LIBRARY OF CONGRESS

FERRAAIEH

0 011 960 647 0

INIH

.
+

+

<
m
=
—<
s
4
=1
il
ot
m
()

FT MEADE
GenCol!

QA 76
13
.C153
K457
2004
Copy 2

»

Facebook's Exhibit No. 1010 - Page 1

A SELF-TEACHING GUIDE

T A e

No formal training
in C++ needed!

s 20200 0

Create and run your own
computer programs

0

Many examples illustrating
application of concepts

. e L

Complete with chapter-ending
quizzes and final exam

% Bibiori Jeff Kent

Facebook's Exhibit No. 1010 - Page 2

ﬂ | TX 6-017- 150

LT

TX00860] 73 Seyx

PR Sy

AL e V T e =
55) ._:'1‘;._ kg = T
A M L3

C++ DEMYSTIFIED

- o T kT aw -
g - . - - -

-

| JEFF KENT

McGraw-Hill/Osborne

New York Chicago San Francisco Lisbon London
Madrid Mexico City Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

Facebook's Exhibit No. 1010 - Page 3

The McGraw:Hill Companies

McGraw-Hill/Osborne

2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please con-
tact McGraw-Hill/Osborne at the above address. For information on translations or book distrib-
utors outside the U.S.A., please see the International Contact Information page immediately
following the index of this book.

C++ Demystified

Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this publica-
tion may be reproduced or distributed in any form or by any means, or stored in a database or re-
trieval system, without the prior written permission of publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be

“reproduced for publication.
QAo

1234567890 FGR FGR 01987654

N,

ISBN 0-07-225370-3 k
 Cissfiasy
Publisher Proofreader
Brandon A. Nordin Susie Elkind Q004
Vice President & Associate Publisher Indexer C o l
Scott Rogers Irv Hershman IP 7
Editorial Director Composition
Wendy Rinaldi Apollo Publishing Services, Lucie Ericksen
Project Editor Illustrators
Lisa Wolters-Broder Kathleen Edwards, Melinda Lytle
Acquisitions Coordinator Cover Series Design
Athena Honore Margaret Webster-Shapiro
Technical Editor Cover Hlustration
Jim Keogh Lance Lekander
Copy Editor
Mike McGee

This book was composed with Corel VENTURA™ Publisher.

AARMRCL

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable. However, because of the possibility
of human or mechanical error by our sources, MeGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the ac-
curacy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from
the use of such information. .

T—

Facebook's Exhibit No. 1010 - Page 4

CONTENTS AT A GLANCE

CHAPTER 1 How a C++ Program Works 1
CHAPTER 2 Memory and Data Types 21
CHAPTER 3 Variables 45
CHAPTER 4 Arithmetic Operators 65
CHAPTER 5 Making Decisions: if and switch Statements 83
CHAPTER 6 Nested if Statements and Logical Operators 109
CHAPTER 7 The For Loop 125
CHAPTER 8 While and Do While Loops 143
CHAPTER 9 Functions 161
CHAPTER 10 Arrays 187
CHAPTER 11 What's the Address? Pointers 213
CHAPTER 12 Character, C-String, and C++ String
Class Functions 243
CHAPTER 13 Persistent Data: File Input and Output 269
CHAPTER 14 The Road Ahead: Structures and Classes 293
Final Exam 317
Answers to Quizzes and Final Exam 323
Index 339

\
©

4

*

Facebook's Exhibit No. 1010 - Page 5

2.

ABOUT THE AUTHOR

Jeff Kentis an Associate Professor of Computer Science at Los Angeles Valley Col-
lege in Valley Glen, California. He teaches a number of programming languages, in-
cluding Visual Basic, C++, Java and, when he’s feeling masochistic, Assembler, but
mostly he teaches C++. He also manages a network for a Los Angeles law firm
whose employees are guinea pigs for his applications, and as an attorney gives
advice to young attorneys whether they want it or not. He also has written several
books on computer programming, including the recent Visual Basic. NET A Begin-
ner’s Guide for McGraw-Hill/Osborne.

Jeffhas had a varied career—or careers. He graduated from UCLA with a Bache-
lor of Science degree in economics, then obtained a Juris Doctor degree from Loyola
(Los Angeles) School of Law, and went on te practice law. During this time, when
personal computers still were a gleam in Bill Gates’s eye, Jeff was also a profes-
sional chess master, earning a third-place finish in the United States Under-21
Championship and, later, an international title.

Jeff does find time to spend with his wife, Devvie, which is not difficult since she
also is a computer science professor at Valley College. He also acts as personal
chauffeur for his teenaged daughter, Emily (his older daughter, Elise, now has her
own driver’s license) and in his remaining spare time enjoys watching international
chess tournaments on the Internet. His goal is to resume running marathons, since
otherwise, given his losing battle to lose weight, his next book may be Sumo Wres-
tling Demystified.

1 would like to dedicate this book to my wife, Devvie Schneider Kent. There is not

room here to describe how she has helped me in my personal and professional life,
though I do mention several ways in the Acknowledgments. She also has been my
computer programming teacher in more ways than one; I wouldn’t be writing this
and other computer programming books if it wasn’t for her.

—Jelf Kent

Facebook's Exhibit No. 1010 - Page 6

CHAPTER 1

CONTENTS

Acknowledgments & Introduction

How a C++ Program Works
What Is a Computer Program?
What Is a Programming Language?
Anatomy of a C++ Program
The main Function
The Function Body
cout
The return 0 Statement
The #include Directive
Namespace
Translating the Code for the Computer
Preprocessor
Compiler
Linker

Using an IDE to Create and Run the
“Hello World!” Project

Setting Up the “Hello World!” Project
Writing the Source Code
Building the Project
Running the Code
Quiz

R AR :.l

L Eﬁa‘# sl i *“""}‘E[-FJ

4 -..“e: i "';:/.'-
A mu,}#"
et -‘}.? i
AL el e
L
A

L

xiii

0O G0 ©o- NI SNy iy Wnl B Wm LD DY ony R

g
10
13
17
19
20

.y

L
=
T b
R '
- 1

Facebook's Exhibit No. 1010 - Page 7

«By—

CHAPTER 2

CHAPTER 3

C++ Demystified

Memory and Data Types
Memory
Typ'es of Memory
Addresses
Bits and Bytes
Binary Numbering System

Converting Between Decimal
and Binary or Hexadecimal

Data Types
Whole Number Data Types
Floating-Point Data Types
Text Data Types
The bool Data Type
Project: Determining the Size of Data Types
The sizeof Operator
Chahging the Source File of Your Project
Code and Output
Expressions
Outputting an Expression
Escape Sequences
Quiz
Variables
Declaring Variables
Syntax of Declaring Variables

Declaring Multiple Variables of the Same
Data Type

Naming the Variable
Naming Conventions
The Address Operator

Using the Address and sizeof Operators
with Variables

21
22
22
24
7.4
26

26
28
28
32
iy
36
36
2

40
41
41
42
43

45
45
46

47
48
49
49

50

Facebook's Exhibit No. 1010 - Page 8

CONTENTS

Assigning Values to Variables g1
Assignment Operator 52
Using the cin Object 56

Quiz 63

CHAPTER 4 Arithmetic Operators 65

Arithmetic Operators 66
The Addition Operator 67
The Subtraction Operator 70
The Multiplication Operator 71
Division Operators 73
Exponents 76

The Change Machine Project 77
Program Description 78
The Code 78
The Algorithm 79

Quiz 81

CHAPTER 5 Making Decisions: if and switch Statements 83

Relational Operators 84
Relational Expressions 85
Precedence 86

Flowcharting 87

The if Statement 89
Indenting 91
Common Mistakes 91

The if / else Statement 94
Conditional Operator 94
Common Mistakes 96

The if /else if /else Statement 98

The switch Statement 100
Differences Between switch

and if /else if /else Statements 103

Quiz 108

Facebook's Exhibit No. 1010 - Page 9

B iF

CHAPTER 6

CHAPTER 7

CHAPTER 8

C++ Demystified

Nested if Statements and Logical Operators 109

Nested if Statements 110
Testing if Both Boolean Expressions
Are True 110
Testing if Either Boolean Expression
Is True 113
Logical Operators 115
The && Operator 115
The || Operator 117
The ! Operator 119
Precedence 120
Using the switch Statement with
Logical Operators 122
Quiz 124
The For Loop 125
Increment and Decrement Operators 126
The Increment Operator 126
The Decrement Operator k)
The Difference Between Prefix
and Postfix 128
The For Loop 130
The Syntax of the For Loop 132
Beware the Infinite Loop 134
A Factorial Example 135
Breaking Out of a Loop 135
The Continue Keyword 138
Nesting For Loops 139
Quiz 142
While and Do While Loops 143
The While Loop ' 144
Comparison of for and while Loops 146
Using the break Keyword 147

Facebook's Exhibit No. 1010 - Page 10

CONTENTS

Flags 148
While (true) 151
The continue Keyword 152
Nesting While Loops 154
The Do While Loop 154
Syntax 159
A Do While Loop Example 155
Comparison of the Do While and
While Loop 156
Scope 157
Quiz 159
CHAPTER 9 Functions 161
Defining and Calling a Function 162
Terminology of a Function 162
Defining a Function 163
Calling a Function 164
Prototyping 165
Variable Scope and Lifetime 167
Local Variables 167
Global Variables 169
Static Local Variables 171
Sending Information to a Function 173
Passing Arguments by Value 174
Passing Arguments by Reference 178
Returning a Value from a Function 182
Quiz 185
CHAPTER 10 Arrays 187
Declaring an Array 188
Constants 189
Array Index 193
Initialization 194
Explicit Array Sizing 195

Facebook's Exhibit No. 1010 - Page 11

CHAPTER 11

C++ Demystified

Implicit Array Sizing

Initializing a Character Array

Constant Arrays

When to Use Initialization
Assigning and Displaying Array Values

Using the cin and cout Objects

with Arrays

The cin Object’s getline Function
Passing Arrays as Function Arguments
Quiz
What's the Address? Pointers
Declaring a Pointer

Syntax of a Pointer Declaration

The Meaning of Pointer Data Types
Assigning a Value to a Pointer

Why You Should Not Try to Use
an Unassigned Pointer

Null Pointers

Assigning a Pointer the Address of
a Variable or Constant

Indirection Operator and Dereferencing
The Pointer as a Variable or a Constant
Pointer as a Variable

The Array Name as a Constant Pointer

Pointer Arithmetic

Using a Variable Pointer to Point to
an Array

Incrementing a Pointer

Comparing Addresses

Decrementing a Pointer
Pointers as Function Arguments

Passing an Array Using Pointer Notation

196
196
198
199
199

202
205
208
211

213
214
214
R
216

216
L7

218
219
220
221
221
222

222
224
225
&7
228
228

Facebook's Exhibit No. 1010 - Page 12

ONTENTS o
‘ €>

Passing a Single Variable Using

Pointer Notation 230
Dynamic Memory Allocation 238
Returning Pointers from Functions 236

Returning a Pointer to a Local Variable

(Not a Good Idea) 236
Returning a Pointer to a Static

Local Variable 237
Returning a Pointer to a

Dynamically Created Variable 238

Quiz 241

CHAPTER 12 Character, C-String, and C++ String
Class Functions 243
Reading a Character 244

The “Press Any Key to Continue” Problem 245
Combining Use of cin, cin.get,

and cin.getline 252

Rules to Live By 2558

Useful Character Functions 256

Case Conversion Functions 256

Functions that Check the Value of

a Character 258

Useful C-String and C++ String Functions 259

Determining the Length of a String 259

Assigning a Value to a String 260

Appending to a String 261

Comparing Two Strings 262
Conversion Between a C-String and

a Number 264

Quiz 268

CHAPTER 13 Persistent Data: File Input and Output 269

Text vs. Binary Files 270

The fstream Standard Library 271

Ty T I ——h—

Facebook's Exhibit No. 1010 - Page 13

CHAPTER 14

C++ Demystified

The File Access Life Cycle
Opening a File
Opening a File for Writing
Opening a File for Reading
Opening a File for Reading and Writing
Checking if the File Was Opened
Closing a File
Writing to a File
Reading from a File
Reading a Line of a File
Looping Through the File
File Stream Objects as Function Arguments
Quiz
The Road Ahead: Structures and Classes
Your Reasons for Reading This Book?
Object-Oriented Programming
Structures
Declaring a Structure
Declaring a Structure Variable
Accessing Structure Member Vanables
Initializing a Structure

Passing Structures as Function
Arguments

Nesting Structures
Classes
Quiz
Final Exam
Answers to Quizzes and Final Exam

Index

272
272
272
276
A
278
280
280
282
283
285
287
291

293
294
294
296
296
297
298
300

305
307
309
316

317
323

339

Facebook's Exhibit No. 1010 - Page 14

ACKNOWLEDGMENTS

It seems obligatory in acknowledgments for authors to thank their publishers (espe-
cially if they want to write for them again), but I really mean it. This is my fourth book
for McGraw-Hill/Osborne, and I hope there will be many more. It truly is a pleasure to
work with professionals who are nice people as well as very good at what they do
(even when what they are good at is keeping accurate track of the deadlines I miss).

I first want to thank Wendy Rinaldi, who got me started with McGraw-Hill/
Osborne back in 1998 (has it been that long?). Wendy was also my first Acquisitions
Editor. Indeed, I got started on this book through a telephone call with Wendy at the
end of a vacation with my wife, Devvie, who, being in earshot, and with an “are you
insane” tone in her voice, asked incredulously, “You’re writing another book?”

I also must thank my Acquisitions Coordinator, Athena Honore, and my Project Edi-
tor, Lisa Wolters-Broder. Both were unfailingly helpful and patient, while still keeping
me on track in this deadline-sensitive business (e.g., “I’m so sorry you broke both your
arms and legs; you’ll still have the next chapter turned in by this Friday, right?”).

Mike McGee did the copyediting, together with Lisa. They were kind about my
obvious failure during my school days to pay attention to my grammar lessons. They
improved what I wrote while still keeping it in my words (that way, if something is
wrong, it is still my fault). Mike also indicated he liked some of my stale jokes,
which makes him a friend for life.

Jim Keogh was my technical editor. Jim and I had a balance of terror going be-
tween us, in that while he was tech editing this book, I was tech editing two books on
which he was the main author, Data Structures Demystified and OOP Demystified.
Seriously, Jim’s suggestions were quite helpful and added value to this book.

There are a lot of other talented people behind the scenes who also helped get this
book out to press, but, as in an Academy Awards speech, I can’t list them all. That
doesn’t mean I don’t appreciate all their hard work, because I do.

I truly thank my wife Devvie, who in addition to being my wife, best friend
(maybe my only one), and partner (I’'m leaving out lover because computer pro-
grammers aren’t supposed to be interested in such things), also was my personal tech

Wi

T Ty T S T e ——e

Facebook's Exhibit No. 1010 - Page 15

C++ Demystified

(xiv)
a4
editor. She is well-qualified for that task, since she has been a computer science pro-
fessor for 15 years, and also is a stickler for correct English (yes, [know, you can’t
modify the word “unique”). She made this a much better book.

Finally, I would like to give thanks to my daughters, Elise and Emily, and my
mom, Bea Kent, for tolerating me when I excused myself from family gatherings,
muttering to myself about unreasonable chapter deadlines and merciless editors
(sorry, Athena and Lisa). I also should thank my family in advance for not having me
committed when I talk about writing my next book.

INTRODUCTION

C++ was my first programming language. While I’ve since learned others, I've al-
ways thought C++ was the “best” programming language, perhaps because of the
power it gives the programmer. Of course, this power is a double-edged sword, being
also the power to hang yourself if you are not careful. Nonetheless, C++ has always
been my favorite programming language.

C++ also has been the first choice of others, not just in the business world because
of its power, but also in academia. Additionally, many other programming lan-
guages, including Java and C#, are based on C++. Indeed, the Java programming
language was written using C++. Therefore, knowing C++ also makes learning
other programming languages easier.

Why Did I Write this Book?

Not as a road to riches, fame, or beautiful women. I may be misguided, but I'm not
completely delusional.

To be sure, there are many introductory level books on C++. Nevertheless, I wrote
this book because I believe I bring a different and, T hope, valuable perspective.

Asyoumay know from my author biography, I teach computer science at Los An-
geles Valley College, a community college in the San Fernando Valley area of Los
Angeles, where 1 grew up and have lived most of my life. I also write computer pro-
grams, but teaching programming has provided me with insights into how students
learn that I could never obtain from writing programs. These insights are gained not
Jjust from answering student questions during lectures. I spend hours each week in
our college’s computer lab helping students with their programs, and more hours
each week reviewing and grading their assignments. Patterns emerge regarding
which teaching methods work and which don’t, the order in which to introduce
programming topics, the level of difficulty at which to introduce a new topic, and so

Facebook's Exhibit No. 1010 - Page 16

CONTENTS

\m’
on. I joke with my students that they are my beta testers in my never-ending attempt
to become a better teacher, but there is much truth in that joke.
Additionally, my beta testers... err, students, seem to complain about the text-
book no matter which book I adopt. Many ask me why I don’t write a book they
coulduse to learn C++. They may be saying this to flatter me (I’m not saying it does-
n’t work), or for the more sinister reason that they will be able to blame the teacher
for a poor book as well as poor instruction. Nevertheless, having written other
books, these questions planted in my mind the idea of writing a book that, in addition
to being sold to the general public, also could be used as a supplement to a textbook.

Who Should Read this Book

Anyone who will pay for it! Just kidding, though no buyers will be turned away.

It is hardly news that publishers and authors want the largest possible audience for
their books. Therefore, this section of the introduction usually tells you this book is
for you whoever you may be and whatever you do. However, no programming book
is for everyone. For example, if you exclusively create game programs using Java,
this book may not be for you (though being a community college teacher I may be
your next customer if you create a space beasts vs. community college administra-
tors game).

While this book is, of course, not for everyone, it very well may be for you. Many
people need or want to learn C++, either as part of a degree program, job training, or
even as a hobby. C++ is not the easiest subject to learn, and unfortunately many
books don’t make learning C++ any easier, throwing at you a veritable telephone
book of complexity and jargon. By contrast, this book, as its title suggests, is de-
signed to “demystify” C++. Therefore, it goes straight to the core concepts and ex-
plains them in a logical order and in plain English.

