
First Amended Complaint for Patent Infringement Page 1

IN THE UNITED STATES DISTRICT COURT
FOR THE EASTERN DISTRICT OF TEXAS

MARSHALL DIVISION

IMPLICIT, LLC,

Plaintiff,

v.

JUNIPER NETWORKS, INC.,

Defendant.

§
§
§
§
§
§
§
§
§

Civil Action No. 2:19-cv-37-JRG-RSP

JURY TRIAL DEMANDED

FIRST AMENDED COMPLAINT FOR PATENT INFRINGEMENT

COMES NOW Plaintiff Implicit, LLC (“Implicit”) and files this First Amended Complaint

for Patent Infringement against Defendant Juniper Networks, Inc. (“Juniper”), alleging as follows:

I. NATURE OF THE SUIT

1. This is a claim for patent infringement arising under the patent laws of the United

States, Title 35 of the United States Code.

II. THE PARTIES

2. Plaintiff Implicit, LLC is a Washington limited liability company that maintains

its principal place of business in Tyler, Texas.

3. Defendant Juniper Networks, Inc. is a Delaware corporation that does business in

Texas, directly or through intermediaries, maintains a principal place of business in Sunnyvale,

California, and maintains a regular and established place of business in Plano, Texas.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 1 of 25 PageID #: 250

Juniper Ex. 1041-p. 1
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 2

III. JURISDICTION AND VENUE

4. This action arises under the patent laws of the United States, Title 35 of the United

States Code. Thus, this Court has subject matter jurisdiction pursuant to 28 U.S.C. §§ 1331 and

1338(a).

5. This Court has general personal jurisdiction over Juniper because Juniper maintains

a regular and established place of business in Plano, Texas.

6. Further, this Court has specific personal jurisdiction over Juniper in this action

pursuant to due process and the Texas Long Arm Statute because the claims asserted herein arise

out of or are related to Juniper’s voluntary contacts with this forum, such voluntary contacts

including but not limited to: (i) at least a portion of the actions complained of herein;

(ii) purposefully and voluntarily placing one or more Accused Products into the stream of

commerce with the expectation that they will be purchased by consumers in this forum; or

(iii) regularly doing or soliciting business, engaging in other persistent courses of conduct, or

deriving substantial revenue from Accused Products provided to individuals in Texas and in this

District.

7. Venue is proper in this Court under 28 U.S.C. §§ 1391(b)(3) and 1400(b) for at

least the reasons set forth above and because Juniper maintains a regular and established place of

business in Plano, Texas, which is in this District.

IV. BACKGROUND

A. The Asserted Patents

8. This cause of action asserts infringement of United States Patent Nos. 8,056,075

(the “’075 Patent”); 8,856,779 (the “’779 Patent”); 9,325,740 (the “’740 Patent”); 8,694,683 (the

“’683 Patent”); 9,270,790 (the “’790 Patent”); 9,591,104 (the “’104 Patent”); 10,027,780 (the

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 2 of 25 PageID #: 251

Juniper Ex. 1041-p. 2
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 3

“’780 Patent”); 10,033,839 (the “’839 Patent”); and 10,225,378 (the “’378 Patent”) (collectively,

the “Asserted Patents”).

9. A true and correct copy of the ’075 Patent, entitled “Server Request Management,”

and with Edward Balassanian as the named inventor, is attached hereto as Exhibit 1.

10. The ’075 Patent duly and legally issued on November 8, 2011.

11. Implicit is the current owner by assignment of all rights, title, and interest in and

under the ’075 Patent. Implicit has standing to sue for infringement of the ’075 Patent.

12. A true and correct copy of the ’779 Patent, entitled “Application Server for

Delivering Applets to Client Computing Devices in a Distributed Environment,” and with Edward

Balassanian as the named inventor, is attached hereto as Exhibit 2.

13. The ’779 Patent duly and legally issued on October 7, 2014.

14. Implicit is the current owner by assignment of all rights, title, and interest in and

under the ’779 Patent. Implicit has standing to sue for infringement of the ’779 Patent.

15. A true and correct copy of the ’740 Patent, entitled “Application Server for

Delivering Applets to Client Computing Devices in a Distributed Environment,” and with Edward

Balassanian as the named inventor, is attached hereto as Exhibit 3.

16. The ’740 Patent duly and legally issued on April 26, 2016.

17. Implicit is the current owner by assignment of all rights, title, and interest in and

under the ’740 Patent. Implicit has standing to sue for infringement of the ’740 Patent.

18. A true and correct copy of the ’683 Patent, entitled “Method and System for Data

Demultiplexing,” and with Edward Balassanian as the named inventor, is attached hereto as

Exhibit 4.

19. The ’683 Patent duly and legally issued on April 8, 2014.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 3 of 25 PageID #: 252

Juniper Ex. 1041-p. 3
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 4

20. Implicit is the current owner by assignment of all rights, title, and interest in and

under the ’683 Patent. Implicit has standing to sue for infringement of the ’683 Patent.

21. A true and correct copy of the ’790 Patent, entitled “Method and System for Data

Demultiplexing,” and with Edward Balassanian as the named inventor, is attached hereto as

Exhibit 5.

22. The ’790 Patent duly and legally issued on February 23, 2016.

23. Implicit is the current owner by assignment of all rights, title, and interest in and

under the ’790 Patent. Implicit has standing to sue for infringement of the ’790 Patent.

24. A true and correct copy of the ’104 Patent, entitled “Method and System for Data

Demultiplexing,” and with Edward Balassanian as the named inventor, is attached hereto as

Exhibit 6.

25. The ’104 Patent duly and legally issued on March 7, 2017.

26. Implicit is the current owner by assignment of all rights, title, and interest in and

under the ’104 Patent. Implicit has standing to sue for infringement of the ’104 Patent.

27. A true and correct copy of the ’780 Patent, entitled “Method and System for Data

Demultiplexing,” and with Edward Balassanian as the named inventor, is attached hereto as

Exhibit 7.

28. The ’780 Patent duly and legally issued on July 17, 2018.

29. Implicit is the current owner by assignment of all rights, title, and interest in and

under the ’780 Patent. Implicit has standing to sue for infringement of the ’780 Patent.

30. A true and correct copy of the ’839 Patent, entitled “Method and System for Data

Demultiplexing,” and with Edward Balassanian as the named inventor, is attached hereto as

Exhibit 8.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 4 of 25 PageID #: 253

Juniper Ex. 1041-p. 4
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 5

31. The ’839 Patent duly and legally issued on July 24, 2018.

32. Implicit is the current owner by assignment of all rights, title, and interest in and

under the ’839 Patent. Implicit has standing to sue for infringement of the ’839 Patent.

33. A true and correct copy of the ’378 Patent, entitled “Method and System for Data

Demultiplexing,” and with Edward Balassanian as the named inventor, is attached hereto as

Exhibit 9.

34. The ’378 Patent duly and legally issued on March 5, 2019.

35. Implicit is the current owner by assignment of all rights, title, and interest in and

under the ’378 Patent. Implicit has standing to sue for infringement of the ’378 Patent.

B. Juniper

36. Juniper, directly or through intermediaries, makes, uses, sells, or offers to sell

within the United States, or imports into the United States, certain products (the “Accused

Products”), including but not limited to Juniper SRX Series Services Gateways.

37. By selling or offering to sell the Accused Products, Juniper, directly or through

intermediaries, purposefully and voluntarily places the Accused Products into the stream of

commerce with the expectation that they will be purchased or used by consumers in this District.

V. NOTICE

38. The allegations of each foregoing paragraph are incorporated by reference as if

fully set forth herein.

39. At least by filing and serving the Original Complaint in this action, Implicit has

given Juniper written notice of the ’075 Patent, the ’779 Patent, the ’740 Patent, the ’683 Patent,

the ’790 Patent, the ’104 Patent, the ’780 Patent, and the ’839 Patent and of Juniper’s infringement

thereof.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 5 of 25 PageID #: 254

Juniper Ex. 1041-p. 5
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 6

40. At least by filing and serving this First Amended Complaint, Implicit has given

Juniper written notice of the ’378 Patent and of Juniper’s infringement thereof.

VI. CLAIMS

A. Infringement of the ’075 Patent

41. The allegations of each foregoing paragraph are incorporated by reference as if

fully set forth herein and form the basis for the following cause of action against Juniper.

42. The Accused Products are covered by at least claim 1 of the ’075 Patent.

43. Juniper has directly infringed and continues to infringe at least claim 1 of the ’075

Patent in violation of 35 U.S.C. § 271(a) by, directly or through intermediaries and without

Implicit’s authority, making, using, selling, or offering to sell the Accused Products in the United

States, or importing the Accused Products into the United States.

44. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively inducing infringement of at least

claim 1 of the ’075 Patent in violation of 35 U.S.C. § 271(b). Users of the Accused Products

directly infringe at least claim 1 of the ’075 Patent when they use the Accused Products in the

ordinary, customary, and intended way. Juniper’s inducements include, without limitation and

with specific intent to encourage the infringement, knowingly inducing consumers to use the

Accused Products within the United States in the ordinary, customary, and intended way by,

directly or through intermediaries, supplying the Accused Products to consumers within the United

States and instructing such consumers (for example in instructional manuals or videos that Juniper

provides online or with the Accused Products) how to use the Accused Products in the ordinary,

customary, and intended way, which Juniper knows or should know infringes at least claim 1 of

the ’075 Patent. Juniper’s inducements may further include, without limitation and with specific

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 6 of 25 PageID #: 255

Juniper Ex. 1041-p. 6
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 7

intent to encourage the infringement, knowingly inducing manufacturers to make the Accused

Products within the United States, or knowingly inducing distributors or resellers to sell or offer

to sell the Accused Products within the United States, by, directly or through intermediaries,

instructing such manufacturers, distributors, or resellers to make, sell, or offer to sell the Accused

Products in the United States, which Juniper knows or should know infringes at least claim 1 of

the ’075 Patent.

45. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively contributing to infringement of at

least claim 1 of the ’075 Patent in violation of 35 U.S.C. § 271(c). Juniper installs, configures,

and sells the Accused Products with one or more distinct components, including components that

implement reverse-web proxy functionality (collectively, the “Server Accused Components”),

each of which is especially made or especially adapted to practice the invention claimed in at least

claim 1 of the ’075 Patent. Each Server Accused Component within the Accused Products

constitutes a material part of the claimed invention recited in at least claim 1 of the ’075 Patent

and not a staple article or commodity of commerce because it is specifically configured according

to at least claim 1 of the ’075 Patent. Juniper’s contributions include, without limitation, making,

offering to sell, and/or selling within the United States, and/or importing into the United States,

the Accused Products, which include one or more Server Accused Components, knowing each

Server Accused Component to be especially made or especially adapted for use in an infringement

of at least claim 1 of the ’075 Patent, and not a staple article or commodity of commerce suitable

for substantial noninfringing use.

46. As of the filing and service of the Original Complaint in this action, Juniper’s

infringement of the ’075 Patent has been and continues to be willful and deliberate.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 7 of 25 PageID #: 256

Juniper Ex. 1041-p. 7
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 8

B. Infringement of the ’779 Patent

47. The allegations of each foregoing paragraph are incorporated by reference as if

fully set forth herein and form the basis for the following cause of action against Juniper.

48. The Accused Products are covered by at least claim 1 of the ’779 Patent.

49. Juniper has directly infringed and continues to infringe at least claim 1 of the ’779

Patent in violation of 35 U.S.C. § 271(a) by, directly or through intermediaries and without

Implicit’s authority, making, using, selling, or offering to sell the Accused Products in the United

States, or importing the Accused Products into the United States.

50. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively inducing infringement of at least

claim 1 of the ’779 Patent in violation of 35 U.S.C. § 271(b). Users of the Accused Products

directly infringe at least claim 1 of the ’779 Patent when they use the Accused Products in the

ordinary, customary, and intended way. Juniper’s inducements include, without limitation and

with specific intent to encourage the infringement, knowingly inducing consumers to use the

Accused Products within the United States in the ordinary, customary, and intended way by,

directly or through intermediaries, supplying the Accused Products to consumers within the United

States and instructing such consumers (for example in instructional manuals or videos that Juniper

provides online or with the Accused Products) how to use the Accused Products in the ordinary,

customary, and intended way, which Juniper knows or should know infringes at least claim 1 of

the ’779 Patent. Juniper’s inducements may further include, without limitation and with specific

intent to encourage the infringement, knowingly inducing manufacturers to make the Accused

Products within the United States, or knowingly inducing distributors or resellers to sell or offer

to sell the Accused Products within the United States, by, directly or through intermediaries,

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 8 of 25 PageID #: 257

Juniper Ex. 1041-p. 8
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 9

instructing such manufacturers, distributors, or resellers to make, sell, or offer to sell the Accused

Products in the United States, which Juniper knows or should know infringes at least claim 1 of

the ’779 Patent.

51. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively contributing to infringement of at

least claim 1 of the ’779 Patent in violation of 35 U.S.C. § 271(c). Juniper installs, configures,

and sells the Accused Products with the Server Accused Components, each of which is especially

made or especially adapted to practice the invention claimed in at least claim 1 of the ’779 Patent.

Each Server Accused Component within the Accused Products constitutes a material part of the

claimed invention recited in at least claim 1 of the ’779 Patent and not a staple article or commodity

of commerce because it is specifically configured according to at least claim 1 of the ’779 Patent.

Juniper’s contributions include, without limitation, making, offering to sell, and/or selling within

the United States, and/or importing into the United States, the Accused Products, which include

one or more Server Accused Components, knowing each Server Accused Component to be

especially made or especially adapted for use in an infringement of at least claim 1 of the ’779

Patent, and not a staple article or commodity of commerce suitable for substantial noninfringing

use.

52. As of the filing and service of the Original Complaint in this action, Juniper’s

infringement of the ’779 Patent has been and continues to be willful and deliberate.

C. Infringement of the ’740 Patent

53. The allegations of each foregoing paragraph are incorporated by reference as if

fully set forth herein and form the basis for the following cause of action against Juniper.

54. The Accused Products are covered by at least claim 1 of the ’740 Patent.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 9 of 25 PageID #: 258

Juniper Ex. 1041-p. 9
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 10

55. Juniper has directly infringed and continues to infringe at least claim 1 of the ’740

Patent in violation of 35 U.S.C. § 271(a) by, directly or through intermediaries and without

Implicit’s authority, making, using, selling, or offering to sell the Accused Products in the United

States, or importing the Accused Products into the United States.

56. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively inducing infringement of at least

claim 1 of the ’740 Patent in violation of 35 U.S.C. § 271(b). Users of the Accused Products

directly infringe at least claim 1 of the ’740 Patent when they use the Accused Products in the

ordinary, customary, and intended way. Juniper’s inducements include, without limitation and

with specific intent to encourage the infringement, knowingly inducing consumers to use the

Accused Products within the United States in the ordinary, customary, and intended way by,

directly or through intermediaries, supplying the Accused Products to consumers within the United

States and instructing such consumers (for example in instructional manuals or videos that Juniper

provides online or with the Accused Products) how to use the Accused Products in the ordinary,

customary, and intended way, which Juniper knows or should know infringes at least claim 1 of

the ’740 Patent. Juniper’s inducements may further include, without limitation and with specific

intent to encourage the infringement, knowingly inducing manufacturers to make the Accused

Products within the United States, or knowingly inducing distributors or resellers to sell or offer

to sell the Accused Products within the United States, by, directly or through intermediaries,

instructing such manufacturers, distributors, or resellers to make, sell, or offer to sell the Accused

Products in the United States, which Juniper knows or should know infringes at least claim 1 of

the ’740 Patent.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 10 of 25 PageID #: 259

Juniper Ex. 1041-p. 10
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 11

57. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively contributing to infringement of at

least claim 1 of the ’740 Patent in violation of 35 U.S.C. § 271(c). Juniper installs, configures,

and sells the Accused Products with the Server Accused Components, each of which is especially

made or especially adapted to practice the invention claimed in at least claim 1 of the ’740 Patent.

Each Server Accused Component within the Accused Products constitutes a material part of the

claimed invention recited in at least claim 1 of the ’740 Patent and not a staple article or commodity

of commerce because it is specifically configured according to at least claim 1 of the ’740 Patent.

Juniper’s contributions include, without limitation, making, offering to sell, and/or selling within

the United States, and/or importing into the United States, the Accused Products, which include

one or more Server Accused Components, knowing each Server Accused Component to be

especially made or especially adapted for use in an infringement of at least claim 1 of the ’740

Patent, and not a staple article or commodity of commerce suitable for substantial noninfringing

use.

58. As of the filing and service of the Original Complaint in this action, Juniper’s

infringement of the ’740 Patent has been and continues to be willful and deliberate.

D. Infringement of the ’683 Patent

59. The allegations of each foregoing paragraph are incorporated by reference as if

fully set forth herein and form the basis for the following cause of action against Juniper.

60. The Accused Products are covered by at least claim 1 of the ’683 Patent.

61. Juniper has directly infringed and continues to infringe at least claim 1 of the ’683

Patent in violation of 35 U.S.C. § 271(a) by, directly or through intermediaries and without

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 11 of 25 PageID #: 260

Juniper Ex. 1041-p. 11
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 12

Implicit’s authority, making, using, selling, or offering to sell the Accused Products in the United

States, or importing the Accused Products into the United States.

62. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively inducing infringement of at least

claim 1 of the ’683 Patent in violation of 35 U.S.C. § 271(b). Users of the Accused Products

directly infringe at least claim 1 of the ’683 Patent when they use the Accused Products in the

ordinary, customary, and intended way. Juniper’s inducements include, without limitation and

with specific intent to encourage the infringement, knowingly inducing consumers to use the

Accused Products within the United States in the ordinary, customary, and intended way by,

directly or through intermediaries, supplying the Accused Products to consumers within the United

States and instructing such consumers (for example in instructional manuals or videos that Juniper

provides online or with the Accused Products) how to use the Accused Products in the ordinary,

customary, and intended way, which Juniper knows or should know infringes at least claim 1 of

the ’683 Patent. Juniper’s inducements may further include, without limitation and with specific

intent to encourage the infringement, knowingly inducing manufacturers to make the Accused

Products within the United States, or knowingly inducing distributors or resellers to sell or offer

to sell the Accused Products within the United States, by, directly or through intermediaries,

instructing such manufacturers, distributors, or resellers to make, sell, or offer to sell the Accused

Products in the United States, which Juniper knows or should know infringes at least claim 1 of

the ’683 Patent.

63. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively contributing to infringement of at

least claim 1 of the ’683 Patent in violation of 35 U.S.C. § 271(c). Juniper installs, configures,

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 12 of 25 PageID #: 261

Juniper Ex. 1041-p. 12
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 13

and sells the Accused Products with one or more distinct components, including components that

implement flow-based processing and the ability to inspect application data on TCP traffic

(collectively, the “Demux Accused Components”), each of which is especially made or especially

adapted to practice the invention claimed in at least claim 1 of the ’683 Patent. Each Demux

Accused Component within the Accused Products constitutes a material part of the claimed

invention recited in at least claim 1 of the ’683 Patent and not a staple article or commodity of

commerce because it is specifically configured according to at least claim 1 of the ’683 Patent.

Juniper’s contributions include, without limitation, making, offering to sell, and/or selling within

the United States, and/or importing into the United States, the Accused Products, which include

one or more Demux Accused Components, knowing each Demux Accused Component to be

especially made or especially adapted for use in an infringement of at least claim 1 of the ’683

Patent, and not a staple article or commodity of commerce suitable for substantial noninfringing

use.

64. As of the filing and service of the Original Complaint in this action, Juniper’s

infringement of the ’683 Patent has been and continues to be willful and deliberate.

E. Infringement of the ’790 Patent

65. The allegations of each foregoing paragraph are incorporated by reference as if

fully set forth herein and form the basis for the following cause of action against Juniper.

66. The Accused Products are covered by at least claim 1 of the ’790 Patent.

67. Juniper has directly infringed and continues to infringe at least claim 1 of the ’790

Patent in violation of 35 U.S.C. § 271(a) by, directly or through intermediaries and without

Implicit’s authority, making, using, selling, or offering to sell the Accused Products in the United

States, or importing the Accused Products into the United States.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 13 of 25 PageID #: 262

Juniper Ex. 1041-p. 13
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 14

68. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively inducing infringement of at least

claim 1 of the ’790 Patent in violation of 35 U.S.C. § 271(b). Users of the Accused Products

directly infringe at least claim 1 of the ’790 Patent when they use the Accused Products in the

ordinary, customary, and intended way. Juniper’s inducements include, without limitation and

with specific intent to encourage the infringement, knowingly inducing consumers to use the

Accused Products within the United States in the ordinary, customary, and intended way by,

directly or through intermediaries, supplying the Accused Products to consumers within the United

States and instructing such consumers (for example in instructional manuals or videos that Juniper

provides online or with the Accused Products) how to use the Accused Products in the ordinary,

customary, and intended way, which Juniper knows or should know infringes at least claim 1 of

the ’790 Patent. Juniper’s inducements may further include, without limitation and with specific

intent to encourage the infringement, knowingly inducing manufacturers to make the Accused

Products within the United States, or knowingly inducing distributors or resellers to sell or offer

to sell the Accused Products within the United States, by, directly or through intermediaries,

instructing such manufacturers, distributors, or resellers to make, sell, or offer to sell the Accused

Products in the United States, which Juniper knows or should know infringes at least claim 1 of

the ’790 Patent.

69. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively contributing to infringement of at

least claim 1 of the ’790 Patent in violation of 35 U.S.C. § 271(c). Juniper installs, configures,

and sells the Accused Products with the Demux Accused Components, each of which is especially

made or especially adapted to practice the invention claimed in at least claim 1 of the ’790 Patent.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 14 of 25 PageID #: 263

Juniper Ex. 1041-p. 14
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 15

Each Demux Accused Component within the Accused Products constitutes a material part of the

claimed invention recited in at least claim 1 of the ’790 Patent and not a staple article or commodity

of commerce because it is specifically configured according to at least claim 1 of the ’790 Patent.

Juniper’s contributions include, without limitation, making, offering to sell, and/or selling within

the United States, and/or importing into the United States, the Accused Products, which include

one or more Demux Accused Components, knowing each Demux Accused Component to be

especially made or especially adapted for use in an infringement of at least claim 1 of the ’790

Patent, and not a staple article or commodity of commerce suitable for substantial noninfringing

use.

70. As of the filing and service of the Original Complaint in this action, Juniper’s

infringement of the ’790 Patent has been and continues to be willful and deliberate.

F. Infringement of the ’104 Patent

71. The allegations of each foregoing paragraph are incorporated by reference as if

fully set forth herein and form the basis for the following cause of action against Juniper.

72. The Accused Products are covered by at least claim 1 of the ’104 Patent.

73. Juniper has directly infringed and continues to infringe at least claim 1 of the ’104

Patent in violation of 35 U.S.C. § 271(a) by, directly or through intermediaries and without

Implicit’s authority, making, using, selling, or offering to sell the Accused Products in the United

States, or importing the Accused Products into the United States.

74. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively inducing infringement of at least

claim 1 of the ’104 Patent in violation of 35 U.S.C. § 271(b). Users of the Accused Products

directly infringe at least claim 1 of the ’104 Patent when they use the Accused Products in the

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 15 of 25 PageID #: 264

Juniper Ex. 1041-p. 15
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 16

ordinary, customary, and intended way. Juniper’s inducements include, without limitation and

with specific intent to encourage the infringement, knowingly inducing consumers to use the

Accused Products within the United States in the ordinary, customary, and intended way by,

directly or through intermediaries, supplying the Accused Products to consumers within the United

States and instructing such consumers (for example in instructional manuals or videos that Juniper

provides online or with the Accused Products) how to use the Accused Products in the ordinary,

customary, and intended way, which Juniper knows or should know infringes at least claim 1 of

the ’104 Patent. Juniper’s inducements may further include, without limitation and with specific

intent to encourage the infringement, knowingly inducing manufacturers to make the Accused

Products within the United States, or knowingly inducing distributors or resellers to sell or offer

to sell the Accused Products within the United States, by, directly or through intermediaries,

instructing such manufacturers, distributors, or resellers to make, sell, or offer to sell the Accused

Products in the United States, which Juniper knows or should know infringes at least claim 1 of

the ’104 Patent.

75. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively contributing to infringement of at

least claim 1 of the ’104 Patent in violation of 35 U.S.C. § 271(c). Juniper installs, configures,

and sells the Accused Products with the Demux Accused Components, each of which is especially

made or especially adapted to practice the invention claimed in at least claim 1 of the ’104 Patent.

Each Demux Accused Component within the Accused Products constitutes a material part of the

claimed invention recited in at least claim 1 of the ’104 Patent and not a staple article or commodity

of commerce because it is specifically configured according to at least claim 1 of the ’104 Patent.

Juniper’s contributions include, without limitation, making, offering to sell, and/or selling within

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 16 of 25 PageID #: 265

Juniper Ex. 1041-p. 16
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 17

the United States, and/or importing into the United States, the Accused Products, which include

one or more Demux Accused Components, knowing each Demux Accused Component to be

especially made or especially adapted for use in an infringement of at least claim 1 of the ’104

Patent, and not a staple article or commodity of commerce suitable for substantial noninfringing

use.

76. As of the filing and service of the Original Complaint in this action, Juniper’s

infringement of the ’104 Patent has been and continues to be willful and deliberate.

G. Infringement of the ’780 Patent

77. The allegations of each foregoing paragraph are incorporated by reference as if

fully set forth herein and form the basis for the following cause of action against Juniper.

78. The Accused Products are covered by at least claim 1 of the ’780 Patent.

79. Juniper has directly infringed and continues to infringe at least claim 1 of the ’780

Patent in violation of 35 U.S.C. § 271(a) by, directly or through intermediaries and without

Implicit’s authority, making, using, selling, or offering to sell the Accused Products in the United

States, or importing the Accused Products into the United States.

80. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively inducing infringement of at least

claim 1 of the ’780 Patent in violation of 35 U.S.C. § 271(b). Users of the Accused Products

directly infringe at least claim 1 of the ’780 Patent when they use the Accused Products in the

ordinary, customary, and intended way. Juniper’s inducements include, without limitation and

with specific intent to encourage the infringement, knowingly inducing consumers to use the

Accused Products within the United States in the ordinary, customary, and intended way by,

directly or through intermediaries, supplying the Accused Products to consumers within the United

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 17 of 25 PageID #: 266

Juniper Ex. 1041-p. 17
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 18

States and instructing such consumers (for example in instructional manuals or videos that Juniper

provides online or with the Accused Products) how to use the Accused Products in the ordinary,

customary, and intended way, which Juniper knows or should know infringes at least claim 1 of

the ’780 Patent. Juniper’s inducements may further include, without limitation and with specific

intent to encourage the infringement, knowingly inducing manufacturers to make the Accused

Products within the United States, or knowingly inducing distributors or resellers to sell or offer

to sell the Accused Products within the United States, by, directly or through intermediaries,

instructing such manufacturers, distributors, or resellers to make, sell, or offer to sell the Accused

Products in the United States, which Juniper knows or should know infringes at least claim 1 of

the ’780 Patent.

81. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively contributing to infringement of at

least claim 1 of the ’780 Patent in violation of 35 U.S.C. § 271(c). Juniper installs, configures,

and sells the Accused Products with the Demux Accused Components, each of which is especially

made or especially adapted to practice the invention claimed in at least claim 1 of the ’780 Patent.

Each Demux Accused Component within the Accused Products constitutes a material part of the

claimed invention recited in at least claim 1 of the ’780 Patent and not a staple article or commodity

of commerce because it is specifically configured according to at least claim 1 of the ’780 Patent.

Juniper’s contributions include, without limitation, making, offering to sell, and/or selling within

the United States, and/or importing into the United States, the Accused Products, which include

one or more Demux Accused Components, knowing each Demux Accused Component to be

especially made or especially adapted for use in an infringement of at least claim 1 of the ’780

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 18 of 25 PageID #: 267

Juniper Ex. 1041-p. 18
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 19

Patent, and not a staple article or commodity of commerce suitable for substantial noninfringing

use.

82. As of the filing and service of the Original Complaint in this action, Juniper’s

infringement of the ’780 Patent has been and continues to be willful and deliberate.

H. Infringement of the ’839 Patent

83. The allegations of each foregoing paragraph are incorporated by reference as if

fully set forth herein and form the basis for the following cause of action against Juniper.

84. The Accused Products are covered by claim 1 of the ’839 Patent.

85. Juniper has directly infringed and continues to infringe claim 1 of the ’839 Patent

in violation of 35 U.S.C. § 271(a) by, directly or through intermediaries and without Implicit’s

authority, making, using, selling, or offering to sell the Accused Products in the United States, or

importing the Accused Products into the United States.

86. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively inducing infringement of claim 1 of

the ’839 Patent in violation of 35 U.S.C. § 271(b). Users of the Accused Products directly infringe

claim 1 of the ’839 Patent when they use the Accused Products in the ordinary, customary, and

intended way. Juniper’s inducements include, without limitation and with specific intent to

encourage the infringement, knowingly inducing consumers to use the Accused Products within

the United States in the ordinary, customary, and intended way by, directly or through

intermediaries, supplying the Accused Products to consumers within the United States and

instructing such consumers (for example in instructional manuals or videos that Juniper provides

online or with the Accused Products) how to use the Accused Products in the ordinary, customary,

and intended way, which Juniper knows or should know infringes claim 1 of the ’839 Patent.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 19 of 25 PageID #: 268

Juniper Ex. 1041-p. 19
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 20

Juniper’s inducements may further include, without limitation and with specific intent to

encourage the infringement, knowingly inducing manufacturers to make the Accused Products

within the United States, or knowingly inducing distributors or resellers to sell or offer to sell the

Accused Products within the United States, by, directly or through intermediaries, instructing such

manufacturers, distributors, or resellers to make, sell, or offer to sell the Accused Products in the

United States, which Juniper knows or should know infringes claim 1 of the ’839 Patent.

87. Further and in the alternative, at least since the filing and service of the Original

Complaint in this action, Juniper has been and now is actively contributing to infringement of

claim 1 of the ’839 Patent in violation of 35 U.S.C. § 271(c). Juniper installs, configures, and sells

the Accused Products with the Demux Accused Components, each of which is especially made or

especially adapted to practice the invention claimed in claim 1 of the ’839 Patent. Each Demux

Accused Component within the Accused Products constitutes a material part of the claimed

invention recited in claim 1 of the ’839 Patent and not a staple article or commodity of commerce

because it is specifically configured according to claim 1 of the ’839 Patent. Juniper’s

contributions include, without limitation, making, offering to sell, and/or selling within the United

States, and/or importing into the United States, the Accused Products, which include one or more

Demux Accused Components, knowing each Demux Accused Component to be especially made

or especially adapted for use in an infringement of claim 1 of the ’839 Patent, and not a staple

article or commodity of commerce suitable for substantial noninfringing use.

88. As of the filing and service of the Original Complaint in this action, Juniper’s

infringement of the ’839 Patent has been and continues to be willful and deliberate.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 20 of 25 PageID #: 269

Juniper Ex. 1041-p. 20
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 21

I. Infringement of the ’378 Patent

89. The allegations of each foregoing paragraph are incorporated by reference as if

fully set forth herein and form the basis for the following cause of action against Juniper.

90. The Accused Products are covered by claim 1 of the ’378 Patent.

91. Juniper has directly infringed and continues to infringe claim 1 of the ’378 Patent

in violation of 35 U.S.C. § 271(a) by, directly or through intermediaries and without Implicit’s

authority, making, using, selling, or offering to sell the Accused Products in the United States, or

importing the Accused Products into the United States.

92. Further and in the alternative, at least since the filing and service of this First

Amended Complaint, Juniper has been and now is actively inducing infringement of claim 1 of

the ’378 Patent in violation of 35 U.S.C. § 271(b). Users of the Accused Products directly infringe

claim 1 of the ’378 Patent when they use the Accused Products in the ordinary, customary, and

intended way. Juniper’s inducements include, without limitation and with specific intent to

encourage the infringement, knowingly inducing consumers to use the Accused Products within

the United States in the ordinary, customary, and intended way by, directly or through

intermediaries, supplying the Accused Products to consumers within the United States and

instructing such consumers (for example in instructional manuals or videos that Juniper provides

online or with the Accused Products) how to use the Accused Products in the ordinary, customary,

and intended way, which Juniper knows or should know infringes claim 1 of the ’378 Patent.

Juniper’s inducements may further include, without limitation and with specific intent to

encourage the infringement, knowingly inducing manufacturers to make the Accused Products

within the United States, or knowingly inducing distributors or resellers to sell or offer to sell the

Accused Products within the United States, by, directly or through intermediaries, instructing such

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 21 of 25 PageID #: 270

Juniper Ex. 1041-p. 21
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 22

manufacturers, distributors, or resellers to make, sell, or offer to sell the Accused Products in the

United States, which Juniper knows or should know infringes claim 1 of the ’378 Patent.

93. Further and in the alternative, at least since the filing and service of this First

Amended Complaint, Juniper has been and now is actively contributing to infringement of claim

1 of the ’378 Patent in violation of 35 U.S.C. § 271(c). Juniper installs, configures, and sells the

Accused Products with the Demux Accused Components, each of which is especially made or

especially adapted to practice the invention claimed in claim 1 of the ’378 Patent. Each Demux

Accused Component within the Accused Products constitutes a material part of the claimed

invention recited in claim 1 of the ’378 Patent and not a staple article or commodity of commerce

because it is specifically configured according to claim 1 of the ’378 Patent. Juniper’s

contributions include, without limitation, making, offering to sell, and/or selling within the United

States, and/or importing into the United States, the Accused Products, which include one or more

Demux Accused Components, knowing each Demux Accused Component to be especially made

or especially adapted for use in an infringement of claim 1 of the ’378 Patent, and not a staple

article or commodity of commerce suitable for substantial noninfringing use.

94. At least as of the filing and service of this First Amended Complaint, Juniper’s

infringement of the ’378 Patent has been and continues to be willful and deliberate.

VII. DAMAGES

95. The allegations of each foregoing paragraph are incorporated by reference as if

fully set forth herein.

96. For the above-described infringement, Implicit has been injured and seeks damages

to adequately compensate it for Juniper’s infringement of the Asserted Patents. Such damages, to

be proved at trial, should be no less than the amount of a reasonable royalty under 35 U.S.C. § 284,

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 22 of 25 PageID #: 271

Juniper Ex. 1041-p. 22
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 23

together with Implicit’s costs and expenses, pre-judgment and post-judgment interest, and

supplemental damages for any continuing post-verdict or post-judgment infringement, with an

accounting as needed.

97. As set forth above, Juniper’s infringement of the Asserted Patents has been and

continues to be willful, such that Implicit seeks treble damages under 35 U.S.C. § 284 as

appropriate.

98. Juniper’s willful infringement of the Asserted Patents renders this case exceptional

under 35 U.S.C. § 285, such that Implicit seeks all reasonable attorneys’ fees and costs incurred in

this litigation, together with pre-judgment and post-judgment interest thereon.

VIII. PRAYER FOR RELIEF

Implicit respectfully requests the following relief:

a. A judgment in favor of Implicit that Juniper has infringed each Asserted Patent,

whether literally or under the doctrine of equivalents, as described herein;

b. A judgment and order requiring Juniper to pay Implicit its damages, costs,

expenses, and pre-judgment and post-judgment interest for Juniper’s infringement of each

Asserted Patent as provided under 35 U.S.C. § 284, including supplemental damages for any

continuing post-verdict or post-judgment infringement with an accounting as needed;

c. A judgment and order requiring Juniper to pay Implicit enhanced damages for

willful infringement as provided under 35 U.S.C. § 284;

d. A judgment and order finding this case exceptional and requiring Juniper to pay

Implicit its reasonable attorneys’ fees and costs incurred in this litigation pursuant to 35 U.S.C.

§ 285, together with pre-judgment and post-judgment interest thereon; and

e. Such other and further relief as the Court deems just and proper.

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 23 of 25 PageID #: 272

Juniper Ex. 1041-p. 23
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 24

IX. JURY DEMAND

Pursuant to Federal Rule of Civil Procedure 38(b), Implicit requests a jury trial of all issues

triable of right by a jury.

Dated: March 19, 2019 Respectfully submitted,

By: /s/ William E. Davis, III
William E. Davis, III
Texas State Bar No. 24047416
bdavis@bdavisfirm.com
Christian J. Hurt
Texas State Bar No. 24059987
churt@bdavisfirm.com
Edward Chin (Of Counsel)
Texas State Bar No. 50511688
echin@bdavisfirm.com
Debra Coleman (Of Counsel)
Texas State Bar No. 24059595
dcoleman@bdavisfirm.com
The Davis Firm, PC
213 N. Fredonia Street, Suite 230
Longview, Texas 75601
Telephone: (903) 230-9090
Facsimile: (903) 230-9661

Spencer Hosie (admitted pro hac vice)
California State Bar No. 101777
shosie@hosielaw.com
Brandon C. Martin (admitted pro hac vice)
California State Bar No. 269624
bmartin@hosielaw.com
Hosie Rice LLP
600 Montgomery Street, 34th Floor
San Francisco, California 94111
Telephone: (415) 247-6000
Facsimile: (415) 247-6001

Counsel for Plaintiff Implicit, LLC

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 24 of 25 PageID #: 273

Juniper Ex. 1041-p. 24
Juniper v Implicit

First Amended Complaint for Patent Infringement Page 25

CERTIFICATE OF SERVICE

The undersigned certifies that the foregoing document and all attachments thereto are being
filed electronically in compliance with Local Rule CV-5(a) on this March 19, 2019. As such, this
document is being served on all counsel, each of whom is deemed to have consented to electronic
service. Local Rule CV-5(a)(3)(V).

/s/ William E. Davis, III
William E. Davis, III

Case 2:19-cv-00037-JRG Document 14 Filed 03/19/19 Page 25 of 25 PageID #: 274

Juniper Ex. 1041-p. 25
Juniper v Implicit

EXHIBIT 1

Case 2:19-cv-00037-JRG Document 14-1 Filed 03/19/19 Page 1 of 10 PageID #: 275

Juniper Ex. 1041-p. 26
Juniper v Implicit

c12) United States Patent
Balassanian

(54) SERVER REQUEST MANAGEMENT

(76) Inventor: Edward Balassanian, Kirkland, WA
(US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 931 days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 11/933,161

(22) Filed:

(65)

Oct. 31, 2007

Prior Publication Data

US 2008/0140772 Al Jun. 12,2008

Related U.S. Application Data

(63) Continuation of application No. 11/241,985, filed on
Oct. 4, 2005, now Pat. No. 7,774,740, which is a
continuation of application No. 09/968,704, filed on
Oct. 1, 2001, now Pat. No. 6,976,248, which is a
continuation of application No. 09/040,972, filed on
Mar. 18, 1998, now Pat. No. 6,324,685.

(51) Int. Cl.
G06F 9/445 (2006.01)
G06F 9/44 (2006.01)

(52) U.S. Cl. 717/177; 717/171; 709/203
(58) Field of Classification Search 717 /168-177;

(56)

709/203-204
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,920,725 A *
5,923,885 A *
5,926,631 A *
6,105,063 A *
6,195,794 Bl*

7/1999 Maetal. 717/171
7/1999 Johnson et al. 717/176
7/1999 McGarvey 703/23
8/2000 Hayes, Jr. 709/223
2/2001 Buxton 717/108

I 1111111111111111 11111 1111111111 111111111111111 1111111111 lll111111111111111
US008056075B2

(IO) Patent No.: US 8,056,075 B2
(45) Date of Patent: *Nov. 8, 2011

6,253,228 Bl* 6/2001 Ferris et al. 709/203
6,757,894 B2 * 6/2004 Eylon et al. 717/177
6,766,366 Bl* 7/2004 Schafer et al. 709/223
6,996,817 B2 * 2/2006 Birum et al. 717/170
7,069,294 B2 * 6/2006 Clough et al. 709/203
7,131,122 Bl* 10/2006 Lakhdhir 717/168
7,150,015 B2 * 12/2006 Pace et al. 717/176
7,155,715 Bl* 12/2006 Cui et al. 717/177
7,444,629 B2 * 10/2008 Chirakansakcharoen

et al. 717/166
7,523,158 Bl* 4/2009 Nickerson et al. 709/203
7,721,283 B2 * 5/2010 Kovachka-Dimitrova

et al. 717/177
7,814,475 B2 * 10/2010 Cohen et al. 717/168
7,934,212 B2 * 4/2011 Lakhdhir 717/170
7,991,834 B2 * 8/2011 Ferris et al. 709/203

OTHER PUBLICATIONS

Bonisch et al, "Server side compresslets for internet multimedia

streams", IEEE, pp. 82-86, 1999. *
Wirthlin et al, "Web based IP evaluation and distribution using
applets", IEEE vol. 22, No. 8, pp. 985-994, 2003.*

(Continued)

Primary Examiner - Anil Khatri

(57) ABSTRACT

The present invention is an applet server which accepts
requests for applets from client computers. A request speci
fies the format in which an applet is to be delivered to the
requesting client computer. The applet server has a cache
which it uses to store applets for distribution to client com
puters. If the specified form of the requested applet is avail
able in the cache, the applet server transmits the applet to the
requesting client. If the applet is not available in the cache, the
server will attempt to build the applet from local resources
(program code modules and compilers) and transformer pro
grams (verifiers and optimizers). If the applet server is able to
build the requested applet, it will then transmit the applet to
the requesting client computer. If the applet server is unable to
build the requested applet, it will pass the request to another
applet server on the network for fulfillment of the request.

13 Claims, 3 Drawing Sheets

~"1~-d5~ L::.J 17'.Jt C.:!'.l,,,,
r.,=.~=",=m.,=-,.,, I cBt'"'~ I
~ _, d"'1
~, .. r"I ,.s::v
c :: J/" I r£1 ®"'I
'-r--~"=' 1 '-uf,., I
24) ____ ...J
,--------, ,&.~~·-~B:
l.::---;;-r-- -

Case 2:19-cv-00037-JRG Document 14-1 Filed 03/19/19 Page 2 of 10 PageID #: 276

Juniper Ex. 1041-p. 27
Juniper v Implicit

US 8,056,075 B2
Page 2

OTHER PUBLICATIONS

Ding et al, "Selective Java applet filtering on Internet", IEEE, pp.
110-114, 1999.*

Lai et al, "On the performance of wide area thin client computing",
ACM Trans. on Compt. Sys> vo. 24, No. 2, pp. 175-209, 2006.*

* cited by examiner

Case 2:19-cv-00037-JRG Document 14-1 Filed 03/19/19 Page 3 of 10 PageID #: 277

Juniper Ex. 1041-p. 28
Juniper v Implicit

U.S. Patent

Cllent Computer A

12

Client Computer B

14

Nov. 8, 2011 Sheet 1 of 3 US 8,056,075 B2

Applet Server Computer

Network Interface

Applet Server
Manager

Cache Component

(Applet,

(Applet2

(Apple!3

~25a

~25b

~25c

20

Untrusted
Network

10

24 - - ---. - __J

~~nsfo~ ~ I
__ 35.J~ I

-r----
28.)

Fig. I

Case 2:19-cv-00037-JRG Document 14-1 Filed 03/19/19 Page 4 of 10 PageID #: 278

Juniper Ex. 1041-p. 29
Juniper v Implicit

U.S. Patent Nov. 8, 2011

Code-Type

Verification-Leve I

Optimization-Level

Applet-URL

Code-Type

Verification-Level

Optimization-Level

Apolet Lenath

Applet Code

Sheet 2 of 3 US 8,056,075 B2

(String) specifies the name of the requested
a let
(Source/Intermediate/Binary) specifies the
format the applet is to be delivered to the
requesting client in. A request for binary
would specify the CPU of the requesting
client e. . x86
(0-100) specifies the degree of verification to
be performed. 0 = no/minimal verification,
100 ::: maximum verification (highest level of
securit .
(0-100) specifies the degree of optimization
to be performed. 0 = no/minimal
o tirnization, 100 = maximum o timization.

Fig. 2A

(String) specifies the name of the requested
a let
(Source/Intermediate/Binary) specifies the
format the applet is to be delivered to the
requesting_client in. A request for binary
would specIty the CPU of the requesting
client e. . x86
(0-100) specifies the degree of verifiCc;1tion to
be performed. 0 = no/minimal verification,
100 = maximum verification (highest level Gf
securit .

· (0-100) specifies the degree of optimiiation
to be performed. O = no/minirnal
o timization, 100 = maximum o timization.
(0~2) specifies the size of the requested
a let.
The. Requested Applet in the form specified
b the re uest data t e.

Fig. 2B

Case 2:19-cv-00037-JRG Document 14-1 Filed 03/19/19 Page 5 of 10 PageID #: 279

Juniper Ex. 1041-p. 30
Juniper v Implicit

U.S. Patent Nov. 8, 2011 Sheet 3 of 3 US 8,056,075 B2

40

Intermediate Compiler

42

44

r---
1 ~ T-48 _;(\ I
I c:::;; L 46 ~ I_ 56
------ ____ .J.

,_,, __ _

50

T1111J61 Compiler

52

Applet

54

Fig. 3

Case 2:19-cv-00037-JRG Document 14-1 Filed 03/19/19 Page 6 of 10 PageID #: 280

Juniper Ex. 1041-p. 31
Juniper v Implicit

US 8,056,075 B2
1

SERVER REQUEST MANAGEMENT

PRIORITY CLAIM

2
makes security management at the enterprise level almost
impossible. Since upgrades of security checking software
must be made on every client computer, the cost and time
involved in doing such upgrades makes it likely that outdated

This application is a continuation of U.S. application Ser.
No. 11/241,985 filed Oct. 4, 2005 now U.S. Pat. No. 7,774,
740 which is a continuation of U.S. application Ser. No.
09/968,704 filed on Oct. 1, 2001 now U.S. Pat. No. 6,976,248,
which is a continuation of U.S. application Ser. No. 09/040,
972 filed on Mar. 18, 1998, now U.S. Pat. No. 6,324,685.

5 or corrupt copies of the verifier or interpreter exist within an
organization. Even when an organization is diligent in main
taining a client based security model, the size of the under
taking in a large organization increases the likelihood that

BACKGROUND OF THE INVENTION

Field of the Invention

10
there will be problems.

There is a need for a scalable distributed system architec
ture that provides a mechanism for client computers to
request and execute applets in a safe manner without requir
ing the client machines to have local resources to compile or
verify the code. There is a further need for a system in which

The present invention relates to computer operating system
and, in particular to a server architecture providing applica
tion caching and security verification.

15 the applets may be cached in either an intermediate architec
ture neutral form or machine specific form in order to increase
overall system performance and efficiency.

The growth of the Internet's importance to business, along
with the increased dependence upon corporate networks, has 20

created a demand for more secure and efficient computer
systems. The traditional solution to this problem has been to
depend upon improvements in hardware performance to
make up for the performance penalty that is typically incurred
when a computer system is made more secure and stable. 25

Increased interconnectivity has also created a need for
improved interoperability amongst a variety of computers
that are now connected to one another. One solution to the
problem of the variety of computers interconnected via the
Internet and corporate networks has been the development of 30

portable architecture neutral programming languages. The
most widely known of these is the Java™ progrannning lan
guage, though, there are numerous other architecture neutral
languages.

Architecture neutral programming languages allow pro- 35

grams downloaded from a server computer to a client com
puter to be interpreted and executed locally. This is possible
because the compiler generates partially compiled interme
diate byte-code, rather than fully compiled native machine
code. In order to run a program, the client machine uses an 40

interpreter to execute the compiled byte-code. The byte
codes provide an architecture neutral object file format,
which allows the code to be transported to multiple platforms.
This allows the program to be run on any system which
implements the appropriate interpreter and run-time system. 45

Collectively, the interpreter and runtime system implement a
virtual machine. This structure results in a very secure lan
guage.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention, an
applet server architecture is taught which allows client com
puters to request and execute applets in a safe manner without
requiring the client to have local resources to verify or com
pile the applet code. Compilation and byte-code verification
in the present invention are server based and thereby provide
more efficient use of resources and a flexible mechanism for
instituting enterprise-wide security policies. The server archi
tecture also provides a cache for applets, allowing clients to
receive applet code without having to access nodes outside
the local network. The cache also provides a mechanism for
avoiding repeated verification and compilation of previously
requested applet code since any client requesting a given
applet will have the request satisfied by a single cache entry.

Machine specific binary code is essentially interpreted
code since the processor for a given computer can essentially
be viewed as a form of an interpreter, interpreting binary code
into the associated electronic equivalents. The present inven
tion adds a level of indirection in the form of an intermediate
language that is processor independent. The intermediate lan
guage serves as the basis for security verification, code opti-
mizations, or any other compile time modifications that might
be necessary. The intermediate form allows a single version
of the source to be stored for many target platforms instead of
having a different binary for each potential target computer.
Compilations to the target form can either be done at the time
of a cache hit or they can be avoided all together if the target
machine is able to directly interpret the intermediate form. If
the compilation is done on the server, then a copy of the of the
compiled code as well as the intermediate form can be stored
in the cache. The performance advantage derived from cach-
ing the compiled form as well as the intermediate depends
upon the number of clients with the same CPU.

The novel features believed characteristic of the invention

The security of this system is premised on the ability of the
byte-code to be verified independently by the client computer. 50

Using the Java™ progrannning language or some other vir
tual machine implementing technology, a client can ensure
that the downloaded program will not crash the user's com
puter or perform operations for which it does not have per
m1ss10n.

The traditional implementations of architecture neutral
languages are not without problems. While providing tremen
dous cross platform support, the current implementations of
architecture neutral languages require that every client per
forms its own verification and interpretation of the interme- 60

diate code. The high computation and memory requirements

55 are set forth in the appended claims. The invention itself,
however, as well as other features and advantages thereof will
best be understood by reference to the detailed description
which follows, when read in conjunction with the accompa
nying drawings.

of a verifier, compiler and interpreter restrict the applicability
of these technologies to powerful client computers.

Another problem with performing the verification process
on the client computer is that any individual within an orga- 65

nization may disable some or all of the checks performed on
downloaded code. The current structure of these systems

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is diagram showing the major components which
may be used to implement an applet server in one embodi
ment of the present invention;

FIG. 2a is a table which illustrates the structure of the
request format data type;

Case 2:19-cv-00037-JRG Document 14-1 Filed 03/19/19 Page 7 of 10 PageID #: 281

Juniper Ex. 1041-p. 32
Juniper v Implicit

US 8,056,075 B2
3

FIG. 2b is a table which illustrates the structure of the
returned code data type.

FIG. 3 is a diagram showing the compilation and transfor
mation of a program module into an applet in a particular
form.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, an applet server architecture according
to one embodiment of the invention is based on an applet
server computer 10 which in turn is connected to client com
puter A 12, client computer B 14, an external network 16 and
an untrusted network 18. The applet server computer 10 con
nects to client computers 12 and 14, an external network 16,
and an untrusted network 18 by means of a network interface
20. Typically this connection will involve one or more of the
computers or networks having a connection to the Internet.

The applet server computer 10 accomplishes its objectives
by manipulating computer programs in several formats. An
applet (e.g. applets 1-3, 25a-25c) is any form of program
instructions, whether in binary, source or intermediate for
mat. In the case of this architecture, the applet code can either
be a self contained program, or it can be a code fragment
associated with a larger application.

Binary format refers to processor specific machine instruc
tions suitable for running natively on a given computing
platform (also referred to as "target" because of the concept of
"targeting" a compiler to produce binary code for a given
processor type).

4
intermediate, or binary). If the requested form of the applet is
available in the cache 24 (applet 1 25a, applet 2 25b, or applet
3 25c in this example) the applet server manager 22 instructs
the network interface 20 to transmit the applet to requesting

5 client computer A 12.
If the requested applet is not available in the cache 24, then

the applet server manager 22 will attempt to build the
requested applet from local resources 26 and one or more
transformation operations performed by one or more of the

10 transformers 28. Local resources 26 are comprised of com
pilers 30a, 30b and 30c and program code modules 32a, 32b,
32c and 32d. The requested applet is built by selecting one or
more program code modules 3 2 and compiling them with one
or more compilers 30. Transformer operations may be per-

15 formed by the verifier 34 or the optimizer 36.Afterthe applet
server manager 22 builds the applet, the network interface 20
transmits the applet to the requesting client computer A 12.

If the request can not be satisfied by building the applet
from local resources 26 and transformers 28, the applet server

20 manager 22 will pass a request for the requested applet to
external network 16 and/or untrusted network 18. The applet
server manager 22 may request the applet in intermediate
form or in executable form or it may request the local
resources 26 and transformers 28 it needs to complete build-

25 ing the applet itself.
The cache 24 is capable of responding to the following

commands: GET, PUT, and FLUSH. GET is used to retrieve
a given applet from the cache. PUT is used to store an applet
in the cache. FLUSH is used to clear the cache of one or more

Source refers to non-binary applet code, generally in the 30

form of high level languages (i.e. the C™, C++™, Java™,
Visual Basic™, ActiveX™, Fortran™, and Modula™ pro
gramming languages.

entries. When the cache is unable to locate an item in response
to a GET operation, it returns a cache miss. The program
which issued the GET command is then responsible for locat
ing the desired form of the applet by other means and option
ally storing it in the cache when it is retrieved (using the PUT Intermediate format refers to a common intermediate byte

code that is produced by compiling a given source code input. 35

The intermediate byte-code need not necessarily be Java™
byte-code.

operation). The FLUSH command will clear the cache ofone
or more entries and any subsequent GETs for the FLUSHed
applet code will result in a cache miss. This is useful if a
particular applet needs to be updated from a remote server on
a periodic basis. When using PUT, the program issuing the
command specifies a time to live (TTL) in the cache. When
the TTL expires, the cache entry is removed by means of a

Treating applets in this general sense allows client com
puters 12 and 14 to request not only applications, but portions
of applications. Client computers 12 and 14 are thus able to 40

use applet server computer 10 as the equivalent of a loader,
loading in appropriate parts of the application in the form of
applets. In turn client computers 12 and 14 can run large
applications without requiring that the client computers 12
and 14 have the resources to store the entire application in 45

FLUSH operation.
Local resources 26 are comprised of program modules 32

(applets in source form, not the requested form) and compil
ers 30. The program modules 32 are run through the compil
ers 30 in order to produce applets in the requested form. The memory at once.

Having the applets delivered from applet server computer
10 allows code in intermediate form to be verified, optimized,
and compiled before being transmitted to client computers 12
and 14. This reduces the amount of work the client computers
12 and 14 have to do and provides a convenient way to impose
global restrictions on code.

In operation, client computer A 12 transmits a request to an
applet server computer 10 requesting an applet in a particular
form. The form may be selected from a large matrix of many
possible forms that can be recognized by the system. The
request specifies the format (source, intermediate, or binary)
in which the client wishes to receive the applet. The request
may also specify that the applet be verified or have some other
transformation operation preformed upon it. Verification,
optimization and compression are examples of types of trans
formation operations. The request is received by the network
interface 20 of the applet server computer 10 which passes the
request onto the applet server manager 22.

applet server manager 20 may also direct the modules 32 to be
processed by a verifier 34 or another transformer such as an
optimizer 36. Program modules 32 are program code used to

50 build applets. Program modules 32 may be stored in local
resources 26 in source binary, or intermediate formats. When
an applet is built it may require the operation of one or more
compilers 30 upon one or more program modules 32. The
program modules 32 may be combined and recompiled with

55 previously cached applets and the resulting applet may be
also cached for use at a future time. Additionally, program
modules 32, compilers 30 and transformers 28 (including
verifiers 34 and optimizers 36) may be distributed across a
network. The applet server manager 22 may pass requests for

60 the components it needs to build a particular applet back to the
network interface 20 which in turn passes the request onto the
rest of the network and may include external network 16 and
untrusted network 18.

After interpreting the request, the applet server manager 22 65

checks to see if the requested applet is available in the cache
24. The cache 24 stores applets in a variety of formats (source,

FIG. 3 provides further illustration of how an applet is
produced from local resources and transformers. In this illus
tration the request is for an optimized and verified applet
compiled to a machine specific form. A program module 40 is

Case 2:19-cv-00037-JRG Document 14-1 Filed 03/19/19 Page 8 of 10 PageID #: 282

Juniper Ex. 1041-p. 33
Juniper v Implicit

US 8,056,075 B2
5

compiled into an intermediate form program module 44 by an
intermediate compiler 42. The intermediate form program
module 44 is then transformed by an optimizer 46 or a verifier
48. The resulting transformed intermediate form program
module 50 is then compiled by target compiler 52 into 5

machine specific code applet 54.
There are two types of compilers used to build applets:

intermediate compilers 42 and target compilers 52. The inter
mediate compiler 42 compiles program modules (source
applet code) 40 and produces a common intermediate 10

pseudo-binary representation of the source applet code (inter
mediate form program module 44). The word pseudo is used
because the intermediate form 44 is not processor specific but
is still a binary representation of the source program module
40. This intermediate form can be re-targeted and compiled 15

for a particular processor. Alternatively, the intermediate
form 44 can be interpreted by an interpreter or virtual
machine that understands the internal binary representation
of the intermediate form. A target compiler 52 compiles inter
mediate applet code 44 into an applet 54 in a processor spe- 20

cific format (binary) suitable for running natively on a given
computing platform.

Transformers 56 are programs that take in intermediate
code and put out intermediate code. Transformers 56 are
generally used for things like verification and optimization. 25

Other transformers might included compressors that identify
portions of code that can be replaced with smaller equiva
lents. Transformers can be matched up to any other compo
nent that takes in intermediate code as an input. These include
the cache 24 and the target compilers 52. Global policies for 30

transformers 56 can be implemented which ensure that all
applets are run through some set of transformers before being
returned to the client.

6
client to determine whether the verification should be per
formed. In the preferred embodiment, verification level is
determined by the applet server 10. In this way, a uniform
security policy may be implemented from a single machine
(i.e., the applet server 10).

Optimizers 46 are another type of transformer program.
Optimizers 46 analyze code, making improvements to well
known code fragments by substituting in optimized but
equivalent code fragments. Optimizers 46 take in intermedi
ate code 44 and put out transformed intermediate code 50.
The transformed intermediate code 50 is functionally equiva
lent to the source intermediate code 44 in that they share the
same structure.

Referring again to FIG. 1, policies may be instituted on the
applet server 10 that force a certain set ofrequest parameters
regardless of what the client asked for. For example, the
applet server manager 22 can run the applet through a verifier
34 or optimizer 36 regardless of whether the client 12
requested this or not. Since the server 10 might have to go to
an untrusted network 18 to retrieve a given applet, it will then
run this applet through the required transformers 28, particu
larly the verifier 34 before returning it to the client 12. Since
clients 12 and 14 have to go through the applet server com
puter 10, this ensures that clients 12 and 14 do not receive
applets directly from an untrusted network 18. In addition,
since the server will be dealing directly with untrusted net
work 18, it can be set up to institute policies based on the
network. A trusted external network 16 may be treated differ
ently than an untrusted network 18. This will provide the
ability to run a verifier 34 only when dealing with an untrusted
network 18, but not when dealing with a trusted external
network 16. In one embodiment, all intermediate code is
passed through a verifier 34 and the source of the code merely A verifier 48 is a type of transformer that is able to analyze

input code and determine areas that might not be safe. The
verifier 48 can determine the level of safety. Some verifiers 48
look for areas where unsafe or protected memory is being
accessed, others might look for accesses to system resources
such as IO devices. Once a verifier 48 determines the portion
of unsafe applet code several steps can be taken. The offend
ing code portion can be encased with new code that specifi
cally prevents this unsafe code section from being executed.
The unsafe code can be modified to be safe. The unsafe code
can be flagged in such a way that a user can be warned about
the possible risks of executing the code fragment. The veri
fier's role can therefore be summarized as determining where
unsafe code exists and possibly altering the offending code to
render it harmless. Verifiers 48 can operate on any format of
input code, whether in source intermediate or binary form.
However, since intermediate code is a common format, it is
most efficient to have a single verifier that will operate on
code in this format. This eliminates the need to build specific
knowledge of various source languages into the verifier. Veri
fiers 48 are a form of a transformer. Verifiers 48 take in
intermediate code and put out verified intermediate code.
Verifiers 48 are responsible for identifying non-secure por
tions of code in the intermediate code and modifying this code

35 determines the level of verification applied.

to make it secure. Security problems generally include access
to memory areas that are unsafe (such as system memory, or
memory outside the application space of the applet).

The choice of adding in the verification step can be left up
to the client computers 12, the applet server computer 10 (see
FIG. 1), or can be based on the network that the applet origi
nated from. Server managers can institute global policies that
affect all clients by forcing all applets to be run through the
verifier 48. Alternatively, verification can be reserved for
un-trusted networks (18 in FIG. 1), or it can be left up to the

The client 12 is the target computer on which the user
wishes to execute an applet. The client 12 requests applets
from the server 10 in a specific form. Applets can be requested
in various formats including source, intermediate and binary.

40 In addition, an applet can be requested with verification and/
or other compile time operations. Optionally, the client 12 can
pass a verifier to the server to provide verification. If the
server 10 implements its own security, then both the client and
server verifiers will be run. The verifier that is passed from the

45 client to the server is cached at the server for subsequent
verification. The client can refer to this verifier by a server
generated handle to avoid having to pass the verifier each time
an applet is requested.

Client computers 12 and 14 requesting applet code in inter-
50 mediate format need to have an interpreter or virtual machine

capable of interpreting the binary code in the intermediate
format if the applet is to be executed on the client machine.

In the preferred embodiment, requests to the applet server
are in a format similar to those of an HTTP header and are

55 comprised of tags and values. In one embodiment, an HTTP
GET method is used to make the request (though use of the
HTTP protocol is not necessary to implement the present
invention). The request is made up of a series of tags which
specify the requested applet, the platform on which it is to be

60 run and the type of code (source/intermediate/binary), a veri
fication level and an optimization level. New tags and values
can be added to extend functionality as needed and the applet
server manager 22 will discard any tag it does not recognize.
When the applet server computer 10 returns the requested

65 applet to the requesting client computer A 12, it will transmit
the request header followed by the applet code. In this
instance, the header will additionally include a field which

Case 2:19-cv-00037-JRG Document 14-1 Filed 03/19/19 Page 9 of 10 PageID #: 283

Juniper Ex. 1041-p. 34
Juniper v Implicit

US 8,056,075 B2
7

defines the length of the applet code. FIG. 2 provides a table
which illustrates the request format and the returned code
format.

8
2. The method of claim 1 wherein processing the one or

more applets further includes discarding at least one of the
one or more applets based on one or more policies.

3. The method of claim 1 wherein processing the one or While this invention has been described with reference to
specific embodiments, this description is not meant to limit
the scope of the invention. Various modifications of the dis
closed embodiments, as well as other embodiments of the
invention, will be apparent to persons skilled in the art upon
reference to this description. It is therefore contemplated that
the appended claims will cover any such modifications or
embodiments as fall within the scope of the invention.

5 more applets further includes transforming at least one of the
one or more applets by modifying the data in the at least one
of the one or more applets before sending the one or more
applets to the one or more client computers.

4. The method of claim 1 wherein at least one of the one or
more networks is a trusted network.

10
5. The method of claim 1 wherein at least one of the one or

I claim:
1. A method for delivering one or more applets to one or

15
more client computers, comprising, in no particular order, the
steps of:

configuring an applet server manager at a server computer
to manage at least one request from the one or more
client computers for the one or more applets, the applet

20
server manager having access to one or more networks;

more networks is an untrusted network.
6. The method of claim 1 wherein the at least one request

specifies the name of at least one of the one or more applets
using a Uniform Resource Locator.

7. The method of claim 1 wherein the at least one request
specifies at least one of the one or more applets using an
HTTP header.

8. The method of claim 1 wherein the at least one request
specifies at least one of the one or more applets using a cookie.

9. The method of claim 1 wherein processing the one or
more applets includes producing at least one of the one or
more applets in the form of a web page.

receiving the at least one request at the applet server man
ager;

passing the at least one request from the applet server
manager to at least one of the one or more networks;

receiving the one or more applets at the applet server man
ager from the at least one of the one or more networks;

processing the one or more applets at the applet server
manager, wherein processing the one or more applets

10. The method of claim 1 wherein processing the one or
more applets includes producing at least one of the one or

25 more applets in the form of a portion of a web page.

includes at least one of the following steps:
30

compressing the one or more applets before sending the
one or more applets to the one or more client computers,

optimizing the one or more applets before sending the one
or more applets to the one or more client computers, and

verifying the one or more applets before sending the one or
35

more applets to the one or more client computers; and
sending the one or more applets from the applet server

manager to the one or more client computers.

11. The method of claim 1 wherein sending the one or more
applets includes sending at least one of the one or more
applets to the one or more client computers in an HTTP
response.

12. The method of claim 1 wherein the at least one request
is processed prior to passing the at least one request from the
applet server manager to at least one of the one or more
networks.

13. The method of claim 1 wherein processing the one or
more applets further includes performing security verifica
tion based on one or more policies.

* * * * *

Case 2:19-cv-00037-JRG Document 14-1 Filed 03/19/19 Page 10 of 10 PageID #: 284

Juniper Ex. 1041-p. 35
Juniper v Implicit

EXHIBIT 2

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 1 of 13 PageID #: 285

Juniper Ex. 1041-p. 36
Juniper v Implicit

c12) United States Patent
Balassanian

(54) APPLICATION SERVER FOR DELIVERING
APPLETS TO CLIENT COMPUTING
DEVICES IN A DISTRIBUTED
ENVIRONMENT

(75) Inventor: Edward Balassanian, Kirkland, WA
(US)

(73) Assignee: Implicit, LLC, Seattle, WA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 1 day.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 13/269,905

(22)

(65)

Filed: Oct.10, 2011

Prior Publication Data

US 2013/0042228 Al Feb. 14, 2013

Related U.S. Application Data

(63) Continuation of application No. 11/933,161, filed on
Oct. 31, 2007, now Pat. No. 8,056,075, which is a
continuation of application No. 11/241,985, filed on
Oct. 4, 2005, now Pat. No. 7,774,740, which is a
continuation of application No. 09/968,704, filed on
Oct. 1, 2001, now Pat. No. 6,976,248, which is a
continuation of application No. 09/040,972, filed on
Mar. 18, 1998, now Pat. No. 6,324,685.

(51) Int. Cl.
G06F 9/445 (2006.01)

(52) U.S. Cl.
USPC 717/177; 717/175; 709/203

(58) Field of Classification Search
USPC 717/100-103, 120---121, 169-178;

709/203-204
See application file for complete search history.

I 1111111111111111 11111 lllll lllll lllll lllll lllll lllll lllll 111111111111111111
US008856779B2

(IO) Patent No.: US 8,856,779 B2
(45) Date of Patent: *Oct. 7, 2014

(56) References Cited

U.S. PATENT DOCUMENTS

5,706,502 A
5,761,421 A
5,805,829 A
5,828,840 A
5,835,712 A
5,848,274 A
5,872,915 A
5,884,078 A

1/1998 Foley et al.
6/1998 van Hoff et al.
9/1998 Cohen et al.

10/1998 Cowan et al.
11/1998 Dufresne
12/1998 Hamby et al.
2/ 1999 Dykes et al.
3/ 1999 Faustini

(Continued)

OTHER PUBLICATIONS

Schlumberger et al, "Jarhead Analysis and Detection of Malicious
Java Applets", ACM, 249-258, 2012.*

(Continued)

Primary Examiner - Anil Khatri

(74) Attorney, Agent, or Firm - Meyertons, Hood, Kivlin,
Kowert & Goetze!, P.C.

(57) ABSTRACT

An applet server accepts requests for applets from client
computers. A request specifies the format in which an applet
is to be delivered to the requesting client computer. The applet
server has a cache used to store applets for distribution to
client computers. If the specified form of the requested applet
is available in the cache, the applet server transmits the applet
to the requesting client. If the applet is not available in the
cache, the server will attempt to build the applet from local
resources (program code modules and compilers) and trans
former programs (verifiers and optimizers). If the applet
server is able to build the requested applet, it will transmit the
applet to the requesting client computer. If the applet server is
unable to build the requested applet, it will pass the request to
another applet server on the network for fulfillment of the
request.

20 Claims, 3 Drawing Sheets

,----------------7
134 Transformerse36 I

28 1
~'\./'\. Optimizer :

I~ I L ________________ J

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 2 of 13 PageID #: 286

Juniper Ex. 1041-p. 37
Juniper v Implicit

(56) References Cited

US 8,856,779 B2
Page 2

717/177
717/101

U.S. PATENT DOCUMENTS

7,730,482 B2 *
7,774,742 B2 *
7,814,475 B2
7,934,212 B2
7,991,834 B2
8,056,075 B2 *
8,127,274 B2 *
8,285,777 B2 *
8,392,906 B2 *
8,392,912 B2 *
8,490,082 B2 *
8,499,278 B2 *
8,615,545 Bl*

6/2010 Illowsky et al.
8/2010 Gupta et al.

10/2010 Cohen et al.
4/2011 Lakhdhir
8/2011 Ferris et al.

11/2011 Balassanian
5,911,776 A
5,920,725 A
5,923,885 A
5,926,631 A
5,943,496 A
5,944,784 A *
5,996,022 A
6,105,063 A
6,195,794 Bl
6,212,673 Bl*
6,230,184 Bl
6,253,228 Bl
6,279,151 Bl
6,282,702 Bl
6,295,643 Bl
6,317,781 Bl
6,321,377 Bl
6,324,685 Bl
6,327,701 B2
6,330,710 Bl
6,434,745 Bl *
6,446,081 Bl
6,502,236 Bl
6,546,554 Bl *
6,594,820 Bl
6,611,858 Bl*
6,636,900 B2
6,643,683 Bl
6,704,926 Bl
6,718,364 B2 *
6,718,540 Bl
6,741,608 Bl
6,742,165 B2
6,745,386 Bl
6,754,693 Bl*
6,757,894 B2
6,766,366 Bl
6,772,408 Bl
6,789,252 Bl *
6,802,061 Bl *
6,832,263 B2
6,836,889 Bl
6,842,897 Bl
6,865,732 Bl
6,865,735 Bl
6,910,128 Bl*
6,947,943 B2 *
6,950,850 Bl *
6,976,248 B2
6,993,743 B2 *
6,996,817 B2
7,051,315 B2 *
7,069,294 B2
7,127,700 B2
7,131,111 B2 *
7,131,122 Bl
7,136,896 Bl
7,150,015 B2 *
7,155,715 Bl
7,346,655 B2
7,415,706 Bl*
7,434,215 B2 *
7,444,629 B2
7,472,171 B2 *
7,493,591 B2
7,519,684 B2
7,523,158 Bl
7,530,050 B2
7,562,346 B2
7,590,643 B2 *
7,624,394 Bl*
7,703,093 B2 *
7,707,571 Bl*
7,721,283 B2 *

6/1999
7/1999
7/1999
7/1999
8/1999
8/1999

11/1999
8/2000
2/2001
4/2001
5/2001
6/2001
8/2001
8/2001
9/2001

11/2001
11/2001
11/2001
12/2001
12/2001

8/2002
9/2002

12/2002
4/2003
7/2003
8/2003

10/2003
11/2003
3/2004
4/2004
4/2004
5/2004
5/2004
6/2004
6/2004
6/2004
7/2004
8/2004
9/2004

10/2004
12/2004
12/2004

1/2005
3/2005
3/2005
6/2005
9/2005
9/2005

12/2005
1/2006
2/2006
5/2006
6/2006

10/2006
10/2006
10/2006
11/2006
12/2006
12/2006
3/2008
8/2008

10/2008
10/2008
12/2008
2/2009
4/2009
4/2009
5/2009
7/2009
9/2009

11/2009
4/2010
4/2010
5/2010

Guck
Ma eta!.
Johnson et al.
McGarvey
Li et al.
Simonoff et al.
Krueger et al.
Hayes, Jr.
Buxton
House et al.
White et al.
Ferris et al.
Breslau et al.
Ungar
Brown eta!.
De Boor et al.
Beadle et al.
Balassanian
Ungar
O'Neil eta!.
Conley et al.
Preston
Allen et al.
Schmidt et al.
Ungar
Aravamudan et al.
Abdelnur
Drumm et al.
Blandy et al.
Connelly et al.
Azua et al.
Bouis et al.
Lev et al.
Yellin
Roberts et al.
Eylon et al.
Schafer et al.
Velonis et al.
Burke et al.
Partovi et al.
Polizzi et al.
Chan et al.
Beadle et al.
Morgan
Sirer et al.
Skibbie et al.
DeAnna et al.
Leff et al.
Balassanian
Crupi et al.
Birumet al.
Artzi et al.
Clough et al.
Large
Passanisi
Lakhdhir
Srinivas et al.
Pace et al.
Cui et al.
Donoho et al.

709/203

717/100

717/177

717/176

709/203

709/203

709/205

717/100
717/173

713/170
717/120
709/203

717/102

717/103

717/121

717/176

Raju et al. 717/170
Boykin et al. 7 l 7 /169
Chirakansakcharoen et al.
Miller et al. 709/219
Charisius et al.
Backhouse et al.
Nickerson et al.
Mohan et al.
Jhanwar et al.
Demiroski et al.
Christopher, Jr.
Fischer et al.
Harris et al.
Kovachka-Dimitrova
et al.

1/1
717/177
717/177
717/177

717/177

2/2012 Astheimer
10/2012 Giles et al.
3/2013 Broussard et al.
3/2013 Davis et al.
7/2013 Moore et al.
7/2013 Hughes .

12/2013 Lakhdhir

OTHER PUBLICATIONS

717/177
717/120
709/203
717/170
717/177
717/175
717/101
709/203

Choi et al, "Efficient Execution of Application Applets Based on

Persistent Object Caching in Java Card System" ACM 268-272,

2009.*
Yang et al, "Developing Integrated Web and Database Applications a
Using JAVA Applets and JDBC Drivers" ACM, pp. 302-206, 1998.*
Roberts, "Resurrecting the Applet Paradigm", ACM, pp. 521-525,
2007.*
Defendant Microsoft Corporation's Invalidity Contentions Pursuant
to Patent LR. 3-3, Implicit Networks, Inc., (Plaintiff) vs. Sybase, Inc.
and Microsoft Corporation, (Defendants), United States District
Court Northern District of California San Francisco Division (Oct. 1,
2009), including Exhibits A & B, 12 pages. [Case No. 09-cv-01478].
Eric A. Meyer and Peter Murray, "Borealis Image Server," In Pro
ceedings of the Fifth International World Wide Web Conference;
Computer Networks and ISDN Systems, V. 28, Nos. 7-11, May6-10,
1996, pp. 1123-1137. [Retrieved from http://meyerweb.com/eric/
talks/www5/borealis.htrnl 3/18/14].
Marc H. Brown and Marc A. Najork, "Distributed Active Objects," In
Proceedings of the Fifth International World Wide Web Conference;
Computer Networks and ISDN Systems, V. 28, Nos. 7-11, May6-10,
1996, pp. 1037-1052. [Retrieved from ftp://gatekeeperresearch.
compaq.com/pub/dec/SRC/research-reports/SRC-141 a.html 3/ 18/
14].
Michael P. Plezbert and Ron K. Cytron, "Does "Just in Time" ~
"Better Late than Never"?" In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Jan. 15-17, 1997, pp. 120-131.
Anawat Chankhunthod, et al., "A Hierarchical Internet Object
Cache," In Proceedings of the Annual Technical Conference on
USENIX 1996, Jan. 22-26, 1996, 11 pages.
E.P. Markatos, E.P., "Main Memory Caching ofWeb Documents," In
Proceedings of the Fifth International World Wide Web Conference;
Computer Networks and ISDN Systems, V. 28, Nos. 7-11, May6-10,
1996, 15 pages. [Retrieved from http://archvlsi.ics.forth.gr/papers/
www5/Overview.html 3/18/14].
M. Frans Kaashoek, et al., "Server Operating Systems," In Proceed
ings of the 7th Workshop on ACM SIGOPS European Workshop:
Systems Support for Worldwide Applications, Sep. 9-11, 1996, 8
pages.
Barron C. House!, et al., "WebExpress: A System for Optimizing
Web Browsing in a Wireless Environment," In Proceedings of the 2nd
Annual International Conference on Mobile Computing and Net
working, Nov. 1996, 9 pages.
Thomas T. Kwan, et al., "NCSA's World Wide Web Server: Design
and Performance," Computer, V. 28 No. 11, Nov. 1995, pp. 68-74.
Jonathan Trevor, et al., "Exorcising Daemons: A Modular and Light
weight Approach to Deploying Applications on the Web," In Pro
ceedings of the Fifth International World Wide Web Conference;
Computer Networks and ISDN Systems, V. 28, Nos. 7-11, May6-10,
1996, pp. 1053-1062. [Retrieved from http://www.ra.ethz.ch/
CDstore/www5/www363/overview.htrn 3/18/14].
Robert Thau, "Design Considerations for the Apache Server API," In
Proceedings of the fifth International World Wide Web Conference;
Computer Networks and ISDN Systems, V. 28, Nos. 7-11, May6-10,
1996, 13 pages. [Retrieved from http://iw3c2.cs.ust.hk/WWW5/
www5conf.inria.fr/fich_htrnl/papers/P20/Overview.html 3/ 18/ 14].
Defendant Hewlett-Packard Company's Invalidity Contentions,
Implicit Networks, Inc., (Plaintiff) v. Hewlett-Packard Company,

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 3 of 13 PageID #: 287

Juniper Ex. 1041-p. 38
Juniper v Implicit

US 8,856,779 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

(Defendant), United States District Court Northern District of Cali
fornia San Francisco Division (Jun. 30, 2011), 27 pages. [Case No.
3:10-Cv-3746 Si].
Steve McCanne and Van Jacobson, "vie: A Flexible Framework for
Packet Video," Proceedings of the third ACM international confer
ence on Multimedia, ACM Multimedia 95-Electronic Proceedings,
Nov. 5-9, 1995, 19 pages.
Dan Decasper et al., "Router Plugins A Software Architecture for
next Generation Routers," Computer Communication Review, a pub
lication of ACM SIGCOMM, vol. 28 No. 4, Oct. 1998, pp. 229-40.
David Mosberger, "Scout: a Path Based Operating System," Doctoral
Dissertation Submitted to the University of Arizona, 1997, l 74pages.
Ion Stoica and Hui Zhang, "LIRA: An Approach for Service Differ
entiation in the Internet," Proceedings of 8th International Workshop
on Network and Operating Systems Support for Digital Audio and
Video, Jul. 8-10, 1998, 14 pages.
Oliver Spatscheck, "Defending Against Denial of Service Attacks in
Scout," Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation, Feb. 1999, 15 pages.
Peter Deutsch et al., "GZIP file format specification version 4.3,"
Network Working Group, RFC 1952, May 1996, 24 pages.
[Retrieved from http:/ /tools.iettorg/htrnl/rfc1952 3/18/14].
Karman Husain and Jason Levitt, "Javascript Developer's
Resource----client-side prograrmning using HTML, netscape plug
ins andjavaapplets," Prentice-Hall Inc., ISBN 0-13-267923-X, 1997,
pp. 16, 141, 391-393, 416-418, 420,428.
Netscape LiveWire Developer's Guide, Version 2.0 Part Number:
UM151-02274-00, 1996, 190 pages.
Douglas Kramer, "The Java™ Platform," A White Paper, JavaSoft,
May 1996, 25 pages.
Brian N. Bershad, et al., "Process for Rewriting Executable Content
on a Network Server or Desktop Machine in Order to Enforce Site
Specific Properties," U.S. Appl. No. 60/061,387, filed Oct. 7, 1997,
pp. 1-8.
Emin Gun Sirer, et al., "Design and implementation of a distributed
virtual machine for networked computers," 17th ACM Symposium
on Operating System Principles (SOSP'99), Published as Operating
Systems Review 34(5), Dec. 1999, pp. 202-216.
Emin Gun Sirer, Kimera: A System Architecture for Networked
Computers, Department of Computer Science and Engineering, Uni
versity of Washington, 1997, 2 pages.
Emin Gun Sirer, et al., Kimera Architecture, Department of Com
puter Science and Engineering, University of Washington, 1997, 4
pages.
Emin Gun Sirer, et al., "Distributed Virtual Machines: A System
Architecture for Network Computing," Department of Computer
Science and Engineering, University ofWashington, Feb. 26, 1998, 4
pages.
Jonathan Aldrich, et al., "Static Analyses for Eliminating Unneces
sary Synchronization from Java Programs," Department of Computer
Science and Engineering, University ofWashington, 1999, 20 pages.

Microsoft Active Server Pages: Frequently Asked Questions,
Microsoft Corporation, Sep. 1997, MSI/IMPLICIT0002318, 4
pages.
Microsoft Internet Information Server-Web Server for Windows
NT Operating System: Reviewer's Guide, Reviewing and Evaluating
Microsoft Internet Information Server version 3.0, 1996, MS/IM
PLICIT0004192, 45 pages.
Emin Gan Sirer, et al., "Improving the Security, Scalability, Manage
ability and Performance of System Services for Network Comput
ing," Department of Computer Science and Engineering, University
ofWashington, 1998, 13 pages.
Exhibits 1-26, Defendant Microsoft Corporation's Invalidity Con
tentions Pursuant to Patent L.R. 3-3, Implicit Networks, Inc. (Plain
tiff) vs. Sybase, Inc. and Microsoft Corporation, (Defendants),
United States District Court Northern District of California San Fran
cisco Division (Oct. 1, 2009), [Case No. 09-cv-01478].
Exhibits Bl-B21, Defendant Microsoft Corporation's Invalidity
Contentions Pursuant to Patent L.R. 3-3, Implicit Networks, Inc.,
(Plaintiff) vs. Sybase, Inc. and Microsoft Corporation, (Defendants),
United States District Court Northern District of California San Fran
cisco Division (Oct. 1, 2009), [Case No. 09-cv-01478].
Begole, et al., "Transparent Sharing of Java Applets: A Replicated
Approach," ACM UIST, 1997, pp. 55-64.
Newsome, et al.,"Proxy Compilation of Dynamically Loaded Java
Classes with MoJo," ACM LCTES '02-Scopes '02, Jun. 19-21, 2002,
pp. 204-212.
Benton, et al., "Compiling Standard ML to Java Bytecode," ACM
ICFP, 1998, pp. 129-140.
Ahern, et al., "Formalising Java RMI with Explict Code Mobility,"
ACM OOPSLA, Oct. 16-20, 2005, pp. 403-422.
Kang, et al., "Query Type Classification for Web Documents
Retrieval," ACM SIGIR, Jul. 28-Aug. 1, 2003, pp. 64-71.
Mukhtar, et al., "A Client Side Measurement Scheme for Request
Routing in Virtual Open Content Delivery Networks," IEEE, 2003,
pp. 235-242.
Olshefski, et al., "Understandiing the Management of Client Per
ceived Response Time," ACM SIG Metrics/Performance, Jun. 26-30,
2006, pp. 240-251.
Wirthlin, et al., "Web-Based IP Evaluation and Distribution Using
Applets," IEEE Transactions on Computer-Aided Design of Inte
grated Circuits and Systems, vol. 22, No. 8, Aug. 2003, pp. 985-994.
Bonisch, et al., "Server Side 'Compresslets' for internet Multimedia
Streams," IEEE, 1999, pp. 82-86.
Lai, et al., "On the Performance ofWide-Area Thin-Client Comput
ing," ACM Transactions on Computer Systems, vol. 24, No. 2, May
2006, pp. 175-209.
Ding, et al., "Selective Java Applet Filtering on Internet," IEEE,
1999, pp. II-l 10-II-114.
Emin Gun Sirer, et al., "Distributed Virtual Machines: A System
Architecture for Network Computing," Dept. of Computer Science &
Engineering, University of Washington, Feb. 26, 1998, 4 pages.
Emin Gun Sirer, et al., "Design and Implementation of a Distributed
Virtual Machine for Networked Computers," 17th ACM Symposium
on Operating System Principles, published as Operating Systems
Review, 34(5), Dec. 1999, pp. 202-216.

* cited by examiner

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 4 of 13 PageID #: 288

Juniper Ex. 1041-p. 39
Juniper v Implicit

U.S. Patent

FIG. 1

Client
Computer A

Client
Computer B

14

12

22

24

25a

25b

25c

28

Oct. 7, 2014

Network
Interface

Applet Server
Manager

Cache Component

Applet 1

Applet 2

Applet 3

Sheet 1 of 3 US 8,856,779 B2

18

16

10

Applet Server Computer

20

126

,---- ------7
30a Local Resources

32a'c:E)
module

Compiler I A
32b

30b 'c:E)

32c

(:E)
32d

®
L ___________ _J

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 5 of 13 PageID #: 289

Juniper Ex. 1041-p. 40
Juniper v Implicit

U.S. Patent Oct. 7, 2014 Sheet 2 of 3 US 8,856,779 B2

FIG. 2A
Request Data Type

:-:·r~~-:-.:-.:-:·.:·.:-:·.:·.:•:·.:·.·.:·.:·.·.:·.:·.·.:·.:· .:·.:·v:~fµe/:-:·.:·:-:·.:·:-:·.:·:.:·.:·:.:·.:·:.:·.:·:.:·.:·:.:·.:·:.:·.:·:.:·.:·:.:·.:·:.:·.:·:.:·.:·:.:·.:·:.:·.:-.:,

Appplet - URL (String) specifies the name of the requested applet.

Code-Type (Source/Intermediate/Binary) specifies the format
the applet is to be delivered to the requesting
client in. A request for binary would specify the CPU
of the requesting client (e.g., x 86)

Verification - Level (0 - 100) specifies the degree of the verification to be
performed. 0 = no/minimal verification,
100 = maximum verification (highest level of security).

Optimization - Level (0 - 100) specifies the degree of optimization to be
performed. 0 = no/minimal optimization,
100 = maximum optimization.

FIG. 28
Code Data Type

·.:·t ~g-:·.··:-:·:-.·.:·:-.·.:·:-.·.:·.· .. ·.:·.· .. ·.:·.· . -:·.'·Y:a.l~e:·:-:.:·:.:.:·:.:.:·:.:.:·:.:.:·:.:.:·:.:.:·:.:.:·:.:.:·:.:.:·:.:.:·:.:.:·:.:.:·:.:.:·:.:.:·:.:.

Appplet - URL (String) specifies the name of the requested applet.

Code-Type (Source/Intermediate/Binary) specifies the format
the applet is to be delivered to the requesting
client in. A request for binary would specify the CPU
of the requesting client (e.g., x 86)

Verification - Level (0 - 100) specifies the degree of the verification to be
performed. 0 = no/minimal verification,
100 = maximum verification (highest level of security).

Optimization - Level (0 - 100) specifies the degree of optimization to be
performed. 0 = no/minimal optimization,
100 = maximum optimization.

Applet Length (0 -232) specifies the size of the requested applet.

Applet Code The Requested Applet in the form specified by
the requested data type.

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 6 of 13 PageID #: 290

Juniper Ex. 1041-p. 41
Juniper v Implicit

U.S. Patent Oct. 7, 2014 Sheet 3 of 3 US 8,856,779 B2

FIG. 3

42

44

,----------------7
1

46 Transformers 48
1

56---1 0 t· . I
I P imizer Verifier I
I __ I
L ________________ J

50

Applet 54

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 7 of 13 PageID #: 291

Juniper Ex. 1041-p. 42
Juniper v Implicit

US 8,856,779 B2
1

APPLICATION SERVER FOR DELIVERING
APPLETS TO CLIENT COMPUTING

DEVICES IN A DISTRIBUTED
ENVIRONMENT

2
interpreter to execute the compiled byte-code. The byte
codes provide an architecture neutral object file format,
which allows the code to be transported to multiple platforms.
This allows the program to be run on any system which

5 implements the appropriate interpreter and run-time system.
CROSS REFERENCES TO RELATED

APPLICATIONS
Collectively, the interpreter and runtime system implement a
virtual machine. This structure results in a very secure lan
guage.

The security of this system is premised on the ability of the
1 o byte-code to be verified independently by the client computer.

This application is a continuation of U.S. patent applica
tion Ser. No. 11/933,161, filed Oct. 31, 2007 now U.S. Pat.
No. 8,056,075, titled "Server Request Management", for all
purposes including but not limited to the right of priority and
benefit of earlier filing date, and expressly incorporates by
reference the entire content of patent application Ser. No.
11/933,161 for all purposes. U.S. patent application Ser. No. 15

11/933,161 is a continuation of U.S. patent application Ser.
No. 11/241,985 (now U.S. Pat. No. 7,774,740), filed Oct. 4,
2005, titled "Application Server". U.S. patent application Ser.
No. 11/241,985 is a continuation of U.S. patent application
Ser. No. 09/968,704 (now U.S. Pat. No. 6,976,248), filed Oct. 20

1, 2001, titled "Application Server Facilitating with Client's
Computer for Applets Along with Various Formats". U.S.
patent application Ser. No. 09/968,704 is a continuation of
U.S. patent application Ser. No. 09/040,972 (now U.S. Pat.
No. 6,324,685), filed Mar. 18, 1998, titled "Application 25

Server". This application claims the benefit of the following
applications for all purposes including but not limited to the
right of priority and benefit of earlier filing date, and
expressly incorporates by reference the entire content of the
following applications for all purposes: U.S. patent applica- 30

tion Ser. No. 11/933,161; U.S. patent application Ser. No.
11/241,985; U.S. patent application Ser. No. 09/968, 704; and
U.S. patent application Ser. No. 09/040,972.

FIELD OF THE INVENTION

The present invention relates to computer operating system
and, in particular to a server architecture providing applica
tion caching and security verification.

BACKGROUND OF THE INVENTION

The following application is incorporated by reference as if
fully set forth herein: U.S. application Ser. No. 11/241,985
filed Oct. 4, 2005.

Using the Java™ prograniming language or some other vir
tual machine implementing technology, a client can ensure
that the downloaded program will not crash the user's com-
puter or perform operations for which it does not have per
m1ss10n.

The traditional implementations of architecture neutral
languages are not without problems. While providing tremen
dous cross platform support, the current implementations of
architecture neutral languages require that every client per
forms its own verification and interpretation of the interme
diate code. The high computation and memory requirements
of a verifier, compiler and interpreter restrict the applicability
of these technologies to powerful client computers.

Another problem with performing the verification process
on the client computer is that any individual within an orga
nization may disable some or of the checks performed on
downloaded code. The current structure of these systems
makes security management at the enterprise level almost
impossible. Since upgrades of security checking software
must be made on every client computer, the cost and time
involved in doing such upgrades makes it likely that outdated
or corrupt copies of the verifier or interpreter exist within an
organization. Even when an organization is diligent in main
taining a client based security model, the size of the under-

35 taking in a large organization increases the likelihood that
there will be problems.

There is a need for a scalable distributed system architec
ture that provides a mechanism for client computers to
request and execute applets in a safe manner without requir-

40 ing the client machines to have local resources to compile or
verify the code. There is a further need for a system in which
the applets may be cached in either an intermediate architec
ture neutral form or machine specific form in order to increase
overall system performance and efficiency.

45

The growth of the Internet's importance to business, along
with the increased dependence upon corporate networks, has
created a demand for more secure and efficient computer
systems. The traditional solution to this problem has been to
depend upon improvements in hardware performance to 50

make up for the performance penalty that is typically incurred
when a computer system is made more secure and stable.
Increased interconnectivity has also created a need for
improved interoperability amongst a variety of computers
that are now connected to one another. One solution to the 55

SUMMARY OF THE INVENTION

in accordance with one embodiment of the invention, an
applet server architecture is taught which allows client com
puters to request and execute applets in a safe manner without
requiring the client to have local resources to verify or com-
pile the applet code. Compilation and byte code verification
in the present invention are seer based and thereby provide
more efficient use of resources and a flexible mechanism for
instituting enterprise-wide security policies. The server archi
tecture also provides a cache for applets, allowing clients to
receive applet code without having to access nodes outside
the local network. The cache also provides a mechanism for
avoiding repeated verification and compilation of previously

problem of the variety of computers interconnected via the
Internet and corporate networks has been the development of
portable architecture neutral programming languages. The
most widely known of these is the Java™ prograniming lan
guage, though, there are numerous other-architecture neutral
languages.

Architecture neutral programming languages allow pro
grams downloaded from a server computer to a client com
puter to be interpreted and executed locally. This is possible
because the compiler generates partially compiled interme
diate byte-code, rather than fully compiled native machine
code. In order to run a program, the client machine uses an

60 requested applet code since any client requesting a given
applet will have the request satisfied by a single cache entry.

Machine specific binary code is essentially interpreted
code since the processor for a given computer can essentially
be viewed as a form of an interpreter, interpreting binary code

65 into the associated electronic equivalents. The present inven
tion adds a level of indirection in the form of an intermediate
language that is processor independent. The intermediate Ian-

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 8 of 13 PageID #: 292

Juniper Ex. 1041-p. 43
Juniper v Implicit

US 8,856,779 B2
3

guage serves as the basis for security verification, code opti
mizations, or any other compile time modifications that might
be necessary. The intermediate form allows a single version

4
use applet server computer 10 as the equivalent of a loader,
loading in appropriate parts of the application in the form of
applets. In turn client computers 12 and 14 can run large

of the source to be stored for many target platforms instead of
having a different binary fir each potential target computer. 5

Compilations to the target form can either be done at the lime

applications without requiring that the client computers 12
and 14 have the resources to store the entire application in
memory at once.

of a cache hit or they can be avoided all together if the target
machine is able to directly interpret the intermediate form. If
the compilation is done on the server, then a copy of the of the
compiled code as well as the intermediate form can be stored 10

in the cache. The performance advantage derived from cach
ing the compiled form as well as the intermediate depends
upon the number of clients with the same CPU.

Having the applets delivered from applet server computer
10 allows code in intermediate form to be verified, optimized,
and compiled before being transmitted to client computers 12
and 14. This reduces the amount of work the client computers
12 and 14 have to do and provides a convenient way to impose
global restrictions on code.

In operation, client computer A 12 transmits a request to an
The novel features believed characteristic of the invention

are set forth in the appended claims. The invention itself,
however, as well as other features and advantages thereof will
best be understood by reference to the detailed description
which follows, when read in conjunction with the accompa
nying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is diagram showing the major components which
may be used to implement an applet server in one embodi
ment of the present invention;

FIG. 2a is a table which illustrates the structure of the
request format data type;

FIG. 2b is a table which illustrates the structure of the
returned code data type.

FIG. 3 is a diagram showing the compilation and transfor
mation of a program module into an applet in a particular
form.

DETAILED DESCRIPTION OF ME INVENTION

Referring to FIG. 1, an applet server architecture according
to one embodiment of the invention is based on an applet
server computer 10 which in turn is connected to client com
puter A 12, client computer B 14, an external network 16 and
an untrusted network 18. The applet server computer 10 con
nects to client computers 12 and 14, an external network 16,
and an untrusted network 18 by means of a network interface
20. Typically this connection will involve one or more of the
computers or networks having a connection to the Internet.

The applet server computer 10 accomplishes its objectives
by manipulating computer programs in several formats. An
applet (e.g. applets 1-3, 25a-25c) is any form of program
instructions, whether in binary, source or intermediate for
mat. In the case of this architecture, the applet code can either
be a self-contained program, or it can be a code fragment
associated with a larger application.

Binary format refers to processor specific machine instruc
tions suitable for running natively on a given computing
platform (also referred to as "target" because of the concept of
"targeting" a compiler to produce binary code for a given
processor type).

Source refers to non-binary applet code, generally in the
form of higher level languages (i.e. the C™, C++™, Java™,
Visual Basic™, ActiveX™, Fortran™, and Modula™ pro
gramming languages).

Intermediate format refers to a common intermediate byte
code that is produced by compiling a given source code put.
The intermediate byte-code need not necessarily be Java™
byte-code.

15
applet server computer 10 requesting an applet in a particular
form. The form may be selected from a large matrix of many
possible for that can be recognized by the system. The request
specifies the format (source, intermediate, or binary) which
the client wishes to receive the applet. The request may also

20 specify that the applet be verified or have some other trans
formation operation preformed upon it. Verification, optimi
zation and compression are examples of types of transforma
tion operations. The request is received by the network
interface 20 of the applet server computer 10 which passes the

25 request onto the applet server manager 22.
After interpreting the request, the applet server manager 22

checks to see if the requested applet is available in the cache
24. The cache 24 stores applets ina variety of formats (source,
intermediate, or binary). If the requested form of the applet is

30 available in the cache 24 (applet 1 25a, applet 2 25b, or applet
3 25c in this example) the applet server manager 22 instructs
the network interface 20 to transmit the applet to requesting
client computer A 12.

If the requested applet is not available in the cache 24, then
35 the apple server manager 22 will attempt to build the

requested applet from local resources 26 and one or more
transformation operations performed by one or more of the
transformers 28. Local resources 26 are comprised of com
pilers 30a, 30b and 30c and program code modules 32a, 32b,

40 32c and 32d. The requested applet is built by selecting one or
more program code modules 3 2 and compiling them with one
or more compilers 30. Transformer operations may be per
formed by the verifier 34 or the optimizer 36. After the applet
server manager 22 builds the applet, the network interface 20

45 transmits the applet to the requesting client computer A 12.
If the request can not be satisfied by building the applet

from local resources 26 and transformers 28, the applet server
manager 22 will pass a request for the requested applet to
external network 16 and/or untrusted network 18. The applet

50 server manager 22 may request the applet in intermediate
form or in executable form or it may request the local
resources 26 and transformers 28 it needs to complete build
ing the applet itself.

The cache 24 is capable of responding to the following
55 commands: GET, PUT, and FLUSH. GET is used to retrieve

a given applet from the cache. PUT is used to store an applet
in the cache. FLUSH. is used to clear the cache of one or more
entries. When the cache is unable to locate an item in response
to a GET operation, it returns a cache miss. The program

60 which issued the GET command is then responsible for locat
ing the desired form of the applet by other means and option
ally storing it in the cache when it is retrieved (using the PUT
operation). The FLUSH command will clear the cache ofone

Treating applets in this general sense allows client com- 65

puters 12 and 14 to request not only applications, but portions

or more entries and any subsequent GETs for the FLUSHed
applet code will result in a cache miss. This is useful if a
particular applet needs to be updated from a remote server on

of applications. Client computers 12 and 14 are thus able to a periodic basis. When using PUT, the program issuing the

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 9 of 13 PageID #: 293

Juniper Ex. 1041-p. 44
Juniper v Implicit

US 8,856,779 B2
5

command specifies a time to live (TTL) in the cache. When
the TTL expires, the cache entry is removed by means of a
FLUSH operation.

Local resources 26 are comprised of program modules 32
(applets in source form, not the requested form) and compil- 5

ers 30. The program modules 32 are run through the compil-
ers 30 in order to produce applets in the requested form. The
applet server manager 20 may also direct the modules 32 to be
processed by a verifier 34 or another transformer such as an
optimizer 36. Program modules 32 are program code used to 10

build applets. Program modules 32 may be stored in local
resources 26 in source, binary, or intermediate formats. When
an applet is built it may require the operation of one or more
compilers 30 upon one or more program modules 32. The
program modules 32 may be combined and recompiled with 15

previously cached applets and the resulting applet may also
be cached for use at a future time. Additionally, program
modules 32, compilers 30 and transformers 28 (including
verifiers 34 and optimizers 36) may be distributed across a
network. The applet server manager 22 may pass requests for 20

the components it needs to build a particular applet back to the
network interface 20 which in tum passes the request onto the
rest of the network and may include external network 16 and
untrusted network 18.

