
 흘뮴

TK 7815 . H67 1989

THE ART OF ELECTRONICS

Second Edition

Paul Horowitz нamumadunvesstry

CAMBRIDGE UNIVERSITY PRESS

Cambridge
New York Port Chester Melbourne Sydney Published by the Press Syndicate of tUne University of Cambridge The Pitt Building, Trumpington Street Cambridge dipl 1 RP

(C) Cambridge University Press 1980, 1989

First published 1980
Second edition 1989

Printed in the United States of America

Library of Congress Cataloging-in-Publication Data
Horowitz, Paul, 1942-
The art of electronics / Paul Horowitz, Winfield Hill. - and ed.
p. cm .

Bibliography: p.
Includes index.
ISBN 0-521-37095-7

1. Electronics. 2. Electronic circuit design. I. Hill,

Winfield. II. Title.
TK7815.H67 1989
621.381 - decl

89-468
DIP

British Library Cataloguing in Publication Data

Horowitz, Paul, 1942-
The art of electronics. - ind ed.

1. Electronic equipment
I. Title II. Hill, Winfield
621.381

ISBN 0-521-37095-7 hard covers
大 49.50

TO CAROL, JACOB, MISHA, AND GINGER

CONTENTS

List of tables xvi
Preface xix
Preface to first edition xxi
CHAPTER 1
FOUNDATIONS 1
Introduction 1
Voltage, current, and resistance 2
1.01 Voltage and current 2
1.02 Relationship between voltage and current: resistors 4
1.03 Voltage dividers 8
1.04 Voltage and current sources 9
1.05 Thévenin's equivalent circuit 11
1.06 Small-signal resistance 13
Signals 15
1.07 Sinusoidal signals 15
1.08 Signal amplitudes and decibels 16
1.09 Other signals 17
1.10 Logic levels 19
1.11 Signal sources 19
Capacitors and ac circuits 20
1.12 Capacitors 20
$1.13 R C$ circuits: V and I versus time 23
1.14 Differentiators 25
1.15 Integrators 26
Inductors and transformers 28
1.16 Inductors 28
1.17 Transformers 28
Impedance and reactance 29
1.18 Frequency analysis of reactive circuits 30
1.19 RC filters 35
1.20 Phasor diagrams 39
1.21 "Poles" and decibels per octave 40
1.22 Resonant circuits and active filters 41
1.23 Other capacitor applications 42
1.24 Thévenin's theorem generalized 44
Diodes and diode circuits 44
1.25 Diodes 44
1.26 Rectification 44
1.27 Power-supply filtering 45
1.28 Rectifier configurations for power supplies 46
1.29 Regulators 48
1.30 Circuit applications of diodes 48
1.31 Inductive loads and diode protection 52
Other passive components 53
1.32 Electromechanical devices 53
1.33 Indicators 57
1.34 Variable components 57
Additional exercises 58
CHAPTER 2
TRANSISTORS 61
Introduction 61
2.01 First transistor model: current amplifier 62
Some basic transistor circuits 63
2.02 Transistor switch 63
2.03 Emitter follower 65
2.04 Emitter followers as voltageregulators 68
2.05 Emitter follower biasing 69
2.06 Transistor current source 72
2.07 Common-emitter amplifier 76
2.08 Unity-gain phase splitter 77
2.09 Transconductance 78
Ebers-Moll model applied to basictransistor circuits 79
2.10 Improved transistor model: transconductance amplifier 79
2.11 The emitter follower revisited 81
2.12 The common-emitter amplifier revisited 82
2.13 Biasing the common-emitter amplifier 84
2.14 Current mirrors 88
Some amplifier building blocks 9
2.15 Push-pull output stages 91
2.16 Darlington connection 94
2.17 Bootstrapping 96
2.18 Differential amplifiers 98
2.19 Capacitance and Miller effect 102
2.20 Field-effect transistors 104
Some typical transistor circuits 104
2.21 Regulated power supply 104
2.22 Temperature controller 105
2.23 Simple logic with transistors and diodes 107
Self-explanatory circuits 107
2.24 Good circuits 107
2.25 Bad circuits 107
Additional exercises 107
CHAPTER 3
FIELD-EFFECT TRANSISTORS 113
Introduction 113
3.01 FET characteristics 114
3.02 FET types 117
3.03 Universal FET characteristics 119
3.04 FET drain characteristics 121
3.05 Manufacturing spread of FET characteristics 122
Basic FET circuits 124
3.06 JFET current sources 125
3.07 FET amplifiers 129
3.08 Source followers 133
3.09 FET gate current 135
3.10 FETs as variable resistors 138
FET switches 140
3.11 FET analog switches 141
3.12 Limitations of FET switches 144
3.13 Some FET analog switch examples 151
3.14 MOSFET logic and powerswitches 153
