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Figure 8.67. A digital delay can replace one-shot delays. |

system clocks is common in synchronous
circuits.

8.23 Timing with counters

As we have just emphasized, there are
many good reasons for avoiding the use of
monostables in logic design. Figure 8.68
Shows another case where flip-flops and
counters (cascaded toggling flip-flops) can
be used in place of a monostable to gener-
ate a long output pulse. The ’4060is a 14-
stage CMOSbinary counter (14 cascaded
flip-flops). A rising edge at the input brings
Q HIGH,enabling the counter. After 2”~1
clock pulses, Q,, goes HIGH,clearing the
flip-flop and the counter. This circuit gen-
erates an accurate long pulse whose length
may be varied by factors of 2. The ’4060

also includes internal oscillator circuitry
that can substitute for the external clock
reference. Our experienceis that the inter-
nal oscillator has poor frequency tolerance
and (in some HC versions) may malfunc-
tion.

You can get complete integrated circuits
to implement timing with counters. The
ICM7240/50/60 (Intersil, Maxim) have 8-
bit or 2-digit internal counters and the
necessary logic to make delays equal to an
integral number of counts (1-255 or 1-99
counts); you can set the numbereither with
“hardwired” connections or with external

thumbwheel switches. The ICM7242 is

similar, but with prewired divide-by-128
counter. Exar makesa close cousin, called
the XR2243, which has a fixed divide-by-
1024 counter.
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SEQUENTIAL FUNCTIONS AVAILABLEASICs’
8.24 Latches and registers

—>| J~«— 8192 clock
TTL periods

output 

, Q,05, °** Or,

I Q> ‘'HC4060
start R .

SEQUENTIAL FUNCTIONS AVAILABLE

AS ICs

As with the combinational functions we
described earlier, it is possible to integrate
various combinations of flip-flops and
gates onto a single chip. In the follow-
ing sections we will present a survey of the
most useful types, listed according to func-
tion.

As with pure combinational logic, pro-
grammable logic (PALs and GALsin par-
ticular) provides an attractive alternative
to the use of prewired sequential functions.
We'll talk about them, also, after looking at
the standard functions.

8.24 Latches andregisters

Latches and registers are used to “hold”
a set of bits; even if the inputs change.
A set of D flip-flops constitutes a register,
but it has more inputs and outputs. than
necessary. Since you don’tneed separate
clocks, or SET and CLEAR inputs, those
lines can be tied together, requiring fewer
pins and therefore allowing 8 flip-flops to
fit in a 20-pin package. The popular ’574
is an octal D register with positive clock
edge and three-state outputs; the ’273 is
similar, but has a reset instead of three-
state outputs. Figure 8.69 shows a quad D
register with both true and complemented
outputs.

The term “latch” is usually reserved
for a special kind of register: one in
which the outputs follow the inputs when

 
Figure 8.68. Digital generation of
long pulses.

enabled, and hold the last value when
disabled. Since the term “latch” has

become ambiguous with use, the terms
“transparent latch” and “type D register”
are often used to distinguish these closely
related devices. As an example, the °573
is the octal transparent-latch equivalent of
the °574 D register.

latched
inputs

p outputs 
Figure 8.69. °175 4-bit D register.

Somevariations on the latch/register are
as follows: (a) random-access memories
(RAMs), which let you write to, and read
from, a (usually large) set of registers, but
only one (or at most a few) at a time;
RAMscome in sizes from a handful of

bytes up to 1M bytes or more andare used
primarily for memory in microprocessor
systems (see Chapters 10 and 11); (b) ad-
dressable latches, a multibit latch that lets
you update individual bits while keeping
the others unchanged; (c) a latch or regis-
ter built into a larger chip, for example a
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digital-to-analog converter; such a device
only needs the input applied momentarily
(with appropriate clocking edge), since an
internal register can hold the data.

Table 8.9 at the end of the chapterlists —
most of the useful registers and latches.
Note features such as input enable, re-
set, three-state outputs, and “broadside”
pinout (inputs on oneside of the chip, out-
puts on the other); the latter is very con-
venient when youare laying out a printed-
circuit board.

8.25 Counters

As we mentioned earlier, it is possible to
make a “counter” by connectingflip-flops —
together. There is available an amazing
variety of such devices as single chips.
Here are some of the features to look for:

Size

You can get BCD (divide-by-10) and bi-
nary (or hexadecimal, divide-by-16) coun-
ters in the popular 4-bit category. There
are larger counters, up to 24 bits (notall
available as outputs), and there are modulo-
n-counters that divide by an integer n,
specified as an input. You can always
cascade counters (including synchronous
types) to get more stages. :

Clocking

An important distinction is whether the
counter is a “ripple” counter or a “syn-
chronous” counter. The latter clocks all

flip-flops simultaneously, whereasin a rip-
ple counter each stage is clocked by the
output of the previous stage. Ripple coun-
ters generate transient states, since the ear-
lier stages toggle slightly before the later
ones. For instance, a ripple counter going
from a count of 7 (0111) to 8 (1000) goes
through the states 6, 4, and 0 along the way.
This doesn’t cause trouble in well-designed
circuits, but it would in a circuit that used

gates to look for a particular state (this is a
good place to use something like a D flip-

. flop, so that the state is examined only at
the clock edge). Ripple counters are slower
than synchronous counters, because of the
accumulated propagation delays. Ripple

-counters clock on negative-going edges for
easy expandability (by connecting the Q
output of one counter directly to the clock
input of the next); synchronous counters
clock on the positive edge.

