
_:
N

I4ENT
C++ DEMYSTIF~E~

~ ~
Q

 ~
~'

~
~

p
Q

+
^

~
~

N
U

Facebook's Exhibit No. 1010 - Page 1

~Ji~l

No formal training ~
in C++ needed!

~-
Create and run your own ~

computer programs

D
Many examples illustrating

application of concepts ~ ~ z: ,_

Complete with chapter-ending
quizzes and final exam

Osborne Je f f Ken t

Facebook's Exhibit No. 1010 - Page 2

Y~

TX 6-017-150
II„ . _ _ _ ~TX000601715pa IIIIIIIIIIIIIIII_ .._._

. .
,s

.;

C++ DEMYSTIFIED

JEFF KENT..

McGraw-HilUOsborne
New York Chicago San Francisco Lisbon London
Madrid Mexico City Milan New Delhi San Juan

Seoul Singapore Sydney Toronto
i'r

Facebook's Exhibit No. 1010 - Page 3

The MCGI'Ow~Hill Companies

~~

)r

nc

. ,

3 ~~, .~

d ~

~ ~ ~ . '
r '

~ .

e
M

McGraw-HilUOsborne
2100 Powell Street, 10th Floor
Emeryville, California 94608
U.5.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please con-
tactMcGraw-HilllOsborne atthe above address. For information on translations or book distrib-
utors outside the U.S.A., please see the International Contact Information page immediately
following the index of this book.

C++Demystified

Copyright D 2004 by The McGraw-Hill Companies. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this publica-
tion may be reproduced or distributed in any form or by any means, or stored in a database or re-
trieval system, without the prior written permission of publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

1234567890 FGR FGR 01987654 ~~~~

ISBN 0-07-225370-3 ° 73Gl~3k~~~
Publisher Proofreader

Brandon A. Nordin Susie Elkind a d C?

Vice President &Associate Publisher Indexer CO~~/ o~.
Scott Rogers Iry Hershman J

Editorial Director Composition
Wendy Rinaldi Apollo Publishing Services, Lucie Ericksen

Project Editor Illustrators
Lisa Wolters-Broder Kathleen Edwards, Melinda Lytle

Acquisitions Coordinator Cover Series Design
Athena Honore Margaret Webster-Shapiro

Technical Editor Cover Illustration
Jim Keogh Lance Lekander

Copy Editor
Mike McGee

This book was composed with Corel VENTURA'~ Publisher.

~~~~~`J~~~~~

Information has been obtained by McGraw-Hill/Osbome from sources believed to be reliable. However, because ofthe possibility
ofhuman or mechanical error by our sources, McGraw-HiIVOsborne, or others, McGraw-HilUOsborne does not guazantee the ac-
curacy,adequacy, orcompleteness ofany information and is not responsible for any errors or omissions or the results obtained from
the use of such information.

Facebook's Exhibit No. 1010 - Page 4



CONTENTS AT A GLANCE

IN rya:y?y

o~ ~

S, -

:r i f f

a '!
n t °Y .e `i'

h~~ .~Cb~

CHAPTER 1 How a C++ Program Works 1

CHAPTER 2 Memory and Data Types 21

CHAPTER 3 Variables 45

CHAPTER 4 Arithmetic Operators 65

CHAPTER 5 Making Decisions: if and switch Statements 83
CHAPTER 6 Nested if Statements and Logical Operators 109

CHAPTER 7 The For Loop 125
CHAPTER 8 While and Do While Loops 143

CHAPTER 9 Functions 161

CHAPTER 10 Arrays 187
CHAPTER 11 What's the Address? Pointers 213
CHAPTER 12 Character, C-String, and C++ String

Class Functions 243
CHAPTER 13 Persistent Data: File Input and Output 269
CHAPTER 14 The Road Ahead: Structures and Classes 293

Final Exam 317

Answers to Quizzes and Final Exam 323

Index 339

~~-`r'~~i

Facebook's Exhibit No. 1010 - Page 5



ABOUT AUTH 0 R

Jeff Kent is an Associate Professor of Computer Science at Los Angeles Valley Col-
lege in Valley Glen, California. He teaches a number of programming languages, in-
cluding Visual Basic, C++, Java and, when he's feeling masochistic, Assembler, but
mostly he teaches C++. He also manages a network for a Los Angeles law firm
whose employees are guinea pigs for his applications, and as an attorney gives
advice to young attorneys whether they want it or not. He also has written several
books on computer programming, including the recent Visual Basic.NET A Begin-
ner's Guide for McGraw-Hill/Osborne.

Jeffhas had a varied career—or careers. He graduated from UCLA with a Bache-
~ , for of Science degree in economics, then obtained a Juris Doctor degree from Loyola

(Los Angeles) School of Law, and went on to practice law. During this time, when
personal computers still were a gleam in Bill Gates's eye, Jeff was also a profes-

C sional chess master, earning athird-place finish in the United States Under-21
Championship and, later, an international title.

' Jeff does find time to spend with his wife, Devvie, which is not difficult since she
also is a computer science professor at Valley College. He also acts as personal
chauffeur for his teenaged daughter, Emily (his older daughter, Elise, now has her

~ own driver's license) and in his remaining spare time enjoys watching international
chess tournaments on the Internet. His goal is to resume running marathons, since
otherwise, given his losing battle to lose weight, his next book maybe Sumo Wres-
tling Demystified.

I would like to dedicate this book to my wife, Dewie Schneider Kent. There is not
room here to describe how she has helped me in my personal and pYofessional life,
though I do mention several ways in the Acknowledgments. She also has been my
computer programming teacher in more ways than one; I wouldn't be writing this
and other computer programming books if it wasn't for her.

Jeff Kent

Facebook's Exhibit No. 1010 - Page 6



CONTENTS

Acknowledgments &Introduction xiii
CHAPTER 1 How a C++ Program Works 1

What Is a Computer Program? 2
What Is a Programming Language? 2
Anatomy of a C++ Program 3

The main Function 5
The Function Body 5
tout 5
The return 0 Statement 6
The #include Directive 6
Namespace 7

Translating the Code for the Computer 7
Preprocessor 8
Compiler 8
Linker 8

Using an IDE to Create and Run the
"Hello World!" Project 9

Setting Up the "Hello World!" Project 10
Writing the Source Code 13
Building the Project 17
Running the Code 19

Quiz 20

O

Facebook's Exhibit No. 1010 - Page 7



~:. vi

CH~~'TER 2 Memory and Data Types
Memory

Types of Memory
Addresses
Bits and Bytes
Binary Numbering System
Converting Between Decimal

and Binary or Hexadecimal

C++ Demystified

Data Types
Whole Number Data Types
Floating-Point Data Types
Text Data Types
The boot Data Type

Project: Determining the Size of Data Types
The sizeof Operator
Changing the Source File of Your Project
Code and Output
Expressions
Outputting an Expression
Escape Sequences

Quiz

i ~A~T~R 3 Variables
Declaring Variables

Syntax of Declaring Variables
Declaring Multiple Variables of the Same

Data Type
Naming the Variable
Naming Conventions
The Address Operator
Using the Address and sizeof Operators

with Variables

21
22
22
24
25
26

26
28
28
3 2
35
36
36
37
37
40
41
41
42
43

45
45
46

47
48
49
49

Facebook's Exhibit No. 1010 - Page 8



CONTENTS
~~

Assigning Values to Variables 51
Assignment Operator 52
Using the cin Object 56

Quiz 63

CHAPTER 4 Arithmetic Operators 65
Arithmetic Operators 66

The Addition Operator 67
The Subtraction Operator 70
The Multiplication Operator 71
Division Operators 73
Exponents 76

The Change Machine Project 77
Program Description 78
The Code 78
The Algorithm 79

Quiz 81

CHAPTER 5 Making Decisions: if and switch Statements 83
Relational Operators 84

Relational Expressions 85
Precedence 86

Flowcharting 87
The if Statement 89

Indenting 91
Common Mistakes 91

The if /else Statement 94
Conditional Operator 94
Common Mistakes 96

The if /else if /else Statement 98
The switch Statement 100

Differences Between switch
and if /else if /else Statements 103

Quiz 108

Facebook's Exhibit No. 1010 - Page 9



C++ Demystified

CHAPTER 6 Nested if Statements and Logical Operators 109
Nested if Statements 110

Testing if Both Boolean Expressions
Are True 110

Testing if Either Boolean Expression
Is True 113

Logical Operators 115
The && Operator 115
The ~ ~ Operator 117
The !Operator 119
Precedence 120

Using the switch Statement with
Logical Operators 122

Quiz 124

CHAPTER 7 The For Loop 125
Increment and Decrement Operators 126

The Increment Operator 126
The Decrement Operator 127
The Difference Between Prefix

and Postfix 128
The For Loop 130

The Syntax of the For Loop 132
Beware the Infinite Loop 134
A Factorial Example 135
Breaking Out of a Loop 135
The Continue Keyword 138
Nesting For Loops 139

Quiz 142

CHAPTERS While and Do While Loops 143
The While Loop 144

Comparison of for and while Loops 146
Using the break Keyword 147

Facebook's Exhibit No. 1010 - Page 10



CONTENTS
~~

Flags 148
While (true) 151
The continue Keyword 152
Nesting While Loops 154

The Do While Loop 154
Syntax 155
A Do While Loop Example 155
Comparison of the Do While and

While Loop 156
Scope 157

Quiz 159

CHAPTER 9 Functions 161
Defining and Calling a Function 162

Terminology of a Function 162
Defining a Function 163
Calling a Function 164
Prototyping 165

Variable Scope and Lifetime 167
Local Variables 167
Global Variables 169
Static Local Variables 171

Sending Information to a Function 173
Passing Arguments by Value 174
Passing Arguments by Reference 178

Returning a Value from a Function 182
Quiz 185

CHAPTER 1Q Arrays 187
Declaring an Array 188

Constants 189
Array Index 193

Initialization 194
Explicit Array Sizing 195

Facebook's Exhibit No. 1010 - Page 11



C++ Demystified

Implicit Array Sizing 196
Initializing a Character Array 196
Constant Arrays 198
When to Use Initialization 199

Assigning and Displaying Array Values 199
Using the cin and cout Objects

with Arrays 202
The cin Object's getline Function 205

Passing Arrays as Function Arguments 208
Quiz 211

CHAPTER 11 What's the Address? Pointers 213
Declari ng a Poi nter 214

Syntax of a Pointer Declaration 214
The Meaning of Pointer Data Types 215

Assigning a Value to a Pointer 216
Why You Should Not Try to Use

an Unassigned Pointer 216
Null Pointers 217
Assigning a Pointer the Address of

a Variable or Constant 218
Indirection Operator and Dereferencing 219
The Pointer as a Variable or a Constant 220

Pointer as a Variable 221
The Array Name as a Constant Pointer 221

Pointer Arithmetic 222
Using a Variable Pointer to Point to

an Array 222
Incrementing a Pointer 224
Comparing Addresses 225
Decrementing a Pointer 227

Pointers as Function Arguments 228
Passing an Array Using Pointer Notation 228

Facebook's Exhibit No. 1010 - Page 12



CONTENTS ``-~~:

Passing a Single Variable Using
Pointer Notation 230

Dynamic Memory Allocation 233
Returning Pointers from Functions 236

Returning a Pointer to a Local Variable
(Not a Good Idea) 236

Returning a Pointer to a Static
Local Variable 237

Returning a Pointer to a
Dynamically Created Variable 238

Quiz 241

CHAPTER 12 Character, C-String, and C++ String
Class Functions 243

Reading a Character 244
The "Press Any Key to Continue" Problem 245
Combining Use of cin, cin.get,

and cin.get(ine 252
Rules to Live By 255

Useful Character Functions 256
Case Conversion Functions 256
Functions that Check the Value of

a Character 258
Useful C-String and C++ String Functions 259

Determining the Length of a String 259
Assigning a Value to a String 260
Appending to a String 261
Comparing Two Strings 262
Conversion Between a C-String and

a Number 264
Quiz 268

CHAPTER 13 Persistent Data: File Input and Output 269
Text vs. Binary Files 270
The fstream Standard Library 271

Facebook's Exhibit No. 1010 - Page 13



xii
C++ Demystified

The File Access Life Cycle 272
Opening a File 272

Opening a File for Writing 272
Opening a File for Reading 276
Opening a File for Reading and Writing 277
Checking if the File Was Opened 278

Closing a File 280
Writing to a File 280
Reading from a File 282

Reading a Line of a File 283
Looping Through the File 285

File Stream Objects as Function Arguments 287
Quiz 291

CHAPTER 14 The Road Ahead: Structures and Classes 293
Your Reasons for Reading This Book? 294
Object-Oriented Programming 294
Structures 296

Declaring a Structure 296
Declaring a Structure Variable 297
Accessing Structure Member Variables 298
Initializing a Structure 300
Passing Structures as Function

Arguments 305
Nesting Structures 307

Classes 309
Quiz 316

Final Exam 317
Answers to Quizzes and Finat Exam 323

Index 339'

Facebook's Exhibit No. 1010 - Page 14



ACKNOWLEDGMENTS
It seems obligatory in acknowledgments for authors to thank their publishers (espe-
cially ifthey want to write for them again), but I really mean it. This is my fourth book
for McGraw-HilUOsborne, and I hope there will be many more. It truly is a pleasure to
work with professionals who are nice people as well as very good at what they do
(even when what they are good at is keeping accuxate track of the deadlines I miss).
I first want to thank Wendy Rinaldi, who got me started with McGraw-HiIU

Osborne back in 1998 (has it been that long?). Wendy was also my first Acquisitions
Editor. Indeed, I got started on this book through a telephone call with Wendy at the
end of a vacation with my wife, Dewie, who, being in earshot, and with an "are you
insane" tone in her voice, asked incredulously, "You're writing another book?"
I also must thank my Acquisitions Coordinator, Athena Honore, and my Project Edi-

tor, Lisa Wolters-Broder. Both were unfailingly helpful and patient, while still keeping
me on track in this deadline-sensitive business (e.g., "I'm so sorry you broke both your
arms and legs; you'll still have the next chapter turned in by this Friday, right?").

Mike McGee did the copyediting, together with Lisa. They were kind about my
obvious failure during my school days to pay attention to my grammar lessons. They
improved what I wrote while still keeping it in my words (that way, if something is
wrong, it is still my fault). Mike also indicated he liked some of my stale jokes,
which makes him a friend for life.

Jim Keogh was my technical editor. Jim and I had a balance of terror going be-
tween us, in that while he was tech editing this book, I was tech editing two books on
which he was the main author, Data StructuNes Demystified and OOP Demystified.
Seriously, Jim's suggestions were quite helpful and added value to this book.

There are a lot of other talented people behind the scenes who also helped get this
book out to press, but, as in an Academy Awards speech, I can't list them all. That
doesn't mean I don't appreciate all their hard work, because I do.
I truly thank my wife Dewie, who in addition to being my wife, best friend

(maybe my only one), and partner (I'm leaving out lover because computer pro-
grammersaren't supposed to be interested in such things), also was my personal tech

X111

Facebook's Exhibit No. 1010 - Page 15



xiv
C++ Demystified

editor. She iswell-qualified for that task, since she has been a computer science pro-
fessor for 15 years, and also is a stickler for correct English (yes, I know, you can't
modify the word "unique"). She made this a much better book.

Finally, I would like to give thanks to my daughters, Elise and Emily, and my
mom, Bea Kent, for tolerating me when I excused myself from family gatherings,
muttering to myself about unreasonable chapter deadlines and merciless editors
(sorry, Athena and Lisa). I also should thank my family in advance for not having me
committed when I talk about writing my next book.

INTRODUCTION
C++was my first programming language. While I've since learned others, I've al-
ways thought C++ was the "best" programming language, perhaps because of the
power it gives the programmer. Of course, this power is adouble-edged sword, being
also the power to hang yourself if you are not careful. Nonetheless, C++has always
been my favorite programming language.

C++also has been the first choice of others, not just in the business world because
of its power, but also in academia. Additionally, many other programming lan-
guages, including Java and C#, are based on C++. Indeed, the Java programming
language was written using C++. Therefore, knowing C++_also makes learning
other programming languages easier.

Why Did I Write this Book?
Not as a road to riches, fame, or beautiful women. I may be misguided, but I'm not
completely delusional.

To be sure, there are many introductory level books on C++. Nevertheless, I wrote
this book because I believe I bring a different and, I hope, valuable perspective.

As you may know from my author biography, I teach computer science at Los An-
geles Valley College, a community college in the San Fernando Valley area of Los
Angeles, where I grew up and have lived most of my life. I also write computer pro-
grams, but teaching programming has provided me with insights into how students
learn that I could never obtain from writing programs. These insights are gained not
just from answering student questions during lectures. I spend hours each week in
our college's computer lab helping students with their programs, and more hours
each week reviewing and grading their assignments. Patterns emerge regarding
which teaching methods work and which don't, the order in which to introduce
programming topics, the level of difficulty at which to introduce a new topic, and so

Facebook's Exhibit No. 1010 - Page 16



CONTENTS xv

on. I joke with my students that they are my beta testers in mynever-ending attempt
to become a better teacher, but, there is much truth in that j oke.

Additionally, my beta testers... err, students, seem to complain about the text-
book no matter which book I adopt. Many ask me why I don't write a book they
coulduse to learn C++. They may be saying this to flatter me (I'm not saying it does-
n'twork), or for the more sinister reason that they will be able to blame the teacher
fox a poor book as well as poor instruction. Nevertheless, having written other
books, these questions planted in my mind the idea of writing a book that, in addition
to being sold to the general public, also could be used as a supplement to a textbook.

Who Should Read this Book
Anyone who will pay for it! Just kidding, though no buyers will be turned away.
It is hardly news that publishers and authors want the largest possible audience for

their books. Therefore, this section of the introduction usually tells you this book is
for you whoever you may be and whatever you do. However, no programming book
is for everyone. For example, if you exclusively create game programs using Java,
this book may not be for you (though being a community college teacher I may be
your next customer if you create a space beasts vs. community college administra-
tors game).

While this book is, of course, not for everyone, it very well maybe for you. Many
people need or want to learn C++, either as part of a degree program, j ob training, or
even as a hobby. C++ is not the easiest subject to learn, and unfortunately many
books don't make learning C++ any easier, throwing at you a veritable telephone
book of complexity and jargon. By contrast, this book, as its title suggests, is de-
signed to "demystify" C++. Therefore, it goes straight to the core concepts and ex-
plains them in a logical order and in plain English.

What this Book Covers
I strongly believe that the best way to learn programming is to write programs. The
concepts covered by the chapters are illustrated by clearly and thoroughly explained
code. You can run this code yourself, or use the code as the basis for writing further
programs that expand on the covered concepts.

Chapter 1 gets you started. This chapter answers questions such as what is a com-
puter program and what is a programming language. It then discusses the anatomy
of a basic C++program, including both the code you see and what happens "under
the hood," explaining how the preprocessor, compiler, and linker work together
to translate your code into instructions the computer can understand. Finally, the

Facebook's Exhibit No. 1010 - Page 17



xvi
C++ Demystified

chapter tells-you how to use an integrated development environment (IDE) to create
and run a project.

Being able to create and run a program that outputs "Hello World!" as in Chapter 1 is
a good start. However, most programs require the storing of information of different
types, such as numeric and text. Chapter 2 first explains the different types of computer
memory, including random access memory, or RAM. The chapter then discusses ad-
dresses, which identify where data is stored in RAM, and bytes, the unit of value for the
amount of space required to store information. Because information comes in different
forms, this chapter next discusses the different data. types for whole numbers, floating
point numbers and text.

The featured star of Chapter 3 is the variable, which not only reserves the amount
of memory necessary to store information, but also provides you with a name by
which that information later may be retrieved. Because the purpose of a variable is to
store a value, a variable without an assigned value is as pointless as a bank account
without money. Therefore, this chapter explains how to assign a value to a variable,
either at compile time using the assignment operator or at run time using the cin ob-
j ect and the stream extraction operator.

As a former professional chess player, I have marveled at the ability of chess com-
puters toplay world champions on even terms. The reason the chess computers have
this ability is because they can calculate far more quickly and accurately than we
can. Chapter 4 covers arithmetic operators, which we use in code to harness the com-
puter's calculating ability.

As programs become more sophisticated, they often branch in two or more direc-
tions based on whether a condition is true or false. For example, while a calculator
program would use the arithmetic operators you learned about in Chapter 4, your
program first would need to determine whether the user chose addition, subtraction,
multiplication, or division before performing the indicated arithmetic operation.
Chapters 5 and 6 introduce relational and logical operators, which are useful in de-
termining auser's choice, and the if and switch statements, used to direct the path the
code will follow based on the user's choice.

When you were a child, your parents may have told you not to repeat yourself.
However, sometimes your code needs to repeat itself. For example, if an application
user enters invalid data, your code may continue to ask the user whether they want to
retry or quit until the user either enters valid data or quits. The primary subject of
Chapters 7 and 8 are loops, which are used to repeat code execution until a condition
is no longer true. Chapter 7 starts with the for loop, and also introduces the increment
and decrement operators, which are very useful when working with loops. Chapter 8
completes the discussion of loops with the while and do while loops.

Chapter 9 is about functions. A function is a block of one or more code state-
ments. All of your C++code that executes is written within functions. This chapter

Facebook's Exhibit No. 1010 - Page 18



CpNTENTS xvii

will explain why and how you should write your own functions. It first explains how
to prototype and define a function, and then how to call the function. This chapter
also explains how you use arguments to pass information from the calling function
to a called function and a return value to pass information back from the called func-
tion to a calling function. Passing by value and by reference also are explained and
distinguished. This chapter winds up explaining variable scope and lifetime, and
both explaining and distinguishing local, static, and global variables.

Chapter 10 is about arrays. Unlike the variables covered previously in the book,
which may hold only one value at a time, arrays may hold multiple values at one time.
Additionally, arrays work very well with loops, which are covered in Chapters 7 and 8.
This chapter also distinguishes character arrays from arrays of other data types.
Finally, this chapter covers constants, which are similar to variables, but differ in that
their initial value never changes while the program is running.

Chapter 11 is about pointers. The term pointers often strikes fear in the heart of a
C++student, but it shouldn't. As you learned back in Chapters 2 and 3, information
is stored at addresses in memory. Pointers simply provide you with an efficient
way to access those addresses. You also will learn in this chapter about the indirec-
tion operator and dereferencing as well as pointer arithmetic.

Most information, including user input, is in the form of character, C-string, and
C++string class data types. Chapter 12 shows you functions that are useful in work-
ing with these data types, including member functions of the cin object.
Information is stored in files so it will be available after the program ends. Chap-

ter 13 teaches you about the file stream obj ects, fstream, afstream, and ofstream, and
how to use them and their member functions to open, read, write and close files.

Finally, to provide you with a strong basis to go to the next step after this introduc-
torylevel book, Chapter 14 introduces you to OOP, Object-Oriented Programming,
and two programming concepts heavily used in OOP, structures and classes.

A Quiz follows each chapter. Each quiz helps you confirm that you have absorbed
the basics of the chapter. Unlike quizzes you took in school, you also have an an-
swers appendix.

Similarly, this book concludes with a Final Exam in the first appendix, and the an-
swers to that also found in the second appendix.

How to Read this Book
I have organized this book to be read from beginning to end. While this may seem
patently obvious, my students often express legitimate frustration about books (or
teachers) that, in discussing a programming concept, mention other concepts that
are covered several chapters later or, even worse, not at all. Therefore, I have endeav-
ored topresent the material in a linear, logical progression. This not only avoids the

Facebook's Exhibit No. 1010 - Page 19



vii' C++ Demystified

frustration of material that is out of order, but also enables you in each succeeding
chapter to build on the skills you learned in the preceding chapters.

Special Features
Throughout each chapter are Notes, Tips, and Cautions, as well as detailed code list-
ings. To provide you with additional opportunities to review, there is a Quiz at the
end of each chapter and a Final Exam (found in the first appendix) at the end of this
book. Answers to both are contained in the following appendix.

The overall objective is to get you up to speed quickly, without a lot of dry theory
or unnecessary detail. So let's get started. It's easy and fun to write C++programs.

Contacting the Author
Hmmin... it depends why. Just kidding. While I always welcome gushing praise and
shameless flattery, comments, suggestions, and yes, even criticism also can be valu-
able. The best way to contact me isvia e-mail; you can use jkent@genghiskhent.com
(the domain name is based on my students' fond nickname for me). Alternately, you
can visit my web site, http://www.genghiskhent.com/. Don't be thrown offby the en-
trypage; Iuse this site primarily to support the online classes and online components
of other classes that I teach at the college, but there will be a link to the section that sup-
ports this book.
I hope you enjoy this book as much as I enjoyed writing it.

Facebook's Exhibit No. 1010 - Page 20



`"' .

~~

ro ram or s

You probably interact with computer programs many times during an average day.
When you arrive at work and find out your computer doesn't work, you call tech sup-
port. At the other end of the telephone line, a computer program forces you to navi-
gate a voicemail menu maze and then tortures you while you are on perpetual hold
with repeated insincere messages about how important your call is, along with false
promises about how soon you will get through.

When you're finally done with tech support, you decide to take a break and log on
o your now-working computer to do battle with giant alien insects from the planet

egazoid. Unfortunately, the network administrator catches you goofing offusing yet
other computer program which monitors employee computer usage. Assuming you

still employed, an accounts payable program then generates your payroll check.
n your way home, you decide you need some cash and stop at an ATM, where a

_̀ ` com„uter program confirnis (hopefully) you have enough money in your bank account
and then instructs the machine to dispense the requested cash and (unfortunately)

,~ deducts that same amount from your account.

Tr 
O

~ ~ 3

Facebook's Exhibit No. 1010 - Page 21



~~~ C++ Demystified

Most people, when they interact with computers as part of their daily routine,
don't need to consider what a computer program is or how it works. However, a com-
puter programmer should. know the answers to these and related questions, such as
what is a programming language, and how does a C++ program actually work?
When you have completed this chapter, you will know the answers to these ques-
tions, and also understand how to create and run your own computer program.

What Is a Computer Program?
Computers are so widespread in our society because they have three advantages over
us humans. First, computers can store huge amounts of information. Second, they
can recall that information quickly and accurately. Third, computers can perform
calculations with lightning speed and perfect accuracy.

The advantages that computers have over us even extend to thinking sports like
chess. In 1997, the computer Deep Blue beat the world chess champion, Garry
Kasparov, in a chess match. In 2003, Kasparov was out for revenge against another
computer, Deep Junior, but only drew the match. Kasparov, while perhaps the best
chess player ever, is only human, and therefore no match for the computer's ability
to calculate and remember prior games.

However, we have one very significant advantage over computers. We think on our
own, while computers don't, at least not yet anyway. Indeed, computers fundamen-
tallyare far more brawn than brain. A computer cannot do anything without step-by-
step instructions from us telling it what to do. These instructions are called a computer
program, and of course are written by a human, namely a computer programmer.
Computer programs enable us to harness the computer's tremendous power.

What Is a Programming Language?
When you enter a darkened room and want to see what is inside, you turn on a light
switch. When you leave the room, you turn the light switch off.

The first computers were not too different than that light switch. These early com-
putersconsisted ofwires and switches in which the electrical current followed a path
dependent on which switches were in the on (one) or off (zero) position. Indeed, I
built such a simple computer when I was a kid (which according to my own children
was back when dinosaurs still ruled the earth).

Facebook's Exhibit No. 1010 - Page 22

CHAPTER 1 How a C++ Program Works Q~

Each switch's position could be expressed as a number:l for the on position, 0 for
the off position. Thus, the instructions given to these first computers, in the form
of the switches' positions, essentially were a series of ones and zeroes.

Today's computers, of course, are far more powerful and sophisticated than these
early computers. However, the language that computers understand, called machine
language, remains the same, essentially ones and zeroes.

While computers think in ones and zeroes, the humans who write computer pro-
grams usually don't. Additionally, a complex program may consist of thousands or
even millions of step-by-step machine language instructions, which would require
an inordinately long amount of time to write. This is an important consideration
since, due to competitive market forces, the amount of time within which a program
has to be written is becoming increasingly less and less.

Fortunately, we do not have to write instructions to computers in machine lan-
guage.Instead, wecan write instructions in a programming language. Programming
languages are far more understandable to programmers than machine language be-
causeprogramming languages resemble the structure and syntax of human language,
not ones and zeroes. Additionally, code can be written much faster with programming
languages than machine language because programming languages automate instruc-
tions; one programming language instruction can cover many machine language
instructions.

C++ is but one of many programming languages. Other popular programming
languages include Java, C#,and Visual Basic. There are many others. Indeed, new lan-
guages are being created all the time. However, all programming languages have essen-
tiallythe same purpose, which is to enable a human programmer to give instructions
to a computer.