6
of unsafe applet code several steps can be taken. The offend
ing code portion can be encased with new code that specifi
cally prevents this unsafe code section from being executed.
The unsafe code can be modified to be safe. The unsafe code
can be flagged in such a way that a user can be warned about
the possible risk of executing the code fragment. The verifi
er's role can therefore be summarized as determining where
unsafe code exists and possibly altering the offending code to
render it harmless. Verifiers 48 can operate on any format of
input code, whether in source, intermediate or binary form.
However, since intermediate code is a common format, it is
most efficient to have a single verifier that will operate on
code in this format. This eliminates the need to build specific
knowledge of various source languages into the verifier. Veri
fiers 48 are a form of a transformer. Verifiers 48 take in
intermediate code and put out verified intermediate code.
Verifiers 48 are responsible for identifying non-secure por
tions of code in the intermediate code and modifying this code
to make it secure. Security problems generally include access
to memory areas that are unsafe (such as system memory, or
memory outside the application space of the applet).

The choice of adding in the verification step can be left up
to the client computer 12, the applet server computer 10 (see
FIG. 1), or can be based on the network that the applet origi-

FIG. 3 provides further illustration of how an applet is
produced from local resources and transformers. In this illus
tration the request is for an optimized and verified applet
compiled to a machine specific form. A program module 40 is
compiled into an intermediate form program module 44 by an
intermediate compiler 42. The intermediate form program
module 44 is then transformed by an optimizer 46 or a verifier
48. The resulting transformed intermediate form program
module 50 is then compiled by target compiler 52 into
machine specific code applet 54.

25 nated from. Server managers can institute global policies that
affect all clients by forcing all applets to be run through the
verifier 48. Alternatively, verification can be reserved for un
trusted networks (18 inFIG.1), orit can be left up to the client
to determine whether the verification should be performed. In

There are two types of compilers used to build applets:
intermediate compilers 42 and target compilers 52. The inter
mediate compiler 42 compiles program modules (source
applet code) 40 and produces a common intermediate
pseudo-binary representation of the source applet code (inter
mediate form program module 44). The word pseudo is used
because the intermediate form 44 is not processor specific but

30 the preferred embodiment, verification levels determined by
the applet server 10. In this way, a uniform security policy
may be implemented from a single machine (i.e., the applet
server 10).

Optimizers 46 are another type of transformer program.
35 Optimizers 46 analyze code, making improvements to well

known code fragments by substituting in optimized but
equivalent code fragments. Optimizers 46 take in intermedi
ate code 44 and put out transformed intermediate code 50.
The transformed intermediate code 50 is functionally equiva-

40 lent to the source intermediate code 44 in that they share the
same structure.

is still a binary representation of the source program module
40. This intermediate form can be re-targeted and compiled
for a particular processor. Alternatively, the intermediate
form 44 can be interpreted by an interpreter or virtual 45

machine that understands the internal binary representation

Referring again to FIG. 1, policies may be instituted on the
applet server 10 that force a certain set ofrequest parameters
regardless of what the client asked for. For example, the
applet server manager 22 can run the applet through a verifier
34 or optimizer 36 regardless of whether the client 12
requested this or not. Since the server 10 might have to go to
an untrusted network 18 to retrieve a given applet, it evil then
run this applet through the required transformers 28, particu-

of the intermediate form. A target compiler 52 compiles inter
mediate applet code 44 into an applet 54 in a processor spe
cific format (binary) suitable for running natively on a given
computing platform. 50 larly the verifier 34 before returning it to the client 12. Since

clients 12 and 14 have to go through the applet server com
puter 10, this ensures that clients 12 and 14 do not receive
applets directly from an untrusted network 18. In addition,

Transformers 56 are programs that take in intermediate
code and put out intermediate code. Transformers 56 are
generally used for things like verification and optimization.
Other transformers might include compressors that identify
portions of code that can be replaced with smaller equiva- 55

lents. Transformers can be matched up to any other compo
nent that takes in intermediate code as an input. These include
the cache 24 and the target compilers 52. Global policies for
transformers 56 can be implemented which ensure that all
applets are run through some set of transformers before being 60

returned to the client.
A verifier 48 is a type of transformer that is able to analyze

input code and determine areas that might not be safe. The
verifier 48 can determine the level of safety. Some verifiers 48
look for areas where unsafe or protected memory is being
accessed, others might look for accesses to system resources
such as IO devices. Once a verifier 48 determines the portion

since the server will be dealing directly with untrusted net
work 18, it can be set up to institute policies based on the
network. A trusted external network 16 may be treated differ-
ently than an untrusted network 18. This will provide the
ability to run a verifier 34 only when dealing with an entrusted
network 18, but not when dealing with a trusted external
network 16. In one embodiment, intermediate code is passed
through a verifier 34 and the source of the code merely deter-
mines the level of verification applied.

The client 12 is the target computer on which the user
wishes to execute an applet. The client 12 requests applets

65 from the server 10 in a specific form. Applets can be requested
in various formats including source, intermediate and binary.
In addition, an applet can be requested with verification and/

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 10 of 13 PageID #: 294

Juniper Ex. 1041-p. 45
Juniper v Implicit

US 8,856,779 B2
7

orother compile time operations. Optionally, the client 12 can
pass a verifier to the server to provide verification. If the
server 10 implements its own security, then both the client and
server verifiers will be run. The verifier that is passed from the
client to the server is cached at the server fix subsequent 5

verification. The client can refer to this verifier by a server
generatedhandle to avoid having to pass the verifier each time
an applet is requested,

Client computers 12 and 14 requesting applet code in inter
mediate format need to have an interpreter or virtual machine 1 o
capable of interpreting the binary code in the intermediate
format if the applet is to be executed on the client machine.

8
5. The method of claim 4, wherein sending the particular

applet to the second client computer is in response to a deter
mination that, based on at least one of the one or more client
parameters for the first client computer and at least one of the
one or more client parameters for the second client computer,
the cached particular applet is suitable for the second client
computer.

6. The method of claim 1, further comprising:
prior to causing the particular applet to be generated in

response to the applet request, checking to see if the
particular applet is present in an applet cache accessible
to the computer system.

7. The method of claim 1, wherein causing the at least one
executable component to be generated includes sending a

15 request to a different computer system located in a network
that is external to the computer system.

In the preferred embodiment, requests to the applet server
are in a format similar to those of an HTTP header and are
comprised of tags and values. In one embodiment, an HTTP
GET method is used to make the request (though use of the
HTTP protocol is not necessary to implement the present
invention). The request is made up of a series of tags which
specify the requested applet, the platform on which it is to be
run and the type of code (source/intermediate/binary), a veri- 20

fication level and an optimization level. New tags and values
can be added to extend functionality as needed and the applet
server manager 22 will discard any tag it does not recognize.
When the applet server computer 10 returns the requested
applet to the requesting client computer A 12, it will transmit 25

the request header followed by the applet code. In this
instance, the header will additionally include a field which
defines the length of the applet code. FIG. 2 provides a table
which illustrates the request format and the returned code
format.

8. The method of claim 1, wherein causing the applet to be
generated includes the computer system:

sending a request to a different computer system located in
a network that is external to the computer system;

receiving a source code module from the different com
puter system; and

including the received source code module in the particular
applet.

9. The method of claim 1, wherein causing the applet to be
generated includes the computer system transforming the
received source code module to generate the source code
included in the particular applet.

10. The method of claim 1, wherein the one or more client
30 parameters for the first client computer include a requested

While this invention has been described with reference to
specific embodiments, this description is not meant to limit
the scope of the invention. Various modifications of the dis
closed embodiments, as well as other embodiments of the
invention, will be apparent to persons skilled in the art upon 35

reference to this description. It is therefore contemplated that
the appended claims will cover any such modifications or
embodiments as fall within the scope of the invention.

The invention claimed is:
1. A method, comprising:

40

receiving an applet request at a computer system from a
first client computer, wherein the applet request speci
fies a particular applet for the first client computer and
specifies one or more client parameters for the first client 45

computer;
the computer system processing the applet request to

cause, the particular applet to be generated, wherein the
generated particular applet includes source code that is
in a form based on the specified one or more client 50

parameters for the first client computer; and
sending the particular applet from the computer system to

the first client computer.

security parameter.
11. The method of claim 1, wherein the applet request is

received via HTTP in association with a web page, and
wherein the particular applet is a web applet.

12. A non-transitory computer-readable storage medium
having stored thereon instructions that are executable to cause
a computer system to perform operations comprising:

receiving an applet request from a first client computer for
a particular applet, wherein the applet request specifies
one or more parameters for the particular applet that are
based on one or more characteristics of the client com
puter;

acquiring a specific form of the particular applet that
includes source code, based on the specified one or more
parameters in the applet request, wherein the specific
form complies with the specified one or more param
eters; and

sending the specific form of the particular applet to the first
client computer in response to the applet request.

13. The non-transitory computer-readable storage medium
of claim 12, wherein acquiring the specific form of the par
ticular applet includes acquiring one or more applet compo
nents from an external trusted network.

2. The method of claim 1, wherein the source code is in a
high-level prograniming language.

3. The method of claim 1, wherein the form of the source
code is suitable for running on the first client computer.

14. The non-transitory computer-readable storage medium
55 of claim 12, wherein acquiring the specific form of the par

ticular applet includes acquiring one or more applet compo
nents from an external untrusted network; and

4. The method of claim 1, further comprising:
the computer system storing the particular applet in an

applet cache;
receiving a second applet request for the particular applet,

wherein the second applet request is for a second client
computer and specifies one or more client parameters for
the second client computer; and

60

sending the particular applet from the computer system to 65

the second client computer from the applet cache with
out re-generating the particular applet.

wherein the operations further comprise verifying the one
or more applet components prior to sending the specific
form of the particular applet to the first client computer.

15. The non-transitory computer-readable storage medium
of claim 12, wherein acquiring the specific form of the par
ticular applet includes:

in response to failing to locate the specific form of the
particular applet within the computer system, receiving
at least a portion of the applet from another computer
system; and

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 11 of 13 PageID #: 295

Juniper Ex. 1041-p. 46
Juniper v Implicit

US 8,856,779 B2
9

generating the specific form of the particular applet prior to
sending the specific form of the particular applet to the
first client computer.

16. The non-transitory computer-readable storage medium
of claim 12, wherein the operations further comprise per- 5

forming a first transformation operation on at least one applet
component of the particular applet, and performing a second
transformation operation on at least a different applet com
ponent of the particular applet.

17. The non-transitory computer-readable storage medium 10

of claim 16, wherein the first transformation operation is a
compression operation and the second transformation opera
tion is a verification operation.

18. A computer system, comprising:
a processor; and 15

a non-transitory computer-readable storage medium hav
ing stored thereon instructions that are executable by the
processor to cause the computer system to perform
operations comprising:
receiving an applet request from a first client computer, 20

wherein the applet request specifies a particular applet

10
for the first client computer and specifies one or more
client parameters for the first client computer;

processing the applet request, including causing at least
a portion of the particular applet to be generated,
based on the specified one or more client parameters
for the first client computer, in response to the applet
request, wherein the generated applet includes source
code in a form that is based on the one or more client
parameters; and

causing the particular applet to be sent to the first client
computer.

19. The computer system of claim 18, wherein the opera
tions further comprise:

caching the particular applet for future requests from other
client computers.

20. The computer system of claim 18, wherein the opera
tions further comprise:

optimizing the particular applet for the first client computer
based on the one or more client parameters for the first
client computer.

* * * * *

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 12 of 13 PageID #: 296

Juniper Ex. 1041-p. 47
Juniper v Implicit

PATENT NO.
APPLICATION NO.
DATED
INVENTOR(S)

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

: 8,856,779 B2
: 13/269905
: October 7, 2014
: Edward Balassanian

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In column 7, line 48 (claim 1), please delete "cause," and insert --cause--.

In column 8, line 41 (claim 12), please delete "client computer" and insert --first client computer--.

Signed and Sealed this
Sixth Day of January, 2015

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office

Case 2:19-cv-00037-JRG Document 14-2 Filed 03/19/19 Page 13 of 13 PageID #: 297

Juniper Ex. 1041-p. 48
Juniper v Implicit

EXHIBIT 3

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 1 of 13 PageID #: 298

Juniper Ex. 1041-p. 49
Juniper v Implicit

c12) United States Patent
Balassanian

(54) APPLICATION SERVER FOR DELIVERING
APPLETS TO CLIENT COMPUTING
DEVICES IN A DISTRIBUTED
ENVIRONMENT

(71) Applicant: IMPLICIT, LLC, Seattle, WA (US)

(72) Inventor: Edward Balassanian, Seattle, WA (US)

(73) Assignee: Implicit, LLC, Seattle, WA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 14/507,394

(22) Filed:

(65)

Oct. 6, 2014

Prior Publication Data

(63)

(51)

US 2015/0089581 Al Mar. 26, 2015

Related U.S. Application Data

Continuation of application No. 13/269,905, filed on
Oct. 10, 2011, now Pat. No. 8,856,779, which is a
continuation of application No. 11/933,161, filed on
Oct. 31, 2007, now Pat. No. 8,056,075, which is a
continuation of application No. 11/241,985, filed on
Oct. 4, 2005, now Pat. No. 7,774,740, which is a
continuation of application No. 09/968,704, filed on
Oct. 1, 2001, now Pat. No. 6,976,248, which is a
continuation of application No. 09/040,972, filed on
Mar. 18, 1998, now Pat. No. 6,324,685.

Int. Cl.
G06F 9/445
H04L29/06
H04L29/08

(2006.01)
(2006.01)
(2006.01)

(52) U.S. Cl.
CPC H04L 63/20 (2013.01); G06F 9/445

(2013.01); G06F 9/44526 (2013.01); G06F

I 1111111111111111 11111 111111111111111 IIIII 111111111111111 111111111111111111
US009325740B2

(IO) Patent No.: US 9,325,740 B2
* Apr. 26, 2016 (45) Date of Patent:

9/44589 (2013.01); H04L 67102 (2013.01);
H04L 67110 (2013.01); H04L 6712842

(2013.01); H04L 67134 (2013.01)
(58) Field of Classification Search

(56)

USPC 717/168-177; 709/203
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,706,502 A
5,761,421 A

1/1998 Foley et al.
6/1998 van Hoff et al.

(Continued)

OTHER PUBLICATIONS

Heines, "Enabling XML Storage from Java Applets in a GUI Pro
grannning Course", ACM, The SIGCSE Bulletin, vol. 35, No. 2, pp.
88-93, 2003.*

(Continued)

Primary Examiner - Anil Khatri
(74) Attorney, Agent, or Firm - Meyertons, Hood, Kivlin,
Kowert & Goetze!, P.C.

(57) ABSTRACT

An applet server accepts requests for applets from client
computers. A request specifies the format in which an applet
is to be delivered to the requesting client computer. The applet
server has a cache used to store applets for distribution to
client computers. If the specified form of the requested applet
is available in the cache, the applet server transmits the applet
to the requesting client. If the applet is not available in the
cache, the server will attempt to build the applet from local
resources (program code modules and compilers) and trans
former programs (verifiers and optimizers). If the applet
server is able to build the requested applet, it will transmit the
applet to the requesting client computer. If the applet server is
unable to build the requested applet, it will pass the request to
another applet server on the network for fulfillment of the
request.

20 Claims, 3 Drawing Sheets

r----------------1
134 TransformerseJ"'

28 1

4

~ Optimizer :

I~ I L ________________ J

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 2 of 13 PageID #: 299

Juniper Ex. 1041-p. 50
Juniper v Implicit

(56) References Cited

US 9,325,740 B2
Page 2

U.S. PATENT DOCUMENTS

7,493,591 B2
7,519,684 B2
7,523,158 Bl
7,530,050 B2
7,536,686 B2 *

2/2009 Charisius et al.
4/2009 Backhouse et al.
4/2009 Nickerson et al.
5/2009 Mohan et al.

5,805,829 A
5,828,840 A
5,835,712 A
5,848,274 A
5,872,915 A
5,884,078 A
5,911,776 A
5,920,725 A
5,923,885 A
5,926,631 A
5,943,496 A
5,944,784 A
5,996,022 A
6,105,063 A
6,195,794 Bl
6,212,673 Bl
6,230,184 Bl
6,253,228 Bl
6,279,151 Bl
6,282,702 Bl
6,295,643 Bl
6,317,781 Bl
6,321,377 Bl
6,324,685 Bl
6,327,701 B2
6,330,710 Bl
6,367,077 Bl*
6,381,742 B2 *
6,434,745 Bl
6,446,081 Bl
6,502,236 Bl
6,546,554 Bl
6,594,820 Bl
6,611,858 Bl
6,636,900 B2
6,643,683 Bl
6,704,926 Bl
6,718,364 B2
6,718,540 Bl
6,741,608 Bl
6,742,165 B2
6,745,386 Bl
6,754,693 Bl
6,757,894 B2
6,766,366 Bl
6,772,408 Bl
6,789,252 Bl
6,802,061 Bl
6,832,263 B2
6,836,889 Bl
6,842,897 Bl
6,865,732 Bl
6,865,735 Bl
6,910,128 Bl
6,947,943 B2
6,950,850 Bl
6,976,248 B2
6,990,513 B2 *

6,993,743 B2
6,996,817 B2 *
7,051,315 B2
7,069,294 B2 *
7,127,700 B2
7,131,111 B2
7,131,122 Bl
7,136,896 Bl
7,150,015 B2
7,155,715 Bl
7,281,245 B2 *
7,346,655 B2
7,415,706 Bl
7,434,215 B2
7,444,629 B2
7,472,171 B2

9/1998 Cohen et al.
10/ 1998 Cowan et al.
1111998 Dufresne
12/1998 Hamby et al.
2/ 1999 Dykes et al.
3/ 1999 Faustini
6/1999 Guck
7/1999 Ma et al.
7 / 1999 Johnson et al.
7/1999 McGarvey
8/ 1999 Li et al.
8/ 1999 Simonoff et al.

1111999 Krueger et al.
8/2000 Hayes, Jr.
2/2001 Buxton
4/2001 House et al.
5/2001 White et al.
6/2001 Ferris et al.
8/2001 Breslau et al.
8/2001 Ungar
9/2001 Brown et al.

11/2001 De Boor et al.
11/2001 Beadle et al.
11/2001 Balassanian
12/2001 Ungar
12/2001 O'Neil et al.
4/2002 Brodersen et al. 7 l 7 /170
4/2002 Forbes et al. 7 l 7 /176
8/2002 Conley et al.
9/2002 Preston

12/2002 Allen et al.
4/2003 Schmidt et al.
7/2003 Ungar
8/2003 Aravamudan et al.

10/2003 Abdelnur
11/2003 Drumm et al.
3/2004 Blandy et al.
4/2004 Connelly et al.
4/2004 Azua et al.
5/2004 Bouis et al.
5/2004 Lev et al.
6/2004 Yellin
6/2004 Roberts et al.
6/2004 Eylon et al.
7 /2004 Schafer et al.
8/2004 Velonis et al.
9/2004 Burke et al.

10/2004 Partovi et al.
12/2004 Polizzi et al.
12/2004 Chan et al.

1/2005 Beadle et al.
3/2005 Morgan
3/2005 Sirer et al.
6/2005 Skibbie et al.
9/2005 DeAnna et al.
9/2005 Leff et al.

12/2005 Balassanian
1/2006 Belfiore G06F 9/54

707 /E 17 .005
1/2006 Crupi et al.
2/2006 Birum et al. 7 l 7 /170
5/2006 Artzi et al.
6/2006 Clough et al. 709/203

10/2006 Large
10/2006 Passanisi
10/2006 Lakhdhir
11/2006 Srinivas et al.
12/2006 Pace et al.
12/2006 Cui et al.
10/2007 Reynaretal. 717/173
3/2008 Donoho et al.
8/2008 Raju et al.

10/2008 Boykin et al.
10/2008 Chirakansakcharoen et al.
12/2008 Miller et al.

7,562,346 B2
7,562,358 B2 *

7,590,643 B2
7,614,052 B2 *
7,624,394 Bl
7,665,082 B2 *
7,703,093 B2
7,707,571 Bl
7,721,283 B2
7,730,482 B2
7,774,742 B2
7,814,142 B2 *

7,814,475 B2 *
7,934,212 B2
7,984,121 B2 *
7,991,834 B2
8,056,075 B2
8,127,274 B2
8,146,077 B2 *

8,285,777 B2
8,392,906 B2
8,392,912 B2
8,418,170 B2 *

8,490,082 B2
8,499,278 B2
8,612,966 B2 *
8,615,545 Bl
8,762,988 B2 *
8,826,266 B2 *

5/2009 Tan G06F 8/61
713/100

7 /2009 Jhanwar et al.
7/2009 Bennett G06F 9/5055

709/220
9/2009 Demiroski et al.

11/2009 Wei 717/176
11/2009 Christopher, Jr.
2/2010 Wyatt et al. 7 l 7 /171
4/2010 Fischer et al.
4/2010 Harris et al.
5/2010 Kovachka-Dimitrova et al.
6/2010 Illowsky et al.
8/2010 Gupta et al.

10/2010 Mamou G06F 17/30563
709/203

10/2010 Cohen et al. 717/168
4/2011 Lakhdhir
7/2011 Konopka et al. 709/220
8/2011 Ferris et al.

11/2011 Balassanian
2/2012 Astheimer
3/2012 McNally G06F 17 /30905

717/174
10/2012 Giles et al.
3/2013 Broussard et al.
3/2013 Davis et al.
4/2013 Saxton G06F 8/61

7/2013
7/2013

12/2013
12/2013
6/2014
9/2014

Moore et al.
Hughes

717/174

Huffetal 717/174
Lakhdhir
Kong et al. 717 / l 77
Little G06F 9/541

717/168
8,832,679 B2 * 9/2014 Suchy G06F 8/61

717/100
8,863,114 B2 * 10/2014 Shah G06F 8/60

717/175
8,954,952 B2 * 2/2015 Guizar G06F 8/60

717/168

OTHER PUBLICATIONS

Schlumberger et al, "Jarhead Analysis and Detection of Malicious
Java Applets", ACM, pp. 249-258, 2012.*
Yang et al, "Developing Integrated Web and Database Applications a
Using JAVA Applets and JDBC Drivers", ACM, pp. 302-306, 1998. *
Barbuti et al, "Java Bytecode Verification on Java Cards", ACM, pp.
431-438, 2004.*
Ding et al, "Selective Java Applet Filtering on Internet", IEEE, pp.
110-114, 1999.*
Shishir Gundavaram, CGI Programming on the World Wide Web,
Mar.1996, Chapters 1-12, 323 pages [Retrievedfromhttp://docstore.
mik.ua/orelly/web/cgi/ Jan. 28, 2015].
Chuck Musciano and Bill Kennedy, HTML: The Definitive Guide,
May 1997, Chapters 1-15, 454 pages [Retrievedfromhttp://docstore.
mik.ua/orelly/web/htrnl/ Jan. 28, 2015].
David Flannagan, JavaScript: The Definitive Guide, Jan. 1997, Chap
ters 1-20, 343 pages [Retrieved from http://docstore.mik.ua/orelly/
web/jscript/ Jan. 28, 2015].
Wall, et al., Programming Perl, Sep. 1996, Chapters 1-9, 516 pages
[Retrieved from http://docstore.mik.ua/orelly/web/perl/ Jan. 28,
2015].
Stephen Spainhour and Valerie Quercia, Oct. 1996, Chapters 1-26,
403 pages [Retreived from http://docstore.mik.ua/orelly/web/
webnut/ Jan. 28, 2015].
Exhibits 1-26, Defendant Microsoft Corporation's Invalidity Con
tentions Pursuant to Patent L.R. 3-3, Implicit Networks, Inc. (Plain
tiff) vs. Sybase, Inc. and Microsoft Corporation, (Defendants), United
States District Court Northern District of California San Francisco
Division (Oct. 1, 2009), [Case No. 09-cv-01478].

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 3 of 13 PageID #: 300

Juniper Ex. 1041-p. 51
Juniper v Implicit

US 9,325,740 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Exhibits Bl-B21, Defendant Microsoft Corporation's Invalidity
Contentions Pursuant to Patent L.R. 3-3, Implicit Networks, Inc.,
(Plaintij/) vs. Sybase, Inc. and Microsoft Corporation, (Defendants),
United States District Court Northern District of California San Fran
cisco Division (Oct. 1, 2009), [Case No. 09-cv-0 1478].
Begole, et al., "Transparent Sharing of Java Applets: A Replicated
Approach," ACM UIST, 1997, pp. 55-64.
Newsome, et al., "Proxy Compilation of Dynamically Loaded Java
Classes with MoJo," ACM LCTES '02-SCOPES '02, Jun. 19-21,
2002, pp. 204-212.
Benton, et al., "Compiling Standard ML to Java Bytecode," ACM
ICFP, 1998, pp. 129-140.
Ahern, et al., "Formalising Java RMI with Explicit Code Mobility,"
ACM OOPSLA, Oct. 16-20, 2005, pp. 403-422.
Kang, et al., "Query Type Classification for Web Documents
Retrieval," ACM SIGIR, Jul. 28-Aug. 1, 2003, pp. 64-71.
Mukhtar, et al., "A Client Side Measurement Scheme for Request
Routing in Virtual Open Content Delivery Networks." IEEE, 2003,
pp. 235-242.
Olshefski, et al., "Understanding the Management of Client Per
ceived Response Time," ACM SIG Metrics/Performance, Jun. 26-30,
2006, pp. 240-251.
Wirthlin, et al., "Web-Based IP Evaluation and Distribution Using
Applets," IEEE Transactions on Computer-Aided Design of Inte
grated Circuits and Systems, vol. 22, No. 8, Aug. 2003, pp. 985-994.
Bonisch, et al., "Server Side 'Compresslets' for Internet Multimedia
Streams," IEEE, 1999, pp. 82-86.
Lai, et al., "On the Performance of Wide-Area Thin-Client Comput
ing," ACM Transactions on Computer Systems, vol. 24, No. 2, May
2006, pp. 175-209.
Ding, et al., "Selective Java Applet Filtering on Internet," IEEE,
1999, pp. II-l 10-II-114.
Emin Gun Sirer, et al., "Distributed Virtual Machines: A System
Architecture for Network Computing," Dept. of Computer Science &
Engineering, University of Washington, Feb. 26, 1998, 4 pages.
Emin Gun Sirer, et al., "Design and Implementation of a Distributed
Virtual Machine for Networked Computers," 17th ACM Symposium
on Operating System Principles, published as Operating Systems
Review, 34(5), Dec. 1999, pp. 202-216.
Defendant Microsoft Corporation's Invalidity Contentions Pursuant
to Patent L.R. 3-3, Implicit Networks, Inc., (Plaintij/) vs. Sybase, Inc.
and Microsoft Corporation, (Defendants), United States District
Court Northern District of California San Francisco Division (Oct. 1,
2009), including Exhibits A & B, 12 pages. [Case No. 09-cv-01478].
Eric A. Meyer and Peter Murray, "Borealis Image Server," In Pro
ceedings of the Fifth International World Wide Web Conference;
Computer Networks and ISDN Systems, V. 28, Nos. 7-11, May6-10,
1996, pp. 1123-1137. [Retrieved from http://meyerweb.com/eric/
talks/www5/borealis/html Mar. 18, 2014].
Marc H. Brown and Marc A. Najork, "Distributed Active Objects," In
Proceedings of the Fifth International World Wide Web Conference;
Computer Networks and ISDN Systems, V.28, Nos. 7-11, May 6-10,
1996, pp. 1037-1052. [Retrieved from ftp://gatekeeper.research.
compaq.corn/pub/ddec/SRC/research-reports/SRC-141 a.html Mar.
18, 2014].
Michael P. Plezbert and Ron K. Cytron, "Does "Just in Time" ~
"Better Late than Never"?" In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Jan. 15-17, 1997, pp. 120-131.
Anawat Chankhunthod, et al., "A Hierarchical Internet Object
Cache," In Proceedings of the Annual Technical Conference on
USENIX 1996, Jan. 22-26, 1996, 11 pages.
E.P. Markatos, E.P., "Main Memory Caching ofWeb Documents," In
Proceedings of the Fifth International World Wide Web Conference;
Computer Networks and ISDN Systems, V. 28, Nos. 7-11, May6-10,
1996, 15 pages. [Retrieved from http://archvlsi.ics.forth.gr/papers/
www5/Overview.htrnl Mar. 18, 2014].

M. Frans Kaashoek, et al., Server Operating Systems, In Proceedings
of the 7th Workshop on ACM SIGOPS European Workshop: Systems
Support for Worldwide Applications, Sep. 9-11, 1996, 8 pages.
Barron C. Housel, et al., "WebExpress: A System for Optimizing
Web Browsing in a Wireless Environment," In Proceedings of the 2nd
Annual International Conference on Mobile Computing and Net
working, Nov. 1996, 9 pages.
Thomas T. Kwan, et al., "NCSA's World Wide Web Server: Design
and Performance," Computer, V. 28 No. 11, Nov. 1995, pp. 68-74.
Jonathan Trevor, et al., "Exorcising Daemons: A Modular and Light
weight Approach to Deploying Applications on the Web," In Pro
ceedings of the Fifth International World Wide Web Conference;
Computer Networks and ISDN Systems, V. 28, Nos. 7-11, May6-10,
1996, pp. 1053-1062. [Retrieved from http://www.ra.ethz.ch/
CDstore/www5/www363/overview.htrn Mar. 18, 2014].
Robert Thau, "Design Considerations for the Apache Server API," In
Proceedings of the Fifth International World Wide Web Conference;
Computer Networks and ISDN Systems, V. 28, Nos. 7-11, May6-10,
1996, 13 pages. [Retrieved from http://iw3c2.cs.ust.hk/WWW5/
www5conf.inria.fr/fich_htrnl/papers/P20/Overview.html Mar. 18,
2014].
Defendant Hewlett-Packard Company's Invalidity Contentions,
Implicit Networks, Inc., (Plaintij/) v. Hewlett-Packard Company,
(Defendant), United States District Court Northern District of Cali
fornia San Francisco Division (Jun. 30, 2011), 27 pages. [Case No.
3:10-CV-3746 SI].
Steve McCanne and Van Jacobson, "vie: A Flexible Framework for
Packet Video," Proceedings of the third ACM international confer
ence on Multimedia, ACM Multimedia 95-Electronic Proceedings,
Nov. 5-9, 1995, 19 pages.
Dan Decasper et al., "Router Plugins A Software Architecture for
next Generation Routers," Computer Communication Review, a pub
lication of ACM SIGCOMM, vol. 28 No. 4, Oct. 1998, pp. 229-240.
David Mosberger, "Scout: a Path Based Operating System," Doctoral
Dissertation Submitted to the University of Arizona, 1997, 174 pages.
Ion Stoica and Hui Zhang, "LIRA: An Approach for Service Differ
entiation in the Internet," Proceedings of the 8th International Work
shop on Network and Operating Systems Support for Digital Audio
and Video, Jul. 8-10, 1998, 14 pages.
Oliver Spatscheck, "Defending Against Denial of Service Attacks in
Scout," Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation, Feb. 1999, 15 pages.
Peter Deutsch et al., "GZIP file format specification version 4.3,"
Network Working Group, RFC 1952, May 1996, 24 pages.
[Retrieved from http:/ /tools.ietf.org/htrnl/rfc1952 Mar. 18, 2014].
Karman Husain and Jason Levitt, "Javascript Developer's
Resource----client-side programming using HTML, netscape plug
ins andjavaapplets," Prentice-Hall Inc., ISBN 0-13-267923-X, 1997,
pp. 16, 141, 391-393, 416-418, 420,428.
Netscape Live Wire Developer's Guide, Version 2.0 Part No. UM151-
02274-00, 1996, 190 pages.
Douglas Kramer, "The Java TM Platform," A White Paper, JAvaSoft,
May 1996, 25 pages.
Brian N. Bershad, et al., "Process for Rewriting Executable Content
on a Network Server or Desktop Machine in Order to Enforce Site
Specific Properties," U.S. Appl. No. 60/061,387, filed Oct. 7, 1997,
pp. 1-8.
Emin Gun Sirer, et al., "Design and implementation of a distributed
virtual machine for networked computers," 17th ACM Symposium
on Operating System Principles (SOSP'99), Published as Operating
Systems Review 34(5) Dec. 1999, pp. 202-216.
Emin Gun Sirer, Kimera: A System Architecture for Networked
Computers, Department of Computer Science and Engineering, Uni
versity ofWashington, 1997, 2 pages.
Emin Gun Sirer, et al., Kimera Architecture, Department of Com
puter Science and Engineering, University of Washington 1997, 4
pages.

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 4 of 13 PageID #: 301

Juniper Ex. 1041-p. 52
Juniper v Implicit

US 9,325,740 B2
Page 4

(56) References Cited

OTHER PUBLICATIONS

Emin Gun Sirer, et al., "Distributed Virtual Machines: A System

Architecture for Network Computing," Department of Computer
Science and Engineering, University ofWashington, Feb. 26, 1998, 4
pages.
Jonathan Aldrich, et al., "Static Analyses for Eliminating Unneces
sary Synchronization from Java Programs," Department of Computer
Science and Engineering, University ofWashington, 1999, 20 pages.

Microsoft Active Server Pages: Frequently Asked Questions,
Microsoft Corporation, Sep. 1997, MS/IMPLICIT00023 l 8, 4 pages.
Microsoft Internet Information Server-Web Server for Windows
NT Operating System: Reviewer's Guide, Reviewing and Evaluating
Microsoft Internet Information Server version 3.0, 1996, MS/IM
PLICIT0004192, 45 pages.
Emin Gun Sirer, et al., "Improving the Security, Scalability, Manage
ability and Performance of System Services for Network Comput
ing," Department of Computer Science and Engineering, University
ofWashington, 1998, 13 pages.

* cited by examiner

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 5 of 13 PageID #: 302

Juniper Ex. 1041-p. 53
Juniper v Implicit

U.S. Patent

FIG. 1

Client
Computer A

Client
Computer B

14

22

24

25a

25b

25c

28

Apr. 26, 2016

Network
Interface

Applet Server
Manager

Cache Component

Applet 1

Applet 2

Applet3

Sheet 1 of 3

18

16

10

Applet Server Computer

20

US 9,325,740 B2

_[
26

,---- ------7
30a Local Resources

32a~

~
32b

'G:)
32c

~
32d

~
L ___________ _J

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 6 of 13 PageID #: 303

Juniper Ex. 1041-p. 54
Juniper v Implicit

U.S. Patent Apr. 26, 2016 Sheet 2 of 3 US 9,325,740 B2

FIG. 2A
Request Data Type

:•:·r~~.:-.:·.:•:·.:-.:•:·.:·.:•:·.:-.·.:-.:·.·.:·.:-.·.:·.:· .:·.:-y~l~:e:·.:·.·.:·.:·.·.:·.:·.·.:·.:·.·.:·.:·:.:·.:·:.:·.:·:.:·.:·:.:·.:·.·.:·.:·.·.:·.:·.·.:·.:·.·.:·.:·.·.:·.:·:.:·.:·.·.:·.:·.:·

Appplet - URL (String) specifies the name of the requested applet.

Code-Type (Source/Intermediate/Binary) specifies the format
the applet is to be delivered to the requesting
client in. A request for binary would specify the CPU
of the requesting client (e.g., x 86)

Verification - Level (0 - 100) specifies the degree of the verification to be
performed. 0 = no/minimal verification,
100 = maximum verification (highest level of security).

Optimization - Level (0 - 100) specifies the degree of optimization to be
performed. 0 = no/minimal optimization,
100 = maximum optimization.

FIG. 28
Code Data Type

·.:·t~g.:·.·•.·.:·.· .. ·.:·.· .. ·.:·.· .. ·.:·.· .. ·.:·.· .. ·.:·.·. .:·.·-yal~·e:·: .. ·.:·.· .. ·.:·: .. ·.:·.· .. ·.:·.·._..: .. ·._..: .. ·._..: .. ·._..: .. · .. ·.:·.· .. ·.:·.· .. ·.:·.· .. ·.:·.· .. ·.:·.·._..: .. · .. ·.:·.· .. ·.

Appplet - URL (String) specifies the name of the requested applet.

Code-Type (Source/Intermediate/Binary) specifies the format
the applet is to be delivered to the requesting
client in. A request for binary would specify the CPU
of the requesting client (e.g., x 86)

Verification - Level (0 - 100) specifies the degree of the verification to be
performed. 0 = no/minimal verification,
100 = maximum verification (highest level of security).

Optimization - Level (0 - 100) specifies the degree of optimization to be
performed. 0 = no/minimal optimization,
100 = maximum optimization.

Applet Length (0 - 232) specifies the size of the requested applet.

Applet Code The Requested Applet in the form specified by
the requested data type.

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 7 of 13 PageID #: 304

Juniper Ex. 1041-p. 55
Juniper v Implicit

U.S. Patent Apr. 26, 2016 Sheet 3 of 3 US 9,325,740 B2

FIG. 3

42

44

,----------------7
1 46 Transformers 4~ 1

56------1 I
I Verifier I
I __ I
L ________________ J

50

Applet 54

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 8 of 13 PageID #: 305

Juniper Ex. 1041-p. 56
Juniper v Implicit

US 9,325,740 B2
1

APPLICATION SERVER FOR DELIVERING
APPLETS TO CLIENT COMPUTING

DEVICES IN A DISTRIBUTED
ENVIRONMENT

2
dous cross platform support, the current implementations of
architecture neutral languages require that every client per
forms its own verification and interpretation of the interme
diate code. The high computation and memory requirements

This application is a continuation of U.S. application Ser.
5 of a verifier, compiler and interpreter restrict the applicability

of these technologies to powerful client computers.
No. 13/269,905, filed Oct. 10, 2011 (now U.S. Pat. No. 8,856,
779), which is a continuation of U.S. application Ser. No.
11/933,161, filed Oct. 31, 2007 (now U.S. Pat. No. 8,056,
075), which is a continuation of U.S. application Ser. No.
11/241,985, filed Oct. 4, 2005 (now U.S. Pat. No. 7,774,740),
which is a continuation of Ser. No. 09/968,704 filed Oct. 1,
2001 (now U.S. Pat. No. 6,976,248), which is a continuation
of U.S. application Ser. No. 09/040,972 filed Mar. 18, 1998
(now U.S. Pat. No. 6,324,685); the disclosures of all of the
above-referenced applications are incorporated by reference
herein in their entireties.

Another problem with performing the verification process
on the client computer is that any individual within an orga
nization may disable some or of the checks performed on

10 downloaded code. The current structure of these systems
makes security management at the enterprise level almost
impossible. Since upgrades of security checking software
must be made on every client computer, the cost and time

The following application is incorporated by reference in
its entirety as if fully set forth herein: U.S. application Ser.
No. 11/241,985 filed Oct. 4, 2005.

15
involved in doing such upgrades makes it likely that outdated
or corrupt copies of the verifier or interpreter exist within an
organization. Even when an organization is diligent in main
taining a client based security model, the size of the under
taking in a large organization increases the likelihood that

20 there will be problems.

BACKGROUND

1. Technical Field

There is a need for a scalable distributed system architec
ture that provides a mechanism for client computers to
request and execute applets in a safe manner without requir
ing the client machines to have local resources to compile or

The present invention elates to computer operating system
arid, in particular to a server architecture providing applica
tion caching and security verification.

2. Description of the Related Art

25 verify the code. There is a further need for a system in which
the applets may be cached in either an intermediate architec
ture neutral form or machine specific form in order to increase
overall system performance and efficiency.

SUMMARY

In accordance with one embodiment of the invention, an
applet server architecture is taught which allows client com
puters to request and execute applets in a safe manner without
requiring the client to have local resources to verify or com
pile the applet code. Compilation and byte code verification
in the present invention are server based and thereby provide
more efficient use of resources and a flexible mechanism for
instituting enterprise-wide security policies. The server archi-

The growth of the Internet's importance to business, along
with the increased dependence upon corporate networks, has 30

created a demand for more secure and efficient computer
systems. The traditional solution to this problem has been to
depend upon improvements in hardware performance to
make up for the performance penalty that is typically incurred
when a computer system is made more secure and stable. 35

Increased interconnectivity has also created a need for
improved interoperability amongst a variety of computers
that are now connected to one another. One solution to the
problem of the variety of computers interconnected via the
Internet and corporate networks has been the development of
portable architecture neutral programming languages. The
most widely known of these is the Java™ prograrmning lan
guage, though, there are numerous other-architecture neutral
languages.

40 tecture also provides a cache for applets, allowing clients to
receive applet code without having to access nodes outside
the local network. The cache also provides a mechanism for
avoiding repeated verification and compilation of previously
requested applet code since any client requesting a given

45 applet will have the request satisfied by a single cache entry. Architecture neutral programming languages allow pro
grams downloaded from a server computer to a client com
puter to be interpreted and executed locally. This is possible
because the compiler generates partially compiled interme
diate byte-code, rather than fully compiled native machine
code. In order to run a program, the client machine uses an
interpreter to execute the compiled byte-code. The byte
codes provide an architecture neutral object file format,
which allows the code to be transported to multiple platforms.
This allows the program to be run on any system which
implements the appropriate interpreter and run-time system. 55

Collectively, the interpreter and runtime system implement a
virtual machine, this structure results in a very secure lan
guage.

Machine specific binary code is essentially interpreted
code since the processor for a given computer can essentially
be viewed as a form of an interpreter, interpreting binary code
into the associated electronic equivalents. The present inven-

50 tion adds a level of indirection in the form of an intermediate

The security of this system is premised on the ability of the
byte-code to be verified independently by the client computer. 60

Using the Java™ prograrmning language or some other vir
tual machine implementing technology, a client can ensure
that the downloaded program will not crash the user's com
puter or perform operations for which it does not have per
m1ss10n. 65

The traditional implementations of architecture neutral
languages are not without problems. While providing tremen-

language that is processor independent. The intermediate lan
guage serves as the basis for security verification, code opti
mizations, or any other compile time modifications that might
be necessary. The intermediate form allows a single version
of the source to be stored for many target platforms instead of
having a different binary fir each potential target computer.
Compilations to the target form can either be done at the lime
of a cache hit or they can be avoided all together if the target
machine is able to directly interpret the intermediate form. if
the compilation is done on the server, then a copy of the of the
compiled code as well as the intermediate form can be stored
in the cache. The performance advantage derived from cach
ing the compiled form as well as the intermediate depends
upon the number of clients with the same CPU.

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as other features and advantages thereof will

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 9 of 13 PageID #: 306

Juniper Ex. 1041-p. 57
Juniper v Implicit

US 9,325,740 B2
3

best be understood by reference to the detailed description
which follows, when read in conjunction with the accompa
nying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is diagram showing the major components which
may be used to implement an applet server in one embodi
ment of the present invention;

FIG. 2a is a table which illustrates the structure of the
request format data type;

FIG. 2b is a table which illustrates the structure of the
returned code data type.

FIG. 3 is a diagram showing the compilation and transfor
mation of a program module into an applet in a particular
form.

DETAILED DESCRIPTION

Referring to FIG. 1, an applet server architecture according
to one embodiment of the invention is based on an applet
server computer 10 which in turn is connected to client com
puter A 12, client computer B 14, an external network 16 and
an untrusted network 18. The applet server computer 10 con
nects to client computers 12 and 14, an external network 16,
and an untrusted network 18 by means of a network interface
20. Typically this connection will involve one or more of the
computers or networks having a connection to the Internet.

The applet server computer 10 accomplishes its objectives
by manipulating computer programs in several formats. An
applet (e.g. applets 1-3, 25a-25c) is any form of program
instructions, whether in binary, source or intermediate for
mat. In the case of this architecture, the applet code can either
be a self-contained program, or it can be a code fragment
associated with a larger application.

Binary format refers to processor specific machine instruc
tions suitable for running natively on a given computing
platform (also referred to as "target" because of the concept of
"targeting" a compiler to produce binary code for a given
processor type).

Source refers to non-binary applet code, generally in the
form of higher level languages (i.e. the C™, C++™, Java™,
Visual Basic™, ActiveX™, Fortran™, and Modula™ pro
gramming languages).

4
specifies the format (source, intermediate, or binary) which
the client wishes to receive the applet. The request may also
specify that the applet be verified or have some other trans
formation operation preformed upon it. Verification, optimi-

5 zation and compression are examples of types of transforma
tion operations. The request is received by the network
interface 20 of the applet server computer 10 which passes the
request onto the applet server manager 22.

After interpreting the request, the applet server manager 22
10 checks to see if the requested applet is available in the cache

24. The cache 24 stores applets ina variety of formats (source,
intermediate, or binary). If the requested form of the applet is
available in the cache 24 (applet 1 25a, applet 2 25b, or applet
3 25c in this example) the applet server manager 22 instructs

15 the network interface 20 to transmit the applet to requesting
client computer A 12.

If the requested applet is not available in the cache 24, then
the apple server manager 22 will attempt to build the
requested applet from local resources 26 and one or more

20 transformation operations performed by one or more of the
transformers 28. Local resources 26 are comprised of com
pilers 30a, 30b and 30c and program code modules 32a, 32b,
32c and 32d. The requested applet is built by selecting one or
more program code modules 3 2 and compiling them with one

25 or more compilers 30. Transformer operations may be per
formed by the verifier 34 or the optimizer 36. After the applet
server manager 22 builds the applet, the network interface 20
transmits the applet to the requesting client computer A 12.

If the request can not be satisfied by building the applet
30 from local resources 26 and transformers 28, the applet server

manager 22 will pass a request for the requested applet to
external network 16 and/or untrusted network 18. The applet
server manager 22 may request the applet in intermediate
form or in executable form or it may request the local

35 resources 26 and transformers 28 it needs to complete build
ing the applet itself.

The cache 24 is capable of responding to the following
commands: GET, PUT, and FLUSH. GET is used to retrieve
a given applet from the cache. PUT is used to store an applet

40 in the cache. FLUSH is used to clear the cache of one or more
entries. When the cache is unable to locate an item in response
to a GET operation, it returns a cache miss. The program
which issued the GET command is then responsible for locat-

Intermediate format refers to a common intermediate byte- 45

code that is produced by compiling a given source code put.
The intermediate byte-code need not necessarily be Java™
byte-code.

ing the desired form of the applet by other means and option
ally storing it in the cache when it is retrieved (using the PUT
operation). The FLUSH command will clear the cache ofone
or more entries and any subsequent GETs for the FLUSHed
applet code will result in a cache miss. This is useful if a
particular applet needs to be updated from a remote server on
a periodic basis. When using PUT, the program issuing the
command specifies a time to live (TTL) in the cache. When

Treating applets in this general sense allows client com
puters 12 and 14 to request not only applications, but portions 50

of applications. Client computers 12 and 14 are thus able to
use applet server computer 10 as the equivalent of a loader,
loading in appropriate parts of the application in the form of
applets. In turn client computers 12 and 14 can run large
applications without requiring that the client computers 12 55

and 14 have the resources to store the entire application in

the TTL expires, the cache entry is removed by means of a
FLUSH operation.

Local resources 26 are comprised of program modules 32
(applets in source form, not the requested form) and compil
ers 30. The program modules 32 are run through the compil
ers 30 in order to produce applets in the requested form. The
applet server manager 20 may also direct the modules 32 to be
processed by a verifier 34 or another transformer such as an

memory at once.
Having the applets delivered from applet server computer

10 allows code in intermediate form to be verified, optimized,
and compiled before being transmitted to client computers 12
and 14. This reduces the amount of work the client computers
12 and 14 have to do and provides a convenient way to impose
global restrictions on code.

In operation, client computer A 12 transmits a request to an
applet server computer 10 requesting an applet in a particular
form. The form may be selected from a large matrix of many
possible for that can be recognized by the system. The request

60 optimizer 36. Program modules 32 are program code used to
build applets. Program modules 32 may be stored in local
resources 26 in source, binary, or intermediate formats. When
an applet is built it may require the operation of one or more
compilers 30 upon one or more program modules 32. The

65 program modules 32 may be combined and recompiled with
previously cached applets and the resulting applet may also
be cached for use at a future time. Additionally, program

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 10 of 13 PageID #: 307

Juniper Ex. 1041-p. 58
Juniper v Implicit

US 9,325,740 B2
5

modules 32, compilers 30 and transformers 28 (including
verifiers 34 and optimizers 36) may be distributed across a
network. The applet server manager 22 may pass requests for
the components it needs to build a particular applet back to the
network interface 20 which in tum passes the request onto the 5

rest of the network and may include external network 16 and
untrusted network 18.

6
tions of code in the intermediate code and modifying this code
to make it secure. Security problems generally include access
to memory areas that are unsafe (such as system memory, or
memory outside the application space of the applet).

The choice of adding in the verification step can be left up
to the client computer 12, the applet server computer 10 (see
FIG. 1), or can be based on the network that the applet origi
nated from. Server managers can institute global policies that
affect all clients by forcing all applets to be run through the

FIG. 3 provides further illustration of how an applet is
produced from local resources and transformers. In this illus
tration the request is for an optimized and verified applet
compiled to a machine specific form. A program module 40 is
compiled into an intermediate form program module 44 by an
intermediate compiler 42. The intermediate form program
module 44 is then transformed by an optimizer 46 or a verifier
48. The resulting transformed intermediate form program
module 50 is then compiled by target compiler 52 into
machine specific code applet 54.

10 verifier 48. Alternatively, verification can be reserved for
untrusted networks (18 in FIG. 1), or it can be left up to the
client to determine whether the verification should be per
formed. In the preferred embodiment, verification levels
determined by the applet server 10. In this way, a uniform

15 security policy may be implemented from a single machine
(i.e., the applet server 10).

Optimizers 46 are another type of transformer program.
Optimizers 46 analyze code, making improvements to well
known code fragments by substituting in optimized but

There are two types of compilers used to build applets:
intermediate compilers 42 and target compilers 52. The inter
mediate compiler 42 compiles program modules (source
applet code) 40 and produces a common intermediate
pseudo-binary representation of the source applet code (inter
mediate form program module 44). The word pseudo is used
because the intermediate form 44 is not processor specific but

20 equivalent code fragments. Optimizers 46 take in intermedi
ate code 44 and put out transformed intermediate code 50.
The transformed intermediate code 50 is functionally equiva
lent to the source intermediate code 44 in that they share the
same structure.

is still a binary representation of the source program module 25

40. This intermediate form can be re-targeted and compiled
for a particular processor. Alternatively, the intermediate
form 44 can be interpreted by an interpreter or virtual
machine that understands the internal binary representation
of the intermediate form. A target compiler 52 compiles inter- 30

mediate applet code 44 into an applet 54 in a processor spe
cific format (binary) suitable for running natively on a given
computing platform.

Transformers 56 are programs that take in intermediate
code and put out intermediate code. Transformers 56 are 35

generally used for things like verification and optimization.
Other transformers might include compressors that identify
portions of code that can be replaced with smaller equiva
lents. Transformers can be matched up to any other compo
nent that takes in intermediate code as an input. These include 40

the cache 24 and the target compilers 52. Global policies for
transformers 56 can be implemented which ensure that all
applets are run through some set of transformers before being
returned to the client.

Referring again to FIG. 1, policies may be instituted on the
applet server 10 that force a certain set ofrequest parameters
regardless of what the client asked for. For example, the
applet server manager 22 can run the applet through a verifier
34 or optimizer 36 regardless of whether the client 12
requested this or not. Since the server 10 might have to go to
an untrusted network 18 to retrieve a given applet, it evil then
run this applet through the required transformers 28, particu
larly the verifier 34 before returning it to the client 12. Since
clients 12 and 14 have to go through the applet server com
puter 10, this ensures that clients 12 and 14 do not receive
applets directly from an untrusted network 18. In addition,
since the server will be dealing directly with untrusted net
work 18, it can be set up to institute policies based on the
network. A trusted external network 16 may be treated differ
ently than an untrusted network 18. This will provide the
ability to run a verifier 34 only when dealing with an entrusted
network 18, but not when dealing with a trusted external
network 16. In one embodiment, intermediate code is passed
through a verifier 34 and the source of the code merely deter-

A verifier 48 is a type of transformer that is able to analyze
input code and determine areas that might not be safe. The
verifier 48 can determine the level of safety. Some verifiers 48
look for areas where unsafe or protected memory is being
accessed, others might look for accesses to system resources
such as JO devices. Once a verifier 48 determines the portion

45 mines the level of verification applied.
The client 12 is the target computer on which the user

wishes to execute an applet. The client 12 requests applets
from the server 10 in a specific form. Applets can be requested
in various formats including source, intermediate and binary.

50 In addition, an applet can be requested with verification and/
or other compile time operations. Optionally, the client 12 can
pass a verifier to the server to provide verification, If the
server 10 implements its own security, then both the client and
server verifiers will be run, The verifier that is passed from the

of unsafe applet code several steps can be taken. The offend
ing code portion can be encased with new code that specifi
cally prevents this unsafe code section from being executed.
The unsafe code can be modified to be safe. The unsafe code
can be flagged in such a way that a user can be warned about
the possible risk of executing the code fragment. The verifi
er's role can therefore be summarized as determining where
unsafe code exists and possibly altering the offending code to
render it harmless. Verifiers 48 can operate on any format of
input code, whether in source, intermediate or binary form.
However, since intermediate code is a common format, it is
most efficient to have a single verifier that will operate on
code in this format. This eliminates the need to build specific
knowledge of various source languages into the verifier. Veri
fiers 48 are a form of a transformer. Verifiers 48 take in 65

intermediate code and put out verified intermediate code.
Verifiers 48 are responsible for identifying non-secure por-

55 client to the server is cached at the server fix subsequent
verification. The client can refer to this verifier by a server
generated handle to avoid having to pass the verifier each time
an applet is requested,

Client computers 12 and 14 requesting applet code in inter-
60 mediate format need to have an interpreter or virtual machine

capable of interpreting the binary code in the intermediate
format if the applet is to be executed on the client machine.

In the preferred embodiment, requests to the applet server
are in a format similar to those of an HTTP header and are
comprised of tags and values. In one embodiment, an HTTP
GET method is used to make the request (though use of the
HTTP protocol is not necessary to implement the present

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 11 of 13 PageID #: 308

Juniper Ex. 1041-p. 59
Juniper v Implicit

US 9,325,740 B2
7 8

resource for the second client computer includes retrieving
the produced resource for the first client computer from the
cache.

7. The non-transitory computer-readable storage medium
5 of claim 4, wherein producing, by the computer system, the

resource for the second client computer includes:
conveying, by the computer system, a request for the

resource to the external network;

invention). The request is made up of a series of tags which
specify the requested applet, the platform on which it is to be
run and the type of code (source/intermediate/binary), a veri
fication level and an optimization level. New tags and values
can be added to extend functionality as needed and the applet
server manager 22 will discard any tag it does not recognize.
When the applet server computer 10 returns the requested
applet to the requesting client computer A 12, it will transmit
the request header followed by the applet code. In this
instance, the header will additionally include a field which 10

defines the length of the applet code. FIG. 2 provides a table
which illustrates the request format and the returned code
format.

receiving, at the computer system, the resource from the
external network; and

performing, by the computer system, a transformation
operation on the resource.

8. The non-transitory computer-readable storage medium

15
of claim 7, wherein the platform of the first client computer is
different from the platform of the second client computer, and
wherein the source code of the produced resource for the first
client computer is not identical to the source code of the

While this invention has been described with reference to
specific embodiments, this description is not meant to limit
the scope of the invention. Various modifications of the dis
closed embodiments, as well as other embodiments of the
invention, will be apparent to persons skilled in the art upon
reference to this description. It is therefore contemplated that
the appended claims will cover any such modifications or 20

embodiments as fall within the scope of the invention.
What is claimed is:

produced resource for the second client computer.
9. The non-transitory computer-readable storage medium

of claim 1, wherein the first HTTP request includes a request
for a specific form of the resource, wherein the specific form
of the resource is based on information stored at the first client 1. A non-transitory computer-readable storage medium

having stored thereon instructions that are executable to cause
a computer system to perform operations comprising:

receiving, at the computer system, a first HTTP request

computer, and wherein the produced resource is the specific
25 form of the resource.

from a first client computer for a resource, wherein the
resource includes source code;

producing, by the computer system, the resource for the
first client computer, wherein the producing includes:
conveying, by the computer system, a request for the

resource to an external network;
receiving, at the computer system, the resource from the

external network; and

30

performing, by the computer system, a transformation 35

operation on the resource; and
sending, by the computer system, the produced resource to

the first client computer in response to the first HTTP
request.

10. The non-transitory computer-readable storage medium
of claim 1, wherein the resource is a web page.

11. The non-transitory computer-readable storage medium
of claim 1, wherein the resource is an application.

12. The non-transitory computer-readable storage medium
of claim 1, wherein the source code in the produced resource
is in a high-level programming language.

13. The non-transitory computer-readable storage medium
of claim 1, wherein the first client computer is configured to
process the produced resource, including by causing the
source code to be executed on the first client computer.

14. The non-transitory computer-readable storage medium
of claim 1, wherein the transformation operation includes
compressing at least a portion of the resource.

15. The non-transitory computer-readable storage medium
of claim 1, wherein the transformation operation includes
optimizing at least a portion of the resource.

2. The non-transitory computer-readable storage medium 40

of claim 1, wherein the first HTTP request is an HTTP GET
request, and wherein the HTTP GET request includes an
identifier that specifies the resource. 16. The non-transitory computer-readable storage medium

of claim 1, wherein the transformation operation includes
45 verifying at least a portion of the resource.

3. The non-transitory computer-readable storage medium
of claim 1, wherein the first HTTP request specifies a plat
form of the first client computer, and wherein the produced
resource includes source code that is compatible with the
platform of the first client computer.

17. The non-transitory computer-readable storage medium
of claim 1, wherein the transformation operation is based on
the external network.

4. The non-transitory computer-readable storage medium
of claim 3, further comprising:

receiving, at the computer system, a second HTTP request
from a second client computer for the resource, wherein
the second HTTP request specifies a platform of the
second client computer;

18. The non-transitory computer-readable storage medium
50 of claim 1, wherein producing further includes, performing,

by the computer system, an additional transformation opera
tion on the resource.

producing, by the computer system, the resource for the 55

second client computer; and
sending, by the computer system to the second client com

puter, the produced resource for the second client com
puter in response to the second HTTP request wherein
the produced resource for the second client computer 60

includes source code that is compatible with the plat
form of the second client computer.

5. The non-transitory computer-readable storage medium
of claim 4, further comprising storing the produced resource
for the first client computer in a cache.

6. The non-transitory computer-readable storage medium
of claim 5, wherein producing, by the computer system, the

65

19. A computer system, comprising:
a processor; and
a non-transitory computer-readable storage medium hav

ing stored thereon instructions that are executable by the
processor to cause the computer system to perform
operations comprising:

receiving, at the computer system, an HTTP request from a
client computer for a resource, wherein the resource
includes source code;

producing, by the computer system, the resource, wherein
the producing includes:
conveying, by the computer system, a request for the

resource to an external network;
receiving, at the computer system, the resource from the

external network; and

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 12 of 13 PageID #: 309

Juniper Ex. 1041-p. 60
Juniper v Implicit

US 9,325,740 B2
9

performing, by the computer system a transformation
operation on the resource; and

sending, by the computer system, the produced resource to
the client computer in response to the HTTP request.

20. A method, comprising: 5

receiving, at a computer system, an HTTP request from a
client computer fix a resource, wherein the resource
includes source code;

producing, by the computer system, the resource, wherein
the producing includes: 10

conveying, by the computer system, a request for the
resource to an external network;

receiving, at the computer system, the resource from the
external network; and

performing, by the computer system, a transformation 15

operation on the resource; and
sending, by the computer system, the produced resource to

the client computer in response to the HTTP request.

* * * * *

10

Case 2:19-cv-00037-JRG Document 14-3 Filed 03/19/19 Page 13 of 13 PageID #: 310

Juniper Ex. 1041-p. 61
Juniper v Implicit

EXHIBIT 4

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 1 of 33 PageID #: 311

Juniper Ex. 1041-p. 62
Juniper v Implicit

c12) United States Patent
Balassanian

(54) METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

(71) Applicant: Implicit Networks, Inc., Bellevue, WA
(US)

(72) Inventor: Edward Balassanian, Seattle, WA (US)

(73) Assignee: Implicit Networks, Inc., Bellevue, WA
(US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 13/911,324

(22) Filed:

(65)

Jun. 6, 2013

Prior Publication Data

US 2013/0266025 Al Oct. 10, 2013

Related U.S. Application Data

(63) Continuation of application No. 13/236,090, filed on
Sep. 19, 2011, now abandoned, which is a continuation
of application No. 10/636,314, filed on Aug. 6, 2003,
now Pat. No. 8,055,786, which is a continuation of
application No. 09/474,664, filed on Dec. 29, 1999,
now Pat. No. 6,629,163.

(51) Int. Cl.
G06F 15116 (2006.01)

(52) U.S. Cl.
USPC 709/246; 709/238; 370/466

(58) Field of Classification Search
USPC 709/230, 228,246, 238; 370/395.1,

370/469, 231, 466; 379/207.02, 229;
710/33

See application file for complete search history.

I 1111111111111111 11111 1111111111 1111111111 111111111111111 IIIIII IIII IIII IIII
US008694683B2

(IO) Patent No.: US 8,694,683 B2
* Apr. 8, 2014 (45) Date of Patent:

(56)

EP

References Cited

U.S. PATENT DOCUMENTS

5,298,674 A
5,414,833 A
5,627,997 A
5,761,651 A
5,826,027 A
5,835,726 A
5,848,233 A

3/1994 Yun
5/1995 Hershey et al.
5/ 1997 Pearson et al.
6/ 1998 Hasebe

10/1998 Pedersen et al.
1111998 Shwed et al.
12/1998 Radia et al.

(Continued)

FOREIGN PATENT DOCUMENTS

0817031 1/1998

OTHER PUBLICATIONS

RFC: 791, Internet Protocol: DARPA Internet Program Protocol
Specification, Sep. 1981, prepared for Defense Advanced Research
Projects Agency Information Processing Techniques Office by Infor
mation Sciences Institute University of Southern California, 52
pages.

(Continued)

Primary Examiner - Jungwon Chang
(74) Attorney, Agent, or Firm - Meyertons, Hood, Kivlin,
Kowert & Goetze!, P.C.

(57) ABSTRACT

A method and system for demultiplexing packets of a mes
sage is provided. The demultiplexing system receives packets
of a message, identifies a sequence of message handlers for
processing the message, identifies state information associ
ated with the message for each message handler, and invokes
the message handlers passing the message and the associated
state information. The system identifies the message handlers
based on the initial data type of the message and a target data
type. The identified message handlers effect the conversion of
the data to the target data type through various intermediate
data types.

30 Claims, 16 Drawing Sheets

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 2 of 33 PageID #: 312

Juniper Ex. 1041-p. 63
Juniper v Implicit

US 8,694,683 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

5,848,415 A 12/1998 Guck
5,854,899 A 12/1998 Callon et al.
5,898,830 A 4/1999 Wesinger, Jr. et al.
6,091,725 A 7/2000 Cheriton et al.
6,104,500 A 8/2000 Alam et al.
6,115,393 A * 9/2000 Engel et al.
6,119,236 A 9/2000 Shipley
6,141,749 A 10/2000 Coss et al.
6,151,390 A * 11/2000 Volftsun et al.
6,226,267 Bl 5/2001 Spinney et al.
6,243,667 Bl 6/2001 Kerr et al.
6,259,781 Bl * 7/2001 Crouch et al.
6,356,529 Bl * 3/2002 Zarom
6,401,132 Bl 6/2002 Bellwood et al.
6,426,943 Bl 7/2002 Spinney et al.
6,519,636 B2 2/2003 Engel et al.
6,598,034 Bl 7/2003 Kloth
6,629,163 Bl* 9/2003 Balassanian
6,651,099 Bl 11/2003 Dietz et al.
6,678,518 B2 1/2004 Eerola
6,680,922 Bl 1/2004 Jorgensen
6,701,432 Bl 3/2004 Deng et al.
6,711,166 Bl* 3/2004 Amir et al.
6,785,730 Bl * 8/2004 Taylor .
6,871,179 Bl 3/2005 Kist et al.
6,889,181 B2 5/2005 Kerr et al.
7,383,341 Bl* 6/2008 Saito et al.

OTHER PUBLICATIONS

370/469

379/229

379/207.02
370/231

710/33

370/395.1
709/230

709/228

Alexander, D. et al., "The Switch Ware Active Network Architec

ture", Jun. 6, 1998, IEEE.
Antoniazzi, S. et al., "An Open Software Architecture for Multimedia
Consumer Terminals", Central Research Labs, Italy; Alcatel SEL
Research Centre, Germany, ECMAST 1997.
Arbanowski, Stefan, "Generic Description of Telecommunication
Services and Dynamic Resource Selection in Intelligent Communi
cation Environments", Thesis, Technische Universitat Berlin, Oct. 9,
1996 (3 documents).
Arbanowski, S., et al., Service Personalization for Unified Messaging
Systems, Jul. 6-8, 1999, The Fourth IEEE Symposium on Computers
and Communications, ISCC '99, Red Sea, Egypt.
Atkinson, R., "Security Architecture for the Internet Protocol", Aug.
1995, Naval Research Laboratory.
Atkinson, R., "IP Authentication Header", Aug. 1995, Naval
Research Laboratory.
Atkinson, R., "IP Encapsulating Security Payload (ESP)", Aug.
1995, Naval Research Laboratory.
Back, G., et al., Java Operating Systems: Design and Implementa
tion, Aug. 1998, Technical Report UUCS-98-015, University of
Utah.
Baker, Dr. Sean, "CORBA Implementation Issues", 1994, IONA
Technologies, O'Reilly Institute Dublin, Ireland.
Barrett, R., et al., "Intermediaries: New Places for Producing and
Manipulating Web Content", 1998, IBM Almaden Research Center,
Elsevier Science.
Bellare, M., et al., "A Concrete Security Treatment of Symmetric
Encryption: Analysis of the Des Modes of Operation", Aug. 15, 1997,
Dept. of Computer Science and Engineering, University of Califor
nia, San Diego.
Bellare, M., et al., "A Concrete Security Treatment of Symmetric
Encryption: Analysis of the DES Modes of Operation", Aug. 15,
1997, IEEE.
Bellare, M., et al., "XOR MACs: New Methods for Message Authen
tication Using Finite Pseudorandom Functions", 1995, CRYPTO
'95, LNCS 963, pp. 15-28, Springer-Verlag Berlin Heidelberg.
Bellissard, L., et al., "Dynamic Reconfiguration of Agent-Based
Applications", Third European Research Seminar on Advances in
Distributed Systems, (ERSADS '99) Madeira Island.
Bolding, Darren, "Network Security, Filters and Firewalls", 1995,
www.acm.org/crossroads/xrds2-l/security.html.

Booch, G., et al., "Software Engineering with ADA", 1994, Third
Edition, the Benj amin/Cununings Publishing Company, Inc. (2 docu
ments).
Breugst, et al., "Mobile Agents-Enabling Technology for Active
Intelligent Network Implementation", May/Jun. 1998, IEEE Net
work.
"C Library Functions", AUTH(3) Sep. 17, 1993, Solbourne Com
puter, Inc.
Chapman, D., et al., "Building Internet Firewalls", Sep. 1995,
O'Reilly & Associates, Inc.
CheckPoint FireWall-1 Technical White Paper, Jul. 18, 1994,
CheckPoint Software Technologies, Ltd.
CheckPoint FireWall-1 White Paper, Sep. 1995, Version 2.0,
CheckPoint Software Technologies, Ltd.
Command Line Interface Guide PIN 093-0011-000 Rev C Version
2.5, 2000-2001, NetScreen Technologies, Inc.
Coulson, G. et al., "A CORBA Compliant Real-Time Multimedia
Platform for Broadband Networks", Lecture Notes in Computer Sci
ence, 1996, Trends in Distributed Systems CORBA and Beyond.
Cox, Brad, "Super Distribution, Objects as Property on the Electronic
Frontier", 1996, Addison-Wesley Publishing Company.
Cranes, et al., "A Configurable Protocol Architecture for CORBA
Environments", Autonomous Decentralized Systems 1997 Proceed
ings ISADS, Third International Symposium Apr. 9-11, 1997.
Curran, K., et al., "CORBA Lacks Venom", University of Ulster,
Northern Ireland, UK 2000.
Dannert, Andreas, "Call Logic Service for a Personal Communica
tion Supporting System", Thesis, Jan. 20, 1998, Technische
Universitat Berlin.
DARPA Internet Program Protocol Specification, "Transmission
Control Protocol", Sep. 1981, Information Sciences Institute, Cali
fornia.
DARPA Internet Program Protocol Specification, "Internet Proto
col", Sep. 1981, Information Sciences Institute, California.
Decasper, D., et al., "Crossbow: A Toolkit for Integrated Services
over Cell Switched IPv6", 1997, Computer Engineering and Net
works Laboratory, ETH Zurich, Switzerland.
Decasper, D., et al., "Router Plugins A Software Architecture for
Next Generation Routers", 1998, Proceedings of ACM SIGCONM
'98.
Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1998, Nokia, The Internet Society.
Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1995, Network Working Group, RFC 1883.
Dutton, et al, "Asynchronous Transfer Mode Technical Overview
(ATM)", Second Edition; IBM, Oct. 1995, 2nd Edition, Prentice Hall
PTR, USA.
Eckardt, T., et al., "Application of X.500 and X.700 Standards for
Supporting Personal Communications in Distributed Computing
Environments", 1995, IEEE.
Eckardt, T., et al., "Personal Communications Support based on
TMN and TINA Concepts", 1996, IEEE Intelligent Network Work
shop (IN '96), Apr. 21-24, Melbourne, Australia.
Eckardt, T., et al., "Beyond IN and UPT-A Personal Communica
tions Support System Based on TMN Concepts", Sep. 1997, IEEE
Journal on Selected Areas in Communications, vol. 15, No. 7.
Egevang, K., et al., "The IP Network Address Translator (NAT)",
May 1994, Network Working Group, RFC 1631.
Estrin, D., et al., "Visa Protocols for Controlling Inter-Organizational
Datagram Flow", Dec. 1998, Computer Science Department, Uni
versity of Southern California and Digital Equipment Corporation.
Faupel, M., "Java Distribution and Deployment", Oct. 9, 1997, APM
Ltd., United Kingdom.
Felber, P., "The CORBA Object Group Service: A Service Approach
to Object Groups in CORBA", Thesis, 1998, Ecole Polytechnique
Federale de Lausanne, Switzerland.
Fish, R., et al., "DRoPS: Kernel Support for Runtime Adaptable
Protocols", Aug. 25-27, 1998, IEEE 24th Euromicro Conference,
Sweden.
Fiuczynski, M., et al., "An Extensible Protocol Architecture for
Application-Specific Networking", 1996, Department of Computer
Science and Engineering, University of Washington.

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 3 of 33 PageID #: 313

Juniper Ex. 1041-p. 64
Juniper v Implicit

US 8,694,683 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Franz, Stefan, "Job and Stream Control in Heterogeneous Hardware
and Software Architectures", Apr. 1998, Technische Universitat, Ber
lin (2 documents).
Fraser, T., "DTE Firewalls: Phase Two Measurement and Evaluation
Report", Jul. 22, 1997, Trusted Information Systems, USA.
Gazis, V., et al., "A Survey of Dynamically Adaptable Protocol
Stacks", first Quarter 2010, IEEE Communications Surveys & Tuto
rials, vol. 12, No. 1, 15t Quarter.
Gokhale, A., et al., "Evaluating the Performance of Demultiplexing
Strategies for Real-Time CORBA", Nov. 1997, GLOBECOM.
Gokhale, A., et al., "Measuring and Optimizing CORBA Latency and
Scalability Over High-Speed Networks", Apr. 1998, IEEE Transac
tion on Computers, vol. 47, No. 4; Proceedings of the International
Conference on Distributed Computing Systems (ICDCS '97) May
27-30, 1997.
Gokhale, A., et al., "Operating System Support for High-Perfor
mance, Real-Time CORBA", 1996.
Gokhale, A., et al., "Principles for Optimizing CORBA Internet
Inter-ORB Protocol Performance", Jan. 9, 1998, Proceedings of the
HICSS Conference, Hawaii.
Gong, Li, "Java Security: Present and Near Future", May/Jun. 1997,
IEEE Micro.
Gong, Li, "New Security Architectural Directions for Java (Extended
Abstract)", Dec. 19, 1996, IEEE.
Gong, Li, "Secure Java Class Loading", Nov./Dec. 1998, IEEE
Internet.
Goos, G., et al., "Lecture Notes in Computer Science: Mobile Agents
and Security", 1998, Springer-Verlag Berlin Heidelberg.
Goralski, W., "Introduction to ATM Networking", 1995, McGraw
Hill Series on Computer Communications, USA.
Hamzeh, K., et al., Layer Two Tunneling Protocol "L2TP", Jan. 1998,
PPP Working Group, Internet Draft.
Harrison, T., et al., "The Design and Performance of a Real-Time
CORBA Event Service", Aug. 8, 1997,Proceedings of the OOPSLA
'97 Conference, Atlanta, Georgia in Oct. 1997.
Huitema, Christian, "IPv6 The New Internet Protocol", 1997
Prentice Hall, Second Edition.
Hutchins, J., et al., "Enhanced Internet Firewall Design Using State
ful Filters Final Report", Aug. 1997, Sandia Report; Sandia National
Laboratories.
IBM, Local Area Network Concepts and Products: Routers and Gate
ways, May 1996.
Juniper Networks Press Release, Juniper Networks Announces
Junos, First Routing Operating System for High-Growth Internet
Backbone Networks, Jul. 1, 1998, Juniper Networks.
Juniper Networks Press Release, Juniper Networks Ships the Indus
try's First Internet Backbone Router Delivering Unrivaled Scal
ability, Control and Performance, Sep. 16, 1998, Juniper Networks.
Karn, P., et al., "The ESP DES-CBC Transform", Aug. 1995, Net
work Working Group, RFC 1829.
Kelsey, J. et al., "Authenticating Outputs of Computer Software
Using a Cryptographic Coprocessor", Sep. 1996, CARDIS.
Krieger, D., et al., "The Emergence of Distributed Component Plat
forms", Mar. 1998, IEEE.
Krupczak, B., et al., "Implementing Communication Protocols in
Java", Oct. 1998, IEEE Communications Magazine.
Krupczak, B., et al., "Implementing Protocols in Java: The Price of
Portability", 1998, IEEE.
Lawson, Stephen, "Cisco NetFlow Switching Speeds Traffic Rout
ing", Jul. 7, 1997, Infoworld.
Li, S., et al., "Active Gateway: A Facility for Video Conferencing
Traffic Control", Feb. 1, 1997, Purdue University; Purdue e-Pubs;
Computer Science Technical Reports.
Magedanz, T., et al., "Intelligent Agents: An Emerging Technology
for Next Generation Telecommunications?", 1996, IEEE.
Mills, H., et al., "Principles of Information Systems Analysis and
Design", 1986, Academic Press, Inc. (2 documents).

Mosberger, David, "Scout: A Path-Based Operating System", Doc
toral Dissertation Submitted to the University of Arizona, 1997 (3
documents).
Muhugusa, M., et al., "ComScript: An Environment for the Imple
mentation of Protocol Stacks and their Dynamic Reconfiguration",
Dec. 1994.
Nelson, M., et al., The Data Compression Book, 2nd Edition, 1996,
M&T Books, A division of MIS Press, Inc.
NetRanger User's Guide, 1996, WheelGroup Corporation.
NetScreen Command Line Reference Guide, 2000, PIN 093-0000-
001 Rev A, NetScreen Technologies, Inc., USA.
NetScreen Command Line Reference Guide, 2000, PIN 093-0000-
001 NetScreen Technologies, Inc., USA.
NetScreen Concepts and Examples ScreenOS Reference Guide,
1998-2001, Version 2.5 PIN 093-0039-000 Rev. A, NetScreen Tech
nologies, Inc.
NetScreen Products Webpage, wysiwyg://body_bottom.3/http://
www ... een.com/products/products.htrnl 1998-1999, NetScreen
Technologies, Inc.
NetScreen WebUI, Reference Guide, Version 2.5.0 PIN 093-0040-
000 Rev. A, 2000-2001, NetScreen Technologies, Inc.
NetStalker Installation and User's Guide, 1996, Version 1.0.2, Hay
stack Labs, Inc.
Niculescu, Dragos, "Survey of Active Network Research", Jul. 14,
1999, Rutgers University.
Nortel Northern Telecom, "ISDN Primary Rate User-Network Inter
face Specification", Aug. 1998.
Nygren, Erik, "The Design and Implementation of a High-Perfor
mance Active Network Node", Thesis, Feb. 1998, MIT.
Osbourne, E., "Morningstar Technologies SecureConnect Dynamic
Firewall Filter User's Guide", Jun. 14, 1995, V. 1.4, Morning Star
Technologies, Inc.
Padovano, Michael, "Networking Applications on UNIX System V
Release 4," 1993 Prentice Hall, USA (2 documents).
Pfeifer, T., "Automatic Conversion of Communication Media", 2000,
GMD Research Series, Germany.
Pfeifer, T., "Automatic Conversion of Communication Media", The
sis, 1999, Technischen Universitat Berlin, Berlin.
Pfeifer, T., et al., "Applying Quality-of-Service Parametrization for
Medium-to-MediumConversion",Aug. 25-28, 1996, 8th IEEE Work
shop on Local and Metropolitan Area Networks, Potsdam, Germany.
Pfeifer, T., "Micronet Machines-New Architectural Approaches for
Multimedia End-Systems", 1993 Technical University of Berlin.
Pfeifer, T., "On the Convergence of Distributed Computing and Tele
communications in the Field of Personal Communications", 1995,
KiVS, Berlin.
Pfeifer, T., "Speech Synthesis in the Intelligent Personal Communi
cation Support System (IPCSS)", Nov. 2-3, 199 5, 2nd 'Speak!' Work
shop on Speech Generation in Multimodal Information Systems and
Practical Applications.
Pfeifer, T., et al., "Generic Conversion of Communication Media for
Supporting Personal Mobility", Nov. 25-27, 1996, Proc. of the Third
COST 237 Workshop: Multimedia Telecommunications and Appli
cations.
Pfeifer, T., et al., "Intelligent Handling of Communication Media",
Oct. 29-31, 1997, 6th IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS) Tunis.
Pfeifer, T., et al., "Resource Selection in Heterogeneous Communi
cation Environments using the Teleservice Descriptor", Dec. 15-19,
1997, Proceedings from the 4th COST 237 Workshop: From Multi
media Services to Network Services, Lisboa.
Pfeifer, T., et al., Mobile Guide-Location-Aware Applications from
the Lab to the Market, 1998, IDMS '98, LNCS 1483, pp. 15-28.
Pfeifer, T., et al., "The Active Store providing Quality Enhanced
Unified Messaging", Oct. 20-22, 1998, 5th Conference on computer
Communications, AFRICOM-CCDC '98, Tunis.
Pfeifer, T.,, et al., "A Modular Location-Aware Service and Applica
tion Platform", 1999, Technical University of Berlin.
Plagemann, T., et al., "Evaluating Crucial Performance Issues of
Protocol Configuration in DaCaPo", 1994, University of Oslo.
Psounis, Konstantinos, "Active Networks: Applications, Security,
Safety, and Architectures", First Quarter 1999, IEEE Communica
tions Surveys.

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 4 of 33 PageID #: 314

Juniper Ex. 1041-p. 65
Juniper v Implicit

US 8,694,683 B2
Page 4

(56) References Cited

OTHER PUBLICATIONS

Rabiner, Lawrence, "Applications of Speech Recognition in the Area
of Telecommunications", 1997, IEEE.
Raman, Suchitra, et al, "A Model, Analysis, and Protocol Framework
for Soft State-based Communications", Department of EECS, Uni
versity of California, Berkeley.
Rogaway, Phillip, "Bucket Hashing and its Application to Fast Mes
sage Authentication", Oct. 13, 1997, Department of Computer Sci
ence, University of California.
Schneier, B., et al., "Remote Auditing of Software Outputs Using a
Trusted CoProcessor", 1997, Elsevier Paper Reprint 1999.
Tennenhouse, D., et al., "From Internet to ActiveNet", Laboratory of
Computer Science, MIT, 1996.
Tudor, P., "Tutorial MPEG-2 Video Compression", Dec. 1995, Elec
tronics & Communication Engineering Journal.
US Copyright Webpage of Copyright Title, "IPv6: the New Internet
Protocol", by Christian Huitema, 1998 Prentice Hall.
Van der Meer, et al., "An Approach for a 4th Generation Messaging
System", Mar. 21-23, 1999, The Fourth International Symposium on
Autonomous Decentralized Systems ISADS '99, Tokyo.
Van der Meer, Sven, "Dynamic Configuration Management of the
Equipment in Distributed Communication Environments", Thesis,
Oct. 6, 1996, Berlin (3 documents).
Van Renesse, R. et al., "Building Adaptive Systems Using Ensemble",
Cornell University Jul. 1997.
Venkatesan, R., et al., "Threat-Adaptive Security Policy", 1997,
IEEE.
Wetherall, D., et al., "The Active IP Option", Sep. 1996, Proceedings
of the 7th ACM SIGOPS European Workshop, Connemara, Ireland.
Welch, Terry, "A Technique for High-Performance Data Compres
sion", 1984, Sperry Research Center, IEEE.
Zeletin, R. et al., "Applying Location-Aware Computing for Elec
tronic Commerce: Mobile Guide", Oct. 20-22, 1998, 5th Conference
on Computer Communications, AFRICOM-CCDC '98, Tunis.
Zell, Markus, "Selection of Converter Chains by Means of Quality of
Service Analysis", Thesis, Feb. 12, 1998, Technische Universitat
Berlin.
Feb. 4, 2008 Plaintiffs Original Complaint.
Aug. 26, 2008 Defendant NVIDIA Corporation's Answer to Com
plaint.
Aug. 26, 2008 Defendant Sun Microsystems, Inc. 's Answer to Com
plaint.
Aug. 27, 2008 Defendant Advanced Micro Devices, Inc.'sAnswerto
Complaint for Patent Infringement.
Aug. 27, 2008 RealNetworks, Inc.'s Answer to Implicit Networks,
Inc.'s Original Complaint for Patent Infringement, Affirmative
Defenses, and Counterclaims.
Aug. 27, 2008 Intel Corp.'s Answer, Defenses and Counterclaims.
Aug. 27, 2008 Defendant RMI Corporation's Answer to Plaintiff's
Original Complaint.
Sep. 15, 2008 Plaintiff's Reply to NVIDIA Corporation's Counter
claims.
Sep. 15, 2008 Plaintiffs Reply to Sun Microsystems Inc. 's Counter
claims.
Sep. 16, 2008 Plaintiff's Reply to RealNetworks, Inc.'s Counter
claims.
Sep. 16, 2008 Plaintiffs Reply to Intel Corp.'s Counterclaims.
Dec. 10, 2008 Order granting Stipulated Motion for Dismissal with
Prejudice re NVIDIA Corporation, Inc.
Dec. 16, 2008 Defendants AMD, RealNetworks, RMI, and Sun's
Motion to Stay Pending the Patent and Trademark Office's Reexami
nation of the' 163 Patent.
Dec. 29, 2008 Order granting Stipulated Motion for Dismissal with
out Prejudice of Claims re Sun Microsystems, Inc.
Jan. 5, 2009 Plaintiff's Opposition to Defendants AMD,
RealNetworks, RMI, and Sun's Motion to Stay Pending Reexamina
tion and Exhibit A.
Jan. 9, 2009 Reply of Defendants AMD, RealNetworks, RMI, and
Sun's Motion to Stay Pending the Patent and Trademark Office's
Reexamination of the' 163 Patent.

Feb. 9, 2009 Order Granting Stay Pending the United States Patent
and Trademark Office's Reexamination of U.S. Patent No.
6,629,163.
Feb. 17, 2009 Order Granting Stipulated Motion for Dismissal of
Advanced Micro Devices, Inc. with Prejudice.
May 14, 2009 Order Granting Stipulated Motion for Dismissal of
RMI Corporation with Prejudice.
Oct. 13, 2009 Order Granting Stipulated Motion for Dismissal of
Claims Against and Counterclaims by Intel Corporation.
Oct. 30, 2009 Executed Order for Stipulated Motion for Dismissal of
Claims Against and Counterclaims by RealNetworks, Inc.
Nov. 30, 2009 Plaintiffs Original Complaint, Implicit v Microsoft,
Case No. 09-5628.
Jan. 22, 2010 Order Dismissing Case, Implicit v Microsoft, Case No.
09-5628.
Aug. 16, 2010 Plaintiff's Original Complaint, Implicit v Cisco, Case
No. 10-3606.
Nov. 22, 2010 Defendant Cisco Systems, Inc's Answer and Counter
claims, Implicit v Cisco, Case No. 10-3606.
Dec. 13, 2010 Plaintiff, Implicit Networks, Inc.'s, Answer to Coun
terclaims, Implicitv Cisco, Case No. 10-3606.
Oct. 4, 2011 Order of Dismissal With Prejudice, Implicit v Cisco,
Case No. 10-3606.
Aug. 24, 2010 Plaintiff's Original Complaint, Implicit v Citrix, Case
No. 10-3766.
Dec. 1, 2010 Plaintiffs First Amended Complaint, Implicitv Citrix,
Case No. 10-3766.
Jan. 14, 2011 Defendant Citrix Systems, Inc. 's Answer, Defenses and
Counter-complaint for Declaratory Judgment, Implicitv Citrix, Case
No. 10-3766.
Feb. 18, 2011 Plaintiff, Implicit Networks, Inc.'s, Answer to Defen
dants Counterclaims, Implicit v Citrix, Case No. 10-3766.
May 2, 2011 OrderofDismissal,Implicitv Citrix, Case No. 10-3766.
Jul. 30, 2010 Plaintiff's Original Complaint,Implicitv F5, Case No.
10-3365.
Oct. 13, 2010 Defendants' Answer and Counter-Complaint, Implicit
v F5, Case No. 10-3365.
Nov. 3, 2010 Plaintiff's Answer to Counter-Complaint,Implicitv F5,
Case No. 10-3365.
Dec. 10, 2010 Plaintiff's First Amended Complaint, Implicit v F5,
Case No. 10-3365.
Jan. 14, 2011 Defendants' Answer to pt Amended Complaint and
Counterclaim, Implicitv F5, Case No. 10-3365.
Feb. 18, 2011 Plaintiff's Answer to F5's Amended Counter-Com
plaint, Implicitv F5, Case No. 10-3365.
Apr. 18, 2011 Defendants' Amended Answer to pt Amended Com
plaint and Counter-Complaint, Implicit v F5, Case No. 10-3365.
May 5, 2011 Plaintiff's Answer to F5's Amended Counter-Com
plaint, Implicitv F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Implicit v
F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc. 's Invalidity Contentions, Exhibit A,
Implicit v F5, Case No. 10-3365 (31 documents).
Jul. 22, 2011 F5 Networks, Inc. 's Invalidity Contentions, Exhibit B,
Implicit v F5, Case No. 10-3365.
Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR 4-3), Implicit v F5, Case No. 10-3365.
Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR4-3) Exhibit A, Implicitv F5, Case No. 10-3365 (2 documents).
Nov. 28, 2011 Plaintiffs Opening Claim Construction Brief, Implicit
v F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Implicitv F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing,
Exhibit A, Implicit v F5, Case No. 10-3365.
Dec. 12, 2011 Defendants' Claim Construction Brief, Implicit v F5,
Case No. 10-3365.
Dec. 19, 2011 Plaintiff's Reply to Defendants' (F5, HP, Juniper)
Responsive Claim Construction Brief (4-5), Implicit v F5, Case No.
10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 17, 2012;
Implicit v F5, Case No. 10-3365.

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 5 of 33 PageID #: 315

Juniper Ex. 1041-p. 66
Juniper v Implicit

US 8,694,683 B2
Page 5

(56) References Cited

OTHER PUBLICATIONS

Jan. 27, 2012 Transcript of Proceeding Held on Jan. 18, 2012;
Implicit v F5, Case No. 10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 19, 2012;
Implicit v F5, Case No. 10-3365.
Feb. 29, 2012 Claim Construction Order.
Aug. 15, 2012 Storer Invalidity Report.
Sep. 10, 2012 Implicit's Expert Report of Scott M. Nettles.
Mar. 13, 2013 Order Granting Defendants' Motion for Summary
Judgment.
Apr. 9, 2013 Notice of Appeal to the Federal Circuit.
Aug. 23, 2010 Plaintiffs Original Complaint, Implicit v HP, Case
No. 10-3746.
Nov. 23, 2010 Plaintiffs First Amended Complaint, Implicit v HP,
Case No. 10-3746.
Jan. 14, 2011 Defendant HP's Answer and Counterclaims,Implicit v
HP, Case No. 10-3746.
Feb. 18, 2011 Implicit Networks, Inc.'s Answer to HP Counter
claims, Implicitv HP, Case No. 10-3746.
May 10, 2011 Plaintiff's Amended Disclosure of Asserted Claims
and Infringement Contentions, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Implicit v HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Al-14, Implicitv HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Bl-21, Implicit v HP, Case No. 10-3746.
Sep. 20, 2010 Plaintiff's Original Complaint,Implicitv Juniper, Case
No. 10-4234.
Nov. 12, 2010 Juniper Network's Motion to Dismiss for Failure to
State a Claim Under Rule 12(B)(6): Memorandum of Points and
Authorities; Implicitv Juniper, Case No. 10-4234.
Nov. 2, 2010 Juniper Network's Request for Judicial Notice in Sup
port of its Motion to Dismiss for Failure to State a Claim Under Rule
12(B)(6): Memorandum of Points and Authorities; Implicit v Juni
per, Case No. 10-4234.
Dec. 1, 2010 First Amended Complaint;Implicit v Juniper, Case No.
10-4234.
Jan. 18, 2011 Juniper Networks, Inc.'s Answer and Affirmative
Defenses to l51 Amended Complaint, Implicit v Juniper, Case No.
10-4234.
Feb. 18, 2011 Plaintiffs Answer to Defendant's Counterclaims,
Implicit v Juniper, Case No. 10-4234.
May 23, 2011 Plaintiffs Disclosure of Asserted Claims and Infringe
ment Contentions, Implicit v Juniper, Case No. 10-4234.
Nov. 15, 2011 Plaintiff's Amended Disclosure of Asserted Claim and
Infringement Contentions, Implicit v Juniper, Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief), Implicit v Juniper, Case No.
10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibit E, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibit J, Implicitv Juniper, Case
No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibit K, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibits M-O, Implicit v Juniper,
Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Implicit v Juniper, Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit B, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit F, Implicit v Juniper, Case No.
10-4234.

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit N, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit P, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Q, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit S., Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-1, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit U, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit V, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit W, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit X, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, ExhibitY-1, Implicitv Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Z, Implicit v Juniper, Case No.
10-4234.
Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Reply Claim Construction Brief, Implicit v Juniper, Case No.
10-4234.
Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Reply Claim Construction Brief, Exhibit P, Implicit v Juniper, Case
No. 10-4234.
Jan. 10, 2012 Plaintiffs Jan. 10, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, Exhibit Al, Implicitv Juniper, Case No. 10-234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, ExhibitA2, Implicitv Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, ExhibitA3, Implicitv Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, ExhibitA4, Implicitv Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, Exhibit Bl, Implicit v Juniper, Case No. 10-4234.

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 6 of 33 PageID #: 316

Juniper Ex. 1041-p. 67
Juniper v Implicit

US 8,694,683 B2
Page 6

(56) References Cited

OTHER PUBLICATIONS

Feb. 29, 2012 Plaintiff's Feb. 29, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Apr. 6, 2012 Plaintiff's Apr. 6, 2012AmendedDisclosureofAsserted
Claims and Infringement Contentions, Implicit v Juniper, Case No.
10-4234.
Apr. 9, 2012 Plaintiff's Apr. 9, 2012AmendedDisclosureofAsserted
Claims and Infringement Contentions, Implicit v Juniper, Case No.
10-4234.
Sep. 11, 2012 Implicit's Expert Report of Scott Nettles.
Nov. 9, 2012 Juniper's Notice of Motion and Memorandum of Law
ISO Motion for Sununary Judgment or, in the alternative, for Partial
Sununary Judgment, on the Issue oflnvalidity.
Nov. 9, 2012 Exhibit 2 to Declaration in support of Juniper's Motion
for Sununary Judgment----Calvert Expert Report.
Nov. 9, 2012 Exhibit 3 to Declaration in support of Juniper's Motion
for Sununary Judgment----Calvert Supplemental Expert Report.
Nov. 26, 2012 Implicit Opposition to Juniper's and F5 Motion on
Invalidity.
Nov. 26, 2012 Exhibit A to Hosie Declaration-Aug. 27, 2012
Excerpts from David Blaine deposition.
Nov. 26, 2012 Exhibit B to Hosie Declaration---Oct. 25, 2012
Excerpts from Kenneth Calvert Deposition.
Nov. 26, 2012 Exhibit C to Hosie Declaration-Aug. 15, 2012
Excerpts from Kenneth Calvert Expert Report.
Nov. 26, 2012 Exhibit D to Hosie Declaration-USPN 6,651,099 to
Dietz et al.
Nov. 26, 2012 Exhibit E to Hosie Declaration-Understanding
Packet-Based and Flow-Based Forwarding.
Nov. 26, 2012 Exhibit F to Hosie Declaration-Wikipedia on Soft
State.
Nov. 26, 2012 Exhibit G to Hosie Declaration-Sprint Notes.
Nov. 26, 2012 Exhibit H to Hosie Declaration-Implicit's Supple
mental Response to Juniper's 2nd Set oflnterrogatories.
Nov. 26, 2012 Exhibit I to Hosie Declaration-USPN 7,650,634
(Zuk).
U.S. Appl. No. 11/933,022 Utility Application filed Oct. 31, 2007.
U.S. Appl. No. 11/933,022 Preliminary Amendment filed Feb. 19,
2008.
U.S. Appl. No. 11/933,022 Office Action mailed Jun. 24, 2009.
U.S. Appl. No. 11/933,022 Amendment filed Sep. 24, 2009.
U.S. Appl. No. 11/933,022 Office Action dated Dec. 11, 2009.
U.S. Appl. No. 11/933,022 Amendment and Response dated Jan. 29,
2010.
U.S. Appl. No. 11/933,022 Notice of Allowance dated Mar. 2, 2010.
U.S. Appl. No. 11/933,022 Issue Notification dated May 4, 2010.
U.S. Appl. No. 11/636,314 Utility Application filed Aug. 6, 2003.
U.S. Appl. No. 11/636,314 Office Action dated Apr. 7, 2008.
U.S. Appl. No. 11/636,314 Response to Restriction Requirement
dated Aug. 5, 2008.
U.S. Appl. No. 11/636,314 Office Action dated Oct. 3, 2008.
U.S. Appl. No. 11/636,314 Response to Office Action dated Apr. 3,
2009.
U.S. Appl. No. 11/636,314 Notice of Non-Compliant Amendment
dated May 4, 2009.
U.S. Appl. No. 11/636,314 Amendment to Office Action Response
dated Jun. 4, 2009.
U.S. Appl. No. 11/636,314 Notice of Non-Compliant Amendment
dated Jun. 12, 2009.
U.S. Appl. No. 11/636,314 Amendment to Office Action dated Jul.
10, 2009.
U.S. Appl. No. 11/636,314 Final Rejection Office Action dated Oct.
21, 2009.
U.S. Appl. No. 11/636,314 Amendment after Final Office Action
dated Dec. 14, 2009.
U.S. Appl. No. 11/636,314 Advisory Action dated Jan. 11, 2010.
U.S. Appl. No. 11/636,314 Notice of Non-Compliant Amendment
dated Jan. 11, 2010.

