

DOCKE

LARM

Α

International Bureau

(51) International Patent Classification ⁷ : H04B 7/005	A1	(11) International Publication Number: WO 00/57574
		(43) International Publication Date: 28 September 2000 (28.09.00
21) International Application Number: PCT/US	00/074′	 (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BC, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EB
22) International Filing Date: 22 March 2000 (2)	22.03.0	0) ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JF KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU
30) Priority Data: 60/125,417 22 March 1999 (22.03.99) 60/136,556 28 May 1999 (28.05.99) 60/136,557 28 May 1999 (28.05.99) 71) Applicant (for all designated States except US): INT	t t	 SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UC US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KI US, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM
ITAL TECHNOLOGY CORPORATION [US/US 527, 300 Delaware Avenue, Wilmington, DE 1980	S]; Sui	ite
 (72) Inventors; and (75) Inventors/Applicants (for US only): ZEIRA, Ariela 8 Old Oak Road, Trumball, CT 06611 (US). OZL Fatih, M. [TR/US]; 70 Willowdale Avenue, Port V ton, NY 11050 (US). SHIN, Sung-Hyuk [KR/US]; Street, Fort Lee, NJ 07024 (US). 	UTUR Washin	K, g-
74) Agents: VOLPE, Anthony, S. et al.; Volpe and P.C., One Penn Center, Suite 400, 1617 John F. Boulevard, Philadelphia, PA 19103 (US).		
(54) Title: COMBINED CLOSED LOOP/OPEN LOOP SYSTEM	POWE	R CONTROL IN A TIME DIVISION DUPLEX COMMUNICATION
St DATA SPREADING GENERATOR TRAINING SEC Sto SPREADING CHANNEL DATA TRAINING SEC GENERATOR INSERTION D COSED INSERTION D COMMAND 12 CONTROL TRAINING SEC CONTROL MEASUREMENT I COMBINED CLOSED/OPEN CONSEN/CULATION D COMBINED CLOSED/OPEN 10% COMBINED CONTROLLER 10%	AND QUENCE DEVICE DEVICE	60 60 60 60 60 60 60 60 60 60
	DATA ESTIM DEVIC	
(57) Abstract		
communication station. A first communication station (5 first station transmits power commands based on in part a	i0) rece recept in a fin	transmission power levels in a spread spectrum time division duple sives communications from a second communication station (52). The ion quality of the received communications. The first station transmits st time slot. The second station receives the second communication and

second communication having a transmission power level in a first time slot. The second station receives the second communication and the power commands. A power level of the second communication as received is measured. A path loss estimate is determined based on in part the measured received second communication power level and the first communication transmission power level. The second station transmits a second communication to the first station in a second time slot. The second communication transmission power level is set based on in part the path loss estimate weighted by a factor and the power commands. The factor is a function of a time separation of the first and second time slots.

Find authenticated court documents without watermarks at docketalarm.com.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain
AM	Armenia	FI	Finland
АТ	Austria	FR	France
AU	Australia	GA	Gabon
AZ	Azerbaijan	GB	United Kingdom
BA	Bosnia and Herzegovina	GE	Georgia
BB	Barbados	GH	Ghana
BE	Belgium	GN	Guinea
BF	Burkina Faso	GR	Greece
BG	Bulgaria	HU	Hungary
ВJ	Benin	IE	Ireland
BR	Brazil	IL	Israel
BY	Belarus	IS	Iceland
CA	Canada	IT	Italy
CF	Central African Republic	JP	Japan
CG	Congo	KE	Kenya
СН	Switzerland	KG	Kyrgyzstan
CI	Côte d'Ivoire	KP	Democratic People's
СМ	Cameroon		Republic of Korea
CN	China	KR	Republic of Korea
CU	Cuba	KZ	Kazakstan
CZ	Czech Republic	LC	Saint Lucia
DE	Germany	LI	Liechtenstein
DK	Denmark	LK	Sri Lanka
EE	Estonia	LR	Liberia

DOCKE.

Α

R

Μ

Δ

LS	Lesotho
LT	Lithuania
LU	Luxembourg
LV	Latvia
MC	Monaco
MD	Republic of Moldova
MG	Madagascar
MK	The former Yugoslav
	Republic of Macedonia
ML	Mali
MN	Mongolia
MR	Mauritania
MW	Malawi
MX	Mexico
NE	Niger
NL	Netherlands
NO	Norway
NZ	New Zealand
PL	Poland
РТ	Portugal
RO	Romania
RU	Russian Federation
SD	Sudan
SE	Sweden
SG	Singapore

Slovenia
Slovakia
Senegal
Swaziland
Chad
Togo
Tajikistan
Turkmenistan
Turkey
Trinidad and Tobago
Ukraine
Uganda
United States of America
Uzbekistan
Viet Nam
Yugoslavia
Zimbabwe

SI

SK

SN

sz

TD

TG

ТJ

TM TR

ΤТ

UA

UG

US

UZ

VN

YU

ZW

Find authenticated court documents without watermarks at docketalarm.com.

