
Facebook's Exhibit No. 1017 
Page 1

COMPUTER SC ENCE

AN OVERVIEW

 

Jig-GLENN BROOKSHEAR

 
Facebook's Exhibit No. 1017

Page 1



Facebook's Exhibit No. 1017 
Page 2

Facebook's Exhibit No. 1017

Page 2



FOURTH EDITION 

COMPUTER 
SCIENCE 

AN OVERVIEW 

Facebook's Exhibit No. 1017 
Page 3



SELECTED TITLES FROM THE BENJAMIN/CUMMINGS SERIES IN 
COMPUTER SCIENCE 

F. Carrano/P. Helman/R. Veroff 
Data Structures and Problem Solving with Turbo Pascal: Walls and Mirrors 
(1993) 

A. Kelley and I. Pohl 
A Book on C: Programming in C, Second Edition (1990) 

A. Kelley and I. Pohl 
C by Dissection: Essentials of C Programming, Second Edition (1992) 

I. Pohl 
C + + for C Programmers, Second Edition (1994) 

I. Pohl 
C + + for Pascal Programmers (1990) 

W.J. Savitch 
Pascal: An Introduction to the Art and Science of Programming, Third Edition 
(1990) 

W.J. Savitch 
Turbo Pascal: An Introduction to the Art and Science of Programming, Fourth 
Edition (1993) 

Facebook's Exhibit No. 1017 
Page 4



FOURTH EDITION 

COMPUTER 
SCIENCE 

AN OVERVIEW 

J. Glenn Brookshear 
Marquette University 

I 
The Benjamin/Cummings Publishing Company, Inc. 

Redwood City, California • Menlo Park, California 
Reading, Massachusetts • ew York • Don Mill , Ontario • Wokingham, U.K. 

Amsterdam • Bonn • Sydney • Tokyo • Madrid • Spain 

Facebook's Exhibit No. 1017 
Page 5



To my parents 
Garland and Reba Brookshear 

Sponsoring Editor: Carter Shanklin 
Editorial Assistant: Mdissa Standen 
Production Coordinator: Andy Marinkovich 
Cover Design: Yvo Riezebos 
Copyedicor: Barbara Conway 
Proofreader: Holly Mclean-Aldis 
Artists: Ben Turner Graphics 
Composition: Graphic World 

Copyright © 1994 by The Benjamin/Cummings Publishing Company, Inc. 

All rights reserved. No part of this publication may be reproduced, or stored in a database or 
retrieval system, distributed, or transmitted in any form or by any means, electronic, 
mechanical, photocopying, recording, or otherwise without the prior written permission of the 
publisher. Printed in the United States of America. Published simultaneously in Canada. 

Library of Congress Cataloging-in-Publication Data 
Brookshear, J. Glenn. 

Computer science : an overview/ J. Glenn Brookshear. - 4th ed. 
p. cm. 

Includes bibliographical references and index. 
ISBN 0-8053-4627-9 
1. Computer science. 

QA76.B743 1993 
004-dc20 

I. Title. 

12345 678910-DOCR-97 96 95 94 93 

The Benjamin/Cummings Publishing Company, Inc. 
390 Bridge Parkway 
Redwood City, CA 94065 

93-24520 
CIP 

Facebook's Exhibit No. 1017 
Page 6



PREFACE 

I wrote thi book to provide a comprehen ive overview of computer science, one that 
pre ems a thought-provoking introduction to the key i ues and concepts throughout 
the field. 1 have done thi with rwo primary audiences in mind. 

Computer Science Majors 

The first audience consi ts of computer cience major and minors in the early stage 
of their college careers. Students at this stage tend to equate computer science with 
programming because that i essentially all they have een. Yet computer science is 
much more than programming. In turn beginning computer science students need to 
b exposed to the breadth of the subject in which they are planning to major. 
Providing chi exposure i che purpose of chi book. It give tudents an overview of 
computer ci nee-a foundation from which they can understand the relevance and 
interrelation hips of future courses. Without such a perspective, tudents easily 
become immer ed in the details of specialized course and never understand the true 
cope and dynamics of che field. In hart this book represents the application of 

top-down mcthodologie , a taught within che curriculum, co the computer science 
curriculum itself. 