U.S. Appl. No. 11/636,314 Supplemental Amendment and Response
dated Mar. 13, 2010.
U.S. Appl. No. 11/636,314 Office Action dated May 11, 2010.
U.S. Appl. No. ll/636,314Amendment and Response dated Sep. 13,
2010.
U.S. Appl. No. 11/636,314 Final Rejection dated Nov. 24, 2010.
U.S. Appl. No. 11/636,314 Notice of Appeal dated May 19, 2011.
U.S. Appl. No. 11/636,314 Amendment and Request for Continued
Examination dated Jul. 19, 2011.
U.S.Appl. No. 11/636,314 Notice of Allowance dated Sep. 13, 2011.
U.S.Appl. No. 11/636,314 Notice of Allowance dated Sep. 19, 2011.
U.S. Appl. No. 11/636,314 Issue Notification dated Oct. 19, 2011.
U.S. Appl. No. 19/474,664 Utility Application filed Dec. 29, 1999.
U.S. Appl. No. 19/474,664 Office Action dated Sep. 23, 2002.
U.S. Appl. No. 19/474,664 Amendment and Response dated Feb. 24,
2003.
U.S.Appl. No. 19/474,664 Notice of Allowance dated May 20, 2003.
U.S. Appl. No. 90/010,356 Request for Ex Parte Reexamination
dated Dec. 15, 2008.
U.S. Appl. No. 90/010,356 Office Action Granting Reexamination
dated Jan. 17, 2009.
U.S. Appl. No. 90/010,356 First Office Action dated Jul. 7, 2009.
U.S.Appl. No.90/010,356 First Office Action Response dated Sep. 1,
2009.
U.S. Appl. No. 90/010,356 Patent Owner Interview Summary dated
Oct. 23, 2009.
U.S. Appl. No. 90/010,356 Office Action Final dated Dec. 4, 2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Dec. 18, 2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Jan. 4, 2010.
U.S. Appl. No. 90/010,356 Advisory Action dated Jan. 21, 2010.
U.S. Appl. No. 90/010,356 Amendment and Response to Advisory
Action dated Feb. 8, 2010.
U.S. Appl. No. 90/010,356 Notice of Intent to Issue a Reexam Cer
tificate dated Mar. 2, 2010.
U.S. Appl. No. 90/010,356 Reexamination Certificate Issued dated
Jun. 22, 2010.
U.S. Appl. No. 95/000,659 Inter Partes Reexam Request dated Feb.
13, 2012.
U.S. Appl. No. 95/000,659 Order Granting Reexamination dated Apr.
3, 2012.
U.S. Appl. No. 95/000,659 Office Action dated Apr. 3, 2012.
U.S.Appl. No. 95/000,659 Office Action Response dated Jun. 4, 2012
(including Exhibits 1 & 2) (4 documents).
U.S. Appl. No. 95/000,659 Third Party Comments to Patent Owner's
Response to Office Action dated Jul. 5, 2012.
U.S. Appl. No. 95/000,659 Appendix R-1 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Declaration of Prof. Dr. Bernhard Plattner).
U.S. Appl. No. 95/000,659 Appendix R-2 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012 (Prof.
Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,659 Appendix R-3 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,659 Appendix R-4 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5,
2012(Office Action Granting Reexamination in U.S. Appl. No.
95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,659 Appendix R-5 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Office Action in U.S. Appl. No. 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,659 Appendix R-6 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Implicit Networks, Inc. USPN 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,659 Appendix R-7 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 7 of 33 PageID #: 317

Juniper Ex. 1041-p. 68
Juniper v Implicit

US 8,694,683 B2
Page 7

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 95/000,659 Appendix R-8 to Third Party Connnents
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,659 Appendix R-9 to Third Party Connnents
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Claim Construction Order dated Feb. 29, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-1 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5, 2012
(vol. I of Edward Balassanian Deposition Transcript dated May 30,
2012).
U.S. Appl. No. 95/000,659 Appendix R-10-2 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5, 2012
(vol. II of Edward Balassanian Deposition Transcript dated May 31,
2012).
U.S. Appl. No. 95/000,659 Appendix R-10-3 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5, 2012
(vol. III of Edward Balassanian Deposition Transcript dated Jun. 7,
2012).
U.S. Appl. No. 95/000,659 Appendix R-10-4 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5, 2012
(vol. IV of Edward Balassanian Deposition Transcript dated Jun. 8,
2012).
U.S. Appl. No. 95/000,659 Appendix R-11 to ThirdPartyConnnents
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Implicit Networks, Inc.' s Response to Juniper Networks, Inc.' s First
Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,659 Action Closing Prosecution dated Oct. 1,
2012.
U.S. Appl. No. 95/000,659 Petition to Withdraw and Reissue Action
Closing Prosecution dated Nov. 20, 2012.
U.S. Appl. No. 95/000,659 Patent Owner Connnents to Action Clos
ing Prosecution dated Dec. 3, 2012.
U.S. Appl. No. 95/000,659 Opposition to Petition dated Dec. 17,
2012.
U.S. Appl. No. 95/000,659 Third Party Connnents to Action Closing
Prosecution dated Jan. 2, 2013.
U.S. Appl. No. 95/000,660 Inter Partes Reexam Request dated Mar.
2, 2012.
U.S. Appl. No. 95/000,660 Order Granting Reexamination dated
May 10, 2012.
U.S. Appl. No. 95/000,660 Office Action dated May 10, 2012.
U.S. Appl. No. 95/000,660 Response to Office Action dated Jul. 10,
2012 (including Exhibits 1 and 2).
U.S. Appl. No. 95/000,660 Third Party Connnents to Office After
Patent Owner's Response dated Aug. 8, 2012 (including Revised
Connnents).
U.S. Appl. No. 95/000,660 to Third Party Connnents to Patent Own
er's Response to Office Action dated Aug. 8, 2012 (Declaration of
Prof. Dr. Bernhard Plattner).
U.S. Appl. No. 95/000,660 Appendix R-1 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Prof. Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,660 Appendix R-3 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,660 Appendix R-4 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8,
2012(Office Action Granting Reexamination in U.S. Appl. No.
95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,660 Appendix R-5 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Office Action in U.S. Appl. No. 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,660 Appendix R-6 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Implicit Networks, Inc. USPN 6,629,163 Claims Chart).

U.S. Appl. No. 95/000,660 Appendix R-7 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).
U.S. Appl. No. 95/000,660 Appendix R-8 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,660 Appendix R-9 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Claim Construction Order dated Feb. 29, 2012).
U.S. Appl. No. 95/000,660Appendix R-10 to ThirdPartyConnnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012 (vol.
I-IV of Edward Balassanian Deposition Transcript dated May 30,
2012).
U.S. Appl. No. 95/000,660Appendix R-11 to ThirdPartyConnnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Shacham, A., et al, "IP Payload Compression Protocol", Network
Working Group, RFC 3173 Sep. 2001).
U.S. Appl. No. 95/000,660Appendix R-12 to ThirdPartyConnnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Shacham, A., et al, "IP Payload Compression Protocol", Network
Working Group, RFC 2393 Dec. 1998).
U.S. Appl. No. 95/000,660Appendix R-13 to ThirdPartyConnnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(' 163 Pfeiffer Claim Chart).
U.S. Appl. No. 95/000,660Appendix R-14 to ThirdPartyConnnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Ylonen, T., "SSH Transport Layer Protocol", Network Working
Group-Draft Feb. 22, 1999).
U.S. Appl. No. 95/000,660Appendix R-15 to ThirdPartyConnnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Donnnety, G., "Key and Sequence Number Extensions to GRE',
Network Working Group, RFC 2890 Sep. 2000).
U.S. Appl. No. 95/000,660Appendix R-16 to ThirdPartyConnnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Monsour, R., et al, "Compression in IP Security" Mar. 1997).
U.S. Appl. No. 95/000,660Appendix R-17 to ThirdPartyConnnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Friend, R., Internet Working Group RFC 3943 dated Nov. 2004
Transport Layer Security Protocol Compression Using Lempel-Ziv
Stac).
U.S. Appl. No. 95/000,660Appendix R-18 to ThirdPartyConnnents
to Patent Owner's Response to Office Action dated Aug. 8,
20 l 2(Implicit Networks, Inc.' s Response to Juniper Networks, Inc.' s
First Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,660 Revised-Third Party Connnents to
Office After Patent Owner's Response dated Nov. 2, 2012.
U.S. Appl. No. 95/000,660 Action Closing Prosecution dated Dec.
21, 2012.
U.S. Appl. No. 95/000,660 Connnents to Action Closing Prosecution
dated Feb. 21, 2013 (including Dec of Dr. Ng).
U.S. Appl. No. 95/000,660 Third Party Connnents to Action Closing
Prosecution dated Mar. 25, 2013.
PCT/US00/33634-PCT application (WO 01/2077 A2-Jul. 12,
2001).
PCT/US00/33634-Written Opinion (WO 01/50277 A3-Feb. 14,
2002).
PCT/US00/33634-International Search Report (Oct. 9, 2001).
PCT/US00/33634-Response to Official Connnunication dated
Dec. 7, 2001 (Mar. 21, 2002).
PCT/US00/33634-International Preliminary Examination Report
(Apr. 8, 2002).
PCT/US00/33634-Official Connnunication (Jan. 24, 2003).
PCT/US00/33634-Response to Official Connnunication dated Jan.
24, 2003 (Mar. 12, 2003).
PCT/US00/33634-Official Connnunication (May 13, 2004).
PCT/US00/33634-Response to Sununons to Attend Oral Proceed
ing dated May 13, 2004 (Oct. 9, 2004).
PCT/US00/33634-Decision to Refuse a European Patent applica
tion (Nov. 12, 2004).
PCT/US00/33634-Minutes of the oral proceedings before the
Examining Division (Oct. 12, 2004).

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 8 of 33 PageID #: 318

Juniper Ex. 1041-p. 69
Juniper v Implicit

US 8,694,683 B2
Page 8

(56) References Cited

OTHER PUBLICATIONS

PCT/US00/33634----Closure of the procedure in respect to Applica
tion No. 00984234.5-2212 (Feb. 22, 2005).
May 3, 2013 Expert Report of Dr. Alfonso Cardenas Regarding
Validity of U.S. Patent Nos. 6,877,006; 7,167,864; 7,720,861; and
8,082,268 (6 documents).
Expert Report of Dr. Alfonso Cardenas Regarding Validity of U.S.
Patent No. 7,167,864 (3 documents).
"InfoReports User Guide: Version3.3.l;" Platinum Technology, Pub
lication No. PRO-X-331-UG00-00, printed Apr. 1998; pp. 1-430.

Non-Final Office Action in Inter Partes Reexamination Control No.
95/000,659 issued Aug. 16, 2013, 107 pages.
Decision on Petition in Reexamination Control No. 951000,659
issued Aug. 19, 2013, 3 pages.
Response to Non-Final Office Action in Reexamination Control No.
95/000,659 mailed Oct. 2, 2013 including Exhibits A-C, 37 pages.
Decision on Petition in Reexamination Control No. 95/000,660
issued Jul. 30, 2013, 12 pages.
Non-Final Office Action in Inter Partes Reexamination Control No.
95/000,660 issued Aug. 30, 2013, 23 pages.

* cited by examiner

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 9 of 33 PageID #: 319

Juniper Ex. 1041-p. 70
Juniper v Implicit

U.S. Patent

/ 101

1150
DRIVER

149

QUEUE

151

154

155

Apr. 8, 2014 Sheet 1 of 16

~
LJ

/ !02

MESSAGE
SEND

MESSAGE
SEND

MESSAGE
SEND

MESSAGE
SEND

MESSAGE
SEND

Fig. 1

/J 03

DEMUX

106

107

108

109 110

DEMUX

114

US 8,694,683 B2

4 /10

LABELMAP
- GET

111

LABELMAP
GET

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 10 of 33 PageID #: 320

Juniper Ex. 1041-p. 71
Juniper v Implicit

U.S. Patent Apr. 8, 2014 Sheet 2 of 16 US 8,694,683 B2

Pl P2 P3 P4
D 1 1 D2 D9 1 D12

-
D2 1 OS 015 1 NU LL

-
D 1 2 D3 010 2 013

Fig. 2

(300

MEMORY 303

/304 /305 /306 /307

I DRIVERS I FORWARDING DEMUX LABEL MAP
COMPONENT COMPONENT GET

COMPONENT

/308 /309 /310

PATH CONVERSION INSTANCE DATA
STRUCTURES ROUTINES DATA

CPU
301 1/0 302

Fig. 3

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 11 of 33 PageID #: 321

Juniper Ex. 1041-p. 72
Juniper v Implicit

U.S. Patent

450

TCP

431

Apr. 8, 2014 Sheet 3 of 16 US 8,694,683 B2

463 440

TCP

452
431

420
IP

421

410
ETHERNET

4/f

473

QUEUE

Fig. 4

PATH (StackList)

l-462
t /'SESSION

I 430 464

443 433

442

423 424 425

413 414 415

472

QUEUE

Path[ntry
(REFERENCE)

TCP

432
431

422

412

471

QUEUE

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 12 of 33 PageID #: 322

Juniper Ex. 1041-p. 73
Juniper v Implicit

U.S. Patent Apr. 8, 2014 Sheet 4 of 16 US 8,694,683 B2

507

Messa eQueue 502

Multiplaylist 508

PathEnt 505 Member 509

510

Fig. 5

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 13 of 33 PageID #: 323

Juniper Ex. 1041-p. 74
Juniper v Implicit

Bi
nd

ing

51
0

Pa
th

 En
try

r5

0
5

60
2

Po
th

En
t

50
5

Bi
nd

ing

51
0

Fi
g.

6

~

0
0

• ~

~

~

~
 =

~

t :-: ~C
IO

N

0i;
...

rJ
J = ('D ('

D

U
l

0 O
'I d r.,;
_

0
0

O

'I
\0

~

O
'I

0
0

w

 =

N

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 14 of 33 PageID #: 324

Juniper Ex. 1041-p. 75
Juniper v Implicit

U.S. Patent Apr. 8, 2014 Sheet 6 of 16

MessageSend (Message, PathEntry)

05

YES

position =
Palh[nlry --> Member -->

StocklislEnlry

706 NO

retVal = nextEnlry -->
Member --> Binding -->
Edge --> Messageffondler

(Message, nexlEntry)

Return
(retval)

NO

List = Demux
(~ess□ ge,

PathEnfry --> Address,
Path Entry

708

Y£S 09

NO

NO

701

YES
09

US 8,694,683 B2

YES

103A

nexiEnlry = Us! Head
Data {pathEnlry -->
Path --> Stocklist)

Fig. 7A

17

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 15 of 33 PageID #: 325

Juniper Ex. 1041-p. 76
Juniper v Implicit

U.S. Patent Apr. 8, 2014

09

710

Select next
Candidate path

in list

MessogeSend
(Message, next Entry)

NO

NO

Fig. 7B

Sheet 7 of 16

17

US 8,694,683 B2

QueueMessage
(Message, NextEntry)

Return

715 Fig. 7C
.------..___-,

Path Ent!)' -->
Multiplaylist = List

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 16 of 33 PageID #: 326

Juniper Ex. 1041-p. 77
Juniper v Implicit

U.S. Patent Apr. 8, 2014

next bindin

809

other

Demux

Initialize
Demux

Get Session

Nail Binding

Sheet 8 of 16

Message
Address

801 PathEntry

simplex

US 8,694,683 B2

Find Path

Process Path
Hopping

multi le

return

Fig. 8

811

812

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 17 of 33 PageID #: 327

Juniper Ex. 1041-p. 78
Juniper v Implicit

U.S. Patent Apr. 8, 2014 Sheet 9 of 16 US 8,694,683 B2

909

potn Address =
path Entry --> Poth -->

Address

address[lem =
pathAddress -->
CurrentBinding =

pot h[ntry - - > Member
--> AddressEntry

Initialize
Demux

Map
PathEntry --> Map

message = Message
pofh = null

address Elem = null

sovedStatus = 0
Status = demux Continue

903

905

status =
>-YE'--S-..-i PathEntry --> Poth -->

908
lnitEnd

status = demux Continue 911
binding List =

pathAddress -->
Bindinglist

CurrenlBinding = 912
&pathAddress -->

Curren18inding
postpone = 0

traverse = ListDotoNext
session = Null

Refurn

913

Status

907

pathAddress =
Address

Fig. 9

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 18 of 33 PageID #: 328

Juniper Ex. 1041-p. 79
Juniper v Implicit

U.S. Patent Apr. 8, 2014

lnitEnd

pothAddress =
AddressCreote

(Poth[ntry - > Path - >
Address -> URL)

elem = null

~athAddress -->
CurrentBinding =

ListT aillnsen
(pathAddress -->

Bmdinglist, binding)

Return

Sheet 10 of 16

NO

1002

pathAddress =
AddressCopy

(PathEntry ->
Palh -> Acidress,

PathEntry - > Member
-> Address[ntry)

Return

1004

Return

Fig. JO

US 8,694,683 B2

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 19 of 33 PageID #: 329

Juniper Ex. 1041-p. 80
Juniper v Implicit

U.S. Patent Apr. 8, 2014 Sheet 11 of 16

= 1
1105

curren!Binding =
ListToil (bindinglist)

Doto
1106

tmplrail =
ListHeadRemove

(troillist)
1107

Address [xtend
(palhAddress,

tmpTroil)
1108

binding =
Listloil Doto
(binding List)

GelNext Binding

1101

binding = traverse
(Binding Lisi,

curren!Binding)

1103

troilList = LobelMopGel
{map --> Output Lobel,

map --> Target Lobel)

1104

> 1

binding --> Key =
map --> Target key

1/fl

map --> Target key =
Null

Return
(binding)

US 8,694,683 B2

returnlist =
Prepare Multicast PaH1s

(traillist, map)

Return
(multiple)

~eturl\
lbreakJ

Fig. 11

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 20 of 33 PageID #: 330

Juniper Ex. 1041-p. 81
Juniper v Implicit

U.S. Patent Apr. 8, 2014 Sheet 12 of 16 US 8,694,683 B2

1204

Gel Key

edge = binding --> Edge
Edge protocol = edge

--> Protocol

Status = edge -->
DemuxKey {message,

alhAddress, map)

binding --> flags
1 = Binding-Remove

remove

1211

traverse = ListOataHext

NO

savedStotus =
Status

1201

1202

Fig. 12

1205

traverse = ListoataHexl
postpone++

Return
(next binding).

1207

postpone -
traverse = ListDataPrev

YES
1213

------------.-iYES
1210

status = saved status
sovedstotus = 0

Return
(continue)

status = demux
continue

Return
{next binding)

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 21 of 33 PageID #: 331

Juniper Ex. 1041-p. 82
Juniper v Implicit

U.S. Patent Apr. 8, 2014 Sheet 13 of 16

Get Session

session = TableGet
(protocol -> SessionToble,

& binding -> key)

session =
CreafeSession

{protocol)

session --> key =
LobelRef ere nee

(binding --> key)

Table Put
(protocol - > session Table
& session -> key session

protocol -->
CreateSession

(session)

Return

Fig. 13

1301

YES

1303

1304

1305

1306

US 8,694,683 B2

Return

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 22 of 33 PageID #: 332

Juniper Ex. 1041-p. 83
Juniper v Implicit

U.S. Patent Apr. 8, 2014

1405

binding --> session = ,_N_O----<
session

binding --> key =
Label Reference

{session --> key)

1406

1407

session --> Bindina,T able
[edge --> Edgeld J =

binding

Sheet 14 of 16

Nail
Binding

1401

YES

Return
(simplex)

1409

remove
binding --> Flog 1 =

Binding - Remove

continue ________ __.

return

Fig. 14

US 8,694,683 B2

1402

binding = session -->
Binding Table

[edge --> EdgelD]

ListDaloSet
(*currentBinding,

binding)

return

1403

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 23 of 33 PageID #: 333

Juniper Ex. 1041-p. 84
Juniper v Implicit

U.S. Patent Apr. 8, 2014 Sheet 15 of 16 US 8,694,683 B2

find Path

elem = null
short[ntry = null

firstBinding =
ListHeadData

(pathAddress -->
Binding List)

YES

1502

path = entry -> Path

Return

Fig. 15

09

firsfBinding 1507

== listNextoata
(UstHext(entry -> Path ->

Stacklisl, NULL)) -> Member
-> Binding && !L,stNexl(entry ->

Path -> Stac~List, entry -> member ->
Slacklis!Entry) && !snor1Entry11 (entry

-> Path -> StccklistS1ze <
shorl[nfry -> Path ->

StacklistSize

15!1

Return

15!3

shortEntry = 1
entry

1514

Create Path (path Address,
>=--e-i Path Entry -> ma11

PolhEntry -> QOS)

elem = null
entry = ListHeodDoto
(potn - > Stocklist)

1516

elem = PathEntry ->
Member-> Address[nfryt-----i

entry = PathEntry
btendPoth

(path, map, siatus) Return

1508

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 24 of 33 PageID #: 334

Juniper Ex. 1041-p. 85
Juniper v Implicit

U.S. Patent Apr. 8, 2014

Process
Path Hopping

YES

oldStack = PathEntry - >
Path - > sf acklisf

newStack =
path - > St ocklist

old[lm = ListNext
(oldSfack, Null)

elem = ListNext
(NewStack, Null)

1607

oldEntl =
ListDataNext oldstack,

&oldelem) & ent& =
LislDotoNext (newStack, elem)
&& entdi --> Member -->

Bin ing = = oldEnlry
Member -->

Binding

Fig. 16

Sheet 16 of 16 US 8,694,683 B2

1610

1611
entry = LisfHeadOata ___ -"""'
(path -> Stacklist)

1603

1604

1605

1606

1609
entry = lisfOataPrev
(newStack, & elem)

NO

NO

1612
LisfHeodlnsert

(returnlist, Entry)

Return
(return list)

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 25 of 33 PageID #: 335

Juniper Ex. 1041-p. 86
Juniper v Implicit

US 8,694,683 B2
1

METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

2
identify that the output format of one conversion routine is
compatible with the input format of another conversion rou
tine.

It would be desirable to have a technique for dynamically CROSS REFERENCES TO RELATED
APPLICATIONS

The present application is a continuation of U.S. applica
tion Ser. No. 13/236,090, filed Sep. 19, 2011, which is a
continuation of U.S. application Ser. No. 10/636,314, filed
Aug. 6, 2003 (now U.S. Pat. No. 8,055,786), which is a
continuation of U.S. application Ser. No. 09/474,664, filed
Dec. 29, 1999 (now U.S. Pat. No. 6,629,163); the disclosures
of each of the above-referenced applications are incorporated
by reference herein in their entireties.

5 identifying a series of conversion routines for processing
data. In addition, it would be desirable to have a technique in
which the output format of one conversion routine can be
identified as being compatible with the input format of
another conversion routine. It would also be desirable to store

10 the identification of a series of conversion routines so that the
series can be quickly identified when data is received.

TECHNICAL FIELD

The present invention relates generally to a computer sys
tem for data demultiplexing.

BACKGROUND

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating example processing
of a message by the conversion system.

FIG. 2 is a block diagram illustrating a sequence of edges.
FIG. 3 is a block diagram illustrating components of the

conversion system in one embodiment.
FIG. 4 is a block diagram illustrating example path data

structures in one embodiment.
FIG. 5 is a block diagram that illustrates the interrelation

ship of the data structures of a path.
Computer systems, which are becoming increasingly per

vasive, generate data in a wide variety of formats. The Internet
FIG. 6 is a block diagram that illustrates the interrelation-

25 ship of the data structures associated with a session.
is an example of interconnected computer systems that gen
erate data in many different formats. Indeed, when data is
generated on one computer system and is transmitted to
another computer system to be displayed, the data may be
converted in many different intermediate formats before it is 30

eventually displayed. For example, the generating computer
system may initially store the data in a bitmap format. To send
the data to another computer system, the computer system
may first compress the bitmap data and then encrypt the
compressed data. The computer system may then convert that 35

compressed data into a TCP format and then into an IP format.
The IP formatted data may be converted into a transmission
format, such as an ethernet format. The data in the transmis
sion format is then sent to a receiving computer system. The
receiving computer system would need to perform each of 40

these conversions in reverse order to convert the data in the
bitmap format. In addition, the receiving computer system
may need to convert the bitmap data into a format that is
appropriate for rendering on output device.

In order to process data in such a wide variety of formats, 45

both sending and receiving computer systems need to have
many conversion routines available to support the various
formats. These computer systems typically use predefined
configuration information to load the correct combination of
conversion routines for processing data. These computer sys- 50

terns also use a process-oriented approach when processing
data with these conversion routines. When using a process
oriented approach, a computer system may create a separate
process for each conversion that needs to take place. A com
puter system in certain situations, however, can be expected to 55

receive data and to provide data in many different formats that
may not be known until the data is received. The overhead of
statically providing each possible series of conversion rou
tines is very high. For example, a computer system that serves
as a central controller for data received within a home would 60

FIGS. 7 A, 7B, and 7C comprise a flow diagram illustrating
the processing of the message send routine.

FIG. 8 is a flow diagram of the demux routine.
FIG. 9 is a flow diagram of the initialize demux routine.
FIG. 10 is a flow diagram of the init end routine.
FIG. 11 is a flow diagram of a routine to get the next

binding.
FIG. 12 is a flow diagram of the get key routine.
FIG. 13 is a flow diagram of the get session routine.
FIG. 14 is a flow diagram of the nail binding routine.
FIG. 15 is a flow diagram of the find path routine.
FIG. 16 is a flow diagram of the process of path hopping

routine.

DETAILED DESCRIPTION

A method and system for converting a message that may
contain multiple packets from an source format into a target
format. When a packet of a message is received, the conver
sion system in one embodiment searches for and identifies a
sequence of conversion routines (or more generally message
handlers) for processing the packets of the message by com
paring the input and output formats of the conversion rou
tines. (A message is a collection of data that is related in some
way, such as stream of video or audio data or an email mes
sage.) The identified sequence of conversion routines is used
to convert the message from the source format to the target
format using various intermediate formats. The conversion
system then queues the packet for processing by the identified
sequence of conversion routines. The conversion system
stores the identified sequence so that the sequence can be
quickly found (without searching) when the next packet in the
message is received. When subsequent packets of the mes
sage are received, the conversion system identifies the
sequence and queues the packets for pressing by the
sequence. Because the conversion system receives multiple
messages with different source and target formats and iden
tifies a sequence of conversion routines for each message, the
conversion systems effectively "demultiplexes" the mes-

be expected to process data received via telephone lines, cable
TV lines, and satellite connections in many different formats.
The central controller would be expected to output the data to
computer displays, television displays, entertainment cen
ters, speakers, recording devices, and so on in many different
formats. Moreover, since the various conversion routines may
be developed by different organizations, it may not be easy to

65 sages. That is, the conversion system demultiplexes the mes
sages by receiving the message, identifying the sequence of
conversion routines, and controlling the processing of each

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 26 of 33 PageID #: 336

Juniper Ex. 1041-p. 87
Juniper v Implicit

US 8,694,683 B2
3

message by the identified sequence. Moreover, since the con
version routines may need to retain state information between
the receipt of one packet of a message and the next packet of
that message, the conversion system maintains state informa
tion as an instance or session of the conversion routine. The 5

conversion system routes all packets for a message through
the same session of each conversion routine so that the same
state or instance information can be used by all packets of the
message. A sequence of sessions of conversion routines is
referred to as a "path." In one embodiment, each path has a 10

path thread associated with it for processing of each packet
destined for that path.

4
FIG. 1 is a block diagram illustrating example processing

of a message by the conversion system. The driver 101
receives the packets of the message from a network. The
driver performs any appropriate processing of the packet and
invokes a message send routine passing the processed packet
along with a reference path entry 150. The message send
routine is an embodiment of the forwarding component. A
path is represented by a series of path entries, which are
represented by triangles. Each member path entry represents
a session and conversion routine of the path, and a reference
path entry represents the overall path. The passed reference
path entry 150 indicates to the message send routine that it is
being invoked by a driver. The message send routine invokes
the demux routine 102 to search for and identify the path of
sessions that is to process the packet. The demux routine may
in tum invoke the label map get routine 104 to identify a
sequence of conversion routines for processing the packet. In
this example, the label map get routine identifies the first three
conversion routines, and the demux routine creates the mem
ber path entries 151, 152, 153 of the path for these conversion
routines. Each path entry identifies a session for a conversion
routine, and the sequence of path entries 151-155 identifies a
path. The message send routine then queues the packet on the
queue 149 for the path that is to process the packets of the
message. The path thread 105 for the path retrieves the packet
from the queue and invokes the message send routine 106
passing the packet and an indication of the path. The message
send routine determines that the next session and conversion
routine as indicated by path entry 151 has already been found.
The message send routine then invokes the instance of the
conversion routine for the session. The conversion routine
processes the packet and then invokes the message send rou
tine 107. This processing continues until the message send
routine invokes the demux routine 110 after the packet is

In one embodiment, the packets of the messages are ini
tially received by "drivers," such as an Ethernet driver. When

15
a driver receives a packet, it forwards the packet to a forward
ing component of the conversion system. The forwarding
component is responsible for identifying the session of the
conversion routine that should next process the packet and
invoking that conversion routine. When invoked by a driver, 20

the forwarding component may use a demultiplexing ("de
mux") component to identify the session of the first conver
sion routine of the path that is to process the packet and then
queues the packet for processing by the path. A path thread is
associated with each path. Each path thread is responsible for 25

retrieving packets from the queue of its path and forwarding
the packets to the forwarding component. When the forward
ing component is invoked by a path thread, it initially invokes
the first conversion routine in the path. That conversion rou
tine processes the packet and forwards the processed packet 30

to the forwarding component, which then invokes the second
conversion routine in the path. The process of invoking the
conversion routines and forwarding the processed packet to
the next conversion routine continues until the last conversion
routine in the path is invoked. A conversion routine may defer
invocation of the forwarding component until it aggregates
multiple packets or may invoke the forwarding component
multiple times for a packet once for each sub-packet.

The forwarding component identifies the next conversion
routine in the path using the demux component and stores that
identification so that the forwarding component can quickly
identify the conversion routine when subsequent packets of
the same message are received. The demux component,
searches for the conversion routine and session that is to next
process a packet. The demux component then stores the iden- 45

tification of the session and conversion routine as part of a
path data structure so that the conversion system does not
need to search for the session and conversion routine when
requested to demultiplex subsequent packets of the same
message. When searching for the next conversion routine, the
demux component invokes a label map get component that
identifies the next conversion routine. Once the conversion
routine is found, the demux component identifies the session
associated with that message by, in one embodiment, invok
ing code associated with the conversion routine. In general,
the code of the conversion routine determines what session
should be associated with a message. In certain situations,
multiple messages may share the same session. The demux
component then extends the path for processing that packet to
include that session and conversion routine. The sessions are
identified so that each packet is associated with the appropri
ate state information. The dynamic identification of conver
sion routines is described in U.S. patent application Ser. No.
11,933,093, filed on Oct. 31, 2007 (now U.S. Pat. No. 7,730,
211), entitled "Method and System for Generating a Mapping
Between Types of Data," which is hereby incorporated by
reference.

35 processed by the conversion routine represented by path entry
153. The demux routine examines the path and determines
that it has no more path entries. The demux routine then
invokes the label map get routine 111 to identify the conver
sion routines for further processing of the packet. When the

40 conversion routines are identified, the demux routine adds
path entries 154, 155 to the path. The messages send routine
invokes the conversion routine associated with path entry
154. Eventually, the conversion routine associated with path
entry 155 performs the final processing for the path.

The label map get routine identifies a sequence of"edges"
for converting data in one format into another format. Each
edge corresponds to a conversion routine for converting data
from one format to another. Each edge is part of a "protocol"
(or more generally a component) that may include multiple

50 related edges. For example, a protocol may have edges that
each convert data in one format into several different formats.
Each edge has an input format and an output format. The label
map get routine identifies a sequence of edges such that the
output format of each edge is compatible with the input for-

55 mat of another edge in the sequence, except for the input
format of the first edge in the sequence and the output format
of the last edge in the sequence. FIG. 2 is a block diagram
illustrating a sequence of edges. Protocol PI includes an edge
for converting format Dl to format D2 and an edge for con-

60 verting format D 1 to format D3; protocol P2 includes an edge
for converting format D2 to format D5, and so on. A 30
sequence for converting format D 1 to format D 15 is shown
by the curved lines and is defined by the address "P 1:I, P2: 1,
P3:2, P4:7 ." When a packet of data in format DI is processed

65 by this sequence, it is converted to format DIS. During the
process, the packet of data is sequentially converted to format
D2, DS, and D13. The output format of protocol P2, edge 1

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 27 of 33 PageID #: 337

Juniper Ex. 1041-p. 88
Juniper v Implicit

US 8,694,683 B2
5

(i.e., P2: 1) is format D5, but the input format of P3 :2 is format
Dl0. The label map get routine uses an aliasing mechanism
by which two formats, such as D5 and Dl0 are identified as
being compatible. The use of aliasing allows different names
of the same format or compatible formats to be correlated.

FIG. 3 is a block diagram illustrating components of the
conversion system in one embodiment. The conversion sys
tem 300 can operate on a computer system with a central
processing unit 301, I/O devices 302, and memory 303. The
110 devices may include an Internet connection, a connection
to various output devices such as a television, and a connec
tion to various input devices such as a television receiver. The
media mapping system may be stored as instructions on a
computer-readable medium, such as a disk drive, memory, or
data transmission medium. The data structures of the media
mapping system may also be stored on a computer-readable
medium. The conversion system includes drivers 304, a for
warding component 305, a demux component 306, a label
map get component 307, path data structures 308, conversion
routines 309, and instance data 310. Each driver receives data
in a source format and forwards the data to the forwarding
component. The forwarding component identifies the next
conversion routine in the path and invokes that conversion
routine to process a packet. The forwarding component may
invoke the demux component to search for the next conver
sion routine and add that conversion routine to the path. The
demux component may invoke the label map get component
to identify the next conversion routine to process the packet.
The demux component stores information defining the paths
in the path structures. The conversion routines store their state
information in the instance data.

FIG. 4 is a block diagram illustrating example path data
structures in one embodiment. The demux component iden
tifies a sequence of"edges" for converting data in one format
into another format by invoking the label map get component.
Each edge corresponds to a conversion routine for converting
data from one format to another. As discussed above, each
edge is part of a "protocol" that may include multiple related
edges. For example, a protocol may have edges that each
convert data in one format into several different formats. Each
edge has as an input format ("input label") and an output
format ("output label"). Each rectangle represents a session
410, 420, 430, 440, 450 for a protocol. A session corresponds
to an instance of a protocol. That is, the session includes the
protocol and state information associated with that instance
of the protocol. Session 410 corresponds to a session for an
Ethernet protocol; session 420 corresponds to a session for an
IP protocol; and sessions 430, 440, 450 correspond to ses
sions for a TCP protocol. FIG. 4 illustrates three paths 461,
462, 463. Each path includes edges 411, 421, 431. The paths
share the same Ethernet session 410 and IP session 420, but
each path has a unique TCP session 430, 440, 450. Thus, path
461 includes sessions 410, 420, and 430; path 462 includes
sessions 410, 420, and 440; and path 463 includes sessions
410, 420, and 450. The conversion system represents each
path by a sequence of path entry structures. Each path entry
structure is represented by a triangle. Thus, path 461 is rep
resented by path entries 415, 425, and 433. The conversion
system represents the path entries of a path by a stack list.
Each path also has a queue 471, 472, 473 associated with it.
Each queue stores the messages that are to be processed by the
conversion routines of the edges of the path. Each session
includes a binding 412, 422, 432, 442, 452 that is represented
by an oblong shape adjacent to the corresponding edge. A
binding for an edge of a session represents those paths that
include the edge. The binding 412 indicates that three paths
are bound (or "nailed") to edge 411 of the Ethernet session

6
410. The conversion system uses a path list to track the paths
that are bound to a binding. The path list of binding 412
identifies path entries 413, 414, and 415.

FIG. 5 is a block diagram that illustrates the interrelation-
s ship of the data structures of a path. Each path has a corre

sponding path structure 501 that contains status information
and pointers to a message queue structure 502, a stack list
structure 503, and a path address structure 504. The status of
a path can be extend, continue, or end. Each message handler

10 returns a status for the path. The status of extend means that
additional path entries should be added to the path. The status
of end means that this path should end at this point and
subsequent processing should continue at a new path. The
status of continue means that the protocol does not care how

15 the path is handled. In one embodiment, when a path has a
status of continue, the system creates a copy of the path and
extends the copy. The message queue structure identifies the
messages (or packets of a message) that are queued up for
processing by the path and identifies the path entry at where

20 the processing should start. The stack list structure contains a
list of pointers to the path entry structures 505 that comprise
the path. Each path entry structure contains a pointer to the
corresponding path data structure, a pointer to a map structure
507, a pointer to a multiplex list 508, a pointer to the corre-

25 sponding path address structure, and a pointer to a member
structure 509. A map structure identifies the output label of
the edge of the path entry and optionally a target label and a
target key. A target key identifies the session associated with
the protocol that converts the packet to the target label. (The

30 terms "media," "label," and "format" are used interchange
ably to refer to the output of a protocol.) The multiplex list is
used during the demux process to track possible next edges
when a path is being identified as having more than one next
edge. The member structure indicates that the path entry

35 represents an edge of a path and contains a pointer to a
binding structure to which the path entry is associated (or
"nailed"), a stack list entry is the position of the path entry
within the associated stack list, a path list entry is the position
of the path entry within the associated path list of a binding

40 and an address entry is the position of the binding within the
associated path address. A path address of a path identifies the
bindings to which the path entries are bound. The path address
structure contains a URL for the path, the name of the path
identified by the address, a pointer to a binding list structure

45 506, and the identification of the current binding within the
binding list. The URL (e.g., "protocol://tcp(0)/ip(0)/eth(0)")
identifies conversion routines (e.g., protocols and edges) of a
path in a human-readable format. The URL (universal
resource locator) includes a type field (e.g., "protocol") fol-

so lowed by a sequence of items (e.g.,"tcp(0)"). The type field
specifies the format of the following information in the URL,
that specifies that the type field is followed by a sequence of
items. Each item identifies a protocol and an edge (e.g., the
protocol is "tcp" and the edge is "0"). In one embodiment, the

55 items of a URL may also contain an identifier of state infor
mation that is to be used when processing a message. These
URLs can be used to illustrate to a user various paths that are
available for processing a message. The current binding is the
last binding in the path as the path is being built. The binding

60 list structure contains a list of pointers to the binding struc
tures associated with the path. Each binding structure 510
contains a pointer to a session structure, a pointer to an edge
structure, a key, a path list structure, and a list of active paths
through the binding. The key identifies the state information

65 for a session of a protocol. A path list structure contains
pointers to the path entry structures associated with the bind
ing.

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 28 of 33 PageID #: 338

Juniper Ex. 1041-p. 89
Juniper v Implicit

US 8,694,683 B2
7

FIG. 6 is a block diagram that illustrates the interrelation
ship of the data structures associated with a session. A session
structure 601 contains the context for the session, a pointer to
a protocol structure for the session, a pointer to a binding table
structure 602 for the bindings associated with the session, and
the key. The binding table structure contains a list of pointers
to the binding structures 510 for the session. The binding
structure is describedabovewithreferenceto FIG. 5. The path
list structure 603 of the binding structure contains a list of
pointers to path entry structures 505. The path entry structures
are described with reference to FIG. 5.

FIGS. 7 A, 7B, and 7C comprise a flow diagram illustrating
the processing of the message send routine. The message send
routine is passed a message along with the path entry associ
ated with the session that last processed the message. The
message send routine invokes the message handler of the next
edge in the path or queues the message for processing by a
path. The message handler invokes the demux routine to
identify the next path entry of the path. When a driver receives
a message, it invokes the message send routine passing a
reference path entry. The message send routine examines the
passed path entry to determine (1) whether multiple paths
branch from the path of the passed path entry, (2) whether the
passed path entry is a reference with an associated path, or (3)
whether the passed path entry is a member with a next path
entry. If multiple paths branch from the path of the passed
path entry, then the routine recursively invokes the message
send routine for each path. If the path entry is a reference with
an associated path, then the driver previously invoked the
message send routine, which associated a path with the ref
erence path entry, and the routine places the message on the
queue for the path. If the passed path entry is a member with
a next path entry, then the routine invokes the message han
dler (i.e., conversion routine of the edge) associated with the
next path entry. If the passed path entry is a reference without
an associated path or is a member without a next path entry,
then the routine invokes the demux routine to identify the next
path entry. The routine then recursively invokes the messages
send routine passing that next path entry. In decision block
701, if the passed path entry has a multiplex list, then the path
branches off into multiple paths and the routine continues at
block 709, else the routine continues at block 702. A packet
may be processed by several different paths. For example, if
a certain message is directed to two different output devices,
then the message is processed by two different paths. Also, a
message may need to be processed by multiple partial paths
when searching for a complete path. In decision block 702, if
the passed path entry is a member, then either the next path
entry indicates a nailed binding or the path needs to be
extended and the routine continues at block 704, else the
routine continues at block 703. A nailed binding is a binding
(e.g., edge and protocol) is associated with a session. In
decision block 703, the passed path entry is a reference and if
the passed path entry has an associated path, then the routine
can queue the message for the associated path and the routine
continues at block 703A, else the routine needs to identify a
path and the routine continues at block 707. In block 703A,
the routine sets the entry to the first path entry in the path and
continues at block 717. In block 704, the routine sets the
variable position to the stack list entry of the passed path
entry. In decision block 705, the routine sets the variable next
entry to the next path entry in the path. If there is a next entry
in the path, then the next session and edge of the protocol have
been identified and the routine continues at block 706, else the
routine continues at block 707. In block 706, the routine
passes the message to the message handler of the edge asso
ciated with the next entry and then returns. In block 706, the

8
routine invokes the demux routine passing the passed mes
sage, the address of the passed path entry, and the passed path
entry. The demux routine returns a list of candidate paths for
processing of the message. In decision block 708, if at least

5 one candidate path is returned, then the routine continues at
block 709, else the routine returns.

Blocks 709-716 illustrate the processing of a list of candi
date paths that extend from the passed path entry. In blocks
710-716, the routine loops selecting each candidate path and

10 sending the message to be process by each candidate path. In
block 710, the routine sets the next entry to the first path entry
of the next candidate path. In decision block 711, if all the
candidate paths have not yet been processed, then the routine
continues at block 712, else the routine returns. In decision

15 block 712, if the next entry is equal to the passed path entry,
then the path is to be extended and the routine continues at
block 705, else the routine continues at block 713. The can
didate paths include a first path entry that is a reference path
entry for new paths or that is the last path entry of a path being

20 extended. In decision block 713, if the number of candidate
paths is greater than one, then the routine continues at block
714, else the routine continues at block 718. In decision block
714, if the passed path entry has a multiplex list associated
with it, then the routine continues at block 716, else the

25 routine continues at block 715. In block 715, 11 the routine
associates the list of candidate path with the multiplex list of
the passed path entry and continues at block 716. In block
716, the routine sends the message to the next entry by recur
sively invoking the message send routine. The routine then

30 loops to block 710 to select the next entry associated with the
next candidate path.

Blocks 717-718 are performed when the passed path entry
is a reference path entry that has a path associated with it. In
block 717, ifthere is a path associated with the next entry, then

35 the routine continues at block 718, else the routine returns. In
block 718, the routine queues the message for the path of the
next entry and then returns.

FIG. 8 is a flow diagram of the demux routine. This routine
is passed the packet (message) that is received, an address

40 structure, and a path entry structure. The demux routine
extends a path, creating one if necessary. The routine loops
identifying the next binding (edge and protocol) that is to
process the message and "nailing" the binding to a session for
the message, if not already nailed. After identifying the nailed

45 binding, the routine searches for the shortest path through the
nailed binding, creating a path if none exists. In block 801, the
routine invokes the initialize demux routine. In blocks 802-
810, the routine loops identifying a path or portion of a path
for processing the passed message. In decision block 802, if

50 there is a current status, which was returned by the demuxkey
routine that was last invoked (e.g., continue, extend, end, or
postpone), then the routine continues at block 803, else the
routine continues at block 811. In block 803, the routine
invokes the get next binding routine. The get next binding

55 routine returns the next binding in the path. The binding is the
edge of a protocol. That routine extends the path as appropri
ate to include the binding. The routine returns a return status
of break, binding, or multiple. The return status of binding
indicates that the next binding in the path was found by

60 extending the path as appropriate and the routine continues to
"nail" the binding to a session as appropriate. The return
status of multiple means that multiple trails (e.g., candidate
paths) were identified as possible extensions of the path. In a
decision block 804, if the return status is break, then the

65 routine continues at block 811. If the return status is multiple,
then the routine returns. If the return status is binding, then the
routine continues at block 805. In decision block 805, if the

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 29 of 33 PageID #: 339

Juniper Ex. 1041-p. 90
Juniper v Implicit

US 8,694,683 B2
9

retrieved binding is nailed as indicated by being assigned to a
session, then the routine loops to block 802, else the routine
continues at block 806. In block 806, the routine invokes the
get key routine of the edge associated with the binding. The
get key routine creates the key for the session associated with
the message. If a key cannot be created until subsequent
bindings are processed or because the current binding is to be
removed, then the get key routine returns a next binding
status, else it returns a continue status. In decision block 807,

10
entry. In block 910, the routine sets the address element and
the current binding of the path address pointed to by the local
pointer path address to the address entry of the member struc
ture of the passed path entry. In the block 911, the routine sets

5 the local variable status to demux continue and sets the local
binding list structure to the binding list structure from the
local path address structure. In block 912, the routine sets the
local pointer current binding to the address of the current

if the return status of the get key routine is next binding, then 10

the routine loops to block 802 to get the next binding, else the
routine continues at block 808. In block 808, the routine
invokes the routine get session. The routine get session
returns the session associated with the key, creating a new
session if necessary. In block 809, the routine invokes the 15

routine nail binding. The routine nail binding retrieves the
binding if one is already nailed to the session. Otherwise, that
routine nails the binding to the session. In decision block 810,

binding pointed to by local pointer path address and sets the
local variable postpone to 0. In block 913, the routine sets the
function traverse to the function that retrieves the next data in
a list and sets the local pointer session to null. The routine then
returns.

FIG.10 is a flow diagram of the init end routine. If the path
is simplex, then the routine creates a new path from where the
other one ended, else the routine creates a copy of the path. In
block 1001, if the binding of the passed path entry is simplex
(i.e., only one path can be bound to this binding), then the
routine continues at block 1002, else the routine continues at if the nail binding routine returns a status of simplex, then the

routine continues at block 811 because only one path can use 20

the session, else the routine loops to block 802. Immediately
upon return from the nail binding routine, the routine may
invoke a set map routine of the edge passing the session and

block 1003. In block 1002, the routine sets the local pointer
path address to point to an address structure that is a copy of
the address structure associated with the passed path entry
structure with its current binding to the address entry associ
ated with the passed path entry structure, and then returns. In
block 1003, the routine sets the local pointer path address to
point to an address structure that contains the URL of the path

a map to allow the edge to set its map. In block 811, the
routine invokes the find path routine, which finds the shortest 25

path through the binding list and creates a path if necessary. In
block 812, the routine invokes the process path hopping rou
tine, which determines whether the identified path is part of a
different path. Path hopping occurs when, for example, IP
fragments are built up along separate paths, but once the 30

fragments are built up they can be processed by the same
subsequent path.

that contains the passed path entry. In block 1004, the routine
sets the local pointer element to null to initialize the selection
of the bindings. In blocks 1005 through 1007, the routine
loops adding all the bindings for the address of the passed
path entry that include and are before the passed path entry to
the address pointed to by the local path address. In block
1005, the routine retrieves the next binding from the binding
list starting with the first. If there is no such binding, then the

FIG. 9 is a flow diagram of the initialize demux routine.
This routine is invoked to initialize the local data structures
that are used in the demux process and to identify the initial
binding. The demux routine finds the shortest path from the
initial binding to the final binding. If the current status is
demux extend, then the routine is to extend the path of the
passed path entry by adding additional path entries. If the
current status is demux end, then the demux routine is ending
the current path. If the current status is demux continue, then
the demux routine is in the process of continuing to extend or
in the process of starting a path identified by the passed
address. In block 901, the routine sets the local map structure
to the map structure in the passed path entry structure. The
map structure identifies the output label, the target label, and
the target key. In the block 902, the routine initializes the local
message structure to the passed message structure and initial
izes the pointers path and address element to null. In block
903, the routine sets of the variable saved status to O and the
variable status to demux continue. The variable saved status is
used to track the status of the demux process when backtrack
ing to nail a binding whose nail was postponed. In decision
block 904, if the passed path entry is associated with a path,
then the routine continues at block 905, else the routine con
tinues at block 906. In block 905, the routine sets the variable
status to the status of that path. In block 906, if the variable
status is demux continue, then the routine continues at block
907. If the variable status is demux end, then the routine
continues at block 908. If the variable status is demux extend,
then the routine continues at block 909. In block 907, the
status is demux continue, and the routine sets the local pointer
path address to the passed address and continues at block 911.
In block 908, the status is demux end, and the routine invokes
the init end routine and continues at block 911. In block 909,
the status is demux extend, and the routine sets the local path
address to the address of the path that contains the passed path

35 routine returns, else the routine continues at block 1006. In
block 1006, the routine adds the binding to the binding list of
the local path address structure and sets the current binding of
the local variable path address. In the block 1007, if the local
pointer element is equal to the address entry of the passed path

40 entry, then the routine returns, else the routine loops to block
1005 to select the next binding.

FIG. 11 is a flow diagram of a routine to get the next
binding. This routine returns the next binding from the local
binding list. If there is no next binding, then the routine

45 invokes the routine label map get to identify the list of edges
("trails") that will map the output label to the target label. If
only one trail is identified, then the binding list of path address
is extended by the edges of the trail. If multiple trails are
identified, then a path is created for each trail and the routine

50 returns so that the demux process can be invoked for each
created path. In block 1101, the routine sets the local pointer
binding to point to the next or previous (as indicated by the
traverse function) binding in the local binding list. In block
1102, if a binding was found, then the routine returns an

55 indication that a binding was found, else the routine continues
at block 1103. In block 1103, the routine invokes the label
map get function passing the output label and target label of
the local map structure. The label map get function returns a
trail list. A trail is a list of edges from the output label to the

60 target label. In decision block 1104, if the size of the trail list
is one, then the routine continues at block 1105, else the
routine continues at block 1112. In blocks 1105-1111, the
routine extends the binding list by adding a binding data
structure for each edge in the trail. The routine then sets the

65 local binding to the last binding in the binding list. In block
1108, the routine sets the local pointer current binding to
point to the last binding in the local binding list. In block

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 30 of 33 PageID #: 340

Juniper Ex. 1041-p. 91
Juniper v Implicit

US 8,694,683 B2
11

1106, the routine sets the local variable temp trail to the trail
in the trail list. In block 1107, the routine extends the binding
list by temp trail by adding a binding for each edge in the trail.
These bindings are not yet nailed. In block 1108, the routine
sets the local binding to point to the last binding in the local 5

binding list. In decision block 1109, if the local binding does
not have a key for a session and the local map has a target key
for a session, then the routine sets the key for the binding to
the target key of the local map and continues at block 1110,
else the routine loops to block 1101 to retrieve the next bind- 10

ing in path. In block 1110, the routine sets the key of the local
binding to the target key of the local map. In block 1111, the
routine sets the target key of the local map to null and then
loop to block 1101 to return the next binding. In decision
block 1112, if the local session is set, then the demultiplexing 15

is already in progress and the routine returns a break status. In
block 1113, the routine invokes a prepare multicast paths
routine to prepare a path entry for each trail in the trail list.
The routine then returns a multiple status.

FIG.12 is a flow diagram of the get key routine. The get key 20

routine invokes an edge's demuxkey routine to retrieve a key
for the session associated with the message. The key identifies
the session of a protocol. The demux key routine creates the
appropriate key for the message. The demux key routine
returns a status of remove, postpone, or other. The status of 25

remove indicates that the current binding should be removed
from the path. The status of postpone indicates that the demux
key routine cannot create the key because it needs informa
tion provided by subsequent protocols in the path. For
example, a TCP session is defined by a combination of a 30

remote and local port address and an IP address. Thus, the
TCP protocol postpones the creating of a key until the IP
protocol identifies the IP address. The get key routine returns
a next binding status to continue at the next binding in the
path. Otherwise, the routine returns a continue status. In block 35

1201, the routine sets the local edge to the edge of the local
binding (current binding) and sets the local protocol to the
protocol of the local edge. In block 1202, the routine invokes
the demux key routine of the local edge passing the local
message, local path address, and local map. The demux key 40

routine sets the key in the local binding. In decision block
1203, if the demux key routine returns a status ofremove, then
the routine continues at block 1204. If the demux key routine
returns a status of postpone, then the routine continues at
block 1205, else the routine continues at block 1206. In block 45

1204, the routine sets the flag of the local binding to indicate
that the binding is to be removed and continues at block 1206.
In block 1205, the routine sets the variable traverse to the
function to list the next data, increments the variable post
pone, and then returns a next binding status. In blocks 1206- 50

1214, the routine processes the postponing of the creating of
a key. In blocks 1207-1210, if the creating of a key has been
postponed, then the routine indicates to backtrack on the path,
save the demux status, and set the demux status to demux
continue. In blocks 1211-1213, if the creating of a key has not 55

been postponed, then the routine indicates to continue for
ward in the path and to restore any saved demux status. The
save demux status is the status associated by the binding
where the backtrack started. In decision block 1206, if the
variable postpone is set, then the routine continues at block 60

1207, else the routine continues at block 1211. In block 1207,
the routine decrements the variable postpone and sets the
variable traverse to the list previous data function. In decision
block 1208, if the variable saved status is set, then the routine
continues at block 1210, else the routine continues at block 65

1209. The variable saved status contains the status of the
demux process when the demux process started to backtrack.

12
In block 1209, the routine sets the variable saved status to the
variable status. In block 1210, the routine sets the variable
status to demux continue and continues at block 1214. In
block 1211, the routine sets the variable traverse to the list
next data function. In decision block 1212, if the variable
saved status in set, then the routine continues at block 1213,
else the routine continues at block 1214. In block 1213, the
routine sets the variable status to the variable saved status and
sets the variable saved status to 0. In decision block 1214, if
the local binding indicates that it is to be removed, then the
routine returns a next binding status, else the routine returns a
continue status.

FIG. 13 is a flow diagram of the get session routine. This
routine retrieves the session data structure, creating a data
structure session if necessary, for the key indicated by the
binding. In block 1301, the routine retrieves the session from
the session table of the local protocol indicated by the key of
the local binding. Each protocol maintains a mapping from
each key to the session associated with the key. In decision
block 1302, ifthere is no session, then the routine continues at
block 1303, else the routine returns. In block 1303, the routine
creates a session for the local protocol. In block 1304, the
routine initializes the key for the local session based on the
key of the local binding. In block 1305, the routine puts the
session into the session table of the local protocol. In block
1306, the routine invokes the create session function of the
protocol to allow the protocol to initialize its context and then
returns.

FIG. 14 is a flow diagram of the nail binding routine. This
routine determines whether a binding is already associated
with ("nailed to") the session. If so, the routine returns that
binding. If not, the routine associates the binding with the
session. The routine returns a status of simplex to indicate that
only one path can extend through the nailed binding. In deci
sion block 1401, if the binding table of the session contains an
entry for the edge, then the routine continues at block 1402,
else the routine continues at block 1405. In block 1402, the
routine sets the binding to the entry from the binding table of
the local session for the edge. In block 1403, the routine sets
the current binding to point to the binding from the session. In
block 1404, if the binding is simplex, then the routine returns
a simplex status, else the routine returns. Blocks 1405 through
1410 are performed when there is no binding in the session for
the edge. In block 1405, the routine sets the session of the
binding to the variable session. In block 1406, the routine sets
the key of the binding to the key from the session. In block
1407, the routine sets the entry for the edge in the binding
table of the local session to the binding. In block 1408, the
routine invokes the create binding function of the edge of the
binding passing the binding so the edge can initialize the
binding. If that function returns a status ofremove, the routine
continues at block 1409. In block 1409, the routine sets the
binding to be removed and then returns.

FIG.15 is a flow diagram of the find path routine. The find
path routine identifies the shortest path through the binding
list. If no such path exists, then the routine extends a path to
include the binding list. In decision block 1501, if the binding
is simplex and a path already goes through this binding (re
turned as an entry), then the routine continues at block 1502,
else the routine continues at block 1503. In block 1502, the
routine sets the path to the path of the entry and returns. In
block 1503, the routine initializes the pointers element and
short entry to null. In block 1504, the routine sets the path to
the path of the passed path entry. If the local path is not null
and its status is demux extend, then the routine continues at
block 1509, else the routine continues at block 1505. In
blocks 1505-1508, the routine loops identifying the shortest

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 31 of 33 PageID #: 341

Juniper Ex. 1041-p. 92
Juniper v Implicit

US 8,694,683 B2
13

path through the bindings in the binding list. The routine
loops selecting each path through the binding. The selected
path is eligible if it starts at the first binding in the binding list
and the path ends at the binding. The routine loops setting the
short entry to the shortest eligible path found so far. In block 5

1505, the routine sets the variable first binding to the first
binding in the binding list of the path address. In block 1506,
the routine selects the next path (entry) in the path list of the
binding starting with the first. If a path is selected (indicating
that there are more paths in the binding), then the routine 10

continues at block 1507, else the routine continues at block
1509. In block 1507, the routine determines whether the
selected path starts at the first binding in the binding list,
whether the selected path ends at the last binding in the

15
binding list, and whether the number of path entries in the
selected path is less than the number of path entries in the
shortest path selected so far. If these conditions are all satis
fied, then the routine continues at block 1508, else the routine
loops to block 1506 to select the next path (entry). In block 20

1508, the routine sets the shortest path (short entry) to the
selected path and loops to block 1506 to select the next path
through the binding. In block 1509, the routine sets the
selected path (entry) to the shortest path. In decision block
1510, if a path has been found, then the routine continues at 25

block 1511, else the routine continues at block 1512. In block
1511, the routine sets the path to the path of the selected path
entry and returns. Blocks 1512-1516 are performed when no
paths have been found. In block 1512, the routine sets the path
to the path of the passed path entry. If the passed path entry 30

has a path and its status is demux extend, then the routine
continues at block 1515, else the routine continues at block
1513. In block 1513, the routine creates a path for the path
address. In block 1514, the routine sets the variable element to
null and sets the path entry to the first element in the stack list 35

of the path. In block 1515, the routine sets the variable ele
ment to be address entry of the member of the passed path
entry and sets the path entry to the passed path entry. In block
1516, the routine invokes the extend path routine to extend the
path and then returns. The extend path routine creates a path 40

through the bindings of the binding list and sets the path status
to the current demux status.

FIG. 16 is a flow diagram of the process of path hopping
routine. Path hopping occurs when the path through the bind
ing list is not the same path as that of the passed path entry. In 45

decision block 1601, if the path of the passed path entry is set,
then the routine continues at block 1602, else the routine
continues at block 1609. In decision block 1602, if the path of
the passed path entry is equal to the local path, then the routine
continues at 1612, else path hopping is occurring and the 50

routine continues at block 1603. In blocks 1603-1607, the
routine loops positioning pointers at the first path entries of
the paths that are not at the same binding. In block 1603, the
routine sets the variable old stack to the stack list of the path
of the passed path entry. In block 1604, the routine sets the 55

variable new stack to the stack list of the local path. In block
1605, the routine sets the variable old element to the next
element in the old stack. In block 1606, the routine sets the
variable element to the next element in the new stack. In
decision block 1607, the routine loops until the path entry that 60

is not in the same binding is located. In decision block 1608,
if the variable old entry is set, then the routine is not at the end
of the hopped from path and the routine continues at block
1609, else routine continues at block 1612. In block 1609, the
routine sets the variable entry to the previous entry in the 65

hopped-to path. In block 1610, the routine sets the path of the
passed path entry to the local path. In block 1611, the routine

14
sets the local entry to the first path entry of the stack list of the
local path. In block 1612, the routine inserts an entry into
return list and then returns.

Although the conversion system has been described in
terms of various embodiments, the invention is not limited to
these embodiments. Modification within the spirit of the
invention will be apparent to those skilled in the art. For
example, a conversion routine may be used for routing a
message and may perform no conversion of the message.
Also, a reference to a single copy of the message can be
passed to each conversion routine or demuxkey routine.
These routines can advance the reference past the header
information for the protocol so that the reference is positioned
at the next header. After the demux process, the reference can
be reset to point to the first header for processing by the
conversion routines in sequence. The scope of the invention is
defined by the claims that follow.

What is claimed is:
1. A first apparatus for receiving data from a second appa

ratus, the first apparatus comprising:
a processing unit; and
a memory storing instructions executable by the process

ing unit to:
create, based on an identification of information in a

received packet of a message, a path that includes one
or more data structures that indicate a sequence of
routines for processing packets in the message;

store the created path; and
process subsequent packets in the message using the

sequence of routines indicated in the stored path,
wherein the sequence includes a routine that is used to
execute a Transmission Control Protocol (TCP) to
convert one or more packets having a TCP format into
a different format.

2. The first apparatus of claim 1, wherein the sequence
includes:

a second routine that is used to execute a second, different
protocol to convert packets of the different format into
another format; and

a third routine that is used to execute a third, different
protocol to further convert the packets.

3. The first apparatus of claim 2, wherein the second pro
tocol is an Internet Protocol (IP) and the third protocol is an
Ethernet Protocol.

4. The first apparatus of claim 1, wherein the one or more
data structures further indicate sessions corresponding to
respective ones of the sequence of routines.

5. The first apparatus of claim 4, wherein the sessions
specify state information for one or more of the sequence of
routines, and wherein the state information is specific to the
message.

6. The first apparatus of claim 1, wherein the sequence of
routines includes a routine that is executable to process the
packets without converting a format of the packets.

7. The first apparatus of claim 1, wherein the routine is not
executable to convert packets having the different format, and
wherein the different format is an Internet Protocol (IP) for
mat.

8. The first apparatus of claim 1, wherein the memory
stores instructions executable by the processing unit to iden
tify an address associated with the information, wherein the
address indicates the routines in the sequence of routines of
the created path.

9. The first apparatus of claim 8, wherein the memory
stores instructions executable by the processing unit to use the
address to select the sequence of routines from a plurality of

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 32 of 33 PageID #: 342

Juniper Ex. 1041-p. 93
Juniper v Implicit

US 8,694,683 B2
15

se'.luences o~ ~outines that are stored by the first apparatus
pnor to rece1vmg the packet of the message.

10. A non-transitory, computer-readable medium compris
ing software instructions for processing a message, wherein
the software instructions, when executed, cause a computer 5

system to:
obtain information from a particular packet of the message,

wherein the particular packet has been received by the
computer system;

use the obtained information to identify an address speci- 10

fying a list of conversion routines;

16
routine that is used to execute a second, different protocol to
convert packets from the output format to a different output
format, and wherein the state information used to process
subsequent packets of the message includes state information
that corresponds to another routine that is used to execute a
third, different protocol associated with the different output
format.

18. The first apparatus of claim 17, wherein the protocols
include a Transmission Control Protocol (TCP), an Internet
Protocol (IP), and an Ethernet Protocol.

19. The first apparatus of claim 16, wherein at least one of
the routines in the list is executable to process packets of the
message without converting a format of the packets.

create a path that includes one or more data structures that
specify a sequence of sessions, wherein sessions in the
sequence correspond to respective ones of the conver
sion routines in the list; 15

20. The first apparatus of claim 16, wherein the particular
routine is executable to convert packets by removing an out
ermost header of the packets.

store the created path; and
process subsequent packets of the message using sessions

specified in the created path, including:
a session associated with a transport layer protocol that

is executed to convert one or more packets in a trans- 20

port layer format into a different format· and
another session associated with a different ~rotocol that

is executed, wherein the different protocol corre
sponds to the different format.

11. The medium of claim 10, wherein one or more of the 25

sessions specify state information for one or more of the
conversion routines, and wherein the state information is
specific to the message.
. 12. ~e medi_um of claim 11, wherein the different protocol
1s associated with a layer selected from the group consisting 30

of an application layer and a network layer.
13. The medium of claim 10, wherein the transport layer

protocol is a Transmission Control Protocol (TCP).
_14. The medium of claim 13, wherein the message com

pnses a stream of data. 35

15. The medium of claim 10, wherein using the obtained
inforn_iation to identify the address includes determining a
plurality of protocols by analyzing headers of the particular
packet, and wherein the medium includes software instruc
tions executable to determine protocols executable at the 40

transport layer and at an application layer.
16. A first apparatus configured to receive data from a

second apparatus, the first apparatus comprising:
a processing unit; and
memory storing instructions that are executable by the 45

processing unit to:
obtain and analyze information from a received packet

of a message;
identify an address based on the obtained information

wherein the address references a list of routines· ' 50

create one or more data structures that indicate 'state
information corresponding to routines in the list;

store the one or more data structures· and
process subsequent packets of the ~essage using the

state information, including state information that 55

corresponds to a particular routine that is used to
execute a protocol to convert packets from an input
format to an output format, wherein the particular
routine is not executable to convert packets having the
output format. 60

17. The first apparatus of claim 16, wherein the state infor
~ation used to process subsequent packets of the message
mcludes state information that corresponds to a different

21. The first apparatus of claim 16, wherein the protocol is
a transport layer protocol.

22. The first apparatus of claim 21, wherein the transport
layer ~rotocol is a Transmission Control Protocol (TCP), and
wherem the message comprises a stream of data.

23. The first apparatus of claim 16, wherein the obtained
information includes information from headers of the
received packet that are associated with a network layer and a
transport layer.
. 24. A non-_transitory, computer-readable medium compris
m~ pro~rall:1; mstructions executable by a computer system to:

1dent1fy mformation from different headers associated
with various layers of a received packet of a message;

create, using the identified information, one or more data
structures that reference a sequence of routines;

store the one or more data structures· and
process subsequent packets of the' message using the

sequence of routines referenced by the one or more data
structures, including by removing an outermost header
of a give°: packet using a first routine corresponding to a
protocol m a first layer and by removing the resulting
outermost header using a second routine corresponding
to a different protocol in a different layer.

25. The medium of claim 24, wherein the protocol in the
first layer is a Transmission Control Protocol (TCP), and the
message comprises a stream of data.

26. The medium of claim 24, wherein the protocol in the
first l~yer is ~ transport layer protocol and the different pro
tocol m the different layer is an application layer protocol.

27. The medium of claim 24, wherein processing subse-
quent packets of the message further includes using a third
routine corresponding to another protocol in another layer to
remove the outermost header resulting from use of the second
routine, and wherein the layers include a network layer, a
transport layer, and an application layer.

28. The medium of claim 24, wherein at least one of the
sequence of routines is not used to remove a header of the
packets.

29. The medium of claim 24, wherein the outermost header
has a format that is incompatible with a format of the resulting
outermost header, and wherein the outermost header is asso
ciated with a network layer protocol.

30. The medium of claim 24, wherein the one or more data
structures further reference state information for one or more
of the routines in the sequence of routines.

* * * * *

Case 2:19-cv-00037-JRG Document 14-4 Filed 03/19/19 Page 33 of 33 PageID #: 343

Juniper Ex. 1041-p. 94
Juniper v Implicit

EXHIBIT 5

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 1 of 33 PageID #: 344

Juniper Ex. 1041-p. 95
Juniper v Implicit

c12) United States Patent
Balassanian

(54) METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

(71) Applicant: IMPLICIT, LLC, Seattle, WA (US)

(72) Inventor: Edward Balassanian, Seattle, WA (US)

(73) Assignee: Implicit, LLC, Seattle, WA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 49 days.

(21) Appl. No.: 14/230,952

(22) Filed:

(65)

Mar. 31, 2014

Prior Publication Data

(63)

(51)

(52)

(58)

US 2015/0009997 Al Jan. 8, 2015

Related U.S. Application Data

Continuation of application No. 13/911,324, filed on
Jun. 6, 2013, now Pat. No. 8,694,683, which is a
continuation of application No. 13/236,090, filed on
Sep. 19, 2011, now abandoned, which is a continuation
of application No. 10/636,314, filed on Aug. 6, 2003,
now Pat. No. 8,055,786, which is a continuation of
application No. 09/474,664, filed on Dec. 29, 1999,
now Pat. No. 6,629,163.

Int. Cl.
H04L29/06
H04L 121701
H04L29/08
U.S. Cl.

(2006.01)
(2013.01)
(2006.01)

CPC H04L 69/08 (2013.01); H04L 29106
(2013.01); H04L 45100 (2013.01); H04L 69122

(2013.01); H04L 69132 (2013.01)
Field of Classification Search
None
See application file for complete search history.

I 1111111111111111 11111 1111111111 1111111111 111111111111111 111111111111111111
US009270790B2

(IO) Patent No.: US 9,270,790 B2
Feb.23,2016 (45) Date of Patent:

(56)

EP
EP

References Cited

U.S. PATENT DOCUMENTS

5,298,674 A
5,414,833 A
5,627,997 A
5,761,651 A
5,826,027 A
5,835,726 A
5,848,233 A
5,848,415 A
5,854,899 A
5,898,830 A

3/1994 Yun
5/1995 Hershey et al.
5/ 1997 Pearson et al.
6/ 1998 Hasebe

10/1998 Pedersen et al.
1111998 Shwed et al.
12/1998 Radia et al.
12/1998 Guck
l 2/ 1998 Callon et al.
4/1999 Wesinger, Jr. et al.

(Continued)

FOREIGN PATENT DOCUMENTS

0807347
0817031

11/1997
1/1998

OTHER PUBLICATIONS

Alexander, D. et al., "The Switch Ware Active Network Architec
ture", Jun. 6, 1998, IEEE.

(Continued)

Primary Examiner - Due Duong
(74) Attorney, Agent, or Firm - Meyertons, Hood, Kivlin,
Kowert & Goetze!, P.C.

(57) ABSTRACT

A method and system for demultiplexing packets of a mes
sage is provided. The demultiplexing system receives packets
of a message, identifies a sequence of message handlers for
processing the message, identifies state information associ
ated with the message for each message handler, and invokes
the message handlers passing the message and the associated
state information. The system identifies the message handlers
based on the initial data type of the message and a target data
type. The identified message handlers effect the conversion of
the data to the target data type through various intermediate
data types.

20 Claims, 16 Drawing Sheets

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 2 of 33 PageID #: 345

Juniper Ex. 1041-p. 96
Juniper v Implicit

US 9,270,790 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

7 /2000 Cheriton et al.
8/2000 Alam et al.
9/2000 Engel et al.
9/2000 Shipley

10/2000 Coss et al.
11/2000 Volftsun et al.

5/2001 Spinney et al.
6/2001 Kerr et al.
7/2001 Crouch et al.
3/2002 Zarom
6/2002 Bellwood et al.
7 /2002 Spinney et al.
2/2003 Engel et al.
7/2003 Kloth

6,091,725 A
6,104,500 A
6,115,393 A
6,119,236 A
6,141,749 A
6,151,390 A
6,226,267 Bl
6,243,667 Bl
6,259,781 Bl
6,356,529 Bl
6,401,132 Bl
6,426,943 Bl
6,519,636 B2
6,598,034 Bl
6,629,163 Bl* 9/2003 Balassanian H04L 29/06

370/401
6,651,099 Bl 11/2003 Dietz et al.
6,678,518 B2 1/2004 Eerola
6,680,922 Bl 1/2004 Jorgensen
6,701,432 Bl 3/2004 Deng et al.
6,711,166 Bl 3/2004 Amir et al.
6,785,730 Bl 8/2004 Taylor
6,871,179 Bl 3/2005 Kist et al.
6,889,181 B2 5/2005 Kerr et al.
7,233,569 Bl* 6/2007 Swallow H04L 12/4633

370/225
7,281,036 Bl* 10/2007 Lu H04L 29/12028

709/220
7,383,341 Bl 6/2008 Saito et al.
8,055,786 B2 * 11/2011 Balassanian H04L 29/06

370/351
8,694,683 B2 * 4/2014 Balassanian H04L 29/06

370/466
2008/0250045 Al* 10/2008 Balassanian G06F 17 /30569
2009/0265695 Al* 10/2009 Karino G06F 11/3612

717/131

OTHER PUBLICATIONS

Antoniazzi, S. et al., "An Open Software Architecture for Multimedia
Consumer Terminals", Central Research Labs, Italy; Alcatel SEL
Research Centre, Germany, ECMAST 1997.
Arbanowski, Stefan, "Generic Description of Telecommunication
Services and Dynamic Resource Selection in Intelligent Communi
cation Environments", Thesis, Technische Universitat Berlin, Oct. 9,
1996. (3 documents).
Arbanowski, S., et al., Service Personalization for Unified Messaging
Systems, Jul. 6-8, 1999, The Fourth IEEE Symposium on Computers
and Communications, ISCC '99, Red Sea, Egypt.
Atkinson, R., "Security Architecture for the Internet Protocol", Aug.
1995, Naval Research Laboratory.
Atkinson, R., "IP Authentication Header", Aug. 1995, Naval
Research Laboratory.
Atkinson, R., "IP Encapsulating Security Payload (ESP)", Aug.
1995, Naval Research Laboratory.
Back, G., et al., Java Operating Systems: Design and Implementa
tion, Aug. 1998, Technical Report UUCS-98-015, University of
Utah.
Baker, Dr. Sean, "CORBA Implementation Issues", 1994, IONA
Technologies, O'Reilly Institute Dublin, Ireland.
Barrett, R., et al., "Intermediaries: New Places for Producing and
Manipulating Web Content", 1998, IBM Almaden Research Center,
Elsevier Science.
Bellare, M., et al., "A Concrete Security Treatment of Symmetric
Encryption: Analysis of the DES Modes of Operation", Aug. 15,
1997, Dept. of Computer Science and Engineering, University of
California, San Diego.
Bellare, M., et al., "A Concrete Security Treatment of Symmetric
Encryption: Analysis of the DES Modes of Operation", Aug. 15,
1997, IEEE.
Bellare, M., et al., "XOR MACs: New Methods for Message Authen
tication Using Finite Pseudorandom Functions", 1995, CRYPTO
'95, LNCS 963, pp. 15-28, Springer-Verlag Berlin Heidelberg.

Bellissard, L., et al., "Dynamic Reconfiguration of Agent-Based
Applications", Third European Research Seminar on Advances in
Distributed Systems, (ERSADS '99) Madeira Island.
Bolding, Darren, "Network Security, Filters and Firewalls", 1995,
www.acm.org/crossroads/xrds2-l/security.html.
Booch, G., et al., "Software Engineering with ADA", 1994, Third
Edition, The Benjamin/Cununings Publishing Company, Inc. (2
documents).
Breugst, et al., "Mobile Agents-Enabling Technology for Active
Intelligent Network Implementation", May/Jun. 1998, IEEE Net
work.
"C Library Functions", AUTH(3) Sep. 17, 1993, Solbourne Com
puter, Inc.
Chapman, D., et al., "Building Internet Firewalls", Sep. 1995,
O'Reilly & Associates, Inc.
CheckPoint FireWall-1 Technical White Paper, Jul. 18, 1994,
CheckPoint Software Technologies, Ltd.
CheckPoint FireWall-1 White Paper, Sep. 1995, Version 2.0,
CheckPoint Software Technologies, Ltd.
Command Line Interface Guide PIN 093-0011-000 Rev C Version
2.5, 2000-2001, NetScreen Technologies, Inc.
Coulson, G. et al., "A CORBA Compliant Real-Time Multimedia
Platform for Broadband Networks", Lecture Notes in Computer Sci
ence, 1996, Trends in Distributed Systems CORBA and Beyond.
Cox, Brad, "SuperDistribution, Objects As Property on the Elec
tronic Frontier", 1996, Addison-Wesley Publishing Company.
Cranes, et al., "A Configurable Protocol Architecture for CORBA
Environments", Autonomous Decentralized Systems 1997 Proceed
ings ISADS, Third International Symposium Apr. 9-11, 1997.
Curran, K., et al., "CORBA Lacks Venom", University of Ulster,
Northern Ireland, UK 2000 .
Dannert, Andreas, "Call Logic Service for a Personal Communica
tion Supporting System", Thesis, Jan. 20, 1998, Technische
Universitat Berlin.
DARPA Internet Program Protocol Specification, "Transmission
Control Protocol", Sep. 1981, Information Sciences Institute, Cali
fornia.
DARPA Internet Program Protocol Specification, "Internet Proto
col", Sep. 1981, Information Sciences Institute, California.
Decasper, D., et al., "Crossbow: A Toolkit for Integrated Services
over Cell Switched IPv6", 1997, Computer Engineering and Net
works Laboratory, ETH Zurich, Switzerland.
Decasper, D., et al., "Router Plugins A Software Architecture for
Next Generation Routers", 1998, Proceedings of ACM SIGCONM
'98.
Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1998, Nokia, The Internet Society.
Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1995, Network Working Group, RFC 1883.
Dutton, et al, "Asynchronous Transfer Mode Technical Overview
(ATM)", Second Edition; IBM, Oct. 1995, 2nd Edition, Prentice Hall
PTR, USA.
Eckardt, T., et al., "Application of X.500 and X.700 Standards for
Supporting Personal Communications in Distributed Computing
Environments", 1995, IEEE.
Eckardt, T., et al., "Personal Communications Support based on
TMN and TINA Concepts", 1996, IEEE Intelligent Network Work
shop (IN '96), Apr. 21-24, Melbourne, Australia.
Eckardt, T., et al., "Beyond In and UPT-A Personal Communica
tions Support System Based on TMN Concepts", Sep. 1997, IEEE
Journal on Selected Areas in Communications, vol. 15, No. 7.
Egevang, K., et al., "The IP Network Address Translator (NAT)",
May 1994, Network Working Group, RFC 1631.
Estrin, D., et al., "Visa Protocols for Controlling Inter-Organizational
Datagram Flow", Dec. 1998, Computer Science Department, Uni
versity of Southern California and Digital Equipment Corporation.
Faupel, M., "Java Distribution and Deployment", Oct. 9, 1997, APM
Ltd., United Kingdom.
Felber, P., "The CORBA Object Group Service: A Service Approach
to Object Groups in CORBA", Thesis, 1998, Ecole Polytechnique
Federale de Lausanne, Switzerland.

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 3 of 33 PageID #: 346

Juniper Ex. 1041-p. 97
Juniper v Implicit

US 9,270,790 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Fish, R., et al., "DRoPS: Kernel Support for Runtime Adaptable
Protocols", Aug. 25-27, 1998, IEEE 24th Euromicro Conference,
Sweden.
Fiuczynski, M., et al., "An Extensible Protocol Architecture for
Application-Specific Networking", 1996, Department of Computer
Science and Engineering, University of Washington.
Franz, Stefan, "Job and Stream Control in Heterogeneous Hardware
and Software Architectures", Apr. 1998, Technische Universitat, Ber
lin (2 documents).
Fraser, T., "DTE Firewalls: Phase Two Measurement and Evaluation
Report", Jul. 22, 1997, Trusted Information Systems, USA.
Gazis, V., et al., "A Survey of Dynamically Adaptable Protocol
Stacks", first Quarter 2010, IEEE Communications Surveys & Tuto
rials, vol. 12, No. 1, 15t Quarter.
Gokhale, A., et al., "Evaluating the Performance of Demultiplexing
Strategies for Real-Time CORBA", Nov. 1997, GLOBECOM.
Gokhale, A., et al., "Measuring and Optimizing CORBA Latency and
Scalability Over High-Speed Networks", Apr. 1998, IEEE Transac
tion on Computers, vol. 47, No. 4; Proceedings of the International
Conference on Distributed Computing Systems (ICDCS '97) May
27-30, 1997.
Gokhale, A., et al., "Operating System Support for High-Perfor
mance, Real-Time CORBA", 1996.
Gokhale, A., et al., "Principles for Optimizing CORBA Internet
Inter-ORB Protocol Performance", Jan. 9, 1998, Proceedings of the
HICSS Conference, Hawaii.
Gong, Li, "Java Security: Present and Near Future", May/Jun. 1997,
IEEE Micro.
Gong, Li, "New Security Architectural Directions for Java (Extended
Abstract)", Dec. 19, 1996, IEEE.
Gong, Li, "Secure Java Class Loading", Nov./Dec. 1998, IEEE
Internet.
Goos, G., et al., "Lecture Notes in Computer Science: Mobile Agents
and Security", 1998, Springer-Verlag Berlin Heidelberg.
Goralski, W., "Introduction to ATM Networking", 1995, McGraw
Hill Series on Computer Communications, USA.
Hamzeh, K., et al., Layer Two Tunneling Protocol "L2TP", Jan. 1998,
PPP Working Group, Internet Draft.
Harrison, T., et al., "The Design and Performance of a Real-Time
CORBA Event Service", Aug. 8, 1997,Proceedings of the OOPSLA
'97 Conference, Atlanta, Georgia in Oct. 1997.
Huitema, Christian, "IPv6 The New Internet Protocol", 1997
Prentice Hall, Second Edition.
Hutchins, J., et al., "Enhanced Internet Firewall Design Using State
ful Filters Final Report", Aug. 1997, Sandia Report; Sandia National
Laboratories.
IBM, Local Area Network Concepts and Products: Routers and Gate
ways, May 1996.
Juniper Networks Press Release, Juniper Networks Announces
Junos, First Routing Operating System for High-Growth Internet
Backbone Networks, Jul. 1, 1998, Juniper Networks.
Juniper Networks Press Release, Juniper Networks Ships the Indus
try's First Internet Backbone Router Delivering Unrivaled Scal
ability, Control and Performance, Sep. 16, 1998, Juniper Networks.
Karn, P., et al., "The ESP DES-CBC Transform", Aug. 1995, Net
work Working Group, RFC 1829.
Kelsey, J. et al., "Authenticating Outputs of Computer Software
Using a Cryptographic Coprocessor", Sep. 1996, CARDIS.
Krieger, D., et al., "The Emergence of Distributed Component Plat
forms", Mar. 1998, IEEE.
Krupczak, B., et al., "Implementing Communication Protocols in
Java", Oct. 1998, IEEE Communications Magazine.
Krupczak, B., et al., "Implementing Protocols in Java: The Price of
Portability", 1998, IEEE.
Lawson, Stephen, "Cisco NetFlow Switching Speeds Traffic Rout
ing", Jul. 7, 1997, Infoworld.
Li, S., et al., "Active Gateway: A Facility for Video Conferencing
Traffic Control", Feb. 1, 1997, Purdue University; Purdue e-Pubs;
Computer Science Technical Reports.

Magedanz, T., et al., "Intelligent Agents: An Emerging Technology
for Next Generation Telecommunications?", 1996, IEEE.
Mills, H., et al., "Principles of Information Systems Analysis and
Design", 1986, Academic Press, Inc. (2 documents).
Mosberger, David, "Scout: A Path-Based Operating System", Doc
toral Dissertation Submitted to the University of Arizona, 1997 (3
documents).
Muhugusa, M., et al., "ComScript: An Environment for the Imple
mentation of Protocol Stacks and their Dynamic Reconfiguration",
Dec. 1994.
Nelson, M., et al., The Data Compression Book, 2nd Edition, 1996,
M&T Books, A division of MIS Press, Inc.
NetRanger User's Guide, 1996, WheelGroup Corporation.
NetScreen Command Line Reference Guide, 2000, PIN 093-0000-
001 Rev A, NetScreen Technologies, Inc., USA.
NetScreen Command Line Reference Guide, 2000, PIN 093-0000-
001 NetScreen Technologies, Inc., USA.
NetScreen Concepts and Examples ScreenOS Reference Guide,
1998-2001, Version 2.5 PIN 093-0039-000 Rev. A, NetScreen Tech
nologies, Inc.
NetScreen Products Webpage, wysiwyg://body_bottom.3/http://
www ... een.com/products/products.htrnl 1998-1999, NetScreen
Technologies, Inc.
NetScreen WebUI, Reference Guide, Version 2.5.0 PIN 093-0040-
000 Rev. A, 2000-2001, NetScreen Technologies, Inc.
NetStalker Installation and User's Guide, 1996, Version 1.0.2, Hay
stack Labs, Inc.
Niculescu, Dragos, "Survey of Active Network Research", Jul. 14,
1999, Rutgers University.
Nortel Northern Telecom, "ISDN Primary Rate User-Network Inter
face Specification", Aug. 1998.
Nygren, Erik, "The Design and Implementation of a High-Perfor
mance Active Network Node", Thesis, Feb. 1998, MIT.
Osbourne, E., "Morningstar Technologies SecureConnect Dynamic
Firewall Filter User's Guide", Jun. 14, 1995, V. 1.4, Morning Star
Technologies, Inc.
Padovano, Michael, "Networking Applications on UNIX System V
Release 4," 1993 Prentice Hall, USA (2 documents).
Pfeifer, T., "Automatic Conversion of Communication Media", 2000,
GMD Research Series, Germany.
Pfeifer, T., "Automatic Conversion of Communication Media", The
sis, 1999, Technischen Universitat Berlin, Berlin.
Pfeifer, T., et al., "Applying Quality-of-Service Parametrization for
Medium-to-MediumConversion",Aug. 25-28, 1996, 8th IEEE Work
shop on Local and Metropolitan Area Networks, Potsdam, Germany.
Pfeifer, T., "Micronet Machines-New Architectural Approaches for
Multimedia End-Systems", 1993 Technical University of Berlin.
Pfeifer, T., "On the Convergence of Distributed Computing and Tele
communications in the Field of Personal Communications", 1995,
KiVS, Berlin.
Pfeifer, T., "Speech Synthesis in the Intelligent Personal Communi
cation Support System (IPCSS)", Nov. 2-3, 199 5, 2nd 'Speak!' Work
shop on Speech Generation in Multimodal Information Systems and
Practical Applications.
Pfeifer, T., et al., "Generic Conversion of Communication Media for
Supporting Personal Mobility", Nov. 25-27, 1996, Proc. of the Third
COST 237 Workshop: Multimedia Telecommunications and Appli
cations.
Pfeifer, T., et al., "Intelligent Handling of Communication Media",
Oct. 29-31, 1997, 6th IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS) Tunis.
Pfeifer, T., et al., "Resource Selection in Heterogeneous Communi
cation Environments using the Teleservice Descriptor", Dec. 15-19,
1997, Proceedings from the 4th COST 237 Workshop: From Multi
media Services to Network Services, Lisboa.
Pfeifer, T., et al., Mobile Guide-Location-Aware Applications from
the Lab to the Market, 1998, IDMS '98, LNCS 1483, pp. 15-28.
Pfeifer, T., et al., "The Active Store providing Quality Enhanced
Unified Messaging", Oct. 20-22, 1998, 5th Conference on computer
Communications, AFRICOM-CCDC '98, Tunis.
Pfeifer, T.,, et al., "A Modular Location-Aware Service and Applica
tion Platform", 1999, Technical University of Berlin.

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 4 of 33 PageID #: 347

Juniper Ex. 1041-p. 98
Juniper v Implicit

US 9,270,790 B2
Page 4

(56) References Cited

OTHER PUBLICATIONS

Plagemann, T., et al., "Evaluating Crucial Performance Issues of
Protocol Configuration in DaCaPo", 1994, University of Oslo.
Psounis, Konstantinos, "Active Networks: Applications, Security,
Safety, and Architectures", First Quarter 1999, IEEE Communica
tions Surveys.
Rabiner, Lawrence, "Applications of Speech Recognition in the Area
of Telecommunications", 1997, IEEE.
Raman, Suchitra, et al, "A Model, Analysis, and Protocol Framework
for Soft State-based Communications", Department of EECS, Uni
versity of California, Berkeley.
Rogaway, Phillip, "Bucket Hashing and its Application to Fast Mes
sage Authentication", Oct. 13, 1997, Department of Computer Sci
ence, University of California.
Schneier, B., et al., "Remote Auditing of Software Outputs Using a
Trusted CoProcessor", 1997, Elsevier Paper Reprint 1999.
Tennenhouse, D., et al., "From Internet to ActiveNet", Laboratory of
Computer Science, MIT, 1996.
Tudor, P., "Tutorial MPEG-2 Video Compression", Dec. 1995, Elec
tronics & Communication Engineering Journal.
US Copyright Webpage of Copyright Title, "IPv6: the New Internet
Protocol", by Christian Huitema, 1998 Prentice Hall.
Van der Meer, et al., "An Approach for a 4th Generation Messaging
System", Mar. 21-23, 1999, The Fourth International Symposium on
Autonomous Decentralized Systems ISADS '99, Tokyo.
Van der Meer, Sven, "Dynamic Configuration Management of the
Equipment in Distributed Communication Environments", Thesis,
Oct. 6, 1996, Berlin (3 documents).
Van Renesse, R. et al., "Building Adaptive Systems Using Ensemble",
Cornell University Jul. 1997.
Venkatesan, R., et al., "Threat-Adaptive Security Policy", 1997,
IEEE.
Wetherall, D., et al., "The Active IP Option", Sep. 1996, Proceedings
of the 7th ACM SIGOPS European Workshop, Connemara, Ireland.
Welch, Terry, "A Technique for High-Performance Data Compres
sion", 1984, Sperry Research Center, IEEE.
Zeletin, R. et al., "Applying Location-Aware Computing for Elec
tronic Commerce: Mobile Guide", Oct. 20-22, 1998, 5th Conference
on Computer Communications, AFRICOM-CCDC '98, Tunis.
Zell, Markus, "Selection of Converter Chains by Means of Quality of
Service Analysis", Thesis, Feb. 12, 1998, Technische Universitat
Berlin.
Implicit Networks, Inc. v. Advanced Micro Devices, Inc. et al.; C08-
0184 JLR; USDC for the Western District of Washington, Seattle
Division.
Feb. 4, 2008 Plaintiffs Original Complaint.
Aug. 26, 2008 Defendant NVIDIA Corporation's Answer to Com
plaint.
Aug. 26, 2008 Defendant Sun Microsystems, Inc. 's Answer to Com
plaint.
Aug. 27, 2008 Defendant Advanced Micro Devices, Inc.'sAnswerto
Complaint for Patent Infringement.
Aug. 27, 2008 RealNetworks, Inc.'s Answer to Implicit Networks,
Inc.'s Original Complaint for Patent Infringement, Affirmative
Defenses, and Counterclaims.
Aug. 27, 2008 Intel Corp.'s Answer, Defenses and Counterclaims.
Aug. 27, 2008 Defendant RMI Corporation's Answer to Plaintiffs
Original Complaint.
Sep. 15, 2008 Plaintiffs Reply to NVIDIA Corporation's Counter
claims.
Sep. 15, 2008 Plaintiffs Reply to Sun Microsystems Inc.'s Counter
claims.
Sep. 16, 2008 Plaintiffs Reply to RealNetworks, Inc.'s Counter
claims.
Sep. 16, 2008 Plaintiffs Reply to Intel Corp.'s Counterclaims.
Dec. 10, 2008 Order granting Stipulated Motion for Dismissal with
Prejudice re NVIDIA Corporation, Inc.
Dec. 16, 2008 Defendants AMD, RealNetworks, RMI, and Sun's
Motion to Stay Pending the Patent and Trademark Office's Reexami
nation of the' 163 Patent.

Dec. 29, 2008 Order granting Stipulated Motion for Dismissal with
out Prejudice of Claims re Sun Microsystems, Inc.
Jan. 5, 2009 Plaintiff's Opposition to Defendants AMD,
RealNetworks, RMI, and Sun's Motion to Stay Pending Reexamina
tion and Exhibit A.
Jan. 9, 2009 Reply of Defendants AMD, RealNetworks, RMI, and
Sun's Motion to Stay Pending the Patent and Trademark Office's
Reexamination of the' 163 Patent.
Feb. 9, 2009 Order Granting Stay Pending the United States Patent
and Trademark Office's Reexamination of U.S. Pat. No. 6,629,163.
Feb. 17, 2009 Order Granting Stipulated Motion for Dismissal of
Advanced Micro Devices, Inc. with Prejudice.
May 14, 2009 Order Granting Stipulated Motion for Dismissal of
RMI Corporation with Prejudice.
Oct. 13, 2009 Order Granting Stipulated Motion for Dismissal of
Claims Against and Counterclaims by Intel Corporation.
Oct. 30, 2009 Executed Order for Stipulated Motion for Dismissal of
Claims Against and Counterclaims by RealNetworks, Inc.
Implicit Networks, Inc. v. Microsoft Corp., C09-5628 HLR; USDC
for the Northern District of California, San Francisco Division.
Nov. 30, 2009 Plaintiffs Original Complaint, Implicit v Microsoft,
Case No. 09-5628.
Jan. 22, 2010 Order Dismissing Case, Implicit v Microsoft, Case No.
09-5628.
Implicit Networks, Inc. v. Cisco Systems, Inc., Cl0-3606 HRL;
USDC for the Northern District of California, San Francisco Divi
sion.
Aug. 16, 2010 Plaintiffs Original Complaint, Implicitv Cisco, Case
No. 10-3606.
Nov. 22, 2010 Defendant Cisco Systems, Inc. 's Answer and Coun
terclaims, Implicitv Cisco, Case No. 10-3606.
Dec. 13, 2010 Plaintiff, Implicit Networks, Inc.'s, Answer to Coun
terclaims, Implicitv Cisco, Case No. 10-3606.
Oct. 4, 2011 Order of Dismissal with Prejudice, Implicit v Cisco,
Case No. 10-3606.
Implicit Networks, Inc. v. Citrix Systems, Inc., Cl0-3766 JL; USDC
for the Northern District of California, San Francisco Division.
Aug. 24, 2010 Plaintiffs Original Complaint, Implicit v Citrix, Case
No. 10-3766.
Dec. 1, 2010 Plaintiffs First Amended Complaint, Implicitv Citrix,
Case No. 10-3766.
Jan. 14, 2011 Defendant Citrix Systems, Inc. 's Answer, Defenses and
Counter-complaint for Declaratory Judgment, Implicitv Citrix, Case
No. 10-3766.
Feb. 18, 2011 Plaintiff, Implicit Networks, Inc.'s, Answer to Defen
dants Counterclaims, Implicit v Citrix, Case No. 10-3766.
May 2, 2011 OrderofDismissal,Implicitv Citrix, Case No. 10-3766.
Implicit Networks, Inc. v. F5 Networks, Inc., Cl0-3365 JCS; USDC
for the Northern District of California, San Francisco Division.
Jul. 30, 2010 Plaintiffs Original Complaint, Implicit v F5, Case No.
10-3365.
Oct. 13, 2010 Defendants' Answer and Counter-Complaint, Implicit
v F5, Case No. 10-3365.
Nov. 3, 2010 Plaintiff's Answer to Counter-Complaint,Implicitv F5,
Case No. 10-3365.
Dec. 10, 2010 Plaintiff's First Amended Complaint, Implicit v F5,
Case No. 10-3365.
Jan. 14, 2011 Defendants' Answer to 15t Amended Complaint and
Counterclaim, Implicitv F5, Case No. 10-3365.
Feb. 18, 2011 Plaintiffs Answer to F5's Amended Counter-Com
plaint, Implicitv F5, Case No. 10-3365.
Apr. 18, 2011 Defendants' Amended Answer to 15t Amended Com
plaint and Counter-Complaint, Implicit v F5, Case No. 10-3365.
May 5, 2011 Plaintiffs Answer to F 5' s Amended Counter-Complaint,
Implicit v F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Implicit v
F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc. 's Invalidity Contentions, Exhibit A,
Implicit v F5, Case No. 10-3365 (31 documents).
Jul. 22, 2011 F5 Networks, Inc. 's Invalidity Contentions, Exhibit B,
Implicit v F5, Case No. 10-3365.
Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR 4-3), Implicit v F5, Case No. 10-3365.

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 5 of 33 PageID #: 348

Juniper Ex. 1041-p. 99
Juniper v Implicit

US 9,270,790 B2
Page 5

(56) References Cited

OTHER PUBLICATIONS

Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR4-3) Exhibit A, Implicitv F5, Case No. 10-3365 (2 documents).
Nov. 28, 2011 Plaintiffs Opening Claim Construction Brief, Implicit
v F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Implicit v F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Exhibit A, Implicit v F5, Case No. 10-3365.
Dec. 12, 2011 Defendants' Claim Construction Brief, Implicit v F5,
Case No. 10-3365.
Dec. 19, 2011 Plaintiffs Reply to Defendants' (F5, HP, Juniper)
Responsive Claim Construction Brief (4-5), Implicit v F5, Case No.
10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 17, 2012;
Implicit v F5, Case No. 10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 18, 2012;
Implicit v F5, Case No. 10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 19, 2012;
Implicit v F5, Case No. 10-3365.
Feb. 29, 2012 Claim Construction Order.
Aug. 15, 2012 Storer Invalidity Report.
Sep. 10, 2012 Implicit's Expert Report of Scott M. Nettles.
Mar. 13, 2013 Order Granting Defendants' Motion for Summary
Judgment.
Apr. 9, 2013 Notice of Appeal to the Federal Circuit.
Implicit Networks, Inc. v. Hewlett-Packard Company, Cl0-3746
JCS: USDC for the Northern District of California, San Francisco
Division.
Aug. 23, 2010 Plaintiffs Original Complaint, Implicit v HP, Case No.
10-3746.
Nov. 23, 2010 Plaintiffs First Amended Complaint, Implicit v HP,
Case No. 10-3746.
Jan. 14, 2011 Defendant HP's Answer and Counterclaims,Implicit v
HP, Case No. 10-3746.
Feb. 18, 2011 Implicit Networks, Inc.'s Answer to HP Counter
claims, Implicitv HP, Case No. 10-3746.
May 10, 2011 Plaintiff's Amended Disclosure of Asserted Claims
and Infringement Contentions, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Implicit v HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Al-14, Implicitv HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Bl-21, Implicit v HP, Case No. 10-3746.
Implicit Networks, Inc. v. Juniper Networks, Cl0-4234 EDL: USDC
for the Northern District of California, San Francisco Division.
Sep. 20, 2010 Plaintiff's Original Complaint,Implicitv Juniper, Case
No. 10-4234.
Nov. 12, 2010 Juniper Network's Motion to Dismiss For Failure to
State a Claim Under Rule 12(B)(6): Memorandum of Points and
Authorities; Implicitv Juniper, Case No. 10-4234.
Nov. 12, 2010 Juniper Network's Request for Judicial Notice in
Support of its Motion to Dismiss For Failure to State a Claim Under
Rule 12(B)(6): Memorandum of Points and Authorities; Implicit v
Juniper, Case No. 10-4234.
Dec. 1, 2010 First Amended Complaint;Implicit v Juniper, Case No.
10-4234.
Jan. 18, 2011 Juniper Networks, Inc.'s Answer and Affirmative
Defenses to !51 Amended Complaint, Implicit v Juniper, Case No.
10-4234.
Feb. 18, 2011 Plaintiffs Answer to Defendant's Counterclaims,
Implicit v Juniper, Case No. 10-4234.
May 23, 2011 Plaintiffs Disclosure of Asserted Claims and Infringe
ment Contentions, Implicit v Juniper, Case No. 10-4234.
Nov. 15, 2011 Plaintiffs Amended Disclosure of Asserted Claim and
Infringement Contentions, Implicit v Juniper, Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief), Implicit v Juniper, Case No.
10-4234.

Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibit E, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibit J, Implicitv Juniper, Case
No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibit K, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibits M-O, Implicitv Juniper,
Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Implicit v Juniper, Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit B, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit F, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit N, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit P, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Q, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit S., Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-1, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit U, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit V, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit W, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit X, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, ExhibitY-1, Implicitv Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Z, Implicit v Juniper, Case No.
10-4234.

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 6 of 33 PageID #: 349

Juniper Ex. 1041-p. 100
Juniper v Implicit

US 9,270,790 B2
Page 6

(56) References Cited

OTHER PUBLICATIONS

Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Reply Claim Construction Brief, Implicit v Juniper, Case No.
10-4234.
Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Reply Claim Construction Brief, Exhibit P, Implicit v Juniper, Case
No. 10-4234.
Jan. 10, 2012 Plaintiff's Jan. 10, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, Exhibit Al, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, Exhibit A2, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, Exhibit A3, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, Exhibit A4, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.' s Supplemental Invalidity Con
tentions, Exhibit Bl, Implicit v Juniper, Case No. 10-4234.
Feb. 29, 2012 Plaintiff's Feb. 29, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Apr. 6, 2012 Plaintiff's Apr. 6, 2012AmendedDisclosureofAsserted
Claims and Infringement Contentions, Implicit v Juniper, Case No.
10-4234.
Apr. 9, 2012 Plaintiff's Apr. 9, 2012AmendedDisclosureofAsserted
Claims and Infringement Contentions, Implicit v Juniper, Case No.
10-4234.
Sep. 11, 2012 Implicit's Expert Report of Scott Nettles.
Nov. 9, 2012 Juniper's Notice of Motion and Memorandum of Law
ISO Motion for Sununary Judgment or, in the alternative, for Partial
Sununary Judgment, on the Issue oflnvalidity.
Nov. 9, 2012 Exhibit 2 to Declaration in support of Juniper's Motion
for Sununary Judgment----Calvert Expert Report.
Nov. 9, 2012 Exhibit 3 to Declaration in support of Juniper's Motion
for Sununary Judgment----Calvert Supplemental Expert Report.
Nov. 26, 2012 Implicit Opposition to Juniper's and F5 Motion on
Invalidity.
Nov. 26, 2012 Exhibit A to Hosie Declaration-Aug. 27, 2012
Excerpts from David Blaine deposition.
Nov. 26, 2012 Exhibit B to Hosie Declaration---Oct. 25, 2012
Excerpts from Kenneth Calvert Deposition.
Nov. 26, 2012 Exhibit C to Hosie Declaration-Aug. 15, 2012
Excerpts from Kenneth Calvert Expert Report.
Nov. 26, 2012 Exhibit D to Hosie Declaration-U.S. Pat. No.
6,651,099 to Dietz et al.
Nov. 26, 2012 Exhibit E to Hosie Declaration-Understanding
Packet-Based and Flow-Based Forwarding.
Nov. 26, 2012 Exhibit F to Hosie Declaration-Wikipedia on Soft
State.
Nov. 26, 2012 Exhibit G to Hosie Declaration-Sprint Notes.
Nov. 26, 2012 Exhibit H to Hosie Declaration-Implicit's Supple
mental Response to Juniper's 2nd Set oflnterrogatories.
Nov. 26, 2012 Exhibit I to Hosie Declaration-U.S. Pat. No.
7,650,634 (Zuk).
Other Implicit Networks, Inc. Prosecution Matters.
U.S. Appl. No. 11/933,022 Utility Application filed Oct. 31, 2007.
U.S. Appl. No. 11/933,022 Preliminary Amendment filed Feb. 19,
2008.
U.S. Appl. No. 11/933,022 Office Action mailed Jun. 24, 2009.
U.S. Appl. No. 11/933,022 Amendment filed Sep. 24, 2009.
U.S. Appl. No. 11/933,022 Office Action dated Dec. 11, 2009.
U.S. Appl. No. 11/933,022 Amendment and Response dated Jan. 29,
2010.
U.S. Appl. No. 11/933,022 Notice of Allowance dated Mar. 2, 2010.
U.S. Appl. No. 11/933,022 Issue Notification dated May 4, 2010.
U.S. Appl. No. 10/636,314 Utility Application filed Aug. 6, 2003.

