
Router Plugins
A Software Architecture for Next Generation Routers

Dan Decasper’, Zubin Dittia2, Guru Parulkar2, Bernhard Plattner’
[danlplattner] @ tik.ee.ethz.ch, [zubinlguru] @ arl.wustl.edu

I Computer Eng ineering and Networks Laboratory, ETH Zurich, Switzerland
Phone: +41-l -632 7019 Fax: +41-l -632 1035

*Applied Research Laboratory, Washington University, St. Louis, USA
Phone: +l -314-935 4586 Fax: +l -314-935 7302

1. ABSTRACT
Present day routers typically employ monolithic
operating systems which are not easily upgradahle
and extensible. With the rapid rate of protocol
development it is becoming increasingly important
to dynamically upgrade router software in an incre-
mental fashion. We have designed and implemented
a high performance, modular, extended integrated
services router software architecture in the NetBSD
operating system kernel. This architecture allows
code modules, called plugins, to be dynamically
added and configured at run time. One of the novel
features of our design is the ability to bind different
plugins to individual flows; this allows for distinct
plugin implementations to seamlessly coexist in the
same runtime environment. High performance is
achieved through a carefully designed modular
architecture; an innovative packet classification
algorithm that is both powerful and highly efficient;
and by caching that exploits the flow-like character-
istics of Internet traffic. Compared to a monolithic
best-effort kernel, our implementation requires an
average increase in packet processing overhead of
only 8 % , or 500 cycles/2.lms per packet when run-
ning on a P61233.

1.1 Keywords
High performance integrated services routing, modular
router architecture, router plugins

2. INTRODUCTION
New network protocols and extensions to existing protocols
are being deployed on the Internet. New functionality is
being added to modern IP routers at an increasingly rapid
pace. In the past, the main task of a router was to simply
forward packets based on a destination address lookup.
Modern routers, however, incorporate several new services:

Parmlsswn tc make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies we not made or distributed for profit or commsrciel adven-
tege and that ccpws bear this notice and the full citatocn on the first page.
To copy otherwwe. tc republish. tc pest on servers or to
redwtribute to ksts. requ~ree prior specihc permission and/or a fee.
SIGCOMM ‘98 Vsncouvar. B.C.
0 ,998 ACM 1~58113.003.1/98/~8...S5.00

Figure 1. : Best Effort vs
Extended Integrated Services Router (EISR)

l Integrated/differentiated Services
l Enhanced routing functionality (level 3 and level 4 rout-

ing and switching, QoS routing, multicast)
l Security algorithms (e.g. to implement virtual private

networks (VPN))

l Enhancements to existing protocols (e.g. Random Early
Detection (RED))

l New core protocols (e.g. 1~~6 [S])
Figure 1 contrasts the software architecture of our proposed
Extended Integrated Services Router (EISR) with that of a
conventional best-effort router. A typical EISR kernel
features the following important additional components: a
packet scheduler, a packet classifier, security mechanisms,
and QoS-based routingLevel 4 switching. Various
algorithms and implementations of each component offer
specific advantages in terms of performance, feature sets,
and cost. Most of these algorithms undergo a constant
evolution and are replaced and upgraded frequently. Such
networking subsystem components are characterized by a
relatively “fluid” implementation, and should be
distinguished from the small part of the network subsystem
code that remains relatively stable. The stable part (called the
core) is mainly responsible for interacting with the network
hardware and for demultiplexing packets to specific
modules. Different implementations of the EISR components
outside of the core often need to coexist. For example, we
might want to use one kind of packet scheduling on one
interface, and a different kind on another.

In this paper, we propose a software architecture and present
an implementation which addresses these requirements. The
specific goals of our framework are:

l Modularity: Implementation of specific algorithms
come in the form of modules called plugins’.

229

Juniper Ex. 1014-p. 1
Juniper v Implicit

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Extensibility: New plugins can be dynamically loaded
at run time.
Flexibility: Instances of plugins can be created, config-
ured, and bound to specific jlows. Plugins can be all-
software modules, or they can be software drivers for
specialized custom hardware.

Performance: The system should provide for a very
efficient data path, with no data copying, no context
switching, and no additional interrupt processing. The
overhead of modularity should not seriously impact per-
formance.