A lot ha happened since the first edition of this book. Today, the computer-
cience-is-much-more-than-programming philosophy is widely endor ed, as wit­

nessed by the famous Denning Report and, more recently, che report of the 
ACM/IEEE-CS Joint Curriculum Task Force. Those who ubscribe co this movement 
will be plea ed that this fourth edition continues the tradition of the preceding ones 
in that its content conforms closely to the subject areas of computer science a 
identified in the e report . This text provides students of computer cience with an 
accessible introduction to chc breadth of their subject, all within a ingle volume. 

Students of Other Disciplines 

I also designed trus book with majors of others fields in mind. Too often, these 
students are channelled into courses that teach them merely how co use some software 
packages or provide an elementary introduction co programming. Unfortunately, the 
subject matter of these course is often time-sensitive, limited in portability, or not 

V 

Facebook's Exhibit No. 1017 
Page 7



vi PREFACE 

developed to a depth to be useful outside the classroom. Any benefits from such 
courses dissipate quickly after the semester is over. 

I believe that these students are seeking "computer literacy," which I loosely 
define as the ability to distinguish between computer science and science fiction. 
Providing this level of "literacy" in their respective fields is the purpose of such 
courses as general chemistry, biology, and physics. Students do not take these courses 
to develop specific skills. Rather, the major goal is to develop an understanding of the 
discipline- including its scope, major results and consequences, research techniques, 
and the current status of the field. The fact that a student might be required to develop 
certain skills while taking the course is merely a temporary consequence. The true 
benefit of the course - obtaining an overall picture of the subject-survives long after 
these specific items have been forgotten. 

Why, then, do we insist that a computer science course for nonmajors emphasize 
skills? The goal should be to present an overall picture of the science, which is exactly 
what I have designed this book to provide. After caking a course based on this text, 
a student will have obtained an understanding of the science behind today's 
computerized society. This understanding w ill remain long after the details and skills 
"memorized" during the semester have dissipated. Indeed, the student will have been 
educated rather than trained. 

The Fourth Edition 

In addition to numerous minor changes designed to update, correct, or generally 
improve the text, this fourth edition differs from the third in the following, more 

significant ways. 

• The role of abstraction and abstract tools is explicitly presenting as a recurring 
theme. 

• Ties to social, ethical, and professional issues have been expanded. 
• The material on networks in Chapter 3 has been expanded to include an 

introduction to the OSI reference model and its significance. 
• The material on parallel computing has been expanded , including a new section 

on parallel programming using the Linda primitives in Chapter 5. 
• A new section in Chapter 6 discusses the role of metrics in software engineering. 
• The object-oriented paradigm has been given additional emphasis by means of 

specific examples using Ada and C + + in Chapter 7 and a new section on 
object-oriented databases in Chapter 9. 

• Significantly more exercises have been added. 
• Manuals for closed laboratories are now available m the languages Pascal 

and C. 

Facebook's Exhibit No. 1017 
Page 8



PREFACE 

Pedagogical Features 

This.text i the product of many years of teaching the material. As a result it is rich 
in pedagogical aid . Paramount in this regard i the abundance of problems to enhance 
rhe student' participation. Each section within a chapter do e with everal 
Questions/Exerci e to chaUeoge students to think independently. They review the 
material just cli cu ed, extend the previou di cu ion or hint at related topic to be 
covered later. These questions are answered in Appendix F. 

Each chapter concludes with a collection of Chapter Review Problems. Th se 
problems are designed to serve as "homework" problems in that they call for specific 
answers, can be solved in a short period of time, and are not answered in the text. 

Following the Chapter Review Problem are Problems for the Programmer. 
These problem are designed for student who al ready have a programming 
background and erve to enhance the tudenr' problem-solving/program­
development kill a weU as provide additional insights into the material in the 
chapter. 1£ de ired many of these problems can be expanded into programming 
projects. The e problems are an excellent resource when the book i used as a text for 
a course following the traditional introductory programming course. 