U.S. Appl. No. 10/636,314 Office Action dated Apr. 7, 2008.
U.S. Appl. No. 10/636,314 Response to Restriction Requirement
dated Aug. 5, 2008.
U.S. Appl. No. 10/636,314 Office Action dated Oct. 3, 2008.
U.S. Appl. No. 10/636,314 Response to Office Action dated Apr. 3,
2009.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated May 4, 2009.
U.S. Appl. No. 10/636,314 Amendment to Office Action Response
dated Jun. 4, 2009.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jun. 12, 2009.
U.S. Appl. No. 10/636,314 Amendment to Office Action dated Jul.
10, 2009.
U.S. Appl. No. 10/636,314 Final Rejection Office Action dated Oct.
21, 2009.
U.S. Appl. No. 10/636,314 Amendment after Final Office Action
dated Dec. 14, 2009.
U.S. Appl. No. 10/636,314 Advisory Action dated Jan. 11, 2010.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jan. 11, 2010.
U.S. Appl. No. 10/636,314 Supplemental Amendment and Response
dated Mar. 13, 2010.
U.S. Appl. No. 10/636,314 Office Action dated May 11, 2010.
U.S. Appl. No. 10/636,314 Amendment and Response dated Sep. 13,
2010.
U.S. Appl. No. 10/636,314 Final Rejection dated Nov. 24, 2010.
U.S. Appl. No. 10/636,314 Notice of Appeal dated May 19, 2011.
U.S. Appl. No. 10/636,314 Amendment and Request for Continued
Examination dated Jul. 19, 2011.
U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 13, 2011.
U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 19, 2011.
U.S. Appl. No. 10/636,314 Issue Notification dated Oct. 19, 2011.
U.S. Appl. No. 09/474,664 Utility Application filed Dec. 29, 1999.
U.S. Appl. No. 09/474,664 Office Action dated Sep. 23, 2002.
U.S. Appl. No. 09/474,664 Amendment and Response dated Feb. 24,
2003.
U.S.Appl. No. 09/474,664 Notice of Allowance dated May 20, 2003.
U.S. Appl. No. 90/010,356 Request for Ex Parte Reexamination
dated Dec. 15, 2008.
U.S. Appl. No. 90/010,356 Office Action Granting Reexamination
dated Jan. 17, 2009.
U.S. Appl. No. 90/010,356 First Office Action dated Jul. 7, 2009.
U.S.Appl. No.90/010,356 First Office Action Response dated Sep. 1,
2009.
U.S. Appl. No. 90/010,356 Patent Owner Interview Summary dated
Oct. 23, 2009.
U.S. Appl. No. 90/010,356 Office Action Final dated Dec. 4,2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Dec. 18, 2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Jan. 4, 2010.
U.S. Appl. No. 90/010,356 Advisory Action dated Jan. 21, 2010.
U.S. Appl. No. 90/010,356 Amendment and Response to Advisory
Action dated Feb. 8, 2010.
U.S. Appl. No. 90/010,356 Notice of Intent to Issue a Reexam Cer
tificate dated Mar. 2, 2010.
U.S. Appl. No. 90/010,356 Reexamination Certificate Issued dated
Jun. 22, 2010.
U.S. Appl. No. 95/000,659 Inter Partes Reexam Request dated Feb.
13, 2012.
U.S. Appl. No. 95/000,659 Order Granting Reexamination dated Apr.
3, 2012.
U.S. Appl. No. 95/000,659 Office Action dated Apr. 3, 2012.
U.S.Appl. No. 95/000,659 Office Action Response dated Jun. 4, 2012
(including Exhibits 1 & 2) (4 documents).
U.S. Appl. No. 95/000,659 Third Party Comments to Patent Owner's
Response to Office Action dated Jul. 5, 2012.
U.S. Appl. No. 95/000,659 Appendix R-1 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Declaration of Prof. Dr. Bernhard Plattner).

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 7 of 33 PageID #: 350

Juniper Ex. 1041-p. 101
Juniper v Implicit

US 9,270,790 B2
Page 7

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 95/000,659 Appendix R-2 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012 (Prof.
Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,659 Appendix R-3 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,659 Appendix R-4 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5,
2012(Office Action Granting Reexamination in 95/000,660 dated
May 10, 2012).
U.S. Appl. No. 95/000,659 Appendix R-5 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Office Action in 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,659 Appendix R-6 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,659 Appendix R-7 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).
U.S. Appl. No. 95/000,659 Appendix R-8 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,659 Appendix R-9 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Claim Construction Order dated Feb. 29, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-1 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5, 2012
(vol. I of Edward Balassanian Deposition Transcript dated May 30,
2012).
U.S. Appl. No. 95/000,659 Appendix R-10-2 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5, 2012
(vol. II of Edward Balassanian Deposition Transcript dated May 31,
2012).
U.S. Appl. No. 95/000,659 Appendix R-10-3 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5, 2012
(vol. III of Edward Balassanian Deposition Transcript dated Jun. 7,
2012).
U.S. Appl. No. 95/000,659 Appendix R-10-4 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5, 2012
(vol. IV of Edward Balassanian Deposition Transcript dated Jun. 8,
2012).
U.S. Appl. No. 95/000,659 Appendix R-11 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Implicit Networks, Inc.' s Response to Juniper Networks, Inc.' s First
Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,659 Action Closing Prosecution dated Oct. 1,
2012.
U.S. Appl. No. 95/000,659 Petition to Withdraw and Reissue Action
Closing Prosecution dated Nov. 20, 2012.
U.S. Appl. No. 95/000,659 Patent Owner Comments to Action Clos
ing Prosecution dated Dec. 3, 2012.
U.S. Appl. No. 95/000,659 Opposition to Petition dated Dec. 17,
2012.
U.S. Appl. No. 95/000,659 Third Party Comments to Action Closing
Prosecution dated Jan. 2, 2013.
U.S. Appl. No. 95/000,660 Inter Partes Reexam Request dated Mar.
2, 2012.
U.S. Appl. No. 95/000,660 Order Granting Reexamination dated
May 10, 2012.
U.S. Appl. No. 95/000,660 Office Action dated May 10, 2012.
U.S. Appl. No. 95/000,660 Response to Office Action dated Jul. 10,
2012 (including Exhibits 1 and 2).
U.S. Appl. No. 95/000,660 Third Party Comments to Office After
Patent Owner's Response dated Aug. 8, 2012 (including Revised
Comments).

U.S. Appl. No. 95/000,660 to Third Party Comments to Patent Own
er's Response to Office Action dated Aug. 8, 2012 (Declaration of
Prof. Dr. Bernhard Plattner).
U.S. Appl. No. 95/000,660 Appendix R-1 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Prof. Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,660 Appendix R-3 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,660 Appendix R-4 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8,
2012(Office Action Granting Reexamination in 95/000,660 dated
May 10, 2012).
U.S. Appl. No. 95/000,660 Appendix R-5 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Office Action in 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,660 Appendix R-6 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,660 Appendix R-7 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).
U.S. Appl. No. 95/000,660 Appendix R-8 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,660 Appendix R-9 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Claim Construction Order dated Feb. 29, 2012).
U.S. Appl. No. 95/000,660Appendix R-10 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012 (vol.
I-IV of Edward Balassanian Deposition Transcript dated May 30,
2012).
U.S. Appl. No. 95/000,660Appendix R-11 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Shacham, A., et al, "IP Payload Compression Protocol", Network
Working Group, RFC 3173 Sep. 2001).
U.S. Appl. No. 95/000,660Appendix R-12 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Shacham, A., et al, "IP Payload Compression Protocol", Network
Working Group, RFC 2393 Dec. 1998).
U.S. Appl. No. 95/000,660Appendix R-13 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(' 163 Pfeiffer Claim Chart).
U.S. Appl. No. 95/000,660Appendix R-14 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Ylonen, T., "SSH Transport Layer Protocol", Network Working
Group-Draft Feb. 22, 1999).
U.S. Appl. No. 95/000,660Appendix R-15 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Dommety, G., "Key and Sequence Number Extensions to GRE',
Network Working Group, RFC 2890 Sep. 2000).
U.S. Appl. No. 95/000,660Appendix R-16 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Monsour, R., et al, "Compression in IP Security" Mar. 1997).
U.S. Appl. No. 95/000,660Appendix R-17 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Friend, R., Internet Working Group RFC 3943 dated Nov. 2004
Transport Layer Security Protocol Compression Using Lempel-Ziv
Stac).
U.S. Appl. No. 95/000,660Appendix R-18 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8,
20 l 2(Implicit Networks, Inc.' s Response to Juniper Networks, Inc.' s
First Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,660 Revised-Third Party Comments to
Office After Patent Owner's Response dated Nov. 2, 2012.
U.S. Appl. No. 95/000,660 Action Closing Prosecution dated Dec.
21, 2012.
U.S. Appl. No. 95/000,660 Comments to Action Closing Prosecution
dated Feb. 21, 2013 (including Dec of Dr. Ng).

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 8 of 33 PageID #: 351

Juniper Ex. 1041-p. 102
Juniper v Implicit

US 9,270,790 B2
Page 8

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 95/000,660 Third Party Comments to Action Closing
Prosecution dated Mar. 25, 2013.
PCT/US00/33634-PCT application (WO 01/2077 A2-Jul. 12,
2001).
PCT/US00/33634-Written Opinion (WO 01/50277 A3-Feb. 14,
2002).
PCT/US00/33634-International Search Report (Oct. 9, 2001).
PCT/US00/33634-Response to Official Communication dated
Dec. 7, 2001 (Mar. 21, 2002).
PCT/US00/33634-International Preliminary Examination Report
(Apr. 8, 2002).
PCT/US00/33634---0fficial Communication (Jan. 24, 2003).
PCT/US00/33634-Response to Official Communication dated Jan.
24, 2003 (Mar. 12, 2003).
PCT/US00/33634---0fficial Communication (May 13, 2004).
PCT/US00/33634-Response to Sununons to Attend Oral Proceed
ing dated May 13, 2004 (Oct. 9, 2004).
PCT/US00/33634-Decision to Refuse a European Patent applica
tion (Nov. 12, 2004).
PCT/US00/33634-Minutes of the oral proceedings before the
Examining Division (Oct. 12, 2004).

PCT/US00/33634-Closure of the procedure in respect to Applica
tion No. 00984234.5-2212 (Feb. 22, 2005).
May 3, 2013 Expert Report of Dr. Alfonso Cardenas Regarding
Validity of U.S. Pat. Nos. 6,877,006; 7,167,864; 7,720,861; and
8,082,268 (6 documents).
Expert Report of Dr. Alfonso Cardenas Regarding Validity of U.S.
Pat. No. 7,167,864 (3 documents).
"Info Reports User Guide: Version 3.3.1;" Platinum Technology, Pub
lication No. PRO-X-331-UG00-00, printed Apr. 1998; pp. 1-430.
Non-Final Office Action in Inter Partes Reexamination Control No.
95/000,659 issued Aug. 16, 2013, 107 pages.
Decision on Petition in Reexamination Control No. 95/000,659
issued Aug. 19, 2013, 3 pages.
Response to Non-Final Office Action in Reexamination Control No.
95/000,659 mailed Oct. 2, 2013 including Exhibits A-C, 37 pages.
Decision on Petition in Reexamination Control No. 95/000,660
issued Jul. 30, 2013, 12 pages.
Non-Final Office Action in Inter Partes Reexamination Control No.
95/000,660 issued Aug. 30, 2013, 23 pages.
RFC: 791. Internet Protocol: DARPA Internet Program Protocol
Specification, Sep. 1981, prepared for Defense Advanced Research
Projects Agency Information Processing Techniques Office by Infor
mation Sciences Institute University of Southern California, 52
pages.

* cited by examiner

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 9 of 33 PageID #: 352

Juniper Ex. 1041-p. 103
Juniper v Implicit

U.S. Patent Feb.23,2016 Sheet 1 of 16 US 9,270,790 B2

101 102 103 104

150
DRIVER MESSAGE DEMUX LABELMAP

SEND GET

105
149

QUEUE THREAD

106
151

MESSAGE
SEND

107
152

MESSAGE
SEND

108
153

MESSAGE
SEND

109 110 111

MESSAGE DEMUX LABELMAP
SEND GET

154

114

155

Fig. 1

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 10 of 33 PageID #: 353

Juniper Ex. 1041-p. 104
Juniper v Implicit

U.S. Patent Feb.23,2016 Sheet 2 of 16 US 9,270,790 B2

Pl P2 P3 P4
D 1 1 02 D9 1 D12

D2 1 D5 D15 1 NU LL
D 1 2 0_3 010 2 013
- -

Fig. 2

(300

MEMORY 303

/304 /305 /306 /307

FORWARDING DEMUX LABEL MAP
DRIVERS COMPONENT COMPONENT GET

COMPONENT

/308 /309 /310

PATH CONVERSION INSTANCE DATA
STRUCTURES ROUTINES DATA

CPU
301 1/0 302

Fig. 3

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 11 of 33 PageID #: 354

Juniper Ex. 1041-p. 105
Juniper v Implicit

U.S. Patent

450

TCP

431

Feb.23,2016 Sheet 3 of 16 US 9,270,790 B2

463 440

TCP

452
431

420
IP

421

410
ETHERNET

411

473

QUEUE

Fig. 4

PATH (Stocklist)

l-462
t /SESSION

I 430 464

443 433

442

423 424 425

413 414 415

472

QUEUE

Path[ntry
(REFERENCE)

TCP

432
431

422

412

471

QUEUE

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 12 of 33 PageID #: 355

Juniper Ex. 1041-p. 106
Juniper v Implicit

U.S. Patent Feb.23,2016 Sheet 4 of 16 US 9,270,790 B2

Multiplaylist 508

501

509

510

Fig. 5

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 13 of 33 PageID #: 356

Juniper Ex. 1041-p. 107
Juniper v Implicit

Bi
nd

ing

/
51

 O

60
1

D
:-

.J
!-

-T
-1

.1
-

~

02
 I

o:
_.

J:
 _

_
,-

51
0

n
II

I
•

I
r6

0
3

}

e
I
~

Bi
nd

ing

1
51

 O

I

Fi
g.

6

P
a

th
E

n
tL

_
_

,;
5

0
5

I
I

Po
th

En
trv

,rS

O
S

I

~

0
0

• ~

~

~

~
 =

~

"f
'j

('
D

O
" . N

~

~
 N

0 O
'I

rJ
J =- ('D ('

D

U
l

0 O
'I d r.,;
_

\0

'N

-...
.l =

~

\0
 =
 =

N

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 14 of 33 PageID #: 357

Juniper Ex. 1041-p. 108
Juniper v Implicit

U.S. Patent Feb.23,2016 Sheet 6 of 16

MessogeSend (Message, Poth[ntry)

05

YES

position =
PolhEnlry --> Member -->

Stacklisf Enlry

705

7D6 NO

retVol = nextEntry -->
Member --> Binding -->
Edge --> IJessageHondler

(Message, next Entry)

Return
{relval)

NO

List = Demux
(Message,

PathEnfry --> Address,
PathEntry

YES 09

NO

NO

707

YES 09

US 9,270,790 B2

YES

703A

nexfEnfry = Lisi Head
Doto (pothEnlry -->
Path --> Stocklist)

Fig. 7A

17

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 15 of 33 PageID #: 358

Juniper Ex. 1041-p. 109
Juniper v Implicit

U.S. Patent Feb.23,2016

09

Select next
Candidate path

in List

710

NO 17

Sheet 7 of 16

Retur
True

US 9,270,790 B2

QueueMessage
(Message, NextEntry)

Return

11s Fig. 7C
,--------.

MessageSend
(Message, next Entry)

NO

Fig. 7B

PothEntry -->
Multiploylist = List

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 16 of 33 PageID #: 359

Juniper Ex. 1041-p. 110
Juniper v Implicit

U.S. Patent

next bindin

809

other

Feb.23,2016

Demux

Initialize
Demux

Get Session

Nail Binding

Sheet 8 of 16

Message
Address

801 PathEntry

srmp ex

US 9,270,790 B2

Find Path

Process Path
Hopping

multi le

return

Fig. 8

811

812

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 17 of 33 PageID #: 360

Juniper Ex. 1041-p. 111
Juniper v Implicit

U.S. Patent Feb.23,2016 Sheet 9 of 16 US 9,270,790 B2

909

pain Address =
pothEntry --> Poth -->

Address

addressElem =
pathAddress -->
CurrentBinding =

path Entry - - > Member
--> AddressEntry

Initialize
Demux

Map
PathEntry --> Map

message = Message
path = null

address Elem = null

sovedStatus = 0
Sfatus = demux Continue

903

905

YES status =
~;.c__--i PathEntry --> Path -->

demux
Extend

910

lnitEnd

status = demux Continue 911
binding List =

pathAddress -->
Bindinglist

CurrentBinding = 912
&pathAddress -->

Current8inding
postpone = 0

traverse = ListoafaNext
session = Null

Return

913

Status

907

pathAddress =
Address

Fig. 9

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 18 of 33 PageID #: 361

Juniper Ex. 1041-p. 112
Juniper v Implicit

U.S. Patent Feb.23,2016

lnitEnd

pathAddress =
AddressCreate

(Path Entry -> Path - >
Address -> URL)

elem = null

~othAddress -->
CurrentBinding =

ListT aillnsert
(pothAddress -->

Bmdinglist, binding)

Return

NO

Sheet 10 of 16

1004

1002

pathAddress =
AddressCopy

(PathEntry ->
Polh -> Acidress,

PothEntry -> Member
-> AddressEntry)

Return

Return

Fig. JO

US 9,270,790 B2

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 19 of 33 PageID #: 362

Juniper Ex. 1041-p. 113
Juniper v Implicit

U.S. Patent Feb.23,2016 Sheet 11 of 16

1105

currenfBinding =
LisfT ail (bindinglist)

Dalo

tmpTrail =
Lisf HeodRemove

(troillist)

Address Extend
(pathAddress,

tmpTrail)

binding =
ListT ail Doto
(binding List)

= 1

1106

1107

1108

GelNext Binding

1101

binding = traverse
(Bindinglist,

currentBinding)

1103

traillist = LabelMopGet
{map --> Output Lobel,

map --> Target label)

1104

binding --> Key =
map --> Target key

1111

map --> Target key =
Null

> 1

Return
(binding)

US 9,270,790 B2

returnlist =
Prepare Multicast Poths

(traillisl, mop)

Return
{multiple)

,Return_
lbreokJ

Fig. 11

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 20 of 33 PageID #: 363

Juniper Ex. 1041-p. 114
Juniper v Implicit

U.S. Patent Feb.23,2016 Sheet 12 of 16 US 9,270,790 B2

1204

Get Key

edge = binding --> Edge
Edge protocol = edge

--> Protocol

Status = edge -->
DemuxKey (message,
pathAddress, mop)

binding --> Flags
1 = Binding-Remove

remove

NO

1211

traverse = ListOataNext

sovedStotus =
Status

1209

1201

1202

NO

Fig. 12

1205

traverse = ListoataNext
postpone++

Return
(next binding)

1207

postpone -
traverse = ListDataPrev

YES
1213

------------.YES
1210

status = saved status
savedstotus = 0

Return
(continue)

status = demux
continue

Return
{next binding)

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 21 of 33 PageID #: 364

Juniper Ex. 1041-p. 115
Juniper v Implicit

U.S. Patent Feb.23,2016 Sheet 13 of 16

Get Session

session = TableGet
(protocol -> SessionTable,

& binding -> key)

session =
CreateSession

(protocol)

1302

YES

session --> key =
LabelRef ere nee

{binding --> key)

Table Put
{protocol -> sessionToble
& session - > key session

protocol -->
CreoteSession

(session)

Ref urn

Fig. 13

1301

1303

1304

1305

1306

US 9,270,790 B2

Return

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 22 of 33 PageID #: 365

Juniper Ex. 1041-p. 116
Juniper v Implicit

U.S. Patent Feb.23,2016 Sheet 14 of 16

1405

binding --> session = 1-N_O---<
session

binding --> key =
Label Reference

{session --> key)

1406

1407

session --> Bindin~T able
[edge --> Edgeld J =

binding

Nail
Binding

YES

Return
(simplex)

1409

binding --> Flag 1 =
Binding - Remove

continue .__ _______ __.

return

Fig. 14

US 9,270,790 B2

1402

binding = session -->
Binding Table

[edge --> EdgelD]

LisfDotoSet
(*currentBinding,

binding)

return

1403

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 23 of 33 PageID #: 366

Juniper Ex. 1041-p. 117
Juniper v Implicit

U.S. Patent Feb.23,2016 Sheet 15 of 16 US 9,270,790 B2

find Path

elem = null
short[ntry = null

firstBinding =
ListHeadData

(pothAddress -->
Binding List)

YES

1502

path = entry -> Path

Return

Fig. 15

09

firsiBinding 1507
== ListNextoota

(ListHexf (ent[-> Path ->
Stacklist, NUL)) -> Member

-> Binding && !(,stNexl(entry ->
Path -> Stoc~List, entry -> member ->

Slacklis!Entry) && !snor1Entry11 (entry
-> Path -> StacklistS,ze <

shorl[ntry -> Path ->
SlacklisfSize

1511

Return

1513

shortEntry = 1
entry

1514

Create Path (path Address,
>---- Path Entry -> mar1

PolhEntry -> QOS)

elem = null
entry = ListHeadData
(path - > Stacklist)

1516

elem = Pa1hEn1ry ->
Member -> AddressEnlry ,____,

entry = PalhEntry
EidendPaih

{path, map, siatus) Return

1508

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 24 of 33 PageID #: 367

Juniper Ex. 1041-p. 118
Juniper v Implicit

U.S. Patent Feb.23,2016

Process
Path Hopping

oldStack = PathEntry - >
Path - > stacklist

newStack =
path - > Slacklist

oldElm = ListNext
{ oldStack, Null)

elem = ListNext
(NewStock, Null)

Fig. 16

YES

Sheet 16 of 16 US 9,270,790 B2

1603

1604

1605

1606

NO

1610

1611
entry = ListHeodDota 1---------.
(path -> Stacklist)

1609

entry = ListoataPrev ,__ _ ___,
{newS!ock, & elem)

NO

lisfHeadlnsert
(returnlist, Entry)

Return
(return list)

1612

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 25 of 33 PageID #: 368

Juniper Ex. 1041-p. 119
Juniper v Implicit

US 9,270,790 B2
1

METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

CROSS REFERENCES TO RELATED
APPLICATIONS

2
be developed by different organizations, it may not be easy to
identify that the output format of one conversion routine is
compatible with the input format of another conversion rou
tine.

It would be desirable to have a technique for dynamically
identifying a series of conversion routines for processing
data. In addition, it would be desirable to have a technique in
which the output format of one conversion routine can be
identified as being compatible with the input format of

The present application is a continuation of U.S. applica
tion Ser. No. 13/911,324, filed Jun. 6, 2013 (now U.S. Pat. No.
8,694,683), which is a continuation of U.S. application Ser.
No. 13/236,090, filed Sep. 19, 2011 (now abandoned), which
is a continuation of U.S. application Ser. No. 10/636,314,
filed Aug. 6, 2003 know U.S. Pat. No. 8,055,786), which is a
continuation of U.S. application Ser. No. 09/474,664, filed
Dec. 29, 1999 (now U.S. Pat. No. 6,629,163); the disclosures

10 another conversion routine. It would also be desirable to store

of each of the above-referenced applications are incorporated 15

by reference herein in their entireties.

TECHNICAL FIELD

The present invention relates generally to a computer sys- 20

tern for data demultiplexing.

BACKGROUND

Computer systems, which are becoming increasingly per- 25

vasive, generate data in a wide variety of formats. The Internet

the identification of a series of conversion routines so that the
series can be quickly identified when data is received.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating example processing
of a message by the conversion system.

FIG. 2 is a block diagram illustrating a sequence of edges.
FIG. 3 is a block diagram illustrating components of the

conversion system in one embodiment.
FIG. 4 is a block diagram illustrating example path data

structures in one embodiment.
FIG. 5 is a block diagram that illustrates the interrelation

ship of the data structures of a path.
FIG. 6 is a block diagram that illustrates the interrelation

ship of the data structures associated with a session.
FIGS. 7A, 7B, and 7C comprise a flow diagram illustrating

the processing of the message send routine.
FIG. 8 is a flow diagram of the demux routine.
FIG. 9 is a flow diagram of the initialize demux routine.
FIG. 10 is a flow diagram of the init end routine.
FIG. 11 is a flow diagram of a routine to get the next

binding.
FIG. 12 is a flow diagram of the get key routine.
FIG. 13 is a flow diagram of the get session routine.
FIG. 14 is a flow diagram of the nail binding routine.
FIG. 15 is a flow diagram of the find path routine.
FIG. 16 is a flow diagram of the process of path hopping

routine.

DETAILED DESCRIPTION

A method and system for converting a message that may
contain multiple packets from an source format into a target

is an example of interconnected computer systems that gen
erate data in many different formats. Indeed, when data is
generated on one computer system and is transmitted to
another computer system to be displayed, the data may be 30

converted in many different intermediate formats before it is
eventually displayed. For example, the generating computer
system may initially store the data in a bitmap format. To send
the data to another computer system, the computer system
may first compress the bitmap data and then encrypt the 35

compressed data. The computer system may then convert that
compressed data into a TCP format and then into an IP format.
The IP formatted data may be converted into a transmission
format, such as an ethemet format. The data in the transmis
sion format is then sent to a receiving computer system. The 40

receiving computer system would need to perform each of
these conversions in reverse order to convert the data in the
bitmap format. In addition, the receiving computer system
may need to convert the bitmap data into a format that is
appropriate for rendering on output device.

In order to process data in such a wide variety of formats,
both sending and receiving computer systems need to have
many conversion routines available to support the various
formats. These computer systems typically use predefined
configuration information to load the correct combination of 50

conversion routines for processing data. These computer sys
tems also use a process-oriented approach when processing
data with these conversion routines. When using a process
oriented approach, a computer system may create a separate
process for each conversion that needs to take place. A com- 55

puter system in certain situations, however, can be expected to
receive data and to provide data in many different formats that
may not be known until the data is received. The overhead of
statically providing each possible series of conversion rou
tines is very high. For example, a computer system that serves 60

as a central controller for data received within a home would

45 format. When a packet of a message is received, the conver
sion system in one embodiment searches for and identifies a
sequence of conversion routines (or more generally message
handlers) for processing the packets of the message by com-

be expected to process data received via telephone lines, cable
TV lines, and satellite connections in many different formats.
The central controller would be expected to output the data to
computer displays, television displays, entertainment cen
ters, speakers, recording devices, and so on in many different
formats. Moreover, since the various conversion routines may

paring the input and output formats of the conversion rou
tines. (A message is a collection of data that is related in some
way, such as stream of video or audio data or an email mes-
sage.) The identified sequence of conversion routines is used
to convert the message from the source format to the target
format using various intermediate formats. The conversion
system then queues the packet for processing by the identified
sequence of conversion routines. The conversion system
stores the identified sequence so that the sequence can be
quickly found (without searching) when the next packet in the
message is received. When subsequent packets of the mes
sage are received, the conversion system identifies the
sequence and queues the packets for pressing by the
sequence. Because the conversion system receives multiple
messages with different source and target formats and iden
tifies a sequence of conversion routines for each message, the

65 conversion systems effectively "demultiplexes" the mes
sages. That is, the conversion system demultiplexes the mes
sages by receiving the message, identifying the sequence of

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 26 of 33 PageID #: 369

Juniper Ex. 1041-p. 120
Juniper v Implicit

US 9,270,790 B2
3

conversion routines, and controlling the processing of each
message by the identified sequence. Moreover, since the con
version routines may need to retain state information between
the receipt of one packet of a message and the next packet of
that message, the conversion system maintains state informa
tion as an instance or session of the conversion routine. The
conversion system routes all packets for a message through
the same session of each conversion routine so that the same
state or instance information can be used by all packets of the
message. A sequence of sessions of conversion routines is
referred to as a "path." In one embodiment, each path has a
path thread associated with it for processing of each packet
destined for that path.

In one embodiment, the packets of the messages are ini
tially received by "drivers," such as an Ethernet driver. When
a driver receives a packet, it forwards the packet to a forward
ing component of the conversion system. The forwarding
component is responsible for identifying the session of the
conversion routine that should next process the packet and
invoking that conversion routine. When invoked by a driver,
the forwarding component may use a demultiplexing ("de
mux") component to identify the session of the first conver
sion routine of the path that is to process the packet and then
queues the packet for processing by the path. A path thread is
associated with each path. Each path thread is responsible for
retrieving packets from the queue of its path and forwarding
the packets to the forwarding component. When the forward
ing component is invoked by a path thread, it initially invokes
the first conversion routine in the path. That conversion rou
tine processes the packet and forwards the processed packet
to the forwarding component, which then invokes the second
conversion routine in the path. The process of invoking the
conversion routines and forwarding the processed packet to
the next conversion routine continues until the last conversion
routine in the path is invoked. A conversion routine may defer
invocation of the forwarding component until it aggregates
multiple packets or may invoke the forwarding component
multiple times for a packet once for each sub-packet.

4
FIG. 1 is a block diagram illustrating example processing

of a message by the conversion system. The driver 101
receives the packets of the message from a network. The
driver performs any appropriate processing of the packet and

5 invokes a message send routine passing the processed packet
along with a reference path entry 150. The message send
routine is an embodiment of the forwarding component. A
path is represented by a series of path entries, which are
represented by triangles. Each member path entry represents

10 a session and conversion routine of the path, and a reference
path entry represents the overall path. The passed reference
path entry 150 indicates to the message send routine that it is
being invoked by a driver. The message send routine invokes
the demux routine 102 to search for and identify the path of

15 sessions that is to process the packet. The demux routine may
in turn invoke the label map get routine 104 to identify a
sequence of conversion routines for processing the packet. In
this example, the label map get routine identifies the first three
conversion routines, and the demux routine creates the mem-

20 ber path entries 151, 152, 153 of the path for these conversion
routines. Each path entry identifies a session for a conversion
routine, and the sequence of path entries 151-155 identifies a
path. The message send routine then queues the packet on the
queue 149 for the path that is to process the packets of the

25 message. The path thread 105 for the path retrieves the packet
from the queue and invokes the message send routine 106
passing the packet and an indication of the path. The message
send routine determines that the next session and conversion
routine as indicated by path entry 151 has already been found.

30 The message send routine then invokes the instance of the
conversion routine for the session. The conversion routine
processes the packet and then invokes the message send rou
tine 107. This processing continues until the message send
routine invokes the demux routine 110 after the packet is

35 processed by the conversion routine represented by path entry
153. The demux routine examines the path and determines
that it has no more path entries. The demux routine then
invokes the label map get routine 111 to identify the conver
sion routines for further processing of the packet. When the The forwarding component identifies the next conversion

routine in the path using the demux component and stores that
identification so that the forwarding component can quickly
identify the conversion routine when subsequent packets of
the same message are received. The demux component,
searches for the conversion routine and session that is to next
process a packet. The demux component then stores the iden- 45

tification of the session and conversion routine as part of a
path data structure so that the conversion system does not
need to search for the session and conversion routine when
requested to demultiplex subsequent packets of the same
message. When searching for the next conversion routine, the
demux component invokes a label map get component that
identifies the next conversion routine. Once the conversion
routine is found, the demux component identifies the session
associated with that message by, in one embodiment, invok
ing code associated with the conversion routine. In general,
the code of the conversion routine determines what session
should be associated with a message. In certain situations,
multiple messages may share the same session. The demux
component then extends the path for processing that packet to
include that session and conversion routine. The sessions are
identified so that each packet is associated with the appropri
ate state information. The dynamic identification of conver
sion routines is described in U.S. patent application Ser. No.
11,933,093, filed on Oct. 31, 2007 (now U.S. Pat. No. 7,730,
211), entitled "Method and System for Generating a Mapping
Between Types of Data," which is hereby incorporated by
reference.

40 conversion routines are identified, the demux routine adds
path entries 154, 155 to the path. The messages send routine
invokes the conversion routine associated with path entry
154. Eventually, the conversion routine associated with path
entry 155 performs the final processing for the path.

The label map get routine identifies a sequence of"edges"
for converting data in one format into another format. Each
edge corresponds to a conversion routine for converting data
from one format to another. Each edge is part of a "protocol"
(or more generally a component) that may include multiple

50 related edges. For example, a protocol may have edges that
each convert data in one format into several different formats.
Each edge has an input format and an output format. The label
map get routine identifies a sequence of edges such that the
output format of each edge is compatible with the input for-

55 mat of another edge in the sequence, except for the input
format of the first edge in the sequence and the output format
of the last edge in the sequence. FIG. 2 is a block diagram
illustrating a sequence of edges. Protocol PI includes an edge
for converting format Dl to format D2 and an edge for con-

60 verting format Dl to format D3; protocol P2 includes an edge
for converting format D2 to format D5, and so on. A 30
sequence for converting format Dl to format D15 is shown by
the curved lines and is defined by the address "Pl:I, P2:1,
P3:2, P4:7." When a packet of data in format DI is processed

65 by this sequence, it is converted to format DIS. During the
process, the packet of data is sequentially converted to format
D2, D5, and D13. The output format of protocol P2, edge 1

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 27 of 33 PageID #: 370

Juniper Ex. 1041-p. 121
Juniper v Implicit

US 9,270,790 B2
5

(i.e., P2: 1) is format D5, but the input format of P3 :2 is format
Dl0. The label map get routine uses an aliasing mechanism
by which two formats, such as D5 and Dl0 are identified as
being compatible. The use of aliasing allows different names
of the same format or compatible formats to be correlated.

FIG. 3 is a block diagram illustrating components of the
conversion system in one embodiment. The conversion sys
tem 300 can operate on a computer system with a central
processing unit 301, I/O devices 302, and memory 303. The
110 devices may include an Internet connection, a connection
to various output devices such as a television, and a connec
tion to various input devices such as a television receiver. The
media mapping system may be stored as instructions on a
computer-readable medium, such as a disk drive, memory, or
data transmission medium. The data structures of the media
mapping system may also be stored on a computer-readable
medium. The conversion system includes drivers 304, a for
warding component 305, a demux component 306, a label
map get component 307, path data structures 308, conversion
routines 309, and instance data 310. Each driver receives data
in a source format and forwards the data to the forwarding
component. The forwarding component identifies the next
conversion routine in the path and invokes that conversion
routine to process a packet. The forwarding component may
invoke the demux component to search for the next conver
sion routine and add that conversion routine to the path. The
demux component may invoke the label map get component
to identify the next conversion routine to process the packet.
The demux component stores information defining the paths
in the path structures. The conversion routines store their state
information in the instance data.

FIG. 4 is a block diagram illustrating example path data
structures in one embodiment. The demux component iden
tifies a sequence of"edges" for converting data in one format
into another format by invoking the label map get component.
Each edge corresponds to a conversion routine for converting
data from one format to another. As discussed above, each
edge is part of a "protocol" that may include multiple related
edges. For example, a protocol may have edges that each
convert data in one format into several different formats. Each
edge has as an input format ("input label") and an output
format ("output label"). Each rectangle represents a session
410, 420, 430, 440, 450 for a protocol. A session corresponds
to an instance of a protocol. That is, the session includes the
protocol and state information associated with that instance
of the protocol. Session 410 corresponds to a session for an
Ethernet protocol; session 420 corresponds to a session for an
IP protocol; and sessions 430, 440, 450 correspond to ses
sions for a TCP protocol. FIG. 4 illustrates three paths 461,
462, 463. Each path includes edges 411, 421, 431. The paths
share the same Ethernet session 410 and IP session 420, but
each path has a unique TCP session 430, 440, 450. Thus, path
461 includes sessions 410, 420, and 430; path 462 includes
sessions 410, 420, and 440; and path 463 includes sessions
410, 420, and 450. The conversion system represents each
path by a sequence of path entry structures. Each path entry
structure is represented by a triangle. Thus, path 461 is rep
resented by path entries 415, 425, and 433. The conversion
system represents the path entries of a path by a stack list.
Each path also has a queue 471, 472, 473 associated with it.
Each queue stores the messages that are to be processed by the
conversion routines of the edges of the path. Each session
includes a binding 412, 422, 432, 442, 452 that is represented
by an oblong shape adjacent to the corresponding edge. A
binding for an edge of a session represents those paths that
include the edge. The binding 412 indicates that three paths
are bound (or "nailed") to edge 411 of the Ethernet session

6
410. The conversion system uses a path list to track the paths
that are bound to a binding. The path list of binding 412
identifies path entries 413, 414, and 415.

FIG. 5 is a block diagram that illustrates the interrelation-
s ship of the data structures of a path. Each path has a corre

sponding path structure 501 that contains status information
and pointers to a message queue structure 502, a stack list
structure 503, and a path address structure 504. The status of
a path can be extend, continue, or end. Each message handler

10 returns a status for the path. The status of extend means that
additional path entries should be added to the path. The status
of end means that this path should end at this point and
subsequent processing should continue at a new path. The
status of continue means that the protocol does not care how

15 the path is handled. In one embodiment, when a path has a
status of continue, the system creates a copy of the path and
extends the copy. The message queue structure identifies the
messages (or packets of a message) that are queued up for
processing by the path and identifies the path entry at where

20 the processing should start. The stack list structure contains a
list of pointers to the path entry structures 505 that comprise
the path. Each path entry structure contains a pointer to the
corresponding path data structure, a pointer to a map structure
507, a pointer to a multiplex list 508, a pointer to the corre-

25 sponding path address structure, and a pointer to a member
structure 509. A map structure identifies the output label of
the edge of the path entry and optionally a target label and a
target key. A target key identifies the session associated with
the protocol that converts the packet to the target label. (The

30 terms "media," "label," and "format" are used interchange
ably to refer to the output of a protocol.) The multiplex list is
used during the demux process to track possible next edges
when a path is being identified as having more than one next
edge. The member structure indicates that the path entry

35 represents an edge of a path and contains a pointer to a
binding structure to which the path entry is associated (or
"nailed"), a stack list entry is the position of the path entry
within the associated stack list, a path list entry is the position
of the path entry within the associated path list of a binding

40 and an address entry is the position of the binding within the
associated path address. A path address of a path identifies the
bindings to which the path entries are bound. The path address
structure contains a URL for the path, the name of the path
identified by the address, a pointer to a binding list structure

45 506, and the identification of the current binding within the
binding list. The URL (e.g., "protocol://tcp(0)/ip(0)/eth(0)")
identifies conversion routines (e.g., protocols and edges) of a
path in a human-readable format. The URL (universal
resource locator) includes a type field (e.g., "protocol") fol-

so lowed by a sequence of items (e.g., "tcp(0)"). The type field
specifies the format of the following information in the URL,
that specifies that the type field is followed by a sequence of
items. Each item identifies a protocol and an edge (e.g., the
protocol is "tcp" and the edge is "0"). In one embodiment, the

55 items of a URL may also contain an identifier of state infor
mation that is to be used when processing a message. These
URLs can be used to illustrate to a user various paths that are
available for processing a message. The current binding is the
last binding in the path as the path is being built. The binding

60 list structure contains a list of pointers to the binding struc
tures associated with the path. Each binding structure 510
contains a pointer to a session structure, a pointer to an edge
structure, a key, a path list structure, and a list of active paths
through the binding. The key identifies the state information

65 for a session of a protocol. A path list structure contains
pointers to the path entry structures associated with the bind
ing.

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 28 of 33 PageID #: 371

Juniper Ex. 1041-p. 122
Juniper v Implicit

US 9,270,790 B2
7

FIG. 6 is a block diagram that illustrates the interrelation
ship of the data structures associated with a session. A session
structure 601 contains the context for the session, a pointer to
a protocol structure for the session, a pointer to a binding table
structure 602 for the bindings associated with the session, and
the key. The binding table structure contains a list of pointers
to the binding structures 510 for the session. The binding
structure is describedabovewithreferenceto FIG. 5. The path
list structure 603 of the binding structure contains a list of
pointers to path entry structures 505. The path entry structures
are described with reference to FIG. 5.

FIGS. 7A, 7B, and 7C comprise a flow diagram illustrating
the processing of the message send routine. The message send
routine is passed a message along with the path entry associ
ated with the session that last processed the message. The
message send routine invokes the message handler of the next
edge in the path or queues the message for processing by a
path. The message handler invokes the demux routine to
identify the next path entry of the path. When a driver receives
a message, it invokes the message send routine passing a
reference path entry. The message send routine examines the
passed path entry to determine (1) whether multiple paths
branch from the path of the passed path entry, (2) whether the
passed path entry is a reference with an associated path, or (3)
whether the passed path entry is a member with a next path
entry. If multiple paths branch from the path of the passed
path entry, then the routine recursively invokes the message
send routine for each path. If the path entry is a reference with
an associated path, then the driver previously invoked the
message send routine, which associated a path with the ref
erence path entry, and the routine places the message on the
queue for the path. If the passed path entry is a member with
a next path entry, then the routine invokes the message han
dler (i.e., conversion routine of the edge) associated with the
next path entry. If the passed path entry is a reference without
an associated path or is a member without a next path entry,
then the routine invokes the demux routine to identify the next
path entry. The routine then recursively invokes the messages
send routine passing that next path entry. In decision block
701, if the passed path entry has a multiplex list, then the path
branches off into multiple paths and the routine continues at
block 709, else the routine continues at block 702. A packet
may be processed by several different paths. For example, if
a certain message is directed to two different output devices,
then the message is processed by two different paths. Also, a
message may need to be processed by multiple partial paths
when searching for a complete path. In decision block 702, if
the passed path entry is a member, then either the next path
entry indicates a nailed binding or the path needs to be
extended and the routine continues at block 704, else the
routine continues at block 703. A nailed binding is a binding
(e.g., edge and protocol) is associated with a session. In
decision block 703, the passed path entry is a reference and if
the passed path entry has an associated path, then the routine
can queue the message for the associated path and the routine
continues at block 703A, else the routine needs to identify a
path and the routine continues at block 707. In block 703A,
the routine sets the entry to the first path entry in the path and
continues at block 717. In block 704, the routine sets the
variable position to the stack list entry of the passed path
entry. In decision block 705, the routine sets the variable next
entry to the next path entry in the path. If there is a next entry
in the path, then the next session and edge of the protocol have
been identified and the routine continues at block 706, else the
routine continues at block 707. In block 706, the routine
passes the message to the message handler of the edge asso
ciated with the next entry and then returns. In block 706, the

8
routine invokes the demux routine passing the passed mes
sage, the address of the passed path entry, and the passed path
entry. The demux routine returns a list of candidate paths for
processing of the message. In decision block 708, if at least

5 one candidate path is returned, then the routine continues at
block 709, else the routine returns.

Blocks 709-716 illustrate the processing of a list of candi
date paths that extend from the passed path entry. In blocks
710-716, the routine loops selecting each candidate path and

10 sending the message to be process by each candidate path. In
block 710, the routine sets the next entry to the first path entry
of the next candidate path. In decision block 711, if all the
candidate paths have not yet been processed, then the routine
continues at block 712, else the routine returns. In decision

15 block 712, if the next entry is equal to the passed path entry,
then the path is to be extended and the routine continues at
block 705, else the routine continues at block 713. The can
didate paths include a first path entry that is a reference path
entry for new paths or that is the last path entry of a path being

20 extended. In decision block 713, if the number of candidate
paths is greater than one, then the routine continues at block
714, else the routine continues at block 718. In decision block
714, if the passed path entry has a multiplex list associated
with it, then the routine continues at block 716, else the

25 routine continues at block 715. In block 715, 11 the routine
associates the list of candidate path with the multiplex list of
the passed path entry and continues at block 716. In block
716, the routine sends the message to the next entry by recur
sively invoking the message send routine. The routine then

30 loops to block 710 to select the next entry associated with the
next candidate path.

Blocks 717-718 are performed when the passed path entry
is a reference path entry that has a path associated with it. In
block 717, ifthere is a path associated with the next entry, then

35 the routine continues at block 718, else the routine returns. In
block 718, the routine queues the message for the path of the
next entry and then returns.

FIG. 8 is a flow diagram of the demux routine. This routine
is passed the packet (message) that is received, an address

40 structure, and a path entry structure. The demux routine
extends a path, creating one if necessary. The routine loops
identifying the next binding (edge and protocol) that is to
process the message and "nailing" the binding to a session for
the message, if not already nailed. After identifying the nailed

45 binding, the routine searches for the shortest path through the
nailed binding, creating a path if none exists. In block 801, the
routine invokes the initialize demux routine. In blocks 802-
810, the routine loops identifying a path or portion of a path
for processing the passed message. In decision block 802, if

50 there is a current status, which was returned by the demuxkey
routine that was last invoked (e.g., continue, extend, end, or
postpone), then the routine continues at block 803, else the
routine continues at block 811. In block 803, the routine
invokes the get next binding routine. The get next binding

55 routine returns the next binding in the path. The binding is the
edge of a protocol. That routine extends the path as appropri
ate to include the binding. The routine returns a return status
of break, binding, or multiple. The return status of binding
indicates that the next binding in the path was found by

60 extending the path as appropriate and the routine continues to
"nail" the binding to a session as appropriate. The return
status of multiple means that multiple trails (e.g., candidate
paths) were identified as possible extensions of the path. In a
decision block 804, if the return status is break, then the

65 routine continues at block 811. If the return status is multiple,
then the routine returns. If the return status is binding, then the
routine continues at block 805. In decision block 805, if the

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 29 of 33 PageID #: 372

Juniper Ex. 1041-p. 123
Juniper v Implicit

US 9,270,790 B2
9

retrieved binding is nailed as indicated by being assigned to a
session, then the routine loops to block 802, else the routine
continues at block 806. In block 806, the routine invokes the
get key routine of the edge associated with the binding. The
get key routine creates the key for the session associated with
the message. If a key cannot be created until subsequent
bindings are processed or because the current binding is to be
removed, then the get key routine returns a next binding
status, else it returns a continue status. In decision block 807,

10
entry. In block 910, the routine sets the address element and
the current binding of the path address pointed to by the local
pointer path address to the address entry of the member struc
ture of the passed path entry. In the block 911, the routine sets

5 the local variable status to demux continue and sets the local
binding list structure to the binding list structure from the
local path address structure. In block 912, the routine sets the
local pointer current binding to the address of the current

if the return status of the get key routine is next binding, then 10

the routine loops to block 802 to get the next binding, else the
routine continues at block 808. In block 808, the routine
invokes the routine get session. The routine get session
returns the session associated with the key, creating a new
session if necessary. In block 809, the routine invokes the 15

routine nail binding. The routine nail binding retrieves the
binding if one is already nailed to the session. Otherwise, that
routine nails the binding to the session. In decision block 810,

binding pointed to by local pointer path address and sets the
local variable postpone to 0. In block 913, the routine sets the
function traverse to the function that retrieves the next data in
a list and sets the local pointer session to null. The routine then
returns.

FIG.10 is a flow diagram of the init end routine. If the path
is simplex, then the routine creates a new path from where the
other one ended, else the routine creates a copy of the path. In
block 1001, if the binding of the passed path entry is simplex
(i.e., only one path can be bound to this binding), then the
routine continues at block 1002, else the routine continues at if the nail binding routine returns a status of simplex, then the

routine continues at block 811 because only one path can use 20

the session, else the routine loops to block 802. Immediately
upon return from the nail binding routine, the routine may
invoke a set map routine of the edge passing the session and

block 1003. In block 1002, the routine sets the local pointer
path address to point to an address structure that is a copy of
the address structure associated with the passed path entry
structure with its current binding to the address entry associ
ated with the passed path entry structure, and then returns. In
block 1003, the routine sets the local pointer path address to
point to an address structure that contains the URL of the path

a map to allow the edge to set its map. In block 811, the
routine invokes the find path routine, which finds the shortest 25

path through the binding list and creates a path if necessary. In
block 812, the routine invokes the process path hopping rou
tine, which determines whether the identified path is part of a
different path. Path hopping occurs when, for example, IP
fragments are built up along separate paths, but once the 30

fragments are built up they can be processed by the same
subsequent path.

that contains the passed path entry. In block 1004, the routine
sets the local pointer element to null to initialize the selection
of the bindings. In blocks 1005 through 1007, the routine
loops adding all the bindings for the address of the passed
path entry that include and are before the passed path entry to
the address pointed to by the local path address. In block
1005, the routine retrieves the next binding from the binding
list starting with the first. If there is no such binding, then the

FIG. 9 is a flow diagram of the initialize demux routine.
This routine is invoked to initialize the local data structures
that are used in the demux process and to identify the initial
binding. The demux routine finds the shortest path from the
initial binding to the final binding. If the current status is
demux extend, then the routine is to extend the path of the
passed path entry by adding additional path entries. If the
current status is demux end, then the demux routine is ending
the current path. If the current status is demux continue, then
the demux routine is in the process of continuing to extend or
in the process of starting a path identified by the passed
address. In block 901, the routine sets the local map structure
to the map structure in the passed path entry structure. The
map structure identifies the output label, the target label, and
the target key. In the block 902, the routine initializes the local
message structure to the passed message structure and initial
izes the pointers path and address element to null. In block
903, the routine sets of the variable saved status to O and the
variable status to demux continue. The variable saved status is
used to track the status of the demux process when backtrack
ing to nail a binding whose nail was postponed. In decision
block 904, if the passed path entry is associated with a path,
then the routine continues at block 905, else the routine con
tinues at block 906. In block 905, the routine sets the variable
status to the status of that path. In block 906, if the variable
status is demux continue, then the routine continues at block
907. If the variable status is demux end, then the routine
continues at block 908. If the variable status is demux extend,
then the routine continues at block 909. In block 907, the
status is demux continue, and the routine sets the local pointer
path address to the passed address and continues at block 911.
In block 908, the status is demux end, and the routine invokes
the init end routine and continues at block 911. In block 909,
the status is demux extend, and the routine sets the local path
address to the address of the path that contains the passed path

35 routine returns, else the routine continues at block 1006. In
block 1006, the routine adds the binding to the binding list of
the local path address structure and sets the current binding of
the local variable path address. In the block 1007, if the local
pointer element is equal to the address entry of the passed path

40 entry, then the routine returns, else the routine loops to block
1005 to select the next binding.

FIG. 11 is a flow diagram of a routine to get the next
binding. This routine returns the next binding from the local
binding list. If there is no next binding, then the routine

45 invokes the routine label map get to identify the list of edges
("trails") that will map the output label to the target label. If
only one trail is identified, then the binding list of path address
is extended by the edges of the trail. If multiple trails are
identified, then a path is created for each trail and the routine

50 returns so that the demux process can be invoked for each
created path. In block 1101, the routine sets the local pointer
binding to point to the next or previous (as indicated by the
traverse function) binding in the local binding list. In block
1102, if a binding was found, then the routine returns an

55 indication that a binding was found, else the routine continues
at block 1103. In block 1103, the routine invokes the label
map get function passing the output label and target label of
the local map structure. The label map get function returns a
trail list. A trail is a list of edges from the output label to the

60 target label. In decision block 1104, if the size of the trail list
is one, then the routine continues at block 1105, else the
routine continues at block 1112. In blocks 1105-1111, the
routine extends the binding list by adding a binding data
structure for each edge in the trail. The routine then sets the

65 local binding to the last binding in the binding list. In block
1108, the routine sets the local pointer current binding to
point to the last binding in the local binding list. In block

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 30 of 33 PageID #: 373

Juniper Ex. 1041-p. 124
Juniper v Implicit

US 9,270,790 B2
11

1106, the routine sets the local variable temp trail to the trail
in the trail list. In block 1107, the routine extends the binding
list by temp trail by adding a binding for each edge in the trail.
These bindings are not yet nailed. In block 1108, the routine
sets the local binding to point to the last binding in the local 5

binding list. In decision block 1109, if the local binding does
not have a key for a session and the local map has a target key
for a session, then the routine sets the key for the binding to
the target key of the local map and continues at block 1110,
else the routine loops to block 1101 to retrieve the next bind- 10

ing in path. In block 1110, the routine sets the key of the local
binding to the target key of the local map. In block 1111, the
routine sets the target key of the local map to null and then
loop to block 1101 to return the next binding. In decision
block 1112, if the local session is set, then the demultiplexing 15

is already in progress and the routine returns a break status. In
block 1113, the routine invokes a prepare multicast paths
routine to prepare a path entry for each trail in the trail list.
The routine then returns a multiple status.

FIG.12 is a flow diagram of the get key routine. The get key 20

routine invokes an edge's demuxkey routine to retrieve a key
for the session associated with the message. The key identifies
the session of a protocol. The demux key routine creates the
appropriate key for the message. The demux key routine
returns a status of remove, postpone, or other. The status of 25

remove indicates that the current binding should be removed
from the path. The status of postpone indicates that the demux
key routine cannot create the key because it needs informa
tion provided by subsequent protocols in the path. For
example, a TCP session is defined by a combination of a 30

remote and local port address and an IP address. Thus, the
TCP protocol postpones the creating of a key until the IP
protocol identifies the IP address. The get key routine returns
a next binding status to continue at the next binding in the
path. Otherwise, the routine returns a continue status. In block 35

1201, the routine sets the local edge to the edge of the local
binding (current binding) and sets the local protocol to the
protocol of the local edge. In block 1202, the routine invokes
the demux key routine of the local edge passing the local
message, local path address, and local map. The demux key 40

routine sets the key in the local binding. In decision block
1203, if the demux key routine returns a status ofremove, then
the routine continues at block 1204. If the demux key routine
returns a status of postpone, then the routine continues at
block 1205, else the routine continues at block 1206. In block 45

1204, the routine sets the flag of the local binding to indicate
that the binding is to be removed and continues at block 1206.
In block 1205, the routine sets the variable traverse to the
function to list the next data, increments the variable post
pone, and then returns a next binding status. In blocks 1206- 50

1214, the routine processes the postponing of the creating of
a key. In blocks 1207-1210, if the creating of a key has been
postponed, then the routine indicates to backtrack on the path,
save the demux status, and set the demux status to demux
continue. In blocks 1211-1213, if the creating of a key has not 55

been postponed, then the routine indicates to continue for
ward in the path and to restore any saved demux status. The
save demux status is the status associated by the binding
where the backtrack started. In decision block 1206, if the
variable postpone is set, then the routine continues at block 60

1207, else the routine continues at block 1211. In block 1207,
the routine decrements the variable postpone and sets the
variable traverse to the list previous data function. In decision
block 1208, if the variable saved status is set, then the routine
continues at block 1210, else the routine continues at block 65

1209. The variable saved status contains the status of the
demux process when the demux process started to backtrack.

12
In block 1209, the routine sets the variable saved status to the
variable status. In block 1210, the routine sets the variable
status to demux continue and continues at block 1214. In
block 1211, the routine sets the variable traverse to the list
next data function. In decision block 1212, if the variable
saved status in set, then the routine continues at block 1213,
else the routine continues at block 1214. In block 1213, the
routine sets the variable status to the variable saved status and
sets the variable saved status to 0. In decision block 1214, if
the local binding indicates that it is to be removed, then the
routine returns a next binding status, else the routine returns a
continue status.

FIG. 13 is a flow diagram of the get session routine. This
routine retrieves the session data structure, creating a data
structure session if necessary, for the key indicated by the
binding. In block 1301, the routine retrieves the session from
the session table of the local protocol indicated by the key of
the local binding. Each protocol maintains a mapping from
each key to the session associated with the key. In decision
block 1302, ifthere is no session, then the routine continues at
block 1303, else the routine returns. In block 1303, the routine
creates a session for the local protocol. In block 1304, the
routine initializes the key for the local session based on the
key of the local binding. In block 1305, the routine puts the
session into the session table of the local protocol. In block
1306, the routine invokes the create session function of the
protocol to allow the protocol to initialize its context and then
returns.

FIG. 14 is a flow diagram of the nail binding routine. This
routine determines whether a binding is already associated
with ("nailed to") the session. If so, the routine returns that
binding. If not, the routine associates the binding with the
session. The routine returns a status of simplex to indicate that
only one path can extend through the nailed binding. In deci
sion block 1401, if the binding table of the session contains an
entry for the edge, then the routine continues at block 1402,
else the routine continues at block 1405. In block 1402, the
routine sets the binding to the entry from the binding table of
the local session for the edge. In block 1403, the routine sets
the current binding to point to the binding from the session. In
block 1404, if the binding is simplex, then the routine returns
a simplex status, else the routine returns. Blocks 1405 through
1410 are performed when there is no binding in the session for
the edge. In block 1405, the routine sets the session of the
binding to the variable session. In block 1406, the routine sets
the key of the binding to the key from the session. In block
1407, the routine sets the entry for the edge in the binding
table of the local session to the binding. In block 1408, the
routine invokes the create binding function of the edge of the
binding passing the binding so the edge can initialize the
binding. If that function returns a status ofremove, the routine
continues at block 1409. In block 1409, the routine sets the
binding to be removed and then returns.

FIG.15 is a flow diagram of the find path routine. The find
path routine identifies the shortest path through the binding
list. If no such path exists, then the routine extends a path to
include the binding list. In decision block 1501, if the binding
is simplex and a path already goes through this binding (re
turned as an entry), then the routine continues at block 1502,
else the routine continues at block 1503. In block 1502, the
routine sets the path to the path of the entry and returns. In
block 1503, the routine initializes the pointers element and
short entry to null. In block 1504, the routine sets the path to
the path of the passed path entry. If the local path is not null
and its status is demux extend, then the routine continues at
block 1509, else the routine continues at block 1505. In
blocks 1505-1508, the routine loops identifying the shortest

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 31 of 33 PageID #: 374

Juniper Ex. 1041-p. 125
Juniper v Implicit

US 9,270,790 B2
13

path through the bindings in the binding list. The routine
loops selecting each path through the binding. The selected
path is eligible if it starts at the first binding in the binding list
and the path ends at the binding. The routine loops setting the
short entry to the shortest eligible path found so far. In block 5

1505, the routine sets the variable first binding to the first
binding in the binding list of the path address. In block 1506,
the routine selects the next path (entry) in the path list of the
binding starting with the first. If a path is selected (indicating
that there are more paths in the binding), then the routine 10

continues at block 1507, else the routine continues at block
1509. In block 1507, the routine determines whether the
selected path starts at the first binding in the binding list,
whether the selected path ends at the last binding in the

15
binding list, and whether the number of path entries in the
selected path is less than the number of path entries in the
shortest path selected so far. If these conditions are all satis
fied, then the routine continues at block 1508, else the routine
loops to block 1506 to select the next path (entry). In block 20

1508, the routine sets the shortest path (short entry) to the
selected path and loops to block 1506 to select the next path
through the binding. In block 1509, the routine sets the
selected path (entry) to the shortest path. In decision block
1510, if a path has been found, then the routine continues at 25

block 1511, else the routine continues at block 1512. In block
1511, the routine sets the path to the path of the selected path
entry and returns. Blocks 1512-1516 are performed when no
paths have been found. In block 1512, the routine sets the path
to the path of the passed path entry. If the passed path entry 30

has a path and its status is demux extend, then the routine
continues at block 1515, else the routine continues at block
1513. In block 1513, the routine creates a path for the path
address. In block 1514, the routine sets the variable element to
null and sets the path entry to the first element in the stack list 35

of the path. In block 1515, the routine sets the variable ele
ment to be address entry of the member of the passed path
entry and sets the path entry to the passed path entry. In block
1516, the routine invokes the extend path routine to extend the
path and then returns. The extend path routine creates a path 40

through the bindings of the binding list and sets the path status
to the current demux status.

FIG. 16 is a flow diagram of the process of path hopping
routine. Path hopping occurs when the path through the bind
ing list is not the same path as that of the passed path entry. In 45

decision block 1601, if the path of the passed path entry is set,
then the routine continues at block 1602, else the routine
continues at block 1609. In decision block 1602, if the path of
the passed path entry is equal to the local path, then the routine
continues at 1612, else path hopping is occurring and the 50

routine continues at block 1603. In blocks 1603-1607, the
routine loops positioning pointers at the first path entries of
the paths that are not at the same binding. In block 1603, the
routine sets the variable old stack to the stack list of the path
of the passed path entry. In block 1604, the routine sets the 55

variable new stack to the stack list of the local path. In block
1605, the routine sets the variable old element to the next
element in the old stack. In block 1606, the routine sets the
variable element to the next element in the new stack. In
decision block 1607, the routine loops until the path entry that 60

is not in the same binding is located. In decision block 1608,
if the variable old entry is set, then the routine is not at the end
of the hopped from path and the routine continues at block
1609, else routine continues at block 1612. In block 1609, the
routine sets the variable entry to the previous entry in the 65

hopped-to path. In block 1610, the routine sets the path of the
passed path entry to the local path. In block 1611, the routine

14
sets the local entry to the first path entry of the stack list of the
local path. In block 1612, the routine inserts an entry into
return list and then returns.

Although the conversion system has been described in
terms of various embodiments, the invention is not limited to
these embodiments. Modification within the spirit of the
invention will be apparent to those skilled in the art. For
example, a conversion routine may be used for routing a
message and may perform no conversion of the message.
Also, a reference to a single copy of the message can be
passed to each conversion routine or demuxkey routine.
These routines can advance the reference past the header
information for the protocol so that the reference is positioned
at the next header. After the demux process, the reference can
be reset to point to the first header for processing by the
conversion routines in sequence. The scope of the invention is
defined by the claims that follow.

What is claimed is:
1. An apparatus, comprising:
a processing unit; and
a memory storing instructions executable by the process

ing unit to:
identify a path for one or more received packets of a mes

sage, wherein the path indicates a sequence of two or
more routines for processing packets in the message,
wherein the path is identified based on a key located in
one of the received packets, and wherein the key
includes an IP address and a port address; and

process the one or more received packets using the
sequence of routines indicated in the identified path,
wherein the sequence includes a routine that is used to
execute a Transmission Control Protocol (TCP) to con
vert one or more packets having a TCP format into a
different format.

2. The apparatus of claim 1, wherein the key includes a
remote port address and a local port address.

3. The apparatus of claim 1, wherein the sequence of rou
tines includes:

a second routine that is used to execute a second, different
protocol to convert packets of the different format into
another format, wherein the second protocol is an appli
cation layer protocol.

4. The apparatus of claim 3, wherein the sequence of rou
tines further includes a third routine that is used to execute a
different application layer protocol to further convert the
packets.

5. The apparatus of claim 1, wherein the path further indi
cates sessions corresponding to respective ones of the
sequence of routines.

6. The apparatus of claim 1, wherein the key identifies a
TCP session associated with the received one or more pack
ets.

7. The apparatus of claim 1, wherein the sequence of rou
tines includes a routine that is executable to process the one or
more packets without converting a format of the packets.

8. An apparatus, comprising:
a processing unit; and
a memory storing instructions executable by the process

ing unit to:
receive one or more packets of a message;
identify, using an IP address and one or more port

addresses located in one of the received packets, a
sequence of two or more routines for processing pack
ets in the message; and

process the one or more received packets using the iden
tified sequence of routines, wherein the sequence
includes a routine that is executable to perform a

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 32 of 33 PageID #: 375

Juniper Ex. 1041-p. 126
Juniper v Implicit

US 9,270,790 B2
15

Transmission Control Protocol (TCP) to convert at
least one of the packets of the message into a different
format.

9. The apparatus of claim 8, wherein the one or more port
addresses include a remote port address and a local port 5

address.
10. The apparatus of claim 8, wherein the sequence of

routines includes a plurality of application-level routines.
11. The apparatus of claim 8, wherein the IP address and

the one or more port addresses located in one of the received 10

packets forms a key value that identifies a TCP session asso
ciated with the one or more received packets.

12. The apparatus of claim 8, wherein the instructions are
executable to use the IP address and the one or more port
addresses to identify sessions corresponding to various ones 15

of the sequence of routines.
13. The apparatus of claim 8, wherein the instructions are

executable to use the IP address and the one or more port
addresses to identify a corresponding queue for the message.

14. The apparatus of claim 8, wherein the sequence of 20

routines includes a routine that does not perform a format
conversion on the one or more received packets.

15. A non-transitory, computer-readable medium compris
ing software instructions for processing a message, wherein
the software instructions, when executed, cause a computer 25

system to:
identify a path for one or more received packets of the

message, wherein the path indicates a sequence of two or
more routines for processing packets in the message,

16
wherein the path is identified based on a key value
located in one of the received packets, and wherein the
key value includes an IP address and one or more port
addresses;

process the one or more received packets using the
sequence of routines indicated in the identified path,
wherein the sequence includes a routine that is used to
execute a Transmission Control Protocol (TCP) to con
vert one or more packets having a TCP format into a
different format.

16. The computer-readable medium of claim 15, wherein
the one or more port addresses in the key value include a
remote port address and a local port address.

17. The computer-readable medium of claim 15, wherein
the path indicates sessions corresponding to respective ones
of the sequence of routines.

18. The computer-readable medium of claim 15, wherein
the sequence of routines includes a plurality of application
level routines.

19. The computer-readable medium of claim 18, wherein
the plurality of application-level routines includes a decryp
tion routine.

20. The computer-readable medium of claim 15, wherein
the sequence of routines includes a routine that is used to
execute an Internet Protocol (IP) to convert packets having an
IP format into the TCP format, and wherein the key value
further identifies a TCP session associated with the one or
more received packets.

* * * * *

Case 2:19-cv-00037-JRG Document 14-5 Filed 03/19/19 Page 33 of 33 PageID #: 376

Juniper Ex. 1041-p. 127
Juniper v Implicit

EXHIBIT 6

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 1 of 33 PageID #: 377

Juniper Ex. 1041-p. 128
Juniper v Implicit

c12) United States Patent
Balassanian

(54) METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

(71) Applicant: Implicit, LLC, Seattle, WA (US)

(72) Inventor: Edward Balassanian, Seattle, WA (US)

(73) Assignee: Implicit, LLC, Seattle, WA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 100 days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 15/050,027

(22) Filed:

(65)

Feb. 22, 2016

Prior Publication Data

(63)

(51)

(52)

US 2016/0173653 Al Jun. 16, 2016

Related U.S. Application Data

Continuation of application No. 14/230,952, filed on
Mar. 31, 2014, now Pat. No. 9,270,790, which is a
continuation of application No. 13/911,324, filed on
Jun. 6, 2013, now Pat. No. 8,694,683, which is a
continuation of application No. 13/236,090, filed on

Int. Cl.
H04L 12158
H04L 29106
H04L 29108
H04L 29112
U.S. Cl.

(Continued)

(2006.01)
(2006.01)
(2006.01)
(2006.01)

CPC H04L 69/08 (2013.01); H04L 61/2007
(2013.01); H04L 61/6063 (2013.01); H04L

67102 (2013.01); H04L 69/16 (2013.01);
H04L 69/18 (2013.01)

I 1111111111111111 11111 111111111111111 IIIII IIIII 11111 111111111111111 IIII IIII
US009591104B2

(IO) Patent No.: US 9,591,104 B2
(45) Date of Patent: *Mar. 7, 2017

(58) Field of Classification Search
None

(56)

EP
EP
EP

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,298,674 A
5,392,390 A

3/1994 Yun
2/1995 Crozier

(Continued)

FOREIGN PATENT DOCUMENTS

0408132
0807347
0817031

1/1991
11/1997
1/1998

OTHER PUBLICATIONS

2015 WL 2194627, United States District Court, N.D. California,
Implicit L.L.C., Plaintiff, v. F5 Networks, Inc., Defendant, Case No.
14-cv-02856-SI, signed May 6, 2015, 14 pages.

(Continued)

Primary Examiner - Due Duong

(57) ABSTRACT

A method and system for demultiplexing packets of a
message is provided.
The demultiplexing system receives packets of a message,
identifies a sequence of message handlers for processing the
message, identifies state information associated with the
message for each message handler, and invokes the message
handlers passing the message and the associated state infor
mation. The system identifies the message handlers based on
the initial data type of the message and a target data type.
The identified message handlers effect the conversion of the
data to the target data type through various intermediate data
types.

20 Claims, 16 Drawing Sheets

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 2 of 33 PageID #: 378

Juniper Ex. 1041-p. 129
Juniper v Implicit

(56)

US 9,591,104 B2
Page 2

Related U.S. Application Data

Sep. 19, 2011, now abandoned, which is a continu
ation of application No. 10/636,314, filed on Aug. 6,
2003, now Pat. No. 8,055,786, which is a continu
ation of application No. 09/474,664, filed on Dec. 29,
1999, now Pat. No. 6,629,163.

References Cited

U.S. PATENT DOCUMENTS

5,414,833 A
5,425,029 A
5,568,478 A
5,627,997 A
5,710,917 A
5,761,651 A
5,768,521 A
5,826,027 A
5,835,726 A
5,848,233 A
5,848,415 A
5,854,899 A
5,870,479 A
5,898,830 A
5,991,299 A *

5/1995
6/1995

10/1996
5/1997
1/1998
6/1998
6/1998

10/1998
11/1998
12/1998
12/1998
12/1998
2/1999
4/1999

11/1999

Hershey et al.
Hluchyj et al.
van Loo, Jr. et al.
Pearson et al.
Musa et al.
Hasebe et al.
Dedrick
Pedersen et al.
Shwed et al.
Radia et al.
Guck
Callon et al.
Feiken et al.
Wesinger, Jr. et al.
Radogna H04L 29/06

370/389
5,991,806 A * 11/1999 McHann, Jr H04L 41/0213

6,047,002 A
6,091,725 A
6,101,189 A
6,101,320 A
6,104,500 A
6,104,704 A
6,111,893 A
6,115,393 A
6,119,236 A
6,128,624 A
6,141,749 A
6,151,390 A
6,157,622 A
6,192,419 Bl
6,199,054 Bl
6,212,550 Bl
6,222,536 Bl
6,226,267 Bl
6,243,667 Bl
6,246,678 Bl
6,259,781 Bl
6,275,507 Bl
6,278,532 Bl
6,356,529 Bl
6,359,911 Bl
6,401,132 Bl
6,404,775 Bl
6,405,254 Bl
6,426,943 Bl
6,493,348 Bl
6,504,843 Bl
6,519,636 B2
6,560,236 Bl
6,574,610 Bl
6,598,034 Bl
6,629,163 Bl
6,651,099 Bl
6,678,518 B2
6,680,922 Bl
6,701,432 Bl
6,711,166 Bl
6,785,730 Bl
6,871,179 Bl
6,889,181 B2
6,937,574 Bl
6,957,346 Bl
6,959,439 Bl *

4/2000 Hartmann et al.
7/2000 Cheriton et al.
8/2000 Tsuruoka
8/2000 Schuetze et al.
8/2000 Alam et al.
8/2000 Buhler et al.
8/2000 Volftsun et al.
9/2000 Engel et al.
9/2000 Shipley

10/2000 Papierniak et al.
10/2000 Coss et al.
11/2000 Volftsun et al.
12/2000 Tanaka et al.
2/2001 Aditham et al.
3/2001 Khan et al.
4/2001 Segur
4/2001 Kihl et al.
5/2001 Spinney et al.
6/2001 Kerr et al.
6/2001 Erb et al.
7/2001 Crouch et al.
8/2001 Anderson et al.
8/2001 Heimendinger et al.
3/2002 Zarom
3/2002 Movshovich et al.
6/2002 Bellwood et al.
6/2002 Leslie et al.
6/2002 Hadland
7 /2002 Spinney et al.

12/2002 Gelman et al.
1/2003 Cremin et al.
2/2003 Engel et al.
5/2003 Varghese et al.
6/2003 Clayton et al.
7/2003 Kloth
9/2003 Balassanian

11/2003 Dietz et al.
1/2004 Eerola
1/2004 Jorgensen
3/2004 Deng et al.
3/2004 Amir et al.
8/2004 Taylor
3/2005 Kist et al.
5/2005 Kerr et al.
8/2005 Delaney et al.

10/2005 Kivinen et al.

709/224

10/2005 Boike G06F 13/102
719/321

7,233,569 Bl 6/2007 Swallow
7,233,948 Bl 6/2007 Shamoon et al.
7,281,036 Bl 10/2007 Lu et al.
7,383,341 Bl 6/2008 Saito et al.
7,711,857 B2 5/2010 Balassanian
8,055,786 B2 11/2011 Balassanian
8,694,683 B2 4/2014 Balassanian

2003/0142669 Al 7/2003 Kubota et al.
2004/0015609 Al* 1/2004 Brown H04L 69/08

709/246
2008/0250045 Al 10/2008 Balassanian et al.
2009/0083763 Al* 3/2009 Sareen H04L 67/2823

719/317
2009/0265695 Al 10/2009 Karino

OTHER PUBLICATIONS

Alexander, D. et al., "The Switch Ware Active Network Architec

ture", Jun. 6, 1998, IEEE.
Antoniazzi, S. et al., "An Open Software Architecture for Multi
media Consumer Terminals", Central Research Labs, Italy; Alcatel
SEL Research Centre, Germany, ECMAST 1997.
Arbanowski, Stefan, "Generic Description of Telecommunication
Services and Dynamic Resource Selection in Intelligent Commu
nication Environments", Thesis, Technische Universitat Berlin, Oct.
9, 1996 (3 documents).
Arbanowski, S., et al.,Service Personalization for Unified Messag
ing Systems, Jul. 6-8, 1999, The Fourth IEEE Symposium on
Computers and Communications, ISCC '99, Red Sea, Egypt.
Atkinson, R., "Security Architecture for the Internet Protocol", Aug.
1995, Naval Research Laboratory.
Atkinson, R., "IP Authentication Header", Aug. 1995, Naval
Research Laboratory.
Atkinson, R., "IP Encapsulating Security Payload (ESP)", Aug.
1995, Naval Research Laboratory.
Back, G., et al., Java Operating Systems: Design and Implementa
tion, Aug. 1998, Technical Report UUCS-98-015, University of
Utah.
Baker, Dr. Sean, "CORBA Implementation Issues", 1994, IONA
Technologies, O'Reilly Institute Dublin, Ireland.
Barrett, R., et al., "Intermediaries: New Places for Producing and
Manipulating Web Content", 1998, IBM Almaden Research Center,
Elsevier Science.
Bellare, M., et al., "A Concrete Security Treatment of Synunetric
Encryption: Analysis of the DES Modes of Operation", Aug. 15,
1997, Dept. of Computer Science and Engineering, University of
California, San Diego.
Bellare, M., et al., "A Concrete Security Treatment of Synunetric
Encryption: Analysis of the DES Modes of Operation", Aug. 15,
1997, IEEE.
Bellare, M., et al., "XOR MACs: New Methods for Message
Authentication Using Finite Pseudorandom Functions", 1995,
CRYPTO '95, LNCS 963, pp. 15-28, Springer-Verlag Berlin
Heidelberg.
Bellissard, L., et al., "Dynamic Reconfiguration of Agent-Based
Applications", Third European Research Seminar on Advances in
Distributed Systems, (ERSADS '99) Madeira Island.
Bolding, Darren, "Network Security, Filters and Firewalls", 1995,
www.acm.org/crossroads/xrds2-l/security.html.
Booch, G., et al., "Software Engineering with ADA", 1994, Third
Edition, The Benjamin/Cummings Publishing Company, Inc. (2
documents).
Breugst, et al., "Mobile Agents-Enabling Technology for Active
Intelligent Network Implementation", May/Jun. 1998, IEEE Net
work.
"C Library Functions", AUTH(3) Sep. 17, 1993, Solbourne Com
puter, Inc.
Chapman, D., et al., "Building Internet Firewalls", Sep. 1995,
O'Reilly & Associates, Inc.
CheckPoint FireWall-1 Technical White Paper, Jul. 18, 1994,
CheckPoint Software Technologies, Ltd.
CheckPoint FireWall-1 White Paper, Sep. 1995, Version 2.0,
CheckPoint Software Technologies, Ltd.

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 3 of 33 PageID #: 379

Juniper Ex. 1041-p. 130
Juniper v Implicit

US 9,591,104 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Command Line Interface Guide PIN 093-0011-000 Rev C Version
2.5, 2000-2001, NetScreen Technologies, Inc.
Coulson, G. et al., "A COREA Compliant Real-Time Multimedia
Platform for Broadband Networks", Lecture Notes in Computer
Science, 1996, Trends in Distributed Systems CORBA and Beyond.
Cox, Brad, "SuperDistribution, Objects As Property on the Elec
tronic Frontier", 1996, Addison-Wesley Publishing Company.
Cranes, et al., "A Configurable Protocol Architecture for COREA
Environments", Autonomous Decentralized Systems 1997 Proceed
ings ISADS, Third International Symposium Apr. 9-11, 1997.
Curran, K., et al., "COREA Lacks Venom", University of Ulster,
Northern Ireland, UK 2000.
Dannert, Andreas, "Call Logic Service for a Personal Communica
tion Supporting System", Thesis, Jan. 20, 1998, Technische
Universitat Berlin.
DARPA Internet Program Protocol Specification, "Transmission
Control Protocol", Sep. 1981, Information Sciences Institute, Cali
fornia.
DARPA Internet Program Protocol Specification, "Internet Proto
col", Sep. 1981, Information Sciences Institute, California.
Decasper, D., et al., "Crossbow: A Toolkit for Integrated Services
over Cell Switched IPv6", 1997, Computer Engineering and Net
works Laboratory, ETH Zurich, Switzerland.
Decasper, D., et al., "Router Plugins A Software Architecture for
Next Generation Routers", 1998, Proceedings of ACM SIGCONM
'98.
Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1998, Nokia, The Internet Society.
Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1995, Network Working Group, RFC 1883.
Dutton, et al, "Asynchronous Transfer Mode Technical Overview
(ATM)", Second Edition; IBM, Oct. 1995, 2nd Edition, Prentice Hall
PTR, USA.
Eckardt, T., et al., "Application of X.500 and X.700 Standards for
Supporting Personal Communications in Distributed Computing
Environments", 1995, IEEE.
Eckardt, T., et al., "Personal Communications Support based on
TMN and TINA Concepts", 1996, IEEE Intelligent Network Work
shop (IN '96), Apr. 21-24, Melbourne, Australia.
Eckardt, T., et al., "Beyond IN and UPT-A Personal Communi
cations Support System Based on TMN Concepts", Sep. 1997, IEEE
Journal on Selected Areas in Communications, vol. 15, No. 7.
Egevang, K., et al., "The IP Network Address Translator (NAT)",
May 1994, Network Working Group, RFC 1631.
Estrin, D., et al., "Visa Protocols for Controlling Inter-Organiza
tional Datagram Flow", Dec. 1998, Computer Science Department,
University of Southern California and Digital Equipment Corpora
tion.
Faupel, M., "Java Distribution and Deployment", Oct. 9, 1997,
APM Ltd., United Kingdom.
Felber, P., "The CORBA Object Group Service: A Service Approach
to Object Groups in COREA", Thesis, 1998, Ecole Polytechnique
Federate de Lausanne, Switzerland.
Fish, R., et al., "DRoPS: Kernel Support for Runtime Adaptable
Protocols", Aug. 25-27, 1998, IEEE 24th Euromicro Conference,
Sweden.
Fiuczynski, M., et al., "An Extensible Protocol Architecture for
Application-Specific Networking", 1996, Department of Computer
Science and Engineering, University of Washington.
Franz, Stefan, "Job and Stream Control in Heterogeneous Hardware
and Software Architectures", Apr. 1998, Technische Universitat,
Berlin (2 documents).
Fraser, T., "DTE Firewalls: Phase Two Measurement and Evalua
tion Report", Jul. 22, 1997, Trusted Information Systems, USA.
Gazis, V., et al., "A Survey of Dynamically Adaptable Protocol
Stacks", first Quarter 2010, IEEE Communications Surveys &
Tutorials, vol. 12, No. 1, !51 Quarter.
Gokhale, A., et al., "Evaluating the Performance of Demultiplexing
Strategies for Real-Time COREA", Nov. 1997, GLOBECOM.

Gokhale, A., et al., "Measuring and Optimizing COREA Latency
and Scalability Over High-Speed Networks", Apr. 1998, IEEE
Transaction on Computers, vol. 47, No. 4; Proceedings of the
International Conference on Distributed Computing Systems
(ICDCS '97) May 27-30, 1997.
Gokhale, A., et al., "Operating System Support for High-Perfor
mance, Real-Time CORBA", 1996.
Gokhale, A., et al., "Principles for Optimizing COREA Internet
Inter-ORB Protocol Performance", Jan. 9, 1998, Proceedings of the
HICSS Conference, Hawaii.
Gong, Li, "Java Security: Present and Near Future", May/Jun. 1997,
IEEE Micro.
Gong, Li, "New Security Architectural Directions for Java
(Extended Abstract)", Dec. 19, 1996, IEEE.
Gong, Li, "Secure Java Class Loading", Nov./Dec. 1998, IEEE
Internet.
Goos, G., et al., "Lecture Notes in Computer Science: Mobile
Agents and Security", 1998, Springer-Verlag Berlin Heidelberg.
Goralski, W., "Introduction to ATM Networking", 1995, McGraw
Hill Series on Computer Communications, USA.
Hamzeh, K., et al., "Layer Two Tunneling Protocol L2TP", Jan.
1998, PPP Working Group, Internet Draft.
Harrison, T., et al., "The Design and Performance of a Real-Time
CORBAEvent Service", Aug. 8, 1997,Proceedings of the OOPSLA
'97 Conference, Atlanta, Georgia in Oct. 1997.
Huitema, Christian, "IPv6 The New Internet Protocol", 1997 Pren
tice Hall, Second Edition.
Hutchins, J., et al., "Enhanced Internet Firewall Design Using
Stateful Filters Final Report", Aug. 1997, Sandia Report; Sandia
National Laboratories.
IBM, Local Area Network Concepts and Products: Routers and
Gateways, May 1996.
Juniper Networks Press Release, Juniper Networks Announces
Junos, First Routing Operating System for High-Growth Internet
Backbone Networks, Jul. 1, 1998, Juniper Networks.
Juniper Networks Press Release, Juniper Networks Ships the Indus
try's First Internet Backbone Router Delivering Unrivaled Scalabil
ity, Control and Performance, Sep. 16, 1998, Juniper Networks.
Karn, P., et al., "The ESP DES-CBC Transform", Aug. 1995,
Network Working Group, RFC 1829.
Kelsey, J. et al., "Authenticating Outputs of Computer Software
Using a Cryptographic Coprocessor", Sep. 1996, CARDIS.
Krieger, D., et al., "The Emergence of Distributed Component
Platforms", Mar. 1998, IEEE.
Krupczak, B., et al., "Implementing Communication Protocols in
Java", Oct. 1998, IEEE Communications Magazine.
Krupczak, B., et al., "Implementing Protocols in Java: The Price of
Portability", 1998, IEEE.
Lawson, Stephen, "Cisco NetFlow Switching Speeds Traffic Rout
ing", Jul. 7, 1997, Infoworld.
Li, S., et al., "Active Gateway: A Facility for Video Conferencing
Traffic Control", Feb. 1, 1997, Purdue University; Purdue e-Pubs;
Computer Science Technical Reports.
Magedanz, T., et al., "Intelligent Agents: An Emerging Technology
for Next Generation Telecommunications?", 1996, IEEE.
Mills, H., et al., "Principles of Information Systems Analysis and
Design", 1986, Academic Press, Inc. (2 documents).
Mosberger, David, "Scout: A Path-Based Operating System", Doc
toral Dissertation Submitted to the University of Arizona, 1997 (3
documents).
Muhugusa, M., et al., "COMSCRIPT An Environment for the
Implementation of Protocol Stacks and their Dynamic Reconfigura
tion", Dec. 1994.
Nelson, M., et al., The Data Compression Book, 2nd Edition, 1996,
M&T Books, A division of MIS Press, Inc.
NetRanger User's Guide, 1996, WheelGroup Corporation.
NetScreen Command Line Reference Guide, 2000, PIN 093-0000-
001 Rev A, NetScreen Technologies, Inc., USA.
NetScreen Command Line Reference Guide, 2000, PIN 093-0000-
001 NetScreen Technologies, Inc., USA.
NetScreen Concepts and Examples ScreenOS Reference Guide,
1998-2001, Version 2.5 PIN 093-0039-000 Rev. A, NetScreen
Technologies, Inc.

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 4 of 33 PageID #: 380

Juniper Ex. 1041-p. 131
Juniper v Implicit

US 9,591,104 B2
Page 4

(56) References Cited

OTHER PUBLICATIONS

NetScreen Products Webpage, wysiwyg://body_bottom.3/http://
www ... een.corn/products/products.html 1998-1999, Net Screen
Technologies, Inc.
NetScreen WebUI, Reference Guide, Version 2.5.0 PIN 093-0040-
000 Rev. A, 2000-2001, NetScreen Technologies, Inc.
NetStalker Installation and User's Guide, 1996, Version 1.0.2,
Haystack Labs, Inc.
Niculescu, Dragos, "Survey of Active Network Research", Jul. 14,
1999, Rutgers University.
Nortel Northern Telecom, "ISDN Primary Rate User-Network Inter
face Specification", Aug. 1998.
Nygren, Erik, "The Design and Implementation of a High-Perfor
mance Active Network Node", Thesis, Feb. 1998, MIT.
Osbourne, E., "Morningstar Technologies SecureConnect Dynamic
Firewall Filter User's Guide", Jun. 14, 1995, V. 1.4, Morning Star
Technologies, Inc.
Padovano, Michael, "Networking Applications on UNIX System V
Release 4," 1993 Prentice Hall, USA (2 documents).
Pfeifer, T., "Automatic Conversion of Communication Media",
2000, GMD Research Series, Germany.
Pfeifer, T., "Automatic Conversion of Communication Media",
Thesis, 1999, Technischen Universitat Berlin, Berlin.
Pfeifer, T., et al., "Applying Quality-of-Service Parametrization for
Medium-to-Medium Conversion", Aug. 25-28, 1996, 8th IEEE
Workshop on Local and Metropolitan Area Networks, Potsdam,
Germany.
Pfeifer, T., "Micronet Machines-New Architectural Approaches
for Multimedia End-Systems", 1993 Technical University of Berlin.
Pfeifer, T., "On the Convergence of Distributed Computing and
Telecommunications in the Field of Personal Communications",
1995, KiVS, Berlin.
Pfeifer, T., "Speech Synthesis in the Intelligent Personal Commu
nication Support System (IPCSS)", Nov. 2-3, 1995, 2nd 'Speak!'
Workshop on Speech Generation in Multimodal Information Sys
tems and Practical Applications.
Pfeifer, T., et al., "Generic Conversion of Communication Media for
Supporting Personal Mobility", Nov. 25-27, 1996, Proc. of the Third
COST 237 Workshop: Multimedia Telecommunications and Appli
cations.
Pfeifer, T., et al., "Intelligent Handling of Communication Media",
Oct. 29-31, 1997, 6th IEEE Workshop on Future Trends of Distrib
uted Computing Systems (FTDCS) Tunis.
Pfeifer, T., et al., "Resource Selection in Heterogeneous Commu
nication Environments using the Teleservice Descriptor", Dec.
15-19, 1997, Proceedings from the 4th COST 237 Workshop: From
Multimedia Services to Network Services, Lisboa.
Pfeifer, T., et al., Mobile Guide-Location-Aware Applications
from the Lab to the Market, 1998, IDMS '98, LNCS 1483, pp.
15-28.
Pfeifer, T., et al., "The Active Store providing Quality Enhanced
Unified Messaging", Oct. 20-22, 1998, 5th Conference on computer
Communications, AFRICOM-CCDC '98, Tunis.
Pfeifer, T.,, et al., "A Modular Location-Aware Service and Appli
cation Platform", 1999, Technical University of Berlin.
Plagemann, T., et al., "Evaluating Crucial Performance Issues of
Protocol Configuration in DaCaPo", 1994, University of Oslo.
Psounis, Konstantinos, "Active Networks: Applications, Security
Safety, and Architectures", First Quarter 1999, IEEE Communica
tions Surveys.
Rabiner, Lawrence, "Applications of Speech Recognition in the Area
of Telecommunications", 1997, IEEE.
Raman, Suchitra, et al, "A Model, Analysis, and Protocol Frame
work for Soft State-based Communications", Department of EECS,
University of California, Berkeley.
Rogaway, Phillip, "Bucket Hashing and its Application to Fast
Message Authentication", Oct. 13, 1997, Department of Computer
Science, University of California.
Schneier, B., et al., "Remote Auditing of Software Outputs Using a
Trusted CoProcessor", 1997, Elsevier Paper Reprint 1999.

Tennenhouse, D., et al., "From Internet to ActiveNet", Laboratory of
Computer Science, MIT, 1996.
Tudor, P., "Tutorial MPEG-2 Video Compression", Dec. 1995,
Electronics & Communication Engineering Journal.
US Copyright Webpage of Copyright Title, "IPv6: the New Internet
Protocol", by Christian Huitema, 1998 Prentice Hall.
Van der Meer, et al., "An Approach for a 4th Generation Messaging
System", Mar. 21-23, 1999, The Fourth International Symposium on
Autonomous Decentralized Systems ISADS '99, Tokyo.
Van der Meer, Sven, "Dynamic Configuration Management of the
Equipment in Distributed Communication Environments", Thesis,
Oct. 6, 1996, Berlin (3 documents).
Van Renesse, R. et al., "Building Adaptive Systems Using
Ensemble", Cornell University Jul. 1997.
Venkatesan, R., et al., "Threat-Adaptive Security Policy", 1997,
IEEE.
Wetherall, D., eta!., "The Active IP Option", Sep. 1996, Proceedings
of the 7 th ACM SIGOPS European Workshop, Connemara, Ireland.
Welch, Terry, "A Technique for High-Peiformance Data Compres
sion", 1984, Sperry Research Center, IEEE.
Zeletin, R. et al., "Applying Location Aware Computing for Elec
tronic Commerce: Mobile Guide", Oct. 20-22, 1998, 5th Conference
on Computer Communications, AFRICOM-CCDC '98, Tunis.
Zell, Markus, "Selection of Converter Chains by Means of Quality
of Service Analysis", Thesis, Feb. 12, 1998, Technische Universitat
Berlin.
Feb. 4, 2008 Plaintiff's Original Complaint.
Aug. 26, 2008 Defendant NVIDIA Corporation's Answer to Com
plaint.
Aug. 26, 2008 Defendant Sun Microsystems, Inc.'s Answer to
Complaint.
Aug. 27, 2008 Defendant Advanced Micro Devices, Inc.'s Answer
to Complaint for Patent Infringement.
Aug. 27, 2008 RealNetworks, Inc.'s Answer to Implicit Networks,
Inc. 's Original Complaint for Patent Infringement, Affirmative
Defenses, and Counterclaims.
Aug. 27, 2008 Intel Corp.'s Answer, Defenses and Counterclaims.
Aug. 27, 2008 Defendant RMI Corporation's Answer to Plaintiff's
Original Complaint.
Sep. 15, 2008 Plaintiffs Reply to NVIDIA Corporation's Counter
claims.
Sep. 15, 2008 Plaintiff's Reply to Sun Microsystems Inc.'s Coun
terclaims.
Sep. 16, 2008 Plaintiff's Reply to RealNetworks, Inc.'s Counter
claims.
Sep. 16, 2008 Plaintiff's Reply to Intel Corp.'s Counterclaims.
Dec. 10, 2008 Order granting Stipulated Motion for Dismissal with
Prejudice re NVIDIA Corporation, Inc.
Dec. 16, 2008 Defendants AMD, RealNetworks, RMI, and Sun's
Motion to Stay Pending the Patent and Trademark Office's Reex
amination of the '163 Patent.
Dec. 29, 2008 Order granting Stipulated Motion for Dismissal
without Prejudice of Claims re Sun Microsystems, Inc.
Jan. 5, 2009 Plaintiff's Opposition to Defendants AMD,
RealNetworks, RMI, and Sun's Motion to Stay Pending Reexami
nation and Exhibit A.
Jan. 9, 2009 Reply of Defendants AMD, RealNetworks, RMI, and
Sun's Motion to Stay Pending the Patent and Trademark Office's
Reexamination of the '163 Patent.
Feb. 9, 2009 Order Granting Stay Pending the United States Patent
and Trademark Office's Reexamination of U.S. Pat. No. 6,629,163.
Feb. 17, 2009 Order Granting Stipulated Motion for Dismissal of
Advanced Micro Devices, Inc. with Prejudice.
May 14, 2009 Order Granting Stipulated Motion for Dismissal of
RMI Corporation with Prejudice.
Oct. 13, 2009 Order Granting Stipulated Motion for Dismissal of
Claims Against and Counterclaims by Intel Corporation.
Oct. 30, 2009 Executed Order for Stipulated Motion for Dismissal
of Claims Against and Counterclaims by RealNetworks, Inc.
Nov. 30, 2009 Plaintiffs Original Complaint, Implicit v Microsoft,
Case No. 09-5628.
Jan. 22, 2010 Order Dismissing Case, Implicitv Microsoft, Case No.
09-5628.

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 5 of 33 PageID #: 381

Juniper Ex. 1041-p. 132
Juniper v Implicit

US 9,591,104 B2
Page 5

(56) References Cited

OTHER PUBLICATIONS

Aug. 16, 2010 Plaintiffs Original Complaint, Implicit v Cisco, Case
No. 10-3606.
Nov. 22, 2010 Defendant Cisco Systems, Inc.'s Answer and Coun
terclaims, Implicit v Cisco, Case No. 10-3606.
Dec. 13, 2010 Plaintiff, Implicit Networks, Inc. 's, Answer to Coun
terclaims, Implicit v Cisco, Case No. 10-3606.
Oct. 4, 2011 Order of Dismissal with Prejudice, Implicit v Cisco,
Case No. 10-3606.
Aug. 24, 2010 Plaintiffs Original Complaint, Implicitv Citrix, Case
No. 10-3766.
Dec. 1, 2010 Plaintiff's First Amended Complaint, Implicit v Citrix,
Case No. 10-3766.
Jan. 14, 2011 Defendant Citrix Systems, Inc.'s Answer, Defenses
and Counter-complaint for Declaratory Judgment, Implicit v Citrix,
Case No. 10-3766.
Feb. 18, 2011 Plaintiff, Implicit Networks, Inc.'s, Answer to Defen
dants Counterclaims, Implicit v Citrix, Case No. 10-3766.
May 2, 2011 Order of Dismissal, Implicit v Citrix, Case No.
10-3766.
Jul. 30, 2010 Plaintiff's Original Complaint, Implicit v F5, Case No.
10-3365.
Oct. 13, 2010 Defendants' Answer and Counter-Complaint, Implicit
v F5, Case No. 10-3365.
Nov. 3, 2010 Plaintiff's Answer to Counter-Complaint, Implicit v
F5, Case No. 10-3365.
Dec. 10, 2010 Plaintiff's First Amended Complaint, Implicit v F5,
Case No. 10-3365.
Jan. 14, 2011 Defendants' Answer to !51 Amended Complaint and
Counterclaim, Implicit v F5, Case No. 10-3365.
Feb. 18, 2011 Plaintiff's Answer to F5's Amended Counter-Com
plaint, Implicit v F5, Case No. 10-3365.
Apr. 18, 2011 Defendants' Amended Answer to l51 Amended
Complaint and Counter-Complaint, Implicit v F5, Case No.
10-3365.
May 5, 2011 Plaintiff's Answer to F5's Amended Counter-Com
plaint, Implicit v F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Implicit v
F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Exhibit A,
Implicit v F5, Case No. 10-3365 (31 documents).
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Exhibit B,
Implicit v F5, Case No. 10-3365.
Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR 4-3), Implicit v F5, Case No. 10-3365.
Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR4-3) Exhibit A, Implicitv F5, Case No. 10-3365 (2 documents).
Nov. 28, 2011 Plaintiff's Opening Claim Construction Brief,
Implicit v F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Implicit v F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Exhibit A, Implicit v F5, Case No. 10-3365.
Dec. 12, 2011 Defendants' Claim Construction Brief,Implicit v F5,
Case No. 10-3365.
Dec. 19, 2011 Plaintiff's Reply to Defendants' (F5, HP, Juniper)
Responsive Claim Construction Brief (4-5), Implicit v F5, Case No.
10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 17, 2012;
Implicit v F5, Case No. 10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 18, 2012;
Implicit v F5, Case No. 10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 19, 2012;
Implicit v F5, Case No. 10-3365.
Feb. 29, 2012 Claim Construction Order.
Aug. 15, 2012 Storer Invalidity Report.
Sep. 10, 2012 Implicit's Expert Report of Scott M. Nettles.
Mar. 13, 2013 Order Granting Defendants' Motion for Summary
Judgment.
Apr. 9, 2013 Notice of Appeal to the Federal Circuit.

Aug. 23, 2010 Plaintiff's Original Complaint, Implicit v HP, Case
No. 10-3746.
Nov. 23, 2010 Plaintiff's First Amended Complaint, Implicit v HP,
Case No. 10-3746.
Jan. 14, 2011 Defendant HP's Answer and Counterclaims, Implicit
v HP, Case No. 10-3746.
Feb. 18, 2011 Implicit Networks, Inc.'s Answer to HP Counter
claims, Implicit v HP, Case No. 10-3746.
May 10, 2011 Plaintiff's Amended Disclosure of Asserted Claims
and Infringement Contentions, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Implicit v HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Al-14, Implicit v HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Bl-21, Implicit v HP, Case No. 10-3746.
Sep. 20, 2010 Plaintiff's Original Complaint, Implicit v Juniper,
Case No. 10-4234.
Nov. 12, 2010 Juniper Network's Motion to Dismiss For Failure to
State a Claim Under Rule 12(B)(6): Memorandum of Points and
Authorities; Implicit v Juniper, Case No. 10-4234.
Nov. 12, 2010 Juniper Network's Request for Judicial Notice in
Support of its Motion to Dismiss For Failure to State a Claim Under
Rule 12(B)(6): Memorandum of Points and Authorities; Implicit v
Juniper, Case No. 10-4234.
Dec. 1, 2010 First Amended Complaint; Implicit v Juniper, Case
No. 10-4234.
Jan. 18, 2011 Juniper Networks, Inc.'s Answer and Affirmative
Defenses to !51 Amended Complaint, Implicit v Juniper, Case No.
10-4234.
Feb. 18, 2011 Plaintiff's Answer to Defendant's Counterclaims,
Implicit v Juniper, Case No. 10-4234.
May 23, 2011 Plaintiff's Disclosure of Asserted Claims and
Infringement Contentions, Implicit v Juniper, Case No. 10-4234.
Nov. 15, 2011 Plaintiff's Amended Disclosure of Asserted Claim
and Infringement Contentions, Implicit v Juniper, Case No.
10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief), Implicit v Juniper, Case No.
10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibit E, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibit J, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibit K, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibits M-O, Implicit v Juni
per, Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Implicit v Juniper, Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit B, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit F, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit N, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit P, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Q, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit S., Implicit v Juniper, Case No.
10-4234.

