Process Migration

DEJAN S. MILOJICIC
HP Labs

FRED DOUGLIS
AT&T Labs—Research

YVES PAINDAVEINE

TOG Research Institute

RICHARD WHEELER
EMC

AND

SONGNIAN ZHOU

University of Toronto and Platform Computing

Process migration is the act of transferring a process between two machines. It enables
dynamic load distribution, fault resilience, eased system administration, and data
access locality. Despite these goals and ongoing research efforts, migration has not
achieved widespread use. With the increasing deployment of distributed systems in
general, and distributed operating systems in particular, process migration is again
receiving more attention in both research and product development. As
high-performance facilities shift from supercomputers to networks of workstations, and
with the ever-increasing role of the World Wide Web, we expect migration to play a
more important role and eventually to be widely adopted.

This survey reviews the field of process migration by summarizing the key concepts
and giving an overview of the most important implementations. Design and
implementation issues of process migration are analyzed in general, and then revisited
for each of the case studies described: MOSIX, Sprite, Mach, and Load Sharing Facility.
The benefits and drawbacks of process migration depend on the details of
implementation and, therefore, this paper focuses on practical matters. This survey will
help in understanding the potentials of process migration and why it has not caught on.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems—network operating systems; D.4.7 [Operating Systems]:
Organization and Design—distributed systems; D.4.8 [Operating Systems]:
Performance—measurements; D.4.2 [Operating Systems]: Storage Management—
distributed memories

General Terms: Design, Experimentation

Additional Key Words and Phrases: Process migration, distributed systems, distributed
operating systems, load distribution

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.

©2001 ACM 0360-0300/01/0900-0241 $5.00

ACM Computing Surveys, Vol. 32, No. 3, September 2000, pp. 241-299.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

242

1. INTRODUCTION
Organization of the Paper
2. BACKGROUND
2.1. Terminology
2.2. Target Architectures
2.3. Goals
2.4. Application Taxonomy
2.5. Migration Algorithm
2.6. System Requirements for Migration
2.7. Load Information Management
2.8. Distributed Scheduling
2.9. Alternatives to Process Migration
3. CHARACTERISTICS
3.1. Complexity and Operating
System Support
3.2. Performance
3.3. Transparency
3.4. Fault Resilience
3.5. Scalability
3.6. Heterogeneity
3.7. Summary
4. EXAMPLES
4.1. Early Work
4.2. Transparent Migration in
UNIX-like Systems
4.3. OS with Message-Passing Interface
4.4, Microkernels
4.5. User-space Migrations
4.6. Application-specific Migration
4.7. Mobile Objects
4.8. Mobile Agents
5. CASE STUDIES
5.1. MOSIX
5.2. Sprite
5.3. Mach
5.4. LSF
6. COMPARISON
7. WHY PROCESS MIGRATION
HAS NOT CAUGHT ON
7.1. Case Analysis
7.2. Misconceptions
7.3. True Barriers to Migration Adoption
7.4. How these Barriers Might be Overcome
8. SUMMARY AND FURTHER RESEARCH
ACKNOWLEDGMENTS
REFERENCES

1. INTRODUCTION

A process is an operating system ab-
straction representing an instance of a
running computer program. Process mi-
gration is the act of transferring a pro-

DOCKET

_ ARM

D. S. Milojicié et al.

cess between two machines during its
execution. Several implementations have
been built for different operating systems,
including MOSIX [Barak and Litman,
1985], V [Cheriton, 1988], Accent [Rashid
and Robertson, 1981], Sprite [Ousterhout
et al., 1988], Mach [Accetta et al., 1986],
and OSF/1 AD TNC [Zajcew et al., 1993].
In addition, some systems provide mech-
anisms that checkpoint active processes
and resume their execution in essentially
the same state on another machine, in-
cluding Condor [Litzkow et al., 1988] and
Load Sharing Facility (LSF) [Zhou et al.,
1994]. Process migration enables:

* dynamic load distribution, by mi-
grating processes from overloaded nodes
to less loaded ones,

» fault resilience, by migrating pro-
cesses from nodes that may have expe-
rienced a partial failure,

* improved system administration, by
migrating processes from the nodes that
are about to be shut down or otherwise
made unavailable, and

» data access locality, by migrating pro-
cesses closer to the source of some data.

Despite these goals and ongoing re-
search efforts, migration has not achieved
widespread use. One reason for this is the
complexity of adding transparent migra-
tion to systems originally designed to run
stand-alone, since designing new systems
with migration in mind from the begin-
ning is not a realistic option anymore. An-
other reason is that there has not been a
compelling commercial argument for op-
erating system vendors to support process
migration. Checkpoint-restart approaches
offer a compromise here, since they can
run on more loosely-coupled systems by
restricting the types of processes that can
migrate.

In spite of these barriers, process mi-
gration continues to attract research. We
believe that the main reason is the po-
tentials offered by mobility as well as
the attraction to hard problems, so in-
herent to the research community. There
have been many different goals and
approaches to process migration because

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Process Migration

of the potentials migration can offer to
different applications (see Section 2.3 on
goals, Section 4 on approaches, and Sec-
tion 2.4 on applications).

