
. . Control No. Patent Under Reexamination
Transmittal of Communication to

Third Party Requester 6629163

Examiner Art Unit
Inter Partes Reexamination

SALMAN AHMED 3992

The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --

po (THIRD PARTY REQUESTER’S CORRESPONDENCE ADDRESS)

IRELL & MANELLA, LLP

DAVID MCPHIE
840 NEWPORT CENTER DR., STE 400
NEWPORT BEACH, CA 92660

Enclosed is a copy of the latest communication from the United States Patent and Trademark Office

in the above-identified reexamination prceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication,
the third party requester of the infer partes reexamination may once file written comments within a

period of 30 days from the date of service of the patent owner's response. This 30-day time period is

statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the infer partes reexamination, no responsive
submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed to the

Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the endof the

communication enclosed with this transmittal.

U.S. Patent and Trademark Office Paper No. 20120809
PTOL-2070 (Rev. 07-04)

JNPR-IMPL_30024_

Page 1 of 146 Implicit Exhibit 2003
Juniper v. Implicit

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

Address: COMMISSIONER FOR PATENTS

P.O. Box 1450

Alexandria, Virginia 22313-1450

uspto, gov

APPLICATION NO.
|

FILING DATE FIRST NAMED INVENTOR
|

ATTORNEY DOCKET NO. | CONFIRMATION NO,
|

95/000,659 02/13/2012 6629163 6219

7590 10/01/2012 |EXAMINER
HEIM, PAYNE & CHORUSH, LLP
600 TRAVIS STREET
SUITE 6710

HOUSTON, TX 77002

AHMED, SALMAN

|
ART UNIT

|
PAPER NUMBER |

3992

[MAIL DATE
|

DELIVERY MODE

10/01/2012 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-90A (Rev. 04/07)

JNPR-IMPL_30024_

Page 2 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Control No. Patent Under Reexamination

ACTION CLOSING PROSECUTION
95/000,859

6629163
|

(37 CFR 1.949) Examiner Art Unit

SALMAN AHMED 3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --

Responsive to the communication(s) filed by:
Patent Owner on 04 June, 2012
Third Party(ies) on 30 August, 2012

Patent owner may once file a submission under 37 CFR 1.951(a) within 1 month(s) from the mailing date of this

Office action. Where a submission is filed, third party requester may file responsive comments under 37 CFR

1.951(b) within 30-days (not extendable- 35 U.S.C. § 314(b)(2)) from the date of service of the initial

submission on the requester. Appeal cannot be taken from this action. Appeal can only be taken from a

Right of Appeal Notice under 37 CFR 1.953.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central
Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

PART |. THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:

1. B Notice of References Cited by Examiner, PTO-892
2. [_] Information Disclosure Citation, PTO/SB/08

PART Il. SUMMARY OF ACTION:

1a. Claims 1,15 and 35 are subject to reexamination.

1b.[_] Claims are not subject to reexamination.

2. Claims have been canceled.

3. Claims are confirmed. [Unamended patent claims]

4, Claims are patentable. [Amended or new claims]

5. Claims 1,15 and 35 are rejected.

6. Claims are objected to.

7. [_] The drawings filed on []are acceptable are not acceptable.

8 The drawing correction request filed on is: approved. disapproved.

9 Acknowledgment is made of the claim for priority under 35 U.S.C. 119 (a)-(d). The certified copy has:

[|] been received. not been received. been filed in Application/Control No

Other

U.S. Patent and Trademark Office Paper No. 20120809
PTOL-2065 (08/06)

JNPR-IMPL_30024_

Page 3 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 2

Art Unit: 3992

DETAILED ACTION

1. This Office action addresses claims 1, 15 and 35 of United States Patent No.

6,629,163 (Balassanian, Edward) in response to Patent Owner (hereinafter PO)

response dated 6/4/2012 and Third Party Comment dated 8/30/2012 for inter partes

reexamination.

Information Disclosure Statement

2. The information disclosure statements (IDS) submitted have been considered by

the examiner to the extent that they have been explained in the submissions.

Status of the Claims

3. Original claims 1, 15 and 35 are rejected.

Response to Arguments

4. PO argues in pages 2-3:

After Juniper Networks filed its reexamination request, United States District Judge

Susan Illston issued a Markman Order in the Related Litigation (attached as Exhibit 2, F ebruary

29, The Court’s Order—which was not before the PTO when it granted the

reexamination request—construed several terms at issue in this reexamination. Although a

Markman Order is not binding on the PTO, such an Order nonetheless reflects a decision from

the District Court on the meaning of particular claim terms in light of the specification and other

JNPR-IMPL_30024_

Page 4 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 3

Art Unit: 3992

intrinsic evidence, and thus should be considered when the PTO construes those same terms for

the purpose of reexamination. In this
case, Implicit respectfully submits that the PTO should

follow the District Court’s constructions, in part, because they were rendered after both Implicit

and Juniper Networks fully briefed
and argued the issues, and because they reflect the considered

judgment of an Article IIT judge. There is no point in re-inventing the (claim construction) wheel

in this reexamination.

However, Examiner respectfully disagrees with PO’s assertion. "[I]n PTO

reexamination, the standard of proof- a preponderance of evidence — is substantially

lower than in a civil case" and there is no presumption of validity in reexamination

proceedings." 678 F.3d 1357, 1364 (Fed. Cir. 2012) (internal citations omitted): see also

Old Reliable Wholesale, Inc. v. Cornell Corp., 635 F.3d 539, 548 n.6 (Fed. Cir. 2011)

("Whereas clear and convincing evidence is required to invalidate a patent in district

court, a patent can be invalidated during PTO reexamination by a simple

preponderance of the evidence.").

PO arques in page 11:

The Examiner’s positions regarding the proper constructions of the terms in claims 1, 15,

and 35 are not clear. For example, while the Office Action includes statements to the effect that

“Implicit has taken a broad view” or “under Implicit’s apparent claim constructions” (see,

Office Action at 4, 9, 10, and 17), there is no indication how the Examiner believes the claims

should be construed. Additionally, the Examiner did not have the benefit of the District Court’s

claim constructions when the Office Action was issued.

JNPR-IMPL_30024_

Page 5 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 4

Art Unit: 3992

Patent Owner submits that the PTO should follow the District Court’ s constructions,

which have been fully vetted and argued
by both parties. Although the Federal Circuit has held

that a Markman orderin a district court proceeding is not necessarily binding on the PTO, the

District Court considered the same claim language and same intrinsic evidence at issue in this

reexamination when reaching its constructions. Moreover, after a Markman order has issued, the

boundaries
of

the “broadest reasonable interpretation” should reflect
the fact that actual

boundaries have been identified by
a

court.
Cf In re Skvorece, 580 F. 3d 1262, 1267 (Fed. Cir.

2009) (The protocol
of

giving
claims their broadest reasonable interpretation during

examination does not include giving claimsa legally incorrect interpretation.”).

However, Examiner respectfully disagrees with PO’s assertion. Examiner has

made clear in his office action, his postion by way of rejections, regarding the proper

construction of the terms in the claims 1, 15 and 35. Examiner’s claim construction in

the rejections of the Office Action was based on the Third Party Requester’s

explaination on claim construciton in the original Request dated 02/13/2012, pages 21-

23, incorporated here by reference.

"Claims are given ‘their broadest reasonable interpretation, consistent with the

specification, in reexamination proceedings.” /n re Trans Texas Holding Corp., 498 F.3d

1290, 1298 (Fed. Cir. 2007) (quoting In re Yamamoto, 740 F.2d 1569, 1577 (Fed. Cir.

1984). "Giving claims the broadest reasonable construction ‘serves the public interest

by reducing the possibility that claims, finally allowed, will be given broader scope than

is justified." /n re Am. Acad. ofSci. Tech 367 F.3d 1359, 1365 (Fed. Cir. 2004)

(quoting Yamamoto, 740 F.2d at 1571). "Construing claims broadly during prosecution

JNPR-IMPL_30024_

Page 6 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 5

Art Unit: 3992

is not unfair to the applicant (or, in this case, the patentee), because the applicant has

the opportunity to amend the claims to obtain more precise claim coverage." /n re Trans

Texas Holding Corp., 498 F.3d 1290, 1298 (Fed. Cir. 2007) (citing Yamamoto, 740 F.2d

at 1571-72 and In re Zletz, 893 F.2d 319, 322 (Fed. Cir. 1989)). "The Board is required

to use a different standard for construing claims than that used by district courts." /n re

Am. Acad. ofSci. Tech Ctr., 367 F.3d 1359, 1369 (Fed. Cir. 2004). Indeed, the Federal

Circuit has repeatedly held that "it is error for the Board to 'apply the mode of claim

interpretation that is used by courts in litigation, when interpreting the claims of issued

patents in connection with determinations of infringement and validity.” Id. (citing Z/etz,

893 F.2d at 321); see also In re Morris, 127 F.3d 1048, 1054 (Fed. Cir. 1997) (“It would

be inconsistent with the role assigned to the PTO in issuing a patent to require it to

interpret the claims in the same manner as judges who, post-issuance, operate under

the assumption that the patent is valid)." Instead, the PTO is empowered and
“obligated

to give claims their broadest reasonable interpretation during examination." Id. Thus, in

the instant case "the pending claims must be interpreted as broadly as their terms

reasonably allow." /n re Zletz, 893 F.2d 321.

