
7 -

I

\

IEEE TRANSACTlONS ON COMPUTERS, VOL. 39. NO. 7. JULY 1990

0
0

11

4.00 i o 0 61.00 d.00 lb .00 11.00
NETWORK S I Z E (LOGZNI

Fig. 5 . Normalized throughput 1

at the stage cycle i , i > n +
mi, =k(m‘-‘ “-1)

mi = g(m‘.-‘ ,-,’ bf ’

mh = f (m , bb-’)

bl - , = /(m::’l)

rsus network size for various networks.

4) Numeric Results and Comparisons: The normalized through-
puts of the B-networks of various sizes are shown in Fig. 5 together
with those of other networks.’ It shows that the normalized through-
puts of the B-network are significantly higher than those of the
crossbar, regular MIN’s,’ and the gamma network. The B-network’s
higher performance than the crossbar’s is due to the elimination of
memory conflicts via backward links at the last stage.

Fig. 5 also shows that the throughputs of the B-network are much
higher than those of single-buffered regular MIN’s. In buffered net-
works, the routing decision cannot be made locally at an SE, because
the decision for a packet to move forward at one stage depends on
the buffer states of all the remaining stages of the network [8], [7].
In the B-network, however, the routing decision is made locally at
each SE. Moreover, each input (or output) port of an SE in buffered
networks needs buffers as well as additional links to receive/pass the
control signals (to prevent the overrun of the buffers). Considering
these facts, the B-network can be a very cost-effective alternative to
single-buffered networks.

IV. CONCLUSION

~

OO18-9340/90/0700-0969$01 .OO @ 1990 IEEE

A new multistage interconnection network, the B-network, which
employs backward links has been proposed and analyzed. A back-
ward link provides an alternate path for a blocked request at a
switch or memory. The bandwidth, the acceptance probability, and
the throughput of the B-network have been analyzed. The B-network
has been shown to exhibit much higher bandwidths and through-
puts than the gamma network, single-buffered regular MIN’s based
on (2 x 2) switches, and the crossbar switches, while its hardware

I The values for the buffered regular MIN are from [8] and [l l] , and the
values for the gamma network are from [111. The buffered regular MIN
denotes the single-buffered MIN based on (2 x 2) switches.

MIN’s such as the omega, the regular SW banyan, the baseline. and delta
networks based on (2 x 2) switches.

969

cost is the same as that of the gamma network. The B-network is
controlled by the destination tag control scheme.

We were somewhat surprised by the performance results of the
B-network exceeding those of the crossbar switch. The high perfor-
mance is the combined effects of many causes: 1) the backward links
function as implicit buffers, 2) the backward links at the very last
switching stage of the B-network can handle memory contentions,
which cannot be handled by the crossbar switch, 3) the original
gamma network, on which the B-network is based, connects one
network input point to a switch, effectively reducing the network
input request rate.

REFERENCES
T. Feng, “A survey of interconnection networks,” IEEE Comput.
Mag., vol. 14, pp. 12-27, Dec. 1981.
C. Wu and T. k n g , Eds., Tutorial Interconnection Networks for
Parallel and Distributed Processing, IEEE Computer Society Press,
1984.
D. S. Parker and C. S. Raghavendra, “The Gamma network,” IEEE
Trans. Comput., vol. C-33, no. 4, pp. 367-373, Apr. 1984.
H. Yoon and K. Y. Lee, “The B-network: A multistage interconnection
network with backward links for multiprocessor systems,” Tech. Rep.
OSU-CISRC-TR22, Dep. Comput. Inform. Sci., Ohio State Univ.
C. Wu and T. Feng, “On a class of multistage interconnection net-
works,” IEEE Trans. Comput., vol. C-29, no. 8, pp. 694-702, Aug.
1980.
J . H. Patel, “Performance of processor-memory interconnections for
multiprocessors,” IEEE Trans. Comput., vol. C-30, no. 10, pp.

