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V
ideo has become an important ele-
ment of multimedia computing and 
communication environments, with 
applications as varied as broadcast-

ing, education, publishing, and military intelli-
gence. However, video will only become an 
effective part of everyday computing environ-
ments when we can use it with the same facility 
that we currently use text. Computer literacy 
today entails the ability to set our ideas down 
spontaneously with a word processor, perhaps 
while examining other text documents to devel-
op those ideas and even using editing operations 
to transfer some of that text into our own com-
positions. Similar composition using video 
remains far in the future, even though worksta-
tions now come equipped with built-in video 
cameras and microphones, not to mention ports 
for connecting our increasingly popular hand-
held video cameras. 

Why is this move to communication incorpo-
rating video still beyond our grasp? The problem is 
that video technology has developed thus far as a 
technology of images. Little has been done to help 
us use those images effectively. Thus, we can buy a 
camera that "knows" all about how to focus itself 
properly and even how to compensate for the fact 
that we can rarely hold it steady without a tripod. 
But no camera knows "where the action is" during 
a basketball game or a family reunion. A camera 
can give us a clear shot of the ball going through 
the basket, but only if we find the ball for it. 

The point is that we do not use images just 
because they are steady or clearly focused. We use 
them for their content. If we wish to compose 
with images in the same way that we compose  

with words, we must focus our attention on con-
tent. Video composition should not entail think-
ing about image "bits" (pixels), any more than 
text composition requires thinking about ASCII 
character codes. Video content objects include 
basketballs, athletes, and hoops. Unfortunately, 
state-of-the-art software for manipulating video 
does not "know" about such objects. At best, it 
"knows" about time codes, individual frames, and 
clips of video and sound. To compose a video doc-
ument—or even just incorporate video as part of 
a text document—we find ourselves thinking one 
way (with ideas) when we are working with text 
and another (with pixels) when we are working 
with video. The pieces do not fit together effec-
tively, and video suffers for it. 

Similarly, if we wish to incorporate other text 
material in a document, word processing offers a 
powerful repertoire of techniques for finding what 
we want. In video, about the only technique we 
have is our own memory coupled with some intu-
ition about how to use fast forward and fast 
reverse buttons while viewing. 

The moral of all this is that the effective use of 
video is still beyond our grasp because the effec-
tive use of its content is still beyond our grasp. 
How can we remedy this situation? At the 
Institute of Systems Science of the National 
University of Singapore, the Video Classification 
project addresses this question. We are currently 
tackling problems in four areas: 

I 	Defining an architecture that characterizes the 
tasks of managing video content. 

I Developing software tools and techniques that 
identify and represent video content. 

I Applying knowledge representation techniques 
to the development of index construction and 
retrieval tools. 

I Developing an environment for interacting 
with video objects. 

In this article, we discuss each of these problem 
areas in detail, then briefly review a recent case 
study concerned with content analysis of news 
videos. We conclude with a discussion of our 
plans to extend our work into the audio domain. 

Architecture for video management 
Our architecture is based on the assumption 

that video information will be maintained in a 
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tively, and video suffers for it. 

Similarly, if we wish to incorporate other text 
material in a document, word processing offers a 
powerful repertoire of techniques for finding what 
we want. In video, about the only technique we 
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reverse buttons while viewing. 

The moral of all this is that the effective use of 
video is still beyond our grasp because the effec- 
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How can we remedy this situation? At the 
Institute of Systems Science of the National 
University of Singapore, the Video Classification 
project addresses this question. We are currently 
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I Defining an architecture that characterizes the 
tasks of managing video content. 

I Developing software tools and techniques that 
identify and represent video content. 

I Applying knowledge representation techniques 
to the development of index construction and 
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areas in detail, then briefly review a recent case 
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Figure 1. Diagram of 
video management 
architecture. 

database.' This assumption requires us to define 
tools for the construction of such databases and 
the insertion of new material into existing data-
bases. We can characterize these tools in terms of 
a sequence of specific task requirements:  

basic units for indexing. The second set identifies 
different manifestations of camera technique in 
these clips. The third set applies content models 
to the identification of context-dependent seman-
tic primitives. 