PO argues in pages 12-13:

JNPR-IMPL_30024_

Page 7 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 6

Art Unit: 3992

It is well-settled that the claim terms must be interpreted as they would be by one

skilled in the art based on the claim language and in light of the specification. This axiom

applies equally to litigation and reexamination. See Phillips v. AWH Corp., 415 F.3d 1303,

1316-17 (Fed. Cir. 2005) (en banc) (“The Patent and Trademark Office (‘PTO’) determines the

scope of claims in patent applications not solely on the basis of the claim language, but upon

giving claims their broadest reasonable construction ‘in light of the specification as it would be

interpreted by one of ordinary skill in the art.’”). While the PTO gives claim terms their

“broadest reasonable interpretation,” it cannot give terms their broadest possible interpretation;

zuise of “interpretation.”

MPEP § 2111 states: “During patent examination, the pending claims must be ‘given

their broadest reasonable interpretation consistent with the specification.” In re Morris, 127

F.3d 1048, 1054 (Fed. Cir. 1997) (emphasis added). This statement contains two requirements:

the interpretation must be “reasonable,” and it must be “consistent with the specification.”

Moreover, the PTO must pay deference to any interpretive guidance offered in the specification,

and must view the claims from the perspective of one skilled in the art:

Some cases state the standard as “the broadest reasonable interpretation,” see,

e.g., Inre Van Geuns, (Fed.Cir.1993), others include the qualifier “consistent with

the specification” or similar language, see, e.g., In. re Bond, 910 F.2d 831, 833

(Fed.Cir.1990). Since it would be unreasonable for the PTO to ignore any

interpretive guidance afforded by the applicant's written description, either

phrasing connotes the same notion: as an initial matter, the PTO applies to the

verbiage of the proposed claims the broadest reasonable meaning of the words in

their ordinary usage as they would be understood by one of ordinary skill in

the art, taking into account whatever enlightenment by way of definitions or
otherwise that may be afforded by the written description contained in the

applicant's specification.

Id. (emphasis added). Thus, the PTO’s claim interpretation must follow the meaning accorded

by one skilled in this art, when viewed in light of the entirety of the °163 specification. Jn re

JNPR-IMPL_30024_

Page 8 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 7

Art Unit: 3992

Cortright, 165 F.3d 1353, 1359 (Fed. Cir. 1999); In re Morris, 127 F.3d at 1054; MPEP

§ 2111.01-ILL.

Consistent with these principles, the Federal Circuit recently issued a strong

admonishment that the “broadest reasonable interpretation” rule is not a “license” to ignore the

words of the claims or the teachings of the specification. In Jn re Suitco Surface, Inc., 603 F.3d

1255 (Fed. Cir. 2010), the court found that the PTO's construction “though certainly broad, is

unreasonably broad.” /d at 1260. It stated that “[t]he broadest construction rubric ... does not

give the PTO an unfettered license to interpret claims to embrace anything remotely related to

the claimed invention. Rather, claims should always be read in light of the specification and

followed when construing the °163 claims.

However, Examiner respectfully disagrees with PO’s assertion. "[I]n PTO

reexamination, the standard of proof- a preponderance of evidence — is substantially

lower than in a civil case" and there is no presumption of validity in reexamination

proceedings." 678 F.3d 1357, 1364 (Fed. Cir. 2012) (internal citations omitted); see also

Old Reliable Wholesale, Inc. v. Cornell Corp., 635 F.3d 539, 548 n.6 (Fed. Cir. 2011)

("Whereas clear and convincing evidence is required to invalidate a patent in district

court, a patent can be invalidated during PTO reexamination by a simple

preponderance of the evidence."). "Claims are given 'their broadest reasonable

interpretation, consistent with the specification, in reexamination proceedings." /n re

Trans Texas Holding Corp., 498 F.3d 1290, 1298 (Fed. Cir. 2007) (quoting /n re

Yamamoto, 740 F.2d 1569, 1577 (Fed. Cir. 1984). "Giving claims the broadest

reasonable construction ‘serves the public interest by reducing the possibility that-

JNPR-IMPL_30024_

Page 9 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 8

Art Unit: 3992

claims, finally allowed, will be given broader scope than is justified." Jn re Am. Acad.

ofSei. Tech Ctr., 367 F.3d 1359, 1365 (Fed. Cir. 2004) (quoting Yamamoto, 740 F.2d at

1571). "Construing claims broadly during prosecution is not unfair to the applicant (or, in

this case, the patentee), because the applicant has the opportunity to amend the claims

to obtain more precise claim coverage." /n re Trans Texas Holding Corp., 498 F.3d

1290, 1298 (Fed. Cir. 2007) (citing Yamamoto, 740 F.2d at 1571-72 and In re Zletz, 693

F.2d 319, 322 (Fed. Cir. 1989)). "The Board is required to use a different standard for

construing claims than that used by district courts." re Am. Acad. ofSci. Tech

367 F.3d 1359, 1369 (Fed. Cir. 2004). Indeed, the Federal Circuit has repeatedly held

that "it is error for the Board to ‘apply the mode of claim interpretation that is used by

courts in litigation, when interpreting the claims of issued patents in connection with

determinations of infringement and validity." Id. (citing Z/etz, 893 F.2d at 321); see also

In re Morris, 127 F.3d 1048, 1054 (Fed. Cir. 1997) ("It would be inconsistent with the

role assigned to the PTO in issuing a patent to require it to interpret the claims in the

same manner as judges who, post-issuance, operate under the assumption that the

patent is valid)." Instead, the PTO is empowered and "obligated to give claims their

broadest reasonable interpretation during examination." Id. Thus, in the instant case

"the pending claims must be interpreted as broadly as their terms reasonably allow." /n

re Zletz, 893 F.2d 327.

Within pages 13-17, PO describes various legal standard for anticipation

rejection and legal standards for obviousness rejections.

JNPR-IMPL_30024_

Page 10 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 9

Art Unit: 3992

In response, Examiner submits that, a claim is anticipated where "each and every

element as set forth in the claim is found, either expressly or inherently described, in a

single prior art reference." See MPEP § 2131, quoting Verdegaa/Bros. v. Union Oil Co.

of California, 814 F.2d 628, 631 (Fed. Cir. 1987). "When the reference is silent about

the asserted inherent characteristic, such gap in the reference may be filled with

recourse to extrinsic evidence" without affecting the anticipatory nature of the reference.

See

|

MPEP § 2131.01, quoting Continental Can Co. USA v. Monsanto Co., 948 F.2d 1264,

1268 (Fed. Cir. 1991). "This modest flexibility in the rule.., accommodates situations in

which the common knowledge of" the technologists is not recorded in the reference." Id.

Examiner further submits that, Obviousness may be shown by considering

“whether two or more pieces of prior art could be combined, or a single piece of prior art

could be modified, to produce the claimed invention." /nnogenetics v. Abbott Labs., 512

F.3d 1363, 1373 (Fed. Cir. 2008). "Prior art is not limited just to the references being

applied, but includes the understanding of one of ordinary skill in the art." See MPEP §

2141. Indeed, “the rationale to modifyor combine the prior art does not have to be’

expressly stated in the prior art; the rationale may be expressly or impliedly contained in

the prior art or it may be reasoned from knowledge generally available to one of

ordinary skill in the art, established scientific principles, or legal precedent established

by prior case law. See MPEP § 2144.

In fact, "[I]t is not necessary that the prior art suggest the combination to achieve

the same advantage or result discovered by applicant." Id. Prior art from "a different

JNPR-IMPL_30024_

Page 11 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 10

Art Unit: 3992

field" is combinable if "it is one which, because of the matter with which it deals, logically

would have commended itself to an inventor's attention in considering his problem." /n

re Icon Health And Fitness, Inc., 496 F.3d 1374, 1378 (Fed. Cir. 2006); see also KSR

Int'l Co, v. Teleflex, Inc., 127 S. Ct. 1727, 1742 (Fed. Cir. 2007) ("familiar items may

have obvious uses beyond their primary purposes"). Examiner has duly provided

support for its obviousness rejections in accordance with these principles. PO also

urges the Examiner to consider and give weight to supposed secondary indicia of non-

obviousness, relying on a declaration from Mr. Edward Balassanian. The law is clear

that "[e]vidence of commercial success, or other secondary considerations, is only

significant if there is a nexus between the claimed invention and the commercial

success.” Ormco Corp. v. Align Tech., Inc., 463 F.3d 1299, 1311-12 (Fed. Cir. 2006):

see also Eurand, Inc. v. Mylan Pharms., Inc., 676 F.3d 1063, 1079 (Fed. Cir. 2012).