D. M. Dias and J . R. Jump, “Analysis and simulation of buffered delta
networks,” IEEE Trans. Comput., vol. C-30, no. 4 , pp. 273-282,
Apr. 1981.
Y. C. Jenq, “Performance analysis of a packet switch based on single-
buffered banyan network,” IEEE J . Select. Areas Commun., vol.
SAC-1, no. 6, pp. 1014-1021, Dec. 1983.
C. P. K ~ s k a l and M. Snir, “The performance of multistage intercon-
nection networks for multiprocessors,” IEEE Trans. Comput., vol.
C-32, no. 12, pp. 1091-1098, Dec. 1983.
M. Kumar and J . R. Jump, “Performance of unbuffered shuffle-
exchange networks,” IEEE Trans. Comput., vol. C-35, no. 6, pp.
573-578, June 1986.
H. Yoon, K. Y. Lee, and M. T. Liu, “Performance analysis and
comparison of packet switching interconnection networks,” in Proc.
1987 Int. Conf. Parallel Processing, Aug. 1987, pp. 542-545.
N. F. Tzeng, P. C. Yew, and C . Q . Zhu, “The performance of a
fault-tolerant multistage interconnection network,” in P m . 1985 Int.
Conf. Pamllel Processing, 1985, pp. 458-465.

771-780, Oct. 1981.

Analysis of Checksums, Extended-Precision Checksums, and
Cyclic Redundancy Checks

NIRMAL R. SAXENA AND EDWARD J. McCLUSKEY

Absfract - This paper presents an extensive analysis of the effectiveness
of extended-precision checksums. It is demonstrated that the extended-
precision checksums most effectively exploit natural redundancy occur-
ring in program codes. Honeywell checksums and cyclic redundancy
checks are compared to extended-precision checksums. Two’s comple-

Manuscript received November 8, 1987; revised August 12, 1988. This
work was supported in part by the National Science Foundation under Grant
MIP-8709128, in part by the Innovative Science and Technology Office of the
Strategic Defense Initiative Organization and administered through the Office
of Naval Research under Contract N00014-85-K-0600, and in part by Hewlett-
Packard under the Honors Cooperative Program with Stanford University.

The authors are with the Center for Reliable Computing, Stanford Univer-
sity, Stanford, CA 93405.

IEEE Log Number 9035146.

Unified Patents
EX1014

Page 1 of 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

I

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7 , JULY 1990 970

ment, unsigned, and one's complement arithmetic checksums are treated
in a unified manner. Results are also extended to any general radix?
arithmetic checksum. Asymptotic and closed form formulas of aliasing
probabilities for the various error models are derived.

denoted as [A I , A2, . . . ,AS]'. Block (n , S) can also be defined in
terms of columns. Block (n , S) is a block of n , length S, columns
and is denoted as [c,, c, - 1 , . . , C I] .

Definition 4: The checksum K of an (n , S) block is given by

n S

Index Terms- Aliasing probability, checksums, cyclic redundancy K = IC, I = IA, I.
check, generating functions, linear feedback shift registers. , = I , = I

I. INTRODUCTION
Checksums are considered one of the least expensive methods of

error detection. These methods are used for detecting errors in stor-
age and transmission of data. System firmware or recovery routines
in most of the commercial computer systems are checksum-protected
[I]. The checksum of a block of words is formed by adding to-
gether all of the words in the block modulo-m, where m is arbitrary.
These words could be data in memory or instructions in a checksum-
protected code. The choice of m limits the number of bits in the
checksum. This computed checksum validates the data or code in-
tegrity. Since checksums are essentially a form of compaction, error
masking can occur. The metric used to quantify the effectiveness
of checksums is the error masking probability (aliasing probability)
under various error models.

Analysis of the effectiveness of checksums in [2] and [3] has
largely been based on unidirectional errors. The detection of double
and triple errors in low cost arithmetic codes has been analyzed in
[4]. A closed form expression for the probability of checksum vio-
lation, assuming independent errors, appears in [5]. Error detection
in serial transmission by arithmetic checksum, as an alternative to
cyclic redundancy check (CRC), has been considered in [6]. The
use of checksums is also considered in watchdog processors [7].

