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rsus network size for various networks. 

4) Numeric Results and Comparisons: The normalized through- 
puts of the B-networks of various sizes are shown in Fig. 5 together 
with those of other networks.’ It shows that the normalized through- 
puts of the B-network are significantly higher than those of the 
crossbar, regular MIN’s,’ and the gamma network. The B-network’s 
higher performance than the crossbar’s is due to the elimination of 
memory conflicts via backward links at the last stage. 

Fig. 5 also shows that the throughputs of the B-network are much 
higher than those of single-buffered regular MIN’s. In buffered net- 
works, the routing decision cannot be made locally at an SE, because 
the decision for a packet to move forward at one stage depends on 
the buffer states of all the remaining stages of the network [8], [7]. 
In the B-network, however, the routing decision is made locally at 
each SE. Moreover, each input (or output) port of an SE in buffered 
networks needs buffers as well as additional links to receive/pass the 
control signals (to prevent the overrun of the buffers). Considering 
these facts, the B-network can be a very cost-effective alternative to 
single-buffered networks. 

IV. CONCLUSION 

~ 
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A new multistage interconnection network, the B-network, which 
employs backward links has been proposed and analyzed. A back- 
ward link provides an alternate path for a blocked request at a 
switch or memory. The bandwidth, the acceptance probability, and 
the throughput of the B-network have been analyzed. The B-network 
has been shown to exhibit much higher bandwidths and through- 
puts than the gamma network, single-buffered regular MIN’s based 
on (2 x 2)  switches, and the crossbar switches, while its hardware 

I The values for the buffered regular MIN are from [8] and [ l l ] ,  and the 
values for the gamma network are from [ 111. The buffered regular MIN 
denotes the single-buffered MIN based on (2 x 2) switches. 

MIN’s such as the omega, the regular SW banyan, the baseline. and delta 
networks based on (2 x 2) switches. 
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cost is the same as that of the gamma network. The B-network is 
controlled by the destination tag control scheme. 

We were somewhat surprised by the performance results of the 
B-network exceeding those of the crossbar switch. The high perfor- 
mance is the combined effects of many causes: 1) the backward links 
function as implicit buffers, 2) the backward links at the very last 
switching stage of the B-network can handle memory contentions, 
which cannot be handled by the crossbar switch, 3) the original 
gamma network, on which the B-network is based, connects one 
network input point to a switch, effectively reducing the network 
input request rate. 
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Analysis of Checksums, Extended-Precision Checksums, and 
Cyclic Redundancy Checks 

NIRMAL R. SAXENA AND EDWARD J. McCLUSKEY 

Absfract - This paper presents an extensive analysis of the effectiveness 
of extended-precision checksums. It is demonstrated that the extended- 
precision checksums most effectively exploit natural redundancy occur- 
ring in program codes. Honeywell checksums and cyclic redundancy 
checks are compared to extended-precision checksums. Two’s comple- 
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ment, unsigned, and one's complement arithmetic checksums are treated 
in a unified manner. Results are also extended to any general radix? 
arithmetic checksum. Asymptotic and closed form formulas of aliasing 
probabilities for the various error models are derived. 

denoted as [ A I ,  A2, .  . . ,AS]'. Block ( n ,  S )  can also be defined in 
terms of columns. Block ( n ,  S )  is a block of n ,  length S, columns 
and is denoted as [c,, c, - 1  , . . , C I ] .  

Definition 4: The checksum K of an ( n ,  S) block is given by 

n S 

Index Terms- Aliasing probability, checksums, cyclic redundancy K = IC, I = IA, I.  
check, generating functions, linear feedback shift registers. , = I  , = I  

I. INTRODUCTION 
Checksums are considered one of the least expensive methods of 

error detection. These methods are used for detecting errors in stor- 
age and transmission of data. System firmware or recovery routines 
in most of the commercial computer systems are checksum-protected 
[I]. The checksum of a block of words is formed by adding to- 
gether all of the words in the block modulo-m, where m is arbitrary. 
These words could be data in memory or instructions in a checksum- 
protected code. The choice of m limits the number of bits in the 
checksum. This computed checksum validates the data or code in- 
tegrity. Since checksums are essentially a form of compaction, error 
masking can occur. The metric used to quantify the effectiveness 
of checksums is the error masking probability (aliasing probability) 
under various error models. 