Why learn C++ instead of another programming language? First, it is very widely
used, both in industry and in education. Second, many other programming languages,
including Java and C#, are based on C++. Indeed, the Java programming language was
written using C++. Therefore, knowing C++ makes learning other programming
languages easier.

Anatomy of a C++ Program
It seems to be a tradition in C++programming books for the first code example to
output to a console window the message "Hello World!" (shown in Figure 1-1).

Facebook's Exhibit No. 1010 - Page 23

/v'~'~1► C++ Demystified

Figure 1-1 C++program outputting "Hello World!" to the screen

NOTE: The term "console "goes back to the days before Windows when the screen

did not have menus and toolbars but just text. If you have typed commands using

DOS or UNIX, you likely did so in a console window The text "Press any key to

continue" immediately following "Hello World!" is not part of the pYogram, but

instead is a cue for how to close the console window

Unfortunately, all too often the "Hello World!" example is followed quickly by

many other program examples without the book or teacher first stopping to explain

how the "Hello World!" program works. The result soon is a confused reader or

student who's ready to say "Goodbye, Cruel World."
While the "Hello World!" program looks simple, there actually is a lot going on

behind the scenes of this program. Accordingly, we are going to go through the

following code for the "Hello World!" program line by line, though not in top-to-

bottom order.

#include <iostream>
using namespace std;

int main (void)

Gout « "Hello World! ";
return 0;

NOTE: 'The code a programmer writes is referred to as source code, which is saved
in a file that usually has a . cpp extension, standing for C++.

Facebook's Exhibit No. 1010 - Page 24

CHAPTER Z How a C++ Program Works _ "~~
./

The main Function
As discussed in the "What Is a Programming Language?" section, the purpose of
C++, or any programming language, is to enable a programmer to write instructions
for a computer. Often, a task is too complex for just one instruction. Instead, several
related instructions are required.

Afunction is a group of related instructions, also called statements, which together
perform a particular task. The name of the function is how you refer to these related
statements. In the "Hello World!" program, main is the name of a function. A pro-
gram may have many functions, and in Chapter 9 I will show you how to create and
use functions. However, a program must have one main function, and only one main
function. The reason is that the main function is the starting point for every C++
program. If there was no main function, the computer would not know whereto start
the program. If there was more than one main function, the program would not know
whether to start at one or the other.

NOTE: The main function is preceded by int and followed by void in parentheses.
We will cover the meaning of both in Chapter 9.

The Function Body
Each of the related instructions, or statements, which belong to the main function are
contained within the body of that function. A function body starts with a left curly
brace, {, and ends with a right curly brace, }.

Each statement usually ends with a semicolon. The main function has two
statements:

Gout « "Hello World! ";
return 0;

Statements are executed in order, from top to bottom. Don't worry, the term
"executed" doesn't mean the statement is put to death. Rather, it means that the state-
ment is carried out, or executed, by the computer.

cout
The first statement is

cout « "Hello World! ";

tout is pronounced "C-out." The "out" refers to the direction in which tout sends
a stream of data.

Facebook's Exhibit No. 1010 - Page 25

r

~
O

~•

C++ Demystified

A data stream may flow in one of two directions. One direction is input into
your program from an outside source such as a file or user keyboard input. The other
direction isoutput—out from your program to an outside source such as a monitor,
printer, or file.

cout concerns the output stream. It sends information to the standard output
device. The standard output device usually is your monitor, though it can be some-
thing else, such as a printer or a file on your hard drive.

The « following cout is an operator. You likely have used operators before, such
as the arithmetic operators +, —, *, and /, for addition, subtraction, multiplication, and
division, respectively.

The « operator is known as the stream insertion operator. It inserts the informa-
tion immediately to its right—in this example, the text "Hello World!" into the data
stream. The tout object then sends that information to the standard output device—
in this case, the monitor.

NOTE: In Chapter 3, you will learn about the counterparts to the tout object and
the «operator, the tin object, which concerns the inputstream, and the »operator
used with the tin object.

The return 0 Statement
The second and final statement returns a value of zero to the computer's operating
system, whether Windows, UNIX, or another. This tells the operating system that
the program ended normally. Sometimes programs do not end normally, but instead
crash, such as if you run out of memory during the running of the program. The oper=
ating system may need to handle this abnormal program termination differently than
normal termination. That is why the program tells the operating system that this time
it ended normally.

The #include Directive
Your C++program "knows" to start at the main function because the main function
is part of the core of the C++language. We certainly did not write any code that told
the C++ program to start at main.

Similarly, your C++program seems to know that the tout object, in conjunction
with the stream insertion operator «, outputs information to the monitor. We did not
write any code to have the tout object and the «operator achieve this result.

Facebook's Exhibit No. 1010 - Page 26

CHAPTER 1 How a C++ Program Works O~

However, the cout object is not part of the C++core language. Rather, it is defined
elsewhere, in a standaNd library file. C++ has a number of standard library files, each
defining commonly used objects. Outputting information to the monitor certainly is
a common task. While you could go to the trouble of writing your own function that
outputs information to the screen, a standard library file's implementation of cout
saves you the trouble of "reinventing the wheel"

While C++ already has implemented the cout object for you in a standard library
file, you still have to tell the program to include that standard library file in your ap-
plication. You do so with the #include directive, followed by the name of the library
file. If the library file is a standard library file, as opposed to one you wrote (yes, you
can create your own), then the file name is enclosed in angle brackets, < and >.

The tout object is defined in the standard library file iostream. The "io" in iostream
refers to input and output "stream" to a stream of data.. To use the tout object, we
need to include the iostream standard library file in our application. We do so with
the following include directive:
#include <iostream>

The include directive is called a pYeprocessor directive. The preprocessor, together
with the compiler and linker, are discussed later in this chapter in the section "Trans-
lating the Code for the Computer." The preprocessor directive, unlike statements, is
not ended by a semicolon.

Namespace
The final statement .to be discussed in the Hello World! example is
using namespace std;

C++ uses namespaces to organize different names used in programs. Every name
used in the iostream standard library file is part of a namespace called std. Conse-
quently, the tout object is really called std::cout. The using namespace std statement
avoids the need for putting .std:: before every reference to tout, so we can just use
tout in our code.

Translating the Code for the Computer
While you now understand the "Hello World!" code, the computer won't. Computers
don't understand C++ or any other programming language. They understand only
machine language.

Facebook's Exhibit No. 1010 - Page 27

r

~~ C++ Demystified

Three programs are used to translate your source code into an executable file that
the computer can run. These programs are, in their order of appearance:

1. Preprocessor
2. Compiler
3. Linker

Preprocessor
The preprocessor is a program that scans the source code for preprocessor directives
such as include directives. The preprocessor inserts into the source code all files in-
cluded by the include directives.
In this example, the iostream standard library file is included by an include direc-

tive. Therefore,_ the preprocessor directive inserts the contents of that standard library
file, including its definition of the cout object, into the source code file.

Compiler
The compiler is another program that translates the preprocessed source code (the
source code after the insertions made by the preprocessor) into corresponding ma-
chine language instructions, which are stored in a separate file, called an object file,
having an .obj extension. There are different compilers for different programming
languages, but the purpose of the compiler is essentially the same, the translation of
a programming language into machine language, no matter which programming
language is involved.

The compiler can understand your code and translate it into machine language
only if your code is in the proper syntax for that programming language. C++, like
other programming languages, and indeed most human languages, has rules for the
spelling of words and for the grammar of statements. If there is a syntax error, then
the compiler cannot translate your code into machine language instructions, and
instead will call your attention to the syntax errors. Thus, in a sense, the compiler
acts as a spell checker and grammar checker.

Linker
While the obj ect file has machine language instructions, the computer cannot run the
object file as a program. The reason is that C++also needs to use another code library,
called the run-time library, for common operations, such as the translation of keyboard

Facebook's Exhibit No. 1010 - Page 28

CHAPTER 1 How a C++ Program Works O~.
~

input or the ability to interact with external hardware such as the monitor to display
a message.

NOTE: The run-time library files may already be installed as part of your
operating system. if not, you can download the gun-time library files from Microsoft
or another vendor Finally, if you install an IDE as discussed in the next section, the
run-time library files are included with the installation.

The linker is a third program that combines the obj ect file with the necessary parts
of the run-time library. The result is the creation of an executable file with an .exe
extension. The computer runs this file to display "Hello World!" on the screen.

Using an IDE to Create and Run
the "Hello World!" Project

You can use any plain-text editor such as Notepad to write the source code. You also
can download a free compiler, which usually includes a preprocessor and linker. You
then can compile and run your code from the command line. The command line may
be, for example, a DOS prompt at which you type a command that specifies the action
you want, such as compiling, followed by the name ofthe file you want to compile.

While there is nothing wrong with using aplain-text editor and command line
tools, many programmers, including me, prefer to create, compile, and run their pro-
grams in a C++Integrated Development Environment, known by the acronym IDE.
The term "integrated" in IDE means that the text editor, preprocessor, compiler, and
linker are all together under one (software) roof. Thus, the IDE enables you to create,
compile, and run your code.using one program rather than separate programs. Addi-
tionally,most IDEs have a graphical user interface (GUI) that makes them easier for
many to use than a command line. Finally, many IDES have added features that ease
your. task of finding and fixing errors in your code.

The primary disadvantage of using IDES is you have to pay to purchase them
(though there are some free ones). They also require additional hard drive space and
memory. Nevertheless, I recommend obtaining an IDE since it enables you to focus
on C++ programming issues without distractions such as figuring out the right
commands to use on the command line.

There are several good IDEs on the market. Microsoft's, called Visual C++, can be
obtained separately or as part of Microsoft's Visual Studio product. Borland offers

Facebook's Exhibit No. 1010 - Page 29


~~~ C++ Demystified

C++Builder, both in a free and commercial version. IBM has a VisualAge C++ IDE.
There are a number of others as well.
In this book, I will use Microsoft's Visual C++ .NET 2003 IDE since I happen to

have it. However, most IDEs work essentially the same way, and your code will
compile and run the same no matter which IDE you use as long as you don't use any
library files custom to a particular IDE. The standard library files we will be using,
such as iostream, are the same in all C++ IDEs.

Additionally, I am running the code on a Windows 2000 operating system. The
results should be similar on other operating systems, not just Windows operating
systems, but additional types of operating systems as well, such as iJNIX.

Let's now use the IDE to write the source code for the "Hello World!"project, and
then compile and run it.

Setting Up the "Hello World!" Project
Once you have purchased and installed Visual C++ .NET 2003, either as a standalone
application or as part of Visual Studio .NET 2003, you axe now ready to start your
first project, which is to create and run the "Hello World!" application.

1. Start Visual C++.

2. Open the New Project dialog box shown in Figure 1-2 using the File (New ~
Project menu command. (The values in the Name and Location fields will be
set in steps 5 and 6.)

3. In the left or list pane of the New Project dialog box, choose Visual C++
Projects from the list of Project Types, and then the Win32 subfolder, as
shown in Figure 1-2.

4. In the right or contents pane of the New Project dialog box, choose Win32
Console Project from the list of templates. The word console comes from
the application running from a console window. Win32 comes from the
Windows 32-bit operating system, such as Windows 9x, 2000, or XP.

5. In the Location field, using the Browse button, choose an existing folder
under which you will create the subfolder where you will put your project.

6. In the Name field, type the name you've chosen for your project. This will
also be the name of the subfolder created to store your project files. I sug-
gest you use a name that describes your project so you can locate it more
easily later.

7. Click the OK button. This will display the Win32 Application Wizard,
shown in Figure 1-3.

Facebook's Exhibit No. 1010 - Page 30



CHAPTER 1 How a C++ Program Works

ProjedTypes Templates:

Visual Basic Projects t~ ~~
~L~~-; J Visuel C#Projects

~ Visual J#Projects Win32 Console' Win32 Project
i t J Visuel C++ Projects Project

s...,~ .NET

F-~3 MFC
~~

~ ~ General
t̀ ~- Setup and Deployment Projects ,~

.._ .:T_ .~.._
Console application type'of~n32 project

Name: HelloWorld

LocsGon: C:`Documents and Settings); +,dministrator.PCKLUB866~My Doc - Browse...~ .u,-,._

Project willbacreatedatC:}...~MyDocuments~OMH'~Demystitied~G++1Ch1~ProjedslHelio'JJorid.

=Mare OK Cancel Help

Figure 1-2 Creating a New Project

Welcome to the Win32 Application Wizard ~~
This wizard generaUes a Win32 application project. The project can be a V+lindows application, a console application, . it
a DLL, or a static library.

_______--- -- -- — --- --- - -- -------- - --- _ ___....._ _ _ _ .__- ---- — 1

Overview These are the c~rent project ettings:
• C~ns~i~ applicatirn ii

Click finish fi ern any w'a~dow in accept tl~a current settings. i

After you create the project, see tl~e proJecPs readme.txt file for I~
nforirietion about tl~e project feaWre: and f les that are c~izerated. j

I Finish Cancel Help

11

Figure 1-3 Starting the Win32 Application Wizard

Facebook's Exhibit No. 1010 - Page 31



~~~ C++ Demystified

8. Click the Application Settings menu item on the left. The appearance of the
Win32 Application Wizard then changes to that shown in Figure 1-4.

Application Settings

Specify the type of application you will build with this project and the optiorx or libr~-ies you want supported. ~ i

~ Application type; Add support fa~:

Application Settings ~ Windows application r qTL

r Console application f" AFC

~` DLL

~ Static Ibrary

Additional options:

r ~rrµ~ty pro}~:ct

r .= .._..

I~ ;.. ,... ,._;._.

?! +

Fish ' ,Cancel Help
'si~d4ica.,. . c;~..

Figure 1-4 Win32 Application Wizard after choosing Application Settings

9. Choose, if necessary, Console Application under Application Type (this is
the default) and Empty Project under Additional Options. Choosing Empty
Project will disable both checkboxes under Add Support For, which should
be disabled anyway.

CAUTION: Make sure you follow this step carefully, particularly choosing Empty
Project, which is not the default. Not configuringApplication Settings properly is
a common mistake and may require you to start over

10. Click the Finish button. Figure 1-5 shows the new subfolder He1loWorld and
its parent folder. These were the name and location chosen in steps 5 and 6.

You now have created a project for your application. The project is a shell for
your application, containing files that will support the creation and running of your
application. However, right now the project is empty of any code you have written,
so it won't do anything. Accordingly, the next step is to start writing code.

Facebook's Exhibit No. 1010 - Page 32

CHAPTER 1 How a C++ Program Works i ~'~

~~ ~ _ ❑ x_ _ _ .
Fle Edit Vieva Favorites Tools HEIp _~
w 8ack ~ ~+ ' (U Search ~3Falders ~ ~i ~{i X -~'~ ~ ~
Address t~l HelloWorld (~Go

Folders a x -~ Folder Settings

~' 4 U Demystified ~ ~ desktop.ini

o_,~ C++ Q HelloWorld.ncb
~HelloWorld.sln

D-(~ Ch1 ~,HelloWorld.suo
j D Cl Projects Q HelloWorld.vcproj

-t~;HelloWori~ _~ ~;~ _ _ ~ ~

~6 object(s) (Disk free space: 27.0 GE;4.~1 MB +~ My Computer.

Figure 1-5 Windows Explorer showing newly created subfolder and files

Writing the Source Code
Visual C++ has a view of a proj ect that is similar to Windows Explorer. That view is
called Solution Explorer, shown in Figure 1-6. If Solution Explorer is not already
displayed, you can display it with the menu command View ~ Solution Explorer.

Solution Explorer has folders for both source and header files. The file in which
the code for the "Hello World!" application will be written is a source file. Source

_ ~w.. _ .. _ .,,..... _ ,w _ .., _ ,~ _ ~.,.. _..,,.
Y t-'~ ,~ ~3 f~' ~~ Debug

► !~ '~ = 1,= ' . ! Hex `-~1 ' .

Figure 1-6 Viewing your project with Solution Explorer

Facebook's Exhibit No. 1010 - Page 33


~~~ C++ Demystified

files have a .cpp extension, cpp standing for C++. By contrast, the iostream file that
is included by the include directive is a header file. Header files have an .h extension—
the hstanding for header.

We will use Solution Explorer to add a new source file to the project, after which
we will write code in that new source file.

You can use the following steps to add a new source file to the project:

1. Right-click Source Files in Solution Explorer. This will display a shortcut
menu, shown in Figure 1-7.

File edit Yew Project ~uiid [debug

Source Files shortcut menu

Choose Add ~ Add New Item from the shortcut menu to add a new source to the
project. This will display the Add New Item dialog box, shown in Figure 1-8.

NOTE: If the sourcefile already exists, you can add it to yourproject using theAdd ~
Add Existing Item shortcut menu item.

Generally, you will not change the Location field, which is the subfolder in
which the project files are stored. Type the name of the new source file in the

Facebook's Exhibit No. 1010 - Page 34



CHAPTER 1 How a C++ Program Works ~,,

Name field. You do not need to type the .cpp extension; that extension will
be appended automatically since it is a source file. By typing hello, as shown
in Figure 1-8, the new file will be called hello.cpp.

'I u
Nindows Form C++ File (.cpp} HTML Page

(.NEB (.htm)

Categories: Templates:

!~
Static Header File Midl File (.idl}

DiscoveryFi... (.h)

resource Fiie Server Module-Defin...
(.rc) Response Fi... File (.deft

Name: ~hello~

Location: c:`Documents and Settingsl/~dministratorPCKLUB866`My Documents~Omh~D, Browse...

'~ , Open - Cancel I Help

Figure 1-8 Adding a New Source File to your Project

4. When you are done, click the Open button. Figure 1-9 shows the new hello.cpp
file in Solution Explorer.

Writing the code is easy. Double-click hello.cpp in Solution Explorer. As shown
in Figure 1-10, this will display the hello.cpp file,. which at this point is blank.

Now just type your code. When finished, hello.cpp should appear as in Figure 1-11.

CAUTION: You also can use Notepad or any other text editor to wYite the code. How-
ever do not use Microsoft Word or any other word processing program to write your
code. While a word processing progNam enables you to neatly format your code, it
does so using hidden formatting characters that the compiler does not understand
and will regard as syntax errors.

,Creates a C++source file.

Facebook's Exhibit No. 1010 - Page 35



~~_ C++ Demystified

_ _
. .. - .. ,, _ox

File edit View Project' uild Qebug Ioois Window Jjelp
,:

~ ~ ~ ~5 (~ Debug ~1 _>

~--hello_cpp I-`----- -- -- <1 ~t:~ x ~ Solution Explorer-.HelloW. ~~4yX

'__,__— --_ ~ Solution'HelloWorld' (1 project)
j [7•-- ~I HelloWorld

i ! 'ti---- (i~ References
Q•• • ~ Source Files

;` 

;...__ I~ H~eade
[ ~ ~-•~-- C~ Resource Files ,

Figure 1-9 Solution Explorer showing the new .cpp file

_d~`°"l~dit view Project @uiid Qetiut~ aBts~"j. in 8~

~O ~S LL̀ L~, (q ..Debug ~ ~ isValidHours

~ ► n m ... a '=~=` ._ ! Hex ~91'.. C'i~eS~a~~

heilo.cPP ~ -------- -- 4 ~ x Solution Explorer_ HelloW.. ~} X~ _.__

Solution~'HelloWorld' (1 project)
0-~- ~i'_-;' HelloWorld

i--- (~ References
[}--~ ~ Source Files

i........ ~S'1 QIiQ pl?
(p~ Header Files

-- -• ~,'r1 Resource Files

Figure 1-10 The source file before typing code

Facebook's Exhibit No. 1010 - Page 36



CHAPTER 1 How a C++ Program Works ~~~

Fle edit View Project Build Qebug Tools lyindow Help

', ~ I~ ,~ Q.9 ~, ~~ Debug . ~ ~ isValidHours ~ —'ry ',~~' ;~; >'

It e :a ~;~ c- ~_ .'_ ! Hex n - Ci ~ ~ Aa r. ~_ 
: — `~ ~~6 ~ ~ ~

' ~ hella.cpp` I <~ p x ~ ~ Solution E lorer HeiloJd ~- X I

j (Glo6als) _ -p main 
~ 
~ 

_ _ _.._

i _~~~r._
-- _; ~ Solution'HelloWorld'(1 project)

#include <iostream> - ;p- ~ HellaWorld I
using namespace std; , --•• ~ References ~

0 int main {Void} O-- ~ Source Files
y { i........ ~
~,

Cout « "Hello World! "; -- ~ HeaderFiles

'̀  ret~,~rn 0 • --- lC~ Resource Files

~_ }

Figure 1-11 The source file after typing code

Save your work, such as by pressing the Save toolbar button. We're now ready to
compile.

Building the Project
You compile your code from the Build menu. You may compile your code from any
one of the following different menu choices:

• Build ~ Solution
• Rebuild ~ Solution
• Build ~ He1loWorld
• Rebuild ~ HelloWorld

He1loWorld is the name of your project. A solution may contain more than one
project. Here the solution contains only one project, so there is no practical differ-
ence between the project and the solution.

Build means to compile changes from the last compilation (if there was one). Re-
buildmeans to start compilation from the beginning. Build therefore is usually faster,

Facebook's Exhibit No. 1010 - Page 37



C++ Demystified

but Rebuild is used when there have been extensive changes since the last compila-
tion. As a practical matter, it rarely makes a difference which one you choose.

Before we compile, make one change to the code, changing cout to Cout (capital-
izing the C). Then choose one of the four compilation options. A Task List window
should display, noting a build error, as shown in Figure 1-12. The error description
in the Task List window is "error C2065: `Gout' :undeclared identifier."

' ~) I~~~~ Description ~ File
I. Click here to add a ne~f task
' ~ o'errar C2005: 'Gout' : unded~c:~.,.~hella.~pp

u -ras~:ust o out,,Ut

Figure 1-12 The Task List window showing a compilation error

Tir: If the description column is not wide enough to show the entire error description,
you can display the error description in apop-upwindow byright-clicking the error
description and choosing Show Description Tooltip from the shortcut menu.

As explained in the earlier section on the Compiler, the compiler can understand
your code and translate it into machine language only if your code is in the proper
syntax for that programming language. As also explained there, C++has rules for the
spelling of words and for the grammar of statements. If there is a violation of those
rules, that is, a syntax error, then the compiler cannot translate your code into machine
language instructions, and instead will call your attention to the syntax errors.
In C++, code is case sensitive. That is, a word capitalized is not the same as the

word uncapitalized. The correct spelling is cout; Cout is wrong. Since C++does not
know what Cout is, you get the error message that it is an "undeclared identifier."

While here the code is short, if your code is quite lengthy, it is not easy to spot
where the error is in the code. If you double-click the error in the Task List window;
then a cursor will blink at the line where Cout is, and an icon will display in the margin
(as shown in Figure 1-13).

Facebook's Exhibit No. 1010 - Page 38



CHAPTER 1 Hover a C++ Program Works ~~~

File Edit View Project Build Debug Tools `d'Jindova Halp

~ ~ ,iY, L~~ It; 'Debug ~ ~?5 isValidNours —~ ~~'  'S~" .'

► ;i ~ r: '~ ' = C,= ! Hex . ~ - pct ~, ~, A-~. -= '= _ ~ ;i6 ~ ?~6 .
hello_cpp I~^----------- q G x ..Solution E - lorer_ HelloW... 

_~__.X.

iL_ _---_._?~e -- -------. _ ----
~ (Globals) ~ ' 4main

#include <iostream>
using namespace std;

- int main {void}
{

Cout « "Hello World!";
return 0;

}

Figure 1-13 The error highlighted in the code window

Solution'HelloWarld' (1 project)
Q He1loWorld

•~-• t~ References
O ••~ ~ Source Files_ _,..._._ ~~~9PP;

~ Header Files
(~ Resource Files

Now change Cout to cout, and then compile your code again. This time compilation
should be successful. Using Windows Explorer, you can now see in the Debug sub-
folder ofyour He1loWorldproject folder a file called hello.obj and another file called
hello.exe. These are the object and executable files previously discussed in the section
"Translating the Code for the Computer." Accordingly, building the prof ect involved
the preprocessor, the compiler, and the linker.

Running the Code
The final step is to run the code. You do so from the Debug menu. You may choose
either Debug ~ Start or Debug ~ Start Without Debugging. The difference is whether
you wish to use the debugger, an issue which we will discuss in a later chapter. Since
we are not going to use the debugger this time, choose Debug ~ Start Without Debug-
ging as it isslightly faster. The result is the console window displaying "Hello World!"
(shown way back in Figure 1-1).

Facebook's Exhibit No. 1010 - Page 39



emo an
a a es

After I wrote my first book, I expectantly waited every day for my mail, hoping to re-
ceive requests for my autograph. The result was proof of the adage "be careful what
you ask for." My mailbox was stuffed with numerous requests for my autograph.
Alas, these requests came from those who wanted to share my money, not my fame.
My autograph was requested on checks to pay my mortgage, credit cards, insurance,
phone service, electricity; well, you get the picture.

These companies who love sending me bills could not possibly keep track of their
housands of customers by using pencil and paper. Instead, they use computer pro-

ams, which harness the computer's ability to store very large amounts of informa-
n and to retrieve that stored information very quickly.
We use our memory to store and recall information. So do computers. However,

a'computer's memory is very different from ours. This chapter will explain how a
computer's memory works.

~~~

Facebook's Exhibit No. 1010 - Page 40

22 C++ Demystified

Information, also called data, comes in different forms. Some data is numeric,
such as the amount of my gas bill. Other data is text, such as my name on my gas bill.
The type of data, whether numeric, text, or something else, quite logically is referred
to as the "data type: 'The data type you choose will affect not only the form in which
the data is stored, but also the amount of memory required to store it. This chapter
will explain the different data types.

Memory
Computer programs consist of instructions and data. As discussed in Chapter 1,
instructions, written in a programming language such as C++and then translated by
the compiler and linker into machine language, give the computer step-by-step di-
rections onwhat to do. The data is the information that is the subj ect of the program.
For example, if the user of your computer program wants a list of all students with a
GPA of 4.0, the data could be a list of all students and their GPAs. The program then
would follow instructions to determine and output the list of all students with a GPA
of 4.0.

The computer program's instructions and data have to be in the computer's mem-
ory for the program to work. This section will explain the different types of com-
putermemory, as well as how and where instructions and data are stored in computer
memory.

Types of Memory
There are three principal memory locations on your computer.

The central processing unit (CPi~
.Random access memory (RAM)
Persistent storage

Cache Memory
The CPU is the brains of the computer. You may have thought about the CPU
when you last considered purchasing a computer, since the CPU's speed often is an
important purchase consideration. The faster the CPU's speed, the faster your com-
puter runs.

Facebook's Exhibit No. 1010 - Page 41

CHAPTER 2 Memory and Data Types

NOTE: A hertz, named after Heinrich Hertz, who first detected electrofnagnetic
waves, .represents one cycle per second. CPU speed is measured in megahertz
(MHz), which represents one million cycles per second, or gigahertz (GHz), which
represents 1 billion cycles per second. For example, a CPU that i^uns at 800 MHz
executes 800 million cycles per second. Each computer insti^zcction requires a fixed
number of cycles, so the CPUspeed determines how many instructions pegsecond
the CPU can execute.

The CPU, in addition to coordinating the computer's operations, also has memory,
called cache memory. The CPU's cache memory includes a segment called a register:
This memory is used to store frequently used instructions and data..

The CPU can access cache memory extremely quickly because it doesn't have far
to go; the memory is right on the CPU. However, the amount of available cache
memory is quite small; there is only enough room for the most frequently used in-
structions and data. The remainder of the instructions and data have to be stored
somewhere else.

Random Access Memory
That somewhere else is random access memory, or RAM. You may also have con-
sideredRAM when you last purchased a computer, since the more R.AM a computer
has, the more programs it can run at one time, and the faster it runs.

The CPU can access RAM almost as quickly as cache memory. Additionally, the
amount of RAM available to store instructions and data is much larger than the
amount of available cache memory.

However, RAM, like cache memory, is temporary. Instructions and data con-
tained inmain memory are lost once the computer is powered down. You may have
had the unpleasant experience of losing unsaved data when your computer powered
ofd during a power failure, or had to be rebooted.

Additionally, we would want the data to remain intact after the program ended,
even if the computer is rebooted or powered off. That is not possible with RAM.

Furthermore, your computer likely has many other programs, for e-mail, Internet,
word processing, and so on, that you may not be using right now, but you may want
to use in the future. Likewise, your computer also may have other data files, such as
term papers, letters, tax spreadsheets, e-mail messages, and so on, that you also may
not be using right now, but that you may want to use in the future. Accordingly, we
need another memory location, which unlike cache memory or RAM, is persis-
tent—that is, it will persist even though the computer is rebooted or turned off.