Our proposed framework has been implemented in the
NetBsn UNIX kernel. This platform was selected because of
its portability (all major hardware platforms are supported),
efficiency, and extensive documentation. In addition, we
found state-of-the-art implementations on this platform for
1~~6 [13] and packet schedulers [27, 51 that could be
integrated into our framework.

We envision several applications for our framework. First,
our architecture fits very well into the operating system of
small and mid-sized routers. It is particularly well suited to
the implementation of modern edge routers that are
responsible for doing flow classification, and for enforcing
the configured profiles of differential service flows. This
kind of enforcement can be done either on a per-application
flow basis, or on a generalized class-based approach (e.g.
CBQ [ll]). Our implementation supports both models
efficiently.

Our framework is also very well suited to Application Layer
Gateways (ALGS), and to security devices like Firewalls. In
both situations, it is very important to be able to quickly and
efficiently classify packets into flows, and to apply different
policies to different flows: these are both things that our
architecture excels at doing.

Yet another application of our framework is for network
management applications, which typically need to monitor
transit traffic at routers in the network, and to gather and
report various statistics thereof. For such applications, it is
important to be able to quickly and easily change the kinds
of statistics being collected, and to do this without incurring
significant overhead on the data path.

Finally, while our proposed framework is very useful in
real-world implementations, its modularity and extensibility
also make it an invaluable tool for researchers. We plan to
release all of our code in the public domain and we will
attempt to incorporate several core portions into the
standard NetBSD distribution tree.

A note on our use of the word ‘plugin’ (instead of ‘module’) is in order.
In the web browser world, a plugin is a software module that is dynami-
cally linked wtth the browser and is responsible for processing certain
types of application streams (or flows). In a similar fashion, our router
plugins are kernel software modules that are dynamically loaded into the
kernel and are responsible for performing certain specific functions on
specified network flows.

The main contributions of our work are:

l An innovative, modular, extensible, and flexible EISK
networking subsystem architecture and implementation
that introduces only 8% more overhead than a best-effort
kernel.

l A very fast packet classifier algorithm which provides
highly competitive upper bounds for classification times.
With a very large number of filters (in the order of
50000), it classifies 1~~6 packets in 24 memory accesses,
and is much faster for smaller numbers of filters.

l Implementations of plugins for two state-of-the-art
packet schedulers: Deficit Round Robin (DRR, [23]) for
fair queuing, and the Hierarchical Fair Service Curves
(H-FSC, [27]) scheduler for class-based packet schedul-
ing; Implementation of plugins for IP security [2].

There are a few commercial attempts that we are aware of
which follow similar lines. The latest versions of Cisco’s
Internet OS (IOS, [6]) claims to fulfill some of the
requirements, but since it’s a commercial operating system,
there is no easy access for the research community and these
claims are not verifiable. Microsoft’s Routing and Remote
Access Service for Windows NT (RRAS, previously referred
to as “Steelhead” [18, 191) is an attempt to implement router
functionality under Windows NT. RRAS exports an API and
allows third party modules to implement routing protocols
like OSPF and SNMP agents in user space. The API does not
provide an interface to the routing and forwarding engines,
and the platform offers no integrated services components.
A few research projects attempt to achieve some of the goals
mentioned above [12, 20, 211. Most of them are focused on
the implementation of modular end-system networking
subsystems instead of routing architectures. Scout from the
University of Arizona is a particularly interesting project
based on the x-kernel that implements an operating system
targeted at network appliances (including routers). It comes
with router components implementing simple QoS support.
Since the whole operating system is implemented from
scratch, most of the provided functionality is over-
simplified and does not provide the large feature set that is
found in mature implementations. We discuss these related
approaches in more detail in [7].

In Section 3, we describe our architecture and explain how it
achieves modularity, extensibility, and flexibility while
maintaining high-performance. In Section 4, we describe
the implementation of a module called the Plugin Control
Unit (PCU), which is responsible for all control path
interactions with plugins. Section 5 outlines the
implementation of the Association Identification Unit (AIU),
which is used by almost all other components in our design.
The AIU implements an innovative algorithm for packet
classification which efficiently maps packets to code
modules (plugins). In Section 6, we elaborate on example
plugins (packet schedulers) which we implemented or
adapted for our environment. Section 7 presents
performance results from our implementation, and Section 8
summarizes our ideas.