Analysis of the effectiveness of checksums in [2] and [3] has 
largely been based on unidirectional errors. The detection of double 
and triple errors in low cost arithmetic codes has been analyzed in 
[4]. A closed form expression for the probability of checksum vio- 
lation, assuming independent errors, appears in [5]. Error detection 
in serial transmission by arithmetic checksum, as an alternative to 
cyclic redundancy check (CRC), has been considered in [6]. The 
use of checksums is also considered in watchdog processors [7]. 

However, one problem that has not been examined in detail is 
the effectiveness of checksums under extended-precision arithmetic. 
Extended-precision checksums are described in [ 11, but their ef- 
fectiveness has not been quantified. The effectiveness of extended- 
precision checksums as a function of the static distribution of in- 
struction words in a program code is examined in Section 111. The 
extended-precision checksums are effective when the static distribu- 
tion of instructions is not uniform. Actual measurements on some 
firmware code show nonuniform distribution of instructions and it is 
believed that, in general, this will be true for other program codes. 
Results reported in [8] suggest this nonuniform distribution. 

Restricted column errors or restricted word errors are analyzed. 
The motivation for this analysis is that some failures [2] in storage 
devices can be modeled as restricted column or word errors. The 
generating function presented in Section I1 provides a framework to 
analyze unsigned, two's complement, and one's complement arith- 
metic checksums. Results are extended to any general radix-p arith- 
metic checksums. 

11. GENERATING F~SCTION 
In this section, a generating function f(X) is defined after the 

following definitions. 
Definition I :  An n-bit word A ,  is defined as a string of binary 

symbols U,,, and is denoted as u n , , a n - ~ , ,  ' . , a l , , .  The magnitude 
IA, I of A, is given by 

/All = C 2 " u , , , .  
, = I  

Definition 2: A length S column C, is a column of binary sym- 
bols a, , ,  and is denoted by [a,, I ,  a,, 2 , .  . . ,u , ,s lT.  The magnitude 
IC, I of C ,  is given by 

S 

i = l  

Definition 3: Block ( n ,  S) is a block of S n-bit words Ai and is 

If the addition is performed without any loss of precision then K is 
the extended-precision checksum. K mod 2" and K mod (2" - 1) are 
two's complement and one's complement checksums, respectively. 

Definition 5: C ( S ,  K ,  n )  is defined as the number of possible dis- 
tinct ( n ,  S) blocks that have the same extended-precision checksum 
K .  

The following example illustrates the use of a generating function 
in enumerating C ( S ,  K ,  n). 

Example I :  Let n = 2, S = 4.  Four 2-bit wide words are possi- 
ble. The generating function in this case is 

f(X) = (1 + X  + X 2  + X 3 ) 4  

= XI2 + 4X" + 10X'O + 20X9 + 31X8 + 40X' + 44X6 

+40X5+31X4+20X3+10X2+4X+1. 

There are four possible 2-bit (single-precision) checksum: 0, 1, 
2, and 3. For example, the number of distinct ways of producing 
checksum 1 by adding 4 2-bit words is the sum of the coefficients of 
X I ,  X 5 ,  X 9 .  Adding the coefficients results in 4 + 40 + 20 = 64, 
which is simply 2' x4-2. The same result is obtained for the other 
2-bit checksum values. In the case of extended-precision, modulo-x 
addition is assumed. For example, the number of distinct ways of 
producing checksum 8 under extended-precision is the coefficient of 
X s  which is 3 1. 