3.15 MOSFET handlingprecautions 169
Self-explanatory circuits 171
3.16 Circuit ideas 171
3.17 Bad circuits 171 vskip6pt
CHAPTER 4
FEEDBACK AND OPERATIONALAMPLIFIERS 175
Introduction 175
4.01 Introduction to feedback 175
4.02 Operational amplifiers 176
4.03 The golden rules 177
Basic op-amp circuits 177
4.04 Inverting amplifier 177
4.05 Noninverting amplifier 178
4.06 Follower 179
4.07 Current sources 180
4.08 Basic cautions for op-ampcircuits 182
An op-amp smorgasbord 183
4.09 Linear circuits 183
4.10 Nonlinear circuits 187
A detailed look at op-amp behavior 188
4.11 Departure from ideal op-amp performance 189
4.12 Effects of op-amp limitations oncircuit behavior 193
4.13 Low-power and programmableop-amps 210
A detailed look at selected op-ampcircuits 213
4.14 Logarithmic amplifier 213
4.15 Active peak detector 217
4.16 Sample-and-hold 220
4.17 Active clamp 221
4.18 Absolute-value circuit 221
4.19 Integrators 222
4.20 Differentiators 224
Op-amp operation with a single powersupply 224
4.21 Biasing single-supply ac amplifiers 225
4.22 Single-supply op-amps 225
Comparators and Schmitt trigger 229
4.23 Comparators 229
4.24 Schmitt trigger 231
Feedback with finite-gain amplifiers232
4.25 Gain equation 232
4.26 Effects of feedback on amplifier circuits 233
4.27 Two examples of transistor amplifiers with feedback 236
Some typical op-amp circuits 238
4.28 General-purpose lab amplifier 238
4.29 Voltage-controlled oscillator 240
4.30 JFET linear switch with R_{ON} compensation 241
4.31 TTL zero-crossing detector 242
4.32 Load-current-sensing circuit 242
Feedback amplifier frequencycompensation242
4.33 Gain and phase shift versus frequency 243
4.34 Amplifier compensation methods 245
4.35 Frequency response of the feedback network 247
Self-explanatory circuits 250
4.36 Circuit ideas 250
4.37 Bad circuits 250
Additional exercises 251
CHAPTER 5
ACTIVE FILTERS AND OSCILLATORS 263
Active filters 263
5.01 Frequency response with $R C$ filters 263
5.02 Ideal performance with $L C$ filters 265
5.03 Enter active filters: an overview 266
5.04 Key filter performance criteria 267
5.05 Filter types 268
Active filter circuits 272
5.06 VCVS circuits 273
5.07 VCVS filter design using our simplified table 274
5.08 State-variable filters 276
5.09 Twin-T notch filters 279
5.10 Gyrator filter realizations 281
5.11 Switched-capacitor filters 281
Oscillators 284
5.12 Introduction to oscillators 284
5.13 Relaxation oscillators 284
5.14 The classic timer chip: the 555 286
5.15 Voltage-controlled oscillators 291
5.16 Quadrature oscillators 291
5.17 Wien bridge and $L C$ oscillators 296
5.18 LC oscillators 297
5.19 Quartz-crystal oscillators 300
Self-explanatory circuits 303
5.20 Circuit ideas 303
Additional exercises 303
CHAPTER 6
VOLTAGE REGULATORS AND POWER CIRCUITS 307
Basic regulator circuits with theclassic 723307
6.01 The 723 regulator 307
6.02 Positive regulator 309
6.03 High-current regulator 311
Heat and power design 312
6.04 Power transistors and heat sinking 312
6.05 Foldback current limiting 316
6.06 Overvoltage crowbars 317
6.07 Further considerations in high- current power-supply design 320
6.08 Programmable supplies 321
6.09 Power-supply circuit example 323
6.10 Other regulator ICs 325
The unregulated supply 325
6.11 ac line components 326
6.12 Transformer 328
6.13 dc components 329
Voltage references 331
6.14 Zener diodes 332
6.15 Bandgap ($V_{B E}$) reference 335
Three-terminal and four-terminal regulators 341
6.16 Three-terminal regulators 341
6.17 Three-terminal adjustable regulators 344
6.18 Additional comments about 3-terminal regulators 345
6.19 Switching regulators and dc-dc converters 355
Special-purpose power-supplycircuits 368
6.20 High-voltage regulators 368
6.21 Low-noise, low-drift supplies 374
6.22 Micropower regulators 376
6.23 Flying-capacitor (charge pump) voltage converters 377
6.24 Constant-current supplies 379
6.25 Commercial power-supply modules 382
Self-explanatory circuits 384
6.26 Circuit ideas 384
6.27 Bad circuits 384
Additional exercises 384

