
VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 1 of 435

'1 1—4
5
H

(D
H

:3
(D
H

jCDi
D
H

CD

8mgpun‘s.19>[o.lgo ‘smmpuem‘SJapgdSI
an E"E

CD —. (I,

VMware - Exhibit 1014

VMware v. IV | - |PR2020-00470

Page 1 of 435

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 2 of 435

Create and

effectively

manage

agents and

explore

their effects

on the

Internet

VMware - Exhibit 1014

VMware v. IV | - |PR2020-00470

Page 2 of 435

Internet Agents:.
Spiders, W.llnd~,;aers, Brokers, and 'Bots

••••••••••••••••••••••••••••••••••

Fah.:Chun Cheong

,,.,,;\>\•;ic;i\f.;.y<',$' .S'hC•,••t·,c,,;,,,,;,~,.. ~
ishi~g,\lndianapolis, Indiana

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 3 of 435

Internet Agents: Spiders, Wanderers, Brokers, and 'Bots
By Fah-Chun Cheong

Published by:

New Riders Publishing

201 West 103rd Street

Indianapolis, IN 46290 USA

All rights reserved. No part of this book may be reproduced or trans

mitted in any form or by any means, electronic or mechanical, in

cluding photocopying, recording, or by any information storage and

retrieval system, without written permission from the publisher, ex

cept for the inclusion of brief quotations in a review.

Copyright© 1996 by New Riders Publishing

Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

CIP Data Available upon Request

Warning and Disclaimer
This book is designed to provide information about Internet agents.

Every effort has been made to make this book as complete and as

accurate as possible, but no warranty or fitness is implied.

The information is provided on an "as is" basis. The author and New

Riders Publishing shall have neither liability nor responsibility to any

person or entity with respect to any loss or damages arising from

the information contained in this book or from the use of the disks or

programs that may accompany it.

Publisher
Publishing Manager
Marketing Manager

Managing Editor

Don Fowley

Jim LeValley

Ray Robinson

Tad Ringo

ii Internet Agents: Spiders, Wanderers, Brokers, and 'Bots

~od~ct'llavelopment··•
. Specialist .

. Julie Fairweather
ll,ev.~lopment Eclitor

Suzanne Snyder
Pl'ot:l~ctirin.Editor

Gliff ShutJs

IJapyErino~
Arny Bezek,~ra,n.Blauw,.·
Gal.I a.1.1rfakoffi .Laura ·
Frey, t.iscl Wilson ·

As11ac:iate M11rketin~
M11,nager ·••
. · Tarriara Apple

·. J\°:qui~Hions Cot1rdinat~r
rr~~vJwge~9"!\ . · •..•. ·

Ptl~lishe~'s~sistaiJt ·
Karet:r Opal ·

Jl~~~r~~s!fjn~i• ··
···J,ay,cqrp~s .•
• tray,r!lllls~at1w ..

Roger•Morga'rt •
Btnlltl1asigner

Sahdra Schroeder

· Martilfaatlil'jn.fr. Coordinator
l?aul Gilchrist

Produc:ti~ri fvt11nager.
Kelly 0, Qobbs

. ProdutltiotrTearri Supem!isor
Laurie .<;;.asey . . ·.•.

· BraRbits bnlige Specialists
Jas()n Hanel, C::llpt · ..•.•
Lahner;i; ~aura.Robl:lihs,
C::ta:igSrni:111, ToddWeQte

Pl't1d1:mUq11 Aiial~t11
· 4\r(gEJla o '.. aanqan

Bobbi Satter:fieltf
Proiju~tion 'feaIQ
. l-:l~a@3r l3Litler, Dan •·•
.. • ,G)aparo1 J<irn.Cofet\. Kevit1
• E'oltt, Eirika MiUef);EriG!1 .
. J,Hicht~r;. Chnstir\e
Tyner, l<~renWalsh ·

r1111e~el\
< Ghrist.op~er Cl~yelahd

J
l

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 4 of 435

About the Author
Fah-Chun Cheong consults with start-up compa
nies around the San Francisco Bay Area in the
application of agent technologies for electronic
commerce on the World Wide Web and Internet.

Mr. Cheong received his B.S. in Electrical Engi
neering from The University of Texas at Austin in
1986, and his M.S. and Ph.D. degrees in Com
puter Science from the University of Michigan in
1988 and 1992, respectively. His Ph.D. research
work is on the design and development of an ex
perimental agent-oriented programming language
and compiler system for heterogeneous distrib
uted computing environments. He founded Agent
Computing, Inc. in 1994, with a vision to develop
innovative application-specific agent technologies
for the Internet.

Trademark Acknowledgments
All terms mentioned in this book that are known to
be trademarks or service marks have been appro
priately capitalized. New Riders Publishing cannot
attest to the accuracy of this information. Use of a
term in this book should not be regarded as affect

ing the validity of any trademark or service mark.

Dedication
To my parents and sisters

Acknowledgments
This book might not have been written (well, at
least not in 19951) if Vinay Kumar had not invited
me along to a dinner earlier this year at a sushi
place in San Francisco with Jim LeValley, Publish
ing Manager for New Riders Publishing. I thank
him for that and for the many interesting and in
sightful discussions on a variety of topics we have
had over many cups of espresso.

A very big thank you to Kevin Hughes for review
ing drafts of this book. I am grateful to ex
colleagues at EIT and ex-EIT friends, especially
Jeff Pan and Jim McGuire, for information in a
variety of areas, most notably procurement
agents, Web robots, and secure HTTP.

I would like to thank all the people on the Internet
whose pioneering work in agents, spiders, wan
derers, and Web robots has made an early book
on this topic a possibility. Special thanks to all the
authors of Web robots, spiders, and wanderers
who have a,nswered e-mail questionnaires on
Internet agents; their insightful comments and
responses have contributed much toward shap
ing the content of this book.

I am indebted to Roy Fielding for his libwww-perl
and MOMspider source code, which, in a vastly sim
plified form, have now become the basis upon which
WebWalker is built. Many thanks to Bruce Krulwich
whose Bargain Finder agent on the Web inspired the
development of WebShopper for this book.

Martijn Koster has authored and maintained a
number of marvelous Web pages on the net.
Among his creations, I have found the List of Ro
bots a comprehensive reference and an invalu
able resource for much of this book.

The Stanford Libraries have proved invaluable to
me on this project, as on others. I am extremely
grateful that Stanford opens its Mathematics and
Computer Science Library, and also the Engineer
ing Library, to the surrounding community at large.

A very big thank you to the friendly, competent,
and generally fantastic editorial staff at New Rid
ers who prepared this book for publication. I am
indebted to Jim LeValley for taking an interest in
Internet agents, coming up with an initial plan for
this book, and supplying me continuously with an
unending strecJm of helpful sources and materi
als. I am especially thankful to Julie Fairweather
for developing the book, coordinating the process
to keep publication on schedule, and for helping
with numerous screen-shots of the Web. Special
thanks to Cliff Shubs for his excellent editing and
his many thoughtful remarks on the book, and to
Suzanne Snyder for helping with the development
of the book. Many thanks go to Roger Morgan for

designing the great spider on the front cover.

Internet Agents: Spiders, Wanderers, Brokers, and 'Bats iii

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 5 of 435

Contents at a Glance

Part I: Introduction
The World of Agents ... 3

2 The Internet: Past, Present, and Future .. 37

3 World Wide Web: Playground for Robots 61

Part II: Web Robot Construction
4 Spiders for Indexing the Web .. 81

5 Web Robots: Operational Guidelines .. 105

6 HTTP: Protocol of Web Robots ... 125

7 WebWalker: Your Web Maintenance Robot 153

Part III: Agents and Money on the Net
8 Web Transaction Security ... 185

9 Electronic Cash and Payment Services 205

Part IV: Bots in Cyberspace
10 Worms and Viruses ... 229

11 MUD Agents and Chatterbots ... 249

Part V: Appendices
A HTTP 1.0 Protocol Specifications .. 283

B WebWalker 1.00 Program Listing ... 293

C WebShopper 1.00 Program Listing ... 337

D List of Online Bookstores Visited by BookFinder • 347

E List of Online Music Stores Visited by CDFinder 351

F List of Active MUD Sites on the Internet 355

G List of World Wide Web Spiders and Robots 375

Bibliography ... 387

Index .. 401

iv Internet Agents: Spiders, Wanderers, Brokers, and 'Bots

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 6 of 435

Table of Contents

Part I: Introduction 1

1 The World of Agents 3
What are Agents? .. 5
Agents and Delegation ... 6

Personal Assistants ... 6
Envoy Desktop Agents .. 8
New Wave Desktop Agents .. 8
Surrogate Bots .. 9
Internet Softbots ... 10

Agents and Coordination .. 12
Conference-Support Agents .. 12
Integrated Agents .. 13
Communicative Agents ... 15

Agents and Knowledge .. 17
Teaching Agents .. 17
Learning Agents .. 19
Common-Sense Agents .. 21
Physical Agents ... 23

Agents and Creativity ·.· .. 24
Creative Agents ... 24
Automated Design Agents .. 27

Agents and Emotion ... 27
Art of Animation .. 28
Artificial lritelligence .. 28
The Oz Project ... 28

Agents and Programming .. 30
KidSim ... 30
Oasis ... 31

Agents and Society .. 32
Control' 33
Over Expectations ... : 33
Safety ... : 33
Privacy ... 33

Commercial Future of Agents .. 33
Product Suites ... 34
Mobile Computing ... 34

Concluding Remarks .. 35

I Table of Contents V

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 7 of 435

2 The Internet: Past, Present, and Future 37
Early Days of ARPAnet ... 38
Notable Computer Networks ... 39
Internet and NSFnet ... 41
NSF and AUP ... 42
Growth of the Internet ... 42
How Big is the Internet? .. 45
Internet Society, IAB, and IETF .. 55
Information Superhighway and the National Information Infrastructure 57

3 World Wide Web: Playground for Robots 61
World Wide Web Development ... 62

Growth of the Web ... 62
Information Dissemination with the Web ... 62
Innovative Uses of the Web .. 65

Architecture of the World Wide Web ... 65
Web Clients ... 66
Web Servers .. 66
Web Proxies .. 67
Web Resource Naming, Protocols, and Formats 67

URI and URL: Universal Resource Identifier and Locator 67
Common URI Syntax ... 68
URLs for Various Protocols ... 69
Gopher and WAIS .. 69

HTTP: HyperText Transfer Protocol ... 69
Statelessness in HTTP .. 70
Format Negotiations .. 70

HTML: HyperText Markup Language ... 71
Level of HTML Conformance .. 71
HTML Tags .. 72

Forms and Image maps: Enhanced Web Interactivity 73
Fill-Out Forms .. 73
Clickable Images ... 73

Gateway Programming: Processing Client Input 74
Gateway Program Interaction '. 75

The Next Step: Agents on the Web ... 76
Early Commerce Agents ... 76
Web Agents of the Future? ... 78

Part II: Web Robot Construction 79

4 Spiders for Indexing the Web 81
Web Indexing Spiders .. 82
WebCrawler: Finding What People Want .. 84

vi Internet Agents: Spiders, Wanderers, Brokers, and 'Bots

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 8 of 435

Searching with WebCrawler .. 84
How WebCrawler Moves in Webs pace .. 85

Lycos: Hunting WWW Information .. 89
Searching with Lycos .. 90
Lycos' Search Space ... 91
Lycos Indexing .. 92
How Lycos Moves in Webspace ... 92

Harvest: Gathering and Brokering Information ... 93
Searching with Harvest ... 94
Harvest Architecture ... 95

WebAnts: Hunting in Packs ... 99
WebAnts Motivation ... 100
WebAnts Searching and Indexing ... 100

Issues of Web Indexing ... 100
Recall and Precision .. 101
Good Web Citizenship ... 101
Performance .. 102
Scalability ... 102

Spiders of the Future ... 1 03

5 Web Robots: Operational Guidelines 105
Web Robot Uses .. 106

Web Resource Discovery .. 107
Web Maintenance ... 107
Web Mirroring ... 107

Proposed Standard for Robot Exclusion ... 108
Robot Exclusion Method ... 108
Robot Exclusion File Format.. .. 109
Recognized Field Names ... 109
Sample Robot Exclusion Files ... 110

The Four Laws of Web Robotics .. 110
I. A Web Robot Must Show Identifications ... 111
II. A Web Robot Must Obey Exclusion Standard 112
Ill. A Web Robot Must Not Hog Resources .. 113
IV. A Web Robot Must Report Errors .. 115

The Six Commandments for Robot Operators' 115
I. Thou Shalt Announce thy Robot : 116
II. Thou Shalt Test, Test, and Test thy Robot Locally 117
111. Thou Sha It Keep thy Robot Under Control 118
IV. Thou Shalt Stay in Contact with the World 119
V. Thou Shalt Respect the Wishes of Webmasters 119
VI. Thou Shalt Share Results with thy Neighbors 120

Robot Tips for Webmasters ... 121
Web Ethics ... 122

I Table of Contents vii

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 9 of 435

6 HTTP: Protocol of Web Robots 125
Understanding HTTP Operation ... 126
Messaging with HTTP .. 128

Message Headers ... 128
General Message Header Fields ... 129

Request Message .. 130
Method .. 130
Request Header Fields .. 133

Response Message ... 136
Status Codes and Reason Phrases ... 137
Response Header Fields ... 140

Entity .. 141
Entity Header Fields .. 141
Entity Body .. 146

Protocol Parameters ... 14 7
HTTP Version ... 14 7
Universal Resource Identifiers .. 147
Date/Time Formats .. 147

Content Parameters ... 148
Media Types .. 148
Character Sets ... 148
Encoding Mechanisms .. 149
Transfer Encodings .. 149
Language Tags .. 150

Content Negotiation ... 150
Access Authentication ... 151

7 WebWalker: Your Web Maintenance Robot 153
The Web Maintenance Problem .. 154
Web lnfostructure ... 154
Past Approaches ... 154
Web Maintenance Spiders .. 155

WebWalker Operation .. 156
Processing Task Descriptions ... 156
Avoiding and Excluding URLs , 156
Keeping History .. ,. 157
Traversing the Web ... 157
Generating Reports ... 157
Is WebWalker a Good Robot? ... 157
WebWalker Limitations ... 158

WebWalker Program Installation .. 158
WebWalker Task File ... 159

Global Directives ... 159
Task Directives .. 160
Task File Format .. 161

viii Internet Agents: Spiders, Wanderers, Brokers, and 'Bots

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 10 of 435

WebWalker Usage Examples ... 161
Sample WebWalker Output .. 162
WebWalker Forms Interface ... 167

WebWalker Program Organization ... 169
External Library Calls ... 169
WebWalker Program Call-Graph .. 170
Configuration Section .. 172
Avoidance Package ... 17 4
History Package ... 175
Traversal Package .. 177
Summary Package ... 178

Growing into the Future ... 181

Part III: Agents and Money on the Net 183

8 Web Transaction Security 185
Concepts of Security .. 186

Privacy: Keeping Private Messages Private .. 187
Authentication: Proving You Are Who You Claim to Be 188
Integrity: Ensuring Message Content Remains Unaltered 189

Brief Tour of Classical Cryptography .. 189
The Role of NSA .. 190
Development of Data Encryption Standard (DES) 190

Development of Public-Key Cryptography ... 191
Problems with Secret Keys ... 191
Key Management .. 192
The RSA Alternative .. 192
Comparing Secret-Key and Public-Key Cryptography 193

Digital Signatures ... 194
How Digital Signatures Work .. 194
The Digital Signature Standard .. 197

Key Certification ... 197
Certifying Authority ... 197
Certificate Format .. : 198

Two Approaches to Web Security ... · 198
Secure Socket Layer (SSL) .. 200
Secure HTTP (S-HTTP) .. 201
Current Practice and Future Trend in Web Security 203

9 Electronic Cash and Payment Services 205
Brief History of Money ... 206
Choice of Payment Methods ... 207
What is Digital Cash? ... 207

Digital Cashier's Check .. 208
Anonymous Digital Cash through Blind Signatures 210

I Table of Contents ix

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 11 of 435

Ecash from DigiCash ... 211
Ecash Security and Other Issues .. 213

Payment Systems on the Internet ... 214
U.S. Payment Systems Today ... 214
CyberCash Internet Payment Service ... 215

Information Commerce on the Internet ... 220
Economics of Information Commerce .. 220
First Virtual Payment System .. 222

The Future .. 225

Part IV: Bots in Cyberspace 227

10 Worms and Viruses 229
Short History of Worms ... 230

The First Worm ... 230
The Christmas Tree Worm .. 232
The Internet Worm .. 232

Anatomy of the Internet Worm .. 232
Method of Worm Attack .. 232

Method of Worm Defense .. 233
What Does the Worm Not Do? ... 234

Brief History of Viruses .. 234
Types of Viruses ... 236

Boot-Sector lnfectors .. 236
File lnfectors .. 236

PC Virus Basics .. 237
Viral Activation in the Boot Process ... 238

Step One: ROM BIOS Routines Execution ... 238
Step Two: Partition Record Code Execution 238
Step Three: Boot-Sector Code Execution .. 238
Step Four: IQ.SYS and MSDOS.SYS System Code Execution 239
Step Five: COMMAND.COM Shell Execution 240
Step Six: AUTOEXEC.BAT Batch File Execution 240

Viral Activation During Normal Operation : 240
Viral Replication .. , 241
Viral Reinfection ... 241
Symptoms of Viral Infection ... 241
Major IBM PC Viruses .. 242

Pakistani Brain Virus .. 242
Friday the 13th Virus ... 243
Lehigh Virus ... 243
Dark Avenger ... 243
Michelangelo Virus .. 244

Stealth Techniques ... 244

x Internet Agents: Spiders, Wanderers, Brokers, and 'Bots

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 12 of 435

Advanced Viral Techniques .. 245
Encrypted Virus ... 245
Multi-Encrypted Virus .. 246
Instructions Rescheduling ... 246
Mutation Engine .. 246
Armored Virus ... 246

Worms and Viruses Summarized ... 247

11 MUD Agents and Chatterbots 249
The Turing Test .. 250
Eliza: The Mother of All Chatterbots .. 251

A Conversation with Eliza .. 252
Eliza Internals .. 252

Parry: The Artificial Paranoia Agent .. 253
An Interview with Parry ... 254
Distinguishing Parry from Human Patients ... 255

MUDs: Virtual Worlds on the Internet.. .. 255
Inside MUDs ... 256
Sample MUD Interactions ... 256

TinyMUDs: Virtual Communities on the Internet 266
Sample TinyMUD Interactions .. 267
Social Interactions on TinyMUDs .. 268

Colin: The Prototypical MUD Agent ... 269
Colin's Information Services .. 270
Colin's Mapping Services .. 271
Colin's Miscellaneous Services ... 273

Julia: Chatterbot with a Personality .. 273
An Interaction with Julia .. 274
Inside Julia ... 274
The Loebner Prize Competition ... 275
Julia in the Loebner Prize Competition .. 276
CHAT: A Knowledgeable Chatterbot ... 278

Tricks of the Chatterbots .. 278
Eliza's Tricks .. 278
Parry's Tricks ... , 279
Julia's Tricks ... 279

Closing Words .. 279

Part V: Appendices 281

A HTTP 1.0 Protocol Specifications 283
Notational Conventions .. 284

Augmented BNF .. 284
Basic Rules .. 285

I Table of Contents xi

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 13 of 435

HTTP 1.0 Grammar .. 286
1 . HTTP Message .. 286
2. Request ... 286
3. Response .. 287
4. Entity .. 288
5. Protocol Parameters ... 289
6. Content Parameters .. 290
7. Access Authentication ... 290

B WebWalker 1.00 Program Listing

C WebShopper 1.00 Program Listing

D List of Online Bookstores Visited by Bookfinder

E List of Online Music Stores Visited by CDFinder

F List of Active MUD Sites on the Internet

293

337

347

351

355
Doran's MUDlist ... 356

TYPE <unknown> (2) .. 356
TYPE aber (19) ... 356
TYPE almostlRC (1} ... 357
TYPE bsx (1} .. 357
TYPE circle (6) ... 357
TYPE darkmud (1} .. 358
TYPE dgd (6) .. 358
TYPE diku (57) ... 358
TYPE dum (3) ... 361
TYPE Ip (111) ... 361
TYPE lp-german (3) .. 366
TYPE mare (1} .. 367
TYPE mere (13) .. 367
TYPE moo (20) ... 368
TYPE moo-portuguese (1) ... 369
TYPE muck (16) .. '. 369
TYPE mudwho (2) .. : 370
TYPE muse (12) ... 370
TYPE mush (39) ... 371
TYPE oxmud (2) ... 373
TYPE silly (1} .. 373
TYPE talker (7) ... 373
TYPE teeny (2) ... 373
TYPE tiny (1} .. 374
TYPE uber (1} ... 374
Key .. 374

xii Internet Agents: Spiders, Wanderers, Brokers, and 'Bots

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 14 of 435

G List of World Wide Web Spiders and Robots 375
The JumpStation Robot ... 376
RBSE Spider ... 376
The WebCrawler .. 376
The NorthStar Robot .. 376
W4 (World Wide Web Wanderer) .. 377
The Fish Search .. 377
The Python Robot .. 377
HTML Analyzer ... 377
MOMspider .. 377
HTMLgobble .. 378
WWWW-the WORLD WIDE WEB WORM ... 378
WM32 Robot .. 378
Websnarf .. 379
The Webfoot Robot .. 379
Lycos .. 379
ASpider (Associative Spider) .. 379
SG-Scout .. 379
EIT Link Verifier Robot ... 380
NHSE Web Forager .. 380
Web linker .. 380
Emacs W3 Search Engine .. 380
Arachnophilia .. 381
Mac WWWWorm .. 381
Ch URL .. 381
Tarspider .. 381
The Peregrinator ... 381
Checkbot .. 382
Webwalk .. 382
Harvest ... 382
Kati po ... 382
lnfoSeek Robot .. 383
GetU R L .. 383
Open Text Corporation Robot .. 383
NIKOS ... • 383
The TkWWW Robot ... 384
A Tel W3 Robot .. 384
TIT AN ... 384
CS-HKUST WWW Index Server ... 384
Spry Wizard Robot ... 384
Weblayers .. 385
WebCopy ... 385
Scooter ... 385
Aretha ... 385
WebWatch ... 385

I Table of Contents xiii

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 15 of 435

Bibliography 387
Chapter 1 .. 387
Chapter 2 .. 390
Chapter 3 .. 391
Chapter 4 .. 392
Chapter 5 .. 393
Chapter 6 .. 393
Chapter 7 .. 394
Chapter 8 .. 395
Chapter 9 .. 396
Chapter 1 0 .. 397
Chapter 11 .. 398

Index 401

xiv Internet Agents: Spiders, Wanderers, Brokers, and 'Bots

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 16 of 435

p a r t

Introduction ··

1

2

3 World Wide Web: Playgrou

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 17 of 435

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 18 of 435

VMware - Exhibit 1014

VMware v. IV | - |PR2020-00470

Page 18 of 435

c h a e r
ieo~eeoeeeeeeeeeeeeeeeoeee@

The World of Agents

come to the world of agents. On the Internet,

ents can take on many different forms and per

rm interesting functions. Some agents have been

deployed on the Net and are in use daily. The fol

lowing are some common types of agents on the

Internet that you probably have already encoun

tered:

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 19 of 435

4

➔ Web robots, spiders, and wanderers

➔ Web commerce agents

➔ Worms and viruses

➔ MUD agents and chatterbots

Web robots, spiders, and wanderers are programs

that traverse the World Wide Web information

space. They move from one Web document to an

other by referencing the hyperlinks embedded in

the Web pages. Web robots speak the native

HyperText Transfer Protocol (HTTP) of the World

Wide Web, using it to retrieve Web documents from

servers. They crawl on the Web to discover new

resources, to index the Webspace for keyword

searching, and to seek out dead links in Webspace

for automated maintenance.

Web commerce agents are the automated Web

shoppers, bargain-hunters, and smart online

buyers for comparison-shopping and automated

procurement. They are also the automated online

catalogs and electronic sales representatives for

manufacturers and retailers. But more importantly,

they are playing the emerging roles of brokers, bar

terers, traders, and middlemen that promise to fa

cilitate commerce on the Internet and on the Web

in the near future.

Worms and viruses are malicious agents that repli

cate themselves in an elusive way to travel from

machine to machine, network to network. In the

past, they were often hand-carried by humans on

floppy disks. But for the future, the Internet, with

its decentralized global connectivity, is increasingly

a vulnerable new medium of transport. Such un

dercover dark agents of society are considered

harmful and extremely dangerous to the

well-being of our global computing and communi

cations infrastructure.

p a r t I Introduction

MUD agents and chatterbots are automatons from

the world of Multi-User Dungeons or Multi-User

Dimensions in cyberspace. MUD agents provide

useful services to human players, such as answer
ing inquiries and giving directions, through a type

written natural-language interface. Chatterbots are

conversational agents whose main job is to chat

with human players. Unlike MUD agents,

chatterbots are not specific to MUDs and can also

exist outside of the MUD world.

The following chapters of this book examine vari

ous Web robots and spiders, and introduce some

widely accepted operational guidelines for Web

robots. Web commerce agents, although currently

with few deployed examples, are introduced along

with the World Wide Web. This book includes a

chapter dedicated to discussing how one such spi

der for Web maintenance, WebWalker, can be con

structed. This book also examines the operations

of worms and viruses, as well as MUD agents and

chatterbots.

The foundation technologies underlying Internet

agents, such as transaction security, electronic cash,

and payment services, are explained in detail along

with examples of current commercial offerings on

the Internet.

This book is about agents on the Internet, but for

the sake of buil,ding a solid foundation for appreci
ating agents in general, the remainder of this chap

ter is dedicated to the pioneers of agent research

who are currently busy constructing agents of the

future. The next section discusses the concept of

agents in general, and introduces a taxonomic agent

framework for understanding various kinds of

agents.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 20 of 435

What are Agents?
The qualifying attributes of agenthood have for

many years been the staple of lively philosophical

discussions and the favorite subject of debates

within the agent research community. Never be

fore has a field of inquiry been so rich and diverse,

yet fragmented, that its primary subject of inquiry

remains shrouded in a perpetual rhetoric: What

exactly is an agent?

Simply put, agents can be considered personal soft

ware assistants with authority delegated from their

users. Early visionaries such as Nicholas

Negroponte (1970, 1989) and Alan Kay (1984) were

among the first to recognize the value of software

personal assistants. They spoke of the idea of em

ploying agents in the interface to delegate certain

computer-based tasks. More recently, several com

puter manufacturers have adopted this idea to il

lustrate their vision of the interface for the future;

for example, videos produced by Apple (1988). In

the words of Ted Selker (1994) from IBM's Almaden

Research Center, "Agents are computer programs

that simulate a human relationship, by doing some

thing that another person could otherwise do for

you."

Figure 1.1

A Telescript agent from

General Magic.

On Personal
Communicator

The World of Agents

The Telescript agent programming language tech

nology developed by General Magic, a start-up com

pany in the Silicon Valley, supports the deployment

of software agents as personal delegates across

the network. General Magic defines an agent as a

piece of Telescript program that is sent across the

network (White 1994). The Telescript p~~gram en

capsulates the user's instructions for performing

all kinds of tasks in electronic venues on the net

work, which are called "places." Electronic mail

boxes, calendars, markets, and gathering points,

for example, are all places.

As illustrated in figure 1.1, people who dispatch

Telescript agents can think of these agents as elec

tronic extensions of themselves, capable of gath

ering information resourcefully, negotiating deals,

and performing transactions on their behalf. These

Telescript agents can be customized for an individual

user's preferences, and also are intelligent in the

sense that they can have contingency plans. In other

words, Telescript agents can assess themselves,

as well as the conditions of their surrounding envi

ronment when situated in different places, and act

accordingly, perhaps changing from an original

course of action to an alternative plan.

On Mainframe

C h a p t e
5

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 21 of 435

6

The definition of agents, however, usually deviates

from such a simple one as delegated software pro

grams given above. Agent research has drawn upon

the ideas and results produced by people from

diverse disciplines, including robotics, software

engineering, programming languages, computer

networks, knowledge engineering, machine learn

ing, cognitive science, psychology, computer

graphics-even art, music, and film. From this

diversity of perspectives, not one definition, but a

rich set of views on agents, has emerged.

In addition to being understood as delegated soft

ware entities, agents can also be studied along other

important dimensions, such as coordination, knowl

edge, creativity, and emotion. The programming and

social aspects of agents are also important consid

erations. The remaining sections of this chapter

explore the concept of agents along these various

dimensions.

Agents and Delegation
Agents are primarily human-delegated software

entities that can perform a variety of tasks for their

human masters. This section examines their roles

as personal assistants, desktop agents, surrogate

bots, and softbots.

Personal Assistants
Pattie Maes, an assistant professor with the Mas

sachusetts Institute of Technology Media Lab, has

been working to create agents that reduce work

and information overload for computer users (1994).

She believes that as computers and networks

p a t I Introduction

begin to reach a larger populace, the current domi

nant metaphor of direct manipulation

(Schneiderman 1988), which requires the user to

initiate all tasks explicitly and to monitor all events,

might not be the most convenient for many new,

untrained users. She favors an alternative, comple

mentary style of interaction called "indire,ct man

agement," (Kay 1990) which engages the user in a

cooperative process with a computer program

known as the intelligent personal assistant.

Maes's work has resulted in agents that provide

personalized assistance for a variety of tasks,

including meeting scheduling, e-mail handling, elec

tronic news filtering, and the selection of books,

music, and other forms of entertainment. In the pro

cess of constructing such agents, Maes has identi

fied the following two problems:

➔ Competence. How does an agent acquire the

knowledge to decide when, with what, and how

to help the user?

➔ Trust. How do you ensure that users feel com-

fortable delegating tasks to an agent?

According to Maes, both problems can be solved

with a machine-learning approach, where the agent

learns about its user's habits through interactions

over time. Specifically, a learning agent gradually

acquires its competence by the following:

➔ Observing and imitating the user

➔ Receiving positive and negative feedback from

the user

➔ Receiving explicit instructions from the user

➔ Asking other agents for advice

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 22 of 435

Over time, the agents become more helpful as they

accumulate knowledge about how the user handles

certain situations. Gradually, more tasks that initially

were performed directly by the user can be taken

care of by the agent. As shown in figure 1.2, Maes'

agents use simple caricatures to convey their inter

nal state to the user.

The user also is given time to gradually and incre

mentally build up a model of the agent's

Figure 1.2

Simple caricatures

convey agent "emo

tional" states to user.

The World of Agents

competencies and limitations. The particular learn

ing approach adopted enables the agent to give ex

planations for its reasoning and behavior in language

the user is familiar with. An example of this would

be "I thought you might want to take this action

because this situation is similar to this other situa

tion we have experienced before." The user would

have the opportunity to become more comfortable

delegating tasks to the agents after using them for

some time.

C h a p t e
7

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 23 of 435

8

Envoy Desktop Agents
The Envoy Framework has been proposed by re

searchers at Brown University's Institute for Re

search in Information and Scholarship (IRIS) as an

open architecture for agents on the desktop

(PYFLHCM 1992). The framework supports agents

that operate in conjunction with existing desktop

user applications and assists users with the more

tedious, repetitive, and time-consuming tasks. En

voy agents help users with tasks such as the fol

lowing:

➔ Sifting through incoming information

➔ Monitoring information sources continuously

➔ Searching data sources at regular intervals

➔ Delegating tasks now for future execution

In the Envoy Framework shown in figure 1.3, a user

specifies a mission for the Envoy by interacting with

an Envoy-aware application. These Envoy-aware

applications are called operatives because they are

responsible for actually carrying out missions on

behalf of the user. As the user's representative, the

Envoy would schedule, track, and dispatch all

•
~

USER

p a r t I Introduction

missions the user has specified, and handle all com

munications with the operatives.

When an operative completes an assigned mission,

it notifies the Envoy, which in turn notifies the user

through a set of Envoy-aware applications called

informers. The mission results can be a brief mes

sage, a short report, or an interactive report view

able from the native application interface. At any

time, the user can view a mission summary listing

all active missions, as well as reports generated by

operatives responsible for those missions.

A bureau chief on the local area network maintains

a record of each user's Envoy, as well as all Envoy

aware applications in the environment. New opera

tives or informers in the environment must first

register with the bureau chief.

New Wave Desktop Agents
In contrast to the Envoy Framework, Hewlett

Packard's New Wave Agent (HP 1989) is a more

limited form of desktop integration that automates

Figure 1.3

The Envoy Framework

employs operatives,

informers, and a bureau

chief.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 24 of 435

tasks users perform frequently. Application devel

opers implement a defined set of protocols to make

their applications agent-aware in the New Wave

environment.

A New Wave user can specify routine tasks by dem

onstration. Say, for example, the user wants to start

a database access application, download specific

information into a spreadsheet, generate a graph

from the spreadsheet data, copy the graph to a text

document, and mail it to a group of users. All the

user needs to do is turn on the recording feature

and perform the desired sequence of actions inter

actively. The task is represented as a script docu

ment on the desktop and can be scheduled for ex

ecution using the calendar. The script also can be

edited by the user if needed.

The integration of agent functionality into the desk

top environment enables users to automate rou

tine and repetitive tasks quite easily. Because tasks

can be defined by example, the cognitive overhead

of learning a scripting language is substantially re

duced. A user needs only be sufficiently familiar

with the language to make any necessary modifi

cations to scripts. In addition, the calendar on the

New Wave desktop provides an intuitive metaphor

and convenient mechanism for scheduling agent

tasks.

Surrogate Bots
Agents can relieve users of low-level administra

tive and clerical tasks, such as setting up meetings,

sending out papers, locating information, tracking

whereabouts of people, and so on. Research sci

entists at AT&T Bell Labs, Henry Kautz and Bart

Selman, and MIT graduate student Michael Coen,

The World of Agents

have built and tested an agent system consisting

of surrogate bots that addresses the real-world prob

lem of handling the communication involved in

scheduling a visitor to their laboratory at AT&T Bell

Labs (1994).

Kautz, Selman, and Coen have identified the fol

lowing issues as important for successful deploy

ment of agents: reliability, security, and ease-of-use.

Users should be able to assume that the surrogate

bots are reliable and predictable, and human users

should remain in ultimate control.

They approach the problem in a bottom-up fashion

by first identifying specific tasks that are both fea

sible using current technology and also truly useful

to the everyday users. After this, a set of software

surrogate bots are designed, implemented, and

tested with real users.

Visitor Scheduling Bots
The job of scheduling visitors is quite routine, but it

consumes a substantial amount of the host's time.

The normal sequence of tasks are as follows:

1. Announce the upcoming visit by e-mail.

2. Collect responses from people who would like

to meet with the visitor.

3. Put together a schedule that satisfies as many

constraints as possible.

4. Send out the schedule to participants.

5. Possibly reschedule people at the last minute

due to unforeseen events.

In their agent system, a specialized surrogate bot,

the visitorbot, handles the visitor scheduling. For

each individual user, there is a userbot whose job

C h a p t e
9

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 25 of 435

10

is to mediate communications between the human

owner and the visitorbot. Figure 1 .4 shows the user

interface created by a userbot in response to a

message from the visitorbot.

The task-specific visitorbot specifies what informa

tion needs to be transferred or obtained but not

how the communication should take place. It is the

responsibility of each userbot to consider its

owner's preferences and to accordingly determine

the preferred mode of communication: graphics,

voice, fax, or e-mail.

The userbot has its own graphical window contain

ing buttons the user can press to change the pre

ferred mode of communication, or to suspend

processing of messages until a later time. The win

dow also contains buttons labeled with all the

p a

10:30 11\!!1 I okay 11 good I
11:00

11:30

12:00

Talk - 4C·501 ~~-
lunch--~

1:30 [B:1 E\if)lj good (

2:0d •.~.-I good L
2:30 1. bad I j okay 111!1!1:
3:00 .. , okay 11 good I ·

· 3:~.o. 181 okay 11 good .1 ·

r t I Introduction

different taskbots known to the userbot. When the

user presses one of these buttons, the userbot

sends a help request message to the appropriate

taskbot, thereby initiating an interaction between

the user and the selected taskbot.

Internet Softbots
Oren Etzioni and Daniel Weld, both professors at

the University of Washington at Seattle, have the

long term goal of developing an agent-based inter

face that enables naive users to locate, monitor,

and transmit information across the net. For the past

three years, they have led the Internet Softbot

project, which focuses on the problems of design

ing and building a software robot capable of effec

tively exploring the Internet (1994).

Figure 1.4

A window pops up to

show a message from

visitorbot.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 26 of 435

The Internet Softbot uses a Unix shell and the World

Wide Web to interact with a wide range of Internet

resources. Softbot sensors are analogous to whis

kers on a physical insect robot, and include Internet

facilities such as archie, gopher, netfind, and oth

ers. Softbot effectors are analogous to the mechani

cal arms and legs on a physical robot, and include

ftp, telnet, mail, and numerous file manipulation

commands. The softbot is designed to incorporate

new sensor and effector facilities into its repertoire

of Internet-based tools as they become available.

According to Etzioni and Weld, the softbot supports

a qualitatively different kind of human-computer

interface. In addition to simply allowing the user to

interact with the computer, the softbot behaves like

an intelligent personal assistant. The user can make

a high-level request, and the softbot uses search,

inference, and knowledge to determine how to

satisfy the request. Furthermore, the softbot is

designed to be robust enough that it can tolerate

and recover from ambiguity, omissions, and errors

in human requests.

Softbot Planner
The planning component of softbot is called the

softbot planner. It takes as input a logical expres

sion which describes the user's goal in the form of

a sentence in first-order predicate logic. For users

unfamiliar with logical expressions, a graphical fill

in form that automatically translates to a softbot

goal is available.

After searching a library of action schemata describ

ing available information sources, databases,

utilities, and software commands, a sequence of

actions to achieve the goal is then generated. The

softbot planner is able to decompose complex goal

The World of Agents

expressions into simpler components and solve

them with divide-and-conquer techniques. Interac

tions between subgoals, which are usually prob

lematic, are automatically detected and resolved.

The softbot planner relies on a logical model of the

available Internet resources that tells it how these

resources can be invoked or accessed, as well as

the effect of doing so. Unlike traditional programs

and scripts which are committed to a rigid flow of

control determined by the programmer when the

program was coded, the softbot planner synthe

sizes plans on demand when the program is run,

based upon the user's goal. In the words of Etzioni

and Weld, a softbot "is worth a thousand shell

scripts."

Example Softbot Usage
With the Internet Softbot, for example, a user can

quickly perform the task of "sending the budget

memos to Mitchell at CMU" with ease (see fig.

1.5).

The softbot first disambiguates the reference to

Mitchell at CMU by executing the command

finger mitchell@cmu.edu and recording who the

various Mitchells are at CMU. If necessary, it

prompts the user to select the intended recipient.

If it decides to send the memos, the softbot deter

mines the correct e-mail address and reasons about

the document format (for example, postscript if it

contains figures and LaTeX source otherwise). Fur

thermore, if Mitchell is out of town (for example,

as notified by reply e-mail from the "vacation" pro

gram), or if the memos are confidential (such as

encrypted), it ensures delivery in a timely and se

cure manner.

C h a p t e
11

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 27 of 435

12

D Send Document

,).ff IIIJ .. Recfpient

m Full Name

~ Last Name I i Mitchell

m Title

m Field

/~ Or~anization I i CMU

· Dopumeni

[I} Pathname r-------~""'"""-~

~ Author

~· Subject I .-:-1 b-u--,-dg-e-:-t~~-~

~ I Document Typ~I 'I m-e-mo~---'---''--'-~

~

Agents and Coordination
Agents can also facilitate work and coordinate tasks

among people, machines, and other agents. This

section describes conference-support agents such

as GOS and M, and communicative agents based

upon an agent communication language (ACL}. The

coordination, collaboration, and communication

aspects of agents are emphasized.

◊ .Last Name
~ Alford

Barri,lt
Borrilrig
Etzlcinl
Flchtenlioltz
Goan
Golden

.Hunt
Kwok
!.:an
·Lesh••

Mlt¢hell
Perkowltz
PUlkka

RUl!ZO

Seg~I

Selber11
Splget

~ son
Weld

Figure 1.5

Softbot request fo;m for

sending a document.

Conference-Support Agents
Researchers .at LUTCHI Research Centre at

Loughborough University of Technology in England

demonstrate that group support agents are viable

for design tasks (ECJS 1994). They have con

structed a Geographic Decision System (GOS} to

provide multi-agent group support to design con

ferences.

p a r t I Introduction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 28 of 435

GDS has a separation of function, which is achieved

by partitioning the system into distinct components.

A central communication bus serves as the back

bone of the system, attached to which are the per

user presentation layers and dialog controllers, plus

one of each of the following system-wide agents:

➔ Conference agent

➔ Group agent

➔ Application agent

➔ User agent

➔ Floor agent

The conference agent controls initialization of the

system. It interacts with the person who starts the

conference to learn about the other participants,

their locations, and any applications to be shared.

A presentation layer and a dialog controller are then

created for each participant. The conference agent

next invokes other agents and starts the appropri

ate applications along with their respective applica

tion interface modules. Throughout the conference,

the conference agent allows newcomers to join,

members to leave, and different applications to be

shared.

A separate group agent supports the customization

of group options. It might be undesirable, for ex

ample, that every participant does have the ability

to end the conference.

The application agent provides external software

application services to the group. An example of

such an external software system could be the

geographic information system, which might be

useful to the group in the design of road systems.

The World of Agents

The application agent can intercept and modify

messages from the dialog controllers to the appli

cation interface module by snooping on the com

munication bus.

The user agent intercepts all messages on the com

munication bus, which allows it to have master

control of interaction with users. In other words,

the user agent enables different members of the

group to view data from different vantage points

and to interact with it, and with one another, in dif

ferent styles.

The floor agent works with the user agent to en

sure that only one participant can enter data at a

time. The floor agent understands different floor

policies, such as moderated, first-come, or round

robin, and offers the capability to change the floor

policy as needed.

Integrated Agents
Doug Riecken, a researcher from the AT&T Bell

Laboratories, takes the position that it takes many

integrated agents to create a software assistant

(1994). In such an approach, many different rea

soning processes, called a "society of agents," are

integrated to realize a software assistant capable

of performing a broad range of tasks. Riecken's ef

forts have re.suited in the realization of M, a soft

ware assistant that he.lps the user classify, index,

store, retrieve, explain, and present information in

a desktop multimedia conferencing environment.

M's Architectural Design
M's architectural design is based upon the theory

of integrating a variety of reasoning processes, or

c h a p t e 13

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 29 of 435

l_

14

agents, to form an intelligent assistant. Influenced

by Al pioneer Marvin Minsky's "society of mind"

theory (1985), M is built to accommodate the fol

lowing types of reasoning capabilities:

➔ Spatial (based upon properties of space)

➔ Structural (based upon relationships between

parts of some object)

➔ Functional (based upon the functional purpose

of some object)

➔ Temporal (based upon properties related to

time)

➔ Causal (based upon events, actions, and state

changes in objects)

➔ Explanation-based (explanation of a situation

through first principles)

➔ Case-based (solving new problem by analogy

of stored solutions to old ones)

M accomodates these capabilities by integrating

various subsystem components, including a spread

ing activation semantic network for realizing K-lines/

polynemes, a rule-based system, a set of black

boards for realizing transframes and pronomes, a

scripting system, a history logfile system, and an

1/0 system.

M's Operation
M was used at the AT&T Bell Labs within a virtual

meeting room that supports multimedia desktop

conferencing. Participants collaborate using pen

based computers and with voice through tele

phones. The goal of the software assistant is to

classify and index the changing state of the virtual

meeting room.

p a r t I Introduction

In this virtual place, each user is supported by a

personalized assistant, and the world,is.composed

of electronic documents, electronic ink, images,

markers, white boards, copiers, staplers, and so on.

The assistants attempt to recognize and define re

lationships among objects based upon actions ap

plied by the user to the world and the resulting new

states of the world.