Facebook's Exhibit No. 1010 - Page 42


~~~ C++ Demystified

Persistent Storage
That other, persistent type of computer memory is called, naturally enough, persis-
tentstorage. This usually is a hard drive, but also could be, among other devices, a
CD-ROM or DVD-ROM, floppy or zip disk, or optical drive. However, no matter
what storage device is used, persistent storage is lasting; instructions and data
remain stored even when the computer is powered down. Thus, your computer can
be turned off for months, but when it is turned on, the files you previously saved are
still there.

Persistent storage, in addition to being lasting, also has a much larger capacity
than RAM—about one hundred to one thousand times larger.

Since persistent storage is lasting and has a very large capacity, it is used to store
both programs and data. For example, if you installed Microsoft Word on your com-
puter, the files for this program would be stored on your hard drive. If you then pre-
pared documents using that program, those documents likewise would be saved as
files on your hard drive.

While persistent storage has the advantages of being lasting and having a large ca-
pacity, acomputer program cannot execute instructions located in persistent stor- -
age. The instructions must be loaded from persistent storage into RAM. Similarly, a
computer program cannot manipulate data located in persistent storage. This data
likewise must be loaded from persistent storage into RAM.

NOTE: While beyond the scope of this chapter persistent storage also can serve
as a backup to RAM, and when serving this purpose is called virtual memory or
swap space.

Generally, computer programs use RAM to store instructions and data, so RAM
will be our focus in discussing memory. However, much of the discussion of mem-
ory also may apply to persistent storage. CPU cache memory is a different subject,
discussed more in connection with programming languages, such as assembly lan-
guage, that are fax closer to machine language than is C++,

Addresses
When someone asks where you live, you may answer 1313 Mockingbird Lane. That
is your address.

Addresses are used to locate persons or places. Addresses usually follow a logical
pattern. For example, the addresses on one block may be from 1300 to 1399, the next
from 1400 to 1499, and so on.

Facebook's Exhibit No. 1010 - Page 43



CHAPTER 2 Memory and Data Types _~~

Locations in memory also are identified by address. These addresses often look
quite different than the street addresses we're used to, since they usually are ex-
pressed as hexadecimal (Base 16) numbers such as Ox8fc1. However, regardless
of how the number is written, as shown in Figure 2-1, memory addresses follow
the same logical, sequential pattern as do street addresses, one number coming after
another.

100 101 102 103 104 105

Memory Addresses ~~

Figure 2-1 Sequence of memory addresses

NOTE: Hexadecimal Numbers—We usually use numbers that are decimal, or
Base 10, in which each digit is between 0 and 9. By contrast, memory addresses
usually are expressed as hexadecimal, or Base 16, zn which each digit is between 1
and 1 S. Since 10, 11, 12, 13, 14, and 1 S are notsingle digits, 10 is expressed as a, 11
as b,12 as c,13 as d,14 as e, and 1 S as f. The number 16 in decimal is expressed as 10
in hexadecimal.
Memory address numbers can be large values, and thus may be written more
compactly in hexadecimal than in decimal. Foy example, 1, 000, 000 in decimal is
f4240 in hexadecimal.
Converting between hexadecimal and decifnal is explained next in the upcoming
section, "Converting Between Decimal and Binary or Hexadecimal."

Bits and Bytes
While people live at street addresses, what is stored at each memory address is a byte.
Don't worry, I have not misspelled Dracula's favorite pastime.

As discussed in Chapter 1, early computers essentially were a series of switches, l
representing on, 0 representing ofd In computer terminology, a bit is either a 1 or a 0.

However, while a computer may think in bits, it cannot process information as
small as a single bit. Eight bits, or one byte, is the smallest unit of information that a
computer can process.

Accordingly, each address may store up to one byte of information, represented
by a sequence of up to eight ones and zeroes. Thus, just as a street address maybe
used to locate the persons who live there, a memory address can be used to locate the
one byte of information that is stored there. Figure 2-2 shows a sequence of memory
addresses, each with a value.

Facebook's Exhibit No. 1010 - Page 44



r

~26 C++ Demystified

Values ~'

00000100 10011000 01001010 00100100
X100 101 102 103 104 105

Memory Addresses ~~

Figure 2-2 A sequence of memory addresses, each with a byte value

Binary Numbering System
The information stored at a memory address, a series of ones and zeroes, probably
has little meaning to most of us. However, to a computer, a sequence of ones and
zeroes is quite meaningful.

For example, to my computer, I was born in the year 1 1 1 1 0 1 00000. Before you,
tell me that's impossible, I will tell you I was born in the year 1952. How could I have
been born both in the year 11110100000 and in the year 1952?

The numbers with which we usually work are decimal, or base 10. Each number
in decimal is represented by a digit between 0 and 9. 1952 is a decimal number.

The sequence of ones and zeroes in a byte also is a number, though it may not look
like any number you have ever seen. My birth year, expressed as the number
11110100000, is binary, or base 2. Each number in binary is represented by a digit
that is either 0 or 1.

The reason both decimal and binary numbers are involved in computer program-
ming is because both humans and computers are involved. While humans think in
decimal numbers, computers "think" in binary numbers.

Converting Between Decimal
and Binary or Hexadecimal
You can write computer programs without knowing how to convert between binary
and decimal numbers. However, knowing how to do so is not difficult and may help
yourunderstanding ofwhathappens behindthescenes. Ifyouare interested, read on!

Converting a number from binary to decimal is simple. Going from right to left,
the rightmost binary digit is multiplied by 2°, or 1, the second binary digit from the
right is multiplied by 2', or 2, the third binary digit from the right is multiplied by 22,
or 4, and so on, through all of the binary digits. The results of each multiplication are
added, and the result is the decimal equivalent ofthe binary number. Table 2-1 shows
this calculation for the binary equivalents of the numbers 1 through 5 in decimal.

Facebook's Exhibit No. 1010 - Page 45



CHAPTER 2 Memory and Data Types 27

Binary Calculation Decimal

~ ~x2~=fix 1= n

j Ix2~=1x1= 1

1~ ~~x2~-~~ix21~=~-F2 2

11 (1 X2~+(1X2')=1+2 3

100 (0 x 2~+(0 x 2')+(1 x 2Z)=0+0+4 4

101 (1 x2~+(Ox2'~+(1 x2Z)=1+0+4 5

Table 2-1 Binary Equivalents of the Numbers 1 Through 5 in Decimal

Converting a number from decimal to binary is almost as easy. Let's use 5 in deci-
mal as an example.

1. You find the largest power of 2 that can be divided into 5 with a quotient of 1.
The answer is 2Z, or 4.

2. Remember when converting from binary to decimal, the rightmost binary
digit is multiplied by 2°, or 1, the second binary digit from the right is multi-
plied by 2', the third binary digit from the right is multiplied by 22, and so
on. Since the exponent is 2, a binary 1 goes into the third binary digit from
the right, so the binary number now is 1??, the ?representing each binary
digit we still need to calculate.

3. When you divide 5 by 4, the remainder is 1. You next try to divide 1 by the
next lowest power of 2, 2', oz 2. The quotient is 0, so a binary 0 goes into
the second binary digit from the right. The binary number now is 10?.

4. When you divide 1 by 2, the remainder is still 1. You next try to divide
1 by the next lowest power of 2, 2°, or 1. The quotient is 1, so a binary 1
goes into the rightmost binary digit. The binary number now is 101, and
we're done.

You also can use the same techniques for converting between hexadecimal and
decimal. When converting from hexadecimal to decimal, multiply each hexadeci-
mal digit (converting a to 10, b to 11, and so on) by the appropriate power of 16. For
example, Sc in hexadecimal is (12 X 16°) + (5 x 16'), which is 12 + 80 or'92.

Conversely, when converting from decimal to hexadecimal, the highest power of
16 that can be divided into 92 is 16`, or 16. The quotient is 5, which goes into the sec-
onddigit to the right. The remainder is 12, which is c in hexadecimal. This goes into
the rightmost digit, resulting in the hexadecimal number Sc.

Facebook's Exhibit No. 1010 - Page 46



~~ C++ Demystified
~•

Data Types
The ones and zeroes that may be stored at a memory address may represent text, such
as my name, Jeff Kent. These ones and zeroes instead may represent a whole num-
ber, such as my height in inches, 72, or a number with digits to the right of the deci-
malpoint, such as my GPA in high school, which I'll say was 3.75 (I honestly don't
remember, it was too long ago). Alternatively, the ones and zeroes may represent
either true or false, such as whether I am a U.S. citizen.

Data comes in many fortes, and is generally either numeric or textual. Addi-
tionally,some numeric data uses whole numbers, such as 6, 0, or —7, while other nu-
meric data uses floating-point numbers, such as .6, 7.3, and —6.1.

There are different data types for each of the many forms of data. The data. type
you choose will affect not only the form in which the data is stored, but also the
amount of memory required to store the data. Let's now take a look at these different
data types.

Whole Number Data Types
We deal with whole numbers all the time. Think of the answers to questions such as
how many cars are in the parking lot, how many classes are you taking, or how many
brothers and sisters do you have? Each answer involves a number, with no need to
express any value to the right of the decimal point. After all, who has 3.71 brothers
and sisters?

Often, you don't need a large whole number. What unfortunate student would be
taking 754,361 classes at one time? However, sometimes the whole number needs to
be large. For example, if you are studying astronomy, the moon is approximately
240,000 miles from Earth. Indeed, sometimes the whole number may need to be
very, very large. Pluto's minimum distance from the Earth is about 2.7 billion miles.

Many times, the whole number won't be negative. No matter how badly you do on
a test, chances are you won't score below zero points. However, some whole num-
bers maybe below zero, such as the temperature at the North Pole.

Because of the different needs whole numbers may have to meet, there are several
different whole number data types (shown in Table 2-2). The listed sizes and ranges
are typical, but may vary depending on the compiler and operating system. In the
sizeof operator project later in this chapter, you will determine through code the size
of different data types on your compiler and operating system.

Facebook's Exhibit No. 1010 - Page 47



CHAPTER 2 Memory and Data Types m'~,

Data Type Size (in Bytes) Range

short 2 —32,768 to 32,767

unsigned short 2 0 to 65,365

int 4 —2,147,483,648 to 2,147,483,647

unsigned int 4 0 to 4,294,987,295

long 4 —2,147,483,648 to 2,147,483,647

unsigned long 4 0 to 4,294,987,295

Table 2-2 Wkole Number Data Types; Sizes, and Ranges

NOTE: You may be wondering about the purpose of the Zong data type, since ats size
and range is the same as an int in Table 2-2. However, as noted just before that table,
the actual size, and, therefore, range of a particular data type varies depending on the
compiler and operating system. On some combinations of compilers and operating
systems, short nay be 1 byte, int may be 2 bytes, and long may be 4 bytes.

Beginning programmers sometimes see information like that shown in Table 2-2
and panic that they can't possibly memorize all of it. The good news is you don't
have to. To be sure, some memorization is necessary for almost any task. However,
since there really is too much information to memorize, programmers frequently re-
sort to online help or reference books. Believe me, I do.

Fax more important to a programmer than rote memorization is to understand how
and why a program works as it does. Therefore, this section will go into some detail
as to how data. types work. Some arithmetic necessarily is involved, but it is not diffi-
cult, and if you follow the arithmetic, you will have a good understanding of data
types that will help you in your programming in the following chapters.

Unsigned vs. Signed Data Type
Table 2-2lists three data types: short, int, and long. Each of these three data types
has either the word unsigned in front of it or nothing at all—as in unsigned short
and short.

Unsigned means the number is always zero or positive, never negative. Signed
means the number may be negative or positive (or zero). If you don't specify signed
or unsigned, the data type is presumed to be signed. Thus, signed short and short are
the same.

Facebook's Exhibit No. 1010 - Page 48



~~~ C++ Demystified

Since an unsigned data type means its value is always 0 or positive, never nega-
tive, in Table 2-2 the smallest value of an unsigned short is therefore zero; an un-
signed short cannot be negative. By contrast, the smallest value of ashort is —32767,
since a signed data type may be negative, positive, or zero.

Size
Each of the whole number data types listed in Table 2-2 has a size. Indeed, all C++
data types have a size. However, unlike people, the size of a data type is not
expressed in inches or in pounds (a sore subject for me), but in bytes.

Since a byte is the smallest unit of information that a computer can process, no
data type may be smaller than one byte. Most data types are larger than one byte;
all the whole number data. types listed in Table 2-2 are. However, regardless of the
size, the number of bytes is always a whole number. You cannot have a data type
whose size is 3.5 bytes because .5 bytes, or 4 bits, is too small for the computer to
process.

Generally, the number of bytes for a data type is the result of a power of 2 since
computers use a binary number system. Thus, typical data type sizes are 1 byte (2°),
2 bytes (2'), four bytes (22), or eight bytes (2').

The size of a data. type matters in two related respects: (1) the range of different
values that the data type may represent and (2) the amount of memory required to
store the data type.

Range
Range means the highest and lowest value that may be represented by a given data
type. For example, the range of the unsigned short data type is O to 65,365. These
lowest and highest values are not arbitrary, but instead can be calculated.

The number of different values that a data type can represent is 2°, n being the
number of bits in the data type. The size of a short data type is 2 bytes, or 16 bits.
Therefore, the number of different whole numbers that the short data type can repre-
sent is 216, which is 65,356.

However, the highest value that an unsigned short can represent is 65,355, not
65,356, because the unsigned short data type starts at 0, not 1. Therefore, the highest
number that an unsigned data type may represent is 2" —1; n again being the number
ofbits in the datatype, and the minus 1 being used because we are starting at 0, not 1.

Signed data types involve an additional issue. Since the range of a signed data
type includes negative numbers, there needs to be a way of determining if a number
is positive or negative. We determine if a decimal number is positive or negative by

Facebook's Exhibit No. 1010 - Page 49

1~

CHAPTER 2 Memory and Data Types
~~

looking to see if the number is preceded by a negative sign (—). However, a bit can be
only 1 or 0; there is no option for a negative sign in a binary number.

There are several different explanations in computer science for the represen-
tation of negative numbers, such as signed magnitude, one's complement, and
two's complement. However, we don't need to get into the complexities of these
explanations.

For example, a signed short data type, like an unsigned short data type, can repre-
sent 216 or 65,356 different numbers. However, with a signed data type, these differ-
ent numbers must be split evenly between those starting at zero and going up, and
those starting at zero and going down. To do this, the two ranges would be 0 to
32,767 and —1 to —32,768. This can be confirmed by Table 2-2, which shows the
range of a signed data type as —32,768 to 32,767.

Another way of explaining the high and low numbers of the range of the signed
short data type is that one of the bits is used to store the sign, positive or negative.
That leaves 15 bits. The highest number in the range is 2'S —1, or 32,767; the minus 1
being used because we are starting at 0, not 1. The lowest number in the range is
_(215), ar —32,768; there's no minus 1 because we are starting at —1, not 0.

Storage
In binary, 65365 as an unsigned short is represented by sixteen ones:
1111111111111111. You cannot fit 16 bits into a single memory address. A memory
address can hold only 8 bits, or a byte. How then can you store this value in memory?

The answer is you need two memory addresses to store 65365 in decimal. This
provides two bytes of storage, sufficient to store this value. This is why the short data
type requires 2 bytes of storage. Figure 2-3 shows how this value would be stored as
a short data type.

Values ~.

11111111 11111111
100 101 102 703 704 705

Memory Addresses ~~

Figure 2-3 Storage in memory of 65365 in decimal as an unsigned short data type

The int data type requires 4 bytes of storage. Figure 2-4 shows how 65365 in deci-
mal would be stored as an unsigned int data type.

Facebook's Exhibit No. 1010 - Page 50

32
C++ Demystified

Values ~.

00000000 00000000 11111111 11111111
100 101 102 103 104 105

Memory Addresses ~~

Figure 2-4 Storage in memory of 65365 in decimal as an unsigned int data type

You may legitimately wonder why 65365 in decimal as an unsigned int data type
requires four bytes of storage when 65365 in decimal as an unsigned short data
type requires only two bytes of storage. In other words, if you specify int instead of
short as the data type, four bytes of storage will be reserved, even if you could store
the number in less bytes. The reason is that it is not known, when memory is re-
served, what value will be stored there. Additionally, the value could change. Ac-
cordingly, enough bytes of storage are reserved for the maximum possible value of
that data type.

Why Use a Smaller Size Data Type?
Given that an int can store a far wider range of numbers than a short, you also maybe
wondering why you ever would use a short rather than an int. The answer is that the
wider range of an int comes at a price; it requires twice as much RAM as a short
four instead of two bytes.

However, computers these days come with hundreds of megabytes of RAM, each
megabyte being 1,048,576 bytes; you still may wonder why you should care about
two measly extra bytes. If it was just 2 extra bytes, you wouldn't care. However, if
you are writing a program for an insurance company that has one million customers,
you won't be talking about 2 extra bytes, but instead 2 million extra bytes. Therefore,
you should not just reflexively choose the largest data type.

All this said, as a general rule, of the six whole number data types, you most often
will use int. However, it is good to know about the other choices.

Floating-Point Data Types
I was nearsighted my entire adult life until I had lasik surgery on my eyes. In this sur-
gery, the eye surgeon programs information that the laser used to reshape my eyeball
by shaving off very thin slices of my cornea, measuring only thousandths of an inch,
in certain areas of my eyeball, leaving untouched other areas, again only thou-
sandths of an inch away.

Can you imagine my reaction if the eye surgeon had told me his philosophy was
"close enough for government work," so he was using only whole numbers, ignoring

Facebook's Exhibit No. 1010 - Page 51

CNRPTER 2 Memory and Data Types
,._~

any values to the right of the decimal point? You next would have seen my silhouette
through the wall after I ran through it to escape. (Since I still go to my eye surgeon,
who, by the way, earned his way through college as a computer programmer, and it is
not in my best interest to get on his bad side, let me hasten to add that he was very
precise and the surgery was successful.)

Whole numbers work fine for certain information where fractions don't apply.
For example, who would say they have 2 3/a children? Whole numbers also work fine
for certain information where fractions do apply but are not important. For example,
it would be sufficient normally to say the location is 98 miles away; precision such as
98.177 miles usually is not necessary.

However, other times fractions, expressed as numbers to the right of the decimal
point, are very important. My lasik surgery is an extreme example, but there are
many other more common ones. If you had a 3.9 GPA, you probably would not want
the school to just forget about the .9 and say your GPA was 3. Similarly, a bank that
kept track of dollars but not cents with deposits and withdrawals would, with poten-
tiallymillions oftransactions aday, soon have very inaccurate information as to how
much money it has, and its depositors have.

Accordingly, there are floating-point data types that you can use when a value to
the right of the decimal point is important. The term floatzng point comes from the
fact that there is no fixed number of digits before and after the decimal point; that is,
the decimal point can float. Floating-point numbers also are sometimes referred to
as real numbers.

Table 2=3 lists each of the floating-point number data types. As with the whole
number data types, the listed sizes and ranges are typical, but may vary depending on
the compiler and operating system.

Data Type Size (in .Bytes) Range (in E notation)

float 4 f3.4E-38 to f3.4E38

double 8 1.7E-308 to t1.7E308

long double 10 13.4E-4932 to f3.4E4932

Table 2-3 Floating-point Number Data Types, Sizes, and Ranges

NOTE: The size of a long double on many combinations of compilers and operating
systems may be 8 bytes, not 10.

Facebook's Exhibit No. 1010 - Page 52

34

Scientific and E Notations

C++ Demystified

The range column in Table 2-3 may not look like any number you. have ever seen be-
fore. That is because these are not usual decimal numbers, but instead numbers
expressed in E notation, the letter E standing for exponent.

The float data types can store very large numbers, such as (in decimal)
10000000000000000000000000000000000000, which could be a distance across
the universe. The float data types also can store very small numbers,. such as
.00000000000000000000000000000000000001, which could be the diameter of
a subatomic particle.

Rather than having digits running across the page, the number can be expressed
more compactly. One way is with scientific notation, another is with E notation. Ta-
ble 2-4 shows how certain floating-point numbers are represented in both notations.

Decimal Notation Scientific Notation E Notation

123.45 1.2345 x 102 1.2345E2

0.0051 5.1 x 10"' S.1 E-3

1,200,000,000 1.2 x 109 1.2E9

Table 2-4 Scientific and E Notation Representations of Floating Point Values

In scientific notation, the number before the multiplication operator, called the
mantissa, always is expressed as having a single digit to the left of the decimal point,
and as many digits as necessary to the right side of the decimal point to express the
number. The number after the multiplication operator is a power of 10, which may
be positive for very large numbers or negative for very small fractions. The value of"
the expression is the mantissa multiplied by the power of 10.

E notation is very similar to scientific notation. The only difference is the multi-
plication operator, followed by 10 and an exponent, is replaced by an E followed by
the exponent.

Storage of Floating-Point Numbers
Since only ones and zeroes can be stored in memory, complex codes, well beyond
the scope of this book, are required to store floating-point numbers. Even with com-
plex codes, a computer can only approximately represent many floating-point val-
ues.Indeed, in certain programs the programmer has to take care to ensure that small

Facebook's Exhibit No. 1010 - Page 53

:; ft

~NAPTER Z Memory and Data Types ~ ~g

discrepancies in each of a number of approximations don't accumulate to the point
where the final result is wrong.

NOTE: Because mathematics with floating point numbers requires a great deal of
computingpower, many CPUs corrte with a chip specializedforperfoNmingfloating-
pointarithmetic. These chips often aye Neferred to as math coprocessors.

Text Data Types
There are two text data types. The first is char, which stands for character. It usually
is 1 byte, and can represent any single character, including a letter, a digit, a punctua-
tion mark, or a space.

The second text data type is string. The string data type may store a number of
characters, including this sentence, or paragraph, or page. The number of bytes re-
quired depends on the number of characters involved.

NOTE: Unlike char and the other data types we have discussed, the sting type is
not a data type built into C++.Instead, it is defined in thestandard lib~aryfile sting,
which therefore must be included with an include directive (#include <st~ing>) to
use the string data type. Chapter 1 covers the include directive, which in the "Hello
YVorld!"program was #include <iostream>.

Storage of Character Values
There is a reason why the size of a character data type usually is 1 byte.

ANSI (American National Standards Institute) and ASCII (American Standards
Committee far Information Interchange) adopted for the English language a set of
256 characters, which includes all alphabetical characters (upper- and lowercase),
digits and punctuation marks, and even characters used in graphics and line drawing.
Each of these 256 different characters is represented by a number between 0 and 255
that it corresponds to. Table 2-5 lists the ASCII values of commonly used characters.

Each of the 256 different values can be represented by different combinations of 8
bits, or one byte. This is true because 2$ equals 256. Thus, 00000000 is equal to 0, the
smallest ASCII value, and 11111111 is equal to 255, the largest ASCII value.

For example, the letter J has the ASCII code 74. The binary equivalent of 74 is
1001010. Thus, 1001010 at a memory address could indicate the letter J.

Facebook's Exhibit No. 1010 - Page 54

C++ Demystified

Characters Values Comments

0 through 9 48-57 0 is 48, 9 is 57

A through Z 65-90 A is 65; Z is 90

a through z 97-122 a is 97, z is 122

Table 2-5 ASCII Values of Commonly Used Characters

NOTE: 1001010 also could indicate the number 74; you wouldn't know which
value was being repre,~ented unless you knew the data type associated with that
memory address. In the next chapter you will lean about variables, which enable
you to associate a particular data type with a specific memory address.

Storage of Strings
The amount of memory required for a string depends on the number of characters in
the string. However, each memory address set aside for the string would store one
character of the string.

The boot Data Type
There is one more data type, bool. This data type has only two possible values, true
and false, and its size usually is one byte. The term "bool" is a shortening of Boolean,
which is usually used in connection with Boolean Algebra, named after the British
mathematician, George Boole.

The bool data type is mentioned separately since it does not neatly fit into either
the number or text categories. It could be regarded as a numeric data type in that zero
is seen as false, and one (or any other non-zero number) as true. While it may not
seem intuitive why zero would be false and one would be true, remember that com-
puters essentially store information in switches, where 1 is on, and 0 is off.

Project: Determining the Size of Data Types
As discussed in the previous Data Types section, the size of each data type depends
on the compiler and operating system you are using. In this project, you will find out
the size of each data type on your system by using the sizeof operator.

Facebook's Exhibit No. 1010 - Page 55

CHAPTER 2 Memory and Data Types ~_
~~

The sizeof Operator
The sizeof operator is followed by parentheses, in which you place a data type. It re-
turns the size in bytes of that data type.

For example, on my computer, the expression sizeof(int) returns 4. This means
that on my compiler and operating system, the size of an int data type is 4 bytes.

Changing the Source File of Your Project
Try creating and running the next program using the steps you followed in Chapter 1
to create the "Hello World!" program. While you could start a new prof ect, in this ex-
ample, you will reuse the prof ect you used in Chapter 1. It is good to know both how
to create a new project and how to reuse an existing one.

1. Start Visual C++.

2. Use the File ~ Open Solution menu command to display the Open Solution
dialog box shown in Figure 2-5.

1

Look in. ~`~ HelloWarid

JDebug
:S I __'Folder Setlinys
J

History

~~,

i My Projects

~J~
Desktop

;; ~ Favorites

My Nehvork
Places

Rle ~r ame:

Files of~ype: Solution Files (*.sln)

Figure 2-5 Opening the Existing Solution

~ ~ Tools

Cancel

Facebook's Exhibit No. 1010 - Page 56

C++ Demystified

3. Navigate to the folder where you saved the project (C:\temp\helloworld
on my computer) and find the solution file. It has the extension .sln, which
stands for solution. The solution file is helloworld.sln in Figure 2-5.

4. Open the solution file. This should open your project.
5. Display Solution Explorer using the View ~ Solution Explorer menu

command, and then click the Source Files folder to show the hello.cpp
file, as depicted in Figure 2-6.

Solution'HelloWorld' (7 projed)~
f~,'-_l"-' HelloWorld

~] References
[~ -- !~ Source Files

~~
d HeaderFiles
CCU Resource Files

Figure 2-6 Showing the Existing Source File in Solution Explorer

6. Right-click the hello.cpp file and choose Remove from the shortcut
menu (shown in Figure 2-7). Don't worry, this will not delete the file,
but instead simply remove it from the project. You still will be able to
use it later if you wish.

' SolutionExploeer.-:HEIIoWoricl Q

~ Gry~ Solution'HelloWorld' (1 project}
v `~ HelloWoridt.

t~1 References
I p--- ;~i Source Files

— --'' .7 Open

--.. ~] R Opera With....—...._... V _...~...
i,}a.S Compile

~~ ~ Cut

emu-- CoPX
X Remove

~43 Properties

Figure 2-7 Remove option on Shortcut Menu

Facebook's Exhibit No. 1010 - Page 57

r

t
4

CHAPTER 2 Memory and Data Types ~~~

7. Right-click the Source Files folder and choose Add New Item from the shortcut
menu. This will display the Add New Item dialog box, shown in Figure 2-8.

-- . . _. _
es a C+~ source tile.

Windows Form HTMLPage
(.NEIL (.htm)

~l
Stertic Header File Midl File (.idl)

DiscoveyFi... (.h)

Resource File Server Module-Defin...
(.rc) Response Fi.,. File (.den

..s..

c:~Documents and Settings~4dminislrator.PCICLUB866~My Documents~Omh~D Browse...

_ _. .~~Re~ ~_r._~Concel __~.) Help

Figure 2-8 Adding a New Source File to your Project

8. Don't change the Location field, which holds the subfolder in which the
project files are stored. Type the name of the new source file in the Name
field, such as sizeofcpp.

