

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems

EIGHTH EDITION

Loyd V. Allen, Jr., PhD

Professor and Chair Emeritus
Department of Medicinal Chemistry and Pharmaceutics
College of Pharmacy
University of Oklahoma
Editor-in-Chief
International Journal of Pharmaceutical Compounding

Nicholas G. Popovich, PhD

Professor and Head Department of Pharmacy Administration College of Pharmacy University of Illinois at Chicago

Howard C. Ansel. PhD

Professor and Dean Emeritus College of Pharmacy The University of Georgia

Senior Acquisitions Editor: David B. Troy Senior Managing Editor: Matthew J. Haubey Marketing Manager: Christen DeMarco Production Editor: Jennifer Ajello Designer: Dong Smock Compositor: Peirce Graphic Services, LLC. Printer: Data Reproductions Corp.

Copyright © 2005 Lippincott Williams & Wilkins

351 West Camden Street Baltimore, MD 21201

530 Walnut Street Philadelphia, PA 19106

All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying, or utilized by any information storage and retrieval system without written permission from the copyright owner.

The publisher is not responsible (as a matter of product liability, negligence, or otherwise) for any injury resulting from any material contained herein. This publication contains information relating to general principles of medical care that should not be construed as specific instructions for individual patients Manufacturers' product information and package inserts should be reviewed for current information, including contraindications, dosages, and precautions

Printed in the United States of America

Library of Congress Cataloging-in-Publication Data

Allen, Loyd V.

Ansel's pharmaceutical dosage forms and drug delivery systems / Loyd V. Allen Jr., Nicholas G. Popovich, Howard C. Ansel.—8th ed.

p.;cm

Rev. Ed. of: Pharmaceutical dosage forms and drug delivery systems / Howard C. Ansel, Loyd V. Allen, Jr., Nicholas G. Popovich, 7th ed. c1999.

Includes bibliographical references and index.

ISBN 0-7817-4612-4

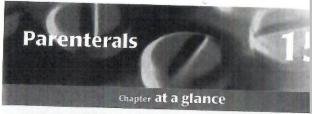
 Drugs—Dosage forms.
 Drug delivery systems.
 Title: Pharmaceutical dosage forms and drug delivery systems.
 Popovich, Nicholas G. III. Ansel, Howard C., 1933—IV. Ansel, Howard C., 1933—Pharmaceutical dosage forms and drug delivery systems.
 V. Title.

[DNLM: 1, Dosage Forms, 2, Drug Delivery Systems, QV 785 A427a2004] R\$200,A57,2004

615'.1-de22

2004048276

The publishers have made every effort to trace the copyright holders for borrowed material. If they have inadvertently overlooked any, they will be pieased to make the necessary arrangements at the first opportunity


To purchase additional copies of this book, call our customer service department at (800) 638-3030 or fax orders to (301) 824-7390, International customers should call (301) 714-2324.

Visit Lippincott Williams & Wilkins on the Internet: http://www.LWW.com. Lippincott Williams & Wilkins customer service representatives are available from 8:30 am to 6:00 pm, EST.

05 06 07 08 09 1 2 3 4 5 6 7 8 9 10

Sterile Dosage Forms and Delivery Systems

INJECTIONS44
Parenteral Routes of
Administration44
Intravenous Route
Intramuscular Route44
Subcutaneous Route44
Intradermal Route
Specialized Access AAS
Official Types of Injections
Solvents and Vehicles for
Injections
Nonagueous Vehicles AF7
Added Substances Acr
wethods of Sternization 459
steam Sterilization Ass
Dry Heat Sterilization
Sterilization by Filtration Aco
Gas Sterifization
Sterilization by lonizing
Radiation
validation of Sterility
Pyrogens and Pyrogen
Testing
The Industrial Preparation of
Parenteral Products ASA
rackaging, Labeling, and Storage
of Injections
Quanty Assurance for Pharmacy-
Prepared Sterile Products 475
AVAIIAble Injections are
"INLL-VOLUME PARENTERALS ATT
"isuin injection (Regular)
ruman insulin
Lispro Insulin Solution485