Another pedagogical aid is the use of optional sections. These sections are 
marked in the table of contents. The fact that a ectiou i declared optional doe not 
mean that its material is necessarily more difficult or should be skipped. It merely 
means that the material in later (nonoptional) ections does not rely on the e sections. 
The purpose of identifying the.se sections is to allow students to reach later portions 
of the text more quickly than would otherwi e be possible. For example, many 
instructor may wi h to skip or po tpone much of the material on machine 
architecture and operating systems in order to spend more time on algorithm 
development and representation as di cus ed in chapters 4 and 5. The u e of optional 
sections allow for this change yet leave the material available for the more inquisitive 
students or courses with different goals. 

Laboratory Materials 

Supplementary laboratory manual that are coordinated with the text are available for 
courses with an introductory-level programming component. These manual , one for 
the language Pa cal and the other for C are designed for a closed laboratory that meets 
once a week for approximately two hours. Each manual contains material for 16 
laboratory sessions (many are optional) that teach the rudiments of the particular 
programming language and provide experiments that reinforce material in the parent 
text. 

Each laboratory ession consists of explanatory material, activities for the tudent 

vii 

Facebook's Exhibit No. 1017 
Page 9



viii PREFACE 

that are presented in a true experiment format th:tt encourages investigation, and 
post-laboratory problems that ask students to apply their knowledge outside the 
closed laboratory environment. 

The laboratory manuals are supported by software that is available from The 
Benjamin/Cummings Publishing Company via the Internet using ftp. The address is 
be.aw.com. When asked for a name, respond by typing anonymous; when asked for 
a password, respond with your own address. From the directory in which you will 
be placed, the software is two directories down along the path bc/brookshear. (For 
non-UNIX readers, you get to this directory by typing cd bdbrookshear.) For more 
details, consult the OOREADME file in the brookshear directory. (Again, for the 
non-UNIX crowd, type get OOREADME to download this file to your local environment 
and type bye to terminate the connection.) 

Acknowledgments 

With each new edition, the list of those who have contributed through their 
suggestions and comments continues to grow. Today this list includes J. M. Adams, 
D. C. S. Allison, P. Bankston, M. Barnard, K. Bowyer, P. W. Brashear, C. M. Brown, 
B. Calloni, M. Clancy, D. H. Cooley, F. Deek, M. J. Duncan, N. E. Gibbs,]. D. Harris, 
D. Hascom, P. Henderson, L. Hunt, L.A. Jehn, K. Korb, G. Krenz, T.J. Long, C. May, 
S. J. Merrill, J. C. Moyer, J. Paul Myers, Jr., G. Rice, N. Richert, J. B. Rogers, J. C. 
Simms, M. C. Slattery, J. Slimick, D. Smith, J. Solderitsch, L. Steinberg, J. Talburt, P. 
Tromovitch, and M. Ziegler. To these individuals I give my sincere thanks. A special 
thank you goes to Phil Bender and Jody Jung for writing the laboratory manuals. 

As in the case of the earlier editions, I also thank my family, Earlene and Cheryl, 
for their support. They have seen how the development of a manuscript can expand 
to dominate an author's time. I thank them for their understanding and patience. 

J.G.B. 

Facebook's Exhibit No. 1017 
Page 10



CONTENTS 

Introduction 1 
0-1 The Study of Algorithm 1 
0- 2 The Development of Algorithmic Machine 5 
0-3 Modern Machine Architecture 9 
0-4 The Evolution of Computer Science 12 

Additional Reading 14 

PART ONE MACHINE ARCHITECTURE 15 

Chapter 1 Data Storage 17 
1-1 Main Memory 18 
1-2 Mass Storage 23 
1-3 Coding Information for Storage 29 
1-4• The Binary System 33 
1-5• Storing Integers 36 
1- 6* Storing Fractions 44 
1- 7* Communication Error 47 