CHAPTER 7

PRECISION CIRCUITS AND LOW-NOISE

 TECHNIQUES 391Precision op-amp design techniques 391
7.01 Precision versus dynamic range 391
7.02 Error budget 392
7.03 Example circuit: precision amplifier with automatic null offset 392
7.04 A precision-design error budget 394
7.05 Component errors 395
7.06 Amplifier input errors 396
7.07 Amplifier output errors 403
7.08 Auto-zeroing (chopper-stabilized) amplifiers 415
Differential and instrumentation amplifiers 421
7.09 Differencing amplifier 421
7.10 Standard three-op-amp instrumentation amplifier 425
Amplifier noise 428
7.11 Origins and kinds of noise 430
7.12 Signal-to-noise ratio and noise figure 433
7.13 Transistor amplifier voltage and current noise 436
7.14 Low-noise design with transistors 438
7.15 FET noise 443
7.16 Selecting low-noise transistors 445
7.17 Noise in differential and feedback amplifiers 445
Noise measurements and noise
sources 449
7.18 Measurement without a noise source 449
7.19 Measurement with noise source 450
7.20 Noise and signal sources 452
7.21 Bandwidth limiting and rms voltage measurement 453
7.22 Noise potpourri 454

Interference: shielding and grounding 455
7.23 Interference 455
7.24 Signal grounds 457
7.25 Grounding between instruments 457

Self-explanatory circuits 466
7.26 Circuit ideas 466

Additional exercises 466
CHAPTER 8
DIGITAL ELECTRONICS
Basic logic concepts 471
8.01 Digital versus analog 471
8.02 Logic states 472
8.03 Number codes 473
8.04 Gates and truth tables 478
8.05 Discrete circuits for gates 480
8.06 Gate circuit example 481
8.07 Assertion-level logic notation 482

TTL and CMOS 484
8.08 Catalog of common gates 484
8.09 IC gate circuits 485
8.10 TTL and CMOS characteristics 486
8.11 Three-state and open-collector devices 487
Combinational logic 490
8.12 Logic identities 491
8.13 Minimization and Karnaugh
maps 492
8.14 Combinational functions available as ICs 493
8.15 Implementing arbitrary truth
tables 500

Sequential logic 504
8.16 Devices with memory: flip-
flops 504
8.17 Clocked flip-flops 507
8.18 Combining memory and gates: sequential logic 512
8.19 Synchronizer 515

Monostable multivibrators 517
8.20 One-shot characteristics 517
8.21 Monostable circuit example 519
8.22 Cautionary notes about
monostables 519
8.23 Timing with counters 522

Sequential functions available as ICs 523
8.24 Latches and registers 523
8.25 Counters 524
8.26 Shift registers 525
8.27 Sequential PALs 527
8.28 Miscellaneous sequential functions 541
Some typical digital circuits 544
8.29 Modulo- n counter: a timing example 544

8.30 Multiplexed LED digital
display 546
8.31 Sidereal telescope drive 548
8.32 An n-pulse generator 548

Logic pathology 551
8.33 dc problems 551
8.34 Switching problems 552
8.35 Congenital weaknesses of TTL and
CMOS 554

