Network Working Group J. Postel

Request for Comments: 854 J. Reynolds
ISI
Obsoletes: NIC 18639 May 1983

TELNET PROTOCOL SPECIFICATION

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet are expected to adopt and implement this standard.

INTRODUCTION

The purpose of the TELNET Protocol is to provide a fairly general,
bi-directional, eight-bit byte oriented communications facility. Its
primary goal is to allow a standard method of interfacing terminal
devices and terminal-oriented processes to each other. Itis
envisioned that the protocol may also be used for terminal-terminal
communication ("linking") and process-process communication
(distributed computation).

GENERAL CONSIDERATIONS

A TELNET connection is a Transmission Control Protocol (TCP)
connection used to transmit data with interspersed TELNET control
information.

The TELNET Protocol is built upon three main ideas: first, the
concept of a "Network Virtual Terminal"; second, the principle of
negotiated options; and third, a symmetric view of terminals and
processes.

1. When a TELNET connection is first established, each end is
assumed to originate and terminate at a "Network Virtual Terminal",
or NVT. An NVT is an imaginary device which provides a standard,
network-wide, intermediate representation of a canonical terminal.
This eliminates the need for "server" and "user" hosts to keep
information about the characteristics of each other’s terminals and
terminal handling conventions. All hosts, both user and server, map
their local device characteristics and conventions so as to appear to
be dealing with an NVT over the network, and each can assume a
similar mapping by the other party. The NVT is intended to strike a
balance between being overly restricted (not providing hosts a rich
enough vocabulary for mapping into their local character sets), and
being overly inclusive (penalizing users with modest terminals).

NOTE: The "user" host is the host to which the physical terminal

is normally attached, and the "server" host is the host which is
normally providing some service. As an alternate point of view,

Postel & Reynolds [Page 1]

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

RFC 854 May 1983

applicable even in terminal-to-terminal or process-to-process
communications, the "user" host is the host which initiated the
communication.

2. The principle of negotiated options takes cognizance of the fact

that many hosts will wish to provide additional services over and

above those available within an NVT, and many users will have
sophisticated terminals and would like to have elegant, rather than
minimal, services. Independent of, but structured within the TELNET
Protocol are various "options" that will be sanctioned and may be

used with the "DO, DON'T, WILL, WON'T" structure (discussed below) to
allow a user and server to agree to use a more elaborate (or perhaps
just different) set of conventions for their TELNET connection. Such
options could include changing the character set, the echo mode, etc.

The basic strategy for setting up the use of options is to have

either party (or both) initiate a request that some option take

effect. The other party may then either accept or reject the

request. If the request is accepted the option immediately takes
effect; if it is rejected the associated aspect of the connection

remains as specified for an NVT. Clearly, a party may always refuse
a request to enable, and must never refuse a request to disable some
option since all parties must be prepared to support the NVT.

The syntax of option negotiation has been set up so that if both
parties request an option simultaneously, each will see the other’s
request as the positive acknowledgment of its own.

3. The symmetry of the negotiation syntax can potentially lead to
nonterminating acknowledgment loops -- each party seeing the incoming
commands not as acknowledgments but as hew requests which must be
acknowledged. To prevent such loops, the following rules prevail:

a. Parties may only request a change in option status; i.e., a
party may not send out a "request" merely to announce what mode it
isin.

b. If a party receives what appears to be a request to enter some
mode it is already in, the request should not be acknowledged.
This non-response is essential to prevent endless loops in the
negotiation. It is required that a response be sent to requests
for a change of mode -- even if the mode is not changed.

¢. Whenever one party sends an option command to a second party,
whether as a request or an acknowledgment, and use of the option
will have any effect on the processing of the data being sent from
the first party to the second, then the command must be inserted

in the data stream at the point where it is desired that it take

Postel & Reynolds [Page 2]

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://tools.ietf.org/pdf/rfc854
https://www.docketalarm.com/

RFC 854 May 1983

effect. (It should be noted that some time will elapse between

the transmission of a request and the receipt of an
acknowledgment, which may be negative. Thus, a host may wish to
buffer data, after requesting an option, until it learns whether

the request is accepted or rejected, in order to hide the

"uncertainty period" from the user.)

Option requests are likely to flurry back and forth when a TELNET
connection is first established, as each party attempts to get the
best possible service from the other party. Beyond that, however,
options can be used to dynamically modify the characteristics of the
connection to suit changing local conditions. For example, the NVT,
as will be explained later, uses a transmission discipline well

suited to the many "line at a time" applications such as BASIC, but
poorly suited to the many "character at a time" applications such as
NLS. A server might elect to devote the extra processor overhead
required for a "character at a time" discipline when it was suitable
for the local process and would negotiate an appropriate option.
However, rather than then being permanently burdened with the extra
processing overhead, it could switch (i.e., negotiate) back to NVT
when the detailed control was no longer necessary.

It is possible for requests initiated by processes to stimulate a
nonterminating request loop if the process responds to a rejection by
merely re-requesting the option. To prevent such loops from

occurring, rejected requests should not be repeated until something
changes. Operationally, this can mean the process is running a
different program, or the user has given another command, or whatever
makes sense in the context of the given process and the given option.
A good rule of thumb is that a re-request should only occur as a

result of subsequent information from the other end of the connection
or when demanded by local human intervention.