9. When you are done, click the Open button. Figure 2-9 shows the new
sizeofcpp file in Solution Explorer.

I~ Soluiion'HelloWorld' (1 project)
O• • ~ HelloWorld

~ - (~ References
0--- ~ Source Files

j • •- ~IHeaderFiles
(~ Resource Files

Figure 2-9 Solution Explorer showing the new .cpp file

Facebook's Exhibit No. 1010 - Page 58


~~~ C++ Demystified

Double-click sizeof.cpp in Solution Explorer to display the sizeof.cpp file in the
code editing window. At this point, the sizeofcpp is blank. In the next section, you
will add code.

Code and Output
Write the following code in the source file you have created. I will explain the code
in the following sections.
#include <iostream>
using namespace std;
int main (void)
{

Gout « "Size of short is « sizeof(short) « "\n";
Gout « "Size of int is « sizeof(int) « "fin";
Gout « "Size of long is « sizeof(long) « "\n";
cout « "Size of float is « sizeof(float) « "\n"; i
cout « "Size of double is « sizeof(double) « "\n";
Gout « "Size of long double is ~

« sizeof(long double) « "\n";
COUt « "S1Z2 Of char 1S " « sizeof(char) « "\ri"; j

Gout « "Size of bool is « sizeof(bool) « °\n"; ~
return 0;
}

Next, build and run the project, following the same steps you did for the "Hello
World!" Project in Chapter 1. The resulting output on my computer is
Size of short is 2
Size of int is 4
Size of long is 4
Size of float is 4 ~;
Size of double is 8
Size of long double is 8
Size of char is 1
Size of bool is 1

NOTE: The numbers displayed on your computer may be different, because the size
of a data type depends on the particular compiler and operating system you are
using, and yours may not be the same as mine.

Facebook's Exhibit No. 1010 - Page 59



CHAPTER 2 Memory and Data Types

Expressions
The line of code

41

cout « "Size of int is « sizeof(int) « "\n";

displays the following output:
Size of int is 4

In essence, the code sizeof(int) is replaced by 4 in the output.
The code sizeof(int) is called an expression. An expression is a code statement

that has a value, usually a value that has to be evaluated when the program runs. An
example of an expression is 4 + 4, which has a value, 8, that would be evaluated when
the program runs.

When the code runs, the expression sizeof(int) is evaluated as having the value 4,
which then is outputted.

By contrast, the portion,of the statement within double quotes, "Size of int is ," is
outputted literally as "Size of int is 4" There is no need for an evaluation. Instead,
this is considered a literal string. The term string refers to the data type, a series of
characters, and the term literal refers to the fact that the string is outputted literally,
without evaluation. The string "Hello World!" in the cout statement in Chapter 1 also
was a literal string.

Outputting an Expression
The expression sizeof(int) is separated by the stream insertion operator («) from
the literal string "Size of int is ." If the code statement instead were

Gout « "Size of int is sizeof(int)\n";

then the output would be quite different:
Size of int is sizeof(int)

The reason is sizeof(int), being encased inside the double quotes, would be
treated as a literal string, not an expression, and therefore would not be evaluated,
but instead displayed as is.

Since "Size of int is" is a literal string and sizeof(int) is an expression, they need
to be differentiated before being inserted into the output stream. This differentiation
is done by placing a stream insertion operator between the literal string and the
expression.

Facebook's Exhibit No. 1010 - Page 60



T

C++ Demystified

NOTE: The sting "Size of int is "ends with a space between "is "and the following
4. Without that space, the output would be "Size of int is4."You, as the programmer
have the responsibility to ensure proper spacing; C++ won't do it for you.

Escape Sequences
The string "fin" following the expression sizeof(int) is also a literal string, so it, too, is
separated by a stream insertion operator from the sizeof(int) expression. However, "fin"
is a special type of string called an escape sequence.

C++has many escape sequences, though this may be the commonest one.' This
particular escape sequence causes the cursor to go to the next line for further print-
ing. Without it, all the output would be on one line.

The "\n" in a string is not displayed literally by cout even though it is encased
in double quotes. The reason is that the backslash signals cout that this is an escape
sequence.

Table 2-6 shows some of the most common escape sequences.

Escape Sequence Name What It does

\a Alarm Causes the computer to beep

~n newline Causes the cursor to go to the next line

\t Tab Causes the cursor to go to the next tab stop

\\ Backslash Causes a backslash to be printed

1' Single quote Causes a single quote to be printed

\" Double quote Causes a single quote to be printed

Table 2-6 Common Escape Sequences

Summary
A computer program's instructions and data have to be in the computer's memory
for the program to work. There are three principal memory locations on your com-
puter: the central processing unit (CPL , random access memory (RAM), and per-
sistentstorage. Computer programs usually use RAM to store instructions and data.

Facebook's Exhibit No. 1010 - Page 61



CHAPTER 2 Memory and Data Types ~~

Instructions and data are stored at addresses, represented by a sequential series of
numbers. A computer stores information in a series of ones and zeroes. Each one or
zero is a bit. However, a computer cannot process information as small as a single
bit. Eight bits, or one byte, is the smallest unit of information that a computer can
process. Therefore, each address stores one byte of information.

Some information is numeric; other data is textual. Each type of information is
referred to as a data type. The principal data type categories are whole numbers,
floating-point numbers, and text. However, all data types have in common a charac-
teristic ofsize, which is the number ofbytes required to store information ofthat data
type. A data type's size also determines its range, which is the highest and lowest
number that can be stored by that data type.

The size of a data type varies depending on the compiler and operating system.
You may use the sizeof operator to determine the size of a data type on your particu-
lar system.

QU1Z
1. From which of the following types of memory can the CPU most quickly

access instructions or data: cache memory, RAM, or persistent storage?
2. Which of the following types of memory is not temporary: cache memory,

RAM, or persistent storage?
3. What is the amount of information that maybe stored at a particular

memory address?
4. Is the size of a data type always the same no matter which computer you

may be working on?
5. What is meant by the range of a data type?
6. What is the difference between an unsigned and signed data type?
7. What decimal number is represented by 5.1E-3 in E notation?
8. What is an ASCII value?
9. What does the sizeof operator do?

10. What is a literal string?
11. What is an expression?

Facebook's Exhibit No. 1010 - Page 62



;~
ix
t

•area es

Recently, while in a crowded room, someone yelled "Hey, you!" I and a number of
other people looked up, because none of us could tell to whom the speaker was refer-
ring. Had the speaker instead yelled "Hey, Jeff Kent!," I would have known he was
calling me (unless of course there happened to be another Jeff Kent in the room).

We use names to refer to each other. Similarly, when you need to refer in code to a
particular item of information among perhaps thousands of items of information,
you do so by referring to the name of that information item.

You name information by creating a variable. A variable not only gives you a way
of referring later to particular information, but also reserves the amount of memory
necessary to store that information. This chapter will show you how to create vari-
ables, store information in them, and retrieve information from them.

~ ~"•'-'

Declaring Variables
You learned in Chapter 2 that the information a program uses while it is running first
needs to be stored in memory. You need to reserve memory before you can store in-
formation there. You reserve memory by declaring a variable.

~~~

Facebook's Exhibit No. 1010 - Page 63

T

~~

~~
C++ Demystified

Declaring a variable not only reserves memory, but also gives you a convenient
way of referring to that reserved memory when you need to do so in your program.
You also learned in Chapter 2 that memory addresses have hexadecimal values such
as 0012FED4. These values are hard to remember. It is much easier to remember in-
formationthat, for example, relates to a test score by the name testScore. By declar-
ing avariable, you can refer to the reserved memory by the variable's name, which is
much easier to remember and identify with the stored information than is the hexa-
decimal address.

While declaring a variable is relatively simple, requiring only one line of code,
much is happening behind the scenes. The program at the end of this section will
show you how to determine the address and size of the memory reserved by declar-
ing avariable.

Syntax of Declaring Variables
You have to declare a variable before you can use it. Declaring a variable involves
the following syntax:
[data type] [variable name] ;

The data type may be any of the ones discussed in Chapter 2, including int, float,
bool, char, or string. The data. type tells the computer how much memory to reserve.
As you learned in Chapter 2, different data types have different sizes in bytes. If you
specify a data type with a size (on your compiler and operating system) of 4 bytes,`
then the computer will reserve 4 bytes of memory.

You choose the variable name; how you name a variable is discussed later in the
section "Naming the Variable." The name is an alias by which you'can refer in code
to the area of reserved memory. Thus, when you name a variable that relates to a test
score testSco~e, you can refer in code to the reserved memory by the name testScore
instead of by a hexadecimal value such as 0012FED4.

Finally, the variable declaration ends with a semicolon. The semicolon tells the
compiler that the statement has ended. You can declare a variable either within a
function, such as main, or above all functions, just below any include directives.
Since for now our programs have only one function, main, we will declare all vari-
ables within main. When our programs involve more than one function, we will re-
visit the issue of where to declare variables.

The following statement declares in main an integer variable named testScore.
int main (void)

Facebook's Exhibit No. 1010 - Page 64

CHAPTER 3 Variables ~~~

int testScore;
return 0;

NOTE: Unlike the code in Chapters 1 and 2, there is no include directive such as
#include <iostream> in this code because this code does not use tout or another
function defined in a standard library file.

You will receive a compiler error if you refer to a variable before declaring it. In
the following -code, the reference to testScore will cause the compiler error "unde-
clared identifier."
int main (void)

testScore; ~
int testScore;
return 0;

This compiler error will occur even though the variable is declared in the very next
statement. The reason is that the compiler reads the code from top to bottom, so when
it reaches the first reference to testScore, it has not seen the variable declaration.

This "undeclared identifier" compiler error is similar to the one in the "Hello
World!" project in Chapter 1 when we (deliberately) misspelled tout as Cout. Since
testScore is not a name built into C++,like main and int, the compiler does not recog-
nize it. When you declare a variable, then the compiler recognizes further references
to the variable name as referring to the variable that you declared.

Declaring Multiple Variables of the Same Data Type
If you have several variables of the same data type, you could declare each variable
in a separate statement.
int testScore;
int myWeight;
int myHeight;

However, if the variables are of the same data. type, you don't need to declare each
variable in a separate statement. Instead, you can declare them all in one statement, sepa-
rated by commas. The following one statement declares all three integer variables:
int testScore, myWeight, myHeight;

Facebook's Exhibit No. 1010 - Page 65

■

~~~ C++ Demystified

The data type int appears only once, even though three variables are declared. The
reason is that the data type qualifies all three variables, since they appear in the same
statement as the data type.

However, the variables must all be of the same data. type to be declared in the same
statement. You cannot declare an int variable and a float variable in the same statement,
Instead, the int and float variables would have to be declared in separate statements.

int testScore;
float myGPA;

Naming the Variable
Variables, like people, have names, which are used to identify the variable so you can
refer to it in code. There are only a few limitations on how you can name a variable.

• The variable name cannot begin with any character other than a letter
of the alphabet (A—Z or a—z) or an underscore (~. Secret agents may
be named 007, but not variables. However, the second and following
characters of the variable name maybe digits, letters, or underscores.

• The variable name cannot contain embedded spaces, such as My Variable,
or punctuation marks other than the underscore character (~. i

• The variable name cannot be the same as a word reserved by C++, such
as main or int.

• The variable name cannot have the same name as the name of another
variable declared in the same scope. Scope is an issue that will be discussed
in Chapter 8. For present purposes, this rule means you cannot declare two
variables in main with the same name.

Besides these limitations, you can name a variable pretty much whatever you
want. However, it is a good idea to give your variables names that are meaningful. If
you name your variables varl, var2, var3, and so on, up through var17, you may find
it difficult to later remember the difference between va~8 and var9. And if you find it
difficult, imagine how difficult it would be for a fellow programmer, who didn't even
write the code, to figure out the difference.
In order to preserve your sanity, or possibly your life in the case of enraged fellow

programmers, I recommend you use a variable name that is descriptive of the pur-
pose of the variable. For example, testScore is descriptive of a variable that repre-
sents atest score.

The variable name testSco~e is a combination of two names: test and score. You
can't have a variable name with embedded spaces such as test score. Therefore, the

Facebook's Exhibit No. 1010 - Page 66



CHAPTER 3 Variables x._ 
.~
~~

two words are put together, and differentiated by capitalizing the first letter of the sec-
ondword. Bythe convention I use, the first letter of a variable name is not capitalized.

Naming Conventions
A naming convention is simply a consistent method of naming variables. There are a
number of naming conventions: In addition to the one I described earlier, another nam-
ingconvention is toname avariable with a prefix, usually all lowercase and consisting
of three letters, that indicate its data type, followed by a word with its first letter capi-
talized, that suggests its purpose. Some examples:

• intScore Integer variable representing a score, such as on a test.
• strName String variable representing a name, such as a person's name.
• binResident Boolean variable, representing whether or not someone is

a resident.

It is not particularly important which naming convention you use. What is impor-
tant is that you use one and stick to it.

The Address Operator
Declaring a variable reserves memory. You can use the address operator (&) to learn
the address of this reserved memory. The syntaa~ is
& [variable name]

For example, the following code outputs 0012FED4 on my computer. However,
the particular memory address for testSco~e on your computer may be different than
0012FED4. Indeed, if I run this program again some time later, the particular mem-
ory address for testScore on my computer may be different than 0012FED4.
#include <iostream>
using namespace std;
int main (void)
{

int testScore;
tout « &testScore;
return 0;

t }
F

~ The address 0012FED4 is a hexadecimal (Base 16) number. As discussed in
Chapter 2, memory addresses usually are expressed as a hexadecimal number.

Facebook's Exhibit No. 1010 - Page 67



r

~~~ C++ Demystified

The operating system, not the programmer, chooses the address at which to store
a variable. The particular address chosen by the operating system depends on the
data type of the variable, how much memory already has been reserved, and other
factors.

You really do not need to be concerned about which address the operating system
chose since your code will refer to the variable by its name, not its address. However,
as you will learn in Chapter 11 when we discuss pointers, the address operator can be
quite useful.

Using the Address and sizeof Operators
with Variables
The amount of memory reserved depends on a variable's data type. As you learned
in Chapter 2, different data types have different sizes.
In Chapter 2, you used the sizeof operator to learn the size (on your compiler and

operating system) of different data types. You also can use the sizeof operator to deter-
mine the size (again, on your compiler and operating system) of different variables.

The syntax for using the sizeof operator to determine the size of a variable is al-
most the same as the syntax for using the sizeof operator to determine the size of a
data type. The only difference is that the parentheses following the sizeof operator
refers to a variable name rather than a data type name.

The following code outputs the address and size of two variables:

#include <iostream>
using namespace std;
int main (void)
{

short testScore;
float myGPA;
cout « "The address of testScore is "

tout « "The size of testScore is "
sizeof(testScore) « ~~~n";

cout « "The address of myGPA is « &myGPA « ~~\n";
cout « "The size of myGPA is "

« sizeof(myGPA) « "\n";
return 0;

}

Facebook's Exhibit No. 1010 - Page 68

r

CHAPTER 3 Variables

The output when I ran this program (yours may be different) is

The address of testScore is 0012FED4
The size of testScore is 2
The address of myGPA is 0012FEC8
The size of myGPA is 4

51

Figure 3-1 shows how memory is reserved for the two variables. Due to the differ-
entsize ofthe variables, the short variable, testScore, takes up two bytes of memory,
and the float variable, myGPA, takes up four bytes of memory.

float myGPA short testScore

0012FEC8 0012FEC9 0012FECA 0012FEFB 0012FED4 0012FED5

Figure 3-1 Memory reserved for declared variables

As Figure 3-1 depicts, the addresses of the two variables are near each other. The
operating system often attempts to do this. However, this is not always possible, de-
pending on factors such as the size of-the variables and memory already reserved.
There is no guarantee that two variables will even be near each other in memory.
In Figure 3-1, the value for both memory addresses is unknown. That is because

we have not yet specified the values to be stored in those memory locations. The next
section shows you how to do this.

Assigning Values to Variables
The purpose of a variable is to store information. Therefore, after you have created a
variable, the next logical step is to specify the information that the variable will
store. This is called assigning a value to a variable.

A variable can be assigned a value supplied by the programmer in code. A vari-
ablealso can be assigned a value by the user, usually via the keyboard, when the pro-
gram is running.

You may use the assignment operator, which is discussed in the next section, to
specify the value to be stored in a variable. You use the cin object (discussed in the
upcoming section "Using the cin Object") after the assignment operator, to obtain
the user's input, usually from the keyboard, and then store that input in a variable.

Facebook's Exhibit No. 1010 - Page 69

r

,~~~ C++ Demystified

Assignment Operator
You use the assignment operator to assign a value to a variable. The syntax is

[variable name] _ [value] ;

The assignment operator looks like the equal sign. However, in C++the = sign is
not used to test for equality; it is used for assignment. As you will learn in Chapter 5,
in C++ the equal sign is =_, also called the equality operator.

The variable must be declared either before, or at the same time, you assign it a
value, not afterwards. In the following example, the first statement declares the vari-
able, and the second statement assigns a value to that variable:

int testScore;
testScore = 95;

The next example concerns initialization, which is when you assign a value to
a variable as part of the same statement that declares that variable:

int testScore = 95;

However, the variable cannot be declared after you assign it a value. The following
code will cause the compiler error "undeclared identifier" at the line testScore = 95:

testScore = 95;
int testScore;

As mentioned earlier in the "Declaring Variables" section, this compiler error
will occur even though the variable is declared in the very next line because the com-
pilerreads the code from top to bottom, so when it reaches the line testScore = 95, it'
has not seen the variable declaration.

The value assigned need not be a literal value, such, as 95. The following code assigns
to one integer variable the value of another integer variable.

int a, b;
a = 44;
b = a;

The assignment takes place in two steps:

• First, the value 44 is assigned to the variable a.
• Second, the value of a, which now is 44, is assigned to the variable b.

You also can assign a value to several variables at once. The following code assigns
0 to three integer variables:
int a, b, c;
a = b = c = 0;

Facebook's Exhibit No. 1010 - Page 70

~ CHAPTER 3 Variables
~.il

The assignment takes place in three steps, from right to left:

1. The value 0 is assigned to the variable c.
2. The value of the variable c, which now is 0, is next assigned to the variable b.

3. The value of the variable b, which now is 0, is assigned to the variable a.

Finally, you can assign a value to a variable after it has already been assigned a value.
The word "variable" means likely to change or vary. What may change or vary is the
variable's value. The following code demonstrates a change in the value of a variable
that was previously assigned a value:

#include <iostream>
using namespace std;

~ int main (void)
{

int testScore;
testScore = 95;
cout « "Your test score is « testScore « ~~~n";
testScore = 75;
COUt « "Your t2St SCOY'2 riOW 1.S " « testScore « "\ri";

return 0;
}

The output is
Your test score is 95
Your test score now is 75

Assigning a "Compatible" Data Type
~ The value assigned to a variable must be compatible with the data type of the vari-
~ able that is the target of the assignment statement. Compatibility means, generally,

that if the variable that is the target of the assignment statement has a numeric data.
type, then the value being assigned must also be a number.

The following code is an example of incompatibility. If it is placed in a program, it
will cause a compiler error.
int testScore;
testScore = "Jeff";

I
The description of the compiler error is "cannot convert from ̀ const char [5]' to

`int'" This is the compiler's way of telling you that you are trying to assign a string
to an integer, which of course won't work; "Jeff" cannot represent an integer.

Facebook's Exhibit No. 1010 - Page 71

f

~~~ C++ Demystified

The value being assigned need not necessarily be the exact same data type as the
variable to which the value is being assigned. In the following code, afloating-point
value, 77.83, is being assigned to an integer variable, testScore. The resulting output
is "The test score is 77:'

#include <iostream>
using namespace std;
int main (void)
{

int testScore;
testScore = 77.83;
cout « "The test
return 0;

score is « testScore « "\n";

While the code runs, data is lost, specifically the value to the right of the decimal
point. .83. The fractional part of the number cannot be stored in testScore, that vari-
able being a whole number.

Overflow and Underflow
You may recall from Chapter 2 that the short data type has a range from —32768 to
32767. You can run the following program to see what happens when you attempt
to assign to a variable a value that is compatible (here a whole number for a short data
type) but that is outside its range.

#include <iostream>
using namespace std;
int main (void)
{

short testScore;
testScore = 32768;
tout « "Your test
return 0;

}

score is « testScore « "\n";

The output is "Your test score is —32768." That's right, not 32768, but —32768.
This is an example of overflow. Overflow occurs when a variable is assigned a

value too large for its range. The value assigned, 32768, is 1 too large for the short
data type. Therefore, the value overflows and wraps around to the data type's lowest
possible value, —32768.

Facebook's Exhibit No. 1010 - Page 72



CHAPTER 3 Variables ,~~

rr'
Similarly, an attempt to assign to testScore 32769, which is 2 too large for the

short data. type, would result in anoutput of-32767, an attempt to assign to testScore
32770, which is 3 too large for the short data type, would result in an output of
—32766, and so on. Figure 3-2 illustrates how the overflow value is reached.

n

-1 to -32765 ~ 1 to 32764

32767 + 3 ~ -32766 32765

32767 + 2 —► -32767 32766
x ... _.

32767 +1 ~ -32768 ~ 32767

Overflow

Figure 3-2 Overflow

The converse of overflow is underflow. Underflow occurs when a variable is as-
signed avalue too small for its range. The output of the following code is "Your test
score is 32767." The value assigned, —32769, is 1 too small for the short data type.
Therefore, the value underflows and wraps around to the data type's highest possible
value, 32767.
#include <iostream>
using namespace std;
int main (void)
{

short testScore;
testScore = -32769;
Gout « "Your test
return 0;

score is « testScore « "\n";

}

Similarly, an attempt to assign to testScore —32770, which is 2 too small for the
short data type, would result in an output of 32766, an attempt to assign to testScore
—32771, which is 3 too small for the short data type, would result in an output of
32765, and so on. Figure 3-3 illustrates how the underflow value is reached.

NOTE: Floating point variables, of the float or double data type, also may overflow
or underflow However; the result depends on the compiler used, and may be a run-time
er~^or stopping your program, or instead an incorrect result.

Facebook's Exhibit No. 1010 - Page 73



-1 to -32765

-32766

-32767

yW -32768 3

Underflow

Figure 3-3 Underflow

Using the cin Object

C++ Demystified

1 to 32764

32765

32766
.____ . _ _

32767 ~---

-32768 - 3 I'

-32768 - 2

-32768 - 1 i

Thus far, the programmer has supplied the values that are assigned to variables.
However, most programs are interactive, asking the user to provide information,
which the user then inputs, usually via the keyboard.
In Chapter 1, we used the cout object to output information to a standard output,

usually the monitor. Now we will use the cin object to obtain information from stan-
dard input, which usually is the keyboard. The cin object, like the cout object, is de-
fined inthe standard library file <iostream>, which therefore must be included (with
an include directive) if your code uses cin.

The syntax of a cin statement is
cin » [variable name] ;

The cin obj ect is followed by », which is the stream extraction operator. It obtains
the input, usually from the keyboard, and assigns that input to the variable to its right.

TIP: Knowing when to use » instead of « can be confusing. It may be helpful to
remember that the »and « ope~ato~s each point in the direction that data is
moving. For example in the expression cin » var, data is moving from standard
input into the variable vaN. By contrast, in the expression tout » var, the «
indicates that data is proving fi~oin the variable var to standard output.

When your program reaches a tin statement, its execution halts until the user
types something at the keyboard and presses the ENTER key. Try running the follow-
ingprogram. You will see a blinking cursor until you type a number. Once you type a
number and press ENTER, the program will output "Your test score is" followed by
the number you inputted. For example, if you inputted 100, the output will be "Your
test score is 100:'

Facebook's Exhibit No. 1010 - Page 74



CHAPTER 3 Variables ,~~

#include <iostream>
using namespace std;
int main(void)
{

int testScore;
cin » testScore;
cout « "Your test score is « testScore « ~~\n";
return 0;

}

This program is not very user friendly. Unless the user happened to know what
your program did, they would not know what information is being asked of them.
Accordingly, a cin statement usually is preceded by a cout statement telling the user
what to do. This is called a prompt. The following code adds a prompt:

#include <iostream>
using namespace std;
int main(void)
{

int testSCore;
cout « "Enter your test score: ";
cin » testScore;
Gout « "Your test score is « testScore « "\n";
return 0;

I

The program input and output could be
Enter your test score: 78
Your test score is 78

Assigning a "Compatible" Data Type
As with the assignment operator, the value being assigned by the cin operator need
not necessarily be the exact .same data type as that of the variable to which the value
is being assigned. In the previous program, entering afloating-point value, 77.83, at
the prompt for entry of the test score results in the following output: "The test score
is 77: ' Data is lost, though, specifically the part of the number to the right of the deci-
malpoint. The cin statement will not read the part of the number to the right of the
decimal point because it cannot be stored in a whole number variable.

However, the value being assigned by the cin operator must be compatible with
the data type of the variable to which the value is being assigned. In the preceding
program, typing "Jei~' at the prompt for entry of the test score results in the follow-
ing output: "Your test score is —858993460."

Facebook's Exhibit No. 1010 - Page 75



~~~ C++ Demystified

Obviously, -858993460 is not a test score anyone would want. Less obvious is the
reason why that number is outputted.

The string literal "Jeff" cannot be assigned to an integer variable such as
testScore. Therefore, the cin operator will not assign "Jeff' to that integer variable.
Therefore, when the cout statement attempts to output the value of testScoYe, that
variable has not yet been assigned a value.

When testScot~e was declared, there was some value at its memory address left
over from programs previously run on the computer. The cout statement, when try-
ing to output the value of testScore, does the best it can and attempts to interpret this
leftover value. The result of that interpretation is —858993460.

NOTE: Compile Time vs. Run-Time Difference When Incompatible Data Types
Are Assigned—Earlier in this chapteY the attempt to assign "Jeff" to testScore
(testScore = ".Ieff",) resulted in a compiler error Here, the attempt to assign ".Ieff"
to test5core using a cin statement instead results in an incorrect value. The reason
that this time these is no compiler error is because the value the user would input
could not be known at compile time, but instead would be known only at gun time.
Therefore, there would be no compile error, since at the time of compilation there
was no attempt to assign an incompatible value.

Inputting Values for Multiple Variables
If you are inputting values for several variables, you could input them one line at
a time.
#include <iostream>
using namespace std;
int main (void)
{

int myWeight, myHeight;
string myName;
Gout « "Enter your name: ";
cin » myName;
cout « "Enter your weight in
cin » myWeight;
Gout « "Enter your height in
cin » myHeight;
cout « "Your name score is "
Gout « "Your weight in pounds
cout « "Your height in inches
return 0;

pounds: ";

inches: ";

« myName « "\n";
is « myWeight « "\n";
is « myHeight « "\n";

}

Facebook's Exhibit No. 1010 - Page 76

r

CHAPTER 3 Variables ~~

The output of the program, with the input of"Jeff' for the name, 200 for the pounds,
and 72 for the height, is
Enter your name: Jeff
Enter your weight in pounds: 200
Enter your height in inches: 72
Your name is Jeff
Your weight in pounds is 200
Your height in inches is 72

Instead of having separate prompts and cin statements for each variable, you can
have one cin statement assign values to all three variables. The syntax is
cin » [first variable] » [second variable] »

[third variable] ;

The same syntax would work when using one cin statement to assign values to four
or more variables. The variables are separated by the stream extraction operator ».

When you use one cin statement to assign values to multiple variables, the user
separates each input by one or more spaces. The space tells the cin object that you
have finished assigning a value to one variable and the next input should be assigned
to the next variable in the cin statement. As before, the user finishes input by choos-
ing the ENTER key.

t The following program uses one cin statement to assign values to three variables:
#include <iostream>
using namespace std;
#include <string>
int main (void)
{

int myWeight, myHeight;
string name;
Gout « "Enter your name, weight in pounds and height

in inches\n";
cout « "The three inputs should be separated by a

space\n";
cin » name » myWeight » myHeight;
cout « "Your name is « name « "\n";
Gout « "Your weight in pounds is « myWeight cc "\n";
cout « "Your height in inches is « myHeight « "\n";
return 0;

}

The interaction between user input and the cin statement could be as follows:

• The user would type "Jeff," followed by a space.

Facebook's Exhibit No. 1010 - Page 77

C-~+ Demystified

• The space tells the cin object that the first input has ended, so the cin object
will assign "Jeff' to the first variable in the cin statement, name.

• The user would type 200, followed by a space.
• The space tells the cin object the second input has ended, so the cin object

will assign 200 to the next variable in the cin statement, myWeight.
• The user would type 200, and then press the E1vTER key.
• The ENTER key tells the cin object that the third and final input has ended,

so the cin object will assign 72 to the remaining variable in the cin statement,
myHeight, which completes execution of the cin statement.

The resulting program output would be
Enter your name, weight in pounds and height in inches
The three inputs should be separated by a space
Jeff 200 72
Your name is Jeff
Your weight in pounds is 200
Your height in inches is 72

Assigning a "Compatible" Data Type
The data types in the cin statement may be different. In this example, the data type of
the first variable is a string, whereas the data type of the second and third variables
is an integer.

What is important is that the order of the input matches the order of the data. types of
the variables in the cin staxement. The input order "Jeff;' 200, and 72 is assigned to the
variables in the order of their appearance in the cin statement, myName, myWeight, and
myHeight. Therefore, "Jeff" is assi~ed to the string variable myName, 72 to the inte-
ger variable myWeight, and 200 to the integer variable myHeight.

The importance of the order of the input matching the order of the data types of the
variables in the cin staxement is demonstrated by changing the order of the user's input
from "Jeff," 200, and 72, to 200, "Jeff," and 72. The program output then would be
Enter your name, weight in pounds and height in inches
The three inputs should be separated by a space
200 Jeff 72
Your name is 200
Your weight in pounds is -858993460
Your height in inches is -858993460

Facebook's Exhibit No. 1010 - Page 78

CHAPTER 3 Variables _e~~

While I would like to lose weight, —858993460 seems a bit extreme. Also, while it
is understandable why "Jeff" cannot be assigned to my weight, 72 was not assigned
to my height either.