I Parsing, which segments the video stream into 
generic clips. These clips arc the elemental index 
units in the database. Ideally, the system decom-
poses individual images into semantic primitives. 
On the basis of these primitives, a video clip can 
be indexed with a semantic description using 
existing knowledge-representation techniques. 

I Indexing, which tags video clips when the sys-
tem inserts them into the database. The tag 
includes information based on a knowledge 
model that guides the classification according to 
the semantic primitives of the images. Indexing is 
thus driven by the image itself and any semantic 
descriptors provided by the model. 

I Retrieval and browsing, where users can access 
the database through queries based on text and/or 
visual examples or browse it through interaction 
with displays of meaningful icons. Users can also 
browse the results of a retrieval query. It is impor-
tant that both retrieval and browsing appeal to 
the user's visual intuition. 

Figure 1 summarizes this task analysis as an 
architectural diagram. The heart of the system is 
a database management system containing the 
video and audio data from video source material 
that has been compressed wherever possible. The 
DBMS defines attributes and relations among 
these entities in terms of a frame-based approach 
to knowledge representation (described further 
under the subhead "A frame-based knowledge 
base," p. 65). This representation approach, in 
turn, drives the indexing of entities as they are 
added to the database. Those entities are initially 
extracted by the tools that support the parsing 
task. In the opposite direction, the database con-
tents are made available by tools that support the 
processing of both specific queries and the more 
general needs of casual browsing. 

The next three sections discuss elements of this 
architecture in greater detail. 

Video content parsing 

Three tool sets address the parsing task. The 
first set segments the video source material into 
individual camera shots, which then serve as the 

Locating camera shot boundaries 

We decided that the most viable segmentation 
criteria for motion video are those that detect 
boundaries between camera shots. Thus, the (-am-
era shot—consisting of one or more frames gener-
ated and recorded contiguously and representing 
a continuous action in time and space—becomes 
the smallest unit for indexing video. The simplest 
shot transition is a camera cut, where the bound-
ary lies between two successive frames. More 
sophisticated transition techniques include dis-
solves, wipes, and fade-outs—all of which take 
place over a sequence of frames. 

In any case, camera shots can always be distin-
guished by significant qualitative differences. If we 
can express those differences by a suitable quan-
titative measure, then we can declare a segment 
boundary whenever that measure exceeds a given 
threshold. The key issues in locating shot bound-
aries, therefore, are selecting suitable difference 
measures and thresholds, and applying them to 
the comparison of video frames. We now briefly 
review the segmentation techniques we currently 
employ. (For details, see Zhang et al.2) 

The most suitable measures rely on compar-
isons between the pixel-intensity histograms of 
two frames. The principle behind this metric is 
that two frames with little change in the back-
ground and object content will also differ little in 
their overall intensity distributions. Further 
strengthening this approach, it is easy to define a 
histogram that effectively accounts for color infor-
mation.' We also developed an automatic 
approach to detect the segmentation threshold on 
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the basis of statistics of frame difference values 
and a multipass technique that improves process-
ing speed.' 

Figure 2 illustrates a typical sequence of differ-
ence values. The graph exhibits two high pulses 
corresponding to two camera breaks. It also illus-
trates a gradual transition occurring over a 
sequence of frames. In this case, the task is to 
identify the sequence start and end points. As the 
inset in Figure 2 shows, the difference values dur-
ing such a transition are far less than across a cam-
era break. Thus, a single threshold lacks the power 
to detect gradual transitions. 

A so-called twin-comparison approach solves 
this problem. The name refers to the use of two 
thresholds. First, a reduced threshold detects the 
potential starting frame of a transition sequence. 
Once that frame has been identified, it is com-
pared against successive frames, thus measuring 
an accumulated difference instead of frame-to-
frame differences. This accumulated difference 
must be monotonic. When it ceases to be monot-
onic, it is compared against a second, higher 
threshold. If this threshold is exceeded, we con-
clude that the monotonically increasing sequence 
of accumulated differences corresponds to a grad-
ual transition. Experiments have shown this 
approach to be very effective.' 