WO 00/57574

PCT/US00/07476

COMBINED CLOSED LOOP/OPEN LOOP POWER CONTROL IN A TIME DIVISION DUPLEX COMMUNICATION SYSTEM

BACKGROUND

This invention generally relates to spread spectrum time division duplex (TDD) communication systems. More particularly, the present invention relates to a system and method for controlling transmission power within TDD communication systems.

Figure 1 depicts a wireless spread spectrum time division duplex (TDD) communication system. The system has a plurality of base stations 30_1 - 30_7 . Each base station 30_1 communicates with user equipments (UEs) 32_1 - 32_3 in its operating area. Communications transmitted from a base station 30_1 to a UE 32_1 are referred to as downlink communications and communications transmitted from a UE 32_1 to a base station 30_1 are referred to as uplink communications.

In addition to communicating over different frequency spectrums, spread spectrum TDD systems carry multiple communications over the same spectrum. The multiple signals are distinguished by their respective chip code sequences (codes). Also, to more efficiently use the spread spectrum, TDD systems as illustrated in **Figure 2** use repeating frames **34** divided into a number of time slots 36_1-36_n , such as fifteen time slots. In such systems, a communication is sent in selected time slots 36_1-36_n using selected codes. Accordingly, one frame **34** is capable of carrying multiple communications distinguished by both time slot 36_1-36_n and code. The

15

5

WO 00/57574

5

10

PCT/US00/07476

combination of a single code in a single time slot is referred to as a resource unit. Based on the bandwidth required to support a communication, one or multiple resource units are assigned to that communication.

Most TDD systems adaptively control transmission power levels. In a TDD system, many communications may share the same time slot and spectrum. When a UE 32_1 or base station 30_1 is receiving a specific communication, all the other communications using the same time slot and spectrum cause interference to the specific communication. Increasing the transmission power level of one communication degrades the signal quality of all other communications within that time slot and spectrum. However, reducing the transmission power level too far results in undesirable signal to noise ratios (SNRs) and bit error rates (BERs) at the receivers. To maintain both the signal quality of communications and low transmission power levels, transmission power control is used.

One approach to control transmission power levels is open loop power 15 control. In open loop power control, typically a base station **30**₁ transmits to a UE **32**₁ a reference downlink communication and the transmission power level of that communication. The UE **32**₁ receives the reference communication and measures its received power level. By subtracting the received power level from the transmission power level, a pathloss for the reference communication is determined. 20 To determine a transmission power level for the uplink, the downlink pathloss is added to a desired received power level at the base station **30**₁. The UE's transmission power level is set to the determined uplink transmission power level.

-2-

WO 00/57574

5

10

15

20

PCT/US00/07476

Another approach to control transmission power level is closed loop power control. In closed loop power control, typically the base station 30_1 determines the signal to interference ratio (SIR) of a communication received from the UE 32_1 . The determined SIR is compared to a target SIR (SIR_{TARGET}). Based on the comparison, the base station 30_1 transmits a power command, b_{TPC} . After receiving the power command, the UE 32_1 increases or decreases its transmission power level based on the received power command.

Both closed loop and open loop power control have disadvantages. Under certain conditions, the performance of closed loop systems degrades. For instance, if communications sent between a UE and a base station are in a highly dynamic environment, such as due to the UE moving, such systems may not be able to adapt fast enough to compensate for the changes. The update rate of closed loop power control in TDD is 100 cycles per second which is not sufficient for fast fading channels. Open loop power control is sensitive to uncertainties in the uplink and downlink gain chains and interference levels.

One approach to combining closed loop and open loop power control was proposed by the Association of Radio Industries and Business (ARIB) and uses **Equations 1**, **2**, and **3**.

$$T_{UE} = P_{BS}(n) + L$$
Equation 1
$$P_{BS}(n) = P_{BS}(n-1) + b_{TPC} \Delta_{TPC}$$
Equation 2
$$b_{TPC} = \begin{cases} 1: \text{ if } SIR_{BS} \langle SIR_{TARGET} \\ -1: \text{ if } SIR_{BS} \rangle SIR_{TARGET} \end{cases}$$
Equation 3

-3-

Find authenticated court documents without watermarks at docketalarm.com.

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.