Review Problems 52 
Problems for the Programmer 55 
Additional Reading 55 

Chapter 2 Data Manipulation 57 
2- 1 The Central Processing Unit 58 
2-2 The Stored-Program Concept 62 
2- 3 Program Execution 66 
2-4* Other Architectures 71 
2- 5* Arithmetic/Logic In tructions 75 
2- 6* Computer/Peripheral Communication 80 

Review Problems 85 
Problem for the Programmer 88 
Additional Reading 89 

• Sections marked by an asterisk are optional in that they provide additional depth of coverage 
thar i nor n:quired for an understanding of future chapters. 

ix 

Facebook's Exhibit No. 1017 
Page 11



X CONTENTS 

PART TWO SOFTWARE 91 

Chapter 3 Operating Systems 93 
3-1 Functions of Operating Systems 94 
3-2 Virtual Characteristics and Abstraction 97 
3-3 The Evolution of Operating Systems 99 
3-4* Operating System Architecture 105 
3-5* Rudiments of Time-Sharing 109 
3-6* Resource Allocation 112 
3-7* Getting It Started 116 
3-8* A Closer Look at Networks 118 

Review Problems 127 
Problems for the Programmer 129 
Additional Reading 130 

Chapter 4 Algorithms 131 
4-1 Definition 132 
4-2 Algorithm Representation 133 
4-3 Algorithm Discovery 142 
4-4 Iterative Structures 148 
4-5 Recursive Structures 158 
4-6 Efficiency and Correctness 173 

Review Problems 182 
Problems for the Programmer 186 
Additional Reading 186 

Chapter 5 Programming Languages 187 
5-1 Historical Perspective 188 
5-2 Language Implementation 197 
5-3 Programming Language Design 201 
5-4 Procedural Language Components 206 
5-5 * Parallel Computing 229 
5-6* Declarative Programming 232 

Review Problems 238 
Problems for the Programmer 241 
Additional Reading 242 

Chapter 6 Software Engineering 243 
6-1 The Software Engi neering Discipline 244 
6-2 The Software Life Cycle 246 
6-3 Modularity 250 

Facebook's Exhibit No. 1017 
Page 12



CONTENTS xi 

6-4 Development Tools and Techniques 255 
6-5 Documentation 261 

Review Problems 263 
Problems for the Programmer 266 
Additional Reading 266 

PART THREE DATA ORGANIZATION 267 

Chapter 7 Data Structures 269 
7-1 Arrays 270 
7-2 Lists 273 
7-3 Stacks 280 
7-4 Queues 284 
7-5 Trees 289 
7-6 Abstract Data Types 298 
7-7 .. Object-Oriented Programming 302 

Review Problems 306 
Problems for the Programmer 310 
Additional Reading 310 

Chapter 8 File Structures 311 
8-1 Sequential Files 312 
8-2 Text Files 317 
8-3 Indexed Files 319 
8-4 Hashed Files 324 
8-5 The Role of the Operating Sy tern 330 

Review Problems 332 
Problems for the Programmer 334 
Additi.onal Reading 334 

Chapter 9 Database Structures 335 
9-1 General Issues 336 
9-2 The Layered Approach to Dacaba e 

Implementation 339 
9-3 The Relational Model 342 
9-4• The etwork Model 352 
9-s• Object-Oriented Databases 360 
9-6* Concurrency Control 363 

Review Problems 368 
Problems for the Programmer 372 
Additional Reading 372 

Facebook's Exhibit No. 1017 
Page 13



xii CONTENTS 

PART FOUR THE POTENTIAL OF ALGORITHMIC 
MACHINES 375 

Chapter 10 Artificial Intelligence 377 
10-1 Some Philosophical Issues 378 
10-2 Image Analysis 382 
10-3 Reasoning 384 
10-4 Control Sy tern Activities 388 
10-5 Using Heuristics 393 
10-6 Artificial Neural Networks 399 
10-7 Applications of Artificial Intelligence 405 