Shot classification 

Before a system can parse content, it must first 
recognize and account for artifacts caused by cam-
era movement. These movements include pan-
ning and tilting (horizontal or vertical rotation of 
the camera) and zooming (focal length change), 
in which the camera position does not change, 
and tracking and booming (horizontal and verti-
cal transverse movement of the camera) and dol-
lying (horizontal lateral movement of the  

camera), in which the camera position does 
change.4  These operations may also occur in com-
binations. They are most readily detected through 
motion field analysis, since each operation has its 
own characteristic pattern of motion vectors. For 
example, a zoom causes most of the motion vec-
tors to point either toward or away from a focus 
center, while movement of the camera itself 
shows up as a modal value across the entire 
motion field. 

The motion vectors can be computed by the 
block-matching algorithms used in motion com-
pensation for video compression. Thus, a system 
can often retrieve the vectors from files of video 
compressed according to standards such as MPEG 
and H.261. The system could also compute them 
in real time by using chips that perform such 
compression in hardware. 

Content models 

Content parsing is most effective with an a pri-
ori model of a video's structure.' Such a model can 
represent a strong spatial order within the indi-
vidual frames of shots and/or a strong temporal 
order across a sequence of shots. News broadcasts 
usually provide simple examples of such models. 
For example, all shots of the anchorperson 
conform to a common spatial layout, and the 
temporal structure simply alternates between the 
anchorperson and more detailed footage (possibly 
including breaks for commercials). 

Our approach to content parsing begins with 
identifying key features of the image data, which 
are then compared to domain models to identify 
objects inferred to be part of the domain. We then 
identify domain events as segments that include 
specific domain objects. Our initial experiments 
involve models for cut boundaries, typed shots, 
and episodes. The cut boundary model drives the 
segmentation process that locates camera shot 
boundaries. Once a shot has been isolated 
through segmentation, it can be compared against 
type models based both on features to be detect-
ed and on measures that determine acceptable 
similarity. Sequences of typed shots can then be 
similarly compared against episode models. We 
discuss this in more detail later, under "Case study 
of video content analysis." 

Index construction and retrieval tools 
The fundamental task of any database system 

is to support retrieval, so we must consider how to 
build indexes that facilitate such retrieval services 
for video. We want to base the index on semantic 
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For example, all shots of the anchorperson 
conform to a common spatial layout, and the 
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anchorperson and more detailed footage (possibly 
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Our approach to content parsing begins with 
identifying key features of the image data, which 
are then compared to domain models to identify 
objects inferred to be part of the domain. We then 
identify domain events as segments that include 
specific domain objects. Our initial experiments 
involve models for cut boundaries, typed shots, 
and episodes. The cut boundary model drives the 
segmentation process that locates camera shot 
boundaries. Once a shot has been isolated 
through segmentation, it can be compared against 
type models based both on features to be detect- 
ed and on measures that determine acceptable 
similarity. Sequences of typed shots can then be 
similarly compared against episode models. We 
discuss this in more detail later, under “Case study 
of video content analysis.” 

Index construction and retrieval tools 
The fundamental task of any database system 

is to support retrieval, so we must consider how to 
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properties, rather than lower level features. A 
knowledge model can support such semantic 
properties. The model for our system is a frame-
based knowledge base. In the following discus-
sion, the word "frame" refers to such a knowledge 
base object rather than a video image frame. 

A frame-based knowledge base 
An index based on semantic properties requires 

an organization that explicitly represents the var-
ious subject matter categories of the material 
being indexed. Such a representation is often real-
ized as a semantic network, but text indexes tend 
to be structured as trees (as revealed by the indent-
ed representations of most book indexes). We 
decided that the more restricted tree form also 
suited our purposes. 

Figure 3 gives an example of such a tree. It rep-
resents a selection of topical categories taken from 
a documentary video about the Faculty of Engi-
neering at the National University of Singapore. 
The tree structure represents relations of special-
ization and generalization among these cate-
gories. Note, in particular, that categories 
correspond both to content material about stu-
dent activities (Activity) and to classifications of 
different approaches to producing the video 
(Video_Types). 

Users tend to classify material on the basis of 
the information they hope to extract. This partic-
ular set of categories reflects interest both in the 
faculty and in documentary production. Thus, the 
purpose of this topical organization is not to clas-
sify every object in the video definitively. Rather, 
it helps users who approach this material with 
only a general set of questions, orienting them in 
how to formulate more specific questions and 
what sorts of answers to expect. 