Generalizing Example 1: The number of distinct ( n ,  S )  blocks, 
A { ,  . . , A ; ,  having the same checksum K is enumerated by the coef- 
ficient of X K  in f(X). The function f(X) is given by the following 
relation: 

(1) 

ThereareSidenticalfactors,f,=l, . .s = ( l + X + . . . + X 2 " - ' )  , in 
f(X) corresponding to S words. The exponents of X in each factor 
represent 2" distinct values (0, . . ,2" - 1) a word can assume. The 
exponent Ea, of the product of S terms, picking a term from 
each f, , will be the checksum of S words. Therefore, the coefficient, 
denoted by C ( S ,  K ,  n) ,  of X K  in f(X) will be the number of ways 
of obtaining the same checksum K .  

f(X) = (1 + X  + X 2  + . .  . +X2'- ')s .  

The generating function f(X) can also be written as 

Let k' be the number formed by considering only the n least sig- 
nificant bits of K .  Thus, k' is a single-precision checksum and 
0 5 k' 5 2" - 1. The number of distinct blocks of S words that 
produce the same checksum k' is the sum of the coefficients of 
Xk' , Xk'+'' 9 9  . . . Xk'tB'n,  where f i  is the greatest integer less than 
or equal to (S(2n - 1) - k')/2". This number is evaluated by 

B 

(3) 
w = o  

Expression (3) can be evaluated by using a coset counting argument. 
Function f ( X )  can be reinterpreted as 

f ( X )  = (1 + X  + . .  . +X~"- ' ) s - - l ( l  + X  + . . . +x2"--I ). 

Powers of X in ( 1  + X  + . . .  +X2"--1)s-1 can be reduced to 2" 
modulo-2" residue classes: class(O), . . . ,class(i), . . ,class(2" - 1). 
Class(r] contains all those terms of ( 1  + X  + . . +X2'-I)s-'  such 
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that the powers of X are i modulo-2". For every class(r] a unique 
term X j  in (1 + X + . . . + X 2 " - ' )  can be picked such that 

Since the classes exhaust all possible powers of X in ( 1 + X + . . . + 
Xz"- ' ) s - ' ,  the summation CC(S k'+w2",  n )  is simply the sum of 
the coefficients in ( l+X+.  . .+X21-')s- ' .  The foregoing expression 
at X = 1 evaluates to the sum of the coefficients. Therefore, the 
following identities are obtained: 

B 

C C ( S ,  k' + w2", n) = 2ns-n. (4) 
w=o 

From (4), the error masking probability P for single-precision check- 
sums with modulo 2" addition can be derived as 

In the case of single-precision checksums, it is clear that the masking 
probability is independent of the value of k' when all error patterns 
are possible. As shall be seen later, this will not be true for restricted 
classes of errors. Relation (5) also applies for two's complement 
arithmetic; however, for one's complement a different relation is 
obtained. The onset of data dependency as the checksum precision 
is increased from n-bits is illustrated in the next example. By data 
dependency, it is meant that the number of possible ways of obtaining 
a particular checksum not only depends on the type of checksum 
computation but also depends on the checksum value. This will be 
illustrated by Example 2. 

Example 2: Let S = 5, n = 2. The generating function is 

f(X) = (1 +x +x* +X3)5 

= X" + 5X14 + 15XI3 + 35X" + 65X" + 101X'O 

+ 135X9 + 155X8 + 155X7 + 135X6 

+ 101X5 + 65X4 + 35X3 + 15X2 + 5X + 1 .  

Following the approach in Example 1 ,  it can be shown that the num- 
ber of ways of obtaining the same 2-bit checksum is 256. Extending 
the precision of the checksum result by 1 bit, we have modulo-2"+' 
addition. With this new precision, there are eight possible checksums: 
0, . . . ,7. For example, the number of ways of producing checksum 7 
is the sum of the coefficients of X7 and XI5 ,  which is 156 (155 + 1). 
The number of ways of producing checksum 3 is the sum of the 
coefficients of X 3  and X I 1 ,  which is 90 (35 + 65). It can readily 
be seen that the number of ways of producing n + 1 bit precision 
checksum also depends on the checksum value. 