("[C]ourts must exercise care in assessing proffered evidence of objective

considerations, giving such evidence weight only where the objective indicia are

attributable to the inventive characteristics of the discovery as claimed in the patent.").

As will be shown below, PO has failed entirely to put forth any competent evidence of

secondary indicia of non-obviousness.

PO arques in page 17:

JNPR-IMPL_30024_

Page 12 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 11

Art Unit: 3992

Decasper describes a router architecture that consists of an IP router core containing a

predefined sequence of numerous “components” and “gates” that process each packet received

by the router. As explained in the next section, the Decasper router only processes one data

format (IP). At the heart of Decasper’s router arckitecture lies an “IPv4/IPv6 core,” which

“contains the ... components required for packet processing which do not come in the form of

dynamically loadable modules.” Decasper at 3, col. 2 (emphasis added). Decasper expressly

states, therefore, that the IP core “components” are not “dynamically” identified.

Examiner respectfully disagrees with PO’s assertion. The Office Action clearly

identified Decasper98's "plugins" as the claimed "individual components" that are

dynamically selected to create a sequence in accordance with this claim limitation. The

Examiner explained in detail how the process of selection among the various available

plugins occurs dynamically, after the first packet is received. OA at 15-17.

PO arques in pages 17-18:

“The core is also responsible for demultiplexing individual packets to plugins” through a

series of gates within the IP core. Jd. When a packet arrives at the router, it is passed to the IP

core by the network hardware. Jd at 5, col. 2. All packets are processed through the IP core,

JNPR-IMPL_30024_

Page 13 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 12

Art Unit: 3992

without exception. Figure 3 of Decasper, which depicts the overall system architecture and data

path for an IP router, illustrates the processing path through the IP core via clock-wise arrows:

Excerpt from Figure 3 of Decasper

Each packet proceeds through the IP core in the same manner, until it encounters a gate.

“A gate is a point in the IP core where the flow of execution branches off to an instance of a

plugin.” Decasper at 4, col. 2. Gates are fixed at locations within the routing system where

“interactions with plugins need to take place.” Decasper at 5, col. 1. Decasper denotes gates in

Figure 3 by an “IT” symbol within the IP core. See Figure 3 excerpt, above. Plugins are “bound”

to a gate during the configuration of the router. Decasper at 4, col 1. The “task” of a gate is to

determine if a packet (based only on its header) needs to be processed by a plugin bound to the

gate and—if so—which one. Decasper at 5, col 2, These
plugins

represent extensions to the IP

core of the router that provide optional functions such as IP security and packet scheduling.

Decasper at 6, col 2. As shown, the location of the gates within the IP core processing path is

fixed, and the location of optional plug-in function calls is also fixed (since plug-ins are bound to

the gates prior to the receipt of any packets).

Examiner respectfully disagrees with the PO’s assertion and agrees with the

Third Party Requester’s response in pages 7-12. As desribed by the Third Party

JNPR-IMPL_30024_

Page 14 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 13

Art Unit: 3992

Requester, PO virtually ignores discussion of these plugins in its Response, and instead

focuses on two other aspects of Decasper98: the "IPv4/IPv6 core" (or "core") and the

"gates." PO suggests that certain aspects of the core and gates are not dynamic but

rather "fixed," and thus concludes that Decasper98 does not meet the "dynamically

identifying" limitation. But even if it were true that all flows traversed the same path

through the core and the same sequence of gates (which, as shown below, is incorrect),

that fact would have no bearing upon the dynamic identification of plugins in

Decasper98, which was the basis for the Examiner's findings regarding this limitation.

The plugins of Decasper98 are not the same thing as the core or gates. Decasper98

states that the core only "contains the (few) components required for packet processing

which do not come in the form of dynamically loadable modules.". These "few"

components in the core are "mainly functions that interact with network devices.”. By

contrast, the plugins cited in the Office Action are described separately from these few

core components, and Decasper98 explicitly states that "all plugins come in the form of

dynamically loadable kernel modules.” Similarly, although dynamic selection of a plugin

may happen at a "gate" (described as "a point in the IP core where the flow of execution

branches off to an instance of a plugin"), the gate is not_the plugin itself.

PO argues in pages 18-19:

It is clear, therefore, that all packets in Decasper receive the same general processing

through the IP core, and all packets are processed by the same predetermined number of gates in

the same predetermined order. The only difference between the processing paths of packets is

JNPR-IMPL_30024_

Page 15 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 14

Art Unit: 3992

whether or not they branch out at a specific location (a gate) to a plugin. As the Examiner points

out, “The processing of the first packet of a new flow with n gates involves n filter table

lookups.” See, e.g., Office Action at 14, 19. Thus—prior to the receipt of the first packet—it has

been predetermined that packets will necessarily pass through n gates. Furthermore, the

sequence of those gates has been predefined.

|

The above discussion makes clear that the sequence of components and gates within the

Decasper IP core is fixed before the first packet arrives. As such, Decasper. does not

“dynamically identif[y] a non-predefined sequence of components for processing the packets ...,

wherein dynamically identifying includes selecting individual components to create the non-

predefined sequence of components after the first packet is received.”?

Examiner respectfully disagrees with the PO’s assertion and agrees with the

Third Party Requester’s response in pages 7-12. As desribed by the Third Party

Requester, PO's arguments are clearly directed to the core and gates of Decasper98

and not the plugins. For example, PO argues that "all packets are processed by the

same predetermined number of gates in the same predetermined order." Response at

18. PO then jumps seemingly as a non sequitur to the conclusion that "[t]he above

discussion makes clear that the sequence of components and gates within the

Decasper IP core is fixed before the first packet arrives." Response at 19.

However, Decasper98 explicitly discloses an example in which plugin

components SEC2, PS3, RT1, and OPT2 are identified for a first flow, and plugin

components SEC1, PS1, RT1, OPT1 are identified for a second flow:

JNPR-IMPL_30024_

Page 16 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 15

Art Unit: 3992

Flow table \
Flow OPT| SEC?) pss| RTM | OpT2
TCP, 1234, 80,0)

| SECT| Pst | | opti
TCP, 1234, 25.0)

The fact that Decasper98 can be viewed loosely as performing the same general type of

processing at a gate (e.g., security processing of some kind at a security gate, packet

scheduler processing of some kind at a packet scheduling gate) is irrelevant. Itis the

selection of individual components (e.g., SEC2 or SEC1 plugin, PS3 or PS 1 plugin)

based on characteristics of the first packet received that matters for purposes of the

claims.

And indeed, Decasper98's repeated selection from pools of different possible

plugins is fundamental to its design as can be seen from the figure below:

The Decasper98 approach also falls squarely within the scope of the claims as

interpreted by PO. For example, PO's Response provides specific examples of protocol

stacks as practicing the claims. E.g., Response at page 4 ("OSI model"), 8-9 ("Ethernet"

to "IP" to "TCP"; "identifies a sequence” by "examining the packets.., layer by layer").

JNPR-IMPL_30024_

Page 17 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 16

Art Unit: 3992

Thus, PO believes that its invention can cover protocol stacks conforming to the OSI

model, even where the same general type of processing is performed at each layer, and

in a predetermined order: e.g., a layer 2 component performs data link processing (such

as Ethemet), by a layer 3 component performs network processing (such as IP), anda

layer 4 component performs transport processing (such as TCP).

However, numerous are the possible sequences of plugins, in fact, that it would

generally be "infeasible" to even list them in memory ahead of time. Instead,

identification of the sequence of plugins for a flow must wait for the arrival of its first

packet, when the various filters can then be applied. Thus, Decasper98 clearly

discloses "dynamically identifying a non-predefined sequence of components."

Decasper98 also clearly discloses “individual components" that are selected: each

individual plugin is selected on the basis of a separate, individual filter table that is

matched against the first packet of the flow. Decasper98 also clearly discloses per the

claims that this selection is performed "after the first packet is received," since this’

matching against the first packet cannot take place until after the first packet is received.

Accordingly, the plugins of Decasper98 clearly disclose this claim limitation.

