
FOURTH EDITION I

~omputer Networks
ANDREW S. TANENBAUM

Page 1 of 27 GOOGLE EXHIBIT 1006

Computer Networks
Fourth Edition

ISBN □-13-0661□2-3

Page 2 of 27

Other bestselling titles by Andrew S. Tanenbaum

Distributed Systems: Principles and Paradigms
This new book, co-authored with Maarten van Steen, covers both the principles
and paradigm of modem distributed sy terns. In the first part, it covers the prin
c:iple: of communication, processes, naming, synchronization consi tency and
replication fault tolerance. and security in detail. Then in the se<.:uutl part it goes
into different paradigm u ed to build distributed systems, including object-based
systems, distributed file sy:sltw5, document based systems, anti r.oordination
ba ed systems. Numerous examples are discussed at length.

Modern Operating Systems, 2nd edition
This comprehensive text cover the principles of modern operating systems i.n
detail and illu trates them with numerous real-world examples. After an introduc
tory chapter, the next five chapter deal with the basic concepts: processes and
threads, deadlocks, memory management, input/output, and file systems. The
next six chapters deal with more advanced material, including multimedia sys
tems, multiple processor systems, security. Finally, two detailed case studies are
given: UNIX/Linux and Windows 2000.

Structured Computer Organization, 4th edition
This widely-n~;id classic, now in it fourth edition, provides the ideal introduction
to computer architecture. It covers the topic i11 an easy-to-under tand way, boL
tom up. There is a chapter on digital logic for beginners followed by chapters on
microarchitecture, the instruction set architecture level, operating systems, assem
bly language, and parallel computer architectures.

Operating Systems: Design and Implementation, 2nd edition
This popular text on operating sy terns, co-authored with Albert S. Woodhull i
the only book covering both the pdnciples of operating systems and their applica
tion to a real ystem. All the traditional operating . ystems topics are covered in
detail. In addition, the principles are carefully illu traced with MINIX, a free
POSIX-based UNIX-like operating system for per onal computer . Each book
contains a free CD-ROM containing the complete MINIX system, including all
the source code. The source code is listed in an appendix to the book and
explained in detail in the text.

Page 3 of 27

Computer Networks
Fourth Edition

Andrew S. Tanenbaum
Vrije Universiteit

Amsterdam, The Netherlands

■
Prentice Hall PTR

Upper Saddle River, NJ 07458
www.phptr.com

Page 4 of 27

Library of Congress Cataloging-in-Publication Data

Tanenbaum, Andrew S.
Computer networks / Andrew S. Tanenbaum.--4th ed.

p. cm.
Includes bibliographical references.
ISBN 0-13-066102-3

I. Computer networks. I. Title.
TK5105.5 .T36 2002
004.6--dc2 l 2002029263

Editorial/production supervision: .Parti G11Prrif'ri
Cover design director: Jerry Votta
Cover designer: Anthony Gemme/Laro
Cover design: Andrew S. Tanenbaum
Art director: Gail Cocker-Bogusz
Interior Design: Andrew S. Tanenbaum
Interior graphics: Hadel Studio
Typesetting: Andrew S. Tan enbaum
Manufacturing buyer: Maura Zaldivar
Executive editor: Mary Franz
Editorial assistant: Noreen Regina
Marketing manager: Dan DePasquale

■ © 2003, 1996 Pearson Education, Inc.
Publishing as Prentice Hall PTR
Upper Saddle River, New Jersey 07458

Prentice Hall books are widely used by corporations and government agencies for training,
marketing, and resale.

For information regarding corporate and government bulk discounts please contact:
Corporate and Government Sales (800) 382-3419 or corpsales@pearsontechgroup.com

All products or services mentioned in this book are the trademarks or service marks of their
respective companies or organizations.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3

ISBN 0-13-066102-3

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educaci6n de Mexico, S.A. de C.V.
Pearson EdL1cation - Japan
Pearson Education Malaysia, Pte. Ltd.

Page 5 of 27

524 THE TRANSPORT LA YER CHAP. 6

connection record, are listed. If an action involves waking up a sleeping process,
the actions following the wakeup also count. For example, if a CALL REQUEST
packet comes in and a process was asleep waiting for it, the transmission of the
CALL ACCEPT packet following the wakeup counts as part of the action for CALL
REQUEST. After each action is performed, the connection may move to a new
state, as shown in Fig. 6-21.

The advantage of representing the protocol as a matrix is threefold. First, in
this form it is much easier fur Lhe programmer Lo systematically check each com
bination of state and event to see if an action is required. In production imple
mentations, some of the combinations would be used for error handling. In
Fig. 6-21 no distinction is made between impossible situations and illegal ones.
For example, if a connection is in waiting state, the DISCONNECT event is impossi
ble because the user is blocked and cannot execute any primitives at all. On the
other hand, in sending state, data packets are not expected because no credit has
been issued. The arrival of a data packet is a protocol error.

The second advantage of the matrix representation of the protocol is in imple
menting it. One could envision a two-dimensional array in which element a [i] U]
was a pointer or index to the procedure that handled the occurrence qf event i
when in state j. One possible implementation is to write the transport entity as a
short loop, waiting for an event at the top of the loop. When an event happens,
the relevant connection is located and its state is extracted. With the event and
state now known, the transport entity just indexes into the array a and calls the
proper procedure. This approach gives a much, more regular and systematic de
sign than our transport entity.

The third advantage of the finite state machine approach is for protocol
description. In some standards documents, the protocols are given as finite state
machines of the type of Fig. 6-21. Going from this kind of description to a work
ing transport entity is much easier if the transport entity is also driven by a finite
state machine based on the one in the standard.

The primary disadvantage of the finite state machine approach is that it may
be more difficult to understand than the straight programming example we used
initially. However, this problem may be partially solved by drawing the finite
state machine as a graph, as is done in Fig. 6-22.

6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP

The Internet has two main protocols in the transport layer, a connectionless
protocol and a connection-oriented one. In the following sections we will study
both of them. The connectionless protocol is UDP. The connection-oriented pro
tocol is TCP. Because UDP is basically just IP with a short header added, we will
start with it. We will also look at two applications of UDP.