From observing that a user annotates two adjacent

documents by drawing a circle to enclose them

together, for example, M can infer and explain a

plausible relationship between the two documents.

Essentially, M applies the following reasoning ca

pabilities:

➔ Spatial reasoning to find out about the nearness

of the two documents and the circle

➔ Structural and functional reasoning about the

circle enclosing two documents

➔ Causal reasoning about the action of enclosing
objects.

Riecken's underlying thesis is that an assistant for

classifying and explaining actions applied to objects

within a dynamic world should be functionally ef

fective if it can simultaneously generate and test

multiple domain theories in relation to a given goal.

When an even,t occurs, such as an individual anno

tating a document or moving a piece of paper, M's

1/0 system records who did what and archives it as

an input record for processing. M attempts to gen

erate and maintain simultaneous theories of the

world by using a set of "blackboards" to which

emerging theories of the world are posted. Thus,

each blackboard serves as the working area to

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 30 of 435

expand and improve a given theory, and the set of

blackboards are ranked based upon the strength of

each theory.

According to Riecken, the integrated agents in M

make possible a new framework for users to work

together electronically. M improves the perfor

mance of participants in a virtual meeting room by

allowing for added expressiveness while minimiz

ing many computer-related actions.

Communicative Agents
Professor Michael Genesereth and his graduate

student Steven Ketchpel at Stanford University have

examined the practical issues of software

interoperation from the viewpoint of an agent soft

ware architecture (GK 1994). They have coined the

term agent-based software engineering to describe

the approach of writing software applications as

components called software agents.

These software agents interoperate by exchang

ing messages in a universally mandated agent com

munication language. Software agents differ from

objects in object-oriented programming in that the

meaning of an agent message is based upon a com

mon language with agent-independent semantics,

whereas the meaning of an object message can

vary from one object to another.

Genesereth and Ketchpel have identified the fol

lowing three issues that need to be addressed

within the context of agent-based software engi

neering:

➔ What is an appropriate agent communication

language?

The World of Agents

➔ What is the best way to build agents capable of

communicating in this language?

➔ What communication architectures are condu

cive to cooperation?

Agent Communication Language
Two popular approaches are used to design an agent

communication language: a procedural approach or

a declarative approach. In the procedural approach,

communication can be thought of as the exchange

of procedural directives. Individual commands, as

well as entire programs, can be transmitted and

executed at the recipient's end. Scripting languages,

such as TCL, Apple Events, and Telescript, are

based upon the procedural approach.

In the declarative approach, communication can be

thought of as an exchange of declarative state

ments, such as definitions, assertions, or assump

tions. The declarative approach, in the form of Agent

Communication Language (ACL), was chosen by

Genesereth and Ketchpel for their agent-based soft

ware engineering.

ACL was designed by researchers in the ARPA

Knowledge Sharing Effort (NFFGPSS 1991). ACL is

made up of three parts: a vocabulary, an inner lan

guage called Knowledge Interchange Format (KIF),

and an outer language called Knowledge Query and

Manipulatiorr Language (KOML).

The vocabulary of ACL is listed in a large and open

ended dictionary of words appropriate for common

application areas (Gruber 1991). KIF is a prefix ver

sion of first-order predicate calculus, capable of

encoding simple data, constraints, rules, and quan

tified expressions, among other things. KOML is a

C h a p t e
15

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 31 of 435

16

linguistic layer above KIF that provides contextual

information for more efficient communications.

With a clear definition of the ACL, it is straightfor

ward to write agent programs that abide by certain

behavioral constraints in order to work together

correctly. For the large number of existing legacy

software, however, Genesereth and Ketchpel of

fer the following three approaches to agentification:

➔ Implement a transducer, which mediates be

tween an existing program and other agents.

➔ Design a wrapper around an existing program

to enable it to speak ACL.

➔ Rewrite the original program, as a last resort.

Agent Communication Architecture
Several architectures have been proposed for or

ganizing agents to enhance collaboration. In the

contract-net approach (DS 1983), agents in need of

services distribute requests for proposals to other

A'""'··••·•···5r.

agents, who evaluate those requests and submit

bids to the originating agents. The originators use

the bids in deciding to whom to award contracts.

In the specification sharing approach, agents ad

vertise their individual capabilities and needs. This

information is then used to coordinate agent activi

ties.

Finally, in the federated system approach, agents

do not communicate directly with one another but

instead rely on system programs called facilitators

to handle all communications with other agents (see

fig. 1.6).

Already, agent architecture has been put to use in

concurrent engineering for application-level

interoperation, as reported by Cutkosky (1993). The

long-range vision for agent technology, according

to Genesereth and Ketchpel, is one in which any

system can interoperate with any other system

without the intervention of human users or their

programmers.

Figure 1.6

Federation of agents.

Facilitator Facilitator

p a r t I Introduction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 32 of 435

Agents and Knowledge
The knowledge component of agents serves many

useful functions. This section discusses how agents

can teach people new programming skills, learn

about the calendar scheduling habits of human us

ers, reason with common sense, and derive world

knowledge from sensing the surrounding physical

environment.

Teaching Agents
Ted Selker, manager of User Systems Ergonomics

Research at IBM's Almaden Research Center, views

agents as computer programs that simulate a hu

man relationship. According to Selker, there can be

two types of agents.

An assistant-style agent is one that builds a rela

tionship with the user through a private interface.

Using this interface, the agent can understand the

user's needs to perform formerly complex or un

known tasks with computer-created macros. An

advisory-style agent, on the other hand, is one that

builds a user relationship with the explicit goal of

educating the user.

Selker has built an advisory-style teaching agent

called Cognitive Adaptive Computer Help (COACH)

that helps users learn to program in the Lisp pro

gramming language (1994).

The COACH Agent
To use a computer language effectively, a student

needs to understand both its syntax and its

semantics.

The syntax includes language statements, as well

as tokens such as keywords and acceptable

variable names in Lisp. The syntax definition is used

as a way to classify user progress and to guide

instruction.

The semantics of the language includes learnable

concepts in Lisp such as evaluation, iteration, stored

variables, and so on. In addition, learnable concepts,

all of which must be mastered to do a specific task,

are further organized by COACH into basic sets.

The COACH system also includes examples of

these learnable concepts and a model of the par

ticular student's understanding and ability to use

each one. COACH has the user-interface shown in

figure 1.7.

COACH watches the user's actions in order to build

an adaptive user model of the user's experience

and expertise. While the user is working on a task,

aspects of the user's successes and failures are

recorded. The system is proactive in that it can an

ticipate user needs and is capable of presenting help

before it is requested. Both the user and the sys

tem can initiate help in a mixed-initiative interac

tion.

Several representations of language knowledge

work together in COACH to create help for the user:

➔ Subject frames, which consist of knowledge

about the domain

➔ Adaptive frames, which hold the recording of

user experience relative to a domain

➔ Presentation rule sets, which embody a model

of teaching

➔ A multi-level parser, which is the syntax defini

tion of the domain

The World of Agents I c h a p t e
17

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 33 of 435

18

COACH ADAPTIVE USER MODEL SYSTEM

CURRENT ENVIRONMENT: DEFUN
DESCRIPTION:

DEFUN DEFINES A FUNCTION

COACH Figure 1.7

The COACH user
interface.

D\:FU.N ALLOWS YOlJ TO NAME AND USE A SET .OF LIS~ FUNCTION CALLS
ONCE DEFJNEO. THIS FUNCTION.CAN BE U.SED LIKE ANY O'T"HER FUNCTIONS;

RELATED MATE.RIAL: IF.ANY IS UNFAMILIAR, THEN MOUSE: ON LISP-GONOEP'.J"S,
FOl'!M. .

A FORM IS A LIST THAT IS MEANT TO. Bl: l:VALUATED .•
{SETQ A9) ISAFORM . . .

EX/l,MPL~: >(DEfUN FOi'! ()
4)'.->FOUI'!

>(FOUR)~4

EXPECTING AN ATOM:WHIOHJA A SYMBO~ OR A NU1v18l:R.
SYNTAX: AN.ATOM CONSISTS Of ANY STRING OF CHARACTERS.
JXAMPLE: X LAST_NAME 100 .

(OEFUN II

The defined network of relationships between the

domain to be learned, the user's actions, and the

state of the user model, forms the basis for select

ing user help. The system chooses when to use

example, description, and syntax style help depend

ing upon the levels of user expertise, such as nov

ice, intermediate, professional, or expert.

Field-Testing COACH
To test the hypothesis that an adaptive coaching

paradigm improves productivity, a version of

COACH without the automatic help and

adaptiveness was created.

In a usability study conducted by Selker involving

19 programmers with no prior Lisp experience,

p a r t I Introduction

users of the adaptive system wrote five times as

many Lisp functions as those of the nonadaptive

one. During the course, users of the adaptive sys

tem liked Lisp more than the other group, consulted

the help screen more often, and rated COACH

higher as a learning environment. Finally, at the end

of the course, only 11 percent of the students from

the adaptive g_roup, as compared to a full two-thirds

of students from the nonadaptive group, indicated

they felt uncomfortable with Lisp (Selker 1994).

An adaptive teaching scenario concentrates on the

user's individual needs by moving students toward

an apprenticeship or learn-while-doing approach and

away from syllabus-style classroom experience. An

adaptive teaching paradigm is found to improve

productivity.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 34 of 435

The COACH system demonstrates that agent tech

nology can successfully work in place of a human

coach to give personalized instruction while a stu

dent is actually working out solutions.

Learning Agents
Researchers at Carnegie Mellon University (CMU),

Mitchell, Caruana, Freitag, McDermott, and

Zabowski, believe that machine learning plays an

important role in future personal software assis

tants. They imagine a future where knowledge

based assistants "operate across the network as a

kind of software secretary, providing services for

work and home such as paying bills, making travel

arrangements, submitting purchase orders, and lo

cating information in electronic libraries" (MCFMZ

1994),

The Calendar Apprentice
The success of these agents will depend on know

ing and learning about the particular user's habits

and goals, and tailoring to them accordingly. The

CMU researchers have built a calendar manager

called Calendar Apprentice (CAP), which learns its

user's scheduling preferences from experience-it

is a learning apprentice that assists the user in

managing a meeting calendar.

CAP provides an interactive editing and e-mail in

terface to an online calendar, and is capable of giv

ing customized scheduling advice to each user. In

approximately five user-years of experience (one

user-year is equivalent to one user using CAP for

one year), CAP has learned an evolving set of sev

eral thousand rules that characterize scheduling

preferences for each of its users (JDMMZ 1991;

DBMMZ 1992; MCFMZ 1994).

Traditionally, many programs provide simple param

eters enabling users to explicitly customize the

program's behavior. Text editors, for example, en

able users to set default font types and sizes, while

desktop window managers enable users to choose

the default placement of icons and windows.

According to the CMU researchers, however, there

are limits to this approach. Customizing an e-mail

sorter to accommodate one's personal notion of

an urgent message, for example, requires detailed

articulation of a fairly subtle concept. Furthermore,

even if users are willing to initially customize their

assistants, they might be unwilling to continually

update this knowledge. A message about a par

ticular business contract, for example, might be

quite urgent before an approaching deadline, but

not necessarily as urgent after the deadline.

The approach adopted in CAP can be summarized

as follows:

➔ Provide a convenient interface (see fig. 1.8) that

enables the user to perform the task-an edit

ing and e-mail interface to an online calendar,

for example.

➔ Treat each user interaction as a training ex

ample of the user's habits. Each meeting

scheduled by the user reflects preference for

the duration, time, location, and so on, of this

type of meeting,

➔ Learn general regularities from this training data

and use this learned knowledge to increase the

services offered. An assistant could, for ex

ample, provide interactive advice to the user

or offer to negotiate specific meetings on the

user's behalf.

The World of Agents I c h a p t e
19

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 35 of 435

20

08/25/1992 Immigration Course Aug 25 - Sept 11
08/26/1992 IC talk Is 11 :15 - 12:15

Time Mon(.lay iuesday Wednesdl,)y
8-24 8-25 8-26

8:00

8:30

9:00

9:30

10:00

10:30

11:00 Immigration-
Weh5409

11:30 SP: mitchell

12:00 Bocionek
Weh5309

12:30

1:00

1:30 Zabowskl
Weh5309 Harris

2:00 Reddy Simmon Weh5309

2:30
Weh5327

Immigration-
Weh5409

3:00 Edrc-Faculty SP: unknown
Edrc-Conf-Rm

3:30

4:00

4:30 ~
V

5:00

5:30

6:00

lill!I :ff •fJ.
Duration: C-A[60] 30

CAP Functionality

Thursday
8-27

Adult
Weh5309

Away I 11

V

:ff

With CAP, users can edit the calendar by adding,

deleting, moving, copying, and annotating meet

ings, and they can mark various calendar events as

either tentative or confirmed. Other CAP commands

instruct CAP to send e-mail meeting invitations or

meeting reminders to the attendees as

appropriate.

p a r I Introduction

Friday
8-28

Masuoka
Weh5309

Figure 1.8

The Calendar Apprentice

user interface.

As time goes•on, CAP learns the scheduling prefer

ences of its user, and evolves gradually from a pas

sive editing interface to a knowledgeable assistant

capable of interacting more intelligently with the

user and offloading the work of meeting negotia

tion from the user.

Currently, CAP learns rules that enable it to sug

gest the meeting duration, location, time, and date.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 36 of 435

Each night, CAP automatically runs a learning algo

rithm to refine the set of rules it will use to provide

advice on the following day. The learning algorithm

is similar to ID3 (Quinlan 1986), which learns a de

cision tree from the most recent training data.

A decision tree organizes the problem of classify

ing an object into a series of questions about the

object. Calendar meetings, for example, can be clas

sified according to meeting location and based upon

various "feature tests" at branch points. These fea

ture tests can ask whether it is lunchtime or not

(dining hall or conference room), as well as the

attendee's department (EE building or CS building).

Field-Testing CAP
Results from field testing CAP within a small aca

demic community at Carnegie Mellon University

indicate that it is indeed possible for the system to

learn rules that characterize scheduling prefer

ences. The accuracy of learned advice varies sig

nificantly from feature to feature, and from user to

user. It also is observed that the accuracy of CAP

varies over time, reflecting the dynamic nature of

the domain and the need for updating user-specific

scheduling preferences. In particular, the periods

of poorest performance correlate strongly with the

semester boundaries in the academic year-when

there are permanent scheduling changes.

Based upon CAP's performances, its creators at

CMU conclude that "while rules learned by CAP

are useful for providing interactive advice to be

approved or overriden by the user, they are not

sufficiently accurate to support autonomous nego

tiation of all meetings by the agent on the user's

behalf" (MCFMZ 1994).

The World of Agents

Rather than total automation of user workload, the

CMU researchers foresee that a more likely sce

nario for practical software agents of the future is

one of shared responsibility. Only the subset of situ

ations for which the agent has high confidence will

be handled autonomously, while difficult cases will

always be referred to the user.

Common-Sense Agents
Douglas Lenat, principal scientist at Microelectronic

and Computer Corporation (MCC), believes that

agents need some common corpus of shared

knowledge in order to communicate. According to

Lenat, the past 20 years have witnessed numer

ous successes in which knowledge-based systems

have been constructed and deployed. Amidst all

these successes, however, there is constant fail

ure as well. These systems cannot share knowl

edge and pool together their expertise and work

together synergistically. In other words, these sys

tems were brittle in the face of unanticipated situa

tions (LGPPS 1990).

Lenat believes the primary impediment to achiev

ing interesting agent behavior is lack of knowledge.

He reasons that we would not need to work as hard

to come up with clever algorithms, data structures,

and architectures if we had a large database of

knowledge tq fall back on.

Backed by a 10-year, 25 million dollar grant in the

Cyc project (as in enCYClopedia) that started in

1984, Lenat is boldly pioneering an attempt to as

semble a massive knowledge base (on the order

of tens of millions of axioms) spanning human con

sensus knowledge (LGPPS 1990; GL 1994).

C h a p t e
21

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 37 of 435

22

Second Paradigm of Software Agents
In Lenat's view, there are two contrasting paradigms

for software agents today. In the first paradigm,

competence emerges from a large number of rela

tively simple agents integrated by some cleverly

engineered architecture. An example of this first

paradigm is SOAR (LNR 1987), whose forerunners

were the early production systems like OPS5

(BFKM 1985).

In the second paradigm, competence emerges from

the aggregate system possessing a large amount

of useful knowledge. For real world tasks, this in

volves a dauntingly large amount of what might be

called common-sense knowledge. In this second

paradigm, the architecture is relatively unimportant.

The archetype of this paradigm is Cyc, and its fore

runners were the early expert systems.

The Cyc project intends to test seriously the sec

ond paradigm of software agents. Much of the con

stituent common-sense knowledge includes simple

notions of time, space, causality, and events;

human capabilities, limitations, goals, decision

making strategies, and emotions; familiarity with

art, history, literature, and current affairs; and so

forth.

The level of shared knowledge correlates directly

to tasks performed by the intelligent agents. To be

practical, Cyc has adopted the following maxim:

"Share most of the meaning of most of the terms,

most of the time" (GL 1994).

But how much shared knowledge is enough? The

Cyc research so far seems to suggest that even

relatively narrow tasks require a large fraction of

common-sense knowledge to be shared. But for

tunately, a wide range of tasks can use this same

large body of shared knowledge.

p a r t I Introduction

Common Sense Knowledge in CYC
Lenat's approach is to express common-sense

knowledge in a frame-based language (LGPPS

1990). The common-sense knowledge is repre

sented by a more expressive predicate calculus

(also called first-order logic) framework, which pro

vides the following enhanced features:

➔ Defaults representation (allowing one to talk

about unstated facts)

➔ Reification (allowing one to talk about proposi

tions in the knowledge base)

➔ Reflection (allowing one to talk about the act of

working on some problem)

In order to answer most queries, Cyc has to do

some sophisticated inference. Rather than relying

upon a single general mechanism (such as resolu

tion) for problem solving, Cyc makes extensive use

of specialized mechanisms that employ different

algorithms and data structures for frequently used

classes of inferences.

The bulk of the effort in building the knowledge

base involves identifying, formalizing, and entering

microtheories of various topics such as money,

buying, shopping, and so on. Cyc researchers fol

low a process that begins with a statement, in En

glish, of the theory. To achieve an axiomatization of

the theory, th!;) necessary Cyc concepts are identi

fied and made precise. To test whether the topic

has been adequately covered, stories dealing with

the topic are represented in Cyc. Questions that a

human should be able to answer after reading the

story are then posed to Cyc.

Within the next two years, Lenat expects that most

knowledge entry will take place1by semiautomated

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 38 of 435

natural language understanding. Humans will then

be able to "take the role of tutors rather than brain

surgeons" in feeding knowledge to Cyc (GL 1994).

Physical Agents
Rodney Brooks, an associate professor with the MIT

Artificial Intelligence Laboratory, believes in ap

proaching intelligence in an incremental manner,

with strict reliance on robots interfacing to the real

world through perception and action at every step

along the way.

Brooks offers his "physical grounding hypothesis,"

which states that to build a system that is intelli

gent, it is necessary to have its representation di

rectly based upon the physical world. He observes

that the real world is its own best model. In other

words, the real world is always up to date and al

ways contains every detail there is to be known.

He believes that the trick is for autonomous agents

in the form of physical robots to sense it appropri

ately and often enough.

The traditional notion of intelligent systems held

by Al workers has been that of a central system,

with perceptual modules as inputs and action mod

ules as outputs. The traditional methodology de

composes intelligence into functional units whose

combinations provide overall system behavior.

Brooks argues that "human-level intelligence is too

complex and too little understood to be correctly

decomposed into the right subpieces at the mo

ment and that, even if we knew the subpieces, we

still would not know the right interfaces between

them."

Brooks prefers an alternative decomposition of an

intelligent system along the orthogonal directions

The World of Agents

of behavior-generating modules, each of which in

dividually connects sensing to action, without go

ing through a central information processor. The

advantage of this approach is that it gives an incre

mental path from very simple systems to complex

autonomous intelligent systems. Furthermore, the

coexistence and cooperation of these behavior

generating modules sets the stage for the emer

gence of more complex behaviors.

Brooks' research approach has resulted in a suc

cessful series of mobile robots with insect-level

intelligence that operate without supervision in stan

dard office environments (Brooks 1990, 1991).

The Genghis Robot
An example of Brook's mobile robots is Genghis, a

six-legged robot weighing one kg that walks under

Brooks' subsumption architecture and has a highly

distributed control system (1989). The robot can

successfully walk over rough terrain. Genghis is

made up of 12 motors, 12 force sensors, six pyro

electric sensors, one inclinometer, and two whis

kers. Genghis also is capable of following certain

moving objects, such as human beings, using its

pyroelectric sensors.

Genghis has no central control system. Instead, a

subsumption architecture enables successive lay

ers of behavior-generating modules to implement

various aspects of Genghis' walking behavior.

Genghis uses force measurements to comply with

rough terrain and to lift its feet over obstacles, and

it uses inclinometer measurements to selectively

inhibit rough terrain compliance when appropriate.

It uses whiskers to lift feet over obstacles and uses

the directionality of infrared radiation to modulate

the backswing of particular leg sets so that it fol

lows a moving source of radiation.

C h a p t e 23

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 39 of 435

24

The resulting control system in Genghis is elegant

in its simplicity. It directly implements walking

through very many tight couplings of sensors to

actuators, without a centralized information proces

sor. Genghis' capability to walk is thus an emer

gent behavior derived from the interaction of many

diverse system components without the supervi

sion of a centralized control system.

Agents and Creativity
Agents can be creative too. This section explores

how agents can offer creative ideas in architectural

styles, jazz music, mathematics, and mechanical

shape design. Agents also can perform automated

configuration design from a catalog of physical parts.

Creative Agents
Margaret Boden, a professor at the University of

Sussex's School of Cognitive and Computing Sci

ences, has investigated the practical question of

whether agent systems might help further human

creativity (1994). She has examined how creativity

in its various forms might be scientifically under

stood in terms of the computational resources in

volved.

Creativity involves coming up with something novel,

new, and different. This new idea, in order to be

interesting, must be intelligible. No matter how dif

ferent the new idea is, it must be understood in

terms of what was already known before. The po

tential role of agents as they relate to creativity in

cludes suggesting, identifying, or even evaluating

differences between familiar ideas and novel ones.

p a r t I Introduction

According to Boden, not all creativity can be under

stood as a novel combination of familiar ideas.

Creative ideas are present in architecture, musical

compositions, literary genres, mathematical theo

rems, and engineering inventions. Some creative

ideas actually help open up a whole new set of con

ceptual spaces previously unthought of. This means

that when exploring the implications of radical sci

entific theories or of new musical genres, simple

combination juggling would not cut it. A structured,

disciplined, and sometimes even systematic search

for the promised meanings is necessary.

One way to start thinking about the whole enter-
' prise of creativity is tO'consider the notion of

conceptual spaces. A conceptual space is a mental

terrain, a style of thinking (Boden 1991). It is de

fined by a set of constraints demarcating the bound

aries and dimensions of the relevant domain. Many

creative achievements result from exploring con

ceptual spaces in systematic and imaginative ways.

Agents can help map, explore, and perhaps even

guide in the transformation of conceptual spaces.

Architectural Styles
In the architectural domain, for example, computa

tional work on architectural styles suggests some

ways in which agents might help a human archi

tect. The architectural style of Frank Lloyd Wright's

Prairie House ~an be captured in a computer pro

gram (HF 1992). Similarly, the stylistic essence of a

Palladian villa (see fig. 1.9) can be explicitly de

scribed with a computationally inspired "space

grammar" that begins with a rectangle from which

internal rectangles are recursively generated accord

ing to some prescribed rules (KE 1981). This pro

cess is illustrated in figure 1.J 0.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 40 of 435

a
Figure 1.9 b C

Palladian villa floorplan.

d e

For a human architect or an architectural student

who has little experience working on a particular

architectural genre, an agent's timely advice or for

biddance on a piece of substructure design is es

pecially valuable.

Jazz Dimensions
After the conceptual space of a specific domain is

mapped, agents can explore it in interesting ways.

In the jazz domain, for example, there are computer

programs that help people improvise jazz (Hodgson

1990; Waugh 1992). These programs understand

the various dimensions of the jazz musical space

and can travel through it in many ways. If left to

wander through the space by themselves, these

programs improvise-on a given melody, harmony,

and rhythm-by making random choices along

many dimensions simultaneously. Working in this

fashion, these programs often develop novel musi

cal ideas that the professional jazz musicians find

interesting and might want to explore further.

The World of Agents

'I'
)

Mathematical Spaces
Agents can also guide in the transformation of con

ceptual spaces in surprising ways. The most well

known example can be found in Douglas Lenat's

program, Automatic Mathematician, whose trans

formations of the space of heuristics resulted in

the discovery of two previously unknown theorems

about prime numbers (1983).

Design Shapes
Researchers from the LUTCHI Research Centre at

Loughborough University of Technology in England

have studied how agents can assist design teams

by providing support for emergence, a significant

feature of the•creative design process.

In particular, they have investigated the support of

shape emergence in design communication, as well

as how it can be handled by agents using pattern

recognition methods. An emergent form displays

characteristics not present in its source. The

researchers' favorite example is the radical

c h a p t e
25

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 41 of 435

26

transformation of the bicycle frame concept in the

LotusSport bicycle, which uses a single-unit carbon

fiber monocoque construction instead of the con

ventional steel-tube diamond frame (ECJS 1994).

Many psychological processes are involved in cre

ative thinking, from combinational juxtaposition to

the more complex exploratory-transformational rea

soning to the highly unstructured emergent think

ing. As we begin to understand more about the

underlying computational aspects of such thought

processes, we will be better equipped to build

agents that could assist humans across a broader

range of creative endeavours.

triple horizontal

~3I3~

15 ... I~: :--94
--; :~1 40 I l l I 15 1,... -,-,: :--

94
-...,; :,........,

"ci)" --- ------"..j,." - - - - -- - -- - - - - - - -- - -- "::i "" --- ------ -- ----- .., --- ---
quintple vertical triple vertical quintple vertical
2:1:7:1:2 1:1:1 2:1:7:1:2

✓✓ .., '\' ✓ .., " ✓✓ .., '\'
15 7 50 7 15 32 30 32 15 7 50 7 15

15 00c:::=JD □ 400 □ □ 15□ Dc:::=JD □
✓

double horizontal
1: 1

✓ "

'\
double horizontal

1: 1

✓ " 32 32 32 32

19c:J 21D 19C:J 210 ,

--
CD

p

double vertical
4:3

✓ " 18 14

19□ 19□

a r t I

..,
double vertical

3:4

✓ '\
14 18

19 □ 19□

Introduction

Figure 1.10

The process of generat

ing a Pa/ladian villa

floorplan.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 42 of 435

Automated Design Agents
Professor Bill Birmingham and graduate student Tim

Darr of the University of Michigan have

experimented with an approach of automated

design-space exploration using the Automated Cata

log-Design Service (ACDS) system (DB 1992;

BDDWW 1993).

ACDS performs configuration design, where an ar

tifact is designed by selecting parts from a catalog.

The designer needs only to provide a high-level

description of the design, including the functions

to be performed, the interconnections of the com

ponents, and their specifications. In ACDS, the en

tire design space is reduced through a series of

pruning operations until a set of feasible designs

result.

ACDS is organized as a loosely-coupled network of

different kinds of agents. It can self-organize based

upon design specifications, such as the following:

➔ Catalog agents

➔ System agents

➔ Constraint agents

Catalog Agents
Each catalog agent represents a set of physical

parts. ACDS can support thousands of catalog

agents, each of which could be the product line of

a component manufacturer. Catalog agents are able

to choose whether to participate in a particular de

sign.

System Agents
The system agent provides a graphical interface that

enables the user to specify the design for

presentation to the ACDS network. The system

The World of Agents

agent translates the high-level design specifications

into the network's representation and broadcasts

it to relevant agents. These design specifications

are needed for creating any necessary constraint

agents for the design.

Constraint Agents
Constraint agents maintain consistency throughout

the network by enforcing design constraints. Each

constraint agent ensures that the evolving design

space conforms to the constraint it represents when

evaluating proposed bids of their parts from cata

log agents. Constraint agents can thus direct the

pruning of part catalbgs to satisfy any violated con

straints. This process of removing infeasible parts,

bidding, and pruning continues until all constraints

are satisfied or a determination is made that no

solutions exist.

Agents and Emotion
Though it might seem surprising at first, agents can

have "emotions," too. This section explores the

role of emotions in agents and discusses how emo

tion can help animate faceless software agents into

cartoon-like effable characters (but not to the ex

tent of anthropomorphizing them to human-level

intelligence and capabilities), making them more life

like.

Professor Joseph Bates of Carnegie Mellon Uni

versity thinks emotions play an important role in

the construction of believable agents (1994). He

describes a believable agent not as one that has an

honest or reliable character, but as one that pro

vides an illusion of life in convincing ways so the

audience wants to believe the agent is real.

C h a p t e
27

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 43 of 435

28

According to Bates, believable agents are the inter

active analog of believable characters discussed in

the arts of fiction-writing and film-making. Emotion

is the primary means of achieving this believability.

An agent with demonstrated emotions helps people

understand that the character really cares about its

surr9unding environment and that it truly has de-
• I

sires.

Art of Animation
Animation artists made great strides in advancing

the state of the animation arts by constructing be

lievable characters following the introduction of

Disney's Mickey Mouse in the 1930's. Animation

artists spoke of building characters "whose adven

tures and misfortunes make people laugh-and

even cry" (T J 1981).

According to Thomas and Johnson, two of Disney's

nine earliest animators, "there is a special ingredi

ent in (the arts of) animation that produces draw

ings that appear to think and make decisions and

act of their own volition; it is what creates the illu

sion of life" (TJ 1981).

Artificial Intelligence
Many researchers in artificial intelligence (Al) have

long sought to build robots or agents that seem to

think, feel, and live. In addressing the 1985 Ameri

can Association of Artificial Intelligence, Woody

Bledsoe (1986), an Al pioneer at the University of

Texas at Austin, spoke of his continuing dream to

build a computer friend that could "understand, act,

autonomously think, learn, enjoy, hate."

The Al researchers, in their search for the essential

qualities of humanity, emphasize the computational

p a r t I Introduction

aspects of re-creating capabilities such as reason

ing, learning, and problem-solving on the computer.

On the other hand, animation artists seek to repro

duce life forms from nothing more than simple line

drawings, inks, and celluloids that move frame by

frame. The practical requirements of producing

hundreds of thousands of such drawings forced

animators to use extremely simple imageries, and

to seek and abstract precisely that which is crucial.

Bates argued that, as a result, although the scien

tists might have been more effective in re-creating

life with the help dfa computer, it is the artists who

have come closest to capturing the essence of

humanity. The insights of character animators in

their artistic inquiry might thus be key to building

computational models of interactive agents that are

believable.

The Oz Project
The Oz Project at Carnegie Mellon University is an

experiment in how the work of programmers and

animators could be combined to create visible,

human-like entities with which humans could even

tually work or play.

Bates is leading the Oz Project group to build a

small, simulated world containing several real-time,

interactive, sel_f-animating creatures called Waggles.

The Waggles have names like Bear, Shrimp, and

Wolf. As shown in figure 1.11, each Woggle is ani

mated as a 3D oval or egg-shaped spherical entity

with a pair of eyes, using the principles of tradi

tional animation. At each moment, seyeral Woggles

are often seen moving, jumping, and gesturing so

cially on the screen.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 44 of 435

Figure 1.11

Waggles have names

like Bear, Shrimp, and

Wolf.

In using emotions to construct believable agents,

the Oz Project researchers needed to devise an

internal representation of emotion inside the agent

that was consistent with the appearance of its defi

nite emotional state. The researchers developed a

goal-directed, behavior-based architecture for action

(Brooks 1986; LB 1983; Maes 1989). This action

architecture is then coupled with a module for gen

erating, representing, and expressing emotion (OCC

1988; BLR 1992).

The action system uses a minimalist notion of goals

to manipulate a dynamically changing set of behav

iors. The agents appraise surrounding events that

The World of Agents

occur with respect to their goals. This enables an

agent to arrive at a clearly defined emotional state

and to produce a definite emotional reaction to the

event.

When a Woggle fails to reach an important goal,

for example,' and thinks the failure was caused by

the action of another Woggle, it enters the angry

state. In Waggles, each emotion is mapped in a

personality-specific way to a behavioral feature of

the Woggle. In this way, the emotional state of each

Woggle can be made externally visib.le through its

characteristic behaviors. In a fear state, for example,

a Woggle whose fear is mapped to the aggressive

feature behaves accordingly.

c h a p t e
29

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 45 of 435

30

The believability of an interactive agent depends

on the appearance of reactivity, emotions, goals,

and situated social competence, among other

things, In order to present a convincing illusion of

life in agents, Bates suggests Al researchers should

attempt a methodological emphasis on the emo

tional dimension of agents.

Agents and Programming
The programming aspects of agents are an impor

tant consideration, too. This section describes not

so much the nuts and bolts of agent programming

with traditional programming languages, but more

the higher-level programming support offered for

programming agents. KidSim handles agent

programming without the use of a programming

language, and Oasis offers explicit support for

programming with distributed agents on a network

of machines.

KidSim
David Smith, Allen Cypher, and Jim Spohrer from

Apple Computer's Advanced Technology Group

view the question of how to instruct agents as an

end-user programming problem, currently an un

solved one in computer science. They believe com

puter scientists have not made programming easy

enough for most people, They cite as evidence the

fact that only a tiny fraction of computer users are

able to program, although most can follow a recipe,

give directions, make up stories, or plan trips

mental activities similar to those involved in pro

gramming (1994).

p a r t I Introduction

After observing that most computer users are

proficient with some kind of editor or editor-like ap

plications (such as drawing packages or painting

programs), Smith, Cypher, and Spohrer decided to

make programming as easy as editing. They have

developed KidSim, for "Kids' Simulations," which

Is a toolkit that enables children to build symbolic

simulations. The key idea in KidSim is the way in

which children specify the behavior of agents, ac

complished by combining two powerful tech

niques-graphical rewrite rules and programming

by demonstration-into KidSim to improve the end

user's ability to prografn agents (SCS 1994).

Simulation Toolkit
In KidSim, kids can modify the programming of ex

isting simulation objects and define new ones from

scratch. A KidSim simulation primarily consists of

the following components:

➔ A game board, divided into finite squares like a

checkerboard

➔ A clock, whose time is divided into discrete (as

versus continuous) ticks

➔ One or more simulation objects representing

agents

➔ A copy box, the source of new simulation ob-

jects

➔ A rule editor, for defining and modifying rules

The game board represents the simulation

microworld. The clock starts and stops a simula

tion. The clock can be run backward to undo

changes, encouraging kids to experiment and take

chances. The copy box is a container that automati

cally makes copies of simulation objects placed in

side it.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 46 of 435

In KidSim, the active objects in simulations are

agents. During each clock tick, agents move around

on the game board and interact with one another.

Agents have their own visual appearance, charac

teristic properties (such as name, age, height, hun

ger, fear, and so on) and rules of behavior.

Graphical Rewrite Rules
The behaviors of agents are specified with graphi

cal rewrite rules using the rule editor. A graphical

rewrite rule is a transformation of a game board

region from one state to another. It consists of a

"before" part and an "after" part. Each part is a

small scene that might occur during the simulation

run. A rule matches if its "before" part is the same

as some area of the game board at some moment

in time. When a rule matches, KidSim transforms

the corresponding region of the game board to the

scene in the "after" part of the rule using a recorded

program.

Programming by Demonstration
This recorded program is obtained from program

ming by demonstration, a technique in which the

user puts the system in "record" mode and con

tinues to operate the system in the normal way.

The user's actions are then faithfully recorded in an

executable program and can be replayed later as

needed (Smith 1977; Cypher 1993). KidSim uses

graphical rewrite rules as visual reminders of re

corded actions, thus solving the problem of users

trying to understand what the agents are supposed

to do.

As reported by Smith, Cypher, and Spohrer in 1994,

the KidSim approach appears to solve the end-user

programming problem for some types of simula

tions. Perhaps we can derive from this that a

The World of Agents

solution to the general end-user programming prob

lem probably lies some distance further down the

same path.

Oasis
While in graduate school at the University of Michi

gan, the author had the opportunity to design a new

programming language, called Oasis (Object and

Agent Specification and Implementation System),

for experimentation with agent-oriented program
ming (Cheong 1992a).

Oasis Agents
Oasis explicitly supports the concept of agents in

its model of computation. In Oasis, agents are

coarse-grained, computational entities that are dy

namically created by the Oasis runtime system.

Oasis agents are implemented as Unix processes

that are distributed across the heterogeneous net

work of workstations. A collection of agents can

thus cooperate among themselves to effect com

putations in a parallel distributed fashion on the

network.

Each agent supports multiple threads of control

using a non-preemptive scheduler. These threads

can synchronize among themselves on condition

variables specified by the programmer in the agent

program. Th,e threads facility enables an agent to

accept and initiate multiple remote procedure calls

concurrently.

Oasis Objects
Oasis objects are information nuggets that are dy

namically created by agents during computation.

Oasis objects do not have an identity in the tradi

tional sense of object-oriented databases. They can

c h a p t e
31

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 47 of 435

thus be freely transferred, traded, or replicated

among the agents during cooperative computations

without the constraints and programming hassle

of maintaining consistency through locking. Objects

no longer needed are automatically recycled through

a garbage collector which, unlike traditional garbage

collectors, does not require the use of runtime tags.

The Oasis runtime system provides full support for

automatic marshaling of objects, including complex

user-defined objects with pointers, for remote pro

cedure calls.

32

Oasis Compiler System
The Oasis compiler system generates native ma

chine code but is network transparent in the sense

that Oasis programmers need not be aware of

workstation heterogeneity in the computing envi

ronment. In other words, the Oasis programmer

does not have to maintain separate versions of bi

nary code for different machine architectures. This

is possible because the generation of native code

at individual target machines is delayed until just

before the agent program is actually run.

Oasis has been used to program a group of agents

that cooperatively solve the Traveling Salesman

Problem (in about 100 lines of Oasis code). The

solution proceeds in a parallel distributed fashion

on a cluster of workstations, with respectable

speedups on different problem sizes.

The Oasis compiler generates native code for four

different processors: Spare, Mips, PowerPC, and

680x0. Its runtime system has been ported to sev

era I Unix platforms, including Sun-OS on

Sparcstations, Ultrix on Decstations, Aix on

PowerPC's, and Nextstep on Nextstations. The

p a t I Introduction

Oasis source code is publicly available by FTP from

the University of Michigan at the following address

(Cheong 1993b):

ftp://ftp.eecs.umich.edu/software/oasis/

Agents and Society
Donald Norman, an Apple Fellow at Apple Com

puter, foresees that the major difficulties with

agents in our society are that people might not be

comfortable with the autonomous actions of agents.

Norman observes that a distinguishing feature of

the new crop of agents, as compared with mechani

cal robots of an earlier era, is that they now pos

sess computational power, when previously they

were simply servo mechanisms and control de

vices. According to Norman (1994), agents now:

[H]ave Turing-machine powers, they take

over human tasks, and they interact with

people in human-like ways-perhaps with a

form of natural language, perhaps with

animated graphics or video. Some agents

have the potential to form their own goals

and intentions, to initiate actions on their

own without explicit instructions or guidance,

and to offer suggestions to people. Thus,

agents might set up schedules, reserve hotel

and meeting rooms,. arrange transportation,

and even outline meeting topics, all without

human intervention. Moreover, today's

agents are simple in comparison to those

that are being planned.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 48 of 435

Control
Indeed, it is important that people feel in control of

their computational systems as a result of these

added powers. They must be comfortable with ac

tions performed for them by their agents. This can

be accomplished in part through a better under

standing of the underlying agent technology and in

part through confidence in the system. Some

people will always want to know the actions of their

agents.

Over Expectations
Norman cautions that the added computational

power of agents easily can foster an overblown

expectation in people's mind of their exaggerated

capabilities. People have a tendency to anthropo

morphize, to see human attributes in anything that

is the least bit intelligent. When fueled by the en

thusiasm of technology visionaries who sees far

into the future and amplified by the inclination of

researchers to show their agents in human form,

people naturally, but falsely, build on expectations

of human-like intelligence, understanding, and ac

tions in such personified agents.

Safety
Safety plays a part in the feeling of control, as does

the issue of privacy. Agents should not do things

that jeopardize the physical, mental, and financial

well-being of human users. This can be tricky given

that malicious agents in the form of computer

worms and viruses can arrive unannounced and

wreak havoc on the system.

The World of Agents

Privacy
The question of privacy is an even more complex

topic. The idea of autonomous, intelligent agents

having access to one's personal records, correspon

dence, and financial activities can be somewhat

disconcerting. Moreover, with embedded agents in

e-mail messages, it might be difficult to safeguard

one's privacy from the action of foreign agents col

lecting a recipient's private information and trans

ferring it back to the senders.

Agent technology promises deliverance to com

puter users, relieving them f~om the complexity of

command languages and the tedium of direct ma

nipulation with intelligent, agent-guided interactions.

Agents also can enhance human performance by

making people appear smarter, or hide complexity

by automating actions that you do not know how

or prefer not to do.

Along with such promises comes the potential for

social mischief, loss of privacy, and technological

alienation from feelings of loss of control. But all

these problems can be solved, though, provided

enough consideration is given in the early design

stages of intelligent systems of which agents are a

part.

Commercial Future of
Agents
Much of the agents discussed in the preceding

sections exist only in universities and rese_arch_ labs.

They have not made it to the commercial main

stream, yet. But according to Irene Greif (1994),

C h a p t e
33

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 49 of 435

34

Director of Workgroup Technologies at Lotus, two

industry trends could influence the evolution of

agent technology and push agents out of the labs

and into the mainstream of PC software:

➔ The move toward suites of internetworking

desktop products

➔ The growing population of mobile users

Product Suites
A suite is a set of desktop applications that has been

integrated to reduce the cost of software owner

ship and to improve individual productivity. Greif

expects that agents will make an impact on suite

products through "task-oriented" conversations

with the users.

User interfaces today, for example, converse with

users in a stylized fashion in the form of dialog

boxes. This communication will become more pow

erful if they can converse about richer database

structures, such as explicitly represented models

of tasks in the form of task descriptions, which are

similar to work process descriptions used by

workflow agents (MWFF 1992). Greif envisions that

the next significant step in the user interface will

be a move away from conversing through forms to

conversing about task descriptions. When this hap

pens, the interaction between users and agents will

become more like a collaboration through explicit

data structures that represent tasks.

Mobile Computing
In the area of mobile computing, agents will add a

new richness to the user interface. As people

p a r t I Introduction

change their locations and work environments more

frequently, they will continue to expect the same

level of support from mobile computing, despite

the vastly different capacity of the connectivity

model. Greif envisions a personalized agent that

understands where you are, what you are doing,

and how you can best be reached. It is a new kind

of agent in that instead of finding and doing things

for a user in the network, it actually is interacting

with other agents on the.user's behalf.

To illustrate, consider the following example of a

mobile user who is accessible only by pager and

wants to read news articles about certain compa

nies. Greif explains:

It might not make sense for any of these

articles to be forwarded to her when she

only has her pager and can't read anything.

However, if her calendar shows that she's on

her way to visit the XYZ Co., it might be

worth sending a message to her pager that

there is a n'ews item about that company.

From an icon in the pager screen, she should

be able to easily send a request back to her

agent to have the full article faxed to the

hotel before her breakfast meeting.

Most agents finq something, take an action, and

then move on. The interesting thing to note here is

that, in this ca~e, the agent might have to deliver

the same piece of information several times, and

in different formats (as a brief note to her pager

and the full article to the hotel computer).
'

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 50 of 435

Concluding Remarks
I do not have a separate category for intelligent

agents. I think it would not do justice to agents

described here to contemplate using a separate

category of agents called intelligent agents, and to

use this category for the purpose of taxonomic clas

sification by including some in the category but

excluding others.