Because Decasper98's plugins are dynamically identified and selected as

explained above, that claim limitation is satisfied regardless of the characteristics of any

other components disclosed in Decasper98. But in any event, PO's argument regarding

the core and gates of Decasper98 can also be disregarded on the independent basis

that PO's description of these aspects of Decasper98 is technologically incorrect, in at

least two ways. First, PO mistakenly alleges that “all packets are processed by the

JNPR-IMPL_30024_

Page 18 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 17

Art Unit: 3992

same predetermined number of gates in the same predetermined order" (Response at

18). PO provides no support for this statement, and it is in fact incorrect. Decasper98

does note that the first packet of a particular flow can pass through a sequence of

gates, and that a plugin selection will be recorded for each of these gates. But

Decasper98 does not state that packets of every flow would pass through that same

sequence of gates, and to the contrary, suggests just the opposite. See page 5 ("When

a packet arrives" and "makes its way through the core, it may encounter multiple

gates"), 7 ("since there is one filter table for every gate in our system, usually multiple

lookups (in different filter tables) are necessary for each packet that is received on an

uncached flow"). For example, Decasper98 discloses IP security processing in context

of a "virtual private network [VPN]." Page 5; Those of ordinary skill understood that for

a router to provide a VPN, the VPN packets it receives from a protected network inside

must traverse a fundamentally different path than the VPN packets it receives from an

unprotected network on the outside. E.g., VPN packets from the protected segment can

be encrypted and encapsulated for VPN tunneling only after any operations that require

the router to examine or alter the original packet's contents (such as processing its IP

options). Conversely, VPN packets from the outside must be unencapsulated and

decrypted before any operations that require the router to examine the previously

encapsulated packet's contents (such as processing its IP options). One of ordinary skill

would appreciate these two distinct and largely opposite operations simply could not

take an identical path through the core, and Decasper98 never states they would. A

VPN flow from the inside would necessarily traverse a first path through the core and be

JNPR-IMPL_30024_

Page 19 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 18

Art Unit: 3992

assigned a first set of components in a first order, while a VPN flow from the outside

would traverse a second path and be assigned a second set of components in a second

(and largely opposite) order. There is no Other apparent way that the system of

Decasper98 could function as described (e.g., to provide a VPN). Thus, PO is incorrect

when it states packets are processed at a predetermined number of gates in a

predetermined order--as confirmed by language in Decasper98 itself. Ex. at page 5

(“can"; "may") 7 ("usually").

second, PO appears to suggest a plugin must be selected for every gate that

can be encountered by the packets of a particular flow. See, e.g., Response at pages

18-19 ("It is clear, therefore, that all packets in Decasper receive the same general

processing through the IP core"). Again, assuming this is PO's suggestion, it is reading

something into Decasper98 that is not there. For each gate, there is a set of possible

plugins, each with its own filter for matching against the flow's first packet. At page 5.

The set of these filters comprises the filter table for a gate. If multiple filters match at a

gate, the best ("most specific") match is selected. Pages, 5, 7-8. However, it is certainly

possible that no filter at the gate would match, in which case no plugin would or could

be selected for the gate. E.g., at page 7 (Table 1) (showingafilter table for a gate which

could assign a plugin only to flows having source address "129.* or "128.252.153.*").

For example, Decasper98 explains: "sometimes after a packet is received by the

hardware, IP security processing has to be done if the system is configured as an entry

point into a virtual private network."). And indeed, it was well understood by those of

ordinary skill in the art that "sometimes" a router must perform security processing (e.g.,

JNPR-IMPL_30024_

Page 20 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 19

Art Unit: 3992

on flows to other branches of the company within the corporate VPN), but "sometimes"

it must not (e.g., on flows to public websites such as Yahoo or Google, outside the

corporate VPN). And, of course, Decasper98's filter tables would be configured

accordingly. Thus, Decasper98 could assign components SEC2, PS3, RT1, OPT2 toa

first flow and merely PSI, RT1 to a second (skipping any security and IP options

processing entirely. Thus, to the extent PO bases its argument on the notion that

packets in Decasper98 all follow the same predefined path through the core or all

traverse the same predefined sequence of gates, that argument fails as relying on.an

incorrect technological reading of Decasper98. In summary, Decasper98 clearly

teaches that, after receiving a first packet, the system dynamically selects and identifies

individuals plugins to create a sequence that is stored in the flow table for future packets

in the same flow.

quickly and efficiently. As we show below, the filter

lookup to determine the right plugin instance to which a

packet should be passed happens only for the first packet
ofa burst: Subsequent packets get this information from

a fast flow cache which temporarily stores the informa-

tion gathered by processing the first packet. The filter
lookup itselfis efficiently implemented using a Directed

Acyclic Graph (DAG). We elaborate on these techniques

Accordingly, Decasper98 satisfies this limitation.

PO argues in page 20:

JNPR-IMPL_30024_

Page 21 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number; 95/000,659 Page 20

Art Unit: 3992

As an initial matter, the obviousness law requires that a prior art reference must be

considered in its entirety, including portions that would lead away from the claimed invention.

WL. Gore & Assoc., Inc. v. Garlock, Inc., 721 F.2d 1540, 1552-53 (Fed. Cir. 1983). Decasper

discloses an architecture for an IP routing system. An IP router and its components, by

definition, are only designed to handle packets in the IP (Internet Protocol) format—a single

format. Accordingly, the Decasper architecture assumes that all packets will be in IP format, and

therefore that the input and output of every component will be a packet with an IP format. Given

the single format of data (IP) that Decasper processes, it teaches away from considering format

compatibility when “dynamically identifying a non-predefined sequence of components.”

Again, PO’s arguments miss the mark as a threshold matter because they fail to

address the actual aspects of Decasper98 that the Examiner relied upon in the Office

Action. The Office Action clearly identified Decasper98's “plugins” as the claimed

“individual components" that are dynamically selected to create a sequence in

accordance with this claim limitation. The Examiner explained in detail above, how the

process of selection among the various available plugins occurs dynamically, after the

first packet is received. OA at 15-17.

PO argues in page 20:

JNPR-IMPL_30024_

Page 22 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 21

Art Unit: 3992

Nor would there be any “reason”—as required by KSR—to consider format compatibility

in Decasper. The architecture is specifically designed to handle one format (IP), and thus, one of

ordinary skill would be unconcerned about matching different formats. In fact, adding

functionality to check or cormmpare the output format of a packet processed by one IP component

with the input format required by the next IP component, would add unnecessary andcostly

overhead. In short, no skillea person looking at Decasper would add the claim requirement.

However, Examiner respectfully disagrees with PO’s asseriton. The Office Action clearly

stated “component” being “plug-in” and “formats” being various Extended Integrated

Service Router (EISR) related messaging of the packet. Decasper98 defines the plug-

ins as follows in page 5:

Plugins: Figure 2 shows four different types of plugins -

plugins implementing iPv6 options, plugins for packet

scheduling, plugins to calculate the best-matching prefix

(BMP, used for packet classificationand routing), and

plugins for IP security. Other plugin types are also possi-

ble: e.g., a routing plugin, a statistics gathering plugin
for network management applications, a plugin for con-

‘gestion control (RED), a plugin monitoring TCP conges-
tion backoff behaviour, a firewall plugin. Note that all

plugins come in the form of dynamically loadable kernel

modules.

Clearly, IP security related format handling related to VPN will be different then

that of non-IP security related format handling.

JNPR-IMPL_30024_

Page 23 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 22

Art Unit:

Similarly, IP security related format handling related to VPN will be different then

that of Firewall related format handling.

Therefore, Examiner respectfully disagrees with PO’s assertion, and submits that

within IP, various plugins handle various different fomating needs (such as, scheduling,

classifying, security, statistics, congestion, firewall etc.).

PO argues in page 20:

Not only is there no reason to add format compatibility to Decasper, the Office Action

fails to cite to a single piece of evidence for adding such a feature. See Office Action at 21.

There is no cited patent or printed publication or any other document, instead, there are only bald

assertions without the evidentiary support required by the law.

However, Examiner respectfully disagrees with PO’s assertion. Examiner stated

in prior Office Action page 21:

JNPR-IMPL_30024_

Page 24 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 23

Art Unit: 3992

Regarding the limitation "such that the output format of the components ... match

the input format of the next component,” it was well-known to those of ordinary skill in

the art that certain operations on a packet must be performed in a certain order: e.g., if

a packet is first converted into an encrypted format by-a first component, a subsequent

component would be unable to, e.g., process any IPv6 option headers in the packet, or

to insert any new ones (because it was expecting to receive the packet in an

unencrypted format). Thus, it was certainly obvious for one of ordinary skill in the art to

arrange the sequence of components in a compatible manner, such that the output

format of one matches the input format of the next.

MPEP 2144.03 Section D states:

lf the examiner adds a reference in the next Office action after applicant's

rebuttal, and the newly added reference is added only as directly corresponding

evidence to support the prior common knowledge finding, and it does not result in a new

issue or constitute a new ground of rejection, the Office action may be made final...See

MPEP § 706.07(a).