,,

Page 6 of 27

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP

('
CONNECT TIMEOUT

/ ' IDLE

(CLEAR REQ CAL~ REQ)

.a I-
0 z w w

w a: z
WAITING I-J z QUEUED enJ 0 ::J <t

(.) 0 en

l CALLACC
0 j LISTEN

ESTAB-

CREDIT, LISHED RECEIVE

(CLEAR REQ) j~ l DATA, SEND
SENDING z

CLEAR REQ
RECEIVING

0
0
en
0

DISCON-
NECTING

l CLEAR REQ, CLEAR CONF

Figure 6-22. The example protocol in graphical form. Transitions that leave
the connection state unchanged have been omitted for simplicity.

6.4.1 Introduction to UDP

525

The Internet protocol suite supports a connectionless transport protocol, UDP
(User Datagram Protocol). UDP provides a way for applications to send encap
sulated IP datagrams and send them without having to establish a connection.
UDP is described in RFC 768.

UDP transmits segments consisting of an 8-byte header followed by the pay
load. The header is shown in Fig. 6-23. The two ports erve to identify the end
points within the source and destination machines . When a UDP packet arrives,
its payload is handed to the process attached to the destination port. This attach
ment occurs when BIND primitive or something similar is used, as we saw in
Fig. 6-6 for TCP (the binding process is the same for UDP). In fact, the main
value of having UDP over just using raw IP is the addition of the source and desti
nation ports. Without the port fields, the transport layer would not know what to
do with the packet. With them, it delivers segments correctly.

Page 7 of 27

526 THE TRANSPORT LAYER CHAP. 6

-------- ------32 Bits--------------

' I I

Source port Destination port

UDP length UDP checksum

Figure 6-23. The UDP header.

The source port is primarily needed when a reply must be sent back to the
source. By copying the source port field from the incoming segment into the des
tination port field of the outgoing segment, the process sending the reply can
specify which process on the sending machine is to get it.

The UDP length field includes the 8-byte header and the data. The UDP
checksum is optional and stored as O if not computed (a true computed O is stored
as all ls). Turning it off is foolish unless the quality of the data does not matter
(e.g., digitized speech).

It is probably worth mentioning explicitly some of the things that UDP does
not do. It does not do flow control, error control, or retransmission upon receipt
of a bad segment. All of that is up to the user processes. What it does do is pro
vide an interface to the IP protocol with the added feature of demultiplexing mul
tiple processes. using the ports. That is all it does. For applications that need to
have precise control over the packet flow, error control, or timing, UDP provides
just what the doctor ordered.

One area where UDP is especially useful is in client-server situations. Often,
the client sends a short request to the server and expects a short reply back. If
·either the request or reply is lost, the client can just time out and try again. Not
only is the code simple, but fewer messages are required (one in each direction)
than with a protocol requiring an initial setup.

An application that uses UDP this way is DNS (the Domain Name System),
which we will study in Chap. 7. In brief, a program that needs to look up the IP
address of some host name, for example, www.cs.berkeley.edu, can send a UDP
packet containing the host name to a DNS server. The server replies with a UDP
packet containing the host's IP address. No setup is needed in advance and no
release is needed afterward. Just two messages go over the network.

6.4.2 Remote Procedure Call

In a certain sense, sending a message to a remote host and getting a reply back
is a lot like making a function call in a programming language. In both cases you
start with one or more parameters and you get back a result. This observation has
led people to try to arrange request-reply interactions on networks to be cast in the

Page 8 of 27

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP 527

form of procedure calls. Such an an·angement makes network applications much
easier to program and more familiar to deal with. For example, just imagine a
procedure named getJP _address (host.Jlame) that works by sending a UDP pac
ket to a DNS server and waiting for the reply, timing out and trying again if one is
not forthcoming quickly enough. In this way, all the details of networking can be
hidden from the programmer.

The key work in this area was done by Birrell and Nelson (1984). In a nut
shell, what Birrell and Nelson suggested was allowing programs to call pro
cedures located on remote hosts. When a process on machine 1 calls a procedure
on machine 2, the calling process on 1 is suspended and execution of the called
procedure takes place on 2. Information can be transported from the caller to the
callee in the parameters and can come back in the procedure result. No message
passing is visible to the programmer. This technique is known as RPC (Remote
Procedure Call) and has become the basis for many networking applications.
Traditionally, the calling procedure is known as the client and the called pro
cedure is known as the server, and we will use those names here too.

The idea behind RPC is to make a remote procedure call look as much as pos
sible like a local one. In the simplest form, to call a remote procedure, the client
program must be bound with a small library procedure, called the client stub, that
represents the server procedure in the client's address space. Similarly, the server
is bound with a procedure called the server stub. These procedures hide the fact
that the procedure call from the client to the server is not local.

The actual steps in making an RPC are shown in Fig. 6-24. Step 1 is the
client calling the client stub. This call is a local procedure call, with the parame
ters pushed onto the stack in the normal way. Step 2 is the client stub packing the
parameters into a message and making a system call to send the message. Pack
ing the parameters is called marshaling. Step 3 is the kernel sending the message
from the client machine to the server machine. Step 4 is the kernel passing the
incoming packet to the server stub. Finally, step 5 is the server stub calling the
server procedure with the unmarshaled parameters. The reply traces the same
path in the other direction.

The key item to note here is that the client procedure, written by the user, just
makes a normal (i.e., local) procedure call to the client stub, which has the same
name as the server procedure. Since the client procedure and client stub are in the
same address space, the parameters are passed in the usual way. Similarly, the
server procedure is called by a procedure in its address space with the parameters
it expects. To the server procedure, nothing is unusual. In this way, instead of
I/O being done on sockets, network communication is done by faking a normal
procedure call.

Despite the conceptual elegance of RPC, there are a few snakes hiding under
the grass. A big one is the use of pointer parameters. Normally, passing a pointer
to a procedure is not a problem. The called procedure can use the pointer in the
same way the caller can because both procedures live in the same virtual address

Page 9 of 27

528

Client CPU

THE TRANSPORT LAYER

Client
stub

Server
stub

CHAP. 6

Server CPU

Operating system

3

' Network

Figure 6-24. Steps in making a remote procedure call. The stubs are shaded.

space. With RPC, passing pointers is impossible because the client and server are
in different address spaces.