Self-explanatory circuits 556
8.36 Circuit ideas 556
8.37 Bad circuits 556

Additional exercises 556
CHAPTER 9
DIGITAL MEETS ANALOG 565
CMOS and TTL logic interfacing 565
9.01 Logic family chronology 565
9.02 Input and output characteristics 570
9.03 Interfacing between logic families 572
9.04 Driving CMOS amd TTL inputs 575
9.05 Driving digital logic from comparators and op-amps 577
9.06 Some comments about logicinputs 579
9.07 Comparators 580
9.08 Driving external digital loads from CMOS and TTL 582
9.09 NMOS LSI interfacing 588
9.10 Opto-electronics 590
Digital signals and long wires 599
9.11 On-board interconnections 599
9.12 Intercard connections 601
9.13 Data buses 602
9.14 Driving cables 603
Analog/digital conversion 612
9.15 Introduction to A/D conversion 612
9.16 Digital-to-analog converters(DACs) 614
9.17 Time-domain (averaging) DACs 618
9.18 Multiplying DACs 619
9.19 Choosing a DAC 619
9.20 Analog-to-digital converters 621
9.21 Charge-balancing techniques 626
9.22 Some unusual A/D and D/A converters 630
9.23 Choosing an ADC 631
Some A/D conversion examples 636
9.24 16-Channel A/D data-acquisition system 636
$9.253 \frac{1}{2}$-Digit voltmeter 638
9.26 Coulomb meter 640
Phase-locked loops 641
9.27 Introduction to phase-locked loops 641
9.28 PLL design 646
9.29 Design example: frequency multiplier 647
9.30 PLL capture and lock 651
9.31 Some PLL applications 652
Pseudo-random bit sequences and noise generation 655
9.32 Digital noise generation 655
9.33 Feedback shift register sequences 655
9.34 Analog noise generation from maximal-length sequences 658
9.35 Power spectrum of shift register sequences 658
9.36 Low-pass filtering 660
9.37 Wrap-up 661
9.38 Digital filters 664
Self-explanatory circuits 667
9.39 Circuit ideas 667
9.40 Bad circuits 668
Additional exercises 668
CHAPTER 10 MICROCOMPUTERS 673
Minicomputers, microcomputers, and microprocessors 673
10.01 Computer architecture 674
A computer instruction set 678
10.02 Assembly language and machine language 678
10.03 Simplified 8086/8 instruction set 679
10.04 A programming example 683
Bus signals and interfacing 684
10.05 Fundamental bus signals: data, address, strobe 684
10.06 Programmed I/O: data out 685
10.07 Programmed I/O: data in 689
10.08 Programmed I/O: status registers 690
10.09 Interrupts 693
10.10 Interrupt handling 695
10.11 Interrupts in general 697
10.12 Direct memory access 701
10.13 Summary of the IBM PC's bus signals 704
10.14 Synchronous versus asynchronous bus communication 707
10.15 Other microcomputer buses 708
10.16 Connecting peripherals to the computer 711
Software system concepts 714
10.17 Programming 714
10.18 Operating systems, files, and use of memory 716
Data communications concepts 719
10.19 Serial communication and ASCII 720
10.20 Parallel communication:Centronics, SCSI, IPI,GPIB (488) 730
10.21 Local area networks 734
10.22 Interface example: hardware data packing 736
10.23 Number formats 738
CHAPTER 11
MICROPROCESSORS 743
A detailed look at the 68008 744
11.01 Registers, memory, and I/O 744
11.02 Instruction set and addressing 745
11.03 Machine-language representation 750
11.04 Bus signals 753
A complete design example: analog signal averager 760
11.05 Circuit design 760
11.06 Programming: defining the task 774
11.07 Programming: details 777
11.08 Performance 796
11.09 Some afterthoughts 797
Microprocessor support chips 799
11.10 Medium-scale integration 800
11.11 Peripheral LSI chips 802
11.12 Memory 812
11.13 Other microprocessors 820
11.14 Emulators, development systems, logic analyzers, and evaluation boards 821
CHAPTER 12
ELECTRONIC CONSTRUCTION
TECHNIQUES 827
Prototyping methods 827
12.01 Breadboards 827
12.02 PC prototyping boards 828
12.03 Wire-Wrap panels 828
Printed circuits 830
12.04 PC board fabrication 830
12.05 PC board design 835
12.06 Stuffing PC boards 838
12.07 Some further thoughts on PC boards 840
12.08 Advanced techniques 841
Instrument construction 852
12.09 Housing circuit boards in an instrument 852
12.10 Cabinets 854
12.11 Construction hints 855
12.12 Cooling 855
12.13 Some electrical hints 858
12.14 Where to get components 860
CHAPTER 13
HIGH-FREQUENCY AND HIGH-SPEED TECHNIQUES 863
High-frequency amplifiers 863
13.01 Transistor amplifiers at high frequencies: first look 863
13.02 High-frequency amplifiers: the ac model 864
13.03 A high-frequency calculation example 866
13.04 High-frequency amplifier configurations 868
13.05 A wideband design example 869
13.06 Some refinements to the ac model 872
13.07 The shunt-series pair 872
13.08 Modular amplifiers 873
Radiofrequency circuit elements 879
13.09 Transmission lines 879
13.10 Stubs, baluns, and transformers 881
13.11 Tuned amplifiers 882
13.12 Radiofrequency circuit elements 884
13.13 Measuring amplitude or power 888
Radiofrequency communications:
AM 892
13.14 Some communications concepts 892
13.15 Amplitude modulation 894
13.16 Superheterodyne receiver 895
Advanced modulation methods 897
13.17 Single sideband 897
13.18 Frequency modulation 898
13.19 Frequency-shift keying 900
13.20 Pulse-modulation schemes 900
Radiofrequency circuit tricks 902
13.21 Special construction techniques 902
13.22 Exotic RF amplifiers and devices 903
High-speed switching 904
13.23 Transistor model and equations 905
13.24 Analog modeling tools 908
Some switching-speed examples 909
13.25 High-voltage driver 909
13.26 Open-collector bus driver 910
13.27 Example: photomultiplier 911preamp
Self-explanatory circuits 913
13.28 Circuit ideas 913
Additional exercises 913
CHAPTER 14 LOW-POWER DESIGN 917
Introduction 917
14.01 Low-power applications 918
Power sources 920
14.02 Battery types 920
14.03 Wall-plug-in units 931
14.04 Solar cells 932
14.05 Signal currents 933
Power switching and micropower regulators 938
14.06 Power switching 938
14.07 Micropower regulators 941
14.08 Ground reference 944
14.09 Micropower voltage references and temperature sensors 948
Linear micropower design techniques 948
14.10 Problems of micropower linear design 950
14.11 Discrete linear design example 950
14.12 Micropower operational amplifiers 951
14.13 Micropower comparators 965
14.14 Micropower timers and oscillators 965
Micropower digital design 969
14.15 CMOS families 969
14.16 Keeping CMOS low power 970
14.17 Micropower microprocessors and peripherals 974
14.18 Microprocessor design example: degree-day logger 978
Self-explanatory circuits 985
14.19 Circuit ideas 985
CHAPTER 15
MEASUREMENTS AND SIGNAL PROCESSING 987
Overview 987
Measurement transducers 988
15.01 Temperature 988
15.02 Light level 996
15.03 Strain and displacement 1001
15.04 Acceleration, pressure, force, velocity 1004
15.05 Magnetic field 1007
15.06 Vacuum gauges 1007
15.07 Particle detectors 1008
15.08 Biological and chemical voltage probes 1012
Precision standards and precisionmeasurements 1016
15.09 Frequency standards 1016
15.10 Frequency, period, and time- interval measurements 1019
15.11 Voltage and resistance standardsand measurements 1025
Bandwidth-narrowing techniques 1026
15.12 The problem of signal-to-noise ratio 1026
15.13 Signal averaging and multichannel averaging 1026
15.14 Making a signal periodic 1030
15.15 Lock-in detection 1031
15.16 Pulse-height analysis 1034
15.17 Time-to-amplitude converters 1035
Spectrum analysis and Fouriertransforms 1035
15.18 Spectrum analyzers 1035
15.19 Off-line spectrum analysis 1038
Self-explanatory circuits 1038
15.20 Circuit ideas 1038
APPENDIXES 1043
Appendix A
The oscilloscope 1045
Appendix B
Math review 1050
Appendix C
The 5\% resistor color code 1053
Appendix D
1\% Precision resistors 1054
Appendix E
How to draw schematic diagrams 1056
Appendix F
Load lines 1059
Appendix G
Transistor saturation 1062
Appendix H
LC Butterworth filters 1064
Appendix IElectronics magazines and journals1068
Appendix J
IC prefixes 1069
Appendix K
Data sheets 1072
2N4400-1 NPN transistor 1073
LF411-12 JFET operational
amplifier 1078
LM317 3-terminal adjustable
regulator 1086
Bibliography 1095
Index 1101