Examiner produces the following as directly corresponding evidence to support

the prior common knowledge that output format of the components match the input

format of the next component:

US PAT 6192409 states in column 1:

JNPR-IMPL_30024_

Page 25 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 24

Art Unit: 3992

A full electronic switching system is connected with an

external X.25 protocol conversion unit by means of an IPC

(Inter Process Communication) or LAN (Local Area

Network) in order to communicate with an X.25 network

through a single connection port. The IPC or LAN format of
the data from the switching system is converted into the

X.25 protocol format by the X.25 conversion unit so as to be

transferred to the external X.25 network. Conversely, the

X.25 protocol format from the external X.25 network is

converted into the IPC or LAN format so as to be transferred

to the switching system. as

US PAT 6768738 states in column 13:

When a packet is inputted from an ith line 123-1 to a line

interface unit a receiver circuit adds an internal

header including a line number i as an input line number 407

to the packet to thereby convert the received packet to an

internal packet format useful inside the router, then stores

the internal packet in the input FIFO buffer 126-1. At this

Clearly, it was well known, and certainly obvious for one of ordinary skill in the art

to arrange the components in a compatible manner, such that the output format_of one

component matches the input format of the next. Examiner has cited these patents as

evidentiary support of the well-known aspect of the knowledge of ordinary skill in the art

during the time of the invention.

PO arques in pages 20-21:

Moreover, those assertions are technically inaccurate. As noted above, the Examiner

states that “it was well-known to those of ordinary skill in the art that certain operations of a

JNPR-IMPL_30024_

Page 26 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 25

Art Unit: 3992

packet must be performed in a certain order: e.g., if a packet is first converted into an encrypted

format by a first component, a subsequent component would be unable to, e.g. process any IPv6

option headers in the pack, or to insert new ones (because it was expecting to receive the packet

in unencrypted format).” Office Action at 21. The Examiner’s logic seems to be based.on a

faulty understanding of how IP routers function. First, it should be reiterated that the packets

processed by the router all have the same format—that is, they are all IP packets. Secend,

“encryption” would be performed upon the contents of a packet—not the packet header that

Decasper inspects. As a fundamental tenant of IP routing, the packet header contains information

that can be rewritten, but is never encrypted, as it must remain a well-formatted IP header in

order for other routers to accept it and continue the routing process. Only the content within the

IP packet is encrypted, that is, encryption takes place in the transport layer and above, thus

preserving the format of the packet as an IP packet. Third, there is no evidence that the plugins

in Decasper depend on any input or output constraints other than IP. Even the Examiner’s

example of encryption does not follow because the gates do not know if the previous plugin did

or did not encrypt the packet—they merely assume IP packets. Accordingly—contrary to the

assumption of the Examiner—a subsequent component would be able to process the encrypted

IP packet, because the packet would still be in IP format and its header would not be encrypted.

Thus, the Examiner’s argument that it is well-known that encryption of a packet would prevent

subsequent components from processing the header of the packet is incorrect.

However, Examiner respectfully disagrees with PO’s assertion. Clearly, it was

well known, and certainly obvious for one of ordinary skill in the art to arrange the

components in a compatible manner, such that the output format of one component

matches the input format of the next. If a component is expecting encrypted data, it will

JNPR-IMPL_30024_

Page 27 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 26

Art Unit: 3992

not process unencrypted data and vice versa. Therefore, components have to comply

with formatting of packets for successful and error-free processing.

MPEP 2144.03 Section D states:

If the examiner adds a reference in the next Office action after applicant's

rebuttal, and the newly added reference is added only as directly corresponding

evidence to support the prior common knowledge finding, and it does not result in a new

issue or constitute a new ground of rejection, the Office action may be made final...See

MPEP § 706.07(a).

Examiner produces the following as directly corresponding evidence to support

the prior common knowledge that output format of the components match the. input

format of the next component:

US PAT PUB 2005/0265309 states in paragraph [0042]:

[0042] This incorrect forwarding can be avoided by add-

ing a feature to the CM such that only encrypted packets are

considered for forwarding by the CMs belonging to a VPN.
Since all the traffic within the VPN is encrypted and the CMs

have the decryption keys for that traffic, only that traffic

would be forwarded by the CM. Unencrypted traffic that

doesn’t belong to any WPN or encrypted traffic (using a

different key) that belong to a different VPN will be dropped

by the
te

Examiner has cited the patent publication as evidentiary support of the well-

known aspect of the knowledge of ordinary skill in the art.

Examiner, furthermore, agrees with Third Party's response regarding IP routers.

Third Party states in pages 14-21 that, the very thing that PO states can "never" happen

in an IP router is, in fact, a very common IP routing operation: the Tunnel-mode

JNPR-IMPL_30024_

Page 28 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 27

Art Unit: 3992

encryption which is used to provide virtual private networks (VPNs). It is clear that IP

security plugins of Decasper98 would perform this very type of Tunnel-mode encryption

to provide VPN functionality. Decasper98 expressly discloses security processing in

context of a "virtual private network," and expressly cites to a well-known security

standard from 1995 (RFC 1825: "Security Architecture for IP") to explain the operation

of its IP security plugin components. At pages 5, 2 ("plugins for
IP security" citing

footnote "2"), 12 (footnote "2" being "RFC 1825"); IP routers are gateways, and RFC

1825 teaches "Gateway-to-gateway encryption.., for building private virtual networks

across an untrusted backbone such as the Internet." Ex. 26 at 4. RFC 1825 explains

there are "two modes" for performing encryption:

(1) "Tunnel-mode," which encrypts and "encapsulates an entire IP datagram”

(including its IP header). Ex. 26 at 9. PO arques this mode is impossible. Response

at 21 ("the packet header.., is never encrypted, as it must remain a well-formatted IP

header in order for other routers to accept it and continue the routing process’).

(2) "Transport-mode," which encrypts and "encapsulates" only "an upper-layer

[transport] protocol (for example UDP or TCP)." Ex. 26 at 9. This is the mode described

by PO in its Response. Response at 21 ("encryption takes place in the transport layer

and above").

A router operating in Tunnel-mode encrypts the entire original IP packet from a

host (including the packet's original destination), and prepends a new, second header to

the packet. This second header can be used to address the packet to a second router

(as if through a "tunnel") across an untrusted backbone. See Ex. 26 at 4-5, 9. When the

JNPR-IMPL_30024_

Page 29 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 28

Art Unit: 3992

second router receives the packet, it decrypts the original packet in its entirety,

examines its first, original header, and forwards the packet to its original destination.

Two distinct headers (one encrypted, one not) permit delivery to two distinct

destinations along the route (first to another router, then to an end host). See Ex. 26 at

4-5, 9. This is the classic VPN design, and those of ordinary skill would certainly

understand that Tunnel-mode encryption (as opposed to Transport-mode) would be

used by Decasper98's security plugins to provide Decasper98's "virtual private network”

feature. See Ex. 25 at 5. In contrast, Transport-mode is typically used for only the

special case of "host-to-host encryption,” where there is no intervening gateway

"present in the connection” that would perform encryption for hosts as a service. See

Ex. 26 at 4-5, 9. Thus, it would be unusual for the security plugins of Decasper98 to

perform Transport-mode encryption on any of the flows traveling through the

Decasper98 router.

Thus, PO's assertion is clearly inaccurate. To provide a VPN, Decasper98's

security plugins clearly could and would perform "Tunnel-mode" encryption in which the

entirety of the original packet including its header is encrypted. And the type of

encryption cited by PO (i.e., Transport-mode) is simply not apposite to the flows through

the router that are disclosed by Decasper98.

Once a packet has been encrypted for transit through a VPN tunnel, any

subsequent components cannot meaningfully read or write any of the packet's original

header fields. This format incompatibility (encrypted vs. non-encrypted) necessarily

imposes a certain order on Decasper98's component operations. If such an order

JNPR-IMPL_30024_

Page 30 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 29

Art Unit: 3992

were not observed, the plugins could not perform their functions. Again this can be

clearly seen from US PAT PUB 2005/0265309 which states in paragraph

[0042] This incorrect forwarding can be avoided by add-

ing a feature to the CM such that only encrypted packets are

considered for forwarding by the CMs belonging to a VPN.
Since all the traffic within the VPN is encrypted and the CMs
have the decryption keys for that traffic, only that traffic

would be forwarded by the CM. Unencrypted traffic that

doesn’t belong to any VPN or encrypted traffic (using a

different key) that belong toa different VPN will be dropped

by the CM.

Examiner has cited the patent publication as evidentiary support of the well-

known aspect of the knowledge of ordinary skill in the art as per MPEP 2144.03

Section D.