Agents display their intelligence differently; some

by being creative, some by being crafty and elusive

(worms and viruses), some by being helpful (per

sonal assistants and surrogate bots), and still oth

ers by being resourceful in their own ways

(COACH). In addition, agents can use different

means to achieve intelligence; some adopt heuris

tics (softbots), some others use constraints (ACDS).

some depend on knowledge databases (Cyc), and

yet others learn from experience (Calendar Appren

tice).

I consider all of the agents described here as intel

ligent, but to different degrees. Whether they pos

sess insect-level intelligence or command Cyc-style

encyclopedic world knowledge, it does not really

matter. A colony of simple autonomous insects

sometimes can display more intelligent behavior

than a complex omnicient robot. In my opinion, in

telligence is simply too vague a term at the current

state of the art in agent research to even be con

sidered a useful taxonomic category for classifying

and understanding the wide variety of agents in the

world.

The following chapters take you on a tour to visit

agents on the Internet: the Web robots, spiders,

and wanderers; the Web shoppers and

The World of Agents

bargain-hunters; worms and viruses; as well as

MUD agents and chatterbots. But first, the Internet,

then the Internet agents.

C h a p t e
35

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 51 of 435

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 52 of 435

145a“

m.

it 1014

VMware V. IV | - |PR2020-00470

VMware - Exhi

Page 52 of 435

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 53 of 435

2%

Exhi it 1014

VMware V. IV | - |PR2020-00470

VMware

Page 53 of 435

w:
35:?»W.a

r .z

the durability of the communications network. Tra

ditional telephone networks that used circuit switch

ing technology were considered too fragile for the

purpose. The Rand Corporation, a defense contrac

tor, undertook a series of studies and came up with

the recommendation that the communications net

work should be based upon a packet switching tech

nology. With packet switching, instead of using fixed

point-to-point connections between any pair of

machines for communications, messages are di

vided into packets. These packets are independently

routed between intermediate computers until they

reach their final destination, whereupon the mes

sage is reassembled for final delivery.

About the same time, experiments were conducted

around the world to investigate the new packet

switching technology, which promised tremendous

flexibility and reliability in connecting computers at

various sites. The first packet-switching network

was implemented at the National Physical Labora

tory in England. It was quickly followed by ARPAnet

in the U.S. in 1969.

38

Early Days of ARPAnet
In 1968, against the backdrop of the Cold War with

Russia, the Defense Department's Advanced Re

search Projects Agency (ARPA) commissioned the

Bolt Beranek and Newman (BBN) company to build

the first Interface Message Processors (IMPs).

MPs are dedicated network controlling

computers that translate between messages

and packets.

p a r t I Introduction

By the end of 1969, BBN had delivered the first

four IMPs along with a packet-switching network

protocol called the Network Control Protocol (NCP).

The first IMP was installed at UCLA in the fall of

1969. By 1970, the first packet-switched computer

network in the U.S. was created, with four operat

ing nodes connecting UCLA, U.C. Santa Barbara,

Stanford University, and the University of Utah. This

w~s the beginning of the ARPAnet. If any one link

in the network failed, packets could still be routed

via the remaining links, thus providing the needed

fault tolerance and reliability. By 1971, there were

15 nodes on ARPAnet. By 1973, ARPAnet had

grown to 37 nodes (Denning 1989).

ARPAnet.

Electronic mail very quickly became the major

source of traffic on ARPAnet, although it was

not mentioned among the original goals of

The first public demonstration of ARPAnet was held

in 1972, arranged by Robert Kahn of BBN, at the

first International Conference on Computer Com

munications in Washington, D.C. It soon be

came clear that research networking was growing

rapidly and that the ARPAnet needed to connect to

other networks. A working group, chaired by Vinton

Cerf of UCLA, was established to study the cre

ation of a common protocol for internetwork com

munications.

In 1973, the newly renamed Defense Advanced

Research Project Agency (DARPA) began a research

program to investigate techniques and technologies

for connecting various types of packet-switched

networks together. This was called the lnternetting

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 54 of 435

project, and the main internet that resulted from it

was called the Internet (Cerf 1992).

In 1974, Vinton Cerf and Robert Kahn released the

Internet Protocol (IP) and the Transmission Control

Protocol (TCP), which define the way data are

passed among machines in a packet-switched net

work. The first physical implementation of the

Internet involved four networks: a packet satellite

network, a packet radio network, the ARPAnet, and

an Ethernet at the Xerox Palo Alto Research Cen

ter (OCM 1994).

Notable Computer
Networks
Toward the end of the 1970s, various "community

networks" began to emerge (OH 1986; OCM 1994).

Notable examples include the following:

➔ CSNET, which connects computers in the com

puter science research community

➔ BITNET, which connects IBM machines in com

puting centers

➔ USENET, which connects Unix sites by UUCP

or other means

➔ FidoNet, which connects MS-DOS PCs by

phone lines

➔ Various internal corporate networks, for ex-

ample, IBM VNET, DEC Easynet, Xerox Internet

By the late 1970s, the ARPAnet was serving a se

lect number of research centers. However, not all

universities had network connections. The Univer

sity of Wisconsin discerned a need and decided to

The Internet: Past, Present, and Future

create a network for increased collaboration among

computer science researchers. The Computer Sci

ence Research Network (CSNET) was thus formed

in January 1981, funded in large part by the Na-

. tional Science Foundation. Most CSNET hosts didn't

use TCP/IP; instead, many were connected by

modems an.d phone lines and used dial-up proto

cols that permitted essentially one service: e-mail.

Vinton Cerf had suggested connecting ARPAnet and

CSNET via a gateway using the TCP/IP protocols. It

also was suggested that CSNET could exist as a

collection of several independent networks shar

ing a gateway to the ARPAnet (Moore 1994a). This

marked the beginning of the Internet as a collec

tion of independent, free-standing networks that

came to an agreement on how to communicate

with each other. By 1982, researchers on CSNET

could communicate with sites within CSNET and

ARPAnet by e-mail with equal ease. In a limited

sense, the Internet had taken a first step to becom

ing "the network of networks."

In May 1981, BITNET (Because It's Time Network)

was formed. BITNET has a tendency to link com

puter centers together and was created to connect

IBM mainframes at the City University of New York.

BITNET was built using the Network Job Entry (NJE)

protocol and software native to the IBM VM/370

operating system.

BITNET uses the Listserv mechanism for providing

news services. Listserv was a program originally

designed to act as a mailing-list server whose func

tion is to distribute e-mail to users on a mailing list.

Listserv can thus be considered a rudimentary form

of Internet during the early evolution of the Internet.

It's somewhat like the USENET newsgroup

ch apter
39

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 55 of 435

40

concept. The difference is that the readers of a par

ticular newsgroup need to first subscribe to the ap

propriate Listserv, and that news articles are sent

directly via e-mail rather than broadcast throughout

the network.

USENET (Users' Network) is not a physical network.

It began in 1980 as a medium of communications

between users of two machines, one at the Uni

versity of North Carolina, the other at nearby Duke

University. USENET newsgroups were invented to

capture the flavors of both the ARPAnet-style mail

ing lists as well as the bulletin board services. The

early USENET news distribution mechanism de

pended on Unix-to-Unix-Copy (UUCP) for transport

of news articles over telephone links using a simple

"flooding" algorithm (Horton 1983). When USENET

became much larger, a more efficient protocol for

delivering and accessing news, that is, the Network

News Transfer Protocol (NNTP), was adopted

4,832,000
3,212,000
2.0S6,000
1,:313,000

890,000

33M00

313,000

130,000

T!411XB1 UUCP, DTf:'<fET, 1.nd thil ln11!.!'lll!t
U.tp,l:~Su!r)
J),,,'lla"','.Mln:!,,\~1<1&,iu1\Wh.1:l"'t~).
C~}'llt\l(•)t0l.MID9

@b:=ah.,.n,w\Al11Hn.,.,.ft.a,.i;•••PJ'CIH$).

@ ,U1,WJl'l'b,>.t1..!:tu(M.tkl..1u>r u.litl~"--"""').
(i},\11,\.Vm'h.o!<l(ur!rUC,,J'auSoliu<~=......,.:-m>)..

(f,)rul.'i'J.Tlla .. , ... _..rur;,oc,r.-,Ll(.IUJU',,,-a
\SI nlT.VI.T \t..9.(C'.Jlt..~ b1n(="'c CIUN).

@wc,11 (..,=Uoctir.,,p,i
{;)WCHt:!.l!l,(&1oru:Yul:lt>=-~

® ru,.,,•foM!<l(uun:-. Fl.Ll'fnuJri,o; lla,,J.r Jlo,,h """"'-flll"'t-U"'•).

p a r t I Introduction

(KL 1986). In addition to UUCP, USENET news can

be carried on BITNET, as well as the larger Internet.

USENET has enjoyed immense popularity

since its inception, reaching a large

constituency and growing rapidly to

encompass 2,000 machines in 1986.

FidoNet was invented in 1983 to connect personal

computers running MS-DOS via modems and

phone lines (see fig. 2.1). It was designed by Tom

Jennings of San Francisco as an imitation of UUCP

and USENET to link together Fido bulletin boards

that had recently sprung up across the nation. The

Fido protocols offer similar functions as that of

UUCP but are completely different internally and

more efficient. It allows users to send e-mail to each

other and to create discussion groups just like

USENET and BITNET. Starting in 1987, FidoNet

Figure 2.1

FidoNet, UUCP, BITNET,

and the Internet.

(Courtesy of MIDS,

Austin, Texas)

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 56 of 435

could share traffic with USENET after the Unix-to

Unix-Copy (UUCP) software originally developed for

the Unix platform was ported to MS-DOS.

Interestingly, the name Fido is not an acronym

but the common pet name for a family dog.

In 1989, BITNET and CSNET merged to become

the Corporation for Research and Education

Networking (CREN). But CSNET was subsequently

retired when the NSFnet regional networks sub

sumed its functions.

Internet and NSFnet
The first pieces of the Internet began around 1980

when DARPA began converting machines attached

to its research networks to the new TCP/IP proto

cols. The transition to Internet technology was com

pleted in January 1983 when DARPA mandated that

all computers connected to the ARPAnet use TCP/

IP. At around the same time, the original ARPAnet

was split into two networks: ARPAnet for contin

ued research and MILNET for military operations.

To encourage adoption of the new protocols,

DARPA had decided to make an implementation of

the TCP/IP available at a low cost. At that time, the

computer science departments at most universi

ties were running a version of Unix available from

the University of California at Berkeley as part of its

Berkeley Software Distribution. DARPA funded BBN

to implement the Internet protocols under Unix and

Berkeley to integrate them with its distribution. With

TCP/IP networking support built into BSD 4.2 Unix,

DARPA could reach over 90 percent of the

The Internet: Past, Present, and Future

university computer science departments in the

U.S. As the Internet grew, the original method of

naming nodes became unwieldy. A hierarchical

naming system that allowed each domain to select

its internal address was introduced in 1984.

In 1984, the National Science Foundation started

connecting its supercomputing centers with a high

bandwidth network called the NSFnet. The first

NSF net was built by the Cornell Theory Center and

the National Center for Supercomputing Applica

tions (NCSA). The NSFnet started out as a 56 Kbps

network in 1986, primarily serving the NSF's six

supercomputer centers. In its lifetime (1986 to

1995), NSFnet had undergone several iterations

over the implementation of its backbone, upgrad

ing to higher speed at each stage: in 1986 (DS-0,

56 Kbps), 1988 (T-1, 1.544 Mbps), and 1990 (T-3,

45 Mbps).

Merit, a non-profit network corporation based in

Michigan, began managing the NSFnet backbone

in July, 1988, after working in partnership with IBM

and MCI to deliver the initial T1 backbone to NSFnet,

which connected 13 sites. The NSFnet had become

the backbone for the potpourri of networks known

collectively as the Internet.

Beginning in 1986, the National Science Founda

tion (NSF) supplied seed money to support the mid

level regional networks that provided extensive

connectivity for campus networks at educational

institutions, government agencies, and commercial

businesses. The NSFnet had thus played a key role

in further accelerating the already rapid growth of

the Internet.

In 1990, after 20 years of service, the ARPAnet was

officially retired. ARPAnet's role was, for all

ch apter
41

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 57 of 435

42

practical purposes, supplanted by the NSFnet. In

the same year, NSF created the Advanced Network

Services Inc. (ANS), a non-profit corporation jointly

owned by Merit, IBM, and MCI. In 1990, ANS took

over the operation of the NSFnet backbone, which

by then was already operating at T3 speeds (45

Mbps) using circuits provided by MCI and router

technology from IBM. By the end of 1991, all

NSF net backbone sites were connected to the new

ANS-provided T3 backbone (Merit 1992).

NSF and AUP
The NSF and the ANS were very generous in shar

ing the network backbone. The NSFnet services

are available to any Internet user as long as NSF's

acceptable-use policy (AUP) is adhered to. The

acceptable-use policy basically states the follow

ing general principle:

NSFnet Backbone services are provided to

support open research and education in and

among US research and instructional

institutions, plus research arms of for-profit

firms when engaged in open scholarly

communication and research. Use for other

purposes is not acceptable.

In particular, the AUP states the following as unac

ceptable use:

➔ Use for for-profit activities, unless covered by

the General Principle or as a specifically accept

able use

➔ Extensive use for private or personal business

p a t I Introduction

In other words, nearly anyone can use the NSFnet

backbone as long as it is not used for profit or used

extensively for private or personal business.

In 1990, the Federal Networking Council, as part of

the governing body of the Internet, made a radical

policy change. It no longer required organizations

that wanted to join the Internet to seek sponsor

ship by a U.S. government agency. This event

marked the start of the "commercialization" of the

Internet (Moore 1994b).

In 1992, in extending AN S's contract to run NSFnet,

NSF considered itself a customer of ANS. As a re

sult, the limitations outlined by the acceptable-use

policy applied only to traffic from the NSF (Moore

1994b). The expectation was that different organi

zations on the Internet would formulate their own

acceptable-use policies regarding their portions of

the Internet. For all practical purposes, the flood

gate had finally opened for commercial use of the

Internet.

Growth of the Internet
NSFnet performance statistics have been collected,

processed, and reported by the Merit Network since

1988. In December 1994, the numbers contained

in Merit's stati~tical reports began to decrease, as

NSF net traffic began to. migrate to the new NSF

network architecture.

In the new architecture, traffic is exchanged at in

terconnection points called NAPs (Network Access
Points). Each NAP provides a neutral interconnec

tion point for network service providers.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 58 of 435

!

!
!
I

;~\

on April 30, 1995, the NSFnet Backbone Service

was successfully transitioned to the new network

architecture, signaling the end of the NSFnet

project.

By any measure, the growth of the Internet has

been impressive. As illustrated in table 2.1, Merit

recorded a 134 percent growth (from 6031 to

14,121) in networks configured for traversal of the

NSFnet backbone from July 1992 to July 1993.

Table 2.1 History of NSFNet Growth by

Networks

Date Total Nets Total Non-US

Jul88 217 9

I Jan 89 384 34

I Jul 89
I

650 99

I Jan 90 1,233 250

I Jul 90 1,727 436

I Jan 91 2,338 693

I Jul 91 3,086 1,012

Jan 92 4,526 1,496

I Jul 92 6,031 2,133

! Jan 93 9,117 3,413

I Jul93 14,121 5,827

I Jan 94 23,494 9,869

I Jul 94 36,153 1q,362

I Jan 95 46,318 19,637

The Internet: Past, Present, and Future

Mark Lottor, formerly at SRI but now at Network

Wizards, used the ZONE program to determine the

approximate number of Internet hosts and domains

(see RFC 1296 (Lottor 1992)). His Internet Domain

Survey of July 1993 shows 79 percent growth in

Internet hosts in the year from July 1992. His Oc

tober 1993 report shows 81 percent growth in hosts

(see table 2.2) and 55 percent in domains from

October 1992 to October 1993 (see table 2.3).

Table 2.2 Growth of Internet Hosts

I Date Hosts

Aug81 213

I Aug 83 562

i Oct 85 1,961

I Dec 87 28,174

Oct89 159,000

I Oct 90 313,000

Oct 91 617,000

I Oct 92 1,136,000

Oct93 2,056,000

I Oct 94 3,864,000

I Jan 95 4,852,000 I

C h a p t e r
43

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 59 of 435

44

Table 2.3 Growth of Internet Domains

I Date Domain

Jul88 900

I Jul 89 3,900

Oct90 9,300

Jul91 16,000

I Oct 92 18,100

I Oct 93 28,000

Oct 94 56,000

I Jan 95 71,000

What do all these growth rates for networks, hosts,

and domains mean? For one, the slowest growth

seems to be in domains, which probably means

p a t I Introduction

that organizations join the net more slowly, but

increase their host counts rapidly after they are con

nected (Quarterman 1993). For another, the

fastest growth is in the number of networks con

figured for traversal of the NSFnet backbone (pre

sumably a large fraction of all IP networks on the

Internet), which prqbably indicates the important

role played by NSFnet in connecting many previ

ously isolated networks.

Most of these measures of Internet growth show

sustained exponential growth (note the vertical

scale is logarithmic). According to Matrix Informa

tion and Directory Service (MIDS) (see fig. 2.2), av

eraging across these figures gives us a rough count

of approximately 100 percent annual growth
(Quarterman 1993).

Another way to gauge the growth of Internet is by

the volume of traffic. Table 2.4 shows the growth

in traffic volume on the NSFnet backbone.

Figure 2.2

A press release on the

MIDS home page.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 60 of 435

Table 2.4 NSFnet Byte Traffic History (in billions of bytes)

Month

Jan

I Feb

I Mar

I Apr

I May
I I Jun

I Jul
! I Aug

I Sep

j Oct

Nov

I Dec ,

1991

NA

NA

1,268

1,402

1,442

1,244

1,594

1,484

1,769

1,879

1,959

1,956

1992

2,256

2,371

2,761

2,848

3,061

3,274

3,373

3,200

3,315

3,903

4,651

4,372

How Big is the Internet?
According to Tony Rutkowski, Executive Director

of the Internet Society, a commonly used method

of estimating the total number of Internet users is

to multiply the number of host computers by 10. In

January 1995, for example, the ZONE program iden

tified close to 5 million hosts, which is equivalent

to about 50 million users.

A more detailed breakdown of such a measure of

Internet users is provided by MIDS, a company that

conducts ongoing investigations about the size,

shape, and other characteristics of the Internet and

other networks. Combining and processing data

The Internet: Past, Present, and Future

1993

4,782

5,015

6,053

6,219

5,845

6,195

6,389

6,631

7,022

8,468

8,483

8,283

1994

8,609

9,303

11,226

11,587

12,187

12,466

12,764

13,385

14,990

17,232

17,781

16,313

1995

13,196

9,790

11,218

5,316

NA

NA

NA

NA

NA

NA

NA

NA

I
I
I
I
I
I
I

from a variety of sources, MIDS estimated the size

of the Internet as of October 1994 to be as such:

➔ 7.8 million users of 2.5 million computers (MIDS

calls this the core Internet) that can provide in

teractive services such as remote login, file

transfer m World Wide Web

➔ 13.5 million users of 3.5 million computers that

can use the interactive services supplied by the

core Internet; for example, people who can use

Mosaic or Lynx to browse the World Wide Web

➔ 27 .5 million users who can exchange electronic

mail with other users on the Internet, as well

as other networks

ch apter
45

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 61 of 435

46

The following figures provide further details on the

distribution of the Internet by geography, both

international (see fig. 2.3 and table 2.5) and U.S.

(see table 2.6), as well as by top-level domain names

(see table 2.7).

Total Initial

Code Country

DZ Algeria

AR Argentina

1AM Armenia

AU Australia

AT Austria

Belarus

Belgium

Bermuda

p a r t I

INTERNATIONAL CONNECTIVITY

11111
Version 13 • 2/15/95

Internet

11111 Bitner bu I not Internet

11111 EMoll Only (UUCP, FldoNel)

D No Connectivity

Nets Connection

3 Apr94

27 Oct90

3 Jun 94

1,875 May89

408 Jun 90

Feb 95

138 May90

20 Mar94

Introduction

Figure 2.3

Global Connectivity

Map. (Courtesy of

Internet Society).

Table 2.5

NSFNET International

Connections and Nets

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 62 of 435

Total Initial

Code Country Nets Connection

BR Brazil 165 Jun 90

BG Bulgaria 9 Apr 93

BF Burkina Faso 2 Oct94

CM Cameroon Dec92

CA Canada 4,795 Jul 88 *

CL Chile 102 Apr 90

CN China 8 Apr94

co Colombia 5 Apr 94

CR Costa Rica 6 Jan 93

HR Croatia 31 Nov 91

CY Cyprus 25 Dec92

CZ Czech Republic 459 Nov91

DK Denmark 48 Nov88

DO Dominican 1 Apr95

Republic

EC Ecuador 85 Jul92

EG Egypt 7 Nov93

EE Estonia . 49 Jul92

FJ Fiji Jun 93

Fl Finland 643 Nov88

FR France 2,003 Jul 88 *

The Internet: Past, Present, and Future ch apter
47

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 63 of 435

Total Initial Table 2.5, Continued
Code Country Nets Connection NSFNET International

PF French Oct94 Connections and Nets

Polynesia

I DE Germany 1,750 Sep89

GH Ghana May93

GR Greece 105 Jul90

GU Guam 5 Oct 93

I HK Hong Kong 95 Sep 91

HU Hungary 164 Nov 91

IS Iceland 31 Nov88

IN India 13 Nov90

ID Indonesia 46 Jul93

I IE Ireland 168 Jul90
'

IL Israel 217 Aug 89

I IT Italy 506 Aug89

JM Jamaica 16 May94

I JP Japan 1,847 Aug 89

KZ Kazakhstan 2 Nov93

I KE Kenya Nov93

KR South Korea 476 Apr90

KW Kuwait 8 Dec92

I LV Latvia 22 Nov92

LB Lebanon Jun 94

I

48
p a r t I Introduction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 64 of 435

Total Initial

Code Country Nets Connection

LI Liechtenstein 3 Jun 93

Lithuania Apr94

Luxembourg 59 Apr 92

Macau Apr94

Malaysia 6 Nov92

Mexico 126 Feb 89

Morocco Oct94

Mozambique 6 Mar95

Netherlands 406 Jan 89

New Caledonia Oct94

New Zealand 356 Apr89

Nicaragua Feb94

Niger Oct 94

Norway 214 Nov88

Panama Jun 94

Peru 44 Nov93

Philippines 46 Apr94

Poland 131 Nov 91

Portugal 92 Oct 91

Puerto Rico 9 Oct89

Romania 26 Apr 93

The Internet: Past, Present, and Future ch apter
49

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 65 of 435

Total Initial Table 2.5, Continued
Code Country Nets Connection NSFNET International

RU Russian 405 Jun 93 Connections and Nets

Federation

I SN Senegal 11 Oct94

I SG Singapore 107 May91

I SK Slovakia 69 Mar92

I SI Slovenia 46 Feb92

I ZA South Africa 419 Dec 91

I ES Spain 257 Jul 90

I sz Swaziland 1 May94

I SE Sweden 415 Nov88

I CH Switzerland 324 Mar90

I TW Taiwan 575 Dec91

I TH Thailand 107 Jul92

I TN Tunisia 19 May91

I TR Turkey 97 Jan 93

I UA Ukraine 60 Aug93

AE United Arab 3 Nov93

Emirates

I GB United Kingdom 1,436 Apr89

I us United States 28,470 Jul 88 *

I UY Uruguay Apr94

uz Uzbekistan 1 Dec94

50 p a r t I Introduction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 66 of 435

Total Initial

Code Country Nets Connection

VE Venezuela 11 Feb 92

I VN Vietnam Apr95

I VI Virgin Islands 4 Mar93

I
93 Total 50,766

* Merit began managing the NSFNET backbone in July, 1988.

I :::ma
-'""b,✓JP,7'0>""-~""'""=•r,,-~=•=-,,,c<m.w•,~="-='-' '>w~,,•,~"<~~,~~~.~W7✓~W~

I

Table 2.6 Code Total Nets

NSFnet Networks by AL 260
U.S. States, May 1995 I Alaska AK 26 I

I Arizona AZ 186 I
I Arkansas AR 70 I
I California

I

CA 4,832 I
j Colorado co 696 I
I Connecticut CT 463

I Delaware DE 23

I Florida FL 770

I Georgia GA 445

I Hawaii HI 127

I Idaho ID 56

j II1inois IL 577

The Internet: Past, Present, and Future ch apter
51

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 67 of 435

52

1 ·········
State

Indiana

j 1owa

I Kansas

Louisiana

Code

IN

IA

KS

Total Nets

347

147

70

KY 82

LA 198

ME 103

MD 1,178

MA 2,005

Ml 540

MN 867

MS 109

MO 303

MT 37

NE 156

NV 40

New Hampshire NH 175

NJ 1,208

NM 142

NY 2,152

NC 677

ND 21

OH 1,233

p a r t I Introduction

Table 2.6, Continued

NSFnet Networks by
U.S. States, May 1995

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 68 of 435

State

I Oklahoma

I Oregon

I Pennsylvania

I Rhode Island

I South Carolina

Code

OK

OR

PA

RI

SC

South Dakota SD

I Tennessee TN

Texas TX

Utah UT

Vermont VT

! Virginia VA

I Washington WA

I Washington DC DC

I West Virginia WV

! Wisconsin WI

I Wyoming WY

I Military, Asia AA

I Military, Europe AE

I Military, Pacific AP

Military AX
Unspecified

I I (Unknown) XX

Total Nets

136

593

919

147

240

15

353

1,341

141

68

1,964

972

744

46

280

28

10

~2

46

8

6

The Internet: Past, Present, and Future ch apter

I

53

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 69 of 435

Table 2.7 Host Distribution by Top-Level Domain Name, January 1995

t com 1,316,966 it 30,697 gr 4,000 en 569 Ii 27

edu 1,133,502 at 29,705 cl 3,054 ve 529 gb 27

uk241,191 es 28,446 tr 2,643 bm474 zw 19

gov 209,345 za 27,040 ru 1,849 in 359 am 19

de 207,717 dk 25,935 si 1,773 ph 334 jr 18

ca 186,722 be 18,699 th 1,728 ec 325 pa 17

mil 175,961 kr 18,049 my 1,606 kw 220 mo12

au 161,166 tw 14,618 sk 1,414 id 177 dz 10

org 154,578 ii 13,251 ee 1,396 uy 172 kz 7

net 150,299 hk 12,437 ar 1,262 pe 171 fj 5

jp 96,632 CZ 11,580 co 1,127 eg 161 aq 4

fr 93,041 pl 11,477 hr 1,090 bg 144 md3

nl 89,227 hu 8,506 int 904 It 121 gl3

I I se 77,594 mx 6,656 br800 cy88 fo 3

fi 71,372 ie 6,219 cr798 pr 82 sa 2

I ch 51,512 pt 5,999 lu 614 jm76 gn 2

no 49,725 sg 5,252 Iv 612 zm 69 by 2

us 37,615 SU 4,963 ro 597 tn 5? az 1

I nz 31,215 is 4,735 ua 574 ni49

54
p a r t I Introduction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 70 of 435

Internet Society, IAB,
andIETF
The Internet Society is an international organization

for global cooperation and coordination for the

Internet and its associated internetworking tech

nologies and applications. Its principal purpose is

[T]o maintain and extend the development

and availability of the Internet and its

associated technologies and applications

both as an end in itself, and as a means of

enabling organizations, professions, and

individuals worldwide to more effectively

Figure 2.4

The Internet Society's

home page.

The Internet: Past, Present, and Future

collaborate, cooperate, and innovate in their

respective fields and interests.

The Internet Society (ISOC) (see fig. 2.4) was

formed by a number of people with long-term in

volvement in the Internet Engineering Task Force

(IETF) (see fig. 2.5). In 1990, it appeared that long

term support for the standards-making activity of

the IETF, which had come primarily from research

supporting agencies of the U.S. Government (no

tably ARPA, NSF, NASA, and DOE), might need to

be supplemented in the future. As a result, one of

its principal rationales was to provide an institutional

home for and financial support for the Internet Stan

dards process.

ch apter
55

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 71 of 435

56

The Internet Society was announced in June 1991

at an international networking conference in

Copenhagen and brought into existence in January

1992. In June 1992, at the annual meeting of the

Internet Society, INET'92, in Kobe, Japan, the

Internet Activities Board proposed to associate its

activities with ISOC and was renamed the Internet

Architecture Board (IAB).

The IAB is considered a technical advisory group of

the ISOC. It is chartered to provide oversight of the

architecture of the Internet and its protocols. His

torically, the IETF and its sister organization, the

Internet Research Task Force, had been considered

two arms of the IAB. At the technical and develop

mental level, the Internet is made possible through

creation, testing, and implementation of Internet

Standards. These standards are developed by the

Internet Engineering Task Force.

p a r t I Introduction

Figure 2.5

The IETF home page.

The IETF is a loosely self-organized group of people

who make technical and other contributions to the

engineering and evolution of the Internet and its

technologies. The actual technical work of the IETF

is done in its working groups, which are organized

by topic into several areas (for example, routing,

network management, and security).

The IETF produces a set of working documents,

each called an RFC (Request for Comment). Some

of these RFCs pass through the IAB Standards Pro

cess (Chapin : 992) to become Internet Standards.

Internet Standards exist for all the basic TCP/IP pro

tocols.

According to Vinton Cerf, the highest ISOC goal was

to "keep the Internet going." Among the high pri

ority activities associated with that goal was to pro

vide support for the Internet Standards process

carried out by the Internet Engineering Task Force.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 72 of 435

Information Superhighway
and the National Informa
tion Infrastructure
The first year of the Clinton administration saw the

creation of the U.S. Advisory Council on the Na

tional Information Infrastructure as a new branch

under the Commerce Department. Signed into

President Clinton's executive order of 1993 was

the national goal of creating an "information super

highway," the National Information Infrastructure

(NII) which

[S]hall be the integration of hardware,

software, and skills that will make it easy

and affordable to connect people with each

other, with computers, and with a vast array

of services and information resources.

Figure 2.6

The Federal

government's Agenda for

Action home page.

The Internet: Past, Present, and Future

The following executive summary was excerpted

from the U.S. Federal government's NII Agenda for

Action (see fig. 2.6). It mentions nine goals for the

NII that bear striking resemblances to what the

Internet can offer today, but there are important
differences as well.

The National Information Infrastructure:

Agenda for Action Executive Summary

All Americans have a stake in the construc

tion of an advanced National Information
Infrastructure (NII), a seamless web of

communications networks, computers,

databases, and consumer electronics that

will put vast amounts of information at users'

fingertips. Development of the NII can help

unleash an information revolution that will

change forever the way people live, work,

and interact with each other:

ch apter
57

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 73 of 435

58

➔ People could live almost anywhere they

wanted, without foregoing opportunities for

useful and fulfilling employment, by

"telecommuting" to their offices through an

electronic highway.

➔ The best schools, teachers, and courses

would be available to all students, without

regard to geography, distance, resources, or

disability.

➔ Services that improve America's health

care system and respond to other important

social needs could be available online,

without waiting in line, when and where you

needed them.

Private sector firms already are developing

and deploying that infrastructure today.

Nevertheless, there remain essential roles

for government in this process. Carefully

crafted government action will complement

and enhance the efforts of the private sector

and assure the growth of an information

infrastructure available to all Americans at

reasonable cost. In developing our policy

initiatives in this area, the Administration will

work in close partnership with business,

labor, academia, the public, Congress, and

state and local government. Our efforts will

be guided by the following principles and

objectives:

➔ Promote private sector investment,

through appropriate tax and regulatory

policies.

p a r t I Introduction

➔ Extend the "universal service" concept

to ensure that information resources are

available to all at affordable prices. Because

information means empowerment-and

employment-the government has a duty to

ensure that all Americans have access to the

resources and job creation potential of the

Information Age.

➔ Act as a catalyst to promote technologi

cal innovation and new applications. Commit

important government research programs

and grants to help the private sector develop

and demonstrate technologies needed for

the NII, and develop the applications and

services that will maximize its value to users.

➔ Promote seamless, interactive, user

driven operation of the NII. As the NII

evolves into a II network of networks, 11

government will ensure that users can

transfer information across networks easily

and efficiently. To increase the likelihood that

the NII will be both interactive and, to a large

extent, user- driven, government must

reform regulations and policies that may

inadvertently hamper the development of

interactive applications.

➔ Ensure information security and network

reliability. The NII must be trustworthy and

secure, protecting the privacy of its users.

Government action ·will also ensure that the

overall system remains reliable, quickly

repairable in the event of a failure and,

perhaps most importantly, easy to use.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 74 of 435

➔ Improve management of the radio

frequency spectrum, an increasingly critical

resource.

➔ Protect intellectual property rights. The

Administration will investigate how to

strengthen domestic copyright laws and

international intellectual property treaties to

prevent piracy and to protect the integrity of

intellectual property.

➔ Coordinate with other levels of govern

ment and with other nations. Because

information crosses state, regional, and

national boundaries, coordination is critical to

avoid needless obstacles and prevent unfair

policies that handicap U.S. industry.

➔ Provide access to government informa

tion and improve government procurement.

The Administration will seek to ensure that

Federal agencies, in concert with state and

local governments, use the NII to expand the

information available to the public, ensuring

that the immense reservoir of government

information is available to the public easily

and equitably. Additionally, Federal procure

ment policies for telecommunications and

information services and equipment will be

designed to promote important technical

developments for the NII and to provide

attractive incentives for the private sector to

contribute to NII development.

The time for action is now. Every day brings

news of change: new technologies, like

The Internet: Past, Present, and Future

hand-held computerized assistants; new

ventures and mergers combining businesses

that not long ago seemed discrete and

insular; new legal decisions that challenge

the separation of computer, cable, and

telephone companies. These changes

promise substantial benefits for the Ameri

can people, but only if government under

stands fully their implications and begins

working with the private sector and other

interested parties to shape the evolution of

the communications infrastructure.

The benefits of the NII for the nation are

immense. An advanced information infra

structure will enable U.S. firms to compete

and win in the global economy, generating

good jobs for the American people and

economic growth for the nation. As impor

tantly, the NII can transform the lives of the

American people-ameliorating the con

straints of geography, disability, and eco

nomic status-giving all Americans a fair

opportunity to go as far as their talents and

ambitions will take them.

Is the Internet the information superhighway that

America is seeking? I think so. Since its inception

as ARPAnet in 1969 and over the course of past

twenty-five years, the Internet has demonstrated

remarkable resilience, innovative adaptability, and

spontaneous cooperation when faced with various

challenges brought on by both changes in technol

ogy as well as its rapid growth.

59
ch apter -

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 75 of 435

60

I believe that the following NII issues can all be sat

isfactorily addressed and fully accommodated by

the Internet-not in its present form, but in an ad

vanced version of the Internet as it continues to
evolve into the future:

➔ Private sector investment

➔ Universal availability

➔ Technology innovation

➔ Seamless interactivity

➔ Security and reliability

➔ Resource management

➔ Intellectual property rights

➔ Coordination

➔ Government information access

p a r t I Introduction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 76 of 435

a t e. r
• t,• if•"'•··••'•• • • • • • • • • • • • • • • • e e • ;.,F ,,,., ..

World Wide Web:
Playground for Robots

the past couple of years, the World Wide Web

s completely reshaped the Internet. The Web

s transformed the Internet from an exclusive

country club frequented by the "well-connected"

and privileged few, to a huge public arena visited

daily by people from all w.alks of life. It has done so

by introducing graphical user interfaces to facilitate

access to the Internet, allowing users to experience

sights and sounds in an intuitive style of navigation.

The World Wide Web has opened the Internet to

the masses.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 77 of 435

62

World Wide Web
Development
The precursor of the World Wide Web was a small,

home-brewed personal hypertext system devel

oped at CERN, Geneva's European Laboratory for

Particle Physics, for keeping track of personal in

formation on a distributed project. The positive ex

perience prompted development of what became

the World Wide Web. In March 1989, 17m Bernes

Lee at CERN began circulating a proposal to build a

"hypertext system" for easy sharing of informa

tion among geographically separated teams of re

searchers in the High Energy Physics community.

In October 1990, development on the World Wide

Web was started and the project began to take

shape. By Christmas of 1990, access to hypertext

files and Internet news articles was demonstrated

with the line-mode and graphical NeXTStep brows

ers. Before the end of 1991, the CERN newsletter

announced the Web to the World. Other early

browsers for the World Wide Web include Viola (Pei

Wei, U.C. Berkeley), Mosaic (Marc Andreesen, Illi

nois NCSA), Cello (Thomas Bruce, Cornell Univer

sity), as well as Lynx in full-screen character mode

(Lou Montulli, University of Kansas).

Growth of the Web
Over time, the Web became immensely popular in

part because of the browsers that made it easy for

everyone on the Internet to roam, browse, and con

tribute to the Web information space. In April 1993,

there were 62 registered Web servers on the

p a t I Introduction

Internet. By April 1994, the number of registered

Web servers had grown to 829. By May 1994, the

number increased to 1,248 (BLCLNS 1994).

The growth in World Wide Web traffic on the

Internet is equally impressive. Since its start, World

Wide Web traffic has grown at twice the rate of

general Internet expansion. In 1994, World Wide

Web traffic over the NSFnet, measured in bytes,

grew an astounding 15-fold (1,500 percent)! Figure

3.1 plots the monthly traffic volume across the

NSFnet T3 backbone from January 1993 through

April 1995.

By July 1994, the Web had outgrown CERN's

capability to deal with it as a single research labora

tory dedicated to High Energy Physics. CERN

began to transfer the Web project to a new group

called the W3 Organization, a joint venture between

CERN and MIT based in Cambridge, Massachu

setts, for further development (see fig. 3.2). Be

tween late 1994 and early 1995, this development

venture blossomed into a collection of organizations

and expertise called the World Wide Web

Consortium.

Currently, all "official" Web-related research

and developments are undertaken or

coordinated by the W3 Consortium.

Information Dissemination
with the Web
The Web originally was conceived as a convenient

way to disseminate information within an organiza

tion (BLCLNS 1994). The Web behaves like a

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 78 of 435

Figure 3.1
24- ---- ---

23

22

21 Total--

WWW ------

Monthly traffic in bytes

across the NSFnet T3

backbone.
20

ftp-data --

19 nntp --

18
smtp --

-- Gopher----·
17 wals --

16

15

14

U)
13

C g 12

E 11
C

C
(/)
Q)

10

~ 9

8

7

6

5

4

01/93 04/93 07/93 10/93 01/94 04194 07/94 10/94 01/95 04/95

networked repository of information that pools to

gether useful knowledge, allowing collaborators at

remote sites to share their ideas, as well as infor

mation on all aspects of a common project. Figure

3.3 illustrates the Web information space of a typi

cal research center.

As a tool for information distribution, the Web can

provide users and customers with resources previ

ously available only to manufacturers, suppliers, and

distributors. The Web has become very popular over

World Wide Web: Playground for Robots

Date

the past two years as a new medium of expression

on the Internet due in part to its capability to pro

vide a flexible and extensible way to interact with

users over th: Internet for a variety of purposes.

Information residing ori the Web can be smoothly

reshaped by alterations in hypertext links to repre

sent the state of new knowledge in a constantly

changing environment. Furthermore, the highly

scalable design of the Web requires no centralized

administration of information. These properties have

C h a p t e
63

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 79 of 435

64
p a r I Introduction

Figure 3.2

The w3c Home Page.

Figure 3.3

Web Information Space

of a Research Center.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 80 of 435

helped the Web to expand rapidly from its origins

at CERN to the Internet, irrespective of boundaries

of nations or disciplines.

Innovative Uses of the Web
Over the short span of a couple years, the Web

has evolved to fulfill a great number of diverse

needs on the Internet. It's a powerful medium for

advertising and for delivery of on line electronic cata

logs and product information. It's also an important

vehicle for setting up virtual storefronts in

cyberspace. These virtual storefronts can be used

for distributing software electronically, for brows

ing multimedia art galleries, for taking orders on

various goods and services, for publishing electronic

newspapers, or for "netcasting" radio and video

programs. In short, the Web now has become a

place of communications and learning, a new

Figure 3.4

Client-Server Architec

ture of World Wide

Web.

marketplace, and an exciting show ground for new

information technologies.

Architecture of the World
Wide Web
The World Wide Web organizes, transmits, and

retrieves information of all types by using a combi

nation of hypertext, graphics, and multimedia

technologies, unified in a set of naming conven

tions, network protocols, and document formats,

and realized by using a client-server architecture.

The World Wide Web architecture is illustrated in

figure 3.4 and is designed to be highly scalable. Its

content is the universe of network-accessible in

formation, which the Web originators have termed

"an embodiment of human knowledge."

Addressing Scheme, Protocols, Format Negotiation

World Wide Web: Playground for Robots C h a p t e

Common
Gateway
Interface
to other
Software
and database

65

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 81 of 435

66

Besides the Web, there are other information sys

tems like Gopher (AMLJTA 1993) and WAIS

(DKMSSWSG 1990) that use a similar client-server

architecture. These systems, however, play distinct

roles and have different purposes. Gopher, which

is sort of like a Web without full hypertext capabil

ity, uses a menu system that allows information to

be organized in a hierarchy of directories. WAIS

provides no navigation facilities and uses indexing

exclusively to transport users into the desired loca

tion of the information space. Using the analogy of

a book as an information space, Gopher often is

described as its table of contents, WAIS the index

pages, and World Wide Web the hypertext body

where the bulk of the contents reside.

A body of software realizes the Web in a concrete

form. This software architecture is composed of

the following components that interoperate over
the Internet:

➔ Clients that allow users to navigate the Web or

even interact with the server in interesting ways

➔ Servers that allow Internet sites to publish in

formation or export data to the world

➔ Proxies that facilitate communications and pro

vide access control for sites that must rely on

an intermediary host for communication with

the Internet (for example, sites behind a firewall)

Web Clients
A World Wide Web client program runs on a desk

top computer and is capable of accessing different

Web servers distributed across the Internet. With

an interactive Web browser client, users can view

hypermedia documents by following information

p a r t I Introduction

links in the Web information space. The first proto

type of a Web client is a hypertext browser/editor

on NeXTStep, written by Tim Bernes-Lee at CERN.

Currently, a multitude of commercial browsers, such

as Netscape Navigator, are available on a variety of

client platforms such as PC/Windows, Mac, Unix/
X11.

In addition to providing basic browsing functions,

Web clients can solicit user input through an

onscreen fill-out form. This capability allows bidi

rectional information flow and is useful for enhanced

interactivity. Web clients that also provide editing

functions further allow online Web document con

struction in a dynamic environment.

Web Servers
A World Wide Web server program usually runs on

a multitasking workstation that is powerful enough

to handle multiple requests from clients from all

over the Internet. The most common request is to

"GET" a Web page for display on the client browser.

The two most popular server software packages

are from CERN (written by Tim Bernes-Lee) and

NCSA (written by Rob McCool), and they are sim

ply called CERN and NCSA. Favorite platforms for

Web servers include various flavors of Unix, as well

as Windows/NT. The Web pages that the client

views reside on a file system and have addresses

that reflect the directory path that leads to the file.

Besides serving hypertext documents, a Web

server also has the capability to act as a gateway to

other software or information sources such as a

relational database. Using the Common Gateway

Interface, the Web server invokes a program script

that takes information provided by the client

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 82 of 435

(usually from a fill-out form that appeared in the

client browser), processes it according to instruc

tions in the script, and returns a Web page result to

the client.

Web Proxies
A proxy actually is a Web server that usually runs

on a firewall machine (that is, a machine that func

tions like a security barrier between the larger

Internet and a smaller local area network within an

organization). The proxy acts as an intermediary

between Web clients inside the firewall and Web

servers out on the Internet. When the proxy re

ceives a request from an internal machine behind

the firewall, it sends the request out to some Web

server on the Internet and waits for the response.

When the reply comes back from the Internet, it

passes the result back to the internal client.