What this Book Covers

I strongly believe that the best way to learn programming is to write programs. The
concepts covered by the chapters are illustrated by clearly and thoroughly explained
code. You can run this code yourself, or use the code as the basis for writing further
programs that expand on the covered concepts.

Chapter 1 gets you started. This chapter answers questions such as what is a com-
puter program and what is a programming language. It then discusses the anatomy
of a basic C++ program, including both the code you see and what happens “under
the hood,” explaining how the preprocessor, compiler, and linker work together
to translate your code into instructions the computer can understand. Finally, the

AT e e e — e

Facebook's Exhibit No. 1010 - Page 17

m C++ Demystified
chapter tells you how to use an integrated development environment (IDE) to create
and run a project.

Being able to create and run a program that outputs “Hello World!” as in Chapter 1 is
a good start. However, most programs require the storing of information of different
types, such as numeric and text. Chapter 2 first explains the different types of computer
memory, including random access memory, or RAM. The chapter then discusses ad-
dresses, which identify where data is stored in RAM, and bytes, the unit of value for the
amount of space required to store information. Because information comes in different
forms, this chapter next discusses the different data types for whole numbers, floating
point numbers and text.

The featured star of Chapter 3 is the variable, which not only reserves the amount
of memory necessary to store information, but also provides you with a name by
which that information later may be retrieved. Because the purpose of a variable is to
store a value, a variable without an assigned value is as pointless as a bank account
without money. Therefore, this chapter explains how to assign a value to a variable,
either at compile time using the assignment operator or at run time using the cin ob-
ject and the stream extraction operator.

As a former professional chess player, I have marveled at the ability of chess com-
puters to play world champions on even terms. The reason the chess computers have
this ability is because they can calculate far more quickly and accurately than we
can. Chapter 4 covers arithmetic operators, which we use in code to harness the com-
puter’s calculating ability.

As programs become more sophisticated, they often branch in two or more direc-
tions based on whether a condition is true or false. For example, while a calculator
program would use the arithmetic operators you learned about in Chapter 4, your
program first would need to determine whether the user chose addition, subtraction,
multiplication, or division before performing the indicated arithmetic operation.
Chapters 5 and 6 introduce relational and logical operators, which are useful in de-
termining a user’s choice, and the if and switch statements, used to direct the path the
code will follow based on the user’s choice.

When you wete a child, your parents may have told you not to repeat yourself.
However, sometimes your code needs to repeat itself. For example, if an application
user enters invalid data, your code may continue to ask the user whether they want to
retry or quit until the user either enters valid data or quits. The primary subject of
Chapters 7 and 8 are loops, which are used to repeat code execution until a condition
is no longer true. Chapter 7 starts with the for loop, and also introduces the increment
and decrement operators, which are very useful when working with loops. Chapter 8
completes the discussion of loops with the while and do while loops.

Chapter 9 is about functions. A function is a block of one or more code state-
ments. All of your C++ code that executes is written within functions. This chapter

Facebook's Exhibit No. 1010 - Page 18

CONTENTS

O

will explain why and how you should write your own functions. It first explains how
to prototype and define a function, and then how to call the function. This chapter
also explains how you use arguments to pass information from the calling function
to a called function and a return value to pass information back from the called func-

_tion to a calling function. Passing by value and by reference also are explained and
distinguished. This chapter winds up explaining variable scope and lifetime, and
both explaining and distinguishing local, static, and global variables.

Chapter 10 is about arrays. Unlike the variables covered previously in the book,
which may hold only one value at a time, arrays may hold multiple values at one time.
Additionally, arrays work very well with loops, which are covered in Chapters 7 and 8.
This chapter also distinguishes character arrays from arrays of other data types.
Finally, this chapter covers constants, which are similar to variables, but differ in that
their initial value never changes while the program is running.

Chapter 11 is about pointers. The term pointers often strikes fear in the heart of a
C++ student, but it shouldn’t. As you learned back in Chapters 2 and 3, information
is stored at addresses in memory. Pointers simply provide you with an efficient
way to access those addresses. You also will learn in this chapter about the indirec-
tion operator and dereferencing as well as pointer arithmetic.

Most information, including user input, is in the form of character, C-string, and
C++ string class data types. Chapter 12 shows you functions that are useful in work-
ing with these data types, including member functions of the cin object.

Information is stored in files so it will be available after the program ends. Chap-
ter 13 teaches you about the file stream objects, fstream, ifstream, and ofstream, and
how to use them and their member functions to open, read, write and close files.

Finally, to provide you with a strong basis to go to the next step after this introduc-
tory level book, Chapter 14 introduces you to OOP, Object-Oriented Programming,
and two programming concepts heavily used in OOP, structures and classes.

A Quiz follows each chapter. Each quiz helps you confirm that you have absorbed
the basics of the chapter. Unlike quizzes you took in school, you also have an an-
swers appendix.

Similarly, this book concludes with a Final Exam in the first appendix, and the an-
swers to that also found in the second appendix.

How to Read this Book

I have organized this book to be read from beginning to end. While this may seem
patently obvious, my students often express legitimate frustration about books (or
teachers) that, in discussing a programming concept, mention other concepts that
are covered several chapters later or, even worse, not at all. Therefore, I have endeav-
ored to present the material in a linear, logical progression. This not only avoids the

e e e ———

Facebook's Exhibit No. 1010 - Page 19

« T

C++ Demystified

frustration of material that is out of order, but also enables you in each succeeding
chapter to build on the skills you learned in the preceding chapters.

Special Features

Throughout each chapter are Notes, Tips, and Cautions, as well as detailed code list-
ings. To provide you with additional opportunities to review, there is a Quiz at the
end of each chapter and a Final Exam (found in the first appendix) at the end of this
book. Answers to both are contained in the following appendix.

The overall objective is to get you up to speed quickly, without a lot of dry theory
orunnecessary detail. Solet’s get started. It’s easy and fun to write C++ programs.

Contacting the Author

Hmmm... it depends why. Just kidding. While I always welcome gushing praise and
shameless flattery, comments, suggestions, and yes, even criticism also can be valu-
able. The best way to contact me is via e-mail; you can use jkent@genghiskhent.com
(the domain name is based on my students’ fond nickname for me). Alternately, you
can visit my web site, http://www.genghiskhent.com/. Don’t be thrown off by the en-
try page; I use this site primarily to support the online classes and online components
of other classes that I teach at the college, but there will be a link to the section that sup-
ports this book.
I hope you enjoy this book as much as I enjoyed writing it.

Facebook's Exhibit No. 1010 - Page 20

CHAPTER

How a C++
Program Works

- You probably interact with computer programs many times during an average day.
When you arrive at work and find out your computer doesn’t work, you call tech sup-
port. At the other end of the telephone line, a computer program forces you to navi-

. gate a voicemail menu maze and then tortures you while you are on perpetual hold

| s with repeated insincere messages about how important your call is, along with false

i ; promises about how soon you will get through.

When you’re finally done with tech support, you decide to take a break and log on
to your now-working computer to do battle with giant alien insects from the planet
Megazoid. Unfortunately, the network administrator catches you goofing off using yet

_another computer program which monitors employee computer usage. Assuming you

are still employed, an accounts payable program then generates your payroll check.

' ; - On your way home, you decide you need some cash and stop at an ATM, where a

: computer program confirms (hopefully) you have enough money in your bank account

and then instructs the machine to dispense the requested cash and (unfortunately)

deducts that same amount from your account.

--

.ﬁ_

Facebook's Exhibit No. 1010 - Page 21

C++ Demystified

\9’

Most people, when they interact with computers as part of their daily routine,
don’tneed to consider what a computer program is or how it works. However, a com-
puter programmer should know the answers to these and related questions, such as
what is a programming language, and how does a C++ program actually work?
When you have completed this chapter, you will know the answers to these ques-
tions, and also understand how to create and run your own computer program.

What Is a Computer Program?

Computers are so widespread in our society because they have three advantages over
us humans. First, computers can store huge amounts of information. Second, they
can recall that information quickly and accurately. Third, computers can perform
calculations with lightning speed and perfect accuracy.

The advantages that computers have over us even extend to thinking sports like
chess. In 1997, the computer Deep Blue beat the world chess champion, Garry
Kasparov, in a chess match. In 2003, Kasparov was out for revenge against another
computer, Deep Junior, but only drew the match. Kasparov, while perhaps the best
chess player ever, is only human, and therefore no match for the computer’s ability
to calculate and remember prior games.

However, we have one very significant advantage over computers. We think on our
own, while computers don’t, at least not yet anyway. Indeed, computers fundamen-
tally are far more brawn than brain. A computer cannot do anything without step-by-
step instructions from us telling it what to do. These instructions are called a computer
program, and of course are written by a human, namely a computer programmer.
Computer programs enable us to harness the computer’s tremendous power.

What Is a Programming Language?

When you enter a darkened room and want to see what is inside, you turn on a light
switch. When you leave the room, you turn the light switch off.

The first computers were not too different than that light switch. These early com-
puters consisted of wires and switches in which the electrical current followed a path
dependent on which switches were in the on (one) or off (zero) position. Indeed, 1
built such a simple computer when I was a kid (which according to my own children
was back when dinosaurs still ruled the earth).

Facebook's Exhibit No. 1010 - Page 22

CHAPTER 1 How a C++ Program Works

Each switch’s position could be expressed as anumber: 1 for the on position, 0 for
the off position. Thus, the instructions given to these first computers, in the form
of the switches’ positions, essentially were a series of ones and zeroes.

Today’s computers, of course, are far more powerful and sophisticated than these
early computers. However, the language that computers understand, called machine
language, remains the same, essentially ones and zeroes.

While computers think in ones and zeroes, the humans who write computer pro-
grams usually don’t. Additionally, a complex program may consist of thousands or
even millions of step-by-step machine language instructions, which would require
an inordinately long amount of time to write. This is an important consideration
since, due to competitive market forces, the amount of time within which a program
has to be written is becoming increasingly less and less.

Fortunately, we do not have to write instructions to computers in machine lan-
guage. Instead, we can write instructions in a programming language. Programming
languages are far more understandable to programmers than machine language be-
cause programming languages resemble the structure and syntax of human language,
not ones and zeroes. Additionally, code can be written much faster with programming
languages than machine language because programming languages automate instruc-
tions; one programming language instruction can cover many machine language
instructions.

C++ is but one of many programming languages. Other popular programming
languages include Java, C#, and Visual Basic. There are many others. Indeed, new lan-

- guages are being created all the time. However, all programming languages have essen-
tially the same purpose, which is to enable a human programmer to give instructions
to a computer. ’

Why learn C++ instead of another programming language? First, it is very widely
used, both in industry and in education. Second, many other programming languages,
including Java and C#, are based on C++. Indeed, the Java programming language was
written using C++. Therefore, knowing C++ makes learning other programming
languages easier.

Anatomy of a C++ Program

It seems to be a tradition in C++ programming books for the first code example to
output to a console window the message “Hello World!” (shown in Figure 1-1).

st r————————— e e——————

Facebook's Exhibit No. 1010 - Page 23

C++ Demystified

DocumentsiLavcl... HEIE|

-

= *c:\Documents and SettingsiAdministrator. PCKLUBBE6IMy

Hello World!iPress any key to continue

lad il P

Figure 1-1 ~ C++ program outputting “Hello World!” to the screen

Nore: The term “console” goes back to the days before Windows when the screen
did not have menus and toolbars but just text. If you have typed commands using
DOS or UNIX, you likely did so in a console window. The text “Press any key to
continue” immediately following “Hello World!” is not part of the program, but
instead is a cue for how to close the console window.

Unfortunately, all too often the “Hello World!” example is followed quickly by
many other program examples without the book or teacher first stopping to explain
how the “Hello World!” program works. The result soon is a confused reader or
student who’s ready to say “Goodbye, Cruel World.”

While the “Hello World!” program looks simple, there actually is a lot going on
behind the scenes of this program. Accordingly, we are going to go through the
following code for the “Hello World!” program line by line, though not in top-to-
bottom order.

#include <iostream>
using namespace std;

int main(void)

{
cout << "Hello World!";
return 0O;

}

Note: ' The code a programmer writes is referred to as source code, which is saved
in a file that usually has a .cpp extension, standing for C++.

Facebook's Exhibit No. 1010 - Page 24

CHAPTER 1 How a C++ Program Works

<«

The main Function

As discussed in the “What Is a Programming Language?” section, the purpose of
C++, or any programming language, is to enable a programmer to write instructions
for a computer. Often, a task is too complex for just one instruction. Instead, several
related instructions are required.

A function is a group of related instructions, also called statements, which together
perform a particular task. The name of the function is how you refer to these related
statements. In the “Hello World!” program, main is the name of a function. A pro-
gram may have many functions, and in Chapter 9 I will show you how to create and
use functions. However, a program must have one main function, and only one main
function. The reason is that the main function is the starting point for every C++
program. If there was no main function, the computer would not know where to start
the program. If there was more than one main function, the program would not know
whether to start at one or the other.

Norte: The main function is preceded by int and followed by void in parentheses.
We will cover the meaning of both in Chapter 9.

The Function Body

Each of'the related instructions, or statements, which belong to the main function are
contained within the bodly of that function. A function body starts with a left curly
brace, {, and ends with a right curly brace, }.

Each statement usually ends with a semicolon. The main function has two
statements:

cout << "Hello World!";
return 0O;

Statements are executed in order, from top to bottom. Don’t worry, the term
“executed” doesn’t mean the statement is put to death. Rather, it means that the state-
ment is carried out, or executed, by the computer.

cout

The first statement is
cout << "Hello World!";

cout is pronounced “C-out.” The “out” refers to the direction in which cout sends
a stream of data.

w

Facebook's Exhibit No. 1010 - Page 25

By

C++ Demystified

A data stream may flow in one of two directions. One direction is input—into
your program from an outside source such as a file or user keyboard input. The other
direction is output—out from your program to an outside source such as a monitor,
printer, or file.

cout concerns the output stream. It sends information to the standard output
device. The standard output device usually is your monitor, though it can be some-
thing else, such as a printer or a file on your hard drive.

The << following cout is an operator. You likely have used operators before, such
as the arithmetic operators -+, —, *, and /, for addition, subtraction, multiplication, and
division, respectively.

The << operator is known as the stream insertion operator. It inserts the informa-
tion immediately to its right—in this example, the text “Hello World!” into the data
stream. The cout object then sends that information to the standard output device—
in this case, the monitor.

Nore: In Chapter 3, you will learn about the counterparts to the cout object and
the << operator; the cin object, which concerns the input stream, and the >> operator
used with the cin object.

The return 0 Statement

The second and final statement returns a value of zero to the computer’s operating
system, whether Windows, UNIX, or another. This tells the operating system that
the program ended normally. Sometimes programs do not end normally, but instead
crash, such as if you run out of memory during the running of the program. The oper-
ating system may need to handle this abnormal program termination differently than
normal termination. That is why the program tells the operating system that this time
it ended normally.

The #include Directive

Your C++ program “knows” to start at the main function because the main function
is part of the core of the C++ language. We certainly did not write any code that told
the C++ program to start at main.

Similarly, your C++ program seems to know that the cout object, in conjunction
with the stream insertion operator <<, outputs information to the monitor. We did not
write any code to have the cout object and the << operator achieve this result.

Facebook's Exhibit No. 1010 - Page 26

-

B

CHAPTER 1 How a C++ Program Works

\o’

However, the cout object is not part of the C++ core language. Rather, it is defined
elsewhere, in astandard library file. C++has a number of standard library files, each
defining commonly used objects. Outputting information to the monitor certainly is
a common task. While you could go to the trouble of writing your own function that
outputs information to the screen, a standard library file’s implementation of cout
saves you the trouble of “reinventing the wheel.”

While C++ already has implemented the cout object for you in a standard library
file, you still have to tell the program to include that standard library file in your ap-
plication. You do so with the #include directive, followed by the name of the library
file. If the library file is a standard library file, as opposed to one you wrote (yes, you
can create your own), then the file name is enclosed in angle brackets, < and >.

The cout object is defined in the standard library file iostream. The “i0” in iostream
refers to input and output—“stream” to a stream of data. To use the cout object, we
need to include the iostream standard library file in our application. We do so with
the following include directive:

#include <iostream>

The include directive is called a preprocessor directive. The preprocessor, together
with the compiler and linker, are discussed later in this chapter in the section “Trans-
lating the Code for the Computer.” The preprocessor directive, unlike statements, is
not ended by a semicolon.

Namespace

The final statement to be discussed in the Hello World! example is
using namespace std;

C++ uses namespaces to organize different names used in programs. Every name
used in the iostream standard library file is part of a namespace called szd. Conse-
quently, the cout object is really called std::cout. The using namespace std statement
avoids the need for putting std:: before every reference to cout, so we can just use
cout in our code.

Translating the Code for the Computer

While you now understand the “Hello World!” code, the computer won’t. Computers
don’t understand C++ or any other programming language. They understand only
machine language.

T e T e e —

Facebook's Exhibit No. 1010 - Page 27

C++ Demystified

Three programs are used to translate your source code into an executable file that
the computer can run. These programs are, in their order of appearance:

1. Preprocessor
2. Compiler
3. Linker

Preprocessor

The preprocessor is a program that scans the source code for preprocessor directives
such as include directives. The preprocessor inserts into the source code all files in-
cluded by the include directives.

In this example, the iostream standard library file is included by an include direc- -
tive. Therefore, the preprocessor directive inserts the contents of that standard library
file, including its definition of the cout object, into the source code file.

Compiler

The compiler is another program that translates the preprocessed source code (the
source code after the insertions made by the preprocessor) into corresponding ma-
chine language instructions, which are stored in a separate file, called an object file,
having an .obj extension. There are different compilers for different programming
languages, but the purpose of the compiler is essentially the same, the translation of
a programming language into machine language, no matter which programming
language is involved.