However, one problem that has not been examined in detail is
the effectiveness of checksums under extended-precision arithmetic.
Extended-precision checksums are described in [11, but their ef-
fectiveness has not been quantified. The effectiveness of extended-
precision checksums as a function of the static distribution of in-
struction words in a program code is examined in Section 111. The
extended-precision checksums are effective when the static distribu-
tion of instructions is not uniform. Actual measurements on some
firmware code show nonuniform distribution of instructions and it is
believed that, in general, this will be true for other program codes.
Results reported in [8] suggest this nonuniform distribution.

Restricted column errors or restricted word errors are analyzed.
The motivation for this analysis is that some failures [2] in storage
devices can be modeled as restricted column or word errors. The
generating function presented in Section I1 provides a framework to
analyze unsigned, two's complement, and one's complement arith-
metic checksums. Results are extended to any general radix-p arith-
metic checksums.

11. GENERATING F~SCTION
In this section, a generating function f(X) is defined after the

following definitions.
Definition I : An n-bit word A , is defined as a string of binary

symbols U,,, and is denoted as u n , , a n - ~ , , ' . , a l , , . The magnitude
IA, I of A, is given by

/All = C 2 " u , , , .
, = I

Definition 2: A length S column C, is a column of binary sym-
bols a, , , and is denoted by [a,, I , a,, 2 , . . . ,u , ,s lT. The magnitude
IC, I of C , is given by

S

i = l

Definition 3: Block (n , S) is a block of S n-bit words Ai and is

If the addition is performed without any loss of precision then K is
the extended-precision checksum. K mod 2" and K mod (2" - 1) are
two's complement and one's complement checksums, respectively.

Definition 5: C (S , K , n) is defined as the number of possible dis-
tinct (n , S) blocks that have the same extended-precision checksum
K .

The following example illustrates the use of a generating function
in enumerating C (S , K , n).

Example I : Let n = 2, S = 4. Four 2-bit wide words are possi-
ble. The generating function in this case is

f(X) = (1 + X + X 2 + X 3) 4

= XI2 + 4X" + 10X'O + 20X9 + 31X8 + 40X' + 44X6

+40X5+31X4+20X3+10X2+4X+1.

There are four possible 2-bit (single-precision) checksum: 0, 1,
2, and 3. For example, the number of distinct ways of producing
checksum 1 by adding 4 2-bit words is the sum of the coefficients of
X I , X 5 , X 9 . Adding the coefficients results in 4 + 40 + 20 = 64,
which is simply 2' x4-2. The same result is obtained for the other
2-bit checksum values. In the case of extended-precision, modulo-x
addition is assumed. For example, the number of distinct ways of
producing checksum 8 under extended-precision is the coefficient of
X s which is 3 1.

Generalizing Example 1: The number of distinct (n , S) blocks,
A { , . . , A ; , having the same checksum K is enumerated by the coef-
ficient of X K in f(X). The function f(X) is given by the following
relation:

(1)

ThereareSidenticalfactors,f,=l, . .s = (l + X + . . . + X 2 " - ') , in
f(X) corresponding to S words. The exponents of X in each factor
represent 2" distinct values (0, . . ,2" - 1) a word can assume. The
exponent Ea, of the product of S terms, picking a term from
each f, , will be the checksum of S words. Therefore, the coefficient,
denoted by C (S , K , n) , of X K in f(X) will be the number of ways
of obtaining the same checksum K .

f(X) = (1 + X + X 2 + . . . +X2'- ')s .

The generating function f(X) can also be written as

Let k' be the number formed by considering only the n least sig-
nificant bits of K . Thus, k' is a single-precision checksum and
0 5 k' 5 2" - 1. The number of distinct blocks of S words that
produce the same checksum k' is the sum of the coefficients of
Xk' , Xk'+'' 9 9 . . . Xk'tB'n, where f i is the greatest integer less than
or equal to (S(2n - 1) - k')/2". This number is evaluated by

B

(3)
w = o

Expression (3) can be evaluated by using a coset counting argument.
Function f (X) can be reinterpreted as

f (X) = (1 + X + . . . +X~"- ') s - - l (l + X + . . . +x2"--I).

