
Computer Networks and ISDN Systems 29 (1997) 1507-1517

Responsive interaction for a large Web application: the meteor shower
architecture in the WebWriter II Editor

Arturo Crespo a.*, Bay-Wei Chang b~l, Eric A. Bier b.’
‘Computer and Science Department, Stanford University, Gates Bldg. Ofice 420, Stanford, CA 94305, USA

bXerox Palo Alto Research Centel; 3333 Coyote Hill Road, Palo Alto, CA 94304, USA

Abstract

Traditional server-based web applications allow access to server-hosted resources, but often exhibit poor responsiveness
due to server load and network delays. Client-side web applications, on the other hand, provide excellent interactivity at tbe
expense of limited access to server resources. The WebWriter Il Editor, a direct manipulation HTML editor that runs in a
web browser, uses both server-side and client-side processing in order to achieve the advantages of both. In particular, this
editor downloads the document data structure to the browser and performs all operations locally. The user interface is based
on HTML frames and includes individual frames for previewing the document and displaying general and specific control
panels. All editing is done by JavaScript code residing in roughly twenty HTML pages that are downloaded into these
frames as needed. Such a client - server architecture, based on frames, client-side data structures, and multiple JavaScript-
enhanced HTML pages appears promising for a wide variety of applications. This paper describes this architecture, the
Meteor Shower Application Architecture, and its use in the WebWriter II Editor. 0 1997 Published by Elsevier Science B.V.

Keywords: Application generators; Www; Meteor shower; Responsive interaction; Large Web application; WebWriter
architecture; Browser-based editor; Server-based WW?V applications construction; Web page generating programs;
Direct-manipulating Web page editor; Server-based authoring tools

1. Introduction

1.1. The WebWriter application builder

The WebWriter system [3] supports the construc-
tion of simple interactive web applications without
the need to learn HTML or CGI programming. Mod-
eled after HyperCard [11, WebWriter allows the user
to build an application as a stack of pages, where
each page can contain text, images, buttons, and
other form elements, as well as content computed

* Corresponding author. E-mail: crespo@cs.stanford.edu
’ E-mail: (bchang,bier} @parc.xerox.com

on the fly by executing scripts. The user constructs
the layout of each page of an application using the
WebWriter II Editor, an interactive editor that runs in
any browser that supports frames and the JavaScript
language [8].

The user adds application behavior using the
WebWriter II Editor by writing scripts that will
be run either on the server or in the browser. Users
without programming experience can add behavior
by selecting a built-in program and filling in details
for that program. For example, the user can select
the built-in file listing program and fill in a form to
specify how to determine which files to list.

In addition to the Editor, the WebWriter system

0169-7552/97/$17.00 0 1997 Published by Elsevier Science B.V. All rights reserved.
PII SO169-7552(97)00064-O

Facebook's Exhibit No. 1029
Page 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1508 A. Crespo et al. /Computer Networks and ISDN Systems 29 (1997) 1507-1517

includes the WebWriter Page Generator, a server-
based CGI service that creates new pages as a
WebWriter-built application runs. Because they use
the Page Generator, applications produced by Web-
Writer run as CGI programs on a web server and
hence can be used from many platforms and in many
web browsers.

1.2. Increasing interactive pe$ormance

The original WebWriter Editor was a CGI pro-
gram so that every interaction with the user had to go
to the server for processing. The interactive speed of
the program was poor due to network delays, startup
time of the server-side script, and whole screen re-
draws at the client after each interaction. In addition,
this solution was not scalable: as the number of users
of the editor increases, the server becomes a bot-
tleneck. This paper describes the architecture of a
new version of the editor (the WebWriter II Editor)
that overcomes these limitations. In this architecture,
which we call the Meteor Shower Application Archi-
tecture, both the web browser and the web server
collaborate in the execution of the WebWriter II
Editor. Operations that need high interactive speed
are performed in the web browser using JavaScript,
while the server executes only the operations that
need server resources or that otherwise cannot be
performed by JavaScript in the browser.

The rest of the paper is organized as follows. First,
we review related work. Then, to give context to
the architecture discussion, we present the user in-
terface of the WebWriter II Editor. We then describe
what happens behind the scenes during a typical ses-
sion with the editor, from starting the editor, to load-
ing and modifying a web page, to finally saving the
page. Having described the way the WebWriter II Ed-
itor works, we generalize these ideas and introduce
the Meteor Shower Application Architecture. Finally,
we discuss the advantages and disadvantages of the
model and give our conclusions and plans for future
work.