The compiler can understand your code and translate it into machine language
only if your code is in the proper syntax for that programming language. C++, like
other programming languages, and indeed most human languages, has rules for the
spelling of words and for the grammar of statements. If there is a syntax error, then
the compiler cannot translate your code into machine language instructions, and
instead will call your attention to the syntax errors. Thus, in a sense, the compiler
acts as a spell checker and grammar checker.

Linker

While the object file has machine language instructions, the computer cannot run the
object file as a program. The reason is that C++ also needs to use another code library,
called the run-time library, for common operations, such as the translation of keyboard

Facebook's Exhibit No. 1010 - Page 28

o

CHAPTER 1 How a C++ Program Works

input or the ability to interact with external hardware such as the monitor to display
a message.

Nore: The run-time library files may already be installed as part of your
operating system. If not, you can download the run-time library files from Microsoft
or another vendor. Finally, if you install an IDE as discussed in the next section, the
run-time library files are included with the installation.

The linker is a third program that combines the object file with the necessary parts
of the run-time library. The result is the creation of an executable file with an .exe
extension. The computer runs this file to display “Hello World!” on the screen.

Using an IDE to Create and Run
the “Hello World!” Project

You can use any plain-text editor such as Notepad to write the source code. You also
can download a free compiler, which usually includes a preprocessor and linker. You
then can compile and run your code from the command line. The command line may
be, for example, a DOS prompt at which you type a command that specifies the action
you want, such as compiling, followed by the name of the file you want to compile.

While there is nothing wrong with using a plain-text editor and command line
tools, many programmers, including me, prefer to create, compile, and run their pro-
grams in a C++ Integrated Development Environment, known by the acronym IDE.
The term “integrated” in IDE means that the text editor, preprocessor, compiler, and
linker are all together under one (software) roof. Thus, the IDE enables you to create,
compile, and run your code using one program rather than separate programs. Addi-
tionally, most IDEs have a graphical user interface (GUI) that makes them easier for
many to use than a command line. Finally, many IDEs have added features that ease
your task of finding and fixing errors in your code.

The primary disadvantage of using IDEs is you have to pay to purchase them
(though there are some free ones). They also require additional hard drive space and
memory. Nevertheless, I recommend obtaining an IDE sitice it enables you to focus
on C++ programming issues without distractions such as figuring out the right
commands to use on the command line.

There are several good IDEs on the market. Microsoft’s, called Visual C++, can be
obtained separately or as part of Microsoft’s Visual Studio product. Borland offers

e mr e e T e e

Facebook's Exhibit No. 1010 - Page 29

C++ Demystified

\m’
C++ Builder, bothin a free and commercial version. IBM has a VisualAge C++IDE.
There are a number of others as well.

In this book, I will use Microsoft’s Visual C++ .NET 2003 IDE since I happen to
have it. However, most IDEs work essentially the same way, and your code will
compile and run the same no matter which IDE you use as long as you don’t use any
library files custom to a particular IDE. The standard library files we will be using,
such as iostream, are the same in all C++ IDEs.

Additionally, I am running the code on a Windows 2000 operating system. The
results should be similar on other operating systems, not just Windows operating
systems, but additional types of operating systems as well, such as UNIX.

Let’s now use the IDE to write the source code for the “Hello World!” project, and
then compile and run it.

Setting Up the “Hello World!” Project

Once you have purchased and installed Visual C++ NET 2003, either as a standalone
application or as part of Visual Studio NET 2003, you are now ready to start your
first project, which is to create and run the “Hello World!” application.

1. Start Visual C++.

2. Open the New Project dialog box shown in Figure 1-2 using the File | New |
Project menu command. (The values in the Name and Location fields will be
set in steps 5 and 6.)

3. In the left or list pane of the New Project dialog box, choose Visual C++
Projects from the list of Project Types, and then the Win32 subfolder, as
shown in Figure 1-2.

4. In the right or contents pane of the New Project dialog box, choose Win32
Console Project from the list of templates. The word console comes from
the application running from a console window. Win32 comes from the
Windows 32-bit operating system, such as Windows 9x, 2000, or XP.

5. In the Location field, using the Browse button, choose an existing folder
under which you will create the subfolder where you will put your project.

6. In the Name field, type the name you’ve chosen for your project. This will
also be the name of the subfolder created to store your project files. I sug-
gest you use a name that describes your project so you can locate it more
easily later.

7. Click the OK button. This will display the Win32 Application Wizard,
shown in Figure 1-3.

Facebook's Exhibit No. 1010 - Page 30

CHAPTER 1 How a C++ Program Works

. Ne-w P.r.oje.c.t

!

3
s

|3 Visual Basic Projects
|3 Visual C# Projects

{2 Visual J# Projects fin3. sole’ Win32 Project
13 Visuel C++ Projects je

B= /(32
i (2 General
{2 Setup and Deployment Projects

|HellawWorld

|C\Documents and Setiings\Administrator, PCKLUB8EB\My Do I :

Figure 1-2 Creating a New Project

;;.‘u"mSZ Applicalion Wizard - Helloworld

Welcome to the Win32 Application Wizard

This wizard gererates a Win32 application project. The project can be a Windows application, a console application,
a DLL, or a static library.

Figure 1-3 Starting the Win32 Application Wizard

Facebook's Exhibit No. 1010 - Page 31

[

C++ Demystified

8. Click the Application Settings menu item on the left. The appearance of the
Win32 Application Wizard then changes to that shown in Figure 1-4.

Win32 Application Wizard - HelloWorld

Application Settings
Specify the type of application you will build with this project and the optione or libraries you want supported,

Application type: Add support for:

N el ™

Application Settings - Windows application ATL
 Console application " MFC
<ol

C ctatic library
Additional options:

I™- Eropty project
= EnrAsl Sy rrils

F Praconled restes

Fieh | cancel | Hep |

Figure 1-4 Win32 Application Wizard after choosing Application Settings

9. Choose, if necessary, Console Application under Application Type (this is
the default) and Empty Project under Additional Options. Choosing Empty
Project will disable both checkboxes under Add Support For, which should
be disabled anyway.

Cavtion: Make sure you follow this step carefully, particularly choosing Empty
Project, which is not the default. Not configuring Application Settings properly is
a common mistake and may require you to start over.

10. Click the Finish button. Figure 1-5 shows the new subfolder HelloWorld and
its parent folder. These were the name and location chosen in steps 5 and 6.

You now have created a project for your application. The project is a shell for
your application, containing files that will support the creation and running of your
application. However, right now the project is empty of any code you have written,
so it won’t do anything. Accordingly, the next step is to start writing code.

Facebook's Exhibit No. 1010 - Page 32

CHAPTER 1 How a C++ Program Works ’@\

8% Helloworid

desktop.ini
7 ESCJ G HelloWorld.nch
| E-Cj; Chi . =4 |8 Helloworld.suo
El-- Projects [Helloworld veproj
i3 HelloWor

Figure 1-5 Windows Explorer showing newly created subfolder and files

Writing the Source Code

Visual C++ has a view of a project that is similar to Windows Explorer. That view is
called Solution Explorer, shown in Figure 1-6. If Solution Explorer is not already
displayed, you can display it with the menu command View | Solution Explorer.
Solution Explorer has folders for both source and header files. The file in which
the code for the “Hello World!” application will be written is a source file. Source

|20 HelloWorld - Microsoft Visual C++ [design]

File Edit iew Projec uilt [

S

ax | Sl

Solution Explorer - Hello'W... & X |

(=
eS|

3 Solution Helloworld (1 project) |
& & Helloworld
i References

e 5curce Files|

‘ &3 Header Files
L. (@ Resource Files

Figure 1-6 Viewing your project with Solution Explorer

N ——

Facebook's Exhibit No. 1010 - Page 33

LN C++ Demystified

— 4

files have a .cpp extension, cpp standing for C++. By contrast, the iostream file that
is included by the include directive is a header file. Header files have an .h extension-—
the h standing for header.

We will use Solution Explorer to add a new source file to the project, after which
we will write code in that new source file.

You can use the following steps to add a new source file to the project:

£

1. Right-click Source Files in Solution Explorer. This will display a shortcut
menu, shown in Figure 1-7.

B HelloWorld - Niicmsnﬂ Visual CH+ [design]

S

| 153 Solution Heflow
|- & HelloWorld

| ‘. (3] Referencas

Figure 1-7 Source Files shortcut menu

2. Choose Add | Add New Item from the shortcut menu to add a new source to the
project. This will display the Add New Item dialog box, shown in Figure 1-8.

Nore: Ifthe source file already exists, you can add it to your project using the Add |
Add Existing Item shortcut menu item.

3. Generally, you will not change the Location field, which is the subfolder in
which the project files are stored. Type the name of the new source file in the

Facebook's Exhibit No. 1010 - Page 34

CHAPTER 1 How a C++ Program Works ’9\

Name field. You do not need to type the .cpp extension; that extension will
be appended automatically since it is a source file. By typing hello, as shown
in Figure 1-8, the new file will be called hello.cpp.

[Add New Item - Helloworld

|Windows Form CH#Filel(Epp) HTML Page !

(NET) (htm)

gl :
: .

=
Static HeaderFile Mid! File {.idl) I::
Discovery Fi... {hy : =

g @ @

i Resource File Server Modute-Defin... |
(rc) Response Fi.. File (def)

Figure 1-8 Adding a New Source File to your Project

4. When you are done, click the Open button. Figure 1-9 shows the new hello.cpp
file in Solution Explorer.

Writing the code is easy. Double-click hello.cpp in Solution Explorer. As shown
in Figure 1-10, this will display the hello.cpp file, which at this point is blank.
Now just type your code. When finished, hello.cpp should appear as in Figure 1-11.

Cavrion: You also can use Notepad or any other text editor to write the code. How-
ever, do not use Microsoft Word or any other word processing program to write your
code. While a word processing program enables you to neatly format your code, it
does so using hidden formatting characters that the compiler does not understand
and will regard as syntax ervors.

Facebook's Exhibit No. 1010 - Page 35

C++ Demystified

(1 roject)

HelloWorld
- (S References
=~ &3 Source Files
p (2] Header Files
L (21 Resource Files

|22 HelloWarld - Microsoft Visual C++ [design] - hello.cpp

o4 isvalidHours] » e
L Sy B

% Solusion HelloWarld' (1 project)
- {# HelloWarld
i [Referances
|
!
L.

€3 Source Files
- [Header Filas
(&1 Resaurce Files

Figure 1-10 The source file before typing code

Facebook's Exhibit No. 1010 - Page 36

CHAPTER 1 How a C++ Program Works

)

- & HelloWorld
using namespace std; il ;- &3 References
C]int main{void) o £~ & Source Files

: | L 2 e

" (3 HeaderFiles

cout << "Hello World!":; i .
" 23 Resource Files

return 0;

Figure 1-11 The source file after typing code

Save your work, such as by pressing the Save toolbar button. We’re now ready to
compile.

Building the Project

You compile your code from the Build menu. You may compile your code from any
one of the following different menu choices:

* Build | Solution

* Rebuild | Solution

* Build | HelloWorld
* Rebuild | HelloWorld

HelloWorld is the name of your project. A solution may contain more than one
project. Here the solution contains only one project, so there is no practical differ-
ence between the project and the solution.

Build means to compile changes from the last compilation (if there was one). Re-
build means to start compilation from the beginning. Build therefore is usually faster,

Facebook's Exhibit No. 1010 - Page 37

By

C++ Demystified

but Rebuild is used when there have been extensive changes since the last compila-
tion. As a practical matter, it rarely makes a difference which one you choose.

Before we compile, make one change to the code, changing cout to Cout (capital-
izing the C). Then choose one of the four compilation options. A Task List window
should display, noting a build error, as shown in Figure 1-12. The error description
in the Task List window is “error C2065: ‘Cout’ : undeclared identifier.”

Ta sk Ll'f 1 Build E:mrtat ~hnwn fI|tPlH'i)

¥ v Description File

e EN O S SRR S

Click here to add a new tasn '

'@ o error C2065: 'Cout' ; undeclzc: \...\hello. cpp

17 TaskList| 5 Output |

Figure 1-12 The Task List window showing a compilation error

Tip: Ifthe description column is not wide enough to show the entire error description,
you can display the error description in a pop-up window by right-clicking the error
description and choosing Show Description Tooltip from the shortcut menu.

As explained in the earlier section on the Compiler, the compiler can understand
your code and translate it into machine language only if your code is in the proper
syntax for that programming language. As also explained there, C++ has rules for the
spelling of words and for the grammar of statements. If there is a violation of those
rules, that is, a syntax error, then the compiler cannot translate your code into machine
language instructions, and instead will call your attention to the syntax errors.

In C++, code is case sensitive. That is, a word capitalized is not the same as the
word uncapitalized. The correct spelling is cout; Cout is wrong. Since C++ does not
know what Cout is, you get the error message that it is an “undeclared identifier.”

While here the code is short, if your code is quite lengthy, it is not easy to spot
where the error is in the code. If you double-click the error in the Task List window,
then a cursor will blink at the line where Cout is, and an icon will display in the margin
(as shown in Figure 1-13).

Facebook's Exhibit No. 1010 - Page 38

CHAPTER 1 How a C++ Program Works

9% HelloWaorld - Microsoft Visual C++ [design] - hello.cpp - o] x]
File Edit View Project Build Debug Toole !{indoxﬁ) -}jelp
| EE 4B & I Debug > | (# isValidHours v :"s i
| T Ry “{'_:ECE""Z‘!Hex;@',?@%%m:i?i?!; 2lre e te e
i | hello.cppl 4 v x || Solution Explorer - Hellow... 4»?5‘
: . 5
Globals 1 @ main X
I(__ ‘) e —]] .:!_ :ESoluuon'HelloWorld (1 project)]
#include <iostream> I | f=h - HelloWorld
using namespace std; - @) References
i . i . 1] H g
| |1 int main{void}) | & & SourceFiles
' { || - Blkeloepn
= | | Cout << "Hello World!"; +— & Header Files
i - {88 Resource Files
return 0;
i L
) i
! | I
| 1
l i
[}
: il [
s "'j-'"E!—l—ll-TE e B ———_&_‘_.._.__.. -
| R RO . S A G T

Figure 1-13 The error highlighted in the code window

Now change Cout to cout, and then compile your code again. This time compilation

| should be successful. Using Windows Explorer, you can now see in the Debug sub-
folder of your HelloWorld project folder a file called hello.obj and another file called
hello.exe. These are the object and executable files previously discussed in the section
“Translating the Code for the Computer.” Accordingly, building the project involved
the preprocessor, the compiler, and the linker.

Running the Code

The final step is to run the code. You do so from the Debug menu. You may choose
either Debug | Start or Debug | Start Without Debugging. The difference is whether
you wish to use the debugger, an issue which we will discuss in a later chapter. Since
we are not going to use the debugger this time, choose Debug | Start Without Debug-
ging as it is slightly faster. The result is the console window displaying “Hello World!”

(shown way back in Figure 1-1).

_,

Facebook's Exhibit No. 1010 - Page 39

e
= —.—-_-Ha—ﬂ
"

CHAPTER

Memory and
Data Types

After I wrote my first book, I expectantly waited every day for my mail, hoping to re-
ceive requests for my autograph. The result was proof of the adage “be careful what
you ask for”” My mailbox was stuffed with numerous requests for my autograph.
Alas, these requests came from those who wanted to share my money, not my fame.
.My autograph was requested on checks to pay my mortgage, credit cards, insurance,
| phone service, electricity; well, you get the picture. .

These companies who love sending me bills could not possibly keep track of their
_ ousands of customers by using pencil and paper. Instead, they use computer pro-
i jgrams which harness the computer’s ability to store very large amounts of informa-
lipn and to retrieve that stored information very quickly.

Fo 14
e II S

15 1 ﬁ ‘We use our memory to store and recall information. So do computers. However,

'LLF-"'J'I

.-4'\.

 'computer’s memory is very different from ours. This chapter will explain how a
yuter’s memory works.

Facebook's Exhibit No. 1010 - Page 40

@ .' C++ Demystified
' Information, also called data, comes in different forms. Some data is numeric,

such as the amount of my gas bill. Other data is text, such as my name on my gas bill.
The type of data, whether numeric, text, or something else, quite logically is referred
to as the “data type.” The data type you choose will affect not only the form in which
the data is stored, but also the amount of memory required to store it. This chapter
will explain the different data types.

- e

Memory

Computer programs consist of instructions and data. As discussed in Chapter 1,
instructions, written in a programming language such as C++ and then translated by
the compiler and linker into machine language, give the computer step-by-step di-
rections on what to do. The data is the information that is the subject of the program.
For example, if the user of your computer program wants a list of all students with a
GPA 01 4.0, the data could be a list of all students and their GPAs. The program then
would follow instructions to determine and output the list of all students with a GPA
of 4.0.

The computer program’s instructions and data have to be in the computer’s mem-
ory for the program to work. This section will explain the different types of com-
puter memory, as well as how and where instructions and data are stored in computer
memory.

Types of Memory
There are three principal memory locations on your computer.

» The central processing unit (CPU)
* Random access memory (RAM)
 Persistent storage

Cache Memory

The CPU is the brains of the computer. You may have thought about the CPU
when you last considered purchasing a computer, since the CPU’s speed often is an
important purchase consideration. The faster the CPU’s speed, the faster your com-
puter runs.

Facebook's Exhibit No. 1010 - Page 41

CHAPTER 2 Memory and Data Types A

 \3

Nore: A hertz, named after Heinrich Hertz, who first detected electromagnetic
waves, represents one cycle per second. CPU speed is measured in megahertz
(MHz), which represents one million cycles per second, or gigahertz (GHz), which
represents 1 billion cycles per second. For example, a CPU that runs at 800 MHz
executes 800 million cycles per second. Each computer instruction requires a fixed
number of cycles, so the CPU speed determines how many instructions per second
the CPU can execute.

The CPU, in addition to coordinating the computer’s operations, also has memory,
called cache memory. The CPU’s cache memory includes a segment called a register.
This memory is used to store frequently used instructions and data.