Powers of X in (1 + X + . . . +X2"--1)s-1 can be reduced to 2"
modulo-2" residue classes: class(O), . . . ,class(i), . . ,class(2" - 1).
Class(r] contains all those terms of (1 + X + . . +X2'-I)s-' such

Unified Patents
EX1014

Page 2 of 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7. JULY 1990 97 I

that the powers of X are i modulo-2". For every class(r] a unique
term X j in (1 + X + . . . + X 2 " - ') can be picked such that

Since the classes exhaust all possible powers of X in (1 + X + . . . +
Xz"- ') s - ' , the summation CC(S k'+w2", n) is simply the sum of
the coefficients in (l+X+. . .+X21-')s- ' . The foregoing expression
at X = 1 evaluates to the sum of the coefficients. Therefore, the
following identities are obtained:

B

C C (S , k' + w2", n) = 2ns-n. (4)
w=o

From (4), the error masking probability P for single-precision check-
sums with modulo 2" addition can be derived as

In the case of single-precision checksums, it is clear that the masking
probability is independent of the value of k' when all error patterns
are possible. As shall be seen later, this will not be true for restricted
classes of errors. Relation (5) also applies for two's complement
arithmetic; however, for one's complement a different relation is
obtained. The onset of data dependency as the checksum precision
is increased from n-bits is illustrated in the next example. By data
dependency, it is meant that the number of possible ways of obtaining
a particular checksum not only depends on the type of checksum
computation but also depends on the checksum value. This will be
illustrated by Example 2.

Example 2: Let S = 5, n = 2. The generating function is

f(X) = (1 +x +x* +X3)5

= X" + 5X14 + 15XI3 + 35X" + 65X" + 101X'O

+ 135X9 + 155X8 + 155X7 + 135X6

+ 101X5 + 65X4 + 35X3 + 15X2 + 5X + 1 .

Following the approach in Example 1 , it can be shown that the num-
ber of ways of obtaining the same 2-bit checksum is 256. Extending
the precision of the checksum result by 1 bit, we have modulo-2"+'
addition. With this new precision, there are eight possible checksums:
0, . . . ,7. For example, the number of ways of producing checksum 7
is the sum of the coefficients of X7 and XI5 , which is 156 (155 + 1).
The number of ways of producing checksum 3 is the sum of the
coefficients of X 3 and X I 1 , which is 90 (35 + 65). It can readily
be seen that the number of ways of producing n + 1 bit precision
checksum also depends on the checksum value.

III. EXTENDED-PRECISION CHECKSUMS
It is easy to show that the checksum value for a block of S n-bit

wide words cannot exceed S(2" - 1). In a checksum-protected code,
it is extremely unlikely that S would exceed 2". For instance, in a 32-
bit computer (n = 32) it is very unlikely that the number of words in
a checksum-protected code would exceed Z3'. Thus, almost always,
only a 2n-bit precision result is needed. Furthermore, only an n-bit
precision adder and a counter to count the overflow carries from
this n-bit adder is required. The counter is incremented whenever an
overflow carry is generated by the n-bit adder while computiy the
checksum. Unbounded precision can be achieved by 11"' an n-bit
adder and a binary counter of variable length. The number of ways
checksum K is preserved is simply the coefficient of X K in the series
expansion o f f (X). In this section, exact and asymptotic values of
the coefficient of X K are derived.

Rewriting (2)

f(X) = (1 -X)-S(l -X2")S

(6)
In Example 1 , the coefficient ofX" is 10. The same result is obtained
using (6). Substituting S = 4 and n = 2 in (6),

= 286 - 336 +60 = 10.

C(S , K, n) now can be defined recursively. Rewriting (l) ,

f(X) = (1 +x + .. . +X2"-')s-'(l + X + . . . +x2'-').
From the above factorization of f(X), the following recurrence re-
lations are obtained.

If K > 2" - 1 then

C(S , K, n) = C (S - 1, K, n) + . . . + C (S - 1, K -2" + 1 , n).

(7)
I f K 5 2 " - 1 then

C(S , K, n) = C(S - 1, K, n)

+ C (S - l , K - l , n) + . . . + C (S - l , O , n) . (8)

Some of the boundary conditions for (7) and (8) are as follows:

C(S , 0, n) = 1 for all S > 0.

C(0, K, n) = 1 if K = 0 else C(0, K, n) = 0.

C(1, K, n) = 1 for all 0 5 K 5 2" - 1 .