A proxy also can be used to cache Web documents,

which is useful when multiple clients within an or

ganization (not necessarily behind a firewall) make

requests for the same Web pages. The proxy will

store the result of first requests and simply pass

on the stored Web page for subsequent requests,

substantially reducing network response time for

the clients. The proxy also can store pre-loaded

popular Web pages for use in caching.

Web Resource Naming, Protocols,
and Formats
The World Wide Web incorporates the idea of a

boundless information world in which all objects

have a reference by which they can be retrieved.

Despite the many different protocols in existence,

World Wide Web: Playground for Robots

the World Wide Web implements a universal ad

dressing system, the Universal Resource Identifier

(URI), to make object referencing in this world pos

sible. Various protocols and access algorithms are

encoded as specific Universal Resource Locators

(URL), conforming to the general URI addressing

scheme.

Although the World Wide Web architecture encom

passes many other preexisting Internet protocols

(see fig. 3.4), the native and primary network pro

tocol used between World Wide Web clients and

servers is the HyperText Transfer Protocol (HTTP).

HTTP enables World Wide Web clients and serv

ers to communicate efficiently, providing perfor

mance and features not otherwise available.

World Wide Web also defines a HyperText Markup

Language (HTML), which is a document format that

every World Wide Web client is required to under

stand. It is used for the transmission and represen

tation of basic items such as text, list, and menus,

as well as various styles of inputs in a fill-out form.

URI and URL: Universal
Resource Identifier and
Locator
The Web is designed to include objects that can be

accessed by using any number of protocols that

are either already in existence, being invented for

the Web, or to be invented in the future. To ab

stract the idea of a generic object, the Web uses

the concepts of a universal set of objects, and of a

universal set of names and addresses of objects. A

Universal Resource Identifier (URI) (BL 1994) is a

ch apter
67

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 83 of 435

68

member of this universal set of names and ad

dresses. URls are strings used as addresses of

objects on the Web, which could be documents,
menus, or images.

Access instructions for an individual object under a

given protocol are encoded into an address string.

A Universal Resource Locatoror URL (BLMM 1994)

is a form of URI that expresses an address that

maps onto an access algorithm using network

protocols.

Both URls and URLs are integral to the architec

ture of the World Wide Web. They allow for easy

addressability of an object anywhere on the Internet,

which is essential for the Web architecture to scale

and for the Web information space to be indepen

dent of network and server topology.

Cammon URI Syntax
Although the syntax for the rest of the URL might

vary depending on the particular scheme selected,

URL schemes that involve an IP-based protocol

connecting to a specified host on the Internet use

a common syntax for the scheme-specific data,

which conforms to the following URI specification:

scheme://user:password@host:port/url-path

Some or all of the parts, such as user:password@,

:password, :port, and furl-path, might be ex

cluded. The scheme-specific data starts with a

double slash to indicate that it complies with the

common Internet scheme syntax. The URL of the

main page of the World Wide Web project, for ex

ample, is as follows:

http://www.w3.org/hypertext/\WMI/

p a r t I I Introduction

Where:

➔ The prefix http indicates the addressing

scheme and defines the interpretation of the
rest of the string

➔ The address www. w3. org identifies the HTTP

server to be contacted

➔ The substring hypertext/WWW/ identifies the

document object to be accessed on the
www. w3. org server

By default, the World Wide Web server listens to

TCP port 80. The URI syntax, however, allows

alternative ports to be specified. To designate an

alternative port, for example, 8000, where an ex

perimental Web server has been set up to listen
on, the following URI is used:

http://www.w3.org:8000/experiment/test

Different network protocols use different syntaxes

where appropriate. A small amount of common

syntax, however, is enforced by URI to retain in the

common model various forms and features usually

encountered in many information systems. Hierar

chical forms, for example, are useful for hypertext,

where a large compound document can be split into

many smaller interlinked documents. The common

URI syntax reserves the forward slash character

as a way of representing a hierarchical name space.

For query purposes, the question mark character is

used as a separator between the address of an

object and a query operation applied to it. In all

cases, the client passes the path string to the server

uninterpreted. A search on a text database, for ex

ample, might look like this:

http://Wl'1W.my.com/AboutUs/Index/Phonebook?john

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 84 of 435

A reference to a particular part of a document might

look like the following, where the fragment identi

fier string #smith is not sent to the server, but is

retained by the client and used when the whole

document has been retrieved:

http://www.my.edu/admin/people#smith

URLs for Various Protocols
URls are universal. They encode members of a

universal set of network addresses. A new URI

scheme can be readily designed for any new net

work protocol that has some concept of objects.

One can form an address for any object by specify

ing the set of protocol parameters necessary to

access the object. If these protocol parameters for

accessing the object are encoded into a concise

string, with a prefix to identify the protocol and the

encoding, one has a new URI scheme, also known

as a Universal Resource Locator (URL). There are

schemes for the following:

➔ HyperText Transfer Protocol (for example,

http://www.w3.org/hypertext/WWW)

➔ Gopher protocol (for example, gopher://

gopher.micro.umn.edu/)

➔ Wide Area Information Servers (for example,

wais://munin.ub2.lu.se:210/academic_e

mail_conf)

➔ File Transfer Protocol (for example, ftp://

rtfm.ai.mit.edu/pub/usenet-by-group/

news.answer/ftp-list)

➔ Electronic mail address (for example,

mailto:webmaster@w3.org)

World Wide Web: Playground far Robots

➔ Usenet news (for example, news://

comp.infosystems.www.misc)

➔ Reference to interactive sessions (for example,

telnet://downwind.sprl.umich.edu:3000)

➔ Local file access (file:// localhost /etc/

re. local)

Gopher and WAIS
Gopher and WAIS are two other information sys

tems similar to WWW. Gopher is a hierarchical,

menu-based, campus-wide information system that

also provides a simple text search mechanism by

means of a master index located on the Veronica

server. The WAIS protocol is largely influenced by

the z39.50 protocol used for networking library cata

logs, and provides more sophisticated search ca

pabilities using a master index.

HTTP: HyperText Transfer
Protocol
HTTP is an Internet protocol for accessing Web

servers (BLFN 1995). HTTP adopts a readable text

based style, similar to that of the File Transfer Pro

tocol (FTP) and. Network News Transfer Protocol

(NNTP) that have been used on the Internet for

many years. ·HTTP is not so much a protocol for

transferring hypertext, as the name might suggest,

but more a protocol for transferring information with

the efficiency necessary for making hypertext

jumps. The data transferred can be anything: for

example, plain text, hypertext, images, audio, or

video.

ch apter
69

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 85 of 435

--------------------------------~--- - ----------------,---

70

HTTP is a simple request and response protocol

layered on top of TCP. There are essentially four

steps to an HTTP transaction:

1. Connect. When a user clicks on a hyperlink, the

client goes out to the Internet to locate the

server machine specified in the URL, and at

tempts to establish connection with the server.

2. Request. Each HTTP request from the client be

gins with an operation code, called the method,
followed by the URL of an object. The "GET"

method retrieves the document URL. The

"PUT" method updates the Web document,

possibly with the help of a client editor. The

"POST" method attaches a new document to

the Web, or submits a filled-in form to the server

for processing.

3. Response. The Web server attempts to fulfill the

client's request and returns the result. A three

digit status code tells the client how the re

sponse was understood and attended to.

4. Close. The server terminates the connection

after performing the requested action. Both cli

ent and server software must handle instances

of unexpected or premature closings (for ex

ample, triggered by the Stop button on most

browsers, or caused by machine crashes}.

The entire process of an HTTP transaction can be

observed from the status bar of most browsers.

Using the Netscape Navigator, for example, you see

the following:

Connect: Contacting http://www.w3.org ...
Connect: Host contacted. Waiting for reply ...
Transferring data ...
Document: Done.

p a r t I Introduction

Statelessness in HTTP
HTTP is stateless, as evidenced by the fact that a

network connection is made and broken for each

HTTP operation. HTTP runs over a TCP connection

that is held only for the duration of a single opera

tion. When a user browses the Web, document

objects are retrieved in succession from one, but

sometimes multiple, servers on the Internet. The

stateless model is simple and efficient because a

hyperlink from one object could lead to an object

that resides anywhere, maybe on the local server

or some remote server.

Being a stateless protocol, HTTP does not under

stand the concept of a session (logical grouping of

multiple consecutive transactions} and has no pro

vision for remembering what has gone on before

with particular client-server pairs. As far as the

server is concerned, each HTTP request is handled

anew and carries no history or knowledge from past

transactions with the client. In cases where the

server needs to track client interactions over

several HTTP transactions, various gateway pro

gramming tricks have been invented to retain state

variables in the server or to pass them around back

and forth between client and server (DC 1995).

Format Negotiations
HTTP is capable of format negotiations. In addition

to simply transferring HTML documents, HTTP can

be used to retrieve documents in an unbounded

and extensible set of formats. The client first sends

a list of formats that it can handle, and the server

replies with data in any of those formats that it can

produce.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 86 of 435

According to the original Web developers (BLCLNS

1994), this type of negotiation has the advantage

of allowing proprietary formats to be used between

consenting programs, without the need for stan

dardization of those formats. Furthermore, this

negotiation system introduces a hook for transport

ing future formats that have yet to be invented.

Currently, this negotiation system is used for natu

ral languages such as French or Japanese where

available, as well as for compression forms such

as x-compress or x-gzip.

When objects are in transit over the network, infor

mation about them (meta-information) is transferred

in HTTP headers. By adopting an extension of the

Multi-purpose Internet Mail Extensions (MIME) (BF

1993) for use in the set of headers, the Web devel

opers made a design decision to facilitate integra

tion of hypermedia mail, news, and information

access.

By further adopting the convention that unrecog

nized HTTP headers and parameters are ignored, it

has been easy to try new ideas on working produc

tion servers. This has allowed the protocol

definition to evolve in a controlled way by the

incorporation of tested ideas.

HTML: HyperText Markup
Language
HTML is a common basic language for the inter

change of hypertext (BLC 1995; Raggett 1995). It

describes the structure and organization of a docu

ment. HTML is designed to be simple so that it can

be easily produced by both people and programs.

World Wide Web: Playground for Robots

The idea behind HTML is to format information

online for efficient electronic distribution, search,

and retrieval in such a way that it is independent of

the appearance details of the document. This greatly

expedites the writing and production of documents.

Conventional word processing formats dictate the

appearance of documents when displayed, and thus

do not interoperate across different word proces

sors. HTML does not dictate, but merely suggests,

appropriate presentations for documents. By focus

ing only on document structure, and not on final

appearance, HTML allows Web browsers free rein

to interpret and display an HTML-formatted docu

ment to the best of their capabilities.

Level of HTML Conformance
HTML is a markup language defined according to

the Standard Generalized Markup Language (SGML)

(Goldfarb 1990), an international standard (ISO 8879)

for text information processing. A valid HTML docu

ment can be parsed by an SGML parser provided

the SGML declarations also include a Data Type

Definition (DTD) for HTML. HTML is an evolving

standard with the following levels of conformance:

➔ Level 0. The minimum set of elements making

up an HTML document that all browsers rec

ognize. I~ includes a core set of simple struc

ture elements such as headings, paragraphs,

hyperlinks, bulleted lists, ordered list, and menu,

all of which are useful when structuring online

documents.

➔ Level 1. Level O features plus character format

ting and inline images.

ch apter
71

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 87 of 435

72

➔ Level 2. Level O and Level 1 features plus Form

interface for the entry of data by users.

➔ Level 3. Level 0, 1, 2 features plus extensions

for tables, figures, and mathematical formulas,

stylesheets, and other features for control of

layout.

Currently, many browsers support a subset of

the more advanced (and possibly not yet

standard) HTML features, in addition to those

of the more basic levels. This is due in part to intense

competition among browser manufacturers for market share.

HTML Tags
HTML documents consist of a set of tags that

specify the logical structure of the document, as

well as suggestion of how it could be displayed.

Most HTML elements are identified in a document

as a start tag, which gives the element name and

attributes, followed by the content, followed by the

end tag (see fig. 3.5). As in the following tag, tags

define the start and end of headings, paragraphs,

lists, character highlighting, and hyperlinks:

<HTML>
<HEAD>
<TITLE> Sample HTML Example </TITLE>
</HEAD>

<BODY>
<H1> This is H1 Header </H1>
<H2> This is H2 header </H2>
<H3> This is H3 header </H3>
<H4> This is H4 header </H4>

p a r t I Introduction

<P> This is a paragraph. End tags are not
strictly needed for paragraphs, but they
are allowed.

<P> Here is an unordered list:

 First item in an unordered list.
 Second item in an unordered list.

<P> Here is an ordered list:

 First item in an ordered list.
 Second item in an ordered list.

<P> You can include character highlighting in a
paragraph:

e.g. <I> italics </I> or bold.

<P> This is a hypertext link to the
 W3C home page .
</BODY>
</HTML>

HTML exists as a markup language independent of

HTTP or World Wide Web. HTML can be used in

hypertext e-mail (as "text/html" MIME content

type), news, and anywhere hypertext structure is

needed. There is no requirement that file contents

of Web pages be stored in HTML. Servers can store

file contents jn other formats or in variations on

HTML that include extra information of local inter

est only. Upon requests from clients, HTML docu

ments can be generated on-the-fly.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 88 of 435

Figure 3.5
<HTML>
<HEAD> HTML Document

Source.
<TITLE> The World Wide Web Initiative: The Proiect</TITLE>
<I- Changed by: Karen MacArthur. 26-Jun-1995 .. ,
~~H~Rg'}9ed by: Henrik Frystyk Nielsen, 7-Aug-1995 •·>

<BDDY>

<Hl> <IMG alt=''WWW" SRC="/hyperleHt/WWW/lcons/WWW/WWWI 'f"
The World Wide Web</H1) ago.go >

<hr>
<H2>

The World Wide Web Consortium</a) promote• the Web bjl

T~• Consortium is run by MIT <la>
y,1th <A HRE_F="h!lp://www.inria.fr/">INRIA<IA> acting as European host
on collaboralmn w.'t~ CERN •
where the web ongmated.

<,!-,1?

3
c< aMhref ="/member /WWW/Consortium/Member /">W3C Member information< /a>

1n embers only)

Forms and Imagemaps:
Enhanced Web Interactivity
The power of the World Wide Web lies in its ex

pressiveness. As originally conceived, the Web

implements a distributed information space whose

sole means of user interaction is hypertext naviga

tion through mouse point-and-click. Fill-out forms

and imagemaps are recent technical developments

that substantially enrich the expressiveness of the

Web by providing enhanced interactivity.

Fill-Out Forms
The HTML Form interface allows document cre

ators to define HTML documents containing forms

World Wide Web: Playground for Robots

to be filled out by users. Features of a fill-out form

include radio buttons, check boxes, menus (pull

down or otherwise), and text input, all of which are

designed to accept user inputs. When a user fills

out the form and presses a button indicating the

form should be "submitted," the information on

the form is sent to a server for processing. The

server usually prepares an HTML document using

the information supplied by the user and returns it

to the client for display. Details are described in the

next section ?n gateway programming.

Clic:kable Images
lmagemaps, originally invented in May, 1993, by

Kevin Hughes, then of Honolulu Community

C h a p t e
73

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 89 of 435

74

College, introduced interactive graphics to the World

Wide Web. lmagemaps enable the use of clickable

images, which are to graphics what hypertext links

are to Web documents. In an imagemap, different

parts of the image are linked to different places in

the Web information space. When a user clicks on

a certain part of an image, the corresponding Web

document linked to that part will be fetched as

though a normal hypertext link has just been acti

vated. lmagemaps thus combine the freedom of

graphics design with the navigational power of

hypertext documents. The use of imagemap is best

illustrated in the Virtual Tourist Web page, shown

in figure 3.6, where a clickable world map (visible if

you were to scroll down} provides an easy way for

users to navigate different parts of the world.

p a r t I Introduction

Gateway Programming:
Processing Client Input
The Common Gateway Interface (CGI) is key to pro

viding advanced Web interactivity. It allows the Web

to be connected to other software and databases

by essentially functioning as a gateway. Using CG I,

the user can execute a program remotely on the

server, search for specific items in a database, or

exchange information through an interface with

other software. Gateway programs can be used to

execute filter programs that generate HTML docu

ments (from other native formats) on-the-fly, or to

extract inventory and pricing information from com

mercial databases upon request.

Figure 3.6

The Virtual Tourist
lmagemap.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 90 of 435

Mastery of gateway programming requires knowl

edge of either a scripting language (such as Perl or

TCL) or a programming language (such as CIC++),
an understanding of how input arguments are speci

fied and extracted for processing, and the ability to

properly format the output for display on client

browsers.

Gateway programs usually are deposited under a

directory called /cgi-bin/ on most Unix machines,

if using the CERN or NCSA Web servers. The

pathname to the gateway program / cgi-bin / qs

on the server www. secapl. com, for example, is in

cluded as part of its URL, as in the following:

http://www.secapl.com/cgi-bin/qs

Gateway Program Interaction
A link to the gateway program can be created in a

Web page by embedding the gateway program's

URL in an HTML anchor. The following are ways to

invoke a gateway program (other than simply click

ing on a specific hypertext link with an embedded

gateway program URL):

➔ Clicking on a specific location within an

imagemap

➔ Returning an ISINDEX query box

➔ Submitting a fill-out form

World Wide Web: Playground for Robots

Figure 3.7 illustrates how a gateway program can

be triggered using a fill-out form. The following de

scribes the detailed action sequence:

1. The client requests the URL http://

www.secapl.com/cgi-bin/qs from the

www. secapl. com server after the user clicks on

the corresponding hyperlink in a Web page.

2. The server returns the requested URL http://

www.secapl.com/qs, which is an HTML form

(see fig. 3.8).

3. The user fills out the form with msft and clicks

on the submit button.

4. The client sends the resulting filled-out form,

now identified by URL http://

www.secapl.com/ qs?msft, to the server for

processing.

5. The server executes gateway program /cgi

bin / qs using msft as input argument.

6. The formatted output, identified by URL http:

/ / qs. secapl. com: 85 / cgi-bin / qsyy is passed

from the server back to the client and displayed

as a Web page on the user's screen.

There are specific books that provide more com

prehensive coverage of gateway programming (DR

1995).

ch apter
75

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 91 of 435

r

76

Web Browser Client © Client Request URL
http:lwww.secapl.com/cgi-bln/q Figure 3.7

Web server www.secapl.com Invocation of a Gateway

Program using Forms. cg\ program
/cgl-bln/qs

•
•

Main Frame
Server

~ I
@ Client submits Form
http://www.secapl.com/cgl-blri/qs?msft

@ Server
executes
gateway
program
"/cgl-bln/qs" -• c:::::::J

@ Results passed back
http://qs.secapl.com=85/cgl-blri/qs~

msft stock
price trend

The Next Step: Agents an
the Web
Most of the commercial and entrepreneurial efforts

had focused on the Web being a facilitator of elec

tronic commerce, usually consummated in secure

transactions involving digital cash or some other

form of payment schemes over the Internet. Many

such applications require the client and server to

authenticate each other and exchange sensitive

information confidentially. Current HTTP implemen

tations have only modest support for the crypto

g ra ph ic mechanisms appropriate for such

p a r I Introduction

transactions, but interesting developments are un

derway (see Chapters 8, "Web Transaction Secu

rity," and 9, "Electronic Cash and Payment

Services").

.
Early Commerce Agents
The World Wide Web and Mosaic have been con

sidered the "killer apps" for the Internet because

they have made possible the innovative use of the

medium on a grand scale. It is believed that the

next step in the evolution of the Internet is to con

sider the Web as a natural platform for introducing

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 92 of 435

Figure 3.8 .Q.ptlons I!lrectory Ji•

HTML form to be filled

out.
Sample HTML Form

YourName;'----------

Seteot an items:
HELLO, select Item 1 ,.,
HOWDY, select Item 2 ...

Pickono: OA OB OC

Pick all that applies:
ox
DY
oz

Your corun.en ts here . • ,

innovative "commerce agents" of all types that can

provide many interesting services such as bargain

hunting, mortgage-rate locking, bartering, brokering,

and stock tracking.

Virtual storefronts on the Web, complete with online

catalogs and automated ordering services, already

implement a rudimentary form of sales agents. In

response, various bargain-finding and procurement

agents came into being on the Web relying on the

use of such facilities. For example, the

BargainFinder agent developed by Dr. Bruce

Krulwich, a research scientist at Andersen Consult

ing, •is one such early prototype of commerce

agents. BargainFinder has been deployed on the

Web as a service since July 1995 and can be found

at Andersen Consulting's Web site at http://

bf. cstar. ac. com/bf/. BargainFinder allows users

to search for CDs and compare prices among nine

compact disc sources on the Internet.

World Wide Web: Playground for Robots

However, the BargainFinder service has run into

problems. Bargain Finder was not welcome at some

of the online CD stores (especially those that charge

higher prices for their CDs!). In fact, three out of

the nine stores that BargainFinder visits have taken

actions to prevent BargainFinder from accessing

their online inventory database. There are also prob

lems with Bargain Finder trying to cope with some

of the more difficult data formats used by a few

online CD stores. To make Web shopping technol

ogy more readily accessible, I have developed a

WebShopper .agent that is freely available to the

public. WebShopper can be configured to run as

either BookFinder or CDFinder, from anywhere on

the Internet. As their names imply, BookFinder

shops for books and CDFinder shops for CDs on

the Web.

ch apter
77

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 93 of 435

WebShopper is quite similar to Bargain Finder; the

major difference being that WebShopper does not

perform price comparisons for the user as does the

BargainFinder. Instead, WebShopper explores vari

ous online sources (whose UR Ls and related search

parameters are specified in a WebShopper task file},

and simply collects final results of the search for

particular books or CDs. The user can then perform

comparisons based not just on the price alone, but

also on other relevant terms of sale like freight

charges and refund policies. The complete listing

of WebShopper agent code can be found in Ap

pendix C. Sample task files used by BookFinder and

CDFinder to shop for books and CDs can be found

in Appendices D and E.

78

Web Agents of the Future?
It is likely that a new breed of sophisticated com

merce agents will come to dominate the Internet

of the future, with no less impact as when com

pared with what Mosaic does to the Web. It also is

likely that the arrival of these Internet "killer bots"

will radically transform the face of the Web, upset

the established marketplace and institutions, and

challenge people with new ways of interacting with

the medium.

At the phenomenal rate of commercialization that

the Internet and the Web is currently experiencing,

I would not be surprised to find in the near future

digital versions of any of the following commerce

agents on the Web: travel agents, insurance agents,

real estate and mortgage brokers, stock brokers,

manufacturers' agents, or even specialty headhunt

ers of the literary, theatrical, sports, and talent

agents genre! No one knows for sure which way

p a r t I Introduction

future events will be played out. There have been

speculations, conjectures, grand visions, and more

importantly, concrete plans. It is my hope that most

readers will find the rest of this book useful and

informative as a gentle introduction to the wonder

ful world of agents and related technologies. For

the few who harbor greater ambitions, it is further

hoped that this book shall lead you down the path

of constructing interesting agents for the Internet

and the Web.

The next few chapters begin the journey on Web

robots, which are agents that roam the Web with

the goal of automating specific tasks related to the

Web. Specifically, Chapter 4, "Spiders for Indexing

the Web," introduces the use of spiders and wan

derers for discovering Web resources. Chapter 5,

"Web Robots: Operational Guidelines," examines

Web robots in general and explores issues of inter

est and offers guidelines to both robot writers and

Webmasters. Chapter 6, "HTTP: Protocol of Web

Robots," provides an in-depth treatment of the lat

est version 1.0 of the HTTP protocol whose mas

tery is required for Web robot construction. Finally,

Chapter 7, "WebWalker: Your Web Maintenance

Robot," illustrates the detailed construction of one

such Web robot, called the WebWcJlker.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 94 of 435

p a r t

Web Robot Construction

4 Spiders forlndexirig the Web 1 ; ,., 81

5 Web Robots: Operational Guidelines .. 105

6 HTTP; Protocol of Web Robots .. 125

7 WebWalker: Your Web Maintenance Robot , 153

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 95 of 435

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 96 of 435

0:

Exhi it 1014

VMware V. IV | - |PR2020-00470

VMware

Page 96 of 435

h a

Spiders for Indexing
the Web

World Wide Web is decentralized, dynamic, and

iverse; navigation is difficult, and finding informa

n can be a challenge. The reason for this chal

lenge is that users of the World Wide Web usually

navigate to find resources by following hypertext

links. As the Web continues to grow, users must

traverse more links to find what they are looking

for, making it impractical to just wander the Web

searching for information. Users, therefore, have

come to depend on search engines to help them

find online resources.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 97 of 435

82

There are a number of different search engines

available on the Web, each using a different method

to build its underlying database. On one end of the

spectrum are search engines that rely entirely on

individual servers to provide self-indexing informa

tion, such as Martijn Koster's Aliweb (Archie-like

indexing for the Web) (1994). This approach requires

people to write index files in a specific format and

store these files on their servers. Many (and appar

ently most) server managers have not proven will

ing or able to make the required effort. As a result,

databases produced by this method are invariably

far from complete.

On the other end of the spectrum are proactive

engines, which use Web robots such as

WebCrawler and Lycos to index large portions of

the Web. Web robots, also called spiders or wan
derers, are software programs that traverse the

World Wide Web information space by following

hypertext links and retrieving Web documents by

standard HTTP protocol. Web robots require no

centralized decision making and no participation

from individual Web site administrators-that is, the

Webmasters-other than their compliance with the

protocols that make the Web operate in the first

place. Engines of this class tend to build more com

plete databases than those that rely on the volun

tary efforts of cooperative Webmasters.

Even the most comprehensive engines (such

as Lycos) do not provide full indexing of the

entire Web due to resource constraints. But by

starting from the corpus of information that the spiders have

discovered, and recalled by the search engine based upon

user query, users can usually navigate much easier on the

Web to find the precise information specific to their needs.

This chapter examines Web indexing spiders in

general but focuses on two of the better known

ones, the WebCrawler and Lycos spiders, that have

come to dominate the Web. This chapter also dis

cusses more advanced information gathering and

dissemination architectures, such as Harvest and

WebAnts, into which spiders of the future can be

nicely integrated to work in a distributed and coop

erative fashion.

Web Indexing Spiders
There are a variety of spiders that "crawl" around

in the Web to collect information about what they

find. Spiders make use of hyperlinks embedded in

Web pages to automatically traverse the Web,

moving from one HTML document to another by

referencing the URL anchor. The information

collected by spiders can be used for a variety of

purposes, such as building an index for assisting

users with keyword-oriented searching.

The World Wide Web Worm by Oliver McBryan,

the first widely used spider, was made available in

March 1994. It was an early ancestor to the newer

species of splders on the Web today. It builds an

index of titles and URL~ from its collection of over

100,000 Web documents and still provides the user

with a search interface (shown in fig. 4.1) to its

database.

p a t n Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 98 of 435

Figure 4.1

World Wide Web Worm

home page.

The World Wide Web Worm, as well as early spi

ders such as the Jumpstation (by Jonathan

Fletcher), does not index the content of documents.

Rather, only the HTML document titles and head

ers, as well as anchor text information outside the

documents, are indexed.

These early spiders eventually became eclipsed by

a subsequent generation of spiders that provide

more powerful databases by indexing the full con

tents of documents. The Repository Based Soft

ware Engineering (RBSE) Spider arrived on the

. scene in February 1994 and was the first spider

that indexed documents by content (Eichmann

1994). It was followed closely by Brian Pinkerton's

WebCrawler, which began operation in April 1994.

According to Pinkerton, the reason for going to full

content indexing is that indexing by titles alone

might not be adequate. 1itles are an optional part

Spiders for Indexing the Web

of an HTML document, and 20 percent of the docu

ments do not have them. In addition, basing an

index only on titles omits a significant fraction of

documents from the index. Furthermore, titles don't

always reflect the content of a document. There

fore, by indexing both titles and content, spiders

such as the WebCrawler and Lycos capture more

of what people want to know.

Web spiders often are criticized for being inefficient

and wasteful of valuable Internet resources, even

though they try to be good citizens on the Web

(see Chapter 5, "Web Robots: Operational Guide

lines," for more information on becoming citizens).

The triumph of the current generation of spiders

over the earlier is mainly an issue of building high

quality, content-based indexes of Web documents.

Given the phenomenal growth rate of the Web, the

current generation of spiders will be hard-pressed

ch apter
83

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 99 of 435

to keep up. A new generation of spiders will even

tually supercede the current spiders by focusing

on the increasingly important issues of performance

and scalability.

These spiders of the future will use sophisticated

information gathering and dissemination architec

ture, such as that offered by Harvest (BDHMS 1994)

and WebAnts. On the horizon are a whole new

generation of stronger, faster, and smarter spiders

that can better survive the rapid growth of a dy

namic and massive Web.

A list of information resources about other

interesting spiders can be found in Appendix

G, "List of World Wide Web Spiders and

Robots," or Martijn Koster's up-to-date List of Robots

(1994c).

WebCrawler: Finding What
People Want
The WebCrawler project was started by Brian

Pinkerton at the University of Washington in Se

attle. WebCrawler is a resource discovery tool for

the World Wide Web that provides a fast way of

finding resources by maintaining an index of the

Web that can be queried for documents about a

specific topic.

WebCrawler was announced and made available

to the world in April 1994 with an initial database

containing information on Web documents from

6,000 servers. It answers over 6,000 queries per

day and is updated weekly. In 1995, WebCrawler

was acquired by America Online and is now oper

ated as a public service available free to the Web

community. As of this writing, WebCrawler has a

content index of about 100 MB that holds informa

tion on over 150,000 different documents that it

has explored. In addition, WebCrawler knows of the

existence of over 1,500,000 unique documents it

has not visited.

WebCrawler is capable of performing the follow

ing functions:

➔ Building indexes of the Web

➔ Automatically navigating on demand

Ordinary users can access the centrally maintained

WebCrawler Index using a Web browser such as

Mosaic or Netscape Navigator. Privileged users can

run the WebCrawler client itself, automatically

searching the Web on demand, but this feature is

not available to the general public. The WebCrawler

uses an incomplete breadth-first traversal to cre

ate an index and relies on an automatic navigation

mechanism to find the rest of the information. Both

document titles and document content are indexed

using a vector space model (Salton 1989).

Searching with WebCrawler
The database built by WebCrawler is available

through the following search page on the Web (see

fig. 4.2).

84 p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 100 of 435

Figure 4.2

The WebCrawler search'

form.

How WebCrawler Moves in
Webspace
WebCrawler accesses the Web one document at a

time, making local decisions in the Webspace about

how best to proceed next. Unlike other centralized

approaches to indexing and resource discovery,

such as Aliweb (Koster 1994) and Harvest (BDHMS

1994), WebCrawler operates using only the infra

structure that makes the Web work in the first place:

the ability of clients to retrieve documents from

servers.

The WebCrawler design has the following charac

teristics:

➔ It uses a content-based, full-text indexing sys

tem to provide a high-quality index. In a Web

robot, there is no additional network load im

posed by full-text indexing; the load occurs only

at the server.

Spiders for Indexing the Web

➔ It uses a breadth-first search strategy to create

a broad index, spreading the load among serv

ers and ensuring that every server with useful

content has at least several pages represented

in the index.

➔ It tries to include as many Web servers as pos

sible. It does so in a friendly manner, such as

not overloading Web servers with rapid-fire re

quests. It also respects the Robot Exclusion

Standard (see Chapter 5), which is a way for

Webmasters to communicate to compliant ro

bots which'areas of the Web are off-limits.

The discovery of new documents is important in

the WebCrawler design due to the dynamic nature

of the Web information space. WebCrawler discov

ers new documents by learning their identities in

the form of Uniform Resource Locators (URLs).

WebCrawler starts with a known set of documents,

examines the outbound links from them, follows

ch apter
85

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 101 of 435

86

one of the links that leads to a new document, then

repeats the whole process. In other words,

WebCrawler simply explores the Webspace as a

large directed graph using a graph traversal algo

rithm that performs the following sequence of ac

tions over and over:

1. Discovers a new document

2. Marks the document as having been retrieved

3. Deciphers any outbound links

4. Indexes the content of the document

WebCrawler Architecture
As illustrated in figure 4.3, the WebCrawler soft

ware architecture is made up of the following four

components:

➔ The search engine. This directs the WebCrawler's

activities and is responsible for deciding which

new documents to explore and for initiating their

retrieval.

➔ The agents. These are responsible for retrieving

the documents from the network at the direc

tion of the search engine.

< >~<

< > <

➔ The database. This handles the persistent stor

age of the document metadata, the links

between documents, and the full-text index.

➔ The query server. This implements the query

service provided to the Internet.

WebCrawler's Search Engine
The WebCrawler search engine determines which

documents and what types of documents to visit.

Non-indexable files, such as pictures, sounds,

Postscript, or binary data, are not retrieved. In

addition, erroneously retrieved files are ignored dur

ing the indexing step. This sort of file-type discrimi

nation is applied to both indexing and real-time

search modes.

The search engine uses different discovery strate

gies when running the WebCrawler in indexing

mode and when running it in real-time search mode.

In indexing mode, the goal is to build an index of as

much of the Web as possible within limited stor

age space. WebCrawler believes that the Web

documents used to build the index should come

from as many different servers as possible. It uses

a modified breadth-first algorithm to ensure that

>
Figure 4.3

WebCraw/er Software

Architecture.

> Database

p a r 111 Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 102 of 435

every server has at least one document represented

in the index. These steps show how the algorithm

works:

1. When a document on a new server is found,

that server is placed on a list of servers to be

visited right away.

2. One document from each of the new servers

is retrieved and indexed before visiting any other

documents.

3. When all known servers have been visited, in

dexing proceeds sequentially through a list of

all servers until a new one is found, at which

point the process repeats.

In real-time search mode, where the goal is to find

documents that are most similar to a user's query,

the WebCrawler uses a different search algorithm.

The intuition behind the algorithm is that following

links from documents that are similar to what the

user wants is more likely to lead to relevant docu

ments than following any link from any document.

According to Pinkerton, this intuition roughly cap

tures the way people navigate the Web; they find a

document about a topic related to what they are

looking for and follow links from there.

The algorithm works like this:

1. WebCrawler runs the user's query against its

index to first come up with an initial list of simi

lar documents.

2. From the list, the most relevant documents are

noted, and any unexplored links from those

documents are followed.

3. As new documents are retrieved, they are

added to the index, and the query is re-run.

Spiders for Indexing the Web

4. The results of the query are sorted by relevance,

and new documents near the top of the list

become candidates for further exploration.

5. The process is iterated either until the

WebCrawler has found enough similar docu

ments to satisfy the user or until a time limit is

reached.

Searching for and finding documents by navigating

from within other similar documents was first dem

onstrated and proven to work with the Fish search

developed by Debra and Post at Eindhoven Univer

sity of Technology (DP 1994). The Fish search of

fers a client-based search tool that is integrated with

the Mosaic browser. The Fish search is reminis

cent of schools of fish moving in the direction of

food, hence its name. In the Fish search, each URL

corresponds to a fish. After a document is retrieved,

the fish spawns a number of children depending

on whether the document is relevant and how many

UR Ls are embedded in the document. The fish dies

after following a number of links without finding

any more relevant documents. Searches can be

conducted by keywords, regular expressions, or by

relevancy ranking with external filters. The

WebCrawler extends this concept to initiate the

search using the index, and to follow links in an

intelligent order.

When people pavigate, they choose links based on

the anchor text (words .that describe a link to an

other document) and tend to follow a directed path

to their destination. When WebCrawler navigates

and sees multiple links in a document, it evaluates

each link for relevance based upon the similarity of

the anchor text to the user's query. But anchor texts

usually are short and do not adequately convey the

ch apter
87

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 103 of 435

BB

much needed relevance information as well as the

full document text. To help the situation, Pinkerton

noted that a thesaurus could be used to expand

the anchor text.

WebCrawler's Agents
Agents are invoked by the search engine for the

purpose of retrieving Web documents. Because

waiting for servers and the network creates a search

bottleneck, agents run in separate processes, and

the WebCrawler employs up to 15 agents in paral

lel. For each new Web document to be retrieved,

the search engine finds a free agent, and asks the

agent to retrieve the URL representing the docu

ment. The agent either responds to the search

engine with an object containing the document

content or an explanation of why the document

could not be retrieved. After the agent has

responded, it becomes free again and may be given

new work to do.

The agent program uses the CERN WWW library

(libWWW), which supports access to several types

of content through different protocols, including

HTTP, FTP, and Gopher. As a practical matter, run

ning agents in separate processes helps isolate the

main WebCrawler process from memory leaks and

errors in the agent and in libWWW.

WebCrawler's Database
The WebCrawler's database holds both the full-text

index and the representation of the Web as a graph.

The database is stored on disk and is updated as

documents are added. To protect the database from

system crashes, updates are made under the scope

of transactions that are committed every few hun

dred documents.

WebCrawler uses NeXTStep's Indexing Kit to build

its full-text index, which is inverted to make

queries fast: looking up a word produces a list of

pointers to documents that contain that word. More

complex queries are handled by combining the

document lists for several words with conventional

set operations. The index uses a vector-space model

for handling queries (Salton 1989).

Words from a document are run through a "stop

list" to prevent common words from being indexed,

and they are weighted by their frequency in the

document divided by their frequency in a reference

domain. Words that appear frequently in the docu

ment and infrequently in the reference domain are

weighted most highly, while words that appear in

frequently in either are given lower weights. This

type of weighting is commonly called peculiarity
weighting.

The remainder of the database stores data about

servers, documents, and links. Entire UR Ls are not

stored; instead, they are broken down into objects

that describe the server and the document. A link

in a document is simply a pointer to another docu

ment. Each object is stored in a separate Btree on

disk: documents in one, servers in another, and links

in the last. Separating the data in this way allows

the WebCrawler to scan the list of servers quickly

to select unexplored servers or the least recently

accessed server.

WebCrawler's Ouery Server
The query server implements the WebCrawler

search service available via an HTML search form

on the Web. This simple interface is powerful and

can find related documents with ease. The query

model it presents is a simple vector-space query

p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 104 of 435

model based on the full-text database described
earlier. Users enter keywords as their query, and
the titles and URLs of documents containing some
or all of those words are retrieved from the index
and presented to the user as an ordered list sorted
by relevance. In this model, relevance is the sum
(over all words in the query) of the product of the
word's weight in the document and its weight in
the query divided by the number of words in the

query.

The WebCrawler is a useful Web searching

tool. It does not place an undue burden on

individual servers while building its index.

WebCrawler adopts the standard for robot exclusion

standard (see Chapter 5) and identifies itself as WebCrawler

in the HTTP User-Agent request header field when traversing

the Web.

Figure 4.4

The Lycos home page.

Spiders for Indexing the Web

Lycos: Hunting WWW
Information
The Lycos project was headed by Dr. Michael
Mauldin of the Center for Machine Translation at
Carnegie Mellon University as an experiment
in "best-first-search" within the Web information
space. The Lycos home page is shown in figure 4.4.

According to Mauldin, the word Lycos came from
the arachnid family Lycosidae, which are relatively
large ground spiders that catch their prey by pur
suit rather than in a web. These spiders also are
noted for their speed and are especially active at
night. Lycos lives up to its name by continuously
"hunting" its prey (Web pages on servers) for in
formation. The search results are then merged with
the catalog on a weekly basis.

ch apter 89

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 105 of 435

90

The Lycos spider is a fairly recent spider that was

announced to the world in August 1994. It helps

users locate Web documents containing specific

user-supplied keywords. Due to the comprehensive

ness of its database, Lycos quickly became very

popular with Web users who needed to conduct

full-content searches over the space of documents

formed by the Web. By mid-July of 1995, Lycos

accumulated the following:

➔ 5,077,834 unique URLs

➔ 1,177,750 documents (a total of 8,703,484,067
bytes)

➔ 3,900,084 unexplored URLs with descriptions

➔ 1,834,323,446 bytes of Lycos summaries

➔ 1,078,127,917 bytes of inverted index

The Lycos database has grown rapidly, from

634,000 references in August 1994 to over 5.6 mil

lion unique URLs in August 1995. Lycos thus

offers a huge database to locate documents match
ing any given query.

Searching with Lycos
The search interface provides a way for users to

find documents that contain references to a key

word, and to examine a document outline, keyword

list, and an excerpt (see fig. 4.5). The result of a

sample search using Lycos to find relevant Web

pages on Ebola can be seen in figure 4.6.

Figure 4.5

The Lycos search form.

p a t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 106 of 435

Figure 4.6

A Lycos search for Ebola

returns different match

information.

Lycos' Search Space
Lycos defines the Webspace to be any documents

in the following spaces:

➔ HTTP space

➔ FTP space

➔ Gopher space

Lycos can retrieve documents that it has not

searched by using the text in the parent document

as a description for the unexplored links (the high

lighted text from each HTML hyperlink anchor is

associated with the URL for that anchor). Lycos

does not, however, search and index ephemeral,

time-varying, or infinite virtual spaces. Therefore,

Lycos ignores the following spaces:

Spiders for Indexing the Web

➔ WAIS databases

➔ Usenet news

➔ Mailto space

➔ Telnet services

➔ Local file space

Lycos also ignores files that start with "/dev/tty" or

end with these extensions: AU, AVI, BIN, DAT, DVI,

EXE, FLI, GIF, GZ, HDF, HOX, JPEG, LHA, MAC,

MPEG, PS, TAR, TGA, TIFF, UU, UUE, WAV, Z,

or ZIP.

ch apter
91

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 107 of 435

92

Lycos Indexing
To reduce the amount of information that needs to
be stored, Lycos extracts the following pieces of

information from each document that it retrieves:

➔ Title

➔ Headings and subheadings

➔ 100 most important words

➔ First 20 lines

➔ Size in bytes

➔ Number of words

The 100 important words are selected using the

Tf*/Ofweighting algorithm, which considers word
placement and frequencies, among other factors.
Words, for example, are scored by how far into the

document they appear. Thus, hits in the title or first
paragraph are scored higher.

In a collection of N documents, the term

frequency(Tf) is the number of occurences of

particular terms in the collection, and the

document frequency(Df) is the number of documents in the

collection in which particular terms occur. The idea of an

inverse document frequency(IDf) is to measure how good

particular terms are as a document discriminator-that is, to

distinguish the few documents in which they occur from the

many from which they are absent. A typical IDf factor is

given by log(N/Df).

In the Tf*IDf weighting algorithm, the basic idea is that the

best indexing terms are those that occur frequently in

individual documents but rarely in the remainder of the

collection. The importance, or weight, of a term is thus

defined as the product of multiplying Tf, the term frequency,

by inverse document frequency(IDf). In other words,

weight= Tf x I Of= Tf x log(N/Df).

How Lycos Moves in Webspace
The Web-wandering component of Lycos originally
was derived from a program called Longlegs, writ
ten by John Leavitt and Eric Nyberg at Carnegie
Mellon University.

Lycos uses an innovative, probabilistic scheme to
skip from server to server in Webspace. This avoids
overloading any one server with a barrage of re

quests, and also allows Lycos to give preference
to URLs deemed more informative. The basic steps
of the algorithm are as follows:

1. When a URL resource is fetched, Lycos scans
its contents for new URL references, which it
adds to an internal queue.

2. To choose the next URL to explore, Lycos
makes a random choice among the HTTP, Go

pher, and FTP references on the queue based
upon preferences.

Lycos prefers, to seek out popular documents, that
is, those that have multiple links into them. Lycos
also has a slight preference for shorter UR Ls, which

generally are top-level directories and documents
closer to the "root" of the hierarchy (December
1994).

p a r t u Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 108 of 435

f

According to Mauldin, the Lycos philosophy is to
keep a finite model of the Web that enables subse
quent searches to proceed more rapidly. The idea
is to prune the "tree" of documents and to repre
sent the clipped ends with a summary of the
documents found under that node. The 100 most
important words lists from several documents can
be combined to produce a list of the 100 most im
portant words in the set of documents.

Lycos currently maintains an index database

to a huge collection of Web documents that is

probably the largest among all known spiders.

Lycos complies with the standard for robot exclusion, and

identifies itself as "Lycos" by setting the HTTP User-Agent

field in the request header. In this way, Webmasters can tell

when Lycos has hit their server.