230

Juniper Ex. 1014-p. 2
Juniper v Implicit

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3. OVERALL ARCHITECTURE
The primary goal of our proposed architecture was to build a
modular and extensible networking subsystem that
supported the concept of flows, and the ability to select
implementations of components based upon flows (in
addition to simple static configurations). Because the
deployment of multimedia data sources and applications
(e.g. real-time audio/video) will produce longer lived packet
streams with more packets per session than is common in
today’s environment, an integrated services router
architecture should support the notion of flows and build
upon it. In particular, the locality properties of flows should
be effectively exploited to provide for a highly efficient data
path. Our plugin framework features:

l Dynamic loading and unloading of plugins at run time
into the networking subsystem. Plugins are code mod-
ules which implement a specific EISR functionality (e.g.
packet scheduling). NetBSD offers a simple yet powerful
mechanism which allows modules to be loaded into the
kernel which is used to load our plugins into the kernel.
Once a plugin is loaded, it is no different from any other
kernel code. What is required for our system is a compo-
nent which glues the individual plugins to the network-
ing subsystem, and which provides a control-path
interface used by other kernel components (possibly also
other plugins) and user space daemons to talk to the
plugin. In our system, this component is called the
Plugin Control Unit (PCU). The PCU hides some of the
implementation specific details from the individual plu-
gins and allows them to access the system in a simple yet
flexible fashion.

l Creation of individual instances of plugins for maximal
flexibility. An instance is a specific run-time configura-
tion of an individual plugin. It is often very desirable to
have multiple instances of one and the same plugin con-
currently in the kernel. For example, consider packet
scheduling. A packet scheduler can work with different
configurations on different network interfaces. State-of-
the-art packet schedulers are usually hierarchical, with
possibly different modules working on different levels of
the scheduling hierarchy. Among the nodes of the same
level, modules are specifically configured, which means
that they coexist in our framework as plugin instances.
In order to provide a simple and unified interface for the
allocation of multiple instances of one and the same
plugin, the plugins must respond to a set of standardized
messages. By standardizing this message set and imple-
menting it in all plugins, we guarantee interoperability
among different plugins and provide a simple configura-
tion interface.

l Efficient mapping of individual data packets to flows,
and the ability to bind flows to plugin instances. Sets of
flows are specified using jilters. For example, a filter
might match all TCP traffic from the network 129.0.0.0
to the host 192.94.233.10. Filters can also match individ-
ual end-to-end application flows. Filters are specified as
six-tuples:

<source address, destination address, protocol, source
port, destination port, incoming interface>

Any of the fields in the six tuple may be wildcarded.
Additionally, for network addresses, a prefix mask may
be used to partially wildcard the corresponding field. For
instance, for the above example, the filter specification
would read: <129.*.*.*, 192.94.233.10, TCe *, *, *>

Clearly, the filter for an end-to-end application flow
would have all fields (except perhaps the incoming
interface) fully specified. We will see later in this section
that a packet matching a particular filter will be passed
to the plugin instance that has been bound to that filter.
This will be shown to happen whenever the packet
reaches a “gate” in the IP stack; a gate can be thought of
as the entry point for a plugin.

l Overall high performance. High performance is guaran-
teed only in part through a fully kernel space implemen-
tation which prevents costly context switches. We
identified two other critical properties which, when com-
bined, guarantee high performance even in a highly
modular environment: the flow-like nature of most inter-
net traffic, and the ability to classify packets into flows
quickly and efficiently. As we show below, the filter
lookup to determine the right plugin instance to which a
packet should be passed happens only for the first packet
of a burst. Subsequent packets get this information from
a fast flow cache which temporarily stores the informa-
tion gathered by processing the first packet. The filter
lookup itself is efficiently implemented using a Directed
Acyclic Graph (DAG). We elaborate on these techniques
later in this section, and also in section 5.

l Easy integration with custom hardware for high perfor-
mance processing of specialized tasks. This is enabled
by plugins which are software drivers for hardware that
implements the desired functionality. For example, a
plugin could control hardware engines for tasks such as
packet classification or encryption.

In order to describe our framework, we first look at the
different components and how they interact in the control
path. In the Section 3.2, we will look at the data path, and
how individual packets are processed by our architecture.

3.1 The Control Path
Figure 2 shows the architecture of our system and the
control communication between different components. A
description of the different components follows:

. IPv4/IPv6 core: The IPv4/1pv6 core consists of a
stream-lined IPV~/IPV~ implementation which contains
the (few) components required for packet processing
which do not come in the form of dynamically loadable
modules. These are mainly functions that interact with
network devices. The core is also responsible for demul-
tiplexing individual packets to plugins as we will show
in the next section. There are no plugin related control
path interactions with the IP core.