Review Problems 412 
Problems for the Programmer 415 
Additional Reading 415 

Chapter 11 Theory of Computation 417 
11-1 A Bare Bones Programming Language 418 
11-2 Turing Machines 424 
11- 3 Computable Functions 428 
11-4 A Noncomputable Function 432 
11-5 Complexity and Its Measure 437 
11-6 Problem Classification 444 

Review Problems 449 
Problem for the Programmer 451 
Additional Reading 452 

Appendix A Popular Codes 454 

Appendix B A Typical Machine Language 455 

Appendix C Insert.ion Sort in Assembly Language 457 

Appendix D Syntax Diagrams for Pascal 459 

Appendix E The Equivalence of Loop and Recursive 
Structures 469 

Appendix F Answers to Questions/Exercises 471 

Index 499 

Facebook's Exhibit No. 1017 
Page 14



CHAPTER FIVE •PROGRAMMING LANGUAGES 209

>erations and Sometimes the action requested by a program may be meaningful even though
greater than the data types involved are not the same. For instance, the above instruction makes
:s other than sense if Price and Tex are integer but Total is real. In this case, the compiler uses the
s allowed on ]nteger addition instrucrion, but the sum must be recoded into floating-point format
~pe character before being assigned to Total. Such implicit conversion between types is called
red in ASCII coercion.
Bch as testing Coercion is frowned on by many language designers. They reason that the need

for conversion usually indicates an error in the program's design and therefore should
ician George not be accommodated by the translator. The result is that most modern languages are
true or false. strongly typed, which means that all activities requested by a program must involve
~olding7 or as data of agreeable types without coercion. In turn, compilers for these languages report
Section 3-6. all type conflicts as errors.
se value and
item of type Data Structure

Another major concept associated with data is structure, which relates to the
Bey allow the conceptual shape of the data. Perhaps the simplest example of this occurs when using
ive part of a a string of characters to represent an employee's name or a part identification number.

It is not sufficient to know that the data item is of type character, but one must also
know how many characters make up the item. If a translator must generate the
machine instructions to move an employee's name from one location in memory to
another, it must know how many memory cells to move. Thus, a FORTRAN program

s containing might contain the phrase
:eger values

ion in Pascal
CHARACTER(LEN = 8) Name

indicating that Name is to refer to a string of eight characters. The same information
would be expressed Ada as

Name: STRING~1..8~;

Another common example of structured data is an array. The term array refers
is beneficial to a block of values such as a list (often called avector), atwo-dimensional table (a
er trying to matrix), or tables of higher dimensions (these do not have special names). Elements

of an array normally are identified within a program through the use of indices. That
is, the third entry in a vector named Sales is referenced by the expression Sales (3~, and
the entry from the second row and fifth column of a matrix named Scores is identified

e operation by Scores~2,5~. (A minor exception is found in the C language, in which row and
red. Indeed, column numbers start at 0 rather than 1. Hence, in C, the entry in the second row
makes little and fifth column is identified by Scores [i][4].) Note that it is customary to list the row
e all of type number before the column number.
instruction, To describe an array in the declarative part of a program, most languages use a
d, syntax similar to that used for referring to the array later in the program's procedural

~~ —

Facebook's Exhibit No. 1017 
Page 15



270 PART THREE • DATA ORGANIZATION 

W,e have used the terms virtual and conceptual several times in reference to properties 
that, akhough appearing ro belong to hardware, are actually simulated through a 
combination of hardware and software. For example, we saw that a ingle machine 
can appear to be many machines through the use of a time-sharing system or that a 
machine can appear co understand the words in a high-level programming language 
by means of an interpreter. This chapter is concerned with another conceptual feature, 

the structure (or organization) of data. 
Recall that any information stored in a machine's memory must be organized to 

fit into a row of memory cells, even though this data may be more useful as a 
rectangular table of values. In this case, our problem is to simulate the rectangular 
shape using the tools provided by the machine. The goal is to allow the user of the 
data to think of the data as having this simulated shape wid10ut being concerned with 
the data's actual organization within the machine. 