The CPU can access cache memory extremely quickly because it doesn’t have far
to go; the memory is right on the CPU. However, the amount of available cache
memory is quite small; there is only enough room for the most frequently used in-
structions and data. The remainder of the instructions and data have to be stored
somewhere else.

Random Access Memory

That somewhere else is random access memory, or RAM. You may also have con-
sidered RAM when you last purchased a computer, since the more RAM a computer
has, the more programs it can run at one time, and the faster it runs.

The CPU can access RAM almost as quickly as cache memory. Additionally, the
amount of RAM available to store instructions and data is much larger than the
amount of available cache memory.

However, RAM, like cache memory, is temporary. Instructions and data con-
tained in main memory are lost once the computer is powered down. You may have
had the unpleasant experience of losing unsaved data when your computer powered
off during a power failure, or had to be rebooted.

Additionally, we would want the data to remain intact after the program ended,
even if the computer is rebooted or powered off. That is not possible with RAM.

Furthermore, your computer likely has many other programs, for e-mail, Internet,
word processing, and so on, that you may not be using right now, but you may want
to use in the future. Likewise, your computer also may have other data files, such as
term papers, letters, tax spreadsheets, e-mail messages, and so on, that you also may
not be using right now, but that you may want to use in the future. Accordingly, we
need another memory location, which unlike cache memory or RAM, is persis-
tent—that is, it will persist even though the computer is rebooted or turned off.

*‘

Facebook's Exhibit No. 1010 - Page 42

C++ Demystified

2

Persistent Storage

That other, persistent type of computer memory is called, naturally enough, persis-
tent storage. This usually is a hard drive, but also could be, among other devices, a
CD-ROM or DVD-ROM, floppy or zip disk, or optical drive. However, no matter
what storage device is used, persistent storage is lasting; instructions and data
remain stored even when the computer is powered down. Thus, your computer can
be turned off for months, but when it is turned on, the files you previously saved are
still there.

Persistent storage, in addition to being lasting, also has a much larger capacity
than RAM—about one hundred to one thousand times larger.

Since persistent storage is lasting and has a very large capacity, it is used to store
both programs and data. For example, if you installed Microsoft Word on your com-
puter, the files for this program would be stored on your hard drive. If you then pre-
pared documents using that program, those documents likewise would be saved as
files on your hard drive.
~ While persistent storage has the advantages of being lasting and having a large ca-
pacity, a computer program cannot execute instructions located in persistent stor-
age. The instructions must be loaded from persistent storage into RAM. Similarly, a
computer program cannot manipulate data located in persistent storage. This data
likewise must be loaded from persistent storage into RAM.

Nore: While beyond the scope of this chapter, persistent storage also can serve
as a backup to RAM, and when serving this purpose is called virtual memory or
swap space.

Generally, computer programs use RAM to store instructions and data, so RAM
will be our focus in discussing memory. However, much of the discussion of mem-
ory also may apply to persistent storage. CPU cache memory is a different subject,
discussed more in connection with programming languages, such as assembly lan-
guage, that are far closer to machine language than is C++.

Addresses

When someone asks where you live, you may answer 1313 Mockingbird Lane. That
is your address.

Addresses are used to locate persons or places. Addresses usually follow a logical
pattern. For example, the addresses on one block may be from 1300 to 1399, the next
from 1400 to 1499, and so on.

Facebook's Exhibit No. 1010 - Page 43

CHAPTER 2 Memory and Data Types

2

Locations in memory also are identified by address. These addresses often look
quite different than the street addresses we’re used to, since they usually are ex-
pressed as hexadecimal (Base 16) numbers such as 0x8fc1. However, regardless
of how the number is written, as shown in Figure 2-1, memory addresses follow
the same logical, sequential pattern as do street addresses, one number coming after
another.

[«—100 l‘_,__“”,,. ﬂ_l”___»102 | 108 | 104 1'105——>_i
Memory Addresses o

Figure 2-1 Sequence of memory addresses

NotE: Hexadecimal Numbers—We usually use numbers that are decimal, or
Base 10, in which each digit is between 0 and 9. By contrast, memory addresses
usually are expressed as hexadecimal, or Base 16, in which each digit is between 1
and 15. Since 10, 11, 12, 13, 14, and 15 are not single-digits, 10 is expressed as a, 11
asb,12asc, 13asd 14ase, and 15 asf. The number 16 in decimal is expressed as 10
in hexadecimal.

Memory address numbers can be large values, and thus may be written more
compactly in hexadecimal than in decimal. For example, 1,000,000 in decimal is
f4240 in hexadecimal.

Converting between hexadecimal and decimal is explained next in the upcoming

. section, “Converting Between Decimal and Binary or Hexadecimal.”

Bits and Bytes

While people live at street addresses, what is stored at each memory address is a byfe.
Don’t worry, I have not misspelled Dracula’s favorite pastime.

As discussed in Chapter 1, early computers essentially were a series of switches, 1
representing on, 0 representing off. In computer terminology, a bit is eithera 1 ora 0.

However, while a computer may think in bits, it cannot process information as
small as a single bit. Eight bits, or one byte, is the smallest unit of information that a

| computer can process.

Accordingly, each address may store up to one byte of information, represented
by a sequence of up to eight ones and zeroes. Thus, just as a street address may be
used to locate the persons who live there, a memory address can be used to locate the
one byte of information that is stored there. Figure 2-2 shows a sequence of memory
addresses, each with a value.

_——

Facebook's Exhibit No. 1010 - Page 44

..'q

C++ Demystified

Dy

Values

\A .
00000100 | 10011000 | 01001010 | 00100100
<—100 101 - 102 103 104 105 —»

Memory Addresses P

Figure2-2 A sequencev of memory addresses, each with a byte value

Binary Numbering System

The information stored at a memory address, a series of ones and zeroes, probably
has little meaning to most of us. However, to a computer, a sequence of ones and
zeroes 1s quite meaningful.

For example, to my computer, [was born in the year 11110100000. Before you
tell me that’s impossible, I will tell you I was born in the year 1952. How could I have
been born both in the year 11110100000 and in the year 19527

The numbers with which we usually work are decimal, or base 10. Each number
in decimal is represented by a digit between 0 and 9. 1952 is a decimal number.

The sequence of ones and zeroes in a byte also is anumber, though it may not look
like any number you have ever seen. My birth year, expressed as the number
11110100000, is binary, or base 2. Each number in binary is represented by a digit
that is either O or 1.

The reason both decimal and binary numbers are involved in computer program-
ming is because both humans and computers are involved. While humans think in
decimal numbers, computers “think™ in binary numbers.

Converting Between Decimal
and Binary or Hexadecimal

You can write computer programs without knowing how to convert between binary
and decimal numbers. However, knowing how to do so is not difficult and may help
yourunderstanding of what happens behind the scenes. If you are interested, read on!
‘Converting a number from binary to decimal is simple. Going from right to left,
the rightmost binary digit is multiplied by 2°, or 1, the second binary digit from the
right is multiplied by 2', or 2, the third binary digit from the right is multiplied by 2%,
or 4, and so on, through all of the binary digits. The results of each multiplication are
added, and the result is the decimal equivalent of the binary number. Table 2-1 shows
this calculation for the binary equivalents of the numbers 1 through 5 in decimal.

T S T P TR e e T . e e ——————]

Facebook's Exhibit No. 1010 - Page 45

CHAPTER 2 Memory and Data Types

<

Binary Calculation Decimal
0 0x2°=0x1= 0
I 1x2°=1x1= 1
10 0x2)+(1x2)=0+2 5
11 Ax2)+(1x2)=1+2 3
100 O0x2)+(0x2)+(1x2)=0+0+4 4
101 Ax2)+O0x2Y)+(1Ax2)=1+0+4 5

Table 2-1 Binary Equivalents of the Numbers | Through 5 in Decimal

Converting a number from decimal to binary is almost as easy. Let’s use 5 in deci-
mal as an example. '

1. You find the largest power of 2 that can be divided into 5 with a quotient of 1.
The answer is 2, or 4.

2. Remember when converting from binary to decimal, the rightmost binary
digit is multiplied by 2°, or 1, the second binary digit from the right is multi-
plied by 2", the third binary digit from the right is multiplied by 2°, and so
on. Since the exponent is 2, a binary 1 goes into the third binary digit from
the right, so the binary number now is 1?7, the ? representing each binary
digit we still need to calculate.

3. When you divide 5 by 4, the remainder is 1. You next try to divide 1 by the
next lowest power of 2, 2', or 2. The quotient is 0, so a binary 0 goes into
the second binary digit from the right. The binary number now is 10?.

4. When you divide 1 by 2, the remainder is still 1. You next try to divide
1 by the next lowest power of 2, 2°, or 1. The quotient is 1, so a binary 1
goes into the rightmost binary digit. The binary number now is 101, and
we’re done.

You also can use the same techniques for converting between hexadecimal and
: decimal. When converting from hexadecimal to decimal, multiply each hexadeci-
mal digit (converting ato 10, b to 11, and so on) by the appropriate power of 16. For
example, 5c in hexadecimal is (12 x 16%) + (5 x 16'), which is 12 + 80 or92.
Conversely, when converting from decimal to hexadecimal, the highest power of
16 that can be divided into 92 is 16', or 16. The quotient is 5, which goes into the sec-
ond digit to the right. The remainder is 12, which is ¢ in hexadecimal. This goes into
the rightmost digit, resulting in the hexadecimal number 5c.

e e I T e

Facebook's Exhibit No. 1010 - Page 46

o C++ Demystified

D
Data Types

The ones and zeroes that may be stored at a memory address may represent text, such
as my name, Jeff Kent. These ones and zeroes instead may represent a whole num-
ber, such as my height in inches, 72, or a number with digits to the right of the deci-
mal point, such as my GPA in high school, which I’ll say was 3.75 (I honestly don’t
remember, it was too long ago). Alternatively, the ones and zeroes may represent
either true or false, such as whether I am a U.S. citizen.

Data comes in many forms, and is generally either numeric or textual. Addi-
tionally, some numeric data uses whole numbers, such as 6, 0, or —7, while other nu-
meric data uses floating-point numbers, such as .6, 7.3, and —6.1.

There are different data types for cach of the many forms of data. The data type
you choose will affect not only the form in which the data is stored, but also the
amount of memory required to store the data. Let’s now take a look at these different
data types.

Whole Number Data Types

We deal with whole numbers all the time. Think of the answers to questions such as
how many cars are in the parking lot, how many classes are you taking, or how many
brothers and sisters do you have? Each answer involves a number, with no need to
express any value to the right of the decimal point. After all, who has 3.71 brothers
and sisters?

Often, you don’t need a large whole number. What unfortunate student would be
taking 754,361 classes at one time? However, sometimes the whole number needs to
be large. For example, if you are studying astronomy, the moon is approximately
240,000 miles from Earth. Indeed, sometimes the whole number may need to be
very, very large. Pluto’s minimum distance from the Earth is about 2.7 billion miles.

Many times, the whole number won’t be negative. No matter how badly you do on
a test, chances are you won’t score below zero points. However, some whole num-
bers may be below zero, such as the temperature at the North Pole.

Because of the different needs whole numbers may have to meet, there are several
different whole number data types (shown in Table 2-2). The listed sizes and ranges
are typical, but may vary depending on the compiler and operating system. In the
sizeof operator project later in this chapter, you will determine through code the size
of different data types on your compiler and operating system.

————————I‘

Facebook's Exhibit No. 1010 - Page 47

CHAPTER 2 Memory and Data Types ﬁf@L

Data Type Size (in Bytes) Range

short 2 -32,768 to 32,767

unsigned short 2 0 to 65,365 |

int 4 —2,147,483,648 to 2,147,483,647
unsigned int 4 010 4,294,987,295

long 4 ~2,147,483,648 to 2,147,483,647
unsigned long 4 010 4,294,987,295

Table 2-2 Whole Number Data Types, Sizes, and Ranges

Nore: You may be wondering about the purpose of the long data type, since its size
and range is the same as an int in Table 2-2. However, as noted just before that table,
the actual size, and, therefore, range of a particular data type varies depending on the
compiler and operating system. On some combinations of compilers and operating
systems, short may be 1 byte, int may be 2 bytes, and long may be 4 bytes.

Beginning programmers sometimes see information like that shown in Table 2-2
and panic that they can’t possibly memorize all of it. The good news is you don’t
have to. To be sure, some memorization is necessary for almost any task. However,
since there really is too much information to memorize, programmers frequently re-
sort to online help or reference books. Believe me, I do.

Far more important to a programmer than rote memorization is to understand how
and why a program works as it does. Therefore, this section will go into some detail
as to how data types work. Some arithmetic necessarily is involved, but it is not diffi-
cult, and if you follow the arithmetic, you will have a good understanding of data
types that will help you in your programming in the following chapters.

Unsigned vs. Signed Data Type

Table 2-2 lists three data types: short, int, and long. Each of these three data types
has either the word unsigned in front of it or nothing at all—as in unsigned short
and short.

Unsigned means the number is always zero or positive, never negative. Signed
means the number may be negative or positive (or zero). If you don’t specify signed
or unsigned, the data type is presumed to be signed. Thus, signed short and short are
the same.

e e e e e e ———

Facebook's Exhibit No. 1010 - Page 48

: @ C++ Demystified
Since an unsigned data type means its value is always 0 or positive, never nega-
tive, in Table 2-2 the smallest value of an unsigned short is therefore zero; an un-

signed short cannot be negative. By contrast, the smallest value of a short is 32767,
since a signed data type may be negative, positive, or zero.

Size
Each of the whole number data types listed in Table 2-2 has a size. Indeed, all C++
data types have a size. However, unlike people, the size of a data type is not
expressed in inches or in pounds (a sore subject for me), but in bytes.

Since a byte is the smallest unit of information that a computer can process, no
data type may be smaller than one byte. Most data types are larger than one byte;
all the whole number data types listed in Table 2-2 are. However, regardless of the
size, the number of bytes is always a whole number. You cannot have a data type
whose size is 3.5 bytes because .5 bytes, or 4 bits, is too small for the computer to
process.

Generally, the number of bytes for a data type is the result of a power of 2 since
computers use a binary number system. Thus, typical data type sizes are 1 byte (2°),
2 bytes (2'), four bytes (2°), or eight bytes (2°).

The size of a data type matters in two related respects: (1) the range of different
values that the data type may represent and (2) the amount of memory required to
store the data type.

Range

Range means the highest and lowest value that may be represented by a given data
type. For example, the range of the unsigned short data type is 0 to 65,365. These
lowest and highest values are not arbitrary, but instead can be calculated.

The number of different values that a data type can represent is 2°, # being the
number of bits in the data type. The size of a short data type is 2 bytes, or 16 bits.
Therefore, the number of different whole numbers that the short data type can repre-
sent is 2'°, which is 65,356.

However, the highest value that an unsigned short can represent is 65,355, not
65,356, because the unsigned short data type starts at 0, not 1. Therefore, the highest
number that an unsigned data type may represent is 2" — 1; » again being the number
of bits in the data type, and the minus 1 being used because we are starting at 0, not 1.

Signed data types involve an additional issue. Since the range of a signed data
type includes negative numbers, there needs to be a way of determining if a number
is positive or negative. We determine if a decimal number is positive or negative by

Facebook's Exhibit No. 1010 - Page 49

CHAPTER 2 Memory and Data Types

\EBI
looking to see if the number is preceded by a negative sign (—). However, a bit can be
only 1 or 0; there is no option for a negative sign in a binary number.

There are several different explanations in computer science for the represen-
tation of negative numbers, such as signed magnitude, one’s complement, and
two’s complement. However, we don’t need to get into the complexities of these
explanations.

For example, a signed short data type, like an unsigned short data type, can repre-
sent 2'° or 65,356 different numbers. However, with a signed data type, these differ-
ent numbers must be split evenly between those starting at zero and going up, and
those starting at zero and going down. To do this, the two ranges would be 0 to
32,767 and —1 to —32,768. This can be confirmed by Table 2-2, which shows the
range of a signed data type as —32,768 to 32,767.

Another way of explaining the high and low numbers of the range of the signed
short data type is that one of the bits is used to store the sign, positive or negative.
That leaves 15 bits. The highest number in the range is 2"° — 1, or 32,767; the minus 1
being used because we are starting at 0, not 1. The lowest number in the range is
—(2"), or —32,768; there’s no minus 1 because we are starting at —1, not 0.

Storage

In binary, 65365 as an unsigned short is represented by sixteen ones:
1111111111111111. You cannot fit 16 bits into a single memory address. A memory
address can hold only 8 bits, or a byte. How then can you store this value in memory?

The answer is you need two memory addresses to store 65365 in decimal. This
provides two bytes of storage, sufficient to store this value. This is why the short data
type requires 2 bytes of storage. Figure 2-3 shows how this value would be stored as
a short data type.

Values
\A
11111111 11111114

«—100 101 102 103 104 105 —»

Memory Addresses e

Figure 2-3 Storage in memory of 65365 in decimal as an unsigned short data type

The int data type requires 4 bytes of storage. Figure 2-4 shows how 65365 in deci-
mal would be stored as an unsigned int data type.

———-L

Facebook's Exhibit No. 1010 - Page 50

C++ Demystified

By

Values

\
00000000 | 00000000 | 11111111 | 11111111 !
4— 100 101 102 103 104 105—P

Memory Addresses £

Figure 2-4 Storage in memory of 65365 in decimal as an unsigned int data type

You may legitimately wonder why 65365 in decimal as an unsigned int data type
requires four bytes of storage when 65365 in decimal as an unsigned short data
type requires only two bytes of storage. In other words, if you specify int instead of
short as the data type, four bytes of storage will be reserved, even if you could store
the number in less bytes. The reason is that it is not known, when memory is re-
served, what value will be stored there. Additionally, the value could change. Ac-
cordingly, enough bytes of storage are reserved for the maximum possible value of
that data type.

Why Use a Smaller Size Data Type?

Given that an int can store a far wider range of numbers than a short, you also may be
wondering why you ever would use a short rather than an int. The answer is that the
wider range of an int comes at a price; it requires twice as much RAM as a short—
four instead of two bytes.

