
Yannis Tsividis

Operation and Modeling of The MOS Transistor Second Edition

ARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Find authenticated court documents without watermarks at docketalarm.com.

Selected List of Symbols

Certain symbols used only locally within a section, or whose meaning is clear from the context, are not included in this list.

Symbol	Description	Section	Symbol	Description	Section
$\overline{C'_b}$	Depletion region capacitance	· · ·	$\overline{I_D}$	Drain current	1.6, 6.6,
	per unit area	2.6			7.2
C_{bd}	Body-drain intrinsic		I _{DB}	Drain-to-body current	6.6
	capacitance	8.3.2	IDS	Drain-to-source current	
C_{bs}	Body-source intrinsic			(channel current)	4.3, 6.6
	capacitance	8.3.2	I'_{DS}	Value of I_{DS} at the onset of	
C_{gb}	Gate-body intrinsic			saturation	4.5.1
	capacitance	8.3.2	IDSN	Nonsaturation <i>I</i> _{DS}	4.5.1
C'_{gb}	Gate-body capacitance per		I _{DS1}	Component of I_{DS} due to drift	4.3
-	unit area	2.6	I_{DS2}	Component of I_{DS} due to	
C_{gd}	Gate-drain intrinsic			diffusion	4.3
	capacitance	8.3.2	I_G	Gate current	4.1, 7.2
C_{gs}	Gate-source intrinsic	- x	I_M	Value of I_{DS} at upper limit	
	capacitance	8.3.2		of weak inversion	8.3.2
C'_i	Inversion layer capacitance		I'_M	Value of I_{DS} at upper limit of	
	per unit area	2.6		weak inversion, normalized	
$C'_{\rm it}$	Interface traps capacitance			ot, ot	4.6
	per unit area	2.6	Is	une current	7.2
$C_j \\ C'_j$	pn junction capacitance	1.5	I_T	Critic port current	7.2
C'_i	pn junction capacitance per		I_Z	Characteristic current in	
, .	unit area	1.5	6	motorie inversion	8.2.7
C_m	Difference between C_{dg}		i _{DA}	Correction approach of drain correct	
	and C_{gd}	9.2.1		drainceptent	7.3
C_{mb}	Difference between C_{db}		i _{SA}	Charging component of	
	and C_{bd}	9.2.1		current	7.3
C_{mx}	Difference between C_{bg}		k	Boltzmann's constant	1.2
	and C_{gb}	9.2.1	L	Effective channel length	1.6
$C_{\rm ox}$	Total oxide intrinsic		l_p N_A	Length of pinchoff region	6.2
	capacitance	8.3.2	N_A	Acceptor concentration	1.2
$C'_{\rm ox}$	Oxide capacitance per		N_D	Donor concentration	1.2
	unit area	2.2	n	1. Free electron concentration	1.2
d_B	Depletion region depth	2.5		2. The quantity $(d\psi_{sa}/dV_{GB})^{-1}$	2.5
E	Electric field		n _i	Intrinsic carrier concentration	1.2
Ec	"Critical" field in velocity		p	Hole concentration	1.2
	saturation formulation	6.5	Q_B	Depletion region charge	7.2
Ex	Longitudinal electric field	6.5	Q'_B	Depletion region charge	
Ê,	Transverse electric field	4.10	۵	per unit area	2.5
8bd [–]	Body-drain small-signal		\hat{Q}_B .	Effective depletion region	60
004	conductance	8.2.3		charge	6.3
g_m	Gate small-signal		Q_I	Inversion layer charge	2.5, 7.2
011	transconductance	8.2.2	Q_I'	Inversion layer charge	25
8mb	Body small-signal		~	per unit area	2.5
C MD	transconductance	8.2.2	Q'_{IL}	Value of Q'_1 at drain end of	4.3
80	Output small-signal		0'	channel Value of Ω' at source and of	7.3
	conductance	8.2.2	Q'_{I0}	Value of Q'_I at source end of	4.3
8 _{sd}	Source-drain small-signal		0	channel Gata charge	4.5
 An 1 An 1	conductance	8.2.2	Q_G	Gate charge Gate charge per unit area	2.5, 7.2
8 _{ss}	Source small-signal		Q'_{G}	Effective interface charge	2.2
	conductance	8.2.2	Q'o	Magnitude of electronic charge	
IB	Body current	4.1, 7.2	<i>q</i> <i>a</i>	Drain-associated inversion	1.4
	· 사람이 가족부탁 수 있는 것같이 가지 않는다. 사람들은 같은 것이 가지 않는 것이 가지 않는다.		q_D	layer charge	7.3
				myor onmeo	