C (S , S(2" - l) , n) = 1 .

The effect of K on error masking is not readily apparent from the
exact relation (6), unless a simple closed form for C(S , K, n) ex-
ists. It appears that there is no simple closed form expression for
C(S , K, n); in fact, a special case of this is an open research prob-
lem in [9]. Therefore, an asymptotic formula for C (S , K, n) is de-
rived. As a result of this analysis certain important observations with
regard to checksum-protected codes are made.

A . Asymptotic Formula f o r C(S , K, n)
Functions of the type f(X) belong to a class of functions called

unimodal functions. The coefficients in the polynomial representa-
tion of these functions can be approximated by Gaussian distribu-
tion density functions. The following is an asymptotic approximation
of C(S , K , n)

The following is a sketch of the derivation of the asymptotic formula:
substituting X = 1 in f(X),

f(1) = 2"s.

Define g (X) = f (X) / f (1); then g(1) = 1.

Unified Patents
EX1014

Page 3 of 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

972

l C

1 E

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7, JULY 1990

2617 3290 x10’* 5619 x10” 36720, 1
2498 3 167 x10” 5364 xlOl2I 3792O,

~

3140 5571 x10” 6743 xlO”[16860,

~

..________

The function g (X) has the characteristics of a probability gener-
ating function. The mean p , is given by g’(l), and the variance U:

is given by g”(I) ~ (g’(I)) ? + g ’ (I) .

1
g’(X)]x,, = - [S (1 - x . . . +x*’-’) - s

2“s

. (1 + 2 X . . . + (2 ”

Simplifying the above expression,

px = S(2” - I).
2

Taking the second derivative of g (X) and following the above pro-
cedure the variance U; is obtained.

The coefficient C (S , K , n) can be approximated by (using normal
distribution)

The coefficient of X9 in Example 2 can be estimated by (1 1) by sub-
stituting S = 5, K = 9, and n = 2 . From expression (1 l) , C(5, 9, 2)
evaluates to 136.48 which closely agrees with the exact value 135.
Error masking probability closely relates to C (S , K , n) ; therefore, it
strongly depends on the value of K. This is evident from expression
(11). Modest deviations of K from the mean value, S/2(2” - l) ,
can reduce error masking probability significantly. If the data are
program code then the performance of checksums under extended-
precision clearly depends on the static instruction distribution. The
static instruction frequency can influence the checksum value K and
therefore the error masking probability.

For extended-precision checksums to be effective it is desirable that
the static distribution of instructions be nonuniform. Extensive study
of the distribution of instructions in program codes of the various
computer architectures has been done in [8]. Results in [8] show a
nonuniform static distribution of high-level language statements. It is
quite likely that instructions in the machine code of these high-level
programs would also have nonuniform distribution characteristics.

From an information theoretic standpoint most of the program
codes (at the machine instruction level) have inherent redundancy.
This is so because not all instruction encodings are meaningful; for
example, a 32-bit instruction may not have meaning for all 232 en-
codings of the instruction word. Also, in most of the program codes
some instructions occur more often than the others. An analogy can
be drawn with the encoding of decimal digits. Again from an infor-
mation theoretic standpoint only 3.3219 (log, 10) bits are required
to represent decimal digits. However, the number of bits must be
a whole number; therefore, 4 bits are chosen to represent decimal
digits. This inherent or natural redundancy cannot be avoided if a
regular representation of decimal numbers is desired. Sometimes this
natural redundancy is well suited for error detection. In checksum-
protected program codes, it is highly desirable to have checksum
values to be far away from the mean value; this will decrease the
error masking in extended-precision checksums significantly. Next,
it will be shown how this natural redundancy in program codes can
be exploited to further enhance error detection in extended-precision
checksums.

A typical instruction word is a structured field having an opode ,
register, and other opode-extension fields. Assume that the opcode
field is the most significant field in the instruction word. If opcodes
are assigned such that

an all zero opcode is assigned to that instruction which has, on
the average, a high frequency of occurrence in program codes,

and increasing values of opcodes are assigned to instructions
that, on the average, occur in decreasing order of the frequency of
occurrence

then this will accomplish the task of moving the checksum value away
from the mean px . Likewise, compilers can be designed to allocate
registers in the following manner: registers are allocated starting
with the register which has the smallest allowed binary encoding
(for example, register 0) and the rest of the registers are allocated
in increasing order of their binary value.