However, computers these days come with hundreds of megabytes of RAM, each
megabyte being 1,048,576 bytes; you still may wonder why you should care about
two measly extra bytes. If it was just 2 extra bytes, you wouldn’t care. However, if
you are writing a program for an insurance company that has one million customers,
you won’t be talking about 2 extra bytes, but instead 2 million extra bytes. Therefore,
you should not just reflexively choose the largest data type.

All this said, as a general rule, of the six whole number data types, you most often
will use int. However, it is good to know about the other choices.

Floa»ting-Point Data Types

I was nearsighted my entire adult life until I had lasik surgery on my eyes. In this sur-
gery, the eye surgeon programs information that the laser used to reshape my eyeball
by shaving off very thin slices of my cornea, measuring only thousandths of an inch,
in certain areas of my eyeball, leaving untouched other areas, again only thou-
sandths of an inch away.

Can you imagine my reaction if the eye surgeon had told me his philosophy was
“close enough for government work,” so he was using only whole numbers, ignoring

—4

Facebook's Exhibit No. 1010 - Page 51

CHAPTER 2 Memory and Data Types m

any values to the right of the decimal point? You next would have seen my silhouette
through the wall after I ran through it to escape. (Since I still go to my eye surgeon,
who, by the way, earned his way through college as a computer programmer, and it is
not in my best interest to get on his bad side, let me hasten to add that he was very
precise and the surgery was successful.)

Whole numbers work fine for certain information where fractions don’t apply.
For example, who would say they have 2 % children? Whole numbers also work fine
for certain information where fractions do apply but are not important. For example,
it would be sufficient normally to say the location is 98 miles away; precision such as
98.177 miles usually is not necessary.

However, other times fractions, expressed as numbers to the right of the decimal
point, are very important. My lasik surgery is an extreme example, but there are
many other more common ones. If you had a 3.9 GPA, you probably would not want
the school to just forget about the .9 and say your GPA was 3. Similarly, a bank that
kept track of dollars but not cents with deposits and withdrawals would, with poten-
tially millions of transactions a day, soon have very inaccurate information as to how
much money it has, and its depositors have.

Accordingly, there are floating-point data types that you can use when a value to
the right of the decimal point is important. The term floating point comes from the
fact that there is no fixed number of digits before and after the decimal point; that is,
the decimal point can float. Floating-point numbers also are sometimes referred to
as real numbers.

Table 2-3 lists each of the floating-point number data types. As with the whole
number data types, the listed sizes and ranges are typical, but may vary depending on
the compiler and operating system.

Data Type Size (in Bytes) Range (in E notation)
float 4 +3.4E-38 to +3.4E38
double 8 +1.7E-308 to +1.7E308
long double 10 +3.4E-4932 to +3.4E4932

Table 2-3 Floating-point Number Data Types, Sizes, and Ranges

Norte: Thesize of along double on many combinations of compilers and operating
systems may be 8 bytes, not 10.

Facebook's Exhibit No. 1010 - Page 52

C++ Demystified

&
Scientific and E Notations

The range column in Table 2-3 may not look like any number you have ever seen be-
fore. That is because these are not usual decimal numbers, but instead numbers
expressed in E notation, the letter E standing for exponent.

The float data types can store very large numbers, such as (in decimal)
10000000000000000000000000000000000000, which could be a distance across
the universe. The float data types also can store very small numbers, such as
.00000000000000000000000000000000000001, which could be the diameter of
a subatomic particle.

Rather than having digits running across the page, the number can be expressed
more compactly. One way is with scientific notation, another is with E notation. Ta-~
ble 2-4 shows how certain floating-point numbers are represented in both notations.

Decimal Notation Scientific Notation E Notation
123.45 1.2345 x 10 1.2345E2
0.0051 5.—1 x 10° 5.1E-3
1,200,000,000 LA L0 1.2E9

Table 2-4 Scientific and E Notation Representations of Floating Point Values

S S —— . ——

In scientific notation, the number before the multiplication operator, called the
mantissa, always is expressed as having a single digit to the left of the decimal point,
and as many digits as necessary to the right side of the decimal point to express the
number. The number after the multiplication operator is a power of 10, which may
be positive for very large numbers or negative for very small fractions. The value of
the expression is the mantissa multiplied by the power of 10.

E notation is very similar to scientific notation. The only difference is the multi-
plication operator, followed by 10 and an exponent, is replaced by an E followed by
the exponent.

Storage of Floating-Point Numbers

Since only ones and zeroes can be stored in memory, complex codes, well beyond
the scope of this book, are required to store floating-point numbers. Even with com- -
plex codes, a computer can only approximately represent many floating-point val-
ues. Indeed, in certain programs the programmer has to take care to ensure that small

—___)

Facebook's Exhibit No. 1010 - Page 53

CHAPTER 2 Memory and Data Types

i discrepancies in each of a number of approximations don’t accumulate to the point
| where the final result is wrong.

Nore: Because mathematics with floating-point numbers requires a great deal of
| computing power, many CPUs come with a chip specialized for performing floating-
point arithmetic. These chips often are referred to as math coprocessors.

Text Data Types

There are two text data types. The first is char, which stands for character. It usually
is 1 byte, and can represent any single character, including a letter, a digit, a punctua-
tion mark, or a space. '

The second text data type is siring. The string data type may store a number of
characters, including this sentence, or paragraph, or page. The number of bytes re-
quired depends on the number of characters involved.

Nore: Unlike char and the other data types we have discussed, the string type is
not a data type built into C++. Instead, it is defined in the standard library file string,
which therefore must be included with an include directive (#include <string>) to
use the string data type. Chapter 1 covers the include directive, which in the “Hello
World!” program was #include <iostream>.

Storage of Character Values

There is a reason why the size of a character data type usually is 1 byte.

ANSI (American National Standards Institute) and ASCII (American Standards
Committee for Information Interchange) adopted for the English language a set of
256 characters, which includes all alphabetical characters (upper- and lowercase),
digits and punctuation marks, and even characters used in graphics and line drawing.
Each of these 256 different characters is represented by anumber between 0 and 255
that it corresponds to. Table 2-5 lists the ASCII values of commonly used characters.

Each of'the 256 different values can be represented by different combinations of 8
bits, or one byte. This is true because 2 equals 256. Thus, 00000000 is equal to 0, the
smallest ASCII value, and 11111111 is equal to 255, the largest ASCII value.

For example, the letter J has the ASCII code 74. The binary equivalent of 74 is
1001010. Thus, 1001010 at a memory address could indicate the letter I.

_—

Facebook's Exhibit No. 1010 - Page 54

C++ Demystified

Dy

Characters Values Comments

0 through 9 48-57 0is 48,9 1s 57
A through Z 65-90 Ais 65, Zis 90
a through z 97-122 ais 97, zis 122

Table 2-5 ASCII Values of Commonly Used Characters

Nore: 1001010 also could indicate the number 74; you wouldn't know which
value was being represented unless you knew the data type associated with that
memory address. In the next chapter, you will learn about variables, which enable
you to associate a particular data type with a specific memory address.

Storage of Strings

The amount of memory required for a string depends on the number of characters in
the string. However, each memory address set aside for the string would store one
character of the string.

The bool Data Type

There is one more data type, bool. This data type has only two possible values, true
and false, and its size usually is one byte. The term “bool” is a shortening of Boolean,
which is usually used in connection with Boolean Algebra, named after the British
mathematician, George Boole.

The bool data type is mentioned separately since it does not neatly fit into either
the number or text categories. It could be regarded as anumeric data type in that zero
is seen as false, and one (or any other non-zero number) as true. While it may not
seem intuitive why zero would be false and one would be true, remember that com-
puters essentially store information in switches, where 1 is on, and 0 is off.

Project: Determining the Size of Data Types

As discussed in the previous Data Types section, the size of each data type depends
on the compiler and operating system you are using. In this project, you will find out
the size of each data type on your system by using the sizeof operator.

——-——-‘

Facebook's Exhibit No. 1010 - Page 55

4

CHAPTER 2 Memory and Data Types %

——€

\

The sizeof Operator

I The sizeof operator is followed by parentheses, in which you place a data type. It re-
turns the size in bytes of that data type.
For example, on my computer, the expression sizeof(int) returns 4. This means

that on my compiler and operating system, the size of an int data type is 4 bytes.

Changing the Source File of Your Project

Try creating and running the next program using the steps you followed in Chapter 1
to create the “Hello World!” program. While you could start a new project, in this ex-
ample, you will reuse the project you used in Chapter 1. It is good to know both how
to create a new project and how to reuse an existing one.

1. Start Visual C++.

2. Use the File | Open Solution menu command to display the Open Solution
dialog box shown in Figure 2-5.

_iFolder Settings

Solution Files (*.sln) ;

Figure 2-5 Opening the Existing Solution

Facebook's Exhibit No. 1010 - Page 56

C++ Demystified

3. Navigate to the folder where you saved the project (C:\temp\helloworld

on my computer) and find the solution file. It has the extension .sln, which
stands for solution. The solution file is helloworld.sln in Figure 2-5.

4. Open the solution file. This should open your project.

5. Display Solution Explorer using the View | Solution Explorer menu
command, and then click the Source Files folder to show the hello.cpp
file, as depicted in Figure 2-6.

aolution Explarer - Hello'Warld

;

i I& Solution 'Helloworld' (1 project)
|2 [E Helloworld
! i~ (& References
&l 3 Source Files
b {21 (TS
- {Z3 Header Files
{3 Resource Files

Figure 2-6 Showing the Existing Source File in Solution Explorer

6. Right-click the hello.cpp file and choose Remove from the shortcut
menu (shown in Figure 2-7). Don’t worry, this will not delete the file,
but instead simply remove it from the project. You still will be able to
use it later if you wish.

~

Solution Explorer - HelloWorld: %]
% fB Solution 'HelloWorld' (1 project)
&1 & Helloworld
i 5] References
- &3 Source Files
R e —

)

{3 Ri Open With...
o E: Dr_mﬁe_._-
% cu o
B3 Copy
%
=

Properties

Figure 2-7 Remove option on Shortcut Menu

Facebook's Exhibit No. 1010 - Page 57

CHAPTER 2 Memory and Data Types ’@M
— <

7. Right-click the Source Files folder and choose Add New Item from the shortcut
. menu. This will display the Add New Item dialog box, shown in Figure 2-8.

:f\._l'll'.l___r-h':'n i.":I!I.J'I - HelloWarld

= Bl

| Windows Form CHFlle(€ph) HTML Pege
(NET) {htm)

g & [«

Stetic HeaderFile MidlFile (id)
Discovery Fi... (hy H

FIh
I

Resource File Server Module-Defin... |
(+c) Response Fi.. File (def)

Figure 2-8 Adding a New Source File to your Project

8. Don’t change the Location field, which holds the subfolder in which the
project files are stored. Type the name of the new source file in the Name
field, such as sizeof.cpp.

9. When you are done, click the Open button. Figure 2-9 shows the new
sizeof.cpp file in Solution Explorer.

| Solution Explorer - HelloWorld

3

lo3 Solution 'HelloWorld' (1 project)
B HelloWorld

L. (& References

4 & &3 Source Files
{ - = sizeofopp
- (&) Header Files
' [B3 Resource Files

Figure 2-9 Solution Explorer showing the new .cpp file

Facebook's Exhibit No. 1010 - Page 58

S e

il M, C++ Demystified

\ g

Double-click sizeof.cpp in Solution Explorer to display the sizeof.cpp file in the
code editing window. At this point, the sizeof.cpp is blank. In the next section, you

will add code.

Code and Output

Write the following code in the source file you have created. I will explain the code
in the following sections.
#include <iostream>

using namespace std;
int main (void)

{
cout << "Size of short is " << sizeof (short) << "\n";
cout << "Size of int is " << sizeof(int) << "\n";
cout << "Size of long is " << sizeof(long) << "\n";
cout << "Size of float is " << sizeof(float) << "\n'":
cout << "Size of double is " << gizeof (double) << "\n";
cout << "8ize of long double is
" << gizeof(long double) << "\n";
cout << "Size of char is " << sizeof(char) << "\n";
cout << "Size of bool is " << sgizeof (bool) << "\n";
return 0; E
}

Next, build and run the project, following the same steps you did for the “Hello
World!” Project in Chapter 1. The resulting output on my computer is

Size of short is 2
Size of int is 4
Size of long is 4
Size of float is 4
Size of double is §
Size of long double is 8 i
Size of char is 1
Size of bool is 1 |

Nore: The numbers displayed onyour computer may be different, because the size
of a data type depends on the particular compiler and operating system you are
using, and yours may not be the same as mine.

——————-—-—ﬂh

Facebook's Exhibit No. 1010 - Page 59

CHAPTER 2 Memory and Data Types

Expressions

The line of code

cout << "Size of int is " << sizeof (int) << "\n";
displays the following output:
size of int is 4

In essence, the code sizeof(int) is replaced by 4 in the output.

The code sizeof(int) is called an expression. An expression is a code statement
that has a value, usually a value that has to be evaluated when the program runs. An
example of an expression is 4 +4, which has a value, 8, that would be evaluated when-
the program runs. :

When the code runs, the expression sizeof(int) is evaluated as having the value 4,
which then is outputted.

By contrast, the portion of the statement within double quotes, “Size of intis,” is
outputted literally as “Size of int is 4.” There is no need for an evaluation. Instead,
this is considered a literal string. The term string refers to the data type, a series of
characters, and the term literal refers to the fact that the string is outputted literally,
without evaluation. The string “Hello World!” in the cout statement in Chapter 1 also
was a literal string.

Outputting an Expression

The expression sizeof(int) is separated by the stream insertion operator (<<) from
the literal string “Size of int is .” If the code statement instead were

cout << "Size of int is sizeof (int)\n";

then the output would be quite different: ¢
Size of int is sizeof (int) -

The reason is sizeof(int), being encased inside the double quotes, would be
treated as a literal string, not an expression, and therefore would not be evaluated,
but instead displayed as is.

Since “Size of int is” is a literal string and sizeof(int) is an expression, they need
to be differentiated before being inserted into the output stream. This differentiation
is done by placing a stream insertion operator between the literal string and the
expression.

I—_

Facebook's Exhibit No. 1010 - Page 60

C++ Demystified

Nore: The string “Size of int is ” ends with a space between “is ” and the following
4. Without that space, the output would be “Size of int is4.” You, as the programmer,
have the responsibility to ensure proper spacing; C++ won’t do it for you.

Escape Sequences

~The string “\n” following the expression sizeof(int) is also a literal string, so it, t0o, is
separated by a stream insertion operator from the sizeof(int) expression. However, “\n”
is a special type of string called an escape sequence.

C++ has many escape sequences, though this may be the commonest one. This
particular escape sequence causes the cursor to go to the next line for further print-
ing. Without it, all the output would be on one line.

The “\n” in a string is not displayed literally by cout even though it is encased
in double quotes. The reason is that the backslash signals cout that this is an escape
sequence.

Table 2-6 shows some of the most common escape sequences.

Escape Sequence Name What It does

\a Alarm Causes the computer to beep

\n newline Causes the cursor to go to the next line

\t Tab Causes the cursor to go to the next tab stop
\ Backslash Causes a backslash to be printed

% Single quote Causes a single quote to be printed

1 Double quote Causes a single quote to be printed

Table 2-6 Common Escape Sequences

Summary

A computer program’s instructions and data have to be in the computer’s memory
for the program to work. There are three principal memory locations on your com-
puter: the central processing unit (CPU), random access memory (RAM), and per-
sistent storage. Computer programs usually use RAM to store instructions and data.

Facebook's Exhibit No. 1010 - Page 61

CHAPTER 2 Memory and Data Types

e |

@
Instructions and data are stored at addresses, represented by a sequential series of

| numbers. A computer stores information in a series of ones and zeroes. Each one or

zero is a bit. However, a computer cannot process information as small as a single

' bit. Eight bits, or one byre, is the smallest unit of information that a computer can

process. Therefore, each address stores one byte of information.

Some information is numeric; other data is textual. Each type of information is
referred to as a data type. The principal data type categories are whole numbers,
floating-point numbers, and text. However, all data types have in common a charac-
teristic of size, which is the number of bytes required to store information of that data
type. A data type’s size also determines its range, which is the highest and lowest
i number that can be stored by that data type.

The size of a data type varies depending on the compiler and operating system.
‘You may use the sizeof operator to determine the size of a data type on your particu-
lar system.

[
- Quiz
w 1. From which of the following types of memory can the CPU most quickly

access instructions or data: cache memory, RAM, or persistent storage?

2. Which of the following types of memory is not temporary: cache memory,
RAM, or persistent storage?

3. What is the amount of information that may be stored at a particular
memory address?

| 4. Is the size of a data type always the same no matter which computer you
may be working on?

. What is meant by the range of a data type?

. What is the difference between an unsigned and signed data type?
What decimal number is represented by 5.1E-3 in E notation?
What is an ASCII value?

What does the sizeof operator do?

10. What is a literal string?

11. What is an expression?

A %

|

Facebook's Exhibit No. 1010 - Page 62

CHAPTER

Variables

Recently, while in a crowded room, someone yelled “Hey, you!” I and a number of
other people looked up, because none of us could tell to whom the speaker was refer-
ring. Had the speaker instead yelled “Hey, Jeff Kent!,” I would have known he was
calling me (unless of course there happened to be another Jeff Kent in the room).

‘We use names to refer to each other. Similarly, when youneed to referin codetoa
particular item of information among perhaps thousands of items of information,
you do so by referring to the name of that information item.

You name information by creating a variable. A variable not only gives you a way
SHE of referring later to particular information, but also reserves the amount of memory
f'{: | necessary to store that information. This chapter will show you how to create vari-

" ables, store information in them, and retrieve information from them.

| Declarmg Variables

You learned in Chapter 2 that the information a program uses while it is running first
needs to be stored in memory. You need to reserve memory before you can store in-
formation there. You reserve memory by declaring a variable.

