Network Working Group Request for Comments: 854

Obsoletes: NIC 18639

J. Postel J. Reynolds ISI May 1983

TELNET PROTOCOL SPECIFICATION

This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet are expected to adopt and implement this standard.

INTRODUCTION

The purpose of the TELNET Protocol is to provide a fairly general, bi-directional, eight-bit byte oriented communications facility. Its primary goal is to allow a standard method of interfacing terminal devices and terminal-oriented processes to each other. It is envisioned that the protocol may also be used for terminal-terminal communication ("linking") and process-process communication (distributed computation).

GENERAL CONSIDERATIONS

A TELNET connection is a Transmission Control Protocol (TCP) connection used to transmit data with interspersed TELNET control information.

The TELNET Protocol is built upon three main ideas: first, the concept of a "Network Virtual Terminal"; second, the principle of negotiated options; and third, a symmetric view of terminals and processes.

1. When a TELNET connection is first established, each end is assumed to originate and terminate at a "Network Virtual Terminal", or NVT. An NVT is an imaginary device which provides a standard, network-wide, intermediate representation of a canonical terminal. This eliminates the need for "server" and "user" hosts to keep information about the characteristics of each other's terminals and terminal handling conventions. All hosts, both user and server, map their local device characteristics and conventions so as to appear to be dealing with an NVT over the network, and each can assume a similar mapping by the other party. The NVT is intended to strike a balance between being overly restricted (not providing hosts a rich enough vocabulary for mapping into their local character sets), and being overly inclusive (penalizing users with modest terminals).

NOTE: The "user" host is the host to which the physical terminal is normally attached, and the "server" host is the host which is normally providing some service. As an alternate point of view,

Postel & Reynolds

DOCKET

[Page 1]

applicable even in terminal-to-terminal or process-to-process communications, the "user" host is the host which initiated the communication.

2. The principle of negotiated options takes cognizance of the fact that many hosts will wish to provide additional services over and above those available within an NVT, and many users will have sophisticated terminals and would like to have elegant, rather than minimal, services. Independent of, but structured within the TELNET Protocol are various "options" that will be sanctioned and may be used with the "DO, DON'T, WILL, WON'T" structure (discussed below) to allow a user and server to agree to use a more elaborate (or perhaps just different) set of conventions for their TELNET connection. Such options could include changing the character set, the echo mode, etc.

The basic strategy for setting up the use of options is to have either party (or both) initiate a request that some option take effect. The other party may then either accept or reject the request. If the request is accepted the option immediately takes effect; if it is rejected the associated aspect of the connection remains as specified for an NVT. Clearly, a party may always refuse a request to enable, and must never refuse a request to disable some option since all parties must be prepared to support the NVT.

The syntax of option negotiation has been set up so that if both parties request an option simultaneously, each will see the other's request as the positive acknowledgment of its own.

3. The symmetry of the negotiation syntax can potentially lead to nonterminating acknowledgment loops -- each party seeing the incoming commands not as acknowledgments but as new requests which must be acknowledged. To prevent such loops, the following rules prevail:

a. Parties may only request a change in option status; i.e., a party may not send out a "request" merely to announce what mode it is in.

b. If a party receives what appears to be a request to enter some mode it is already in, the request should not be acknowledged. This non-response is essential to prevent endless loops in the negotiation. It is required that a response be sent to requests for a change of mode -- even if the mode is not changed.

c. Whenever one party sends an option command to a second party, whether as a request or an acknowledgment, and use of the option will have any effect on the processing of the data being sent from the first party to the second, then the command must be inserted in the data stream at the point where it is desired that it take

Postel & Reynolds

DOCKET

[Page 2]

effect. (It should be noted that some time will elapse between the transmission of a request and the receipt of an acknowledgment, which may be negative. Thus, a host may wish to buffer data, after requesting an option, until it learns whether the request is accepted or rejected, in order to hide the "uncertainty period" from the user.)

Option requests are likely to flurry back and forth when a TELNET connection is first established, as each party attempts to get the best possible service from the other party. Beyond that, however, options can be used to dynamically modify the characteristics of the connection to suit changing local conditions. For example, the NVT, as will be explained later, uses a transmission discipline well suited to the many "line at a time" applications such as BASIC, but poorly suited to the many "character at a time" applications such as NLS. A server might elect to devote the extra processor overhead required for a "character at a time" discipline when it was suitable for the local process and would negotiate an appropriate option. However, rather than then being permanently burdened with the extra processing overhead, it could switch (i.e., negotiate) back to NVT when the detailed control was no longer necessary.