TABLES

1.1 Diodes 43
2.1 Small-signal transistors 109
3.1 JFETs 125
3.2 MOSFETs 126
3.3 Dual matched JFETs 128
3.4 Current regulator diodes 129
3.5 Power MOSFETs 164
3.6 BJT-MOSFET comparison 166
3.7 Electrostatic voltages 170
4.1 Operational amplifiers 196
4.2 Recommended op-amps 208
4.3 High-voltage op-amps 213
4.4 Power op-amps 214
5.1 Time-domain filter comparison 273
5.2 VCVS low-pass filters 274
5.3 555-type oscillators 289
5.4 Selected VCOs 293
6.1 Power transistors 314
6.2 Transient suppressors 326
6.3 Power-line filters 327
6.4 Rectifiers 331
6.5 Zener and reference diodes 334
6.6500 mW zeners 334
6.7 IC voltage references 336
6.8 Fixed voltage regulators 342
6.9 Adjustable voltage regulators 346
6.10 Dual-tracking regulators 352
7.1 Seven precision op-amps 401
7.2 Precision op-amps 404
7.3 High-speed precision op-amps 412
7.4 Fast buffers 418
7.5 Instrumentation amplifiers 429
8.1 4-bit integers 477
8.2 TTL and CMOS gates 484
8.3 Logic identities 491
8.4 Buffers 560
8.5 Transceivers 560
8.6 Decoders 561
8.7 Magnitude comparators 561
8.8 Monostable multivibrators 562
8.9 D-registers and latches 562
8.10 Counters 563
8.11 Shift registers 564
9.1 Logic family characteristics 570
9.2 Allowed connections between logic families 574
9.3 Comparators 584
9.4 D/A converters 620
9.5 A/D converters 632
9.6 Integrating A / D converters 634
10.1 IBM PC bus 704
10.2 Computer buses 709
10.3 ASCII codes 721
10.4 RS-232 signals 724
10.5 Serial data standards 727
10.6 Centronics (printer) signals 730
11.1 68000/8 instruction set 746
11.2 Allowable addressing modes 748
11.3 68000/8 addressing modes 749
11.468008 bus signals 753
11.5 68000/8 vectors 788
11.6 Zilog 8530 registers 804
11.7 Zilog 8530 serial port initialization 806
11.8 Microprocessors 822
12.1 PC graphic patterns 839
12.2 Venturi fans 858
13.1 RF transistors 877
13.2 Wideband op-amps 878
14.1 Primary batteries 922
14.2 Battery characteristics 923
14.3 Primary-battery attributes 930
14.4 Low-power regulators 942
14.5 Micropower voltage references 949
14.6 Micropower op-amps 956
14.7 Programmable op-amps 958
14.8 Low-power comparators 966
14.9 Microprocessor controllers 976
14.10 Temperature logger current drain 983
15.1 Thermocouples 990
D. 1 Selected resistor types 1055
H. 1 Butterworth low-pass filters 1064