In some cases, tricks can be used to make it possible to pass pointers. Sup
pose that the first parameter is a pointer to an integer, k. The client stub can
marshal k and send it along to the server. The server stub then creates a pointer to
k and passes it to the server procedure, just as it expects. When the server pro
cedure returns control to the server stub, the latter sends k back to the client where

. the new k is copied over the old one, just in case the server changed it. In effect,
the standard calling sequence of call-by-reference has been replaced by copy
restore. Unfortunately, this trick does not always work, for example, if the pointer
points to a graph or other complex data structure. For this reason, some restric
tions must be placed on parameters to procedures called remotely.

A second problem is that in weakly-typed languages, like C, it is perfectly
legal to write a procedure that computes the inner product of two vectors (arrays),
without specifying how large either one is. Each could be terminated by a special
value known only to the calling and called procedure. Under these circumstances,
it is essentially impossible for the client stub to marshal the parameters: it has no
way of determining how large they are.

A third problem is that it is not always possible to deduce the types of the
parameters, not even from a formal specification or the code itself. An example is
p rint!, which may have any number of parameters (at least one), and the parame
ters can be an arbitrary mixture of integers, shorts, longs, characters, strings,
floating-point numbers of various lengths, and other types. Trying to call printf as
a remote procedure would be practically impossible because C is so permissive.
However, a rule saying that RPC can be used provided that you do not program in
C (or C++) would not be popular.

A fourth problem relates to the use of global variables. Normally, the calling
and called procedure can communicate by using global variables, in addition to

I
/

Page 10 of 27

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP 529

communicating via parameters. If the called procedure is now moved to a remote
machine, the code will fail because the global variables are no longer shared.

These problems are not meant to suggest that RPC is hopeless. In fact, it is
widely used, but some restrictions are needed to make it work well in practice.

Of course, RPC need not use UDP packets, but RPC and UDP are a good fit
and UDP is commonly used for RPC; However, when the parameters or results
may be larger than the maximum UDP packet or when the operation requested is
not idempotent (i.e., cannot be repeated safely, such as when incrementing a
counter), it may be necessary to set up a TCP connection and send the request
over it rather than use UDP.

6.4.3 The Real-Time Transport Protocol

Client-server RPC is one area in which UDP is widely used. Another one is
real-time multimedia applications. In particular, as Internet radio, Internet tele
phony, music-on-demand, videoconferencing, video-on-demand, and other multi
media applications became more commonplace, people discovered that each ap
plication was reinventing more or less the same real-time transport protocol. It
gradually became clear that having a generic real-time transport protocol for mul
tiple applications would be a good idea. Thus was RTP (Real-time Transport
Protocol) born. It is described in RFC 1889 and is now in widespread use.

The position of RTP in the protocol stack is somewhat strange. It was
decided to put RTP in user space and have it (normally) run over UDP. It oper
ates as follows. The multimedia application consists of multiple audio, video,
text, and possibly other streams. These are fed into the RTP library, which is in
user space along with the application. This library then multiplexes the streams
and encodes them in RTP packets, which it then stuffs into a socket. At the other
end of the socket (in the operating system kernel), UDP packets are generated and
embedded in IP packets. If the computer is on an Ethernet, the IP packets are then
put in Ethernet frames for transmission. The protocol stack for this situation is
shown in Fig. 6-25(a). The packet nesting is shown in Fig. 6-25(b).

Ethernet IP UDP ATP
header header header header

+ ! j I

Socket interface

{

UDP

Ker~~ 1-----IP _ __ -i

Ethernet

I I I I ATP P1:1-Yload I
-UDP payload-

IP payload

Ethernet payload

(a) (b)

Figure 6-25. (a) The position of RTP in the protocol stack. (b) Packet nesting.

Page 11 of 27

530 THE TRANSPORT LA YER CHAP. 6

As a consequence of this design, it is a little hard to say which layer RTP is
in. Since it runs in user space and is linked to the application program, it certainly
looks like an application protocol. On the other hand, it is a generic, application
independent protocol that just provides transport facilities, so it also looks like a
transport protocol. Probably the best description is that it is a transport protocol
that is implemented in the application layer.

The basic function of RTP is to multiplex several real-time data streams onto
a single stream of UDP packets. The UDP stream can be sent to a single destina
tion (unicasting) or to multiple destinations (multicasting). Because RTP just uses
normal UDP, its packets are not treated specially by the routers unless some nor
mal IP quality-of-service features are enabled. In particular, there are no special
guarantees about delivery, jitter, etc.

Each packet sent in an RTP stream is given a number one higher than its pred
ecessor. This numbering allows the destination to determine if any packets are
missing. If a packet is missing, the best action for the destination to take is to
approximate the missing value by interpolation. Retransmission is not a practical
option since the retransmitted packet would probably arrive too late to be useful.
As a consequence, RTP has no flow control, no error control, no acknowledge
ments, and no mechanism to request retransmissions.

Each RTP payload may contain multiple samples, and they may be coded any
way that the application wants. To allow for interworking, RTP defines several
profiles (e.g., a single audio stream), and for each profile, multiple encoding for
mats may be allowed. For example, a single audio stream may be encoded as 8-
bit PCM samples at 8 kHz, delta encoding, predictive encoding, GSM encoding,
MP3, and so on. RTP provides a header field in which the source can specify the
encoding but is otherwise not involved in how encoding is done.

Another facility many real-time applications need is timestamping. The idea
here is to allow the source to associate a timestamp with the first sample in each
packet. The timestamps are relative to the start of the stream, so only the differ
ences between timestamps are significant. The absolute values have no meaning.
This mechanism allows the destination to do a small amount of buffering and play
each sample the right number of milliseconds after the start of the stream, inde
pendently of when the packet containing the sample arrived. Not only does time
stamping reduce the effects of jitter, but it also allows multiple streams to be syn
chronized with each other. For example, a digital television program might have
a video stream and two audio streams. The two audio streams could be for stereo
broadcasts or for handling films with an original language soundtrack and a
soundtrack dubbed into the local language, giving the viewer a choice. Each
stream comes from a different physical device, but if they are timestamped from a
single counter, they can be played back synchronously, even if the streams are
transmitted somewhat erratically.