The one output that is correct is the name. Any characters, including digits, can be
part of a string. Therefore, while 200 maybe an unusual name to us, it is perfectly
OK for cin, which therefore assigns 200 to the string variable name.

Why —858993460 was outputted for myWeight also has been explained earlier in
the example in which the user entered "Jeff' at the prompt to enter a test score.

However, 72 would be a valid value for assignment to the integer variable
myHeight. Why then isn't 72 the output for height?

The reason is that the next value for cin to assign is not 72, but instead "Jeff."
Since cin was unable to assign "Jeff' to myWeight, the value "Jeff' remains next in
line for assignment, this time to the variable rizyHeight. Unfortunately, cin is unable
to assign "Jeff' to myHeight either, so the value of myHeight, like myWeight, also is
outputted as —858993460.

Inputting Multiple Words into a String
Finally, cin will only take the first word of a string. If in the following program you
input "Jeff Kent" at the prompt, the output will be "Your name is Jeff" not "Your
name is Jeff Kent."

#include <iostream>
using namespace std;
#include <string>
int main (void)

string name;
Gout « "Enter your name: ";
cin » name;
cout « "Your name is « name;
return 0;

The reason why the value of name is outputted only as "Jeff," omitting "Kent," is
that the cin obj ect interprets the space between "Jei~' and "Kent" as indicating that
the user has finished inputting the value of the name variable.

The solution involves using either the get or getline method of the cin object.
These methods will be covered in Chapter 10.

Facebook's Exhibit No. 1010 - Page 79

T

C++ Demystified

Overflow and Underflow
The consequences of an overflow or underflow of whole number variables is more
unpredictable with cin than with the assignment operator. Inputting either 32768,
which is 1 more than the highest number in the range of a short data type, or —32769,
1 less than the lowest number in that range, results on my computer in the output
"Your test score is —13108."
#include <iostream>
using namespace std;
int main (void)
{

short testScore;
testScore = 32768;
tout « "Your test
return 0;

}

Summary

score is « testScore « "\n";

A variable serves two purposes. It provides you with a way of referring to particular
information, and also reserves the amount of memory necessary to store that infor-
mation.

You must create a variable before you can start using it. You create a variable by
declaring it. You may declare multiple variables of the same type in one statement.

You can use the address operator, &, to determine the address of a variable, and
the sizeof operator to determine the size of a variable.

The purpose of a variable is to store information. Therefore, after you have cre-
ated avariable, the next logical step is to specify the information that the variable
will store. This is called assigning a value to a variable.

A variable can be assigned a value either by the programmer in code or by the
user, usually via the keyboard, when the program is running. You use the assignment
operator to assign a value supplied by code. You use the cin object to assign a value
supplied by the user.
In the next chapter, you will learn how to use variables to perform arithmetic.

Facebook's Exhibit No. 1010 - Page 80

CHAPTER 3 Variables

QUIZ

~~

1. What is the effect of declaring a variable?
2. Can you refer to a variable before declaring it as long as you declare it later?

3. Can you declare several variables in the same statement?

4. What is a "naming convention" with respect to variables?

5. What is the difference between the address and sizeof operators?

6. What is initialization?
7. What is overflow?
8. What is the consequence of using an assignment operator to assign

a string value to an integer variable?

9. Do you use the cin object for compile time or run-time assignment of
values to variables?

10. Can you use one cin statement to assign values to several variables of
different data types?

Facebook's Exhibit No. 1010 - Page 81

•a ~n. .e c~ s~ o n s:
~ a n s w~ c

m na e e s

.~
The famous poem "The Road Not Taken" by Robert Frost begins: "Two roads di-
verged in ayellow wood, and sorry I could not travel both: 'This poem illustrates that
life, if nothing else, presents us with choices.

Similarly, computer programs present their users with choices. So far, for the sake
of simplicity, the flow of each program has followed a relatively straight line, taking
a predetermined path from beginning to end. However, as programs become more
sophisticated, they often branch in two or more directions based on a choice a user

_̀ .

r~

Facebook's Exhibit No. 1010 - Page 82

C++ Demystified

makes. For example, when I am buying books online, I am presented with choices
such as adding another item to my shopping cart, recalculating my total, or checking
out. The program does something different if I add another item to my shopping cart
rather than check out.

The program determines the action it takes by comparing my choice with the vari-
ousalternatives. That comparison is made using a relational operator. There are rela-
tional operators to test for equality, inequality, whether one value is greater (or less)
than another, and other comparisons.

The code then needs to be structured so different code executes depending on
which choice was made. This is done using either the if statement or the switch case
statement, both of which we'll discuss in this chapter.

We'll also discuss flowcharting, which enables you to visually depict the flow of a
program. Flowcharting becomes increasingly helpful as we transition from rela-
tively simple programs that flow in a straight line to more complex programs that
branch in different directions.

Relational Operators
We make comparisons all the time, and so do programs. A program may need to
determine whether one value is equal to, greater than, or less than another value. For
example, if a program calculates the cost of a ticket to a movie in which children less
than 12 get in free, it needs to find out if the customer's age is less than 12.

Programs compare values by using a relational operator. Table 5-1 lists the rela-
tional operators supported by C++:

Operator Meaning

~ Greater than

< Less than

~= Greater than ar equal to

<= Less than or equal to

-- Equal to

~= Not equal to

Table 5-1 Relational Operators

Facebook's Exhibit No. 1010 - Page 83

CHAPTER 5 Making Decisions: if and switch Statements _ ~~~,
~

Relational Expressions
Like the arithmetic operators discussed in the last chapter, the relational operators
are binary—that is, they compare two operands. A statement with two operands and
a relational operator between them is called a relational expression.

The result of a relational expression is a Boolean value, depicted as either true or
false. Table 5-2 lists several relational expressions, using different relational opera-
tors and their values.

Relational Expression Value

4 == 4 true

4 < 4 false

4 <= 4 true

4 > 4 false

4 != 4 false

4 == 5 false

4 < 5 true

4 <= 5 true

4 >- 5 false

4 != 5 true

Table 5-2 Relational Expressions and Their Values

Table 5-2 uses operands that have literal values. A literal value is a value that can-
not change. 4 is a literal value, and cannot have a value other than the number 4.

Operands may also be variables (which were discussed in Chapter 3). The follow-
ing program outputs the results of several variable comparisons.

#include <iostream>
using namespace std;
int main (void)

int a = 4 ,. b = 5 ;
cout « a « > « b « is « (a > b) « endl;
cout « a « ~~ >_ ~~ « b « is « (a >= b) « endl;
tout « a « __ « b « is « (a == b) « endl;

Facebook's Exhibit No. 1010 - Page 84

T

tout « a «
Gout « a
return 0;

}

C++ Demystified

~ ~ c= « b « is « (a <= b) « endl;

The program's output is

4 > 5 is 0
4 >= 5 is 0
4 == 5 is 0
4 <= 5 is 1
4 < 5 is 1

In the output, 0 is false and 1 is true. 0 is the integer value of Boolean false, while 1
is the usual integer value of Boolean true. As you may recall from Chapter 1, early
computers consisted of wires and switches in which the electrical current followed a
path that depended on which switches were in the on position (corresponding to the
value one) or the offposition (corresponding to the value zero). The on position cor-
responds to Boolean true, the offposition to Boolean false.

CAUTION: While the usual integer value of logical t~cre is 1, any non-zero number
may be logical true. Therefore, in a Boolean comparison, do not compare a value to
1, cor~tpare it to true.

The data types of the two operands need not be the same. For example, you could
change the data type of the variable b in the preceding program from an int to a float
and the program still would compile and provide the same output. However, the data
types of the two operands need to be compatible. As you may recall from Chapter 3,
compatibility means, generally, that if one of the variable operands in the relational
expression is a numeric data type, then the expression's other variable operand must
also be a numeric data type.

For example, the program would not compile if you changed the data type of the
variable b in the preceding program from an int to a string.

Precedence
Relational operators have higher precedence than assignment operators and lower
precedence than arithmetic operators. Table 5-3 lists precedence among relational
operators.

Facebook's Exhibit No. 1010 - Page 85

CHAPTER 5 Making Decisions: if and switch Statements _; ~'~
~~

Precedence Operator

Highest > >_ < <_

Lowest =_ ! _

Table 5-3 Precedence of Relational Operators

Operators in the same row have equal precedence. The associativity of relational
operators of equal precedence is from left to right.

Flowcharting
A program, like a river, flows from beginning to end. Programmers may find it help-
ful, both in writing code and in understanding someone else's code, to visually
depict the flow of the program. After all, as the adage goes, a picture is worth a thou-
sandwords. The ability to visualize the flow of a program becomes even more help-
ful as we transition from relatively simple programs that flow in a straight line to
more complex varieties that branch in different directions based on the value of a re-
lational expression.

Programmers use a flowchart to visually depict the flow of a program. Flowcharts
use standardized symbols prescribed by the American National Standard Institute
(ANSI), which prescribes other standards we will be using in this book. These
flowcharting symbols represent different aspects of a program, such as the start or
end of a program, user input, how it displays on a monitor, and so on. These symbols
axe j oined by arrows and other connectors which show the connections between dif
ferent parts of the program and the direction of the program flow. Figure 5-1 shows
several commonly used flowchart symbols. Others will be introduced later in this
book as they are used.

The following program from Chapter 4 can be depicted with a flowchart. As you
may recall, this program first assigns to the integer variable total the value inputted
by the user for the number of preregistered students. The program then assigns to the
integer variable added the value inputted by the user for the number of students add-
ing the course. The program then uses the addition operator to add two operands,
total and added. The resulting sum is then assigned to total, which now reflects the

Facebook's Exhibit No. 1010 - Page 86

s _, C++ Demystified

Terminal -Used for the beginning and end of a program

` Display -Used for cout statements

Input -Used for cin statements

:' Data -Used for assignment

Process -Used for computation or evaluation

Figure 5-1 Commonly used flowchart symbols

total number of students in the course, both preregistered and added. That sum then
is outputted.

#include <iostream>
using namespace std;
int main (void)
{

int total, added;
cout « "Enter number of pre-registered students: ";
cin » total;
cout « "Enter number of students adding the course: ";
cin » added;
total = total + added;
cout « "Total number of students: « total;
return 0;

}

Figure 5-2 shows a flowchart of this program.
This program was relatively linear. By contrast, the following programs will

branch in different directions based on the value the user inputs. We will use
flowcharts in later sections of this chapter to help explain how different code exe-
cutes depending on the result of comparisons with the user's input.

Facebook's Exhibit No. 1010 - Page 87

r

CHAPTER 5 Making Decisions: if and switch Statements

Start Add total and addedPrompt for ~~
students adding J _ —,—

Prompt for pre-
registered students Sum assigned to total

User inputs number

User inputs number 4 fota/displayed

~ ~ Input assigned to added

Input assigned to Total/ End

figure 5-2 Flowchart of the program adding preregistered and added students

The if Statement
The if statement is used to execute code only when the value of a relational expres-
sion is true. The syntax of an if statement is

if (Boolean value)
statement;

Both lines together are called an if statement. The first line consists of the if key-
word followed by an expression, such as a relational expression, that evaluates to a
Boolean value, true or false. The relational (or other Boolean) expression must be in
parentheses, and should not be terminated with a semicolon.

The next line is called a conditional statement. As you may recall from Chapter 1,
a statement is an instruction to the computer, directing it to perform a specific action.
The statement is conditional because it executes only if the value of the relational ex-
pression istrue. Ifthe value of the relational expression is false, then the conditional
statement is not executedmeaning, it's essentially skipped.

The following program, which tests if a whole number entered by the user is even,
illustrates the use of an if statement.

Facebook's Exhibit No. 1010 - Page 88

_" , } ~ C++ Demystified.: __.

#include <iostream>
using namespace std;
int main (void)
{

int num;
tout « "Enter a whole number: ";
cin » num;
i f (num % 2 == 0)

cout « "The number is even" « endl;
return 0;

}

If the user enters an even number, then the program outputs that the number is even.
Enter a whole number: 16
The number is even

However, if the user enters an odd number, then there is no output that the number
is even.
Enter a whole number: 17

Figure 5-3 is a flowchart of this program. This flowchart has one new symbol:
a diamond. It's used to represent the true/false statement being tested.

Start

num divided by 2 I:

Prompt user to
input number

Remainder False
compared to 0 End

--~—

User inputs '
number ~ True

Display the number
is even

Input assigned
to num

Figure 5-3 Flowchart of a program that determines whether a number is even

Facebook's Exhibit No. 1010 - Page 89

r~ ~ G
CHAPTER 5 Making Decisions: if and switch Statements

~'

Let's now analyze how the program works. You may find the flowchart a helpful
visual aid in following this textual explanation.

The program first prompts the user to enter a number. It then stores that input in
the integer variable num.

The program next evaluates the relational expression num % 2 == 0, which is en-
closed inparentheses following the if keyword. That expression involves two opera-
tors, the arithmetic modulus operator (%) and the relational equality operator (___).
Since arithmetic operators have higher precedence than relational operators, the ex-
pression num % 2 will be evaluated first, with the result then compared to zero.

A number is even if, when divided by two, the remainder equals zero. You learned
in Chapter 4 that the modulus operator will return the remainder from integer divi-
sion. Accordingly, the expression num % 2 will divide the number entered by the
user by two, and return the remainder. That remainder then will be compared to zero
using the relational equality operator.
If the relational expression is true, which it would be if the number inputted by

the user is even, then the conditional statement executes, outputting "The number
is even." If the relational expression is false, which it would be if the number
inputted by the user is odd, then the conditional statement is skipped, and it will
not execute.

Indenting
It is good practice to indent the conditional statement.

if (num o 2 == 0); // don't put a semicolon here!
Gout « "The number is even" « endl;

While the compiler doesn't care whether you indent or not, indentation makes it
easier for you, the programmer, to see that the statement is conditional.

Common Mistakes
During several years of teaching C++ in an introductory programming class, I have
noticed several common mistakes in the writing of if statements. Some of these mis-
takes may result in compiler errors and therefore are easy to spot. However, other
mistakes are harder to pick out since they do not cause an error, either at compile
time or run-time, but instead give rise to illogical results.

Facebook's Exhibit No. 1010 - Page 90

T

,~~~ C++ Demystified

Don't Put a Semicolon after the Relational Expression!
The first common mistake is to place a semicolon after the relational expression:
if (num ~ 2 == 0) ; // don't put a semicolon here!

Gout « "The number is even" « endl;

Since the corripiler generally ignores blank spaces, the following if statement
would be the same, and better illustrates visually the problem:

/ / don't put a semicolon here!
cout « "The number is even" « endl;

No compiler error will result. The compiler will assume from the semicolon that
it is an empty statement. An empty statement does nothing, and though it is perfectly
legal in C++, and indeed sometimes has a purpose, here it is not intended.

One consequence will be that the empty statement will execute if the relational ex-
pression istrue. Ifthis comes about, nothing will happen. So far, there is no harm done.

However, there is an additional consequence, an illogical result. The cout state-
ment "The number is even" will execute whether or not the relational expression is
true. In other words, even if an odd number is entered, the program will output "The
number is even."
Enter a whole number: 17
The number is even

The reason the Gout statement will execute whether or not the relational expres-
sion istrue isthat the cout statement no longer is part of the if statement. Unless you
use curly braces as explained in the next section, only the first statement following
the if keyword and relational expression is conditional. That first conditional state-
ment isthe empty statement, by virtue of the semicolon following the if expression.

Curly Braces Needed for Multiple
Conditional Statements

As just discussed, unless you use curly braces (explained later in this section), only
the first statement following the if keyword and relational expression is conditional.
For example, in the following code, only the first Gout statement is conditional. Tl~e
second cout statement is not, so it will execute whether the relational expression is
true or false:
if (num o 2 == 0)

tout « "The number is even" « end1;
cout « "And the number is not odd" « endl;

Facebook's Exhibit No. 1010 - Page 91

II

CHAPTER 5 Making Decisions: if and switch Statements ~~

NOTE: The indentation tells the programmer which statement is conditional and
which is not. The compiler ignores indentation.

Thus, if the user enters an odd number such as 17, the tout staxement "The number
is even" will not display because the relational expression is false. However, the fol-
lowing statement "And the number is not odd" will display because that statement
does not belong to the if statement.

Enter a whole number: 17
And the number is not odd

If you want more than one statement to be part of the overall if statement, you
must encase these statements in curly braces:

i f (num ~ 2 == 0)
{

tout « "The number is even" « endl;
tout « "And the number is not odd" « endl;

}

Now the second tout statement will execute only if the if expression is true.
Forgetting these curly braces when you want multiple statements to be condi-

tional is another common syntax error.

Don't Mistakenly Use the Assignment Operator!
The third most common syntax error is to use the assignment operator instead of
the relational equality- operator because the assignment operator looks like an
equal sign:

if (num ~.2 = 0) // wrong operator!
tout « "The number is even" « endl;

The result is that the if expression will not evaluate as the result of a comparison.
Instead, it will evaluate the expression within the parentheses as the end result of the
assignment, with anon-zero value being regarded as true, a zero value being
regarded as false.

NOTE: Some compilers will treat this mistake as a compiler error.

Facebook's Exhibit No. 1010 - Page 92

`:~

: , ~ ,~~
~~` ~r~~~~~" ~~ C++ Demystified

The if /else Statement
One problem with the program that tests whether a number is even is that there is no
output if the number is odd. While there is a conditional statement if the relational
expression is true, there is no corresponding conditional statement (cout « "The
number is odd") if the relational expression is false.

The solution is to add an else part to the if statement. The result is an if /else state-
ment. The syntax of an if /else statement is
if (relational expression)

conditional statement;
else

conditional statement;

Accordingly, the program may be modified to add an else part to the if statement:

#include <iostream>
using namespace std;
int main (void)
{

int num;
cout « "Enter a whole number: ";
cin » num;
if (num % 2 == 0)

cout « "The number is even" « endl;
else

cout « "The number is odd" « endl;
return 0;

}

Run this code. If the inputted number is even, then the output once again is "The
number is even: ' However, if the number is now odd, instead of no output, the output
is "The number is odd."
Enter a whole number: 17
The number is odd

Figure 5-4 uses a flowchart to illustrate this program.

Conditional Operator
This program could be rewritten using the conditional operator.

Facebook's Exhibit No. 1010 - Page 93

CHAPTER 5 Making Decisions: if and switch Statements

Start

num divided by 2

Prompt user to
input number

Remainder Display the number
compared to 0 - False is even

User inputs r "~
number k True

Display the number ~ ~ Endis even

Input assigned
to num

Figure 5-4 Flowchart of program output if number is even or odd

(#include <iostream>
using namespace std;
int main (void)

{ int num;
cout « "Enter a whole number: ";
cin » num;
tout « "The number is « (num ~ 2 == 0 ? "even" .

"odd") « endl;
return 0;

}

The syntax of the conditional operator is

[Relational expression] ? [statement if true] .

[statement if false]

In this example, the relational expression is num % 2 == 0. If the value of the re-
lational expression is true, then the output is "even." However, if the value of the
relational expression is false, then the output is "odd"

The conditional operator requires three operands, the relational expression and
the two conditional statements. Therefore, it is considered a ternary operator.

Facebook's Exhibit No. 1010 - Page 94

~~ C++ Demystified

Common Mistakes
Just as with the if statement, I noticed several common syntax mistakes with the else
statement while teaching C++ in introductory programming classes.

No else Without an if
You can have an if expression without an else part. However, you cannot have an else
part without an if part. The else part must be part of an overall if statement. This re-
quirement is logical. The else part works as "none of the above"; without an if part
there is no "above."

As a consequence, placing a semicolon after the Boolean expression following
the if keyword will result in a compiler error. Since curly braces are not used, the if
statement ends after the empty statement created by the incorrectly placed semico-
lon. The cout statement "The number is even" is not part of the if statement. Conse-
quently, the else part is not part of the if statement, and therefore will be regarded as.
an else part without an if part.

if (num o 2 == 0) ; // don't put a semicolon here
cout « "The number is even" « endl;

else (num % 2 == 1)
cout « "The number is odd" « endl;

Don't Put a Relational Expression
after the else Keyword!

Another common mistake is to place a relational expression in parentheses after the
else keyword. This will not cause acompiler orrun-time error, but it will often cause
an illogical result.
if (num o 2 == 0)

Gout « "The number is even" « endl;
else (num ~ 2 == 1)

Gout « "The number is odd" « endl;

The program will not compile, and the cout statement following the else expres-
sionwill behighlighted with an error description such as "missing ̀ ;'before identi-
fier `cout'."

Actually, the error description is misleading. There is nothing wrong with the
cout statement. Instead, no relational expression should follow the else keyword.
The reason is that the else acts like "none of the above" in a multiple choice test.

Facebook's Exhibit No. 1010 - Page 95

CHAPTER 5 Making Decisions: if and switch Statements ~" ,

If the if expression is not true, then the conditional statements connected to the else
part execute.

Don't Put a Semicolon after the Else!
Another common mistake is to place a semicolon after the else expression. This too
will not cause acompiler orrun-time error, but often will cause an illogical result.

For example, in the following code, the cout statement "The number is odd" will
output even if the number that's input is even.

i f (num ~ 2 == 0)
Gout « "The number is even" « endl;

else; // don't put a' semicolon here!
Gout « "The number is odd" « endl;

The result of inputting an even number will be

Enter a whole number: 16
The number is even
The number is odd

The cout statement "The number is odd" will execute whether or not the relational
expression is true because the cout statement no longer is part of the if statement.
Unless you use curly braces as explained already in connection with the if statement,
only the first statement following the else keyword is conditional. That first, condi-
tional statement is the empty statement by virtue of the semicolon following the if
expression. Therefore, the Gout statement "The number is odd" is not part of the
if statement at all.

Curly Braces Are Needed for
Multiple Conditional Statements

As with the if expression, if you want more than one conditional statement to belong
to the else part, then you must encase the statements in curly braces. For example, in
the following code fragment, the cout statement "This also belongs to the else part"
will always display whether the number is even or odd since it does not belong to the
if statement.
i f (num % 2 = = 0)

Gout « "The number is even" « endl;
else

Gout « "The number is odd" « endl;
Gout « "This also belongs to the else part";

Facebook's Exhibit No. 1010 - Page 96

~~ C++ Demystified
~•

The sample input and output could be
Enter a whole number: 16
The number is even
This also belongs to the else part

Encasing the multiple conditional statements in curly braces solves this issue.
if (num ~ 2 == 0)

cout « "The number is even" « endl;
else
{

Gout « "The number is odd" « endl;
cout « "This also belongs to the else part";

}

The if /else if /else Statement
The program we used to illustrate the if/else statement involved only two alterna-
tives. Additionally, these alternatives were mutually exclusive; only one could
be chosen, not both. A whole number is either even or odd; it can't be both and
there is no third alterative. There are many other examples of only two mutually
exclusive alternatives. For example, a person is either dead or alive, male or fe-
male, child or adult.

However, there are other scenarios where there are more than two, mutually ex-
clusive alternatives. For example, if you take a test, your grade maybe one of five
types: A, B, C, D, or F. Additionally, these grades are mutually exclusive; you can't
get an A and a C on the same test.

Since you can have only one if expression and only one else expression in an if
statement, you need another expression for the third and additional alternatives.
That expression is else if.

You use the if /else if /else statement when there are three or more mutually ex-
clusivealternatives. The if /else if /else statement has an if part and an else part, like
an if/else statement. However, it also has one or more else if parts.

NOTE: While the if part is required, the else part is not. Without it, the statement
would be named an if /else if statement.

The else if part works similarly to an if expression. The else if keywords are fol-
lowed by arelational expression. If the expression is true, then the conditional state-
ment or statements "belonging" to the else if part execute. Otherwise, they don't.

Facebook's Exhibit No. 1010 - Page 97

r

CHAPTER 5 Making Decisions: if and switch Statements ;'

While an if statement may include only one if part and one else part, it may in-
clude multiple else if parts.

The following program shows the if /else if /else statement in action in a program
that determines your grade based on your test score.

#include <iostream>
using namespace std;
int main (void)
{

int testScore;
cout « "Enter your test score: ";
cin » testScore;
if (testScore >= 90)

Gout « "Your grade is an A" « endl;
else if (testScore >= 80)

cout « "Your grade is a B" « endl;
else if (testScore >= 70)

cout « "Your grade is a C" « endl;
else if (testScore >= 60)

Gout « "Your grade is a D" « endl;
else

cout « "Your grade is an F" « end1;
return 0;

}

Here are several sample runs, each separated by a dotted line:

Enter your test score: 77
Your grade is a C

Enter your test score: 91
Your grade is an A

Enter your test score: 55
Your grade is an F

Figure 5-5 uses a flowchart to illustrate this program.
In this program, if your test score is 90 or better, then the conditional statement

belonging to the if part executes, displaying that you received an A. The relational
expressions of each of the following else if parts also are true; if your score is 90 or
better, it also is 80 or better, 70 or better, and so on. However, in an if /else if /else
statement, only the conditional statements in the first part whose relational expres-
sion is true will execute; the remaining parts are skipped.

Facebook's Exhibit No. 1010 - Page 98

~ C++ Demystified

Start ` True%f testScore >=90 Display A

Prompt user to False
input test score

testScore >=80 True Display B
r

'
ì

""~: ''AYR.

User inputs False
number

testScore >=70 True Display C k
E

Input assigned
to testScore False

testScore >=60 True Display D

False

Display F ~ ~~ End

rigure 5-5 Flowchart depiction of grading program

Common Syntax Errors
The common syntax errors for the ifpart discussed earlier in this chapter apply to the
else if part also. Don't put a semicolon after the relational expression, and multiple
conditional statements must be enclosed in curly braces.

Additionally, just as you cannot have an else part without a preceding if part, you.
cannot have an else if part without a preceding if part. However, you may have an if
part and one or more else if parts without an else part. The downside in omitting the
else part is you will not have code to cover the "none of the above" scenario in which
none of the relational expressions belonging to the if part and else if parts is true.

The switch Statement
The switch statement is similar to an if /else if /else statement. It evaluates the value
of an integer expression and then compares that value to two or more other values to
determine which code to execute.