W
B

Facebook's Exhibit No. 1010 - Page 63

@ C++ Demystified

Declaring a variable not only reserves memory, but also gives you a convenient
way of referring to that reserved memory when you need to do so in your program.
You also learned in Chapter 2 that memory addresses have hexadecimal values such
as 0012FED4. These values are hard to remember. It is much easier to remember in-
formation that, for example, relates to a test score by the name testScore. By declar-
ing a variable, you can refer to the reserved memory by the variable’s name, which is
much easier to remember and identify with the stored information than is the hexa-
decimal address.

While declaring a variable is relatively simple, requiring only one line of code,
much is happening behind the scenes. The program at the end of this section will
show you how to determine the address and size of the memory reserved by declar- -
ing a variable.

Syntax of Declaring Variables

You have to declare a variable before you can use it. Declaring a variable involves
the following syntax:

[data typel] [variable name] ;

The data type may be any of the ones discussed in Chapter 2, including int, float,
bool, char, or string. The data type tells the computer how much memory to reserve.
As you learned in Chapter 2, different data types have different sizes in bytes. If you
specify a data type with a size (on your compiler and operating system) of 4 bytes,"
then the computer will reserve 4 bytes of memory.

You choose the variable name; how you name a variable is discussed later in the
section “Naming the Variable.” The name is an alias by which you can refer in code
to the area of reserved memory. Thus, when you name a variable that relates to a test
score testScore, you can refer in code to the reserved memory by the name festScore
instead of by a hexadecimal value such as 0012FED4.

Finally, the variable declaration ends with a semicolon. The semicolon tells the
compiler that the statement has ended. You can declare a variable either within a
function, such as main, or above all functions, just below any include directives.
Since for now our programs have only one function, main, we will declare all vari-
ables within main. When our programs involve more than one function, we will re-
visit the issue of where to declare variables.

The following statement declares in main an integer variable named testScore.

int main(void)

i

—_*

Facebook's Exhibit No. 1010 - Page 64

CHAPTER 3 Variables

<

int testScore;
return 0;

NOTE: Unlike the code in Chapters 1 and 2, there is no include directive such as
#include <iostream> in this code because this code does not use cout or another
function defined in a standard library file.

i You will receive a compiler error if you refer to a variable before declaring it. In
the following code, the reference to testScore will cause the compiler error “unde-
l clared identifier.”

| int main(void)

' {
testScore;
int testScore;
return 0;

This compiler error will occur even though the variable is declared in the very next
statement. The reason is that the compiler reads the code from top to bottom, so when
it reaches the first reference to testScore, it has not seen the variable declaration.

This “undeclared identifier” compiler error is similar to the one in the “Hello
World!” project in Chapter 1 when we (deliberately) misspelled cout as Cout. Since
testScore is not aname built into C++, like main and int, the compiler does not recog-
nize it. When you declare a variable, then the compiler recognizes further references
to the variable name as referring to the variable that you declared.

Declaring Multiple Variables of the Same Data Type
If you have several variables of the same data type, you could declare each variable
in a separate statement. ’

int testScore;
| int myWeight;
int myHeight;

However, if the variables are of the same data type, you don’t need to declare each
variable in a separate statement. Instead, you can declare them all in one statement, sepa-
rated by commas. The following one statement declares all three integer variables:

int testScore, myWeight, myHeight;

_———

Facebook's Exhibit No. 1010 - Page 65

C++ Demystified

(48)
b T 4
The data type int appears only once, even though three variables are declared. The
reason is that the data type qualifies all three variables, since they appear in the same
statement as the data type.
However, the variables must all be of the same data type to be declared in the same

statement. You cannot declare an int variable and a float variable in the same statement.
Instead, the int and float variables would have to be declared in separate statements.

int testScore;
float myGPA;

Naming the Variable

Variables, like péople, have names, which are used to identify the variable so you can
refer to itin code. There are only a few limitations on how you can name a variable.

» The variable name cannot begin with any character other than a letter
of the alphabet (A—Z or a—z) or an underscore (_). Secret agents may
be named 007, but not variables. However, the second and following
characters of the variable name may be digits, letters, or underscores.

» The variable name cannot contain embedded spaces, such as My Variable,
or punctuation marks other than the underscore character ().

» The variable name cannot be the same as a word reserved by C++, such
as main or int.

» The variable name cannot have the same name as the name of another
variable declared in the same scope. Scope is an issue that will be discussed
in Chapter 8. For present purposes, this rule means you cannot declare two
variables in main with the same name.

Besides these limitations, you can name a variable pretty much whatever you
want. However, it is a good idea to give your variables names that are meaningful. If
youname your variables varl, var2, var3, and so on, up through var! 7, youmay find
it difficult to later remember the difference between var8§ and var9. And if you find it
difficult, imagine how difficult it would be for a fellow programmer, who didn’t even
write the code, to figure out the difference.

In order to preserve your sanity, or possibly your life in the case of enraged fellow
programmiers, I recommend you use a variable name that is descriptive of the pur-
pose of the variable. For example, festScore is descriptive of a variable that repre-
sents a test score. :

The variable name testScore is a combination of two names: test and score. You
can’t have a variable name with embedded spaces such as fest score. Therefore, the

IIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIII-IIIIIIIII----------------—-——-‘j.

Facebook's Exhibit No. 1010 - Page 66

f CHAPTER 3 Variables Ao,
| «@

5 two words are put together, and differentiated by capitalizing the first letter of the sec-
{ ond word. By the convention I use, the first letter of a variable name is not capitalized.
p

| Naming Conventions

A naming convention is simply a consistent method of naming variables. There are a
number of naming conventions. In addition to the one I described earlier, another nam-
ing convention is to name a variable with a prefix, usually all lowercase and consisting
of three letters, that indicate its data type, followed by a word with its first letter capi-
talized, that suggests its purpose. Some examples:

* intScore Integer variable representing a score, such as on a test.

* strName String variable representing a name, such as a person’s name.

e blnResident Boolean variable, representing whether or not someone is
a resident.

It is not particularly important which naming convention you use. What is impor-
tant is that you use one and stick to it.

The Address Operator

Declaring a variable reserves memory. You can use the address operator (&) to learn
the address of this reserved memory. The syntax is

&[variable name]

For example, the following code outputs 0012FED4 on my computer. However,
| the particular memory address for zeszScore on your computer may be different than
0012FED4. Indeed, if I run this program again some time later, the particular mem-

| ory address for festScore on my computer may be different than 0012FED4.

#include <iostream>
| using namespace std;
int main (void) .
' {
int testScore;
F cout << &testScore;
return 0;

'{ The address 0012FED4 is a hexadecimal (Base 16) number. As discussed in
Chapter 2, memory addresses usually are expressed as a hexadecimal number.

:

Facebook's Exhibit No. 1010 - Page 67

The operating system, not the programmer, chooses the address at which to store
a variable. The particular address chosen by the operating system depends on the
data type of the variable, how much memory already has been reserved, and other
factors.

You really do not need to be concerned about which address the operating system
chose since your code will refer to the variable by its name, not its address. However,
as you will learn in Chapter 11 when we discuss pointers, the address operator can be
quite useful.

C++ Demystified

Using the Address and sizeof Operators
with Variables

The amount of memory reserved depends on a variable’s data type. As you learned
in Chapter 2, different data types have different sizes.

In Chapter 2, you used the sizeof operator to learn the size (on your compiler and
operating system) of different data types. You also can use the sizeof operator to deter-
mine the size (again, on your compiler and operating system) of different variables.

The syntax for using the sizeof operator to determine the size of a variable is al-
most the same as the syntax for using the sizeof operator to determine the size of a
data type. The only difference is that the parentheses following the sizeof operator
refers to a variable name rather than a data type name.

The following code outputs the address and size of two variables:

#include <iostream>
using namespace std;
int main(void)
{
short testScore;
float myGPA;
cout << "The address of testScore is "
<< &testScore << "\n";
cout << "The size of testScore is "
<< sizeof (testScore) << "\n";
cout << "The address of myGPA is " << &myGPA << "\n";
cout << "The size of myGPA is "
<< sizeof (myGPA) << "\n";
return 0;

-IlIIIlllllIlI-.IIIllIIlII.lIIl-IIIlII-III-IIlI--I--------—-——————-‘-

Facebook's Exhibit No. 1010 - Page 68

CHAPTER 3 Variables

The output when I ran this program (yours may be different) is

The address of testScore is 0012FED4
The size of testScore is 2

‘ The address of myGPA is 0012FECS8

| The size of myGPA is 4

Figure 3-1 shows how memory is reserved for the two variables. Due to the differ-
ent size of the variables, the short variable, testScore, takes up two bytes of memory,
and the float variable, myGPA, takes up four bytes of memory.

float myGPA short testScore
0012FECS [0012FEC9 | 0012FECA | 0012FEFB 0012FED4 | 0012FED5

Figure 3-1 Memory reserved for declared variables

As Figure 3-1 depicts, the addresses of the two variables are near each other. The
operating system often attempts to do this. However, this is not always possible, de-
pending on factors such as the size of the variables and memory already reserved.

‘ There is no guarantee that two variables will even be near each other in memory.

In Figure 3-1, the value for both memory addresses is unknown. That is because
we have not yet specified the values to be stored in those memory locations. The next
section shows you how to do this.

Assigning Values to Variables

The purpose of a variable is to store information. Therefore, after you have created a
variable, the next logical step is to specify the information that the variable will
store. This is called assigning a value to a variable.

A variable can be assigned a value supplied by the programmer in code. A vari-
able also can be assigned a value by the user, usually via the keyboard, when the pro-
gram is running.
| You may use the assignment operator, which is discussed in the next section, to

specify the value to be stored in a variable. You use the cin object (discussed in the
upcoming section “Using the cin Object”) after the assignment operator, to obtain
the user’s input, usually from the keyboard, and then store that input in a variable.

_

Facebook's Exhibit No. 1010 - Page 69

C++ Demystified

DBy
Assignment Operator

You use the assignment operator to assign a value to a variable. The syntax is
[variable name] = [value];

The assignment operator looks like the equal sign. However, in C++ the =sign is
not used to test for equality; it is used for assignment. As you will learn in Chapter 5,
in C++ the equal sign is ==, also called the equality operator.

The variable must be declared either before, or at the same time, you assign it a
value, not afterwards. In the following example, the first statement declares the vari-
able, and the second statement assigns a value to that variable:

int testScore;
testScore = 95;

The next example concerns initialization, which is when you assign a value to
a variable as part of the same statement that declares that variable:

int testScore = 95;

However, the variable cannot be declared after you assign it a value. The following
code will cause the compiler error “undeclared identifier” at the line testScore =95:

testScore = 95;
int testScore;

As mentioned earlier in the “Declaring Variables” section, this compiler error
will occur even though the variable is declared in the very next line because the com-
piler reads the code from top to bottom, so when it reaches the line testScore =95, it
has not seen the variable declaration.

" The value assigned need not be a literal value, such as 95. The following code assigns
to one integer variable the value of another integer variable.

int a, b; |
a = 44;
b = a;

The assignment takes place in two steps: ;

o First, the value 44 is assigned to the variable a. !
« Second, the value of g, which now is 44, is assigned to the variable b.

You also can assign a value to several variables at once. The following code assigns
0 to three integer variables:

G Bl Jo) i
g1 =" o) eie = ()7

RN DR SHICRE SRR Ry SO S ea I PE DS PSEPHTS PV

Facebook's Exhibit No. 1010 - Page 70

CHAPTER 3 Variables

The assignment takes place in three steps, from right to left:

1. The value 0 is assigned to the variable c.
2. The value of the variable ¢, which now is 0, is next assigned to the variable .

3. The value of the variable b, which now is 0, is assigned to the variable a.

Finally, you can assign a value to a variable after it has already been assigned a value.
The word “variable” means likely to change or vary. What may change or vary is the
variable’s value. The following code demonstrates a change in the value of a variable
that was previously assignéd a value:

#include <iostream>
using namespace std;
int main(void)

{
int testScore;
! testScore = 95;
| cout << "Your test score is " << testScore << "\n";
| testScore = 75;
cout << "Your test score now is " << testScore << "\n";
return 0;
}
i The output is

Your test score 1s 95
Your test score now is 75

Assigning a “Compatible” Data Type

! The value assigned to a variable must be compatible with the data type of the vari-
g able that is the target of the assignment statement. Compatibility means, generally,
| that if the variable that is the target of the assignment statement has a numeric data
type, then the value being assigned must also be a number.
The following code is an example of incompatibility. If it is placed in a program, it
will cause a compiler error.

int testScore;
testScore = "Jeff";

The description of the compiler error is “cannot convert from ‘const char [5]’ to
‘int’.” This is the compiler’s way of telling you that you are trying to assign a string
to an integer, which of course won’t work; “Jeff” cannot represent an integer.

I_-_———

Facebook's Exhibit No. 1010 - Page 71

C++ Demystified

The value being assigned need not necessarily be the exact same data type as the
variable to which the value is being assigned. In the following code, a floating-point

value, 77.83, is being assigned to an integer variable, testScore. The resulting output
is “The test score is 77.”

#include <iostream>
using namespace std;
int main(void)
{
int testScore;
testScore = 77.83;
cout << "The test score is " << testScore << "\n";
return 0;

While the code runs, data is lost, specifically the value to the right of the decimal
point. .83. The fractional part of the number cannot be stored in festScore, that vari-
able being a whole number.

Overflow and Underflow

You may recall from Chapter 2 that the short data type has a range from —32768 to
32767. You can run the following program to see what happens when you attempt
to assign to a variable a value that is compatible (here a whole number for a short data
type) but that is outside its range.

#include <iostream>
using namespace std;
int main{(void)

{

short testScore;
testScore = 32768;
cout << "Your test score is " << testScore << "\n";

return 0;
}
The output is “Your test score is —32768.” That’s right, not 32768, but ~32768.
This is an example of overflow. Overflow occurs when a variable is assigned a
value too large for its range. The value assigned, 32768, is 1 too large for the short
data type. Therefore, the value overflows and wraps around to the data type’s lowest
possible value, —-32768.

l-IIIIlllllIllIllIlIllIIIIIIIIIII-IlIIIII---II--I--I-II-I--l--------‘.-

Facebook's Exhibit No. 1010 - Page 72

CHAPTER 3 Variables

Similarly, an attempt to assign to testScore 32769, which is 2 too large for the
short data type, would result in an output of —32767, an attempt to assign to testScore

32770, which is 3 too large for the short data type, would result in an output of
—32766, and so on. Figure 3-2 illustrates how the overflow value is reached.

0 |
yto-ao7e5| | 1to32764
32767+3 || -32766 A : 32765
32767 + 2 »| 32767 32766 |
32767 +1 F b _so7es | se767 |
. e e Overflow

Figure 3-2 Overflow

The converse of overflow is underflow. Underflow occurs when a variable is as-
signed a value too small for its range. The output of the following code is “Your test
score is 32767.” The value assigned, 32769, is 1 too small for the short data type.
Therefore, the value underflows and wraps around to the data type’s highest possible
value, 32767.

tinclude <iostream>
using namespace std;
int main(void)

{

short testScore;

testScore = -32769;
cout << "Your test score 1is " << testScore << Wiy
return 0;

Similarly, an attempt to assign to testScore —32770, which is 2 too small for the
short data type, would result in an output of 32766, an attempt to assign to testScore
~32771, which is 3 too small for the short data type, would result in an output of
32765, and so on. Figure 3-3 illustrates how the underflow value is reached.

NoOTE: Floating-point variables, of the float or double data type, also may overflow
or underflow. However, the result depends on the compiler used, and may be a run-time
error stopping your program, or instead an incorrect result.

—_——_

Facebook's Exhibit No. 1010 - Page 73

C++ Demystified

0
~1 1o —32765 | : : 1to 32764
32766 i 32765 ¢ 32768 -3 |
-32767 32766 -32768 -2 |
-32768 | 32767 - -32768 - 1
. Underflow " L

Figure 3-3 Underflow

Using the cin Object

Thus far, the programmer has supplied the values that are assigned to variables.
However, most programs are interactive, asking the user to provide information,
which the user then inputs, usually via the keyboard.

In Chapter 1, we used the cout object to output information to a standard output,
usually the monitor. Now we will use the cin object to obtain information from stan-
dard input, which usually is the keyboard. The cin object, like the cout object, is de-
fined in the standard library file <iostream>, which therefore must be included (with
an include directive) if your code uses cin.

The syntax of a cin statement is

cin >> [variable name];

The cin object is followed by >>, which is the stream extraction operator. It obtains
the input, usually from the keyboard, and assigns that input to the variable to its right.

Tip: Knowing when to use >> instead of << can be confusing. It may be helpful to
remember that the >> and << operators each point in the direction that data is
moving. For example in the expression cin >> var, data is moving from standard
input info the variable var. By contrast, in the expression cout >> vav, the <<
indicates that data is moving from the variable var to standard output.

When your program reaches a cin statement, its execution halts until the user
types something at the keyboard and presses the ENTER key. Try running the follow-
ing program. You will see a blinking cursor until you type a number. Once you type a
number and press ENTER, the program will output “Your test score is” followed by
the number you inputted. For example, if you inputted 100, the output will be “Your
test score is 100.”

————)

Facebook's Exhibit No. 1010 - Page 74

CHAPTER 3 Variables

#include <iostream>

| using namespace std;

| int main (void)

{

i int testScore;

cin >> testScore;

cout << "Your. test score 1s " << testScore << "\n";
return 0;

This program is not very user friendly. Unless the user happened to know what
your program did, they would not know what information is being asked of them.
Accordingly, a cin statement usually is preceded by a cout statement telling the user
what to do. This is called a prompt. The following code adds a prompt:

#include <iostream>
using namespace std;
int main(void)
! {
I int testScore;
cout << "Enter your test score: ";
cin >> testScore;
cout << "Your test score is " << testScore << "\n";
return 0;

The program input and output could be

i Enter your test score: 78
{ Your test score is 78

Assigning a “Compatible” Data Type

i

l As with the assignment operator, the value being assigned by the cin operator need

I not necessarily be the exact same data type as that of the variable to which the value

{ is being assigned. In the previous program, entering a floating-point value, 77.83, at

l the prompt for entry of the test score results in the following output: “The test score

t is 77.” Data is lost, though, specifically the part of the number to the right of the deci-
mal point. The cin statement will not read the part of the number to the right of the

decimal point because it cannot be stored in a whole number variable.

| However, the value being assigned by the cin operator must be compatible with
the data type of the variable to which the value is being assigned. In the preceding
program, typing “Jeff” at the prompt for entry of the test score results in the follow-
ing output: “Your test score is —858993460.”