DIGITAL ELECTRONICS

Chapter 8

Figure 8.67. A digital delay can replace one-shot delays.
system clocks is common in synchronous circuits.

8.23 Timing with counters

As we have just emphasized, there are many good reasons for avoiding the use of monostables in logic design. Figure 8.68 shows another case where flip-flops and counters (cascaded toggling flip-flops) can be used in place of a monostable to generate a long output pulse. The ' 4060 is a $14-$ stage CMOS binary counter (14 cascaded flip-flops). A rising edge at the input brings Q HIGH, enabling the counter. After 2^{n-1} clock pulses, Q_{n} goes HIGH, clearing the flip-flop and the counter. This circuit generates an accurate long pulse whose length may be varied by factors of 2 . The ' 4060
also includes internal oscillator circuitry that can substitute for the external clock reference. Our experience is that the internal oscillator has poor frequency tolerance and (in some HC versions) may malfunction.

You can get complete integrated circuits to implement timing with counters. The ICM7240/50/60 (Intersil, Maxim) have 8bit or 2 -digit internal counters and the necessary logic to make delays equal to an integral number of counts (1-255 or 1-99 counts); you can set the number either with "hardwired" connections or with external thumbwheel switclies. The ICM7242 is similar, but with prewired divide-by-128 counter. Exar makes a close cousin, called the XR2243, which has a fixed divide-by1024 counter.

Figure 8.68. Digital generation of long pulses.

SEQUENTIAL FUNCTIONS AVAILABLE AS ICs

As with the combinational functions we described earlier, it is possible to integrate various combinations of flip-flops and gates onto a single chip. In the following sections we will present a survey of the most useful types, listed according to function.

As with pure combinational logic, programmable logic (PALs and GALs in particular) provides an attractive alternative to the use of prewired sequential functions. We'll talk about them, also, after looking at the standard functions.

8.24 Latches and registers

Latches and registers are used to "hold" a set of bits; even if the inputs change. A set of D flip-flops constitutes a register, but it has more inputs and outputs than necessary. Since you don't need separate clocks, or SET and CLEAR inputs, those lines can be tied together, requiring fewer pins and therefore allowing 8 flip-flops to fit in a 20 -pin package. The popular '574 is an octal D register with positive clock edge and three-state outputs; the ' 273 is similar, but has a reset instead of threestate outputs. Figure 8.69 shows a quad D register with both true and complemented outputs.

The term "latch" is usually reserved for a special kind of register: one in which the outputs follow the inputs when
enabled, and hold the last value when disabled. Since the term "latch" has become ambiguous with use, the terms "transparent latch" and "type D register" are often used to distinguish these closely related devices. As an example, the '573 is the octal transparent-latch equivalent of the '574 D register.

Figure 8.69. '1754-bit D register.
Some variations on the latch/register are as follows: (a) random-access memories (RAMs), which let you write to, and read from, a (usually large) set of registers, but only one (or at most a few) at a time; RAMs come in sizes from a handful of bytes up to 1 M bytes or more and are used primarily for memory in microprocessor systems (see Chapters 10 and 11); (b) addressable latches, a multibit latch that lets you update individual bits while keeping the others unchanged; (c) a latch or register built into a larger chip, for example a
digital-to-analog converter; such a device only needs the input applied momentarily (with appropriate clocking edge), since an internal register can hold the data.

Table 8.9 at the end of the chapter lists most of the useful registers and latches. Note features such as input enable, reset, three-state outputs, and "broadside" pinout (inputs on one side of the chip, outputs on the other); the latter is very convenient when you are laying out a printedcircuit board.