	- Summer			
4	1			
+	Insulin Aspart			
	ISODRADA Insulin Succession			
1	(NPH Insulin)			
1	Isophane Insulin Suspension and			
	(NPH Insulin) (sophane Insulin Suspension and Insulin Injection			
3	Frumatog Wilk			
3	Insulin Zinc Suspension			
1	Insulin Glargine			
1	EXTENDED Insulin Zine Surpension			
	Insulin Infusion Pumps			
	LARGE-VOLUME PARENTERALS			
	Maintenance Therapy			
	Replacement Therapy			
	water Requirement			
	Electrolyte Requirement			
	Caloric Requirements			
	Parenteral Nutrition			
	Enteral Nutrition			
	Intravenous Infusion Devices			
	SPECIAL CONSIDERATIONS			
	ASSOCIATED WITH PARENTERAL			
	THERAPY			
	LOOK-Alike Products			
	Adsorption of Drugs			
	Handling and Disposal of			
	Chemotherapeutic Agents for			
	Cancer			
	OTHER INJECTABLE PRODUCTS:			
	PELLETS OR IMPLANTS			
	Levonorgestrel Implants			
	IRRIGATION AND DIALYSIS			
	SOLUTIONS			
	Irrigation Solutions			
	Irrigation Solutions			
	Dialysis Solutions			

$$H$$
-resin + M^+ + X - + $H_2O \rightarrow$
 M -resin + H^+ + X - + H_2O (pure)

Anion exchange:

Resin-NH₂ + H⁺ + X⁻ + H₂O
$$\rightarrow$$

Resin-NH₂ • HX + H₂O (pure)

Water purified in this manner, referred to as demineralized or deionized water, may be used in any pharmaceutical preparation or prescription calling for distilled water.

Reverse Osmosis

Reverse osmosis is one of the processes referred to in the industry as cross-flow (or tangential flow) membrane filtration (3). In this process, a pressurized stream of water is passed parallel to the inner side of a filter membrane core. A portion of the feed water, or influent, permeates the membrane as filtrate, while the balance of the water sweeps tangentially along the membrane to exit the system without being filtered. The filtered portion is called the permeate because it has permeated the membrane. The water that has passed through the system is called the concentrate because it contains the concentrated contaminants rejected by the membrane. Whereas in osmosis, the flow through a semipermeable membrane is from a less concentrated solution to a more concentrated solution, the flow in this cross-flow system is from more concentrated to a less concentrated solution; thus the term reverse osmosis. Depending on their pore size, cross-flow filter membrane can remove particles defined in the range of microfiltration (0.1-2 µg, e.g., bacteria); ultrafiltration (0.01-0.1 µg, e.g., virus); nanofiltration (0.001-0.01 µg, e.g., organic compounds in the molecular weight range of 300-1000); and reverse osmosis (particles smaller than 0.001 µg). Reverse osmosis removes virtually all viruses, bacteria, pyrogens, and organic molecules and 90 to 99% of ions (3).

Preparation of Solutions

Most pharmaceutical solutions are unsaturated with solute. Thus the amounts of solute to be dissolved are usually well below the capacity of the volume of solvent employed. The strengths of pharmaceutical prepurations are usually expressed in terms of percent strength, although for very dilute preparations, expressions of ratio strength may be used. These expressions and examples are shown in Table 13.4.

The symbol 'b used without qualification (as with w/v, v/v, or w/w) means percent weight in volume for solutions or suspensions of solids in liquids; percent weight in volume for solutions of gases in liquids; percent volume in volume in volume

TABLE 13.4 COMMON METHODS OF EXPRESSING THE STRENGTHS OF PHARMACEUTICAL PREPARATIONS

EXPRESSION	ABBREVIATED EXPRESSION	MEANING AND EXAMPLE
Percent weight in volume	% wh	Grams of constituent in 100 ml of preparation
Percent volume in volume	% v/v	(e.g., 1% w/v = 1 g constituent in 100 mL preparation) Millillters of constituent in 100 mL of preparation (e.g., 1% v/v 1 mL constituent in 100 mL preparation)
Percent weight in weight Natio strength; weight in	% w/w	Grams of constituent in 100 g of preparation (e.g., 1% w/w = 1 g constituent in 100 g preparation)
-oinile	wh	Grams of constituent in stated milliliters of preparation (e.g., 1:1000 w/v = 1 g constituent in 1000 ml, preparation)
Ratio strength; volume in volume	-: w/v	Milliliters of constituent in milliliters of preparation (e.g., 1:1000 v/v = 1 mL constituent in 1000 mL preparation)
latio strength; weight in weight	-: W/W	Grams of constituent in stated number of grams of preparation (e.g., 1:1000 w/w = 1 g constituent in 1000 g preparation)

Mylan v. Janssen (IPR2020-00440) Ex. 1024 p.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