In Table I, the measured checksum values of five different
checksum-protected codes in the HP-9000 series/840 computers are
listed. The instructions in these codes are based on the HP Preci-
sion Instruction Set [101; these instructions are 32-bit wide. There-
fore, n = 32 in this case. It is interesting to note that all the mea-
sured checksum values differ significantly from their respective mean
values listed in the table. This would make the extended-precision
checksums very effective. In fact, for code D , the extended-precision
checksums would be most effective. The deviations of the measured
values are given (Table I) in terms of the standard deviation. The
deviations are considered significant if they are greater than 3a,.

B . Equivalent CRC Length

One way to quantify the effectiveness of extended-precision check-
sums is to compare it to CRC. CRC in this case would be equivalent
to multiple input signature analysis (MISA) [7]. It is known that for
MISA with signature polynomial degree L the number of masking er-
rors [I 11 is equal to 2nS-L, when all error patterns are equally likely.
Masking errors are those errors that escape detection. Equivalent
CRC length Le is defined similar to that discussed in [111. Le is
the length of the MISA signature register that would mask the same
number of errors as extended-precision checksums would for a given
block of data. Following a procedure similar to that discussed in [1 I]
and using expression (1 l) ,

(12)

Le grows as the square of the difference between K and S/2(2“ - 1).
The number of bits required to store extended-precision checksums is
at most [log, (S(2“ - 1) + I)]. For example, in code C , Le evaluates
to 1010; the extended-precision checksum value for this code requires
only 45 bits. Table I1 lists the equivalent lengths for the various codes.

For values of K close to S/2(2“ - I), CRC would perform better
than extended-precision checksums.

Actual measurements on program codes do show significant dif-
ference between measured K and S/2(2” - 1).

Conceivably all the node signatures in control flow checking [7]
could be replaced by extended-precision checksums. However, the
tradeoff between the cost of adder and the cost of LFSR must be
considered.

Unified Patents
EX1014

Page 4 of 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

I"-

IEEE TRANSACTIONS ON COMPUTERS. VOL. 39. NO. 7 . JULY 1990 973

TABLE I1
CRC EQUIVALENT LENGTH --

- 44

I
-

242 46
I

C. Honeywell Checksums
The equivalent length measure is also useful in comparing the

relative effectiveness of extended-precision checksums to Honeywell
checksums [I], [2]. Honeywell checksums are a modified form of
double-precision checksums. In Honeywell checksums, all pairs of
successive words are concatenated and are treated as double-precision
words. These double-precision words are summed to accumulate a
double-precision checksum. This is equivalent to analyzing a single-
precision type checksum where there are S /2 words and each word
is 2n bits wide. For both S odd or even, the number of possible
ways (assuming all possible error patterns) of obtaining the same
Honeywell checksum is 2ns-2n. This can be easily derived by using
an approach similar to that developed in Section 11.

The form of the number of masking errors in Honeywell check-
sums resembles the form of the number of masking errors, 2"s-L, in
MISA. Therefore, the equivalent length measure can be easily ex-
tended to Honeywell checksums. When L, is less than 2n , Honeywell
checksums will be more effective than extended-precision checksums
(for example, in Codes A , B). However, for cases where Le is
greater than 2n, extended-precision checksums are more effective. It
is important to note that a 2n-bit adder is required to compute Hon-
eywell checksums as opposed to an n-bit adder in extended-precision
checksums. It is also important to note that the effectiveness measure
developed in this section is dependent on the error model. Equally
likely errors were considered for the Le effectiveness measure.

If the unidirectional-error model [l] , [2] is assumed then
extended-precision checksums will be most effective because they
guarantee complete coverage under this model. Honey well check-
sums and MISA do not have complete coverage [l] with respect to
this error model.