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 6 of 33 PageID #: 382

Juniper Ex. 1041-p. 133
Juniper v Implicit

US 9,591,104 B2
Page 6

(56) References Cited

OTHER PUBLICATIONS

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-1, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit U, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit V, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit W, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit X, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-1, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Z, Implicit v Juniper, Case No.
10-4234.
Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Reply Claim Construction Brief, Implicit v Juniper, Case No.
10-4234.
Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Reply Claim Construction Brief, Exhibit P, Implicit v Juniper, Case
No. 10-4234.
Jan. 10, 2012 Plaintiff's Jan. 10, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit Al, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A2, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A3, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A4, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit Bl, Implicit v Juniper, Case No. 10-4234.
Feb. 29, 2012 Plaintiff's Feb. 29, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Apr. 6, 2012 Plaintiff's Apr. 6, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Apr. 9, 2012 Plaintiff's Apr. 9, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.

Sep. 11, 2012 Implicit's Expert Report of Scott Nettles.
Nov. 9, 2012 Juniper's Notice of Motion and Memorandum of Law
ISO Motion for Sununary Judgment or, in the alternative, for Partial
Summary Judgment, on the Issue of Invalidity.
Nov. 9, 2012 Exhibit 2 to Declaration in support of Juniper's Motion
for Summary Judgment----Calvert Expert Report.
Nov. 9, 2012 Exhibit 3 to Declaration in support of Juniper's Motion
for Summary Judgment----Calvert Supplemental Expert Report.
Nov. 26, 2012 Implicit Opposition to Juniper's and F5 Motion on
Invalidity.
Nov. 26, 2012 Exhibit A to Hosie Declaration-Aug. 27, 2012
Excerpts from David Blaine deposition.
Nov. 26, 2012 Exhibit B to Hosie Declaration---Oct. 25, 2012
Excerpts from Kenneth Calvert Deposition.
Nov. 26, 2012 Exhibit C to Hosie Declaration-Aug. 15, 2012
Excerpts from Kenneth Calvert Expert Report.
Nov. 26, 2012 Exhibit D to Hosie Declaration-U.S. Pat. No.
6,651,099 to Dietz et al.
Nov. 26, 2012 Exhibit E to Hosie Declaration-Understanding
Packet-Based and Flow-Based Forwarding.
Nov. 26, 2012 Exhibit F to Hosie Declaration-Wikipedia on Soft
State.
Nov. 26, 2012 Exhibit G to Hosie Declaration-Sprint Notes.
Nov. 26, 2012 Exhibit H to Hosie Declaration-Implicit's Supple
mental Response to Juniper's 2nd Set of Interrogatories.
Nov. 26, 2012 Exhibit I to Hosie Declaration-U.S. Pat. No.
7,650,634 (Zuk).
U.S. Appl. No. 11/933,022 Utility Application filed Oct. 31, 2007.
U.S. Appl. No. 11/933,022 Preliminary Amendment filed Feb. 19,
2008.
U.S. Appl. No. 11/933,022 Office Action mailed Jun. 24, 2009.
U.S. Appl. No. 11/933,022 Amendment filed Sep. 24, 2009.
U.S. Appl. No. 11/933,022 Office Action dated Dec. 11, 2009.
U.S. Appl. No. 11/933,022 Amendment and Response dated Jan. 29,
2010.
U.S. Appl. No. 11/933,022 Notice of Allowance dated Mar. 2, 2010.
U.S. Appl. No. 11/933,022 Issue Notification dated May 4, 2010.
U.S. Appl. No. 10/636,314 Utility Application filed Aug. 6, 2003.
U.S. Appl. No. 10/636,314 Office Action dated Apr. 7, 2008.
U.S. Appl. No. 10/636,314 Response to Restriction Requirement
dated Aug. 5, 2008.
U.S. Appl. No. 10/636,314 Office Action dated Oct. 3, 2008.
U.S. Appl. No. 10/636,314 Response to Office Action dated Apr. 3,
2009.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated May 4, 2009.
U.S. Appl. No. 10/636,314 Amendment to Office Action Response
dated Jun. 4, 2009.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jun. 12, 2009.
U.S. Appl. No. 10/636,314 Amendment to Office Action dated Jul.
10, 2009.
U.S. Appl. No. 10/636,314 Final Rejection Office Action dated Oct.
21, 2009.
U.S. Appl. No. 10/636,314 Amendment after Final Office Action
dated Dec. 14, 2009.
U.S. Appl. No. 10/636,314 Advisory Action dated Jan. 11, 2010.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jan. 11, 2010.
U.S. Appl. No. 10/636,314 Supplemental Amendment and
Response dated Mar. 13, 2010.
U.S. Appl. No. 10/636,314 Office Action dated May 11, 2010.
U.S. Appl. No. 10/636,314 Amendment and Response dated Sep.
13, 2010.
U.S. Appl. No. 10/636,314 Final Rejection dated Nov. 24, 2010.
U.S. Appl. No. 10/636,314 Notice of Appeal dated May 19, 2011.
U.S. Appl. No. 10/636,314 Amendment and Request for Continued
Examination dated Jul. 19, 2011.
U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 13,
2011.
U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 19,
2011.
U.S. Appl. No. 10/636,314 Issue Notification dated Oct. 19, 2011.

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 7 of 33 PageID #: 383

Juniper Ex. 1041-p. 134
Juniper v Implicit

US 9,591,104 B2
Page 7

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 09/474,664 Utility Application filed Dec. 29, 1999.
U.S. Appl. No. 09/474,664 Office Action dated Sep. 23, 2002.
U.S. Appl. No. 09/474,664 Amendment and Response dated Feb.
24, 2003.
U.S. Appl. No. 09/474,664 Notice of Allowance dated May 20,
2003.
U.S. Appl. No. 90/010,356 Request for Ex Parte Reexamination
dated Dec. 15, 2008.
U.S. Appl. No. 90/010,356 Office Action Granting Reexamination
dated Jan. 17, 2009.
U.S. Appl. No. 90/010,356 First Office Action dated Jul. 7, 2009.
U.S. Appl. No. 90/010,356 First Office Action Response dated Sep.
1, 2009.
U.S. Appl. No. 90/010,356 Patent Owner Interview Summary dated
Oct. 23, 2009.
U.S. Appl. No. 90/010,356 Office Action Final dated Dec. 4, 2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Dec. 18, 2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Jan. 4, 2010.
U.S. Appl. No. 90/010,356 Advisory Action dated Jan. 21, 2010.
U.S. Appl. No. 90/010,356 Amendment and Response to Advisory
Action dated Feb. 8, 2010.
U.S. Appl. No. 90/010,356 Notice of Intent to Issue a Reexam
Certificate dated Mar. 2, 2010.
U.S. Appl. No. 90/010,356 Reexamination Certificate Issued dated
Jun. 22, 2010.
U.S. Appl. No. 95/000,659 Inter Partes Reexam Request dated Feb.
13, 2012.
U.S. Appl. No. 95/000,659 Order Granting Reexamination dated
Apr. 3, 2012.
U.S. Appl. No. 95/000,659 Office Action dated Apr. 3, 2012.
U.S. Appl. No. 95/000,659 Office Action Response dated Jun. 4,
2012 (including Exhibits 1 & 2) (4 documents).
U.S. Appl. No. 95/000,659 Third Party Comments to Patent Own
er's Response to Office Action dated Jul. 5, 2012.
U.S. Appl. No. 95/000,659 Appendix R-1 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Declaration of Prof. Dr. Bernhard Plattner).
U.S. Appl. No. 95/000,659 Appendix R-2 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Prof. Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,659 Appendix R-3 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,659 Appendix R-4 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5,
2012(Office Action Granting Reexamination in 95/000,660 dated
May 10, 2012).
U.S. Appl. No. 95/000,659 Appendix R-5 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Office Action in 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,659 Appendix R-6 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,659 Appendix R-7 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).
U.S. Appl. No. 95/000,659 Appendix R-8 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,659 Appendix R-9 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Claim Construction Order dated Feb. 29, 2012).

U.S. Appl. No. 95/000,659 Appendix R-10-1 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. I of Edward Balassanian Deposition Transcript dated
May 30, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-2 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. II of Edward Balassanian Deposition Transcript dated
May 31, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-3 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. III of Edward Balassanian Deposition Transcript dated
Jun. 7, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-4 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. IV of Edward Balassanian Deposition Transcript dated
Jun. 8, 2012).
U.S. Appl. No. 95/000,659 Appendix R-11 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (Implicit Networks, Inc.'s Response to Juniper Networks,
Inc.'s First Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,659 Action Closing Prosecution dated Oct. 1,
2012.
U.S. Appl. No. 95/000,659 Petition to Withdraw and Reissue Action
Closing Prosecution dated Nov. 20, 2012.
U.S. Appl. No. 95/000,659 Patent Owner Comments to Action
Closing Prosecution dated Dec. 3, 2012.
U.S. Appl. No. 95/000,659 Opposition to Petition dated Dec. 17,
2012.
U.S. Appl. No. 95/000,659 Third Party Comments to Action Closing
Prosecution dated Jan. 2, 2013.
U.S. Appl. No. 95/000,660 Inter Partes Reexam Request dated Mar.
2, 2012.
U.S. Appl. No. 95/000,660 Order Granting Reexamination dated
May 10, 2012.
U.S. Appl. No. 95/000,660 Office Action dated May 10, 2012.
U.S. Appl. No. 95/000,660 Response to Office Action dated Jul. 10,
2012 (including Exhibits 1 and 2).
U.S. Appl. No. 95/000,660 Third Party Comments to Office After
Patent Owner's Response dated Aug. 8, 2012 (including Revised
Comments).
U.S. Appl. No. 95/000,660 to Third Party Comments to Patent
Owner's Response to Office Action dated Aug. 8, 2012 (Declaration
of Prof. Dr. Bernhard Plattner).
U.S. Appl. No. 95/000,660 Appendix R-1 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Prof. Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,660 Appendix R-3 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,660 Appendix R-4 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8,
2012(Office Action Granting Reexamination in 95/000,660 dated
May 10, 2012).
U.S. Appl. No. 95/000,660 Appendix R-5 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Office Action in 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,660 Appendix R-6 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,660 Appendix R-7 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).
U.S. Appl. No. 95/000,660 Appendix R-8 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,660 Appendix R-9 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Claim Construction Order dated Feb. 29, 2012).

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 8 of 33 PageID #: 384

Juniper Ex. 1041-p. 135
Juniper v Implicit

US 9,591,104 B2
Page 8

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 95/000,660 Appendix R-10 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (vol. I-IV of Edward Balassanian Deposition Transcript dated
May 30, 2012).
U.S. Appl. No. 95/000,660 Appendix R-11 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Shacham, A., et al, "IP Payload Compression Protocol",
Network Working Group, RFC 3173 Sep. 2001).
U.S. Appl. No. 95/000,660 Appendix R-12 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Shacham, A., et al, "IP Payload Compression Protocol",
Network Working Group, RFC 2393 Dec. 1998).
U.S. Appl. No. 95/000,660 Appendix R-13 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (' 163 Pfeiffer Claim Chart).
U.S. Appl. No. 95/000,660 Appendix R-14 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Ylonen, T., "SSH Transport Layer Protocol", Network Work
ing Group-Draft Feb. 22, 1999).
U.S. Appl. No. 95/000,660 Appendix R-15 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Dommety, G., "Key and Sequence Number Extensions to
GRE", Network Working Group, RFC 2890 Sep. 2000).
U.S. Appl. No. 95/000,660 Appendix R-16 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Monsour, R., et al, "Compression in IP Security" Mar. 1997).
U.S. Appl. No. 95/000,660 Appendix R-17 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Friend, R., Internet Working Group RFC 3943 dated Nov.
2004 Transport Layer Security Protocol Compression Using
Lempel-Ziv-Stac).
U.S. Appl. No. 95/000,660 Appendix R-18 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012(Implicit Networks, Inc.'s Response to Juniper Networks,
Inc.'s First Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,660 Revised-Third Party Comments to
Office After Patent Owner's Response dated Nov. 2, 2012.
U.S. Appl. No. 95/000,660 Action Closing Prosecution dated Dec.
21, 2012.
U.S. Appl. No. 95/000,660 Comments to Action Closing Prosecu
tion dated Feb. 21, 2013 (including Dec of Dr. Ng).
U.S. Appl. No. 95/000,660 Third Party Comments to Action Closing
Prosecution dated Mar. 25, 2013.

PCT/US00/33634-PCT application (WO 01/2077 A2-Jul. 12,
2001).
PCT/US00/33634-Written Opinion (WO 01/50277 A3-Feb. 14,
2002).
PCT/US00/33634-International Search Report (Oct. 9, 2001).
PCT/US00/33634-Response to Official Communication dated
Dec. 7, 2001 (Mar. 21, 2002).
PCT/US00/33634-International Preliminary Examination Report
(Apr. 8, 2002).
PCT/US00/33634-Official Communication (Jan. 24, 2003).
PCT/US00/33634-Response to Official Communication dated Jan.
24, 2003 (Mar. 12, 2003).
PCT/US00/33634-Official Communication (May 13, 2004).
PCT/US00/33634-Response to Sununons to Attend Oral Proceed
ing dated May 13, 2004 (Oct. 9, 2004).
PCT/US00/33634-Decision to Refuse a European Patent applica
tion (Nov. 12, 2004).
PCT/US00/33634-Minutes of the oral proceedings before the
Examining Division (Oct. 12, 2004).
PCT/US00/33634-Closure of the procedure in respect to Appli
cation No. 00984234.5-2212 (Feb. 22, 2005).
May 3, 2013 Expert Report of Dr. Alfonso Cardenas Regarding
Validity of U.S. Pat. Nos. 6,877,006; 7,167,864; 7,720,861; and
8,082,268 (6 documents).
Expert Report of Dr. Alfonso Cardenas Regarding Validity of U.S.
Pat. No. 7,167,864 (3 documents).
"InfoReports User Guide: Version 3.3.1;" Platinum Technology,
Publication No. PRO-X-331-UG00-00, printed Apr. 1998; pp.
1-430.
Non-Final Office Action in Inter Partes Reexamination Control No.
95/000,659 issued Aug. 16, 2013, 107 pages.
Decision on Petition in Reexamination Control No. 95/000,659
issued Aug. 19, 2013, 3 pages.
Response to Non-Final Office Action in Reexamination Control No.
95/000,659 mailed Oct. 2, 2013 including Exhibits A-C, 37 pages.
Decision on Petition in Reexamination Control No. 95/000,660
issued Jul. 30, 2013, 12 pages.
Non-Final Office Action in Inter Partes Reexamination Control No.
95/000,660 issued Aug. 30, 2013, 23 pages.
RFC: 791. Internet Protocol: DARPA Internet Program Protocol
Specification, Sep. 1981, prepared for Defense Advanced Research
Projects Agency Information Processing Techniques Office by
Information Sciences Institute University of Southern California, 52
pages.

* cited by examiner

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 9 of 33 PageID #: 385

Juniper Ex. 1041-p. 136
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 1 of 16 US 9,591,104 B2

/ 101 / 102 / i03 /J

DRIVER MESSAGE ----- OEMUX ········-- LABELMAP
SEND GET

i

0
CJ\

,...-106
151· I

/

MESSAGE
SEND

-107
152

MESSAGE
SEND

108

153 ~ ····-------4
~, MESSAGE

SEND

,,,-109 110 111

MESSAGE DEMLlX LABELMAP
SEND GET

155-......__ ,· MESSAGE ,--\......._.. _____ SEND
\

Fig. 1

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 10 of 33 PageID #: 386

Juniper Ex. 1041-p. 137
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 2 of 16

Pl P2 P3
D 1 1 D2 D9 j

02 1 05
0 1 2 D3 DiO 2

Fig. 2

MEMORY .J.QJ

/304 /,~J05 /306

I DRIVERS I FORWARfllNG DEMUX
COMPONENT COMPONENT

/-308 ,,--309 ,,..-310
/ I

PATH CONVERSION INSTANCE DATA ROUTINES DATA STRUCTURES

CPU 301 I
!

Fig. 3

01

01

2
D15

3
-<>

US 9,591,104 B2

P4

NULL

/300
I r

/301

LABEL MAP
GET

COMPONENT

1/0 1.Q2

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 11 of 33 PageID #: 387

Juniper Ex. 1041-p. 138
Juniper v Implicit

U.S. Patent

450

TCP

Mar.7,2017 Sheet 3 of 16 US 9,591,104 B2

463

420----..._

410~

PATH (StackUst)

440

L.,.-452
t SESSION f 430 464

443 433

TCP TCP

J 442
'I
432

431

IP

ETHERNET

411

/'473

QUEUE

Ji1g. 4

423 424 425
I (
J

\...422

413 414 415

\ t (
\

472

QUEUE

PathEntrv
(RffERENCE)

412

431

.,,,.--471
_L

QUEUE

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 12 of 33 PageID #: 388

Juniper Ex. 1041-p. 139
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 4 of 16 US 9,591,104 B2

501

Mulliplaylist 508

509

Fig. 5

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 13 of 33 PageID #: 389

Juniper Ex. 1041-p. 140
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 5 of 16 US 9,591,104 B2

l..r)
~ l::::i

\r) \r)

~

i.'::'
c -w c::
..,c: w
0 ..c

0 a.. 0...

l

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 14 of 33 PageID #: 390

Juniper Ex. 1041-p. 141
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 6 of 16

(MessageSend (Message, PalhEntry)

iNO
~702

<1athEnlry --> >-N_'O __ ___.,

US 9,591,104 B2

Member i A ,,,-103

/4ntry ~- YES
position =

PothEntry --> Member -->
StackUst[n!ry

05 > !

..------'YE'-'<S4.705

~ (posiilc11)

✓706

·retVal ::: nextEntry -->
Member --> Binding -->
Edge --> MessogeHondler
(Message, nextEntry)

NO

~alh

NO

List = Demme r101

Relurn
(relval)

(Message,
Pa!hEnfry --> Address,

Path Entry

t rl08

r703A

nextEntr7 ::::: Lisi Head
Data (pathEn!ry -->
Path --> Stocklist)

----------j7L)

Fig. 7A

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 15 of 33 PageID #: 391

Juniper Ex. 1041-p. 142
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 7 of 16

09

1 110

Select next
Candidate path

in List

NO

Mes:sageSend ·
{Message, next Entry)

Fig. 7B

05

Retui-
True

(715

PqthEntn - ->.
Muihplayl1sl ::: Lisi

US 9,591,104 B2

QueueMessoge
(Message, Nexh .. r.try)

Return

Fig. 7C

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 16 of 33 PageID #: 392

Juniper Ex. 1041-p. 143
Juniper v Implicit

U.S. Patent Mar.7,2017

YES

... next binding

809-

other

Demme

Initialize
Demux

Get Session

Nail Binding

Sheet 8 of 16

Messaae
Address

801 PathEntry

::i!mp ex

US 9,591,104 B2

Find Path

rB12

Process Poth
Hopping

multi le

return

Fig. 8

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 17 of 33 PageID #: 393

Juniper Ex. 1041-p. 144
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 9 of 16

Initialize
Demux

t
Map

PothEntry --> Mop

message = Message
path = null

address [!em ::: null

sovedStatus .::: 0
Status ::: demul(Continue

901

r-902

1 90J

US 9,591,104 B2

905

,-909

stolus :::
>-YE_s __ 1 PathEntr1 --> Path -->

' Status I

pain Address =
palhEr.iry --> Path -->

Address

addressflem =
pothAddrm --->
Curren!Binding :::

polhEntry --> Member
--> AddressEntry

NO

r·906
1 demu:x

continue

sloh.1s ::: demux Continue -91 J
binding List ::::

pa!hAddress -->
Bindinglist

CurrentBinding :::
&paihAddress -->

CurrentBinding
postpone = 0

traverse = ListDaloNext
session ::: Null

(Return

912

913

907

polhAddress :::
Address

}Jg. 9

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 18 of 33 PageID #: 394

Juniper Ex. 1041-p. 145
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 10 of 16 US 9,591,104 B2

lnit[nd

1002
{1001

PothEntl pothAddress =
AddressCopy

--> Mem er YES (PalhEnhy ->
--> Binding --> -----i Path -> Address,

Flags == PathEntry - > Member
Simplex -> AddressEntry)

1003

pothAddress =
AddressCreote

(PothEntry -> Path ->
Address -> URL)

elem = null

-1005
inding =

UstOa!aNext
(Poth Entry - >

Path -> Address ->
Bindinglist,
& elem)

1006

RothAddress -->
CummlBinding =

UstTaiUnsen
(pathAddress -->

BmdingList, binding)

r'!OOl

elem:::.:=
PofhEntry -->
Member -->
AddressEntry

Return

NO

1004

Return

Return

Fig. 10

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 19 of 33 PageID #: 395

Juniper Ex. 1041-p. 146
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 11 of 16 US 9,591,104 B2

:::; \

Ge!Next Binding

binding :::: lnmm
(Binding List,

currentBinding)

1101

~[1102

_,.,./ b' d' ~ YES Return
H1 mg (binding)

to 1 1103

lrai!Ust = LabelMopGet
{map --> Oulput Label,

map --> forge! Lobel)

t r-1104

/s~~ >
1105, ~----< trnfllist >--------.

currentBin<ling :::
UslToil (bindinglist)

Dalo

impTrai! =
UstHeodRemove

(traillist)

Address Extend
(pathAddress,

tmpTrnil)

binding ::::
listfoi! Dato
(llindin list)

r1107

rF108

< session
1109 ~

binding --> Key =
mop --> forget key

rt111

map --> Target key =
Null

l

r1113

rehirnlist =
Prepare Mul!icost Paihs

(trai!Lis!, map)

Return
\. (breok) J

Fig. 11

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 20 of 33 PageID #: 396

Juniper Ex. 1041-p. 147
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 12 of 16 US 9,591,104 B2

;1204

binding --> Flags
l :.-: Bfnding-Remo11e

' I

.--1211

traverse = UstOatoNext

!
~ r1212

0ved status
·-....__

" YESi t 1213

status = saved status
sovedstatus ::: 0

Return
(continue)

NO

Get Key

d ... d" .-d ,.-f 201 e ge = um mg --> t ge /
Edge protocol = edge

--> Protocol

~--~---.... (1202
Status = edge -->
DemuxKey (message,
pothAddms, map)

YES

(1209

sovedStatus = NO
Status

·1214

Fig. 12

/1205

traverse = ListDataNexl
postpone++

Return u}
\{next binding)

(~1207

postpone -
traverse = listDataPrev

YES r1210

status = dernux
continue

Return
(nex! binding)

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 21 of 33 PageID #: 397

Juniper Ex. 1041-p. 148
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 13 of 16

Get Session

session ::: TobleGet
(protocol -> SessionTabie1

& binding -> key)

session =
CreateSession

(protocol)

session --> key =
Labe!Ref ere nee

(binding --> key)

foble Pu!
(protocol -> session Tobie
& session -> key session

protocol -->
CreateSession

(session)

' (Return)

1301

--(Return)

1303

1304

-1305

1306

US 9,591,104 B2

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 22 of 33 PageID #: 398

Juniper Ex. 1041-p. 149
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 14 of 16

binding -->. session = NO···-<
session "'"'-

t ,1405

binding --> key =
Label Reference

(session --> key)
,,,-1407

session --> BindinQ,Table
[edge --> Edgeld J =

binding

Nail
Binding

YES

r
Re!urn

(simplex)

.,.1408

<~nding ~ remove

1409

--> Edge --> binding --> Flag 1 =
Cri;ateBindlng Binding - Remove · tbinding) ,.._ _____ __,,

continue i........---------'

return

Fig. 14

US 9,591,104 B2

,1402
;

binding = session -->
Binding Tobie

(edge --·> [dge!D]

t ,,.-1403

ListDotoSet
(*currentBinding,

binding)

t
(relum)

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 23 of 33 PageID #: 399

Juniper Ex. 1041-p. 150
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 15 of 16 US 9,591,104 B2

find Path

elem :::: null
short[ntry ::: nuH

firstBinding :::
ListHeadOofo

(pothAddress -->
Binding List)

1501
r1502
I

path ::: enlry -> Poth

Return

Fig. 15

f. m• ,. rtso1
/ irs1omomg ,

/ .. == UstNerlDaia
(UsiMexl(entrv -> Poth ->

Sk1cklisl, NULL)) -> Member
-> Bindi11~ && !L1siNmd(e11try ->

Palh -> StccKLisl, enlry -> member ->
S!ockUstEnlry) && !snor!Entry11 (entry

,,-1508 -> Polh -> Sl(lckListS1ze <
shor!Entry -> Paih ->

SfockListSize
shortEntry ::: 1

entry

entry ::: shortEntry

(1510

j polh = eni; -> ~}-(Return)

1513 1514 ~,:,:
/ PathEntry -> "'- HO Create Pain (poth Address, <~ &!_Path -> Slaiij ;,.-..__,..,,.. PaihEntry -> mo_,R

elem::: m.11!
entry :: UstHeodDola
(po!h - > SlackUst) ~exlend Polhtnlry -> QO::i)

YES ; l Sf S 1515-" ~--------'

elem ;;; Paih[ntry -)
Member -> AddressEn!ry •------···--•

entry = Palh[ntry
ExtendPoth

(path, map, siatus) ----(Return)

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 24 of 33 PageID #: 400

Juniper Ex. 1041-p. 151
Juniper v Implicit

U.S. Patent Mar.7,2017 Sheet 16 of 16 US 9,591,104 B2

Process
Paih Hopping

oldStack = PathEntry ->
Path - > stacklist

YES

1603

.-----------, (1604
newStack =

path - > Stocklist

__ _,_ __ _, ~1605
oldE!m = UstNext
(oldStock, Null)

,------'-t __ ___, 1 1606
e!em ::: UstNext
(NewStock, Null)

1607

Fig. 16

1610

1611
entry = UstHeadOata -----.
(path - > Stacklist)

...----------./1609
entry :::: UstoatoPrev
{newSlack, & elem)

YES /"1608

NO

.---_.....---.1 1612
UstHeodlnserl

(returnlist, Entry)

Return
\ (return list)

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 25 of 33 PageID #: 401

Juniper Ex. 1041-p. 152
Juniper v Implicit

US 9,591,104 B2
1

METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

2
would be expected to output the data to computer displays,
television displays, entertainment centers, speakers, record
ing devices, and so on in many different formats. Moreover,
since the various conversion routines may be developed by CROSS REFERENCES TO RELATED

APPLICATIONS

The present application is a continuation of U.S. appli
cation Ser. No. 14/230,952, filed Mar. 31, 2014 (now U.S.
Pat. No. 9,270,790), which is a continuation of U.S. appli
cation Ser. No. 13/911,324, filed Jun. 6, 2013 (now U.S. Pat.
No. 8,694,683), which is a continuation of U.S. application
Ser. No. 13/236,090, filed Sep. 19, 2011 (now abandoned),
which is a continuation of US. application Ser. No. 10/636,
314, filed Aug. 6, 2003 (now U.S. Pat. No. 8,055,786),
which is a continuation ofU.S application Ser. No. 09/474,
664, filed Dec. 29, 1999 (now U.S. Pat. No. 6,629,163); the
disclosures of each of the above-referenced applications are
incorporated by reference herein in their entireties.

5 different organizations, it may not be easy to identify that the
output format of one conversion routine is compatible with
the input format of another conversion routine.

It would be desirable to have a technique for dynamically
identifying a series of conversion routines for processing

10 data. In addition, it would be desirable to have a technique
in which the output format of one conversion routine can be
identified as being compatible with the input format of
another conversion routine. It would also be desirable to
store the identification of a series of conversion routines so

15 that the series can be quickly identified when data is
received.

TECHNICAL FIELD

The present invention relates generally to a computer
system for data demultiplexing.

BACKGROUND

20

25

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating example processing
of a message by the conversion system.

FIG. 2 is a block diagram illustrating a sequence of edges.
FIG. 3 is a block diagram illustrating components of the

conversion system in one embodiment.
FIG. 4 is a block diagram illustrating example path data

structures in one embodiment.
FIG. 5 is a block diagram that illustrates the interrela

tionship of the data structures of a path.
Computer systems, which are becoming increasingly per

vasive, generate data in a wide variety of formats. The
Internet is an example of interconnected computer systems
that generate data in many different formats. Indeed, when
data is generated on one computer system and is transmitted

FIG. 6 is a block diagram that illustrates the interrela-
30 tionship of the data structures associated with a session.

to another computer system to be displayed, the data may be
converted in many different intermediate formats before it is
eventually displayed. For example, the generating computer
system may initially store the data in a bitmap format. To 35

send the data to another computer system, the computer
system may first compress the bitmap data and then encrypt
the compressed data. The computer system may then convert
that compressed data into a TCP format and then into an IP
format. The IP formatted data may be converted into a 40

transmission format, such as an ethernet format. The data in
the transmission format is then sent to a receiving computer
system. The receiving computer system would need to
perform each of these conversions in reverse order to
convert the data in the bitmap format. In addition, the 45

receiving computer system may need to convert the bitmap
data into a format that is appropriate for rendering on output
device.

In order to process data in such a wide variety of formats,
both sending and receiving computer systems need to have 50

many conversion routines available to support the various
formats. These computer systems typically use predefined
configuration information to load the correct combination of
conversion routines for processing data. These computer
systems also use a process-oriented approach when process- 55

ing data with these conversion routines. When using a
process-oriented approach, a computer system may create a
separate process for each conversion that needs to take
place. A computer system in certain situations, however, can
be expected to receive data and to provide data in many 60

different formats that may not be known until the data is
received. The overhead of statically providing each possible
series of conversion routines is very high. For example, a
computer system that serves as a central controller for data
received within a home would be expected to process data 65

received via telephone lines, cable TV lines, and satellite
connections in many different formats. The central controller

FIGS. 7 A, 7B, and 7C comprise a flow diagram illus
trating the processing of the message send routine.

FIG. 8 is a flow diagram of the demux routine.
FIG. 9 is a flow diagram of the initialize demux routine.
FIG. 10 is a flow diagram of the init end routine.
FIG. 11 is a flow diagram of a routine to get the next

binding.
FIG. 12 is a flow diagram of the get key routine.
FIG. 13 is a flow diagram of the get session routine.
FIG. 14 is a flow diagram of the nail binding routine.
FIG. 15 is a flow diagram of the find path routine.
FIG. 16 is a flow diagram of the process of path hopping

routine.

DETAILED DESCRIPTION

A method and system for converting a message that may
contain multiple packets from an source format into a target
format. When a packet of a message is received, the con
version system in one embodiment searches for and identi
fies a sequence of conversion routines (or more generally
message handlers) for processing the packets of the message
by comparing the input and output formats of the conversion
routines. (A message is a collection of data that is related in
some way, such as stream of video or audio data or an email
message.) The identified sequence of conversion routines is
used to convert the message from the source format to the
target format using various intermediate formats. The con
version system then queues the packet for processing by the
identified sequence of conversion routines. The conversion
system stores the identified sequence so that the sequence
can be quickly found (without searching) when the next
packet in the message is received. When subsequent packets
of the message are received, the conversion system identifies
the sequence and queues the packets for pressing by the
sequence. Because the conversion system receives multiple
messages with different source and target formats and iden-

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 26 of 33 PageID #: 402

Juniper Ex. 1041-p. 153
Juniper v Implicit

US 9,591,104 B2
3

tifies a sequence of conversion routines for each message,
the conversion systems effectively "demultiplexes" the mes
sages. That is, the conversion system demultiplexes the
messages by receiving the message, identifying the
sequence of conversion routines, and controlling the pro
cessing of each message by the identified sequence. More
over, since the conversion routines may need to retain state
information between the receipt of one packet of a message
and the next packet of that message, the conversion system
maintains state information as an instance or session of the
conversion routine. The conversion system routes all pack
ets for a message through the same session of each conver
sion routine so that the same state or instance information
can be used by all packets of the message. A sequence of
sessions of conversion routines is referred to as a "path." In
one embodiment, each path has a path thread associated with
it for processing of each packet destined for that path.

In one embodiment, the packets of the messages are
initially received by "drivers," such as an Ethernet driver.
When a driver receives a packet, it forwards the packet to a
forwarding component of the conversion system. The for
warding component is responsible for identifying the session
of the conversion routine that should next process the packet
and invoking that conversion routine. When invoked by a
driver, the forwarding component may use a demultiplexing
("demux") component to identify the session of the first
conversion routine of the path that is to process the packet
and then queues the packet for processing by the path. A path
thread is associated with each path. Each path thread is
responsible for retrieving packets from the queue of its path
and forwarding the packets to the forwarding component.
When the forwarding component is invoked by a path
thread, it initially invokes the first conversion routine in the
path. That conversion routine processes the packet and
forwards the processed packet to the forwarding component,
which then invokes the second conversion routine in the
path. The process of invoking the conversion routines and
forwarding the processed packet to the next conversion
routine continues until the last conversion routine in the path

4
mation. The dynamic identification of conversion routines is
described in U.S. patent application Ser. No. 11/933,093,
filed on Oct. 31, 2007 (now U.S. Pat. No. 7,730,211),
entitled "Method and System for Generating a Mapping

5 Between Types of Data," which is hereby incorporated by
reference.

FIG. 1 is a block diagram illustrating example processing
of a message by the conversion system. The driver 101
receives the packets of the message from a network. The

10 driver performs any appropriate processing of the packet and
invokes a message send routine passing the processed packet
along with a reference path entry 150. The message send
routine is an embodiment of the forwarding component. A
path is represented by a series of path entries, which are

15 represented by triangles. Each member path entry represents
a session and conversion routine of the path, and a reference
path entry represents the overall path. The passed reference
path entry 150 indicates to the message send routine that it
is being invoked by a driver. The message send routine

20 invokes the demux routine 102 to search for and identify the
path of sessions that is to process the packet. The demux
routine may in turn invoke the label map get routine 104 to
identify a sequence of conversion routines for processing the
packet. In this example, the label map get routine identifies

25 the first three conversion routines, and the demux routine
creates the member path entries 151, 152, 153 of the path for
these conversion routines. Each path entry identifies a ses
sion for a conversion routine, and the sequence of path
entries 151-155 identifies a path. The message send routine

30 then queues the packet on the queue 149 for the path that is
to process the packets of the message. The path thread 105
for the path retrieves the packet from the queue and invokes
the message send routine 106 passing the packet and an
indication of the path. The message send routine determines

35 that the next session and conversion routine as indicated by
path entry 151 has already been found. The message send
routine then invokes the instance of the conversion routine
for the session. The conversion routine processes the packet

is invoked. A conversion routine may defer invocation of the 40

forwarding component until it aggregates multiple packets

and then invokes the message send routine 107. This pro
cessing continues until the message send routine invokes the
demux routine 110 after the packet is processed by the

or may invoke the forwarding component multiple times for
a packet once for each sub-packet.

conversion routine represented by path entry 153. The
demux routine examines the path and determines that it has
no more path entries. The demux routine then invokes the
label map get routine 111 to identify the conversion routines
for further processing of the packet. When the conversion
routines are identified, the demux routine adds path entries
154, 155 to the path. The messages send routine invokes the
conversion routine associated with path entry 154. Eventu
ally, the conversion routine associated with path entry 155
performs the final processing for the path.

The label map get routine identifies a sequence of"edges"
for converting data in one format into another format. Each
edge corresponds to a conversion routine for converting data
from one format to another. Each edge is part of a "protocol"
(or more generally a component) that may include multiple
related edges. For example, a protocol may have edges that
each convert data in one format into several different for
mats. Each edge has an input format and an output format.
The label map get routine identifies a sequence of edges such
that the output format of each edge is compatible with the
input format of another edge in the sequence, except for the
input format of the first edge in the sequence and the output
format of the last edge in the sequence. FIG. 2 is a block

The forwarding component identifies the next conversion
routine in the path using the demux component and stores 45

that identification so that the forwarding component can
quickly identify the conversion routine when subsequent
packets of the same message are received. The demux
component, searches for the conversion routine and session
that is to next process a packet. The demux component then 50

stores the identification of the session and conversion rou
tine as part of a path data structure so that the conversion
system does not need to search for the session and conver
sion routine when requested to demultiplex subsequent
packets of the same message. When searching for the next 55

conversion routine, the demux component invokes a label
map get component that identifies the next conversion
routine. Once the conversion routine is found, the demux
component identifies the session associated with that mes
sage by, in one embodiment, invoking code associated with 60

the conversion routine. In general, the code of the conver
sion routine determines what session should be associated
with a message. In certain situations, multiple messages may
share the same session. The demux component then extends
the path for processing that packet to include that session
and conversion routine. The sessions are identified so that
each packet is associated with the appropriate state infor-

65 diagram illustrating a sequence of edges. Protocol PI
includes an edge for converting format Dl to format D2 and
an edge for converting format Dl to format D3; protocol P2

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 27 of 33 PageID #: 403

Juniper Ex. 1041-p. 154
Juniper v Implicit

US 9,591,104 B2
5

includes an edge for converting format D2 to format D5, and
so on. A 30 sequence for converting format D 1 to format D
15 is shown by the curved lines and is defined by the address
"Pl:I, P2:1, P3:2, P4:7." When a packet of data in format D
I is processed by this sequence, it is converted to format DIS. 5

During the process, the packet of data is sequentially con
verted to format D2, D5, and D13. The output format of
protocol P2, edge 1 (i.e., P2: 1) is format D5, but the input
format of P3:2 is format Dl0. The label map get routine uses
an aliasing mechanism by which two formats, such as D5 10

and Dl0 are identified as being compatible. The use of
aliasing allows different names of the same format or
compatible formats to be correlated.

FIG. 3 is a block diagram illustrating components of the
conversion system in one embodiment. The conversion 15

system 300 can operate on a computer system with a central
processing unit 301, I/0 devices 302, and memory 303. The
110 devices may include an Internet connection, a connec
tion to various output devices such as a television, and a
connection to various input devices such as a television 20

receiver. The media mapping system may be stored as
instructions on a computer-readable medium, such as a disk
drive, memory, or data transmission medium. The data
structures of the media mapping system may also be stored

6
path entries 415, 425, and 433. The conversion system
represents the path entries of a path by a stack list. Each path
also has a queue 471, 472, 473 associated with it. Each
queue stores the messages that are to be processed by the
conversion routines of the edges of the path. Each session
includes a binding 412, 422, 432, 442, 452 that is repre-
sented by an oblong shape adjacent to the corresponding
edge. A binding for an edge of a session represents those
paths that include the edge. The binding 412 indicates that
three paths are bound (or "nailed") to edge 411 of the
Ethernet session 410. The conversion system uses a path list
to track the paths that are bound to a binding. The path list
of binding 412 identifies path entries 413, 414, and 415.

FIG. 5 is a block diagram that illustrates the interrela
tionship of the data structures of a path. Each path has a
corresponding path structure 501 that contains status infor
mation and pointers to a message queue structure 502, a
stack list structure 503, and a path address structure 504. The
status of a path can be extend, continue, or end. Each
message handler returns a status for the path. The status of
extend means that additional path entries should be added to
the path. The status of end means that this path should end
at this point and subsequent processing should continue at a
new path. The status of continue means that the protocol
does not care how the path is handled. In one embodiment,
when a path has a status of continue, the system creates a
copy of the path and extends the copy. The message queue
structure identifies the messages (or packets of a message)
that are queued up for processing by the path and identifies
the path entry at where the processing should start. The stack
list structure contains a list of pointers to the path entry
structures 505 that comprise the path. Each path entry
structure contains a pointer to the corresponding path data
structure, a pointer to a map structure 507, a pointer to a
multiplex list 508, a pointer to the corresponding path
address structure, and a pointer to a member structure 509.
A map structure identifies the output label of the edge of the
path entry and optionally a target label and a target key. A
target key identifies the session associated with the protocol

on a computer-readable medium. The conversion system 25

includes drivers 304, a• forwarding component 305, a
demux component 306, a label map get component 307, path
data structures 308, conversion routines 309, and instance
data 310. Each driver receives data in a source format and
forwards the data to the forwarding component. The for- 30

warding component identifies the next conversion routine in
the path and invokes that conversion routine to process a
packet. The forwarding component may invoke the demux
component to search for the next conversion routine and add
that conversion routine to the path. The demux component 35

may invoke the label map get component to identify the next
conversion routine to process the packet. The demux com
ponent stores information defining the paths in the path
structures. The conversion routines store their state infor
mation in the instance data. 40 that converts the packet to the target label. (The terms

"media," "label," and "format" are used interchangeably to
refer to the output of a protocol.) The multiplex list is used
during the demux process to track possible next edges when
a path is being identified as having more than one next edge.

FIG. 4 is a block diagram illustrating example path data
structures in one embodiment. The demux component iden
tifies a sequence of "edges" for converting data in one
format into another format by invoking the label map get
component. Each edge corresponds to a conversion routine
for converting data from one format to another. As discussed
above, each edge is part of a "protocol" that may include
multiple related edges. For example, a protocol may have
edges that each convert data in one format into several
different formats. Each edge has as an input format ("input
label") and an output format ("output label"). Each rectangle
represents a session 410, 420, 430, 440, 450 for a protocol.
A session corresponds to an instance of a protocol. That is,
the session includes the protocol and state information
associated with that instance of the protocol. Session 410
corresponds to a session for an Ethernet protocol; session
420 corresponds to a session for an IP protocol; and sessions
430, 440, 450 correspond to sessions for a TCP protocol.
FIG. 4 illustrates three paths 461, 462, 463. Each path
includes edges 411, 421, 431. The paths share the same
Ethernet session 410 and IP session 420, but each path has
a unique TCP session 430, 440, 450. Thus, path 461 includes
sessions 410, 420, and 430; path 462 includes sessions 410,
420, and 440; and path 463 includes sessions 410, 420, and
450. The conversion system represents each path by a
sequence of path entry structures. Each path entry structure
is represented by a triangle. Thus, path 461 is represented by

45 The member structure indicates that the path entry repre
sents an edge of a path and contains a pointer to a binding
structure to which the path entry is associated (or "nailed"),
a stack list entry is the position of the path entry within the
associated stack list, a path list entry is the position of the

50 path entry within the associated path list of a binding and an
address entry is the position of the binding within the
associated path address. A path address of a path identifies
the bindings to which the path entries are bound. The path
address structure contains a URL for the path, the name of

55 the path identified by the address, a pointer to a binding list
structure 506, and the identification of the current binding
within the binding list. The URL (e.g., "protocol://tcp(O)/ip
(0)/eth(O)") identifies conversion routines (e.g., protocols
and edges) of a path in a human-readable format. The URL

60 (universal resource locator) includes a type field (e.g., "pro
tocol") followed by a sequence of items (e.g., "tcp(O)"). The
type field specifies the format of the following information
in the URL, that specifies that the type field is followed by
a sequence of items. Each item identifies a protocol and an

65 edge (e.g., the protocol is "tcp" and the edge is "O"). In one
embodiment, the items of a URL may also contain an
identifier of state information that is to be used when

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 28 of 33 PageID #: 404

Juniper Ex. 1041-p. 155
Juniper v Implicit

US 9,591,104 B2
7

processing a message. These URLs can be used to illustrate
to a user various paths that are available for processing a
message. The current binding is the last binding in the path

8
ciated path and the routine continues at block 703A, else the
routine needs to identify a path and the routine continues at
block 707. In block 703A, the routine sets the entry to the
first path entry in the path and continues at block 717. In as the path is being built. The binding list structure contains

a list of pointers to the binding structures associated with the
path. Each binding structure 510 contains a pointer to a
session structure, a pointer to an edge structure, a key, a path
list structure, and a list of active paths through the binding.
The key identifies the state information for a session of a
protocol. A path list structure contains pointers to the path
entry structures associated with the binding.

5 block 704, the routine sets the variable position to the stack
list entry of the passed path entry. In decision block 705, the
routine sets the variable next entry to the next path entry in
the path. If there is a next entry in the path, then the next
session and edge of the protocol have been identified and the

FIG. 6 is a block diagram that illustrates the interrela
tionship of the data structures associated with a session. A
session structure 601 contains the context for the session, a
pointer to a protocol structure for the session, a pointer to a
binding table structure 602 for the bindings associated with
the session, and the key. The binding table structure contains

10 routine continues at block 706, else the routine continues at
block 707. In block 706, the routine passes the message to
the message handler of the edge associated with the next
entry and then returns. In block 706, the routine invokes the
demux routine passing the passed message, the address of

15 the passed path entry, and the passed path entry. The demux
routine returns a list of candidate paths for processing of the
message. In decision block 708, if at least one candidate path
is returned, then the routine continues at block 709, else the
routine returns.

a list of pointers to the binding structures 510 for the session.
The binding structure is described above with reference to
FIG. 5. The path list structure 603 of the binding structure 20

contains a list of pointers to path entry structures 505. The
path entry structures are described with reference to FIG. 5.

FIGS. 7 A, 7B, and 7C comprise a flow diagram illus
trating the processing of the message send routine. The
message send routine is passed a message along with the 25

path entry associated with the session that last processed the
message. The message send routine invokes the message
handler of the next edge in the path or queues the message
for processing by a path. The message handler invokes the
demux routine to identify the next path entry of the path. 30

When a driver receives a message, it invokes the message
send routine passing a reference path entry. The message
send routine examines the passed path entry to determine (1)
whether multiple paths branch from the path of the passed
path entry, (2) whether the passed path entry is a reference 35

with an associated path, or (3) whether the passed path entry
is a member with a next path entry. If multiple paths branch
from the path of the passed path entry, then the routine
recursively invokes the message send routine for each path.
If the path entry is a reference with an associated path, then 40

the driver previously invoked the message send routine,
which associated a path with the reference path entry, and
the routine places the message on the queue for the path. If
the passed path entry is a member with a next path entry,
then the routine invokes the message handler (i.e., conver- 45

sion routine of the edge) associated with the next path entry.
If the passed path entry is a reference without an associated
path or is a member without a next path entry, then the
routine invokes the demux routine to identify the next path
entry. The routine then recursively invokes the messages 50

send routine passing that next path entry. In decision block
701, if the passed path entry has a multiplex list, then the
path branches off into multiple paths and the routine con
tinues at block 709, else the routine continues at block 702.
A packet may be processed by several different paths. For 55

example, if a certain message is directed to two different
output devices, then the message is processed by two
different paths. Also, a message may need to be processed by
multiple partial paths when searching for a complete path. In
decision block 702, if the passed path entry is a member, 60

then either the next path entry indicates a nailed binding or
the path needs to be extended and the routine continues at
block 704, else the routine continues at block 703. A nailed
binding is a binding (e.g., edge and protocol) is associated
with a session. In decision block 703, the passed path entry 65

is a reference and if the passed path entry has an associated
path, then the routine can queue the message for the asso-

Blocks 709-716 illustrate the processing of a list of
candidate paths that extend from the passed path entry. In
blocks 710-716, the routine loops selecting each candidate
path and sending the message to be process by each candi
date path. In block 710, the routine sets the next entry to the
first path entry of the next candidate path. In decision block
711, if all the candidate paths have not yet been processed,
then the routine continues at block 712, else the routine
returns. In decision block 712, if the next entry is equal to
the passed path entry, then the path is to be extended and the
routine continues at block 705, else the routine continues at
block 713. The candidate paths include a first path entry that
is a reference path entry for new paths or that is the last path
entry of a path being extended. In decision block 713, if the
number of candidate paths is greater than one, then the
routine continues at block 714, else the routine continues at
block 718. In decision block 714, if the passed path entry has
a multiplex list associated with it, then the routine continues
at block 716, else the routine continues at block 715. In
block 715, 11 the routine associates the list of candidate path
with the multiplex list of the passed path entry and continues
at block 716. In block 716, the routine sends the message to
the next entry by recursively invoking the message send
routine. The routine then loops to block 710 to select the
next entry associated with the next candidate path.

Blocks 717-718 are performed when the passed path entry
is a reference path entry that has a path associated with it. In
block 717, if there is a path associated with the next entry,
then the routine continues at block 718, else the routine
returns. In block 718, the routine queues the message for the
path of the next entry and then returns.

FIG. 8 is a flow diagram of the demux routine. This
routine is passed the packet (message) that is received, an
address structure, and a path entry structure. The demux
routine extends a path, creating one if necessary. The routine
loops identifying the next binding (edge and protocol) that
is to process the message and "nailing" the binding to a
session for the message, if not already nailed. After identi
fying the nailed binding, the routine searches for the shortest
path through the nailed binding, creating a path if none
exists. In block 801, the routine invokes the initialize demux
routine. In blocks 802-810, the routine loops identifying a
path or portion of a path for processing the passed message.
In decision block 802, if there is a current status, which was
returned by the demuxkey routine that was last invoked
(e.g., continue, extend, end, or postpone), then the routine
continues at block 803, else the routine continues at block
811. In block 803, the routine invokes the get next binding

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 29 of 33 PageID #: 405

Juniper Ex. 1041-p. 156
Juniper v Implicit

US 9,591,104 B2
9

routine. The get next binding routine returns the next bind
ing in the path. The binding is the edge of a protocol. That
routine extends the path as appropriate to include the bind
ing. The routine returns a return status of break, binding, or
multiple. The return status of binding indicates that the next
binding in the path was found by extending the path as
appropriate and the routine continues to "nail" the binding to
a session as appropriate. The return status of multiple means
that multiple trails (e.g., candidate paths) were identified as
possible extensions of the path. In a decision block 804, if
the return status is break, then the routine continues at block
811. If the return status is multiple, then the routine returns.
If the return status is binding, then the routine continues at
block 805. In decision block 805, if the retrieved binding is
nailed as indicated by being assigned to a session, then the
routine loops to block 802, else the routine continues at
block 806. In block 806, the routine invokes the get key
routine of the edge associated with the binding. The get key
routine creates the key for the session associated with the
message. If a key cannot be created until subsequent bind
ings are processed or because the current binding is to be
removed, then the get key routine returns a next binding
status, else it returns a continue status. In decision block 807,

10
binding whose nail was postponed. In decision block 904, if
the passed path entry is associated with a path, then the
routine continues at block 905, else the routine continues at
block 906. In block 905, the routine sets the variable status

5 to the status of that path. In block 906, if the variable status
is demux continue, then the routine continues at block 907.
If the variable status is demux end, then the routine contin
ues at block 908. If the variable status is demux extend, then
the routine continues at block 909. In block 907, the status

10 is demux continue, and the routine sets the local pointer path
address to the passed address and continues at block 911. In
block 908, the status is demux end, and the routine invokes
the init end routine and continues at block 911. In block 909,
the status is demux extend, and the routine sets the local path

15 address to the address of the path that contains the passed
path entry. In block 910, the routine sets the address element
and the current binding of the path address pointed to by the
local pointer path address to the address entry of the member
structure of the passed path entry. In the block 911, the

20 routine sets the local variable status to demux continue and
sets the local binding list structure to the binding list
structure from the local path address structure. In block 912,
the routine sets the local pointer current binding to the
address of the current binding pointed to by local pointer if the return status of the get key routine is next binding, then

the routine loops to block 802 to get the next binding, else
the routine continues at block 808. In block 808, the routine
invokes the routine get session. The routine get session
returns the session associated with the key, creating a new
session if necessary. In block 809, the routine invokes the
routine nail binding. The routine nail binding retrieves the 30

binding if one is already nailed to the session. Otherwise,
that routine nails the binding to the session. In decision
block 810, if the nail binding routine returns a status of
simplex, then the routine continues at block 811 because
only one path can use the session, else the routine loops to 35

block 802. Immediately upon return from the nail binding
routine, the routine may invoke a set map routine of the edge
passing the session and a map to allow the edge to set its
map. In block 811, the routine invokes the find path routine,
which finds the shortest path through the binding list and 40

creates a path if necessary. In block 812, the routine invokes
the process path hopping routine, which determines whether
the identified path is part of a different path. Path hopping
occurs when, for example, IP fragments are built up along
separate paths, but once the fragments are built up they can 45

be processed by the same subsequent path.

25 path address and sets the local variable postpone to 0. In
block 913, the routine sets the function traverse to the
function that retrieves the next data in a list and sets the local
pointer session to null. The routine then returns.

FIG. 10 is a flow diagram of the init end routine. If the
path is simplex, then the routine creates a new path from
where the other one ended, else the routine creates a copy of
the path. In block 1001, if the binding of the passed path
entry is simplex (i.e., only one path can be bound to this
binding), then the routine continues at block 1002, else the
routine continues at block 1003. In block 1002, the routine
sets the local pointer path address to point to an address
structure that is a copy of the address structure associated
with the passed path entry structure with its current binding
to the address entry associated with the passed path entry
structure, and then returns. In block 1003, the routine sets
the local pointer path address to point to an address structure
that contains the URL of the path that contains the passed
path entry. In block 1004, the routine sets the local pointer
element to null to initialize the selection of the bindings. In
blocks 1005 through 1007, the routine loops adding all the
bindings for the address of the passed path entry that include

FIG. 9 is a flow diagram of the initialize demux routine.
This routine is invoked to initialize the local data structures
that are used in the demux process and to identify the initial
binding. The demux routine finds the shortest path from the
initial binding to the final binding. If the current status is
demux extend, then the routine is to extend the path of the
passed path entry by adding additional path entries. If the
current status is demux end, then the demux routine is
ending the current path. If the current status is demux
continue, then the demux routine is in the process of
continuing to extend or in the process of starting a path
identified by the passed address. In block 901, the routine
sets the local map structure to the map structure in the passed
path entry structure. The map structure identifies the output
label, the target label, and the target key. In the block 902,
the routine initializes the local message structure to the
passed message structure and initializes the pointers path
and address element to null. In block 903, the routine sets of
the variable saved status to O and the variable status to
demux continue. The variable saved status is used to track
the status of the demux process when backtracking to nail a

and are before the passed path entry to the address pointed
to by the local path address. In block 1005, the routine
retrieves the next binding from the binding list starting with

50 the first. If there is no such binding, then the routine returns,
else the routine continues at block 1006. In block 1006, the
routine adds the binding to the binding list of the local path
address structure and sets the current binding of the local
variable path address. In the block 1007, if the local pointer

55 element is equal to the address entry of the passed path entry,
then the routine returns, else the routine loops to block 1005
to select the next binding.

FIG. 11 is a flow diagram of a routine to get the next
binding. This routine returns the next binding from the local

60 binding list. If there is no next binding, then the routine
invokes the routine label map get to identify the list of edges
("trails") that will map the output label to the target label. If
only one trail is identified, then the binding list of path
address is extended by the edges of the trail. If multiple trails

65 are identified, then a path is created for each trail and the
routine returns so that the demux process can be invoked for
each created path. In block 1101, the routine sets the local

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 30 of 33 PageID #: 406

Juniper Ex. 1041-p. 157
Juniper v Implicit

US 9,591,104 B2
11

pointer binding to point to the next or previous (as indicated
by the traverse function) binding in the local binding list. In
block 1102, ifa binding was found, then the routine returns

12
binding status. In blocks 1206-1214, the routine processes
the postponing of the creating ofa key. In blocks 1207-1210,
if the creating of a key has been postponed, then the routine
indicates to backtrack on the path, save the demux status, an indication that a binding was found, else the routine

continues at block 1103. In block 1103, the routine invokes
the label map get function passing the output label and target
label of the local map structure. The label map get function
returns a trail list. A trail is a list of edges from the output
label to the target label. In decision block 1104, if the size
of the trail list is one, then the routine continues at block
1105, else the routine continues at block 1112. In blocks
1105-1111, the routine extends the binding list by adding a
binding data structure for each edge in the trail. The routine
then sets the local binding to the last binding in the binding
list. In block 1108, the routine sets the local pointer current
binding to point to the last binding in the local binding list.
In block 1106, the routine sets the local variable temp trail

5 and set the demux status to demux continue. In blocks
1211-1213, if the creating of a key has not been postponed,
then the routine indicates to continue forward in the path and
to restore any saved demux status. The save demux status is
the status associated by the binding where the backtrack

10 started. In decision block 1206, if the variable postpone is
set, then the routine continues at block 1207, else the routine
continues at block 1211. In block 1207, the routine decre
ments the variable postpone and sets the variable traverse to
the list previous data function. In decision block 1208, if the

15 variable saved status is set, then the routine continues at
block 1210, else the routine continues at block 1209. The
variable saved status contains the status of the demux
process when the demux process started to backtrack. In to the trail in the trail list. In block 1107, the routine extends

the binding list by temp trail by adding a binding for each
edge in the trail. These bindings are not yet nailed. In block 20

1108, the routine sets the local binding to point to the last
binding in the local binding list. In decision block 1109, if
the local binding does not have a key for a session and the
local map has a target key for a session, then the routine sets
the key for the binding to the target key of the local map and 25

continues at block 1110, else the routine loops to block 1101
to retrieve the next binding in path. In block 1110, the
routine sets the key of the local binding to the target key of
the local map. In block 1111, the routine sets the target key
of the local map to null and then loop to block 1101 to return 30

the next binding. In decision block 1112, if the local session
is set, then the demultiplexing is already in progress and the
routine returns a break status. In block 1113, the routine
invokes a prepare multicast paths routine to prepare a path
entry for each trail in the trail list. The routine then returns 35

a multiple status.
FIG. 12 is a flow diagram of the get key routine. The get

key routine invokes an edge's demuxkey routine to retrieve
a key for the session associated with the message. The key
identifies the session of a protocol. The demux key routine 40

creates the appropriate key for the message. The demux key
routine returns a status of remove, postpone, or other. The
status of remove indicates that the current binding should be
removed from the path. The status of postpone indicates that
the demux key routine cannot create the key because it needs 45

information provided by subsequent protocols in the path.
For example, a TCP session is defined by a combination of
a remote and local port address and an IP address. Thus, the
TCP protocol postpones the creating of a key until the IP
protocol identifies the IP address. The get key routine returns 50

a next binding status to continue at the next binding in the
path. Otherwise, the routine returns a continue status. In
block 1201, the routine sets the local edge to the edge of the
local binding (current binding) and sets the local protocol to
the protocol of the local edge. In block 1202, the routine 55

invokes the demux key routine of the local edge passing the
local message, local path address, and local map. The demux
key routine sets the key in the local binding. In decision
block 1203, if the demux key routine returns a status of
remove, then the routine continues at block 1204. If the 60

demux key routine returns a status of postpone, then the
routine continues at block 1205, else the routine continues at
block 1206. In block 1204, the routine sets the flag of the
local binding to indicate that the binding is to be removed
and continues at block 1206. In block 1205, the routine sets 65

the variable traverse to the function to list the next data,
increments the variable postpone, and then returns a next

block 1209, the routine sets the variable saved status to the
variable status. In block 1210, the routine sets the variable
status to demux continue and continues at block 1214. In
block 1211, the routine sets the variable traverse to the list
next data function. In decision block 1212, if the variable
saved status in set, then the routine continues at block 1213,
else the routine continues at block 1214. In block 1213, the
routine sets the variable status to the variable saved status
and sets the variable saved status to 0. In decision block
1214, if the local binding indicates that it is to be removed,
then the routine returns a next binding status, else the routine
returns a continue status.

FIG. 13 is a flow diagram of the get session routine. This
routine retrieves the session data structure, creating a data
structure session if necessary, for the key indicated by the
binding. In block 1301, the routine retrieves the session from
the session table of the local protocol indicated by the key
of the local binding. Each protocol maintains a mapping
from each key to the session associated with the key. In
decision block 1302, if there is no session, then the routine
continues at block 1303, else the routine returns. In block
1303, the routine creates a session for the local protocol. In
block 1304, the routine initializes the key for the local
session based on the key of the local binding. In block 1305,
the routine puts the session into the session table of the local
protocol. In block 1306, the routine invokes the create
session function of the protocol to allow the protocol to
initialize its context and then returns.

FIG. 14 is a flow diagram of the nail binding routine. This
routine determines whether a binding is already associated
with ("nailed to") the session. If so, the routine returns that
binding. If not, the routine associates the binding with the
session. The routine returns a status of simplex to indicate
that only one path can extend through the nailed binding. In
decision block 1401, if the binding table of the session
contains an entry for the edge, then the routine continues at
block 1402, else the routine continues at block 1405. In
block 1402, the routine sets the binding to the entry from the
binding table of the local session for the edge. In block 1403,
the routine sets the current binding to point to the binding
from the session. In block 1404, if the binding is simplex,
then the routine returns a simplex status, else the routine
returns. Blocks 1405 through 1410 are performed when
there is no binding in the session for the edge. In block 1405,
the routine sets the session of the binding to the variable
session. In block 1406, the routine sets the key of the binding
to the key from the session. In block 1407, the routine sets
the entry for the edge in the binding table of the local session
to the binding. In block 1408, the routine invokes the create

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 31 of 33 PageID #: 407

Juniper Ex. 1041-p. 158
Juniper v Implicit

US 9,591,104 B2
13 14

the path of the passed path entry is equal to the local path,
then the routine continues at 1612, else path hopping is
occurring and the routine continues at block 1603. In blocks
1603-1607, the routine loops positioning pointers at the first

binding function of the edge of the binding passing the
binding so the edge can initialize the binding. If that function
returns a status of remove, the routine continues at block
1409. In block 1409, the routine sets the binding to be
removed and then returns. 5 path entries of the paths that are not at the same binding. In

block 1603, the routine sets the variable old stack to the
stack list of the path of the passed path entry. In block 1604,
the routine sets the variable new stack to the stack list of the
local path. In block 1605, the routine sets the variable old

10 element to the next element in the old stack. In block 1606,
the routine sets the variable element to the next element in

FIG. 15 is a flow diagram of the find path routine. The find
path routine identifies the shortest path through the binding
list. If no such path exists, then the routine extends a path to
include the binding list. In decision block 1501, if the
binding is simplex and a path already goes through this
binding (returned as an entry), then the routine continues at
block 1502, else the routine continues at block 1503. In
block 1502, the routine sets the path to the path of the entry
and returns. In block 1503, the routine initializes the pointers
element and short entry to null. In block 1504, the routine 15

sets the path to the path of the passed path entry. If the local
path is not null and its status is demux extend, then the
routine continues at block 1509, else the routine continues at
block 1505. In blocks 1505-1508, the routine loops identi
fying the shortest path through the bindings in the binding 20

list. The routine loops selecting each path through the
binding. The selected path is eligible if it starts at the first
binding in the binding list and the path ends at the binding.
The routine loops setting the short entry to the shortest
eligible path found so far. In block 1505, the routine sets the 25

variable first binding to the first binding in the binding list
of the path address. In block 1506, the routine selects the
next path (entry) in the path list of the binding starting with
the first. If a path is selected (indicating that there are more
paths in the binding), then the routine continues at block 30

1507, else the routine continues at block 1509. In block
1507, the routine determines whether the selected path starts
at the first binding in the binding list, whether the selected
path ends at the last binding in the binding list, and whether
the number of path entries in the selected path is less than the 35

number of path entries in the shortest path selected so far. If
these conditions are all satisfied, then the routine continues
at block 1508, else the routine loops to block 1506 to select
the next path (entry). In block 1508, the routine sets the
shortest path (short entry) to the selected path and loops to 40

block 1506 to select the next path through the binding. In
block 1509, the routine sets the selected path (entry) to the
shortest path. In decision block 1510, if a path has been
found, then the routine continues at block 1511, else the
routine continues at block 1512. In block 1511, the routine 45

sets the path to the path of the selected path entry and
returns. Blocks 1512-1516 are performed when no paths
have been found. In block 1512, the routine sets the path to
the path of the passed path entry. If the passed path entry has
a path and its status is demux extend, then the routine 50

continues at block 1515, else the routine continues at block
1513. In block 1513, the routine creates a path for the path
address. In block 1514, the routine sets the variable element
to null and sets the path entry to the first element in the stack
list of the path. In block 1515, the routine sets the variable 55

element to be address entry of the member of the passed path
entry and sets the path entry to the passed path entry. In
block 1516, the routine invokes the extend path routine to
extend the path and then returns. The extend path routine
creates a path through the bindings of the binding list and 60

sets the path status to the current demux status.
FIG. 16 is a flow diagram of the process of path hopping

routine. Path hopping occurs when the path through the
binding list is not the same path as that of the passed path
entry. In decision block 1601, if the path of the passed path 65

entry is set, then the routine continues at block 1602, else the
routine continues at block 1609. In decision block 1602, if

the new stack. In decision block 1607, the routine loops until
the path entry that is not in the same binding is located. In
decision block 1608, if the variable old entry is set, then the
routine is not at the end of the hopped from path and the
routine continues at block 1609, else routine continues at
block 1612. In block 1609, the routine sets the variable entry
to the previous entry in the hopped-to path. In block 1610,
the routine sets the path of the passed path entry to the local
path. In block 1611, the routine sets the local entry to the first
path entry of the stack list of the local path. In block 1612,
the routine inserts an entry into return list and then returns.

Although the conversion system has been described in
terms of various embodiments, the invention is not limited
to these embodiments. Modification within the spirit of the
invention will be apparent to those skilled in the art. For
example, a conversion routine may be used for routing a
message and may perform no conversion of the message.
Also, a reference to a single copy of the message can be
passed to each conversion routine or demuxkey routine.
These routines can advance the reference past the header
information for the protocol so that the reference is posi
tioned at the next header. After the demux process, the
reference can be reset to point to the first header for
processing by the conversion routines in sequence. The
scope of the invention is defined by the claims that follow.

What is claimed is:
1. An apparatus, comprising:
a processing unit; and
a memory storing instructions executable by the process

ing unit to:
receive one or more packets of a message;
determine a key value using information in the one or

more packets;
identify, using the key value, a sequence of two or more

routines, wherein the sequence includes a routine
that is used to execute a Transmission Control Pro
tocol (TCP) to process packets having a TCP format;

create a path that includes one or more data structures
that indicate the identified sequence of two or more
routines, wherein the path is usable to store state
information associated with the message; and

process subsequent packets in the message using the
sequence of two or more routines indicated in the
path.

2. The apparatus of claim 1, wherein the key value
includes an IP address and one or more TCP port addresses.

3. The apparatus of claim 1, wherein the sequence of two
or more routines includes:

a second routine that is used to execute a second protocol
to process packets having a format other than the TCP
format, wherein the second protocol is an application
level protocol.

4. The apparatus of claim 3, wherein the second protocol
is an HTTP protocol.

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 32 of 33 PageID #: 408

Juniper Ex. 1041-p. 159
Juniper v Implicit

US 9,591,104 B2
15

5. The apparatus of claim 1, wherein the path further
indicates sessions corresponding to respective ones of the
sequence of two or more routines.

6. The apparatus of claim 1, wherein the path indicates the
key value and a queue for storing packets associated with the 5
message.

7. The apparatus of claim 1, wherein the sequence of two
or more routines includes a routine that is executable to
process information in the message without performing a
format conversion.
. 8. T~e apparatus of claim 1, wherein the memory stores

10

mstruct10ns executable by the processing unit to:
store, prior to receiving any packets of the message, a list

havmg a plurality of sequences of routines that includes
the sequence of two or more routines.

9. The apparatus of claim 8, wherein the instructions 15

executable by the processing unit to identify the sequence of
two or more routines are executable to select the sequence
of two or more routines from the list using the key value.

10. A non-transitory, computer-readable medium com
prising software instructions for processing a message, 20

wherein the software instructions, when executed, cause a
computer system to:

determine a key value based on information in one or
more received packets of the message, wherein the key
value includes an IP address and one or more Trans- 25

mission Control Protocol (TCP) port addresses;
identify, using the key value, a sequence of two or more

routines;
create one or more data structures that reference the

identified sequence of two or more routines and are 30

usable to store state information associated with the
message; and

process subsequent packets in the message using the
identified sequence of two or more routines, wherein
the sequence includes a routine that is used to execute 35

TCP to process at least one of the subsequent packets
having a TCP format.

11. The computer-readable medium of claim 10, wherein
the created one or more data structures include a reference
to the key value and to a queue for storing packets of the 40

message for processing.
12. The computer-readable medium of claim 10, wherein

the one or more data structures indicate sessions correspond
ing to respective ones of the sequence of two or more
routines.

16
13. The computer-readable medium of claim 10, wherein

the sequence of two or more routines includes a plurality of
application-level routines.

14. The computer-readable medium of claim 10, wherein
the software instructions, when executed, further cause the
computer system to store, prior to receiving any packets of
the message, a list of routine sequences that includes the
sequence of two or more routines.

15. The computer-readable medium of claim 14, wherein
the software instructions are executable to identify the
sequence of two or more routines by selecting, using the key
value, the sequence of two or more routines from the list.

16. A method, comprising:
receiving, by a computer network device, one or more

packets of a message;
determining, by the computer network device, a key value

based on information in the one or more packets;
identifying, by the computer network device, a particular

sequence of two or more routines using the key value,
wherein the particular sequence includes a routine that
is used to execute a Transmission Control Protocol
(TCP) to process packets having a TCP format;

creating, by the computer network device, one or more
data structures that reference the particular sequence,
wherein the one or more data structures are usable to
store state information associated with the message;
and

processing, by the computer network device, subsequent
packets in the message using the particular sequence.

17. The method of claim 16, further comprising:
storing, by the computer network device prior to receiving

any packets of the message, a list that indicates a
plurality of sequences of routines that includes the
particular sequence.

18. The method of claim 17, wherein the identifying
includes using the key value to select the particular sequence
from the list.

19. The method of claim 16, wherein the key value
includes an IP address and one or more TCP port addresses.

20. The method of claim 16, wherein the creating includes
storing, in the one or more data structures:

an indication of the key value; and
a reference to a queue for storing packets of the message.

* * * * *

Case 2:19-cv-00037-JRG Document 14-6 Filed 03/19/19 Page 33 of 33 PageID #: 409

Juniper Ex. 1041-p. 160
Juniper v Implicit

EXHIBIT 7

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 1 of 34 PageID #: 410

Juniper Ex. 1041-p. 161
Juniper v Implicit

c12) United States Patent
Balassanian

(54) METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

(71) Applicant: Implicit, LLC, Seattle, WA (US)

(72) Inventor: Edward Balassanian, Seattle, WA (US)

(73) Assignee: Implicit, LLC, Seattle, WA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 15/703,964

(22) Filed:

(65)

Sep. 13, 2017

Prior Publication Data

US 2018/0013865 Al Jan. 11, 2018

Related U.S. Application Data

(63) Continuation of application No. 15/450,790, filed on
Mar. 6, 2017, which is a continuation of application

(51) Int. Cl.
H04L 12158
H04L 29106

(52) U.S. Cl.

(Continued)

(2006.01)
(2006.01)

(Continued)

CPC H04L 69/08 (2013.01); H04L 29106
(2013.01); H04L 45100 (2013.01);

(Continued)
(58) Field of Classification Search

None
See application file for complete search history.

I 1111111111111111 1111111111 11111 lllll 111111111111111 11111 111111111111111111
US010027780B2

(IO) Patent No.: US 10,027,780 B2
*Jul. 17, 2018 (45) Date of Patent:

(56)

EP
EP

References Cited

U.S. PATENT DOCUMENTS

5,298,674 A
5,392,390 A

3/1994 Yun
2/1995 Crozier

(Continued)

FOREIGN PATENT DOCUMENTS

0408132 1/1991
0807347 11/1997

(Continued)

OTHER PUBLICATIONS

Non-Final Office Action in Inter Partes Reexamination Control No.
95/000,659 dated Aug. 16, 2013, 107 pages.

(Continued)

Primary Examiner - Due T Duong
(74) Attorney, Agent, or Firm - Meyertons, Hood,
Kivlin, Kowert & Goetze!, P.C.

(57) ABSTRACT

A method and system for demultiplexing packets of a
message is provided.
The demultiplexing system receives packets of a message,
identifies a sequence of message handlers for processing the
message, identifies state information associated with the
message for each message handler, and invokes the message
handlers passing the message and the associated state infor
mation. The system identifies the message handlers based on
the initial data type of the message and a target data type.
The identified message handlers effect the conversion of the
data to the target data type through various intermediate data
types.

20 Claims, 16 Drawing Sheets

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 2 of 34 PageID #: 411

Juniper Ex. 1041-p. 162
Juniper v Implicit

(51)

(52)

(56)

US 10,027,780 B2
Page 2

Related U.S. Application Data

No. 15/050,027, filed on Feb. 22, 2016, now Pat. No.
9,591,104, which is a continuation of application No.
14/230,952, filed on Mar. 31, 2014, now Pat. No.
9,270,790, which is a continuation of application No.
13/911,324, filed on Jun. 6, 2013, now Pat. No.
8,694,683, which is a continuation of application No.
13/236,090, filed on Sep. 19, 2011, now abandoned,
which is a continuation of application No. 10/636,
314, filed on Aug. 6, 2003, now Pat. No. 8,055,786,
which is a continuation of application No. 09/474,
664, filed on Dec. 29, 1999, now Pat. No. 8,629,163.

Int. Cl.
H04L 29108
H04L 29112
H04L 121701
U.S. Cl.

(2006.01)
(2006.01)
(2013.01)

CPC H04L 61/2007 (2013.01); H04L 61/6063
(2013.01); H04L 67102 (2013.01); H04L 69/16
(2013.01); H04L 69/18 (2013.01); H04L 69122

(2013.01); H04L 69132 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

5,414,833 A
5,425,029 A
5,568,478 A
5,627,997 A
5,710,917 A
5,727,159 A
5,740,430 A
5,761,651 A
5,768,521 A
5,826,027 A
5,835,726 A
5,842,040 A
5,848,233 A
5,848,246 A
5,848,415 A
5,854,899 A
5,870,479 A
5,896,383 A
5,898,830 A
5,918,013 A
5,983,348 A
5,987,256 A
5,991,299 A
5,991,806 A
6,032,150 A
6,035,339 A
6,047,002 A
6,067,575 A
6,091,725 A
6,094,679 A
6,101,189 A
6,101,320 A
6,104,500 A
6,104,704 A
6,111,893 A
6,112,250 A
6,115,393 A
6,119,165 A
6,119,236 A
6,122,666 A
6,128,624 A
6,130,917 A
6,141,749 A
6,151,390 A
6,157,622 A
6,167,441 A
6,192,419 Bl

5/1995 Hershey et al.
6/1995 Hluchyj et al.

10/ 1996 van Loo, Jr. et al.
5/1997 Pearson et al.
l/ 1998 Musa et al.
3/ 1998 Kikinis
4/ 1998 Rosenberg et al.
6/ 1998 Hasebe
6/ 1998 Dedrick

10/1998 Pedersen et al.
ll/ 1998 Shwed et al.
ll/ 1998 Hughes et al.
12/1998 Radia et al.
12/1998 Gish
12/1998 Guck
12/1998 Callon et al.
2/1999 Feiken et al.
4/1999 Wakeland
4/1999 Wesinger, Jr. et al.
6/ 1999 Mighdoll et al.

11/1999 Ji
11/1999 Wu et al.
ll/ 1999 Radogna et al.
11/1999 McHann, Jr.
2/2000 Nguyen
3/2000 Agraharam et al.
4/2000 Hartmann et al.
5/2000 McManis et al.
7/2000 Cheriton et al.
7/2000 Teng et al.
8/2000 Tsuruoka
8/2000 Schuetze et al.
8/2000 Alam et al.
8/2000 Buhler et al.
8/2000 Volftsun et al.
8/2000 Appelman
9/2000 Engel et al.
9/2000 Li et al.
9/2000 Shipley
9/2000 Beurket et al.

10/2000 Papiemiak et al.
10/2000 Monroe
10/2000 Coss et al.
11/2000 Volftsun et al.
12/2000 Tanaka et al.
12/2000 Himmel
2/2001 Aditham et al.

6,199,054 Bl
6,212,550 Bl
6,222,536 Bl
6,226,267 Bl
6,243,667 Bl
6,246,678 Bl
6,259,781 Bl
6,275,507 Bl
6,278,532 Bl
6,292,827 Bl
6,356,529 Bl
6,359,911 Bl
6,374,305 Bl
6,401,132 Bl
6,404,775 Bl
6,405,254 Bl
6,426,943 Bl
6,427,171 Bl*

6,493,348 Bl
6,504,843 Bl
6,519,636 B2
6,560,236 Bl
6,574,610 Bl
6,578,084 Bl
6,598,034 Bl
6,629,163 Bl
6,650,632 Bl
6,651,099 Bl
6,678,518 B2
6,680,922 Bl
6,701,432 Bl
6,711,166 Bl
6,772,413 B2
6,785,730 Bl
6,865,735 Bl
6,871,179 Bl
6,889,181 B2
6,937,574 Bl
6,957,346 Bl
6,959,439 Bl
7,233,569 Bl*

7,233,948 Bl
7,281,036 Bl
7,383,341 Bl
7,711,857 B2
8,055,786 B2
8,694,683 B2

3/2001 Khan et al.
4/2001 Segur
4/2001 Kihl et al.
5/2001 Spinney et al.
6/2001 Kerr et al.
6/2001 Erb et al.
7/2001 Crouch et al.
8/2001 Anderson et al.
8/2001 Heimendinger et al.
9/2001 Raz
3/2002 Zarom
3/2002 Movshovich et al.
4/2002 Gupta et al.
6/2002 Bellwood et al.
6/2002 Leslie et al.
6/2002 Hadland
7 /2002 Spinney et al.
7/2002 Craft H04L 29/06

12/2002 Gelman et al.
1/2003 Cremin et al.
2/2003 Engel et al.
5/2003 Varghese et al.
6/2003 Clayton et al.
6/2003 Moberg et al.
7/2003 Kloth
9/2003 Balassanian

11/2003 Volftsun et al.
11/2003 Dietz et al.

1/2004 Eerola
1/2004 Jorgensen
3/2004 Deng et al.
3/2004 Amir et al.
8/2004 Kuznetsov
8/2004 Taylor
3/2005 Sirer et al.
3/2005 Kist et al.
5/2005 Kerr et al.
8/2005 Delaney et al.

10/2005 Kivinen et al.
10/2005 Boike

709/230

6/2007 Swallow H04L 12/4633
370/225

6/2007 Shamoon et al.
10/2007 Lu et al.
6/2008 Saito et al.
5/2010 Balassanian

11/2011 Balassanian
4/2014 Balassanian

2003/0142669 Al
2004/0015609 Al
2008/0250045 Al *
2009/0083763 Al
2009/0265695 Al
2017/0237668 Al*

7 /2003 Kubota et al.
1/2004 Brown et al.

10/2008 Balassanian G06F 17/30569
3/2009 Sareen et al.

10/2009 Karino
8/2017 Hall H04L 47/193

EP
JP
JP
JP
JP
WO

FOREIGN PATENT DOCUMENTS

0817031
Hl0-49354
Hl0-55279
Hl0-74153

Hl0-289215
99/35799

1/1998
2/1998
2/1998
3/1998

10/1998
7 /1999

OTHER PUBLICATIONS

370/235

Decision on Petition in Reexamination Control No. 95/000,659

dated Aug. 19, 2013, 3 pages.
Response to Non-Final Office Action in Reexamination Control No.
95/000,659 dated Oct. 2, 2013 including Exhibits A-C, 37 pages.
Decision on Petition in Reexamination Control No. 95/000,660
dated Jul. 30, 2013, 12 pages.
Non-Final Office Action in Inter Partes Reexamination Control No.
95/000,660 dated Aug. 30, 2013, 23 pages.

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 3 of 34 PageID #: 412

Juniper Ex. 1041-p. 163
Juniper v Implicit

US 10,027,780 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

RFC: 791. Internet Protocol: DARPA Internet Program Protocol
Specification, Sep. 1981, prepared for Defense Advanced Research
Projects Agency Information Processing Techniques Office by
Information Sciences Institute University of Southern California, 52
pages.
2015 WL 2194627, United States District Court, N.D. California,
Implicit L.L.C., Plaintiff, v. F5 Networks, Inc., Defendant, Case No.
14-cv-02856-SI, signed May 6, 2015, 14 pages.
Defendants' Invalidity Contentions Pursuant to Local Patent Rules
3-3 and 3-4, United States District Court Eastern District of Texas
Tyler Division, Implicit, LLC v. Trend Micro, Inc., Ericsson Inc.,
Huawei Technologies USA, Inc., NEC Corporation of America,
Nokia Solutions and Networks US LLC; Sep. 2, 2016, 53 pages.
Exhibits A-l-Al6 Invalidity of U.S. Pat. No. 8,694,683, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, Sep. 2, 2016, 425 pages.
Exhibits B-l-Bl3 Invalidity of U.S. Pat. No. 9,270,790, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, Sep. 2, 2016, 369 pages.
Exhibits C-l-C21 Invalidity of U.S. Pat. No. 8,856,779, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, Sep. 2, 2016, 646 pages.
Exhibits D-l-D21 Invalidity of U.S. Pat. No. 9,325,740, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, Sep. 2, 2016, 419 pages.
Exhibits E-l-E20 Invalidity of U.S. Pat. No. 6,324,685, Defendants'
Invalidity Contentions Pursuant to Local Patent Rules 3-3 and 3-4,
United States District Court Eastern District of Texas Tyler Divi
sion, Sep. 2, 2016, 416 pages.
Michael Baentsch, et al., "WebMake: Integrating distributed soft
ware development in a structure-enhanced Web," Computer Net
works and ISDN Systems 27 (1995), pp. 789-800.
Dan Decasper, et al., "A Scalable, High Performance Active Net
work Node," Apr. 1998, 21 pages.
John J. Hartman, et al., "Joust: A Platform for Liquid Software,"
Computer, IEEE, 1999, pp. 50-56.
David Mosberger, et al., "Making Paths Explicit in the Scout
Operating System," Proceedings of the USENIX 2nd Symposium
on Operating Systems Design and Implementation, Oct. 1996, 16
pages.
Oliver Spatscheck, et al., "Escort: A Path-Based OS Security
Architecture," TR 97-17, Nov. 26, 1997, 17 pages.
Dan Decasper, et al., "DAN: Distrubuted Code Caching for Active
Networks," IEEE, 1998, pp. 609-616.
Alexander, D. et al., "The SwitchWare Active Network Architec
ture", Jun. 6, 1998, IEEE.
Antoniazzi, S. et al., "An Open Software Architecture for Multi
media Consumer Terminals", Central Research Labs, Italy; Alcatel
SEL Research Centre, Germany, ECMAST 1997.
Arbanowski, Stefan, "Generic Description of Telecommunication
Services and Dynamic Resource Selection in Intelligent Commu
nication Environments", Thesis, Technische Universitat Berlin, Oct.
9, 1996, (3 documents).
Arbanowski, S., et al., Service Personalization for Unified Messag
ing Systems, Jul. 6-8, 1999, The Fourth IEEE Symposium on
Computers and Communications, ISCC '99, Red Sea, Egypt.
Atkinson, R., "Security Architecture for the Internet Protocol", Aug.
1995, Naval Research Laboratory.
Atkinson, R., "IP Authentication Header", Aug. 1995, Naval
Research Laboratory.
Atkinson, R., "IP Encapsulating Security Payload (ESP)", Aug.
1995, Naval Research Laboratory.
Back, G., et al., Java Operating Systems: Design and Implementa
tion, Aug. 1998, Technical Report UUCS-98-015, University of
Utah.

Baker, Dr. Sean, "CORBA Implementation Issues", 1994, IONA
Technologies, O'Reilly Institute Dublin, Ireland.
Barrett, R., et al., "Intermediaries: New Places for Producing and
Manipulating Web Content", 1998, IBM Almaden Research Center,
Elsevier Science.
Bellare, M., et al., "A Concrete Security Treatment of Synunetric
Encryption: Analysis of the DES Modes of Operation", Aug. 15,
1997, Dept. of Computer Science and Engineering, University of
California, San Diego.
Bellare, M., et al., "A Concrete Security Treatment of Synunetric
Encryption: Analysis of the DES Modes of Operation", Aug. 15,
1997, IEEE.
Bellare, M., et al., "XOR MACs: New Methods for Message
Authentication Using Finite Pseudorandom Functions", 1995,
CRYPTO '95, LNCS 963, pp. 15-28, Springer-Verlag Berlin
Heidelberg.
Bellissard, L., et al., "Dynamic Reconfiguration of Agent-Based
Applications", Third European Research Seminar on Advances in
Distributed Systems, (ERSADS '99) Madeira Island.
Bolding, Darren, "Network Security, Filters and Firewalls", 1995,
www.acm.org/crossroads/xrds2-I/security.html.
Booch, G., et al., "Software Engineering with ADA", 1994, Third
Edition, The Benjamin/Cununings Publishing Company, Inc., (2
documents).
Breugst, et al., "Mobile Agents-Enabling Technology for Active
Intelligent Network Implementation", May/Jun. 1998, IEEE Net
work.
"C Library Functions", AUTH(3) Sep. 17, 1993, Solbourne Com
puter, Inc.
Chapman, D., et al., "Building Internet Firewalls", Sep. 1995,
O'Reilly & Associates, Inc.
CheckPoint FireWall-1 Technical White Paper, Jul. 18, 1994,
CheckPoint Software Technologies, Ltd.
CheckPoint FireWall-1 White Paper, Sep. 1995, Version 2.0,
CheckPoint Software Technologies, Ltd.
Command Line Interface Guide PIN 093-0011-000 Rev C Version
2.5, 2000-2001, NetScreen Technologies, Inc.
Coulson, G. et al., "A CORBA Compliant Real-Time Multimedia
Platform for Broadband Networks", Lecture Notes in Computer
Science, 1996, Trends in Distributed Systems CORBAand Beyond.
Cox, Brad, "SuperDistribution, Objects As Property on the Elec
tronic Frontier", 1996, Addison-Wesley Publishing Company.
Cranes, et al., "A Configurable Protocol Architecture for CORBA
Environments", Autonomous Decentralized Systems 1997 Proceed
ings ISADS, Third International Symposium Apr. 9-11, 1997.
Curran, K., et al., "CORBA Lacks Venom", University of Ulster,
Northern Ireland, UK 2000.
Dannert, Andreas, "Call Logic Service for a Personal Communica
tion Supporting System", Thesis, Jan. 20, 1998, Technische
Universitat Berlin.
DARPA Internet Program Protocol Specification, "Transmission
Control Protocol", Sep. 1981, Information Sciences Institute, Cali
fornia.
DARPA Internet Program Protocol Specification, "Internet Proto
col", Sep. 1981, Information Sciences Institute, California.
Decasper, D., et al., "Crossbow: A Toolkit for Integrated Services
over Cell Switched IPv6", 1997, Computer Engineering and Net
works Laboratory, ETH Zurich, Switzerland.
Decasper, D., et al., "Router Plugins a Software Architecture for
Next Generation Routers", 1998, Proceedings of ACM SIGCONM
'98.
Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1998, Nokia, The Internet Society.
Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1995, Network Working Group, RFC 1883.
Dutton, et al, "Asynchronous Transfer Mode Technical Overview
(ATM)", Second Edition; IBM, Oct. 1995, 2nd Edition, Prentice Hall
PTR, USA.
Eckardt, T., et al., "Application ofX.500 and X.700 Standards for
Supporting Personal Communications in Distributed Computing
Environments", 1995, IEEE.

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 4 of 34 PageID #: 413

Juniper Ex. 1041-p. 164
Juniper v Implicit

US 10,027,780 B2
Page 4

(56) References Cited

OTHER PUBLICATIONS

Eckardt, T., et al., "Personal Connnunications Support based on
TMN and TINA Concepts", 1996, IEEE Intelligent Network Work
shop (IN '96), Apr. 21-24, Melbourne, Australia.
Eckardt, T., et al., "Beyond IN and UPT-A Personal Connnuni
cations Support System Based on TMN Concepts", Sep. 1997, IEEE
Journal on Selected Areas in Connnunications, vol. 15, No. 7.
Egevang, K., et al., "The IP Network Address Translator (NAT)",
May 1994, Network Working Group, RFC 1631.
Estrin, D., et al., "Visa Protocols for Controlling Inter-Organiza
tional Datagram Flow", Dec. 1998, Computer Science Department,
University of Southern California and Digital Equipment Corpora
tion.
Faupel, M., "Java Distribution and Deployment", Oct. 9, 1997,
APM Ltd., United Kingdom.
Felber, P., "The CORBA Object Group Service: A Service Approach
to Object Groups in CORBA", Thesis, 1998, Ecole Polytechnique
Federale de Lausanne, Switzerland.
Fish, R., et al., "DRoPS: Kernel Support for Runtime Adaptable
Protocols", Aug. 25-27, 1998, IEEE 24th Euromicro Conference,
Sweden.
Fiuczynski, M., et al., "An Extensible Protocol Architecture for
Application-Specific Networking", 1996, Department of Computer
Science and Engineering, University of Washington.
Franz, Stefan, "Job and Stream Control in Heterogeneous Hardware
and Software Architectures", Apr. 1998, Technische Universitat,
Berlin, (2 documents).
Fraser, T., "DTE Firewalls: Phase Two Measurement and Evalua
tion Report", Jul. 22, 1997, Trusted Information Systems, USA.
Gazis, V., et al., "A Survey of Dynamically Adaptable Protocol
Stacks", first Quarter 2010, IEEE Connnunications Surveys &
Tutorials, vol. 12, No. 1, 151 Quarter.
Gokhale, A., et al., "Evaluating the Performance of Demultiplexing
Strategies for Real-Time CORBA", Nov. 1997, GLOBECOM.
Gokhale, A., et al., "Measuring and Optimizing CORBA Latency
and Scalability Over High-Speed Networks", Apr. 1998, IEEE
Transaction on Computers, vol. 47, No. 4; Proceedings of the
International Conference on Distributed Computing Systems
(ICDCS '97) May 27-30, 1997.
Gokhale, A., et al., "Operating System Support for High-Perfor
mance, Real-Time CORBA", 1996.
Gokhale, A., et al., "Principles for Optimizing CORBA Internet
Inter-ORB Protocol Performance", Jan. 9, 1998, Proceedings of the
HICSS Conference, Hawaii.
Gong, Li, "Java Security: Present and Near Future", May/Jun. 1997,
IEEE Micro.
Gong, Li, "New Security Architectural Directions for Java
(Extended Abstract)", Dec. 19, 1996, IEEE.
Gong, Li, "Secure Java Class Loading", Nov./Dec. 1998, IEEE
Internet.
Goos, G., et al., "Lecture Notes in Computer Science: Mobile
Agents and Security", 1998, Springer-Verlag Berlin Heidelberg.
Goralski, W., "Introduction to ATM Networking", 1995, McGraw
Hill Series on Computer Connnunications, USA.
Hamzeh, K., et al., "Layer Two Tunneling Protocol L2TP", Jan.
1998, PPP Working Group, Internet Draft.
Harrison, T., et al., "The Design and Performance of a Real-Time
CORBAEvent Service", Aug. 8, 1997,Proceedings of the OOPSLA
'97 Conference, Atlanta, Georgia in Oct. 1997.
Huitema, Christian, "IPv6 the New Internet Protocol", 1997 Pren
tice Hall, Second Edition.
Hutchins, J., et al., "Enhanced Internet Firewall Design Using
Stateful Filters Final Report", Aug. 1997, Sandia Report; Sandia
National Laboratories.
IBM, Local Area Network Concepts and Products: Routers and
Gateways, May 1996.
Juniper Networks Press Release, Juniper Networks Announces
Junos, First Routing Operating System for High-Growth Internet
Backbone Networks, Jul. 1, 1998, Juniper Networks.

Juniper Networks Press Release, Juniper Networks Ships the Indus
try's First Internet Backbone Router Delivering Unrivaled Scalabil
ity, Control and Performance, Sep. 16, 1998, Juniper Networks.
Karn, P., et al., "The ESP DES-CBC Transform", Aug. 1995,
Network Working Group, RFC 1829.
Kelsey, J. et al., "Authenticating Outputs of Computer Software
Using a Cryptographic Coprocessor", Sep. 1996, Cardis.
Krieger, D., et al., "The Emergence of Distributed Component
Platforms", Mar. 1998, IEEE.
Krupczak, B., et al., "Implementing Connnunication Protocols in
Java", Oct. 1998, IEEE Connnunications Magazine.
Krupczak, B., et al., "Implementing Protocols in Java: The Price of
Portability", 1998, IEEE.
Lawson, Stephen, "Cisco NetFlow Switching Speeds Traffic Rout
ing", Jul. 7, 1997, Infoworld.
Li, S., et al., "Active Gateway: A Facility for Video Conferencing
Traffic Control", Feb. 1, 1997, Purdue University; Purdue e-Pubs;
Computer Science Technical Reports.
Magedanz, T., et al., "Intelligent Agents: An Emerging Technology
for Next Generation Teleconnnunications?", 1996, IEEE.
Mills, H., et al., "Principles of Information Systems Analysis and
Design", 1986, Academic Press, Inc., (2 documents).
Mosberger, David, "Scout: A Path-Based Operating System", Doc
toral Dissertation Submitted to the University of Arizona, 1997, (3
documents).
Muhugusa, M., et al., "ComScript An Environment for the
Implementation of Protocol Stacks and their Dynamic Reconfigura
tion", Dec. 1994.
Nelson, M., et al., The Data Compression Book, 2nd Edition, 1996,
M&T Books, a division of MIS Press, Inc.
NetRanger User's Guide, 1996, WheelGroup Corporation.
NetScreen Connnand Line Reference Guide, 2000, PIN 093-0000-
001 Rev A, NetScreen Technologies, Inc., USA.
NetScreen Connnand Line Reference Guide, 2000, PIN 093-0000-
001 NetScreen Technologies, Inc., USA.
NetScreen Concepts and Examples ScreenOS Reference Guide,
1998-2001, Version 2.5 PIN 093-0039-000 Rev. A, NetScreen
Technologies, Inc.
NetScreen Products Webpage, wysiwyg://body_bottom.3/http://
www ... een.com/products/products.htrnl 1998-1999, NetScreen
Technologies, Inc.
NetScreen WebUI, Reference Guide, Version 2.5.0 PIN 093-0040-
000 Rev. A, 2000-2001, NetScreen Technologies, Inc.
NetStalker Installation and User's Guide, 1996, Version 1.0.2,
Haystack Labs, Inc.
Niculescu, Dragos, "Survey of Active Network Research", Jul. 14,
1999, Rutgers University.
Nortel Northern Telecom, "ISDN Primary Rate User-Network Inter
face Specification", Aug. 1998.
Nygren, Erik, "The Design and Implementation of a High-Perfor
mance Active Network Node", Thesis, Feb. 1998, MIT.
Osbourne, E., "Morningstar Technologies SecureConnect Dynamic
Firewall Filter User's Guide", Jun. 14, 1995, V. 1.4, Morning Star
Technologies, Inc.
Padovano, Michael, "Networking Applications on UNIX System V
Release 4," 1993 Prentice Hall, USA, (2 documents).
Pfeifer, T., "Automatic Conversion of Connnunication Media",
2000, GMD Research Series, Germany.
Pfeifer, T., "Automatic Conversion of Connnunication Media",
Thesis, 1999, Technischen Universitat Berlin, Berlin.
Pfeifer, T., et al., "Applying Quality-of-Service Parametrization for
Medium-to-Medium Conversion", Aug. 25-28, 1996, 8th IEEE
Workshop on Local and Metropolitan Area Networks, Potsdam,
Germany.
Pfeifer, T., "Micronet Machines-New Architectural Approaches
for Multimedia End-Systems", 1993 Technical University of Berlin.
Pfeifer, T., "On the Convergence of Distributed Computing and
Teleconnnunications in the Field of Personal Connnunications",
1995, KiVS, Berlin.
Pfeifer, T., "Speech Synthesis in the Intelligent Personal Connnu
nication Support System (IPCSS)", Nov. 2-3, 1995, 2nd 'Speak!'
Workshop on Speech Generation in Multimodal Information Sys
tems and Practical Applications.

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 5 of 34 PageID #: 414

Juniper Ex. 1041-p. 165
Juniper v Implicit

US 10,027,780 B2
Page 5

(56) References Cited

OTHER PUBLICATIONS

Pfeifer, T., et al., "Generic Conversion of Connnunication Media for
Supporting Personal Mobility", Nov. 25-27, 1996, Proc. of the Third
COST 237 Workshop: Multimedia Teleconnnunications and Appli
cations.
Pfeifer, T., et al., "Intelligent Handling ofConnnunication Media",
Oct. 29-31, 1997, 6th IEEE Workshop on Future Trends of Distrib
uted Computing Systems (FTDCS) Tunis.
Pfeifer, T., et al., "Resource Selection in Heterogeneous Connnu
nication Environments using the Teleservice Descriptor", Dec.
15-19, 1997, Proceedings from the 4th COST 237 Workshop: From
Multimedia Services to Network Services, Lisboa.
Pfeifer, T., et al., Mobile Guide-Location-Aware Applications
from the Lab to the Market, 1998, IDMS '98, LNCS 1483, pp.
15-28.
Pfeifer, T., et al., "The Active Store providing Quality Enhanced
Unified Messaging", Oct. 20-22, 1998, 5th Conference on computer
Connnunications, AFRICOM-CCDC '98, Tunis.
Pfeifer, T.,, et al., "A Modular Location-Aware Service and Appli
cation Platform", 1999, Technical University of Berlin.
Plagemann, T., et al., "Evaluating Crucial Performance Issues of
Protocol Configuration in DaCaPo", 1994, University of Oslo.
Psounis, Konstantinos, "Active Networks: Applications, Security,
Safety, and Architectures", First Quarter 1999, IEEE Connnunica
tions Surveys.
Rabiner, Lawrence, "Applications of Speech Recognition in the Area
of Telecommunications", 1997, IEEE.
Raman, Suchitra, et al, "A Model, Analysis, and Protocol Frame
work for Soft State-based Communications", Department of EECS,
University of California, Berkeley.
Rogaway, Phillip, "Bucket Hashing and its Application to Fast
Message Authentication", Oct. 13, 1997, Department of Computer
Science, University of California.
Schneier, B., et al., "Remote Auditing of Software Outputs Using a
Trusted CoProcessor", 1997, Elsevier Paper Reprint 1999.
Tennenhouse, D ., et al., "From Internet to ActiveNet", Laboratory of
Computer Science, MIT, 1996.
Tudor, P., "Tutorial MPEG-2 Video Compression", Dec. 1995,
Electronics & Connnunication Engineering Journal.
US Copyright Webpage of Copyright Title, "IPv6: the New Internet
Protocol", by Christian Huitema, 1998 Prentice Hall.
Van der Meer, et al., "An Approach for a 4th Generation Messaging
System", Mar. 21-23, 1999, The Fourth International Symposium on
Autonomous Decentralized Systems ISADS '99, Tokyo.
Van der Meer, Sven, "Dynamic Configuration Management of the
Equipment in Distributed Communication Environments", Thesis,
Oct. 6, 1996, Berlin, (3 documents).
Van Renesse, R. et al., "Building Adaptive Systems Using
Ensemble", Cornell University Jul. 1997.
Venkatesan, R., et al., "Threat-Adaptive Security Policy", 1997,
IEEE.
Wetherall, D., et al., "The Active IP Option", Sep. 1996, Proceedings
of the 7 th ACM SIGOPS European Workshop, Connemara, Ireland.
Welch, Terry, "A Technique for High-Performance Data Compres
sion", 1984, Sperry Research Center, IEEE.
Zeletin, R. et al., "Applying Location Aware Computing for Elec
tronic Commerce: Mobile Guide", Oct. 20-22, 1998, 5th Conference
on Computer Connnunications, AFRICOM-CCDC '98, Tunis.
Zell, Markus, "Selection of Converter Chains by Means of Quality
of Service Analysis", Thesis, Feb. 12, 1998, Technische Universitat
Berlin.
Implicit Networks, Inc. v. Advanced Micro Devices, Inc. et al.;
C08-0184 JLR; USDC for the Western District of Washington,
Seattle Division.
Feb. 4, 2008 Plaintiff's Original Complaint.
Aug. 26, 2008 Defendant NVIDIA Corporation's Answer to Com
plaint.
Aug. 26, 2008 Defendant Sun Microsystems, Inc.'s Answer to
Complaint.