PO arques in page 22:

Claim 1 requires “for each of a plurality of components in the identified non-predefined

sequence, [1] retrieving state information relating to performing the processing of the component

with the previous packet of the message; [2] performing the processing of the identified

component with the packet and the retrieved state information; and [3] storing state information

relating to the processing of the component with packet for use when processing the next packet

of the message.” In the
Related Litigation,

the Court construed state information as

“information specific to a software. routine for a specific mmessage that is not information

related to an
n

overall
pat

”
Markman Order at 14 (Ex. 2) (emphasis added). Decasper discloses

none of the claimed requirements of “retrieving,
”

“srocessing” and“storing” message-specific

state information for the components.

JNPR-IMPL_30024_

Page 31 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 30

Art Unit: 3992

However, Examiner respectfully disagrees with PO’s assertion. "[I]n PTO

reexamination, the standard of proof- a preponderance of evidence — is substantially

lower than in a civil case" and there is no presumption of validity in reexamination

proceedings." 678 F.3d 1357, 1364 (Fed. Cir. 2012) (internal citations omitted); see also

Old Reliable Wholesale, Inc. v. Cornell Corp., 635 F.3d 539, 548 n.6 (Fed. Cir. 2011)

("Whereas clear and convincing evidence is required to invalidate a patent in district

court, a patent can be invalidated during PTO reexamination by a simple

preponderance of the evidence."). "Claims are given ‘their broadest reasonable

interpretation, consistent with the specification, in reexamination proceedings." /n re

Trans Texas Holding Corp., 498 F.3d 1290, 1298 (Fed. Cir. 2007) (quoting /n re

Yamamoto, 740 F.2d 1569, 1571 (Fed. Cir. 1984). "Giving claims the broadest

reasonable construction 'serves the public interest by reducing the possibility that

claims, finally allowed, will be given broader scope than is justified." In re Am. Acad.

ofSci. Tech Ctr., 367 F.3d 1359, 1365 (Fed. Cir. 2004) (quoting Yamamoto, 740 F.2d at

1571). "Construing claims broadly during prosecution is not unfair to the applicant (or, in

this case, the patentee), because the applicant has the opportunity to amend the claims

to obtain more precise claim coverage." In re Trans Texas Holding Corp., 498 F.3d

1290, 1298 (Fed. Cir. 2007) (citing Yamamoto, 740 F.2d at 1571-72 and In re Zletz, 893

F.2d 319, 322 (Fed. Cir. 1989)). "The Board is required to use a different standard for

construing claims than that used by district courts." In re Am. Acad. ofSci. Tech Ctr,

367 F.3d 1359, 1369 (Fed. Cir. 2004). Indeed, the Federal Circuit has repeatedly held

that "it is error for the Board to ‘apply the mode of claim interpretation that is used by

JNPR-IMPL_30024_

Page 32 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 31

Art Unit: 3992

courts in litigation, when interpreting the claims of issued patents in connection with

determinations of infringement and validity.” Id. (citing Zletz, 893 F.2d at 321); see also

In re Morris, 127 F.3d 1048, 1054 (Fed. Cir. 1997) (“It would be inconsistent with the

role assigned to the PTO in issuing a patent to require it to interpret the claims in the

same manner as judges who, post-issuance, operate under the assumption that the

patent is valid)." Instead, the PTO is empowered and “obligated to give claims their

broadest reasonable interpretation during examination." Id. Thus, in the instant case

"the pending claims must be interpreted as broadly as their terms reasonably allow.” /n

re Zletz, 893 F.2d 321.

PO arques in page 22:

As an initial matter, the
Examiner appears

to
be conflating

the claim
requirement for

“storing
an

indication”
of the

path
to

avoid
re-identifying it for

subsequent packets
(which

appears above the state information limitations) and the state information requirements. This

improper conflation is evidenced bythe Examiner’s lumping all of these limitations together at

pages 17-18 of the Office Action. They are separate limitations and they must be treated as such.

Moreover, one of ordinary skill will recognize that conventional IP routers from the

1990s—like Decasper and
Kerr—do

nott contemplate the
claimed State information. This is

because all of the information needed to route a given IP packetis
contained within

the IP packet

per the specification for the Internet Protocol. Thus, these conventional IP routers operating at

the packet level do not require state information created by the processing of one packet to

process a subsequent packet. Such IP routers simply do not contemplate this type of state

management.

JNPR-IMPL_30024_

Page 33 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 32

Art Unit: 3992

However, Examiner respectfully disagrees with PO’s assertion. The "state

information" interpreted as Decasper98's "pointers" are not within the IP packet_as

alleged by the PO. Rather, they reside in the “flow table’.

PO arques in page 23:

This accepted wisdom notwithstanding, the Examiner indicates that the “state

information” disclosed by Decasper consists of “pointers.” Office Action at 18. Although

unclear, Patent Owner assumes the Examiner is either referring to the flow index (FIX), which is

a “pointer to the row in the flow table where the information associated with the flow is stored,”

or the “instance pointers” stored within the flow table, which point “to the appropriate plugins

for all gates that can be encountered by packets belonging to the corresponding flow,” as these

are the pointers referenced in the sections of Decasper that the Examiner quoted in the Office

Action. Office Action at 19-20. For the reasons discussed below, these pointers do not constitute

“information specific to a software routine” that “relate[s] to performing of the processing of the

component”
with a

packet
or any other state information limitation, as required by claim 1.

Examiner respectfully states that both pointers, i.e., “flow index” and “instance

pointer” are state information. Again regarding “information specific to a software

routine” Examiner respectfully submits that "[I]n PTO reexamination, the standard of

proof- a preponderance of evidence — is substantially lower than in a civil case" and

there is no presumption of validity in reexamination proceedings." 678 F.3d 1357, 1364

(Fed. Cir. 2012) (internal citations omitted); see also Old Reliable Wholesale, Inc. v.

Cornell Corp., 635 F.3d 539, 548 n.6 (Fed. Cir. 2011) ("Whereas clear and convincing

JNPR-IMPL_30024_

Page 34 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 33

Art Unit: 3992

evidence is required to invalidate a patent in district court, a patent can be invalidated

during PTO reexamination by a simple preponderance of the evidence."). "Claims are

given ‘their broadest reasonable interpretation, consistent with the specification, in

reexamination proceedings." /n re Trans Texas Holding Corp., 498 F.3d 1290, 1298

(Fed. Cir. 2007) (quoting In re Yamamoto, 740 F.2d 1569, 1577 (Fed. Cir. 1984). .

"Giving claims the broadest reasonable construction
‘serves

the public interest by

reducing the possibility that claims, finally allowed, will be given broader scope than is

justified." in re Am. Acad. ofSci. Tech Ctr., 367 F.3d 1359, 1365 (Fed. Cir. 2004)

(quoting Yamamoto, 740 F.2d at 1571). "Construing claims broadly during prosecution

is not unfair to the applicant (or, in this case, the patentee), because the applicant has

the opportunity to amend the claims to obtain more precise claim coverage." In re Trans

Texas Holding Corp., 498 F.3d 1290, 1298 (Fed. Cir. 2007) (citing Yamamoto, 740 F.2d

at 1571-72 and In re Zletz, 893 F.2d 319, 322 (Fed. Cir. 1989)). "The Board is required

to use a different standard for construing claims than that used by district courts." /n re

Am. Acad. ofSci. Tech 367 F.3d 1359, 1369 (Fed. Cir. 2004). Indeed, the Federal

Circuit has repeatedly held that "it is error for the Board to ‘apply the mode of claim

interpretation that is used by courts in litigation, when interpreting the claims of issued

patents in connection with determinations of infringement and validity." Id. (citing Z/etz,

893 F.2d at 321); see also In re Morris, 127 F.3d 1048, 1054 (Fed. Cir. 1997) (“It would

be inconsistent with the role assigned to the PTO in issuing a patent to require it to

interpret the claims in the same manner as judges who, post-issuance, operate under

the assumption that the patent is valid)." Instead, the PTO is empowered and "obligated

JNPR-IMPL_30024_

Page 35 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 34

Art Unit: 3992

to give claims their broadest reasonable interpretation during examination." Id. Thus, in

the instant case "the pending claims must be interpreted as broadly as their terms

reasonably allow." /n re Zletz, 893 F.2d 321.

PO arques in page 23:

Decasper makes it clear that the FIX pointer “is stored in the packet’s mbuf’ and that

“instance pointers cached in the flow table” are retrieved “by accessing the FIX stored in the

packet.” /d. Thus these pointers are not “information specific to a software routine”—the FIX is

stored in a packet’s buffer, and is therefore the same for each and every plugin. The instance

pointers in a flow table are also fixed on a per-packet or per-message basis (rather than a per-

component) basis, and point to plug-ins that should process packets of a particular flow.