With the increasing deployment of dis-
tributed systems in general, and dis-
tributed operating systems in particular,
the interest in process migration is again
on the rise both in research and in prod-
uct development. As high-performance fa-
cilities shift from supercomputers to Net-
works of Workstations (NOW) [Anderson
et al., 1995] and large-scale distributed
systems, we expect migration to play a
more important role and eventually gain
wider acceptance.

Operating systems developers in in-
dustry have considered supporting pro-
cess migration, for example Solaris MC
[Khalidi et al., 1996], but thus far the
availability of process migration in com-
mercial systems is non-existent as we
describe below. Checkpoint-restart sys-
tems are becoming increasingly deployed
for long-running jobs. Finally, techniques
originally developed for process migration
have been employed in developing mobile
agents on the World Wide Web. Recent in-
terpreted programming languages, such
as Java [Gosling et al., 1996], Telescript
[White, 1996] and Tcl/Tk [Ousterhout,
1994] provide additional support for agent
mobility.

There exist a few books that discuss
process migration [Goscinski, 1991; Barak
et al 1993 Singhal and Shivaratri, 1994;

i , 1999]; a number of sur-
veys [Smith, 1988; Eskicioglu, 1990; Nut-
tal, 1994], though none as detailed as
this survey; and Ph.D. theses that deal
directly with migration [Theimer et al.,
1985; Zayas, 1987a; Lu, 1988; Douglis,
1990; Philippe, 1993; Miloji¢ié¢, 1993c¢; Zhu,
1992; Roush, 1995], or that are related
to migration [Dannenberg, 1982; Nichols,
1990; Tracey, 1991; Chapin, 1993; Knabe,
1995; Jacqmot, 1996].

This survey reviews the field of pro-
cess migration by summarizing the key
concepts and describing the most impor-
tant implementations. Design and im-
plementation issues of process migration
are analyzed in general and then re-

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

DOCKET

_ ARM

243

visited for each of the case studies de-
scribed: MOSIX, Sprite, Mach, and LSF.
The benefits and drawbacks of process mi-
gration depend on the details of implemen-
tation and therefore this paper focuses
on practical matters. In this paper we
address mainly process migration mech-
anisms. Process migration policies, such
as load information management and dis-
tributed scheduling, are mentioned to the
extent that they affect the systems be-
ing discussed. More detailed descriptions
of policies have been reported elsewhere
(e.g., Chapin’s survey [1996]).

This survey will help in understand-
ing the potential of process migration. It
attempts to demonstrate how and why
migration may be widely deployed. We
assume that the reader has a general
knowledge of operating systems.

Organization of the Paper

The paper is organized as follows. Sec-
tion 2 provides background on process mi-
gration. Section 3 describes the process
migration by surveying its main charac-
teristics: complexity, performance, trans-
parency, fault resilience, scalability and
heterogeneity. Section 4 classifies vari-
ous implementations of process migration
mechanisms and then describes a couple
of representatives for each class. Section 5
describes four case studies of process mi-
gration in more detail. In Section 6 we
compare the process migration implemen-
tations presented earlier. In Section 7 we
discuss why we believe that process migra-
tion has not caught on so far. In the last
section we summarize the paper and de-
scribe opportunities for further research.

2. BACKGROUND

This section gives some background on
process migration by providing an over-
view of process migration terminology,
target architectures, goals, application
taxonomy, migration algorithms, system
requirements, load information manage-
ment, distributed scheduling, and alterna-
tives to migration.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

244

o ™ state transfer
migrating process

(source instance)

A
source node \

migrating process
(destination instance)

/" destination node

=
Process

communicating node

Fig. 1. High Level View of Process Migration.
Process migration consists of extracting the state of
the process on the source node, transferring it to the
destination node where a new instance of the process
is created, and updating the connections with other
processes on communicating nodes.

2.1. Terminology

A process is a key concept in operating
systems [Tanenbaum, 1992]. It consists of
data, a stack, register contents, and the
state specific to the underlying Operating
System (OS), such as parameters related
to process, memory, and file management.
A process can have one or more threads
of control. Threads, also called lightweight
processes, consist of their own stack and
register contents, but share a process’s ad-
dress space and some of the operating-
system-specific state, such as signals. The
task concept was introduced as a gener-
alization of the process concept, whereby
a process is decoupled into a task and a
number of threads. A traditional process
is represented by a task with one thread
of control.

Process migration is the act of trans-
ferring a process between two machines
(the source and the destination node) dur-
ing its execution. Some architectures also
define a host or home node, which is the
node where the process logically runs. A
high-level view of process migration is
shown in Figure 1. The transferred state
includes the process’s address space, exe-
cution point (register contents), communi-
cation state (e.g., open files and message
channels) and other operating system de-
pendent state. Task migration represents
transferring a task between two machines
during execution of its threads.

During migration, two instances of the
migrating process exist: the source in-
stance is the original process, and the

DOCKET

_ ARM

D. S. Milojicié et al.

Mobility

/\

Hardware Software

/\

Passive data Active data

7 T

Process migration Mobile agents
(code+data) (code+data+authority)

Mobile code

(code)

Fig. 2. Taxonomy of Mobility.

destination instance is the new process
created on the destination node. After mi-
gration, the destination instance becomes
a migrated process. In systems with a
home node, a process that is running on
other machines may be called a remote
process (from the perspective of the home
node) or a foreign process (from the per-
spective of the hosting node).

Remote invocation is the creation of a
process on a remote node. Remote invo-
cation is usually a less “expensive” opera-
tion than process migration. Although the
operation can involve the transfer of some
state, such as code or open files, the con-
tents of the address space need not be
transferred.

Generally speaking, mobility can be
classified into hardware and software mo-
bility, as described in Figure 2. Hardware
mobility deals with mobile computing,
such as with limitations on the connectiv-
ity of mobile computers and mobile IP (see
[Miloji¢ié et al., 1999] for more details). A
few techniques in mobile computing have
an analogy in software mobility, such as
security, locating, naming, and communi-
cation forwarding. Software mobility can
be classified into the mobility of passive
data and active data. Passive data rep-
resents traditional means of transferring
data between computers; it has been em-
ployed ever since the first two comput-
ers were connected. Active data can be
further classified into mobile code, pro-
cess migration and mobile agents. These
three classes represent incremental evo-
lution of state transfer. Mobile code, such
as Java applets, transfers only code be-
tween nodes. Process migration, which is
the main theme of this paper, deals pri-
marily with code and data transfer. It also

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Process Migration

deals with the transfer of authority, for
instance access to a shared file system,
but in a limited way: authority is under
the control of a single administrative do-
main. Finally, mobile agents transfer code,
data, and especially authority to act on
the owner’s behalf on a wide scale, such
as within the entire Internet.

2.2. Target Architectures

Process migration research started with
the appearance of distributed processing
among multiple processors. Process mi-
gration introduces opportunities for shar-
ing processing power and other resources,
such as memory and communication chan-
nels. It is addressed in early multipro-
cessor systems [Stone, 1978; Bokhari,
1979]. Current multiprocessor systems,
especially symmetric multiprocessors, are
scheduled using traditional scheduling
methods. They are not used as an envi-
ronment for process migration research.

Process migration in NUMA (Non-
Uniform Memory Access) multiprocessor
architectures is still an active area of re-
search [Gait, 1990; Squillante and Nelson,
1991; Vaswani and Zahorjan, 1991; Nelson
and Squillante, 1995]. The NUMA archi-
tectures have a different access time to the
memory of the local processor, compared
to the memory of a remote processor, or to
a global memory. The access time to the
memory of a remote processor can be vari-
able, depending on the type of intercon-
nect and the distance to the remote pro-
cessor. Migration in NUMA architectures
is heavily dependent on the memory foot-
print that processes have, both in memory
and in caches. Recent research on virtual
machines on scalable shared memory mul-
tiprocessors [Bugnion, et al., 1997] rep-
resents another potential for migration.
Migration of whole virtual machines be-
tween processors of a multiprocessor ab-
stracts away most of the complexities of
operating systems, reducing the migrate-
able state only to memory and to state
contained in a virtual monitor [Teodosiu,
2000]. Therefore, migration is easier to im-
plement if there is a notion of a virtual
machine.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

DOCKET

_ ARM

245

Massively Parallel Processors (MPP)
are another type of architecture used
for migration research [Tritscher and
Bemmerl, 1992; Zajcew et al., 1993]. MPP
machines have a large number of pro-
cessors that are usually shared between
multiple users by providing each of them
with a subset, or partition, of the pro-
cessors. After a user relinquishes a par-
tition, it can be reused by another user.
MPP computers are typically of a NORMA
(NO Remote Memory Access) type, i.e.,
there is no remote memory access. In
that respect they are similar to net-
work clusters, except they have a much
faster interconnect. Migration represents
a convenient tool to achieve repartition-
ing. Since MPP machines have a large
number of processors, the probability of
failure is also larger. Migrating a running
process from a partially failed node, for ex-
ample after a bank of memory unrelated to
the process fails, allows the process to con-
tinue running safely. MPP machines also
use migration for load distribution, such
as the psched daemon on Cray T3E, or
Loadleveler on IBM SP2 machines.

Since its inception, a Local Area Net-
work (LAN) of computers has been the
most frequently used architecture for pro-
cess migration. The bulk of the systems de-
scribed in this paper, including all of the
case studies, are implemented on LANS.
Systems such as NOW [Anderson et al.,
1995] or Solaris [Khalidi et al., 1996] have
recently investigated process migration
using clusters of workstations on LANs.
It was observed that at any point in time
many autonomous workstations on a LAN
are unused, offering potential for other
users based on process migration [Mutka
and Livny, 1987]. There is, however, a so-
ciological aspect to the autonomous work-
station model. Users are not willing to
share their computers with others if this
means affecting their own performance
[Douglis and Ousterhout, 1991]. The pri-
ority of the incoming processes (process-
ing, VM, IPC priorities) may be reduced
in order to allow for minimal impact
on the workstation’s owner [Douglis and
Ousterhout, 1991; Krueger and Chawla,
1991].

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