‘.....l..IIIllllllllllllIlllIIIIllIIlllIlI--------------—----'

Facebook's Exhibit No. 1010 - Page 75

C++ Demystified

- Dy

Obviously, —858993460 is not a test score anyone would want. Less obvious is the
reason why that number is outputted.

The string literal “Jeff” cannot be assigned to an integer variable such as
testScore. Therefore, the cin operator will not assign “Jeff” to that integer variable.
Therefore, when the cout statement attempts to output the value of teszScore, that
variable has not yet been assigned a value.

When testScore was declared, there was some value at its memory address left
over from programs previously run on the computer. The cout statement, when try-
ing to output the value of testScore, does the best it can and attempts to interpret this
leftover value. The result of that interpretation is —858993460.

NoOTE: Compile Time vs. Run-Time Difference When Incompatible Data Types
Are Assigned—FEarlier in this chapter, the attempt to assign “Jeff” to testScore
(testScore = “Jeff”’;) resulted in a compiler error. Here, the attempt to assign “Jeff”’
to testScore using a cin statement instead results in an incorrect value. The reason
that this time there is no compiler error is because the value the user would input
could not be known at compile time, but instead would be known only at run time.
Therefore, there would be no compile error, since at the time of compilation there
was no attempt to assign an incompatible value.

Inputting Values for Multiple Variables

If you are inputting values for several variables, you could input them one line at
a time.

#include <iostream>
using namespace std;
int main(void)
{
int myWeight, myHeight;
string myName;
cout << "Enter your name: ";
cin >> myName;
cout << "Enter your weilght in pounds: ";
cin >> myWeight;
cout << "Enter your height in inches: ";
cin >> myHeight;
cout << "Your name score is " << myName << "\n";
cout << "Your weight in pounds is " << myWeight << "\n";
cout << "Your height in inches is " << myHeight << "\n";
return 0;

e e e T W ECEeER m T E 0 mrE e mr——

Facebook's Exhibit No. 1010 - Page 76

CHAPTER 3 Variables

<

The output of the program, with the input of “Jeff” for the name, 200 for the pounds,
and 72 for the height, is

Enter your name: Jeff

Enter vour weight in pounds: 200
Enter your height in inches: 72
Your name is Jeff

Your weight in pounds is 200
Your height in inches is 72

Instead of having separate prompts and cin statements for each variable, you can
have one cin statement assign values to all three variables. The syntax is

cin >> [first variable] >> [second wvariable] >>
[third variable];

The same syntax would work when using one cin statement to assign values to four
or more variables. The variables are separated by the stream extraction operator >>.

When you use one cin statement to assign values to multiple variables, the user
separates each input by one or more spaces. The space tells the cin object that you
have finished assigning a value to one variable and the next input should be assigned
to the next variable in the cin statement. As before, the user finishes input by choos-
ing the ENTER key.

The following program uses one cin statement to assign values to three variables:

#include <iostream>
using namespace std;
#include <string>
int main(void)

{
int myWeight, myHeight;
string name;
cout << "Enter your name, weight in pounds and height
in inches\n";
cout << "The three inputs should be separated by a
space\n"';
cin >> name >> myWeight >> myHeight;
! cout << "Your name is " << name << "\n";
] cout << "Your weight in pounds is " << myWeight << "\n";
cout << "Your height in inches is " << myHeight << "\n';
return 0;
}

The interaction between user input and the cin statement could be as follows:

» The user would type “Jeff,” followed by a space.

'...llllllllIIIIIIIIIllllllllllllllllIIIIIIIIl-III-----------—-—-——————

Facebook's Exhibit No. 1010 - Page 77

C++ Demystified

 The space tells the cin object that the first input has ended, so the cin object
will assign “Jeff” to the first variable in the cin statement, name.

 The user would type 200, followed by a space.

 The space tells the cin object the second input has ended, so the cin object
will assign 200 to the next variable in the cin statement, my Weight.

» The user would type 200, and then press the ENTER key.

* The ENTER key tells the cin object that the third and final input has ended,
so the cin object will assign 72 to the remaining variable in the cin statement,
myHeight, which completes execution of the cin statement.

The resulting program output would be

Enter your name, weight in pounds and height in inches
The three inputs should be separated by a space

Jeff 200 72

Your name is Jeff

Your weight in pounds is 200

Your height in inches is 72

Assigning a “Compatible” Data Type

The data types in the cin statement may be different. In this example, the data type of
the first variable is a string, whereas the data type of the second and third variables
is an integer.

What is important is that the order of the input matches the order of the data types of
the variables in the cin statement. The input order “Jeff;” 200, and 72 is assigned to the
variables in the order of their appearance in the cin statement, nryName, myWeight, and
myHeight. Therefore, “Jeff” is assigned to the string variable myName, 72 to the inte-
ger variable myWeight, and 200 to the integer variable myHeight.

The importance of the order of the input matching the order of the data types of the
variables in the cin statement is demonstrated by changing the order of the user’s input
from “Jeff)” 200, and 72, to 200, “Jeff;” and 72. The program output then would be

Enter your name, welght in pounds and height in inches
The three inputs should be separated by a space

200 Jeff 72

Your name is 200

Your weight in pounds is -858993460

Your height in inches is -858993460

—-—'—'—_‘

Facebook's Exhibit No. 1010 - Page 78

! CHAPTER 3 Variabl e U,
| ariables ‘D’

| While I would like to lose weight, —-858993460 seems a bit extreme. Also, while it

1 is understandable why “Jeff” cannot be assigned to my weight, 72 was not assigned
to my height either.

! The one output that is correct is the name. Any characters, including digits, can be
part of a string. Therefore, while 200 may be an unusual name to us, it is perfectly

' OK for cin, which therefore assigns 200 to the string variable name.

; Why —858993460 was outputted for myWeight also has been explained earlier in

the example in which the user entered “Jeff” at the prompt to enter a test score.

However, 72 would be a valid value for assignment to the integer variable
myHeight. Why then isn’t 72 the output for height?

The reason is that the next value for cin to assign is not 72, but instead “Jeff.”
Since cin was unable to assign “Jeff” to myWeight, the value “Jeff” remains next in
line for assignment, this time to the variable myHeight. Unfortunately, cin is unable
to assign “Jeff” to myHeight either, so the value of myHeight, like myWeight, also is
outputted as —858993460.

, Inputting Multiple Words into a String

| Finally, cin will only take the first word of a string. If in the following program you
input “Jeff Kent” at the prompt, the output will be “Your name is Jeff” not “Your
name is Jeff Kent.”

#include <iostream>

using namespace std;

#include <string>

int main(void)

| i

; string name;

i cout << "Enter your name: ";

cin >> name;

cout << "Your name is " << name;
{ return 0;

The reason why the value of name is outputted only as “Jeff,” omitting “Kent,” is
' that the cin object interprets the space between “Jeff” and “Kent” as indicating that
the user has finished inputting the value of the name variable.
The solution involves using either the get or getline method of the cin object.
These methods will be covered in Chapter 10.

A —————————————————————

Facebook's Exhibit No. 1010 - Page 79

C++ Demystified

g

Overflow and Underflow

The consequences of an overflow or underflow of whole number variables is more
unpredictable with cin than with the assignment operator. Inputting either 32768,
which s 1 more than the highest number in the range of a short data type, or—32769,
1 less than the lowest number in that range, results on my computer in the output
“Your test score is —13108.”

#include <iostream>
using namespace std;
int main(void)
{
short testScore;
testScore = 32768;
cout << "Your test score is " << testScore << "\n";
return 0;

Summary

A variable serves two purposes. It provides you with a way of referring to particular
information, and also reserves the amount of memory necessary to store that infor-
mation.

You must create a variable before you can start using it. You create a variable by
declaring it. You may declare multiple variables of the same type in one statement.

You can use the address operator, &, to determine the address of a variable, and
the sizeof operator to determine the size of a variable.

The purpose of a variable is to store information. Therefore, after you have cre-
ated a variable, the next logical step is to specify the information that the variable
will store. This is called assigning a value to a variable.

A variable can be assigned a value either by the programmer in code or by the
user, usually via the keyboard, when the program is running. You use the assignment
operator to assign a value supplied by code. You use the cin object to assign a value
supplied by the user.

In the next chapter, you will learn how to use variables to perform arithmetic.

_——-————-————-—‘

Facebook's Exhibit No. 1010 - Page 80

CHAPTER 3 Variables

25

Quiz

10.

QORISR = AL RO

What is the effect of declaring a variable?

Can you refer to a variable before declaring it as long as you declare it later?
Can you declare several variables in the same statement?

What is a “naming convention” with respect to variables?

What is the difference between the address and sizeof operators?

What is initialization?

What is overflow?

What is the consequence of using an assignment operator to assign
a string value to an integer variable?

Do you use the cin object for compile time or run-time assignment of
values to variables?

Can you use one cin statement to assign values to several variables of
different data types?

Facebook's Exhibit No. 1010 - Page 81

CHAPTER

i
i
% Making
& Decisions:
= if and switch
&

Statements

pﬁ’fﬁg " The famous poem “The Road Not Taken” by Robert Frost begins: “Two roads di-
!_ M Sih Verged in a yellow wood, and sorry I could not travel both.” This poem illustrates that
PSRRI e, if nothing else, presents us with choices.
1 ‘Similarly, computer programs present their users with choices. So far, for the sake
of simplicity, the flow of each program has followed a relatively straight line, taking
‘a predetermined path from beginning to end. However, as programs become more
i i-,'::{ ~ sophisticated, they often branch in two or more directions based on a choice a user

_————L

Facebook's Exhibit No. 1010 - Page 82

C++ Demystified

Dy
makes. For example, when I am buying books online, I am presented with choices
such as adding another item to my shopping cart, recalculating my total, or checking
out. The program does something different if I add another item to my shopping cart
rather than check out. :

The program determines the action it takes by comparing my choice with the vari-
ous alternatives. That comparison is made using a relational operator. There are rela-
tional operators to test for equality, inequality, whether one value is greater (or less)
than another, and other comparisons.

The code then needs to be structured so different code executes depending on
which choice was made. This is done using either the if statement or the switch case
statement, both of which we’ll discuss in this chapter.

We’ll also discuss flowcharting, which enables you to visually depict the flow of a
program. Flowcharting becomes increasingly helpful as we transition from rela-
tively simple programs that flow in a straight line to more complex programs that
branch in different directions.

Relational Operators

We make comparisons all the time, and so do programs. A program may need to
determine whether one value is equal to, greater than, or less than another value. For
example, if a program calculates the cost of a ticket to a movie in which children less
than 12 get in free, it needs to find out if the customer’s age is less than 12.

Programs compare values by using a relational operator. Table 5-1 lists the rela-
tional operators supported by C++:

Operator Meaning
> Greater than
< Less than

= Greater than or equal to

e Less than or equal to

= Equal to

I= Not equal to

Table 5-1 Relational Operators

—————)

Facebook's Exhibit No. 1010 - Page 83

CHAPTER 5 Making Decisions: if and switch Statements

Relational Expressions

Like the arithmetic operators discussed in the last chapter, the relational operators
are binary—that is, they compare two operands. A statement with two operands and
a relational operator between them is called a relational expression. _

The result of a relational expression is a Boolean value, depicted as either true or
false. Table 5-2 lists several relational expressions, using different relational opera-
tors and their values.

Relational Expression Value
4= true
4 <4 false
4 <=4 true
4>4 false
41=4 false
4 == false
4<5 true
4<=5 true
4>=5 false
41=5 true

Table 5-2 Relational Expressions and Their Values

Table 5-2 uses operands that have literal values. A literal value is a value that can-
not change. 4 is a literal value, and cannot have a value other than the number 4.

Operands may also be variables (which were discussed in Chapter 3). The foliow-
ing program outputs the results of several variable comparisons.

#include <iostream>
using namespace std;
int main (void)
{

shaver ey B2 diaiio = 5g

cout << a << " > " << b << " 1s " << (a > b) << endl;
cout << a << " >= " << b << " is " << {a »>= b) << endl;
cout << a << " == " << Db << " is " << (a == b) << endl;

I...-----------------.--------------—-—-———-——

Facebook's Exhibit No. 1010 - Page 84

t@ ; C++ Demystified
cout << a << " <= " << Db << " ig " << (a <= b) << endl;
cCoUut <= mi<g L <0 de Ip<g " dg " <<€ Ha < D) << endl;

return 0O;

The program’s output is

b D D
i
1

[S2BNE NS,
=
0

= O o

In the output, 0 is false and 1 is true. 0is the integer value of Boolean false, while 1
is the usual integer value of Boolean true. As you may recall from Chapter 1, early
computers consisted of wires and switches in which the electrical current followed a
path that depended on which switches were in the on position (corresponding to the
value one) or the off position (corresponding to the value zero). The on position cor-
responds to Boolean true, the off position to Boolean false.

Cauvrion: While the usual integer value of logical true is 1, any non-zero number
may be logical true. Therefore, in a Boolean comparison, do not compare a value to
1, compare it to true.

The data types of the two operands need not be the same. For example, you could
change the data type of the variable b in the preceding program from an int to a float
and the program still would compile and provide the same output. However, the data
types of the two operands need to be compatible. As you may recall from Chapter 3,
compatibility means, generally, that if one of the variable operands in the relational
expression is a numeric data type, then the expression’s other variable operand must
also be a numeric data type.

For example, the program would not compile if you changed the data type of the
variable b in the preceding program from an int to a string.

Precedence

Relational operators have higher precedence than assignment operators and lower
precedence than arithmetic operators. Table 5-3 lists precedence among relational
operators.

—_———‘_

Facebook's Exhibit No. 1010 - Page 85

CHAPTER 5 Making Decisions: if and switch Statements @
Precedence Operator

Highest >>=< <=

Lowest i

Table 5-3 Precedence of Relational Operators

Operators in the same row have equal precedence. The associativity of relational
operators of equal precedence is from left to right.

Flowcharting

A program, like a river, flows from beginning to end. Programmers may find it help-
ful, both in writing code and in understanding someone else’s code, to visually
depict the flow of the program. After all, as the adage goes, a picture is worth a thou-
sand words. The ability to visualize the flow of a program becomes even more help-
ful as we transition from relatively simple programs that flow in a straight line to
more complex varieties that branch in different directions based on the value of a re-
lational expression.

Programmers use a flowchart to visually depict the flow of a program. Flowcharts
use standardized symbols prescribed by the American National Standard Institute
(ANSI), which prescribes other standards we will be using in this book. These
flowcharting symbols represent different aspects of a program, such as the start or
end of a program, user input, how it displays on a monitor, and so on. These symbols
are joined by arrows and other connectors which show the connections between dif-
ferent parts of the program and the direction of the program flow. Figure 5-1 shows
several commonly used flowchart symbols. Others will be introduced later in this
book as they are used.

The following program from Chapter 4 can be depicted with a flowchart. As you
may recall, this program first assigns to the integer variable total the value inputted
by the user for the number of preregistered students. The program then assigns to the
integer variable added the value inputted by the user for the number of students add-
ing the course. The program then uses the addition operator to add two operands,
total and added. The resulting sum is then assigned to total, which now reflects the

———-L

Facebook's Exhibit No. 1010 - Page 86

|

C++ Demystified ;

(Terminal - Used for the beginning and end of a program
'-\ 4

(|r Display - Used for cout statements

Input - Used for cin statements

P -' i
/"’ /' Data - Used for assignment

‘ " Process - Used for computation or evaluation

Figure 5-1 Commonly used flowchart symbols

total number of students in the course, both preregistered and added. That sum then
is outputted.

#include <iostream>

using namespace std;

int main{void)

{
int total, added;
cout << "Enter number of pre-registered students: ";
@iqy == Eotal;
cout << "Enter number of students adding the course: ";
cin >> added;
total = total + added;
cout << "Total number of students: " << total;
return 0;

Figure 5-2 shows a flowchart of this program.

This program was relatively linear. By contrast, the following programs will
branch in different directions based on the value the user inputs. We will use
flowcharts in later sections of this chapter to help explain how different code exe-
cutes depending on the result of comparisons with the user’s input.

—-—-——-—-‘

Facebook's Exhibit No. 1010 - Page 87

CHAPTER 5 Making Decisions: if and switch Statements

(L) e Prompt for }
J l. students adding
b
,‘ | /S; assigned to tota//"/

’ User inputs number |

2

» Add total and added |

Prompt for pre-
registered students

v

| User inputs number | " total displayed |
F - r
/\put assigned to added;

A v

Input assigned to totai/ End
| &

! Figure 5-2 Flowchart of the program adding preregistered and added students

The if Statement

The if statement is used to execute code only when the value of a relational expres-
sion is true. The syntax of an if statement is

if (Boolean wvalue)
statement;

Both lines together are called an if statement. The first line consists of the if key-
word followed by an expression, such as a relational expression, that evaluates to a
! Boolean value, true or false. The relational (or other Boolean) expression must be in
I parentheses, and should not be terminated with a semicolon.
! The next line is called a conditional statement. As you may recall from Chapter 1,
' a statement is an instruction to the computer, directing it to perform a specific action.
The statement is conditional because it executes only if the value of the relational ex-
pression is true. If the value of the relational expression is false, then the conditional
statement is not executed—meaning, it’s essentially skipped.
The following program, which tests if a whole number entered by the useris even,
illustrates the use of an if statement.

——_—"

Facebook's Exhibit No. 1010 - Page 88

C++ Demystified |

#include <iostream>
using namespace std;
int main(void)
{
int num;
cout << "Enter a whole number: ";
cin >> num;:
R mm R 20 2al el
cout << "The number ig even" << endl;
return 0;

Ifthe user enters an even number, then the program outputs that the number is even.

Enter a whole number: 16
The number is even

However, if the user enters an odd number, then there is no output that the number
is even.