8.25 Counters

As we mentioned earlier, it is possible to make a "counter" by connecting flip-flops together. There is available an amazing variety of such devices as single chips. Here are some of the features to look for:

Size

You can get BCD (divide-by-10) and binary (or hexadecimal, divide-by-16) counters in the popular 4-bit category. There are larger counters, up to 24 bits (not all available as outputs), and there are modulon counters that divide by an integer n, specified as an input. You can always cascade counters (including synchronous types) to get more stages.

Clocking

An important distinction is whether the counter is a "ripple" counter or a "synchronous" counter. The latter clocks all flip-flops simultaneously, whereas in a ripple counter each stage is clocked by the output of the previous stage. Ripple counters generate transient states, since the earlier stages toggle slightly before the later ones. For instance, a ripple counter going from a count of 7 (0111) to 8 (1000) goes through the states 6,4 , and 0 along the way. This doesn't cause trouble in well-designed circuits, but it would in a circuit that used
gates to look for a particular state (this is a good place to use something like a D flipflop, so that the state is examined only at the clock edge). Ripple counters are slower than synchronous counters, because of the accumulated propagation delays. Ripple counters clock on negative-going edges for easy expandability (by connecting the Q output of one counter directly to the clock input of the next); synchronous counters clock on the positive edge.

We favor the ' 160 -' 163 family of 4 bit synchronous counters for most applications that don't require some special feature. The ' 590 and ' 592 are good 8 -bit synchronous counters. Figure 8.70 shows the ' 390 dual BCD ripple counter.

Figure 8.70. '390 dual BCD ripple counter.

Up/down

Some counters can count in either direction, under control of some inputs. The two possibilities are (a) an $\mathrm{U} / \mathrm{D}^{\prime}$ input that sets the direction of count and (b) a pair of clocking inputs, one for UP, one for DOWN. Examples are the '191 and '193, respectively. The '569 and '579 are useful 8 -bit up/down counters.

Load and clear

Most counters have data inputs so that they can be preset to a given count. This
is handy if you want to make a modulon counter, for example. The load function can be either synchronous or asynchronous: the '160-'163 have synchronous load, which means that data on the input lines are transferred to the counter coincident with the next clock edge, if the LOAD ${ }^{\prime}$ line is also asserted LOW; the '190-'193 are asynchronous, or jam-load, which means that input data are transferred to the counter when LOAD^{\prime} is asserted, independent of the clock. The term "parallel load" is sometimes used, since all bits are loaded at the same time.

The CLEAR (or RESET) function is a form of presetting. The majority of counters have a jam-type CLEAR function, though some have synchronous CLEAR; for example, the '160/161 are jam CLEAR, while the '162/163 are synchronous CLEAR.

Other counter features

Some counters feature latches on the output lines; these are always of the transparent type, so the counter can be used as if no latch were present. (Keep in mind that any counter with parallel-load inputs can function as latch, but you can't count at the same time as data are held, as you can with a counter/latch chip.) The combination of counter plus latch is sometimes very convenient, e.g., if you want to display or output the previous count while beginning a new counting cycle. In a frequency counter this would allow a stable display, with updating after each counting cycle, rather than a display that repeatedly gets reset to zero and then counts up.

There are counters with three-state outputs. These are great for applications where the digits (or 4-bit groups) are multiplexed onto a bus for display or transfer to some other device. An example is the '779, an 8-bit synchronous binary counter whose three-state outputs also serve as parallel inputs; by sharing input/output lines, the
counter fits in a 16-pin package. The '593 is similar, but in a 20-pin package.

If you want a counter to use with a display, there are several that combine counter, latch, 7 -segment decoder, and driver on one chip. An example is the 74C925-74C928 series of 4-digit counters. Another amusing chip is the TIL306/7, a counter with display on one chip: You just look at the IC, which lights up with a digit telling the count! Figure 8.71 shows a nice LSI (large-scale-integration) counter circuit that doesn't require a lot of support circuits.

Table 8.10 at the end of the chapter lists most of the counter chips that you might want to use. Many of them are only available in one family (e.g., LS or F), so be sure to check the data books before you design with them.

8.26 Shift registers

If you connect a series of flip-flops so that each Q output drives the next D input, and all clock inputs are driven simultaneously, you get what's called a "shift register." At each clock pulse the pattern of 0's and 1's in the register shifts to the right, with the data at the first D input entering from the left. As with flipflops, the data present at the serial input just prior to the clock pulse are entered, and there is the usual propagation delay to the outputs. Thus they may be cascaded without fear of a logic race. Shift registers are very useful for conversion of parallel data (n bits present simultaneously, on n separate lines) to serial data (one bit after another, on a single data line), and vice versa. They're also handy as memories, particularly if the data are always read and written in order. As with counters and latches, shift registers come in a pleasant variety of prefab styles. The important things to look for are the following:

Figure 8.71. Intersil 7216 8-digit 10 MHz universal counter on a chip. (Courtesy of Intersil, Inc.)