III. EXTENDED-PRECISION CHECKSUMS 
It is easy to show that the checksum value for a block of S n-bit 

wide words cannot exceed S(2" - 1). In a checksum-protected code, 
it is extremely unlikely that S would exceed 2". For instance, in a 32- 
bit computer (n = 32) it is very unlikely that the number of words in 
a checksum-protected code would exceed Z3'. Thus, almost always, 
only a 2n-bit precision result is needed. Furthermore, only an n-bit 
precision adder and a counter to count the overflow carries from 
this n-bit adder is required. The counter is incremented whenever an 
overflow carry is generated by the n-bit adder while computiy the 
checksum. Unbounded precision can be achieved by 11"' an n-bit 
adder and a binary counter of variable length. The number of ways 
checksum K is preserved is simply the coefficient of X K  in the series 
expansion o f f  (X). In this section, exact and asymptotic values of 
the coefficient of X K  are derived. 

Rewriting (2) 

f(X) = ( 1  -X)-S(l  -X2")S 

(6) 
In Example 1 ,  the coefficient ofX"  is 10. The same result is obtained 
using (6). Substituting S = 4 and n = 2 in (6), 

= 286 - 336 +60 = 10. 

C(S ,  K, n) now can be defined recursively. Rewriting ( l ) ,  

f(X) = (1 +x + .. . +X2"-')s-'(l + X  + .  . . +x2'-' ). 
From the above factorization of f(X), the following recurrence re- 
lations are obtained. 

If K > 2" - 1 then 

C(S ,  K,  n) = C ( S  - 1, K,  n ) + . . . + C ( S  - 1, K -2" + 1 ,  n). 

(7) 
I f K  5 2 "  - 1  then 

C(S ,  K, n) = C(S - 1, K,  n) 

+ C ( S - l , K  - l , n ) + . . . + C ( S - l , O , n ) .  (8) 

Some of the boundary conditions for (7) and (8) are as follows: 

C(S ,  0, n) = 1 for all S > 0. 

C(0,  K, n) = 1 if K = 0 else C(0, K,  n) = 0. 

C(1, K,  n) = 1 for all 0 5 K 5 2" - 1 .  

C ( S ,  S(2" - l) ,  n) = 1 .  

The effect of K on error masking is not readily apparent from the 
exact relation (6), unless a simple closed form for C(S ,  K, n) ex- 
ists. It appears that there is no simple closed form expression for 
C(S ,  K,  n); in fact, a special case of this is an open research prob- 
lem in [9].  Therefore, an asymptotic formula for C ( S ,  K, n) is de- 
rived. As a result of this analysis certain important observations with 
regard to checksum-protected codes are made. 

A .  Asymptotic Formula f o r  C(S ,  K, n )  
Functions of the type f(X) belong to a class of functions called 

unimodal functions. The coefficients in the polynomial representa- 
tion of these functions can be approximated by Gaussian distribu- 
tion density functions. The following is an asymptotic approximation 
of C(S ,  K ,  n) 

The following is a sketch of the derivation of the asymptotic formula: 
substituting X = 1 in f(X), 

f(1) = 2"s. 

Define g ( X )  = f ( X ) / f (  1); then g( 1) = 1. 
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2617 3290 x10’* 5619 x10” 36720, 1 
2498 3 167 x10” 5364 xlOl2I 3792O, 

~ 

3140 5571 x10” 6743 xlO”[ 16860, 

~ 

..________ 

The function g ( X )  has the characteristics of a probability gener- 
ating function. The mean p ,  is given by g’(l), and the variance U: 

is given by g”( I )  ~ (g’( I ) ) ?  + g ’ (  I) .  