Accordingly, they do not constitute “state information,” as this
term is used in the claims.

However, Examiner respectfully disagrees with PO’s assertion. Examiner has

interpreted “state information” to be “pointers” under the broadest reasonable

interpretation of the claim language. A proper understanding of Decasper98 clearly

reveals plugin-specific functions that maintain message-specific state information

across packets. In fact, the designers of Decasper98 deliberately equipped each of its

plugin components with a special area for maintaining its own component-specific and

message-specific state information across packets. The disclosure of Decasper98 is

clear on this point:

JNPR-IMPL_30024_

Page 36 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 35

Art Unit: 3992

Each flow record in the hash table includes space for...
1. A pair of pointers for each gate that is implemented in the core. One

pointer points to the plugin instance that has been bound to the flow.
The second points to private data for that plugin instance; it is used

by the plugins to store per-flow “soft” state.

Ex. 25 at

Therefore, contrarily to PO’s assertion, “pointers” store private data for the plugin

instance, which is used by the plugins to store per-flow "soft" state.

PO arques in paqaes 23-24:

Furthermore,
neither the FIX pointer stored in a packet’s “mbuf” nor the instance pointers

storedin the flow table are retrieved, used, or stored by
plugins (and

therefore they are not used

to
Process

s

packets),
as

required byclaim
1.The FIX pointer is used by gates within the IP core to

retrieve the instance pointers cached in ‘the flow table. Decapser at 6, col 1. Once the gate

receives the instance pointer for a particular packet, it passes the packet to the plugin pointed to

by the instance pointer. Decapser at 6, col 1; 5, col. 2. The plugin then processes the packet, and

JNPR-IMPL_30024_

Page 37 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Contro! Number: 95/000,659 Page 36

Art Unit: 3992

returns the packet to the IP core. Decasper at 5, col 2. In
other

words, the sole purpose or

function of these Pointers
is to tell

gates
where to send a packet for processing—either to a

plugin or
slong

the IP core.
These pointers

are not
t accessed

or
utilized by

the
plugins

in any way,

and
they

are
certsnly

not used as
the

claimed state information. There is no discussion in

Decasper about information related to the
processing

of packets being. used by plugins

t

to process

the packets, and then stored for
use itt

the processing of
a later

packet.
The plugins or Decapser

do not need to know anything about how the previous packet of a message was processed—they

simply receive a packet from the IP core, process it, and return it to the IP core. Decasper at 5,

Column 2. Accordingly, the use and storage of state information as claimed is not disclosed in

Decasper.

However, Examiner respectfully disagrees with PO’s assertion. Contrarily to PO’s

asseriton, the first of the two pointers in the passage cited above comprises information

that may be related to the overall path for this flow (recording which plugin was

identified for that gate). However, the second of these pointers is not information related

to the overall path. It points to a "private data" storage area for use by the individual

plugin component only ("private"). Ex. 25 at 9. And Decasper98 explicitly teaches that

this private storage area "is used" by the plugin to maintain its own "state" information

which is message-specific ("per-flow"). Moreover, Decasper98 automatically provides a

multiplicity of these separate state information
storage areas, since there is one flow

record per flow, and each flow record contains one "private data" area for each of its

plugins. For example, if there were 5 flows each with a sequenceof 4 plugins,

JNPR-IMPL_30024_

Page 38 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 37

Art Unit: 3992

Decasper98 would create fully 20 separate storage areas for the express purpose of

storing message-specific state information.

The IP specification was published in 1981 as RFC 791, and it does not

guarantee that all the information needed by an IP router to route a packet is contained

within the packet itself; rather, in some cases it may be necessary for an IP router to

maintain message-specific state information across packets. For example, RFC 791

explains "the internet protocol.., provides for fragmentation and reassembly of long

datagrams." App. R7 (RFC 791) at 1 is Additionally, IP routers typically perform

extensive processing on packets which is not governed by the IP specification, and

these operations can require maintaining message-specific state information across

packets as well: e.g., gathering network statistics, or applying a stateful encryption

algorithm to provide a VPN. See Section V.A.3 (Decasper98 claim 1 "state" limitation).

Though PO claims "[t]he '163 system represents a sea-change from the IP
routers of

Decasper and Kerr" which did "not even contemplate" using "message-specific state

information," IP routers did in fact need to maintain message-specific state information

across packets simply to perform common router operations. Response at 1.

PO argues in page 24:

JNPR-IMPL_30024_

Page 39 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 38

Art Unit: 3992

Nor do these pointers contain “information relating to the performing of the processing of

the component.” The instance pointers store the location of the particular plugins to which a gate

should send packets associated with a particular flow, and the FLX pointers store the location of

the row of the flow table that contains the instance pointers for a particular flow.
This

“addressing” information does not constitute the claimed
“state information.”

However, Examiner respectfully disagrees with PO's assertion. Under broadest

reasonable interpretation of the claim language, Examiner interprets “pointers” to be

“state information”. The “pointers” enables per-flow processing of data packets related

to plugins. A proper understanding of Decasper98 clearly reveals plugin-specific

functions that maintain message-specific state information across packets. In fact, the

designers of Decasper98 deliberately equipped each of its plugin components with a

special area for maintaining its own component-specific and message-specific state

information across packets. The disclosure of Decasper98 is clear on this point:

Each flow record in the hash table includes space for...

1. A pair of pointers for each gate that is implemented in the core. One

pointer points to the plugin instance that has been bound to the flow.

The second points to private data for that plugin instance, it is used

by the plugins fo store per-flow “soft” state.

Ex. 25 at 9

Therefore, contrarily to PO’s assertion, “pointers” store private data for the.

plugin instance, which is used by the plugins to store per-flow "soft" state. The first of

the two pointers in the passage cited above comprises information that may be related

to the overall path for this flow (recording which plugin was identified for that gate).

However, the second of these pointers is not information related to the overall path. It

JNPR-IMPL_30024_

Page 40 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 39

Art Unit: 3992

points to a "private data" storage area for use by the individual plugin component only

("private"). Ex. 25 at 9. And Decasper98 explicitly teaches that this private storage area

"is used” by the plugin to maintain its own "state" information which is message-specific

("per-flow"). Id. (emphasis added). Moreover, Decasper98 automatically provides a

multiplicity of these separate state information storage areas, since there is one flow

record per flow, and each flow record contains one "private data” area for each of its

plugins. For example, if there were 5 flows each with a sequence of 4 plugins,

Decasper98 would create fully 20 separate storage areas for the express purpose of

storing message-specific state information.

if there were not a need to maintain this message-specific, component-specific

state information (perflow, perplugin), the Decasper98 design would be needlessly

complex and wasteful of memory. For example, instead of 20 distinct state information

areas (reflecting state maintained per flow per plugin), the system could be simplified to

provide only 5 areas (with state maintained per flow only), or only 4 areas (with state

maintained per plugin only), or only 1 area (with global state only). However, it is clear

that the designers of the Decasper98 chose as approach that would provide for

granularity of state information in a manner consistent with the ' 163 patent claims.

Those of ordinary skill in the art would recognize that the plugin functions of

Decasper98 would involve maintaining message-specific state information across

packets, and would certainly understand that this state information would be maintained

in the plugin-specific "private data" area that was provided by Decasper98 for this

express purpose.

JNPR-IMPL_30024_

Page 41 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 40

Art Unit: 3992

As a first example of a type of plugin component that would maintain state

information in accordance with the '163 patent claims, Decasper98 discloses IP security

plugins which perform encryption as defined by RFC 1825 and RFC 1829. Decasper98

cites RFC 1825 which cites RFC 1829, In any event, these RFC's describe a well-

known security standard (the "Security Architecture for IP," or "IPsec") that was

standard background knowledge for those of ordinary skill reading Decasper98. RFC

1825 explains that an encryption algorithm which "MUST" be supported for IPsec is the

“ESP DEC-CBC" algorithm described in RFC 1829. Ex. 26 at 10, 21. RFC 1829

explains that to apply this mandatory encryption algorithm, "an Initialization Vector"

must be placed in "[elach datagram" to be encrypted (i.e., in each packet)--and that a

"common" technique for assigning these vectors “is simply a counter, beginning with a

random chosen value.” Ex. 27 (RFC 1829) at 1. Thus, an IP security plugin performing

such encryption would, for each packet: retrieve the previous counter value; apply it to

encrypt the packet: increment the counter value: and store it for use when encrypting

the next packet. Additional operations.performed by IP security plugins that would entail

maintaining state information across packets are cited in the Request. Request at 187-

88.