We favor the °160-"163 family of 4-
bit synchronous counters for most applica-
tions that don’t require some special fea-
ture. The ’590 and °592 are good 8-bit
synchronous counters. Figure 8.70 shows
the 390 dual BCD ripple counter.

 
Figure 8.70. 390 dual BCDripple counter.

Up/down

Some counters can count in either direc-

tion, under control of some inputs. The
two possibilities are (a) an U/D’inputthat
sets the direction of count and (b) a pair
of clocking inputs, one for UP, one for
DOWN.Examples are the 7191 and 7193,
respectively. The ’569 and ’579 are useful
8-bit up/down counters.

Load and clear

Most counters have data inputs so that

they can be preset to a given count. This
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is handy if you want to make a modulo-
n counter, for example. The loadfunc-
tion can be either synchronous or asyn-
chronous: the ’160-’163 have synchronous
load, which means that data on the input
lines are transferred to the counter coinci-
dentwith the next clock edge,if the LOAD’
line is also asserted LOW; the ’190-193
are asynchronous, or jam-load, which

' means that input data are transferred to
the counter when LOAD’isasserted, inde-
pendent of the clock. The term “parallel
load” is sometimes used, since all bits are
loaded at the sametime.

The CLEAR (or RESET) function is a _
form of presetting. The majority of coun-
ters have a jam-type CLEAR function,
though some have synchronous CLEAR;
for example,the ’160/161 are jam CLEAR,
while the 7°162/163 are synchronous
CLEAR.

Other counter features

Some counters feature latches on the out-

put lines; these are always of the transpar-
ent type, so the counter can be used as
if no latch were present. (Keep in mind
that any counter with parallel-load inputs
can function as latch, but you can’t count
at the same time as data are held, as you
can with a counter/latch chip.) The combi-
nation of counter plus latch is sometimes
very convenient, e.g., if you want to dis-
play or output the previous count while

_ beginning a new counting cycle. In a fre-
quency counter this would allow a stable
display, with updating after each counting
cycle, rather than a display that repeatedly

gets reset to zero and then counts up.
There are counters with three-state out-

puts. These are great for applications
wherethe digits (or 4-bit groups) are multi-
plexed onto’a busfor display or transfer to
someother device. An example is the 779,
an 8-bit synchronous binary counter whose
three-state outputs also serve as parallel
inputs; by sharing input/output lines, the

8.26 Shift registers

counterfits in a 16-pin package. The 593
is similar, but in a 20-pin package.

If you want a counter to use with a
display, there are several that combine
counter, latch, 7-segment decoder, and
driver on one chip. An example is the
74C925-74C928series of 4-digit counters.
Another amusing chip is the TIL306/7, a
counter with display on one chip: You
just look at the IC, which lights up with a
digit telling the count! Figure 8.71 shows
a nice LSI (large-scale-integration) counter
circuit that doesn’t require a lot of support
circuits.

Table 8.10 at the end of the chapter
lists most of the counter chips that you
might want to use. Manyof them are only
available in one family (e.g., LS or F), so
be sure to checkthe data books before you
design with them.

8.26 Shift registers

If you connect a series of flip-flops so
that each Q output drives the next D
input, and all clock inputs are driven
simultaneously, you get. what’s called a
“shift register.” At each clock pulse the
pattern of 0’s and 1’s in the register shifts
to the right, with the data at the first D
input entering from the left. As with flip-
flops, the data present at the serial input
just prior to the clock pulse are entered,
and there is the usual propagation delay to
the outputs. Thus they may be cascaded
without fear of a logic race. Shift registers
are very useful for conversion of parallel
data (n bits present simultaneously, on n
separate lines) to serial data (one bit after
another, on a single data line), and vice
versa. They’re also handy as memories,
particularly if the data are always read and
written in order. As with counters and

latches, shift registers come in a pleasant
variety of prefab styles. The important
things to look for are the following:
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INPUT A

INPUT 8B

oD,
FREQUENCY

PERIOD
FREQUENCY RATIO

TIME INTERVAL
UNIT COUNTER

OSCILLATOR FREQ.

Size

The 4-bit and 8-bit registers are standard,
with some larger sizes available (up to
64 bits or more). There are even variable-
length registers (e.g., the 4557: 1 to 64
stages, set by a 6-bit input).