2. Related work

There are many systems that divide an interactive
application between a web server and a web browser.

One way to do this is to use a Java applet [5,2]. In
this case, very general programs written in the Java
language are downloaded to a browser where they
can interact at high speed with the user. We chose
JavaScript over Java in the WebWriter II Editor for
several reasons, including:
(1) Browsers can already display formatted HTML.

We did not want to duplicate this function-
ality in Java. In the first place, it would be
more work. In the second place, by using the
browser’s formatting we take advantage of any
improvements in that formatting without having
to update our code. Finally, for users who want
to preview their HTML page in a particular
browser, our implementation allows them to do
this just by running WebWriter in the browser
in question.

(2) We anticipated that building our control panel
components as fragments of HTML would
be less work than building them as calls on
the java _ awt toolkit (Java’s Abstract Win-
dow Toolkit) [6] or the subArctic user interface
toolkit [4].

(3) Java applets must specify a fixed rectangle as
their size. We wanted to allow the user to resize
the WebWriter editing region just by resizing
the browser. This is easily done using frames.

(4) By using JavaScript, we avoid the need to com-
pile our code as we change it, so we can try out
new versions of WebWriter very quickly.

Our architecture is similar in some respects to
that used by the Krakatoa Chronicle [7]. Like the
WebWriter II Editor, the Krakatoa Chronicle down-
loads a document (in this case a set of newspaper
articles) to the browser which is then formatted at the
browser for reading. Unlike the Krakatoa Chronicle,
our system uses the native formatting capabilities of
the browser, is implemented as a set of JavaScript-
containing HTML pages, that are loaded into frames
on demand.

Also similar is Netscape’s PowerStart [9], a mul-
tiple page, multiple frame JavaScript application
for creating a home page. The constructed page,
based on a small set of templates, is saved as a set
of preferences in a browser cookie, and is recre-
ated from that cookie on subsequent visits. Unlike
PowerStart, the WebWriter II Editor provides di-
rect manipulation editing, can create general web

Facebook's Exhibit No. 1029
Page 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A. Crespo et al./Computer Nehvorks and ISDN Systems 29 (1997) 1507-1517 1509

pages that can include forms and behavior, and uses
the server for file operations and large processing
tasks.

Other ways to provide interactive applications ac-
cessible from the web include helper applications
and plug-ins, using, for example Mosaic CCI, the
Netscape plug-in API, or Microsoft Active X. As
with Java applets, we rejected these methods because
we wanted to take advantage of the HTML format-
ting capabilities of the browser itself. In addition,
plug-ins and helper applications must, in general,
be written for a particular platform or browser; we
wanted a system that would work on many browsers
and platforms.

3. The WebWriter II Editor user interface

Before describing the architecture, we briefly
present the main user interface elements of the new
WebWriter II Editor. Fig. 1 shows a typical screen.

The editor consists of five frames tiling the
browser window (see Fig. 2). The top level page
is invisible to the user; it contains the frameset (the
HTML description of the sizes and positions of the
five frames inside the browser window), the global
JavaScript functions and data structures of the edi-

tor. The title frame holds the WebWriter logo. The
preview frame contains the page that is being edited.
The general controls frame provides file and stack
operations and cut/copy/paste editing. The object in-
sertion controlsframe contains controls for inserting
HTML elements. We refer to an HTML element in
the preview frame as an “object”. The objecr proper-
ties frame contains commands that are specific to the
currently selected object.

In editing mode, the WebWriter II Editor displays
the current page as interpreted HTML together with
additional images, called handles, as shown in Fig. 3.
Handles are used to select an object; red handles in-
dicate the currently selected object, and the blinking
black bar next to the red handle is the insertion point.
Selecting an object causes that object’s properties to
appear in the object properties frame, where they can
be examined and changed. To insert an object, the
user selects it in the insertion control frame and fills
in its properties.

There are many more facilities available in the
WebWriter II Editor, including those for copying and
pasting HTML, managing multiple page applications
(“stacks”), and specifying behavior to execute when
buttons are pressed on the page. For a detailed
description of the original WebWriter Editor from
the user’s point of view, see [3].

Fig. I. The WebWriter II Editor

Facebook's Exhibit No. 1029
Page 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1510 A. Crespo et al. /Computer Networks ana’ ISDN Systems 29 (1997) 1507-1517

Title
General Contml

Preview

Object Insertion
controls

Fig. 2. WebWriter II Editor frames.

0 bject Properties

Top Level Page

*

e The WebWriter Editora
a*
b What am bedoneh WebWxiterM
**

Fig. 3. Handles (grey and red shapes) and the insertion point
(vertical black bar to the right of the word ‘Editor”).