The frame-based knowledge base is the most 
appropriate technology for building such a struc-
ture.' The frame is a data object that plays a role 
similar to that of a record in a traditional database. 
However, frames are grouped into classes, each of 
which represents some topical category. As Figure 
3 illustrates, these classes tend to be organized in a 
specialization hierarchy. Such a hierarchy allows 
the representation of content in terms of one or 
more systems of categories that can then be used 
to focus attention for a variety of tasks. 

The simplest of these tasks is the casual brows-
ing of collections of items. However, hierarchical 
organization also facilitates the retrieval of specif-
ic items that satisfy the sorts of constraints nor-
mally associated with a database query. Like the  

records of a database, frames are structured as a 
collection of fields (usually called slots in frame-
based systems). These slots provide different ele-
ments of descriptive information, and the 
elements distinguish the topical characteristics for 
each object represented by a frame. 

It is important to recognize that we use frames 
to represent both classes (the categories) and 
instances (the elements categorized). As an exam-
ple of a class frame, consider the Laboratory cate-
gory in Figure 3. We might define the frame for it 
as shown in Figure 4a. Alternatively, we can define 
an instance of one of its subclasses in a slightly 
similar manner as shown in Figure 4b. 

Note that not all slots need to be filled in a class 
definition ("void" indicates an unfilled slot), while 

Name: Laboratory 
SuperClass: Academic 
Subclasses: #table[Computer_Lab 

Electronic_Lab Mechanical_Lab 
Civil_Lab Chemical_Lab] 

Instances: void 
Description: void 
Video: void 
Course: void 
Equipment: void 

Name: Wave_Simulator 
Class: Civil_Lab 
Description: "Monitoring pressure 

variation in breaking waves." 
Video: WaveRreaker_CoverFrame 

Course: Civil_Eng 
Djuipment:#table[Computer 

Wave_Generatorl 
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what sorts of answers to expect. 

The frame-based knowledge base is the most 
appropriate technology for building such a struc- 
t ~ r e . ~  The Fume is a data object that plays a role 
similar to that of a record in a traditional database. 
However, frames are grouped into classes, each of 
which represents some topical category. As Figure 
3 illustrates, these classes tend to be organized in a 
specialization hierarchy. Such a hierarchy allows 
the representation of content in terms of one or 
more systems of categories that can then be used 
to focus attention for a variety of tasks. 

The simplest of these tasks is the casual brows- 
ing of collections of items. However, hierarchical 
organization also facilitates the retrieval of specif- 
ic items that satisfy the sorts of constraints nor- 
mally associated with a database query. Like the 

Scenery 
Convocation 

~ 

records of a database, frames are structured as a 
collection of fields (usually called slots in frame- 
based systems). These slots provide different ele- 
ments of descriptive information, and the 
elements distinguish the topical characteristics for 
each object represented by a frame. 

It is important to recognize that we use frames 
to represent both classes (the categories) and 
instances (the elements categorized). As an exam- 
ple of a class frame, consider the Laboratory cate- 
gory in Figure 3. We might define the frame for it 
as shown in Figure 4a. Alternatively, we can define 
an instance of one of its subclasses in a slightly 
similar manner as shown in Figure 4b. 

Note that not all slots need to be filled in a class 
definition (“void” indicates an unfilled slot), while 

Name : Laboratory 
Superclass: Academic 
Suwlasses: #table[Computer-Lab 

Elect ronic-lab Mechan ical-Lab 
Civil-Lab Chemical-Ldbl 

Instances : void 
Description: vold 
Video: void 
Course: void 
Equipment : void 

Name: Wave-Simulator 
Class: Civil-Ldb 
Description: ”Monitoring plessure 

variation in breaklny waves. ” 
Video: WdveBreaker-CoverFldme 
Course : 
Equipment : ittable [Corrputer 

C i  v L I-Enq 

v e-& ne L c i  t o 1 I 

Figure 3. A tree 
structure of topical 
categories for a 
documentary video 
about engineering a t  the 
National University of 
Singapore. 