The RTP header is illustrated in Fig. 6-26. It consists of three 32-bit words
and potentially some extensions . The first word contains the Version field, which

Page 12 of 27

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS: UDP 531

is already at 2. Let us hope this version is very close to the ultimate version since
there is only one code point left (although 3 could be defined as meaning that the
real version was in an extension word).

----- -----"-----32 bits---- - - - - ------

I

Ver, I P I X I cc !Ml Payload type I Sequence number

Timestamp

Synchronization source identifier

I

l !
~ ~
I I
I I ~------ ---- ----------------------------------- ------- ----------------~ I I

: . Contributing source identifier :
I I

'------ - --- ---------- ------- ----- ---- - - ------------------ - -- ------ - ---- 1

Figure 6-26. The RTP header.

The P bit indicates that the packet has been padded to a multiple of 4 bytes.
The last padding byte tells how many bytes were added. The X bit indicates that
an extension header is present. The format and meaning of the extension header
are not defined. The only thing that is defined is that the first word of the exten
sion gives the length. This is an escape hatch for any unforeseen requirements.

The CC field tells how many contributing sources are present, from O to 15
(see below). The M bit is an application-specific marker bit. It can be used to
mark the start of a video frame, the start of a word in an audio channel, or some
thing else that the application understands. The Payload type field tells which en
coding algorithm has been used (e.g., uncompressed 8-bit audio, MP3, etc.).
Since every packet carries this field, the encoding can change during transmission.
The Sequence number is just a counter that is incremented on each RTP packet
sent. It is used to detect lost packets.

The timestamp is produced by the stream's source to note when the first sam
ple in the packet was made. This value can help reduce jitter at the receiver by
decoupling the playback from the packet arrival time. The Synchronization
source identifier tells which stream the packet belongs to. It is the method used to
multiplex and demultiplex multiple data streams onto a single stream of UDP
packets. Finally, the Contributing source identifiers, if any, are used when mixers
are present in the studio. In that case, the mixer is the synchronizing source, and
the streams being mixed are listed here.

RTP has a little sister protocol (little sibling protocol?) called RTCP (Real
time Transport Control Protocol). It handles feedback, synchronization, and
the user interface but does not transport any data. The first function can be used

Page 13 of 27

532 THE TRANSPORT LAYER CHAP. 6

to provide feedback on delay, jitter, bandwidth, congestion, and other network
properties to the sources. This infotmation can be used by the encoding process
to increase the data rate (and give better quality) when the network is functioning
well and to cut back the data rate when there is trouble in the network. By provid
ing continuous feedback, the encoding algorithms can be continuously adapted to
provide the best quality possible under the cun-ent circumstances. For example, if
the bandwidth increases or deueases uuriug lhe transmission, the encoding may
switch trom MP3 to 8-bit PCM to delta encoding as required. The Payload typP.
field is used to tell the destination what encoding algorithm is used for the current
packet, making it possible to vary it on demand.

RTCP also handles interstream synchronization. The problem is that different
streams may use different clocks, with different granularities and different drift
rates. RTCP can be used to keep them in sync.

Finally, RTCP provides a way for naming the various sources (e.g., in ASCII
text). This information can be displayed on the receiver's screen to indicate who
is talking at the moment.

More information about RTP can be found in (Perkins, 2002).

6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP

UDP is a simple protocol and it has some niche uses, such as client-server
interactions and multimedia, but for most Internet applications, reliable, sequen
ced delivery is needed. UDP cannot provide this, so another protocol is required.
Tt is c;:illP.rl TCP and is the main worlrJ10rse of the Internet. Let us now study it in
detail.

6.5.1 Introduction to TCP

TCP (Transmission Control Protocol) was specifically designed to provide
a reliable end-to-end byte stream over an unreliable internetwork. An internet
work differs from a single network because different parts may have wildly dif
ferent topologies, bandwidths, delays, packet sizes, and other parameters. TCP
was designed to dynamically adapt to properties of the internetwork and to be
robust in the face of many kinds of failures.

TCP was formally defined in RFC 793 . As time went on, various errors and
inconsistencies were detected, and the requirements were changed in some areas.
These clarifications and some bug fixes are detailed in RFC 1122. Extensions are
given in RFC 1323.

Each machine supporting TCP has a TCP transport entity, either a library pro
cedure, a user process, or part of the kernel. In all cases, it manages TCP streams
and interfaces to the IP layer. "A TCP entity accepts user data streams from local
processes, breaks them up into pieces not exceeding 64 KB (in practice, often

Page 14 of 27

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 533

1460 data bytes in order to fit in a single Ethernet frame with the IP and TCP
headers), and sends each piece as a separate IP datagram. When datagrams con
taining TCP data arrive at a machine, they are given to the TCP entity, which re
constructs the original byte streams. For simplicity, we will sometimes use just
"TCP" to mean the TCP transport entity (a piece of software) or the TCP proto
col (a set of rules). From the context it will be clear which is meant. For example,
in "The user gives TCP the data," the TCP transport entity is clearly intended.

The IP layer gives no guarantee that datagrams will be delivered properly, so
it is up to TCP to time out and retransmit them as need be. Datagrams that do
arrive may well do so in the wrong order; it is also up to TCP to reassemble them
into messages in the proper sequence. In short, TCP must furnish the reliability
that most users want and that IP does not provide.

6.5.2 The TCP Service Model

TCP service is obtained by both the sender and receiver creating end points,
called sockets, as discussed in Sec. 6.1.3. Each socket has a socket number
(address) consisting of the IP address of the host and a 16-bit number local to that
host, called a port. A port is the TCP name for a TSAP. For TCP service to be
obtained, a connection must be explicitly established between a socket on the
sending machine and a socket on the receiving machine. The socket calls are
listed in Fig. 6-5.

A socket may be used for multiple connections at the same time. In other
words, two or more connections may terminate at the same socket. Connections
are identified by the socket identifiers at both ends, that is, (socket], socket2). No
virtual circuit numbers or other identifiers are used.

Port numbers below 1024 are called well-known ports and are reserved for
standard services. For example, any process wishing to establish a connection to
a host to transfer a file using FTP can connect to the destination host's port 21 to
contact its FTP daemon. The list of well-known ports is given at www.iana.org.
Over 300 have been assigned. A few of the better known ones are listed in
Fig. 6-27.