Harvest: Gathering and
Brokering Information
Harvest is an integrated suite of customizable tools
that provides a scalable, customizable architecture
for gathering, indexing, caching, replicating, and
accessing Internet information, which includes the
Web as well (BDHMS 1994). The philosophy be
hind the Harvest system is that it gathers informa
tion about Internet resources and customizes views
into what is "harvested."

The creators of the Harvest system recognize three
types of problems with most current Internet infor
mation systems:

Spiders for Indexing the Web

➔ Most World Wide Web robots use expensive
object retrieval protocols to gather indexing in
formation and do not coordinate information
gathering among themselves. Each World Wide
Web robot gathers all the information it needs,
without trying to share overlapping information
with other robots.

➔ Little support exists for customizing how dif
ferent information formats and index/search
schemes are handled.

➔ Internet data and indices often become very
popular and cause serious network and server
bottlenecks.

According to Professor Michael Schwartz of the
University of Colorado at Boulder, who is team
leader for the project, Harvest can address the prob
lem of how to make effective use of Internet infor
mation in the face of rapid growth in data volume,
user base, and data diversity.

Harvest provides a very efficient means of gather
ing and distributing index information (with Gather

ers), and supports the easy construction of many
different types of indexes customized to suit the
peculiarities of each information collection (with
Brokers). In addition, Harvest also provides cach
ing and replication support to alleviate bottlenecks.

Harvest was deployed on the Internet in

November 1994, and can be reached at

http://harvest.cs.colorado.edu,

as shown in figure 4.7.

ch apter
93

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 109 of 435

94

Harvest enables Internet users to locate and sum

marize information stored in many different formats

on machines around the world. The Harvest sys

tem interoperates with multiple information re

sources, including the World Wide Web. Harvest

now has the capability, for example, to locate thou

sands of technical reports from around the world

on a particular topic and then summarize the con

tents of each report.

Harvest is not a spider; it is more than that. A

spider can be a component, called a Broker, in

the Harvest architecture.

Searching with Harvest
With the help of a spider to collect Web pages,

Harvest can index the Web information space. For

example, the Harvest WWW Home Pages Broker,

------------------~-

Figure 4.7

The Harvest home page.

accessible through an HTML forms interface shown

in figure 4.8, currently holds content summaries of

more than 45,000 Web home pages. It uses WAIS

as its backend searching and indexing engine.

The Harvest Home Pages Broker has a very flex

ible and powerful interface, providing Boolean

search queries based on author, keyword, title, or

URL reference. For example, searching for Ebola

on the Harvest Home Pages Broker returns 12

matches.

Although the Harvest database of World Wide Web

documents is currently not as extensive as that of

other spiders, it has great potential for efficiently

collecting a large amount of them.

p a r t u Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 110 of 435

Figure 4.8

The Harvest WWW

Home Pages Broker

Query Interface.

Harvest Architecture
In contrast to the individual gathering efforts in the
current generation of Web spiders (see fig. 4.9),

the Harvest architecture offers a big improvement.
In the Harvest architecture, both the information

gathering efforts, as well as gathered results, can

be shared.

Figure 4.9

Uncoordinated informa

tion gathering by Web

robots.

Spiders for Indexing the Web

A Harvest Gatherer collects indexing

information, while a Harvest Broker provides

an incrementally indexed query interface to

the gathered information.

As illustrated in figure 4.10, Harvest offers a flex

ible scheme consisting of Gatherers and Brokers

ch apter
95

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 111 of 435

96

that can be arranged in various ways. This flexibil

ity enables efficient use of network and server re
sources.

The Harvest architecture consists of the following
subsystems:

➔ Gatherer collects indexing information

➔ Broker provides a flexible interface to gathered
information

➔ Index/Search subsystem allows the information

space to be flexibly indexed and searched in a
variety of ways

➔ Object Cache stores contents of retrieved

objects to alleviate access bottlenecks to
popular data

➔ Replicator mirrors index information of Brokers
to alleviate server bottlenecks

Harvest Gatherer
The Gatherer provides an efficient and flexible way

to collect indexing information. It solves two major

problems that plague most current Web indexing
systems:

➔ Data collection inefficiencies

➔ Duplication of implementation effort

Most current indexing systems cause excessive

load on remote sites and generate excess network

traffic. Retrieving via HTTP/Gopher/FTP requires

heavyweight operations, like forking separate

Figure 4.10

The Harvest approach to

information gathering.

p a r t u Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 112 of 435

processes for each object, and entire objects often

are retrieved when only a small part of the informa

tion actually is needed (for example, retaining only

HTML anchors in an index).

Although the Gatherer can access an information

Provider from across the network using the native

HTTP, Gopher, or FTP protocols, this arrangement

is primarily useful for interoperating with systems

that do not run the Harvest software. The follow

ing are two important ways for Gatherers to achieve

efficient use of network and server resources:

➔ A Gatherer can be run at the Provider site, sav

ing a great deal of server load and network

traffic.

➔ A Gatherer can feed information to many Bro-

kers, saving repeated gathering costs.

The Harvest Gatherer provides efficient data col

lection through Provider site-resident software op

timized for indexing. The Gatherer scans objects

periodically, maintains a cache of indexing informa

tion (so that separate traversals are not required

for each request), and allows a Provider's indexing

information to be retrieved in a single stream (rather

than requiring separate requests for each object).

It minimizes network traffic by pre-filtering the con

tents and sending only incremental updates of in

dexing information in compressed form over the

network.

The Gatherer avoids duplication of implementation

efforts by providing enough flexibility to allow dif

ferent indexes to be built. It uses a customizable

content extraction system that allows users to cus

tomize what data are gathered, whether data are

gathered locally (which is more efficient but requires

Spiders for Indexing the Web

site cooperation), or remotely (which allows data

to be gathered via the standard HTTP/Gopher/FTP

protocols). The Gatherer extracts information in dif

ferent ways depending on the file types. It can, for

example, find author and title lines in Latex docu

ments, and symbols in object code.

Harvest Broker
The Broker provides an indexed query interface to

gathered information. Periodically, the Broker re

trieves information from one or more Gatherers or

other Brokers, and incrementally updates its index.

The Broker's interface is independent of the indexer,

and can be customized to include new indexers with

minimal effort. The Broker also can be configured

to expire and re-collect information at varying inter

vals from the specified Gatherers.

The Broker collects objects directly from another

Broker using a bulk transfer protocol. The Broker

keeps track of the unique identifiers and time-to

live's for each indexed object. When a query or

update is received, it invokes the Index/Search Sub

system.

A Broker can collect information from many

Gatherers, to build an index of widely

distributed information.

Brokers also can' retrieve information from other Brokers, in

effect cascading indexed views from one another, using the

Broker's query interface to filter/refine the information from

one Broker to the next.

Harvest provides a distinguished Broker instance

called the Harvest Server Registry (HSR), which

registers information about each Harvest Gatherer,

97
ch apter -

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 113 of 435

98

Broker, Cache, and Replicator in the Internet. The

HSR is useful when searching for an appropriate

Broker and when constructing new Gatherers and

Brokers, to avoid duplication of effort. It can also

be used to locate Caches and Replicators.

Harvest Index/Search Subsystem
Harvest defines a general Broker-Indexer interface

that can accommodate a variety of back-end search

engines to accommodate diverse indexing and

searching needs. The backend is required to

support Boolean combinations of attribute-based

queries, and incremental updates. A variety of dif

ferent backends can thus be used inside a Broker.

Currently, Harvest supports WAIS, Glimpse, and

Nebula; they all are optimized for different uses.

Glimpse supports space-efficient indexes and flex

ible interactive queries. Glimpse uses pointers to

occurrence blocks of adjustable sizes, instead of

pointing to the exact occurrence. It can thus achieve

very space efficient indexes, typically 2-4 percent

the size of the data being indexed, compared with

100 percent in the case of WAIS. As a concrete

example, indexing the Computer Science technical

reports from 280 sites around the world requires 9

GB with a standard WAIS index but only 270 MB

using Glimpse. Glimpse also supports fast and in

cremental indexing, as well as queries involving

Boolean combinations of keywords, regular expres

sion pattern matching, and approximate matches.

In contrast to Glimpse, Nebula focuses on provid

ing fast searches and complex standing queries at

the expense of index size. Each object in Nebula is

represented as a set of attribute/value pairs. Nebula

supports the notion of a view, which is defined by

standing queries against the database of indexed

objects. This allows information to be filtered based

upon query predicates, effectively constraining the

search to some subset of the database. Within the

scope of a view that contains computer science

technical reports, for example, a user may search

for networks without matching information about

social networks. Because views exist over time, it

is easy to refine and extend them, and to observe

the effect of query changes interactively.

Harvest Object Cache
To alleviate bottlenecks that arise from accessing

popular data, Harvest implements an Object Cache

that stores the content of HTTP, Gopher, and FTP

objects that have been retrieved. The Object Cache

runs as a single, event-driven process. For ease of

implementation, the Cache spawns a separate pro

cess to retrieve FTP files, but retrieves HTTP and

Gopher objects itself. The Cache separately man

ages replacement of objects on disk and objects

loaded in its virtual address space. It also keeps all

metadata for cached objects in virtual memory, to

eliminate access latency to the metadata.

Multiple Object Caches can be arranged hierarchi

cally for scalability. The Object Cache allows sites

to customize hierarchical relationships between

caches at mu,ltiple levels of the network (for ex

ample, at a campus, re_gional, and backbone net

work). Different caching parameters, such as

timeouts, maximum object size, cache storage size

in memory and disk, as well as caching policies,

also can be customized.

p a r tU Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 114 of 435

Harvest Replicator
The Harvest Replicator provides a weakly consis

tent, replicated wide-area file system for mirrorin~

the information that the Brokers have. This allevi

ates bottlenecks that arise from heavy demand on

particular servers. Each file system occasiona_lly

"floods" its closest neighboring file systems with

complete state information to ensure consistency,

and to allow its neighbors to detect updates that

for some reason have failed to propagate. The weak

form of consistency used in the Replicator is called

eventual consistency; if all new updates ceased,

the replicas eventually converge.

The Replicator also can be used to divide the gath

ering process among many servers (for example,

allowing one server to index each U.S. regional

network) by distributing the partial updates among

the replicas. The Replicator also allows sites to cus

tomize the degree of replication, topology of up

dates, and the frequency of updates.

Figure 4.11

The WebAnts home

page.

Spiders for Indexing the Web

WebAnts: Hunting
in Packs
The WebAnts project is a new experiment headed

by John Leavitt of Carnegie Mellon University to

investigate the distribution of information collection

tasks to a number of cooperating processors. It aims

to create cooperating explorers (called ants) that

share the work of finding things on the Web with

out duplicating each other's efforts. Leavitt noted

that the origin of the metaphor derives from simi

larity between this and the manner in which bio

logical ants leave chemical trails to sources of food

and cooperate in the harvesting.

WebAnt is currently under development. As of

this writing, it has not been deployed on the

Web yet. But stay tuned and watch the

WebAnts home page (see fig. 4.11).

ch apter
99

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 115 of 435

WebAnts Motivation
According to Leavitt, the development of WebAnts

was motivated by the following considerations:

➔ Information discovery on the Web is rapidly

becoming too large a task for a single explorer

agent. Not only will the local portion of the

network sustain considerable traffic during

exploration, such an exploration will consume

progressively more time as the Net grows.

➔ The reliance on a single site for such services

would create a bottleneck and does nothing to

solve the problem related to the fan-in, fan-out

nature of information discovery. Instead, it ex

acerbates the problem and makes that one site

a bottleneck for all users.

➔ It is undesirable for multiple explorers to

examine the same sites. If exploring the

Web alone is a problem, having a number of

non-cooperating, and therefore redundant,

explorers is worse. Not only does it cause un

necessary load on the servers, it also fails to

provide a reasonable service to the user.

WebAnts Searching and Indexing
A problem most users face in searching for infor

mation on a specific topic is that the user cannot

rely on a single-search engine because it does not

explore everything and could be a performance

bottleneck. Neither can the user merely combine

the results of several search engines together be

cause this inevitaoly yields repeated hits.

The WebAnts project hopes to address these is

sues with a cooperative Web explorer, called an ant.

Unlike spiders, ants are designed to share results

with other ants without duplication of efforts.

WebAnts has a clear preference for using explorer

based schemes over those that require coopera

tion from each information server (such as Martijn

Koster's Aliweb). The WebAnts model can be used

for purposes of searching and indexing the Web.

WebAnts Searching
For searching purposes, different ants may be

directed based upon each others' results. When

one ant finds a document that satisfies the search

criteria, it can share the references from that

document with other ants that are not currently ex

ploring hits of their own. As each ant explores a

document, other ants would know about it so that

they do not have to examine the same document.

This allows information to be gathered more effec

tively.

WebAnts Indexing
For indexing purposes, cooperation among ants

allows each indexer to conserve resources by dis

tributing the indexing load between different

explorers. Each index server would provide all the

information gathered by one of the ants during ex

ploration. When querying, a user could restrict the

query to the local ant or allow it to propagate to the

entire colony. This reduces the bottleneck effect.

Issues of Web Indexing
The indexes built by Web robots save users from

following long chains before they find a relevant

document, thus saving Internet bandwidth

(Pinkerton 1994). Brian Pinkerton calculates that if

100 p a r tH Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 116 of 435

the WebCrawler indexes 40,000 documents and

gets 5,000 queries a day, and if each query means

the user will retrieve just three fewer documents

than she otherwise would have, then it will take

about eight days for the WebCrawler's investment

in bandwidth to be paid back.

The following subsections discuss Web indexing

issues of recall and precision, good Web citizen

ship, performance, and scalability.

Recall and Precision
The capability of spiders to find useful information

is usually measured in two ways: recall and preci

sion (Salton 1989). Recall measures what fraction

of the relevant documents are retrieved by the

query, whereas precision indicates how well the

retrieved documents match the query.

Recall is the proportion of relevant documents re

trieved; that is, the number of relevant documents

retrieved divided by the total number of relevant

documents in the indexed collection. If, for example,

an index contained 10 documents, 5 of which were

about elephants, then a query for "elephants and

ivory" that retrieved 4 relevant documents about

elephants (but two non-elephant documents) would

have a recall of 4/5 or 0.8.

Precision is defined as the proportion of retrieved

documents-the number of relevant documents re

trieved divided by the total number of documents

retrieved-that are relevant. Using the same ex

ample as in the previous paragraph, the precision

would be calculated as 4/(4+2) or 0.66.

Spiders for Indexing the Web

A good indexing scheme aims for high recall

and precision. A large proportion of the useful

documents should be retrieved, and at the

same time a large proportion of the extraneous documents

should be rejected.

Both WebCrawler and Lycos have adequate recall.

Finding enough relevant documents is not the prob

lem. Instead, precision suffers because these

systems give many false positives. Documents re

turned in response to a keyword search need only

contain the requested keywords and might not be

what the user is looking for. As a practical solution,

assigning weights to documents returned by a

query would help the user focus on the more rel

evant documents, but it would not completely elimi

nate irrelevant documents.

Good Web Citizenship
Webmasters can advise robots by specifying which

documents are worth indexing in a special

"robots.txt" document on their server (Koster

1994a). This type of advice is valuable to Web ro

bots, and increases the quality of their indexes. In

fact, some Webmasters have gone so far as to cre

ate special overview pages for Web robots to re

trieve and include.

Both the WebCrawler and Lycos try hard to be good

citizens on the Web. Although some poorly de

signed Web robots have been known to operate in

a depth-first fashion, retrieving file after file from a

single site, both WebCrawler and Lycos are con

scientious of their traversal order so as not to over

load any one particular server. WebCrawler

ch apter
101

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 117 of 435

searches the Web in a breadth-first fashion, while

Lycos uses a probabilistic scheme to skip from

server to server. This avoids the problem of hitting

any one server with a long string of requests.

Furthermore, when searching for something more

specific among a relevant set of documents at a

particular site, WebCrawler limits its search speed

to one document per minute and sets a ceiling on

the number of documents that can be retrieved

from the host before query results are reported to

the user.

Performance
As the Web continues its phenomenal growth, there

comes a point where being just good citizens on

the Web might not be enough to offset the load

placed on network and server resources by index

ing spiders.

Harvest is designed to ease the strain on servers,

as well as on overall network traffic. The Harvest

researches have compared the performance of

Harvest with methods of native protocol access as

used in all current spiders (BDHMS 1994). In their

experiments, they have observed the following

measured results:

➔ Harvest reduced HTTP/Gopher/FTP server load

by a factor of 4 while extracting indexing infor

mation.

➔ Harvest reduced server load by a factor of 6,600,

while delivering indexing information to remote

indexers.

➔ Harvest reduced network traffic by a factor

of 59.

➔ Harvest reduced index space requirements by

a factor of 43.

Although the current generation of spiders is use

ful as a tool for indexing the Web, there needs to

be a more efficient way to conduct Web explora

tion. The Harvest performance measurements have

shown just how much room there is for future im

provements in speed.

Scalability
Other than the issue of performance, any spiders

that attempt to index the entire Web must face the

ultimate challenge: scalability. Not only must every

document in the Web be retrieved, but some por

tion of each document must be saved as a way of

summarizing its contents for later retrieval. Differ

ent indexing schemes save different information

from documents, but the problem facing every in

dexing spider is the same: How to manage such a

vast amount of information.

The trade-off becomes one of quality of index

versus coverage of documents. Saving more infor

mation per document reduces the number of docu

ments than can be covered, and vice versa. One way

to avoid the fatal trade-off is to distribute the resource

load, as is done in WebAnts, where an army of co

operating ants ~hare the work load so that each ant

indexes only a small portion of the Web.

Indexing the Web in parallel with ants also reduces

indexing time, a factor that is already becoming a

problem for some spiders that need to explore a large

number of Web documents. In addition, distributing

the search among the ants eliminates the need for

gigabytes of storage in one place to keep the

102
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 118 of 435

indexing information. Each cooperating ant needs

only provide as much storage as is comfortable.

The problem of scalability is only endemic to the

current generation of indexing spiders, which oper

ate in a lone-ranger fashion. Spiders of the future,

probably better called crawlers to distinguish them

from the current spiders, will be scalable by work

ing in a cooperative fashion.

Spiders of the Future
Although many early spiders could successfully

crawl through Webspace in 1994, the rapid increase

in the amount of information on the Web since then

made this same crawl increasingly difficult. Only a

few resourceful spiders, such as WebCrawler and

Lycos, can accumulate enough Web documents to

survive and dominate the Web. Meanwhile, the rest

of the spiders, starved of information due to inad

equate resources, slowly became extinct.

One problem that any indexing spider must even

tually deal with is that the size of an index will grow

proportionally to the size of the Web. The storage,

retrieval, and distribution of information on this scale

will no doubt prove a compelling challenge.

Advanced information gathering and distribution

architectures like Harvest and WebAnts can help

spiders, or other crawlers such as ants, become

more efficient and effective in their Web indexing

efforts by sharing both their work load and results.

In the not-too-distant future, we can expect to see

stronger, faster and smarter crawlers on the Web,

supported by more efficient distributed information

architecture, such as Harvest and WebAnts, that

Spiders for Indexing the Web

can address the important performance and

scalability issues. The promise for the future is that

systems like Harvest and WebAnts will provide

users with increasingly effective means to locate

information on the Web.

ch apter
103

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 119 of 435

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 120 of 435

VMware - Exhibit 1014

VMware v. IV | - |PR2020-00470

Page 120 of 435

ch apter
<II • <II @ • @ @ @ • • e,@ • • • @ @ • @ Iii • • • 1/1 • • • 1/1 • • • • • 1/1 • • • • • @ •

eh Robots: Operational
Guidelines

rid Wide Web robots, also called spiders or wander-

s, are programs that traverse the World Wide Web

recursively retrieving pages hyperlinked by Uniform

Resource Locators (URLs). They are viewed as special

kinds of agents whose goal is to automate specific

Web-related tasks-for example, retrieving Web pages

for keyword indexing or maintaining Web information

space at local sites. Although this book is about various

kinds of Internet agents and their underlying technolo

gies, the focus is really on understanding Web robots.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 121 of 435

Spiders, wanderers, Web worms, fish,

crawlers, walkers, and ants all mean one

thing: Web robots, which are programs that

traverse the World Wide Web information space by following

hypertext links and retrieving Web documents by standard

HTTP protocol. All these names are misleading, giving the

false impression that the Web robot itself actually moves. In

reality, the Web robot never leaves the machine where the

program is run and is entirely different from the infamous

Internet Worm of 1989 (Seeley 1989; Spafford 1989).

But do you really need to create yet another Web

robot? There are already many of them out there in

the public domain. Your needs probably can be ful

filled with one of the existing Web robots. Even if

you do decide to construct a new Web robot after

all, it does not have to be built entirely from scratch.

The source code (usually in Perl) of quite a few

public domain Web robots, such as that of Roy

Fielding's MOMspider robot, are freely available for

modifications. It usually is safer and more economi

cal to go with a proven solution that already is fine

tuned for operation than it is to create new solu

tions from scratch.

A fairly detailed and comprehensive collection of

robots on the Web, derived from the List of Robots

which Martijn Koster (1994a) actively maintains at:

http://web.nexor.eo.uk/mak/doc/robots/active.html

which is expanded to include other information, is

available as Appendix G at the back of this book.

This chapter starts by describing major uses of Web

robots and explaining how to bar specific Web ro

bots from visiting specific portions of the Web

space, by means of the widely adopted Standard

for Robot Exclusion (Koster 1994b). The remainder

of this chapter provides specific guidelines of ac

ceptable Web robot behavior (Four Laws of Web

Robotics), outlines the responsibility and vigilance

expected of Web robot operators (Six Command

ments for Robot Operators), offers some tips to

Webmasters who suspect their servers may be

under attack by a Web robot, and concludes with a

discussion of Web ethics.

The Four Laws of Web Robotics and Six Command

ments for Robot Operators described in this chap

ter are inspired by Martijn Koster's Guide for Robot

Writers (1994c), which is based on a consensus of

the various WWW newsgroups and mailing lists

on acceptable and expected behaviors of Web ro

bots and their operators.

Web Robot Uses
The earliest Web robot, Matthew Gray's World Wide

Web Wanderer, was first deployed in June 1993 to

measure the growth of the World Wide Web by

discovering and counting the number of Web serv

ers on the Net. As of this writing, the number of

different Web robots has grown to more than 40

(see Appendix G).

Excluding the ,more recent BargainFinder type of

application-specific We_b commerce agents (de

scribed in Chapter 3), almost all known Web robots

to date have been deployed for one or more of the

following purposes:

➔ Web resource discovery

➔ Web maintenance

➔ Web mirroring

106
p a r tll Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 122 of 435

Web Resource Discovery
Web resource discovery is concerned with the prob

lem of finding useful information on the Web. The

rich, decentralized, dynamic, and diverse nature of

the Web has made casual Web surfing enjoyable,

but has made serious navigation aimed at finding

specific information extremely difficult. People have

thus increasingly relied on search engines to help

locate online information. These search engines

have depended on Web robots, often called spi

ders, to automatically traverse the Web to bring in

Web documents for keyword indexing. It is perhaps

the most exciting problem tackled by the current

generation of Web robots.

As was discussed previously in Chapter 4, "Spi

ders for Indexing the Web," the two most promi

nent resource discovery Web robots in operation

today are Brian Pickerton's WebCrawler robot and

Michael Mauldin's Lycos spider. Both of which ac

tively maintain a full-content index to a huge collec

tion of Web documents, currently numbering in the

millions. Both spiders continuously traverse the

Web to keep their index database up-to-date. A

keyword-oriented search facility to their index da

tabases is made available to users by means of a

front-end query interface and a corresponding back

end search engine.

Web Maintenance
A major difficulty in maintaining a Web information

structure is that hypertext references to other Web

pages might become outdated when the target

Web page is deleted or moved, resulting in what

are called dead links. Currently, there is no auto

mated mechanism for proactively notifying Web

document owners the moment hyperlinks in their

Web pages become obsolete.

Web Robots: Operational Guidelines

Some servers log failed HTTP requests caused by

dead links, along with URL information of the spe

cific Web page that refers to it in the first place

(while returning an HTTP response code of "301

Moved Permanently" to the client). Such informa

tion in the server log files can then be scanned and

processed at regular intervals to generate a list of

Web pages with the corresponding dead links that

they contain. However, this post-mortem style of

solution is not quite practical because document

owners in the real world are seldom notified this

way.

A more workable solution seems to be that offered

by a class of Web robots known as the Web main

tenance spiders. They assist Web document own

ers and Webmasters maintain their portions of the

Web information structure by automatically travers

ing the relevant branches of the local Web space

periodically and checking for dead links. Roy

Fielding's MOMspider, as well as its younger and

simpler WebWalker cousin (to be discussed later

in Chapter 7), are examples of Web maintenance

robots. In addition, Web maintenance spiders can

also perform checks for document HTML compli

ance, document style conformance, as well as other

lesser known document content processings.

Web Mirroring
Mirroring is a ~ommon technique for setting up rep

licas of an information structure. For example, mir

roring an FTP site involves copying its entire FTP

file directory recursively and reproducing it on a dif

ferent machine over the network. Popular FTP sites

on the Internet are often mirrored in different parts

of the world, for load sharing as well as for redun

dancy i.n case of failures. Mirroring can also yield

faster or cheaper local, or even offline, access.

ch apter
107

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 123 of 435

Robots that mirror Web information structures in

clude, for example, HTMLGobble, Tarspider, and

Webcopy. Mirroring the Web introduces an added

complication not found in mirroring FTP sites, in

that mirrored Web pages need to be rewritten to

reflect changes in hyperlink references. Hyperlinks

that used to point at original Web pages must now

point to newly copied Web pages. Also, relative links

that point to pages that have not been mirrored

must be expanded into absolute links, so that they

continue to point at original Web pages (and not at

non-existent Web pages at the mirror site!).

The current generation of Web mirroring robots

cannot detect and do not understand Web docu

ment changes. The unnecessary transfer of un

changed Web documents wastes valuable network

resources. It can thus be expected that sophisti

cated mirroring robots of the future must also per

form some amount of document revision control

and management.

Proposed Standard for
Robot Exclusion
In 1993 and 1994, robots sometimes visited Web

servers where they were not welcome for various

reasons. Sometimes these reasons were robot

specific-for example, certain robots swamped

servers with rapid-fire requests or retrieved the

same files (or the same sequence of files) repeat

edly. Other situations are server-specific and there

are cases where Webmasters have found robots

getting caught in parts of the Web they were not

meant to traverse-for example, very deep virtual

trees generated by server programs on-the-fly,

duplicated information, temporary information, or

invocations of Common Gateway Interface program

scripts with side-effects (such as voting). In a few

cases, certain Web robots are simply not welcome

as a matter of policy due to conflicting interests

for example, some online CD stores would like to

bar the price-shopping BargainFinder agent from

searching their Web sites.

These incidents indicate a need for an operational

mechanism for Web servers to identify to robots

that portions of their Web are out of bounds and

should not be accessed in an automated fashion.

The Standard for Robot Exclusion proposed by

Martijn Koster (1994b) is an attempt to address such

a need with a simple operational solution.

Robot writers are urged to implement this practice.

You can find some sample Perl code in this Web
page:

http:llweb.nexor.co.uklmakldoclrobots/norobots.pl

Robot Exclusion Method
The method used to exclude robots from a Web

server is for the Webmaster to create a file on the

server that specifies an access policy for robots.

This file, called the robot exclusion file, must be

accessible with HTTP from a local URL with the

standard path,/robots.txt. The contents of the ro

bot exclusion file describe the nature of the con

straints and are detailed in the next section.

This approach was chosen because it can be imple

mented easily on any existing Web server. A Web

robot can find the access policy from the robot ex

clusion file (whose URL path is /robots.txt) with only

108
p a r tU Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 124 of 435

a single document retrieval. Although the

Webmaster can specify many constraints in the

robot exclusion file, it is still up to individual Web

robots to check for the existence of the file in the

first place, to retrieve it and to adhere to its speci

fied constraints.

According to Koster, a possible drawback of this

single-file approach is that the robot exclusion file

can be maintained only by the Webmaster and not

the individual document maintainers at the site. This

problem can be resolved easily by a local mainte

nance procedure that constructs the single

robots.txt file from a number of other files. (The

procedure for this is outside the scope of the pro

posed standard.)

Robot Exclusion File Format
The file consists of one or more records. Each

record is of the following form, on a line terminated

by a carriage return (CR), or a line-feed (LF), or a

combination of carriage return followed by line-feed

(CR/LF):

field: value

The field name is case insensitive. There can be

optional spaces around the value. Blank lines (lines

that contain no records but are terminated with CR,

LF, or CR/LF) are ignored.

Comments are allowed in the robot exclusion file

for annotation purposes. A comment line begins

with a # character; any preceding spaces and the

remainder of the comment line up to the line

terminator(s) are discarded.

Web Robots: 0 erational Guidelines

The presence of an empty robot exclusion file that

contains nothing basically is meaningless and

should be treated as if it were not there. In this

case, all Web robots would consider themselves

welcome at that site.

Recognized Field Names
Records with unrecognized field names are ignored.

The following are the recognized field names de

fined in the standard:

➔ User-Agent. The value of this field identifies the

robot in question. If there are multiple consecu

tive User-Agent records, then more than one

robot shares the identical access policy (speci

fied in the immediately following sequence of

Disallow records). Each User-Agent record, or

each block of consecutive User-Agent records

as the case may be, must be followed by at

least one Disallow record (to be described next).

The robot should be liberal in interpreting the

value of the User-Agent field. A case

insensitive substring match of the value with

out version information is recommended. The

following are some examples of popular user

agents:

User-Agent: Mozilla/1.1N # Netscape browser
User-Agent: WebCrawler/2.0 # Web searcher
User-Agent': MOMspider/1.00 # Web maintainer

If the value is *, the record describes the de

fault access policy for any Web robot that has

not matched with any of the other records.

There must not be more than one record whose

value is * in the robot exclusion file.

ch apter
109

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 125 of 435

➔ Disallow. The value of this field specifies a par

tial string describing the prefix portion of the

URL that is not to be visited. This can be a full

path name or a partial path name. Any URL that

begins with this value will not be retrieved. For

example, the following line disallows both:

/home/index.htmland/homeSweetHome.html:

Disallow: /home

Whereas, this line disallows /home/ index. html

but allows / homeSweetHome. html.

Disallow: /home/

An empty value permits all UR Ls to be retrieved.

At least one Disallow record must be present

under each block of consecutive User-Agent

records (for multiple robots sharing the same

access policy), or under each User-Agent record

(for a single robot with unique access policy). A

Disallow record cannot be present without at

least one User-Agent record preceding.

Sample Robot Exclusion Files
The following robot exclusion file specifies that no

robots should visit any URL starting with

/ cyberwor ld /map/ (directory of infinite virtual

space), /cgi-bin/ (directory of executable Com

mon Gateway Interface scripts), or /tmp/ (direc

tory of temporary files soon to disappear):

User-Agent: *

Disallow: /cyberworld/map/ # Virtual space
Disallow: /cgi-bin/
Disallow: /tmp/

CGI scripts
Temporary files

The following robot exclusion file specifies that no

robots should visit any URL starting with

/cyberworld/map/, except the robot called

cybermapper.

User-Agent: * # Bar all robots ...
Disallow: /cyberworld/map/

User-Agent: cybermapper # ... except cybermapper
Disallow:

The following robot exclusion file example indicates

that no robots should visit this site further:

User-Agent: *

Disallow: /
All robots go away!

The Four Laws of Web
Robotics
The aspiring creators of future Web robots would

be wise to heed the advice proffered by seasoned

Webmasters and other Web robot experts, which

has been summarized in the Four Laws of Web Ro

botics. These laws codify the expected and ac

cepted behavior of robots, and are listed in table

5.1.

If you are building a new Web robot, you are strongly

urged to desi9n your robot program in such a way

that all four laws of Web robotics are adhered to.

The following subsections explain each law in de

tail.

110
p a r t u Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 126 of 435

Table 5.1

The Four Laws of Web

robotics.

I.

II.

A Web Robot Must Show Identifications

I 111.

I IV.

A Web Robot Must Obey Exclusion Standard

A Web Robot Must Not Hog Resources

A Web Robot Must Report Errors

I. A Web Robot Must Show
Identifications
Webmasters want to know which robots are ac

cessing their sites and who is operating the robots

so they will know who to contact in case of trouble.

In many cases, Webmasters also want to find out

how others came to know of their sites. A Web

robot can accommodate Webmasters by identify

ing itself (with User-Agent field), its operator (with

From field), and the Web page referrer (with

Referrer field).

Web Robots: Operational Guidelines

Web Robot Self Identification
Web clients can identify themselves by means of

the User-Agent fields supported in HTTP request

headers. For !3Xample, the Netscape browser calls

itself Mozilla, as in the following example:

User-Agent: Mozilla/1.1N

A Web robot can use the User-Agent field to state

its name and provide a version number, as in the

following example:

User-Agent: Terminator/1.0

ch apter
111

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 127 of 435

This User-Agent field enables Webmasters to set

Web robots apart from human-operated interactive

Web browsers.

Robot Operator Identification
HTTP supports a From field in the request headers,

allowing a Web robot to identify its human opera

tor. An e-mail address is often used for identifica

tion here, as in the following example:

From: joe.robomaster@roboland.com

The From field enables Webmasters to contact the

robot operator in case of problems. The robot op

erator can thus respond to Webmasters under a

more amicable atmosphere than if he or she has

been hard to track down.

Web Page Referrer Identification
Webmasters often wonder how people came to

learn of the existence of their Web sites. When

accessing a particular Web page, it is possible and

often helpful for a Web robot to identify to the Web

server the parent document that hyperlinks to the

04age08

Web page. This parent document is called the Web

page referrer. HTTP supports a Referer field for

purpose of identifying the parent document. It is

informative, for example, for the Webmaster to

know that the Web page currently being accessed

is referred to by a paid listing with some Web ad

vertising service, as shown in the example here:

Referer: http://www.referRus.com/launchpad.html

II. A Web Robot Must Obey
Exclusion Standard
The Standard for Robot Exclusion was proposed

by Martijn Koster (1994b) as a simple way for Web

servers to communicate to Web robots which por

tions of their Web space are off-limits, and to what

robots. Details of the standard were examined in a

previous section in this chapter. To be considered

good citizens on the Web, and for not getting

trapped in infinite virtual Web spaces, all self

respecting Web robots must follow this standard.

112
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 128 of 435

III. A Web Robot Must Not Hog
Resources
Web robots consume a great deal of resources. To

minimize its impact on the Internet, a Web robot

should keep the following in mind:

➔ Request HEAD where possible. HTTP supports a

HEAD request method that retrieves only

header information from Web documents, with

out the main body of HTML text. This incurs far

less overhead than a full GET request, which

retrieves entire documents and includes both

headers and bodies. This feature comes in

handy for Web robots to verify the existence

and integrity of links in a document without

necessarily retrieving all of their hyperlinked

contents.

➔ Specify what is needed. HTTP provides an Accept

field in its request header for a Web robot to

specify to the server what kinds of data it can

handle. A robot that is designed to analyze text

information only, for example, should specify

the following:

Accept: x-text

Specifying what is needed can save consider

able network bandwidth because Web servers

will not bother to send data that the Web robot

cannot handle and might have to discard any

way.

➔ Retrieve only what is needed. URL suffixes also

provide ample hints as to what type of data can

be found at the other end of the link. If a link

Web Robots: Operational Guidelines

refers to a file with the extension "ps", "zip",

"Z", or "gif", for example, and the robot is

equipped to handle only text data, it should not

bother asking for its content from the server.

After all, non-text files are fairly low-value

artifacts for the purposes of indexing and que

rying. Although using URL suffixes is not the

preferred way to do things (the recommended

way is to use the Accept field in the HTTP re

quest header), there is an enormous installed

base out there that currently uses this method

(all the FTP sites, for example).

Web robots always risk wandering off the Web

into infinite virtual spaces. It is, therefore, im

perative for Web robots to be given a list of

places to avoid before embarking on a journey

into Webspace. For example, URLs that begin

ch apter
113

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 129 of 435

with "news:" (NEWS gateway} and "wais:" ➔ Never loop or repeat. There is always the danger

(WAIS gateway} should be filtered out in order of a robot getting caught in some infinite loop

to avoid exploring them. The robot should also in the Web without the slightest idea of what

pay attention to subpage references (A has happened. To avoid this situation, the robot

HREF="#abstract", for example} and not re- should keep track of all the places it has vis-

trieve the same page more then once. ited. It also should check to make sure that the

➔ Retrieve at opportune times. On some systems,
different host addresses are not on the same

there might be preferred times of access when
machine. (For example, web. nexor. co. uk and

the machines or networks are only lightly
hercules. nexor. co. uk are aliases of the same

loaded. A Web robot planning to make many
machine, which also is known by its IP address,

automatic requests to one particular site should
128.243.219.1.)

be made aware of the site's preferred time of ➔ Retrieve in moderation. Although Web robots can

access. handle hundreds of documents per minute, a

➔ Check all URLs carefully. The Web robot should
heavily used and multi-accessed server might

not assume that all HTML documents retrieved
not keep up. What is more, putting the server

from the servers will be error-free. While scan-
under a heavy load almost certainly will arouse

ning for URLs, the robot should be wary of
the ire of many Webmasters, especially those

things such as the following, which misses a
who are less tolerant of robots.

matching double quote: Robots are advised to rotate queries between

A HREF="http://somehost.somedom/doc different Web servers in a round-robin fashion

or to "sleep" for a short period of time between

Also, many Web sites do not use trailing slashes requests. Retrieving one document per minute

(/) on UR Ls for directories, which means that a at any one particular Web server is much bet-

naive strategy of concatenating names of URL ter than overloading it with retrieving one docu-

subparts can result in malformed names. ment per second. One document every five

➔ Check all results thoroughly. The robot should
minutes per Web server is better still. After all,

what's the rush?
check all results thoroughly, including the sta-

tus code. If a server constantly refuses to serve ➔ Skip query interfaces. Some Web documents are

a number of documents, listen to what it is say- searchable (using the ISi ND EX facility in HTML,

ing-the server might not serve documents to for example} while others contain forms or are

robots as a matter of policy. themselves dynamic documents. It is not ad-

visable for robots to follow these links and hope

114
p a r 111 Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 130 of 435

to get somewhere. An HTML textual analysis

of the Web document, to be performed by the

robot, can help determine whether any of the

above cases apply.

IV. A Web Robot Must Report
Errors
When a robot is traversing the Web, it might come

across dangling links that point at Web pages that

are obsolete, nonexistent, or inaccessible. This

could be the result of the Webmaster having moved

the page in question to a different location. He or

she might have moved the page to a different ma

chine or placed it under a different directory, for

example. It also could be that the file in question

has been renamed or that the Web server (or even

the Domain Name server) has temporarily been out

of service.

In all such cases, the Web robot should send an

error-reporting e-mail to the address defined in the

"mailto" link or the Webmaster of the site.

The Six Commandments
for Robot Operators
Unleashing a Web robot on the Internet consumes

substantial computational and network resources.

Potential robot operators are strongly urged to re

consider their plans and to refrain from such an

action until other cheaper alternatives have been

fully exlored. Specifically, robot operators are urged

to consider the following issues:

Web Robots: Operational Guidelines

➔ The operational costs of a Web robot, in terms

of computational and network resources con

sumed, as well as some level of vigilance and

responsiveness on the part of the robot opera

tor, must be weighed against its intended ben

efits.

➔ Sufficient computational resources and data

storage capacity are required to cope with the

potentially voluminous results-the Web is sim

ply too huge for any one robot to cover.

Table 5.2 lists the six commandments for robot

operators. The following subsections explain the

six commandments in detail; read them carefully if

you're planning on operating a Web robot.

ch apter
115

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 131 of 435

Table 5.2

I 11. Thou Shalt Test, Test, and Test thy Robot Locally

The Six Command
ments for Robot

Operators I 111. Thou Shalt Keep thy Robot Under Control

I 1v. Thou Shalt Stay in Contact with the World

IV. Thou Shalt Respect the Wishes of Webmasters

VI. Thou Shalt Share Results with thy Neighbors

I. Thou Shalt Announce thy Robot
For better communications, you should announce
your robot prior to launching it on the Web; you
should notify the world, perhaps the target Web

sites, but most definitely the local system
administator.

Notify the World
If Webmasters know that a robot is coming, they

can keep an eye out for it and not be caught by
surprise. A robot that benefits the entire net will be
welcome and tolerated longer than one that ser
vices a smaller community.

116
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 132 of 435

Before writing or launching a robot, you should an

nounce your intention by posting a message to the

following USENET newsgroup:

comp.infosystems.www.providers

or by sending an e-mail message to this address:

robots@nexor.co.uk

Include a brief description of the problem to be

solved by the Web robot. It is possible that some

one already might have been working on a similar

robot, or one already might exist but is not listed.

Notify Target Sites
If your robot is targeted at a select few sites, it is

professional courtesy to contact and inform the

Webmasters directly.

Notify Local System Administrator
Tell the local system administrator or network pro

vider what resources or services might be used,

such as increased network traffic and greater disk

Web Robots: 0 erational Guidelines

space utilization, when operating the robot. This

way, if something goes wrong, the system admin

istrator has been forewarned and won't have to rely

on information about the robot and any resulting

problems from second-hand sources.

II. Thou Shalt Test, Test, and Test
thy Robot Locally
For testing purposes, you should start a number of

Web servers locally to check the newly created ro

bot. Do not try testing on remote servers before

getting the bugs out of a robot. When going off

site for the first time, the robot should stay close to

home. Have it start from a page with local UR Ls.

After completing a small test run, you should ana

lyze the robot's performance and results. This

practice helps you arrive at an estimate of how the

operation would scale up to perhaps tens of thou

sands of documents. It soon becomes obvious if

the workload might not be manageable; as a re

sult, you can scale down the scope of the effort.

ch apter
117

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 133 of 435

III. Thou Shalt Keep thy Robot
Under Control
It is vital that the operator know what the robot is

doing, and that the robot remain under control at all

times. To accomplish this goal, follow these guide

lines:

➔ Log all activities. Provide ample logging in order

to track where the robot has been on the Web.

To monitor the progress of the robot and keep

it under control, it helps to collect useful infor

mation and to compile statistics, such as the

following:

Hosts recently visited

Number of successes and failures

Sizes of recently accessed files

As was previously noted, the robot needs to

know where it has been on the Web in order to

prevent looping. Also, an updated estimate of

the disk space requirement from time to time

provides useful feedback to the operator and

helps prevent a disk space crunch.

➔ Provide guidance. Design robots that can be

guided easily. Commands that suspend or can

cel the robot, or make it skip the current host,

for example, can be very useful. For this to hap

pen, the robot must be robust operationally

the robot needs to be checkpointed frequently

during operation to ensure that the cumulative

results are not lost if the robot fails.

Everything
is under control ...

118
p a til Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 134 of 435

IV. Thou Shalt Stay in Contact
with the World
When you are running a Web robot, make sure that

Webmasters can easily contact and start dialoging

with you. If your robot's actions cause problems,

you could be the only one who can fix it quickly. If

possible, stay logged in to the machine that is run

ning your robot so Webmasters can use finger or

talk to contact you. In other words, don't go on va

cation after unleashing your robot onto the Web.

The robot should be run only in your presence. Sus

pend the robot's operation when you are not going

to be there-during weekends or after work, for

example. Although it might be better for the per

formance of your machine to run your robot over

night, be considerate of others and the performance

overhead of other machines.

Web Robots: Operational Guidelines

\ I

beeper

@)

radio

V. Thou Shalt Respect the Wishes
of Webmasters
During operation, your robot will visit hundreds of

sites. It probably will upset a number of

Webmasters along its course. You must be prepared

to respond quickly to their inquiries and tell them

what your robot is doing.