Facebook's Exhibit No. 1010 - Page 99

~'"~

CHAPTER 5 Making Decisions: if and switch Statements t ~~ ~~~~ ~~`'~

The following program shows a switch statement in action in a program that de-
termines your average based on your grade:

#include <iostream>
using namespace std;
int main(void)
{

char grade;
cout « "Enter your grade: ";
cin » grade;
switch (grade)
{
case 'A' :

cout « "Your average must be between 90 - 100"
« endl;

break;
case 'B' :

Gout « "Your average must be between 80 - 89"
« endl;

break;
case 'C' :

Gout « "Your average must be between 70 - 79"
« endl;

break;
case 'D' :

tout « "Your average must be between 60 - 69"
« endl;

break;
default

tout « "Your average must be below 60" « endl;

}
return 0;

Here are several sample runs, each separated by a dotted line:

Enter your grade: C
Your average must be between 70 - 79

Enter your grade: A
Your average must be between 90 - 100

~~ Enter your grade: F
' E Your average must be below 60

i

Facebook's Exhibit No. 1010 - Page 100

T

~~~ C++ Demystified

Figure 5-6 uses a flowchart to illustrate this program.

Start /
grade =-'A' True ~ Display average

between 90-100

Prompt user to~ False

input grade
True Display averagegrade =_ `B' between 80-89

User inputs ~ False
character ,

grade =_ `C True Display average
between 70-79

Input assigned ~'
to grade False

grade = - 'D' True Display average
between 60-69

False

Display average Endbelow 60

Figure 5-6 Flowchart depiction of the grade determination program

Let's now analyze the program.
The switch keyword evaluates an integer expression, grade. While grade is a char-

acter variable, every character has a corresponding integer value.
Earlier in this chapter, we discussed flowchart symbols prescribed by the Ameri-

can National Standard Institute (ANSI), and mentioned that ANSI also prescribes
other standards that we will be using in this book. One of those other standards is the
ANSI character set, which includes 256 characters, each having an integer value be-
tween 0 and 255. These values also are called ASCII values, since values 0 to 127 of
the ANSI character set are the same as in the ASCII (American Standard Code for
Information Interchange) character set.

Table 5-4 lists the ANSI/ASCII values for commonly used characters. Note that
digits also can be characters, and that the ANSI/ASCII value of an uppercase charac-
ter is difFerent than the value of the corresponding lowercase character.

Facebook's Exhibit No. 1010 - Page 101



CHAPTER 5 Making Decisions: if and switch Statements

Character Value

0 48

9 57

A 65

Z 90

a 97

z 122

Table 5-4 Selected ANSI/ASCII Values

Each case keyword is followed by an integer expression that must be constant,
that is, it cannot change in value during the life of the program. Therefore, a variable
cannot follow a case keyword. In this program, the constant is a character literal,
such as A, B, and so on. Each character's ANSI value is an integer value, and the in-
teger expression is followed by a colon.

CAVTroN: A common mistake is to follow the integer expression not with a colon
but with a semicolon, which is typically used to terminate statements. This will cause
a compiler error

The default keyword serves the same purpose as an else part in an if /else if /else
statement, and therefore is not followed by an integer expression.

The integer expression following the switch keyword is evaluated and compared
with the integer constant following each case keyword, from top to bottom. If there
is a match—that is, the two integers are equal—then the statements belonging to that
case are executed. Otherwise, they are not. Thus, the statements belonging to a case
are conditional, just as are statements in an if, else if, or else part. However, unlike an
if /else if /else statement, multiple conditional .statements belonging to a case do not
need to be enclosed in curly braces.

Differences Between switch
and if /else if /else Statements
While a switch statement is similar to an if /else if /else statement, there are impor-
tant differences.

Facebook's Exhibit No. 1010 - Page 102



T

~; 104
C++ Demystified

One difference is that in an if /else if /else statement, the comparison following the
if part may be independent of the comparison following an else if part. The follow-
ing example, while perhaps a bit silly, is illustrative of this concept:

if (apples == oranges)
do this;

else if (sales >= 5000)
do that;

By contrast, in a switch statement, the constant integer expression following a case
keyword must be compared with the value following the switch keyword, and nothing
else. The next chapter on logical operators discusses other differences between switch
and if /else if /else statements. However, two differences can be discussed now. One is
commonly known as "falling through." The other concerns ranges of numbers.

Falling Through
In an if /else if /else statement, each part is separate from all the others. By contrast,
in a switch statement (once a matching case statement is found), unless a break state-
ment isreached, execution "falls through" to the following case statements that exe=
cute their conditional statements without checking for a match. For example, if you
removed the break statements from the program, you could have the following sam-
ple run:
Enter your grade: A
Your average must be between 90 - 100
Your average must be between 80 - 89
Your average must be between 70 - 79
Your average must be between 60 - 69
Your average must be below 60

This "falling through" behavior is not necessarily bad. In the following modifica-
tion ofthe grade program, the falling-through behavior permits the user to enter a low-
ercase grade in addition to an uppercase grade.
#include <iostream>
using namespace std;
int main (void)
{

char grade;
Gout « "Enter your grade: ";
cin » grade;
switch (grade)

Facebook's Exhibit No. 1010 - Page 103



CHAPTER 5 Making Decisions: if and switch Statements ° ~ ~ ~ . ~~
r ~~
i

{
case 'a' :
case 'A' :

Gout « "Your average must be between 90 - 100"
« endl;

break;
case 'b' :
case 'B' :

cout « "Your average must be between 80 - 89"
« endl;

break;
case 'c' :
case 'C' :

cout « "Your average must be between 70 - 79"
« endl;

break;
case 'd' :
case 'D' :

cout « "Your average must be between 60 - 69"
« endl;

break;
default:

cout « "Your average must be below 60" « endl;

}
return 0;
}

Another example occurs in the following program. Since the "D" (for deluxe) option
includes the feature in the "L" (for leather) option, case `D' deliberately falls through the
case `L.'

#include <iostream>
using namespace std;
int main(void)
{

char choice;
cout « "Choose your car\n";
cout « "S for Standard\n";
cout « "L for Leather Seats\n";
Gout « "D for Leather Seats + Chrome Wheels\n";
cin » choice;

k cout « "Extra features purchased\n";
switch (choice)
{

Facebook's Exhibit No. 1010 - Page 104



r

~~

case 'D' :
Gout « "Chrome wheels\n";

case 'L' :
tout « "Leather seats\n";
break;

default:
tout « "None selected\n";}

return 0;
}

The sample run could be
Choose your car
S for Standard
L for Leather Seats
D for Leather Seats + Chrome Wheels
D
Extra features purchased
Chrome wheels
Leather seats

Ranges of Numbers

C++ Demystified

Another difference between switch and if/else ifelse statements concerns the handling
of ranges of numbers. For example, earlier in this chapter we used an if /else if /else
statement to output the user's grade based on the test score that was input by the user.
The issued grade was an A if the test score was between 90 and 100, a B if the test score
was between 80 and 89, and so on. The if/else if/else statement in that program was
if (testScore >= 90 )

tout « "Your grade is an A" « endl;
else if (testScore >= 80 )

tout « "Your grade is a B" « endl;
else if (testScore >= 70 )

tout « "Your grade is a C" « endl;
else if (testScore >= 60 )

tout « "Your grade is a D" « endl;
else

tout « "Your grade is an F" « endl;

By contrast, a case statement cannot be followed by an expression such as
testScore >= 90 because the case statement keyword has to be followed by an integer
constant. Instead, a case statement would be necessary for each possible test score.
The following code fragment shows only the code for an A or B grade to avoid the

Facebook's Exhibit No. 1010 - Page 105



CHAPTER 5 Making Decisions: if and switch Statements ~~,

code example being unduly long, but the code for a C or D grade would be essen-
tially arepeat (an F grade would be handled with the default keyword).

switch (testScore)
{
case 100:
case 99:
case 98:
case 97:
case 96:
case 95:
case 94:
case 93:
case 92:
case 91:
case 90:

tout «
break;

case 89:
case 88:
case 87:
case 86:
case 85:
case 84:
case 83:
case 82:
case 81:
case 80:

cout «
' break;

}

"Your grade is an A";

" Your grade is an A";

This code example illustrates that the switch statement is more cumbersome than
the if /else if /else structure in dealing with ranges of numbers.

Summary
C Computer programs usually do not take a preordained path from beginning to end.

Instead, different code executes based on choices made by the user. Relational oper-
ators are used to compare the user's choice with various alternatives. The if, if/else, if

f lelse if /else, and switch statements are used to structure the code so different code
{ executes depending on which choice was made. You also learned about flowcharts,

J

Facebook's Exhibit No. 1010 - Page 106



~~~ C++ Demystified

which help make programs more understandable by visually depicting the program
components and flow.
In this chapter, only one comparison was made at a time. However, sometimes

more than one comparison needs to be made. For example, you are eligible to vote in
the U.S. only if you are a citizen and are at least 18 years old. You cannot vote unless
both are true. However, you may get into a movie free if you are either a senior citi-
zen (65 years or older) or a child (12 or under). Thus, you get in free if either is true.
In the next chapter, you will learn about how to use logical operators to combine
comparisons.

QUIZ
1. How many operands are in a relational expression?
2. What is the purpose of a flowchart?
3. What is the data. type of the expression following the if keyword?
4. In an if /else if /else statement, which part must you have one, but only one, of?
5. In an if /else if /else statement, which part may you have more than one of?
6. In an if /else if /else statement, which part may you omit?
7. In a switch statement, what is the required data type of expression following

the switch keyword?.
8. In a switch statement, may an expression of the character data type follow

the switch keyword?
9. In a switch statement, may the expression following a case keyword be

a variable?
10. Which keyword in a switch statement corresponds to the else keyword in

an if /else if /else statement?

Facebook's Exhibit No. 1010 - Page 107

•es e ~
a emen s an

o Ica era ors

Chapter 5 began with the opening words of the famous poem "The Road Not
Taken" by Robert Frost: "Two roads diverged in a yellow wood, and sorry I could
not travel both."

Not to be a poetry critic, but often there are more than two roads.
In Chapter 5, we evaluated only one Boolean expression at a time, and chose

which of the two roads our code would travel down depending on whether the
expression was true or false. However, sometimes two (or more) Boolean expres-
sions need to be evaluated to determine the path the code will travel.

For example, you are eligible to vote only if you are a citizen and you are at
least 18 years old. You cannot vote unless both conditions are true. Other times
with Boolean expressions, you are testing if either of two comparisons is true.

-:~ ~~

Facebook's Exhibit No. 1010 - Page 108

"?~~~~'~~~ C++ Demystified
~~'

For example, you may get into a movie free ifyou are either a senior citizen (65 years
or older) or a child (12 or under). Thus, you get in free if either condition is true.

This chapter will cover two different approaches to evaluating two Boolean ex-
pressions to determine which code should execute. The first approach nests one if
statement inside another. The second approach introduces another type of operator:
logical operators.

Nested if Statements
An if statement may appear inside another if statement. When this is done, the inner
if statement is said to be "nested" inside the outer if statement.

You can nest if statements to determine if both of two Boolean expressions are
true, or if either of the expressions is true.

Testing if Both Boolean Expressions Are True
The following program shows the use of nested if statements in determining if both of
two Boolean expressions are true. If the user's input is that they are at least 18 years old
and a citizen, the program outputs that they are eligible to vote. Otherwise, the pro-
gram outputs that they are not eligible to vote. ~

#include <iostream>
using namespace std;
int main (void)
{

int age;
char choice; f
bool citizen;
tout « "Enter your age: ";
cin » age;
Gout « "Are you a citizen (Y/N) ";
cin » choice;
if (choice =_ 'Y') '

citizen = true;
else j

citizen = false;
if (age >= 18)
if (citizen == true)

cout « "You are eligible to vote";
else

~i

J

Facebook's Exhibit No. 1010 - Page 109

f

CHAPTER 6 Nested if Statements and Logical Operators ,. ~~ ~~~`' ~___
~Ea

~~~
_ ._:._

_~ rr`
Gout « "You are not eligible to vote";

else
Gout « "You are not eligible to vote";

return 0;
}

The following are several sample runs, each separated by =__:

Enter your age: 18
Are you a citizen (Y/N) Y
You are eligible to vote

Enter your age: 18
Are you a citizen (Y/N) N
You are not eligible to vote

Enter your age: 17
Are you a citizen (Y/N) : Y
You are not eligible to vote

Enter your age: 17
Are you a citizen (Y/N) : N
You are not eligible to vote

Figure 6-1 depicts a flowchart of this program.
The nested if portion of the program is

if (age >= 18)
if (citizen == true)

cout « "You are eligible to vote";
else

Gout « "You are not eligible to vote";
else

cout « "You are not eligible to vote";

NOTE: The statement if(citizen == true) could be rewritten as if(citizen). The
parentheses following the if keyword requires only an expression that evaluates to a
Boolean value. Since citizen is a Boolean variable, it evaluates to a Boolean value
without the need for any comparison.

The if/else structure comparing whether the user is a citizen is nested within the
if/else structure comparing whether the user is at least 1 S years old. By this nesting,
the comparison of whether the user is a citizen is made only if the user is at least

Facebook's Exhibit No. 1010 - Page 110



~~~ C++ Demystified

Start
choice compared

to 'Y°
True False

Prompt user to
input number for age true ~ false

assigned assigned
to citizen to citizen

User inputs
number

Display not eligible I
age >= 18

False
~

to vote j

Input assigned ~_
to age True False

Prompt user to citizen compared

input character to true

for citizenship

True

User inputs
~character Display eligible

to vote End

Input assigned
to choice

Figure 6-1 Flowchart of the voting eligibility program

18 years old. This approach is logical, since if the user is not at least 18 years old,
they will not be eligible to vote even if they, are a citizen.

The if /else structure comparing whether the user is a citizen is referred to as the
"inner" if/else structure. The if/else structure comparing whether the user is at least ~"~
18 years old is referred to as the "outer" if /else structure.

The entire inner if /else structure (comparing whether the user is a citizen) is
nested within the if part of the outer if /else structure (comparing whether the user "'
is at least 18 years old). You also can nest an if /else structure (or an if structure, or an ~,

Facebook's Exhibit No. 1010 - Page 111

E

CHAPTER 6 Nested if Statements and Logical Operators

j if /else if /else structure) within the else if or else part of an outer if else/if else if
else/if else structure.

This program illustrates a good use of nested if statements. It would be difficult to
rewrite this program using an if ! else if /else structure without nested if statements.
However, later in this chapter we will cover another, equally good alternative: logi-

t cal operators.

Testing if Either Boolean Expression Is True
The following program shows the use of the nested if statements in determining if ei-
ther oftwo Boolean expressions are true. If the user's input indicates that they are
either no more than 12 years old or at least 65 years old, the program outputs that
their admission is free. Otherwise, the program outputs that they have to pay.
#include <iostream>
using namespace std;
int main (void)
{

int age;
j tout « "Enter your age: ";
~ cin » age;

if (age > 12)
if (age >= 65)

Gout « "Admission is free";
else

cout « "You have to pay";
else

cout « "Admission is free";
return 0;

}

The following shows several sample runs:
~ Enter your age: 12

Admission is free

Enter your age: 13
You have to pay

Enter your age: 65
Admission is free

r Figure 6-2 depicts a flowchart of this program.

Facebook's Exhibit No. 1010 - Page 112

~~ 114 '.: .

Start

Prompt user to
input number for

User inputs
number

Input assigned
to age

C++ Demystified

age > 12

False

True Display
admission free

i
True

age >= 65

False

I
Display have End ~to pay j

Figure 6-2 Flowchart of the movie admission program

The nested if portion of the program is
if (age > 12)
if (age >= 65)

cout « "Admission is free";
else

cout « "You have to pay";
else

Gout « "Admission is free";

The inner if/else structure, comparing whether the user is at least 65 years old, is
nested within the outer if/else structure, comparing whether the user is over 12 years
old. By this nesting, the comparison of whether the user is at least 65 years old is
made only ifthe user is over 12 years old. This approach is logical, since ifthe user
is no more than 12 years old, they will be admitted free (and also could not possibly
be 65 years or older).

This program also could have been written using the following if /else if /else
structure in place of the nested if statements.
if (age <- 12)

cout « "Admission is free";
else if (age >= 65)

Facebook's Exhibit No. 1010 - Page 113

CHAPTER 6 Nested if Statements and Logical Operators ~~

Gout « "Admission is free";
else

cout « "You have to pay";

Each of these two alternatives, the nested if statements and the if /else if /else
structure, have disadvantages. Nesting one if statement inside another by its very na-
turemay besomewhat difficult to write and understand. However, the if / elseif/else
if /else structure has the disadvantage of repeating the same Gout statement for both
the if and else if parts. While this is just one line of repetitive code in this program, in
more complex programs the repetitive code could be many lines long.

C++ has a third and perhaps better alternative, the use of logical operators, which
we will discuss next.

Logical Operators
C++ has logical operators that enable you to combine comparisons in one if or else if
statement. Table 6- l lists the logical operators supported by C++and describes what
each does.

Operator Name What It Does

&& And Connects two relational expressions. Both expressions must be true
for the overall expression to be true.

~ ~ Or Connects two relational expressions. If either expression is true, the
overall expression is true.

! Not Reverses the "truth" of an expression, making a true expression
false, and a false expression true.

Table 6-1 Logical Operators

The && Operator
The &&operator also is known as the logical And operator. It is a binary operator; it
takes two Boolean expressions as operands. It returns true only if both expressions
are true. If either expression is false, the overall expression is false. Of course, if both
expressions are false, the overall expression is false. Table 6-2 illustrates this.

Facebook's Exhibit No. 1010 - Page 114

T

~~~ C++ Demystified

Expression #1 Expression #2 Expression #1 &&
Expression #2

true true true

true false false

false true false

false false false

Table 6-2 The Logical And Operator

The following program shows the use of the logical And operator in determining
whether the user is eligible to vote, the criteria being that the user must be at least
18 years old and a citizen.
#include <iostream>
using namespace std;
int main (void)
{

int age;
char choice;
bool citizen;
tout « "Enter your age: ";
cin » age;
Gout « "Are you a citizen (Y/N) ";
cin » choice;
if (choice =_ 'Y' )

citizen = true;
else

citizen = false;
if (age >= 18 && citizen == true)

cout « "You are eligible to vote";
else

cout « "You are not eligible to vote";
return 0;

}

The following are several sample runs, separated by =__:
Enter your age: 18
Are you a citizen (Y/N) Y
You are eligible to vote

Facebook's Exhibit No. 1010 - Page 115



r

CHAPTER 6 Nested if Statements and Logical Operators ~~

Enter your age: 18
Are you a, citizen (Y/N) : N
You are not eligible to vote

Enter your age: 17
Are you a citizen (Y/N) : Y
You are not eligible to vote

Enter your age: 17
Are you a citizen (Y/N) : N
You are not eligible to vote

The part of the program that uses the logical And operator is

if (age >= 18 && citizen == true)
coot « "You are eligible to vote";

else
coot « "You are not eligible to vote";

The comparison age > =18 is referred to as the left part of the expression since it
is to the left of the logical And operator. Similarly, the comparison citizen == true is
referred to as the right part of the expression because it is to the right of the logical
And operator.
If the user's age is at least 18 years, then the program makes the second compari-

son, whether the user is a citizen. If the user's age is not at least 18 years of age, the
second comparison is not even made before the else part is executed. The reason is to
avoid wasting CPU time, since if the left expression is false, the overall expression is
false regardless of the result of the evaluation of the right expression.

Because the second comparison of whether the user is a citizen is made only if the
i user's age is at least 18, the flowchart in Figure 6-1 of this program using nested if

statements also applies to this program using the logical And operator.

The ~ ~ Operator
The ~~ operator is also known as the logical Or operator. Like the logical And opera-
tor, the logical Or operator also is a binary operator, taking two Boolean expressions
as operands. It returns true if either expression is true. It returns false only if both ex-
pressions are false. Of course, if both expressions are true, the overall expression is
true: Table 6-3 illustrates this.

The following program shows the use of the logical Or operator in determining
whether you get into a movie free, the criteria being that the user must be either no
more than 12 or at least 65 years old.

Facebook's Exhibit No. 1010 - Page 116



C++ Demystified

Expression #1 Expression #2 Expression #1 ~~ Expression #2

true true true

true false true

false true true

false false false

Table 6-3 The Logical Or Operator

#include <iostream>
using namespace std;
int main (void)
{

int age;
Gout « "Enter your age: ";
cin » age;
if (age <= 12 ~ ~ age >= 65)

Gout « "Admission is free";
else

Gout « "You have to pay";
return 0;

}

The following shows several sample runs:
Enter your age: 12
Admission is free

Enter your age: 18
You have to pay

Enter your age: 65
Admission is free

The part of the program that uses the logical Or operator is
if (age <= 12 ~ ~ age >= 65)

cout « "Admission is free";
else

cout « "You have to pay";
return 0;

As with the logical And operator, the comparison age <=12 is referred to as the
left part of the expression and the comparison age >= 65 is referred to as the right
part of the expression.

Facebook's Exhibit No. 1010 - Page 117



CHAPTER 6 Nested if Statements and Logical Operators ,,~~~

If the user's age is over 12 years, then the program makes the second comparison,
whether the user is at least 65 years of age. If the user is no more than 12 years of age,
the second comparison is not even made before the else part is executed. The reason,
as with the logical And operator, once again is to avoid wasting CPU time, since if
the left expression is true, the overall expression is true regardless of the result of the
evaluation of the right expression.

Because the second comparison of whether the user is at least 65 years old is made
only if the user's age is over 12, the flowchart in Figure 6-2 of this program using
nested if statements also applies to this program using the logical Or operator.

The !Operator
The !operator also is known as the logical Not operator. My daughters have been us-
ingthe logical Not operator for years, telling me "Dad, you look just like Tom Cruise
... not!"

The logical Not operator inverts the value of the Boolean expression, returning
false if the Boolean expression is true, and true if the Boolean expression is false.
Table 6-4 illustrates this.

Expression !Expression

true true

false true

Table 6-4 The Logical Not Operator

Unlike the logical And and Or operators, the logical Not operator is a unary oper-
ator; it takes only one Boolean expression, not two.

The following program shows the use of the logical Not operator, combined with
the logical And operator, in determining whether you get into a movie for free.

#include <iostream>
using namespace std;
int main (void)
{

int age;
cout cc "Enter your age: ";
cin » age;
if ( ! (age > 12 && age c 65) )

tout « "Admission is free";

Facebook's Exhibit No. 1010 - Page 118



~~~ C++ Demystified

else
Gout « "You have to pay";

return 0;
}

This program is almost identical to the one used to illustrate the logical Or opera-
tor. The only difference is that the statement
if (age <= 12 ~ ~ age >= 65)

is replaced by the statement
if (! (age > 12 && age < 65))

NOTE: This change is an illustration ofDeMo~gan's law, which is a rule of inference
pertaining to the logical And, Or and Not operators that are used to distribute a
negative to a conjunction o~ dzsjunction. In this book, it is only referred to and not
covered, but in case you hear DeMorgan 's law mentioned in a programming class or
another book, you heard it here first!

The Not operator permits you to state a Boolean expression a different way that
may be more intuitive for you. In this example, expressing the condition for free ad-
mission asbeing that the age is not between 13 and 64 may be more intuitive than ex-
pressingthat condition as being that the age is either no more than 12 or 65 or over: ; ~

Precedence
Table 6-S lists precedence, from highest to lowest, among logical operators and be-
tween them and the relational operators.

Operator (from highest to lowest)
i

Relational operators (>, >_, <, <_, __. !_)

&&

~ ~

Table 6-5 The Precedence of Logical and Relational Operators

Facebook's Exhibit No. 1010 - Page 119

CHAPTER 6 Nested if Statements and Logical Operators ~~

Precedence and the Logical Not Operator
Since the logical Not operator has a higher precedence than the relational operators,
the program used to illustrate the logical Not operator uses an extra set ofparentheses.

if (! (age > 12 && age < 65))

Had the extra set of parentheses been omitted as follows, the result would always
be that the user has to pay. Thus, admission would never be free regardless of the age.

if (!age > 12 && age < 65)

The reason why the user always has to pay regardless of age is that since the logi-
cal Not operator has a higher precedence than the relational operators, the logical
Not operator operates on age, not the expression age > 12 && age < 65. If age is
non-zero, then !age is zero. Since 0 is not greater than 12, the left part of the logical
And expression is false, so the overall expression is false.

The result of the user always having to pay regardless of age is the same even if
age is zero. If age is zero, then !age is logical true, the integer equivalent of which
usually is 1. Since 1 is not greater than 12, once again the left part of the logical And
expression is false, so the overall expression is false.

Precedence and the Logical And and Or Operators
In contrast to the logical Not operator, the logical And and Or operators rank lower in
precedence than the relational operators. Therefore, parentheses normally are not
necessary to separate the logical And and Not operators from the relational opera-
tors. For example, the following two statements (the first taken from the program
that illustrated the logical And operator) are equivalent.

if (age >= 18 && citizen == true)
if ((age >= 18) && (citizen == true)

However, parentheses are necessary when logical And and Or operators are used
together in one statement and you want the Or done before the And since the logical
And operator has higher precedence than the logical Or operator. This issue often
arises when you have more than two Boolean expressions.

For example, assume the voting rules were changed so legal residents (repre-
sented by the Boolean variable resident having a value of true) as well as citizens

j who are at least 18 years old could vote. Given that assumption, the statement
f if (resident == true I ~ citizen == true && age >= 18)
l

a

Facebook's Exhibit No. 1010 - Page 120

122 C++ Demystified

would be the same as the following since the logical And operator has higher prece-
dence than the logical Or operator.
if (resident == true ~ ~ (citizen == true && age >= 18))

In this expression, a resident under 18 years old would be able to vote. The reason
is that even if the expression (citizen ==true &&age > =18) is false, as long as resi-
dent is true, the overall expression is true, since with a logical Or operator only one
of the two Boolean expressions needs to be true for the overall expression to be true.

A resident under 18 years old being able to vote is not a correct result for this pro-
gram. To avoid this logic error, parentheses would be necessary, so the logical Or op-
eration is performed first.
if ((resident == true ~ ~ citizen == true) && age >= 18)

Using the switch Statement
with logical Operators

The switch statement was discussed at some length in Chapter 5. However, so far in
this chapter it has been conspicuous by its absence.
In Chapter 5, we discussed how the switch statement was cumbersome when

dealing with a range of numbers. The reason was that the case keyword cannot be
followed by a range of numbers because it must instead befollowed by asingle inte-
ger constant.

However, the switch statement may be used with expressions that use the logical
And or Or operator. The reason is that these expressions have only one of two possi-
blevalues, true or false. True and false are both constants; the value of true is always
true and the value of false is always false. While true and false are Boolean val-
ues,each has a corresponding integer value: 1 and 0. Therefore, the case keyword
may be followed by true or false, just as in Chapxer 5 where the case keyword can
be followed by a character since a character has a corresponding integer ANSI or
ASCII value.

For example, earlier~in this chapter the logical And operator was used in the fol-
lowing if/else structure in determining whether the user is eligible to vote, the crite-
riabeing that the user must be at least 18 years old and a citizen.
if (age >= 18 && citizen.== true)

cout « "You are eligible to vote";
else

cout « "You are not eligible to vote";

J

Facebook's Exhibit No. 1010 - Page 121

r

CHAPTER 6 Nested if Statements and Logical Operators
I ~♦

The corresponding switch statement is
switch (age >= 18 && citizen == true)
{
case true:

cout « "You are eligible to vote";
break;

case false:
Gout « "You are not eligible to vote";

}

Also earlier in this chapter, the logical Or operator was used in the following if/
else structure in determining whether the user gets into a movie free, the criteria
being that the user must be either under 18 or at least 65 years old.
if (age <= 12 I ~ age >= 65)

tout « "Admission is free";
else

tout « "You have to pay";

The corresponding switch statement is
switch (age <= 12 ~ ~ age >= 65)
{

case true:
tout « "Admission is free";
break;

case false:
tout « "You have to pay";

}

These examples illustrate that the switch statement can be employed as an alter-
native to an if /else or if / else if /else structure in programs that evaluate Boolean ex-
pressions using logical operators. However, it is not common for the switch
statement to be employed in this manner because, with Boolean expressions, there
are always just two alternatives, true and false, and switch statements generally are
used when there are many more alternatives than two.

Summary
In Chapter 5, we evaluated only one Boolean expression at a time to determine
which of two alternative blocks of code should execute. However, often two (or
more) Boolean expressions need to be evaluated to determine which block of code
should execute. In the example in which you are eligible to vote only if the user is

Facebook's Exhibit No. 1010 - Page 122

i

~~ C++ Demystified

a citizen and at least 18 years old, both Boolean expressions must be true in order for
the program to output that the user is eligible to vote. In another example, in which
you get into a movie free if the user is either a senior citizen (65 years or older) or a
child (12 or under), the program outputs that the user gets into the movie free if either
Boolean expression is true.

This chapter covered two different approaches of evaluating two Boolean expres-
sions todetermine which code should execute. The first approach nested one if state-
ment inside another. The second approach introduced three logical operators. The
logical && (And) operator is used when both Boolean expressions must be true.
The logical ~~ (Or) operator is used when either Boolean expression must be true.
Finally, the logical !(Not) operator inverts the value of a Boolean expression, from
true to false, or false to true.

Finally, this chapter showed how you can use the switch statement as an alterna-
tive to an if /else or if /else if /else structure in programs that evaluate Boolean
expressions using logical operators.

QUIZ
1. Can you use nested if statements as an alternative to the logical And and Or

operators?
2. Can an if statement be nested in the else if or else part of an if /else if /else

statement, or just the if part?
3. For which of the logical operators do both Boolean expressions have to be

true for the overall Boolean expression to be true?
4. For which of the logical operators do both Boolean expressions have to be

false for the overall Boolean expression to be false?
5. Which of the logical operators reverses the "truth" of a Boolean expression,

making a true expression false and a false expression true?
6. Assuming resident is a Boolean variable, is if(~^esident) the same as if(resi-

dent == true)?
7. Which of the logical operators is a unary rather than binary operator?
8. Which of the logical operators has a higher precedence than the relational

operators?
9. Which logical operator has a higher precedence, And or Or?

10. Can a Boolean value of either true or false be used following the case
keyword in a switch statement?

Facebook's Exhibit No. 1010 - Page 123

•~ e an o
~ e oo s

_ The for loop generally is used when the loop will iterate a fixed number of times.
However, sometimes the number of times a loop will iterate is unpredictable, depend-
ing on user input during runtime. For example, in a data entry application, you may
want a loop that, upon entry of invalid data, asks the user whether they want to retry
or quit, and if they want to retry, gives the user another opportunity to enter data. The
number of times this loop may iterate is unpredictable, since it will keep repeating
until the user either enters valid data or quits.

~~ .~, This chapter will show you how to use the while loop, which is a better choice
than a for loop when the number of times a loop will iterate is unpredictable.

r;_ While the total number of loop iterations may be unpredictable, there often are
situations in which the loop will iterate at least once. An example is a loop that displays
a menu with various choices, including exiting the program. In this menu example,
the menu always displays at least once; the user cannot choose to exit before being
given that choice. In such situations, a do while loop, which this chapter will show
you how to use, is a better choice than a while loop.