It is possible for requests initiated by processes to stimulate a nonterminating request loop if the process responds to a rejection by merely re-requesting the option. To prevent such loops from occurring, rejected requests should not be repeated until something changes. Operationally, this can mean the process is running a different program, or the user has given another command, or whatever makes sense in the context of the given process and the given option. A good rule of thumb is that a re-request should only occur as a result of subsequent information from the other end of the connection or when demanded by local human intervention.

Option designers should not feel constrained by the somewhat limited syntax available for option negotiation. The intent of the simple syntax is to make it easy to have options -- since it is correspondingly easy to profess ignorance about them. If some particular option requires a richer negotiation structure than possible within "DO, DON'T, WILL, WON'T", the proper tack is to use "DO, DON'T, WILL, WON'T" to establish that both parties understand the option, and once this is accomplished a more exotic syntax can be used freely. For example, a party might send a request to alter (establish) line length. If it is accepted, then a different syntax can be used for actually negotiating the line length -- such a "sub-negotiation" might include fields for minimum allowable, maximum allowable and desired line lengths. The important concept is that

Postel & Reynolds

DOCKET

[Page 3]

such expanded negotiations should never begin until some prior (standard) negotiation has established that both parties are capable of parsing the expanded syntax.

In summary, WILL XXX is sent, by either party, to indicate that party's desire (offer) to begin performing option XXX, DO XXX and DON'T XXX being its positive and negative acknowledgments; similarly, DO XXX is sent to indicate a desire (request) that the other party (i.e., the recipient of the DO) begin performing option XXX, WILL XXX and WON'T XXX being the positive and negative acknowledgments. Since the NVT is what is left when no options are enabled, the DON'T and WON'T responses are guaranteed to leave the connection in a state which both ends can handle. Thus, all hosts may implement their TELNET processes to be totally unaware of options that are not supported, simply returning a rejection to (i.e., refusing) any option request that cannot be understood.

As much as possible, the TELNET protocol has been made server-user symmetrical so that it easily and naturally covers the user-user (linking) and server-server (cooperating processes) cases. It is hoped, but not absolutely required, that options will further this intent. In any case, it is explicitly acknowledged that symmetry is an operating principle rather than an ironclad rule.

A companion document, "TELNET Option Specifications," should be consulted for information about the procedure for establishing new options.

THE NETWORK VIRTUAL TERMINAL

The Network Virtual Terminal (NVT) is a bi-directional character device. The NVT has a printer and a keyboard. The printer responds to incoming data and the keyboard produces outgoing data which is sent over the TELNET connection and, if "echoes" are desired, to the NVT's printer as well. "Echoes" will not be expected to traverse the network (although options exist to enable a "remote" echoing mode of operation, no host is required to implement this option). The code set is seven-bit USASCII in an eight-bit field, except as modified herein. Any code conversion and timing considerations are local problems and do not affect the NVT.

TRANSMISSION OF DATA

Although a TELNET connection through the network is intrinsically full duplex, the NVT is to be viewed as a half-duplex device operating in a line-buffered mode. That is, unless and until

Postel & Reynolds

DOCKET

[Page 4]

options are negotiated to the contrary, the following default conditions pertain to the transmission of data over the TELNET connection:

1) Insofar as the availability of local buffer space permits, data should be accumulated in the host where it is generated until a complete line of data is ready for transmission, or until some locally-defined explicit signal to transmit occurs. This signal could be generated either by a process or by a human user.

The motivation for this rule is the high cost, to some hosts, of processing network input interrupts, coupled with the default NVT specification that "echoes" do not traverse the network. Thus, it is reasonable to buffer some amount of data at its source. Many systems take some processing action at the end of each input line (even line printers or card punches frequently tend to work this way), so the transmission should be triggered at the end of a line. On the other hand, a user or process may sometimes find it necessary or desirable to provide data which does not terminate at the end of a line; therefore implementers are cautioned to provide methods of locally signaling that all buffered data should be transmitted immediately.

2) When a process has completed sending data to an NVT printer and has no queued input from the NVT keyboard for further processing (i.e., when a process at one end of a TELNET connection cannot proceed without input from the other end), the process must transmit the TELNET Go Ahead (GA) command.

This rule is not intended to require that the TELNET GA command be sent from a terminal at the end of each line, since server hosts do not normally require a special signal (in addition to end-of-line or other locally-defined characters) in order to commence processing. Rather, the TELNET GA is designed to help a user's local host operate a physically half duplex terminal which has a "lockable" keyboard such as the IBM 2741. A description of this type of terminal may help to explain the proper use of the GA command.

The terminal-computer connection is always under control of either the user or the computer. Neither can unilaterally seize control from the other; rather the controlling end must relinguish its control explicitly. At the terminal end, the hardware is constructed so as to relinguish control each time that a "line" is terminated (i.e., when the "New Line" key is typed by the user). When this occurs, the attached (local)

Postel & Reynolds

DOCKET

[Page 5]

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.