Size

The 4-bit and 8 -bit registers are standard, with some larger sizes available (up to 64 bits or more). There are even variablelength registers (e.g., the 4557: 1 to 64 stages, set by a 6-bit input).

Organization

Shift registers are usually 1 bit wide, but there are also dual-, quad-, and hexwidth registers. Most shift registers only shift right, but there are bidirectional registers like the '194 and '323 that have a "direction" input (Fig. 8.72). Watch out for trickery like the "bidirectional" '95, which can shift left only by tying each output bit to the previous input, then doing a parallel load.

Inputs and outputs

Small shift registers can provide parallel inputs or outputs, and usually do; an example is the '395, a 4-bit parallel-in, parallel-out (PI/PO) shift register with three-state outputs. Larger registers may only provide serial input or output, i.e., only the input to the first flip-flop or the output from the last is accessible. In some cases a few selected intermediate taps are provided. One way to provide both parallel input and output in a small package is to share input and output (three-state) on the same pins, e.g., the ' 299 , an 8bit bidirectional PI/PO register in a $20-$ pin package. Some shift registers include a latch at the input or output, so shifting can go on while data are being loaded or unloaded.

As with counters, parallel LOAD and

Figure 8.72. '194 4-bit bidirectional shift register.

CLEAR can be either synchronous or jamload; for example, the ' 323 is the same as the ' 299 , but with synchronous clear.

Table 8.11 at the end of the chapter lists the shift registers you're likely to use. As always, not all types are available in all logic families; be sure to check the data books.

RAMs as shift registers

A random-access memory can always be used as a shift register (but not vice versa) by using an external counter to generate successive addresses. Figure 8.73 shows the idea. An 8 -bit synchronous up/down counter generates successive addresses for a 256 -word $\times 4$-bit CMOS RAM. The combination behaves like a quad 256 -bit shift register, with left/right direction of shift selected by the counter's UP/DOWN' control line. The other inputs of the counter are shown enabled for counting. By choosing a fast counter and memory, we were able to achieve a maximum clocking rate
of 30 MHz (see timing diagram), which is the same as that of an integrated (but much smaller) HC-type shift register. This technique can be used to produce very large shift registers, if desired.

EXERCISE 8.28
In the circuit of Figure 8.73, input data seem to go into the same location that output data are read from. Nevertheless, the circuit behaves identically to a classic 256 -word shift register. Explain why.

8.27 Sequential PALs

The combinational (gates-only) PALs we talked about in Section 8.15 belong to a larger family that includes devices with various numbers of on-chip D-type registers (called "registered PALs"). Typical of these PALs is the 16R8, shown in Figure 8.74. The programmable-AND/fixedOR array typical of combinational PALs generates the input levels for 8 synchronously clocked D-type registers with threestate outputs; the register outputs (and their inverts) are available, along with the standard input pins, as inputs to the logic array. If you look back at Figure 8.57, you'll see that a registered PAL is a generalpurpose sequential circuit element; within limits set by the number of registers and gates available, you can construct just about anything you want. For instance, you could make a shift register or counter, or some of both! In practice, you're more likely to make some custom piece of logic that is part of a larger circuit, for which the alternative is "discrete" logic built with gates and flip-flops. Let's look at some examples.

Hand-generated fuse maps

Simple designs can be implemented in PALs by figuring out the logic, then burning the appropriate pattern into the fuse array with a "PAL programmer." As an

A

Figure 8.73. A. Large shift register made from RAM plus counter; the slash indi-
 cates multiple lines, in this case a 4-bit-wide data path.
B. Timing diagram to calculate maximum clocking rate, assuming worst-case timing specifications.
C. Calculation showing worst-case sequence of delays in a single clock cycle.
example, let's imagine we want a 4-input multiplexer with latched outputs. We can write the logic equation for the multiplexer portion (i.e., the D-input to the flip-flop) as

$$
\begin{aligned}
Q . d= & I_{0} * S_{0}^{\prime} * S_{1}^{\prime}+I_{1} * S_{0} * S_{1}^{\prime} \\
& +I_{2} * S_{0}^{\prime} * S_{1}+I_{3} * S_{0} * S_{1}
\end{aligned}
$$

where the inputs S_{0} and S_{1} address the selected input $I_{0}-I_{3}$ and "*" and " + " represent AND and OR. A registered PAL makes it easy to latch the result. Note that we have used the OR of 3 -input ANDs, rather than first decoding the select address in 2-input ANDs, because we