~~

~r

Facebook's Exhibit No. 1010 - Page 124

r

~~~ C++ Demystified

The While Loop
The while loop is similar to a for loop in that both have the typical characteristics of a
loop: the code inside each continues to iterate until a condition becomes false. The
difference between them is in the parentheses following the for arrd while keywords.

The parentheses following the for keyword consists of three expressions, initial-
ization, condition, and update. By contrast, the parentheses following the while key-
word consists only of the condition; you have to take care of any initialization and
update elsewhere in the code.

This difference is illustrated by the following program that outputs the numbers
between 1 and 10. Chapter 7 included the following program that outputs the num-
bers between 1 and 10 using the for loop.

#include <iostream>
using namespace std;
int main (void)
{

for (int num = 1; num <= 10; num++)
cout « num « "•

return 0;
}

The same program using the while loop could be

#include <iostream>
using namespace std;
int main (void)
{

int num = 1;
while (num <= 10)
{

Gout « num « "•
num++;

}
return 0;

J

NOTE: The two statements in the body of the while loop could have been combined
into one statement, tout « num++. Two statements aye used instead to make this
example easier to understand by eliminating theprecedence issue in the one statement
between the stream insertion and increment operators.

Facebook's Exhibit No. 1010 - Page 125



r

CHAPTER $ While and Do While Loops j "`
~
~

With the while loop, the integer variable num had to be declared and initialized
before the loop since this cannot be done inside the parentheses following the while
keyword. Further, num was updated inside the code of the loop using the increment
operator. This update also can be done inside the parentheses following the while
keyword as shown by an example later in this section.

The update of the variable is particularly important with the while loop. Without
that update, the loop would be infinite. For example, in the following excerpt from
this program, if num is not incremented, the loop would be infinite. The value of num
would not change from 1, so the condition num <=10 always would remain true.
int num = 1;
while (num <= 10)

Gout « num « ";

Forgetting to update the value of the variable you are using in the condition is a
common mistake with a while loop. Forgetting the update is less common with a for
loop because that update is the usual purpose of the third expression in the paren
theses following the for keyword.

Otherwise, the syntax rules discussed in Chapter 7 concerning the for loop apply
equally to the while loop. For example, if more than one statement belongs to the
while loop, then the statements must be contained within curly braces. That is why in
the program that outputs the numbers between 1 and 10 using the while loop, the two
statements in the body of the while loop are contained within curly braces.

while (num <= 10)
{

tout « num « " -
num++;

}

In the, program we just analyzed, the update of the value of num was done within
the body of the loop. The update could also be done within the condition itself:
#include <iostream>
using namespace std;
int main (void)
{

int num = 0;
while (num++ < 10)

Gout « num « "•
return 0;

}

Updating the counter within the condition requires two changes from the previ-
ouscode. First, the value of num has to be initialized to 0 instead of to 1 because the

Facebook's Exhibit No. 1010 - Page 126



146
~.

C~-+ Demystified

increment inside the parentheses during the first iteration of the loop would change
that variable's value to 1. Second, the relational operator in the condition is < rather
than <=because the value of num is being incremented before it is outputted.

Updating the counter within the condition raises the question: Given the condition
num++ < 10, which comes first, the comparison or the increment? Since the incre-
ment is postfix, the answer is the comparison.

The counter also could be updated within the condition using a prefix increment.
However, then the condition should be ++num <=10 to obtain the desired output.

As with the for loop, the statement or statements following the while keyword and
parentheses will not execute if the parentheses is followed by a semicolon, as that
would be interpreted as an empty statement. Test yourself on this; what would be the
output if we placed a semicolon after the while condition as in the following code
fragment?

while (num <= 10) ;
cout « num++ « ~~

The only number that would output is 11. The reason is that the loop continues,
and the empty statement executes, until the condition fails when num is 11, at which
time the statement following the loop executes and the value of num (11) is
outputted.

Comparison of for and while Loops
The practical difference between the for and while loops is not apparent in a program
with a predictable number of iterations, such as the program we have been discussing
thus far that outputs the numbers between 1 and 10. Rather, a while loop is a superior
choice to a for loop in a program where the number of iterations is unpredictable,
depending on user input during runtime.

For example, in the following program, the program asks the user to enter a posi-
tivenumber, and in a loop continues that request until the user does so. The number of
times this loop may execute is unpredictable. It may never execute if the user enters a
positive number the first time, or it may execute many times if it takes the user several
tries to enter a positive number.

#include <iostream>
using namespace std;
int main (void)

int num;
cout « ~~Enter a positive number: ";
cin » num;

Facebook's Exhibit No. 1010 - Page 127



CHAPTER 8 While and Do While Loops ~~

while (num <= 0)
{

tout « "Number must be positive; please retry: ";
cin » num;

}
Gout « "The number you entered is « num « ~~ ~~ •
return 0; ,

}

Here is some sample input and output:
Enter a positive number: 0
Number must be positive; please retry: -1
Number must be positive; please retry: 3
The number you entered is 3

This program would be more difficult to write with a for loop. While it could
be done, the for loop is designed for situations in which the number of iterations is
predictable.

Using the break Keyword
Even though the while loop is a better choice than a for loop for this program, which
requires the user to enter a positive number, there are two problems with this program:
one minor and one major.

The minor problem is that there is some repetition of code; the user is requested
both before and inside the loop to enter a positive number. A do while loop, which is
explained in the following section, avoids this repetition, but repeats other code
(there are tradeoffs in loops as well as in life).

The major problem is that the user is trapped inside the loop until they enter a
positive number. That is not a good programming design. While the user should be
required to enter good data if they are going to enter any data at all, they should have
the option, when told the data entered was not valid, of quitting the data entry.

The following modification of the program uses the break keyword to provide the
user with the option of quitting the data entry:
#include <iostream>
using name space std;
int main (void)
{

int num;
char choice;
Gout « "Enter a positive number: ";
cin » num;

Facebook's Exhibit No. 1010 - Page 128



148

while (num <= 0)
t

C++ Demystified

tout « "Number must be positive; try again (Y/N) : ";
cin » choice;
if (choice =_ 'Y' )
{

Gout « "Enter number: ";
cin » num;

}
else

break;
}
COUt « "The number you entered 1S " « riUTTI « " ";

return 0;
}

Here is some sample input and output when the user eventually enters a positive
number:
Enter a positive number: 0
Number must be positive; try again (Y/N) Y
Enter number: -1
Number must be positive; try again (Y/N) Y
Enter number: 3
The number you entered is 3

Here is some sample input and output when the user does not. enter a positive
number but instead decides to quit:
Enter a positive number: -2
Number must be positive; try again (Y/N) N
The number you entered is -2

Flags
The flags modification is an improvement because the user no longer is trapped in-
sidethe loop until they enter a positive number, but instead has the option of quitting
data entry. However, the second sample input and output, in which the user quits data.
entry, illustrates a problem. The final cout statement outputs the number entered,
even if the number is invalid data.
Ideally, we would only want to output the data if it were valid. If the data were not

valid, then we would want to output that fact instead. However, the code thus far does

Facebook's Exhibit No. 1010 - Page 129



CHAPTER 8 While and Do While Loops ~ ~` `~~ ~s ` ~`~ _
~~

not enable us to differentiate whether the while loop ended because the user entered
valid data or because the user decided to quit after entering invalid data.
In Chapter 7, I recommended that you use the break keyword sparingly because it

created multiple exit points for the for loop, making your code more difficult to un-
derstandand increasing the possibility of logic errors. That advice also applies to the
while loop. I recommended then, and recommend now, as an alternative the use of
a logical operator. The following program modification adopts that alternative.

#include <iostream>
using name space std;
int main (void)
{

int num;
char choice;
bool quit = false;
Gout « "Enter a positive number: ";
cin » num;
while (num <= 0 && quit == false)
{

Gout « "Number must be positive; try again (Y/N) : ";
cin » choice;
if (choice !_ 'Y' )
{

tout « "Enter number: ";
cin » num;

}
else

quit = true;
}
if (quit == false)

cout « "The number you entered is cc num « ";
else

Gout « "You did not enter a positive number";
return 0;

Here is some sample input and output when the user eventually enters a positive
number:
Enter a positive number: -3
Number must be positive; try again (Y/N} Y
Enter number: 3
The number you entered is 3

Facebook's Exhibit No. 1010 - Page 130



~~~ C++ Demystified

Here is some sample input and output when the user does not enter a positive num-
berbut instead decides to quit. This time the final output is not of the number entered,
but rather that the user did not enter a positive number:

Enter a positive number: 0
Number must be positive; try again (Y/N) : Y
Enter number: -1
Number must be positive; try again (Y/N) : N
You did not enter a positive number

This program modification, in addition to using the logical && operator, uses a Boo-
leanvariable named quit. This Boolean variable is used as aflag. A flag is a Boolean
variable whose value indicates whether a condition exists.
In this program, the while loop continues to loop as long as the data entered is in-

validand the user wants to keep going. Accordingly, the while keyword is followed
by two conditions, joined by the logical && operator.

NOTE: A common programming mistake in a while condition using a Zogical operator
is to use &&when you should use ~ ~ or vice versa. While the logical &c~ operator may
seem the obvious choice in this example, the correct choice in other situations may be
less intuitive. For example, if you want to loop while a number is not between 1 and 10,
would the loop be while (num < 1 && num > 10) or while (num < 0 ~ ~ num > 10)?The
answer is the latter; the condition always would be false using the &c4i operator since a
number cannot be both less than 1 and greater than 10. If you wanted to use the &&
operator, the condition instead would be while (num >=1 && num <=10).

The first condition is if num <= D. If this expression is false, the data is valid, so the
issue of whether the user wants to quit does not arise. Accordingly, the second condi-
tion, whether quit is true, is not even evaluated. As discussed in Chapter 7, with a logi-
cal && operator, the right expression is evaluated only if the left expression is true.
Therefore, the while loop ends with the value of quit being false, its initialized value,
and code execution continues with the if /else statement following the while loop.

However, if num <= 0 is true, then the data is invalid, and the second condition,
whether quit is true, is evaluated.

The value of quit may be true under either of two possibilities. The first possibility
is that this is the user's first attempt to enter data and the data was invalid. In this case,
the user has not yet been asked whether they want to quit. It is assumed they don't, so
they have the opportunity to answer whether they want to retry. Therefore, the quit
variable is initialized to the value of false when it is declared.

The second possibility is that this is the user's second or later attempt to enter data
and the data was invalid. In this case, the user has already been asked whether they
want to quit, so the value of quit is based on the user's answer.

Facebook's Exhibit No. 1010 - Page 131

CHAPTER 8 While and Do While Loops _ ;~♦

If the value of quit is false, the while loop continues. However, if the user wants to
quit, then the right expression quit ==false will be false because the value of quit is
true. Therefore, the while loop ends with the value of quit being true, and code exe-
cution continues with the if /else statement following the while loop.

At some point (hopefully) the while loop will erid, either because the user has
entered a valid number or has not and decided to quit trying. Code execution then
continues with the if /else statement following the while loop.

The value of quit being false necessarily indicates that the user entered valid data,
because if they were still trying to do so, the loop would not have ended. Conversely,
the value ofquitbeing true necessarily indicates that the user entered invalid data.

Accordingly, we use the value ofquit inthe if /else statement after the while loop
to differentiate whether the while loop ended because the user entered valid data or
instead decided to quit after entering invalid data.

Thus, inside the while loop, quit is a flag whose value indicates whether the user
wants to try again, and after the while loop ends, quit is a flag whose value indicates
whether the user entered valid data.

While (true)
In Chapter 7, we discussed the use of the for loop with the omission of the condition
that is the second expression, such as for (; ;). There, an infinite loop was avoided by
using the break keyword inside the loop. While I did not recommend this use of the
for loop, I mentioned it because you may encounter it as programmers do use the for
loop this way.

Similarly, programmers sometimes make the condition of the while loop always
true, such as while (true) or while (1), and break out of the while loop with, you
guessed it, the break keyword. Here is an example that is a modification of the pro-
gram we have been using that asks the user to enter a positive number.

#include <iostream>
using namespace std;
int main (void)

int num;
char choice;
bool quit = false;
while (true)

tout « "Enter a positive number: ,
cin » num;
if (num > 0)

Facebook's Exhibit No. 1010 - Page 132

r

152

break;
else
{
cout « "Number must be positive;
cin » choice;
if (choice !_ 'Y')
{
quit = true;
break;
}
}

C++ Demystified

try again (Y/N) : ";

}
if (quit == false)

cout « "The number you entered is « num « ";
else

cout « "You did not enter a positive number";
return 0;

}

The one advantage of this modification is that it renders unnecessary having to
prompt the user both before and inside the loop to enter a positive number. However,
the use of the while (true) syntaac has the disadvantage of making your code less
readable because the condition that stops the loop cannot be discerned from the pa-
rentheses following the while keyword. The do while loop (explained later in this
chapter) avoids this disadvantage and would be a preferable choice.

The continue Keyword
You can use the continue keyword in a while loop just as you can in a for loop. As dis-
cussed in Chapter 7, the continue keyword, like the break keyword, is used within
the code of a loop, commonly within an if /else structure. If the continue statement
is reached, the current iteration of the loop ends, and the next iteration of the loop
begins.

Chapter 7 demonstrated the use of the continue keyword in a program in which the
user is charged $3 an item, but not charged fora "baker's dozen," so every 13`'' item is
fre~that is, the user is only charged the price for a dozen items, even though they re-
ceive 13. The following is a modification of that program using a while loop.
#include <iostream>
using namespace std;
int main (void)

Facebook's Exhibit No. 1010 - Page 133

CHAPTERS While and Do While Loops

i

153

int num, counter = 0, total = 0;
Gout « "How many items do you want to buy: ";
cin » num;
while (counter++ < num)
{

if (counter o 13 == 0)
continue;

total +- 3;
}
Gout « "Total for « num « items is $" « total;
return 0;

}

NOTE: The % (modulus) operator is used if the remainder is 0, 13, or a multiple
of 13 items.

While this use of the continue keyword certainly works, as I cautioned in Chapter 7,
you should use it (as well as the break keyword) sparingly. Normally, each iteration
of a for loop has one end point. However, when you use a continue statement, each it-
eration has multiple end points. This makes your code more difficult to understand,
and can result in logic errors.
I suggested in Chapter 7, in an example using the for loop, that you could use the

logical !(Not) operator as an alternative to using the continue keyword. Here is how
you could do so using the while loop.

#include <iostream>
using namespace std;
int main(void)
{

int num, counter = 0, total = 0;
tout « "How many items do you want to buy: ";
cin » num;
bool keepgoing = true;
while (counter++ < num)
{

if (! (counter o 13 == 0))
total += 3;

}
COUt « 'Total fOY' " « IlUIIl <G " items 1S $" « tOtdl;

return 0;
}

Facebook's Exhibit No. 1010 - Page 134

154 C++ Demystified

NOTE: You also could use the relational !_ (not equal) operator, changing the f
statement to if (counter % 13 != 0).

Nesting While Loops
In Chapter 7, I showed you how you can nest one for loop inside another. Similarly,
you can nest one while loop inside another. You also can nest a while loop inside of
a for loop, or a for loop inside of a while loop.

Chapter 7 demonstrated nested for loops with a program that prints 5 rows of 10 X
characters. The following is a modification of that program using nested while
loops.
#include <iostream>
using name space std;
int main (void)
{

int x = 0 ;
while (x++ < 5)
{

int y = 0;
while (y++ < 5)

Gout « "X";
Gout « '\n' ;

}
return 0;

}

The variabley, used as a counter in the inner while loop, needs to be reinitialized
in the outer while loop. The variable y could be declared outside the loops, but it
needs to be assigned (or reassigned) the value of zero inside the outer loop since the
inner loop goes through all of its iterations for each iteration of the outer loop.

Since each loop has a predictable number of iterations, using nested for loops is
somewhat simpler than using nested while loops. However, both work.

The Do While Loop
The do while loop is similar to the while loop. The primary difference is that with a
do while loop the condition is tested at the bottom of the loop, unlike a while loop
where the condition is tested at the top. This means that a do while loop will always
execute at least once, whereas a while loop may never execute at all if its condition is
false at the outset.

Facebook's Exhibit No. 1010 - Page 135

CHAPTER 8 While and Do While Loops

Syntax
The syntax of a do while loop is

do {
statement(s) ;

} while (condition) ;

~~~

The do keyword starts the loop. The statement or statements belonging to the loop
are enclosed in curly braces. After the close curly brace, the while keyword appears,
followed by the condition in parentheses, terminated by a semicolon.

A Do While loop Example
The following program is a modification of the one earlier in this chapter that used a
while loop to continue to prompt the user to enter a positive number until the user either
did so or quit, and then either outputted the positive number or a message that the
user did not enter a positive number. This modification uses a do while loop instead
of a while loop.
#include <iostream>
using namespace std;
int main (void)
{

int num;
char choice;
bool quit = false;
do {

cout « "Enter a positive number: ";
cin » num;
if (num <= 0)
{
cout « "Number must be positive; try again (Y/N) : ";
cin » choice;
if (choice !_ 'Y' )
quit = true;
}

} while (num <= 0 && quit == false);
if (quit == false)

cout « "The number you entered is « num « ~~ ;
else

cout « "You did not enter a positive number";
return 0;

}

Facebook's Exhibit No. 1010 - Page 136



~~~ C++ Demystified

The following are sample inputs and outputs. The first one has the user success-
fully enter a positive number the first time.
Enter a positive number: 4
The number you entered is 4

The next sample input and output has the user enter a positive number after two
unsuccessful tries.
Enter a positive number:
Number must be positive;
Enter a positive number:
Number must be positive;
Enter a positive number:
The number you entered is

0
try again (Y/N) : Y
-1
try again (Y/N) : Y
4

4

The final sample input and output has the user quit after two unsuccessful tries.
Enter a positive number: 0
Number must be positive; try again (Y/N) : Y
Enter a positive number: ' -1
Number must be positive; try again (Y/N) : N
You did not enter a positive number

Comparison of the Do While and While Loop
The preceding program, which used the do while loop, did not need to prompt the user
both before and inside the loop to enter a number as did the corresponding program
that used the while loop. However, this program using the do while loop repeats the
num <= 0 condition inside the loop, whereas the corresponding program that used
the while loop did not need to do that.

As a general rule, I prefer a do while loop over a while loop in those situations in
which the loop must execute at least once before a condition may be tested, simply
because under these circumstances it seems illogical to test the condition prematurely
on the first iteration ofthe loop. As you may recall, in the program variation that used
the while loop, the value of quit could be true in the loop condition under either of two
possibilities, one being it was the user's first attempt to enter data so the user has not
yet been asked whether they want to quit, and the other being it was the user's second
or later attempt to enter data and the user answered that they wanted to quit. By con-
trast, using the do while loop eliminates the first possibility.

The preceding program, in which the user had to enter a number, whether that
number is positive or not, is an example of the situation in which the loop must exe-
cute at least once before a condition may be tested. Another common example of this

Facebook's Exhibit No. 1010 - Page 137

CHAPTER 8 While and Do Vlihile Loops

~~

situation is when a menu is displayed. Assume the program displays a menu such as
the following:
Menu

1. Add an entry
2. Edit an entry
3. Delete an entry
4. Exit

If the user chooses options 1, 2, or 3, the program performs the indicated operation
(add, edit, or delete) and then again displays the menu for the user's next choice. If
the user chooses option 4, the program ends.
In this menu example, the menu always displays at least once; the user cannot

choose to exit before being given that choice. Accordingly, a do while loop normally
is preferable to a while loop when choosing a loop to display a menu.

Scope
With a do while loop, it is important that a vaxiable used in the condition following
the while keyword not be declared inside the loop.
In the program that demonstrated the do while loop, the variables num and quit

were declared before the loop:
int num;
char choice;
bool quit = false;
do {

/ / statements
} while (num <= 0 && quit == false) ;

These variables could not be declared inside the do while loop, as in the following
code excerpt, because the code would not compile. The parentheses following the
while keyword is highlighted, and the compiler error is that num and quit are unde-
clared identifiers.

char choice;
do {
int num;
bool quit = false;
/ / more statements

} while (num <= 0 && quit == false) ;

The reason why this alternative will not compile concerns variable scope.

Facebook's Exhibit No. 1010 - Page 138

Cf+ Demystified

As you know from Chapter 3, a variable must be declared before it can be referred
to in code. Once a variable is declared, it may be referred to wherever in the code it
has scope.

Thus far, variables have been declared in main, just after the open curly brace
which begins the body of the main function. This gives these variables scope until
the close curly brace, which ends the body of the main function. Since thus far our
programs have had only one function, main, as a practical matter, the variables, once
declared, could be referred to throughout the entire program.
In this example, however, the variables num and quit are declared after the open

curly brace that begins the body of the do while loop. That means their scope is
limited to the area between that open curly brace and the close curly brace that ends
the body of the do while loop. This area between an open and close curly brace also
is referred to as a block.

The while keyword and the parentheses that follow it are outside the body of the do
while loop, or put another way, after the close curly brace that ends the body of the
do while loop. Since the variables num and quit were declared within the body of
the do while loop, they do not have scope outside the body of the loop where the while
parentheses are located. Therefore, these variables are regarded as undeclared when
referred to within those parentheses.

This issue arises far more often with the do while loop than with the for or while
loops. With for or while loops, the condition precedes the body of the loop, so any
variables used in the condition necessarily would be declared before the loop or, in the
case of the for loop, within the parentheses following the for keyword. By contrast,
since the condition of a do while loop comes after the body of the loop, it is an easy mis-
take todeclare the variables used in the condition before it, in the body of the loop.

This is our first discussion of the variable scope issue. However, it is by no means
our last. This issue is not limited to the do while loop. It arises frequently when we
start adding other functions to our programs, as we will do in upcoming chapters.

Summary
Chapter 7 introduced the first of several loops: the for loop. The for loop works well
in situations where the loop will iterate a fixed number of times.

Often, however, the number of times a loop will iterate is unpredictable since the
number of iterations depends on user input during runtime. One example discussed
in this chapter is a data entry application in which the loop, upon entry of invalid data.,
asks the user whether they want to retry or quit, and if they want to retry, gives the user
another opportunity to enter data. The number of times this loop may iterate is un-
predictable, since it will keep repeating. until the user either enters valid data or quits.

Facebook's Exhibit No. 1010 - Page 139

CHAPTER 8 While and Do While Loops ,,~~

This chapter showed you how to use the while loop, which works better than a for
loop when the number of times a loop will execute is unpredictable. While the paren-
thesesfollowing the for keyword consists of three expressions, initialization, condi-
tion, and update, the parentheses following the while keyword consists only of the
condition; you have to take care of initialization and update elsewhere in the code.,

There also are situations in which, while the number of times this loop may exe-
cute is unpredictable, the loop will execute at least once. An example discussed in
this chapter is a loop that displays a menu with various choices, including exiting the
program. In this menu example, the menu always displays at least once; the user can-
notchoose to exit before being given that choice. In such situations, a do while loop
is a better choice than a while loop. This chapter showed you how to use a do while
loop, and introduced the issue of variable scope.

So far, all of our programs have had only one function, main. While all programs
must have a main function, a C++program may have additional functions. As pro-
gramsget more sophisticated, it is helpful not to put all the code in main, but instead
to allocate the code among different functions. The next chapter will show you how to
add and use additional functions.

QUIZ
1. Which of the three loops—for, while, or do while—executes at least once?

2. Which of the three loops—for, while, or do while—is the best choice when
the number of iterations is predictable?

3. Is the parenthetical expression following the while keyword for initialization,
condition or update?

4. May the parenthetical expression following the while keyword be true, such
as while (true)?

5. Can the parenthetical expression following the while keyword combine two
expressions'?

6. What is the purpose of the break keyword in a while loop?

7. What is the purpose of the continue keyword in a while loop?

8. What is a flag?
9. If you were going to use nested while loops to print rows and columns, which

for loop would print the rows, inner or outer?

10. Does a variable declared inside the body of a do while loop have scope in
the parenthetical expression following the while keyword?

Facebook's Exhibit No. 1010 - Page 140

'x a 4;
~~, n ~ six

L ; "~~~i3 r:

•erns en a a:
~ e n u an

u u

As a kid, I had to listen patiently, or not so patiently, to endless (so it seemed at the
time) lectures from my parents on how I could be better, or do better. After I became
an adult, I realized to my amazement that my parents more often than not were right.
Indeed, after I became a parent, I realized to my horror that I was repeating their lec-
tures to my own children, who, of course, today enjoy these "talks" about as
much I used to.

One of my parents' favorite lectures was about how important it is to be persistent.
Once again, mom and dad showed true insight, because, though persistence is a very
valuable trait in any person, it is particularly important in programmers.

4 ~gg,~
F F'k,~'.T~~.,

.

Facebook's Exhibit No. 1010 - Page 141

~~ C++ Demystified

Data, as well as programmers, should be persistent. By persistent, I mean the data
should survive when the program is finished. Can you imagine if, after typing this
chapter, when I exited Microsoft Word, everything I typed was lost?

With the programs we have written so far, this is exactly what would happen. What-
evervalues wehave stored in variables do not persist, or survive, when the program is
finished. Instead, the data is lost because the data is stored in RAM (random access
memory), which is cleared when the program (or the computer) stops running.

Fortunately, Microsoft Word (and most programs for that matter) has the capabil-
ity tosave data to a file on the computer's hard drive or other storage medium so that
data later can be retrieved when needed. That data persists after the termination of
the program or even after the computer is turned off.

This chapter will show you how to make your data persistent by saving it to a file.
Of course, saving the data accomplishes little unless you can later retrieve it, so this
chapter also will show you how to retrieve data from a file.

Text vs. Binary Files
If you work on a computer, you work with files. You may have worked with hun-
dreds ifnot thousands of files. However, have you ever stopped to think about what a
file exactly is?

A file is a collection of data, and is located on persistent storage (discussed in
Chapter 2) such as a hard drive, a CD-ROM, or other storage device.

A file is referred to by a name (called, naturally enough, a filename), which often
is descriptive of the nature or contents of the file. For example, the Microsoft Word
document for this chapter maybe named chapterl3.

A filename usually has an extension, beginning with a period (.). For example, if
the file for this chapter is named chapterl3.doc, the extension is .doc.

The purpose of the file extension is to indicate the type of date in the file and the
program that normally is used to access the file. Accordingly, by convention, .doc is
the extension for files normally accessed by Microsoft Word, .xls is the extension for
files normally accessed by Microsoft Excel, and so forth. One extension you may
have used frequently when working with this book is .cpp, for C++ source files.

As there are many types of programs, there are many types of files, and many
different file extensions. However, fundamentally, there are two types of files: text
and binary.

A text file is, as the name suggests, a file that contains text. An example is a file
you might create in Notepad or another plain-text editor.

Facebook's Exhibit No. 1010 - Page 142

CHAPTER 13 Persistent Data: File Input and Output ~~~

The meaning of binary in a binary file is less intuitive. View a Microsoft Word
document in Notepad or another plain-text editor, such as the one I used to type this
chapter. You will see, in addition to the text, strange characters such as a6, IL, h5, and
dark vertical lines that most definitely do not appear in the text. These are formatting
codes used by Microsoft Word to format the text, such as for tables, bulleted and
numbered lists, and so forth.

Text files can only store text. By contrast, binary files can store other types of in-
formation, such as images, database records, executable programs, and so forth.
Consequently, more complex programs, such as Microsoft Word, Excel, or Access,
store data in binary files.

Text files are somewhat simpler than binary files to access, read, and write. Con-
sequently, file access usually is introduced using text files, with binary files a more
advanced topic. This being an introductory-level book, I will use text files when ex-
plainingfile access. However, when pertinent during this chapter, I also will refer to
binary files.

The fstream Standard Library
We have been using the iost~eam standard library, which supports, among other
functionalities, tin for reading from standard input (usually the keyboard), and tout
for outputting to standard output (usually the monitor).

Reading or writing from a file requires another standard library, fstream. The
fstream standard library is included with the. statement:
#include <fstream>

Both iostream and fstream have in common the word "stream." This is no acci-
dent. Both standard libraries concern streams of bytes. The iost~eam library con-
cerns streams'of bytes resulting from the "io" in iostream, input and output. The
fstream standard library concerns streams of bytes resulting from the "f' in fstream,
a file.

The fstream header file defines three new data types:

ofstream This data type represents the output file stream—the "o"
in ofstream standing for output. The direction of output is from your
program out to a file. The ofstream data type is used to create files and
to write information to files. It cannot be used to read files.
ifst~eam This data type represents the input file stream—the "i" in ifstream
standing for input. The direction of input is from a file into your program.

Facebook's Exhibit No. 1010 - Page 143

T

272
C++ Demystified

The ifsts^eam data type is used to read information from files. It cannot be
used to create files or to write information to them.
fstream This data type represents the file stream generally, and has
the capabilities of both ofstream and ifstream. It can create files, write
information to files, and read information from files.

The File Access Life Cycle
When your program accesses a file, whether to read it, write to it, or both, it goes
through the following steps.

The file first must be opened. This establishes a path of communication between
the file and a stream object in your program fstream, ofst~eam, or ifstreain—used
to access the file.