231

Juniper Ex. 1014-p. 3
Juniper v Implicit

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

involves the following steps:

Figure 2. : System Architecture and Control Path

l Plugins: Figure 2 shows four different types of plugins -
plugins implementing IPVG options, plugins for packet
scheduling, plugins to calculate the best-matching prefix
(BMP, used for packet classification and routing), and
plugins for IP security. Other plugin types are also possi-
ble: e.g., a routing plugin, a statistics gathering plugin
for network management applications, a plugin for con-
gestion control (RED), a plugin monitoring TCP conges-
tion backoff behaviour, a tirewall plugin. Note that all
plugins come in the form of dynamically loadable kernel

l Plugin Control Unit (PCU): The PCXJ manages plugins,
and is responsible for forwarding messages to individual
plugins from other kernel components, as well as from
user space programs (using library calls).

l Association Identification Unit: The Association Iden-
tification Unit (AIU) implements a packet classifier and
builds the glue between the flows and plugin instances.
The operation of the AKJ will become clear when we
describe the data path in the next subsection.

l Plugin Manager: The Plugin Manager is a user space
utility used to configure the system. It is a simple appli-
cation which takes arguments from the command line
and translates them into calls to the user-space Router
Pfugin Library which we provide with our system. This
library implements the function calls needed to config-
ure all kernel level components. In most cases, the
plugin manager is invoked from a configuration script
during system initialization, but it can also be used to
manually issue commands to various plugins. We show
an example of how the Plugin Manager is used in
Section 6.

l Daemons: The RSVP [31], SSP [I] (a simplified version
of RSVP), and route daemon are linked against the Router
Plugin Library to perform their respective tasks. We
implemented an SSP daemon for our system, and are cur-
rently in the process of porting an RSVP implementation.

After a reboot, the system has to be configured before it is
ready to receive and forward data packets. Configuration
involves the selection of a set of plugins. Since a selection
does not necessarily apply to all packets traversing the
router, a definition of the set of packets which should be
processed by each individual plugin instance is required.
This configuration can be done either by a system
administrator, or by executing a script. Configuration

Loading a plugin: Using the modload command, which
is part of the NetBSD distribution, plugins are loaded into
the kernel. On loading, they register themselves with the
PCU by providing a callback function. This function is
used to send messages to the plugin. There are messages
for creating and freeing instances of the plugin and for
binding plugin instances to flows. Also, plugin develop-
ers can define an arbitrary number of plugin specific
messages. Once the callback function for a plugin has
been registered, the PCU can forward these configuration
messages to the plugin.

Creating an instance of a plugin: Using the Plugin
Manager application, configuration messages can be
sent to specified plugins. Typically, these messages ask
the plugin to create an instance of itself. In case of a
packet scheduling plugin for example, the configuration
information could include the network interface the
plugin should work on.
Creating filters: Once a plugin has been configured and
an instance has been created, it is ready to be used. What
has to be defined next is the set of datagrams which
should be passed to the instance for processing. This is
done by binding one or more flows to the plugin
instance. To specify the set of flows that are supposed to
be handled by a particular plugin instance, the Plugin
Manager or one of the user space daemons (RSVP or SSP)
can create filters through calls to the AIU. Recall (from
earlier in this section) that a filter is a specification for
the set of flows it matches.
Binding flows to instances: Next, the binding between
filters and plugin instances must be established. Each fil-
ter in the AIU is associated with a pointer to a plugin
instance; this pointer is set by making another call to the
AIU to do the binding.

Now the system is ready to process data packets. We will
show in the next subsection how data packets are matched
against filters and how they get passed to the appropriate
instances.

3.2 The Data Path
Data packets in our system are passed to instances of
plugins which implement the specific functions for
processing the packets. Since data path mechanisms are
applied to every single packet, it is very important to
optimize their performance. Given a packet, our architecture
should be able to quickly and efficiently discover the set of
instances that will act on the packet.

The data path interactions are shown in Figure 3.Before we
can explain the sequence of actions, we have to introduce
the notion of a gate.