4. The WebWriter II Editor architecture

The WebWriter Editor was re-designed in order
to improve its interactive performance and to reduce
screen clutter. As mentioned earlier, the original
WebWriter Editor was implemented as a CGI script,
in which every handle selection and button press was
handled by the server. The user then had to wait
for network travel, CGI startup, and complete re-
layout and redrawing of the browser window. Since
the WebWriter Editor was designed as an interac-
tive, direct manipulation application, nearly every
click of the mouse incurred this delay. Exacerbat-
ing the situation is the use by WebWriter Editor of
many control elements surrounding the actual page
elements being previewed - handles and insertion
points approximately tripled the number of non-text

elements involved in layout and display. Even when
WebWriter was running on a local web server on
a very fast machine, the delay caused by a simple
interface operation (selecting a handle, for exam-
ple) was still several seconds long. Although sev-
eral seconds is acceptable for operations that users
expect to require some computation, this is much
slower than the near-instantaneous response for in-
terface-level operations in typical non-web graphical
applications.

To make the WebWriter II Editor more usable, we
focused on improving response time for interface op-
erations, as well as improving the interface itself. We
accomplished this in three parts: dividing process-
ing, as appropriate, between a CGI script running
on the web server and JavaScript functions running
on the client browser; segmenting the interface into
individually reloadable pages using multiple frames;
and replacing images in place to reflect changes
in state. The result is an editor in which response
times for many operations are nearly instantaneous,
and are comparable to those of standalone, non-web
applications.

4.1. Selectively dividing processing between server
and client

Browser scripting languages like JavaScript en-
able dynamic behavior without the overhead of traf-

Facebook's Exhibit No. 1029
Page 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

A. Crespo et al./Computer Networks and ISDN Systems 29 (1997) 1507-1517 1511

fit over the network. The new WebWriter II Editor
was designed to use JavaScript to provide fast inter-
active behavior, resorting to the overhead of a CGI
call only when server resources are needed, or when
JavaScript cannot reasonably provide the behavior
required. For example, computationally intensive op-
erations may be technically feasible in JavaScript but
run very slowly. In that case, the overhead of a CGI
call (including network traffic and page redisplay) is
worth the savings in processing time.

Of the 23 modules composing the WebWriter II
Editor, four of the modules are CGI scripts written
in the Python programming language [lo] and run
in the server. The remaining 19 modules are HTML
pages enhanced with JavaScript. Only five of the
HTML modules are active at once, one in each of the
WebWriter frames.

The CGI modules provide server-side services
such as loading files, parsing HTML, saving files,
and setting up the environment for the HTML mod-
ules at start up. The JavaScript modules handle
displaying the edited page in the preview frame,
selecting the current object, editing and insertion
of HTML objects, and copying and pasting of ob-
jects.

In the following sections, we will show how pro-
cessing is directed to the server and to the client
as these basic tasks are performed: starting the Web-
Writer II Editor, loading and saving an HTML pages,
and displaying and modifying the page.

4.1.1. Startup: using the server to create the HTML
environment

The user starts the WebWriter II Editor by in-
voking a CGI script at the server. The server-side
CGI script creates an HTML page with three com-
ponents: global JavaScript functions, calls to build
the JavaScript global data structures, and the def-
inition of the frameset, as shown in Fig. 4. The
global functions provide an interface to the global
data structures, and provide common functionality
needed by all modules. The global data includes the
document tree, which holds the elements of the page
that the user is editing, and global status informa-
tion such as the position of the insertion point. The
frameset defines the position and properties of the
frames, as well as the URLs of their initial con-
tents.

Fig. 4. The server downloads functions, global data structures,
and the component frames to the browser.

Browser

him1

Server

Fig. 5. The server startup meteor shower.

When the browser receives the HTML page gen-
erated by the server, it interprets the page by run-
ning the JavaScript function definitions, creating the
JavaScript document tree and storing it at the top-
level browser window. Then, it creates the frames
and requests from the server the content of each
frame, starting a “meteor shower” of HTML pages
from the server to the browser, as shown in Fig. 5.

The HTML page sent to a frame could be static
HTML (such as the one used in the title frame)
or an HTML page that includes JavaScript code.
Pages with JavaScript code can collaborate with
one another via global data structures and functions
placed in the top level page of the browser. For
example, the HTML page loaded in the preview
frame contains a script that translates the document
tree stored at the top window level into an HTML
representation with handles.

Facebook's Exhibit No. 1029
Page 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