Figure 4. Examples of 
class frame Laboratory 
(top) and subclass 
instance 
Wave-Simulator 
(bottom). 
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a slot's type into 
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search it. 

they do all tend to be filled in instances. Also note 
that a slot can be filled by either a single value or 
a collection of values (indicated by the "#table 
[.. .1" construct). 

For purposes of search, it is also important to 
note that some slots, such as Name, SuperClass, 
SubClasses, Instances, and Class, exist strictly for 
purposes of maintaining a system of frames. The 
remaining slots, such as Description, Video, 
Course, and Equipment, are responsible for the 
actual representation of content. These latter slots 
are thus the objective of all search tasks. 

Most frame-based knowledge 
bases impose no restrictions on the 
contents of slots: Any slot can 
assume any value or set of values. 
However, the search objective can be 
facilitated by strongly typing all slots. 
The system could enforce such a con-
straint through an "if-added" demon 
that does not allow a value to be 
added to a slot unless it satisfies some 
data typing requirement. For exam-
ple, if Shot is a class whose instances 
represent individual camera shots 
from a video source, then only values 
that are instances of the Shot class 
can be added to the Video slot in 
frames such as those in Figure 4. 

Data typing can determine 
whether or not any potential slot 
value is a frame, and it might even be 
able to distinguish class frames from 
instance frames. However, we can 
make typing even more powerful if 

we extend it to deal with classes as if they were data 
types. In this case, type checking would verify not 
only that every potential Video slot value is an 
instance frame but, more specifically, that it is an 
instance of the Shot class. Furthermore, we could 
subject slot values for instances of more specific 
classes to even more restrictive constraints. Thus, 
we might constrain the Video slot of the Headings 
frame to check whether or not the content of a rep-
resentative frame of the Shot instance being 
assigned consists only of characters. (We could fur-
ther refine this test if we knew the fonts used to 
compose such headings.) 

What is important for retrieval purposes is that 
we can translate knowledge of a slot's type into 
knowledge of how to search it. We can apply dif-
ferent techniques to inspecting the contents of 
different slots, and we can combine those tech-
niques by means far more sophisticated than the  

sorts of combinations normally associated with 
database query operations. 

Retrieval tools 

Let us now consider more specifically how we 
can search frames given a priori knowledge of the 
typing of their slots. Because a database is only as 
good as the retrieval facilities it supports, it must 
have a variety of tools, based on both text and 
visual interfaces. Our system's current suite of 
tools includes a free-text query engine and inter-
face, the tree display of the class hierarchy, image 
feature-based retrieval tools, and the Clipmap. 

Every frame in the knowledge base includes a 
Description slot with a text string as its contents. 
Thus, the user can provide text descriptions for all 
video shots in the database. The free-text retrieval 
tool retrieves video shots on the basis of the 
Description slot contents. A concept-based 
retrieval engine analyzes the user's query.' Given 
a free-text query specified by the user, the system 
first extracts the relevant terms by removing the 
nonfunctional words and converting those 
remaining into stemmed forms. The system then 
checks the query against a domain-specific the-
saurus, after which it uses similarity measures to 
compare the text descriptions with the query 
terms. Frames whose similarity measure exceeds a 
given threshold are identified and retrieved, lin-
early ordered by the strength of the similarity. 

In addition to using free text, we can formulate 
queries directly on the basis of the category tree 
itself. This tree is particularly useful in identifying 
all shots that are instances of a common category 
at any level of generalization. We can then use the 
tree to browse instances of related categories. The 
class hierarchy also allows for slot-based retrieval. 
Free-text retrieval provides access to Description 
slots, but we can search on the basis of other slots 
as well. For example, we can retrieve slots whose 
contents are other frames through queries based 
on their situation in the class hierarchy. We can 
compare slots having numeric values against 
numeric intervals. Furthermore, if we want to 
restrict a search to the instances of a particular 
class, then the class hierarchy can tell us which 
slots can be searched and what types of data they 
contain. 