It would certainly be possible to have the FTP daemon attach itself to port 21
at boot time, the telnet daemon to attach itself to port 23 at boot time, and so on.
However, doing so would clutter up memory with daemons that were idle most of
the time. Instead, what is generally done is to have a single daemon, called inetd
(Internet daemon) in UNIX, attach itself to multiple ports and wait for the first
incoming connection. When that occurs, inetd forks off a new process and exe
cutes the appropriate daemon in it, letting that daemon handle the request. In this
way, the daemons other than inetd are only active when there is work for them to
do. Inetd learns which ports it is to use from a configuration file. Consequently,
the system administrator can set up the system to have permanent daemons on the
busiest ports (e.g., port 80) and inetd on the rest.

Page 15 of 27

534 .THE TRANSPORT LA YER CHAP. 6

Port Protocol Use
21 FTP File transfer

23 Telnet Remote login

25 SMTP E-mail

69 TFTP Trivial file transfer protocol

79 Finger Lookup information about a user

80 HTTP World Wide Web

110 POP-3 Remote e-mail access

119 NNTP USENET news

Figure 6-27. Some assigned ports.

All TCP connections are full duplex and point-to-point. Full duplex means
that traffic can go in both directions at the same time. Point-to-point means that
each connection has exactly two end points. TCP does not support multicasting or
broadcasting.

A TCP connection is a byte stream, not a message stream. Message boun
daries are not preserved end to end. For example, if the sending process does four
512-byte writes to a TCP stream, the e data may be delivered to the receiving
proce s as four 512-byte chunks, two 1024-byte chunks, one 2048-byte chunk (see
Fig. 6-28), or some other way . There is no way for the receiver to detect the
unit(s) in which the data were written.

~ A B C D

(b)

Figure 6-28. (a) Four 512-byte segments sent as separate IP datagrams. (b) The
2048 bytes of data delivered to the application in a single READ call.

Files in UNIX have this property too. The reader of a file cannot tell whether
the file was written a block at a time, a byte at a time, or all in one blow. As with
a UNIX file, the TCP software has no idea of what the bytes mean and no interest
in finding out. A byte is just a byte.

When an application passes data to TCP, TCP may send it immediately or
buffer it (in order to collect a larger amount to send_ at once), at its discretion.
However, sometimes, the application really wants the data to be sent immediately.
For example, suppose a user is logged in to a remote machine. After a command
line has been finished and the carriage return typed, it is essential that the line be

Page 16 of 27

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 535

shipped off to the remote machine immediately and not buffered until the next
line comes in. To force data out, applications can use the PUSH flag, which tells
TCP not to delay the transmission.

Some early applications used the PUSH flag as a kind of marker to delineate
messages boundaries. While this trick sometimes works, it sometimes fails since
not all implementations of TCP pass the PUSH flag to the application on the
receiving side. Furthermore, if additional PUSHes come in before the first one
has been transmitted (e.g., because the output line is busy), TCP is free to collect
all the PUSHed data into a single IP datagram, with no separation between the
various pieces.

One last feature of the TCP service that is worth mentioning here is urgent
data. When an interactive user hits the DEL or CTRL-C key to break off a re
mote computation that has already begun, the sending application puts some con
trol information in the data stream and gives it to TCP along with the URGENT
flag. This event causes TCP to stop accumulating data and transmit everything it
has for that connection immediately.

When the urgent data are received at the destination, the receiving application
is interrupted (e.g., given a signal in UNIX terms) so it can stop whatever it was
doing and read the data stream to find the urgent data. The end of the urgent data
is marked so the application knows when it is over. The start of the urgent data is
not marked. It is up to the application to figure that out. This scheme basically
provides a crude signaling mechanism and leaves everything else up to the appli
cation.

6.5.3 The TCP Protocol

In this section we will give a general overview of the TCP protocol. In the
next one we will go over the protocol header, field by field.

A key feature of TCP, and one which dominates the protocol design, is that
every byte on a TCP connection has its own 32-bit sequence number. When the
Internet began, the lines between routers were mostly 56-kbps leased lines, so a
host blasting away at full speed took over 1 week to cycle through the sequence
numbers. At modern network speeds, the sequence numbers can be consumed at
an alarming rate, as we will see later. Separate 32-bit sequence numbers are used
for acknowledgements and for the window mechanism, as discussed below.

The sending and receiving TCP entities exchange data in the form of seg
ments. A TCP segment consists of a fixed 20-byte header (plus an optional part)
followed by zero or more data bytes. The TCP software decides how big seg
ments should be. It can accumulate data from several writes into one segment or
can split data from one write over multiple segments. Two limits restrict the seg
ment size. First, each segment, including the TCP header, must fit in the 65,515-
byte IP payload. Second, each network has a maximum transfer unit, or MTU,

Page 17 of 27

536 THE TRANSPORT LA YER CHAP. 6

and each segment must fit in the MTU. In practice, the MTU is generally 1500
bytes (the Ethernet payload size) and thus defines the upper bound on segment
size.

The basic protocol used by TCP entities is the sliding window protocol.
When a sender transmits a segment, it also starts a timer. When the segment
an-ives at the destination, the receiving TCP entity sends back a segment (with
data if any exist, otherwise without data) bearing an acknowledgement number
equal to the next sequence number it expects to receive. If the sender's timer goes
off before the acknowledgement is received, the sender transmits the segment
again.

Although this protocol sounds simple, there are a number of sometimes subtle
ins and outs, which we will cover below .. Segments can arrive out of order, so
bytes 3072-4095 can arrive but cannot be acknowledged because bytes 2048--
3071 have not turned up yet. Segments can also be delayed so long in transit that
the sender times out and retransmits them. The retransmissions may include dif
ferent byte ranges than the original transmission, requiring a careful administra
tion to keep track of which bytes have been correctly received so far. However,
since each byte in the stream has its own unique offset, it can be done.

TCP must be prepared to deal with these problems and solve them in an effi
cient way. A considerable amount of effort has gone into optimizing the perfor
mance of TCP streams, even in the face of network problems. A number of the
algorithms used by many TCP implementations will be discussed below.

6.5.4 The TCP Segment Header

Figure 6-29 shows the layout of a TCP segment. Every segment begins with a
fixed-format, 20-byte header. The fixed header may be followed by header
options. After the options, if any, up to 65,535 - 20 - 20 = 65,495 data bytes may
follow, where the first 20 refer to the IP header and the second to the TCP header.
Segments without any data are legal and are commonly used for acknowledge
ments and control messages.