A gate is a point in the IP core where the flow of execution
branches off to an instance of a plugin. From an
implementation point of view, gates are simple macros
which encapsulate function calls to the AIU that will return

232

Juniper Ex. 1014-p. 4
Juniper v Implicit

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 3. : System Architecture and Data Path

the correct plugin instance which is to be used for
processing the packet. In many cases, these macros can
avoid a function call to the AIU altogether, thereby
permitting a more efficient implementation. Gates are
placed wherever interactions with plugins need to take
place. For example, sometimes after a packet is received by
the hardware, IP security processing has to be done if the
system is configured as entry point into a virtual private
network. In our system, IP security functions are
modularized and come in the form of plugins. A gate is
inserted into the IP core code in place of the traditional call
to the kernel function responsible for 1~~6 security
processing. In our current implementation, we use gates for
1~~6 option processing, IP security, packet scheduling, and
for the packet filter’s best-matching prefix algorithm.

To follow the various data path interactions, it is important
to get a basic understanding of the operation of the AIU. The
AIU is responsible for maintaining the binding between
flows and plugin instances. It makes use of a special data
structure called a flow table to cache flows. Flow tables
allow for very fast lookup times for arriving packets that
belong to cached flows.

In the AIU, all flows start out being uncached (i.e., they do
not have an entry in the flow table). If an incoming packet
belongs to an uncached flow, its lookup in the flow table
data structure will fail (i.e., there is a cache miss). In this
case, the packet needs to be looked up in a different data
structure that we call a filter table. Filter tables store the
bindings between filters and plugins for each gate. The filter
table lookup algorithm finds the most specific matching
filter (described later) that has been installed in the table,
and returns the corresponding plugin instance. Usually, filter
table lookups are much slower than flow table lookups. An
entry for a flow in the flow table serves as a fast cache for
future lookups of packets belonging to that flow. Each flow
table entry stores pointers to the appropriate plugins for all
gates that can be encountered by packets belonging to the
corresponding flow. The processing of the first packet of a
new flow with II gates involves II filter table lookups to
create a single entry in the flow table for the new flow.

If a cached flow remains idle (i.e., no new packets are
received) for an extended period, its cached entry in the flow
table data structure may be removed (or replaced by a
different flow). In this case, if the flow becomes active

again, the first packet that is received would again result in a
cache miss, which would again cause a new cache entry to
be created in the flow table so that subsequent packets can
benefit from faster lookup times.

Section 5.1 describes a very fast filter table lookup
implementation based on directed acyclic graphs (DAB).
Section 5.2 describes our flow table implementation, which
is based on hashing.

As an example, consider the steps involved in processing an
IPV~ packet (see numbers l-6 in Figure 3). Uncached flow
processing involves the following sequence of events and
actions:

0. Packet arrival: When a packet arrives, it gets passed to
the IP core by the network hardware. As it makes its
way through the core, it may encounter multiple gates.

1. Encountering a gate: Assume that the packet has
reached the gate where IP security processing will be
handled. The task of this gate is to find the plugin
instance which is responsible for applying security pro-
cessing (authentication and/or encryption) to the packet.

2. Discovering the right instance: The gate makes a call
to the AIU. The parameters of the call are a pointer to the
packet and an identification of the gate issuing the call.
In our case, we would identify the IP security gate as the
caller.

3. Packet classification: The AIU first does a lookup in the
flow table, and finds that there is no cached entry avail-
able for the flow. Consequently, it performs a lookup in
the filter table corresponding to the IP security gate. The
resulting plugin instance pointer is returned to the call-
ing gate (“SEC2” in Figure 3). Note that since this
packet classification step performed by the AIU is the
most expensive step in the whole cycle, an efficient
packet classification scheme and implementation is
important.

4. Caching of the instance pointer: Before the AIU
returns the instance pointer to the gate, it stores the
pointer in the flow table. Note that entries in the flow
table are identified by the same six tuple used to specify
filters, but without masks or wildcards (all fields have
fully specified values). In other words, a flow table
entry unambiguously identifies a particular flow. In our
example, the pointer to the SEC2 plugin is stored in the
row of the flow table which corresponds to our packet’s
flow.

5. Returning the instance pointer: The instance pointer
found is returned to the gate.

6. Calling the instance: The gate calls the plugin
instance, passing the packet as an argument.

7. Repeating the cycle: When the call returns, the IP stack
continues processing the packet, until it encounters
another gate, in which case the same cycle repeats.

This cycle is executed only for the first packet arriving on an

233

Juniper Ex. 1014-p. 5
Juniper v Implicit

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

