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1. ABSTRACT 
Present day routers typically employ monolithic 
operating systems which are not easily upgradahle 
and extensible. With the rapid rate of protocol 
development it is becoming increasingly important 
to dynamically upgrade router software in an incre- 
mental fashion. We have designed and implemented 
a high performance, modular, extended integrated 
services router software architecture in the NetBSD 
operating system kernel. This architecture allows 
code modules, called plugins, to be dynamically 
added and configured at run time. One of the novel 
features of our design is the ability to bind different 
plugins to individual flows; this allows for distinct 
plugin implementations to seamlessly coexist in the 
same runtime environment. High performance is 
achieved through a carefully designed modular 
architecture; an innovative packet classification 
algorithm that is both powerful and highly efficient; 
and by caching that exploits the flow-like character- 
istics of Internet traffic. Compared to a monolithic 
best-effort kernel, our implementation requires an 
average increase in packet processing overhead of 
only 8 % , or 500 cycles/2.lms per packet when run- 
ning on a P61233. 

1.1 Keywords 
High performance integrated services routing, modular 
router architecture, router plugins 

2. INTRODUCTION 
New network protocols and extensions to existing protocols 
are being deployed on the Internet. New functionality is 
being added to modern IP routers at an increasingly rapid 
pace. In the past, the main task of a router was to simply 
forward packets based on a destination address lookup. 
Modern routers, however, incorporate several new services: 
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Figure 1. : Best Effort vs 
Extended Integrated Services Router (EISR) 

l Integrated/differentiated Services 
l Enhanced routing functionality (level 3 and level 4 rout- 

ing and switching, QoS routing, multicast) 
l Security algorithms (e.g. to implement virtual private 

networks (VPN)) 

l Enhancements to existing protocols (e.g. Random Early 
Detection (RED)) 

l New core protocols (e.g. 1~~6 [S]) 
Figure 1 contrasts the software architecture of our proposed 
Extended Integrated Services Router (EISR) with that of a 
conventional best-effort router. A typical EISR kernel 
features the following important additional components: a 
packet scheduler, a packet classifier, security mechanisms, 
and QoS-based routingLevel 4 switching. Various 
algorithms and implementations of each component offer 
specific advantages in terms of performance, feature sets, 
and cost. Most of these algorithms undergo a constant 
evolution and are replaced and upgraded frequently. Such 
networking subsystem components are characterized by a 
relatively “fluid” implementation, and should be 
distinguished from the small part of the network subsystem 
code that remains relatively stable. The stable part (called the 
core) is mainly responsible for interacting with the network 
hardware and for demultiplexing packets to specific 
modules. Different implementations of the EISR components 
outside of the core often need to coexist. For example, we 
might want to use one kind of packet scheduling on one 
interface, and a different kind on another. 

In this paper, we propose a software architecture and present 
an implementation which addresses these requirements. The 
specific goals of our framework are: 

l Modularity: Implementation of specific algorithms 
come in the form of modules called plugins’. 
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Extensibility: New plugins can be dynamically loaded 
at run time. 
Flexibility: Instances of plugins can be created, config- 
ured, and bound to specific jlows. Plugins can be all- 
software modules, or they can be software drivers for 
specialized custom hardware. 

Performance: The system should provide for a very 
efficient data path, with no data copying, no context 
switching, and no additional interrupt processing. The 
overhead of modularity should not seriously impact per- 
formance. 

Our proposed framework has been implemented in the 
NetBsn UNIX kernel. This platform was selected because of 
its portability (all major hardware platforms are supported), 
efficiency, and extensive documentation. In addition, we 
found state-of-the-art implementations on this platform for 
1~~6 [13] and packet schedulers [27, 51 that could be 
integrated into our framework. 

We envision several applications for our framework. First, 
our architecture fits very well into the operating system of 
small and mid-sized routers. It is particularly well suited to 
the implementation of modern edge routers that are 
responsible for doing flow classification, and for enforcing 
the configured profiles of differential service flows. This 
kind of enforcement can be done either on a per-application 
flow basis, or on a generalized class-based approach (e.g. 
CBQ [ll]). Our implementation supports both models 
efficiently. 

Our framework is also very well suited to Application Layer 
Gateways (ALGS), and to security devices like Firewalls. In 
both situations, it is very important to be able to quickly and 
efficiently classify packets into flows, and to apply different 
policies to different flows: these are both things that our 
architecture excels at doing. 

Yet another application of our framework is for network 
management applications, which typically need to monitor 
transit traffic at routers in the network, and to gather and 
report various statistics thereof. For such applications, it is 
important to be able to quickly and easily change the kinds 
of statistics being collected, and to do this without incurring 
significant overhead on the data path. 

Finally, while our proposed framework is very useful in 
real-world implementations, its modularity and extensibility 
also make it an invaluable tool for researchers. We plan to 
release all of our code in the public domain and we will 
attempt to incorporate several core portions into the 
standard NetBSD distribution tree. 

A note on our use of the word ‘plugin’ (instead of ‘module’) is in order. 
In the web browser world, a plugin is a software module that is dynami- 
cally linked wtth the browser and is responsible for processing certain 
types of application streams (or flows). In a similar fashion, our router 
plugins are kernel software modules that are dynamically loaded into the 
kernel and are responsible for performing certain specific functions on 
specified network flows. 

The main contributions of our work are: 

l An innovative, modular, extensible, and flexible EISK 
networking subsystem architecture and implementation 
that introduces only 8% more overhead than a best-effort 
kernel. 

l A very fast packet classifier algorithm which provides 
highly competitive upper bounds for classification times. 
With a very large number of filters (in the order of 
50000), it classifies 1~~6 packets in 24 memory accesses, 
and is much faster for smaller numbers of filters. 

l Implementations of plugins for two state-of-the-art 
packet schedulers: Deficit Round Robin (DRR, [23]) for 
fair queuing, and the Hierarchical Fair Service Curves 
(H-FSC, [27]) scheduler for class-based packet schedul- 
ing; Implementation of plugins for IP security [2]. 

There are a few commercial attempts that we are aware of 
which follow similar lines. The latest versions of Cisco’s 
Internet OS (IOS, [6]) claims to fulfill some of the 
requirements, but since it’s a commercial operating system, 
there is no easy access for the research community and these 
claims are not verifiable. Microsoft’s Routing and Remote 
Access Service for Windows NT (RRAS, previously referred 
to as “Steelhead” [ 18, 191) is an attempt to implement router 
functionality under Windows NT. RRAS exports an API and 
allows third party modules to implement routing protocols 
like OSPF and SNMP agents in user space. The API does not 
provide an interface to the routing and forwarding engines, 
and the platform offers no integrated services components. 
A few research projects attempt to achieve some of the goals 
mentioned above [12, 20, 211. Most of them are focused on 
the implementation of modular end-system networking 
subsystems instead of routing architectures. Scout from the 
University of Arizona is a particularly interesting project 
based on the x-kernel that implements an operating system 
targeted at network appliances (including routers). It comes 
with router components implementing simple QoS support. 
Since the whole operating system is implemented from 
scratch, most of the provided functionality is over- 
simplified and does not provide the large feature set that is 
found in mature implementations. We discuss these related 
approaches in more detail in [7]. 

In Section 3, we describe our architecture and explain how it 
achieves modularity, extensibility, and flexibility while 
maintaining high-performance. In Section 4, we describe 
the implementation of a module called the Plugin Control 
Unit (PCU), which is responsible for all control path 
interactions with plugins. Section 5 outlines the 
implementation of the Association Identification Unit (AIU), 
which is used by almost all other components in our design. 
The AIU implements an innovative algorithm for packet 
classification which efficiently maps packets to code 
modules (plugins). In Section 6, we elaborate on example 
plugins (packet schedulers) which we implemented or 
adapted for our environment. Section 7 presents 
performance results from our implementation, and Section 8 
summarizes our ideas. 
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3. OVERALL ARCHITECTURE 
The primary goal of our proposed architecture was to build a 
modular and extensible networking subsystem that 
supported the concept of flows, and the ability to select 
implementations of components based upon flows (in 
addition to simple static configurations). Because the 
deployment of multimedia data sources and applications 
(e.g. real-time audio/video) will produce longer lived packet 
streams with more packets per session than is common in 
today’s environment, an integrated services router 
architecture should support the notion of flows and build 
upon it. In particular, the locality properties of flows should 
be effectively exploited to provide for a highly efficient data 
path. Our plugin framework features: 

l Dynamic loading and unloading of plugins at run time 
into the networking subsystem. Plugins are code mod- 
ules which implement a specific EISR functionality (e.g. 
packet scheduling). NetBSD offers a simple yet powerful 
mechanism which allows modules to be loaded into the 
kernel which is used to load our plugins into the kernel. 
Once a plugin is loaded, it is no different from any other 
kernel code. What is required for our system is a compo- 
nent which glues the individual plugins to the network- 
ing subsystem, and which provides a control-path 
interface used by other kernel components (possibly also 
other plugins) and user space daemons to talk to the 
plugin. In our system, this component is called the 
Plugin Control Unit (PCU). The PCU hides some of the 
implementation specific details from the individual plu- 
gins and allows them to access the system in a simple yet 
flexible fashion. 

l Creation of individual instances of plugins for maximal 
flexibility. An instance is a specific run-time configura- 
tion of an individual plugin. It is often very desirable to 
have multiple instances of one and the same plugin con- 
currently in the kernel. For example, consider packet 
scheduling. A packet scheduler can work with different 
configurations on different network interfaces. State-of- 
the-art packet schedulers are usually hierarchical, with 
possibly different modules working on different levels of 
the scheduling hierarchy. Among the nodes of the same 
level, modules are specifically configured, which means 
that they coexist in our framework as plugin instances. 
In order to provide a simple and unified interface for the 
allocation of multiple instances of one and the same 
plugin, the plugins must respond to a set of standardized 
messages. By standardizing this message set and imple- 
menting it in all plugins, we guarantee interoperability 
among different plugins and provide a simple configura- 
tion interface. 

l Efficient mapping of individual data packets to flows, 
and the ability to bind flows to plugin instances. Sets of 
flows are specified using jilters. For example, a filter 
might match all TCP traffic from the network 129.0.0.0 
to the host 192.94.233.10. Filters can also match individ- 
ual end-to-end application flows. Filters are specified as 
six-tuples: 

<source address, destination address, protocol, source 
port, destination port, incoming interface> 

Any of the fields in the six tuple may be wildcarded. 
Additionally, for network addresses, a prefix mask may 
be used to partially wildcard the corresponding field. For 
instance, for the above example, the filter specification 
would read: <129.*.*.*, 192.94.233.10, TCe *, *, *> 

Clearly, the filter for an end-to-end application flow 
would have all fields (except perhaps the incoming 
interface) fully specified. We will see later in this section 
that a packet matching a particular filter will be passed 
to the plugin instance that has been bound to that filter. 
This will be shown to happen whenever the packet 
reaches a “gate” in the IP stack; a gate can be thought of 
as the entry point for a plugin. 

l Overall high performance. High performance is guaran- 
teed only in part through a fully kernel space implemen- 
tation which prevents costly context switches. We 
identified two other critical properties which, when com- 
bined, guarantee high performance even in a highly 
modular environment: the flow-like nature of most inter- 
net traffic, and the ability to classify packets into flows 
quickly and efficiently. As we show below, the filter 
lookup to determine the right plugin instance to which a 
packet should be passed happens only for the first packet 
of a burst. Subsequent packets get this information from 
a fast flow cache which temporarily stores the informa- 
tion gathered by processing the first packet. The filter 
lookup itself is efficiently implemented using a Directed 
Acyclic Graph (DAG). We elaborate on these techniques 
later in this section, and also in section 5. 

l Easy integration with custom hardware for high perfor- 
mance processing of specialized tasks. This is enabled 
by plugins which are software drivers for hardware that 
implements the desired functionality. For example, a 
plugin could control hardware engines for tasks such as 
packet classification or encryption. 

In order to describe our framework, we first look at the 
different components and how they interact in the control 
path. In the Section 3.2, we will look at the data path, and 
how individual packets are processed by our architecture. 

3.1 The Control Path 
Figure 2 shows the architecture of our system and the 
control communication between different components. A 
description of the different components follows: 

. IPv4/IPv6 core: The IPv4/1pv6 core consists of a 
stream-lined IPV~/IPV~ implementation which contains 
the (few) components required for packet processing 
which do not come in the form of dynamically loadable 
modules. These are mainly functions that interact with 
network devices. The core is also responsible for demul- 
tiplexing individual packets to plugins as we will show 
in the next section. There are no plugin related control 
path interactions with the IP core. 

231 

Juniper Ex. 1014-p. 3 
Juniper v Implicit

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


involves the following steps: 

Figure 2. : System Architecture and Control Path 

l Plugins: Figure 2 shows four different types of plugins - 
plugins implementing IPVG options, plugins for packet 
scheduling, plugins to calculate the best-matching prefix 
(BMP, used for packet classification and routing), and 
plugins for IP security. Other plugin types are also possi- 
ble: e.g., a routing plugin, a statistics gathering plugin 
for network management applications, a plugin for con- 
gestion control (RED), a plugin monitoring TCP conges- 
tion backoff behaviour, a tirewall plugin. Note that all 
plugins come in the form of dynamically loadable kernel 

l Plugin Control Unit (PCU): The PCXJ manages plugins, 
and is responsible for forwarding messages to individual 
plugins from other kernel components, as well as from 
user space programs (using library calls). 

l Association Identification Unit: The Association Iden- 
tification Unit (AIU) implements a packet classifier and 
builds the glue between the flows and plugin instances. 
The operation of the AKJ will become clear when we 
describe the data path in the next subsection. 

l Plugin Manager: The Plugin Manager is a user space 
utility used to configure the system. It is a simple appli- 
cation which takes arguments from the command line 
and translates them into calls to the user-space Router 
Pfugin Library which we provide with our system. This 
library implements the function calls needed to config- 
ure all kernel level components. In most cases, the 
plugin manager is invoked from a configuration script 
during system initialization, but it can also be used to 
manually issue commands to various plugins. We show 
an example of how the Plugin Manager is used in 
Section 6. 

l Daemons: The RSVP [31], SSP [I] (a simplified version 
of RSVP), and route daemon are linked against the Router 
Plugin Library to perform their respective tasks. We 
implemented an SSP daemon for our system, and are cur- 
rently in the process of porting an RSVP implementation. 

After a reboot, the system has to be configured before it is 
ready to receive and forward data packets. Configuration 
involves the selection of a set of plugins. Since a selection 
does not necessarily apply to all packets traversing the 
router, a definition of the set of packets which should be 
processed by each individual plugin instance is required. 
This configuration can be done either by a system 
administrator, or by executing a script. Configuration 

Loading a plugin: Using the modload command, which 
is part of the NetBSD distribution, plugins are loaded into 
the kernel. On loading, they register themselves with the 
PCU by providing a callback function. This function is 
used to send messages to the plugin. There are messages 
for creating and freeing instances of the plugin and for 
binding plugin instances to flows. Also, plugin develop- 
ers can define an arbitrary number of plugin specific 
messages. Once the callback function for a plugin has 
been registered, the PCU can forward these configuration 
messages to the plugin. 

Creating an instance of a plugin: Using the Plugin 
Manager application, configuration messages can be 
sent to specified plugins. Typically, these messages ask 
the plugin to create an instance of itself. In case of a 
packet scheduling plugin for example, the configuration 
information could include the network interface the 
plugin should work on. 
Creating filters: Once a plugin has been configured and 
an instance has been created, it is ready to be used. What 
has to be defined next is the set of datagrams which 
should be passed to the instance for processing. This is 
done by binding one or more flows to the plugin 
instance. To specify the set of flows that are supposed to 
be handled by a particular plugin instance, the Plugin 
Manager or one of the user space daemons (RSVP or SSP) 
can create filters through calls to the AIU. Recall (from 
earlier in this section) that a filter is a specification for 
the set of flows it matches. 
Binding flows to instances: Next, the binding between 
filters and plugin instances must be established. Each fil- 
ter in the AIU is associated with a pointer to a plugin 
instance; this pointer is set by making another call to the 
AIU to do the binding. 

Now the system is ready to process data packets. We will 
show in the next subsection how data packets are matched 
against filters and how they get passed to the appropriate 
instances. 

3.2 The Data Path 
Data packets in our system are passed to instances of 
plugins which implement the specific functions for 
processing the packets. Since data path mechanisms are 
applied to every single packet, it is very important to 
optimize their performance. Given a packet, our architecture 
should be able to quickly and efficiently discover the set of 
instances that will act on the packet. 

The data path interactions are shown in Figure 3.Before we 
can explain the sequence of actions, we have to introduce 
the notion of a gate. 

A gate is a point in the IP core where the flow of execution 
branches off to an instance of a plugin. From an 
implementation point of view, gates are simple macros 
which encapsulate function calls to the AIU that will return 
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Figure 3. : System Architecture and Data Path 

the correct plugin instance which is to be used for 
processing the packet. In many cases, these macros can 
avoid a function call to the AIU altogether, thereby 
permitting a more efficient implementation. Gates are 
placed wherever interactions with plugins need to take 
place. For example, sometimes after a packet is received by 
the hardware, IP security processing has to be done if the 
system is configured as entry point into a virtual private 
network. In our system, IP security functions are 
modularized and come in the form of plugins. A gate is 
inserted into the IP core code in place of the traditional call 
to the kernel function responsible for 1~~6 security 
processing. In our current implementation, we use gates for 
1~~6 option processing, IP security, packet scheduling, and 
for the packet filter’s best-matching prefix algorithm. 

To follow the various data path interactions, it is important 
to get a basic understanding of the operation of the AIU. The 
AIU is responsible for maintaining the binding between 
flows and plugin instances. It makes use of a special data 
structure called a flow table to cache flows. Flow tables 
allow for very fast lookup times for arriving packets that 
belong to cached flows. 

In the AIU, all flows start out being uncached (i.e., they do 
not have an entry in the flow table). If an incoming packet 
belongs to an uncached flow, its lookup in the flow table 
data structure will fail (i.e., there is a cache miss). In this 
case, the packet needs to be looked up in a different data 
structure that we call a filter table. Filter tables store the 
bindings between filters and plugins for each gate. The filter 
table lookup algorithm finds the most specific matching 
filter (described later) that has been installed in the table, 
and returns the corresponding plugin instance. Usually, filter 
table lookups are much slower than flow table lookups. An 
entry for a flow in the flow table serves as a fast cache for 
future lookups of packets belonging to that flow. Each flow 
table entry stores pointers to the appropriate plugins for all 
gates that can be encountered by packets belonging to the 
corresponding flow. The processing of the first packet of a 
new flow with II gates involves II filter table lookups to 
create a single entry in the flow table for the new flow. 

If a cached flow remains idle (i.e., no new packets are 
received) for an extended period, its cached entry in the flow 
table data structure may be removed (or replaced by a 
different flow). In this case, if the flow becomes active 

again, the first packet that is received would again result in a 
cache miss, which would again cause a new cache entry to 
be created in the flow table so that subsequent packets can 
benefit from faster lookup times. 

Section 5.1 describes a very fast filter table lookup 
implementation based on directed acyclic graphs (DAB). 
Section 5.2 describes our flow table implementation, which 
is based on hashing. 

As an example, consider the steps involved in processing an 
IPV~ packet (see numbers l-6 in Figure 3). Uncached flow 
processing involves the following sequence of events and 
actions: 

0. Packet arrival: When a packet arrives, it gets passed to 
the IP core by the network hardware. As it makes its 
way through the core, it may encounter multiple gates. 

1. Encountering a gate: Assume that the packet has 
reached the gate where IP security processing will be 
handled. The task of this gate is to find the plugin 
instance which is responsible for applying security pro- 
cessing (authentication and/or encryption) to the packet. 

2. Discovering the right instance: The gate makes a call 
to the AIU. The parameters of the call are a pointer to the 
packet and an identification of the gate issuing the call. 
In our case, we would identify the IP security gate as the 
caller. 

3. Packet classification: The AIU first does a lookup in the 
flow table, and finds that there is no cached entry avail- 
able for the flow. Consequently, it performs a lookup in 
the filter table corresponding to the IP security gate. The 
resulting plugin instance pointer is returned to the call- 
ing gate (“SEC2” in Figure 3). Note that since this 
packet classification step performed by the AIU is the 
most expensive step in the whole cycle, an efficient 
packet classification scheme and implementation is 
important. 

4. Caching of the instance pointer: Before the AIU 
returns the instance pointer to the gate, it stores the 
pointer in the flow table. Note that entries in the flow 
table are identified by the same six tuple used to specify 
filters, but without masks or wildcards (all fields have 
fully specified values). In other words, a flow table 
entry unambiguously identifies a particular flow. In our 
example, the pointer to the SEC2 plugin is stored in the 
row of the flow table which corresponds to our packet’s 
flow. 

5. Returning the instance pointer: The instance pointer 
found is returned to the gate. 

6. Calling the instance: The gate calls the plugin 
instance, passing the packet as an argument. 

7. Repeating the cycle: When the call returns, the IP stack 
continues processing the packet, until it encounters 
another gate, in which case the same cycle repeats. 

This cycle is executed only for the first packet arriving on an 
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