Let us dissect the TCP header field by field. The Source port and Destination
port fields identify the local end points of the connection. The well-known ports
are defined at www.iana.org but each host can allocate the others as it wishes. A
port plus its host's IP address forms a 48-bit unique end point. The source and
destination end points together identify the connection.

The Sequence number and Acknowledgement number fields perform their
usual functions. Note that the latter specifies the next byte expected, not the last
byte correctly received. Both are 32 bits long because every byte of data is num
bered in a TCP stream.

The TCP header length tells how many 32-bit words are contained in the TCP
header. This information is needed because the Options field is of variable length,
so the header is, too. Technically, this field really indicates the start of the data

Page 18 of 27

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 537

~---- ----- ---- 32 Bits--- - ------- - - ~

I I I

Source port Destination port

Sequence number

Acknowledgement number

TCP 'Id,;' u A p R s F
header R C s s y I Window size
length ;~r~ G K H T N N

Checksum Urgent pointer

~- - d,.,

I
Options (0 or more 32 bit words)

Data (optional) I
Figure 6-29. The TCP header.

within the segment, measured in 32-bit words, but that number is just the header
length in words, so the effect is the same.

Next comes a 6-bit field that is not used. The fact that this field has survived
intact for over a quarter of a century is testimony to how well thought out TCP is.
Lesser protocols would have needed it to fix bugs in the original design.

Now come six 1-bit flags . URG is set to 1 if the Urgent pointer is in use. The
Urgent pointer is used to indicate a byte offset from the current sequence number
at which urgent data are to be found. This facility is in lieu of interrupt messages.
As we mentioned above, this facility is a bare-bones way of allowing the sender to
signal the receiver without getting TCP itself involved in the reason for the inter
rupt.

The ACK bit is set to 1 to indicate that the Acknowledgement number is valid.
If ACK is 0, the segment does not contain an acknowledgement so the Acknowl
edgement number field is ignored.

The PSH bit indicates PUSHed data. The receiver is hereby kindly requested
to deliver the data to the application upon arrival and not buffer it until a full
buffer has been received (which it might otherwise do for efficiency) .

The RST bit is used to reset a connection that has become confused due to a
host crash or some other reason. It is also used to reject an invalid segment or
refuse an attempt to open a connection. In general, if you get a segment with the
RST bit on, you have a problem on your hands.

Page 19 of 27

538 THE TRANSPORT LA YER CHAP. 6

The SYN bit is used to establi h connections. The connection request has
SYN= 1 and ACK= 0 to indicate that the piggyback acknowledgement field is not
in u e. The connection reply does bear an acknowledgement, so it has SYN== 1
and ACK= L In essence the SYN bit is used to denote CONNECTION REQUEST
and CON ECTlON ACCEPTED, with the ACK bit used to distinguish between
tho e two possibilities.

The FIN bit is used to release a connection. It specifies that the sender has no
more data to transmit. However, after closing a connection, the closing process
may continue to receive data indefinitely. Both SYN and FIN segments have
sequence numbets and are thus guaranteed to be processed in the correct order.

Flow control in TCP is handled using a variable-sized sliding window. The
Window size field tells how many bytes may be sent starting at the byte acknowl
edged. A Window size field of O is legal and says that the bytes up to and includ
ing Acknowledgement number -:-- 1 have been received, but that the receiver is
currently badly in need of a rest and would like no more data for the moment,
thank you. The receiver can later grant permission to end by transmitting a seg
ment with the same Acknowledgement number and a nonzero Window size field.

In the protocols of Chap. 3, acknowledgement of frames received and per
mission to send new frames were tied together. This was a consequence of a
fixed window size for each protocol. In TCP, acknowledgements and permission
to end additional data are completely decoupled. In effect, a receiver can say: I
have received bytes up through k but I do not want any more just now. This
decoupling (in fact, a variable-sized window) gives additional flexibility. We will
study it in detail below.

A Checksum is also provided for extra reliability. It checksums the header,
the data and the conceptual pseudoheader hown in Fig. 6-30. When performing
this computation the TCP Checksum. field is set to zero and the data field is pad
ded out with an additional zero byte if its length i an odd number. The checksum
algorithm is imply to add up all the 16-bit words in one's complement and then

· to take the one's complement of the sum. As a consequence, when the receiver
performs the calculation on the entire segment, including the Checksum field, the
result should be 0.

The pseudoheader contains the 32-bit IP addresses of the source and destina
tion machines, the protocol number for TCP (6), and the byte count for the TCP
segment (including the header) . Including the pseudoheader in the TCP checksum
computation help detect misdelivered packets, but including it al o violate the
protocol hierarchy since the IP addresses in it belong to the IP layer, not to the
TCP layer. UDP uses the same pseudoheader for its checksum.

The Options field provides a way to add extra facilities not covered by the
regular header. The most important option is the one that allows each host to
specify the maximum TCP payload it is willing to accept. Using large segments
is more efficient than using small ones because the 20-byte header can then be
amortized over more data, but small hosts may not be able to handle big segments.

Page 20 of 27

SEC. 6.5 THE INTERNET TRANSPORT PROTOCOLS: TCP 539

--~-----------32 Bits ---------------

! I I

Source address

Destination address

00000000 I Protocol= 6 I TCP segment length

Figure 6-30. The pseudoheader included in the TCP checksum.

During connection setup, each side can announce its maximum and see its part
ner's. If a host does not use this option, it defaults to a 536-byte payload. All
Internet hosts are required to accept TCP segments of 536 + 20 = 556 bytes . The
maximum segment size in the two directions need not be the same.

For lines with high bandwidth, high delay, or both, the 64-KB window is often
a problem. On a T3 lin~ (44.736 Mbps), it takes only 12 msec to output a full 64-
KB window. If the round-trip propagation delay is 50 msec (which is typical for a
transcontinental fiber), the sender will be idle 3/4 of the time waiting for acknowl
edgements. On a satellite connection, the situation is even worse. A larger win
dow size would allow the sender to keep pumping data out, but using the 16-bit
Window size field, there is no way to express such a size. In RFC 1323, a Window
scale option was proposed, allowing the sender and receiver to negotiate a win
dow scale factor. This number allows both sides to shift the Window size field up
to 14 bits to the left, thus allowing windows of up to 230 bytes. Most TCP imple
mentations now support this option.