If your Web robot does upset some Webmasters,

instruct the robot to visit only their home pages

and not go beyond. In many situations, it may be

wise for the robot to pass over the complaining sites

altogether.

lt'is not a good idea to evangelize to

Webmasters, · hoping to convert them to your

,:j cause and open up their Web sites to your

robot. They are probably not in the least bit interested.

c h a p t e r
119

l
11

II
I

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 135 of 435

If your Web robot encounters technical barriers that

Webmasters have devised to bar it from accessing

their site, you should not try to make your Web

robot go around them. Even though you might prove

to Webmasters that it is difficult or impossible to

limit access on the Web, you most likely will end

up making enemies.

VI. Thou Shalt Share Results with
thy Neighbors
You should archive and keep as much of the Web

pages as you can store. You also should make the

results accessible to the Internet community. After

all, the effort to accumulate these documents has

consumed considerable Internet-wide resources,

and it is only fair to give something back in return.

More specifically, you should do the following:

JUST
SAY
YES

➔ Share raw data. The raw results consisting of

retrieved Web pages should be made available

to the Internet community, either through FTP

or World Wide Web, in one form or another.

This sharing of data enables interested people

on the Internet to make use of the data in other

interesting ways without having to duplicate the

collection effort using another Web robot.

➔ Publish polished results. The Web robot is cre

ated and operated for a specific purpose; per

haps to build a specialized database or to gather

some sta,tistics. If these processed results are

made available to the Web community in a pol

ished form, people will be more appreciative of

the robot's value and thus become more toler

ant of its presence on the Web despite the

increased network load. In addition, this is defi

nitely a good way to get in touch with people of

similar interests.

120 - p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 136 of 435

Robot Tips for
Webmasters
If you are a Webmaster and you or your users are

experiencing unusually sluggish response from your

Web server, a Web robot might be attacking it with

rapid-fire requests. To determine if a certain Web

robot is indeed the culprit, and to find out more

about it, here are some definite steps you can take:

1. Check your Web server logs carefully for signs

of rapid-fire requests by paying close attention

to time-stamps of multiple consecutive HTTP

requests coming from the same machine ad

dress. Study the log for HTTP access request

patterns to determine if indeed the sluggishness

problem is caused by some offending Web

Web Robots: Operational Guidelines

robots. The HTTP request header fields User

Agent and From might reveal useful information

about the Web robot and identify its operator.

2. Check Martijn Koster's List of Robots (or

Appendix G of this book) to discover if the of

fending Web robot, identified in the HTTP User

Agent request header field, is one that is already

known. Learn more about the culprit as needed,

perhaps using Web search engines such as the

WebCra~er or Lycos.

3. Find out more about the robot operator, identi

fied in the HTTP From request header field, by

means of finger or rusers over the Internet. The

robot operator might also have published a Web

page about himself and, more importantly, his

Web robot project!

ch apter
121

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 137 of 435

4. Raise the alarm in newsgroups among

Webmasters, if needed, by posting to

comp.infosystems.www.providers on

USENET. You might not be alone. Chances are

that there is already a thread of discussions

on the topic between numerous other

Webmasters facing the exact same problem.

The problem might have a simple solution: specify

an entry in the robot exclusion file to exclude the

offender. For example, the following entry added

to the exclusion file tells the Web robot identified

as NastyBot/1.0 to go away:

User-Agent: NastyBot/1.0 # Robot go away!
Disallow: / # Off-limits!

If a Web robot is misbehaving, however, chances

are that the robot creator would not also have prop

erly implemented the robot exclusion standard. Do

not get upset over it. It is also probably not wise to

retaliate with the Web equivalent of a mail-bomb,

which is to trap the robot into retrieving large

amounts of data (perhaps a gigabyte-size HTML

document generated on-the-fly) in the hope that it

would choke. This would waste valuable network

bandwidth and might not accomplish anything if the

offending Web robot is robust, or simply smart.

It is perhaps better to try to get in contact with the

robot operator and to engage in a constructive dia

log, explaining clearly the problem that occurred at

your Web site. You might also consider suggesting

that the robot operator read Guidelines for Robot

Writers or, perhaps, this chapter.

After your problem has been solved, you are

strongly encouraged to share the experience with

other Webmasters, robot builders, and robot op

erators in the Web community. This would save

numerous other Webmasters from duplicating your

efforts trying to investigate the similar problems

caused by the same offending Web robots.

Web Ethics
Web ethics is an important concept for robot writ

ers, robot operators, and Webmasters to under

stand. In 1942, Isaac Asimov stated his Three Laws

of Robotics:

1. A robot may not injure a human being, or,

through inaction, allow a human being to come
to harm.

2. A robot must obey orders given it by human

beings except where such orders would con

flict with the First Law.

3. A robot must protect its own existence as long

as such protection does not conflict with the

First or Second Law.

Asimov's First Law of Robotics captures an essen

tial insight: An intelligent agent should not slavishly

obey human commands-its foremost goal should

be to avoid harming humans. After all, society will

reject autonomous agents unless there is some

credible means of making them safe in the first

place. But of course all this is quite abstract; the

Web robots we're dealing with aren't going to chase

anyone to kill them with superstrong pinchers at

the ends of accordian-like arms!

Oren Etzioni and Daniel Weld, both professors at

the University of Washington in Seattle who have

122
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 138 of 435

done extensive work with software robots, define

a softbot as an agent that interacts with a software

environment by issuing commands and interpret

ing the environment's feedback. In many respects,

the softbot is very similar to a Web agent. It there

fore is quite interesting to study Etzioni and Weld's

formulation of a collection of softbotic laws (pat

terned after Isaac Asimov's Laws of Robotics) to

govern such softbot agents (Etzioni and Weld,

1994):

➔ Safety. The softbot should not make destruc

tive changes to the world.

➔ Tidiness. The softbot should leave the world as

it first found it.

➔ Thrift. The softbot should limit its use of scarce

resources.

➔ Vigilance. The softbot should refuse client ac-

tions with unknown consequences.

The laws of softbotics operate at a higher level

when compared with the four laws of Web robot

ics described previously; you can probably detect

some interesting commonalties that underlie the

ethical aspects for all agents.

Similarly, Professor David Eichmann of the Univer

sity of Houston, creator of the RBSE spider, offers

his formulation of a code of conduct governing a

general class of service agents (1994), which also

includes Web robots:

➔ Identity. Agent activities should be readily dis

cernible and traceable back to its operator.

➔ Openness. Information generated should be

made accessible to the community in which the

agent operates.

Web Robots: Operational Guidelines

➔ Moderation. The rate and frequency of informa

tion acquisition should be appropriate for the

capacity of the server and network so as not to

create an overload situation on valuable com

putational and network resources.

➔ Respect. Agents should respect constraints

placed on them by server administrators.

➔ Authority. Agents' services should be accurate

and up-to-date.

According to Eichmann, a balance should be struck

between the concerns of openness, moderation,

and respect-all of which limit a service agent's

scope and activities-and the concern of authority,

which tends to broaden them.

123
ch apter -

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 139 of 435

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 140 of 435

t1014

VMware V. IV | - |PR2020-00470

VMware - Exhi i

Page 140 of 435

'f:\<v:'\,'ti,, HTTP: Protocol of Web
;•k!{,;"}~:,;,,>,t:',,,,,;.,ce, Robots

Hypertext Transfer Protocol (HTTP) is an

plication-level protocol for distributed,

permedia information systems. HTTP has been in

use since 1990 by the World Wide Web community

on the Internet. The HTTP 1.0 specification aims to

remain compatible with most of the existing HTTP

server apd client programs impiemented prior to

November 1994.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 141 of 435

HTTP is a generic, stateless, object-oriented proto

col that can be used for many tasks, such as name

servers and distributed object management sys

tems, through extension of its request methods. A

feature of HTTP is the typing and negotiation of

data representation, enabling systems to be built

independently of the data being transferred.

Practical information systems require retrieval,

search, front-end update, and annotation. HTTP

enables an open-ended set of methods to be used

to indicate the purpose of a request. It builds on

the discipline of reference provided by the Univer

sal Resource Identifier (URI) (BL 1994)-as a Uni

versal Resource Locator (URL) (BLMM 1994) or as

a Universal Resource Name (URN)-for indicating

the resource on which a method is to be applied.

Messages are passed in a format similar to that

used by Internet Mail (Crocker 1982) and the Multi

purpose Internet Mail Extensions (MIME) (BF 1993).

MIME is a freely available specification that

offers a way to interchange text in languages

with different character sets, and multimedia

e-mail, among many different computer systems that use

Internet mail standards.

HTTP also is used for communication between user

agents and various gateways, enabling hypermedia

access to existing Internet protocols, such as SMTP

(Postel 1982), NNTP (KL 1986), FTP (PR 1985),

Gopher (AMLJTA 1993), and WAIS (DKMSSWSG

1990). HTTP is designed to enable such gateways,

through proxy servers, without any loss of the data

conveyed by those earlier protocols.

HTTP is an important protocol for Web robots and

key to their operations. This chapter examines the

HTTP 1.0 specifications in detail. The information

on HTTP 1.0 is based upon the Internet draft of

HTTP 1.0 authored by Tim Bernes-Lee, Roy

Fielding, and H. Frystyk Nielsen and submitted to

the IETF Working Group in March 1995 (available

at http://ietf.cnri.reston.va.us/internet
drafts/ draft -ietf -http-v10-spec -03. txt). A
syntax grammar summary of HTTP 1.0 can be found

in Appendix A.

Understanding HTTP
Operation
The HTTP protocol is based on a request/response

paradigm. A requesting program (called a client)

establishes a connection with a receiving program

(called a server) and sends a request to the server.

A given program can be a client or a server. The

use of these terms refers only to the role being

performed by the program during a particular con

nection, rather than to the program's purpose in

general.

The request transmitted to the server is in the form

of a request method, URI, and protocol version,

followed by a MIME-like message containing re

quest modifiers, client information, and possible

body content. The server responds with a status

line (including'its protocol version with a success

or error code), followed by a MIME-like message

containing server information, entity meta informa

tion, and possible body content. This entire process

is covered in more detail later in this chapter.

On the Internet, communication generally takes

place over a TCP/IP connection. The default port is

TCP 80 (RP 94), but other ports can be used. The

126
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 142 of 435

HTTP 1.0 protocol also can be implemented on top

of any other protocol on the Internet, or on other

networks.

servers must be capable of handling the premature

closing of the connection by either party, which

could be caused by user action, automated time

out, or program failure. The closing of the connec

tion by either or both parties always terminates the

current request, regardless of its status.

For most implementations, the client establishes

the connection prior to each request, and the server

closes it after sending the response. This is not a

feature of the protocol, however, and is not required

by the HTTP 1.0 specification. Both clients and

Table 6.1 explains the terminologies associated with

the World Wide Web that will be used for the re

mainder of this chapter.

Table 6.1 World Wide Web Terms

Term Definition

Connection A virtual circuit established between two parties for the purpose of communication.

Message A structured sequence of octets transmitted through the connection as the basic

component of communication.

Request

Response

Resource

Entity

An HTTP request message.

An HTTP response message.

A network data object or service that can be identified by a URI.

A particular representation or rendition of a resource that can be enclosed within a

request or response message. An entity consists of meta information (in the form

of entity headers) and content (in the form of an entity body).

I Client A program that establishes connections for the purpose of sending requests.

I User agent

I
Server

The client program that is closest to the user and that initiates requests on behalf of

the user.

A program that accepts connections in order to service requests by sending back

responses.

I Origin server The server on which a given resource resides or is to be created.

l continues

HTTP: Protocol of Web Robots ch apter
127

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 143 of 435

Table 6.1, Continued

Term Definition

Proxy An intermediary program that usually runs on a firewall machine to other servers. (A

firewall machine functions as a security barrier between the larger Internet and a

smaller local area network within an organization.) A proxy server accepts requests

from other clients and services them either internally or by passing them on (with

possible translation). A caching proxy is a proxy server with a local cache of server

responses.

Gateway A proxy that services HTTP requests by translating them into protocols other than

HTTP. The reply sent from the remote server to the gateway is likewise translated

into HTTP before being forwarded to the user agent.

Messaging with HTTP
HTTP messages consist of requests from client to

server and responses from server to client. These

messages can be either full requests and responses

or simple requests and responses.

Full requests and full responses use the generic

message format of RFC 822 (Crocker 1982) for

transferring entities. Both messages can include

optional header fields (or simply "headers") and an

entity body. A null line (a line with nothing preced

ing the carriage return line feed, or CRLF) separates

the entity body from the headers. A full request

looks like the following:

Method SP URI SP HTTP-Version CALF
*(General-Header
: Request-Header
: Entity-Header)

CALF
[Entity-Body]

A full response looks like the following:

HTTP-Version SP Status-Code SP Reason-Phrase CALF
*(General-Header
: Response-Header
: Entity-Header)

CALF
[Entity;Body I

Simple requests and responses do not allow the

use of any header information and are limited to a

single GET request method. The client is denied the

benefit of content negotiation, and the server can

not identify the media type of the returned entity.

A simple request looks like the following:

GET SP URI CALF

A simple response is merely an optional entity body.

Message Headers
HTTP header fields include general header, request

header, response header, and entity header fields.

Each header field consists of a name followed by a

colon (:) and the field value. Header fields can be

128
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 144 of 435

extended over multiple lines by preceding each

extra line with at least one linear white space (LWS).

The order in which header fields are received is not

significant.

Comments can be included in HTTP header fields

by surrounding the comment text with parenthe

ses.

General Message Header Fields
A few header fields apply in general terms to both

request and response messages but do not apply

to the communicating parties or to the entity being

transferred. No general header field is required;

however, they all are strongly recommended when

their use is appropriate.

Additional general header fields can be imple

mented by the extension mechanism; applications

that do not recognize those fields should treat them

as entity header fields.

Date (When Was the Message Originated?)
The Date header represents the date and time at

which the message was originated. The field value

is an HTTP date. The following is an example:

Date: Tue, 15 Apr 1995 07:45:20 GMT

For most purposes, the default date can be as

sumed to be the current date at the receiving end.

Because the date-as it is believed to be by the

origin-is important for evaluating cached re

sponses, however, origin servers should always

include a Date header.

Clients should only send a Date header field in

messages that include an entity body, as in the case

HTTP: Protocol of Web Robots

of the PUT and POST requests; even then it is op

tional.

Forwarded (By Which Proxy Server?)
Proxies use the Forwarded header to indicate the

intermediate steps between the user agent and the

server (on requests) and between the origin server

and the client (on responses). The header is in

tended to trace transport problems and to avoid

request loops.

A message, for example, is sent from a client

on dip.eecs.umich.edu to a server at www •
cis. stanford. edu port 80, through an interme

diate HTTP proxy at agent. com port 8000. The

request received by the server at www •
cis. stanford. edu would have the following For

warded header field:

Forwarded: by http://agent.com:8000/ for
dip.eecs.umich.edu

Multiple Forwarded header fields are allowed in an

HTTP message header and should represent each

proxy that has forwarded the message.

Message-ID (How Are Messages Identified?)
The Message-ID field in HTTP gives the message

a single, unique identifier that can be used to iden

tify the message (not its contents) for "much

longer" than the expected lifetime of that message.

Although not required, the address specification

format typically used within a Message-ID consists

of a string that is unique at the originator's machine,

followed by the required at (@) character and the

fully qualified domain name of that machine. The

following is an example:

Message-ID: <9505031836,AA00266@agent.com>

129
ch apter -

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 145 of 435

The value of the Message-ID is composed using

the time, date, and process id on the host

agent. com. This method, however, is only one of

many possible methods for generating a unique

Message-ID. Recipients of a message should con
sider the entire value opaque.

MIME-Version ~s This Message MIME
Compliant?)
HTTP is not a MIME-conformant protocol. HTTP 1.0

messages, however, might include a single MIME

Version header field to indicate what version of the

MIME protocol was used to construct the message.

MIME 1.0 is the default for use in HTTP 1.0.

Use of the MIME-Version header field should indi

cate that the message is in full compliance with

the MIME protocol, as defined in (BF 1993).

Current versions of HTTP 1.0 clients and servers

unfortunately use this field indiscriminately, and thus

receivers must not take it for granted that the mes

sage is in full compliance with MIME.

Request Message
A World Wide Web client can make requests to a

World Wide Web server to begin an operation. A

request message from a client to a server includes

the following information within the first line (the
request line):

➔ The method to be applied to the resource re
quested

➔ The identifier of the resource

➔ The protocol version in use

130

An HTTP request has two valid formats: the newer

full request or the older simple request (for back

ward compatibility with HTTP 0.9).

If an HTTP 1.0 server receives a simple request, it

must respond with an HTTP 0.9 simple response.

An HTTP 1.0 client capable of receiving a full re

sponse should never generate a simple request.

Method
The Method token indicates the method to be per

formed on the resource identified by the request

URI. The method is case-sensitive and extensible.

The following is a list of currently specified meth
ods:

➔ GET

➔ HEAD

➔ POST

➔ PUT

➔ DELETE

➔ LINK

➔ UNLINK

The list of methods accepted by a specific resource

can be specified in an Allow entity header. The cli

ent, however, is.always notified through the return

code of the response whether or not a method is

currently allowed on a specific resource, because

this can change dynamically. Servers should return

the status code 405 Method Not Allowed if the

method is known by the server but not allowed for

the requested resource, and 501 Not Implemented

if the method is unknown or not implemented by
the server,

p a t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 146 of 435

The following sections describe the set of common

methods for HTTP 1.0. Although this set can be

expanded easily, additional methods cannot be as

sumed to have the same meaning for separately

extended clients and servers. In order to maintain

compatibility, the semantic definition for extension

methods must be registered with the Internet As

signed Numbers Authority (IANA) (RP 1994).

The IANA is the central coordinator for the

assignment of unique parameter values for

Internet protocols. The IANA is chartered by

the Internet Society and the Federal Network Council to act

as the clearinghouse to assign and coordinate the use of

numerous Internet protocol parameters.

BET (Retrieving Contents of a Resource)
The GET method retrieves information (in the form

of an entity) that is identified by the request URI. If

the request URI refers to a data-producing process,

the produced data is returned as the entity in the

response, not the source text of the process (un

less that text happens to be the output of the pro

cess).

The GET method becomes a conditional GET method

when the request message includes an If-Modified

Since header field. A conditional GET method re

quests that the identified resource be transferred

only if it has been modified since the date given in

the If-Modified-Since header. If the resource has

not been modified since the If-Modified-Since date,

the seNer returns a 304 Not Modified response.

The conditional GET method is intended to reduce

network usage by enabling cached entities to be

HTTP: Protocol of Web Robots

refreshed without requiring multiple requests or

transferring unnecessary data.

HEAD (Retrieving Only Header Information)
The HEAD method is identical to GET except that

the server must not return any entity body in the

response. The meta information contained in the

HTTP headers in response to a HEAD request should

be identical to the information sent in response to

a GET request.

HEAD can be used for obtaining meta information

about the resource identified by the request URI

without transferring the entity body. The HEAD

method is often used for testing hypertext links for

validity, accessibility, and recent modification.

POST (Posting to a Resource)
The POST method is used to request that the desti

nation server accept the entity enclosed in the

request as a new subordinate of the resource iden

tified by the request URI in the request line. POST is

designed to allow a uniform method to cover the

following functions:

➔ Annotating existing resources

➔ Posting a message to a bulletin board,

newsgroup, mailing list, or similar group of ar

ticles

➔ Providing' a block of data (usually a form) to a

data-handling process

➔ Extending a database through an append op

eration

The actual function performed by the POST method

is determined by the server and is usually depen

dent on the request URI. The posted entity is

131
ch apter -

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 147 of 435

considered to be subordinate to that URI in the

same way that a file is subordinate to the directory

containing it, a news article is subordinate to a

newsgroup in which it is posted, or a record is sub

ordinate to a database.

The client can apply relationships between the new

resource and other existing resources by including

Link header fields. The server can use the link in

formation to perform other operations as a result

of the new resource being added. For example, lists

and indices might be updated. The origin server can

also generate its own or additional links to other

resources.

A successful POST does not require that the entity

be created as a resource on the origin server or

made accessible for future reference. That is, the

action performed by the POST method might not

result in a resource that can be identified by a URI.

In this case, either 200 OK or 204 No Content is

the appropriate response status, depending on

whether or not the response includes an entity that

describes the result.

If a resource has been created on the origin server,

the response should be 201 Created. This response

should contain the allocated URI, all applicable Link

header fields, and an entity (preferably of type text/

html) that describes the status of the request and

refers to the new resource.

PUT (Creating or Modifying a Resource)
The PUT method requests that the enclosed entity

be stored under the supplied request URI. If the

request URI refers to an already existing resource,

the enclosed entity should be considered a modi

fied version of the resource residing on the origin

server. The 200 OK response should be sent back

after successful completion of the request.

If the request URI does not point to an existing re

source, and that URI is capable of being defined as

a new resource by the requesting user agent, the

origin server can create the resource with that URI.

If a new resource is created, the origin server must

inform the user agent through the 201 Created

response.

The fundamental difference between the POST and

PUT requests is reflected in the different meaning

of the request URI. The URI in a POST request identi

fies the resource that will handle the enclosed

entity as an appendage. That resource can be a

data-accepting process, a gateway to some other

protocol, or a separate entity that accepts annota

tions.

In contrast, the URI in a PUT request identifies the

entity enclosed with the request. The requestor of

a PUT knows which URI is intended, and the re

ceiver must not attempt to apply the request to

some other resource. If the receiver desires that

the request be applied to a different URI, it must

send a 301 Moved Permanently response; the re

questor can then make its own decision regarding

whether or not to redirect the request.

With PUT, th~ client can create or modify relation

ships between the encl_osed entity and other exist

ing resources by including Link header fields. As

with POST, the server can use the Link information

to perform other operations as a result of the re

quest. The origin server can generate its own or

additional links to other resources.

The origin server defines the actual method for

determining how the resource is placed, and what

132
p a tU Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 148 of 435

happens to the resource's predecessor. If version

control is implemented by the origin server, the

Version and Derived-From header fields should be

used to help identify and control revisions to a re

source.

DELETE (Getting Rid of a Resource)
The DELETE method requests that the origin server

delete the resource identified by the request URI.

This method can be overridden by human interven

tion (or other means) on the origin server. The cli

ent cannot be guaranteed that the operation has

been carried out, even if the status code returned

from the origin server indicates that the action has

been completed successfully. The server should not

indicate success unless, at the time the response

is given, it intends to delete the resource or move

it to an inaccessible location.

A successful response would be any of the follow

ing:

➔ 200 OK if the response includes an entity de

scribing the status

➔ 202 Accepted if the action has not yet been

enacted

➔ 204 No Content if the response is OK but does

not include an entity

LINK (Establishing Relationships with Other
Resources)
The LINK method establishes one or more link

relationships between the existing resource identi

fied by the request URI and other existing

resources. The difference between LINK and other

methods allowing links to be established between

resources is that the LINK method does not allow

HTTP: Protocol of Web Robots

any entity body to be sent in the request and does

not result in the creation of new resources.

UNLINK (Breaking Relationships with Other
Resources)
The UNLINK method removes one or more link rela

tionships from the existing resource identified by

the request URI. These relationships might have

been established using the LINK method or by any

other method supporting the Link header. The re

moval of a link to a resource does not imply that

the resource ceases to exist or becomes inacces

sible for future references.

Request Header Fields
The request header fields allow the client to pass

additional information about the request (and about

the client itself) to the server. All header fields are

optional and conform to the generic HTTP header

syntax.

Although additional request header fields can be

implemented by the extension mechanism, appli

cations that do not recognize those fields should

treat them as entity header fields.

Accept (Acceptable Media Ranges)
The Accept header field can be used to indicate a

list of media· ranges that are acceptable as a re

sponse to the request. An asterisk (*) is used to

group media types into ranges, with */* indicating

all media types and type/* indicating all subtypes

of that media type. The set of ranges given by the

client should represent what types are acceptable

given the context of the request. The following

example should verbally be interpreted as, "If you

133
ch apter -

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 149 of 435

have audio/basic, send it; otherwise send any au

dio type."

Accept: audio/*; q=0.2, audio/basic

The parameter q is used to indicate the quality fac

tor, which represents the user's preference for that

range of media types. Its default value is q=1.

If at least one Accept header is present, a quality

factor of 0 is equivalent to not sending an Accept

header field containing that media-type or set of

media-types. If no Accept header is present, then

it is assumed that the client accepts all media types.

This is equivalent to the client sending the follow
ing accept header field:

Accept: */*

A more elaborate example is

Accept: text/plain; q=0.5, text/html, text/x-dvi;
q=0.8; mxb=100000, text/x-c

Verbally, this would be interpreted as, "Text/html

and text/x-c are the preferred media types, but if

they do not exist, then send the entity body in text/

x-dvi if the entity is less than 100,000 bytes; other

wise, send text/plain." Here, the parameter mxb

gives the maximum acceptable size of the entity

body (in decimal number of octets, defaults to in

finity) for that range of media types.

It must be emphasized that the Accept field should

only be used when it is necessary to do the follow

ing:

➔ Restrict the response media types to a subset

of those possible

➔ Indicate qualitative preference for specific me

dia types

➔ Indicate the acceptance of unusual media types

Accept-Charset (Preferred Character Sets)
The Accept-Charset header field can be used to

indicate a list of preferred character sets other than

the default US-ASCII and ISO-8859-1. This field

allows clients capable of understanding more com

prehensive or special-purpose character sets to

signal that capability to a server that is capable of

representing documents in those character sets.

An example follows:

Accept-Charset: iso-8859-5, unicode-1-1

The value of this field should not include US-ASCII

or ISO-8859-1 because those values are always
assumed by default.

Accept-Encoding (Acceptable Encodings)
The Accept-Encoding header field is similar to Ac

cept, but it lists the encoding-mechanisms and

transfer-encoding values that are acceptable in the

response. An example of its use follows:

Accept-Encoding: compress, base64, gzip, quoted
printable

The field value should never include the identity

transfer-encoding values (7bit, 8bit, and binary) be

cause they actually represent no encoding. If no

Accept-Encoding field is present in a request, it

must be assumed that the client does not accept

any encoding-rnechanism except for the identity

transfer-encodings.

Accept-Language (Preferred
Natural Languages)
The Accept-Language header field is similar to Ac

cept, but it lists the set of natural languages that

are preferred as a response to the request. Lan

guages are listed in the order of their preference to

134
p a r tH Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 150 of 435

the user. The following example would mean "Send

me a Danish version if you have it, or else a British

English version."

Accept-Language: dk, en-gb

If the server cannot fulfill the request with one or
more of the languages given, or if the languages

only represent a subset of a multi-linguistic entity

body, it is acceptable to serve the request in an

unspecified language.

Authorization (Credentials of User Agent)
A user agent that wants to authenticate itself with

a server (usually, but not necessarily, after receiv

ing a 401 Unauthorized response), may do so by

including an Authorization header field with the re

quest. The Authorization field value consists of cre

dentials containing the authentication information

of the user agent for the realm of the resource be

ing requested. The following is an example:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

If a request is authenticated and a realm specified,

the same credentials should be valid for all other

requests within this realm.

From (Originator of This Request)
If given, the From header field should contain an

Internet e-mail address for the human user who

controls the requesting user agent. Here is an ex

ample:

From: webmaster@w3.org

This header field may be used for logging purposes

and as a means for identifying the source of invalid

or unwanted requests. The interpretation of this

HTTP: Protocol of Web Robots

field is that the request is being performed on be

half of the person given, who accepts responsibil

ity for the method performed. In particular, Web

robot agents should include this header so that the

responsible operator of the Web robot can be con

tacted if problems occur on the receiving end.

The Internet e-mail address in this field does not

have to correspond to the Internet host that issued

the request. When a request is passed through a

proxy, for example, the original issuer's address

should be used.

If-Modified-Since (Has the Resource Been
Modified Since?)
The If-Modified-Since header field is used with the

GET method to make it conditional. If the requested

resource has not been modified since the time

specified in this field, a copy of the resource is not

returned from the server; instead, a 304 Not

Modified response is returned without any entity

body. An example of the field follows:

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

The purpose of this feature is to allow efficient up

dates of local cache information with a minimum

amount of transaction overhead. The same func

tionality can be obtained, though with much greater

overhead, by issuing a HEAD request and following

it with a GET request if the server indicates that the

entity has been modified.

Pragma (Server Directives to Apply)
The Pragma header field is used to specify direc

tives that must be applied to all servers along the

request chain (where relevant). The directives typi

cally specify behavior that prevents intermediate

ch apter
135

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 151 of 435

proxies from changing the nature of the request.

HTTP 1.0 only defines meaning for the no-cache

directive:

Pragma: no-cache

When the no-cache directive is present, a caching

proxy must forward the request toward the origin

server even if it has a cached copy of what is being

requested. This allows a client to insist upon re

ceiving an authoritative response to its request. It

also allows a client to refresh a cached copy that

has become corrupted or is known to be stale.

Pragmas must be passed through by a proxy even

when they have significance to that proxy. This is

necessary in cases when the request has to go

through many proxies, and the pragma might af

fect all of them. It is not possible to specify a pragma

for a specific proxy; however, any pragma-directive

not relevant to a gateway or proxy should be ig

nored.

Referer (Document That Referred This URI)
The Referer field allows the client to specify, for

the server's benefit, the address (URI) of the docu

ment (or element within the document) from which

the request URI was obtained. This allows a server

to generate lists of back-links to documents for in

terest, logging, optimized caching, and so on. It also

allows obsolete or mistyped links to be traced for

maintenance. Here's an example:

Referer: http://info.cern.ch/hypertext/DataSources/
Overview.html

If a partial URI is given, it should be interpreted rela

tive to the request URI.

User-Agent (Client Program That Originated
the Request)
The User-Agent field contains information about the

user agent originating the request. This informa

tion is for statistical purposes, the tracing of proto

col violations, and automated recognition of user

agents for the sake of tailoring responses to avoid

particular user agent limitations. Although it is not

required, user agents should always include this

field with requests.

The field can contain multiple tokens specifying the

product name, with an optional slash and version

designator, and other products that form a signifi

cant part of the user agent. By convention, the

products are listed in order of their significance for

identifying the application. The following is an

example:

User-Agent: CERN-LineMode/2.15 libwww/2,17b3

Product tokens should be short and to the point.

The User-Agent field can include additional infor

mation within comments that are not part of the

value of the field.

Response Message
After receiving and interpreting a request message,

a server responds in the form of an HTTP response

message. A simple response should only be sent

in response to an HTTP 0.9 simple request or if the

server only supports the more limited HTTP 0.9

protocol.

136
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 152 of 435

If a client sends an HTTP 1.0 full request and re

ceives a response that does not begin with a sta

tus line, it should assume that the response is

simple and parse it accordingly. Note that the simple

response consists only of the entity body and is

terminated by the server closing the connection.

The first line of a full response message (that is,

the status line) consists of the following:

➔ The protocol version

➔ A numeric status code

➔ The associated textual phrase

Because a status line always begins with the pro

tocol version (HTTP 1.0), the presence of that ex

pression is considered sufficient to differentiate a

Table 6.2 Classes of HTTP Response Code

Digit Type Description

full response from a simple response. Although the

simple response format can allow such an expres

sion to occur at the beginning of an entity body (and

thus cause a misinterpretation of the message if it

was given in response to a full request), the likeli

hood of such an occurrence is negligible.

Status Codes and Reason Phrases
The server returns a 3-digit status code, plus a short

textual description of the status code, as a result of

attempting to understand and satisfy client request.

The first digit of the status code defines the class

of response, as shown in table 6.2.

HTTP status codes are extensible and should be

registered with the IANA. The classes of 2xx suc

cessful status code are presented in table 6.3.

1xx Informational Not used, but reserved for future use.

I 2xx

I 3xx

4xx

5xx

Successful

Redirection

Client Error

Server Error

The action was successfully received, understood, and accepted.

Further action must be taken to complete the request.

The request contains bad syntax or cannot be fulfilled.

The server failed to fulfill an apparently ~alid request.

HTTP: Protocol of Web Robots ch apter
137

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 153 of 435

Table 6.3 2xx Successful

Status Code

200 OK

201 Created

202 Accepted

Explanation

The request has been fulfilled and an entity corresponding to the requested

resource is being sent in the response.

The request has been fulfilled and resulted in a new resource being created.

The request has been accepted for processing, but the processing has not been

completed.

203 Provisional The returned meta information in the entity header is not the definitive set as

Information available from the origin server, but is gathered from a local or a third-party copy.

204 No

Content

The seNer has fulfilled the request, but there is no new information to send

back.

The class of 3xx redirection status code are

presented in table 6.4.

Table 6.4 3xx Redirection

Status Code

300 Multiple Choices

301 Moved Permanently

I 302 Moved Temporarily

1303 Method

304 Not Modified

138
p a r t II

Explanation

The requested resource is available at one or more locations and a

preferred location could not be determined through content

negotiation.

The requested resource has been assigned a new permanent URI,

and any future references to this resource must be done using the

returned URI.

The requested resource resides'temporarily under a different URI.

This code is obsolete.

If the client has performed a conditional GET request and access

is allowed, but the document has not been modified since the

date and time specified in the If-Modified-Since field, the seNer

shall respond with this status code and not send an entity body to

the client.

Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 154 of 435

The classes of 4xx client error status code are pre

sented in table 6.5.

Table 6.5 4xx Client Error

Status Code Explanation

400 Bad Request The request had bad syntax or was inherently impossible to be satisfied.

I 401 unauthorized The request requires user authentication,

I 402 Payment Required This code is not currently supported.

403 Forbidden The request is forbidden for some reason that remains unknown to the
client.

I 404 Not Found The server has not found anything matching the request URI.

405 Method Not The method specified in the request line is not allowed for the resource

Allowed identified by the request URI.

406 None Acceptable The server has found a resource matching the request URI, but not one
that satisfies the conditions identified by the Accept and Accept-Encoding

request headers.

407 Proxy Authen • This code is reserved for future use.

tication Required

408 Request Timeout The client did not produce a request within the time that the server was

prepared to wait.

409 Conflict The request could not be completed due to a conflict with the current state

of the resource.

410 Gone The requested resource is no longer availi3ble at the server and no forward

ing address is known.

HTTP: Protocol of Web Robots ch apter
139

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 155 of 435

The classes of 5xxserver error status code are pre

sented in table 6.6.

Table 6.6 5xx Server Errors

Status Code Explanation

500 Internal Server Error The server encountered an unexpected condition that

prevented it from fulfilling the request.

501 Not Implemented The server does not support the functionality required to

fulfill the request.

502 Bad Gateway The server received an invalid response from the gateway

or upstream server it accessed in attempting to complete

the request.

503 Service Unavailable The server is currently unable to handle the request due

to a temporary overloading or maintenance of the server.

504 Gateway Timeout The server did not receive a timely response from the

gateway or upstream server it accessed in attempting to

complete the request.

HTTP applications are not required to understand

the meaning of all registered status codes. Appli

cations are required, however, to understand the

class of any status code (as indicated by the first

digit) and to treat the response as being equivalent

to the xO0 status code of that class.

If an unknown status code of 421 is received by

the client, for example, it can safely assume that

there was something wrong with its request and

treat the response as if it had received a 400 status

code. In such cases, user agents are encouraged

to present the entity returned with the response to

the user because that entity is likely to include

human-readable information that will explain the un

usual status.

Response Header Fields
The response header fields allow the server to pass

additional information about the response that can

not be placed in the status line. These header fields

are not intended to give information about an en

tity body returned in the response, but about the

server itself. ,

Although additional response header fields can be

implemented by means of the extension mecha

nism, applications that do not recognize those fields

should treat them as entity header fields.

140 p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 156 of 435

Public (Non-Standard Methods Supported by
Server)
The Public header field lists the set of non

standard methods supported by the server. This

field informs the recipient of the server's capabili

ties regarding unusual methods. The field value

should not include the methods predefined for HTTP

1.0. The following is an example of its use:

Public: OPTIONS, MGET, MHEAD

This header field applies only to the current con

nection. If the response passes through a proxy,

the proxy must either remove the Public header

field or replace it with one applicable to its own

capabilities.

Retry-After (When to Retry Again)
The Retry-After header field can be used with 503
Service unavailable to indicate how long the ser

vice is expected to be unavailable to the request

ing client. The value of this field can be either a full

HTTP date or an integer number of seconds (in

decimal) after the time of the response. Two ex

amples of its use follow:

Retry-After: Mon, 02 Jan 1995 15:00:00 GMT

Retry-After: 120

In the latter example, the delay is 2 minutes.

Server (Server Program Handling the
Request)
The Server header field contains information about

the software being used by the origin server pro

gram handling the request. The field is analogous

to the User-Agent field. The following is an example:

Server: CERN/3,0 libwww/2,17

HTTP: Protocol of Web Robots

If the response is being forwarded through a proxy,

the proxy application must not add its data to the

product list. Instead, it should include a Forwarded

field.

WWW-Authenticate (Challenge to the Client)
The WWW-Authenticate header field must be in

cluded as part of a 401 Unauthorized response.

The field value consists of a challenge that indicates

the authentication scheme and parameters appli

cable to the request URI.

Entity
Full request and full response messages can trans

fer an entity within some requests and responses.

An entity consists of entity header fields and usu

ally an entity body. In this section, both the sender

and recipient refer to either the client or the server,

depending on who sends and who receives the

entity.

Entity Header Fields
Entity header fields define optional meta informa

tion about the Entity body or about the resource

identified by the request (where no body is present).

The recognized entity header fields are listed as

follows:

➔ Allow

➔ Content-Encoding

➔ Content-Language

➔ Content-Length

➔ Content-Transfer-Encoding

ch apter
141

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 157 of 435

➔ Content-Type

➔ Derived-From

➔ Expires

➔ Last-Modified

➔ Link

➔ Location

➔ Title

➔ URI

➔ Version

Other header fields are allowed but cannot be

assumed to be recognizable by the recipient. Un

known header fields should be ignored by the

recipient and forwarded by proxies.

Allow (Methods Applicable to Requested URI)
The Allow header field lists the set of methods sup

ported by the resource identified by the request

URI. It informs the recipient of valid methods asso

ciated with the resource. It must be present in a

response with status code 405 Method Not

Allowed. An example of use is the following:

Allow: GET, HEAD, PUT

This field has no default value; if left undefined, the

set of allowed methods is defined by the origin

server at the time of each request.

If a response passes through a proxy that does not

understand one or more of the methods indicated

in the Allow header, the proxy must not modify the

Allow header.

Content-Encoding (How Are Contents
Encoded?)
The Content-Encoding header field is used as a

modifier to the media type. Its value indicates what

additional encoding mechanism has been applied

to the resource. Its value also indicates what de

coding mechanism must be applied to obtain the

media type referenced by the Content-Type header
field.

The Content-Encoding is primarily used to allow a

document to be compressed without losing the

identity of its underlying media type. An example
of its use follows:

Content-Encoding: gzip

The Content-Encoding is a characteristic of the re

source identified by the request URI. Typically, the

resource is stored with this encoding and is only

decoded before rendering at the user agent.

Content-Language (List of Natural Languages
Intended)
The Content-Language field describes the natural

language(s) of the intended audience for the en

closed entity. Note that this might not be equiva

lent to all the languages used within the entity.

Content-Language allows a selective consumer to

identify and differentiate resources according to the
consumer's own preferred language. If, for ex

ample, the body content is intended only for a Dan

ish audience, the appropriate field is this:

Content-Language: dk

If no Content-Language is specified, the default

is that the content is intended for all language

142
p a • n Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 158 of 435

I
audiences. This can mean that the sender does not

consider it to be specific to any natural language,

or that the sender does not know for which lan

guage it is intended.

Multiple languages can be listed for content that is

intended for multiple audiences. For example, a

rendition of the Treaty of Waitangi, presented si

multaneously in the original Maori and English ver

sions, would call for this:

content-Language: mi, en

However, just because multiple languages are

present within an entity does not mean that it is

intended for multiple linguistic audiences. An ex

ample would be a beginner's language primer, such

as A First Lesson in Latin, which is clearly intended

to be used by an English audience. In this case, the

Content-Language should only include en.

Content-Language can be applied to any media

type-it should not be considered limited to tex

tual documents.

Content-Length (Size of Entity)
The Content-Length header field indicates the size

of the entity body (in decimal number of octets)

sent to the recipient. In the case of the HEAD

method, it is the size of the entity body that would

have been sent had the request been a GET. An

example follows:

Content-Length: 2395

Although it is not required, applications are strongly

encouraged to use this field to indicate the size of

the entity body to be transferred, regardless of the

media type of the entity.

HTTP: Protocol of Web Robots

Content-Transfer-Encoding (How Are Contents
Encoded for Transfer?)
The Content-Transfer-Encoding (CTE) header indi

cates what (if any) type of transformation has been

applied to the entity to safely transfer it between

the sender and the recipient. This differs from the

Content-Encoding in that the CTE is a property of

the message, not of the original resource.

Because all HTTP transactions take place on

an 8-bit clean connection, the default Content

Transfer-Encoding for all messages is binary.

However, HTTP can be used to transfer MIME

messages which already have a defined CTE. An

example follows:

Content-Transfer-Encoding: quoted-printable

Many older HTTP 1.0 applications do not understand

the Content-Transfer-Encoding header. However,

future HTTP 1 .0 applications are required to under

stand it upon receipt. Gateways to MIME

compliant protocols are the only HTTP applications

that would generate a CTE.

Content-Type (Media Type of the Entity)
The Content-Type header field indicates the media

type of the entity body sent to the recipient. In the

case of the HEAD method, it is the media type that

would have been sent had the request been a GET.

An example follows:

Content-Type: text/html; charset=IS0-8859-4

The Content-Type header field has no default value.

Derived-From (Which Version Derives
This Entity?)
The Derived-From header field indicates the ver

sion tag of the resource from which the enclosed

ch apter
143

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 159 of 435

entity was derived before modifications by the
sender. This field is used to help manage the pro
cess of merging successive changes to a resource,
particularly when such changes are being made in
parallel and from multiple sources. Here's an ex
ample use of the field:

Derived-From: 3,1.2

The Derived-From field is required for PUT requests
if the entity being put was previously retrieved from
the same URI and a Version header was included
with the entity when it was last retrieved.

Expires (When Does the Entity Expire?)
The Expires field gives the date and time after which
the entity should be considered stale. This allows
information providers to suggest the volatility of the
resource. Caching clients (including proxies) must
not cache this copy of the resource beyond the date
given, unless its status has been updated by a later
check of the origin server.

The format is an absolute date and time. An ex
ample of its use follows:

Expires: Thu, 01 Dec 1994 23:00:00 GMT

Applications are encouraged to be tolerant of

bad or misinformed implementations of the

Expires header. In particular, recipients might

want to recognize a delta-seconds value (any decimal

integer) as representing the number of seconds after receipt

of the message that its contents should be considered

expired. Likewise, a value of zero (0) or an invalid date

format can be considered equivalent to an expires

immediately.

Last-Modified (When Was the Resource Last
Modified?)
The Last-Modified header field indicates the date
and time at which the sender believes the resource
was last modified. The exact meaning of this field
is defined in terms of how the receiver should in
terpret it; if the receiver has a copy of this resource
that is older than the current date given by the Last
Modified field, that copy should be considered stale.

Here's a example of its use:

Last-Modified: Tue, 04 Apr 1995 07:39:26 GMT

The exact meaning of this header field depends on
the implementation of the sender and the nature
of the original resource. For files, it might be just
the file system "last-mod" date. For virtual objects,
it might be the last time the internal state changed.
In any case, the recipient should only know (and
care) about the result-whatever gets stuck in the
Last-Modified field-and not worry about how that
result was obtained.

Link (How Do Other Resources Relate to This
Entity?)
The Link header provides a means for describing a
relationship between the entity and some other
resource. An entity can include multiple Link val
ues. Links at the meta information level typically
indicate relafamships like hierarchical structure and
navigation paths. The Link field means the same
as the <LINK> element in HTML (BLC 1995).