D . Incremental Precision Analysis
The effect of increasing the checksum precision on the masking

probability is examined in this section. Let K be the checksum value

checksum value will be k', where k' is the least n + a significant
bits of K . The number of distinct ways of preserving k' is given by
the following expression:

2 C (S , k' + j2n+or , n) (13)

where /3 in this case is the greatest integer less than or equal to
(S(2" - 1) - k')/2"+*. For large S, expression (1 1) can be used to
evaluate C(S , k'+j2"+", n) . In Example 2, a = 1. Let us compute
(13) using approximation (1 1) for k ' = 6. Notice that the approx-
imate value, 142.04, evaluated using (11) closely agrees with the
exact value 141.

4 assuming extended-precision, then under incremental precision the
i

i
J =o

IV. ONE'S COMPLEMENT CHECKSUMS
Thus far, the results presented were for unsigned arithmetic check-

sums. In so far as two's complement checksums are concerned they

are equivalent to unsigned arithmetic checksums. This is so, because
in both cases addition is done in the same manner. The difference
lies only in the way the checksum number is interpreted. However, in
one's complement arithmetic, addition is modulo 2" - 1. These dis-
tinctions do not arise in extended-precision checksums because addi-
tion is done without loss of precision. In this section, an analysis for
single-precision one's complement arithmetic checksums using the
generating function f(X) is presented. Let Q(S, k ') be the number
of possible ways of producing the checksum k' in single-precision
one's complement arithmetic for a block of S n-bit words. There are
2" possible checksum values. In one's complement addition, the only
way block of S n-bit words produce an all zero n-bit checksum is
when all the S words are zero. This will become clear as Example 3
is discussed, later in this section. To enumerate Q(S, k ') for k' not
equal to zero, a coset counting argument similar to that in Section
I1 will be used. The generating function f(X) can be factored as
follows:

Let a (X) = (1 + X + , . . +X2n--')s-i and b (X) = (1 + X +
. . . + X 2 n - ') . Therefore, f(X) = a (X) b (X) .

Powers of X in a (X) can be reduced to 2" - 1 mod-(2" - 1) residue
classes: class(O), . . . ,class(i), . . . ,class(2" - 2) . Class(i) contains all
those terms of a (X) such that the powers of X are i mod - (2" ~ 1).
For every class(i), a unique term X j in b (X) -X2"- ' can be picked
such that

X j X i m o d (Z " - I) - - ~ k ' m o d (Z " - - l)

Note that X2"-- ' was not included in b (X) - X2 ' - ' . Terms of the
can be found in a (X) . The sum of the coefficients

of these terms will be Q(S - 1 k'). Multiplying the left out X Z n - '
term by the foregoing terms Xk"Od ('"-I) in ' a (X) will preserve their
powers to k' mod (2" - 1) and also the sum of their coefficients to
Q(S - 1, k'). Thus, the following recurrence on Q:

form Xk' mod (2"--1)

Solving (14),

2"s - 1
2 " - 1 ' Q(S, k') = ~ for k' > 0. (15)

Q (S , k ') is independent of checksum value when k'is greater than
zero. However, Q(S, 0) = 1. The following example will illustrate
the counting procedure for one's complement checksums.

Example 3: Let S = 2, n = 2. There are four possible check-
sums: 0, 1, 2, and 3. These checksums correspond to 2-bit patterns
00, 01, 10, and 11, respectively. The only way checksum 00 is ob-
tained is by adding 00 and 00. However, checksum 11 can be pro-
duced in the following five distinct ways: 11 + 11 = 1 1, 01 + 10 = 11,
10 +01 = 11, 11 +OO = 11, and 00 + 11 = 11. This is also enu-
merated by (15) which is 5 for n = 2 and S = 2. Enumeration for
other checksum values can also be verified.

From (15) the probability of error masking with one's complement
checksums is

when k' = 0, the error masking probability is zero.

V. WORD A N D COLUMN ERRORS
This section examines the error masking probability for single-

precision and extended-precision checksums under restricted errors.
For restricted word errors, a straightforward extension of the results
derived in the previous sections is possible. To analyze restricted
column errors, the generating function f(X) is useful.
A . Restricted Word Errors

Assume that only r specific words in a block of S words,
A I , . , A s , are in error. Extending previous results for single-

Unified Patents
EX1014

Page 5 of 7

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