Another option proposed by RFC 1106 and now widely implemented is the
use of the selective repeat instead of go back n protocol. If the receiver gets one
bad segment and then a large number of good ones, the normal TCP protocol will
eventually time out and retransmit all the unacknowledged segments, including all
those that were received correctly (i.e., the go back n protocol). RFC 1106 intro
duced NAKs to allow the receiver to ask for a specific segment (or segments).
After it gets these, it can acknowledge all the buffered data, thus reducing the
amount of data retransmitted.

6.5.5 TCP Connection Establishment

Connections are established in TCP by means of the three-way handshake dis
cussed in Sec. 6.2.2. To establish a connection, one side, say, the server, pas
sively waits for an incoming connection by executing the LISTEN and ACCEPT

primitives, either specifying a specific source or nobody in particular.

Page 21 of 27

540 THE TRANSPORT LAYER CHAP. 6

The other side, say, the client, executes a CONNECT primitive, specifying the
IP address and port to which it wants to connect, the maximum TCP segment size
it is willing to accept, and optionally some user data (e.g., a password). The CON

NECT primitive sends a TCP segment with the SYN bit on and ACK bit off and
waits for a response.

When this segment arrives at the destination, the TCP entity there checks to
see if there is a process that has done a LISTEN on the port given in the Destination
port field. If not, it sends a reply with the RST bit on tn rf"ject the connection.

QJ

1

Host 1 Host 2 Host 1

SYN SEQ '=X --=----~

(a) (b)

Figure 6-31. (a) TCP connection establishment in the normal case. (b) Call col
lision.

Ho::.l 2

If ome proces is li tening to the port, that process is given the incoming
TCP segment. It can then either accept or reject the connection. If it accepts, an
acknowledgement segment is sent back. The equence of TCP segments sent in
the normal case is shown in Fig. 6-31(a). ote that a SYN segment consumes l
byte of sequence space so that it can be acknowledged unambiguously.

In the event that two hosts simultaneously attempt to establish a connection
between the same two sockets, the sequence of events is as illustrated in Fig. 6-
3l(b). The re ult of these event is that just one connection is established not two
because connections are identified by their end points. If the first setup results in
a connection identified by (x, y) and the second one does too, only one table entry
is made, namely, for (x, y).

The initial sequence number on a connection is not O for the reasons we dis
cussed earlier. A clock-based scheme is used, with a clock tick every 4 µ&ec. For
additional safety, when a host crashes, it may not reboot for the maximurrt packet
lifetime to make sure that no packets fro:m previous connections are still roaming
around the Internet somewhere.

Page 22 of 27

SEC. 7.4 MULTIMEDIA 689

- -
) Call signaling channel (0.931)

) Call control channel (H .245)

Caller/
) Forward data channel (RTP) -

'-callee

) - Reverse data channel (RTP)

) Data control channel (RTCP)

~ ~

Figure 7-66. Logical channels between the caller and callee during a call.

SIP-The Session Initiation ProtocQl

H.323 was designed by ITU. Many people in the Internet community saw it
as a typical telco product: large, complex, and inflexible. Consequently, IETF set
up a committee to design a simpler and more modular way to do voice over IP.
The major result to date is the SIP (Session Initiation Protocol), which is
described in RFC 3261. This protocol describes how to set up Internet telephone
calls, video conferences, and other multimedia connections. Unlike H.323, which
is a complete protocol suite, SIP is a single module, but it has been designed to
interwork well with existing Internet applications. For example, it defines tele
phone numbers as URLs, so that Web pages can contain them, allowing a click on
a link to initiate a telephone call (the same way the mailto scheme allows a click
on a link to bring up a program to send an e-mail message).

SIP can establish two-party sessions (ordinary telephone calls), multiparty
sessions (where everyone can hear and speak), and multicast sessions (one sender,
many receivers). The ses ion may contain audjo, video or data the latter being
useful for multiplayer real-time games for example. SIP just hand.les setup,
management and termination of sessions. Other protocols, such as RTP/RTCP,
are used for data transport. SIP is an application-layer protocol and can run over
UDP or TCP.

SIP supports a variety of services, including locating the callee (who may not
be at his home machine) and determining the callee's capabilities, as well as han
dling the mechanics of call setup and termination. In the simplest case, SIP sets
up a session from the caller's computer to the callee's computer, so we will exam
ine that case first.

Telephone numbers in SIP are represented as URLs using the sip scheme, for
example, sip:ilse@cs.university.edu for a user named Ilse at the host specified by
the DNS name cs.university.edu. SIP URLs may also contain IPv4 addresses,
IPv6 address, or actual telephone numbers.

Page 23 of 27

690 THE APPLICATION LA YER CHAP. 7

The SIP protocol is a text-based protocol modeled on HTTP. One party sends
a message in ASCII text consisting of a method name on the first line, followed
by additional lines containing headers for passing parameters. Many of the
headers are taken from MIME to allow SIP to interwork with existing Internet
applications. The six methods defined by the core specification are listed in
Fig. 7-67.

Method Description

INVITE Request initiation of a session

ACK Confirm that a session has been initiated

BYE Request termination of a session

OPTIONS Query a host about its capabilities

CANCEL Cancel a pending request

REGISTER Inform a redirection server about the user's current location

Figure 7-67. The SIP methods defined in the core specification.

To establish a session, the caller either creates a TCP connection with the
callee and sends an INVITE message over it or sends the INVITE message in a
UDP packet. In both cases, the headers on the second and subsequent lines
describe the structure of the message body, which contains the caller's capabili
ties, media types, and formats. If the callee accepts the call, it responds with an
HTTP-type reply code (a three-digit number using the groups of Fig. 7-42, 200 for
acceptance). Following the reply-code line, the callee also may supply informa
tion about its capabilities, media types, and formats.

Connection is done using a three-way handshake, so the caller responds with
an ACK message to finish the protocol and confirm receipt of the 200 message.

Either party may request termination of a session by sending a message con
taining the BYE method. When the other side acknowledges it, the session is ter
minated.