Fnter a whole number: 17

Figure 5-3 is a flowchart of this program. This flowchart has one new symbol:
a diamond. It’s used to represent the true/false statement being tested.

Start ’ |

» num divided by 2
v
Prompt user to
input number / :
_.-"----' -H-H"'*-\.._L
=" Remainder ~.__False End
= "‘m\rfmpared o0 . (i)
1 g |

True

~ Userinputs |
number l

Display the number

Az is even

Input assigned .
to num

Figure 5-3 Flowchart of a program that determines whether a number is even

_————"

Facebook's Exhibit No. 1010 - Page 89

CHAPTER 5 Making Decisions: if and switch Statements

o«

Let’s now analyze how the program works. You may find the flowchart a helpful
visual aid in following this textual explanation.

The program first prompts the user to enter a number. It then stores that input in
the integer variable num.

The program next evaluates the relational expression #num % 2 == 0, which is en-
closed in parentheses following the ifkeyword. That expression involves two opera-
tors, the arithmetic modulus operator (%) and the relational equality operator (===).
Since arithmetic operators have higher precedence than relational operators, the ex-
pression num % 2 will be evaluated first, with the result then compared to zero.

A number is even if, when divided by two, the remainder equals zero. You learned
in Chapter 4 that the modulus operator will return the remainder from integer divi-
sion. Accordingly, the expression num % 2 will divide the number entered by the
user by two, and return the remainder. That remainder then will be compared to zero
using the relational equality operator.

If the relational expression is true, which it would be if the number inputted by
the user is even, then the conditional statement executes, outputting “The number
is even.” If the relational expression is false, which it would be if the number
inputted by the user is odd, then the conditional statement is skipped, and it will
not execute.

Indenting

It is good practice to indent the conditional statement.

if (num % 2 == 0); // don't put a semicolon here!
cout << "The number is even" << endl;

While the compiler doesn’t care whether you indent or not, indentation makes it
easier for you, the programmer, to see that the statement is conditional.

Common Mistakes

During several years of teaching C++ in an introductory programming class, [have
noticed several common mistakes in the writing of if statements. Some of these mis-
takes may result in compiler errors and therefore are easy to spot. However, other
mistakes are harder to pick out since they do not cause an error, either at compile
time or run-time, but instead give rise to illogical results.

——————

Facebook's Exhibit No. 1010 - Page 90

C++ Demystified

Don’t Put a Semicolon after the Relational Expression!

The first common mistake is to place a semicolon after the relational expression:

I (T %) 28 ==); // don't put a semicolon here!
cout << "The number is even" << endl;

Since the compiler generally ignores blank spaces, the following if statement
would be the same, and better illustrates visually the problem:

if (num % 2 == Q0)
; // don't put a semicolon here!
cout << "The number is even" << endl;

No compiler error will result. The compiler will assume from the semicolon that
itis an empty statement. An empty statement does nothing, and though it is perfectly
legal in C++, and indeed sometimes has a purpose, here it is not intended.

One consequence will be that the empty statement will execute if the relational ex-
pression s true. Ifthis comes about, nothing will happen. So far, there is no harm done.

However, there is an additional consequence, an illogical result. The cout state-
ment “The number is even” will execute whether or not the relational expression is
true. In other words, even if an odd number is entered, the program will output “The
number is even.”

Enter a whole number: 17
The number is even

The reason the cout statement will execute whether or not the relational expres-
sion is true is that the cout statement no longer is part of the if statement. Unless you
use curly braces as explained in the next section, only the first statement following
the if keyword and relational expression is conditional. That first conditional state-
ment is the empty statement, by virtue of the semicolon following the if expression.

Curly Braces Needed for Multiple
Conditional Statements

As just discussed, unless you use curly braces (explained later in this section), only
the first statement following the if keyword and relational expression is conditional.
For example, in the following code, only the first cout statement is conditional. The
second cout statement is not, so it will execute whether the relational expression is
true or false:

akr B (i) S3d A== (0,

cout << "The number is even" << endl;
cout << "And the number is not odd" << endl;

Facebook's Exhibit No. 1010 - Page 91

CHAPTER 5 Making Decisions: if and switch Statements @

‘ Norte: The indentation tells the programmer which statement is conditional and
which is not. The compiler ignores indentation.

' Thus, if the user enters an odd number such as 17, the cout statement “The number
* is even” will not display because the relational expression is false. However, the fol-

lowing statement “And the number is not odd” will display because that statement
| does not belong to the if statement.

Enter a whole number: 17
And the number is not odd

If you want more than one statement to be part of the overall if statement, you
must encase these statements in curly braces:

if (num % == ()]
{
cout << "The number is even" << endl;
l cout << "And the number is not odd" << endl;

}

Now the second cout statement will execute only if the if expression is true.
z Forgetting these curly braces when you want multiple statements to be condi-
tional is another common syntax error.

| Don’t Mistakenly Use the Assignment Operator!

The third most common syntax error is to use the assignment operator instead of
the relational equality operator because the assignment operator looks like an
F equal sign:

if (num $ 2 = 0) // wrong operator!
cout << "The number is even" << endl;

The result is that the if expression will not evaluate as the result of a comparison.
Instead, it will evaluate the expression within the parentheses as the end result of the
! assignment, with a non-zero value being regarded as true, a zero value being
' regarded as false.

_i Nore: Some compilers will treat this mistake as a compiler error.

——

~

Facebook's Exhibit No. 1010 - Page 92

C++ Demystified

The if / else Statement

One problem with the program that tests whether a number is even is that there isno
output if the number is odd. While there is a conditional statement if the relational
expression is true, there is no corresponding conditional statement (cout << “The
number 1s odd”) if the relational expression is false.

The solution is to add an else part to the if statement. The result is an if / else state-
ment. The syntax of an if / else statement is

if (relational expression)
conditional statement;
else
conditional statement;

Accordingly, the program may be modified to add an else part to the if statement:

#include <iostream>

using namespace std;

int main(void)

{
int num;
cout << "Enter a whole number: ";
cin >> num;

if (num % —E= 07)

cout << "The number 1is even" << endl;
else

cout << "The number is odd" << endl;
return 0;

Run this code. If the inputted number is even, then the output once again is “The
number is even.” However, if the number is now odd, instead of no output, the output
is “The number is odd.”

Enter a whole number: 17
The number 1s odd

Figure 5-4 uses a flowchart to illustrate this program.

Conditional Operator

This program could be rewritten using the conditional operator.

Facebook's Exhibit No. 1010 - Page 93

CHAPTER 5 Making Decisions: if and switch Statements %%

— 2y
(o=)

| aum divided by 2
Prompt user to
input number X
H"m.
Remainder Display the number
compared to 0 . is even

i i

User inputs
number
' v
Input assigned
to num

Figure 5-4 Flowchart of program output if number is even or odd

Display the number
is even

#include <iostream>
using namespace std;
int main(void)

{
int num;
cout << "Enter a whole number: ";
cin >> num;
cout << "The number is " << (num % 2 == 0 ? "even"
"odd") << endl;
return 0;
}

The syntax of the conditional operator is

[Relational expression] ? [statement if true]
[statement 1f false]

In this example, the relational expression is num % 2 == 0. If the value of the re-
lational expression is true, then the output is “even.” However, if the value of the
relational expression is false, then the output is “odd.”

The conditional operator requires three operands, the relational expression and
the two conditional statements. Therefore, it is considered a ternary operator.

Facebook's Exhibit No. 1010 - Page 94

C++ Demystified

Common Mistakes

Just as with the if statement, I noticed several common syntax mistakes with the else
statement while teaching C++ in introductory programming classes.

No else Without an if

You can have an if expression without an else part. However, you cannot have an else
part without an if part. The else part must be part of an overall if statement. This re-
quirement is logical. The else part works as “none of the above”; without an if part
there is no “above.”

As a consequence, placing a semicolon after the Boolean expression following
the if keyword will result in a compiler error. Since curly braces are not used, the if
statement ends after the empty statement created by the incorrectly placed semico-
lon. The cout statement “The number is even” is not part of the if statement. Conse-
quently, the else part is not part of the if statement, and therefore will be regarded as
an else part without an if part.

if (num % 2 == 0); // don't put a semicolon here
cout << "The number is even" << endl;
else (num % 2 == 1)

cout << "The number is odd" << endl;

Don’t Put a Relational Expression
after the else Keyword!
Another common mistake is to place a relational expression in parentheses after the

else keyword. This will not cause a compiler or run-time error, but it will often cause
an illogical result.

if (num % 2 ==)
cout << "The number is even" << endl;
else (num % ==)

cout << "The number is odd" << endl;

The program will not compile, and the cout statement following the else expres-
sion will be highlighted with an error description such as “missing ‘;’ before identi-
fier ‘cout’.”

Actually, the error description is misleading. There is nothing wrong with the
cout statement. Instead, no relational expression should follow the else keyword.
The reason is that the else acts like “none of the above” in a multiple choice test.

——_——_——J

P

Facebook's Exhibit No. 1010 - Page 95

CHAPTER 5 Making Decisions: if and switch Statements @

If the if expression is not true, then the conditional statements connected to the else
part execute.

| Don't Put a Semicolon after the Else!

Another common mistake is to place a semicolon after the else expression. This too
will not cause a compiler or run-time error, but often will cause an illogical result.
For example, in the following code, the cout statement “The number is odd” will
| output even if the number that’s input is even.
Rl ummt & 20 ==H05)
cout << "The number is even" << endl;

] else; // don't put a semicolon here!
cout << "The number is odd" << endl;

The result of inputting an even number will be

Enter a whole number: 16
The number is even
The number is odd

The cout statement “The number is odd” will execute whether or not the relational
expression is true because the cout statement no longer is part of the if statement.
_ Unless you use curly braces as explained already in connection with the if statement,
| only the first statement following the else keyword is conditional. That first, condi-
| tional statement is the empty statement by virtue of the semicolon following the if
expression. Therefore, the cout statement “The number is odd” is not part of the

if statement at all.

Curly Braces Are Needed for
Multiple Conditional Statements

| As with the if expression, if you want more than one conditional statement to belong

to the else part, then you must encase the statements in curly braces. For example, in
l the following code fragment, the cout statement “This also belongs to the else part”
: will always display whether the number is even or odd since it does not belong to the
if statement.

if (num % 2 ==)

cout << "The number is even" << endl;
else

cout << "The number is odd" << endl;
cout << "This also belongs to the else part";

w———

/.

Facebook's Exhibit No. 1010 - Page 96

r
i

C++ Demystified

<

The sample input and output could be

Enter a whole number: 16
The number is even
This also belongs to the else part

Encasing the multiple conditional statements in curly braces solves this issue.

if { num % 2 ==)
cout << "The number is even" << endl;
else

{

cout << "The number is odd" << endl;
cout << "This also belongs to the else part";

The if /else if /else Statement

The program we used to illustrate the if/else statement involved only two alterna-
tives. Additionally, these alternatives were mutually exclusive; only one could
be chosen, not both. A whole number is either even or odd; it can’t be both and
there is no third alterative. There are many other examples of only two mutually
exclusive alternatives. For example, a person is either dead or alive, male or fe-
male, child or adult.

However, there are other scenarios where there are more than two, mutually ex-
clusive alternatives. For example, if you take a test, your grade may be one of five
types: A, B, C, D, or F. Additionally, these grades are mutually exclusive; you can’t
get an A and a C on the same test.

Since you can have only one if expression and only one else expression in an if
statement, you need another expression for the third and additional alternatives.
That expression is else if.

You use the if / else if / else statement when there are three or more mutually ex-
clusive alternatives. The if/ else if/ else statement has an if part and an else part, like
an 1f/else statement. However, it also has one or more else if parts.

Note: While the if part is required, the else part is not. Without it, the statement
would be named an if / else if statement.

The else if part works similarly to an if expression. The else if keywords are fol-
lowed by a relational expression. If the expression is true, then the conditional state-
ment or statements “belonging” to the else if part execute. Otherwise, they don’t.

—_—_',‘

s
!

Facebook's Exhibit No. 1010 - Page 97

CHAPTER 5 Making Decisions: if and switch Statements

; 2

' While an if statement may include only one if part and one else part, it may in-
' clude multiple else if parts.

The following program shows the if /else if /else statement in action in a program
| that determines your grade based on your test score.

#include <iostream>
using namespace std;
i int main(void)
' {
| int testScore;
cout << "Enter your test score: ";

] cin >> testScore;
if (testScore >= 90)

cout << "Your grade is an A" << endl;
else if (testScore >= 80)

cout << "Your grade is a B" << endl;
else if (testScore >= 70)

cout << "Your grade is a C" << endl;
else 1f (testScore >= 60)

cout << "Your grade is a D" << endl;
else
f cout << "Your grade is an F" << endl;
| return 0;

Here are several sample runs, each separated by a dotted line:

Enter your test score: 77
Your grade is a C

Enter your test score: 91
Your grade 1s an A

Enter your test score: 55
Your grade is an F

Figure 5-5 uses a flowchart to illustrate this program.
In this program, if your test score is 90 or better, then the conditional statement
| belonging to the if part executes, displaying that you received an A. The relational
expressions of each of the following else if patts also are true; if your score is 90 or
better, it also is 80 or better, 70 or better, and so on. However, in an if / else if / else
statement, only the conditional statements in the first part whose relational expres-
sion is true will execute; the remaining parts are skipped.

_——

Facebook's Exhibit No. 1010 - Page 98

C++ Demystified

@‘i -'-.-.."---- EH‘.“ : .
4 testScore >=90 : Display A -

Prompt user to
input test score

{ — User inputs

number

= Display C |

¥ " 4 ; A—"/'
Input assigned /f[

to testScore ;,-'

‘—_) pic. 9 True
" testScore >=60 Display D)_>
r v
(Display F | End “

Figure 5-5 Flowchart depiction of grading program

h 4

Common Syntax Errors

The common syntax errors for the if part discussed earlier in this chapter apply to the
else if part also. Don’t put a semicolon after the relational expression, and multiple
conditional statements must be enclosed in curly braces.

Additionally, just as you cannot have an else part without a preceding if part, you.
cannot have an else if part without a preceding if part. HHowever, you may have an if
part and one or more else if parts without an else part. The downside in omitting the
else part is you will not have code to cover the “none of the above” scenario in which
none of the relational expressions belonging to the if part and else if parts is true.

The switch Statement |

The switch statement is similar to an if /else if /else statement. It evaluates the value
of an integer expression and then compares that value to two or more other values to
determine which code to execute.

————-—-—-—-—_-h

Facebook's Exhibit No. 1010 - Page 99

f CHAPTER 5 Making Decisions: if and switch Statements

il Be,
J,ﬁﬁﬂJiﬁéﬁ

) oL

The following program shows a switch statement in action in a program that de-

termines your average based on your grade:

#include <iostream>
using namespace std;
int main(void)

{
char grade;
cout << "Enter your grade: ";
| cin >> grade;
switch (grade)
{
case 'A':
cout << '"Your average must be between 90 -
<< endl;
break;
gasel BiHa
| cout << "Your average must be between 80 -
<< endl;
k break;
case @'
cout << "Your average must be between 70 -
<< endl;
break;
| case "BY:
| cout << "Your average must be between 60 -
<< endl;
break;
default:
cout << "Your average must be below 60" <<
}
return 0;
}

Here are several sample runs, each separated by a dotted line:

Enter your grade: C
| Your average must be between 70 - 79
Enter your grade: A
| Your average must be between 90 - 100
Enter your grade: F
i Your average must be below 60

100"

89“

79"

69"

endl;

Facebook's Exhibit No. 1010 - Page 100

C++ Demystified

By

Figure 5-6 uses a flowchart to illustrate this program.

Display average
between 90-100 /
Display average }
between 80-89 /
o e s Twe Display average §
N 2 bowen o0)

Prompt user to
input grade

characler

""__Us.er inputs

v b

Input assigned
to grade f False I
..-... ‘H"'-.-\.
I— — e True Display average
{a Jheg ==t e between 60-69 /

(End)

Display average
below 60

Figure 5-6 Flowchart depiction of the grade determination program

Let’s now analyze the program.

The switch keyword evaluates an integer expression, grade. While grade is a char-
acter variable, every character has a corresponding integer value.

Earlier in this chapter, we discussed flowchart symbols prescribed by the Ameri-
can National Standard Institute (ANSI), and mentioned that ANSI also prescribes
other standards that we will be using in this book. One of those other standards is the
ANSI character set, which includes 256 characters, each having an integer value be-
tween 0 and 255. These values also are called ASCII values, since values 0 to 127 of {
the ANSI character set are the same as in the ASCII (American Standard Code for
Information Interchange) character set.

Table 5-4 lists the ANSI/ASCII values for commonly used characters. Note that
digits also can be characters, and that the ANSI/ASCII value of an uppercase charac-
ter is different than the value of the corresponding lowercase character.

“_——h

-

Facebook's Exhibit No. 1010 - Page 101

| CHAPTER 5 Making Decisions: if and switch Statements @
| w7
Character Value
0 48
9 57
A 65
zZ 90
a 97
[z 122

Table 5-4 Selected ANSI/ASCII Values

Each case keyword is followed by an integer expression that must be constant,
that is, it cannot change in value during the life of the program. Therefore, a variable
cannot follow a case keyword. In this program, the constant is a character literal,

| such as A, B, and so on. Each character’s ANSI value is an integer value, and the in-
i teger expression is followed by a colon.

| Cavrion: A common mistake is to follow the integer expression not with a colon
but with a semicolon, which is typically used to terminate statements. This will cause
a compiler error.

|

|

é The default keyword serves the same purpose as an else part in an if /else if /else
statement, and therefore is not followed by an integer expression.

| The integer expression following the switch keyword is evaluated and compared
with the integer constant following each case keyword, from top to bottom. If there
is a match—that is, the two integers are equal—then the statements belonging to that
case are executed. Otherwise, they are not. Thus, the statements belonging to a case
are conditional, just as are statements in an if, else if, or else part. However, unlike an
if /else if /else statement, multiple conditional statements belonging to a case do not
need to be enclosed in curly braces.

Differences Between switch
and if /else if /else Statements

; While a switch statement is si<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>