested deadline for a task is a year away, here's the
thinking of the datebook's designers. A to do item
wouldn't be very helpful if you needed to keep adding it
to your daily schedule until it was finished. The mission
of a to do entry in Magic Cap is to move automatically
from day to day, gently reminding you, as long as the task
hasn't been completed and its check box is blank. When
you reach the deadline and the task remains unchecked,
it finally stops on that date. Since most people wouldn't
have a simple task that takes a year to complete, the
datebook can have 365 days to keep needling you about
it, which should be plenty. You might imagine a future
version of Magic Cap that warns you when an undone
task is about to hit its deadline.

Day after Day

Magic Cap's datebook lets you schedule events that
span multiple days. When you enter one of these, the
appointment stretches out across all its days on the week
and month views and appears at the top of each day's
view during the event.

If you travel for business, you know that the best busi-
ness trips are a mixed blessing, and the worst ones can
be real nightmares. Let's say you have to travel to a
customer's office on an extended trip, that is, one that
will last more than just one day.

97

Page 116 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4942



To enter the trip into the datebook, tap new and then

business trip to get started. The entry screen for busi-
ness trips is straightforward and very businesslike. You

get to enter a description of the trip from a standard list of

multi-day events, or (as always) you can add your own

description, which will make it available again the next

time you schedule a multi-day event. Then, you enter the

date the trip starts and the date it ends. That's it. As with

any appointment, you can add notes to remind you of

any vital details. For this event, you can put your depart-

ing flight information in the notes.
The datebook knows about other kinds of appointments

that span multiple days. When you tap new, you can

choose from three different multi-day appointments: busi-

ness trip, vacation, or multi-day, as shown at the bottom

of the window in Figure 4-12. The first two, business trip

and vacation, are really just multi-day appointments with

the what information already filled in. If you choose the

generic multi-day appointment, you can fill in the ap-

pointment description from choices that include confer-

ence, holiday, and hibernation, among others. Of course,

you can add your own choices, too, and any new entries

(as I'm sure you've already guessed) will be offered when-

ever you make a new multi-day appointment.
The day view has one image for business trip, one for

vacation, and one for every other kind of multi-day ap-

pointment. The images are different only in the day view;
week and month views simply show a line across the

days of the event. All the multi-day appointments have

space for a description, a starting date, and an ending
date.

98

Page 117 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4943



() Datebook < Friday, July 15, 1994 IE.' Desk

AM f-

simple meeting general purpose

to do birthday special day

business trip vacation multi-day I i

- year

FIGURE 4-12. Three kinds of multi-day appointments

We've dealt with a business trip; now let's schedule a
vacation. Let's imagine that your family is going to spend
Thanksgiving at Disneyland. It's kind of a tradition for
folks on the West Coast who find themselves far from
their families for the turkey holiday. To get ready to enter
this happy appointment, tap year to see the year view,
then tap the calendar for November. You'll probably no-
tice the image of the hapless, headless poultry on the
fourth Thursday of the month-that's the week you're
looking for (see Figure 4-13).

Now you can touch the day your vacation starts, and
you'll see the view for that day. Tap new, and then vaca-
tion. The datebook suggests today as the starting date
for your vacation-if only it were true. It's not, so you tap
from to enter the starting date of your vacation, then tap
until to enter the vacation's ending date. Both dates are
entered with the same date chooser that you get used to
seeing in Magic Cap every time you need to specify a
date.

99

Page 118 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4944



I Datebook < November 1994 * ir5 Desk

13 14 is 16 17 18 19

20 21 22 23 24 25 26

new

wee)

FIGURE 4-13. Month view for November

If you really enjoy your holiday trip to Disneyland, you

might want the appointment to say Disneyland instead
of vacation. Tap what to see the list of descriptions, then
new to enter a new one. Magic Cap places a typing point
in the right place and opens the on-screen keyboard, and

you can type Disneyland. The new description appears
with the appointment, and it'll be in the list the next time
you make a multi-day appointment. Not only have you

entered your Disneyland vacation, but the next time you
make a multi-day appointment, Disneyland will be listed

as a choice right beside the ones that are built into Magic
Cap, as you can see in Figure 4-14.

100

Page 119 of 272

2 . 13 C, 5T W T F S
') 14 

1

t

Petitioner Microsoft Corporation - Ex. 1008, p. 4945



FIGURE 4-14. List of choices for multi-day appointments

Now you can add more detailed information about the
trip by writing notes that include flight information and
rental car confirmation numbers. You can get to the notes
page by tapping notes and then typing or writing the
notes on the screen. In a practically perfect future version
of the datebook, you can imagine being able to attach a
different note for each day, allowing you to enter specific
information for each day and still enjoy the ease of a
multi-day entry.

When you're done entering the vacation, you can tap
save and see the appointment pop into the datebook. If
you glance at the week view or month view, you'll see
the vacation blocked out in November, right across that
turkey image on Thanksgiving.

Qt;- Busy Bodies. Do you ever schedule appointments that
overlap? Lots of people do, some more than others.
Magic Cap's datebook intentionally lets you make
overlapping appointments, a process called double-

101

Page 120 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4946



booking. Making overlapping appointments is easy: Just
do it. You can have as many appointments overlapping
as your sanity will allow. Even if you're not in the prac-
tice of double-booking, you might find this feature handy
for scheduling appointments during all day or multi-day
events, such as a meeting during a business trip or a
sky-diving session while you're on vacation.