1 
g’(X)]x,, = - [ S (  1 - x . . . +x*’-’ ) -  s 

2“s 

. (  1 + 2 X . . . + ( 2 ”  

Simplifying the above expression, 

px = S(2” - I). 
2 

Taking the second derivative of g ( X )  and following the above pro- 
cedure the variance U; is obtained. 

The coefficient C ( S ,  K ,  n) can be approximated by (using normal 
distribution) 

The coefficient of X9 in Example 2 can be estimated by (1 1) by sub- 
stituting S = 5, K = 9, and n = 2 .  From expression (1 l ) ,  C(5, 9, 2) 
evaluates to 136.48 which closely agrees with the exact value 135. 
Error masking probability closely relates to C ( S ,  K ,  n ) ;  therefore, it 
strongly depends on the value of K. This is evident from expression 
(11). Modest deviations of K from the mean value, S/2(2” - l ) ,  
can reduce error masking probability significantly. If the data are 
program code then the performance of checksums under extended- 
precision clearly depends on the static instruction distribution. The 
static instruction frequency can influence the checksum value K and 
therefore the error masking probability. 

For extended-precision checksums to be effective it is desirable that 
the static distribution of instructions be nonuniform. Extensive study 
of the distribution of instructions in program codes of the various 
computer architectures has been done in [8]. Results in [8] show a 
nonuniform static distribution of high-level language statements. It is 
quite likely that instructions in the machine code of these high-level 
programs would also have nonuniform distribution characteristics. 

From an information theoretic standpoint most of the program 
codes (at the machine instruction level) have inherent redundancy. 
This is so because not all instruction encodings are meaningful; for 
example, a 32-bit instruction may not have meaning for all 232 en- 
codings of the instruction word. Also, in most of the program codes 
some instructions occur more often than the others. An analogy can 
be drawn with the encoding of decimal digits. Again from an infor- 
mation theoretic standpoint only 3.3219 (log, 10) bits are required 
to represent decimal digits. However, the number of bits must be 
a whole number; therefore, 4 bits are chosen to represent decimal 
digits. This inherent or natural redundancy cannot be avoided if a 
regular representation of decimal numbers is desired. Sometimes this 
natural redundancy is well suited for error detection. In checksum- 
protected program codes, it is highly desirable to have checksum 
values to be far away from the mean value; this will decrease the 
error masking in extended-precision checksums significantly. Next, 
it will be shown how this natural redundancy in program codes can 
be exploited to further enhance error detection in extended-precision 
checksums. 

A typical instruction word is a structured field having an opode ,  
register, and other opode-extension fields. Assume that the opcode 
field is the most significant field in the instruction word. If opcodes 
are assigned such that 

an all zero opcode is assigned to that instruction which has, on 
the average, a high frequency of occurrence in program codes, 

and increasing values of opcodes are assigned to instructions 
that, on the average, occur in decreasing order of the frequency of 
occurrence 

then this will accomplish the task of moving the checksum value away 
from the mean px . Likewise, compilers can be designed to allocate 
registers in the following manner: registers are allocated starting 
with the register which has the smallest allowed binary encoding 
(for example, register 0) and the rest of the registers are allocated 
in increasing order of their binary value. 

In Table I, the measured checksum values of five different 
checksum-protected codes in the HP-9000 series/840 computers are 
listed. The instructions in these codes are based on the HP Preci- 
sion Instruction Set [ 101; these instructions are 32-bit wide. There- 
fore, n = 32 in this case. It is interesting to note that all the mea- 
sured checksum values differ significantly from their respective mean 
values listed in the table. This would make the extended-precision 
checksums very effective. In fact, for code D ,  the extended-precision 
checksums would be most effective. The deviations of the measured 
values are given (Table I) in terms of the standard deviation. The 
deviations are considered significant if they are greater than 3a,. 