Relation values are not case-sensitive and might
be extended within the constraints of the sgml
name syntax. There are no predefined link relation
ship values for HTTP 1 .0. The title parameter can

144
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 160 of 435

be used to label the destination of a link such that it

can be used as identification within a human

readable menu. Examples of usage include:

Link: <http://www.cern.ch/TheBook/chapter2>;
rel="Previous"

Link: <mailto:timbl@w3.org>; rev='Made'; title="Tim
Berners-Lee"

The first example indicates that the entity is previ

ous to chapter 2 in a logical navigation path. The

second indicates that the publisher of the resource

is identified by the given e-mail address.

Location (Where to Locate the Resource)
The Location header field is an earlier form of the

URI header and is considered obsolete. HTTP 1.0

applications, however, should continue to support

the Location header to properly interface with older

applications. The purpose of Location is identical

to that of the URI header, except that no variants

can be specified and only one absolute location URL

is allowed. An example follows:

Location: http://info.cern.ch/hypertext/lWvW/
NewLocation.html

URI (Entity's Resource Origin)
The Title header field indicates the title of the en

tity. Here's an example of the field:

Title: Hypertext Transfer Protocol - HTTP/1.0

This field is to be considered the same as the

<TITLE> element in HTML (BLC 1995).

The URI header field can contain one or more Uni

versal Resource Identifiers (UR ls) by which the re

source origin of the entity can be identified. This

HTTP: Protocol of Web Robots

field is required for the 201, 301, and 302 response

messages and can be included in any message that

contains resource meta information.

Any URI specified in this field can be either abso

lute or relative to the URI given in the request line.

The URI header improves upon the Location header

field. For backward compatibility with older clients,

servers are encouraged to include both header fields

in 301 and 302 responses.

The URI header can also be used by a client per

forming a POST request to suggest a URI for the

new entity. The server's response must include the

actual URl(s) of the new resource if one is success

fully created (status 201).

If a URI refers to a set of variants, then the dimen

sions of that variance must be given with a vary

parameter. One example is this:

URI: <http://info.cern.ch/hypertext/lWvW/
TheProject.multi>; vary="type,language"

This indicates that the URI covers a group of enti

ties that vary in media type and natural language. A

request for that URI will result in a response that

depends upon the client's request headers for

Accept and Accept-Language. Similar dimensions

exist for the Accept-Encoding, Accept-Charset,

Version, and User-Agent header fields, as demon

strated in the fe>llowing example:

URI: <TheProject.ps>;vary="encoding,version",
<TheProject.html>; vary="useragent,charset,version"

Version (Entity's Version)
The Version field defines the version tag associated

with a rendition of an evolving entity. Together with

ch apter
145

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 161 of 435

the Derived-From field, it enables a group of people

to work simultaneously on the creation of a work

as an iterative process. The field should be used to

allow evolution of a particular work along a single

path. Examples of the Version field include:

Version: 3.1.2

Version: 'R5 19950404-07:39:26"

Version: 1.4a3-gamma6

The version tag should be considered opaque to all

parties except the origin server. A user agent can

request a particular version of an entity by includ

ing its tag in a Version header as part of the re

quest. Similarly, a user agent can suggest a value

for the version of an entity transferred via a PUT or

POST request. However, only the origin server can

reliably assign or increment the version tag of an

entity.

Entity Bady
The entity body (if any) sent with an HTTP 1.0 re

quest or response is in a format and encoding de

fined by the entity header fields.

An entity body is included with a request message

only when the request method calls for one. This

specification defines two request methods, POST

and PUT, that allow an entity body. In general, the

presence of an entity body in a request is signaled

by the inclusion of a Content-Length and/or

Content-Transfer-Encoding header field in the re

quest message headers.

Most current implementations of the POST

and PUT methods require a valid Content

Length header field. This can cause problems

for some systems that do not know the size of the entity

body before transmission. Experimental implementations

(and future versions of HTTP) use a packetized Content

Transfer-Encoding to obviate the need for a Content-Length.

For response messages, whether an entity body is

included with a message is dependent on both the

request method and the response code. All

responses to the HEAD request method must not

include a body, even though the presence of Con

tent header fields might lead one to believe they

should. Similarly, the responses 204 No Content,

304 Not Modified, and 406 None Acceptable

must not include a body.

Type
When an entity body is included with a message,

the data type of that body is determined by the

header fields Content-Type, Content-Encoding, and

Content-Transfer-Encoding. These define a three

layer, ordered encoding model, which follows:

entity-body~Content-Transfer-Encoding(Content
Encoding(Content-Type))

A Content-Type specifies the media type of the

underlying data. A Content-Encoding can be used

to indicate an additional encoding mechanism ap

plied to the type (usually for the purpose of data

compression) that is a property of the resource re

quested. A Content-Transfer-Encoding can be ap

plied by a transport agent to ensure safe and proper

transfer of the message. Note that the Content

Transfer-Encoding is a property of the message, not

of the resource.

146
p a r t n Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 162 of 435

The Content-Type header field has no default value.

If-and only if-the media type is not given by a

Content-Type header (as is always the case for

simple response messages), the receiver might

attempt to guess the media type through inspec

tion of its content or the name extension(s) of the

URL used to access the resource. If the media type

remains unknown, the receiver should treat it as

type application/octet-stream.

Length
When an entity body is included with a message,

the length of that body can be determined in many

ways. If a Content-Length header field is present,

its value in bytes (number of octets) represents the

length of the entity body. Otherwise, the body

length is determined by the Content-Type (for types

with an explicit end-of-body delimiter), the Content

Transfer-Encoding (for packetized encodings), or the

closing of the connection by the server. Note that

the latter cannot be used to indicate the end of a

request body because it leaves no possibility for

the server to send back a response.

1

Some older servers supply an invalid Content

Length when sending a document that

contains additional bytes (for example,

preprocessor supplied data) dynamically inserted into the

data stream. Therefore, unless the client knows that it is

receiving a response from a compliant server, it should not

depend on the Content-Length value being correct.

Protocol Parameters
The protocol parameters specify the HTTP version,

URls, and date/time formats used in HTTP.

HTTP: Protocol of Web Robots

HTTP Version
The protocol version indicates the format of a mes

sage and the sender's capacity for understanding

further HTTP communication.

The version of an HTTP message is indicated by an

HTTP-Version field in the first line of the message.

If the protocol version is not specified, it defaults

to the simple HTTP 0.9 format.

A proxy must never send a message with a version

number greater than its native version; if a higher

version request is received, the proxy must either

downgrade the request version or respond with an

error. Requests with a version lower than that of

the proxy's native format can be upgraded by the

proxy before being forwarded.

Universal Resource Identifiers
For details on the URI, the reader is referred to RFC

1630 (BL 1994), which provides a brief description

of the allowed characters and the hex encoding

used in the escaping scheme. Examples of URI

follow:

telnet://debra.dgbt.doc.ca:3000

http://www.mcom.com/

ftp://prep.ai.mit.edu/pub/gnu/

Date/Time Formats
HTTP 1.0 applications have historically allowed three

different formats for the representation of date/time

stamps:

ch apter
147

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 163 of 435

Tue, 04 Apr 1995 07:39:26 GMT ; RFC 822, updated
by RFC 1123

Tuesday, 04-Apr-95 07:39:26 GMT ; RFC 850, obso
leted by RFC 1036

Tue Apr 4 07:39:26 1995
asctime () format

; ANSI C's

The first format is preferred as an Internet stan

dard and represents a fixed-length subset of that

defined by RFC 1123 (Braden 1989), which is an

update to RFC 822 (Crocker 1982). The second for

mat is in common use, but is obsolete and lacks a

four-digit year. HTTP 1.0 clients and servers must

accept all three formats, but should never gener

ate the third (asctime) format.

Content Parameters
The content parameters specify the media types,

character sets, encoding mechanisms, transfer

encodings, and language tags used in HTTP.

Media Types
HTTP uses Internet Media Types (Postel 1994), for

merly referred to as MIME Content-Types (BF

1993), to provide open and extensible data typing

and type negotiation. Examples of registered

Internet media types include:

audio/basic

video/mpeg

image/gif

text/plain

application/postscript

With HTTP, user agents can identify acceptable

media types as part of the connection. They are

thus also allowed to use non-registered types, but

their usage must not conflict with the IANA regis

try. All media types registered by IANA must be

preferred over extension tokens.

HTTP does not encourage the use of an x

prefix for unofficial types except for short

experimental use between consenting

applications.

Character Sets
Character sets are identified by case-insensitive

tokens. The complete set of allowed charset val

ues are defined by the IANA Character Set registry

(RP 1994). The following are the names for those

character sets most likely to be used with HTTP

entities.

➔ US-ASCII

➔ ISO-8859-1

➔ ISO-8859-2

➔ ISO-8859-3

➔ ISO-8859-4

➔ ISO-8859-5

➔ ISO-8859-6

➔ ISO-8859-7

148
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 164 of 435

➔ ISO-8859-8

➔ ISO-8859-9

➔ ISO-2022-JP

➔ ISO-2022-JP-2

➔ ISO-2022-KR

➔ UNICODE-1-1

➔ UNICODE-1-1-UTF-7

➔ UNICODE-1-1-UTF-8

This set of charset values includes those registered

by RFC 1521 (BF 1993)-the US-ASCII (ANSI 1986)

and ISO8859 (ISO 1990) character sets-and other

character set names specifically recommended for

use within MIME charset parameters.

Encoding Mechanisms
Encoding mechanism values indicate an encoding

transformation that has been or can be applied to a

resource. Encoding mechanisms allow a document

to be compressed or encrypted without losing the

identity of its underlying media type.

Typically, the resource is stored with this encoding

and is only decoded before rendering. Two values

are defined by this specification: gzip and compress.

HTTP 1.0 applications should consider x-gzip

and x-compress to be equivalent to gzip and

compress, respectively.

All encoding-mechanism values are case

insensitive. HTTP 1 .0 uses encoding-mechanism

values in the Accept-Encoding and Content-

HTTP: Protocol of Web Robots

Encoding header fields. Although the value de

scribes the encoding-mechanism, it also indicates

which decoding mechanism is required to remove

the encoding.

Transfer Encodings
Transfer encoding values are used to indicate an

encoding transformation that has been, can be, or

might need to be applied to an entity body to en

sure safe transport through the network.

Transfer encodings are only used with entities

destined for or retrieved from MIME

conformant systems. They rarely occur in an

HTTP 1.0 message. This differs from an encoding-mechanism

in that the transfer encoding is a property of the message,

not of the original resource.

HTTP defines the following transfer-encoding val

ues:

➔ Binary. No encoding and body can contain any

set of octets.

➔ 8bit. Same as binary but with added restrictions

that carriage return and linefeed characters only

occur as part of CR/LF line separators, all lines

are short (l~ss than 1000 octets), and no NU Ls

(octet 0) are present

➔ 7bit. Same as 8bit but with added restriction that

all octets are 7-bit US-ASCII characters.

➔ Ouoted-printable. Encoding consisting of 7-bit

US-ASCII characters applied to body.

➔ Base64. Encoding consisting of 7-bit US-ASCII

characters applied to body.

ch apter
149

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 165 of 435

All transfer-encoding values are case-insensitive.

HTTP 1.0 uses transfer-encoding values in the

Accept-Encoding and Content-Transfer-Encoding

header fields.

Language Tags
A language tag identifies a natural language used

by human beings for communication of informa

tion to other human beings. Computer languages

are explicitly excluded. The HTTP 1.0 protocol uses

language tags within the Accept-Language and

Content-Language header fields.

The syntax and registry of HTTP language tags is

the same as that defined by RFC 1766 (Alvestrand

1995). Sample tags include the following:

en, en-US, en-cockney, i-cherokee, x-pig-latin

All tags are to be treated as case-insensitive. The

namespace of language tags is administered by the

IANA.

Content Negotiation
Content negotiation is an optional feature of the

HTTP protocol. It allows a preferred content repre

sentation to be pre-selected within a single HTTP

request-response round-trip.

During content negotiation, the server first deter

mines whether there are any content variants for

the requested resource. Content variants can be

multiple copies of the same image or text in differ

ent file formats. They can also be implemented by

means of a set of dynamic conversion filters.

If there are no variant forms of the resource, the

negotiation is limited to whether that single media

type is acceptable under the constraints given by

the Accept request header field (if any).

If variants are available, those variants that are com

pletely unacceptable should be removed from

consideration first. Unacceptable variants include:

➔ Those with a Content-Encoding not listed in an

Accept-Encoding field

➔ Those with a character subset (other than the

default ISO-8859-1) not listed in an Accept

Charset field

➔ Those with a media type not within any of the

media ranges of an explicitly constrained

Accept field (or listed with a zero quality param
eter)

If no acceptable variants remain at this point, the

server should respond with a 406 None

Acceptable response message.

If more than one variant remains, and at least one

has a Content-Language within those listed by an

Accept-Language field, any variants that do not

match the language constraint are removed from

further consideration.

If multiple choices still remain, the selection is fur

ther narrowed by calculating and comparing the

relative quality of the available media types. If mul

tiple representations exist for a single media type,

then the one with the lowest byte count is pre

ferred.

Finally, there might still be multiple choices avail

able to the user. If so, the server can either choose

150
p a t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 166 of 435

one from those available and respond with 200 OK,

or respond with 300 Multiple Choices and in

clude an entity describing the choices.

Access Authentication
In HTTP, a server can challenge a user agent re

quest, and a user agent can provide authentication

information in response to that challenge. HTTP

provides a simple challenge-response authorization

mechanism to do this.

The basic authentication scheme is based on the

model that the user agent must authenticate itself

with a user-ID and a password for each realm of

the resource being requested. The server will ser

vice the request only if it can validate the user-ID

and password for the domain of the requested re

source.

The server issues the 401 Unauthorized response

message (in response to a user agent request) to

challenge the authorization of a user agent. This

response must include a WWW-Authenticate

header field containing the challenge applicable to

the requested resource.

The user agent can authenticate itself with a server

(after receiving a 401 response) by including an

Authorization header field with the next request.

The Authorization field value consists of credentials

containing the authentication information of the user

agent for the realm of the resource being requested.

If the user agent wants to send the user-ID Aladdin

and password open sesame, for example, it would

use the following header field:

HTTP: Protocol of Web Robots

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

The user-ID and password (separated by a single

colon (:)) in the above example are encoded using

the base64 method (BF 1993).

The basic authentication scheme is a non

secure method of filtering unauthorized

access to resources on an HTTP server. It does

not prevent the entity body from being transmitted in clear

text across the physical network.

Proxies are completely transparent regarding user

agent access authentication. That is, they forward

the WWW-Authenticate and Authorization headers

intact.

ch apter
151

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 167 of 435

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 168 of 435

VMware - Exhibit 1014

VMware v. IV | - |PR2020-00470

Page 168 of 435

c h a r
11(, i iJi. 411 "o II! II! II! II! Iii $ lit Ill lit lit II! lit II! II! @ Ill 411 El> lit lit Iii

WebWalker: Your Web
Maintenance Robot

was discussed in Chapter 5, "Web Robots:

perational Guidelines," one of the major applica

ns of Web robots and spiders is in automated

maintenance of Web information structure. As E. B.

White writes in the popular children's book

Charlotte s Web:

A spider's web is stronger than it looks. Although it is made of thin,

delicate strands, the web is not easily broken. However, a web

gets torn every day by the insects that kick around in it, and a

spider must rebuild it when it gets full of holes.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 169 of 435

In a similar fashion, some hypertext links can be

come out-of-date as the Web information structure

changes over time. Hypertext links that have be

come obsolete are called dead links. This happens

when referenced information has changed or when

referenced Web pages have been moved or deleted.

The former case presents a problem that is purely

semantic, and requires an understanding of how

the text has changed to mean something different.

The latter case is purely syntactic and structural,

and can be readily identified by a Web robot. The

job of a Web maintenance spider is thus to detect

dead links and to "rebuild [the Web] when it gets

full of holes."

This chapter explores the Web maintenance prob

lem and examines the basic operational principles

behind spiders that perform automated Web main

tenance. This chapter also describes the design and

operation of the WebWalker spider, which has been

developed for purpose of illustration and experimen

tation.

The Web Maintenance Problem
The terms Web information structure, Web infor

mation space, and hypertext information structure,

have all been used interchangeably throughout this

book. The term infostructure is perhaps a more

concise term for describing the same thing.

Web Inf□structure
An infostructure is a layout of information in a man

ner such that it can be navigated (Tilton 1993).

lnfostructure can be any resource database with a

specifically designed structure that gives it body

and shape. For example, a table of contents is an

infostructure, as is a bibliography. A collection of

World Wide Web documents hyperlinked together

is also an infostructure. In fact, the World Wide Web

as a whole can be considered the ultimate

infostructure. Figure 7.1 shows the prototypical

Web infostructure published by a research center.

An infostructure builds its contents from multiple

information sources, in the form of hyperlinks to

Web documents residing at distributed sites. These

collections of Web documents often are maintained

by different document owners. Individual Web

documents also can be shared by more than one

infostructure.

Past Approaches
An infostructure is rarely static. It changes over time

as the contents of individual Web pages are up

dated. Reference information might be added, de

leted, or changed. Web documents also might be

moved or deleted. As a result, hyperlinks can be

come broken and the infostructure corrupted. In

many cases, unfortunately the ensuing flurry of

complaints from users and the information in the

error logs of each server seldom are seen by the

actual document owners.

Server Log Analysis
Webmasters, however, can generate a partial list

of Web pages that need updating. The required in

formation sometimes can be extracted from serv
ers logs:

➔ URL of dead links (identified by failed HTTP

transactions that generates the 301 Moved

Permanently response code)

154
p a t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 170 of 435

Figure 7.1

Web infostructure of a

Research Center.

➔ URL of Web pages that refer these links (speci

fied in the Referer field of HTTP request head

ers).

However, this ad-hoc post-mortem approach is

hardly a solution; portions of the Web that are out

of date but remained unexplored might have un

discovered dead links. They remain undiscovered

until someone on the Web actually needs to link

through them, only to find out belatedly that the

links are dead.

Manual Traversal
To detect dead links and other inconsistencies early

on, individual document owners resort to manual

traversal of the portion of the Web for which they

are responsible. This job is both boring and time

consuming. As these infostructures evolve over

time, they grow to become more complex and

harder to maintain.

WebWalker: Your Web Maintenance Robot

What is needed is an automated means of travers

ing a Web of documents and checking for changes

that might require the attention of the human docu

ment owners. Web robots and spiders are auto

mated client programs that can traverse the Web

infostructure in a systematic fashion.

Web Maintenance Spiders
There has to be a better way of systematically ex

ploring the Web information structure in order to

uncover all dead links, and this is where Web main

tenance spiders or robots become useful. They

assist Web document owners and Webmasters

maintain Web information structures by automati

cally traversing the Web space checking for dead

links. These spiders can then compile a complete

list of problem Web pages that contains dead links.

ch apter
155

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 171 of 435

Roy Fielding's MOMspider (Multi-Owner Mainte

nance Spider) is one of the better known examples

of Web maintenance robots (1994). WebWalker is

a simple Web maintenance robot derived from

MOMspider. The remainder of this chapter dis

cusses the WebWalker robot.

WebWalker Operation
WebWalker is a World Wide Web robot that

traverses designated Web infostructures on the net

to perform automated hyperlinks verification.

WebWalker can identify individual hypertext links

that are broken, redirected, changed, or expired,

and provide a summary of results.

During traversal, WebWalker sets the User-Agent

field in the HTTP request header to WebWalker/

1.00 and also includes additional information in the

headers for identifying the robot operator and the

Web page referrer. The following is a sample frag

ment in the HTTP protocol stream:

User-Agent: WebWalker/1.00
From: webmaster@www-cis.stanford.edu
Referer: http://www-cis.stanford.edu/NanoNet/

Processing Task Descriptions
WebWalker can be run from the command line by

the user or as a batch program. WebWalker can

also be run as a CGI script by the Web server (in

response to user submission of task descriptions

through a Web browser online). As a result,

WebWalker can learn about what infostructures it

is supposed to visit by one of the following means:

➔ WebWalker can look up the task descriptions

from a task file when invoked from the com

mand line or run as a batch program.

➔ WebWalker can get the task descriptions using

the Common Gateway Interface when

WebWalker is run as a CGI script.

Avoiding and Excluding URLs
Not all URLs on the Web are safe for a spider to

traverse; some infinite virtual spaces generated by

program scripts on the server can trap an unsus

pecting spider. There are also many URLs, such as

gateway program scripts and image files, for which

it makes no sense to collect maintenance informa

tion. Furthermore, some sites on the Web are sim

ply not intended for robots.

WebWalker complies with the robot exclusion stan

dard (described previously in Chapter 5) by respect

ing all restrictions set up for it by the Webmaster.

These restrictions can be viewed as roadblocks on

the Web, beyond which WebWalker would not ven

ture. The roadblock information is communicated

to WebWalker by means of the robot exclusion file

at the target Web site, and which WebWalker must

first read prior to traversing the Web site.

WebWalker avoids all URLs that are disallowed to

it (that is, it will perform no HTTP requests on those
URLs). '

In addition to the robot exclusion file, WebWalker

can also depend on Exclude directives supplied to

it in a task file by the robot operator to help it navi

gate around such spider traps. URLs that are ex

cluded can only be tested with HTTP HEAD

156
p a t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 172 of 435

requests, and not traversed with HTTP GET re

quests. Excluded URLs are essentially the leaf

nodes in a Web infostructure.

Keeping History
WebWalker maintains a traversal history and re

members where it has been on the Web. In this

way, WebWalker knows how to avoid being lured

into chasing cycles of repeating URLs. The history

information also allows WebWalker to reuse results

of previous visits. Status updates to the history

occurs throughout the traversal process and

WebWalker tracks whether specific nodes in the

infostructure were seen but not yet tested, avoided,

to be excluded, to be tested, to be traversed, or

already traversed.

Traversing the Web
WebWalker follows a simple breadth-first traversal

strategy, implemented by keeping an internal queue

of UR Ls that WebWalker needs to visit. WebWalker

knows how to crawl slowly on the Web so as not

to overload any one server with a series of rapid

fire requests. This is implemented by keeping track

of the number of consecutive requests to the last

visited site, and remember the time when the pre

vious request was last made.

Generating Reports
WebWalker reports its findings in the form of a

collective summary table of statistics, one for each

infostructure examined. Regularly scheduled visits

by WebWalker ensure the correctness and consis

tency of a large and growing collection of distrib

uted WWW infostructures, and make the task of

maintaining complex infostructures much easier for

the already overworked Webmasters.

Is WebWalker a Good Robot?
WebWalker is a stripped-down implementation of

MOMspider for automated Web maintenance.

WebWalker would be considered a good robot de

pending if it complies with the four laws of Web

robotics, listed here:

1. A Web Robot Must Show Identifications.

WebWalker supplies all three HTTP request

header fields: User-Agent, From, and Referer,

as required.

2. A Web Robot Must Obey Exclusion Standard.

WebWalker understands the robot exclusion

standard which it implements by means of an

avoidance strategy.

3. A Web Robot Must Not Hog Resources.

WebWalker knows how to crawl slowly on the

Web so as not to overload any one server with

a series of rapid-fire requests. WebWalker also

remembers where it has been on the Web so

as not to,chase infinite cycles of URLs.

4. A Web Robot Must Report Errors.

WebWalker generates a statistics summary

report at the end of each infostructure traversal

and which highlights a list of UR Ls that are bro

ken, redirected, changed, or expired.

WebWalker: Your Web Maintenance Robot f c h a p t e r II 157

!

:

i

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 173 of 435

WebWalker Limitations
The design and implementation of WebWalker is

based on the architecture and Perl source code of

Roy Fielding's MOMspider robot. WebWalker is a

simplified version of MOMspider in that it does not

have all of MOMspider's user input features and

report generation capabilities. But then WebWalker

is only 1,800 lines of Perl code, as versus 4,000

lines for MOMspider. WebWalker, however, retains

the internal Web traversal engine of MOMspider

and performs the mechanics of Web traversal in

exactly the same fashion as MOMspider.

WebWalker does not support the sharing of Web

maintenance work load across multiple users, nor

does it save the results into files for sharing across

multiple runs at different times, as does

MOMspider. WebWalker is not designed for heavy

duty production use. WebWalker is built for

illustrating the basic operational principles of Web

robots, and for experimentation. WebWalker can,

however, come in quite handy for light-duty use by

Webmasters to traverse Web infostructures within

the local network.

WebWalker should not be used to traverse

remote Web sites across the Internet

(although it is perfectly capable of doing so),

as this is wasteful of network resources. A better solution is

to run WebWalker on a machine local to where the bulk of

the Web infostructure resides.

WebWalker Program
Installation
The WebWalker program is a 1,800-line Perl script

that is built on top of the Roy Fielding's libwww

perl library package for accessing the World Wide

Web. Currently, WebWalker can only be run from a

Unix machine. Before the WebWalker can be used

to help maintain your local Web sites, you need to

install and set up the following:

➔ The Perl interpreter, written by Larry Wall

➔ The Perl WWW library, written by Roy Fielding

➔ The WebWalker program, a single file written

in Perl

The following are step-by-step instructions for in

stalling the WebWalker robot on a Unix machine:

1. If you don't already have it, get and install the

Perl software package from one of its many dis

tribution sites. A list of Perl archive sites can be

found in the following Web pages:

http://www.cis.ufl.edu/perl/
http://web.nexor.co.uk/perl/perl.html

Be sure to install the user and system libraries

along with Perl. Specifically, the execution of

WebWalker requires that the getopts.pl Perl li

brary package be installed.

2. If you don't already have it, get and install Roy

Fielding's libwww-perl package from any of its

distribution sites at the following addresses:

http://www.ics.uci.edu/WebSoft/libwww-perl/

ftp://liege.ics.uci.edu/pub/arcadia/libwww-perl/

158
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 174 of 435

If you have not included the libwww-perl direc

tory on the standard include path for Perl, be

sure to set the $LIBWWW_PERL environment

variable so that client programs, for example,

WebWalker, can find it.

3. Get the WebWalker source program from any

one of the following addresses:

http://deluge.stanford.edu:B000/book/WebWalker

http://www.mcp.com/softlib/Internet/WebWalker

ftp://www.mcp.com/softlib/Internet/WebWalker

4. Examine the WebWalker program script and

follow its configuration instructions to properly

set up WebWalker for operation. You must fol

low the instructions there to configure the lo

cations of the Perl WWW library and

WebWalker task file, and to specify the domain

name of the local network.

5. Make sure the WebWalker program is execut

able (on most Unix systems) by typing the fol

lowing command:

chmod 755 WebWalker

Now that WebWalker is properly installed and set

up, you can turn your attention to specifying what

infostructures you want WebWalker to traverse.

The specification for each infostructure is called a

task and are collected in a WebWalker task file, to

be discussed next.

WebWalker Task File
The task file usually resides in the robot operator's

home directory and specifies the infostructures that

WebWalker: Your Web Maintenance Robot

WebWalker needs to traverse. At the begining of

processing, WebWalker reads all the task specifi

cations from the task file and loads them into inter

nal tables.

The task file can be named by the -f

command-line option or by the default name

".webwalk" set in the configuration section of

the source program.

A WebWalker task file consists of a series of op

tional global directives followed by a series of tra

versal tasks, each traversal task is specified with a

set of task directives. Both global and task direc

tives are case-sensitive.

WebWalker sets the configuration options associ

ated with the global directives, then proceeds to

perform each of the tasks in the given order as listed

ir:i the task file. After completing the last task,

WebWalker prints out a summary of the overall pro

cess results and then exits.

Global Directives
The following are the recognized global directives:

➔ ReplyTo emai!_address

Specifies ,the real e-mail address of the robot

operator running the WebWalker program,

which usually is the local Webmaster. This e

mail address must correspond to the human

being that should be notified in case someone

is having problems with how WebWalker is

operated. The e-mail address information is

communicated to the Web server by means of

ch apter
159

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 175 of 435

160

the HTTP From request header. The default

address is normally set by libwww-perl to be
user@hostname.

➔ MaxDepth number

Specifies the maximum allowed depth of any

WebWalker traversal. Its purpose is to prevent

the spider from falling into an infinite virtual

space. The default value (usually 20) should be

larger than any of the infostructures that

WebWalker will ever want to traverse.

Task Directives
Each WebWalker task consists of a set of task di

rectives surrounded by angle brackets. For each

task, WebWalker traverses the Web infostructure,

in breadth-first order, from the specified top docu

ment (TopURL directive} down to each leaf node. A

leaf node is defined to be any Web resource which

is either not of content-type HTML (and thus can

not contain any further links), or which is outside

the boundary of the given infostructure boundary

(specified with the BoundURL directive).

➔ Name infostructure_name

Specifies the name of the Web infostructure to

be traversed. It is used to identify the

infostructure in a WebWalker generated report.

The name is required for all tasks and must be

a single word containing no whitespace.

➔ TopURL URL

Specifies the URL of the top of the infostructure

to be traversed. If the given URL is relative, then

it is resolved as a local URL URL (that is, with

the prefix file://localhost/} relative to the current

working directory where WebWalker is started.

The top URL is required for all tasks and must

be a single word containing no whitespace. Any

fragment identifier will be ignored.

➔ BoundURL URLprefix

Specifies that only encountered URLs that con

tain the given prefix will be traversed. This sets

the boundary for the intended infostructure and

prevents WebWalker from trespassing onto

other remote Web sites where it will be unwel
come.

➔ ChangeWindow number

Specifies the window in number days prior to

the current date within which a tested URL's

last-modified date is considered "interesting"

and should be reported by WebWalker. If num

ber is zero (0), no last-modification dates are

considered interesting. This directive is optional
and defaults to seven (7) days.

➔ ExpireWindow number

Specifies the window in number days after the

current date within which a traversed URL's

expires date is considered "interesting" and

should be reported by WebWalker. If number

is zero (0), no expiration dates are considered

interesting. This directive is optional and de

faults to zero (0). Because expire dates are rarely

used in the Web, this directive is rarely useful.

➔ Exclude URLprefix

Specifies that all encountered URLs that con

tain the given URL prefix will only be tested

and not traversed. It is always useful to exclude

the cgi-bin directory, as well as other

p a t u Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 176 of 435

-----------------=====-

directories that contain image files, from Web.

Multiple Exclude directives can be specified for

any task.

Task File Format
The WebWalker task file format is fairly rigid but

quite simple. Blank lines and any lines beginning

with '#' are ignored. All task directives should be

on a single line regardless of length and there is no

facility for line-continuation.

The specification of each task begins with a left

angle bracket character (<) and ends with a right

angle bracket character(>), both of which must be

on a line by itself. For example, the following is a

sample task file that can be used by the Webmaster

at Yahoo to maintain the Yahoo directory:

ReplyTo webmaster@yahoo.com
MaxDepth 1

<

Name Yahoo
TopURL http://www.yahoo.com/
BoundURL http://www.yahoo.com/
ChangeWindow 1

ExpireWindow
Exclude http://www.yahoo.com/

>

Another example is the following sample task file

that can be used by Webmasters at Stanford's Cen

ter of Integrated Systems for maintaining their

Nanofab project infostructure:

ReplyTo
MaxDepth
<

Name
TopURL

webmaster@www-cis.stanford.edu
10

Stanford CIS NanoNet Home Page
http://www-cis.stanford.edu/

WebWalker: Your Web Maintenance Robot

>

BoundURL
NanoNet/

http://www-cis.stanford.edu/
NanoNet/

ChangeWindow 2
ExpireWindow 1
Exclude http://www-cis.stanford.edu/

NanoNet/cgi-bin/

' Do not use these sample task files! They are

targeted at other people's Web sites, not

-,,~hY,,li!ni~, yours, so don't bother using them as they are

strictly for illustrative purposes only. Lots of

people will be upset if you do. You should build your own

task file that is customized for your local Web site.

WebWalker Usage
Examples
Before you start up WebWalker, you should double

check the contents of the task file to make sure

that it covers exactly the infostructure you have in

tended. It would upset many users and

Webmasters if you were to unleash WebWalker

on the net but failed to target the correct Web sites,

and in the process wasted valuable network re

sources.

To start up WebWalker, simply type the name of

the WebWalker program on the command line (af

ter checking the contents of the task file for cor

rectness) as in the following:

WebWalker

ch apter
161

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 177 of 435

WebWalker can display the following usage infor
mation in response to an invalid option:

usage: Webwalker [-h] [-f taskfile] [-d maxdepth]
WebWalker/1.00
WWW Robot for maintenance of distributed hypertext
infostructures.
Options:
[DEFAULT]

-h Help - just display this message and
quit.

-f Get your task instructions from the
following file. [$TaskFile]

-d Maximum traversal depth.
[$MaxDepth]

WebWalker11.00 starting at Tue, 12 Sep 1995 10:00:54
Reading task specifications from lhomelfcol.webwalk

Do not attempt to run WebWalker from a

remote machine that is outside of your local

network! Valuable network bandwidth will be

wasted if you do. WebWalker is strictly for Webmasters to

run on their local network targeted at their own Web sites.

Sample Web Walker Output
Here is what you would see as the output from
WebWalker using the task file for traversing the
infostructure at the Yahoo Web site (intended strictly
for illustrative purposes only):

Starting Infostructure [Yahoo] at Tue, 12 Sep 1995 10:00:54
Checking for http:llwww.yahoo.com:80/robots.txt ... 200 OK
Traversing http:llwww.yahoo.coml ... 200 OK
Testing http:l/www.yahoo.com1binltop1 ... 200 OK
Testing http:llwww.yahoo.comlimageslmain.gif ... 200 OK
Testing http://www.yahoo.comlheadlinesl ... 200 OK
Testing http:llwww.yahoo.comlweblaunch.html ... 200 OK
Testing http:l/www.yahoo.com/textl ... 200 OK
Testing http:llwww.yahoo.comlsearch.html ... 200 OK
Testing http:llwww.yahoo.comlArtsl ... 200 OK
Testing http:llwww.yahoo.comlArtslLiteraturel ... 200 OK
Testing http:/lwww.yahoo.com1ArtslPhotographyl ... 200 OK
Testing http:llwww.yahoo.comlArtslArchitecturel ... 200 OK
Reusing test of http:l/www.yahoo.comlArtsl ...
Testing http:llwww.yahoo.comlBusiness_and_Economyl ... 200 OK
Testing http:/lwww.yahoo.comlheadlineslcurrent/businessl ... 200 OK
Testing http:llwww.yahoo.comlBusiness_and_EconomylBusiness_Directoryl ... 200 OK
Testing http:llwww.yahoo.comlBusiness_and_EconomylMarkets_and_Investmentsl ... 200 OK

162
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 178 of 435

Testing http://www.yahoo.com/Business_and_Economy/Classifieds/ ,,, 200 OK
Reusing test of http://www.yahoo.com/Business_and_Economy/ ,,,
Testing http://www.yahoo.com/Computers_and_Internet/ ... 200 OK
Testing http://www.yahoo.com/Computers_and_Internet/Internet/ ... 200 OK
Testing http://www.yahoo.com/Computers_and_Internet/Internet/World_Wide_Web/ .,. 200 OK
Testing http://www.yahoo.com/Computers_and_Internet/Software/ ,,, 200 OK
Testing http://www.yahoo.com/Computers_and_Internet/Multimedia/ ,, . 200 OK
Reusing test of http://www.yahoo.com/Computers_and_Internet/ ...
Testing http://www.yahoo.com/Education/ ... 200 OK
Testing http://www.yahoo.com/Education/Universities/ ... 200 OK
Testing http://www.yahoo.com/Education/K_12/ .,, 200 OK
Testing http://www.yahoo.com/Education/Courses/ ,,, 200 OK
Reusing test of http://www.yahoo.com/Education/ ...
Testing http://www.yahoo.com/Entertainment/ ... 200 OK
Testing http://www.yahoo.com/headlines/current/entertainment/ ,,, 200 OK
Testing http://www.yahoo.com/Entertainment/Television/ ,,, 200 OK
Testing http://www.yahoo.com/Entertainment/Movies_and_Films/ ,,, 200 OK
Testing http://www.yahoo.com/Entertainment/Music/ ,,, 200 OK
Testing http://www.yahoo.com/Entertainment/Magazines/ ... 200 OK
Testing http://www.yahoo.com/Entertainment/Books/ ... 200 OK
Reusing test of http://www.yahoo.com/Entertainment/ .. .
Testing http://www.yahoo.com/Government/ ,,, 200 OK
Testing http://www.yahoo.com/Government/Politics/ ... 200 OK
Testing http://www.yahoo.com/headlines/current/politics/ ,,, 200 OK
Testing http://www.yahoo.com/Government/Agencies/ ... 200 OK
Testing http://www.yahoo.com/Government/Law/ ,,, 200 OK
Testing http://www.yahoo.com/Government/Military/ ... 200 OK
Reusing test of http://www.yahoo.com/Government/ .. .
Testing http://www.yahoo.com/Health/ ,,. 200 OK
Testing http://www.yahoo.com/Health/Medicine/ ,,, 200 OK
Testing http://www.yahoo.com/Health/Pharmacology/Drugs/ ... 200 OK
Testing http://www.yahoo.com/Health/Diseases_and_Conditions/ ... 200 OK
Testing http://www.yahoo.com/Health/Fitness/ ... 200 OK
Reusing test of http://www.yahoo.com/Health/ .. .
Testing http://www.yahoo.com/News/ ,,, 200 OK
Testing http://www.yahoo.com/headlines/current/news/ ,,, 200 OK
Testing http://www.yahoo.com/News/International/ ... 200 OK

Web Walker: Your Web Maintenance Robot ch apter
163

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 179 of 435

Testing http://www.yahoo.com/headlines/current/international/ ... 200 OK
Testing http://www.yahoo.com/News/Daily/ ... 200 OK
Testing http://www.yahoo.com/News/Current_Events ... 200 OK
Reusing test of http://www.yahoo.com/News/ .. .
Testing http://www.yahoo.com/Recreation/ ... 200 OK
Testing http://www.yahoo.com/Recreation/Sports/ ... 200 OK
Testing http://www.yahoo.com/headlines/current/sports/ ... 200 OK
Testing http://www.yahoo.com/Recreation/Games/ ... 200 OK
Testing http://www.yahoo.com/Recreation/Travel/ ... 200 OK
Testing http://www.yahoo.com/Recreation/Automobiles/ ... 200 OK
Reusing test of http://www.yahoo.com/Recreation/ ...
Testing http://www.yahoo.com/Reference/ ... 200 OK
Testing http://www.yahoo.com/Reference/Libraries/ ... 200 OK
Testing http://www.yahoo.com/Reference/Dictionaries/ ... 200 OK
Testing http://www.yahoo.com/Reference/Phone_Numbers/ ... 200 OK
Reusing test of http://www.yahoo.com/Reference/ ...
Testing http://www.yahoo.com/Regional/ ... 200 OK
Testing http://www.yahoo.com/Regional/Countries/ ... 200 OK
Testing http://www.yahoo.com/Regional/Regions/ ... 200 OK
Testing http://www.yahoo.com/Regional/U_S_States/ ... 200 OK
Reusing test of http://www.yahoo.com/Regional/ ...
Testing http://www.yahoo.com/Science/ ... 200 OK
Testing http://www.yahoo.com/Science/Computer_Science/ ... 200 OK
Testing http://www.yahoo.com/Science/Biology/ ... 200 OK
Testing http://www.yahoo.com/Science/Astronomy/ ... 200 OK
Testing http://www.yahoo.com/Science/Engineering/ ... 200 OK
Reusing test of http://www.yahoo.com/Science/ .. .
Testing http://www.yahoo.com/Social_Science/ ... 200 OK
Testing http://www.yahoo.com/Social_Science/History/ ... 200 OK
Testing http://www.yahoo.com/Social_Science/Philosophy/ ... 200 OK
Testing http://www.yahoo.com/Social_Science/Linguistics_and_Human_Languages/ ... 200 OK
Reusing test of http://www.yahoo.com/Social_Science/ ...
Testing http://www.yahoo.com/Society_and_Culture/ ... 200 OK
Testing http://www.yahoo.com/Society_and_Culture/People/ ... 603 Timed Out
Testing http://www.yahoo.com/Society_and_Culture/Environment_and_Nature/ 200 OK
Testing http://www.yahoo.com/Society_and_Culture/Religion/ ... 200 OK
Reusing test of http://www.yahoo.com/Society_and_Culture/
Reusing test of http://www.yahoo.com/ ...

164
p a tU Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 180 of 435

Testing http://www.yahoo.com/images/netscape4.gif
Reusing test of http://www.yahoo.com/ ...

200 OK

Testing http://www.yahoo.com/docs/pr/credits.html 200 OK
Done Traversing http://www.yahoo.com/ ...
. . . at Tue, 12 Sep 1995 10: 10: 34 - 0 remaining on queue

Broken Links:
http://www.yahoo.com/Society_and_Culture/People/ (603 Timed Out)

Changed Links:
http://www.yahoo.com/Regional/Countries/ (200 OK)
Last-modified:
http://www.yahoo.com/weblaunch.html (200 OK)
Last-modified:
http://www.yahoo.com/Government/Agencies/ (200 OK)
Last -modified:
http://www.yahoo.com/Regional/Regions/ (200 OK)
Last-modified:
http://www.yahoo.com/Computers_and_Internet/Internet/ (200 OK)
Last-modified:
http://www.yahoo.com/Entertainment/Books/ (200 OK)
Last-modified:
http://www.yahoo.com/Government/Law/ (200 OK)
Last-modified:
http://www.yahoo.com/Recreation/Sports/ (200 OK)
Last-modified:
http://www.yahoo.com/Business_and_Economy/Business_Directory/ (200 OK)
Last-modified:
http://www.yahoo.com/Computers_and_Internet/Multimedia/ (200 OK)
Last-modified:
http://www.yahoo.com/Regional/U_S_States/ (200 OK)
Last-modified:
http://www.yahoo.com/Computers_and_Internet/Internet/World_Wide_Web/ (200 OK)
Last-modified:
http://www.yahoo.com/Government/ (200 OK)
Last -modified:
http://www.yahoo.com/Government/Military/ (200 OK)
Last -modified:

WebWalker: Your Web Maintenance Robot ch apter
165

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 181 of 435

http://www.yahoo.com/Business_and_Economy/Markets_and_Investments/ (200 OK)
Last-modified:
http://www.yahoo.com/Government/Politics/ (200 OK)
Last-modified:
http://www.yahoo.com/Recreation/Games/ (200 OK)
Last -modified:
http://www.yahoo.com/Regional/ (200 OK)
Last-modified:
http://www.yahoo.com/Business_and_Economy/Classifieds/ (200 OK)
Last-modified:

Summary of Results:

Traversed
Tested
Reused
Avoided
Untestable

Broken
Redirected
Changed 1
Expired

Local
Remote

Totals

l References : Unique URLs : Local URLs :
l number pct : number pct : number pct :
: ------------- --+- ----------- ---+- ---- ------ ----:

2 2.15 1.28 0 0.00
77 82.80 78 100.00 0 0.00
16 17.20 0 0.00 0 0.00
0 0.00 0 0.00 0 0.00

I 0 0.00 I 0 0.00 I 0 0.00 I
I I I I

: ---------------+- --------------+- ------------- -:
1.08 1.28 0 0.00

0 0.00 0 0.00 0 0.00
21 22.58 19 24.36 0 0.00

I 0 0.00 I 0 0.00 I 0 0.00 I
I I I I

: ---------------+- --------------+- --------------:
0 0.00 I 0 0.00 I 0 100.00 I

I I I
I 93 100.00 I 78 100.00 I 0 0.00 I
I I I I

:- ----- ----- ----+- -- ----- -------+- --------- -----:
93 100.00 I 78 83.87 I 0 0.00 I

I I I

Finished Infostructure [Yahoo] at Tue, 12 Sep 1995 12:10:36

WebWalker/1.00 finished at Tue, 12 Sep 1995 12:10:36

166
p a r tH Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 182 of 435

Web Walker Farms Interface The summary above indicates that only the Yahoo

home page was traversed. A total of 93 URLs were

encountered in the Yahoo home page, and they

were pointing to 77 different Web pages. Obviously,

some UR Ls were sharing the same Web page. The

actual contents of these 77 Web pages were not

retrieved, they were merely tested (using HTTP

HEAD request). Of the 78 Web pages tested (in

cluding the home page), 19 of them were found to

be new-that is, they changed within the last 24

hours.