Customizing

You probably have lots of favorite tricks for person-
alizing your paper datebooks. You'll find that Magic Cap
caters to your creativity by letting you customize things
to make it fit you better and more comfortably. You can
do simple, helpful things, like changing the pictures that
identify meetings, and you can also perform tricks that
are a little fancier, like making a whole new kind of ap-
pointment.

Earlier in this chapter, you entered a repeating ap-
pointment for a monthly class meeting at school. The
standard datebook image for a meeting, the face-to-face
picture, doesn't really suggest a class meeting with the
teacher and dozens of parents. You can fix this. While
you're looking at the day view, you can tap the stamper
and select the small picture of a blackboard. As you touch
the blackboard, the window of stamps closes and you
can slide the blackboard into place to replace the generic
image for the meeting (see Figure 4-15).

You might remember that these meetings were en-
tered as repeating appointments on the third Wednes-
day of each month. As you look at the class meetings
through the forthcoming months, you'll see that they're
now all represented by the blackboard image.

102

Page 121 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4947



() Datebook <D Wednesday, Jan. 19, 1994 > I Desk
7,8 9 10 11 12 1 2 3 PM67

<AMT *1
7 pm j] class meeting at school

today

FIGURE 4-15. Customized image for a meeting

If you're a sports fan, you might spend a lot of time at
the ballpark, stadium, or arena. When you go to a game,
many of the details stay the same from one game to the
next, just as with an appointment-what a game is; where
the team's home is; and the time, which is probably the
same for most games. (As fans of the San Francisco
Giants, my family visits Candlestick Park for lots of after-
noon games, but we avoid those frigid night games, so
almost all our games start at 1:05 P.M.) The only things
that change are the date of the game and the team they're
playing. You can fill in who with the name of the oppo-
nent, if you don't mind having the names of hated teams
in your name file.

To make it easier to schedule the games you attend
each season, you can make a new general purpose ap-
pointment, fill in the what, where, and time parts of the
appointment, and then tap save. When you see the
new appointment in the day view, you can pick an

103

Page 122 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4948



appropriate stamp from the leisure drawer and slide it
onto the appointment. Stamps for baseball, football, bas-
ketball, and other favorite pastimes are provided. The
appointment is pictured in Figure 4-16.

(D Datebook < Monday, Apr. 4, 1994 > RtjI Desk

II new
1:05 p.m. Giants game at Candlestick Park

today

FIGURE 4-16. Day view with a baseball game appointment

Now for some magic: you can slide this appointment
onto the new button, where it gets slurped up and added
to the standard appointment types. From now on, when-
ever you tap new, you'll be able to schedule a day for
going to see your favorite team play using a custom-
made appointment type that has all the generic informa-
tion filled in. Maybe a future version of Magic Cap will be
able to tell you the score of each game before you attend.

Reminders

The datebook-makers at General Magic realized that
appointments need to include a lot of special details. The
datebook includes a button labeled alarm+, where you

104

Page 123 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4949



can set up some miscellaneous details about an appoint-
ment, including the appointment's status, priority, and
alarm.

Because personal communicators are much better at
remembering things than people are, you can tell the

datebook to remind you of appointments as they come
up. Using the alarm+ feature, you can ask the datebook
to remind you about an appointment from a week before
the event to the scheduled appointment time.

If you know you have a deadline coming up on a project,
you can ask the datebook to remind you a day before the

deadline so that you have time to make sure that every-
thing is ready. To do this, make a new appointment for
the project, tap alarm+, and then use the arrows on the

alarm choice box to see the options until you come to 1
day early, the one you want to set. When you save the

appointment and look at it in the day view, you'll see, as
shown in Figure 4-17, that it now has a little bell as a
reminder of its alarm.

(0 Datebook < Tuesday, Oct. 18, 1994 E ETP' Desk

AM PM1~ 4 ~ 7
, new"

1 p.m. presentation at Good Samaritan
Hospital

today

FIGURE 4-17. Day view with an appointment set with a
reminder alarm

105

Page 124 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4950



When you make a date to have lunch with a friend, you
might worry about getting so wrapped up in working
that you'll forget to look at the time, even though it's
conveniently displayed at the top of your communicator's
screen. When you set the lunch appointment, you can
ask the datebook to remind you 30 minutes early so you
won't be late-or at least you'll get to make an informed
decision about being late.

Just exactly how will you be reminded about these
appointments? As with many other features, Magic Cap
supplies a standard way that this will happen, and it also
lets you customize it if you want something different. For
appointment alarms, the datebook will remind you in two
ways: by playing the alarm sound (which sounds not un-
like those irritating digital watches) and by displaying an
announcement on the screen that will stay there until
you close it. You can customize those reminders by chang-
ing the datebook's rules. See the "Customizing with Rules"
section later in this chapter for more information about
how to do that.

Appointment Priority and Status

Magic Cap can schedule appointments that might
change or move around before they happen. Imagine that
your father is planning a visit and you know the dates
he's planning to come, but he might have to cancel due
to a possible conflict. You can make a multi-day appoint-
ment in the datebook for the visit.

Because you're not sure if he'll be able to come, you'd
like to make the appointment tentative. To do this, you
tap alarm+, which gives you choices for alarm, status,
and priority (see Figure 4-18). Use the status choice box
to select tentative. When you save the appointment, it
shows up in the day view with a wondering question
mark to remind you of its precarious nature.

106

Page 125 of 272
Petitioner Microsoft Corporation - Ex. 1008, p. 4951