B .  Equivalent CRC Length 

One way to quantify the effectiveness of extended-precision check- 
sums is to compare it to CRC. CRC in this case would be equivalent 
to multiple input signature analysis (MISA) [7]. It is known that for 
MISA with signature polynomial degree L the number of masking er- 
rors [I 11 is equal to 2nS-L, when all error patterns are equally likely. 
Masking errors are those errors that escape detection. Equivalent 
CRC length Le is defined similar to that discussed in [ 111. Le is 
the length of the MISA signature register that would mask the same 
number of errors as extended-precision checksums would for a given 
block of data. Following a procedure similar to that discussed in [ 1 I] 
and using expression (1 l ) ,  

(12) 

Le grows as the square of the difference between K and S/2(2“ - 1). 
The number of bits required to store extended-precision checksums is 
at most [log, (S(2“ - 1) + I)]. For example, in code C ,  Le evaluates 
to 1010; the extended-precision checksum value for this code requires 
only 45 bits. Table I1 lists the equivalent lengths for the various codes. 

For values of K close to S/2(2“ - I), CRC would perform better 
than extended-precision checksums. 

Actual measurements on program codes do show significant dif- 
ference between measured K and S/2(2” - 1). 

Conceivably all the node signatures in control flow checking [7] 
could be replaced by extended-precision checksums. However, the 
tradeoff between the cost of adder and the cost of LFSR must be 
considered. 
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TABLE I1 
CRC EQUIVALENT LENGTH -- 

- 44 

I 
- 

242 46 
I 

C. Honeywell Checksums 
The equivalent length measure is also useful in comparing the 

relative effectiveness of extended-precision checksums to Honeywell 
checksums [I], [2]. Honeywell checksums are a modified form of 
double-precision checksums. In Honeywell checksums, all pairs of 
successive words are concatenated and are treated as double-precision 
words. These double-precision words are summed to accumulate a 
double-precision checksum. This is equivalent to analyzing a single- 
precision type checksum where there are S /2  words and each word 
is 2n bits wide. For both S odd or even, the number of possible 
ways (assuming all possible error patterns) of obtaining the same 
Honeywell checksum is 2ns-2n. This can be easily derived by using 
an approach similar to that developed in Section 11. 

The form of the number of masking errors in Honeywell check- 
sums resembles the form of the number of masking errors, 2"s-L, in 
MISA. Therefore, the equivalent length measure can be easily ex- 
tended to Honeywell checksums. When L,  is less than 2n ,  Honeywell 
checksums will be more effective than extended-precision checksums 
(for example, in Codes A ,  B).  However, for cases where Le is 
greater than 2n, extended-precision checksums are more effective. It 
is important to note that a 2n-bit adder is required to compute Hon- 
eywell checksums as opposed to an n-bit adder in extended-precision 
checksums. It is also important to note that the effectiveness measure 
developed in this section is dependent on the error model. Equally 
likely errors were considered for the Le effectiveness measure. 

If the unidirectional-error model [l] ,  [2] is assumed then 
extended-precision checksums will be most effective because they 
guarantee complete coverage under this model. Honey well check- 
sums and MISA do not have complete coverage [l] with respect to 
this error model. 

D .  Incremental Precision Analysis 
The effect of increasing the checksum precision on the masking 

probability is examined in this section. Let K be the checksum value 

checksum value will be k', where k' is the least n + a significant 
bits of K .  The number of distinct ways of preserving k' is given by 
the following expression: 

2 C ( S ,  k'  + j2n+or ,  n )  (13) 

where /3 in this case is the greatest integer less than or equal to 
(S(2" - 1) - k')/2"+*. For large S, expression (1 1) can be used to 
evaluate C(S ,  k'+j2"+", n ) .  In Example 2, a = 1. Let us compute 
(13) using approximation (1 1) for k '  = 6. Notice that the approx- 
imate value, 142.04, evaluated using (11) closely agrees with the 
exact value 141. 