Retrieval based on the contents of Video slots 
will require computation of characteristic visual 
features. As an example, a user examining a video 
of a dance performance should be able to retrieve 
all shots of a particular dancer on the basis of cos-
tume color. Retrieval would then require con- IE
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they do all tend to be filled in instances. Also note 
that a slot can be filled by either a single value or 
a collection of values (indicated by the ”#table 
[...I” construct). 

For purposes of search, it is also important to 
note that some slots, such as Name, Superclass, 
Subclasses, Instances, and Class, exist strictly for 
purposes of maintaining a system of frames. The 
remaining slots, such as Description, Video, 
Course, and Equipment, are responsible for the 
actual representation of content. These latter slots 
are thus the objective of all search tasks. 

of how to 

search it. 

Most frame-based knowledge 
bases impose no restrictions on the 
contents of slots: Any slot can 
assume any value or set of values. 
However, the search objective can be 
facilitated by strongly typing all slots. 
The system could enforce such a con- 
straint through an “if-added” demon 
that does not allow a value to be 
added to a slot unless it satisfies some 
data typing requirement. For exam- 
ple, if Shot is a class whose instances 
represent individual camera shots 
from a video source, then only values 
that are instances of the Shot class 
can be added to the Video slot in 
frames such as those in Figure 4. 

Data typing can determine 
whether or not any potential slot 
value is a frame, and it might even be 
able to distinguish class frames from 
instance frames. However, we can 
make typing even more powerful if 

we extend it to deal with classes as if they were data 
types. In this case, type checking would verify not 
only that every potential Video slot value is an 
instance frame but, more specifically, that it is an 
instance of the Shot class. Furthermore, we could 
subject slot values for instances of more specific 
classes to even more restrictive constraints. Thus, 
we might constrain the Video slot of the Headings 
frame to check whether or not the content of a rep- 
resentative frame of the Shot instance being 
assigned consists only of characters. (We could fur- 
ther refine this test if we knew the fonts used to 
compose such headings.) 

What is important for retrieval purposes is that 
we can translate knowledge of a slot’s type into 
knowledge of how to search it. We can apply dif- 
ferent techniques to inspecting the contents of 
different slots, and we can combine those tech- 
niques by means far more sophisticated than the 

sorts of combinations normally associated with 
database query operations. 

Retrieval tools 
Let us now consider more specifically how we 

can search frames given a priori knowledge of the 
typing of their slots. Because a database is only as 
good as the retrieval facilities it supports, it must 
have a variety of tools, based on both text and 
visual interfaces. Our system’s current suite of 
tools includes a free-text query engine and inter- 
face, the tree display of the class hierarchy, image 
feature-based retrieval tools, and the Clipmap. 

Every frame in the knowledge base includes a 
Description slot with a text string as its contents. 
Thus, the user can provide text descriptions for all 
video shots in the database. The free-text retrieval 
tool retrieves video shots on the basis of the 
Description slot contents. A concept-based 
retrieval engine analyzes the user’s query.6 Given 
a free-text query specified by the user, the system 
first extracts the relevant terms by removing the 
nonfunctional words and converting those 
remaining into stemmed forms. The system then 
checks the query against a domain-specific the- 
saurus, after which it uses similarity measures to 
compare the text descriptions with the query 
terms. Frames whose similarity measure exceeds a 
given threshold are identified and retrieved, lin- 
early ordered by the strength of the similarity. 

In addition to using free text, we can formulate 
queries directly on the basis of the category tree 
itself. This tree is particularly useful in identifying 
all shots that are instances of a common category 
at any level of generalization. We can then use the 
tree to browse instances of related categories. The 
class hierarchy also allows for slot-based retrieval. 
Free-text retrieval provides access to Description 
slots, but we can search on the basis of other slots 
as well. For example, we can retrieve slots whose 
contents are other frames through queries based 
on their situation in the class hierarchy. We can 
compare slots having numeric values against 
numeric intervals. Furthermore, if we want to 
restrict a search to the instances of a particular 
class, then the class hierarchy can tell us which 
slots can be searched and what types of data they 
contain. 

Retrieval based on the contents of Video slots 
will require computation of characteristic visual 
features. As an example, a user examining a video 
of a dance performance should be able to retrieve 
all shots of a particular dancer on the basis of cos- 
tume color. Retrieval would then require con- 
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