CKF

Α

R

Μ

01

Δ

Symbol	Description	Section	Symbol	Description	Section
	Source-associated inversion		y .	Distance in direction	
As .	layer charge	7:3	· · ·	perpendicular to the surface	2.5
Т	Absolute temperature	1.2	y _m	Gate transadmittance	9.3
	Oxide thickness	2.2	ут У _{тb}	Body transadmittance	9.3
ox	Characteristic voltage in first-	4.0	Уть W	Effective channel width	1.6
V_A			α	Coefficient of first-order term	4.3.2,
	order channel length	6.2	и	in expansion for $-Q'_B/C'_{ox}$	4.5.3
	modulation formula				4.3.2,
V_B	Body voltage	7.2	α_1 .	Value of α for expansion around the source potential	4.5.3
V _{CB}	Channel-body voltage	3.2		*	
V_D .	Drain voltage	7.2	γ	Body effect coefficient	2.5, 3.3
DS	Drain-source voltage	1.6, 4.1	Δ	Symbol denoting a change in	
V' _{DS}	Value of V_{DS} at onset of			the quantity following it	
	saturation	4.5.3	$\Delta \phi$	Difference between the actual	
V _{FB}	Flat band voltage	2.2		strong-inversion surface	
V _G	Gate voltage	7.2		potential and its classical	
V _{GS}	Gate-source voltage	1.6, 4.1		value of $2\phi_F$	2.5
V_{H}	Value of V_{GC} , or of V_{GS} , at		ϵ_o	Permittivity of free space	1.2
' H	onset of strong inversion	3.4, 4.4	$\epsilon_{\rm ox}$	Permittivity of SiO ₂	2.2
V _{HB}	Value of V_{GB} at onset of		ϵ_s	Permittivity of silicon	2.2
' HB	strong inversion	3.4	η	Degree of nonsaturation	4.5.3
V	Value of V_{HB} for two-	511	$\mu, \mu_{\rm eff}$	Effective surface mobility	4.3,
V _{H0}	terminal structure	2.5	m, mett		4.10
1 7	and the second	2.2	· 11	Bulk mobility	1.3
V_L	Value of V_{GC} , or of V_{GS} , at	2111	μ_B $ au$	Transit time	1.2, 7.
	onset of weak inversion	3.4, 4.4	-	Built-in potential <i>pn</i> junction	1.5
V_{LB}	Value of V_{GB} at onset of weak	2.4	$\phi_{\rm bi}$		1.5
	inversion	3.4	ϕ_F	Fermi potential	1.4
V_{L0}	Value of V_{LB} for two-terminal	·	ϕ_{MS}	Contact potential of body	
	structure	2.5		material to gate material	
V_M	Value of V_{GC} , or of V_{GS} , at			("work function difference"	
	onset of moderate inversion	3.4, 4.4		potential)	2.2
V'_{MB}	Value of V_{GB} at onset of		ϕ_t	Thermal voltage, kT/q	1.2
	moderate inversion	3.4	$\phi_{\rm Z}$	Moderate inversion region	
V_{M0}	Value of V_{MB} for two-terminal			width in terms of surface	
mo	structure	2.5		potential	3.4
V_p	Pinchoff voltage	3.5, 4.5	ϕ_{Z0}	Moderate inversion region	
V_Q'	Value of channel-body voltage			width in terms of surface	
2	at the boundary between			potential for two-terminal	
	strong and moderate			MOS structure	2.5
	inversion, for a given V_{GB}	3.5, 4.4	ϕ_0	Surface potential of two-	
Vs	Source voltage	7.2	, 0	terminal MOS structure in	
V_{SB}	Source-body voltage	1.6, 4.1		strong inversion	2.5
	Extrapolated threshold voltage	3.4.2,	$\psi_{\rm ox}$	Oxide potential	2.2
V_T	in terms of V_{GC} or V_{GS}	4.5.3	ψ_s	Surface potential	2.2
\hat{V}_{T}		6.3.2	ψ_{sa}	Surface potential in the	
T V	Effective V_T	0.0.4	Ψsa	absence of inversion layer,	2.5, 3.
V_{TB}	Extrapolated threshold voltage	3.4.2		for a given V_{GB}	4.6
* 7	in terms of V_{GB}	J.4.4	./,	Value of surface potential	
V_{T0}	Value of V_{TB} for two-terminal	050	ψ_{sL}	at drain end of channel	4.3
	structure	2.5.2	.i.		4.5
V_W	Value of channel-body voltage		ψ_{s0}	Value of surface potential	12
	at the boundary between	•		at source end of channel	4.3
	weak inversion and		ω_o	Characteristic angular	0.0.0
	depletion, for a given V_{GB}	3.5, 4.4		frequency	8.3.2
	D 10 1 1	1265	6)	Intrinsic transition angular	
v_d	Drift velocity	1.3, 6.5	ω_{Ti}	frequency	8.3.2

DOCKET A L A R M

Values for some useful quantities

Magnitude of electronic charge, q	$1.602 \times 10^{-19} \text{ C}$				
Thermal voltage, $\phi_t = kT/q$, at 300 K	0.0259 V				
Permittivity of silicon, ϵ_s	1.04×10^{-12} F/cm				
Permittivity of silicon dioxide, $\epsilon_{\rm ox}$	3.45×10^{-13} F/cm				
$\sqrt{2q\epsilon_s}$	$5.79 \times 10^{-16} \mathrm{F} \cdot \mathrm{V}^{1/2} \cdot \mathrm{cm}^{-1/2}$				

Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

D

Α

R

М

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.