4 assuming extended-precision, then under incremental precision the 
i 

i 
J =o 

IV. ONE'S COMPLEMENT CHECKSUMS 
Thus far, the results presented were for unsigned arithmetic check- 

sums. In so far as two's complement checksums are concerned they 

are equivalent to unsigned arithmetic checksums. This is so, because 
in both cases addition is done in the same manner. The difference 
lies only in the way the checksum number is interpreted. However, in 
one's complement arithmetic, addition is modulo 2" - 1. These dis- 
tinctions do not arise in extended-precision checksums because addi- 
tion is done without loss of precision. In this section, an analysis for 
single-precision one's complement arithmetic checksums using the 
generating function f(X) is presented. Let Q(S,  k ' )  be the number 
of possible ways of producing the checksum k' in single-precision 
one's complement arithmetic for a block of S n-bit words. There are 
2" possible checksum values. In one's complement addition, the only 
way block of S n-bit words produce an all zero n-bit checksum is 
when all the S words are zero. This will become clear as Example 3 
is discussed, later in this section. To enumerate Q(S, k ' )  for k' not 
equal to zero, a coset counting argument similar to that in Section 
I1 will be used. The generating function f(X) can be factored as 
follows: 

Let a ( X )  = (1 + X  + , . .  +X2n--')s-i and b ( X )  = (1 + X  + 
. . . + X 2 n - ' ) .  Therefore, f(X) = a ( X ) b ( X ) .  

Powers of X in a ( X )  can be reduced to 2" - 1 mod-(2" - 1) residue 
classes: class(O), . . . ,class(i), . . . ,class(2" - 2 ) .  Class(i) contains all 
those terms of a ( X )  such that the powers of X are i mod - (2" ~ 1). 
For every class(i), a unique term X j  in b ( X )  -X2"- '  can be picked 
such that 

X j X i m o d ( Z " - I )  - - ~ k ' m o d ( Z " - - l )  

Note that X2"-- '  was not included in b ( X )  - X2 ' - ' .  Terms of the 
can be found in a ( X ) .  The sum of the coefficients 

of these terms will be Q(S - 1 k'). Multiplying the left out X Z n - '  
term by the foregoing terms Xk"Od ('"-I) in ' a ( X )  will preserve their 
powers to k' mod (2" - 1) and also the sum of their coefficients to 
Q(S - 1, k'). Thus, the following recurrence on Q: 

form Xk' mod (2"--1) 

Solving (14), 

2"s - 1 
2 " - 1 '  Q(S, k') = ~ for k' > 0. (15) 

Q ( S ,  k ' )  is independent of checksum value when k'is greater than 
zero. However, Q(S, 0) = 1. The following example will illustrate 
the counting procedure for one's complement checksums. 

Example 3: Let S = 2, n = 2. There are four possible check- 
sums: 0, 1, 2, and 3. These checksums correspond to 2-bit patterns 
00, 01, 10, and 11, respectively. The only way checksum 00 is ob- 
tained is by adding 00 and 00. However, checksum 11 can be pro- 
duced in the following five distinct ways: 11 + 11 = 1 1, 01 + 10 = 11, 
10 +01 = 11, 11 +OO = 11, and 00 + 11 = 11. This is also enu- 
merated by (15) which is 5 for n = 2 and S = 2. Enumeration for 
other checksum values can also be verified. 

From (15) the probability of error masking with one's complement 
checksums is 

when k' = 0, the error masking probability is zero. 

V. WORD A N D  COLUMN ERRORS 
This section examines the error masking probability for single- 

precision and extended-precision checksums under restricted errors. 
For restricted word errors, a straightforward extension of the results 
derived in the previous sections is possible. To analyze restricted 
column errors, the generating function f(X) is useful. 
A .  Restricted Word Errors 

Assume that only r specific words in a block of S words, 
A I  , . , A s ,  are in error. Extending previous results for single- 
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