7-1 Arrays 

We begin our study of data structures by considering the organizations known as 
arrays encountered earlier in our discussion of high-level programming languages. 
There we saw that many high-level languages allow a programmer to express an 
algorithm as though the data being manipulated were stored in a rectangular 
arrangement; the programmer might refer to the fifth element in a one-dimensional 
array or the element in the third row and sixth column of a two-dimensional array. 
Since the array is actually stored in rhe memory cells of the machine, it becomes the 
job of either the translator or the interpreter co convert such references into the 
terminology of memory cells and addresses. 

One-Dimensional Arrays 
Suppose an algorithm for manipulating a series of 24 hourly temperature readings is 
expressed in a high-level language. The programmer would probably find it 
convenient to think of the e readings arranged as a one-dimensional array, that is, a 
list called Readings whose various entries are referenced in terms of their position in 
the list. This position is often called an index. The first reading might be referenced 
by Readings[!] , the second by Readings[2J, and so on. 

The conversion from the conceptual one-dimensional array organization to the 
actual arrangement within the machine can be rather straightforward. The data can 
be stored in a sequence of 24 memory cells in the same order envisioned by the 
programmer. Knowing the address of the first cell in this sequence, an interpreter or 
translator can then easily convert terms such as Readlngs[4J, into the proper memory 
terminology. In this case, to find rhe actual address, one merely subtracts one from 
the position of the desired entry and then adds the result to the address of the first 

Facebook's Exhibit No. 1017 
Page 16



CHAPTER SEVEN• DATA STRUCTURES 

Figure 7 • I The array of Readings stored in memo,y starting at address 13 

Addresses 

'-- 13 14 IS 16 17 18 19 

M~~r~,y{~I I I I I I I 11 
ReadITTQ, II I _j t 1 
Readings {2) 
Readings [3) 
Readings (4) _ _____ __, 

ceH in the sequence. (If the first cell in the sequence is at address 13 the reading 
referenced by Readlngs[4] is located at location 13 + (4 - 1) = 16, a hown in 
Figure 7-1.) 

Multidimensional Arrays 
The conversion i not quite o imple with multidimensional array . Con ider, for 
example, a record of the ales made by a company' aJes force during a one-week 
period. We can chink of such data arranged in tabular form, with the names of the 
sales personnel listed down the left side and the days of the week listed aero the top. 
Hence we can think of the data being arranged in row and column ; the value across 
each row indicate the sale made by a particular employee, while the value down a 
column represent all the sale made during a particular day. Extracting information 
from the table therefore involves finding the value common to both a given row and 
a given column. 

A machine' memory i arranged not in a rectangular fashion but rather a a row 
of memory cells; thus, the rectangular structure required by the sales table must be 
simulated. To do this, we fir t recognize that the ize of the array doe not vary as 
update are made. We can therefore calculate the amount of storage area needed and 
reserve a block of contiguou memory cell of that ize. Next, we score the data in 
the cell row by row. That i , starring at the first cell of the reserved block, we copy 
the values from the first row of the table into consecutive memory locations· following 
this we copy the next row then the next and so on (Figure 7-2, on the following 
page). Such a storage system is said to use row major order in contrast co column 
major order, in which the array is stored column by column. 

With the data stored, the problem now become locating particular entries as 
they are requested. Recall that because the user will be thinking in terms of rows and 
column , a request will be in the form of wanting, for example, the value of the entry 
in the third row and! fourth column (that is, the sales made by the third employee on 

271 

Facebook's Exhibit No. 1017 
Page 17



COMPUTER SCIENCE: AN OVERVIEW, Fourth Edition • J. Glenn Brookshear, Marquette University 

ISBN 0-8053-4627-9 
IIII IIIIJllll ll ll lllll 111 11 111 Q n (l n n 

II I I II II IIIII I I 1111111111111111 
Warehouse - BK\05 13122 

Computer Science: An 01er1iew ... gs Seri es in Computer Science) 
Used, Good (uG) _s_ mI 

Facebook's Exhibit No. 1017 
Page 18