Your program then reads from, or writes to, the file (or both). This section will dis-
cuss writing to a file before reading to it, but in your program the order could be re-
versed. Additionally, your program may only read from a file, or only write to a file.

Finally, your program closes the file. Maintaining the path of communication be-
tween the file and the stream object in your program requires system resources, so
closing the file frees those resources when they are no longer needed. Additionally,
you may not be able to access the file later in your program if you did not close it after
the previous access.

Opening a File
A file must be opened before you can read from it or write to it. As discussed in the
introduction to this section, opening a file establishes a path of communication be-
tweenthe file and a stream object in your program. Opening a file for writing is first
discussed.

Opening a File for Writing
Either the ofstream or fst~eam obj ect may be used to open a file for writing. However,
the ifstream object cannot. be used for this purpose because it only may be used to
read from a file.

Facebook's Exhibit No. 1010 - Page 144

CHAPTER 13 Persistent Data: File Input and Output'

Both the ofstream and fstream objects may open a file one of two ways. The first
way is using a member function named, as you might expect, open. The second alter-
native is using a constructor, which is explained in the "The fstream or ofstream
Constructor" section later in this chapter.

The Open Member Function
Both the ofstream and fstream objects use an open member function, whose first ar-
gument is the name and location of the file to be opened. However, whether you
include a second argument may depend on whether the ofstream or fstream obj ect is
calling the open member function, or whether you want to access the file in a differ-
ent "mode" than the default.

First Argument—Specifying the File to Be Opened
The file to be opened for writing need not already exist. If it does not, attempting to
open it for writing to it automatically will create it with the specified name at the
specified location. However, whether or not the file yet exists, you need to specify a
file name and location.

Accordingly, whether the ofstYeam or fstream object is calling the function, the
first argument specifies the name and location of the file to be opened. This informa-
tion may be provided by using either the relative path or absolute path of the file.
The terms relative path and absolute path are new, so let's discuss them now.

The relative path is the path relative to the location of your program. For example,
the following statements open for writing a file, students.dat, that is in the same di-
rectory as the program:

ofstream outfile;
outfile.open("students.dat") ;

By contrast, the absolute path is the path starting with the. drive letter, and includ-
ingeach directory and subdirectory until the file is reached. For example, if the stu-
dents.datfile is inthe Classes subdirectory of the College directory of my C drive, it
would be opened for writing, using the absolute,path, as follows:

ofstream outfile;
outfile.open("c:\\college\classes\\students.dat") ;

NOTE: Two backslashes are necessary because one backslash is used to note an
escape sequence. Two backslashes is the escape sequence for one backslash.

Facebook's Exhibit No. 1010 - Page 145

T

~~~ C++ Demystified

Whether you use a relative or absolute path, the argument for the open function
need not be a string literal. It also may be a string variable, as in the following code
fragment:

ofstream outfile;
char filename[80] ;
cout « "Enter name of file: ";
cin » filename;
outfile.open(filename) ;

NOTE: As a geneYal Yule, using a relative path is preferable, particularly if the
program will be used on d~erent machines. While the location of the data file
relative to the program directory may remain the same, there is no guarantee that the
particular placefnent of the program on one computer's directory structure will be
the same as another's.

Second Argument—File Mode
The second argument of the open member function defines the mode in which the
file should be opened. One choice is whether the file should be opened for writing,
reading, or both. However, there are other choices, each called a file mode flag.
Table 13-1 lists the file mode flags:

File Mode Flag Description

ios::app Append mode. The file's existing contents are preserved and all output is
written to the end of the file.

ios::ate If the file already exists, the program goes directly to the end of it.
Output may be written anywhere in the file. This flag usually is used
with binary mode.

ios::binary Binary mode. Information is written to the file in binary format, rather than
in the default text format.

ios::in Input mode. Information will be read from the file. The file will not be
created if it does not exist.

ios::out Output mode. Information will be written to the file. By default, the
existing file contents will be overwritten.

ios::trunc If the file already exists, its contents will be truncated, another word for
deleted or overwritten. This is the default mode of ios::out.

Table 13-1 File Mode Flags

Facebook's Exhibit No. 1010 - Page 146



°~

i CHAPTER 13 Persistent Data: File Input and Output ~~

If you use the ofstream object to open a file, you do not need any file mode flags.
Indeed, the examples in the previous section did not use any file mode flags. An
ofstream object may only be used to open a file for writing, and cannot be used to
open a file for reading. Therefore, there is no need to specify the ios:: out flag; use of
that flag is implied by use of the ofstream object to open the file.

However, you may want to use one or more file mode flags with the open member
function of the ofsti^eam obj ect if you do not want the default, which is to open the file in
text rather than binary mode and overwrite rather than append to the existing file con-
tents. One example of when you might want to append is an error log file, which keeps
track of errors that may occur in a program. When a new error occurs, you don't want to
erase the history of prior errors, but rather you want to add to that history.

You can combine two or more flags when opening a file. For example, the follow-
ing statements open a file in binary mode and to append rather than to overwrite. The
two file mode flags are combined using the bitwise or operator (~):

ofstream outfile;
outfile.open("students.dat", i.os: :binary ~ ios: :app) ;

NOTE: The bitwise or operator ( is not the same as the logical or operator ~ ~ even
though they share the naive or and the keystroke ~.

While you don't need to specify any file mode. flags if you use the ofstream obj ect
to open a file, you should specify file mode flags ifyou use the fstream object to open
a file. Whereas an ofstrearn object may only be used to open a file for writing and not
reading, an fstream object may be used for both purposes. Therefore, you should
specify whether you are using the open member function of the fstream object to
open the file for writing, reading, or both.

The following code fragment uses the open member function of the fstream object
to open the file for writing only:

f stream afile;
afile.open("students.dat", ios: :out) ;

The fstream or ofstream Constructor
You also may use the fstream or ofstream constructor to open a file for writing. A
constructor is a function that is automatically called when you attempt to create an
instance of an object.

Facebook's Exhibit No. 1010 - Page 147



~7 6
C++ Demystified

An obj ect instance is akin to a variable of a primitive data type, such as an int. For
example, the following statement could be characterized as creating an instance,
named age, of an integer:
int age;

Similarly, the following statement creates an fstream instance named afile.•

fstream afile;

Object constructors may be overloaded, such that for the same object there may
be a constructor with no arguments, a constructor with one argument, a constructor
with two arguments, and so forth. For example, the previous statement, fstream afile,
is called the no-argument constructor of the fstream object.

The following statement calls the one-axgument constructor of the ofstream ob-
j ect,both creating an ofstream instance and opening the file students. dat for output:

ofstream outFile("students.dat", . ios:out) ;

The following statement calls the two-argument constructor of the fstream obj ect,
both creating an fstream instance and opening the file students. dat for output:

fstream aFile("students.dat", ios:out);

In essence, declaring an ofstream (or fstream) variable in one statement and then
calling the open member function in a second statement is analogous to declaring a
primitive variable in one statement and then assigning it a value in a second state-
ment, such as:
int age;
age = 39;

By contrast, using the one or two argument ofstream (or fstream) constructor is
analogous to initializing a primitive variable, such as:

int age = 39;

One alternative is not inherently better than the other. Usually, the specific needs
of a particular program will dictate which alternative better fits your needs.

Opening a File for Reading
The discussion in the previous section concerning opening a file for writing also ap-
plies to opening a file for reading. The primary difference is that the obj ect that calls
the open member function, or whose constructor you may use, maybe, in addition to
an fstream object, an ifst~eam object instead of an ofstream object. Additionally, the
file to be opened for reading must already exist. Unlike opening a file for writing,

Facebook's Exhibit No. 1010 - Page 148



CHAPTER 13 Persistent Data: File Input and Output ~~

attempting to open a file for reading will not automatically create it if it does not yet
exist. This issue is discussed further in the next section.

The following statements use the open member function of the ifstream object to
open a file for reading:
ifstream infile;
infile.open("students.dat") ;

You could accomplish the same purpose using the fstream object, specifying by
a file mode flag that the file is being opened for reading only:

f stream afile;
afile.open("students.dat", ios: :in) ;

The following statement uses the ifstream constructor to open a file for reading:
ifstream infile ("students.dat") ;

You could accomplish the same purpose using the fstrearrrcc constructor, specifying
in the second argument the file mode flag that the file is being opened for reading only:

fstream afile ("students.dat", ios: :in) ;

Opening a File for Reading and Writing
You can use the fstream obj ect to open a file for reading and for writing. You cannot
use either the ofstream or ifstream obj ect for this purpose, as an ofstream object can-
not be used to read files, and an ifstv~eam object cannot be used to write to files.

The following code fragment uses the open member function of the fstYearn
object for this purpose:

fstream afile;
afile.open("students.dat", ios: :in ~ ios: :out) ;

Alternatively, you can use the two-argument fstream constructor:
fstream afile ("students.dat", ios: :in ~ ios: :out);

Both alternatives use the bitwise or operator (~) discussed in the earlier section
"Second Argument File Mode" to combine the file mode flags for input and output.

NOTE: Combining the ios:: in and ios:: out flags changes expected defaults. The
ios:: out flag by itself causes an existing file to be overwritten, and the ios:: in f lag by
itself requires that the file already exist. However, when the ios:: in and ios:: outfiles
aye used together the file's existing contents are preserved, and the file will be
created if it does not already exist.

Facebook's Exhibit No. 1010 - Page 149



~~~ C++ Demystified

~ •

Checking if the File Was Opened
You should not assume that a file was successfully opened with the open member
function or the constructor. There are several reasons why the file may not have been
successfully opened. If the file was not successfully opened; but your code casually
assumes it was and attempts to read from, or write to, the file, errors may occur. ~

The primary difference between opening a file for reading and for writing is that
while you can write to a file that does not exist—the operating system simply creates
the file—you cannot read from a file unless it already exists. Therefore, you should
check if the file was opened successfully for reading before you attempt to read it.
If the file could not be opened for reading, then the value of the ifstream object

that called the open function is NULL. As you may recall from Chapter 11, NULL is
a constant defined in several standard library files whose value is zero.

Alternatively, if the file could not be opened for reading, then the ifstream object's
fail member function returns true, which is the fail function's return value if a file
operation, in this case attempting to open a file, was not successful.

The following code illustrates the use of both checking if the ifstream obj ect used
to call the open function is NULL and whether the ifstream object's fail member
function returns true:
#include <fstream>
#include <iostream>
using namespace std;

int main O
{

ifstream infile;
infile.open("students.dat") ; i
Gout « " (infile) _ cc infile « endl; t
Gout « " (infile.failO) _ « infile.failO « endl;
return 0; ~

}

If the students.dat file does not yet exist, the output would be
(infile) = 00000000
(infile.fail()) = 1

However, if there was a file named students. dat in the same directory as your pro-
gram, then the output would be
(infile) = 0012FE40
(infile.fail()) = 0

Facebook's Exhibit No. 1010 - Page 150

CHAPTER 13 Persistent Data: File Input and Output ~~~

The value, 0012FE40, is the address of the ifstream variable infile, and of course
could be different if you run this program.

Unlike an ifstream object, an ofstream object that attempts to open a file that does
not yet exist is not NULL, and its fail member function would return false, because
the operating system will create the file if it does not already exist. However, opening
a file for writing is not always successful. For example, before you run the following
program, create a file named students. dat in the same directory as your program but,
through its properties, check read only:

#include <fstream>
#include <iostream>
using namespace std;

int main ()
{

ofstream outfile;
outfile.open("students.dat") ;
Gout « "(outfile) _ « outfile « endl;
Gout « "(outfile.fail()) _ « outfile.fail() «

endl;
return 0;

}

The following output reflects that the ofstream object is NULL, and its fail func-
tion returns true, because you cannot open for writing a file that is read only.

(outfile) = 00000000
(outfile.fail()) = 1

If you cannot open a file for reading or writing, then you do not want to proceed to
execute the code that reads from, or writes to, the file. Instead, you may want to stop
execution of the function, as in the following code fragment:

ifstream infile;
infile.open("students.dat") ;
if (infile == NULL)
{

tout « "Error in opening file for reading";
return 0;

}
/ / code to read from file

NOTE: For purposes of brevity and avoiding repetitive code, some of the following
code in this chapter omits checking if a file was opened successfully.

Facebook's Exhibit No. 1010 - Page 151

~ C++ Demystified

Closing a File
Of course, you are not going to close a file as soon as you open it. You will read or
write to the file first. However, closing a file is relatively simple, so I will discuss this
issue out of order before discussing the more complex subjects of writing to, and
reading from, a file.

You should close a file when you are finished reading or writing to it. While the
file obj ect will be closed when the program ends, your program's performance will
be improved if you close a file when you are finished with it because each open file
requires system resources. Additionally, some operating systems limit the number
of open "handles" to files. Finally, you will avoid a "sharing" problem caused by try-
ing inone part of your program to open a file that in another part of the program pre-
viously was opened but not closed.

You close a file using, naturally enough, the close member function, which takes
no arguments. The following example closes a file opened for writing:

ofstream outfile;
outfile.open("studerits.dat") ;
/ / do something
outfile.close();

The same syntax applies to closing a file for reading.
ifstream infile;
infile.open("students.dat")
/ / do something
infile.close() ;

Writing to a Fi le
You output or write information to a file from your program using the stream inser-
tion operator («) just as you use that operator to output information to the screen.
The only difference is that you use an ofstream or fstream object instead of the tout
object.

The following program writes information inputted by the user to a file named
students.dat, which is created if it does not already exist.
#include <fstream>
#include <iostream>

Facebook's Exhibit No. 1010 - Page 152

CHAPTER 13 Persistent Data: File Input and Output ``~~:
~

using namespace std;

int main O
{

char data[80] ;
ofstream outfile;
outfile.open("students.dat") ;
Gout « "Writing to the file" « endl;
cout « "___________________" « endl;
Gout « "Enter class name: ";
cin.getline(data, 80) ;
outfile « data « endl;
cout « "Enter number of students: ";
cin » data;
cin.ignore() ;
outfile « data « endl;
outfile.close() ;
return 0;

}

The input and output could be

Writing to the file

Enter class name: Programming Demystified
Enter number of students: 32

Open the file in aplain-text editor such as Notepad. The contents with the prcced-
ing sample input would be as follows:

Programming Demystified
3 2

The statement that wrote to the file included the endl keyword:

outfile « data « endl;

~ The reason is to write the name of the class ("Programming Demystified") to a
different line than the number of students, 32.Otherwise,the file contents would be

j Programming Demystified32

NOTE: The call to the ignore inemberfunetion after cin » data follows the advice
in Chapter 12 to clear the newline character from the input bu, ffer after using the cin
object with the stream extraction operator (»).

Facebook's Exhibit No. 1010 - Page 153

r

C++ Demystified

You instead could have used an fstream obj ect to write to the file. You would have
changed the data type of outfile from ofstream to fstream and then changed the call to
the open method to include two arguments:

f stream outfile;
outfile.open("students.dat", ios: :out) ;

Alternatively, you could have used the fstream constructor:
fstream outfile ("students.dat", ios: :out) ;

If you want to append, you only need to add an ios: app flag to the second argument
of the constructor or the open member function using the bitwise or operator (~).

Reading from a File
You input or read information from a file into your program using the stream extrac-
tion operator (») just as you use that operator to input information from the key-
board. The only difference is that you use an ifstream (or fstream) object instead of
the cin object.

The following program builds on the previous one. After writing information
inputted by the user to a file named students.dat, the program reads information
from the file and outputs it onto the screen:
#include <fstream>
#include <iostream>
using namespace std;

int main ()
{

char data[80];
ofstream outfile;
outfile.open("students.dat") ;
Gout « "Writing to the file" « endl;
Gout « "___________________° « endl;
cout « "Enter class name: ";
cin.getline(data, 80) ;
outfile « data « endl;
Gout « "Enter number of students: ";
cin » data;
cin.ignore(} ;
outfile « data « endl;
outfile.close() ;

Facebook's Exhibit No. 1010 - Page 154

CHAPTER 13 Persistent Data: File Input and Output ~~~.
~

ifstream infile;
cout « "Reading from the file" « endl;
Gout « ~~_____________________~~ « endl;
infile.open("students.dat") ;
infile » data;
Gout « data « endl;
infile » data;
cout « data « endl;
infile.close() ;
return 0;

}

Sample input and output:
Writing to the file

i Enter class name: Programming
Enter number of students: 32
Reading from .the file

Programming
i 32

Reading a Line of a File
With the same program, try entering a class name with an embedded space. The fol-

{ lowing is some sample input and output:

! Writing to the file

Enter class name Programming Demystified
Enter number of students: 32
Reading from the file

Programming
Demystified

~ The following are the contents of the file after the inputted data was written to it:

Programming Demystified
32

i The first read of the file did not read the first line of the file, "Programming De-
mystified." Instead, the first read of the file only read the word "Programming" and

` then stopped. Consequently the second line of the program read the remainder of the
I first line of the file, "Demystified," instead of the number of students.

Facebook's Exhibit No. 1010 - Page 155

r

:~ C++ Demystified

The ifstream obj ect together with the stream extraction operator reads the file se-
quentially, starting with the first byte of the file. The first attempt to read the file
starts at the beginning of the file and goes to the first whitespace character (a space,
tab, or new line) or the end of the file, whichever comes first. The second attempt
starts at the first printable character after that whitespace, and continues to the next
whitespace character or the end of the file, whichever comes first.

The first read attempt only read "Programming," not "Programming Demys-
tified," because the read stopped at the whitespace between "Programming" and
"Demystified: 'The second attempt read "Demystified: 'There were no further read
attempts, so the number of students, 32, was never read.

This should seem like deja vu. We encountered a similar issue in Chapter 10 using
the cin object with the stream extraction operator (»). As in Chapter 10 with the cin
object, the solution is to use getline.
If you are working with C-strings, then you should use the getline member func-

tion. The only difference between using the getline member function here and in
Chapter 10 is that here the getline member function is called by an ifstream or
fstream object instead of a cin object. Accordingly, we need to replace the two calls
to infile »data with the following:
infile.getline(data, 80) ;

You also can use getline with the C++string class. The only difference between
using the getline member function here and in Chapter 10 is that here the first argu-
ment of the getline member function is an ifstream or fstream object instead of a
cin object. Accordingly, we need to replace the two calls to infale »data with the
following:

getline(infile, data) ;

The following modification of the previous program uses the getline function
with the C++ string class:
#include <fstream>
#include <iostream>
#include <string>
using namespace std;

int main ()

string data;
ofstream outfile;
outfile.open("students.dat") ;
cout « "Writing to the file" « endl;
Gout « "___________________" « endl;

1

i
M

Facebook's Exhibit No. 1010 - Page 156

CHAPTER 13 Persistent Data: File Input and Output ~~:
~

Gout « "Enter class name: ";
getline(cin, data);
outfile « data« endl;
Gout « "Enter number of students: ";
cin » data;
cin.ignore();
outfile « data« endl;
outfile.close() ;

j ifstream infile;
Gout « "Reading from the file" « endl;
tout « "_____________________" « endl;
infile.open("students.dat") ;

j getline(infile, data) ;
cout « data « endl;
getline(infile, data);
cout « data « endl;
infile.closeO;
return 0;

}

As the following sample input and output reflects, the first read now reads the
entire first line of the file even when that line contains embedded spaces:

Writing-to-the-file

i Enter class name: Programming Demystified

j Enter number of students: 32
Reading_from-the-file

j Programming Demystified
t 32

Looping Through the File
In the previous program, exactly two read attempts were made because we knew
there were two lines of data in the file, no more, no less. However, often we may not
know the number of pieces of data to be read. All we want is to read the file until we
have reached the end of it.

The ifstream obj ect has an eof function, eof being an abbreviation for end of file.
This function, which takes no arguments, returns true if the end of the file has been
reached, and false if otherwise.

i However, the eof function is not as reliable with text files as it is with binary files
in detecting the end of the file. The eof function's return value may not accurately

Facebook's Exhibit No. 1010 - Page 157

r

~:~ C++ Demystified

reflect if the end ofthe file was reached if the last item in the file is followed by one or
more whitespace characters. This is not an issue with binary files since they do not
contain whitespace characters.

A better choice is the fail member function, discussed in the earlier section
"Checking if the File Was Opened:' The following code fragment shows how to use
the fail member function in reading a file until the end of the file is reached:
ifstream infile;
infile.open("students.dat");
infile » data;
while(!infile.fail())
{

infile » data;
cout « data;

}
infile.close() ;

The preceding code fragment has two infile » data statements, one before the
loop begins, the other inside the loop. The reason is that the end of file is not detected
until after a read attempt is made. Thus, if the infile »data statement before the
loop was omitted and the file was empty, the tout «data statement would exe-
cute before an attempt was made to detect if the end of file had been reached.

NOTE: Ado while loop could be used instead of a while loop. This would dispense
with the need to check for end of file before entering the loop, but add the
requirement to check inside the loop if (using an if statement) end of file had been
Neached. This is the usual tradeoff between while and do while loops.

Modifying the previous program, the code now would read
#include <fstream>
#include <iostream>
#include <string>
using namespace std;

int main ()
{

string data;
ofstream outfile;
outfile.open("students.dat") ;
tout « "Writing to the file" « endl;
tout « ~~-------------------" « endl;
tout « "Enter class name: ";
getline(cin, data) ; I

Facebook's Exhibit No. 1010 - Page 158

CHAPTER 13 Persistent Data: File Input and Output
.~

outfile « data« endl;
tout « "Enter number of students: ";
cin » data;
cin.ignore() ;
outfile « data« endl;
outfile.close() ;
ifstream infile;
tout « "Reading from the file" « endl;
Gout « "_____________________" « endl;
infile.open("students.dat") ;
getline(infile, data) ;
while(!infile.fail())
{

cout « data « endl;
getline(infile, data) ;

}
infile.close() ;
return 0;

}

File Stream Objects as Function Arguments
Chapter 9 explained how you can use functions to make your code more modular. In
that spirit, let's rewrite the previous program to add two functions, each to be called
from main: writeFile to open a file for writing using an ofstream object, and readFile
to open a file for reading using an ifstream object. Each function includes code to
check if the file was opened successfully and returns a Boolean value indicating
whether the file was opened successfully:

#include <fstream>
#include <iostream>
#include <string>
using namespace std;
bool writeFile (ofstream&, char*) ;
bool readFile (ifstream&, char*) ;

int main O
{

string data;
bool status;
ofstream outfile;

Facebook's Exhibit No. 1010 - Page 159

C-~+ Demystified

status = writeFile(outfile, "students.dat") ;
if (!status)
{

Gout « "File could not be opened for writing\n";
Gout « "Program terminating\n";
return 0;

}
else
{

Gout « "Writing to the file" « endl;
Gout « "-------------------~~ « endl; -------------------
cout « "Enter class name: ";
getline(cin, data) ;
outfile « date« endl;
Gout « "Enter number of students: ";
cin » data;
cin.ignore() ;
outfile « data« endl;
outfile.close() ;

}
ifstream infile;
status = readFile(infile, "students.dat") ;
if (!status)
{

Gout « "File could not be opened for reading\n";
Gout « "Program terminating\n";
return 0;

}
else
{

cout « "Reading from the file" « endl;
Gout « "---------------------~~ « endl;
getline(infile, data) ;
while(!infile.fail())
{

tout « data « endl;
getline(infile, data) ;

}
infile.close() ;

}
return 0;

}

bool writeFile (ofstream& file, char* strFile)

Facebook's Exhibit No. 1010 - Page 160

CHAPTER 13 Persistent Data: File Input and Output .•

f ile.open(strFile) ;
if (file.fail())

return false;
else

return true;

bool readFile (ifstream& ifile, char* strFile)

ifile.open(strFile);
if (ifile.fail())

return false;
else

return true;

For each function, the file stream object is passed by reference instead of by value
even though neither function changes the contents of the file. The reason is that the in-
ternal state of a file stream object may change with an open operation even if the con-
tents of the file may not change.

Summary
Data is persistent when it survives after the program is finished or even after the
computer is turned off. Data stored in variables does not persist because RAM,
where the variables are stored, is cleared when the program (or the computer) stops
running. It is necessary to save data to a file on the computer's hard drive or other
storage medium so that data later can be retrieved when needed.

This chapter showed you how to make your data. persistent by saving it to a file.
Since saving the data accomplishes little unless you can later retrieve it, this chapter
also showed you how to retrieve data from a file.

A file is a collection of data. It is located on persistent storage, such as a hard
drive, CD-ROM, or other storage device.

Files store data in one of two formats, text and binary. Text files store data that has
been converted into strings of ASCII characters. By contrast, binary files store data
in the same format in which data is stored in RAM, fundamentally ones and zeroes.
Notepad and other plain-text editors use text files. Binary files may store more com-
plex data, and therefore are used in more complex programs, such as.word process-
ing, spreadsheet, or database programs.

Facebook's Exhibit No. 1010 - Page 161

r

~~~ C++ Demystified

You should include the fstream standard library when your program reads from,
or writes to, files. This standard library defines three data types. The ofstream data
type represents the output file stream, the direction of output being from your pro-
gram out to a file. The ifstream data type represents the input file stream, the direc-
tion of input being from a file into your program. Finally, the fstream data type
represents the file stream generally, and has the capabilities of both ofstream and
ifstreain in that it may both write information to files and read information from files.

The process of accessing a file, whether to read it, write to it, or both, goes through
the following steps. First, the file first must be opened to establish a path of commu-
nicationbetween the file and a stream obj ect in your program fstream, ofstream, or
ifstream—used to access the file. Second, your program then reads from, or writes
to, the file. Third, and finally, your program closes the file, using the close member
function, to free system resources that are required to maintain the path of communi-
cation between the file and the stream object in your program, and also to avoid a
"sharing" problem caused by trying in one part of your program to open a file that in
another part of the program previously was opened but not closed.

You use either the open member function or a constructor to open a file. A con-
structor is a function that is automatically called when you attempt to create an in-
stance of an object, such as an fstream, ofstYeam, or ifstream object. Either the open
member function or a constructor may use two arguments. The first argument is the
relative or absolute path to the file. The second argument, which maybe optional, is
one or more file mode flags, which define how the file should be opened, whether for
input, output, appending, or something else.

You cannot assume that a file was successfully opened for reading or writing.
You can use the fail member function to check if a file was successfully opened. You
also can check to see if the file stream object used to open the file is NULL.

You write information to a file from your program using the stream insertion op-
erator («) just as you use that operator to output information to the screen, except
that you use an ofstr^eam orfst~eam object instead of the tout object. Similarly, you
read information from a file into your program using the stream e~ct~action operator
(») just as you use that operator to input information from the keyboard, except that
you use an ifstream (or fstream) object instead of the tin object.

You read a line of a file using either the getline member function if you are work-
ing with C-strings or the getline function if you are working with the C++ string
class. You use the fail member function to test for the end of the file as youread line
by line through a file.

File stream objects may be passed as function arguments. They should be passed
by reference rather than by value since the internal state of a file stream obj ect may
change with an open operation even if the contents of the file have not changed.

Facebook's Exhibit No. 1010 - Page 162



CHAPTER 13 Persistent Data: File Input and Output

QUiz
1. What does it mean for data to be persistent?
2. What is a file?
3. What are the two formats in which files store data?
4. What standard library should you include when your program reads from,

or writes to, files?
5. Which of the three objects, fstream, ifstream, or ofstream, may be used both

for file input and file output?
6. What are the two functions you can use to open a file?

7. What is the purpose of opening a file?
8. What is the purpose of closing a file?

9. What is a constructor?
10. Which is a better choice for detecting end of file in a text file, the eof mem-

ber function or the fail member function?

11. Should file stream objects be passed as function arguments by value or by
reference?

Facebook's Exhibit No. 1010 - Page 163



LIBRARY OF CONGRESS

I

0 011 960 647 0

r rt ~T111i:~1~~

f you're looking for an easy way to learn C++ and
want to immediately start writing your own
programs, this is the resource you need. The
hands-on approach and step-by-step instructions

guide you through each phase of C++ programming
with easy-to-understand language from start to finish.

Whether or not you have previous C++ experience,
you'll get an excellent foundation here, discovering
how computer programs and programming languages
work. Next, you'll learn the basics of the Language—
what data types, variables, and operators are and what
they do, then on to functions, arrays, loops, and
beyond. With no unnecessary, time-consuming material
included, plus quizzes at the end of each chapter and

~~each ~ex~

• An easy way to understand C++

• A quiz at the end of each
chapter

• A final exam at the end of
- the book

• No unnecessary technical jargon

• Atime-saving approach

a final exam, you'll emerge a C++ pro, completing and
running your very own complex programs in no time. =~

Simple enough for a beginner, bud challenc~inc~ enough for an advanced s~uden~,
C++ Demystif►ed is dour shor~cu~ ~o mas~erinc~ C++,

ISBN 0-07-225370-3
5 1995

9 780072 253702

Facebook's Exhibit No. 1010 - Page 164