For Webmasters who prefer to work with a Web

interface than to type on a command line, the

WebWalker program can be configured to run as a

Common Gateway Interface (CGI) script. All that

needs to be done is to put the WebWalker program

under the cgi-bin directory at your local Web site,

and to prepare a Web page containing an HTML

form that can be used to submit task description to

your WebWalker. A sample home page for

WebWalker is shown in figure 7.2.

There was only one broken link at the top-level Ya

hoo infostructure during WebWalker's traversal.

Closer examination of the output shows that the

link was only temporarily broken, as indicated by

the 603 Timed Out response code. This is prob

ably due to Yahoo server overload and not because

of a dead link.

The following is the output from WebWalker using

the task file for traversing Nanofab project

infostructure located at Stanford's Center of Inte

grated Systems Web site:

Figure 7.2

WebWalker's Web User

Interface.

Netscape - JWcl.iWalkcr Robot I lomc Page)
file fdll ~lew !io l;tookmarks Qpllons IlJrectory

Web Walker Robot

Automated Web Maintenance

This fomt allows you.to .s~ecify!1e Vleb infostructure for Web Walker to perform Web maintenance. Web Walker performs
WWW traversal for mdiv1dua1 sites and tests for the integrity of all hyperlinks to external sites.

Nrune, , .. , , , , • , • I NRP Hoiae Page I
TopURL,,,,,,,,, jhttp!//vvv,111.ap,caJJl./nev.riders/

BoundURL, ..•• ,, lhttp;//wvv,ncp.com/navriders/

Exclude,, jhttp://vww.ncp.colD./cgi-bin/

ChangeY!ndow,,, F.,7=======
Expii:ellindow,,. l=O========<
l{a}(Oepth,,,,.,, /=4=,=======S
EeplyTo,, .. ,,., lvebmastar@ll\cp,coJJl.

Created by: Fah-Chun Cheong webmaster@agent.com.
© Copyright 1995 Agent Computing Inc. All tights reserved.

WebWalker: Your Web Maintenance Robot C h a p t e

l!elp

167

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 183 of 435

WebWalker/1,00 starting at Tue, 12 Sep 1995 10:53:20
Reading task specifications from /home/fcc/.webwalk

Starting Infostructure [Stanford crs Nanofab Home Page] at Tue, 12 Sep 1995 10:53:21

<, •• text ommitted ... >

Broken Links:
http://www-cis.stanford.edu/NanoNet/communications/lead/submission/three.html (404 Not Found)
http://www-cis.stanford.edu/NanoNet/communications/lead/completed.html (404 Not Found)
http://1WN1-cis.stanford.edu/Nan0Net/communications/lead/submission/one,html (404 Not Found)
http://www-cis.stanford.edu/NanoNet/communications/lead/vote,html (404 Not Found)
http://www.nnf.cornell.edu/NanoLine/NNF/Staff/HaroldCraighead.html (602 Connection Failed)
http://www.nnf.cornell.edu/ (602 connection Failed)
http://www-cis.stanford.edu/NanoNet/communications/lead/submission/two.html (404 Not Found)
http://www-cis.stanford.edu/NanoNet/communications/lead/started.html (404 Not Found)
http://www.nnf.cornell.edu/NanoLine/NNFPubs/nm/nm.html (602 Connection Failed)
http://www-cis.stanford.edu/NanoNet/communications/lead/modify.html (404 Not Found)

Redirected Links:
http:/ /v11wi. commerce. digital. com/palo-alto/chamber-of-commerce/home. html (302 Found)

Changed Links:
http://www.city.palo-alto.ca,us/home,html (200 OK)
Last-modified:

Summary of Results:

Traversed
Tested
Reused
Avoided
Untestable

Broken
Redirected
Changed 2
Expired 1

168

: References : Unique URLs : Local URLs :
: number pct : number pct : number pct :
: ·+· + :

35 19.23 33 52,38 33 66,00
61 33.52 62 98,41 50 100.00
91 50.00 0 0.00 0 0.00
0 0.00 0 0.00 0 0.00

I 30 16.48 I 1.59 I 0 0.00 I
I I I I

: + + :

10 5.49 10 15,87 7 14.00
0,55 1.59 0 0.00
0.55 1.59 0 0.00

I 0 0.00 I 0 0.00 I 0 0.00 I
I I I I

: ·+· + :

p a r tH Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 184 of 435

Local
Remote

Totals

I
I

140 76.92 l
42 23.08 l

50 79.37 l
13 20.63 :

50 100.00 l
0 0.00 :

: -+- + :

182 100.00 l 63 34.62 l 50 27.47 :

Finished Infostructure [Stanford CIS Nanofab Horne Page] at Tue, 12 Sep 1995 10:56:58

WebWalker/1.00 finished at Tue, 12 Sep 1995 12:56:58

WebWalker tested a total of 62 different Web

pages, of which 33 Web pages (including the home

page) were retrieved with full HTML contents for

further traversal. There were ten broken links, one

redirected link, and one changed link (within the

past two days, or 48 hours), in the Nanofab project

infostructure.

Closer examination reveals that of the ten broken

links, seven of them were actually dead links (that

is, 404 Not Found) while the remaining three were

inaccessible due to problems connecting with

Cornell's Web server at the www.nnf.cornell.edu

address (that is, 602 Connection Failed).

WebWalker Program
Organization

logically grouped together by purpose and function

into packages, which are shown in the following

table:

Packages Purpose

Configuration Setting configurable options

and parameters

Instruction

Avoidance

History

Traversal

Summary

Receiving input tasks from

task file

Respecting the robot exclu

sion standard

Keeping track of Web

traversal history

Traversing and testing an

infostructure

Collecting and displaying

summarizing statistics

External Library Calls

The WebWalker/1.00 program is written in about

1,800 lines of Perl code and consists of 40 subrou

tines, plus a main body. The full source code of the

WebWalker can be found in Appendix C.

For purpose of exposition and clarity, the

WebWalker program functions and variables are

In addition, selected subroutines from the follow

ing collection of packages belonging to the original

Perl library, as well as Roy Fielding's WWW library,

have been used in WebWalker 1.00:

WebWalker: Your Web Maintenance Robot ch apter
169

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 185 of 435

170

Function Called by
Perl Package WebWa/ker

getopts.pl Getopts

WWW.pl

wwwurl.pl

request and set_def_header

parse, absolute and get_site

wwwdates.pl wtime and get_gmtime

wwwhtml.pl extract_links

wwwurl.pl set_content

Web Walker Program
Call-Graph
The WebWalker program organization can be visu

alized with the aid of a subroutine call-graph

depicted in the following figure. In addition to show

ing how the subroutines are related to each other

(for example, via the caller/callee relationship), the

alignment of the subroutines into columns also in

dicates how the subroutines are grouped into pack
ages.

Traversal Avoidance Summary History Instruction

main
+-•••.......••......................••....••...............•...... usage
+- , .•••••.•.•••. , ••••.......•••.•.•••.•••.••........••......••.....•...... read_tasks
+- add_leaf
+- traverse_web

+- begin_summary
+- init_summary

+ - • • . . . • • • . remember
+- should_avoid

+- check_url
+- check_site

+- add_avoid
+- add_site

+- _•........•......... traversed
+- get url
+-••.... , .. recall
+-••.•... was_avoided
+- is_untestable
+- save_broken

+- is_local
+- save_redirect

+- is_local
+- save_changed

+- • • . . • . is_local
+- save_expired

+- is_local

- p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 186 of 435

+· traverse_link
+· , , , , , , get_url
+- slow_down
+· extract_links

+- is_html
+- decode

+ -•....••... , .. , • . • . . . • • • . . • • • • . store
+· , , , , , , , , , . , set_status

+· .. , , , .. , , , . , , was_tested
+ - . . • • • . • • • • • • • • • • . • • • tested

+- ••••.•••.....• , , get_url
+ • , , recall
+· is_local
+ · ...•••..•..... , . was_avoided
+ • is_ untestable
+- save_broken

+- test_link

+ • • is _local
+· save_redirect

+· , is_local
+- save_changed

+-•. , • is_local
+· save_expired

+ · •.• , is_local

+-••.•..••••..••....•........•..•••.... get_url
+· slow_down
+ • ••....•..••.••...... , , , ... , • store

+ · • ,•...•• , . , , . , , , , , ,••... set_status
+· should_traverse

+- should_avoid
+- ...•..••.•.. check_url

+- check_site
+- add_avoid

+· add_site
+. . . , , , , . , . , , , ... , , , . , , , , , . , , , , , is_ known
+ · • , , , • , , •• , , ...•••••...•••..•••••.•••...........•••. , , recall
+· , , , , , . get_url
+- is_html

+· , , , . , , , , .. , , , .. , , , , , , , , . , , set_status
+- •• , , , . , ••••• , , , , , •...••.•• , •••....••• , ,•••. , . get_url
+- , , , , , ..• , , , , . , , , , •• , , , •• , . , , , • , , ..•.••.•..••..... , reset_status

WebWalker: Your Web Maintenance Robot C h a p t e
171

r

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 187 of 435

+- •..•................................ end_summary
+- update_summary

+- was_avoided
+- was_tested
+- was_traversed
+- is_untestable
+- is_local

+- get_summary

As can be seen from the code listing, the Traversal

package is used by the main program via the

"traverse_web" subroutine (which is invoked ex

actly once for each infostructure to be examined).

The bulk of the work and processing logic resides

under the "traverse_web" subtree, which includes

both the Summary and History packages in their

entirety, plus almost all of the Avoidance package

(with the exception of the "add_leaf" subroutine

called directly from the main program).

It also can be noted that the Avoidance package is

self-contained and is used mainly by invoking the

"check_url" subroutine from the "should_avoid"

subroutine. The Summary package is used at sev

eral places throughout the body of the

"traverse_web" subroutine for marking the differ

ent points in time during the traversal of the

infostructure (for example, before starting and

after ending the traversal, as well as after having

finished traversing or testing a link). Unlike other

packages, which are better organized as hierarchi

cal trees of subroutines, the History package is all

flat and actually is a loose collection of self-con

tained subroutines that do not call out to other sub

routines.

Configuration Section
The configuration section allows users to config

ure options for setting up WebWalker according to

the local operating environment. The more impor

tant options are the following:

➔ The $Version parameter identifies to the desti

nation Web servers the specific version of

WebWalker that is being targeted at them.

➔ The $LibWWW parameter tells WebWalker

where to locate the Perl WWW library on the

client machine. WebWalker needs the library to

handle Web-related format and protocol
processings.

➔ $Loca1Network should be the network domain

that you consider to be local to your organiza

tion. In other words, a network request to sites

in this domain does not create any external net

work costs to your organization. Any periods in

the network domain name need to be escaped

with a backslash (for example, stanford\. com).

➔ The $Taskfile parameter tells WebWalker where

to locate the task file. WebWalker needs to

examine the task file to find out what

infostructures to visit.

172
p a r tll Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 188 of 435

For most purposes, configuring the above options

would be adequate to prepare WebWalker for op

eration. However, there are other configurable pa

rameters that WebWalker uses, and they are

described next.

Setting up WebWalker
There must be some ways to control the traversal

behavior of WebWalker. This can be accomplished

by means of three configurable parameters, which

together dictate that there must be at least a mini

mum of $BetweenTime seconds of elapsed time

in between cosecutive HTTP requests, and that a

long pause of $Pause Time seconds is required af

ter making a stream of $MaxConsec consecutive

requests to the same Web site.

The complete list of WebWalker configurable pa

rameters is shown in the following table.

Parameters

$Version

$LibWWW

Description

User-Agent identification for

the WebWalker WWW robot

Directory path that holds the

WWW library written in Perl

$Loca1Network Network domain that is

considered local

$TaskFile Default pathname of task

instruction file

$RobotsURL Standard URL that defines

access control for WWW

robots, defaults to

"/robots.txt"

$BaseURL The initial base URL to use if

TopURL is relative

WebWalker: Your Web Maintenance Robot

$MaxDepth

$Timeout

Default maximum traversal

depth

Maximum number of

seconds to wait for a HTTP

response

$MaxConsec Maximum consecutive

requests to any site before

a long pause

$Pause Time Duration of a long pause (in

seconds)

$BetweenTime Time required between any

two requests to the same

site (in seconds)lnstruction

Package

There must be a way for WebWalker to find out

what infostrutures it is supposed to visit. There are

are two ways of doing so:

➔ WebWalker looks up the task descriptions from

a task file when it is invoked from the com

mand line by the user or run as a batch pro

gram.

➔ WebWalker gets the task descriptions using the

Common Gateway Interface when WebWalker

is invoked as a CGI script by the Web server, in

response to a user submitting the task direc

tives thro,ugh an online HTML form using a Web

browser.

The instruction package is made up of variables

and functions that handle the processing of input

task descriptions, either described in the task file

or communicated through the Common Gateway

Interface. The variables in this package, as listed in

the following table, are used to hold the values of

task directives.

ch apter
173

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 189 of 435

Parameters Description

@TaskName Value of Name task

directive; specifies a

name with which to

identify the infostructure

@TaskTopURL Value of TopURL direc-

tive; specifies the starting

URL of the infostructure

to be traversed

@TaskBoundURL Value of BoundURL

directive; specifies the

prefix URL for bounding

the infostructure

@TaskChange Value of ChangeWindow

Window directive; specifies the

past number of days

within which a change

would be of interest

@TaskExpire Value of ExpireWindow

Window directive; specifies the

future number of days

within which a scheduled

expiration would be of

interest

@TaskExclude Value of Exclude direc-

tive; specifies the URL to

exclude (leaf) from this

task

Processing Tasks
The functions in this package print out proper us

age information on the command line, handle task

file processing, and implement the Common Gate

way Interface. These functions are listed in the fol

lowing table.

Function Description

usage Print usage information.

read_task Handle GET and POST meth

ods if WebWalker is used as a

CGI script.

read_tasks Read task descriptions from

task file.

Avoidance Package
There must be some ways to guide or restrict

WebWalker's scope of activity. Specifically, robot

operators might want WebWalker to exclude cer-.

tain U RLs from its traversal path and not visit there.

In addition, there might be certain infinite virtual

spaces that Webmasters at the target site would

want WebWalker to avoid.

The avoidance package consists of variables and

functions that implements various means of restrict

ing WebWalker's scope of activity. The robot ex
clusion standard is implemented here, and

WebWalker avoids all URLs disallowed to it.

WebWalker also does not retrieve the content of

any Web page that it has been told to exclude (by

means of the Exclude directive); it merely tests for

the document's existence. The variables of this

package are listed below.

Variables Descriptions

$SitesNum Number of sites visited

@SitesAddr Sites table containing Web

sites visited

%Sites Reverse sites table for dupli

cates detection

$AvoidNum Number of URLs to be avoided

174
p a t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 190 of 435

@AvoidURL Avoids table containing URL's

that are not to be tested

$LeafNum Number of nodes in leaf table

@LeafURL Leaf table of nodes to exclude

(leaf)

Avoiding Blackholes
The functions of this package implement various

means of restricting the scope of WebWalker's tra

versal (including the robot exclusion standard), and

keeps track of which sites it has visited (so that it

does not retrieve the robot exclusion file more than

once per site). The functions are listed in the fol

lowing table:

Function Description

check_url Check the given URL for any

restrictions on its access.

check_site Has this site already been

checked for restrictions? If not,

perform a check using the

robot exclusion protocol and

update both the sites table and

the avoids table accordingly.

add_site Add the given site to the sites

table while detecting duplica-

tion.

add_avoid Add the given URL to the

avoids table while checking for

duplication and overlap.

add_leaf Add the given URL to the leaf

table for the duration of the

current infostructure traversal

while checking for duplication

and overlap.

WebWalker: Your Web Maintenance Robot

History Package
A Web robot has to keep track of all the places it

has visited in the past so it doesn't revisit the same

URL repeatedly and thus waste valuable resources.

More importantly, a robot's capability to keep a his

tory of where it's been on the Web enables it to

extricate itself when trapped in an infinite loop

embedded deep inside the Web.

The history package consists of variables and func

tions that allow WebWalker to record and recall

where it has been on the Web. The following table

lists the variables used in this package, most of

which are actually arrays that hold the results of

past visitations.

Variables Description

$Vis Number Number of URL's visited

since process start

%Visited Associative array of URL's

visited mapped to @Vis*

index

@VisURL URL of node (maps @Vis*

index to URL visited)

@Vis Status Status of a seen node

@VisRespCode Server response code from

last access

@VisConType MIME Content-type of

response

@Vis Redirect Redirected URL (from a 302

Moved response)

@Vis Title Title text from headers or

last traversal

continues

ch apter
175

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 191 of 435

Variables Description

@VisOwner Owner name from headers

or last traversal

@Vis Reply To Reply-To address from

headers or last traversal

@VisLastMod Last-modified date from

headers

@Vis Expires Expires date from headers

@VislnTask Has the URL been seen

during the current task?

@Vis Local URL considered to be local

to this network?

Remembering Past Visits
The functions listed in the following table imple

ment WebWalker's memory of past history. The

remember function is used to write into history the

results of making a HTTP GET request. The store

function is used to write into history the results of

a HTTP HEAD request. The recall function retrieves

from history results of past visitations.

Status updates to history are handled with

set_status and reset_status functions. The remain

ing functions handle history-related status queries

to various parts of the infostructure, such as

whether specific nodes in the infostructure were

seen but not yet tested, avoided, to be excluded,

to be tested, to be traversed, or already traversed.

Function

set_status

Description

Sets or updates the status of

the given node in history

reset_status Resets the status of the given

node in history so that it is no

longer considered traversed

remember Remembers the URL in

history by either creating a

history record or update the

node status as appropriate

store Stores node history from

meta information held in

headers, along with status

and response code from

recent WWW request

recall Recalls meta information held

in history for the given node

was_avoided Indicates if the given node

was previously avoided

was_tested Indicates if the given node

was previously tested

is_untestable Indicates if the given node is

untestable

is_known Indicates if the given node will

be, or has already been,

checked for traversal status

is_traversing Indicates if the given node will

be, or has been, traversed

was_travarsed Indicates if the given node

was ·traversed

is_local

get_url

Indicates if the given node is

considered local

Retrieves the stored URL of

the given node

176
p a tll Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 192 of 435

Traversal Package
The traversal package consists of variables and func

tions that WebWalker needs for actually traversing

and testing the Web infostructure. The variables

are listed in the table below. Some of the variables

are actually arrays that implement a queue data

structure needed for WebWalker's breadth-first tra

versal strategy.

Variables Description

$CurConsec Current number of consecutive

requests to a site

$PrevSite Site of the last network request

$Prevlime lime of the last network

request

@TravNodes Nodes that we have yet to

traverse for this task

@TravDepth Nodes' traversal depth

@TravParent Nodes' parent's URL

@Testlinks Absolute URL's (without query

or tag)

@TestType Anchor type (for example, Link,

Image, Query, Redirect)

WebWalker keeps track of the number of consecu

tive requests ($CurConsec) to the latest site

($PrevSite) and records the time ($Prevlime) when

the previous request was last made. With such in

formation, WebWalker would know when and how

to crawl slowly and not overload any one site with

a series of rapid-fire HTTP requests.

Roaming the Web
The functions listed in the following table imple

ment the actual breadth-first strategy and

WebWalker: Your Web Maintenance Robot

mechanism that WebWalker uses to crawl on the

Web. The top-level function is traverse_web, which

in turn calls the traverse_link to perform a HTTP

GET reuest, or calls the tesUink functions to per

form a HTTP HEAD request. HTML documents re

trieved by WebWalker are processed by the

extract_links function to find all hyperlinks needed

for future traversal and testing.

Functions

traverse_web

should_avoid

Description

Traverses entire

infostructure in breadth

first order, bounded by a

URL-based task bound

prefix and maximum

trav.ersal depth.

Indicates if the node

should be avoided or has

already been avoided.

should_traverse Indicates if the node

test_link

traverse_link

should be traversed for the

current infostructure

Tests the URL via HTTP

HEAD request. Stores

meta information in history

and update node status.

Traverses URL via HTTP

GET request. Stores meta

information in history and

update node status.

Extracts links from headers

and document HTML

content to be queued for

further traversal.

continues

ch apter
177

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 193 of 435

Functions

extract_links

slow_down

is_html

decode

Description

Extracts links and docu

ment meta information

from headers and HTML

body content, and deposits

it in queue for further

traversal.

Makes sure the robot is

not making too many

consecutive requests

and/or making too many

rapid-fire requests to a

single site.

Determines if the Web

document is in HTML,

based upon its URL suffix

and header content-type.

Translates encoded

content into its decoded

form, usually to decom

press a compressed Web

document.

Summary Package
The summary package consists of a set of variables

that are used as counters for keeping track of sta

tistical data related to the current Web infostructure

under investigation. These counters are classified

into three categories, $Hrefs*, $Nodes*, and

$Local*. They are used to keep track of statistical

information related to occurrences of HTTP

references (there could be multiple such occur

rences with the same URL), unique URLs, and

local URLs.

A set of associative arrays (%BrokenNodes,

% RedirectNodes, %ChangedNodes, and

% ExpiredNodes) is used for the purpose of collect

ing and displaying information related to broken or

redirected links, and for keeping track of UR Ls that

have recently been changed or have expired. In this

way, WebWalker can easily generate useful reports

on problem areas that have been identified in the

infostructure. The next table describes the variables

used in the summary package.

Variables Description

%BrokenNodes URL information on broken

links indexed by node

%RedirectNodes URL information on

redirected links indexed by

node

%ChangedNodes URL information on

changed nodes indexed by

node

%ExpiredNodes URL information on

$HrefsTrav

$HrefsTest

expired nodes indexed by

node

Traversed URL reference

count

Tested URL reference

count

178
p a r t II Web Robot Construction

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 194 of 435

$HrefsReus Reused URL reference $NodesChg Unique changed node count
count

$Nodes Exp Unique expired node count
$HrefsAvd Avoided URL reference

count
$NodesRmt Unique remote node count

$HrefsUnt Untestable URL reference
$Loca1Trav Local traversed node count

count $Loca1Test Local tested node count

$HrefsBroke Broken URL reference $Local Reus Local reused node count

count
$Loca1Avd Local avoided node count

$HrefsRedir Redirected URL reference
$Loca1Unt Local untestable node count

count
$Local Broke Local broken node count

$HrefsChg Changed URL reference

count $Loca1Redir Local redirected node count

$HrefsExp Expired URL reference $Loca1Chg Local changed node count

count $Local Exp Local expired node count

$HrefsLoc Local URL reference count $Tota1Hrefs Total URL reference count

$HrefsRmt Remote URL reference $Tota1Nodes Total unique node count
count

$Total Local Total local node count
$NodesTrav Unique traversed node

count Statistics Table
$Nodes Test Unique tested node count The following code template indicates how the sta-

$Nodes Reus Unique reused node count
tistical counters are used for displaying the fitness

of the infostructure in a summary of results table.
$NodesAvd Unique avoided node

count

$NodesUnt Unique untestable node

count

$NodesBroke Unique broken node count

$NodesRedir Unique redirected node

count

WebWalker: Your Web Maintenance Robot ch apter
179

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 195 of 435

Summary of Results:

Traversed
Tested
Reused
Avoided
Untestable

Broken
Redirected
Changed
Expired

Local
Remote

Totals

: References
: number

: Unique URLs : Local URLs
: number : number

: -+-.- -+-
$HrefsTrav $NodesTrav $Loca1Trav
$HrefsTest $NodesTest $Local Test
$HrefsReus
$HrefsAvd

$NodesReus
$NodesAvd

$Loca1Reus
$Loca1Avd

: $HrefsUnt $NodesUnt $Loca1Unt
: -+-•...... -+-•.......

$HrefsBroke $NodesBroke $Loca1Broke
$HrefsRedir $NodesRedir $Loca1Redir
$HrefsChg $NodesChg $Loca1Chg
$HrefsExp : $NodesExp : $Loca1Exp
.............. -+-•. -+-

$HrefsLoc
$HrefsRmt

: $Tota1Local
: $NodesRmt

: $Tota1Local
0

.............. ·+· + I

$Tota1Hrefs : $Tota1Nodes : $Tota1Local

Reporting Statistics
The summary package also includes a set of func

tions to initialize, update, manipulate, generate, and

print the corresponding statistical results derived

from statistics counters in the form of a summary

table. This set of functions is listed in the following

table.

Functions Description

begin_summary Initializes counters for

statistical summary and

data structures for

diagnostic information

about the infostructure.

init_summary Initializes all counters for

statistical results summary.

tested

traversed

save_broken

180
p a r t n Web Robot Construction

Updates all reference

counters for statistical

summary and collects

diagnostic information

about the tested link as

appropriate and prints the

http response message.

Collects diagnostic

information about the

·traversed link as appropri

ate and prints the http

response message.

Saves the URL and related

information about the

broken link. Updates the

relevant node-broken

counters as appropriate.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 196 of 435

save_redirect Saves URL and related

information about the

redirected link. Updates

relevant node-redirected

counters as appropriate.

save_changed Saves URL and related

save_expired

information about the

changed link. Updates

relevant node-changed

counters as appropriate.

Saves URL and related

information about the

expired link. Updates

relevant node-expired

counters as appropriate.

end_summary Prints diagnostic results

and statistical summary

table.

update_summary Updates counters for

statistical summary table.

get_summary Generates statistical

summary of results in a

table.

Growing into the Future
The World Wide Web is currently experiencing phe

nomenal growth with no sign of abatement. Not

only are people authoring more HTML pages today

than yesterday, there will be many more Web sites

coming up tomorrow. At this rate of growth, the

problem of managing and maintaining complex Web

infostructures is increasingly a difficult one.

If this problem is not satisfactorily resolved soon

enough, large portions of the global Web

WebWalker: Your Web Maintenance Robot

infostructure can become seriously corrupted and

the entire Web edifice can easily collapse under

the weight of tons of dead links. Such misfortunes

can seriously reduce the usefulness of the Web.

Fortunately, there are many good spiders that can

perform automated Web maintenance quite com

petently. In addition to MOMspider and WebWalker,

there are also other Web maintenance spiders like

the HTML Analyzer, EIT Link Verifier, ChURL,

Weblayers, and WebWatch robots, many of which

are freely available to the public. For now, it appears

that the problem has at least been contained.

All of these spiders are not very much different at

the core. They all do one thing well: automated tra

versal of the Web. As such, they are also not much

different from resource discovery spiders that can

handle keyword-based searches of the Web (which

we have studied previously in chapter 4).

As the Web continues to grow, we can expect to

see many more new Web-wandering spiders that

can perform a variety of innovative and interesting

new services for its users. It is hoped that

WebWalker's simple design will better illustrate

how the core traversal engine of new Web robots

can be constructed.

Fo~ the advanced readers who are interested

in a Multi-Owner Maintenance spider, Roy

Fielding's M0Mspider program source code is

freely available from the following distribution sites:

http://www.ics.uci.edu/WebSoft/MOMspider/

ftp://liege.ics.uci.edu/pub/arcadia/MOMspider/

c h a p t e r
181

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 197 of 435

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 198 of 435

VMware - Exhibit 1014

VMware v. IV | - |PR2020-00470

Page 198 of 435

p a r t

Agents and Money on the Net

8 .Web Transaction Security ... ; 185

9 Electronic. Cash and Payment Services .. 205

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 199 of 435

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 200 of 435

Exhi it 1014

VMware V. IV | - |PR2020-00470

VMware

Page 200 of 435

c h a e r

Web Transaction Security

advent of electronic commerce on the Internet

to a large extent facilitated by the launch of the

arid Wide Web. In the realm of agents, there are

currently hordes of spiders, wanderers, brokers and

bots on the Web performing various tasks for their

human clients-for example, searching for informa

tion, maintaining Web inf~structure, brokering for

buyers and sellers, as well as finding the best

bargain for books and CDs online.

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 201 of 435

For the class of agents that are designed for elec

tronic commerce in a digital economy, for example,

the brokers and bargain hunters, there must be

some measures of security built into the basic trans

action-based communications infrastructure for

them to function reliably. In particular, assurance of

secure transactions is required for online shopping

through the World Wide Web, the sale of informa

tion over the Internet, as well as the execution of

certain business operations like online ticket reser

vations. Despite the growing interest in the Internet

and World Wide Web, the commercial potential has

been held back by competing and incompatible

security approaches.

This chapter examines the various notions of secu

rity. It also discusses the use of cryptography and

digital signatures as solutions for achieving specific

security goals, briefly exploring their colorful his

tory in the process. Finally, this chapter explains

two specific approaches that have been developed

for secure transaction on the World Wide Web: SSL

and Secure HTTP. It is anticipated that a future gen

eration of agents on the Internet, and especially on

the Web, shall incorporate these fundamental

techologies and be able to interoperate across vari

ous economic domains.

Concepts of Security
Internet Security consists of the following two dis

tinct areas:

➔ Access security. This refers to the capability of

an organization to protect its computers,

memory, disk, printers, and other computing

equipment from unauthorized use. Standard

practice is usually a combination of techniques

that include the use of authentication software

(for example, MIT's Kerberos (SNS 1988)), in

stallation of proxies on Internet "firewalls,"

stricter access control with passwords, and dili

gent enforcement of security policies.

➔ Transaction security. This refers to the capability

of two entities on the Internet to conduct a

transaction privately with the help of crypto

graphic systems while being authenticated with

properly certified digital signatures as needed.

SSL and Secure HTTP are mechanisms for

transaction security on the World Wide Web.

Access security is already well covered in a

number of other books. For example, Firewalls

and Internet Security, by William Cheswick

and Steven Bellovin, or Internet Firewalls and Network

Security, by Karanjit Siyan and Chris Hare, are recommended

books on the subject.

A number of transaction security issues arise be

tween Web clients and servers, several of which

are addressed in the context of SSL and Secure

HTTP later in this chapter. In general, transaction

security on the Internet is concerned with the fol

lowing fundamental goals:

➔ Privacy

➔ Authentication

➔ Integrity

186 p a r t Ill Agents and Money on the Net

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 202 of 435

Figure 8.1

Ivan eavesdrops on a

message sent from Alice

to Bob over an insecure

channel.

Sender
Allee

Privacy: Keeping Private
Messages Private

Message

Hello
Bob!

The purpose of privacy is to ensure that informa

tion is kept hidden from anyone for whom it is not

intended. Privacy is particularly important on the

Internet and the World Wide Web when transmis

sion of sensitive data, such as credit card numbers,

is involved. In addition, privacy is particularly impor

tant on-the Internet due to the insecure nature of

the communications channel-a loose confedera

tion of machines and networks under different au

thorities with no trusted, centralized administration.

A data packet or an e-mail message sent over the

Internet usually is routed through multiple hosts

before arriving at the final destination. During this

journey, the data packet or e-mail's unprotected con

tent is copied from host to host and can be easily

eavesdropped by a third party. This is illustrated in

figure 8.1, where a message sent from Alice to Bob

is eavesdropped by Ivan as it makes its way across

the network.

The need for sensitive data to be protected from

prying eyes is further amplified when you consider

Web Transaction Securit

Eavesdropper
Ivan

Oo
Altered

Message
Receiver

Bob

~~

*
the types of data that could get onto the wire in the

not-too-distant future: personal income tax returns,

employee records, stock transactions, bank

statements, and so on. Encryption, or the transfor

mation of data into a form unreadable by anyone

without a secret key, can be used to ensure private

communication over an insecure channel. The origi

nal m~ssage, or p/aintext, is first encrypted with a

secret password, called a secret key, by the sender

prior to transmission.

As illustrated in figure 8.2, privacy is ensured by

allowing only the encrypted form of the message,

or ciphertext, to be sent to the receiver. The eaves

dropper is not able to make sense out of the

ciphertext because it is unintelligible and bears no

resemblance to the original plaintext. In a secure

cryptosystem, the original plaintext message can

not be recovered except by using the secret key.

The receiver with the secret key decrypts the

ciphertext to'recover the original plaintext message,

which he then can read. This is called secret-key

cryptosystem, or symmetric cryptosystem, because

a single secret key is used for both encryption and

decryption.

ch apter
187

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 203 of 435

Secret Secret
Figure 8.2 Key Key

Original Encrypted Recovered The message sent over
Message Message Message an insecure channel is "Plalntext" "Clphertext" "P/alntext"

encrypted so that

~Q Encryption Ql!]Q Decryption Q~ eavesdroppers cannot Algorithm Algorithm

Authentication: Proving You Are
Who You Claim to Be
In networked digital communications, the receiver

of a message needs to be confident of the identity

of the sender. Given the insecure nature of

communications over the Internet, the perils of

unauthenticated messages are not to be underes

timated. As illustrated in figure 8.3, an imposter on

the Internet can easily impersonate another person

without her knowledge and send fake messages

in her name to an unsuspecting recipient, some

times with grave consequences.

The World Wide Web provides limited capabilities

for user identification and client/server authentica

tion. For commercial use of the Web, client and

server need to verify and validate each other's iden

tity in order to ensure that information that flows

across the Internet is authentic. When press releases

Sender Interceptor
Alice Message Ivan

~ ¢ ¢ Hello
Bob!

decipher the message

contents.

and official announcements are distributed over the

World Wide Web, for example, the client needs to

be sure of their place of origin. Similarly, in the case

of home banking or stock transaction over the World

Wide Web, the Web server needs to ensure that

the clients with whom it is transacting are who they

claim to be. It is equally important that a form of

authentication be used that cannot be faked. Digital

signatures are a recent development answering to

the need for authentication in the realm of networked

digital communications.

Digital signatures play a role for digital documents

similar to that played by handwritten signatures for

printed documents. The signature is an unforgeable

piece of data asserting that the named person wrote

or otherwise agreed to the document to which the

signature is attached. The recipient, as well as a

third party, can verify that the document did indeed

originate from the person whose signature is

Altered Receiver
Message Bob Figure 8.3

i~ Ivan impersonates as

*
Alice and sends an ill-

intended message to

Bob.

188
p a r t Ill Agents and Money on the Net

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 204 of 435

attached. A secure digital signature system con

sists of these parts:

➔ A method of signing a document such that forg

ery is unfeasible.

➔ A method of verifying that a signature actually

was generated by whomever it represents.

Digital signatures will be discussed in a later

section.

Integrity: Ensuring Message
Content Remains Unaltered
With electronic commerce on the Internet, data in

tegrity is critical. When product catalogs are dis

tributed over the World Wide Web, for example,

the recipient needs to be sure that the listed prices

are authentic and have not been secretly altered by

potentially unscrupulous competitors. Data integ

rity is critical for many other things as well. The

message contents of official academic documents

in electronic form from universities and colleges,

for example, must not be modified. As figure 8.4

illustrates, however, there is real danger of an un

protected message being intercepted as it travels

on the Internet. Furthermore, the message contents

could be tampered with maliciously, with potentially

grave consequences.

Figure 8.4

Ivan intercepts a

message sent from

Alice to Bob and alters it

with less than noble

intention.

Snoozing

~
Imposter

Ivan

Web Transaction Security

A valid digital signature on a message ensures that

the message has not been altered since it was

signed. Furthermore, secure digital signatures can

not be repudiated; the signer of a message cannot

later disown it by claiming the signature or the

message was forged. In this way, a digital signa

ture acts like a tamper-proof seal testifying to the

integrity of the message.

Before I discuss how encryption and digital signa

tures are used to implement secure transactions in

a digital economy populated by agents, a brief tour

of classical cryptography is in order.

Brief Tour of Classical
Cryptography
Cryptography-the science of secret-writing to hide

the meaning of messages-has been around for

millennia. Cryptography is an ancient art first car

ried out in the form of hieroglyphic inscriptions on

Egyptian tombs of noble men because it was be

lieved that cryptic epitaphs induce an aura of mys

tic powers. Throughout the ages, cryptography was

fulfilling its more important role of protecting vital

communications through hostile environments, for

both military and political purposes. During Roman

Fake
Message

Fake
Message

Receiver
Bob

~~

¼
ch apter

189

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 205 of 435

times, Julius Caesar was known to have used the

famous Caesar cipher for protecting military com

munications from Gaul to Rome. In the sixteenth

century, Mary, Queen of Scots, lost her life after

lending her support to a failed political coup, has

tened in part by insecure cryptography. She was

convicted for high treason and was decapitated af

ter an incriminating letter sent from her prison was

intercepted and deciphered.

In the modern era, the invention of the telegraph

and radio has brought instantaneous communica

tions to the army. Without the use of cryptography,

communications using these newly invented tech

nologies would have been easily compromised and

rendered worse than useless. After all, telegraph

lines can be wiretapped (as occurred during the Civil

War on both the Confederate and Union troops),

and radio waves can be intercepted simply by tun

ing in with the right antenna.

An excellent history of cryptography can be

found in the book The Codebreakers, by David

Kahn (1967). An introduction to modern

cryptography can be found in Ron Rivest's 1990 article,

"Cryptography," as well as in "Modern Cryptography," by

G. Brassard (1988). A highly readable account of various

developments in cryptography up to the present day can be

found in Simson Garfinkels book entitled PGP: Pretty Good

Privacy(1995).

The Role of NSA
During World War 11, the first digital computers were

developed by the Allies to crack the Germans'

Enigma code under the brilliant leadership of Alan

Turing (Hodges 1983; Kahn 1991). After the war,

the world's cryptographic activities became concen

trated in the National Security Agency (NSA}, a

highly secretive branch of the U.S. Department of

Defense that was created by order of President

Harry Truman in 1952. Located a half-hour drive from

Washington D.C. at Fort Meade, Maryland, the

agency's existence was kept secret for many years.

In fact, it was rumored that NSA actually stood for

"No Such Agency" or "Never Say Anything."

It is widely believed that NSA's classified charter is

to intercept and decode all foreign communications

of interest to the security of the U.S. The agency

operates a global intelligence network, employs a

host of top-notch cryptographers, and is always

eager to have the world's fastest computer for

breaking codes (Bamford 1982). To prevent poten

tial national enemies from employing encryption

methods too strong for the NSA to crack, the NSA

has an interest in slowing the spread of publicly

available cryptography. As a result, the NSA is

widely believed to have followed policies with the

practical effect of weakening and limiting publicly

available crytographic tools. As a premier crypto

graphic government agency, the NSA has huge

resources to exert a profound influence on the de

velopment and use of cryptography in the U.S., with

potentially world-wide repurcussions.

Development of Data Encryption
Standard (DES)
The proliferation of digital computing equipment in

the decades after World War II led private firms

and individuals to demand security for stored com

puter files and electronically transmitted messages.

190
p a r t HI Agents and Money on the Net

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 206 of 435

r

To meet this demand, private researchers began to

invade the highly technical realms of cryptography

that had long been a government monopoly (Kahn

1983). In the late 1960s, IBM set up a cryptographic

research group at its Yorktown Heights research

laboratory to develop a cipher code-named Lucifer,

which it promptly sold to Lloyd's of London for use

in a cash-dispensing system. Spurred by its initial

success, IBM set about to transform Lucifer into a

highly marketable commodity. By 197 4, the cipher

was ready for market. At the time, there also were

several other companies developing and selling

cryptographic products, and none of them could

interoperate.

At around the same time, the National Bureau of

Standards (NBS), later to be renamed National In

stitute of Standards and Technology (NIST), began

to study government and civilian need for computer

security. NBS concluded that the nation could ben

efit from using a single data encryption standard

for the purpose of storing and transmitting unclas

sified information. In response to a request from

NBS for a proposal, a version of the Lucifer algo

rithm, which was weakened in some ways and

strengthened in other ways by the NSA, was sub

mitted as a candidate. NBS accepted the resulting

algorithm in 1975 and formally adopted it as the

Data Encryption Standard (DES) in 1976 for use in

all classified government communications. The

details of DES can be found in the official FIPS pub

lication (1988).

Problems with DES were widely acknowledged as

soon as the standard was first proposed. DES was

made just strong enough to withstand commercial

attempts to break it, yet weak enough to yield to

government crypt analysis. In keeping with rapid

Web Transaction Security

advances in computing speed over the years, how

ever, DES has been strengthened with longer keys,

larger block sizes, and more rounds of encryption.

Variations such as the triple-DES now are in com

mon use. More recent algorithms such as IDEA (In

ternational Data Encryption Algorithm) (LM 1991),

RC2, and RC4 (RC for Rivest Code) also have been

popular.

Development of Public-Key
Cryptography
In the early 1970s, a growing awareness of the need

for data encryption ·in digital communications

coupled with a sense of urgency brought on by the

imminent deployment of DES (which many com

puter scientists abhorred) led to a series of surpris

ing breakthroughs in cryptographic research.

Problems with Secret Keys
The traditional approach to cryptography, also called

secret-key cryptography, is based upon the sender

and receiver of a message sharing common knowl

edge of the same secret key. As illustrated previ

ously in figure 8.2, this secret key is used to both

encrypt and decrypt the message. Secret-key cryp

tography, ho,wever, has a fundamental problem:

how to get both the sen_der and the receiver to agree

on a secret key without a third party finding out.

If the sender and the receiver are at separate physi

cal locations, they must trust a courier, the phone

system, the computer network, or some other

means of transmission not to disclose the secret

key being communicated. Anyone who overhears

ch apter
191

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 207 of 435

or intercepts the key in transit can later decipher all

messages encrypted using that key, and future

communications between the two parties are

compromised.

'Key Management
The generation, distribution, and storage of keys is

called key management. Secret-key cryptography

often has difficulty providing secure key manage

ment. For many years, the U.S. government used

a key distribution center to generate and distribute

keys to any pair of individuals who wanted to com

municate. The key transmission method was crude

but simple: Cryptographic keys were placed in

locked briefcases that were handcuffed to couriers

who physically transported them from Washington

to embassies and consulates around the world.

In 1976, two researchers at Stanford University,

Whitfield Diffie and Martin Hellman, devised a dev

ilishly clever technique that enables two communi

cating parties to derive a cryptographic session key

in such a way that a snooping third party cannot

deduce the key's value. The session key then can

be used in a secret-key algorithm such as DES. The

Diffie-Hellman algorithm requires that the two com

municating parties actively participate in carrying

out the key exchange protocol at the same time.

This technique works great for two parties talking

over the telephone but is otherwise not practicable

for asynchronous modes of communication, such

as electronic mail.

The RSA Alternative
In 1977, three scientists at MIT's Laboratory for

Computer Science, Ron Rivest, Adi Shamir, and Len

Adleman, refined Diffie and Hellman's idea of se

cure key exchange and invented what came to be

known as the RSA public-key cryptosystem. The

name RSA stands for its developers, Rivest, Shamir,

and Adleman. As an improvement over the Diffie

Hellman key exchange system, RSA requires no

active participation between the sender perform

ing the encryption and the receiver performing the

decryption. Each person gets a pair of keys, called

the public key and the private key. Each person's

public key is published while his private key is kept

secret. All communications involve only public keys;

no private keys are transmitted or shared. Suppose,

for example, that Alice wants to send a message

to Bob. She looks up Bob's public key in a direc

tory, uses it to encrypt the message, and sends

the message. Bob then uses his private key to de

crypt the message and read it. An eavesdropper

without the private key cannot decipher the mes

sage. This is illustrated in figure 8.5.

Because there is no need for the sender and the

receiver to share secret information, it is no longer

necessary to trust a communications channel to be

secure against eavesdropping. Furthermore, the

two communicating parties do not have to know

each other or have any type of previous communi

cation. Anyone, for example, can send a confiden

tial message to Bob using only Bob's public key,

without requiri.ng any prior arrangement with Bob.

The RSA cryptosystem is based on an amazingly

simple number-theoretic idea that has been able to

resist all cryptanalytic attacks. The idea is that

although it is easy to multiply two large prime num

bers, it is extremely difficult to factorize their prod

uct. Thus the product can be publicized and used

as the public encryption key. The primes

192
p a r t IH Agents and Money on the Net

VMware - Exhibit 1014
VMware v. IV I - IPR2020-00470

Page 208 of 435