Organization

Shift registers are usually 1 bit wide, but
there are also dual-, quad-, and hex-
width registers. Most shift registers only
shift right, but there are bidirectional
registers like the 7194 and ’323 that have
a “direction” input (Fig. 8.72). Watch
out for trickery like the “bidirectional”
°95, which can shift left-only by tying
each output bit to the previous input, then
doing a parallel load.

vt DISPLAY DISPLAYBLANK

  
1OMHz

  
22M2

 

 
 
   

  
  
  

_ Figure 8.71. Intersil 7216 8-digit 1OMHz universal counter on a chip. (Courtesy ofIntersil, Inc.)

Inputs and outputs

Small shift registers can provide parallel
inputs or outputs, and usually do; an
example is the ’395, a 4-bit parallel-in,
parallel-out (PI/PO) shift register with
three-state outputs. Larger registers may
only provide serial input or output, i.e.,
only the input to the first flip-flop or the
output from the last is accessible. In some
cases a few selected intermediate taps are
provided. One way to provide both par-
allel input and output in a small package
is to share input and output (three-state)
on the same pins, e.g., the ’°299, an 8-
bit bidirectional PI/PO register in a 20-
pin package. Some shift registers include
a latch at the inpUt or output, so shifting
can go on while data are being loaded or
unloaded.

As with counters, parallel LOAD and

EXT
osc
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CRYSTAL Y WY
D7 Do

3 extOQ OSC
INPUT

SEC, GYCLESDo «01 1.0
D, 04 10.0
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outputs

 
  5 ' inputRESET 194 (shift left)

input
(shift right)

So Si

 
 

mode _ Parallel-load
inputs: inputs

 
0 INHIBIT

0 SHIFT R

1 SHIFT 2

1 PARALLEL
LOAD

Figure 8.72.
register.

194 4-bit bidirectional shift

CLEARcanbeeither synchronousor jam-
load; for example, the ’323 is the same as
the ’299, but with synchronousclear.

Table 8.11 at the end of the chapterlists
the shift registers you’re likely to use. As
always, not all types are available in all
logic families; be sure to check the data
books.

RAMsasshift registers

A random-access memory can always be |
used as a shift register (but not vice versa)
by using an external counter to generate
successive addresses. Figure 8.73 shows
the idea. An 8-bit synchronous up/down
counter generates successive addresses for
a 256-word x 4-bit CMOS RAM.The com-

bination behaveslike a. quad 256-bit shift
register, with left/right direction of shift
selected by the counter’s UP/DOWN’con-
trol line. The other inputs of the counter
are shown enabled for counting. By choos-
ing a fast counter and memory, we were
able to achieve a maximum clocking rate

of 30MHz (see timing diagram), which
is the same as that of an integrated (but
much smaller) HC-type shift register. This
technique can be used to produce very

large shift registers, if desired.

EXERCISE 8.28

In the circuit of Figure 8.73, input data seem to
go into the same location that output data are
read from. Nevertheless, the circuit behaves

identically to a classic 256-word shift register.
Explain why. ,

/

8.27 Sequential PALs

The combinational (gates-only) PALs we ©
talked about in Section 8.15 belong to a
larger family that includes devices with
various numbers of on-chip D-type reg-
isters (called “registered PALs”). Typical
of these PALs is the 16R8, shown in Fig-
ure 8.74. The programmable-AND/fixed-
OR array typical of combinational PALs
generates the input levels for 8 synchro-
nously clocked D-type registers with three-
state outputs; the register outputs (and
their inverts) are available, along with the
standard input pins, as inputs to the logic
array. If you look back at Figure 8.57,
you’ll see that a registered PALis a general-
purpose sequential circuit element; within
limits set by the numberof registers and
gates available, you can construct just
about anything you want. For instance,
you could makea shift register or counter,
or some of both! In practice, you’re more
likely to make some custom piece. of logic
that is part of a larger circuit, for which
the alternative is “discrete” logic built with
gates andflip-flops. Let’s look at some ex-
amples.

Hand-generated fuse maps

Simple designs caribe implemented in
PALs byfiguring out the logic, then burn-
ing the appropriate pattern into the fuse
array with a “PAL programmer.” As an
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example, let’s imagine we want a 4-input
multiplexer with latched outputs. We can .
write the logic equation for the multiplexer
portion(i.e., the D-input to the flip-flop) as

Q.d =Ip * So * Sy + 1, * So * S4

+ Ip * SG * $1 + Ig * So * St

> 74F574

 
 

  

 

 

 

all delays in ns

Figure 8.73. A. Large shift register made
from RAM plus counter; the slash indi-
cates multiple lines, in this case a
4-bit-wide data path.
B. Timing diagram to calculate maxi-
mumclocking rate, assuming worst-case
timing specifications.
'C. Calculation showing worst-case se-
quence of delays in a single clock cycle.

where the inputs Sp and S; address the
selected input Jo-J3; and “x” and “+”
represent AND. and OR.A registered PAL
makes it easy to latch the result. Note
that we have used the OR of 3-input
ANDs,rather than first decodingthe select
address in 2-input ANDs, because we

 