Aug. 27, 2008 Defendant Advanced Micro Devices, Inc.'s Answer
to Complaint for Patent Infringement.
Aug. 27, 2008 RealNetworks, Inc.'s Answer to Implicit Networks,
Inc.'s Original Complaint for Patent Infringement, Affirmative
Defenses, and Counterclaims.
Aug. 27, 2008 Intel Corp.'s Answer, Defenses and Counterclaims.
Aug. 27, 2008 Defendant RMI Corporation's Answer to Plaintiff's
Original Complaint.
Sep. 15, 2008 Plaintiff's Reply to NVIDIA Corporation's Counter
claims.
Sep. 15, 2008 Plaintiff's Reply to Sun Microsystems Inc.'s Coun
terclaims.
Sep. 16, 2008 Plaintiff's Reply to RealNetworks, Inc.'s Counter
claims.
Sep. 16, 2008 Plaintiff's Reply to Intel Corp.'s Counterclaims.
Dec. 10, 2008 Order granting Stipulated Motion for Dismissal with
Prejudice re NVIDIA Corporation, Inc.
Dec. 16, 2008 Defendants AMD, RealNetworks, RMI, and Sun's
Motion to Stay Pending the Patent and Trademark Office's Reex
amination of the '163 Patent.
Dec. 29, 2008 Order granting Stipulated Motion for Dismissal
without Prejudice of Claims re Sun Microsystems, Inc.
Jan. 5, 2009 Plaintiff's Opposition to Defendants AMD,
RealNetworks, RMI, and Sun's Motion to Stay Pending Reexami
nation and Exhibit A.
Jan. 9, 2009 Reply of Defendants AMD, RealNetworks, RMI, and
Sun's Motion to Stay Pending the Patent and Trademark Office's
Reexamination of the '163 Patent.
Feb. 9, 2009 Order Granting Stay Pending the United States Patent
and Trademark Office's Reexamination of U.S. Pat. No. 6,629,163.
Feb. 17, 2009 Order Granting Stipulated Motion for Dismissal of
Advanced Micro Devices, Inc. with Prejudice.
May 14, 2009 Order Granting Stipulated Motion for Dismissal of
RMI Corporation with Prejudice.
Oct. 13, 2009 Order Granting Stipulated Motion for Dismissal of
Claims Against and Counterclaims by Intel Corporation.
Oct. 30, 2009 Executed Order for Stipulated Motion for Dismissal
of Claims Against and Counterclaims by RealNetworks, Inc.
Implicit Networks, Inc. v. Microsoft Corp., C09-5628 HLR; USDC
for the Northern District of California, San Francisco Division.
Nov. 30, 2009 Plaintiff's Original Complaint, Implicit v Microsoft,
Case No. 09-5628.
Jan. 22, 2010 Order Dismissing Case, Implicitv Microsoft, Case No.
9-5628.
Implicit Networks, Inc. v. Cisco Systems, Inc., Cl0-3606 HRL;
USDC for the Northern District of California, San Francisco Divi
sion.
Aug. 16, 2010 Plaintiff's Original Complaint, Implicitv Cisco, Case
No. 10-3606.
Nov. 22, 2010 Defendant Cisco Systems, Inc.'s Answer and Coun
terclaims, Implicit v Cisco, Case No. 10-3606.
Dec. 13, 2010 Plaintiff, Implicit Networks, Inc. 's, Answer to Coun
terclaims, Implicit v Cisco, Case No. 10-3606.
Oct. 4, 2011 Order of Dismissal with Prejudice, Implicit v Cisco,
Case No. 10-3606.
Implicit Networks, Inc. v. Citrix Systems, Inc., Cl0-3766 JL; USDC
for the Northern District of California, San Francisco Division.
Aug. 24, 2010 Plaintiff's Original Complaint, Implicit v Citrix, Case
No. 10-3766.
Dec. 1, 2010 Plaintiff's First Amended Complaint, Implicit v Citrix,
Case No. 10-3766.
Jan. 14, 2011 Defendant Citrix Systems, Inc.' s Answer, Defense and
Counter-complaint for Declaratory Judgment, Implicit v Citrix,
Case No. 10-3766.
Feb. 18, 2011 Plaintiff, Implicit Networks, Inc.'s, Answer to Defen
dants Counterclaims, Implicit v Citrix, Case No. 10-3766.
May 2, 2011 Order of Dismissal, Implicit v Citrix, Case No.
10-3766.
Implicit Networks, Inc. v.F5 Networks, Inc., Cl0-3365 JCS; USDC
for the Northern District of California, San Francisco Division.
Jul. 30, 2010 Plaintiff's Original Complaint, Implicitv F5, Case No.
10-3365.

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 6 of 34 PageID #: 415

Juniper Ex. 1041-p. 166
Juniper v Implicit

US 10,027,780 B2
Page 6

(56) References Cited

OTHER PUBLICATIONS

Oct. 13, 2010 Defendants' Answer and Counter-Complaint, Implicit
v F5, Case No. 10-3365.
Nov. 3, 2010 Plaintiff's Answer to Counter-Complaint, Implicit v
F5, Case No. 10-3365.
Dec. 10, 2010 Plaintiff's First Amended Complaint, Implicit v F5,
Case No. 10-3365.
Jan. 14, 2011 Defendants' Answer to !51 Amended Complaint and
Counterclaim, Implicit v F5, Case No. 10-3365.
Feb. 18, 2011 Plaintiff's Answer to F5's Amended Counter-Com
plaint, Implicit v F5, Case No. 10-3365.
Apr. 18, 2011 Defendants' Amended Answer to !51 Amended
Complaint and Counter-Complaint, Implicit v F5, Case No.
10-3365.
May 5, 2011 Plaintiff's Answer to F5's Amended Counter-Com
plaint, Implicit v F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Implicit v
F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Exhibit A,
Implicit v F5, Case No. 10-3365, (31 documents).
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Exhibit B,
Implicit v F5, Case No. 10-3365.
Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR 4-3), Implicit v F5, Case No. 10-3365.
Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR4-3) Exhibit A, Implicitv F5, Case No. 10-3365, (2 documents).
Nov. 28, 2011 Plaintiff's Opening Claim Construction Brief,
Implicit v F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Implicit v F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Exhibit A, Implicit v F5, Case No. 10-3365.
Dec. 12, 2011 Defendants' Claim Construction Brief,Implicit v F5,
Case No. 10-3365.
Dec. 19, 2011 Plaintiff's Reply to Defendants' (F5, HP, Juniper)
Responsive Claim Construction Brief (4-5), Implicit v F5, Case No.
10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 17, 2012;
Implicit v F5, Case No. 10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 18, 2012;
Implicit v F5, Case No. 10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 19, 2012;
Implicit v F5, Case No. 10-3365.
Feb. 29, 2012 Claim Construction Order.
Aug. 15, 2012 Storer Invalidity Report.
Sep. 10, 2012 Implicit's Expert Report of Scott M. Nettles.
Mar. 13, 2013 Order Granting Defendants' Motion for Summary
Judgment.
Apr. 9, 2013 Notice of Appeal to the Federal Circuit.
Implicit Networks, Inc. v. Hewlett-Packard Company, Cl0-3746
JCS: USDC for the Northern District of California, San Francisco
Division.
Aug. 23, 2010 Plaintiff's Original Complaint, Implicit v HP, Case
No. 10-3746.
Nov. 23, 2010 Plaintiff's First Amended Complaint, Implicit v HP,
Case No. 10-3746.
Nov. 14, 2011 Defendant HP's Answer and Counterclaims, Implicit
v HP, Case No. 10-3746.
Feb. 18, 2011 Implicit Networks, Inc.'s Answer to HP Counter
claims, Implicit v HP, Case No. 10-3746.
May 10, 2011 Plaintiff's Amended Disclosure of Asserted Claims
and Infringement Contentions, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Implicit v HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Al-14, Implicit v HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Bl-21, Implicit v HP, Case No. 10-3746.
Implicit Networks, Inc. v. Juniper Networks, Cl0-4234 EDL: USDC
for the Northern District of California, San Francisco Division.

Sep. 20, 2010 Plaintiff's Original Complaint, Implicit v Juniper,
Case No. 10-4234.
Nov. 12, 2010 Juniper Network's Motion to Dismiss for Failure to
State a Claim Under Rule 12(B)(6): Memorandum of Points and
Authorities; Implicit v Juniper, Case No. 10-4234.
Nov. 12, 2010 Juniper Network's Request for Judicial Notice in
Support of its Motion to Dismiss for Failure to State a Claim Under
Rule 12(B)(6): Memorandum of Points and Authorities; Implicit v
Juniper, Case No. 10-4234.
Dec. 1, 2010 First Amended Complaint; Implicit v Juniper, Case
No. 10-4234.
Jan. 18, 2011 Juniper Networks, Inc.'s Answer and Affirmative
Defenses to !51 Amended Complaint, Implicit v Juniper, Case No.
10-4234.
Dec. 18, 2011 Plaintiff's Answer to Defendant's Counterclaims,
Implicit v Juniper, Case No. 10-4234.
May 23, 2011 Plaintiff's Disclosure of Asserted Claims and
Infringement Contentions, Implicit v Juniper, Case No. 10-4234.
Nov. 15, 2011 Plaintiff's Amended Disclosure of Asserted Claim
and Infringement Contentions, Implicit v Juniper, Case No.
10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief), Implicit v Juniper, Case No.
10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibit E, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibit J, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibit K, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibits M-O, Implicit v Juni
per, Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Implicit v Juniper, Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit B, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit F, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit N, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit P, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Q, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit S., Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-1, Implicitv Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit U, Implicit v Juniper, Case No.
10-4234.

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 7 of 34 PageID #: 416

Juniper Ex. 1041-p. 167
Juniper v Implicit

US 10,027,780 B2
Page 7

(56) References Cited

OTHER PUBLICATIONS

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit V, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit W, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit X, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-1, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Z, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Reply Claim Construction Brief, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Reply Claim Construction Brief, Exhibit P, Implicit v Juniper, Case
No. 10-4234.
Jan. 10, 2012 Plaintiff's Jan. 10, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit Al, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A2, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A3, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A4, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit Bl, Implicit v Juniper, Case No. 10-4234.
Feb. 29, 2012 Plaintiff's Feb. 29, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Apr. 6, 2012 Plaintiff's Apr. 6, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Apr. 9, 2012 Plaintiff's Apr. 9, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Sep. 11, 2012 Implicit's Expert Report of Scott Nettles.
Nov. 9, 2012 Juniper's Notice of Motion and Memorandum of Law
ISO Motion for Summary Judgment or, in the alternative, for Partial
Summary Judgment, on the Issue of Invalidity.
Nov. 9, 2012 Exhibit 2 to Declaration in support of Juniper's Motion
for Summary Judgment----Calvert Expert Report.
Nov. 9, 2012 Exhibit 3 to Declaration in support of Juniper's Motion
for Summary Judgment----Calvert Supplemental Expert Report.
Nov. 26, 2012 Implicit Opposition to Juniper's and F5 Motion on
Invalidity.
Nov. 26, 2012 Exhibit A to Hosie Declaration-Aug. 27, 2012
Excerpts from David Blaine deposition.
Nov. 26, 2012 Exhibit B to Hosie Declaration---Oct. 25, 2012
Excerpts from Kenneth Calvert Deposition.

Nov. 26, 2012 Exhibit C to Hosie Declaration-Aug. 15, 2012
Excerpts from Kenneth Calvert Expert Report.
Nov. 26, 2012 Exhibit D to Hosie Declaration-U.S. Pat. No.
6,651,099 to Dietz et al.
Nov. 26, 2012 Exhibit E to Hosie Declaration-Understanding
Packet-Based and Flow-Based Forwarding.
Nov. 26, 2012 Exhibit F to Hosie Declaration-Wikipedia on Soft
State.
Nov. 26, 2012 Exhibit G to Hosie Declaration-Sprint Notes.
Nov. 26, 2012 Exhibit H to Hosie Declaration-Implicit's Supple
mental Response to Juniper's 2nd Set of Interrogatories.
Nov. 26, 2012 Exhibit I to Hosie Declaration-U.S. Pat. No.
7,650,634 (Zuk).
Other Implicit Networks, Inc. Prosecution Matters.
U.S. Appl. No. 11/933,022 Utility Application filed Oct. 31, 2007.
U.S. Appl. No. 11/933,022 Preliminary Amendment filed Feb. 19,
2008.
U.S. Appl. No. 11/933,022 Office Action dated Jun. 24, 2009.
U.S. Appl. No. 11/933,022 Amendment filed Sep. 24, 2009.
U.S. Appl. No. 11/933,022 Office Action dated Dec. 11, 2009.
U.S. Appl. No. 11/933,022 Amendment and Response dated Jan. 29,
2010.
U.S. Appl. No. 11/933,022 Notice of Allowance dated Mar. 2, 2010.
U.S. Appl. No. 11/933,022 Issue Notification dated May 4, 2010.
U.S. Appl. No. 10/636,314 Utility Application filed Aug. 6, 2003.
U.S. Appl. No. 10/636,314 Office Action dated Apr. 7, 2008.
U.S. Appl. No. 10/636,314 Response to Restriction Requirement
dated Aug. 5, 2008.
U.S. Appl. No. 10/636,314 Office Action dated Oct. 3, 2008.
U.S. Appl. No. 10/636,314 Response to Office Action dated Apr. 3,
2009.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated May 4, 2009.
U.S. Appl. No. 10/636,314 Amendment to Office Action Response
dated Jun. 4, 2009.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jun. 12, 2009.
U.S. Appl. No. 10/636,314 Amendment to Office Action dated Jul.
10, 2009.
U.S. Appl. No. 10/636,314 Final Rejection Office Action dated Oct.
21, 2009.
U.S. Appl. No. 10/636,314 Amendment after Final Office Action
dated Dec. 14, 2009.
U.S. Appl. No. 10/636,314 Advisory Action dated Jan. 11, 2010.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jan. 11, 2010.
U.S. Appl. No. 10/636,314 Supplemental Amendment and
Response dated Mar. 13, 2010.
U.S. Appl. No. 10/636,314 Office Action dated May 11, 2010.
U.S. Appl. No. 10/636,314 Amendment and Response dated Sep.
13, 2010.
U.S. Appl. No. 10/636,314 Final Rejection dated Nov. 24, 2010.
U.S. Appl. No. 10/636,314 Notice of Appeal dated May 19, 2011.
U.S. Appl. No. 10/636,314 Amendment and Request for Continued
Examination dated Jul. 19, 2011.
U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 13,
2011.
U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 19,
2011.
U.S. Appl. No. 10/636,314 Issue Notification dated Oct. 19, 2011.
U.S. Appl. No. 09/474,664 Utility Application filed Dec. 29, 1999.
U.S. Appl. No. 09/474,664 Office Action dated Sep. 23, 2002.
U.S. Appl. No. 09/474,664 Amendment and Response dated Feb.
24, 2003.
U.S. Appl. No. 09/474,664 Notice of Allowance dated May 20,
2003.
U.S. Appl. No. 90/010,356 Request for Ex Parte Reexamination
dated Dec. 15, 2008.
U.S. Appl. No. 90/010,356 Office Action Granting Reexamination
dated Jan. 17, 2009.
U.S. Appl. No. 90/010,356 First Office Action dated Jul. 7, 2009.
U.S. Appl. No. 90/010,356 First Office Action Response dated Sep.
1, 2009.

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 8 of 34 PageID #: 417

Juniper Ex. 1041-p. 168
Juniper v Implicit

US 10,027,780 B2
Page 8

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 90/010,356 Patent Owner Interview Sunnnary dated
Oct. 23, 2009.
U.S. Appl. No. 90/010,356 Office Action Final dated Dec. 4, 2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Dec. 18, 2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Jan. 4, 2010.
U.S. Appl. No. 90/010,356 Advisory Action dated Jan. 21, 2010.
U.S. Appl. No. 90/010,356 Amendment and Response to Advisory
Action dated Feb. 8, 2010.
U.S. Appl. No. 90/010,356 Notice of Intent to Issue a Reexam
Certificate dated Mar. 2, 2010.
U.S. Appl. No. 90/010,356 Reexamination Certificate Issued dated
Jun. 22, 2010.
U.S. Appl. No. 95/000,659 Inter Partes Reexam Request dated Feb.
13, 2012.
U.S. Appl. No. 95/000,659 Order Granting Reexamination dated
Apr. 3, 2012.
U.S. Appl. No. 95/000,659 Office Action dated Apr. 3, 2012.
U.S. Appl. No. 95/000,659 Office Action Response dated Jun. 4,
2012 (including Exhibits 1 & 2), (4 documents).
U.S. Appl. No. 95/000,659 Third Party Connnents to Patent Own
er's Response to Office Action dated Jul. 5, 2012.
U.S. Appl. No. 95/000,659 Appendix R-1 to Third Party Connnents
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Declaration of Prof. Dr. Bernhard Plattner).
U.S. Appl. No. 95/000,659 Appendix R-2 to Third Party Connnents
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Prof. Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,659 Appendix R-3 to Third Party Connnents
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,659 Appendix R-4 to Third Party Connnents
to Patent Owner's Response to Office Action dated Jul. 5,
2012(Office Action Granting Reexamination in 95/000,660 dated
May 10, 2012).
U.S. Appl. No. 95/000,659 Appendix R-5 to Third Party Connnents
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Office Action in 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,659 Appendix R-6 to Third Party Connnents
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,659 Appendix R-7 to Third Party Connnents
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).
U.S. Appl. No. 95/000,659 Appendix R-8 to Third Party Connnents
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,659 Appendix R-9 to Third Party Connnents
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Claim Construction Order dated Feb. 29, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-1 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. I of Edward Balassanian Deposition Transcript dated
May 30, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-2 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. II of Edward Balassanian Deposition Transcript dated
May 31, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-3 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. III of Edward Balassanian Deposition Transcript dated
Jun. 7, 2012).

U.S. Appl. No. 95/000,659 Appendix R-10-4 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. IV of Edward Balassanian Deposition Transcript dated
Jun. 8, 2012).
U.S. Appl. No. 95/000,659 Appendix R-11 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (Implicit Networks, Inc.'s Response to Juniper Networks,
Inc.'s First Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,659 Action Closing Prosecution dated Oct. 1,
2012.
U.S. Appl. No. 95/000,659 Petition to Withdraw and Reissue Action
Closing Prosecution dated Nov. 20, 2012.
U.S. Appl. No. 95/000,659 Patent Owner Connnents to Action
Closing Prosecution dated Dec. 3, 2012.
U.S. Appl. No. 95/000,659 Opposition to Petition dated Dec. 17,
2012.
U.S. Appl. No. 95/000,659 Third Party Connnents to Action Closing
Prosecution dated Jan. 2, 2013.
U.S. Appl. No. 95/000,660 Inter Partes Reexam Request dated Mar.
2, 2012.
U.S. Appl. No. 95/000,660 Order Granting Reexamination dated
May 10, 2012.
U.S. Appl. No. 95/000,660 Office Action dated May 10, 2012.
U.S. Appl. No. 95/000,660 Response to Office Action dated Jul. 10,
2012 (including Exhibits 1 and 2).
U.S. Appl. No. 95/000,660 Third Party Connnents to Office After
Patent Owner's Response dated Aug. 8, 2012 (including Revised
Connnents).
U.S. Appl. No. 95/000,660 to Third Party Connnents to Patent
Owner's Response to Office Action dated Aug. 8, 2012 (Declaration
of Prof. Dr. Bernhard Plattner).
U.S. Appl. No. 95/000,660 Appendix R-1 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Prof. Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,660 Appendix R-3 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,660 Appendix R-4 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8,
2012(Office Action Granting Reexamination in 95/000,660 dated
May 10, 2012).
U.S. Appl. No. 95/000,660 Appendix R-5 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Office Action in 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,660 Appendix R-6 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,660 Appendix R-7 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).
U.S. Appl. No. 95/000,660 Appendix R-8 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,660 Appendix R-9 to Third Party Connnents
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Claim Construction Order dated Feb. 29, 2012).
U.S. Appl. No. 95/000,660 Appendix R-10 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (vol. I-IV of Edward Balassanian Deposition Transcript dated
May 30, 2012).
U.S. Appl. No. 95/000,660 Appendix R-11 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Shacham, A., et al, "IP Payload Compression Protocol",
Network Working Group, RFC 3173 Sep. 2001).
U.S. Appl. No. 95/000,660 Appendix R-12 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Shacham, A., et al, "IP Payload Compression Protocol",
Network Working Group, RFC 2393 Dec. 1998).

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 9 of 34 PageID #: 418

Juniper Ex. 1041-p. 169
Juniper v Implicit

US 10,027,780 B2
Page 9

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 95/000,660 Appendix R-13 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (' 163 Pfeiffer Claim Chart).
U.S. Appl. No. 95/000,660 Appendix R-14 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Ylonen, T., "SSH Transport Layer Protocol", Network Work
ing Group-Draft Feb. 22, 1999).
U.S. Appl. No. 95/000,660 Appendix R-15 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Dommety, G., "Key and Sequence Number Extensions to
GRE", Network Working Group, RFC 2890 Sep. 2000).
U.S. Appl. No. 95/000,660 Appendix R-16 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Monsour, R., et al, "Compression in IP Security" Mar. 1997).
U.S. Appl. No. 95/000,660 Appendix R-17 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Friend, R., Internet Working Group RFC 3943 dated Nov.
2004 Transport Layer Security Protocol Compression Using
Lempel-Ziv-Stac).
U.S. Appl. No. 95/000,660 Appendix R-18 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012(Implicit Networks, Inc.'s Response to Juniper Networks,
Inc.'s First Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,660 Revised-Third Party Comments to
Office After Patent Owner's Response dated Nov. 2, 2012.
U.S. Appl. No. 95/000,660 Action Closing Prosecution dated Dec.
21, 2012.
U.S. Appl. No. 95/000,660 Comments to Action Closing Prosecu
tion dated Feb. 21, 2013 (including Dec of Dr. Ng).

U.S. Appl. No. 95/000,660 Third Party Comments to Action Closing
Prosecution dated Mar. 25, 2013.
PCT/US00/33634-PCT application (WO 01/2077 A2-Jul. 12,
2001).
PCT/US00/33634-Written Opinion (WO 01/50277 A3-Feb. 14,
2002).
PCT/US00/33634-International Search Report (dated Oct. 9,
2001).
PCT/US00/33634-Response to Official Communication dated
Dec. 7, 2001 (dated Mar. 21, 2002).
PCT/US00/33634-International Preliminary Examination Report
(dated Apr. 8, 2002).
PCT/US00/33634-Official Communication (dated Jan. 24, 2003).
PCT/US00/33634-Response to Official Communication dated Jan.
24, 2003 (dated Mar. 12, 2003).
PCT/US00/33634-Official Communication (dated May 13, 2004).
PCT/US00/33634-Response to Sununons to Attend Oral Proceed
ing dated May 13, 2004 (dated Oct. 9, 2004).
PCT/US00/33634-Decision to Refuse a European Patent applica
tion (dated Nov. 12, 2004).
PCT/US00/33634-Minutes of the oral proceedings before the
Examining Division (dated Oct. 12, 2004).
PCT/US00/33634-Closure of the procedure in respect to Appli
cation No. 00984234.5-2212 (dated Feb. 22, 2005).
May 3, 2013 Expert Report of Dr. Alfonso Cardenas Regarding
Validity of U.S. Pat. Nos. 6,877,006; 7,167,864; 7,720,861; and
8,082,268, (6 documents).
Expert Report of Dr. Alfonso Cardenas Regarding Validity of U.S.
Pat. No. 7,167,864, (3 documents).
"InfoReports User Guide: Version 3.3.1;" Platinum Technology,
Publication No. PRO-X-331-UG00-00, printed Apr. 1998; pp.
1-430.

* cited by examiner

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 10 of 34 PageID #: 419

Juniper Ex. 1041-p. 170
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 1 of 16 US 10,027,780 B2

/ 101 i 102 i 103 II

DRIVER MESSAGE OEMUX LABELMAP
SEND

..
GET

105
149~"'----

QUEUE THREAD

,,,.-106
151-)

MESSAGE
SEND

107
152

MESSAGE
SEND

1108
't::J
/,., -~---· MESSAGE

SEND

1109 110 111

MESSAGE DEMUX LABELMAP
SEND GH

154-..__

'
.......,.... --------

1 114

155~,5 MESSAGE
SEND

\

Fig. 1

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 11 of 34 PageID #: 420

Juniper Ex. 1041-p. 171
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 2 of 16

P1 P2 P3
D 1 1 0_2 [l9 1
-

D2 1 05
-

0 1 2 D3 010 2

Fig. 2

'
MEMORY 1.QJ

/304 /""305 /306

I ORl~ERS I FORWARDING DEMUX
COMPONENT COMPONENT

/-308 ✓-309 /310
I I

PATH CONVERSION INSTANCE DATA
S1RUCTURES ROUTINES OAT.A

CPU 301 1
-I

I

Fig, 3

US 10,027,780 B2

D!

Di

2
015

/307

LABEL MAP
GET

COMPONENT

1/0

P4

NULL

/300
(

.10.:l

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 12 of 34 PageID #: 421

Juniper Ex. 1041-p. 172
Juniper v Implicit

U.S. Patent

450

TCP

!

431

Jul. 17, 2018 Sheet 3 of 16 US 10,027,780 B2

463

-453

410~

440

TCP

I
431

PATH {StackList)

L.,..-452

! /SESSION
f 430 464

TCP

431

423 424 425

4JJ

"" 432

I 1
__j '

IP

ETHERNET

411

./'473

QUEUE

Fig. 4

\...422

413 414 415
I (
\ \

QUEUE

PathEntry
(REFERENCE)

412

QUEUE

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 13 of 34 PageID #: 422

Juniper Ex. 1041-p. 173
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 4 of 16 US 10,027,780 B2

507

..----. -50~ (

PolhEn:°
5
))) MulnplayLisl 508

I
PafhEnt 505 509

~ Address , 5o4

'--URL

510

Fig, 5

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 14 of 34 PageID #: 423

Juniper Ex. 1041-p. 174
Juniper v Implicit

60
1

Bi
nd

ing

51
0

Po
lh

(n
try

j-

5
0

5

r5
1

0

,-6
03

e • 0
0

• ~

~

~

~
 =

~

2' :-
' '"-

....J

N

0 Q
O

I
lE

t.a
ge

 ..
I

~
-
J

~
Po

lh
Er

it
50

5
g2

.

~

,
U

l

\
Bi

nd
in

g
[

51
0

~
~

-I

I
.._

_ _
_

_
 _
.

~

d r.,;
_ "'""
'

Fi
g.

6

'"=
 =

N

'"-
-..l

--.

.l
0

0
 =
 =

N

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 15 of 34 PageID #: 424

Juniper Ex. 1041-p. 175
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 6 of 16

MessogeSend (Message, PathEntry)

-701

isl ::: . YES .
--> Mulliplex ·--DC>
List

tNO
/

NO

US 10,027,780 B2

position =
Poth[n!ry --> Member -->

Sfocklis1Enlry

~/-703

<'E~try ~ YES
~afh

05 >------

,,,,-705 NO

retVcl ::: ne:dEntry -->
Member --> Binding -->
Edge --> MessogeHimd!ar
(Message, nextEntry)

Return
(retval)

NO

list :::: OemUJ(
{Message,

Pat~Enfry --> Address,
PathEntry

NO

rlOl
I

YES 09

rlOJA

nextEnfrt = Usl Head
Data (pothEntry -->
Poth --> Stocklist)

----DC>

Fig. 7A

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 16 of 34 PageID #: 425

Juniper Ex. 1041-p. 176
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 7 of 16 US 10,027,780 B2

09

{110

Select next
Candidate path

in list

711

i MessageSend
! (Message, nextEntry)

NO

NO

Fig. 7B

05

17)

QueueMessage
(Message, Nexh .. ntry)

Return

r11s Fig. 7C
~-----.

PathEntry -->
Muitiplaylist ::: list

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 17 of 34 PageID #: 426

Juniper Ex. 1041-p. 177
Juniper v Implicit

U.S. Patent Jul. 17, 2018

YES

... next binding

809-

other

Demme

Initialize
Demux

Get Session

Nail Binding

Sheet 8 of 16

Messaae
Address

801 PathEntry

s1mp ex

US 10,027,780 B2

Find Path

Process Poth
Hopping

multi le

return

Fig. 8

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 18 of 34 PageID #: 427

Juniper Ex. 1041-p. 178
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 9 of 16

Initialize
Demux

l
Map

PothEniry --> Mop

message = Message
path = null

address [!em = null

sovedSlah.1s = 0
Status = demux Continue

901

US 10,027,780 B2

905

,,-909

status :::
>--YE_S _ __,1 PathEntry --> Path -->

I

pain Address =
path Entry --> Path - ->

Address

addressflem :::
pothAddress -->
CurrentBinding = .._ 910

pothEntry --> Member ---~--~ r908
--> AddressEntry

slotus = demux Continue -911
binding list :::

palhAddress -->
Binding List

CurrentBinding :::
&pathAddrnss -->

CurrentBinding
postp-0ne ::: 0

t
traverse = ListDatoNext

session ::: Null

913

Status

907

pothAddress ::::
Address

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 19 of 34 PageID #: 428

Juniper Ex. 1041-p. 179
Juniper v Implicit

U.S. Patent Jul. 17, 2018

lnit[nd

pothAddress =
AddressCreate

(PothEntry -> Path ->
Address - > URL)

elem = null

-1005

RathAddress -->
Curren!Binding =

UstTaiUnsen
(pathAddress -->

Bmdinglisi, binding)

Return

NO

Sheet 10 of 16

1004

1002

paihAddress =
AddressCopy

(Pa!hEnhy ->
Path -> Address,

PathEntry - > Member
-> AddressEntry)

Return

Return

Fig. 10

US 10,027,780 B2

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 20 of 34 PageID #: 429

Juniper Ex. 1041-p. 180
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 11 of 16

::: \

Ge!Next Binding

binding :: traverse
(Bindinglist,

cummtBinding)

1101

to 1 1103

trollLJst :: lobelMopGet
{map --> Oulput Lobel,

map --> forget Lobel)

+ 1 1104

/s~, >i

Return
(binding)

US 10,027,780 B2

1105', ~-----< traf!List >--------.

currentBinding =
UstTaii (bindingUst)

Dalo

impTroil =
UstHeodRemove

(trnillist)

Address Extend
{pathAddress,

tmpTrnil)

binding =
ListT oii Data
(binding list)

,..,-1107

binding --> Key =
mop --> Target key

1 1111

map --> Target key =
Null

1 1113

returnList ::
Prepare Mullicasi Palhs

(trn!IList, map)

Return
(muitiple)

Return
(break)

Fig. 11

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 21 of 34 PageID #: 430

Juniper Ex. 1041-p. 181
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 12 of 16 US 10,027,780 B2

1204

binding --> flags
i = Bfnding-Remove

r1211

traverse = UstOataNext

status ::: saved status
savedstatus ::: 0

Return
{continue)

Get Key

edge = binding --> Edge ;
1201

Edge protocol = edge
--> Protocol

Status = edge -->
DemuxKey {message,
pothAddress, map)

-1203

1202

Fig. 12

1205

remove traverse = ListDataNexl
postpone++

NO

savedSfatus =
Status

YES

,1209

NO

Return
(next binding)

postpone -
traverse = listDataPrev

YES r1210

status ::: demux
continue

Return
(next binding)

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 22 of 34 PageID #: 431

Juniper Ex. 1041-p. 182
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 13 of 16 US 10,027,780 B2

Get Session

session ::: TobleGel
(protocol -> SessionTabie1

& binding -> key)

session =
CreateSession

(protocol)

session --> key =
Labe!Reference

(binding --> key)

foble Pu!
(protocol -> session Tobie
& session -> key session

protocol -->
CreateSession

(session)

T

(Return)

1301

--(Return)

1303

1304

-1305

1306

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 23 of 34 PageID #: 432

Juniper Ex. 1041-p. 183
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 14 of 16 US 10,027,780 B2

1405

binding --> session = NO
session

1 1406
.J

binding --> key =
Label Reference

(session --> key)
,,-140

)
7

session --> Bindinnfoble
[edge --> Edgeld :::

binding

Nail
Binding

r-1402

binding ::: session -->
Binding Tobie

[edge --> £dgelD)
,..-1403

LlsfDotoSet
(*currentBinding,

binding)

1 1404

. ~
-~!S binding - > flags ! ~--··-_--
! ~implex

' Reium
¼ (simplex)

/~rJ408 J409 ' 1')
/~ncling ~ remove.---------"----... < --> Edge --> binding --> Flag 1 :.:
~ Cr7ate8!nding Binding - Remove

\binding)

return I

\..

continue ,--------~

return

Fig. 14

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 24 of 34 PageID #: 433

Juniper Ex. 1041-p. 184
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 15 of 16 US 10,027,780 B2

find Paih

(1502
~----"--,

elem ::: null
short[ntry ::: null

first8inding ::
UstKeadDoia

(pathAddress -->
Binding List)

entry :::: shortEnfry

1506

YES

(1510
' YES

HO

path ::: enlry -:> Poth

Return

15ll

path ::: entry - > Poth

!513

Create Polh (path Address,
PaihEntry ->
Po!hEntry ->

Fig. 15

Return

shortEntry ::: 1
entry

1514

elem :::: null
entry :::: UstHeodDofo
(path - > SkickUst)

1515 1516-

eiem = PaihEntry ->
Member -> Address:[ntry --•

entry :::: PalhEntry
btendPoih ()

(path, map, siatus) ·----• Return

1508

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 25 of 34 PageID #: 434

Juniper Ex. 1041-p. 185
Juniper v Implicit

U.S. Patent Jul. 17, 2018 Sheet 16 of 16 US 10,027,780 B2

YES

Process
Palh Hopping

oldStack = PathEntry ->
Path - > stacklist

YES

1603

~----'---~ (1604
newStock :::

path - > Stocklist

__ _,_ __ _, r/605
oldE!m = UstNext
(oldStock, Null)

,-----'-t __ ___, 1 1606
e!em ::: UstNext
(NewStock, Null)

1607

oldEntry =
ListDataNext ~o!dstock,

&oldelem) && entry :::
LislOotoNe:d (newS1ack, &: elem)
&&: entry --> Member -->

Binding :: :: oldEniry
Member -->

Binding

Fig. 16

1610

1611
entry = UstHeadDaia 1----~

(path -> Stacklist)

...---------../1609
entry :::: UstDatoPrev ___ ,
{newSlack, & elem)

YES ,,-1608

NO

UstHeodlnserl
(returnlist, Enlry)

Return
\ (return list)

11612

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 26 of 34 PageID #: 435

Juniper Ex. 1041-p. 186
Juniper v Implicit

US 10,027,780 B2
1

METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

2
computer system that serves as a central controller for data
received within a home would be expected to process data
received via telephone lines, cable TV lines, and satellite
connections in many different formats. The central controller CROSS REFERENCES TO RELATED

APPLICATIONS

The present application is a continuation of U.S. appli
cation Ser. No. 15/450,790, filed Mar. 6, 2017, which is a
continuation of U.S. application Ser. No. 15/050,027, filed
Feb. 22, 2016 (now U.S. Pat. No. 9,591,104), which is a
continuation of U.S. application Ser. No. 14/230,952, filed
Mar. 31, 2014 (now U.S. Pat. No. 9,270,790), which is a
continuation of U.S. application Ser. No. 13/911,324, filed
Jun. 6, 2013 (now U.S. Pat. No. 8,694,683), which is a
continuation of U.S. application Ser. No. 13/236,090, filed
Sep. 19, 2011 (now abandoned), which is a continuation of
U.S. application Ser. No. 10/636,314, filed Aug. 6, 2003
(now U.S. Pat. No. 8,055,786), which is a continuation of
U.S. application Ser. No. 09/474,664, filed Dec. 29, 1999
(now U.S. Pat. No. 6,629,163); the disclosures of each of the
above-referenced applications are incorporated by reference
herein in their entireties.

5 would be expected to output the data to computer displays,
television displays, entertainment centers, speakers, record
ing devices, and so on in many different formats. Moreover,
since the various conversion routines may be developed by
different organizations, it may not be easy to identify that the

10 output format of one conversion routine is compatible with
the input format of another conversion routine.

It would be desirable to have a technique for dynamically
identifying a series of conversion routines for processing
data. In addition, it would be desirable to have a technique

15 in which the output format of one conversion routine can be
identified as being compatible with the input format of
another conversion routine. It would also be desirable to
store the identification of a series of conversion routines so
that the series can be quickly identified when data is

20 received.

BRIEF DESCRIPTION OF THE DRAWINGS

TECHNICAL FIELD FIG. 1 is a block diagram illustrating example processing
25 of a message by the conversion system.

The present invention relates generally to a computer
system for data demultiplexing.

FIG. 2 is a block diagram illustrating a sequence of edges.
FIG. 3 is a block diagram illustrating components of the

conversion system in one embodiment.
BACKGROUND FIG. 4 is a block diagram illustrating example path data

30 structures in one embodiment.
Computer systems, which are becoming increasingly per

vasive, generate data in a wide variety of formats. The
Internet is an example of interconnected computer systems
that generate data in many different formats. Indeed, when
data is generated on one computer system and is transmitted 35

to another computer system to be displayed, the data may be
converted in many different intermediate formats before it is
eventually displayed. For example, the generating computer
system may initially store the data in a bitmap format. To
send the data to another computer system, the computer 40

system may first compress the bitmap data and then encrypt
the compressed data. The computer system may then convert
that compressed data into a TCP format and then into an IP
format. The IP formatted data may be converted into a
transmission format, such as an ethemet format. The data in 45

the transmission format is then sent to a receiving computer
system. The receiving computer system would need to
perform each of these conversions in reverse order to
convert the data in the bitmap format. In addition, the
receiving computer system may need to convert the bitmap 50

data into a format that is appropriate for rendering on output
device.

In order to process data in such a wide variety of formats,
both sending and receiving computer systems need to have
many conversion routines available to support the various 55

formats. These computer systems typically use predefined
configuration information to load the correct combination of
conversion routines for processing data. These computer
systems also use a process-oriented approach when process
ing data with these conversion routines. When using a 60

process-oriented approach, a computer system may create a
separate process for each conversion that needs to take
place. A computer system in certain situations, however, can
be expected to receive data and to provide data in many
different formats that may not be known until the data is 65

received. The overhead of statically providing each possible
series of conversion routines is very high. For example, a

FIG. 5 is a block diagram that illustrates the interrela
tionship of the data structures of a path.

FIG. 6 is a block diagram that illustrates the interrela
tionship of the data structures associated with a session.

FIGS. 7 A, 7B, and 7C comprise a flow diagram illus
trating the processing of the message send routine.

FIG. 8 is a flow diagram of the demux routine.
FIG. 9 is a flow diagram of the initialize demux routine.
FIG. 10 is a flow diagram of the init end routine.
FIG. 11 is a flow diagram of a routine to get the next

binding.
FIG. 12 is a flow diagram of the get key routine.
FIG. 13 is a flow diagram of the get session routine.
FIG. 14 is a flow diagram of the nail binding routine.
FIG. 15 is a flow diagram of the find path routine.
FIG. 16 is a flow diagram of the process of path hopping

routine.

DETAILED DESCRIPTION

A method and system for converting a message that may
contain multiple packets from an source format into a target
format. When a packet of a message is received, the con
version system in one embodiment searches for and identi
fies a sequence of conversion routines (or more generally
message handlers) for processing the packets of the message
by comparing the input and output formats of the conversion
routines. (A message is a collection of data that is related in
some way, such as stream of video or audio data or an email
message.) The identified sequence of conversion routines is
used to convert the message from the source format to the
target format using various intermediate formats. The con
version system then queues the packet for processing by the
identified sequence of conversion routines. The conversion
system stores the identified sequence so that the sequence
can be quickly found (without searching) when the next
packet in the message is received. When subsequent packets

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 27 of 34 PageID #: 436

Juniper Ex. 1041-p. 187
Juniper v Implicit

US 10,027,780 B2
3 4

share the same session. The demux component then extends
the path for processing that packet to include that session
and conversion routine. The sessions are identified so that
each packet is associated with the appropriate state infor
mation. The dynamic identification of conversion routines is
described in U.S. patent application Ser. No. 11/933,093,
filed on Oct. 31, 2007 (now U.S. Pat. No. 7,730,211),
entitled "Method and System for Generating a Mapping
Between Types of Data," which is hereby incorporated by
reference.

FIG. 1 is a block diagram illustrating example processing
of a message by the conversion system. The driver 101
receives the packets of the message from a network. The
driver performs any appropriate processing of the packet and

of the message are received, the conversion system identifies
the sequence and queues the packets for pressing by the
sequence. Because the conversion system receives multiple
messages with different source and target formats and iden
tifies a sequence of conversion routines for each message, 5

the conversion systems effectively "demultiplexes" the mes
sages. That is, the conversion system demultiplexes the
messages by receiving the message, identifying the
sequence of conversion routines, and controlling the pro
cessing of each message by the identified sequence. More- 10

over, since the conversion routines may need to retain state
information between the receipt of one packet of a message
and the next packet of that message, the conversion system
maintains state information as an instance or session of the
conversion routine. The conversion system routes all pack 15 invokes a message send routine passing the processed packet

along with a reference path entry 150. The message send
routine is an embodiment of the forwarding component. A
path is represented by a series of path entries, which are
represented by triangles. Each member path entry represents

ets for a message through the same session of each conver
sion routine so that the same state or instance information
can be used by all packets of the message. A sequence of
sessions of conversion routines is referred to as a "path." In
one embodiment, each path has a path thread associated with
it for processing of each packet destined for that path.

In one embodiment, the packets of the messages are
initially received by "drivers," such as an Ethernet driver.
When a driver receives a packet, it forwards the packet to a
forwarding component of the conversion system. The for
warding component is responsible for identifying the session
of the conversion routine that should next process the packet
and invoking that conversion routine. When invoked by a
driver, the forwarding component may use a demultiplexing
("demux") component to identify the session of the first
conversion routine of the path that is to process the packet
and then queues the packet for processing by the path. A path
thread is associated with each path. Each path thread is
responsible for retrieving packets from the queue of its path
and forwarding the packets to the forwarding component.
When the forwarding component is invoked by a path
thread, it initially invokes the first conversion routine in the
path. That conversion routine processes the packet and
forwards the processed packet to the forwarding component,
which then invokes the second conversion routine in the
path. The process of invoking the conversion routines and
forwarding the processed packet to the next conversion
routine continues until the last conversion routine in the path

20 a session and conversion routine of the path, and a reference
path entry represents the overall path. The passed reference
path entry 150 indicates to the message send routine that it
is being invoked by a driver. The message send routine
invokes the demux routine 102 to search for and identify the

25 path of sessions that is to process the packet. The demux
routine may in turn invoke the label map get routine 104 to
identify a sequence of conversion routines for processing the
packet. In this example, the label map get routine identifies
the first three conversion routines, and the demux routine

30 creates the member path entries 151, 152, 153 of the path for
these conversion routines. Each path entry identifies a ses
sion for a conversion routine, and the sequence of path
entries 151-155 identifies a path. The message send routine
then queues the packet on the queue 149 for the path that is

35 to process the packets of the message. The path thread 105
for the path retrieves the packet from the queue and invokes
the message send routine 106 passing the packet and an
indication of the path. The message send routine determines
that the next session and conversion routine as indicated by

40 path entry 151 has already been found. The message send
routine then invokes the instance of the conversion routine

is invoked. A conversion routine may defer invocation of the
forwarding component until it aggregates multiple packets 45

or may invoke the forwarding component multiple times for
a packet once for each sub-packet.

The forwarding component identifies the next conversion
routine in the path using the demux component and stores
that identification so that the forwarding component can 50

quickly identify the conversion routine when subsequent
packets of the same message are received. The demux
component, searches for the conversion routine and session
that is to next process a packet. The demux component then
stores the identification of the session and conversion rou- 55

tine as part of a path data structure so that the conversion
system does not need to search for the session and conver
sion routine when requested to demultiplex subsequent
packets of the same message. When searching for the next
conversion routine, the demux component invokes a label 60

map get component that identifies the next conversion
routine. Once the conversion routine is found, the demux
component identifies the session associated with that mes
sage by, in one embodiment, invoking code associated with
the conversion routine. In general, the code of the conver- 65

sion routine determines what session should be associated
with a message. In certain situations, multiple messages may

for the session. The conversion routine processes the packet
and then invokes the message send routine 107. This pro
cessing continues until the message send routine invokes the
demux routine 110 after the packet is processed by the
conversion routine represented by path entry 153. The
demux routine examines the path and determines that it has
no more path entries. The demux routine then invokes the
label map get routine 111 to identify the conversion routines
for further processing of the packet. When the conversion
routines are identified, the demux routine adds path entries
154, 155 to the path. The messages send routine invokes the
conversion routine associated with path entry 154. Eventu
ally, the conversion routine associated with path entry 155
performs the final processing for the path.

The label map get routine identifies a sequence of"edges"
for converting data in one format into another format. Each
edge corresponds to a conversion routine for converting data
from one format to another. Each edge is part of a "protocol"
(or more generally a component) that may include multiple
related edges. For example, a protocol may have edges that
each convert data in one format into several different for
mats. Each edge has an input format and an output format.
The label map get routine identifies a sequence of edges such
that the output format of each edge is compatible with the
input format of another edge in the sequence, except for the
input format of the first edge in the sequence and the output

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 28 of 34 PageID #: 437

Juniper Ex. 1041-p. 188
Juniper v Implicit

US 10,027,780 B2
5

format of the last edge in the sequence. FIG. 2 is a block
diagram illustrating a sequence of edges. Protocol PI
includes an edge for converting format Dl to format D2 and
an edge for converting format Dl to format D3; protocol P2
includes an edge for converting format D2 to format D5, and
so on. A 30 sequence for converting format D 1 to format D
15 is shown by the curved lines and is defined by the address
"Pl:I, P2:1, P3:2, P4:7." When a packet of data in format D
I is processed by this sequence, it is converted to format DIS.
During the process, the packet of data is sequentially con
verted to format D2, D5, and D13. The output format of
protocol P2, edge 1 (i.e., P2:1) is format D5, but the input
format of P3:2 is format Dl0. The label map get routine uses
an aliasing mechanism by which two formats, such as D5
and Dl0 are identified as being compatible. The use of
aliasing allows different names of the same format or
compatible formats to be correlated.

FIG. 3 is a block diagram illustrating components of the
conversion system in one embodiment. The conversion
system 300 can operate on a computer system with a central
processing unit 301, I/0 devices 302, and memory 303. The
110 devices may include an Internet connection, a connec
tion to various output devices such as a television, and a
connection to various input devices such as a television
receiver. The media mapping system may be stored as
instructions on a computer-readable medium, such as a disk
drive, memory, or data transmission medium. The data
structures of the media mapping system may also be stored
on a computer-readable medium. The conversion system
includes drivers 304, a•forwarding component 305, a demux
component 306, a label map get component 307, path data
structures 308, conversion routines 309, and instance data
310. Each driver receives data in a source format and
forwards the data to the forwarding component. The for
warding component identifies the next conversion routine in
the path and invokes that conversion routine to process a
packet. The forwarding component may invoke the demux
component to search for the next conversion routine and add
that conversion routine to the path. The demux component
may invoke the label map get component to identify the next
conversion routine to process the packet. The demux com
ponent stores information defining the paths in the path
structures. The conversion routines store their state infor
mation in the instance data.

FIG. 4 is a block diagram illustrating example path data
structures in one embodiment. The demux component iden
tifies a sequence of "edges" for converting data in one
format into another format by invoking the label map get
component. Each edge corresponds to a conversion routine
for converting data from one format to another. As discussed
above, each edge is part of a "protocol" that may include
multiple related edges. For example, a protocol may have
edges that each convert data in one format into several
different formats. Each edge has as an input format ("input
label") and an output format ("output label"). Each rectangle
represents a session 410, 420, 430, 440, 450 for a protocol.
A session corresponds to an instance of a protocol. That is,
the session includes the protocol and state information
associated with that instance of the protocol. Session 410
corresponds to a session for an Ethernet protocol; session
420 corresponds to a session for an IP protocol; and sessions
430, 440, 450 correspond to sessions for a TCP protocol.
FIG. 4 illustrates three paths 461, 462, 463. Each path
includes edges 411, 421, 431. The paths share the same
Ethernet session 410 and IP session 420, but each path has
a unique TCP session 430, 440, 450. Thus, path 461 includes
sessions 410, 420, and 430; path 462 includes sessions 410,

6
420, and 440; and path 463 includes sessions 410, 420, and
450. The conversion system represents each path by a
sequence of path entry structures. Each path entry structure
is represented by a triangle. Thus, path 461 is represented by

5 path entries 415, 425, and 433. The conversion system
represents the path entries of a path by a stack list. Each path
also has a queue 471, 472, 473 associated with it. Each
queue stores the messages that are to be processed by the
conversion routines of the edges of the path. Each session

10 includes a binding 412, 422, 432, 442, 452 that is repre
sented by an oblong shape adjacent to the corresponding
edge. A binding for an edge of a session represents those
paths that include the edge. The binding 412 indicates that
three paths are bound (or "nailed") to edge 411 of the

15 Ethernet session 410. The conversion system uses a path list
to track the paths that are bound to a binding. The path list
of binding 412 identifies path entries 413, 414, and 415.

FIG. 5 is a block diagram that illustrates the interrela
tionship of the data structures of a path. Each path has a

20 corresponding path structure 501 that contains status infor
mation and pointers to a message queue structure 502, a
stack list structure 503, and a path address structure 504. The
status of a path can be extend, continue, or end. Each
message handler returns a status for the path. The status of

25 extend means that additional path entries should be added to
the path. The status of end means that this path should end
at this point and subsequent processing should continue at a
new path. The status of continue means that the protocol
does not care how the path is handled. In one embodiment,

30 when a path has a status of continue, the system creates a
copy of the path and extends the copy. The message queue
structure identifies the messages (or packets of a message)
that are queued up for processing by the path and identifies
the path entry at where the processing should start. The stack

35 list structure contains a list of pointers to the path entry
structures 505 that comprise the path. Each path entry
structure contains a pointer to the corresponding path data
structure, a pointer to a map structure 507, a pointer to a
multiplex list 508, a pointer to the corresponding path

40 address structure, and a pointer to a member structure 509.
A map structure identifies the output label of the edge of the
path entry and optionally a target label and a target key. A
target key identifies the session associated with the protocol
that converts the packet to the target label. (The terms

45 "media," "label," and "format" are used interchangeably to
refer to the output of a protocol.) The multiplex list is used
during the demux process to track possible next edges when
a path is being identified as having more than one next edge.
The member structure indicates that the path entry repre-

50 sents an edge of a path and contains a pointer to a binding
structure to which the path entry is associated (or "nailed"),
a stack list entry is the position of the path entry within the
associated stack list, a path list entry is the position of the
path entry within the associated path list of a binding and an

55 address entry is the position of the binding within the
associated path address. A path address of a path identifies
the bindings to which the path entries are bound. The path
address structure contains a URL for the path, the name of
the path identified by the address, a pointer to a binding list

60 structure 506, and the identification of the current binding
within the binding list. The URL (e.g., "protocol://tcp(O)/ip
(0)/eth(O)") identifies conversion routines (e.g., protocols
and edges) of a path in a human-readable format. The URL
(universal resource locator) includes a type field (e.g., "pro-

65 tocol") followed by a sequence of items (e.g., "tcp(O)"). The
type field specifies the format of the following information
in the URL, that specifies that the type field is followed by

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 29 of 34 PageID #: 438

Juniper Ex. 1041-p. 189
Juniper v Implicit

US 10,027,780 B2
7 8

binding is a binding (e.g., edge and protocol) is associated
with a session. In decision block 703, the passed path entry
is a reference and if the passed path entry has an associated
path, then the routine can queue the message for the asso-

a sequence of items. Each item identifies a protocol and an
edge (e.g., the protocol is "tcp" and the edge is "O"). In one
embodiment, the items of a URL may also contain an
identifier of state information that is to be used when
processing a message. These URLs can be used to illustrate
to a user various paths that are available for processing a
message. The current binding is the last binding in the path
as the path is being built. The binding list structure contains
a list of pointers to the binding structures associated with the
path. Each binding structure 510 contains a pointer to a
session structure, a pointer to an edge structure, a key, a path
list structure, and a list of active paths through the binding.
The key identifies the state information for a session of a
protocol. A path list structure contains pointers to the path
entry structures associated with the binding.

5 ciated path and the routine continues at block 703A, else the
routine needs to identify a path and the routine continues at
block 707. In block 703A, the routine sets the entry to the
first path entry in the path and continues at block 717. In
block 704, the routine sets the variable position to the stack

10 list entry of the passed path entry. In decision block 705, the
routine sets the variable next entry to the next path entry in
the path. If there is a next entry in the path, then the next
session and edge of the protocol have been identified and the
routine continues at block 706, else the routine continues at

FIG. 6 is a block diagram that illustrates the interrela
tionship of the data structures associated with a session. A
session structure 601 contains the context for the session, a
pointer to a protocol structure for the session, a pointer to a
binding table structure 602 for the bindings associated with
the session, and the key. The binding table structure contains

15 block 707. In block 706, the routine passes the message to
the message handler of the edge associated with the next
entry and then returns. In block 706, the routine invokes the
demux routine passing the passed message, the address of
the passed path entry, and the passed path entry. The demux

20 routine returns a list of candidate paths for processing of the
message. In decision block 708, if at least one candidate path
is returned, then the routine continues at block 709, else the
routine returns.

a list of pointers to the binding structures 510 for the session.
The binding structure is described above with reference to
FIG. 5. The path list structure 603 of the binding structure
contains a list of pointers to path entry structures 505. The 25

path entry structures are described with reference to FIG. 5.
FIGS. 7 A, 7B, and 7C comprise a flow diagram illus

trating the processing of the message send routine. The
message send routine is passed a message along with the
path entry associated with the session that last processed the 30

message. The message send routine invokes the message
handler of the next edge in the path or queues the message
for processing by a path. The message handler invokes the
demux routine to identify the next path entry of the path.
When a driver receives a message, it invokes the message 35

send routine passing a reference path entry. The message
send routine examines the passed path entry to determine (1)
whether multiple paths branch from the path of the passed
path entry, (2) whether the passed path entry is a reference
with an associated path, or (3) whether the passed path entry 40

is a member with a next path entry. If multiple paths branch
from the path of the passed path entry, then the routine
recursively invokes the message send routine for each path.
If the path entry is a reference with an associated path, then
the driver previously invoked the message send routine, 45

which associated a path with the reference path entry, and
the routine places the message on the queue for the path. If
the passed path entry is a member with a next path entry,
then the routine invokes the message handler (i.e., conver
sion routine of the edge) associated with the next path entry. 50

If the passed path entry is a reference without an associated
path or is a member without a next path entry, then the
routine invokes the demux routine to identify the next path
entry. The routine then recursively invokes the messages
send routine passing that next path entry. In decision block 55

701, if the passed path entry has a multiplex list, then the
path branches off into multiple paths and the routine con
tinues at block 709, else the routine continues at block 702.
A packet may be processed by several different paths. For
example, if a certain message is directed to two different 60

output devices, then the message is processed by two
different paths. Also, a message may need to be processed by
multiple partial paths when searching for a complete path. In
decision block 702, if the passed path entry is a member,
then either the next path entry indicates a nailed binding or 65

the path needs to be extended and the routine continues at
block 704, else the routine continues at block 703. A nailed

Blocks 709-716 illustrate the processing of a list of
candidate paths that extend from the passed path entry. In
blocks 710-716, the routine loops selecting each candidate
path and sending the message to be process by each candi
date path. In block 710, the routine sets the next entry to the
first path entry of the next candidate path. In decision block
711, if all the candidate paths have not yet been processed,
then the routine continues at block 712, else the routine
returns. In decision block 712, if the next entry is equal to
the passed path entry, then the path is to be extended and the
routine continues at block 705, else the routine continues at
block 713. The candidate paths include a first path entry that
is a reference path entry for new paths or that is the last path
entry of a path being extended. In decision block 713, if the
number of candidate paths is greater than one, then the
routine continues at block 714, else the routine continues at
block 718. In decision block 714, if the passed path entry has
a multiplex list associated with it, then the routine continues
at block 716, else the routine continues at block 715. In
block 715, 11 the routine associates the list of candidate path
with the multiplex list of the passed path entry and continues
at block 716. In block 716, the routine sends the message to
the next entry by recursively invoking the message send
routine. The routine then loops to block 710 to select the
next entry associated with the next candidate path.

Blocks 717-718 are performed when the passed path entry
is a reference path entry that has a path associated with it. In
block 717, if there is a path associated with the next entry,
then the routine continues at block 718, else the routine
returns. In block 718, the routine queues the message for the
path of the next entry and then returns.

FIG. 8 is a flow diagram of the demux routine. This
routine is passed the packet (message) that is received, an
address structure, and a path entry structure. The demux
routine extends a path, creating one if necessary. The routine
loops identifying the next binding (edge and protocol) that
is to process the message and "nailing" the binding to a
session for the message, if not already nailed. After identi-
fying the nailed binding, the routine searches for the shortest
path through the nailed binding, creating a path if none
exists. In block 801, the routine invokes the initialize demux
routine. In blocks 802-810, the routine loops identifying a
path or portion of a path for processing the passed message.
In decision block 802, if there is a current status, which was

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 30 of 34 PageID #: 439

Juniper Ex. 1041-p. 190
Juniper v Implicit

US 10,027,780 B2
9

returned by the demux key routine that was last invoked
(e.g., continue, extend, end, or postpone), then the routine
continues at block 803, else the routine continues at block
811. In block 803, the routine invokes the get next binding
routine. The get next binding routine returns the next bind- 5

ing in the path. The binding is the edge of a protocol. That
routine extends the path as appropriate to include the bind
ing. The routine returns a return status of break, binding, or
multiple. The return status of binding indicates that the next
binding in the path was found by extending the path as 10

appropriate and the routine continues to "nail" the binding to
a session as appropriate. The return status of multiple means
that multiple trails (e.g., candidate paths) were identified as
possible extensions of the path. In a decision block 804, if
the return status is break, then the routine continues at block 15

811. If the return status is multiple, then the routine returns.
If the return status is binding, then the routine continues at
block 805. In decision block 805, if the retrieved binding is
nailed as indicated by being assigned to a session, then the
routine loops to block 802, else the routine continues at 20

block 806. In block 806, the routine invokes the get key
routine of the edge associated with the binding. The get key
routine creates the key for the session associated with the
message. If a key cannot be created until subsequent bind
ings are processed or because the current binding is to be 25

removed, then the get key routine returns a next binding
status, else it returns a continue status. In decision block 807,
if the return status of the get key routine is next binding, then
the routine loops to block 802 to get the next binding, else
the routine continues at block 808. In block 808, the routine 30

invokes the routine get session. The routine get session
returns the session associated with the key, creating a new
session if necessary. In block 809, the routine invokes the
routine nail binding. The routine nail binding retrieves the
binding if one is already nailed to the session. Otherwise, 35

that routine nails the binding to the session. In decision
block 810, if the nail binding routine returns a status of
simplex, then the routine continues at block 811 because
only one path can use the session, else the routine loops to
block 802. Immediately upon return from the nail binding 40

routine, the routine may invoke a set map routine of the edge
passing the session and a map to allow the edge to set its
map. In block 811, the routine invokes the find path routine,
which finds the shortest path through the binding list and
creates a path if necessary. In block 812, the routine invokes 45

the process path hopping routine, which determines whether
the identified path is part of a different path. Path hopping
occurs when, for example, IP fragments are built up along
separate paths, but once the fragments are built up they can

10
and address element to null. In block 903, the routine sets of
the variable saved status to O and the variable status to
demux continue. The variable saved status is used to track
the status of the demux process when backtracking to nail a
binding whose nail was postponed. In decision block 904, if
the passed path entry is associated with a path, then the
routine continues at block 905, else the routine continues at
block 906. In block 905, the routine sets the variable status
to the status of that path. In block 906, if the variable status
is demux continue, then the routine continues at block 907.
If the variable status is demux end, then the routine contin-
ues at block 908. If the variable status is demux extend, then
the routine continues at block 909. In block 907, the status
is demux continue, and the routine sets the local pointer path
address to the passed address and continues at block 911. In
block 908, the status is demux end, and the routine invokes
the init end routine and continues at block 911. In block 909,
the status is demux extend, and the routine sets the local path
address to the address of the path that contains the passed
path entry. In block 910, the routine sets the address element
and the current binding of the path address pointed to by the
local pointer path address to the address entry of the member
structure of the passed path entry. In the block 911, the
routine sets the local variable status to demux continue and
sets the local binding list structure to the binding list
structure from the local path address structure. In block 912,
the routine sets the local pointer current binding to the
address of the current binding pointed to by local pointer
path address and sets the local variable postpone to 0. In
block 913, the routine sets the function traverse to the
function that retrieves the next data in a list and sets the local
pointer session to null. The routine then returns.

FIG. 10 is a flow diagram of the init end routine. If the
path is simplex, then the routine creates a new path from
where the other one ended, else the routine creates a copy of
the path. In block 1001, if the binding of the passed path
entry is simplex (i.e., only one path can be bound to this
binding), then the routine continues at block 1002, else the
routine continues at block 1003. In block 1002, the routine
sets the local pointer path address to point to an address
structure that is a copy of the address structure associated
with the passed path entry structure with its current binding
to the address entry associated with the passed path entry
structure, and then returns. In block 1003, the routine sets
the local pointer path address to point to an address structure
that contains the URL of the path that contains the passed
path entry. In block 1004, the routine sets the local pointer
element to null to initialize the selection of the bindings. In
blocks 1005 through 1007, the routine loops adding all the

be processed by the same subsequent path.
FIG. 9 is a flow diagram of the initialize demux routine.

This routine is invoked to initialize the local data structures
that are used in the demux process and to identify the initial
binding. The demux routine finds the shortest path from the
initial binding to the final binding. If the current status is
demux extend, then the routine is to extend the path of the
passed path entry by adding additional path entries. If the
current status is demux end, then the demux routine is
ending the current path. If the current status is demux
continue, then the demux routine is in the process of
continuing to extend or in the process of starting a path
identified by the passed address. In block 901, the routine
sets the local map structure to the map structure in the passed
path entry structure. The map structure identifies the output
label, the target label, and the target key. In the block 902,
the routine initializes the local message structure to the
passed message structure and initializes the pointers path

50 bindings for the address of the passed path entry that include
and are before the passed path entry to the address pointed
to by the local path address. In block 1005, the routine
retrieves the next binding from the binding list starting with
the first. If there is no such binding, then the routine returns,

55 else the routine continues at block 1006. In block 1006, the
routine adds the binding to the binding list of the local path
address structure and sets the current binding of the local
variable path address. In the block 1007, if the local pointer
element is equal to the address entry of the passed path entry,

60 then the routine returns, else the routine loops to block 1005
to select the next binding.

FIG. 11 is a flow diagram of a routine to get the next
binding. This routine returns the next binding from the local
binding list. If there is no next binding, then the routine

65 invokes the routine label map get to identify the list of edges
("trails") that will map the output label to the target label. If
only one trail is identified, then the binding list of path

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 31 of 34 PageID #: 440

Juniper Ex. 1041-p. 191
Juniper v Implicit

US 10,027,780 B2
11

address is extended by the edges of the trail. If multiple trails
are identified, then a path is created for each trail and the
routine returns so that the demux process can be invoked for
each created path. In block 1101, the routine sets the local
pointer binding to point to the next or previous (as indicated 5

by the traverse function) binding in the local binding list. In
block 1102, if a binding was found, then the routine returns
an indication that a binding was found, else the routine
continues at block 1103. In block 1103, the routine invokes
the label map get function passing the output label and target 10

label of the local map structure. The label map get function
returns a trail list. A trail is a list of edges from the output
label to the target label. In decision block 1104, if the size
of the trail list is one, then the routine continues at block
1105, else the routine continues at block 1112. In blocks 15

1105-1111, the routine extends the binding list by adding a
binding data structure for each edge in the trail. The routine
then sets the local binding to the last binding in the binding
list. In block 1108, the routine sets the local pointer current
binding to point to the last binding in the local binding list. 20

In block 1106, the routine sets the local variable temp trail
to the trail in the trail list. In block 1107, the routine extends
the binding list by temp trail by adding a binding for each
edge in the trail. These bindings are not yet nailed. In block
1108, the routine sets the local binding to point to the last 25

binding in the local binding list. In decision block 1109, if
the local binding does not have a key for a session and the
local map has a target key for a session, then the routine sets
the key for the binding to the target key of the local map and
continues at block 1110, else the routine loops to block 1101 30

to retrieve the next binding in path. In block 1110, the
routine sets the key of the local binding to the target key of
the local map. In block 1111, the routine sets the target key
of the local map to null and then loop to block 1101 to return
the next binding. In decision block 1112, if the local session 35

is set, then the demultiplexing is already in progress and the
routine returns a break status. In block 1113, the routine
invokes a prepare multicast paths routine to prepare a path
entry for each trail in the trail list. The routine then returns

12
local binding to indicate that the binding is to be removed
and continues at block 1206. In block 1205, the routine sets
the variable traverse to the function to list the next data,
increments the variable postpone, and then returns a next
binding status. In blocks 1206-1214, the routine processes
the postponing of the creating ofa key. In blocks 1207-1210,
if the creating of a key has been postponed, then the routine
indicates to backtrack on the path, save the demux status,
and set the demux status to demux continue. In blocks
1211-1213, if the creating of a key has not been postponed,
then the routine indicates to continue forward in the path and
to restore any saved demux status. The save demux status is
the status associated by the binding where the backtrack
started. In decision block 1206, if the variable postpone is
set, then the routine continues at block 1207, else the routine
continues at block 1211. In block 1207, the routine decre-
ments the variable postpone and sets the variable traverse to
the list previous data function. In decision block 1208, if the
variable saved status is set, then the routine continues at
block 1210, else the routine continues at block 1209. The
variable saved status contains the status of the demux
process when the demux process started to backtrack. In
block 1209, the routine sets the variable saved status to the
variable status. In block 1210, the routine sets the variable
status to demux continue and continues at block 1214. In
block 1211, the routine sets the variable traverse to the list
next data function. In decision block 1212, if the variable
saved status in set, then the routine continues at block 1213,
else the routine continues at block 1214. In block 1213, the
routine sets the variable status to the variable saved status
and sets the variable saved status to 0. In decision block
1214, if the local binding indicates that it is to be removed,
then the routine returns a next binding status, else the routine
returns a continue status.

FIG. 13 is a flow diagram of the get session routine. This
routine retrieves the session data structure, creating a data
structure session if necessary, for the key indicated by the
binding. In block 1301, the routine retrieves the session from
the session table of the local protocol indicated by the key

a multiple status.
FIG. 12 is a flow diagram of the get key routine. The get

key routine invokes an edge's demux key routine to retrieve

40 of the local binding. Each protocol maintains a mapping
from each key to the session associated with the key. In
decision block 1302, if there is no session, then the routine
continues at block 1303, else the routine returns. In block a key for the session associated with the message. The key

identifies the session of a protocol. The demux key routine
creates the appropriate key for the message. The demux key 45

routine returns a status of remove, postpone, or other. The
status of remove indicates that the current binding should be
removed from the path. The status of postpone indicates that
the demux key routine cannot create the key because it needs
information provided by subsequent protocols in the path. 50

For example, a TCP session is defined by a combination of
a remote and local port address and an IP address. Thus, the
TCP protocol postpones the creating of a key until the IP
protocol identifies the IP address. The get key routine returns
a next binding status to continue at the next binding in the 55

path. Otherwise, the routine returns a continue status. In
block 1201, the routine sets the local edge to the edge of the
local binding (current binding) and sets the local protocol to
the protocol of the local edge. In block 1202, the routine
invokes the demux key routine of the local edge passing the 60

local message, local path address, and local map. The demux
key routine sets the key in the local binding. In decision
block 1203, if the demux key routine returns a status of
remove, then the routine continues at block 1204. If the
demux key routine returns a status of postpone, then the 65

routine continues at block 1205, else the routine continues at
block 1206. In block 1204, the routine sets the flag of the

1303, the routine creates a session for the local protocol. In
block 1304, the routine initializes the key for the local
session based on the key of the local binding. In block 1305,
the routine puts the session into the session table of the local
protocol. In block 1306, the routine invokes the create
session function of the protocol to allow the protocol to
initialize its context and then returns.

FIG. 14 is a flow diagram of the nail binding routine. This
routine determines whether a binding is already associated
with ("nailed to") the session. If so, the routine returns that
binding. If not, the routine associates the binding with the
session. The routine returns a status of simplex to indicate
that only one path can extend through the nailed binding. In
decision block 1401, if the binding table of the session
contains an entry for the edge, then the routine continues at
block 1402, else the routine continues at block 1405. In
block 1402, the routine sets the binding to the entry from the
binding table of the local session for the edge. In block 1403,
the routine sets the current binding to point to the binding
from the session. In block 1404, if the binding is simplex,
then the routine returns a simplex status, else the routine
returns. Blocks 1405 through 1410 are performed when
there is no binding in the session for the edge. In block 1405,
the routine sets the session of the binding to the variable

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 32 of 34 PageID #: 441

Juniper Ex. 1041-p. 192
Juniper v Implicit

US 10,027,780 B2
13

session. In block 1406, the routine sets the key of the binding
to the key from the session. In block 1407, the routine sets
the entry for the edge in the binding table of the local session
to the binding. In block 1408, the routine invokes the create
binding function of the edge of the binding passing the 5

binding so the edge can initialize the binding. If that function
returns a status of remove, the routine continues at block
1409. In block 1409, the routine sets the binding to be
removed and then returns.

FIG. 15 is a flow diagram of the find path routine. The find 10

path routine identifies the shortest path through the binding
list. If no such path exists, then the routine extends a path to
include the binding list. In decision block 1501, if the
binding is simplex and a path already goes through this
binding (returned as an entry), then the routine continues at 15

block 1502, else the routine continues at block 1503. In
block 1502, the routine sets the path to the path of the entry
and returns. In block 1503, the routine initializes the pointers
element and short entry to null. In block 1504, the routine
sets the path to the path of the passed path entry. If the local 20

path is not null and its status is demux extend, then the
routine continues at block 1509, else the routine continues at
block 1505. In blocks 1505-1508, the routine loops identi
fying the shortest path through the bindings in the binding
list. The routine loops selecting each path through the 25

binding. The selected path is eligible if it starts at the first
binding in the binding list and the path ends at the binding.
The routine loops setting the short entry to the shortest
eligible path found so far. In block 1505, the routine sets the
variable first binding to the first binding in the binding list 30

of the path address. In block 1506, the routine selects the
next path (entry) in the path list of the binding starting with
the first. If a path is selected (indicating that there are more
paths in the binding), then the routine continues at block
1507, else the routine continues at block 1509. In block 35

1507, the routine determines whether the selected path starts
at the first binding in the binding list, whether the selected
path ends at the last binding in the binding list, and whether
the number of path entries in the selected path is less than the
number of path entries in the shortest path selected so far. If 40

these conditions are all satisfied, then the routine continues
at block 1508, else the routine loops to block 1506 to select
the next path (entry). In block 1508, the routine sets the
shortest path (short entry) to the selected path and loops to
block 1506 to select the next path through the binding. In 45

block 1509, the routine sets the selected path (entry) to the
shortest path. In decision block 1510, if a path has been
found, then the routine continues at block 1511, else the
routine continues at block 1512. In block 1511, the routine
sets the path to the path of the selected path entry and 50

returns. Blocks 1512-1516 are performed when no paths
have been found. In block 1512, the routine sets the path to
the path of the passed path entry. If the passed path entry has
a path and its status is demux extend, then the routine
continues at block 1515, else the routine continues at block 55

1513. In block 1513, the routine creates a path for the path
address. In block 1514, the routine sets the variable element
to null and sets the path entry to the first element in the stack
list of the path. In block 1515, the routine sets the variable
element to be address entry of the member of the passed path 60

entry and sets the path entry to the passed path entry. In
block 1516, the routine invokes the extend path routine to
extend the path and then returns. The extend path routine
creates a path through the bindings of the binding list and
sets the path status to the current demux status. 65

FIG. 16 is a flow diagram of the process of path hopping
routine. Path hopping occurs when the path through the

14
binding list is not the same path as that of the passed path
entry. In decision block 1601, if the path of the passed path
entry is set, then the routine continues at block 1602, else the
routine continues at block 1609. In decision block 1602, if
the path of the passed path entry is equal to the local path,
then the routine continues at 1612, else path hopping is
occurring and the routine continues at block 1603. In blocks
1603-1607, the routine loops positioning pointers at the first
path entries of the paths that are not at the same binding. In
block 1603, the routine sets the variable old stack to the
stack list of the path of the passed path entry. In block 1604,
the routine sets the variable new stack to the stack list of the
local path. In block 1605, the routine sets the variable old
element to the next element in the old stack. In block 1606,
the routine sets the variable element to the next element in
the new stack. In decision block 1607, the routine loops until
the path entry that is not in the same binding is located. In
decision block 1608, if the variable old entry is set, then the
routine is not at the end of the hopped from path and the
routine continues at block 1609, else routine continues at
block 1612. In block 1609, the routine sets the variable entry
to the previous entry in the hopped-to path. In block 1610,
the routine sets the path of the passed path entry to the local
path. In block 1611, the routine sets the local entry to the first
path entry of the stack list of the local path. In block 1612,
the routine inserts an entry into return list and then returns.

Although the conversion system has been described in
terms of various embodiments, the invention is not limited
to these embodiments. Modification within the spirit of the
invention will be apparent to those skilled in the art. For
example, a conversion routine may be used for routing a
message and may perform no conversion of the message.
Also, a reference to a single copy of the message can be
passed to each conversion routine or demux key routine.
These routines can advance the reference past the header
information for the protocol so that the reference is posi
tioned at the next header. After the demux process, the
reference can be reset to point to the first header for
processing by the conversion routines in sequence. The
scope of the invention is defined by the claims that follow.

What is claimed is:
1. A method, comprising:
rece1vmg, at a computing device having a processing

circuit, a packet of a message;
determining, by the computing device, a key value for the

packet, wherein the key value is determined based on
one or more headers in the packet;

using, by the computing device, the key value to deter
mine whether the computing device is currently storing
a previously created path for the key value;

in response to determining that no path is currently stored
for the key value, the computing device:
identifying, using the key value, one or more routines

for processing the packet, including a routine that is
used to execute a Transmission Control Protocol
(TCP) to convert packets having a TCP format into
a different format;

creating a path using the identified one or more rou
tines; and

processing the packet using the created path.
2. The method of claim 1, wherein the created path stores

state information for at least one of the identified one or
more routines.

3. The method of claim 1, wherein the created path stores
state information for each of the identified one or more
routines.

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 33 of 34 PageID #: 442

Juniper Ex. 1041-p. 193
Juniper v Implicit

US 10,027,780 B2
15

4. The method of claim 1, wherein the created path
specifies an ordering in which the identified one or more
routines are to be performed to process the packet.

5. The method of claim 4, wherein the ordering specifies
that an application layer protocol is to be performed subse- 5

quent to the TCP.
6. The method of claim 5, wherein the application layer

protocol is HTTP, and wherein the different format is HTTP.
7. The method of claim 4, wherein the ordering specifies

that a first execution of the TCP is to be followed by 10

execution of an application layer protocol, which is to be
followed by a second execution of the TCP.

8. The method of claim 7, wherein the first execution of
the TCP receives information from a network and the second
execution of the TCP sends information via the network.

9. The method of claim 4, wherein the ordering specifies
that the TCP is an initial one of the one or more routines.

15

10. The method of claim 4, wherein the ordering specifies
that the TCP is to be performed after performing an Ethernet
protocol.

20

11. The method of claim 1, further comprising:
receiving, at the computing device, a subsequent packet of

the message;
determining, by the computing device based on the sub-

sequent packet, the key value;
using, by the computing device, the key value to identify

the created path for the message; and
processing, by the computing device, the subsequent

packet using the path.
12. The method of claim 11, wherein processing the

subsequent packet includes:
queuing the subsequent packet for one or more routines

specified in the path; and

25

30

performing the one or more routines according to an 35
ordering specified by the path, wherein performing at
least one of the routines includes accessing state infor
mation stored in the path.

13. The method of claim 11, wherein packets of the
message are all associated with a single TCP session. 40

14. The method of claim 1, wherein the key value includes
an IP address and one or more port addresses.

15. A method, comprising:
receiving, at a computing device having a processing

circuit, a packet of a message; 45
determining, by the computing device, a key value for the

packet, wherein the key value is determined based on
one or more headers in the packet;

using, by the computing device, the key value to deter
mine whether the computing device is currently storing
a previously created path for the key value;

16
in response to determining that no path is currently stored

for the key value, the computing device:
identifying, using the key value, one or more routines

for processing the packet, including a routine that is
used to execute a User Datagram Protocol (UDP) to
convert packets having a UDP format into a different
format;

creating a path using the identified one or more rou
tines; and

processing the packet using the created path.
16. An apparatus, comprising:
a network interface;
a processor circuit;
a memory storing program instructions executable by the

processor circuit to:
receiving, via the network interface, a packet of a

message;
determine a key value for the packet, wherein the key

value is determined based on one or more headers in
the packet;

use the key value to determine whether the apparatus is
currently storing a path for the key value, wherein
one or more routines are specified in the path for
processing packets of the message;

in response to determining that no path is currently
stored for the key value:
identify, using the key value, one or more routines

for processing the packet, including a particular
routine that is used to execute a Transmission
Control Protocol (TCP) to convert packets having
a TCP format into a different format;

create a path using the identified one or more rou
tines;

process the packet using the created path; and
store the path for use in processing subsequent

packets in the message; and
in response to determining that a path is currently

stored for the key value;
process the packet using the stored path.

17. The apparatus of claim 16, wherein the apparatus is
configured to process the packet by queuing the packet for
the one or more routines identified in the path.

18. The apparatus of claim 16, wherein the different
format is an application layer format.

19. The apparatus of claim 16, wherein the particular
routine is executable to utilize state information stored
within the path.

20. The apparatus of claim 16, wherein the path stores
state information for at least some of the one or more
routines.

* * * * *

Case 2:19-cv-00037-JRG Document 14-7 Filed 03/19/19 Page 34 of 34 PageID #: 443

Juniper Ex. 1041-p. 194
Juniper v Implicit

EXHIBIT 8

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 1 of 33 PageID #: 444

Juniper Ex. 1041-p. 195
Juniper v Implicit

c12) United States Patent
Balassanian

(54) METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

(71) Applicant: Implicit, LLC, Seattle, WA (US)

(72) Inventor: Edward Balassanian, Seattle, WA (US)

(73) Assignee: Implicit, LLC, Seattle, WA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 15/450,790

(22) Filed:

(65)

Mar. 6, 2017

Prior Publication Data

(63)

(51)

(52)

US 2017/0310792 Al Oct. 26, 2017

Related U.S. Application Data

Continuation of application No. 15/050,027, filed on
Feb. 22, 2016, now Pat. No. 9,591,104, which is a

(Continued)

Int. Cl.
H04L 12158
H04L 29106
H04L 29108
H04L 29112
H04L 121701
U.S. Cl.

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2013.01)

CPC H04L 69/08 (2013.01); H04L 29106
(2013.01); H04L 45100 (2013.01); H04L

61/2007 (2013.01); H04L 61/6063 (2013.01);
H04L 67102 (2013.01); H04L 69/16 (2013.01);

(Continued)

I 1111111111111111 1111111111 11111 111111111111111 IIIII IIIII IIIIII IIII IIII IIII
US010033839B2

(IO) Patent No.:
(45) Date of Patent:

US 10,033,839 B2
*Jul. 24, 2018

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

EP
EP

U.S. PATENT DOCUMENTS

5,298,674 A
5,392,390 A

3/1994 Yun
2/1995 Crozier

(Continued)

FOREIGN PATENT DOCUMENTS

0408132
0807347

1/1991
11/1997

(Continued)

OTHER PUBLICATIONS

Non-Final Office Action in Inter Partes Reexamination Control No.
95/000,659 dated Aug. 16, 2013, 107 pages.

(Continued)

Primary Examiner - Due T Duong
(74) Attorney, Agent, or Firm - Meyertons, Hood,
Kivlin, Kowert & Goetze!, P.C.

(57) ABSTRACT

The demultiplexing system receives packets of a message,
identifies a sequence of message handlers for processing the
message, identifies state information associated with the
message for each message handler, and invokes the message
handlers passing the message and the associated state infor
mation. The system identifies the message handlers based on
the initial data type of the message and a target data type.
The identified message handlers effect the conversion of the
data to the target data type through various intermediate data
types.

1 Claim, 16 Drawing Sheets

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 2 of 33 PageID #: 445

Juniper Ex. 1041-p. 196
Juniper v Implicit

(52)

(56)

US 10,033,839 B2
Page 2

Related U.S. Application Data 6,278,532 Bl 8/2001 Heimendinger et al.
6,292,827 Bl 9/2001 Raz

continuation of application No. 14/230,952, filed on 6,356,529 Bl 3/2002 Zarom
Mar. 31, 2014, now Pat. No. 9,270,790, which is a 6,359,911 Bl 3/2002 Movshovich et al.

continuation of application No. 13/911,324, filed on 6,374,305 Bl 4/2002 Gupta et al.
6,401,132 Bl 6/2002 Bellwood et al.

Jun. 6, 2013, now Pat. No. 8,694,683, which is a 6,404,775 Bl 6/2002 Leslie et al.
continuation of application No. 13/236,090, filed on 6,405,254 Bl 6/2002 Hadland

Sep. 19, 2011, now abandoned, which is a continu- 6,426,943 Bl 7/2002 Spinney et al.

ation of application No. 10/636,314, filed on Aug. 6, 6,493,348 Bl 12/2002 Gelman et al.
6,504,843 Bl 1/2003 Cremin et al.

2003, now Pat. No. 8,055,786, which is a continu- 6,519,636 B2 2/2003 Engel et al.
ation of application No. 09/474,664, filed on Dec. 29, 6,560,236 Bl 5/2003 Varghese et al.
1999, now Pat. No. 6,629,163. 6,574,610 Bl 6/2003 Clayton et al.

6,578,084 Bl 6/2003 Moberg et al.
6,598,034 Bl 7/2003 Kloth

U.S. Cl. 6,629,163 Bl 9/2003 Balassanian
CPC H04L 69/18 (2013.01); H04L 69122 6,650,632 Bl 11/2003 Volftsun et al.

(2013.01); H04L 69132 (2013.01) 6,651,099 Bl 11/2003 Dietz et al.
6,678,518 B2 1/2004 Eerola

References Cited 6,680,922 Bl 1/2004 Jorgensen
6,701,432 Bl 3/2004 Deng et al.

U.S. PATENT DOCUMENTS 6,711,166 Bl 3/2004 Amir et al.
6,772,413 B2 8/2004 Kuznetsov

5/1995 Hershey et al.
6,785,730 Bl 8/2004 Taylor

5,414,833 A 6,865,735 Bl 3/2005 Sirer et al.
5,425,029 A 6/1995 Hluchyj et al. 6,871,179 Bl 3/2005 Kist et al.
5,568,478 A 10/1996 van Loo, Jr. et al. 6,889,181 B2 5/2005 Kerr et al.
5,627,997 A 5/1997 Pearson et al. 6,937,574 Bl 8/2005 Delaney et al.
5,710,917 A 1/1998 Musa et al. 6,957,346 Bl 10/2005 Kivinen et al.
5,727,159 A 3/1998 Kikinis 6,959,439 Bl 10/2005 Boike
5,740,430 A 4/1998 Rosenberg et al. 7,233,569 Bl 6/2007 Swallow
5,761,651 A 6/1998 Hasebe 7,233,948 Bl 6/2007 Shamoon et al.
5,768,521 A 6/1998 Dedrick 7,281,036 Bl 10/2007 Lu et al.
5,826,027 A 10/1998 Pedersen et al. 7,383,341 Bl 6/2008 Saito et al.
5,835,726 A 11/1998 Shwed et al. 7,711,857 B2 5/2010 Balassanian
5,842,040 A 11/1998 Hughes et al. 8,055,786 B2 11/2011 Balassanian
5,848,233 A 12/1998 Radia et al. 8,694,683 B2 4/2014 Balassanian
5,848,246 A 12/1998 Gish 2003/0142669 Al 7/2003 Kubota et al.
5,848,415 A 12/1998 Guck 2004/0015609 Al 1/2004 Brown et al.
5,854,899 A 12/1998 Callon et al. 2008/0250045 Al 10/2008 Balassanian et al.
5,870,479 A 2/1999 Feiken et al. 2009/0083763 Al 3/2009 Sareen et al.
5,896,383 A 4/1999 Wakeland 2009/0265695 Al 10/2009 Karino
5,898,830 A 4/1999 Wesinger, Jr. et al. 2009/0310485 Al * 12/2009 Averi H04L 45/00
5,918,013 A 6/1999 Mighdoll et al. 370/232
5,983,348 A 11/1999 Ji 2015/0032691 Al* 1/2015 Hall H04L 29/06
5,987,256 A 11/1999 Wu et al.

707/610 5,991,299 A 11/1999 Radogna et al.
5,991,806 A 11/1999 McHann, Jr.
6,032,150 A 2/2000 Nguyen FOREIGN PATENT DOCUMENTS
6,035,339 A 3/2000 Agraharam et al.
6,047,002 A 4/2000 Hartmann et al. EP 0817031 1/1998
6,067,575 A 5/2000 McManis et al. JP Hl0-49354 2/1998
6,091,725 A 7/2000 Cheriton et al. JP Hl0-55279 2/1998
6,094,679 A 7/2000 Teng et al. JP Hl0-74153 3/1998
6,101,189 A 8/2000 Tsuruoka JP Hl0-289215 10/1998
6,101,320 A 8/2000 Schuetze et al. WO 99/35799 7 /1999
6,104,500 A 8/2000 Alam et al.
6,104,704 A 8/2000 Buhler et al. OTHER PUBLICATIONS 6,111,893 A 8/2000 Volftsun et al.
6,112,250 A 8/2000 Appelman

Decision on Petition in Reexamination Control No. 95/000,659 6,115,393 A 9/2000 Engel et al.
6,119,165 A 9/2000 Li et al. dated Aug. 19, 2013, 3 pages.

6,119,236 A 9/2000 Shipley Response to Non-Final Office Action in Reexamination Control No.
6,122,666 A 9/2000 Beurket et al. 95/000,659 dated Oct. 2, 2013 including Exhibits A-C, 37 pages.
6,128,624 A 10/2000 Papierniak et al. Decision on Petition in Reexamination Control No. 95/000,660
6,130,917 A 10/2000 Monroe dated Jul. 30, 2013, 12 pages.
6,141,749 A 10/2000 Coss et al. Non-Final Office Action in Inter Partes Reexamination Control No.
6,151,390 A 11/2000 Volftsun et al. 95/000,660 dated Aug. 30, 2013, 23 pages.
6,157,622 A 12/2000 Tanaka et al. RFC: 791. Internet Protocol: DARPA Internet Program Protocol
6,167,441 A 12/2000 Himmel Specification, Sep. 1981, prepared for Defense Advanced Research
6,192,419 Bl 2/2001 Aditham et al. Projects Agency Information Processing Techniques Office by
6,199,054 Bl 3/2001 Khan et al. Information Sciences Institute University of Southern California, 52
6,212,550 Bl 4/2001 Segur
6,222,536 Bl 4/2001 Kihl et al. pages.

6,226,267 Bl 5/2001 Spinney et al. 2015 WL 2194627, United States District Court, N.D. California,

6,243,667 Bl 6/2001 Kerr et al. Implicit L.L.C., Plaintiff, v. F5 Networks, Inc., Defendant, Case No.

6,246,678 Bl 6/2001 Erb et al. 14-cv-02856-SI, signed May 6, 2015, 14 pages.
6,259,781 Bl 7/2001 Crouch et al. Defendants' Invalidity Contentions Pursuant to Local Patent Rules
6,275,507 Bl 8/2001 Anderson et al. 3-3 and 3-4, United States District Court Eastern District of Texas

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 3 of 33 PageID #: 446

Juniper Ex. 1041-p. 197
Juniper v Implicit

US 10,033,839 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Tyler Division, Implicit, LLC v. Trend Micro, Inc., Ericsson Inc.,
Huawei Technologies Usa, Inc., NEC corporation of America,
Nokia Solutions and Networks US LLC; Sep. 2, 2016, 53 pages.
Exhibits A-l-Al6 Invalidity of U.S. Pat. No. 8,694,683, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, Sep. 2, 2016, 425 pages.
Exhibits B-l-Bl3 Invalidity of U.S. Pat. No. 9,270,790, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, Sep. 2, 2016, 369 pages.
Exhibits C-l-C21 Invalidity of U.S. Pat. No. 8,856,779, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, Sep. 2, 2016, 646 pages.
Exhibits D-l-D21 Invalidity of U.S. Pat. No. 9,325,740, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, Sep. 2, 2016, 419 pages.
Exhibits E-l-E20 Invalidity of U.S. Pat. No. 6,324,685, Defendants'
Invalidity Contentions Pursuant to Local Patent Rules 3-3 and 3-4,
United States District Court Eastern District of Texas Tyler Divi
sion, Sep. 2, 2016, 416 pages.
Michael Baentsch, et al., "WebMake: Integrating distributed soft
ware development in a structure-enhanced Web," Computer Net
works and ISDN Systems 27 (1995), pp. 789-800.
Dan Decasper, et al., "A Scalable, High Performance Active Net
work Node," Apr. 1998, 21 pages.
John J. Hartman, et al., "Joust: A Platform for Liquid Software,"
Computer, IEEE, 1999, pp. 50-56.
David Mosberger, et al., "Making Paths Explicit in the Scout
Operating System," Proceedings of the USENIX 2nd Symposium
on Operating Systems Design and Implementation, Oct. 1996, 16
pages.
Oliver Spatscheck, et al., "Escort: A Path-Based OS Security
Architecture," TR 97-17, Nov. 26, 1997, 17 pages.
Dan Decasper, et al., "DAN: Distrubuted Code Caching for Active
Networks," IEEE, 1998, pp. 609-616.
Alexander, D. et al., "The SwitchWare Active Network Architec
ture", Jun. 6, 1998, IEEE.
Antoniazzi, S. et al., "An Open Software Architecture for Multi
media Consumer Terminals", Central Research Labs, Italy; Alcatel
Se! Research Centre, Germany, ECMAST 1997.
Arbanowski, Stefan, "Generic Description of Telecommunication
Services and Dynamic Resource Selection in Intelligent Commu
nication Environments", Thesis, Technische Universitat Berlin, Oct.
9, 1996 (3 documents).
Arbanowski, S., et al., Service Personalization for Unified Messag
ing Systems, Jul. 6-8, 1999, The Fourth IEEE Symposium on
Computers and Communications, ISCC '99, Red Sea, Egypt.
Atkinson, R., "Security Architecture for the Internet Protocol", Aug.
1995, Naval Research Laboratory.
Atkinson, R., "IP Authentication Header", Aug. 1995, Naval
Research Laboratory.
Atkinson, R., "IP Encapsulating Security Payload (ESP)", Aug.
1995, Naval Research Laboratory.
Back, G., et al., Java Operating Systems: Design and Implementa
tion, Aug. 1998, Technical Report UUCS-98-015, University of
Utah.
Baker, Dr. Sean, "CORBA Implementation Issues", 1994, IONA
Technologies, O'Reilly Institute Dublin, Ireland.
Barrett, R., et al., "Intermediaries: New Places for Producing and
Manipulating Web Content", 1998, IBM Almaden Research Center,
Elsevier Science.
Bellare, M., et al., "A Concrete Security Treatment of Synunetric
Encryption: Analysis of the DES Modes of Operation", Aug. 15,
1997, Dept. of Computer Science and Engineering, University of
California, San Diego.

Bellare, M., et al., "A Concrete Security Treatment of Synunetric
Encryption: Analysis of the DES Modes of Operation", Aug. 15,
1997, IEEE.
Bellare, M., et al., "XOR MACs: New Methods for Message
Authentication Using Finite Pseudorandom Functions", 1995,
CRYPTO '95, LNCS 963, pp. 15-28, Springer-Verlag Berlin
Heidelberg.
Bellissard, L., et al., "Dynamic Reconfiguration of Agent-Based
Applications", Third European Research Seminar on Advances in
Distributed Systems, (ERSADS '99) Madeira Island.
Bolding, Darren, "Network Security, Filters and Firewalls", 1995,
www.acm.org/crossroads/xrds2-l/security.html.
Booch, G., et al., "Software Engineering with ADA", 1994, Third
Edition, The Benjamin/Cummings Publishing Company, Inc (2
documents).
Breugst, et al., "Mobile Agents-Enabling Technology for Active
Intelligent Network Implementation", May/Jun. 1998, IEEE Net
work.
"C Library Functions", AUTH(3) Sep. 17, 1993, Solbourne Com
puter, Inc.
Chapman, D., et al., "Building Internet Firewalls", Sep. 1995,
O'Reilly & Associates, Inc.
CheckPoint FireWall-1 Technical White Paper, Jul. 18, 1994,
CheckPoint Software Technologies, Ltd.
CheckPoint FireWall-1 White Paper, Sep. 1995, Version 2.0,
CheckPoint Software Technologies, Ltd.
Command Line Interface Guide PIN 093-0011-000 Rev C Version
2.5, 2000-2001, NetScreen Technologies, Inc.
Coulson, G. et al., "A CORBA Compliant Real-Time Multimedia
Platform for Broadband Networks", Lecture Notes in Computer
Science, 1996, Trends in Distributed Systems CORBAand Beyond.
Cox, Brad, "SuperDistribution, Objects As Property on the Elec
tronic Frontier", 1996, Addison-Wesley Publishing Company.
Cranes, et al., "A Configurable Protocol Architecture for CORBA
Environments", Autonomous Decentralized Systems 1997 Proceed
ings ISADS, Third International Symposium Apr. 9-11, 1997.
Curran, K., et at, "CORBA Lacks Venom", University of Ulster,
Northern Ireland, UK 2000.
Dannert, Andreas, "Call Logic Service for a Personal Communica
tion Supporting System", Thesis, Jan. 20, 1998, Technische
Universitat Berlin.
DARPA Internet Program Protocol Specification, "Transmission
Control Protocol", Sep. 1981, Information Sciences Institute, Cali
fornia.
DARPA Internet Program Protocol Specification, "Internet Proto
col", Sep. 1981, Information Sciences Institute, California.
Decasper, D., et al., "Crossbow: A Toolkit for Integrated Services
over Cell Switched IPv6", 1997, Computer Engineering and Net
works Laboratory, ETH Zurich, Switzerland.
Decasper, D., et al., "Router Plugins a Software Architecture for
Next Generation Routers", 1998, Proceedings of ACM SIGCONM
'98.
Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1998, Nokia, The Internet Society.
Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1995, Network Working Group, RFC 1883.
Dutton, et al, "Asynchronous Transfer Mode Technical Overview
(ATM)", Second Edition; IBM, Oct. 1995, 2nd Edition, Prentice Hall
PTR, USA.
Eckardt, T., et al., "Application ofX.500 and X.700 Standards for
Supporting Personal Communications in Distributed Computing
Environments", 1995, IEEE.
Eckardt, T., et al., "Personal Communications Support based on
TMN and TINA Concepts", 1996, IEEE Intelligent Network Work
shop (IN '96), Apr. 21-24, Melbourne, Australia.
Eckardt, T., et al., "Beyond IN and UPT-A Personal Communi
cations Support System Based on TMN Concepts", Sep. 1997, IEEE
Journal on Selected Areas in Communications, vol. 15, No. 7.
Egevang, K., et al., "The IP Network Address Translator (NAT)",
May 1994, Network Working Group, RFC 1631.