The OPTIONS method is used to query a machine about its own capabilities.
It is typically used before a session is initiated to find out if that machine is even
capable of voice over IP or whatever type of session is being contemplated.

The REGISTER method relates to SIP's ability to track down and connect to a
user who is away from home. This message is sent to a SIP location server that
keeps track of who is where. That server can later be queried to find the user's
current location. The operation of redirection is illustrated in Fig. 7-68. Here the
caller sends the INVITE message to a proxy server to hide the possible redirection.
The proxy then looks up where the user is and sends the INVITE message there. It
then acts as a relay for the subsequent messages in the three-way handshake. The
LOOKUP and REPLY messages are not part of SIP; any convenient protocol can
be used, depending on what kind of location server is used.

Page 24 of 27

SEC. 7.4 MULTIMEDIA 691

Caller

Data

Figure 7-68. Use a proxy and redirection servers with SIP.

SIP has a variety of other features that we will not describe here, including
call waiting, call screening, encryption, and authentication. It also has the ability
to place calls from a computer to an ordinary telephone, if a suitable gateway be
tween the Internet and telephone system is available.

Comparison of H.323 and SIP

H.323 and SIP have many similarities but also some differences. Both allow
two-party and multiparty calls using both computers and telephones as end points.
Both support parameter negotiation, encryption, and the RTP/RTCP protocols. A
summary of the similarities and differences is given in Fig. 7-69.

Although the feature sets are similar, the two protocols differ widely in philo
sophy. H.323 is a typical, heavyweight, telephone-industry standard, specifying
the complete protocol stack and defining precisely what is allowed and what is
forbidden. This approach leads to very well defined protocols in each layer, eas
ing the task of interoperability. The price paid is a large, complex, and rigid stan
dard that is difficult to adapt to future applications.

In contrast, SIP is a typical Internet protocol that works by exchanging short
lines of ASCII text. It is a lightweight module that interworks well with other
Internet protocols but less well with existing telephone system signaling protocols.
Because the IETF model of voice over IP is highly modular, it is flexible and can
be adapted to new applications easily. The downside is potential interoperability
problems, although these are addressed by frequent meetings where different
implementers get together to test their systems.

Voice over IP is an up-and-coming topic. Consequently, there are several .
books on the subject already. A few examples are (Collins, 2001; Davidson and
Peters, 2000; Kumar et al., 2001; and Wright, 2001). The May/June 2002 issue of
Internet Computing has several articles on this topic.

Page 25 of 27

692 THE APPLICATION LA YER CHAP. 7

Item H.323 SIP

Designed by ITU IETF

Compatibility with PSTN Yes Largely

Compatibility with Internet No Yes

Architecture Monolithic Modular

Completeness Full protocol stack SIP just handles setup

Parameter negotiation Yes Yes

Call signaling Q.931 over TCP SIP over TCP or UDP

Message format Binary ASCII

Media transport RTP/RTCP RTP/RTCP

Multiparty calls Yes Yes

Multimedia conferences Yes No

Addressing Host or telephone number URL

Call termination Explicit or TCP release Explicit or timeout

Instant messaging No Yes

Encryption Yes Yes

Size of standards 1400 pages 250 pages

Implementation Large and complex Moderate

Status Widely deployed Up and coming

Figure 7-69. Comparison of H.323 and SIP

7 .4.6 Introduction to Video

We have discussed the ear at length now; time to move on to the eye (no, this
section is not followed by one on the nose). The human eye has the property that
when an image appears on the retina, the image is retained for some number of
milliseconds before decaying. If a sequence of images is drawn line by line at 50
images/sec, the eye does not notice that it is looking at discrete images. All video
(i.e., television) systems exploit this principle to produce moving pictures.

Analog Systems

To understand video, it is best to start with simple, old-fashioned black-and
white television. To represent the two-dimensional image in front of it as a one
dimensional voltage as a function of time, the camera scans an electron beam
rapidly across the image and slowly down it, recording the light intensity as it
goes. At the end of the scan, called a frame, the beam retraces. This intensity as
a function of time is broadcast, and receivers repeat the scanning process to re-

,:

I
/

Page 26 of 27

Web document,
dynamic, 643-651
static, 623-643

Web security, 805-819
mobile code, 816-819
secure naming, 806-813
SSL, 813-816
threats, 805-806

Web server, 618-622
mirrored, 659-660
replicated, 659-660
TCP handoff, 622

Web server farm, 621-622
Web site, this book's, 79
Web URL, 614, 622-625
Webmail, 610-611
Weighted fair queueing, 409
Well-known port, 533
WEP (see Wired Equivalent Privacy)
Whitening, 740
Wide area network, 19-21
WiFi (see IEEE 802.11)
Wine policy, 394
Wired equivalent privacy, 300, 781-783
Wireless application environment, 664
Wireless application protocol (see W AP)
Wireless broadband (see IEEE 802.16)
Wireless datagram protocol, 664
Wireless LAN (see IEEE 802.11)
Wireless LAN protocol, 265-270
Wireless local loop (see IEEE 802.16)
Wireless MAN (see IEEE 802.16)
Wireless markup language, 664
Wireless network, 21-23
Wireless security, 780-785

802.11, 781-783
Bluetooth, 783-784
WAP, 785

Wireless Session Protocol, 664
Wireless TCP, 553-555
Wireless transaction protocol, 664
Wireless transmission, 100-108
Wireless transport layer security, 664
Wireless UDP, 553-555
Wireless Web, 662-673

second generation, 670-673
W AP 1.0, 663-665
W AP 2.0, 670-673

Wiring closet, 91

INDEX

WLL (Wireless Local Loop) (see IEEE 802.16)
WML (see Wireless Markup Language)
Work factor, 727
World Wide Wait, 660
World Wide Web (see Web)
World Wide Web Consortium, 612

891

WSP (see Wireless Session Protocol)
WTLS (see Wireless Transport Layer Security)
WTP (see Wireless Transaction Protocol)
WWW (see Web)

X

X.25, 61
X.400, 589-590
X.500, 588
X.509, 767-768
XDSL, 130
XHTML (see eXtended HyperText Markup Language)
XML (see eXtensible Markup Language)
XSL (see eXtensible Style Language)

z
Zimmermann, Phil, 799
Zipf's law, 706
Zone,686

DNS, 586

Page 27 of 27