Option designers should not feel constrained by the somewhat limited
syntax available for option negotiation. The intent of the simple
syntax is to make it easy to have options -- since it is

correspondingly easy to profess ignorance about them. If some
particular option requires a richer negotiation structure than

possible within "DO, DON'T, WILL, WON'T", the proper tack is to use
"DO, DON'T, WILL, WON'T" to establish that both parties understand
the option, and once this is accomplished a more exotic syntax can be
used freely. For example, a party might send a request to alter
(establish) line length. If it is accepted, then a different syntax

can be used for actually negotiating the line length -- such a
"sub-negotiation" might include fields for minimum allowable, maximum
allowable and desired line lengths. The important concept is that

Postel & Reynolds [Page 3]

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://tools.ietf.org/pdf/rfc854
https://www.docketalarm.com/

RFC 854 May 1983

such expanded negotiations should never begin until some prior
(standard) negotiation has established that both parties are capable
of parsing the expanded syntax.

In summary, WILL XXX is sent, by either party, to indicate that

party’s desire (offer) to begin performing option XXX, DO XXX and
DON'T XXX being its positive and negative acknowledgments; similarly,
DO XXX is sent to indicate a desire (request) that the other party

(i.e., the recipient of the DO) begin performing option XXX, WILL XXX
and WON'T XXX being the positive and negative acknowledgments. Since
the NVT is what is left when no options are enabled, the DON'T and
WON'T responses are guaranteed to leave the connection in a state
which both ends can handle. Thus, all hosts may implement their
TELNET processes to be totally unaware of options that are not
supported, simply returning a rejection to (i.e., refusing) any

option request that cannot be understood.

As much as possible, the TELNET protocol has been made server-user
symmetrical so that it easily and naturally covers the user-user

(linking) and server-server (cooperating processes) cases. Itis

hoped, but not absolutely required, that options will further this

intent. In any case, it is explicitly acknowledged that symmetry is

an operating principle rather than an ironclad rule.

A companion document, "TELNET Option Specifications," should be
consulted for information about the procedure for establishing new
options.

THE NETWORK VIRTUAL TERMINAL

The Network Virtual Terminal (NVT) is a bi-directional character
device. The NVT has a printer and a keyboard. The printer responds
to incoming data and the keyboard produces outgoing data which is
sent over the TELNET connection and, if "echoes" are desired, to the
NVT’s printer as well. "Echoes" will not be expected to traverse the
network (although options exist to enable a "remote" echoing mode of
operation, no host is required to implement this option). The code
set is seven-bit USASCII in an eight-bit field, except as modified
herein. Any code conversion and timing considerations are local
problems and do not affect the NVT.

TRANSMISSION OF DATA
Although a TELNET connection through the network is intrinsically

full duplex, the NVT is to be viewed as a half-duplex device
operating in a line-buffered mode. That is, unless and until

Postel & Reynolds [Page 4]

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://tools.ietf.org/pdf/rfc854
https://www.docketalarm.com/

RFC 854 May 1983

options are negotiated to the contrary, the following default
conditions pertain to the transmission of data over the TELNET
connection:

1) Insofar as the availability of local buffer space permits,
data should be accumulated in the host where it is generated
until a complete line of data is ready for transmission, or

until some locally-defined explicit signal to transmit occurs.
This signal could be generated either by a process or by a
human user.

The motivation for this rule is the high cost, to some hosts,

of processing network input interrupts, coupled with the
default NVT specification that "echoes" do not traverse the
network. Thus, it is reasonable to buffer some amount of data
at its source. Many systems take some processing action at the
end of each input line (even line printers or card punches
frequently tend to work this way), so the transmission should
be triggered at the end of a line. On the other hand, a user

or process may sometimes find it necessary or desirable to
provide data which does not terminate at the end of a line;
therefore implementers are cautioned to provide methods of
locally signaling that all buffered data should be transmitted
immediately.

2) When a process has completed sending data to an NVT printer
and has no queued input from the NVT keyboard for further
processing (i.e., when a process at one end of a TELNET
connection cannot proceed without input from the other end),

the process must transmit the TELNET Go Ahead (GA) command.

This rule is not intended to require that the TELNET GA command
be sent from a terminal at the end of each line, since server

hosts do not normally require a special signal (in addition to
end-of-line or other locally-defined characters) in order to
commence processing. Rather, the TELNET GA is designed to help
a user’s local host operate a physically half duplex terminal

which has a "lockable" keyboard such as the IBM 2741. A
description of this type of terminal may help to explain the

proper use of the GA command.

The terminal-computer connection is always under control of
either the user or the computer. Neither can unilaterally
seize control from the other; rather the controlling end must
relinguish its control explicitly. At the terminal end, the
hardware is constructed so as to relinquish control each time
that a "line" is terminated (i.e., when the "New Line" key is
typed by the user). When this occurs, the attached (local)

Postel & Reynolds [Page 5]

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://tools.ietf.org/pdf/rfc854
https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE