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 4 of 33 PageID #: 447

Juniper Ex. 1041-p. 198
Juniper v Implicit

US 10,033,839 B2
Page 4

(56) References Cited

OTHER PUBLICATIONS

Estrin, D., et al., "Visa Protocols for Controlling Inter-Organiza
tional Datagram Flow", Dec. 1998, Computer Science Department,
University of Southern California and Digital Equipment Corpora
tion.
Faupel, M., "Java Distribution and Deployment", Oct. 9, 1997,
APM Ltd., United Kingdom.
Felber, P., "The CORBA Object Group Service: A Service Approach
to Object Groups in CORBA", Thesis, 1998, Ecole Polytechnique
Federale de Lausanne, Switzerland.
Fish, R., et al., "DRoPS: Kernel Support for Runtime Adaptable
Protocols", Aug. 25-27, 1998, IEEE 24th Euromicro Conference,
Sweden.
Fiuczynski, M., et al., "An Extensible Protocol Architecture for
Application-Specific Networking", 1996, Department of Computer
Science and Engineering, University of Washington.
Franz, Stefan, "Job and Stream Control in Heterogeneous Hardware
and Software Architectures", Apr. 1998, Technische Universitat,
Berlin (2 documents).
Fraser, T., "DTE Firewalls: Phase Two Measurement and Evalua
tion Report", Jul. 22, 1997, Trusted Information Systems, USA.
Gazis, V., et al., "A Survey of Dynamically Adaptable Protocol
Stacks", first Quarter 2010, IEEE Communications Surveys &
Tutorials, vol. 12, No. 1, 15t Quarter.
Gokhale, A., et al., "Evaluating the Performance of Demultiplexing
Strategies for Real-Time CORBA", Nov. 1997, GLOBECOM.
Gokhale, A., et al., "Measuring and Optimizing CORBA Latency
and Scalability Over High-Speed Networks", Apr. 1998, IEEE
Transaction on Computers, vol. 47, No. 4; Proceedings of the
International Conference on Distributed Computing Systems
(ICDCS '97) May 27-30, 1997.
Gokhale, A., et al., "Operating System Support for High-Perfor
mance, Real-Time CORBA", 1996.
Gokhale, A., et al., "Principles for Optimizing CORBA Internet
Inter-ORB Protocol Performance", Jan. 9, 1998, Proceedings of the
HICSS Conference, Hawaii.
Gong, Li, "Java Security: Present and Near Future", May/Jun. 1997,
IEEE Micro.
Gong, Li, "New Security Architectural Directions for Java
(Extended Abstract)", Dec. 19, 1996, IEEE.
Gong, Li, "Secure Java Class Loading", Nov./Dec. 1998, IEEE
Internet.
Goos, G., et al., "Lecture Notes in Computer Science: Mobile
Agents and Security", 1998, Springer-Verlag Berlin Heidelberg.
Goralski, W., "Introduction to ATM Networking", 1995, McGraw
Hill Series on Computer Communications, USA.
Hamzeh, K., et al., "Layer Two Tunneling Protocol L2TP", Jan.
1998, PPP Working Group, Internet Draft.
Harrison, T., et al., "The Design and Performance of a Real-Time
CORBAEvent Service", Aug. 8, 1997,Proceedings of the OOPSLA
'97 Conference, Atlanta, Georgia in Oct. 1997.
Huitema, Christian, "IPv6 The New Internet Protocol", 1997 Pren
tice Hall, Second Edition.
Hutchins, J., et al., "Enhanced Internet Firewall Design Using
Stateful Filters Final Report", Aug. 1997, Sandia Report; Sandia
National Laboratories.
IBM, Local Area Network Concepts and Products: Routers and
Gateways, May 1996.
Juniper Networks Press Release, Juniper Networks Announces
Junos, First Routing Operating System for High-Growth Internet
Backbone Networks, Jul. 1, 1998, Juniper Networks.
Juniper Networks Press Release, Juniper Networks Ships the Indus
try's First Internet Backbone Router Delivering Unrivaled Scalabil
ity, Control and Performance, Sep. 16, 1998, Juniper Networks.
Karn, P., et al., "The ESP DES-CBC Transform", Aug. 1995,
Network Working Group, RFC 1829.
Kelsey, J. et al., "Authenticating Outputs of Computer Software
Using a Cryptographic Coprocessor", Sep. 1996, CARDIS.
Krieger, D., et al., "The Emergence of Distributed Component
Platforms", Mar. 1998, IEEE.

Krupczak, B., et al., "Implementing Communication Protocols in
Java", Oct. 1998, IEEE Communications Magazine.
Krupczak, B., et al., "Implementing Protocols in Java: The Price of
Portability", 1998, IEEE.
Lawson, Stephen, "Cisco NetFlow Switching Speeds Traffic Rout
ing", Jul. 7, 1997, Infoworld.
Li, S., et al., "Active Gateway: A Facility for Video Conferencing
Traffic Control", Feb. 1, 1997, Purdue University; Purdue e-Pubs;
Computer Science Technical Reports.
Magedanz, T., et al., "Intelligent Agents: An Emerging Technology
for Next Generation Telecommunications?", 1996, IEEE.
Mills, H., et al., "Principles of Information Systems Analysis and
Design", 1986, Academic Press, Inc (2 documents).
Mosberger, David, "Scout: A Path-Based Operating System", Doc
toral Dissertation Submitted to the University of Arizona, 1997 (3
documents).
Muhugusa, M., et al., "ComScript An Environment for the
Implementation of Protocol Stacks and their Dynamic Reconfigura
tion", Dec. 1994.
Nelson, M., et al., The Data Compression Book, 2nd Edition, 1996,
M&T Books, a division of MIS Press, Inc.
NetRanger User's Guide, 1996, WheelGroup Corporation.
NetScreen Command Line Reference Guide, 2000, PIN 093-0000-
001 Rev A, NetScreen Technologies, Inc., USA.
NetScreen Command Line Reference Guide, 2000, PIN 093-0000-
001 NetScreen Technologies, Inc., USA.
NetScreen Concepts and Examples ScreenOS Reference Guide,
1998-2001, Version 2.5 PIN 093-0039-000 Rev. A, NetScreen
Technologies, Inc.
NetScreen Products Webpage, wysiwyg://body_bottom.3/http://
www een.corn/products/products.htrnl 1998-1999, Net Screen
Technologies, Inc.
NetScreen WebUI, Reference Guide, Version 2.5.0 PIN 093-0040-
000 Rev. A, 2000-2001, NetScreen Technologies, Inc.
NetStalker Installation and User's Guide, 1996, Version 1.0.2,
Haystack Labs, Inc.
Niculescu, Dragos, "Survey of Active Network Research", Jul. 14,
1999, Rutgers University.
Nortel Northern Telecom, "ISDN Primary Rate User-Network Inter
face Specification", Aug. 1998.
Nygren, Erik, "The Design and Implementation of a High-Perfor
mance Active Network Node", Thesis, Feb. 1998, MIT.
Osbourne, E., "Morningstar Technologies SecureConnect Dynamic
Firewall Filter User's Guide", Jun. 14, 1995, V. 1.4, Morning Star
Technologies, Inc.
Padovano, Michael, "Networking Applications on UNIX System V
Release 4," 1993 Prentice Hall, USA (2 documents).
Pfeifer, T., "Automatic Conversion of Communication Media",
2000, GMD Research Series, Germany.
Pfeifer, T., "Automatic Conversion of Communication Media",
Thesis, 1999, Technischen Universitat Berlin, Berlin.
Pfeifer, T., et al., "Applying Quality-of-Service Parametrization for
Medium-to-Medium Conversion", Aug. 25-28, 1996, 8th IEEE
Workshop on Local and Metropolitan Area Networks, Potsdam,
Germany.
Pfeifer, T., "Micronet Machines-New Architectural Approaches
for Multimedia End-Systems", 1993 Technical University of Berlin.
Pfeifer, T., "On the Convergence of Distributed Computing and
Telecommunications in the Field of Personal Communications",
1995, KiVS, Berlin.
Pfeifer, T., "Speech Synthesis in the Intelligent Personal Commu
nication Support System (IPCSS)", Nov. 2-3, 1995, 2nd 'Speak!'
Workshop on Speech Generation in Multimodal Information Sys
tems and Practical Applications.
Pfeifer, T., et al., "Generic Conversion of Communication Media for
Supporting Personal Mobility", Nov. 25-27, 1996, Proc. of the Third
COST 237 Workshop: Multimedia Telecommunications and Appli
cations.
Pfeifer, T., et al., "Intelligent Handling of Communication Media",
Oct. 29-31, 1997, 6th IEEE Workshop on Future Trends of Distrib
uted Computing Systems (FTDCS) Tunis.
Pfeifer, T., et al., "Resource Selection in Heterogeneous Commu
nication Environments using the Teleservice Descriptor", Dec.

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 5 of 33 PageID #: 448

Juniper Ex. 1041-p. 199
Juniper v Implicit

US 10,033,839 B2
Page 5

(56) References Cited

OTHER PUBLICATIONS

15-19, 1997, Proceedings from the 4th COST 237 Workshop: From
Multimedia Services to Network Services, Lisboa.
Pfeifer, T., et al., Mobile Guide-Location-Aware Applications
from the Lab to the Market, 1998, IDMS '98, LNCS 1483, pp.
15-28.
Pfeifer, T., et al., "The Active Store providing Quality Enhanced
Unified Messaging", Oct. 20-22, 1998, 5th Conference on computer
Communications, AFRICOM-CCDC '98, Tunis.
Pfeifer, T.,, et al., "A Modular Location-Aware Service and Appli
cation Platform", 1999, Technical University of Berlin.
Plagemann, T., et at, "Evaluating Crucial Performance Issues of
Protocol Configuration in DaCaPo", 1994, University of Oslo.
Psounis, Konstantinos, "Active Networks: Applications, Security,
Safety, and Architectures", First Quarter 1999, IEEE Communica
tions Surveys.
Rabiner, Lawrence, "Applications of Speech Recognition in the Area
of Telecommunications", 1997, IEEE.
Raman, Suchitra, et al, "A Model, Analysis, and Protocol Frame
work for Soft State-based Communications", Department of EECS,
University of California, Berkeley.
Rogaway, Phillip, "Bucket Hashing and its Application to Fast
Message Authentication", Oct. 13, 1997, Department of Computer
Science, University of California.
Schreier, B., et al., "Remote Auditing of Software Outputs Using a
Trusted CoProcessor", 1997, Elsevier Paper Reprint 1999.
Tennenhouse, D ., et al., "From Internet to ActiveNet", Laboratory of
Computer Science, MIT, 1996.
Tudor, P., "Tutorial MPEG-2 Video Compression", Dec. 1995,
Electronics & Communication Engineering Journal.
US Copyright Webpage of Copyright Title, "IPv6: the New Internet
Protocol", by Christian Huitema, 1998 Prentice Hall.
Van der Meer, et al., "An Approach for a 4th Generation Messaging
System", Mar. 21-23, 1999, The Fourth International Symposium on
Autonomous Decentralized Systems ISADS '99, Tokyo.
Van der Meer, Sven, "Dynamic Configuration Management of the
Equipment in Distributed Communication Environments", Thesis,
Oct. 6, 1996, Berlin (3 documents).
Van Renesse, R. et al., "Building Adaptive Systems Using
Ensemble", Cornell University Jul. 1997.
Venkatesan, R., et al., "Threat-Adaptive Security Policy", 1997,
IEEE.
Wetherall, D., et al., "The Active IP Option", Sep. 1996, Proceedings
of the 7 th ACM SIGOPS European Workshop, Connemara, Ireland.
Welch, Terry, "A Technique for High-Performance Data Compres
sion", 1984, Sperry Research Center, IEEE.
Zeletin, R. et al., "Applying Location Aware Computing for Elec
tronic Commerce: Mobile Guide", Oct. 20-22, 1998, 5th Conference
on Computer Communications, AFRICOM-CCDC '98, Tunis.
Zell, Markus, "Selection of Converter Chains by Means of Quality
of Service Analysis", Thesis, Feb. 12, 1998, Technische Universitat
Berlin.
Implicit Networks, Inc. v. Advanced Micro Devices, Inc. et al.;
C08-0184 JLR; USDC for the Western District of Washington,
Seattle Division.
Feb. 4, 2008 Plaintiff's Original Complaint.
Aug. 26, 2008 Defendant Nvidia Corporation's Answer to Com
plaint.
Aug. 26, 2008 Defendant Sun Microsystems, Inc.'s Answer to
Complaint.
Aug. 27, 2008 Defendant Advanced Micro Devices, Inc.'s Answer
to Complaint for Patent Infringement.
Aug. 27, 2008 RealNetworks, Inc.'s Answer to Implicit Networks,
Inc.'s Original Complaint for Patent Infringement, Affirmative
Defenses, and Counterclaims.
Aug. 27, 2008 Intel Corp.'s Answer, Defenses and Counterclaims.
Aug. 27, 2008 Defendant Rmi Corporation's Answer to Plaintiff's
Original Complaint.
Sep. 15, 2008 Plaintiff's Reply to NVIDIA Corporation's Counter
claims.

Sep. 15, 2008 Plaintiff's Reply to Sun Microsystems Inc.'s Coun
terclaims.
Sep. 16, 2008 Plaintiff's Reply to RealNetworks, Inc.'s Counter
claims.
Sep. 16, 2008 Plaintiff's Reply to Intel Corp.'s Counterclaims.
Dec. 10, 2008 Order granting Stipulated Motion for Dismissal with
Prejudice re Nvidia Corporation, Inc.
Dec. 16, 2008 Defendants AMD, RealNetworks, RMI, and Sun's
Motion to Stay Pending the Patent and Trademark Office's Reex
amination of the '163 Patent.
Dec. 29, 2008 Order granting Stipulated Motion for Dismissal
without Prejudice of Claims re Sun Microsystems, Inc.
Jan. 5, 2009 Plaintiff's Opposition to Defendants AMD,
RealNetworks, RMI, and Sun's Motion to Stay Pending Reexami
nation and Exhibit A.
Jan. 9, 2009 Reply of Defendants AMD, RealNetworks, RMI, and
Sun's Motion to Stay Pending the Patent and Trademark Office's
Reexamination of the '163 Patent.
Feb. 9, 2009 Order Granting Stay Pending the United States Patent
and Trademark Office's Reexamination of U.S. Pat. No. 6,629,163.
Feb. 17, 2009 Order Granting Stipulated Motion for Dismissal of
Advanced Micro Devices, Inc. with Prejudice.
May 14, 2009 Order Granting Stipulated Motion for Dismissal of
RMI Corporation with Prejudice.
Oct. 13, 2009 Order Granting Stipulated Motion for Dismissal of
Claims Against and Counterclaims by Intel Corporation.
Oct. 30, 2009 Executed Order for Stipulated Motion for Dismissal
of Claims Against and Counterclaims by RealNetworks, Inc.
Implicit Networks, Inc. v. Microsoft Corp., C09-5628 HLR; USDC
for the Northern District of California, San Francisco Division.
Nov. 30, 2009 Plaintiff's Original Complaint, Implicit v Microsoft,
Case No. Sep. 5628.
Jan. 22, 2010 Order Dismissing Case, Implicitv Microsoft, Case No.
Sep. 5628.
Implicit Networks, Inc. v. Cisco Systems, Inc., Cl0-3606 HRL;
USDC for the Northern District of California, San Francisco Divi
sion.
Aug. 16, 2010 Plaintiff's Original Complaint, Implicitv Cisco, Case
No. 10-3606.
Nov. 22, 2010 Defendant Cisco Systems, Inc.'s Answer and Coun
terclaims, Implicit v Cisco, Case No. 10-3606.
Dec. 13, 2010 Plaintiff, Implicit Networks, Inc. 's, Answer to Coun
terclaims, Implicit v Cisco, Case No. 10-3606.
Oct. 4, 2011 Order of Dismissal with Prejudice, Implicit v Cisco,
Case No. 10-3606.
Implicit Networks, Inc. v. Citrix Systems, Inc., Cl0-3766 JL; USDC
for the Northern District of California, San Francisco Division.
Aug. 24, 2010 Plaintiff's Original Complaint, Implicit v Citrix, Case
No. 10-3766.
Dec. 1, 2010 Plaintiff's First Amended Complaint, Implicit v Citrix,
Case No. 10-3766.
Jan. 14, 2011 Defendant Citrix Systems, Inc.'s Answer, Defenses
and Counter-complaint for Declaratory Judgment, Implicit v Citrix,
Case No. 10-3766.
Feb. 18, 2011 Plaintiff, Implicit Networks, Inc.'s, Answer to Defen
dants Counterclaims, Implicit v Citrix, Case No. 10-3766.
May 2, 2011 Order of Dismissal, Implicit v Citrix, Case No.
10-3766.
Implicit Networks, Inc. v.F5 Networks, Inc., Cl0-3365 JCS; USDC
for the Northern District of California, San Francisco Division.
Jul. 30, 2010 Plaintiff's Original Complaint, Implicitv F5, Case No.
10-3365.
Oct. 13, 2010 Defendants' Answer and Counter-Complaint, Implicit
v F5, Case No. 10-3365.
Nov. 3, 2010 Plaintiff's Answer to Counter-Complaint, Implicit v
F5, Case No. 10-3365.
Dec. 10, 2010 Plaintiff's First Amended Complaint, Implicit v F5,
Case No. 10-3365.
Jan. 14, 2011 Defendants' Answer to pt Amended Complaint and
Counterclaim, Implicit v F5, Case No. 10-3365.
Feb. 18, 2011 Plaintiff's Answer to F5' s Amended Counter
Complaint, Implicit v F5, Case No. 10-3365.

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 6 of 33 PageID #: 449

Juniper Ex. 1041-p. 200
Juniper v Implicit

US 10,033,839 B2
Page 6

(56) References Cited

OTHER PUBLICATIONS

Apr. 18, 2011 Defendants' Amended Answer to l51 Amended
Complaint and Counter-Complaint, Implicit v F5, Case No.
10-3365.
May 5, 2011 Plaintiff's Answer to F5' s Amended Counter-Com
plaint, Implicit v F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Implicit v
F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Exhibit A,
Implicit v F5, Case No. 10-3365 (31 documents).
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Exhibit B,
Implicit v F5, Case No. 10-3365.
Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR 4-3), Implicit v F5, Case No. 10-3365.
Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR4-3) Exhibit A, Implicitv F5, Case No. 10-3365 (2 documents).
Nov. 28, 2011 Plaintiff's Opening Claim Construction Brief,
Implicit v F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Implicit v F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Exhibit A, Implicit v F5, Case No. 10-3365.
Dec. 12, 2011 Defendants' Claim Construction Brief,Implicit v F5,
Case No. 10-3365.
Dec. 19, 2011 Plaintiff's Reply to Defendants' (F5, HP, Juniper)
Responsive Claim Construction Brief (4-5), Implicit v F5, Case No.
10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 17, 2012;
Implicit v F5, Case No. 10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 18, 2012;
Implicit v F5, Case No. 10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 19, 2012;
Implicit v F5, Case No. 10-3365.
Feb. 29, 2012 Claim Construction Order.
Aug. 15, 2012 Storer Invalidity Report.
Sep. 10, 2012 Implicit's Expert Report of Scott M. Nettles.
Mar. 13, 2013 Order Granting Defendants' Motion for Summary
Judgment.
Apr. 9, 2013 Notice of Appeal to the Federal Circuit.
Implicit Networks, Inc. v. Hewlett-Packard Company, Cl0-3746
JCS: USDC for the Northern District of California, San Francisco
Division.
Aug. 23, 2010 Plaintiff's Original Complaint, Implicit v HP, Case
No. 10-3746.
Nov. 23, 2010 Plaintiff's First Amended Complaint, Implicit v HP,
Case No. 10-3746.
Jan. 14, 2011 Defendant HP's Answer and Counterclaims, Implicit
v HP, Case No. 10-3746.
Feb. 18, 2011 Implicit Networks, Inc.'s Answer to HP Counter
claims, Implicit v HP, Case No. 10-3746.
May 10, 2011 Plaintiff's Amended Disclosure of Asserted Claims
and Infringement Contentions, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Implicit v HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Al-14, Implicit v HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Bl-21, Implicit v HP, Case No. 10-3746.
Implicit Networks, Inc. v. Juniper Networks, Cl0-4234 EDL: USDC
for the Northern District of California, San Francisco Division.
Sep. 20, 2010 Plaintiff's Original Complaint, Implicit v Juniper,
Case No. 10-4234.
Nov. 12, 2010 Juniper Network's Motion to Dismiss for Failure to
State a Claim Under Rule 12(B)(6): Memorandum of Points and
Authorities; Implicit v Juniper, Case No. 10-4234.
Nov. 12, 2010 Juniper Network's Request for Judicial Notice in
Support of its Motion to Dismiss for Failure to State a Claim Under
Rule 12(B)(6): Memorandum of Points and Authoritites; Implicit v
Juniper, Case No. 10-4234.

Dec. 1, 2010 First Amended Complaint; Implicit v Juniper, Case
No. 10-4234.
Jan. 18, 2011 Juniper Networks, Inc.'s Answer and Affirmative
Defenses to l51 Amended Complaint, Implicit v Juniper, Case No.
10-4234.
Feb. 18, 2011 Plaintiff's Answer to Defendant's Counterclaims,
Implicit v Juniper, Case No. 10-4234.
May 23, 2011 Plaintiff's Disclosure of Asserted Claims and
Infringement Contentions, Implicit v Juniper, Case No. 10-4234.
Nov. 15, 2011 Plaintiff's Amended Disclosure of Asserted Claim
and Infringement Contentions, Implicit v Juniper, Case No.
10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief), Implicit v Juniper, Case No.
10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibit E, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibit J, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibit K, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibits M-O, Implicit v Juni
per, Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Implicit v Juniper, Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit B, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit F, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit N, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit P, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Q, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit S., Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-1, Implicitv Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit U, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit V, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit W, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit X, Implicit v Juniper, Case No.
10-4234.

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 7 of 33 PageID #: 450

Juniper Ex. 1041-p. 201
Juniper v Implicit

US 10,033,839 B2
Page 7

(56) References Cited

OTHER PUBLICATIONS

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-1, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-3, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-4, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Z, Implicit v Juniper, Case No.
10-4234.
Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Reply Claim Construction Brief, Implicit v Juniper, Case No.
10-4234.
Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Reply Claim Construction Brief, Exhibit P, Implicit v Juniper, Case
No. 10-4234.
Jan. 10, 2012 Plaintiff's Jan. 10, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit Al, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A2, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A3, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A4, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit Bl, Implicit v Juniper, Case No. 10-4234.
Feb. 29, 2012 Plaintiff's Feb. 29, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Apr. 6, 2012 Plaintiff's Apr. 6, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Apr. 9, 2012 Plaintiff's Apr. 9, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Sep. 11, 2012 Implicit's Expert Report of Scott Nettles.
Nov. 9, 2012 Juniper's Notice of Motion and Memorandum of Law
ISO Motion for Summary Judgment or, in the alternative, for Partial
Summary Judgment, on the Issue of Invalidity.
Nov. 9, 2012 Exhibit 2 to Declaration in support of Juniper's Motion
for Summary Judgment----Calvert Expert Report.
Nov. 9, 2012 Exhibit 3 to Declaration in support of Juniper's Motion
for Summary Judgment----Calvert Supplemental Expert Report.
Nov. 26, 2012 Implicit Opposition to Juniper's and F5 Motion on
Invalidity.
Nov. 26, 2012 Exhibit A to Hosie Declaration-Aug. 27, 2012
Excerpts from David Blaine deposition.
Nov. 26, 2012 Exhibit B to Hosie Declaration---Oct. 25, 2012
Excerpts from Kenneth Calvert Deposition.
Nov. 26, 2012 Exhibit C to Hosie Declaration-Aug. 15, 2012
Excerpts from Kenneth Calvert Expert Report.
Nov. 26, 2012 Exhibit D to Hosie Declaration-U.S. Pat. No.
6,651,099 to Dietz et al.
Nov. 26, 2012 Exhibit E to Hosie Declaration-Understanding
Packet-Based and Flow-Based Forwarding.
Nov. 26, 2012 Exhibit F to Hosie Declaration-Wikipedia on Soft
State.
Nov. 26, 2012 Exhibit G to Hosie Declaration-Sprint Notes.

Nov. 26, 2012 Exhibit H to Hosie Declaration-Implicit's Supple
mental Response to Juniper's 2nd Set of Interrogatories.
Nov. 26, 2012 Exhibit Ito Hosie Declaration-U.S. Pat. No.
7,650,634 (Zuk).
Other Implicit Networks, Inc. Prosecution Matters.
U.S. Appl. No. 11/933,022, filed Oct. 31, 2007.
U.S. Appl. No. 11/933,022 Preliminary Amendment dated Feb. 19,
2008.
U.S. Appl. No. 11/933,022 Office Action dated Jun. 24, 2009.
U.S. Appl. No. 11/933,022 Amendment dated Sep. 24, 2009.
U.S. Appl. No. 11/933,022 Office Action dated Dec. 11, 2009.
U.S. Appl. No. 11/933,022 Amendment and Response dated Jan. 29,
2010.
U.S. Appl. No. 11/933,022 Notice of Allowance dated Mar. 2, 2010.
U.S. Appl. No. 11/933,022 Issue Notification dated May 4, 2010.
U.S. Appl. No. 10/636,314, filed Aug. 6, 2003.
U.S. Appl. No. 10/636,314 Office Action dated Apr. 7, 2008.
U.S. Appl. No. 10/636,314 Response to Restriction Requirement
dated Aug. 5, 2008.
U.S. Appl. No. 10/636,314 Office Action dated Oct. 3, 2008.
U.S. Appl. No. 10/636,314 Response to Office Action dated Apr. 3,
2009.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated May 4, 2009.
U.S. Appl. No. 10/636,314 Amendment to Office Action Response
dated Jun. 4, 2009.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jun. 12, 2009.
U.S. Appl. No. 10/636,314 Amendment to Office Action dated Jul.
10, 2009.
U.S. Appl. No. 10/636,314 Final Rejection Office Action dated Oct.
21, 2009.
U.S. Appl. No. 10/636,314 Amendment after Final Office Action
dated Dec. 14, 2009.
U.S. Appl. No. 10/636,314 Advisory Action dated Jan. 11, 2010.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jan. 11, 2010.
U.S. Appl. No. 10/636,314 Supplemental Amendment and
Response dated Mar. 13, 2010.
U.S. Appl. No. 10/636,314 Office Action dated May 11, 2010.
U.S. Appl. No. 10/636,314 Amendment and Response dated Sep.
13, 2010.
U.S. Appl. No. 10/636,314 Final Rejection dated Nov. 24, 2010.
U.S. Appl. No. 10/636,314 Notice of Appeal dated May 19, 2011.
U.S. Appl. No. 10/636,314 Amendment and Request for Continued
Examination dated Jul. 19, 2011.
U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 13,
2011.
U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 19,
2011.
U.S. Appl. No. 10/636,314 Issue Notification dated Oct. 19, 2011.
U.S. Appl. No. 09/474,664, filed Dec. 29, 1999.
U.S. Appl. No. 09/474,664 Office Action dated Sep. 23, 2002.
U.S. Appl. No. 09/474,664 Amendment and Response dated Feb.
24, 2003.
U.S. Appl. No. 09/474,664 Notice of Allowance dated May 20,
2003.
U.S. Appl. No. 90/010,356 Request for Ex Parte Reexamination
dated Dec. 15, 2008.
U.S. Appl. No. 90/010,356 Office Action Granting Reexamination
dated Jan. 17, 2009.
U.S. Appl. No. 90/010,356 First Office Action dated Jul. 7, 2009.
U.S. Appl. No. 90/010,356 First Office Action Response dated Sep.
1, 2009.
U.S. Appl. No. 90/010,356 Patent Owner Interview Summary dated
Oct. 23, 2009.
U.S. Appl. No. 90/010,356 Office Action Final dated Dec. 4, 2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Dec. 18, 2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Jan. 4, 2010.
U.S. Appl. No. 90/010,356 Advisory Action dated Jan. 21, 2010.

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 8 of 33 PageID #: 451

Juniper Ex. 1041-p. 202
Juniper v Implicit

US 10,033,839 B2
Page 8

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 90/010,356 Amendment and Response to Advisory
Action dated Feb. 8, 2010.
U.S. Appl. No. 90/010,356 Notice of Intent to Issue a Reexam
Certificate dated Mar. 2, 2010.
U.S. Appl. No. 90/010,356 Reexamination Certificate Issued dated
Jun. 22, 2010.
U.S. Appl. No. 95/000,659 Inter Partes Reexam Request dated Feb.
13, 2012.
U.S. Appl. No. 95/000,659 Order Granting Reexamination dated
Apr. 3, 2012.
U.S. Appl. No. 95/000,659 Office Action dated Apr. 3, 2012.
U.S. Appl. No. 95/000,659 Office Action Response dated Jun. 4,
2012 (including Exhibits 1 & 2) (4 documents).
U.S. Appl. No. 95/000,659 Third Party Comments to Patent Own
er's Response to Office Action dated Jul. 5, 2012.
U.S. Appl. No. 95/000,659 Appendix R-1 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Declaration of Prof. Dr. Bernhard Plattner).
U.S. Appl. No. 95/000,659 Appendix R-2 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Prof. Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,659 Appendix R-3 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,659 Appendix R-4 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5,
2012(Office Action Granting Reexamination in 95/000,660 dated
May 10, 2012).
U.S. Appl. No. 95/000,659 Appendix R-5 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Office Action in 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,659 Appendix R-6 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,659 Appendix R-7 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).
U.S. Appl. No. 95/000,659 Appendix R-8 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,659 Appendix R-9 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Claim Construction Order dated Feb. 29, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-1 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. I of Edward Balassanian Deposition Transcript dated
May 30, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-2 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. II of Edward Balassanian Deposition Transcript dated
May 31, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-3 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. III of Edward Balassanian Deposition Transcript dated
Jun. 7, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-4 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. IV of Edward Balassanian Deposition Transcript dated
Jun. 8, 2012).
U.S. Appl. No. 95/000,659 Appendix R-11 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (Implicit Networks, Inc.'s Response to Juniper Networks,
Inc.'s First Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,659 Action Closing Prosecution dated Oct. 1,
2012.

U.S. Appl. No. 95/000,659 Petition to Withdraw and Reissue Action
Closing Prosecution dated Nov. 20, 2012.
U.S. Appl. No. 95/000,659 Patent Owner Comments to Action
Closing Prosecution dated Dec. 3, 2012.
U.S. Appl. No. 95/000,659 Opposition to Petition dated Dec. 17,
2012.
U.S. Appl. No. 95/000,659 Third Party Comments to Action Closing
Prosecution dated Jan. 2, 2013.
U.S. Appl. No. 95/000,660 Inter Partes Reexam Request dated Mar.
2, 2012.
U.S. Appl. No. 95/000,660 Order Granting Reexamination dated
May 10, 2012.
U.S. Appl. No. 95/000,660 Office Action dated May 10, 2012.
U.S. Appl. No. 95/000,660 Response to Office Action dated Jul. 10,
2012 (including Exhibits 1 and 2).
U.S. Appl. No. 95/000,660 Third Party Comments to Office After
Patent Owner's Response dated Aug. 8, 2012 (including Revised
Comments).
U.S. Appl. No. 95/000,660 to Third Party Comments to Patent
Owner's Response to Office Action dated Aug. 8, 2012 (Declaration
of Prof. Dr. Bernhard Plattner).
U.S. Appl. No. 95/000,660 Appendix R-1 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Prof. Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,660 Appendix R-3 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,660 Appendix R-4 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8,
2012(Office Action Granting Reexamination in 95/000,660 dated
May 10, 2012).
U.S. Appl. No. 95/000,660 Appendix R-5 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Office Action in 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,660 Appendix R-6 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,660 Appendix R-7 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).
U.S. Appl. No. 95/000,660 Appendix R-8 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,660 Appendix R-9 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Claim Construction Order dated Feb. 29, 2012).
U.S. Appl. No. 95/000,660 Appendix R-10 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (vol. I-IV of Edward Balassanian Deposition Transcript dated
May 30, 2012).
U.S. Appl. No. 95/000,660 Appendix R-11 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Shacham, A., et al, "IP Payload Compression Protocol",
Network Working Group, RFC 3173 Sep. 2001).
U.S. Appl. No. 95/000,660 Appendix R-12 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Shacham, A., et al, "IP Payload Compression Protocol",
Network Working Group, RFC 2393 Dec. 1998).
U.S. Appl. No. 95/000,660 Appendix R-13 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (' 163 Pfeiffer Claim Chart).
U.S. Appl. No. 95/000,660 Appendix R-14 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Ylonen, T., "SSH Transport Layer Protocol", Network Work
ing Group-Draft Feb. 22, 1999).
U.S. Appl. No. 95/000,660 Appendix R-15 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Dommety, G., "Key and Sequence Number Extensions to
GRE", Network Working Group, RFC 2890 Sep. 2000).

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 9 of 33 PageID #: 452

Juniper Ex. 1041-p. 203
Juniper v Implicit

US 10,033,839 B2
Page 9

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 95/000,660 Appendix R-16 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Monsour, R., et al, "Compression in IP Security" Mar. 1997).
U.S. Appl. No. 95/000,660 Appendix R-17 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Friend, R., Internet Working Group RFC 3943 dated Nov.
2004 Transport Layer Security Protocol Compression Using
Lempel-Ziv-Stac).
U.S. Appl. No. 95/000,660 Appendix R-18 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012(Implicit Networks, Inc.'s Response to Juniper Networks,
Inc.'s First Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,660 Revised-Third Party Comments to
Office After Patent Owner's Response dated Nov. 2, 2012.
U.S. Appl. No. 95/000,660 Action Closing Prosecution dated Dec.
21, 2012.
U.S. Appl. No. 95/000,660 Comments to Action Closing Prosecu
tion dated Feb. 21, 2013 (including Dec of Dr. Ng).
U.S. Appl. No. 95/000,660 Third Party Comments to Action Closing
Prosecution dated Mar. 25, 2013.
PCT/US00/33634-PCT application (WO 01/2077 A2-Jul. 12,
2001).
PCT/US00/33634-Written Opinion (WO 0 1/50277 A3----dated
Feb. 14, 2002).

PCT/US00/33634-International Search Report (dated Oct. 9,
2001).
PCT/US00/33634-Response to Official Communication dated
Dec. 7, 2001 (dated Mar. 21, 2002).
PCT/US00/33634-International Preliminary Examination Report
(dated Apr. 8, 2002).
PCT/US00/33634-Official Communication (dated Jan. 24, 2003).
PCT/US00/33634-Response to Official Communication dated Jan.
24, 2003 (dated Mar. 12, 2003).
PCT/US00/33634-Official Communication (dated May 13, 2004).
PCT/US00/33634-Response to Sununons to Attend Oral Proceed
ing dated May 13, 2004 (dated Oct. 9, 2004).
PCT/US00/33634-Decision to Refuse a European Patent applica
tion (dated Nov. 12, 2004).
PCT/US00/33634-Minutes of the oral proceedings before the
Examining Division (dated Oct. 12, 2004).
PCT/US00/33634-Closure of the procedure in respect to Appli
cation No. 00984234.5-2212 (dated Feb. 22, 2005).
May 3, 2013 Expert Report of Dr. Alfonso Cardenas Regarding
Validity of U.S. Pat. Nos. 6,877,006; 7,167,864; 7,720,861; and
8,082,268 (6 documents).
Expert Report of Dr. Alfonso Cardenas Regarding Validity of U.S.
Pat. No. 7,167,864 (3 documents).
"InfoReports User Guide: Version 3.3.1;" Platinum Technology,
Publication No. PRO-X-331-UG00-00, printed Apr. 1998; pp.
1-430.

* cited by examiner

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 10 of 33 PageID #: 453

Juniper Ex. 1041-p. 204
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 1 of 16

/ 101

ORI\IER

151

152

154~

155~
\
\

~
L::J.

//' !02 / 103

MESSAGE DEMUX SEND

1,...-105
./

MESSAGE
SEND

107

MESSAGE
SEND

)108

MESSAGE
SEND

1109 110

MESSAGE DEMUX SEND

1114

MESSAGE
SEND

Fig. 1

US 10,033,839 B2

/,.--J
;

LABEUJAP - GET

111

LABELMAP
GET

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 11 of 33 PageID #: 454

Juniper Ex. 1041-p. 205
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 2 of 16

D 1

D 1

Pl
1 D2

02

2 03

MEMORY _J_{J_J

,,,,,.-304
I

I DRIVERS I

✓-308

PATH
DATA

STRUCTURES

CPU

P2 P3
09 j

1 05
010 2

Fig. 2

/ 305

FORWARDING
COMPONENT

CONVERSION
ROUTINES

301 1

-1
;

DEMUX
COMPONENT

INSTANCE
DATA

Fig. 3

US 10,033,839 B2

P4
01 2

015 NULL
,.o......!.---C...---1-0

Q}Yr D1

/-307

LABEL MAP
GET

COMPONENT

!/0

(300

.10.2

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 12 of 33 PageID #: 455

Juniper Ex. 1041-p. 206
Juniper v Implicit

U.S. Patent

450

TCP

Jul. 24, 2018 Sheet 3 of 16 US 10,033,839 B2

463

420~

410\...

440

TCP

IP

ETHERNET

J
431

411

/"473

QUEUE

Fig. 4

PATH (StackList)

L--462

t / SESSION
430 464

I

443

TCP

423 424 425
I r
J

I

\....422

413 414 415

\ \ (
\

-472

QUEUE

Path£ntry
(REFERENCE)

412

/471
..L

QUEUE

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 13 of 33 PageID #: 456

Juniper Ex. 1041-p. 207
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 4 of 16 US 10,033,839 B2

501

Mu!t!playUst 508

)
\ Address , 5o4

PathEnt r_L,505

'--URL

510

511

Fig, 5

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 14 of 33 PageID #: 457

Juniper Ex. 1041-p. 208
Juniper v Implicit

60
1

Bi
nd

ing
 Ta

ble

pB
in

di
n

Bi
nd

ing

51
0

r5
1

0

\
lE

t.a
ge

 ..
I

.

_
, Bi

nd
in

g
r

5
IO

I

Fi
g.

6

Po
lh

(n
try

j-

5
0

5

~
-
-
.
i

-
Po

lh
Er

it
50

5

e • 0
0

• ~

~

~

~
 =

~

2' :-
'

N

'" ... N

0 Q
O

rJ
J =- ('D ('

D

U
l

0 O
'I d r.,;
_ "'""
' '"=
 =

w

w

00

w

\0
 =

N

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 15 of 33 PageID #: 458

Juniper Ex. 1041-p. 209
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 6 of 16 US 10,033,839 B2

MessogeSend (Massage, PalhEntry)

position =
Po!hfo!ry --> Member -->

SfockUstEnlry

[05),-., ----fBIIB~•I

YES

/·706

retVal ::: nextEntry -->
Member --> Binding -->
Edge --> MessogeHondler
(Message, nextl:ntry)

NO

NO

~;-703

<,.,,.~Entry ~ YES
~oth

NO 1 703A

nextEr.frt = Usl Head
Oota {pathEnlry -->
Path --> Sfocklist)

-··--DC>

list = Demux r107
(Message,

Relum
(relval)

Poth[nfry --> Address,
Poth£ntry

Fig. 7A

YES 09

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 16 of 33 PageID #: 459

Juniper Ex. 1041-p. 210
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 7 of 16

09

Select next
Candidate poth

in list

NO

YES 05

NO [IC>

US 10,033,839 B2

QueueMessage
(Message, Nexh.ntry)

/

Return

r115 Fig. 7C
,------,;,._,_-,

NO

\' MessageSend
, (Message! next Entry)

Fig. 7B

Poth Entry - ->
Muitlplaylist :: list

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 17 of 33 PageID #: 460

Juniper Ex. 1041-p. 211
Juniper v Implicit

U.S. Patent Jul. 24, 2018

YES

... next binding

809-

other

Demme

Initialize
Demux

Get Session

Nail Binding

Sheet 8 of 16

Messaae
Address

80! PathEntry

s1mp ex

US 10,033,839 B2

Find Path

Process Poth
Hopping

multi le

return

Fig. 8

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 18 of 33 PageID #: 461

Juniper Ex. 1041-p. 212
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 9 of 16 US 10,033,839 B2

,-909
I

pain Address =
pathtntry --> Poth -->

Address

oddressElem ::::
pothAddress -->
CurrentBinding =

pothEniry - -> Member
--> AddressEntry

initialize
Demux

t
Mop

PathEntry --> Map

message = Message
path = null

address Elem = null

sovedSlatus = 0
Stotus = demux Cont1nue

901

r-902

1 90J

905

status ::::
~;.;;;._--, Pa1hEntry --> Paih -->

lnitEnd

sloh.1s = demux Continue -911
binding List :::

path.Address -->
Bind1nglist

CurrerdBinding :::
&pathAddress -->

Current8inding
postpone ::: 0

traverse = ListDafoNext
session :::: Null

912

913

Status

907

pothAddress :::
Address

}Yg~ 9

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 19 of 33 PageID #: 462

Juniper Ex. 1041-p. 213
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 10 of 16 US 10,033,839 B2

lnit[nd

r-1001

YES

1003

pothAddress =
AddressCreate

(PothEntry -> Path ->
Address -> URL)

elem = null

-1005

inding =
UstOo!oNext

(Poth Entry - >
Path -> Address ->

Bindinglist,
& elem)

1006

RathAddress -->
Cumm!Binding :::

UstTaiUnsen
(pathAddress -->

Bmdinglisi, binding)

/"!007

elem==
PothEntry -->
Member -->
AddressEntry

Return

NO

1004

1002

pathAddress =
AddressCopy

(Pa!hEnhy ->
Path -> Address,

PathEntry - > Member
-> AddressEntry)

Return

Return

Fig. 10

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 20 of 33 PageID #: 463

Juniper Ex. 1041-p. 214
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 11 of 16

1105',

currentBinding :::
UstToil (bindingLlst)

Dalo

tmpTroil ::
UsfHeodRemove

(lrnillist)

Address Extend
{pathAddress,

tmpTrni!)

binding =
UstToil Doto
(binding Ust)

,,-,-1107

,,-,-! 108

Ge!Nex\ Binding

binding :: traverse
(Eindinglist,

cummtBinding)

1101

to 1 1103

trol!Ust ::: LabelMapGet
{map --> Oulput Lobel.

mop --> forget Lobel}

binding --> Key =
mop --> forget key

{1111

map --> forget key ::
Null

US 10,033,839 B2

Return
(bindlng}

returnList ::

,1113

Prepare Multicast Paths
(trnl!List, map}

Return
(muitiple)

Return
(break)

Fig. 11

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 21 of 33 PageID #: 464

Juniper Ex. 1041-p. 215
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 12 of 16 US 10,033,839 B2

1204

binding --> flags
l = Binding-Remove

traverse ::: ListOotoNext

status = saved status
savedstatus = 0

Return
(conlinue)

Get Key

dJ· .-d ,.-1201 e ge :: uil'lui!'lg --> t ge / Fig. 12

remove

NO

Edge protocol = edge
--> Protocol

Status :: edge -->
DemuxKey {message,

po th Address, map)

1202

!205 ✓-1203

' status .:,,----1
postpone

traverse :.: ListoataNexl
postpone++

sovedSiotus =
Status

YES

,1209

........,, __,.. ___,

NO

Retum
(next binding)

postpone -
traverse = ListootaPrev

1208

~ status

YES r1210

status = demux
continue

Return
(next binding)

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 22 of 33 PageID #: 465

Juniper Ex. 1041-p. 216
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 13 of 16 US 10,033,839 B2

Get Session

session ::: TobleGel
(protocol -> SessionTabie1

& binding -> key)

session =
CreateSession

(protocol)

session --> key =
Labe!Reference

(binding --> key)

foble Pu!
(protocol -> session Tobie
& session -> key session

protocol -->
CreateSession

(session)

T

(Return)

1301

--(Return)

1303

1304

-1305

1306

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 23 of 33 PageID #: 466

Juniper Ex. 1041-p. 217
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 14 of 16

-1405
1401

~ion-->
binding --> session =,N_o_/W~~ingTobie YES

session [ed~e --> t r 1406 ~ E geid]
I

blnding --> key =
Lobel Reference

(session --> key)
7 }140,

sess1on --> BindinnTable
[edge --> Edgeld ::

binding

f

.//
-1408

/ j ' 1409
// binding ~ remove.....-------'----,

/ --> Edge --> binding --> Flag l ::::
'-- Cr7ate8ind1ng Binding - Remove

\binding)

~ return)

Fig. 14

US 10,033,839 B2

{1402

binding = session -->
Binding Tobie

[edge --> [dgelD]

t rt403

UstDotoSe\
(*currentSinding,

binding)

t
(relum)

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 24 of 33 PageID #: 467

Juniper Ex. 1041-p. 218
Juniper v Implicit

U.S. Patent Jul. 24, 2018 Sheet 15 of 16 US 10,033,839 B2

(~
~,,,..1501

~ding-> /4g~1

~~ S!f!iplex && Y£"
entry = LlstHeadDato ~

(binding ->
PcthL1si

rf503

elem = null
short[ntry = nu!!

first8inding :::
UstKeadDoio

(path.Address -->
Binding List)

path = enlry -:> Poth

Return

Fig. 15

/
firsfBinding ,tSOJ

:::::: UstNextDo!a

/2
. (Us!Nexf(entry -:;:, Path ->

Slacklisl, NULL)) -> Member ~
Bindino && !L1stNexl(entry -> "NO

·✓oth -> Stocfclist, entry -> member -> ---

1508
S!ockllstEnfry) &:& !snorlEntryH (emtry

Paih -> SlockListS1:rn <
shorffotry -> Path ->
~ StacklislSize ,--.-s-ho-rtE....Jn'-try~::::"-1 -

eniry

entry :::: shortEntry

,1510
' YES

(15!1

{ path =: entry -) Poth J-f ~
{513 15!4

Create Palh { path Address,
=-....i Pathfntry' -> m(!R

Po!htntry -> QO:i)

1516-

elem = null
entry = UstHeodDofo
(poth - > SfockUst)

e!ern = PathEntry ->
Member -> Address£nfry 1----...... r

entry = Palhfotry
t'XtendPoih c)

(path, map, status) ·····-• Return

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 25 of 33 PageID #: 468

Juniper Ex. 1041-p. 219
Juniper v Implicit

U.S. Patent

YES

Jul. 24, 2018 Sheet 16 of 16 US 10,033,839 B2

Process
Palh Hopping

oldStack = PathEntry ->
Path - > stacklist

YES

1603

.--------------, 1 1604
newStock :::

path - > Stocklist

--~--- r/605
oldE!m = UstNext
(oldStock, Null)

,-----'-t __ ___, 1 1606
e!em ::: UstNext
(NewStock, Null)

1607

Fig. 16

1610

1611
entry = UstHeadDaia 1----~

(path -> Stacklist)

~----~r1609
entry :::: UstDatoPrev
{newSlack, & elem)

YES ,,-1608

NO

UstHeod!nserl
(returnlist, Enlry)

Return
\ (return list)

11612

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 26 of 33 PageID #: 469

Juniper Ex. 1041-p. 220
Juniper v Implicit

US 10,033,839 B2
1

METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

2
received via telephone lines, cable TV lines, and satellite
connections in many different formats. The central controller
would be expected to output the data to computer displays,
television displays, entertainment centers, speakers, record-CROSS REFERENCES TO RELATED

APPLICATIONS s ing devices, and so on in many different formats. Moreover,
since the various conversion routines may be developed by
different organizations, it may not be easy to identify that the
output format of one conversion routine is compatible with

The present application is a continuation of U.S. appli
cation Ser. No. 15/050,027, filed Feb. 22, 2016 (now U.S.
Pat. No. 9,591,104), which is a continuation of U.S. appli
cation Ser. No. 14/230,952, filed Mar. 31, 2014 (now U.S. 10

Pat. No. 9,270,790), which is a continuation of U.S. Appl.
Ser. No. 13/911,324, filed Jun. 6, 2013 (now U.S. Pat. No.
8,694,683), which is a continuation of U.S. application Ser.
No. 13/236,090, filed Sep. 19, 2011 know abandoned),
which is a continuation of U.S. application Ser. No. 10/636,
314, filed Aug. 6, 2003 know U.S. Pat. No. 8,055,786),
which is a continuation of U.S. Appl. Ser. No. 09/474,664,
filed Dec. 29, 1999 (now U.S. Pat. No. 6,629,163); the
disclosures of each of the above-referenced applications are
incorporated by reference herein in their entireties.

the input format of another conversion routine.
It would be desirable to have a technique for dynamically

identifying a series of conversion routines for processing
data. In addition, it would be desirable to have a technique
in which the output format of one conversion routine can be
identified as being compatible with the input format of

15 another conversion routine. It would also be desirable to

TECHNICAL FIELD

The present invention relates generally to a computer
system for data demultiplexing.

BACKGROUND

20

25

store the identification of a series of conversion routines so
that the series can be quickly identified when data is
received.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating example processing
of a message by the conversion system.

FIG. 2 is a block diagram illustrating a sequence of edges.
FIG. 3 is a block diagram illustrating components of the

conversion system in one embodiment.
FIG. 4 is a block diagram illustrating example path data

structures in one embodiment.
Computer systems, which are becoming increasingly per

vasive, generate data in a wide variety of formats. The
Internet is an example of interconnected computer systems
that generate data in many different formats. Indeed, when
data is generated on one computer system and is transmitted

FIG. 5 is a block diagram that illustrates the interrela-
30 tionship of the data structures of a path.

FIG. 6 is a block diagram that illustrates the interrela
tionship of the data structures associated with a session.

FIGS. 7A, 7B, and 7C comprise a flow diagram illustrat
ing the processing of the message send routine.

FIG. 8 is a flow diagram of the demux routine.
FIG. 9 is a flow diagram of the initialize demux routine.
FIG. 10 is a flow diagram of the init end routine.
FIG. 11 is a flow diagram of a routine to get the next

binding.
FIG. 12 is a flow diagram of the get key routine.
FIG. 13 is a flow diagram of the get session routine.
FIG. 14 is a flow diagram of the nail binding routine.
FIG. 15 is a flow diagram of the find path routine.
FIG. 16 is a flow diagram of the process of path hopping

to another computer system to be displayed, the data may be
converted in many different intermediate formats before it is 35

eventually displayed. For example, the generating computer
system may initially store the data in a bitmap format. To
send the data to another computer system, the computer
system may first compress the bitmap data and then encrypt
the compressed data. The computer system may then convert 40

that compressed data into a TCP format and then into an IP
format. The IP formatted data may be converted into a
transmission format, such as an ethemet format. The data in
the transmission format is then sent to a receiving computer
system. The receiving computer system would need to
perform each of these conversions in reverse order to
convert the data in the bitmap format. In addition, the
receiving computer system may need to convert the bitmap
data into a format that is appropriate for rendering on output
device.

45 routine.

DETAILED DESCRIPTION

A method and system for converting a message that may
so contain multiple packets from an source format into a target

format. When a packet of a message is received, the con
version system in one embodiment searches for and identi
fies a sequence of conversion routines (or more generally

In order to process data in such a wide variety of formats,
both sending and receiving computer systems need to have
many conversion routines available to support the various
formats. These computer systems typically use predefined
configuration information to load the correct combination of 55

conversion routines for processing data. These computer
systems also use a process-oriented approach when process
ing data with these conversion routines. When using a
process-oriented approach, a computer system may create a
separate process for each conversion that needs to take 60

place. A computer system in certain situations, however, can
be expected to receive data and to provide data in many
different formats that may not be known until the data is
received. The overhead of statically providing each possible
series of conversion routines is very high. For example, a 65

computer system that serves as a central controller for data
received within a home would be expected to process data

message handlers) for processing the packets of the message
by comparing the input and output formats of the conversion
routines. (A message is a collection of data that is related in
some way, such as stream of video or audio data or an email
message.) The identified sequence of conversion routines is
used to convert the message from the source format to the
target format using various intermediate formats. The con
version system then queues the packet for processing by the
identified sequence of conversion routines. The conversion
system stores the identified sequence so that the sequence
can be quickly found (without searching) when the next
packet in the message is received. When subsequent packets
of the message are received, the conversion system identifies
the sequence and queues the packets for pressing by the

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 27 of 33 PageID #: 470

Juniper Ex. 1041-p. 221
Juniper v Implicit

US 10,033,839 B2
3

sequence. Because the conversion system receives multiple
messages with different source and target formats and iden
tifies a sequence of conversion routines for each message,
the conversion systems effectively "demultiplexes" the mes
sages. That is, the conversion system demultiplexes the 5

messages by receiving the message, identifying the
sequence of conversion routines, and controlling the pro
cessing of each message by the identified sequence. More
over, since the conversion routines may need to retain state
information between the receipt of one packet of a message 10

and the next packet of that message, the conversion system
maintains state information as an instance or session of the
conversion routine. The conversion system routes all pack-

4
and conversion routine. The sessions are identified so that
each packet is associated with the appropriate state infor
mation. The dynamic identification of conversion routines is
described in U.S. patent application Ser. No. 11/933,093,
filed on Oct. 31, 2007 (now U.S. Pat. No. 7,730,211),
entitled "Method and System for Generating a Mapping
Between Types of Data," which is hereby incorporated by
reference.

FIG. 1 is a block diagram illustrating example processing
of a message by the conversion system. The driver 101
receives the packets of the message from a network. The
driver performs any appropriate processing of the packet and
invokes a message send routine passing the processed packet
along with a reference path entry 150. The message send ets for a message through the same session of each conver

sion routine so that the same state or instance information
can be used by all packets of the message. A sequence of
sessions of conversion routines is referred to as a "path." In
one embodiment, each path has a path thread associated with
it for processing of each packet destined for that path.

15 routine is an embodiment of the forwarding component. A
path is represented by a series of path entries, which are
represented by triangles. Each member path entry represents
a session and conversion routine of the path, and a reference
path entry represents the overall path. The passed reference

In one embodiment, the packets of the messages are
initially received by "drivers," such as an Ethernet driver.
When a driver receives a packet, it forwards the packet to a
forwarding component of the conversion system. The for
warding component is responsible for identifying the session

20 path entry 150 indicates to the message send routine that it
is being invoked by a driver. The message send routine
invokes the demux routine 102 to search for and identify the
path of sessions that is to process the packet. The demux
routine may in turn invoke the label map get routine 104 to

25 identify a sequence of conversion routines for processing the
packet. In this example, the label map get routine identifies
the first three conversion routines, and the demux routine
creates the member path entries 151, 152, 153 of the path for
these conversion routines. Each path entry identifies a ses-

of the conversion routine that should next process the packet
and invoking that conversion routine. When invoked by a
driver, the forwarding component may use a demultiplexing
("demux") component to identify the session of the first
conversion routine of the path that is to process the packet
and then queues the packet for processing by the path. A path
thread is associated with each path. Each path thread is
responsible for retrieving packets from the queue of its path
and forwarding the packets to the forwarding component.
When the forwarding component is invoked by a path
thread, it initially invokes the first conversion routine in the
path. That conversion routine processes the packet and
forwards the processed packet to the forwarding component,
which then invokes the second conversion routine in the
path. The process of invoking the conversion routines and
forwarding the processed packet to the next conversion 40

routine continues until the last conversion routine in the path

30 sion for a conversion routine, and the sequence of path
entries 151-155 identifies a path. The message send routine
then queues the packet on the queue 149 for the path that is
to process the packets of the message. The path thread 105
for the path retrieves the packet from the queue and invokes

35 the message send routine 106 passing the packet and an
indication of the path. The message send routine determines
that the next session and conversion routine as indicated by
path entry 151 has already been found. The message send
routine then invokes the instance of the conversion routine

is invoked. A conversion routine may defer invocation of the
forwarding component until it aggregates multiple packets

for the session. The conversion routine processes the packet
and then invokes the message send routine 107. This pro
cessing continues until the message send routine invokes the
demux routine 110 after the packet is processed by the
conversion routine represented by path entry 153. The or may invoke the forwarding component multiple times for

a packet once for each sub-packet. 45 demux routine examines the path and determines that it has
no more path entries. The demux routine then invokes the
label map get routine 111 to identify the conversion routines
for further processing of the packet. When the conversion

The forwarding component identifies the next conversion
routine in the path using the demux component and stores
that identification so that the forwarding component can
quickly identify the conversion routine when subsequent
packets of the same message are received. The demux 50

component, searches for the conversion routine and session
that is to next process a packet. The demux component then
stores the identification of the session and conversion rou
tine as part of a path data structure so that the conversion
system does not need to search for the session and conver- 55

sion routine when requested to demultiplex subsequent
packets of the same message. When searching for the next
conversion routine, the demux component invokes a label
map get component that identifies the next conversion
routine. Once the conversion routine is found, the demux 60

component identifies the session associated with that mes
sage by, in one embodiment, invoking code associated with
the conversion routine. In general, the code of the conver
sion routine determines what session should be associated
with a message. In certain situations, multiple messages may
share the same session. The demux component then extends
the path for processing that packet to include that session

routines are identified, the demux routine adds path entries
154, 155 to the path. The messages send routine invokes the
conversion routine associated with path entry 154. Eventu-
ally, the conversion routine associated with path entry 155
performs the final processing for the path.

The label map get routine identifies a sequence of"edges"
for converting data in one format into another format. Each
edge corresponds to a conversion routine for converting data
from one format to another. Each edge is part of a "protocol"
(or more generally a component) that may include multiple
related edges. For example, a protocol may have edges that
each convert data in one format into several different for
mats. Each edge has an input format and an output format.
The label map get routine identifies a sequence of edges such
that the output format of each edge is compatible with the
input format of another edge in the sequence, except for the

65 input format of the first edge in the sequence and the output
format of the last edge in the sequence. FIG. 2 is a block
diagram illustrating a sequence of edges. Protocol PI

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 28 of 33 PageID #: 471

Juniper Ex. 1041-p. 222
Juniper v Implicit

US 10,033,839 B2
5

includes an edge for converting format Dl to format D2 and
an edge for converting format Dl to format D3; protocol P2
includes an edge for converting format D2 to format D5, and
so on. A 30 sequence for converting format D 1 to format D
15 is shown by the curved lines and is defined by the address
"P 1: I, P2: 1, P3:2, P4:7." When a packet of data in format
D I is processed by this sequence, it is converted to format
DIS. During the process, the packet of data is sequentially
converted to format D2, D5, and D13. The output format of
protocol P2, edge 1 (i.e., P2: 1) is format D5, but the input
format of P3:2 is format DlO. The label map get routine uses
an aliasing mechanism by which two formats, such as D5
and DlO are identified as being compatible. The use of
aliasing allows different names of the same format or
compatible formats to be correlated.

FIG. 3 is a block diagram illustrating components of the
conversion system in one embodiment. The conversion
system 300 can operate on a computer system with a central
processing unit 301, I/0 devices 302, and memory 303. The
110 devices may include an Internet connection, a connec
tion to various output devices such as a television, and a
connection to various input devices such as a television
receiver. The media mapping system may be stored as
instructions on a computer-readable medium, such as a disk
drive, memory, or data transmission medium. The data
structures of the media mapping system may also be stored
on a computer-readable medium. The conversion system
includes drivers 304, a• forwarding component 305, a
demux component 306, a label map get component 307, path
data structures 308, conversion routines 309, and instance
data 310. Each driver receives data in a source format and
forwards the data to the forwarding component. The for
warding component identifies the next conversion routine in
the path and invokes that conversion routine to process a
packet. The forwarding component may invoke the demux
component to search for the next conversion routine and add
that conversion routine to the path. The demux component
may invoke the label map get component to identify the next
conversion routine to process the packet. The demux com
ponent stores information defining the paths in the path
structures. The conversion routines store their state infor
mation in the instance data.

FIG. 4 is a block diagram illustrating example path data
structures in one embodiment. The demux component iden
tifies a sequence of "edges" for converting data in one
format into another format by invoking the label map get
component. Each edge corresponds to a conversion routine
for converting data from one format to another. As discussed
above, each edge is part of a "protocol" that may include
multiple related edges. For example, a protocol may have
edges that each convert data in one format into several
different formats. Each edge has as an input format ("input
label") and an output format ("output label"). Each rectangle
represents a session 410, 420, 430, 440, 450 for a protocol.
A session corresponds to an instance of a protocol. That is,
the session includes the protocol and state information
associated with that instance of the protocol. Session 410
corresponds to a session for an Ethernet protocol; session
420 corresponds to a session for an IP protocol; and sessions
430, 440, 450 correspond to sessions for a TCP protocol.
FIG. 4 illustrates three paths 461, 462, 463. Each path
includes edges 411, 421, 431. The paths share the same
Ethernet session 410 and IP session 420, but each path has
a unique TCP session 430, 440, 450. Thus, path 461 includes
sessions 410, 420, and 430; path 462 includes sessions 410,
420, and 440; and path 463 includes sessions 410, 420, and
450. The conversion system represents each path by a

6
sequence of path entry structures. Each path entry structure
is represented by a triangle. Thus, path 461 is represented by
path entries 415, 425, and 433. The conversion system
represents the path entries of a path by a stack list. Each path

5 also has a queue 471, 472, 473 associated with it. Each
queue stores the messages that are to be processed by the
conversion routines of the edges of the path. Each session
includes a binding 412, 422, 432, 442, 452 that is repre
sented by an oblong shape adjacent to the corresponding

10 edge. A binding for an edge of a session represents those
paths that include the edge. The binding 412 indicates that
three paths are bound (or "nailed") to edge 411 of the
Ethernet session 410. The conversion system uses a path list
to track the paths that are bound to a binding. The path list

15 of binding 412 identifies path entries 413, 414, and 415.
FIG. 5 is a block diagram that illustrates the interrela

tionship of the data structures of a path. Each path has a
corresponding path structure 501 that contains status infor
mation and pointers to a message queue structure 502, a

20 stack list structure 503, and a path address structure 504. The
status of a path can be extend, continue, or end. Each
message handler returns a status for the path. The status of
extend means that additional path entries should be added to
the path. The status of end means that this path should end

25 at this point and subsequent processing should continue at a
new path. The status of continue means that the protocol
does not care how the path is handled. In one embodiment,
when a path has a status of continue, the system creates a
copy of the path and extends the copy. The message queue

30 structure identifies the messages (or packets of a message)
that are queued up for processing by the path and identifies
the path entry at where the processing should start. The stack
list structure contains a list of pointers to the path entry
structures 505 that comprise the path. Each path entry

35 structure contains a pointer to the corresponding path data
structure, a pointer to a map structure 507, a pointer to a
multiplex list 508, a pointer to the corresponding path
address structure, and a pointer to a member structure 509.
A map structure identifies the output label of the edge of the

40 path entry and optionally a target label and a target key. A
target key identifies the session associated with the protocol
that converts the packet to the target label. (The terms
"media," "label," and "format" are used interchangeably to
refer to the output of a protocol.) The multiplex list is used

45 during the demux process to track possible next edges when
a path is being identified as having more than one next edge.
The member structure indicates that the path entry repre
sents an edge of a path and contains a pointer to a binding
structure to which the path entry is associated (or "nailed"),

50 a stack list entry is the position of the path entry within the
associated stack list, a path list entry is the position of the
path entry within the associated path list of a binding and an
address entry is the position of the binding within the
associated path address. A path address of a path identifies

55 the bindings to which the path entries are bound. The path
address structure contains a URL for the path, the name of
the path identified by the address, a pointer to a binding list
structure 506, and the identification of the current binding
within the binding list. The URL (e.g., "protocol://tcp(O)/ip

60 (0)/eth(O)") identifies conversion routines (e.g., protocols
and edges) of a path in a human-readable format. The URL
(universal resource locator) includes a type field (e.g., "pro
tocol") followed by a sequence of items (e.g., "tcp(O)"). The
type field specifies the format of the following information

65 in the URL, that specifies that the type field is followed by
a sequence of items. Each item identifies a protocol and an
edge (e.g., the protocol is "tcp" and the edge is "O"). In one

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 29 of 33 PageID #: 472

Juniper Ex. 1041-p. 223
Juniper v Implicit

US 10,033,839 B2
7

embodiment, the items of a URL may also contain an
identifier of state information that is to be used when
processing a message. These URLs can be used to illustrate

8
is a reference and if the passed path entry has an associated
path, then the routine can queue the message for the asso
ciated path and the routine continues at block 703A, else the
routine needs to identify a path and the routine continues at to a user various paths that are available for processing a

message. The current binding is the last binding in the path
as the path is being built. The binding list structure contains
a list of pointers to the binding structures associated with the
path. Each binding structure 510 contains a pointer to a
session structure, a pointer to an edge structure, a key, a path
list structure, and a list of active paths through the binding.
The key identifies the state information for a session of a
protocol. A path list structure contains pointers to the path
entry structures associated with the binding.

5 block 707. In block 703A, the routine sets the entry to the
first path entry in the path and continues at block 717. In
block 704, the routine sets the variable position to the stack
list entry of the passed path entry. In decision block 705, the
routine sets the variable next entry to the next path entry in

FIG. 6 is a block diagram that illustrates the interrela
tionship of the data structures associated with a session. A
session structure 601 contains the context for the session, a
pointer to a protocol structure for the session, a pointer to a
binding table structure 602 for the bindings associated with
the session, and the key. The binding table structure contains
a list of pointers to the binding structures 510 for the session.
The binding structure is described above with reference to
FIG. 5. The path list structure 603 of the binding structure
contains a list of pointers to path entry structures 505. The
path entry structures are described with reference to FIG. 5.

10 the path. If there is a next entry in the path, then the next
session and edge of the protocol have been identified and the
routine continues at block 706, else the routine continues at
block 707. In block 706, the routine passes the message to
the message handler of the edge associated with the next

15 entry and then returns. In block 706, the routine invokes the
demux routine passing the passed message, the address of
the passed path entry, and the passed path entry. The demux
routine returns a list of candidate paths for processing of the
message. In decision block 708, if at least one candidate path

20 is returned, then the routine continues at block 709, else the

FIGS. 7A, 7B, and 7C comprise a flow diagram illustrat- 25

ing the processing of the message send routine. The message
send routine is passed a message along with the path entry
associated with the session that last processed the message.
The message send routine invokes the message handler of
the next edge in the path or queues the message for pro- 30

cessing by a path. The message handler invokes the demux
routine to identify the next path entry of the path. When a
driver receives a message, it invokes the message send
routine passing a reference path entry. The message send
routine examines the passed path entry to determine (1) 35

whether multiple paths branch from the path of the passed
path entry, (2) whether the passed path entry is a reference
with an associated path, or (3) whether the passed path entry
is a member with a next path entry. If multiple paths branch
from the path of the passed path entry, then the routine 40

recursively invokes the message send routine for each path.
If the path entry is a reference with an associated path, then
the driver previously invoked the message send routine,
which associated a path with the reference path entry, and
the routine places the message on the queue for the path. If 45

the passed path entry is a member with a next path entry,
then the routine invokes the message handler (i.e., conver
sion routine of the edge) associated with the next path entry.
If the passed path entry is a reference without an associated
path or is a member without a next path entry, then the 50

routine invokes the demux routine to identify the next path
entry. The routine then recursively invokes the messages
send routine passing that next path entry. In decision block
701, if the passed path entry has a multiplex list, then the
path branches off into multiple paths and the routine con- 55

tinues at block 709, else the routine continues at block 702.
A packet may be processed by several different paths. For
example, if a certain message is directed to two different
output devices, then the message is processed by two
different paths. Also, a message may need to be processed by 60

multiple partial paths when searching for a complete path. In
decision block 702, if the passed path entry is a member,
then either the next path entry indicates a nailed binding or
the path needs to be extended and the routine continues at
block 704, else the routine continues at block 703. A nailed 65

binding is a binding (e.g., edge and protocol) is associated
with a session. In decision block 703, the passed path entry

routine returns.
Blocks 709-716 illustrate the processing of a list of

candidate paths that extend from the passed path entry. In
blocks 710-716, the routine loops selecting each candidate
path and sending the message to be process by each candi
date path. In block 710, the routine sets the next entry to the
first path entry of the next candidate path. In decision block
711, if all the candidate paths have not yet been processed,
then the routine continues at block 712, else the routine
returns. In decision block 712, if the next entry is equal to
the passed path entry, then the path is to be extended and the
routine continues at block 705, else the routine continues at
block 713. The candidate paths include a first path entry that
is a reference path entry for new paths or that is the last path
entry of a path being extended. In decision block 713, if the
number of candidate paths is greater than one, then the
routine continues at block 714, else the routine continues at
block 718. In decision block 714, if the passed path entry has
a multiplex list associated with it, then the routine continues
at block 716, else the routine continues at block 715. In
block 715, 11 the routine associates the list of candidate path
with the multiplex list of the passed path entry and continues
at block 716. In block 716, the routine sends the message to
the next entry by recursively invoking the message send
routine. The routine then loops to block 710 to select the
next entry associated with the next candidate path.

Blocks 717-718 are performed when the passed path entry
is a reference path entry that has a path associated with it. In
block 717, if there is a path associated with the next entry,
then the routine continues at block 718, else the routine
returns. In block 718, the routine queues the message for the
path of the next entry and then returns.

FIG. 8 is a flow diagram of the demux routine. This
routine is passed the packet (message) that is received, an
address structure, and a path entry structure. The demux
routine extends a path, creating one if necessary. The routine
loops identifying the next binding (edge and protocol) that
is to process the message and "nailing" the binding to a
session for the message, if not already nailed. After identi
fying the nailed binding, the routine searches for the shortest
path through the nailed binding, creating a path if none
exists. In block 801, the routine invokes the initialize demux
routine. In blocks 802-810, the routine loops identifying a
path or portion of a path for processing the passed message.
In decision block 802, if there is a current status, which was
returned by the demuxkey routine that was last invoked
(e.g., continue, extend, end, or postpone), then the routine

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 30 of 33 PageID #: 473

Juniper Ex. 1041-p. 224
Juniper v Implicit

US 10,033,839 B2
9

continues at block 803, else the routine continues at block
811. In block 803, the routine invokes the get next binding
routine. The get next binding routine returns the next bind
ing in the path. The binding is the edge of a protocol. That
routine extends the path as appropriate to include the bind- 5

ing. The routine returns a return status of break, binding, or
multiple. The return status of binding indicates that the next
binding in the path was found by extending the path as
appropriate and the routine continues to "nail" the binding to
a session as appropriate. The return status of multiple means 10

that multiple trails (e.g., candidate paths) were identified as
possible extensions of the path. In a decision block 804, if
the return status is break, then the routine continues at block
811. If the return status is multiple, then the routine returns.
If the return status is binding, then the routine continues at 15

block 805. In decision block 805, if the retrieved binding is
nailed as indicated by being assigned to a session, then the
routine loops to block 802, else the routine continues at
block 806. In block 806, the routine invokes the get key
routine of the edge associated with the binding. The get key 20

routine creates the key for the session associated with the
message. If a key cannot be created until subsequent bind
ings are processed or because the current binding is to be
removed, then the get key routine returns a next binding
status, else it returns a continue status. In decision block 807, 25

if the return status of the get key routine is next binding, then
the routine loops to block 802 to get the next binding, else
the routine continues at block 808. In block 808, the routine
invokes the routine get session. The routine get session
returns the session associated with the key, creating a new 30

session if necessary. In block 809, the routine invokes the
routine nail binding. The routine nail binding retrieves the
binding if one is already nailed to the session. Otherwise,
that routine nails the binding to the session. In decision
block 810, if the nail binding routine returns a status of 35

simplex, then the routine continues at block 811 because
only one path can use the session, else the routine loops to
block 802. Immediately upon return from the nail binding
routine, the routine may invoke a set map routine of the edge
passing the session and a map to allow the edge to set its 40

map. In block 811, the routine invokes the find path routine,
which finds the shortest path through the binding list and
creates a path if necessary. In block 812, the routine invokes
the process path hopping routine, which determines whether
the identified path is part of a different path. Path hopping 45

occurs when, for example, IP fragments are built up along
separate paths, but once the fragments are built up they can
be processed by the same subsequent path.

FIG. 9 is a flow diagram of the initialize demux routine.
This routine is invoked to initialize the local data structures 50

10
demux continue. The variable saved status is used to track
the status of the demux process when backtracking to nail a
binding whose nail was postponed. In decision block 904, if
the passed path entry is associated with a path, then the
routine continues at block 905, else the routine continues at
block 906. In block 905, the routine sets the variable status
to the status of that path. In block 906, if the variable status
is demux continue, then the routine continues at block 907.
If the variable status is demux end, then the routine contin
ues at block 908. If the variable status is demux extend, then
the routine continues at block 909. In block 907, the status
is demux continue, and the routine sets the local pointer path
address to the passed address and continues at block 911. In
block 908, the status is demux end, and the routine invokes
the init end routine and continues at block 911. In block 909,
the status is demux extend, and the routine sets the local path
address to the address of the path that contains the passed
path entry. In block 910, the routine sets the address element
and the current binding of the path address pointed to by the
local pointer path address to the address entry of the member
structure of the passed path entry. In the block 911, the
routine sets the local variable status to demux continue and
sets the local binding list structure to the binding list
structure from the local path address structure. In block 912,
the routine sets the local pointer current binding to the
address of the current binding pointed to by local pointer
path address and sets the local variable postpone to 0. In
block 913, the routine sets the function traverse to the
function that retrieves the next data in a list and sets the local
pointer session to null. The routine then returns.

FIG. 10 is a flow diagram of the init end routine. If the
path is simplex, then the routine creates a new path from
where the other one ended, else the routine creates a copy of
the path. In block 1001, if the binding of the passed path
entry is simplex (i.e., only one path can be bound to this
binding), then the routine continues at block 1002, else the
routine continues at block 1003. In block 1002, the routine
sets the local pointer path address to point to an address
structure that is a copy of the address structure associated
with the passed path entry structure with its current binding
to the address entry associated with the passed path entry
structure, and then returns. In block 1003, the routine sets
the local pointer path address to point to an address structure
that contains the URL of the path that contains the passed
path entry. In block 1004, the routine sets the local pointer
element to null to initialize the selection of the bindings. In
blocks 1005 through 1007, the routine loops adding all the
bindings for the address of the passed path entry that include
and are before the passed path entry to the address pointed
to by the local path address. In block 1005, the routine
retrieves the next binding from the binding list starting with
the first. If there is no such binding, then the routine returns,
else the routine continues at block 1006. In block 1006, the
routine adds the binding to the binding list of the local path

55 address structure and sets the current binding of the local
variable path address. In the block 1007, if the local pointer
element is equal to the address entry of the passed path entry,
then the routine returns, else the routine loops to block 1005

that are used in the demux process and to identify the initial
binding. The demux routine finds the shortest path from the
initial binding to the final binding. If the current status is
demux extend, then the routine is to extend the path of the
passed path entry by adding additional path entries. If the
current status is demux end, then the demux routine is
ending the current path. If the current status is demux
continue, then the demux routine is in the process of
continuing to extend or in the process of starting a path
identified by the passed address. In block 901, the routine 60

sets the local map structure to the map structure in the passed
path entry structure. The map structure identifies the output
label, the target label, and the target key. In the block 902,
the routine initializes the local message structure to the
passed message structure and initializes the pointers path
and address element to null. In block 903, the routine sets of
the variable saved status to O and the variable status to

to select the next binding.
FIG. 11 is a flow diagram of a routine to get the next

binding. This routine returns the next binding from the local
binding list. If there is no next binding, then the routine
invokes the routine label map get to identify the list of edges
("trails") that will map the output label to the target label. If

65 only one trail is identified, then the binding list of path
address is extended by the edges of the trail. If multiple trails
are identified, then a path is created for each trail and the

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 31 of 33 PageID #: 474

Juniper Ex. 1041-p. 225
Juniper v Implicit

US 10,033,839 B2
11

routine returns so that the demux process can be invoked for
each created path. In block 1101, the routine sets the local
pointer binding to point to the next or previous (as indicated
by the traverse function) binding in the local binding list. In
block 1102, if a binding was found, then the routine returns 5

an indication that a binding was found, else the routine
continues at block 1103. In block 1103, the routine invokes
the label map get function passing the output label and target
label of the local map structure. The label map get function
returns a trail list. A trail is a list of edges from the output 10

label to the target label. In decision block 1104, if the size
of the trail list is one, then the routine continues at block
1105, else the routine continues at block 1112. In blocks
1105-1111, the routine extends the binding list by adding a
binding data structure for each edge in the trail. The routine 15

then sets the local binding to the last binding in the binding
list. In block 1108, the routine sets the local pointer current
binding to point to the last binding in the local binding list.
In block 1106, the routine sets the local variable temp trail
to the trail in the trail list. In block 1107, the routine extends 20

the binding list by temp trail by adding a binding for each
edge in the trail. These bindings are not yet nailed. In block
1108, the routine sets the local binding to point to the last
binding in the local binding list. In decision block 1109, if
the local binding does not have a key for a session and the 25

local map has a target key for a session, then the routine sets
the key for the binding to the target key of the local map and
continues at block 1110, else the routine loops to block 1101

12
the variable traverse to the function to list the next data,
increments the variable postpone, and then returns a next
binding status. In blocks 1206-1214, the routine processes
the postponing of the creating ofa key. In blocks 1207-1210,
if the creating of a key has been postponed, then the routine
indicates to backtrack on the path, save the demux status,
and set the demux status to demux continue. In blocks
1211-1213, if the creating of a key has not been postponed,
then the routine indicates to continue forward in the path and
to restore any saved demux status. The save demux status is
the status associated by the binding where the backtrack
started. In decision block 1206, if the variable postpone is
set, then the routine continues at block 1207, else the routine
continues at block 1211. In block 1207, the routine decre
ments the variable postpone and sets the variable traverse to
the list previous data function. In decision block 1208, if the
variable saved status is set, then the routine continues at
block 1210, else the routine continues at block 1209. The
variable saved status contains the status of the demux
process when the demux process started to backtrack. In
block 1209, the routine sets the variable saved status to the
variable status. In block 1210, the routine sets the variable
status to demux continue and continues at block 1214. In
block 1211, the routine sets the variable traverse to the list
next data function. In decision block 1212, if the variable
saved status in set, then the routine continues at block 1213,
else the routine continues at block 1214. In block 1213, the
routine sets the variable status to the variable saved status
and sets the variable saved status to 0. In decision block to retrieve the next binding in path. In block 1110, the

routine sets the key of the local binding to the target key of
the local map. In block 1111, the routine sets the target key
of the local map to null and then loop to block 1101 to return
the next binding. In decision block 1112, if the local session

30 1214, if the local binding indicates that it is to be removed,
then the routine returns a next binding status, else the routine

is set, then the demultiplexing is already in progress and the
routine returns a break status. In block 1113, the routine 35

invokes a prepare multicast paths routine to prepare a path
entry for each trail in the trail list. The routine then returns
a multiple status.

FIG. 12 is a flow diagram of the get key routine. The get
key routine invokes an edge's demuxkey routine to retrieve 40

a key for the session associated with the message. The key
identifies the session of a protocol. The demux key routine
creates the appropriate key for the message. The demux key
routine returns a status of remove, postpone, or other. The
status of remove indicates that the current binding should be 45

removed from the path. The status of postpone indicates that
the demux key routine cannot create the key because it needs
information provided by subsequent protocols in the path.
For example, a TCP session is defined by a combination of
a remote and local port address and an IP address. Thus, the 50

TCP protocol postpones the creating of a key until the IP
protocol identifies the IP address. The get key routine returns
a next binding status to continue at the next binding in the
path. Otherwise, the routine returns a continue status. In
block 1201, the routine sets the local edge to the edge of the 55

local binding (current binding) and sets the local protocol to
the protocol of the local edge. In block 1202, the routine
invokes the demux key routine of the local edge passing the
local message, local path address, and local map. The demux
key routine sets the key in the local binding. In decision 60

block 1203, if the demux key routine returns a status of
remove, then the routine continues at block 1204. If the
demux key routine returns a status of postpone, then the
routine continues at block 1205, else the routine continues at
block 1206. In block 1204, the routine sets the flag of the 65

local binding to indicate that the binding is to be removed
and continues at block 1206. In block 1205, the routine sets

returns a continue status.
FIG. 13 is a flow diagram of the get session routine. This

routine retrieves the session data structure, creating a data
structure session if necessary, for the key indicated by the
binding. In block 1301, the routine retrieves the session from
the session table of the local protocol indicated by the key
of the local binding. Each protocol maintains a mapping
from each key to the session associated with the key. In
decision block 1302, if there is no session, then the routine
continues at block 1303, else the routine returns. In block
1303, the routine creates a session for the local protocol. In
block 1304, the routine initializes the key for the local
session based on the key of the local binding. In block 1305,
the routine puts the session into the session table of the local
protocol. In block 1306, the routine invokes the create
session function of the protocol to allow the protocol to
initialize its context and then returns.

FIG. 14 is a flow diagram of the nail binding routine. This
routine determines whether a binding is already associated
with ("nailed to") the session. If so, the routine returns that
binding. If not, the routine associates the binding with the
session. The routine returns a status of simplex to indicate
that only one path can extend through the nailed binding. In
decision block 1401, if the binding table of the session
contains an entry for the edge, then the routine continues at
block 1402, else the routine continues at block 1405. In
block 1402, the routine sets the binding to the entry from the
binding table of the local session for the edge. In block 1403,
the routine sets the current binding to point to the binding
from the session. In block 1404, if the binding is simplex,
then the routine returns a simplex status, else the routine
returns. Blocks 1405 through 1410 are performed when
there is no binding in the session for the edge. In block 1405,
the routine sets the session of the binding to the variable
session. In block 1406, the routine sets the key of the binding
to the key from the session. In block 1407, the routine sets

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 32 of 33 PageID #: 475

Juniper Ex. 1041-p. 226
Juniper v Implicit

US 10,033,839 B2
13

the entry for the edge in the binding table of the local session
to the binding. In block 1408, the routine invokes the create
binding function of the edge of the binding passing the
binding so the edge can initialize the binding. If that function
returns a status of remove, the routine continues at block 5

1409. In block 1409, the routine sets the binding to be
removed and then returns.

FIG. 15 is a flow diagram of the find path routine. The find
~ath routine identifies the shortest path through the binding
hst. If no such path exists, then the routine extends a path to 10

include the binding list. In decision block 1501, if the
binding is simplex and a path already goes through this
binding (returned as an entry), then the routine continues at
block 1502, else the routine continues at block 1503. In
block 1502, the routine sets the path to the path of the entry 15

and returns. In block 1503, the routine initializes the pointers
element and short entry to null. In block 1504, the routine
sets the path to the path of the passed path entry. If the local
path is not null and its status is demux extend, then the
routine continues at block 1509, else the routine continues at 20

block 1505. In blocks 1505-1508, the routine loops identi
fying the shortest path through the bindings in the binding
li~t. _The routine loops selecting each path through the
bmdmg. The selected path is eligible if it starts at the first
binding in the binding list and the path ends at the binding. 25

The routine loops setting the short entry to the shortest
eligible path found so far. In block 1505, the routine sets the
variable first binding to the first binding in the binding list
of the path address. In block 1506, the routine selects the
next path (entry) in the path list of the binding starting with 30

the first. If a path is selected (indicating that there are more
paths in the binding), then the routine continues at block
1507, else the routine continues at block 1509. In block
1507, the routine determines whether the selected path starts
at the first binding in the binding list, whether the selected 35

path ends at the last binding in the binding list, and whether
the number of path entries in the selected path is less than the
number of path entries in the shortest path selected so far. If
these conditions are all satisfied, then the routine continues
at block 1508, else the routine loops to block 1506 to select 40

the next path (entry). In block 1508, the routine sets the
shortest path (short entry) to the selected path and loops to
block 1506 to select the next path through the binding. In
block 1509, the routine sets the selected path (entry) to the
shortest path. In decision block 1510, if a path has been 45

found, then the routine continues at block 1511 else the
routine continues at block 1512. In block 1511, the routine
sets the path to the path of the selected path entry and
returns. Blocks 1512-1516 are performed when no paths
have been found. In block 1512, the routine sets the path to 50

the path of the passed path entry. If the passed path entry has
a path and its status is demux extend, then the routine
continues at block 1515, else the routine continues at block
1513. In block 1513, the routine creates a path for the path
address. In block 1514, the routine sets the variable element 55

to null and sets the path entry to the first element in the stack
list of the path. In block 1515, the routine sets the variable
element to be address entry of the member of the passed path
entry and sets the path entry to the passed path entry. In
block 1516, the routine invokes the extend path routine to 60

extend the path and then returns. The extend path routine
creates a path through the bindings of the binding list and
sets the path status to the current demux status.

FIG. 16 is a flow diagram of the process of path hopping
routine. Path hopping occurs when the path through the

14
binding list is not the same path as that of the passed path
entry. _In decision block 1601, if the path of the passed path
entry 1s set, then the routine continues at block 1602 else the
routine continues at block 1609. In decision block' 1602 if
the path of the passed path entry is equal to the local p;th,
then the routine continues at 1612, else path hopping is
occurring and the routine continues at block 1603. In blocks
1603-1607, the routine loops positioning pointers at the first
path entries of the paths that are not at the same binding. In
block 1603, the routine sets the variable old stack to the
stack list of the path of the passed path entry. In block 1604,
the routine sets the variable new stack to the stack list of the
local path. In block 1605, the routine sets the variable old
element to the next element in the old stack. In block 1606,
the routine sets the variable element to the next element in
the new stack. In decision block 1607, the routine loops until
the path entry that is not in the same binding is located. In
decision block 1608, if the variable old entry is set, then the
routine is not at the end of the hopped from path and the
routine continues at block 1609, else routine continues at
block 1612. In block 1609, the routine sets the variable entry
to the previous entry in the hopped-to path. In block 1610,
the routine sets the path of the passed path entry to the local
path. In block 1611, the routine sets the local entry to the first
path entry of the stack list of the local path. In block 1612,
the routine inserts an entry into return list and then returns.

Although the conversion system has been described in
terms of various embodiments, the invention is not limited
to these embodiments. Modification within the spirit of the
invention will be apparent to those skilled in the art. For
example, a conversion routine may be used for routing a
message and may perform no conversion of the message.
Also, a reference to a single copy of the message can be
passed to each conversion routine or demuxkey routine.
These routines can advance the reference past the header
information for the protocol so that the reference is posi
tioned at the next header. After the demux process, the
reference can be reset to point to the first header for
processing by the conversion routines in sequence. The
scope of the invention is defined by the claims that follow.

What is claimed is:
1. A method, comprising:
receiving, at a computing device having a processing

circuit, a packet of a message;
determining, by the computing device, a key value for the

packet, wherein the key value is determined based on
one or more headers in the packet; and

using, by the computing device, the key value to deter
mine whether the computing device is currently storing
a previously created path for the key value

in response to determining that no path is currently stored
for the key value, the computing device:
identifying, using the key value, one or more routines

for processing the packet, including a routine that is
used to execute a Transmission Control Protocol
(TCP) to convert packets having a TCP format into
a different format;

creating a path using the identified one or more routines
wherein the created path stores state information for
at least one of the identified one or more routines and
specifies an ordering in which the identified one or
more routines are to be performed to process the
packet; and

processing the packet using the created path.

* * * * *

Case 2:19-cv-00037-JRG Document 14-8 Filed 03/19/19 Page 33 of 33 PageID #: 476

Juniper Ex. 1041-p. 227
Juniper v Implicit

EXHIBIT 9

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 1 of 34 PageID #: 477

Juniper Ex. 1041-p. 228
Juniper v Implicit

c12) United States Patent
Balassanian

(54) METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

(71) Applicant: Implicit, LLC, Seattle, WA (US)

(72) Inventor: Edward Balassanian, Austin, TX (US)

(73) Assignee: Implicit, LLC, Seattle, WA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 16/043,069

(22) Filed:

(65)

Jul. 23, 2018

Prior Publication Data

US 2018/0332145 Al Nov. 15, 2018

Related U.S. Application Data

(63) Continuation of application No. 15/450,790, filed on
Mar. 6, 2017, now Pat. No. 10,033,839, which is a

(51) Int. Cl.
H04L 12158
H04L 29106

(52) U.S. Cl.

(Continued)

(2006.01)
(2006.01)

(Continued)

CPC H04L 69/08 (2013.01); H04L 29106
(2013.01); H04L 45100 (2013.01);

(Continued)
(58) Field of Classification Search

None
See application file for complete search history.

I 1111111111111111 1111111111 111111111111111 111111111111111 111111111111111111
USO 10225 3 78B2

(IO) Patent No.: US 10,225,378 B2
(45) Date of Patent: *Mar. 5, 2019

(56)

EP
EP

References Cited

U.S. PATENT DOCUMENTS

5,298,674 A
5,392,390 A

3/1994 Yun
2/1995 Crozier

(Continued)

FOREIGN PATENT DOCUMENTS

0408132 1/1991
0807347 11/1997

(Continued)

OTHER PUBLICATIONS

Michael Baentsch, et al., "WebMake: Integrating distributed soft
ware development in a structure-enhanced Web," Computer Net
works and ISDN Systems 27 (1995), pp. 789-800.

(Continued)

Primary Examiner - Due T Duong
(74) Attorney, Agent, or Firm - Meyertons, Hood,
Kivlin, Kowert & Goetze!, P.C.

(57) ABSTRACT

A method and system for demultiplexing packets of a
message is provided. The demultiplexing system receives
packets of a message, identifies a sequence of message
handlers for processing the message, identifies state infor
mation associated with the message for each message han
dler, and invokes the message handlers passing the message
and the associated state information. The system identifies
the message handlers based on the initial data type of the
message and a target data type. The identified message
handlers effect the conversion of the data to the target data
type through various intermediate data types.

20 Claims, 16 Drawing Sheets

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 2 of 34 PageID #: 478

Juniper Ex. 1041-p. 229
Juniper v Implicit

(51)

(52)

(56)

US 10,225,378 B2
Page 2

Related U.S. Application Data

continuation of application No. 15/050,027, filed on
Feb. 22, 2016, now Pat. No. 9,591,104, which is a
continuation of application No. 14/230,952, filed on
Mar. 31, 2014, now Pat. No. 9,270,790, which is a
continuation of application No. 13/911,324, filed on
Jun. 6, 2013, now Pat. No. 8,694,683, which is a
continuation of application No. 13/236,090, filed on
Sep. 19, 2011, now abandoned, which is a continu
ation of application No. 10/636,314, filed on Aug. 6,
2003, now Pat. No. 8,055,786, which is a continu
ation of application No. 09/474,664, filed on Dec. 29,
1999, now Pat. No. 6,629,163.

Int. Cl.
H04L 29108
H04L 29112
H04L 121701

U.S. Cl.

(2006.01)
(2006.01)
(2013.01)

CPC H04L 61/2007 (2013.01); H04L 61/6063
(2013.01); H04L 67102 (2013.01); H04L 69/16
(2013.01); H04L 69/18 (2013.01); H04L 69122

(2013.01); H04L 69132 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

5,414,833 A
5,425,029 A
5,568,478 A
5,627,997 A
5,710,917 A
5,727,159 A
5,740,430 A
5,761,651 A
5,768,521 A
5,826,027 A
5,835,726 A
5,842,040 A
5,848,233 A
5,848,246 A
5,848,415 A
5,854,899 A
5,870,479 A
5,896,383 A
5,898,830 A
5,918,013 A
5,983,348 A
5,987,256 A
5,991,299 A
5,991,806 A
6,032,150 A
6,035,339 A
6,047,002 A
6,067,575 A
6,091,725 A
6,094,679 A
6,101,189 A
6,101,320 A
6,104,500 A
6,104,704 A
6,111,893 A
6,112,250 A
6,115,393 A
6,119,165 A
6,119,236 A
6,122,666 A
6,128,624 A
6,130,917 A
6,141,749 A
6,151,390 A
6,157,622 A

5/1995 Hershey et al.
6/1995 Hluchyj et al.

10/ 1996 van Loo, Jr. et al.
5/1997 Pearson et al.
l/ 1998 Musa et al.
3/ 1998 Kikinis
4/ 1998 Rosenberg et al.
6/ 1998 Hasebe
6/ 1998 Dedrick

10/1998 Pedersen et al.
ll/ 1998 Shwed et al.
ll/ 1998 Hughes et al.
12/1998 Radia et al.
12/1998 Gish
12/1998 Guck
12/1998 Callon et al.
2/1999 Feiken et al.
4/1999 Wakeland
4/1999 Wesinger, Jr. et al.
6/ 1999 Mighdoll et al.

11/1999 Ji
11/1999 Wu et al.
ll/ 1999 Radogna et al.
11/1999 McHann, Jr.
2/2000 Nguyen
3/2000 Agrahararn et al.
4/2000 Hartmann et al.
5/2000 McManis et al.
7/2000 Cheriton et al.
7/2000 Teng et al.
8/2000 Tsuruoka
8/2000 Schuetze et al.
8/2000 Alam et al.
8/2000 Buhler et al.
8/2000 Volftsun et al.
8/2000 Appelman
9/2000 Engel et al.
9/2000 Li et al.
9/2000 Shipley
9/2000 Beurket et al.

10/2000 Papiemiak et al.
10/2000 Monroe
10/2000 Coss et al.
11/2000 Volftsun et al.
12/2000 Tanaka et al.

12/2000 Himmel
2/2001 Aditharn et al.
3/2001 Khan et al.
4/2001 Segur
4/2001 Kihl et al.
5/2001 Spinney et al.
6/2001 Kerr et al.
6/2001 Erb et al.
7/2001 Crouch et al.
8/2001 Anderson et al.
8/2001 Heimendinger et al.
9/2001 Raz
3/2002 Zarom
3/2002 Movshovich et al.
4/2002 Gupta et al.
6/2002 Bellwood et al.
6/2002 Leslie et al.
6/2002 Hadland
7 /2002 Spinney et al.

12/2002 Gelman et al.
1/2003 Cremin et al.
2/2003 Engel et al.
5/2003 Varghese et al.
6/2003 Clayton et al.
6/2003 Moberg et al.
7/2003 Kloth
9/2003 Balassanian

11/2003 Volftsun et al.
11/2003 Dietz et al.

1/2004 Eerola
1/2004 Jorgensen
3/2004 Deng et al.
3/2004 Amir et al.
8/2004 Kuznetsov
8/2004 Taylor
3/2005 Sirer et al.
3/2005 Kist et al.
5/2005 Kerr et al.
8/2005 Delaney et al.

10/2005 Kivinen et al.
10/2005 Boike
6/2007 Swallow
6/2007 Sharnoon et al.

10/2007 Lu et al.
6/2008 Saito et al.

6,167,441 A
6,192,419 Bl
6,199,054 Bl
6,212,550 Bl
6,222,536 Bl
6,226,267 Bl
6,243,667 Bl
6,246,678 Bl
6,259,781 Bl
6,275,507 Bl
6,278,532 Bl
6,292,827 Bl
6,356,529 Bl
6,359,911 Bl
6,374,305 Bl
6,401,132 Bl
6,404,775 Bl
6,405,254 Bl
6,426,943 Bl
6,493,348 Bl
6,504,843 Bl
6,519,636 B2
6,560,236 Bl
6,574,610 Bl
6,578,084 Bl
6,598,034 Bl
6,629,163 Bl
6,650,632 Bl
6,651,099 Bl
6,678,518 B2
6,680,922 Bl
6,701,432 Bl
6,711,166 Bl
6,772,413 B2
6,785,730 Bl
6,865,735 Bl
6,871,179 Bl
6,889,181 B2
6,937,574 Bl
6,957,346 Bl
6,959,439 Bl
7,233,569 Bl
7,233,948 Bl
7,281,036 Bl
7,383,341 Bl
7,443,858 Bl* 10/2008 Cheriton H04L 12/4608

7,711,857 B2
8,055,786 B2
8,694,683 B2

Balassanian
Balassanian
Balassanian

370/395.1

2001/0037397 Al *

5/2010
11/2011
4/2014

11/2001 Boucher G06F 5/ 10
709/230

2002/0156927 Al* 10/2002 Boucher H04L 29/06
709/250

2003/0142669 Al 7 /2003 Kubota et al.
2004/0015609 Al 1/2004 Brown et al.
2004/0158793 Al* 8/2004 Blightman H04L 29/06

714/758
2006/0209830 Al* 9/2006 Oguchi H04L 45/00

370/758
2007/0067497 Al* 3/2007 Craft H04L 67/1097

2008/0250045 Al
2009/0083763 Al
2009/0265695 Al
2009/0310485 Al
2015/0032691 Al

10/2008 Balassanian et al.
3/2009 Sareen et al.

10/2009 Karino
12/2009 Averi et al.

1/2015 Hall et al.

FOREIGN PATENT DOCUMENTS

EP
JP
JP
JP

0817031
Hl0-55279
Hl049354

Hl0-74153

1/1998
2/1998
2/1998
3/1998

709/250

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 3 of 34 PageID #: 479

Juniper Ex. 1041-p. 230
Juniper v Implicit

US 10,225,378 B2
Page 3

(56)

JP
WO

References Cited

FOREIGN PATENT DOCUMENTS

Hl0-289215
99/35799

10/1998
7 /1999

OTHER PUBLICATIONS

Dan Decasper, et al., "A Scalable, High Performance Active Net
work Node," Apr. 1998, 21 pages.
John J. Hartman, et al., "Joust: A Platform for Liquid Software,"
Computer, IEEE, 1999, pp. 50-56.
David Mosberger, et al., "Making Paths Explicit in the Scout
Operating System," Proceedings of the USENIX 2nd Symposium
on Operating Systems Design and Implementation, Oct. 1996, 16
pages.
Oliver Spatscheck, et al., "Escort: A Path-Based OS Security
Architecture," TR 97-17, Nov. 26, 1997, 17 pages.
Dan Decasper, et al., "DAN: Distrubuted Code Caching for Active
Networks," IEEE, 1998, pp. 609-616.
Non-Final Office Action in Inter Partes Reexamination Control No.
95/000,659 dated Aug. 16, 2013, 107 pages.
Decision on Petition in Reexamination Control No. 95/000,659
dated Aug. 19, 2013, 3 pages.
Response to Non-Final Office Action in Reexamination Control No.
95/000,659 dated Oct. 2, 2013 including Exhibits A-C, 37 pages.
Decision on Petition in Reexamination Control No. 95/000,660
dated Jul. 30, 2013, 12 pages.
Non-Final Office Action in Inter Partes Reexamination Control No.
95/000,660 dated Aug. 30, 2013, 23 pages.
RFC: 791. Internet Protocol: DARPA Internet Program Protocol
Specification, Sep. 1981, prepared for Defense Advanced Research
Projects Agency Information Processing Techniques Office by Infor
mation Sciences Institute University of Southern California, 52
pages.
2015 WL 2194627, United States District Court, N.D. California,
Implicit L.L. C. , Plaintiff, v. F5 Networks, Inc., Defendant, Case No.
14-cv-02856-SI, signed May 6, 2015, 14 pages.
Defendants' Invalidity Contentions Pursuant to Local Patent Rules
3-3 and 3-4, United States District Court Eastern District of Texas
Tyler Division, Implicit, LLC v. Trend Micro, Inc., Ericsson Inc.,
Huawei Technologies USA, Inc., NEC Corporation of America,
Nokia Solutions and Networks US LLC; Sep. 2, 2016, 53 pages.
Exhibits A-l-Al6 Invalidity of U.S. Pat. No. 8,694,683, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, Sep. 2, 2016, 425 pages.
Exhibits B-l-Bl3 Invalidity of U.S. Pat. No. 9,270,790, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, Sep. 2, 2016, 369 pages.
Exhibits C-l-C21 Invalidity of U.S. Pat. No. 8,856,779, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, Sep. 2, 2016, 646 pages.
Exhibits D-l-D21 Invalidity of U.S. Pat. No. 9,325,740, Defen
dants' Invalidity Contentions Pursuant to Local Patent Rules 3-3
and 3-4, United States District Court Eastern District of Texas Tyler
Division, dated Sep. 2, 2016, 419 pages.
Exhibits E-l-E20 Invalidity of U.S. Pat. No. 6,324,685, Defendants'
Invalidity Contentions Pursuant to Local Patent Rules 3-3 and 3-4,
United States District Court Eastern District of Texas Tyler Divi
sion, dated Sep. 2, 2016, 416 pages.
Alexander, D. et al., "The SwitchWare Active Network Architec
ture", Jun. 6, 1998, IEEE.
Antoniazzi, S. et al., "An Open Software Architecture for Multi
media Consumer Terminals", Central Research Labs, Italy; Alcatel
SEL Research Centre, Germany, ECMAST 1997.
Arbanowski, Stefan, "Generic Description of Telecommunication
Services and Dynamic Resource Selection in Intelligent Commu
nication Environments", Thesis, Technische Universitat Berlin, Oct.
9, 1996 (3 documents).

Arbanowski, S., et al., Service Personalization for Unified Messag
ing Systems, Jul. 6-8, 1999, The Fourth IEEE Symposium on
Computers and Communications, ISCC '99, Red Sea, Egypt.
Atkinson, R., "Security Architecture for the Internet Protocol", Aug.
1995, Naval Research Laboratory.
Atkinson, R., "IP Authentication Header", Aug. 1995, Naval Research
Laboratory.
Atkinson, R., "IP Encapsulating Security Payload (ESP)", Aug.
1995, Naval Research Laboratory.
Back, G., et al., Java Operating Systems: Design and Implementa
tion, Aug. 1998, Technical Report UUCS-98-015, University of
Utah.
Baker, Dr. Sean, "CORBA Implementation Issues", 1994, IONA
Technologies, O'Reilly Institute Dublin, Ireland.
Barrett, R., et al., "Intermediaries: New Places for Producing and
Manipulating Web Content", 1998, IBM Almaden Research Center,
Elsevier Science.
Bellare, M., et al., "A Concrete Security Treatment of Symmetric
Encryption: Analysis of the DES Modes of Operation", Aug. 15,
1997, Dept. of Computer Science and Engineering, University of
California, San Diego.
Bellare, M., et al., "A Concrete Security Treatment of Symmetric
Encryption: Analysis of the DES Modes of Operation", Aug. 15,
1997, IEEE.
Bellare, M., et al., "XOR MACs: New Methods for Message
Authentication Using Finite Pseudorandom Functions", 1995, CRYPTO
'95, LNCS 963, pp. 15-28, Springer-Verlag Berlin Heidelberg.
Bellissard, L., et al., "Dynamic Reconfiguration of Agent-Based
Applications", Third European Research Seminar on Advances in
Distributed Systems, (ERSADS '99) Madeira Island.
Bolding, Darren, "Network Security, Filters and Firewalls", 1995,
www.acm.org/crossroads/xrds2-l/security.html.
Booch, G., et al., "Software Engineering with ADA", 1994, Third
Edition, The Benjamin/Cummings Publishing Company, Inc. (2
documents).
Breugst, et al., "Mobile Agents-Enabling Technology for Active
Intelligent Network Implementation", May/Jun. 1998, IEEE Net
work.
"C Library Functions", AUTH(3) Sep. 17, 1993, Solbourne Com
puter, Inc.
Chapman, D., et al., "Building Internet Firewalls", Sep. 1995,
O'Reilly & Associates, Inc.
CheckPoint FireWall-1 Technical White Paper, Jul. 18, 1994, CheckPoint
Software Technologies, Ltd.
CheckPoint FireWall-1 White Paper, Sep. 1995, Version 2.0, CheckPoint
Software Technologies, Ltd.
Command Line Interface Guide PIN 093-0011-000 Rev C Version
2.5, 2000-2001, NetScreen Technologies, Inc.
Coulson, G. et al., "A CORBA Compliant Real-Time Multimedia
Platform for Broadband Networks", Lecture Notes in Computer
Science, 1996, Trends in Distributed Systems CORBAand Beyond.
Cox, Brad, "SuperDistribution, Objects As Property on the Elec
tronic Frontier", 1996, Addison-Wesley Publishing Company.
Cranes, et al., "A Configurable Protocol Architecture for CORBA
Environments", Autonomous Decentralized Systems 1997 Proceed
ings ISADS, Third International Symposium Apr. 9-11, 1997.
Curran, K., et al., "CORBA Lacks Venom", University of Ulster,
Northern Ireland, UK 2000.
Dannert, Andreas, "Call Logic Service for a Personal Communica
tion Supporting System", Thesis, Jan. 20, 1998, Technische Universitat
Berlin.
Darpa Internet Program Protocol Specification, "Transmission Con
trol Protocol", Sep. 1981, Information Sciences Institute, California.
Darpa Internet Program Protocol Specification, "Internet Protocol",
Sep. 1981, Information Sciences Institute, California.
Decasper, D., et al., "Crossbow: A Toolkit for Integrated Services
over Cell Switched IPv6", 1997, Computer Engineering and Net
works Laboratory, ETH Zurich, Switzerland.
Decasper, D., et al., "Router Plugins a Software Architecture for
Next Generation Routers", 1998, Proceedings of ACM SIGCONM
'98.
Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1998, Nokia, The Internet Society.

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 4 of 34 PageID #: 480

Juniper Ex. 1041-p. 231
Juniper v Implicit

US 10,225,378 B2
Page 4

(56) References Cited

OTHER PUBLICATIONS

Deering, S., et al., Internet Protocol, Version 6 (IPv6) Specification,
Dec. 1995, Network Working Group, RFC 1883.
Dutton, et al, "Asynchronous Transfer Mode Technical Overview
(ATM)", Second Edition; IBM, Oct. 1995, 2nd Edition, Prentice Hall
PTR, USA.
Eckardt, T., et al., "Application of X.500 and X.700 Standards for
Supporting Personal Communications in Distributed Computing
Environments", 1995, IEEE.
Eckardt, T., et al., "Personal Communications Support based on
TMN and TINA Concepts", 1996, IEEE Intelligent Network Work
shop (IN '96), Apr. 21-24, Melbourne, Australia.
Eckardt, T., et al., "Beyond IN and UPT-A Personal Communi
cations Support System Based on TMN Concepts", Sep. 1997, IEEE
Journal on Selected Areas in Communications, vol. 15, No. 7.
Egevang, K., et al., "The IP Network Address Translator (NAT)",
May 1994, Network Working Group, RFC 1631.
Estrin, D., et al., "Visa Protocols for Controlling Inter
Organizational Datagram Flow", Dec. 1998, Computer Science
Department, University of Southern California and Digital Equip
ment Corporation.
Faupel, M., "Java Distribution and Deployment", Oct. 9, 1997,
APM Ltd., United Kingdom.
Felber, P., "The CORBA Object Group Service: A Service Approach
to Object Groups in CORBA", Thesis, 1998, Ecole Polytechnique
Federale de Lausanne, Switzerland.
Fish, R., et al., "DRoPS: Kernel Support for Runtime Adaptable
Protocols", Aug. 25-27, 1998, IEEE 24th Euromicro Conference,
Sweden.
Fiuczynski, M., et al., "An Extensible Protocol Architecture for
Application-Specific Networking", 1996, Department of Computer
Science and Engineering, University of Washington.
Franz, Stefan, "Job and Stream Control in Heterogeneous Hardware
and Software Architectures", Apr. 1998, Technische Universitat,
Berlin (2 documents).
Fraser, T., "DTE Firewalls: Phase Two Measurement and Evalua
tion Report", Jul. 22, 1997, Trusted Information Systems, USA.
Gazis, V., et al., "A Survey of Dynamically Adaptable Protocol
Stacks", first Quarter 2010, IEEE Communications Surveys &
Tutorials, vol. 12, No. 1, 151 Quarter.
Gokhale, A., et al., "Evaluating the Performance of Demultiplexing
Strategies for Real-Time CORBA", Nov. 1997, GLOBECOM.
Gokhale, A., et al., "Measuring and Optimizing CORBA Latency
and Scalability Over High-Speed Networks", Apr. 1998, IEEE
Transaction on Computers, vol. 47, No. 4; Proceedings of the
International Conference on Distributed Computing Systems (ICDCS
'97) May 27-30, 1997.
Gokhale, A., et al., "Operating System Support for High
Performance, Real-Time CORBA", 1996.
Gokhale, A., et al., "Principles for Optimizing CORBA Internet
Inter-ORB Protocol Performance", Jan. 9, 1998, Proceedings of the
HICSS Conference, Hawaii.
Gong, Li, "Java Security: Present and Near Future", May/Jun. 1997,
IEEE Micro.
Gong, Li, "New Security Architectural Directions for Java (Extended
Abstract)", Dec. 19, 1996, IEEE.
Gong, Li, "Secure Java Class Loading", Nov./Dec. 1998, IEEE
Internet.
Goos, G., et al., "Lecture Notes in Computer Science: Mobile
Agents and Security", 1998, Springer-Verlag Berlin Heidelberg.
Goralski, W., "Introduction to ATM Networking", 1995, McGraw
Hill Series on Computer Communications, USA.
Hamzeh, K., et al., Layer Two Tunneling Protocol "L2TP", Jan.
1998, PPP Working Group, Internet Draft.
Harrison, T., et al., "The Design and Performance of a Real-Time
CORBAEvent Service", Aug. 8, 1997,Proceedings of the OOPSLA
'97 Conference, Atlanta, Georgia in Oct. 1997.
Huitema, Christian, "IPv6 The New Internet Protocol", 1997 Pren
tice Hall, Second Edition.

Hutchins, J., et al., "Enhanced Internet Firewall Design Using
Stateful Filters Final Report", Aug. 1997, Sandia Report; Sandia
National Laboratories.
IBM, Local Area Network Concepts and Products: Routers and
Gateways, May 1996.
Juniper Networks Press Release, Juniper Networks Announces
Junos, First Routing Operating System for High-Growth Internet
Backbone Networks, Jul. 1, 1998, Juniper Networks.
Juniper Networks Press Release, Juniper Networks Ships the Indus
try's First Internet Backbone Router Delivering Unrivaled Scalabil
ity, Control and Performance, Sep. 16, 1998, Juniper Networks.
Karn, P., et al., "The ESP DES-CBC Transform", Aug. 1995,
Network Working Group, RFC 1829.
Kelsey, J. et al., "Authenticating Outputs of Computer Software
Using a Cryptographic Coprocessor", Sep. 1996, CARDIS.
Krieger, D., et al., "The Emergence of Distributed Component
Platforms", Mar. 1998, IEEE.
Krupczak, B., et al., "Implementing Communication Protocols in
Java", Oct. 1998, IEEE Communications Magazine.
Krupczak, B., et al., "Implementing Protocols in Java: The Price of
Portability", 1998, IEEE.
Lawson, Stephen, "Cisco NetFlow Switching Speeds Traffic Rout
ing", Jul. 7, 1997, Infoworld.
Li, S., et al., "Active Gateway: A Facility for Video Conferencing
Traffic Control", Feb. 1, 1997, Purdue University; Purdue e-Pubs;
Computer Science Technical Reports.
Magedanz, T., et al., "Intelligent Agents: An Emerging Technology
for Next Generation Telecommunications?", 1996, IEEE.
Mills, H., et al., "Principles of Information Systems Analysis and
Design", 1986, Academic Press, Inc. (2 documents).
Mosberger, David, "Scout: A Path-Based Operating System", Doc
toral Dissertation Submitted to the University of Arizona, 1997 (3
documents).
Muhugusa, M., et al., "COMSCRIPT An Environment for the
Implementation of Protocol Stacks and their Dynamic Reconfigura
tion", Dec. 1994.
Nelson, M., et al., The Data Compression Book, 2nd Edition, 1996,
M&T Books, A division of MIS Press, Inc.
NetRanger User's Guide, 1996, WheelGroup Corporation.
NetScreen Command Line Reference Guide, 2000, PIN 093-0000-
001 Rev A, NetScreen Technologies, Inc., USA.
NetScreen Command Line Reference Guide, 2000, PIN 093-0000-
001 NetScreen Technologies, Inc., USA.
NetScreen Concepts and Examples ScreenOS Reference Guide,
1998-2001, Version 2.5 PIN 093-0039-000 Rev. A, NetScreen
Technologies, Inc.
NetScreen Products Webpage, wysiwyg://body _bottom.3/http://
www ... een.com/products/products.html 1998-1999, NetScreen Tech
nologies, Inc.
NetScreen WebUI, Reference Guide, Version 2.5.0 PIN 093-0040-
000 Rev. A, 2000-2001, NetScreen Technologies, Inc.
NetStalker Installation and User's Guide, 1996, Version 1.0.2,
Haystack Labs, Inc.
Niculescu, Dragos, "Survey of Active Network Research", Jul. 14,
1999, Rutgers University.
Nortel Northern Telecom, "ISDN Primary Rate User-Network Inter
face Specification", Aug. 1998.
Nygren, Erik, "The Design and Implementation of a High
Performance Active Network Node", Thesis, Feb. 1998, MIT.
Osbourne, E., "Morningstar Technologies SecureConnect Dynamic
Firewall Filter User's Guide", Jun. 14, 1995, V. 1.4, Morning Star
Technologies, Inc.
Padovano, Michael, "Networking Applications on UNIX System V
Release 4," 1993 Prentice Hall, USA (2 documents).
Pfeifer, T., "Automatic Conversion of Communication Media",
2000, GMD Research Series, Germany.
Pfeifer, T., "Automatic Conversion of Communication Media",
Thesis, 1999, Technischen Universitat Berlin, Berlin.
Pfeifer, T., et al., "Applying Quality-of-Service Parametrization for
Medium-to-Medium Conversion", Aug. 25-28, 1996, 8th IEEE Work
shop on Local and Metropolitan Area Networks, Potsdam, Ger
many.

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 5 of 34 PageID #: 481

Juniper Ex. 1041-p. 232
Juniper v Implicit

US 10,225,378 B2
Page 5

(56) References Cited

OTHER PUBLICATIONS

Pfeifer, T., "Micronet Machines-New Architectural Approaches
for Multimedia End-Systems", 1993 Technical University of Berlin.
Pfeifer, T., "On the Convergence of Distributed Computing and
Telecommunications in the Field of Personal Communications",
1995, KiVS, Berlin.
Pfeifer, T., "Speech Synthesis in the Intelligent Personal Commu
nication Support System (IPCSS)", Nov. 2-3, 1995, 2nd 'Speak!'
Workshop on Speech Generation in Multimodal Information Sys
tems and Practical Applications.
Pfeifer, T., et al., "Generic Conversion of Communication Media for
Supporting Personal Mobility", Nov. 25-27, 1996, Proc. of the Third
COST 237 Workshop: Multimedia Telecommunications and Appli
cations.
Pfeifer, T., et al., "Intelligent Handling of Communication Media",
Oct. 29-31, 1997, 6th IEEE Workshop on Future Trends of Distrib
uted Computing Systems (FTDCS) Tunis.
Pfeifer, T., et al., "Resource Selection in Heterogeneous Commu
nication Environments using the Teleservice Descriptor", Dec.
15-19, 1997, Proceedings from the 4th COST 237 Workshop: From
Multimedia Services to Network Services, Lisboa.
Pfeifer, T., et al., Mobile Guide-Location-Aware Applications
from the Lab to the Market, 1998, IDMS '98, LNCS 1483, pp.
15-28.
Pfeifer, T., et al., "The Active Store providing Quality Enhanced
Unified Messaging", Oct. 20-22, 1998, 5th Conference on computer
Communications, AFRICOM-CCDC '98, Tunis.
Pfeifer, T., et al., "A Modular Location-Aware Service and Appli
cation Platform", 1999, Technical University of Berlin.
Plagemann, T., et al., "Evaluating Crucial Performance Issues of
Protocol Configuration in DaCaPo", 1994, University of Oslo.
Psounis, Konstantinos, "Active Networks: Applications, Security
Safety, and Architectures", First Quarter 1999, IEEE Communica
tions Surveys.
Rabiner, Lawrence, "Applications of Speech Recognition in the Area
of Telecommunications", 1997, IEEE.
Raman, Suchitra, et al, "A Model, Analysis, and Protocol Frame
work for Soft State-based Communications", Department of EECS,
University of California, Berkeley.
Rogaway, Phillip, "Bucket Hashing and its Application to Fast
Message Authentication", Oct. 13, 1997, Department of Computer
Science, University of California.
Schreier, B., et al., "Remote Auditing of Software Outputs Using a
Trusted CoProcessor", 1997, Elsevier Paper Reprint 1999.
Tennenhouse, D., et al., "From Internet to ActiveNet ", Laboratory
of Computer Science, MIT, 1996.
Tudor, P., "Tutorial MPEG-2 Video Compression", Dec. 1995,
Electronics & Communication Engineering Journal.
US Copyright Webpage of Copyright Title, "IPv6: the New Internet
Protocol", by Christian Huitema, 1998 Prentice Hall.
Van der Meer, et al., "An Approach for a 4th Generation Messaging
System", Mar. 21-23, 1999, The Fourth International Symposium on
Autonomous Decentralized Systems ISADS '99, Tokyo.
Van der Meer, Sven, "Dynamic Configuration Management of the
Equipment in Distributed Communication Environments", Thesis,
Oct. 6, 1996, Berlin (3 documents).
Van Renesse, R. et al., "Building Adaptive Systems Using Ensemble",
Cornell University Jul. 1997.
Venkatesan, R., et al., "Threat-Adaptive Security Policy", 1997,
IEEE.
Wetherall, D., et al., "The Active IP Option", Sep. 1996, Proceedings
of the 7 th ACM SIGOPS European Workshop, Connemara, Ireland.
Welch, Terry, "A Technique for High-Performance Data Compres
sion", 1984, Sperry Research Center, IEEE.
Zeletin, R. et al., "Applying Location Aware Computing for Elec
tronic Commerce: Mobile Guide", Oct. 20-22, 1998, 5th Conference
on Computer Communications, AFRICOM-CCDC '98, Tunis.
Zell, Markus, "Selection of Converter Chains by Means of Quality
of Service Analysis", Thesis, Feb. 12, 1998, Technische Universitat
Berlin.

Implicit Networks, Inc. v. Advanced Micro Devices, Inc. et al.;
C08-0184 JLR; USDC for the Western District of Washington,
Seattle Division.
Feb. 4, 2008 Plaintiff's Original Complaint.
Aug. 26, 2008 Defendant NVIDIA Corporation's Answer to Com
plaint.
Aug. 26, 2008 Defendant Sun Microsystems, Inc.'s Answer to
Complaint.
Aug. 27, 2008 Defendant Advanced Micro Devices, Inc.'s Answer
to Complaint for Patent Infringement.
Aug. 27, 2008 RealNetworks, Inc.'s Answer to Implicit Networks,
Inc. 's Original Complaint for Patent Infringement, Affirmative
Defenses, and Counterclaims.
Aug. 27, 2008 Intel Corp.'s Answer, Defenses and Counterclaims.
Aug. 27, 2008 Defendant RMI Corporation's Answer to Plaintiff's
Original Complaint.
Sep. 15, 2008 Plaintiff's Reply to NVIDIA Corporation's Counter
claims.
Sep. 15, 2008 Plaintiff's Reply to Sun Microsystems Inc.'s Coun
terclaims.
Sep. 16, 2008 Plaintiff's Reply to RealNetworks, Inc.'s Counter
claims.
Sep. 16, 2008 Plaintiff's Reply to Intel Corp.'s Counterclaims.
Dec. 10, 2008 Order granting Stipulated Motion for Dismissal with
Prejudice re NVIDIA Corporation, Inc.
Dec. 16, 2008 Defendants AMD, RealNetworks, RMI, and Sun's
Motion to Stay Pending the Patent and Trademark Office's Reex
amination of the '163 Patent.
Dec. 29, 2008 Order granting Stipulated Motion for Dismissal
without Prejudice of Claims re Sun Microsystems, Inc.
Jan. 5, 2009 Plaintiff's Opposition to DefendantsAMD, RealNetworks,
RMI, and Sun's Motion to Stay Pending Reexamination and Exhibit
A.
Jan. 9, 2009 Reply of Defendants AMD, RealNetworks, RMI, and
Sun's Motion to Stay Pending the Patent and Trademark Office's
Reexamination of the '163 Patent.
Feb. 9, 2009 Order Granting Stay Pending the United States Patent
and Trademark Office's Reexamination of U.S. Pat. No. 6,629,163.
Feb. 17, 2009 Order Granting Stipulated Motion for Dismissal of
Advanced Micro Devices, Inc. with Prejudice.
May. 14, 2009 Order Granting Stipulated Motion for Dismissal of
RMI Corporation with Prejudice.
Oct. 13, 2009 Order Granting Stipulated Motion for Dismissal of
Claims Against and Counterclaims by Intel Corporation.
Oct. 30, 2009 Executed Order for Stipulated Motion for Dismissal
of Claims Against and Counterclaims by RealNetworks, Inc.
Implicit Networks, Inc. v. Microsoft Corp., C09-5628 HLR; USDC
for the Northern District of California, San Francisco Division.
Nov. 30, 2009 Plaintiff's Original Complaint, Implicit v Microsoft,
Case No. 09-5628.
Jan. 22, 2010 Order Dismissing Case, Implicitv Microsoft, Case No.
09-5628.
Implicit Networks, Inc. v. Cisco Systems, Inc., Cl0-3606 HRL;
USDC for the Northern District of California, San Francisco Divi
sion.
Aug. 16, 2010 Plaintiff's Original Complaint, Implicitv Cisco, Case
No. 10-3606.
Nov. 22, 2010 Defendant Cisco Systems, Inc.'s Answer and Coun
terclaims, Implicit v Cisco, Case No. 10-3606.
Dec. 13, 2010 Plaintiff, Implicit Networks, Inc. 's, Answer to Coun
terclaims, Implicit v Cisco, Case No. 10-3606.
Oct. 4, 2011 Order of Dismissal with Prejudice, Implicit v Cisco,
Case No. 10-3606.
Implicit Networks, Inc. v. Citrix Systems, Inc., Cl0-3766 JL; USDC
for the Northern District of California, San Francisco Division.
Oct. 24, 2010 Plaintiff's Original Complaint, Implicit v Citrix, Case
No. 10-3766.
Dec. 1, 2010 Plaintiff's First Amended Complaint, Implicit v Citrix,
Case No. 10-3766.
Jan. 14, 2011 Degendant Citrix Systems, Inc.'s Answer, Defenses
and Counter-complaint for Declaratory Judgment, Implicit v Citrix,
Case No. 10-3766.

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 6 of 34 PageID #: 482

Juniper Ex. 1041-p. 233
Juniper v Implicit

US 10,225,378 B2
Page 6

(56) References Cited

OTHER PUBLICATIONS

Feb. 18, 2011 Plaintiff, Implicit Networks, Inc.'s, Answer to Defen
dants Counterclaims, Implicit v Citrix, Case No. 10-3766.
May 2, 2011 Order of Dismissal, Implicit v Citrix, Case No.
10-3766.
Implicit Networks, Inc. v.F5 Networks, Inc., Cl0-3365 JCS; USDC
for the Northern District of California, San Francisco Division.
Jul. 30, 2010 Plaintiff's Original Complaint, Implicit v F5, Case No.
10-3365.
Oct. 13, 2010 Defendants' Answer and Counter-Complaint, Implicit
v F5, Case No. 10-3365.
Nov. 3, 2010 Plaintiff's Answer to Counter-Complaint, Implicit v
F5, Case No. 10-3365.
Dec. 10, 2010 Plaintiff's First Amended Complaint, Implicit v F5,
Case No. 10-3365.
Jan. 14, 2011 Defendants' Answer to l51 Amended Complaint and
Counterclaim, Implicit v F5, Case No. 10-3365.
Feb. 18, 2011 Plaintiff's Answer to F5' s Amended Counter
Complaint, Implicit v F5, Case No. 10-3365.
Apr. 18, 2011 Defendants' Amended Answer to l51 Amended
Complaint and Counter-Complaint, Implicitv F5, Case No. 10-3365.
May 5, 2011 Plaintiff's Answer to F5' s Amended Counter
Complaint, Implicit v F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Implicit v
F5, Case No. 10-3365.
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Exhibit A,
Implicit v F5, Case No. 10-3365 (31 documents).
Jul. 22, 2011 F5 Networks, Inc.'s Invalidity Contentions, Exhibit B,
Implicit v F5, Case No. 10-3365.
Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR 4-3), Implicit v F5, Case No. 10-3365.
Oct. 18, 2011 Joint Claim Construction & Pre-Hearing Statement
(PR4-3) Exhibit A, Implicitv F5, Case No. 10-3365 (2 documents).
Nov. 28, 2011 Plaintiff's Opening Claim Construction Brief, Implicit
v F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Implicit v F5, Case No. 10-3365.
Nov. 29, 2011 Amended Joint Claim Construction & Pre-Hearing
Statement, Exhibit A, Implicit v F5, Case No. 10-3365.
Dec. 12, 2011 Defendants' Claim Construction Brief,Implicit v F5,
Case No. 10-3365.
Dec. 19, 2011 Plaintiff's Reply to Defendants' (F5, HP, Juniper)
Responsive Claim Construction Brief (4-5), Implicit v F5, Case No.
10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 17, 2012;
Implicit v F5, Case No. 10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 18, 2012;
Implicit v F5, Case No. 10-3365.
Jan. 27, 2012 Transcript of Proceeding Held on Jan. 19, 2012;
Implicit v F5, Case No. 10-3365.
Feb. 29, 2012 Claim Construction Order.
Aug. 15, 2012 Storer Invalidity Report.
Sep. 10, 2012 Implicit's Expert Report of Scott M. Nettles.
Mar. 13, 2013 Order Granting Defendants' Motion for Summary
Judgment.
Apr. 9, 2013 Notice of Appeal to the Federal Circuit.
Implicit Networks, Inc. v. Hewlett-Packard Company, Cl0-3746
JCS: USDC for the Northern District of California, San Francisco
Division.
Aug. 23, 2010 Plaintiff's Original Complaint, Implicit v HP, Case
No. 10-3746.
Nov. 23, 2010 Plaintiff's First Amended Complaint, Implicit v HP,
Case No. 10-3746.
Jan. 14, 2011 Defendant HP's Answer and Counterclaims, Implicit
v HP, Case No. 10-3746.
Feb. 18, 2011 Implicit Networks, Inc.'s Answer to HP Counter
claims, Implicit v HP, Case No. 10-3746.
May 10, 2011 Plaintiff's Amended Disclosure of Asserted Claims
and Infringement Contentions, Case No. 10-3746.

Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Implicit v HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Al-14, Implicit v HP, Case No. 10-3746.
Jun. 30, 2011 Defendant HP Company's Invalidity Contentions,
Bl-21, Implicit v HP, Case No. 10-3746.
Implicit Networks, Inc. v. Juniper Networks, Cl0-4234 EDL:
USDC for the Northern District of California, San Francisco Divi
sion.
Sep. 20, 2010 Plaintiff's Original Complaint, Implicit v Juniper,
Case No. 10-4234.
Nov. 12, 2012 Juniper Network's Motion to Dismiss for Failure to
State a Claim Under Rule 12(B)(6): Memorandum of Points and
Authorities; Implicit v Juniper, Case No. 10-4234.
Nov. 12, 2010 Juniper Network's Request for Judicial Notice in
Support of its Motion to Dismiss for Failure to State a Claim Under
Rule 12(B)(6): Memorandum of Points and Authorities; Implicit v
Juniper, Case No. 10-4234.
Dec. 1, 2010 First Amended Complaint; Implicit v Juniper, Case
No. 10-4234.
Jan. 18, 2011 Juniper Networks, Inc.'s Answer and Affirmative
Defenses to l51 Amended Complaint, Implicit v Juniper, Case No.
10-4234.
Feb. 18, 2011 Plaintiff's Answer to Defendant's Counterclaims,
Implicit v Juniper, Case No. 10-4234.
May 23, 2011 Plaintiff's Disclosure of Asserted Claims and Infringe
ment Contentions, Implicit v Juniper, Case No. 10-4234.
Nov. 15, 2011 Plaintiff's Amended Disclosure of Asserted Claim
and Infringement Contentions, Implicitv Juniper, Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief), Implicit v Juniper, Case No.
10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibit E, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibit J, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiffs
Opening Claim Construction Brief Exhibit K, Implicit v Juniper,
Case No. 10-4234.
Nov. 28, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Opening Claim Construction Brief Exhibits M-O, Implicit v. Juni
per, Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Implicit v Juniper, Case No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit B, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit F, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit N, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit P, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Q, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit S., Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-1, Implicit v Juniper, Case. No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-2, Implicit v Juniper, Case. No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-3, Implicit v Juniper, Case. No.
10-4234.

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 7 of 34 PageID #: 483

Juniper Ex. 1041-p. 234
Juniper v Implicit

US 10,225,378 B2
Page 7

(56) References Cited

OTHER PUBLICATIONS

Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit T-4, Implicit v Juniper, Case. No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit U, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit V, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit W, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants's
Claim Construction Brief, Exhibit X, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-1, Implicit v Juniper!, Case.
No. 10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-2, Implicit v Juniper, Case No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-3, Implicit v Juniper, Case. No.
19-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Y-4, Implicit v Juniper, Case. No.
10-4234.
Dec. 12, 2011 Holly Hogan Declaration in Support of Defendants'
Claim Construction Brief, Exhibit Z, Implicit v Juniper, Case No.
10-4234.
Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Reply Claim Construction Brief, Implicit v Juniper, Case No.
10-4234.
Dec. 19, 2011 Spencer Hosie Declaration in Support of Plaintiff's
Reply Claim Construction Brief, Exhibit P, Implicit v Juniper, Case
No. 10-4234.
Jan. 10, 2012 Plaintiff's Jan. 10, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit Al Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A2, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A3, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit A4, Implicit v Juniper, Case No. 10-4234.
Feb. 10, 2012 Juniper Networks, Inc.'s Supplemental Invalidity
Contentions, Exhibit Bl, Implicit v Juniper, Case No. 10-4234.
Feb. 29, 2012 Plaintiff's Feb. 29, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Apr. 6, 2012 Plaintiff's Apr. 6, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Apr. 9, 2012 Plaintiff's Apr. 9, 2012 Amended Disclosure of
Asserted Claims and Infringement Contentions, Implicit v Juniper,
Case No. 10-4234.
Sep. 11, 2012 Implicit's Expert Report of Scott Nettles.
Nov. 9, 2012 Juniper's Notice of Motion and Memorandum of Law
ISO Motion for Summary Judgment or, in the alternative, for Partial
Summary Judgment, on the Issue of Invalidity.
Nov. 9, 2012 Exhibit 2 to Declaration in support of Juniper's Motion
for Summary Judgment----Calvert Expert Report.
Nov. 9, 2012 Exhibit 3 to Declaration in support of Juniper's Motion
for Summary Judgment----Calvert Supplemental Expert Report.

Nov. 26, 2012 Implicit Opposition to Juniper's and F5 Motion on
Invalidity.
Nov. 26, 2012 Exhibit A to Hosie Declaration-Aug. 27, 2012
Excerpts from David Blaine deposition.
Nov. 26, 2012 Exhibit B to Hosie Declaration---Oct. 25, 2012
Excerpts from Kenneth Calvert Deposition.
Nov. 26, 2012 Exhibit C to Hosie Declaration-Aug. 15, 2012
Excerpts from Kenneth Calvert Expert Report.
Nov. 26, 2012 Exhibit D to Hosie Declaration-U.S. Pat. No.
6,651,099 to Dietz et al.
Nov. 26, 2012 Exhibit E to Hosie Declaration-Understanding
Packet-Based and Flow-Based Forwarding.
Nov. 26, 2012 Exhibit F to Hosie Declaration-Wikipedia on Soft
State.
Nov. 26, 2012 Exhibit G to Hosie Declaration-Sprint Notes.
Nov. 26, 2012 Exhibit H to Hosie Declaration-Implicit's Supple
mental Response to Juniper's 2nd Set of Interrogatories.
Nov. 26, 2012 Exhibit I to Hosie Declaration-U.S. Pat. No.
7,650,634 (Zuk).
May 13, 2013 Order Granting Defendants' Motion for Summary
Judgment.
Other Implicit Networks, Inc. Prosecution Matters.
U.S. Appl. No. 11/933,022 Utility Application filed Oct. 31, 2007.
U.S. Appl. No. 11/933,022 Preliminary Amendment filed Feb. 19,
2008.
U.S. Appl. No. 11/933,022 Office Action dated Jun. 24, 2009.
U.S. Appl. No. 11/933,022 Amendment filed Sep. 24, 2009.
U.S. Appl. No. 11/933,022 Office Action dated Dec. 11, 2009.
U.S. Appl. No. 11/933,022 Amendment and Response dated Jan. 29,
2010.
U.S. Appl. No. 11/933,022 Notice of Allowance dated Mar. 2, 2010.
U.S. Appl. No. 11/933,022 Issue Notification dated May 4, 2010.
U.S. Appl. No. 10/636,314 Utility Application filed Aug. 6, 2003.
U.S. Appl. No. 10/636,314 Office Action dated Apr. 7, 2008.
U.S. Appl. No. 10/636,314 Response to Restriction Requirement
dated Aug. 5, 2008.
U.S. Appl. No. 10/636,314 Office Action dated Oct. 3, 2008.
U.S. Appl. No. 10/636,314 Response to Office Action dated Apr. 3,
2009.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated May 4, 2009.
U.S. Appl. No. 10/636,314 Amendment to Office Action Response
dated Jun. 4, 2009.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jun. 12, 2009.
U.S. Appl. No. 10/636,314 Amendment to Office Action dated Jul.
10, 2009.
U.S. Appl. No. 10/636,314 Final Rejection Office Action dated Oct.
21, 2009.
U.S. Appl. No. 10/636,314 Amendment after Final Office Action
dated Dec. 14, 2009.
U.S. Appl. No. 10/636,314 Advisory Action dated Jan. 11, 2010.
U.S. Appl. No. 10/636,314 Notice of Non-Compliant Amendment
dated Jan. 11, 2010.
U.S. Appl. No. 10/636,314 Supplemental Amendment and Response
dated Mar. 13, 2010.
U.S. Appl. No. 10/636,314 Office Action dated May 11, 2010.
U.S. Appl. No. 10/636,314 Amendment and Response dated Sep.
13, 2010.
U.S. Appl. No. 10/636,314 Final Rejection dated Nov. 24, 2010.
U.S. Appl. No. 10/636,314 Notice of Appeal dated May 19, 2011.
U.S. Appl. No. 10/636,314 Amendment and Request for Continued
Examination dated Jul. 19, 2011.
U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 13,
2011.
U.S. Appl. No. 10/636,314 Notice of Allowance dated Sep. 19,
2011.
U.S. Appl. No. 10/636,314 Issue Notification dated Oct. 19, 2011.
U.S. Appl. No. 09/474,664 Utility Application filed Dec. 29, 1999.
U.S. Appl. No. 09/474,664 Office Action dated Sep. 23, 2002.
U.S. Appl. No. 09/474,664 Amendment and Response dated Feb.
24, 2003.

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 8 of 34 PageID #: 484

Juniper Ex. 1041-p. 235
Juniper v Implicit

US 10,225,378 B2
Page 8

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 09/474,664 Notice of Allowance dated May 20,
2003.
U.S. Appl. No. 90/010,356 Request for Ex Parte Reexamination
dated Dec. 15, 2008.
U.S. Appl. No. 90/010,356 Office Action Granting Reexamination
dated Jan. 17, 2009.
U.S. Appl. No. 90/010,356 First Office Action dated Jul. 7, 2009.
U.S. Appl. No. 90/010,356 First Office Action Response dated Sep.
1, 2009.
U.S. Appl. No. 90/010,356 Patent Owner Interview Summary dated
Oct. 23, 2009.
U.S. Appl. No. 90/010,356 Office Action Final dated Dec. 4, 2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Dec. 18, 2009.
U.S. Appl. No. 90/010,356 Amendment and Response to Office
Action dated Jan. 4, 2010.
U.S. Appl. No. 90/010,356 Advisory Action dated Jan. 21, 2010.
U.S. Appl. No. 90/010,356 Amendment and Response to Advisory
Action dated Feb. 8, 2010.
U.S. Appl. No. 90/010,356 Notice of Intent to Issue a Reexam
Certificate dated Mar. 2, 2010.
U.S. Appl. No. 90/010,356 Reexamination Certificate Issued dated
Jun. 22, 2010.
U.S. Appl. No. 95/000,659 Inter Partes Reexam Request dated Feb.
13, 2012.
U.S. Appl. No. 95/000,659 Order Granting Reexamination dated
Apr. 3, 2012.
U.S. Appl. No. 95/000,659 Office Action dated Apr. 3, 2012.
U.S. Appl. No. 95/000,659 Office Action Response dated Jun. 4,
2012 (including Exhibits 1 & 2) (4 documents).
U.S. Appl. No. 95/000,659 Third Party Comments to Patent Own
er's Response to Office Action dated Jul. 5, 2012.
U.S. Appl. No. 95/000,659 Appendix R-1 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Declaration of Prof. Dr. Bernhard Plattner).
U.S. Appl. No. 95/000,659 Appendix R-2 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Prof. Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,659 Appendix R-3 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,659 Appendix R-4 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012(0ffice
Action Granting Reexamination in 95/000,660 dated May 10,
2012).
U.S. Appl. No. 95/000,659 Appendix R-5 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Office Action in 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,659 Appendix R-6 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,659 Appendix R-7 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).
U.S. Appl. No. 95/000,659 Appendix R-8 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,659 Appendix R-9 to Third Party Comments
to Patent Owner's Response to Office Action dated Jul. 5, 2012
(Claim Construction Order dated Feb. 29, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-1 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. I of Edward Balassanian Deposition Transcript dated
May 30, 2012).

U.S. Appl. No. 95/000,659 Appendix R-10-2 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. II of Edward Balassanian Deposition Transcript dated
May 31, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-3 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. III of Edward Balassanian Deposition Transcript dated
Jun. 7, 2012).
U.S. Appl. No. 95/000,659 Appendix R-10-4 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (vol. IV of Edward Balassanian Deposition Transcript dated
Jun. 8, 2012).
U.S. Appl. No. 95/000,659 Appendix R-11 to Third Party Com
ments to Patent Owner's Response to Office Action dated Jul. 5,
2012 (Implicit Networks, Inc.'s Response to Juniper Networks,
Inc.'s First Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,659 Action Closing Prosecution dated Oct. 1,
2012.
U.S. Appl. No. 95/000,659 Petition to Withdraw and Reissue Action
Closing Prosecution dated Nov. 20, 2012.
U.S. Appl. No. 95/000,659 Patent Owner Comments to Action
Closing Prosecution dated Dec. 3, 2012.
U.S. Appl. No. 95/000,659 Opposition to Petition dated Dec. 17,
2012.
U.S. Appl. No. 95/000,659 Third Party Comments to Action Closing
Prosecution dated Jan. 2, 2013.
U.S. Appl. No. 95/000,660 Inter Partes Reexam Request dated Mar.
2, 2012.
U.S. Appl. No. 95/000,660 Order Granting Reexamination dated
May 10, 2012.
U.S. Appl. No. 95/000,660 Office Action dated May 10, 2012.
U.S. Appl. No. 95/000,660 Response to Office Action dated Jul. 10,
2012 (including Exhibits 1 and 2).
U.S. Appl. No. 95/000,660 Third Party Comments to Office After
Patent Owner's Response dated Aug. 8, 2012 (including Revised
Comments).
U.S. Appl. No. 95/000,660 to Third Party Comments to Patent
Owner's Response to Office Action dated Aug. 8, 2012 (Declaration
of Prof. Dr. Bernhard Plattner).
U.S. Appl. No. 95/000,660 Appendix R-1 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Prof. Dr. Bernhard Plattner CV).
U.S. Appl. No. 95/000,660 Appendix R-3 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Listing of Publications to Prof. Dr. Bernhard Plattner updated Feb.
2012).
U.S. Appl. No. 95/000,660 Appendix R-4 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012(0ffice
Action Granting Reexamination in 95/000,660 dated May 10,
2012).
U.S. Appl. No. 95/000,660 Appendix R-5 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Office Action in 95/000,660 dated May 10, 2012).
U.S. Appl. No. 95/000,660 Appendix R-6 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Implicit Networks, Inc. U.S. Pat. No. 6,629,163 Claims Chart).
U.S. Appl. No. 95/000,660 Appendix R-7 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Internet Protocol DARPA Internet Program Protocol Specification
dated Sep. 1991).
U.S. Appl. No. 95/000,660 Appendix R-8 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Atkinson, IP Encapsulating Security Payload (ESP) dated Aug.
1995).
U.S. Appl. No. 95/000,660 Appendix R-9 to Third Party Comments
to Patent Owner's Response to Office Action dated Aug. 8, 2012
(Claim Construction Order dated Feb. 29, 2012).
U.S. Appl. No. 95/000,660 Appendix R-10 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (vol. I-IV of Edward Balassanian Deposition Transcript dated
May 30, 2012).
U.S. Appl. No. 95/000,660 Appendix R-11 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 9 of 34 PageID #: 485

Juniper Ex. 1041-p. 236
Juniper v Implicit

US 10,225,378 B2
Page 9

(56) References Cited

OTHER PUBLICATIONS

2012 (Shacham, A., et al, "IP Payload Compression Protocol",
Network Working Group, RFC 3173 Sep. 2001).
U.S. Appl. No. 95/000,660 Appendix R-12 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Shacham, A., et al, "IP Payload Compression Protocol",
Network Working Group, RFC 2393 Dec. 1998).
U.S. Appl. No. 95/000,660 Appendix R-13 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (' 163 Pfeiffer Claim Chart).
U.S. Appl. No. 95/000,660 Appendix R-14 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Ylonen, T., "SSH Transport Layer Protocol", Network Work
ing Group-Draft Feb. 22, 1999).
U.S. Appl. No. 95/000,660 Appendix R-15 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Dommety, G., "Key and Sequence Number Extensions to
GRE", Network Working Group, RFC 2890 Sep. 2000).
U.S. Appl. No. 95/000,660 Appendix R-16 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Monsour, R., et al, "Compression in IP Security" Mar. 1997).
U.S. Appl. No. 95/000,660 Appendix R-17 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012 (Friend, R., Internet Working Group RFC 3943 dated Nov.
2004 Transport Layer Security Protocol Compression Using Lempel
Ziv-Stac).
U.S. Appl. No. 95/000,660 Appendix R-18 to Third Party Com
ments to Patent Owner's Response to Office Action dated Aug. 8,
2012(Implicit Networks, Inc.'s Response to Juniper Networks,
Inc.'s First Set of Requests for Admission 1-32).
U.S. Appl. No. 95/000,660 Revised-Third Party Comments to
Office After Patent Owner's Response dated Nov. 2, 2012.

U.S. Appl. No. 95/000,660 Action Closing Prosecution dated Dec.
21, 2012.
U.S. Appl. No. 95/000,660 Comments to Action Closing Prosecu
tion dated Feb. 21, 2013 (including Dec of Dr. Ng).
U.S. Appl. No. 95/000,660 Third Party Comments to Action Closing
Prosecution dated Mar. 25, 2013.
PCT/US00/33634-PCT application (WO 01/2077 A2-dated Jul.
12, 2001).
PCT/US00/33634-Written Opinion (WOO 1/50277 A3----dated Feb.
14, 2002).
PCT /US00/33634-International Search Report (dated Oct. 9, 2001).
PCT /US00/33634-Response to Official Communication dated Dec.
7, 2001 (dated Mar. 21, 2002).
PCT/US00/33634-International Preliminary Examination Report
(dated Apr. 8, 2002).
PCT/US00/33634-Official Communication (dated Jan. 24, 2003).
PCT/US00/33634-Response to Official Communication dated Jan.
24, 2003 (dated Mar. 12, 2003).
PCT/US00/33634-Official Communication (dated May 13, 2004).
PCT/US00/33634-Response to Sununons to Attend Oral Proceed
ing dated May 13, 2004 (dated Oct. 9, 2004).
PCT/US00/33634-Decision to Refuse a European Patent applica
tion (dated Nov. 12, 2004).
PCT/US00/33634-Minutes of the oral proceedings before the
Examining Division (dated Oct. 12, 2004).
PCT/US00/33634-Closure of the procedure in respect to Appli
cation No. 00984234.5-2212 (dated Feb. 22, 2005).
May 3, 2013 Expert Report of Dr. Alfonso Cardenas Regarding
Validity of U.S. Pat. Nos. 6,877,006; 7,167,864; 7,720,861; and
8,082,268 (6 documents).
Expert Report of Dr. Alfonso Cardenas Regarding Validity of U.S.
Pat. No. 7,167,864 (3 documents).
"InfoReports User Guide: Version 3.3.1;" Platinum Technology,
Publication No. PRO-X-331-UG00-00, printed Apr. 1998; pp. 1-430.

* cited by examiner

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 10 of 34 PageID #: 486

Juniper Ex. 1041-p. 237
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 1 of 16

101 102

1150
DRIVER MESSAGE

SEND

105
149-\.... __

QUEUE THREAD

,...-106
151 I

./

MESSAGE
SEND

107
152

MESSAGE
SEND

1108

MESSAGE
SEND

1109

MESSAGE
SEND

..-----. r 114

155----..._ ,··-'----r-----1 MESSAGE
\. \ SEND

\

Fig. 1

103

DEMUX

110

DEMUX

US 10,225,378 B2

104

LABELMAP
GET

111

LABELMAP
GET

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 11 of 34 PageID #: 487

Juniper Ex. 1041-p. 238
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 2 of 16

P2 P3
0_9 1

010 2

Fig. 2

MEMORY 1.QJ

/304 /,,.305 /306

I DRIVERS I FORWARDING DEMUX
COMPONENT COMPONENT

/-308 ,..r" 309 /-310
i /

PATH CON\IERSION INSTANCE DATA ROUTINES DATA STRUCTURES

301 1
CPU -1

;

Fig. 3

US 10,225,378 B2

01

D1

2
015

/307

LABEL MAP
GET

COMPONENT

1/0

P4

NULL

,,,r300
(

J(l.4

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 12 of 34 PageID #: 488

Juniper Ex. 1041-p. 239
Juniper v Implicit

U.S. Patent

450

TCP

.,
431

Mar.5,2019 Sheet 3 of 16 US 10,225,378 B2

463

.453

420-...,_

410~

-440

TCP

IP

ETHERNET

J
431

411

./"473

QUEUE

Fig. 4

PATH (StackUst)

L,..-452

t /SESSION
f 430 464

433

TCP

431

423 424 425

J (

\...422

413 414 415

\ { (
\

412

-472 £471

[oUEUE] QUEUE

PathEntry
(REFERENCE)

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 13 of 34 PageID #: 489

Juniper Ex. 1041-p. 240
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 4 of 16

Fig, 5

US 10,225,378 B2

MumplayUst
,,..,.

Binding

507

508

509

510

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 14 of 34 PageID #: 490

Juniper Ex. 1041-p. 241
Juniper v Implicit

Bi
nd

ing

1
51

 O

60
1

0
1

-.
J
!-

-T
-L

I,
.

(
l

o:
,..

J,
_,

.
r5

1
0

D

--
1

1
..

I
: •

• 1

r6
0

J

I \
Bi

nd
in

g
.....

..

e

,r
51

0

Fi
g.

6

Po
lh

(n
try

j-

5
0

5

J
I

I

Po
lh

Er
it

50
5

e • 0
0

• ~

~

~

~
 =

~

~

~
 :-: ~U
l

N

0 1
,0

rJ
J = ('D ('

D

U
l

0 O
'I d r.,;
_ "'""
' =

'N

N

U
I w

-...
.l

0
0

 =

N

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 15 of 34 PageID #: 491

Juniper Ex. 1041-p. 242
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 6 of 16 US 10,225,378 B2

MessogeSend (Message, PaihEntry)

position =
Poth[ntry --> Member -->

SfockUsffntry

(·706 NO

retVo! = next£ntry -->
Member --> Binding -->
Edge - -> hlessogeHcmdler

(Message, nexlEntry)

Relurn
(re!val)

NO

list = Demux
(Message,

Pothtnfry --> Address,
PathEntry

NO

YES

i A;-101
<P~E~try ~ YES
~oth

NO

09

nextEnfrf = Us! Head
Doto (poihEn!ry -->
Poth --> Sfocklist)

-----DC>

Fig. 7A

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 16 of 34 PageID #: 492

Juniper Ex. 1041-p. 243
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 7 of 16

09

r-110

Select next
Candidate path

in List

' YES

1 MessageSend
l (Message, nextEntry)

Fig. 7B

05

r11s
PothEntr-1 -->

Mu!tlplayUst :: Ust

US 10,225,378 B2

QueueMessoge
(Message, Nextr..ntry)

Return

Fig. 7C

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 17 of 34 PageID #: 493

Juniper Ex. 1041-p. 244
Juniper v Implicit

U.S. Patent Mar.5,2019

YES

... next binding_

809-

other

Demme

Initialize
Demux

Get Session

Nail Binding

Sheet 8 of 16

Messaae
Address

801 PathEntry

s1mp ex

US 10,225,378 B2

Find Path

Process Poth
Hopping

multi le

return

Fig. 8

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 18 of 34 PageID #: 494

Juniper Ex. 1041-p. 245
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 9 of 16 US 10,225,378 B2

,-909
I

pain Address :::::
pathtntry --> Path -->

Address

address[lem :::
path.Address --->
CurrentBinding = 91 O

pothEntry - - > Member
--> AddressEntry

initialize
Oemux

' Map
PothEntry --> Mop

messoge = Message
path = nuii

address Elem = null

sovedSlotus = 0
Status = demux Continue

901

r-902

(903

905

status ::::
>Y=ES;:......_---i Pa1hEntry --> Polh -->

,906
' demux

continue

slolus = demux Continue -911
binding Ust :::

pathAddress -->
BindingUst

CurrenlBinding :::::
&pathAddress -->

CurrentEinding
postpone = 0

traverse = UstDataNext
session = Null

912

913

Status

901

pathAddress ::::
Address

}1g~ 9

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 19 of 34 PageID #: 495

Juniper Ex. 1041-p. 246
Juniper v Implicit

U.S. Patent Mar.5,2019

lnit[nd

{1001

YES

Sheet 10 of 16

1002

pathAddress =
AddressCopy

(Pa!hEnhy ->
Path -> Address,

PathEntry - > Member
-> AddressEntry)

1003

pothAddress =
AddressCreate

(PothEntry -> Path ->
Address - > URL)

elem = null

-1005

inding =
UstOo!oNext

(Poth Entry - >
Path -> Address ->

Bindinglist,
& elem)

1006

RathAddress -->
Curren!Binding =

UstTaiUnsen
(pathAddress -->

Bmdinglisi, binding)

r'!OOl

elem:::.:=
PothEntry -->
Member -->
AddressEntry

Return

NO

Return

1004

Return

Fig. 10

US 10,225,378 B2

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 20 of 34 PageID #: 496

Juniper Ex. 1041-p. 247
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 11 of 16

1105',

currentBinding =
UstTaii (bindingUst)

Dalo

impTroil =
UstHeodRemove

(trnillist)

::: \

,..,-1107

Address Extend
{pathAddress,

tmpTrnil)

binding =
ListToil Dohi
(binding list)

,..,-1108

Ge!Nex\ Binding

binding :: traverse
(Bindinglist,

cummtBinding)

1101

to 1 1103

trollLJst :: lobelMcpGet
{map --> Oulput Lobel.

map --> forget Lobel)

binding --> Key =
mop --> Target key

r-1111

map --> Target key =
Null

US 10,225,378 B2

Return
(binding)

returnList ::

1112

r-1113

Prepare Multicast Palhs
(trn!IList, map)

Return
(muitiple)

Return
(break)

Fig. 11

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 21 of 34 PageID #: 497

Juniper Ex. 1041-p. 248
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 12 of 16 US 10,225,378 B2

1204

binding --> flags
i = Bfnding-Remove

,,.-1211

traverse = UstOataNext

status ::: saved status
savedstatus ::: 0

Return
{continue)

Get Key

edge = binding --> Edge 1 1201

Edge protocol = edge
--> Protocol

Status = edge -->
DemuxKey {message,
pothAddress, map)

1202

Fig. 12

1205

remove traverse = ListDataNexl
postpone++

NO

sovedSfatus =
Status

YES

(1209

NO

Return
(next binding)

postpone -
traverse = listDataPrev

YES r1210

status ::: demux
continue

Return
(next binding)

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 22 of 34 PageID #: 498

Juniper Ex. 1041-p. 249
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 13 of 16

Get Session

session ::: TobleGel
(protocol -> SessionTabie1

& binding -> key)

session =
CreateSession

(protocol)

session --> key =
Labe!Reference

(binding --> key)

foble Pu!
(protocol -> session Tobie
& session -> key session

protocol -->
CreateSession

(session)

T

(Return)

1301

--(Return)

1303

1304

-1305

1306

US 10,225,378 B2

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 23 of 34 PageID #: 499

Juniper Ex. 1041-p. 250
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 14 of 16

binding --> session = ..,_N_O...........c
session

{!406

binding --> key ::::
Label Reference

(session --> key)
,,.--1407

session --> Bindin~foble
[edge --> [dgeldj :::

binding

Nail
Binding

YES

/ Relurn
(simplex)

~ r- 1408
1409

/~nding ~ remoile -------'--~
--> Edge --> binding --> flog 1 =

Cr7ateBind1ng Binding - Remove
\binding}

continue ________ ___,

return

Fig. 14

US 10,225,378 B2

{1402

binding = session -->
Binding Tobie

[edge --> Edge!D)

ListDotaSet
{*cummtBinding,

binding)

binding - > flogs

t
(return)

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 24 of 34 PageID #: 500

Juniper Ex. 1041-p. 251
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 15 of 16 US 10,225,378 B2

find Paih

elem ::: null
short[ntry ::: null

first8inding ::
UstKeadDoia

(pathAddress -->
Binding List)

entry :::: shortEnfry

(1510
' YES

HO

(1502

path ::: enlry -:> Poth

Return

Fig. 15

firs1Binding
::::: UstNe:dOa!o

(1507

(Us!Nexf(entry -:;:, Path ->
Sk1cklisi, NULL)) -> Member

-> Bind in~ &&: !L1stNexl(entry ->
Poth -> StocKllsi, entry -> member -)

S!ackListEntry) && !shorlEntryll (entry
-> Pain - :;:, StackListS1ze <

shor!Entry -> Path ->
StackUstSize

15ll

path ::: entry - > Poth Return

!513

shortEntry ::: 1
entry

1514

Create Polh (path Address,
PoihEntry -> mo.R
Po!hEntry -> QO::i)

elem :::: null
entry :::: UstHeodDofo
(path - > SkickUst)

1516-

eiem = PaihEntry ->
Member -> Address:[ntry 1----........,.._1

entry :::: PalhEntry
btendPoih ()

(path, map, siatus) ·----• Return

1508

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 25 of 34 PageID #: 501

Juniper Ex. 1041-p. 252
Juniper v Implicit

U.S. Patent Mar.5,2019 Sheet 16 of 16 US 10,225,378 B2

Process
Palh Hopping

oldStack = PathEntry ->
Path - > stacklist

YES

1603

.-----'--------, 1 1604
newStock :::

path - > Stocklist

---------, r/605
oldE!m = UstNext
(oldStock, Null)

~--~t--- 1 1606
e!em ::: UstNext
(NewStock, Null)

1607

NO ---~

Fig. 16

1610

1611
entry = UstHeadDaia -----.
(path -> Stacklist)

~----~r1609
entry = UstDatoPrev
{newSlack, & elem)

YES ,,-1608

NO

.---_.....---.1 1612
UstHeod!nserl

(returnlist, Enlry)

Return
\ (return list)

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 26 of 34 PageID #: 502

Juniper Ex. 1041-p. 253
Juniper v Implicit

US 10,225,378 B2
1

METHOD AND SYSTEM FOR DATA
DEMULTIPLEXING

2
computer system that serves as a central controller for data
received within a home would be expected to process data
received via telephone lines, cable TV lines, and satellite
connections in many different formats. The central controller CROSS REFERENCES TO RELATED

APPLICATIONS

The present application is a continuation of U.S. appli
cation Ser. No. 15/450,790, filed Mar. 6, 2017 (now U.S. Pat.
No. 10,033,839), which is a continuation of U.S. application
Ser. No. 15/050,027, filed Feb. 22, 2016 (now U.S. Pat. No.
9,591,104), which is a continuation of U.S. application Ser.
No. 14/230,952, filed Mar. 31, 2014 (now U.S. Pat. No.
9,270,790), which is a continuation of U.S. application Ser.
No. 13/911,324, filed Jun. 6, 2013 (now U.S. Pat. No.
8,694,683), which is a continuation of U.S. application Ser.
No. 13/236,090, filed Sep. 19, 2011 (now abandoned), which
is a continuation of U.S. application Ser. No. 10/636,314,
filed Aug. 6, 2003 (now U.S. Pat. No. 8,055,786), which is
a continuation of U.S. application Ser. No. 09/474,664, filed
Dec. 29, 1999 (now U.S. Pat. No. 6,629,163); the disclo
sures of each of the above-referenced applications are incor
porated by reference herein in their entireties.

5 would be expected to output the data to computer displays,
television displays, entertainment centers, speakers, record
ing devices, and so on in many different formats. Moreover,
since the various conversion routines may be developed by
different organizations, it may not be easy to identify that the

10 output format of one conversion routine is compatible with
the input format of another conversion routine.

It would be desirable to have a technique for dynamically
identifying a series of conversion routines for processing
data. In addition, it would be desirable to have a technique

15 in which the output format of one conversion routine can be
identified as being compatible with the input format of
another conversion routine. It would also be desirable to
store the identification of a series of conversion routines so
that the series can be quickly identified when data is

20 received.

BRIEF DESCRIPTION OF THE DRAWINGS

TECHNICAL FIELD FIG. 1 is a block diagram illustrating example processing
25 of a message by the conversion system.

The present invention relates generally to a computer
system for data demultiplexing.

FIG. 2 is a block diagram illustrating a sequence of edges.
FIG. 3 is a block diagram illustrating components of the

conversion system in one embodiment.
BACKGROUND FIG. 4 is a block diagram illustrating example path data

30 structures in one embodiment.
Computer systems, which are becoming increasingly per

vasive, generate data in a wide variety of formats. The
Internet is an example of interconnected computer systems
that generate data in many different formats. Indeed, when
data is generated on one computer system and is transmitted 35

to another computer system to be displayed, the data may be
converted in many different intermediate formats before it is
eventually displayed. For example, the generating computer
system may initially store the data in a bitmap format. To
send the data to another computer system, the computer 40

system may first compress the bitmap data and then encrypt
the compressed data. The computer system may then convert
that compressed data into a TCP format and then into an IP
format. The IP formatted data may be converted into a
transmission format, such as an ethemet format. The data in 45

the transmission format is then sent to a receiving computer
system. The receiving computer system would need to
perform each of these conversions in reverse order to
convert the data in the bitmap format. In addition, the
receiving computer system may need to convert the bitmap 50

data into a format that is appropriate for rendering on output
device.

In order to process data in such a wide variety of formats,
both sending and receiving computer systems need to have
many conversion routines available to support the various 55

formats. These computer systems typically use predefined
configuration information to load the correct combination of
conversion routines for processing data. These computer
systems also use a process-oriented approach when process
ing data with these conversion routines. When using a 60

process-oriented approach, a computer system may create a
separate process for each conversion that needs to take
place. A computer system in certain situations, however, can
be expected to receive data and to provide data in many
different formats that may not be known until the data is 65

received. The overhead of statically providing each possible
series of conversion routines is very high. For example, a

FIG. 5 is a block diagram that illustrates the interrela
tionship of the data structures of a path.

FIG. 6 is a block diagram that illustrates the interrela
tionship of the data structures associated with a session.

FIGS. 7 A, 7B, and 7C comprise a flow diagram illus
trating the processing of the message send routine.

FIG. 8 is a flow diagram of the demux routine.
FIG. 9 is a flow diagram of the initialize demux routine.
FIG. 10 is a flow diagram of the init end routine.
FIG. 11 is a flow diagram of a routine to get the next

binding.
FIG. 12 is a flow diagram of the get key routine.
FIG. 13 is a flow diagram of the get session routine.
FIG. 14 is a flow diagram of the nail binding routine.
FIG. 15 is a flow diagram of the find path routine.
FIG. 16 is a flow diagram of the process of path hopping

routine.

DETAILED DESCRIPTION

A method and system for converting a message that may
contain multiple packets from an source format into a target
format. When a packet of a message is received, the con
version system in one embodiment searches for and identi
fies a sequence of conversion routines (or more generally
message handlers) for processing the packets of the message
by comparing the input and output formats of the conversion
routines. (A message is a collection of data that is related in
some way, such as stream of video or audio data or an email
message.) The identified sequence of conversion routines is
used to convert the message from the source format to the
target format using various intermediate formats. The con
version system then queues the packet for processing by the
identified sequence of conversion routines. The conversion
system stores the identified sequence so that the sequence
can be quickly found (without searching) when the next
packet in the message is received. When subsequent packets

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 27 of 34 PageID #: 503

Juniper Ex. 1041-p. 254
Juniper v Implicit

US 10,225,378 B2
3 4

share the same session. The demux component then extends
the path for processing that packet to include that session
and conversion routine. The sessions are identified so that
each packet is associated with the appropriate state infor
mation. The dynamic identification of conversion routines is
described in U.S. patent application Ser. No. 11/933,093,
filed on Oct. 31, 2007 (now U.S. Pat. No. 7,730,211),
entitled "Method and System for Generating a Mapping
Between Types of Data," which is hereby incorporated by
reference.

FIG. 1 is a block diagram illustrating example processing
of a message by the conversion system. The driver 101
receives the packets of the message from a network. The
driver performs any appropriate processing of the packet and

of the message are received, the conversion system identifies
the sequence and queues the packets for pressing by the
sequence. Because the conversion system receives multiple
messages with different source and target formats and iden
tifies a sequence of conversion routines for each message, 5

the conversion systems effectively "demultiplexes" the mes
sages. That is, the conversion system demultiplexes the
messages by receiving the message, identifying the
sequence of conversion routines, and controlling the pro
cessing of each message by the identified sequence. More- 10

over, since the conversion routines may need to retain state
information between the receipt of one packet of a message
and the next packet of that message, the conversion system
maintains state information as an instance or session of the
conversion routine. The conversion system routes all pack 15 invokes a message send routine passing the processed packet

along with a reference path entry 150. The message send
routine is an embodiment of the forwarding component. A
path is represented by a series of path entries, which are
represented by triangles. Each member path entry represents

ets for a message through the same session of each conver
sion routine so that the same state or instance information
can be used by all packets of the message. A sequence of
sessions of conversion routines is referred to as a "path." In
one embodiment, each path has a path thread associated with
it for processing of each packet destined for that path.

In one embodiment, the packets of the messages are
initially received by "drivers," such as an Ethernet driver.
When a driver receives a packet, it forwards the packet to a
forwarding component of the conversion system. The for
warding component is responsible for identifying the session
of the conversion routine that should next process the packet
and invoking that conversion routine. When invoked by a
driver, the forwarding component may use a demultiplexing
("demux") component to identify the session of the first
conversion routine of the path that is to process the packet
and then queues the packet for processing by the path. A path
thread is associated with each path. Each path thread is
responsible for retrieving packets from the queue of its path
and forwarding the packets to the forwarding component.
When the forwarding component is invoked by a path
thread, it initially invokes the first conversion routine in the
path. That conversion routine processes the packet and
forwards the processed packet to the forwarding component,
which then invokes the second conversion routine in the
path. The process of invoking the conversion routines and
forwarding the processed packet to the next conversion
routine continues until the last conversion routine in the path

20 a session and conversion routine of the path, and a reference
path entry represents the overall path. The passed reference
path entry 150 indicates to the message send routine that it
is being invoked by a driver. The message send routine
invokes the demux routine 102 to search for and identify the

25 path of sessions that is to process the packet. The demux
routine may in turn invoke the label map get routine 104 to
identify a sequence of conversion routines for processing the
packet. In this example, the label map get routine identifies
the first three conversion routines, and the demux routine

30 creates the member path entries 151, 152, 153 of the path for
these conversion routines. Each path entry identifies a ses
sion for a conversion routine, and the sequence of path
entries 151-155 identifies a path. The message send routine
then queues the packet on the queue 149 for the path that is

35 to process the packets of the message. The path thread 105
for the path retrieves the packet from the queue and invokes
the message send routine 106 passing the packet and an
indication of the path. The message send routine determines
that the next session and conversion routine as indicated by

40 path entry 151 has already been found. The message send
routine then invokes the instance of the conversion routine

is invoked. A conversion routine may defer invocation of the
forwarding component until it aggregates multiple packets 45

or may invoke the forwarding component multiple times for
a packet once for each sub-packet.

The forwarding component identifies the next conversion
routine in the path using the demux component and stores
that identification so that the forwarding component can 50

quickly identify the conversion routine when subsequent
packets of the same message are received. The demux
component, searches for the conversion routine and session
that is to next process a packet. The demux component then
stores the identification of the session and conversion rou- 55

tine as part of a path data structure so that the conversion
system does not need to search for the session and conver
sion routine when requested to demultiplex subsequent
packets of the same message. When searching for the next
conversion routine, the demux component invokes a label 60

map get component that identifies the next conversion
routine. Once the conversion routine is found, the demux
component identifies the session associated with that mes
sage by, in one embodiment, invoking code associated with
the conversion routine. In general, the code of the conver- 65

sion routine determines what session should be associated
with a message. In certain situations, multiple messages may

for the session. The conversion routine processes the packet
and then invokes the message send routine 107. This pro
cessing continues until the message send routine invokes the
demux routine 110 after the packet is processed by the
conversion routine represented by path entry 153. The
demux routine examines the path and determines that it has
no more path entries. The demux routine then invokes the
label map get routine 111 to identify the conversion routines
for further processing of the packet. When the conversion
routines are identified, the demux routine adds path entries
154, 155 to the path. The messages send routine invokes the
conversion routine associated with path entry 154. Eventu
ally, the conversion routine associated with path entry 155
performs the final processing for the path.

The label map get routine identifies a sequence of"edges"
for converting data in one format into another format. Each
edge corresponds to a conversion routine for converting data
from one format to another. Each edge is part of a "protocol"
(or more generally a component) that may include multiple
related edges. For example, a protocol may have edges that
each convert data in one format into several different for
mats. Each edge has an input format and an output format.
The label map get routine identifies a sequence of edges such
that the output format of each edge is compatible with the
input format of another edge in the sequence, except for the
input format of the first edge in the sequence and the output

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 28 of 34 PageID #: 504

Juniper Ex. 1041-p. 255
Juniper v Implicit

US 10,225,378 B2
5

format of the last edge in the sequence. FIG. 2 is a block
diagram illustrating a sequence of edges. Protocol PI
includes an edge for converting format Dl to format D2 and
an edge for converting format Dl to format D3; protocol P2
includes an edge for converting format D2 to format D5, and
so on. A 30 sequence for converting format Dl to format
D15 is shown by the curved lines and is defined by the
address "Pl:I, P2: 1, P3:2, P4:7." When a packet of data in
format D I is processed by this sequence, it is converted to
format DIS. During the process, the packet of data is
sequentially converted to format D2, D5, and D13. The
output format of protocol P2, edge 1 (i.e., P2:1) is format
D5, but the input format of P3:2 is format DlO. The label
map get routine uses an aliasing mechanism by which two
formats, such as D5 and DlO are identified as being com
patible. The use of aliasing allows different names of the
same format or compatible formats to be correlated.

FIG. 3 is a block diagram illustrating components of the
conversion system in one embodiment. The conversion
system 300 can operate on a computer system with a central
processing unit 301, I/0 devices 302, and memory 303. The
110 devices may include an Internet connection, a connec
tion to various output devices such as a television, and a
connection to various input devices such as a television
receiver. The media mapping system may be stored as
instructions on a computer-readable medium, such as a disk
drive, memory, or data transmission medium. The data
structures of the media mapping system may also be stored
on a computer-readable medium. The conversion system
includes drivers 304, a forwarding component 305, a demux
component 306, a label map get component 307, path data
structures 308, conversion routines 309, and instance data
310. Each driver receives data in a source format and
forwards the data to the forwarding component. The for
warding component identifies the next conversion routine in
the path and invokes that conversion routine to process a
packet. The forwarding component may invoke the demux
component to search for the next conversion routine and add
that conversion routine to the path. The demux component
may invoke the label map get component to identify the next
conversion routine to process the packet. The demux com
ponent stores information defining the paths in the path
structures. The conversion routines store their state infor
mation in the instance data.

FIG. 4 is a block diagram illustrating example path data
structures in one embodiment. The demux component iden
tifies a sequence of "edges" for converting data in one
format into another format by invoking the label map get
component. Each edge corresponds to a conversion routine
for converting data from one format to another. As discussed
above, each edge is part of a "protocol" that may include
multiple related edges. For example, a protocol may have
edges that each convert data in one format into several
different formats. Each edge has as an input format ("input
label") and an output format ("output label"). Each rectangle
represents a session 410, 420, 430, 440, 450 for a protocol.
A session corresponds to an instance of a protocol. That is,
the session includes the protocol and state information
associated with that instance of the protocol. Session 410
corresponds to a session for an Ethernet protocol; session
420 corresponds to a session for an IP protocol; and sessions
430, 440, 450 correspond to sessions for a TCP protocol.
FIG. 4 illustrates three paths 461, 462, 463. Each path
includes edges 411, 421, 431. The paths share the same
Ethernet session 410 and IP session 420, but each path has
a unique TCP session 430, 440, 450. Thus, path 461 includes
sessions 410, 420, and 430; path 462 includes sessions 410,

6
420, and 440; and path 463 includes sessions 410, 420, and
450. The conversion system represents each path by a
sequence of path entry structures. Each path entry structure
is represented by a triangle. Thus, path 461 is represented by

5 path entries 415, 425, and 433. The conversion system
represents the path entries of a path by a stack list. Each path
also has a queue 471, 472, 473 associated with it. Each
queue stores the messages that are to be processed by the
conversion routines of the edges of the path. Each session

10 includes a binding 412, 422, 432, 442, 452 that is repre
sented by an oblong shape adjacent to the corresponding
edge. A binding for an edge of a session represents those
paths that include the edge. The binding 412 indicates that
three paths are bound (or "nailed") to edge 411 of the

15 Ethernet session 410. The conversion system uses a path list
to track the paths that are bound to a binding. The path list
of binding 412 identifies path entries 413, 414, and 415.

FIG. 5 is a block diagram that illustrates the interrela
tionship of the data structures of a path. Each path has a

20 corresponding path structure 501 that contains status infor
mation and pointers to a message queue structure 502, a
stack list structure 503, and a path address structure 504. The
status of a path can be extend, continue, or end. Each
message handler returns a status for the path. The status of

25 extend means that additional path entries should be added to
the path. The status of end means that this path should end
at this point and subsequent processing should continue at a
new path. The status of continue means that the protocol
does not care how the path is handled. In one embodiment,

30 when a path has a status of continue, the system creates a
copy of the path and extends the copy. The message queue
structure identifies the messages (or packets of a message)
that are queued up for processing by the path and identifies
the path entry at where the processing should start. The stack

35 list structure contains a list of pointers to the path entry
structures 505 that comprise the path. Each path entry
structure contains a pointer to the corresponding path data
structure, a pointer to a map structure 507, a pointer to a
multiplex list 508, a pointer to the corresponding path

40 address structure, and a pointer to a member structure 509.
A map structure identifies the output label of the edge of the
path entry and optionally a target label and a target key. A
target key identifies the session associated with the protocol
that converts the packet to the target label. (The terms

45 "media," "label," and "format" are used interchangeably to
refer to the output of a protocol.) The multiplex list is used
during the demux process to track possible next edges when
a path is being identified as having more than one next edge.
The member structure indicates that the path entry repre-

50 sents an edge of a path and contains a pointer to a binding
structure to which the path entry is associated (or "nailed"),
a stack list entry is the position of the path entry within the
associated stack list, a path list entry is the position of the
path entry within the associated path list of a binding and an

55 address entry is the position of the binding within the
associated path address. A path address of a path identifies
the bindings to which the path entries are bound. The path
address structure contains a URL for the path, the name of
the path identified by the address, a pointer to a binding list

60 structure 506, and the identification of the current binding
within the binding list. The URL (e.g., "protocol://tcp(O)/ip
(0)/eth(O)") identifies conversion routines (e.g., protocols
and edges) of a path in a human-readable format. The URL
(universal resource locator) includes a type field (e.g., "pro-

65 tocol") followed by a sequence of items (e.g., "tcp(O)"). The
type field specifies the format of the following information
in the URL, that specifies that the type field is followed by

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 29 of 34 PageID #: 505

Juniper Ex. 1041-p. 256
Juniper v Implicit

US 10,225,378 B2
7 8

binding is a binding (e.g., edge and protocol) is associated
with a session. In decision block 703, the passed path entry
is a reference and if the passed path entry has an associated
path, then the routine can queue the message for the asso-

a sequence of items. Each item identifies a protocol and an
edge (e.g., the protocol is "tcp" and the edge is "O"). In one
embodiment, the items of a URL may also contain an
identifier of state information that is to be used when
processing a message. These URLs can be used to illustrate
to a user various paths that are available for processing a
message. The current binding is the last binding in the path
as the path is being built. The binding list structure contains
a list of pointers to the binding structures associated with the
path. Each binding structure 510 contains a pointer to a
session structure, a pointer to an edge structure, a key, a path
list structure, and a list of active paths through the binding.
The key identifies the state information for a session of a
protocol. A path list structure contains pointers to the path
entry structures associated with the binding.

5 ciated path and the routine continues at block 703A, else the
routine needs to identify a path and the routine continues at
block 707. In block 703A, the routine sets the entry to the
first path entry in the path and continues at block 717. In
block 704, the routine sets the variable position to the stack

10 list entry of the passed path entry. In decision block 705, the
routine sets the variable next entry to the next path entry in
the path. If there is a next entry in the path, then the next
session and edge of the protocol have been identified and the
routine continues at block 706, else the routine continues at

FIG. 6 is a block diagram that illustrates the interrela
tionship of the data structures associated with a session. A
session structure 601 contains the context for the session, a
pointer to a protocol structure for the session, a pointer to a
binding table structure 602 for the bindings associated with
the session, and the key. The binding table structure contains

15 block 707. In block 706, the routine passes the message to
the message handler of the edge associated with the next
entry and then returns. In block 706, the routine invokes the
demux routine passing the passed message, the address of
the passed path entry, and the passed path entry. The demux

20 routine returns a list of candidate paths for processing of the
message. In decision block 708, if at least one candidate path
is returned, then the routine continues at block 709, else the
routine returns.

a list of pointers to the binding structures 510 for the session.
The binding structure is described above with reference to
FIG. 5. The path list structure 603 of the binding structure
contains a list of pointers to path entry structures 505. The 25

path entry structures are described with reference to FIG. 5.
FIGS. 7A, 7B, and 7C comprise a flow diagram illustrat

ing the processing of the message send routine. The message
send routine is passed a message along with the path entry
associated with the session that last processed the message. 30

The message send routine invokes the message handler of
the next edge in the path or queues the message for pro
cessing by a path. The message handler invokes the demux
routine to identify the next path entry of the path. When a
driver receives a message, it invokes the message send 35

routine passing a reference path entry. The message send
routine examines the passed path entry to determine (1)
whether multiple paths branch from the path of the passed
path entry, (2) whether the passed path entry is a reference
with an associated path, or (3) whether the passed path entry 40

is a member with a next path entry. If multiple paths branch
from the path of the passed path entry, then the routine
recursively invokes the message send routine for each path.
If the path entry is a reference with an associated path, then
the driver previously invoked the message send routine, 45

which associated a path with the reference path entry, and
the routine places the message on the queue for the path. If
the passed path entry is a member with a next path entry,
then the routine invokes the message handler (i.e., conver
sion routine of the edge) associated with the next path entry. 50

If the passed path entry is a reference without an associated
path or is a member without a next path entry, then the
routine invokes the demux routine to identify the next path
entry. The routine then recursively invokes the messages
send routine passing that next path entry. In decision block 55

701, if the passed path entry has a multiplex list, then the
path branches off into multiple paths and the routine con
tinues at block 709, else the routine continues at block 702.
A packet may be processed by several different paths. For
example, if a certain message is directed to two different 60

output devices, then the message is processed by two
different paths. Also, a message may need to be processed by
multiple partial paths when searching for a complete path. In
decision block 702, if the passed path entry is a member,
then either the next path entry indicates a nailed binding or 65

the path needs to be extended and the routine continues at
block 704, else the routine continues at block 703. A nailed

Blocks 709-716 illustrate the processing of a list of
candidate paths that extend from the passed path entry. In
blocks 710-716, the routine loops selecting each candidate
path and sending the message to be process by each candi
date path. In block 710, the routine sets the next entry to the
first path entry of the next candidate path. In decision block
711, if all the candidate paths have not yet been processed,
then the routine continues at block 712, else the routine
returns. In decision block 712, if the next entry is equal to
the passed path entry, then the path is to be extended and the
routine continues at block 705, else the routine continues at
block 713. The candidate paths include a first path entry that
is a reference path entry for new paths or that is the last path
entry of a path being extended. In decision block 713, if the
number of candidate paths is greater than one, then the
routine continues at block 714, else the routine continues at
block 718. In decision block 714, if the passed path entry has
a multiplex list associated with it, then the routine continues
at block 716, else the routine continues at block 715. In
block 715, 11 the routine associates the list of candidate path
with the multiplex list of the passed path entry and continues
at block 716. In block 716, the routine sends the message to
the next entry by recursively invoking the message send
routine. The routine then loops to block 710 to select the
next entry associated with the next candidate path.

Blocks 717-718 are performed when the passed path entry
is a reference path entry that has a path associated with it. In
block 717, if there is a path associated with the next entry,
then the routine continues at block 718, else the routine
returns. In block 718, the routine queues the message for the
path of the next entry and then returns.

FIG. 8 is a flow diagram of the demux routine. This
routine is passed the packet (message) that is received, an
address structure, and a path entry structure. The demux
routine extends a path, creating one if necessary. The routine
loops identifying the next binding (edge and protocol) that
is to process the message and "nailing" the binding to a
session for the message, if not already nailed. After identi-
fying the nailed binding, the routine searches for the shortest
path through the nailed binding, creating a path if none
exists. In block 801, the routine invokes the initialize demux
routine. In blocks 802-810, the routine loops identifying a
path or portion of a path for processing the passed message.
In decision block 802, if there is a current status, which was

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 30 of 34 PageID #: 506

Juniper Ex. 1041-p. 257
Juniper v Implicit

US 10,225,378 B2
9

returned by the demux key routine that was last invoked
(e.g., continue, extend, end, or postpone), then the routine
continues at block 803, else the routine continues at block
811. In block 803, the routine invokes the get next binding
routine. The get next binding routine returns the next bind- 5

ing in the path. The binding is the edge of a protocol. That
routine extends the path as appropriate to include the bind
ing. The routine returns a return status of break, binding, or
multiple. The return status of binding indicates that the next
binding in the path was found by extending the path as 10

appropriate and the routine continues to "nail" the binding to
a session as appropriate. The return status of multiple means
that multiple trails (e.g., candidate paths) were identified as
possible extensions of the path. In a decision block 804, if
the return status is break, then the routine continues at block 15

811. If the return status is multiple, then the routine returns.
If the return status is binding, then the routine continues at
block 805. In decision block 805, if the retrieved binding is
nailed as indicated by being assigned to a session, then the
routine loops to block 802, else the routine continues at 20

block 806. In block 806, the routine invokes the get key
routine of the edge associated with the binding. The get key
routine creates the key for the session associated with the
message. If a key cannot be created until subsequent bind
ings are processed or because the current binding is to be 25

removed, then the get key routine returns a next binding
status, else it returns a continue status. In decision block 807,
if the return status of the get key routine is next binding, then
the routine loops to block 802 to get the next binding, else
the routine continues at block 808. In block 808, the routine 30

invokes the routine get session. The routine get session
returns the session associated with the key, creating a new
session if necessary. In block 809, the routine invokes the
routine nail binding. The routine nail binding retrieves the
binding if one is already nailed to the session. Otherwise, 35

that routine nails the binding to the session. In decision
block 810, if the nail binding routine returns a status of
simplex, then the routine continues at block 811 because
only one path can use the session, else the routine loops to
block 802. Immediately upon return from the nail binding 40

routine, the routine may invoke a set map routine of the edge
passing the session and a map to allow the edge to set its
map. In block 811, the routine invokes the find path routine,
which finds the shortest path through the binding list and
creates a path if necessary. In block 812, the routine invokes 45

the process path hopping routine, which determines whether
the identified path is part of a different path. Path hopping
occurs when, for example, IP fragments are built up along
separate paths, but once the fragments are built up they can

10
and address element to null. In block 903, the routine sets of
the variable saved status to O and the variable status to
demux continue. The variable saved status is used to track
the status of the demux process when backtracking to nail a
binding whose nail was postponed. In decision block 904, if
the passed path entry is associated with a path, then the
routine continues at block 905, else the routine continues at
block 906. In block 905, the routine sets the variable status
to the status of that path. In block 906, if the variable status
is demux continue, then the routine continues at block 907.
If the variable status is demux end, then the routine contin-
ues at block 908. If the variable status is demux extend, then
the routine continues at block 909. In block 907, the status
is demux continue, and the routine sets the local pointer path
address to the passed address and continues at block 911. In
block 908, the status is demux end, and the routine invokes
the init end routine and continues at block 911. In block 909,
the status is demux extend, and the routine sets the local path
address to the address of the path that contains the passed
path entry. In block 910, the routine sets the address element
and the current binding of the path address pointed to by the
local pointer path address to the address entry of the member
structure of the passed path entry. In the block 911, the
routine sets the local variable status to demux continue and
sets the local binding list structure to the binding list
structure from the local path address structure. In block 912,
the routine sets the local pointer current binding to the
address of the current binding pointed to by local pointer
path address and sets the local variable postpone to 0. In
block 913, the routine sets the function traverse to the
function that retrieves the next data in a list and sets the local
pointer session to null. The routine then returns.

FIG. 10 is a flow diagram of the init end routine. If the
path is simplex, then the routine creates a new path from
where the other one ended, else the routine creates a copy of
the path. In block 1001, if the binding of the passed path
entry is simplex (i.e., only one path can be bound to this
binding), then the routine continues at block 1002, else the
routine continues at block 1003. In block 1002, the routine
sets the local pointer path address to point to an address
structure that is a copy of the address structure associated
with the passed path entry structure with its current binding
to the address entry associated with the passed path entry
structure, and then returns. In block 1003, the routine sets
the local pointer path address to point to an address structure
that contains the URL of the path that contains the passed
path entry. In block 1004, the routine sets the local pointer
element to null to initialize the selection of the bindings. In
blocks 1005 through 1007, the routine loops adding all the

be processed by the same subsequent path.
FIG. 9 is a flow diagram of the initialize demux routine.

This routine is invoked to initialize the local data structures
that are used in the demux process and to identify the initial
binding. The demux routine finds the shortest path from the
initial binding to the final binding. If the current status is
demux extend, then the routine is to extend the path of the
passed path entry by adding additional path entries. If the
current status is demux end, then the demux routine is
ending the current path. If the current status is demux
continue, then the demux routine is in the process of
continuing to extend or in the process of starting a path
identified by the passed address. In block 901, the routine
sets the local map structure to the map structure in the passed
path entry structure. The map structure identifies the output
label, the target label, and the target key. In the block 902,
the routine initializes the local message structure to the
passed message structure and initializes the pointers path

50 bindings for the address of the passed path entry that include
and are before the passed path entry to the address pointed
to by the local path address. In block 1005, the routine
retrieves the next binding from the binding list starting with
the first. If there is no such binding, then the routine returns,

55 else the routine continues at block 1006. In block 1006, the
routine adds the binding to the binding list of the local path
address structure and sets the current binding of the local
variable path address. In the block 1007, if the local pointer
element is equal to the address entry of the passed path entry,

60 then the routine returns, else the routine loops to block 1005
to select the next binding.

FIG. 11 is a flow diagram of a routine to get the next
binding. This routine returns the next binding from the local
binding list. If there is no next binding, then the routine

65 invokes the routine label map get to identify the list of edges
("trails") that will map the output label to the target label. If
only one trail is identified, then the binding list of path

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 31 of 34 PageID #: 507

Juniper Ex. 1041-p. 258
Juniper v Implicit

US 10,225,378 B2
11

address is extended by the edges of the trail. If multiple trails
are identified, then a path is created for each trail and the
routine returns so that the demux process can be invoked for
each created path. In block 1101, the routine sets the local
pointer binding to point to the next or previous (as indicated 5

by the traverse function) binding in the local binding list. In
block 1102, if a binding was found, then the routine returns
an indication that a binding was found, else the routine
continues at block 1103. In block 1103, the routine invokes
the label map get function passing the output label and target 10

label of the local map structure. The label map get function
returns a trail list. A trail is a list of edges from the output
label to the target label. In decision block 1104, if the size
of the trail list is one, then the routine continues at block
1105, else the routine continues at block 1112. In blocks 15

1105-1111, the routine extends the binding list by adding a
binding data structure for each edge in the trail. The routine
then sets the local binding to the last binding in the binding
list. In block 1108, the routine sets the local pointer current
binding to point to the last binding in the local binding list. 20

In block 1106, the routine sets the local variable temp trail
to the trail in the trail list. In block 1107, the routine extends
the binding list by temp trail by adding a binding for each
edge in the trail. These bindings are not yet nailed. In block
1108, the routine sets the local binding to point to the last 25

binding in the local binding list. In decision block 1109, if
the local binding does not have a key for a session and the
local map has a target key for a session, then the routine sets
the key for the binding to the target key of the local map and
continues at block 1110, else the routine loops to block 1101 30

to retrieve the next binding in path. In block 1110, the
routine sets the key of the local binding to the target key of
the local map. In block 1111, the routine sets the target key
of the local map to null and then loop to block 1101 to return
the next binding. In decision block 1112, if the local session 35

is set, then the demultiplexing is already in progress and the
routine returns a break status. In block 1113, the routine
invokes a prepare multicast paths routine to prepare a path
entry for each trail in the trail list. The routine then returns

12
local binding to indicate that the binding is to be removed
and continues at block 1206. In block 1205, the routine sets
the variable traverse to the function to list the next data,
increments the variable postpone, and then returns a next
binding status. In blocks 1206-1214, the routine processes
the postponing of the creating ofa key. In blocks 1207-1210,
if the creating of a key has been postponed, then the routine
indicates to backtrack on the path, save the demux status,
and set the demux status to demux continue. In blocks
1211-1213, if the creating of a key has not been postponed,
then the routine indicates to continue forward in the path and
to restore any saved demux status. The save demux status is
the status associated by the binding where the backtrack
started. In decision block 1206, if the variable postpone is
set, then the routine continues at block 1207, else the routine
continues at block 1211. In block 1207, the routine decre-
ments the variable postpone and sets the variable traverse to
the list previous data function. In decision block 1208, if the
variable saved status is set, then the routine continues at
block 1210, else the routine continues at block 1209. The
variable saved status contains the status of the demux
process when the demux process started to backtrack. In
block 1209, the routine sets the variable saved status to the
variable status. In block 1210, the routine sets the variable
status to demux continue and continues at block 1214. In
block 1211, the routine sets the variable traverse to the list
next data function. In decision block 1212, if the variable
saved status in set, then the routine continues at block 1213,
else the routine continues at block 1214. In block 1213, the
routine sets the variable status to the variable saved status
and sets the variable saved status to 0. In decision block
1214, if the local binding indicates that it is to be removed,
then the routine returns a next binding status, else the routine
returns a continue status.

FIG. 13 is a flow diagram of the get session routine. This
routine retrieves the session data structure, creating a data
structure session if necessary, for the key indicated by the
binding. In block 1301, the routine retrieves the session from
the session table of the local protocol indicated by the key

a multiple status.
FIG. 12 is a flow diagram of the get key routine. The get

key routine invokes an edge's demux key routine to retrieve

40 of the local binding. Each protocol maintains a mapping
from each key to the session associated with the key. In
decision block 1302, if there is no session, then the routine
continues at block 1303, else the routine returns. In block a key for the session associated with the message. The key

identifies the session of a protocol. The demux key routine
creates the appropriate key for the message. The demux key 45

routine returns a status of remove, postpone, or other. The
status of remove indicates that the current binding should be
removed from the path. The status of postpone indicates that
the demux key routine cannot create the key because it needs
information provided by subsequent protocols in the path. 50

For example, a TCP session is defined by a combination of
a remote and local port address and an IP address. Thus, the
TCP protocol postpones the creating of a key until the IP
protocol identifies the IP address. The get key routine returns
a next binding status to continue at the next binding in the 55

path. Otherwise, the routine returns a continue status. In
block 1201, the routine sets the local edge to the edge of the
local binding (current binding) and sets the local protocol to
the protocol of the local edge. In block 1202, the routine
invokes the demux key routine of the local edge passing the 60

local message, local path address, and local map. The demux
key routine sets the key in the local binding. In decision
block 1203, if the demux key routine returns a status of
remove, then the routine continues at block 1204. If the
demux key routine returns a status of postpone, then the 65

routine continues at block 1205, else the routine continues at
block 1206. In block 1204, the routine sets the flag of the

1303, the routine creates a session for the local protocol. In
block 1304, the routine initializes the key for the local
session based on the key of the local binding. In block 1305,
the routine puts the session into the session table of the local
protocol. In block 1306, the routine invokes the create
session function of the protocol to allow the protocol to
initialize its context and then returns.

FIG. 14 is a flow diagram of the nail binding routine. This
routine determines whether a binding is already associated
with ("nailed to") the session. If so, the routine returns that
binding. If not, the routine associates the binding with the
session. The routine returns a status of simplex to indicate
that only one path can extend through the nailed binding. In
decision block 1401, if the binding table of the session
contains an entry for the edge, then the routine continues at
block 1402, else the routine continues at block 1405. In
block 1402, the routine sets the binding to the entry from the
binding table of the local session for the edge. In block 1403,
the routine sets the current binding to point to the binding
from the session. In block 1404, if the binding is simplex,
then the routine returns a simplex status, else the routine
returns. Blocks 1405 through 1410 are performed when
there is no binding in the session for the edge. In block 1405,
the routine sets the session of the binding to the variable

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 32 of 34 PageID #: 508

Juniper Ex. 1041-p. 259
Juniper v Implicit

US 10,225,378 B2
13

session. In block 1406, the routine sets the key of the binding
to the key from the session. In block 1407, the routine sets
the entry for the edge in the binding table of the local session
to the binding. In block 1408, the routine invokes the create
binding function of the edge of the binding passing the 5

binding so the edge can initialize the binding. If that function
returns a status of remove, the routine continues at block
1409. In block 1409, the routine sets the binding to be
removed and then returns.

FIG. 15 is a flow diagram of the find path routine. The find 10

path routine identifies the shortest path through the binding
list. If no such path exists, then the routine extends a path to
include the binding list. In decision block 1501, if the
binding is simplex and a path already goes through this
binding (returned as an entry), then the routine continues at 15

block 1502, else the routine continues at block 1503. In
block 1502, the routine sets the path to the path of the entry
and returns. In block 1503, the routine initializes the pointers
element and short entry to null. In block 1504, the routine
sets the path to the path of the passed path entry. If the local 20

path is not null and its status is demux extend, then the
routine continues at block 1509, else the routine continues at
block 1505. In blocks 1505-1508, the routine loops identi
fying the shortest path through the bindings in the binding
list. The routine loops selecting each path through the 25

binding. The selected path is eligible if it starts at the first
binding in the binding list and the path ends at the binding.
The routine loops setting the short entry to the shortest
eligible path found so far. In block 1505, the routine sets the
variable first binding to the first binding in the binding list 30

of the path address. In block 1506, the routine selects the
next path (entry) in the path list of the binding starting with
the first. If a path is selected (indicating that there are more
paths in the binding), then the routine continues at block
1507, else the routine continues at block 1509. In block 35

1507, the routine determines whether the selected path starts
at the first binding in the binding list, whether the selected
path ends at the last binding in the binding list, and whether
the number of path entries in the selected path is less than the
number of path entries in the shortest path selected so far. If 40

these conditions are all satisfied, then the routine continues
at block 1508, else the routine loops to block 1506 to select
the next path (entry). In block 1508, the routine sets the
shortest path (short entry) to the selected path and loops to
block 1506 to select the next path through the binding. In 45

block 1509, the routine sets the selected path (entry) to the
shortest path. In decision block 1510, if a path has been
found, then the routine continues at block 1511, else the
routine continues at block 1512. In block 1511, the routine
sets the path to the path of the selected path entry and 50

returns. Blocks 1512-1516 are performed when no paths
have been found. In block 1512, the routine sets the path to
the path of the passed path entry. If the passed path entry has
a path and its status is demux extend, then the routine
continues at block 1515, else the routine continues at block 55

1513. In block 1513, the routine creates a path for the path
address. In block 1514, the routine sets the variable element
to null and sets the path entry to the first element in the stack
list of the path. In block 1515, the routine sets the variable
element to be address entry of the member of the passed path 60

entry and sets the path entry to the passed path entry. In
block 1516, the routine invokes the extend path routine to
extend the path and then returns. The extend path routine
creates a path through the bindings of the binding list and
sets the path status to the current demux status. 65

FIG. 16 is a flow diagram of the process of path hopping
routine. Path hopping occurs when the path through the

14
binding list is not the same path as that of the passed path
entry. In decision block 1601, if the path of the passed path
entry is set, then the routine continues at block 1602, else the
routine continues at block 1609. In decision block 1602, if
the path of the passed path entry is equal to the local path,
then the routine continues at 1612, else path hopping is
occurring and the routine continues at block 1603. In blocks
1603-1607, the routine loops positioning pointers at the first
path entries of the paths that are not at the same binding. In
block 1603, the routine sets the variable old stack to the
stack list of the path of the passed path entry. In block 1604,
the routine sets the variable new stack to the stack list of the
local path. In block 1605, the routine sets the variable old
element to the next element in the old stack. In block 1606,
the routine sets the variable element to the next element in
the new stack. In decision block 1607, the routine loops until
the path entry that is not in the same binding is located. In
decision block 1608, if the variable old entry is set, then the
routine is not at the end of the hopped from path and the
routine continues at block 1609, else routine continues at
block 1612. In block 1609, the routine sets the variable entry
to the previous entry in the hopped-to path. In block 1610,
the routine sets the path of the passed path entry to the local
path. In block 1611, the routine sets the local entry to the first
path entry of the stack list of the local path. In block 1612,
the routine inserts an entry into return list and then returns.

Although the conversion system has been described in
terms of various embodiments, the invention is not limited
to these embodiments. Modification within the spirit of the
invention will be apparent to those skilled in the art. For
example, a conversion routine may be used for routing a
message and may perform no conversion of the message.
Also, a reference to a single copy of the message can be
passed to each conversion routine or demux key routine.
These routines can advance the reference past the header
information for the protocol so that the reference is posi
tioned at the next header. After the demux process, the
reference can be reset to point to the first header for
processing by the conversion routines in sequence. The
scope of the invention is defined by the claims that follow.

What is claimed is:
1. A method, comprising:
receiving, at a computing device, a packet of a message;
determining, by the computing device, a key value for the

packet, wherein the key value is determined based on
one or more headers in the packet;

using, by the computing device, the key value to deter
mine whether the computing device is currently storing
a previously created path for the key value;

in response to determining that no path is currently stored
for the key value, the computing device:
identifying, using the key value, one or more routines

for processing the packet, including a routine that is
used to execute a Transmission Control Protocol
(TCP) to convert packets having a TCP format into
a different format;

creating a path using the identified one or more rou
tines; and

processing the packet using the created path.
2. The method of claim 1, wherein the created path stores

state information for at least one of the identified one or
more routines.

3. The method of claim 1, wherein the created path stores
state information for each of the identified one or more
routines.

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 33 of 34 PageID #: 509

Juniper Ex. 1041-p. 260
Juniper v Implicit

US 10,225,378 B2
15

4 .. The method of claim 1, wherein the created path
specifies an ordering in which the identified one or more
routines are to be performed to process the packet.

5. The m~th~d of claim 4, wherein the ordering specifies
that an apphcat10n layer protocol is to be performed subse- 5
quent to the TCP.

6. The_ method of claim 5, wherein the application layer
protocol is HTTP, and wherein the different format is HTTP.

7. The method of claim 4, wherein the ordering specifies
that a. first execution of the TCP is to be followed by 10
execut10n of an application layer protocol, which is to be
followed by a second execution of the TCP.

8. The method of claim 7, wherein the first execution of
the TCP receives information from a network and the second
execution of the TCP sends information via the network.

9. The method of claim 4, wherein the ordering specifies
that the TCP is an initial one of the one or more routines.

10. The method of claim 4, wherein the ordering specifies
that the TCP is to be performed after performing an Ethernet
protocol.

11. The method of claim 1, further comprising:
receiving, at the computing device, a subsequent packet of

the message;

15

20

determining, by the computing device based on the sub
sequent packet, the key value;
. ~

usmg, by the computing device, the key value to identify
the created path for the message; and

processing, by the computing device, the subsequent
packet using the path.

12. The method of claim 11, wherein processing the 30
subsequent packet includes:

queuing the subsequent packet for one or more routines
specified in the path; and

performing the one or more routines according to an
ordering specified by the path, wherein performing at 35
least one of the routines includes accessing state infor
mation stored in the path.

13. The method of claim 11, wherein packets of the
message are all associated with a single TCP session.

14. The method of claim 1, wherein the key value includes
an IP address and one or more port addresses.

15. A method, comprising:
receivi~g_, at a computing device, a packet of a message;
determmmg, by the computing device, a key value for the

packet, wherein the key value is determined based on
one or more headers in the packet;

using, by the computing device, the key value to deter
mine whether the computing device is currently storing
a previously created path for the key value;

40

45

16
in response to determining that no path is currently stored

for the key value, the computing device:
identifying, using the key value, one or more routines

for processing the packet, including a routine that is
used to execute a User Datagram Protocol (UDP) to
convert packets having a UDP format into a different
format;

creating a path using the identified one or more rou
tines; and

processing the packet using the created path.
16. An apparatus, comprising:
one or more memories storing program instructions

executable by the apparatus to:
receive: from a network, a packet of a message;
determme a key value for the packet, wherein the key

value is determined based on one or more headers in
the packet;

use the key value to determine whether the apparatus is
currently storing a path for the key value, wherein
one or more routines are specified in the path for
processing packets of the message;

in response to determining that no path is currently
stored for the key value:
identify, using the key value, one or more routines

for processing the packet, including a particular
routine that is used to execute a Transmission
Control Protocol (TCP) to convert packets having
a TCP format into a different format;

create a path using the identified one or more rou
tines;

process the packet using the created path; and
store the path for use in processing subsequent

packets in the message; and
in response to determining that a path is currently

stored for the key value;
process the packet using the stored path.

17. The apparatus of claim 16, wherein the apparatus is
configured to process the packet by queuing the packet for
the one or more routines identified in the path.

18. The apparatus of claim 16, wherein the different
format is an application layer format.

1~. T~e apparatus of claim 16, wherein the particular
routme 1s executable to utilize state information stored
within the path.

20. The apparatus of claim 16, wherein the path stores
state information for at least some of the one or more
routines.

* * * * *

Case 2:19-cv-00037-JRG Document 14-9 Filed 03/19/19 Page 34 of 34 PageID #: 510

Juniper Ex. 1041-p. 261
Juniper v Implicit

	FIRST AMENDED COMPLAINT FOR PATENT INFRINGEMENT
	FIRST AMENDED COMPLAINT FOR PATENT INFRINGEMENT