As a second example of a type of plugin component that would maintain

“message-specific state information across packets, Decasper98 discloses a ‘statistics

gathering plugin." Unless one is reporting statistics about a single packet, it is difficult to

see how statistics can be gathered for a flow without maintaining such state information:

JNPR-IMPL_30024_

Page 42 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 41

Art Unit: 3992

e.g., retrieve the previous byte count: add the current packet's length: and store the

updated count for use when processing the next packet. See also Request at 188-89.

Additional examples of types of plugin components that would maintain

message-specific state information across packets include: IPv6 options plugin

components (Request at 188); and packet scheduling plugin components (Request at

189). In short, Decasper98 clearly discloses a storage area that is expressly intended

for storing component-specific, message-specific state information, and Decasper98

further discloses a number of plugin components that would use this storage area for

that purpose.

PO argues in page 25:

1. Decasper Fails to Disclose the Requirements in Claims 15 and 35

Regarding Dynamically Identifying a Non-Predefined Sequence of

Components

Like claim 1, claims 15 and 35 require “dynamically identifying” a “non-predefined

sequence of components.” The District Court construed “non-predefined sequence
of

components” as “a sequence of software routines that was not identified before the first packet of

a message was received.” Markman Order at 6 (Ex. 2). For the same reasons set forth above in

Section VI.A.1 with respect to claim 1, Decasper also fails to disclose these requirements in

claims 15 and 35.

Examiner respectfully disagrees with PO’s assertion. Examiner has shown above

that all the cited limitations of claim 1 are taught by Decasper98. Therefore, claims 15

and 35 are not patentable for the same reasons.

JNPR-IMPL_30024_

Page 43 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 42

Art Unit: 3992

PO argues in page 25:

2. Decasper Fails to Disclose the Requirements of Claims 15 and 35

Regarding “selecting individual components to create the [message-

specific] non-predefined sequence of components”

The District Court construed “selecting individual components,” which appears in claims

15 and 35, as “selecting the individual software routines of the sequence so that the input and

output formats of the software routines are compatible.” Markman Order at 11 (Ex. 2). As

explained above in Section VLA.2 in connection with claim 1, the PTO agrees that Decasper

does not disclose the required input/output format compatibility. Nor would such compatibility

be
obvious for the same reasons set forth in Section VLA.2.

However, Examiner respectfully disagrees with PO’s assertion. Examiner has

clearly shown above that it was well known, and certainly obvious for one of ordinary

skill in the art to arrange the components in a compatible manner, such that the output

format of one component matches the input format of the next. Therefore, claims 15 and

35 are not patentable for the same reasons.

PO argues in pages 25-26:

JNPR-IMPL_30024_

Page 44 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 43

Art Unit: 3992

3. Decasper Fails to Disclose the Requirements of Claims 15 and 35

Regarding “State Information”

Claim 15 requires that “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Claim 35 requires

that “for each packet of each message, invoking the identified non-predefined sequence of

components in sequence to perform the processing of each component for the packet wherein

each component saves message-specific state information so that that component can use the

saved message-specific state information when that component performs its processing on the

next packet of the message.” For the same reasons set forth above in Section VI.A.3 with respect

to claim 1, Decasper also fails to disclose these state information requirements in claims 15 and

35.

Examiner respectfully disagrees with PO’s assertion. Examiner has shown above

that all the cited limitations of claim 1 are taught by Decasper98. Therefore, claims 15

and 35 are not patentable for the same reasons.

PO argues in page 27:

JNPR-IMPL_30024_

Page 45 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 44

Art Unit: 3992

The Examiner points to the language at column 4, lines 20-34 in Kerr as disclosing the

dynamic identification of a non-predefined sequence of components. However, this passage does

not identify any components (i.e., software routines). Instead, it discusses what the “proper

treatments of packets in the message flow" might be, with regards to “switching,” “access

control,” “accounting,” or “any special treatment for packets.” Importantly, this passage—like

all of the other passages in the reference—is discussing the determination of the treatment or

processing of packets. Kerr never discusses or discloses the identification or selection of

software routines for performing said processing or treatments, nor the “dynamic identification”

of a “non-predefined sequence” of such components. In fact, Kerr does not discuss any sort of

software routines.

However, Examiner respectfully disagrees with PO’s assertion. Under the

broadest reasonable interpretation of the claim language, Kerr discloses a "plurality of

components" for processing messages. For example, claim 1 of Kerr describes using a

"plurality of devices" to apply "policy treatments" to a "plurality of messages,” where

gaff

policy treatments are used to perform "access control,security," "queuing,"

“accounting,” "traffic profiling,” etc. Id. at 10:27-40. Processing components can include

"treatment with regard to switching," "access control," and “encryption.” Id. at 4:20-34.

"[S]pecial processing" can include "authentication" techniques "useful for implementing

security ‘firewalls." Id. at 35-46. Kerr further discloses that a "rewrite function" may be

invoked "to alter the header for the packet." Id. at 4:55-62. These components can be

used for “converting data with an input format into data with an output format," for.
example, the "encryption" and "rewrite" components to “alter” data to be processed. Id.

at 4:30- 31, 4:55-62. The processing components of Kerr comprise "software routine"

JNPR-IMPL_30024_

Page 46 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659
|

Page 45

Art Unit: 3992

embodiments, as Kerr states that the processing instrumentality "may include specific

hardware constructed or programmed performing the process steps described

herein" or "a general purpose processor operating under program control." Id. at 2:51-

55; see also Id. at Figs. 3-4 (illustrating software data structures).

In regards to “identification” of components, Kerr discloses in column 4 fines 12-

15:

At a step 224, the routing device 140 builds a new entry
in the flow cache. The routing device 140 determines proper
treatment of packets 150 in the message flow 160 and enters

15 information regarding such proper treatment in a data struc-

ture pointed to by the new entry in the flow cache. In a

In regards to “dynamic identification” of “non-predefined sequence” of

components Kerr discloses in column 4:

At a step 223, the routing device 140 performs a lookup
in a flow cache for the identified message flow 160. If the

lookup is unsuccessful, the identified message flow 160 is a

“new” message flow 160, and the routing device 140 con-

tinues with the step 224. If the lookup is successful, the

Therefore, routing device is trying to “dynamically identifying” necessary

processing components.

At a step 224, the routing device 140 builds a new entry
in the flow cache. The routing device 140 determines proper
treatment of packets 150 in the message flow 160 and enters

information regarding such proper treatment in a data struc-

ture pointed to by the new entry in the flow cache. In a

Therefore, Kerr performs “dynamic identification” of “non-predefined sequence”

of processing treatments (components) as required by claim language.

JNPR-IMPL_30024_

Page 47 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 46

Art Unit: 3992

PO argues in pages 27 and 28:

Furthermore, Kerr
makes clear

that it is
the information

about the complete proper

treatment
or

processing of packets that is storediinnthe flow cache—not an identification
of a

particular software component.
“The flow cache 300 ... includes information about a particular

message flow 160, including ...access control, accounting, special treatment for packets 150 in

that particular message flow, and a pointer to information avout treatment of packets 150.” Kerr

at 6:32-42. When a routing device receives a subsequent packet in a flow, “[it] reads the

information from the entry in the flow cache and treats the packet 150 according to the

information in the entry in the flow cache.” Kerr at 4:67-5:4,

Nothing in the other sections of Kerr that the Examiner cites to Kerr at 10:31-40 and

3:38-6:27) discloses anything other than the determination of proper processing and the storage

of information about that processing. In fact, the Examiner’s own argument repeatedly states that

the routing device “determines proper treatment of packets” and “enters information regarding

such proper treatment” in a data structure, See Office Action at 5, 7.

However, Examiner respectfully disagrees with PO’s assertion. As described

above, in regards to “identification” of components, Kerr discloses in column 4 lines 12-

15:

At a step 224, the routing device 140 builds a new entry
in the How cache. The routing device 140 determines proper
treatment of packets 150in the message flow.160 and enters

15 information regarding such proper treatment in a data struc-
ture pointed to by the new entry in the flow cache. In a

In regards to “dynamic identification” of “non-predefined sequence” of

components Kerr discloses in column 4:

JNPR-IMPL_30024_

Page 48 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 47

Art Unit: 3992

At a step 223, the routing device 140 performs a lookup
in a flow cache for the identified message flow 160. If the

lookup is unsuccessful, the identified message flow 160 is a

“new” message flow 160, and the routing device 140 con-

tinues with the step 224. If the lookup is successful, the

Therefore, routing device is trying to “dynamically identifying” necessary

processing components.

At a step 224, the routing device 140 builds a new entry
in the flow cache. The routing device 140 determines proper
treatment of packets 150 in the message flow 160 and enters

information regarding such proper treatment in a data struc-

ture pointed to by the new entry in the flow cache. In a

PO argues in page 28:

Furthermore, in the on-going reexamination of the continuation patent based on the ’163

patent (U.S. Pat. No. 7,711,857; Reexamination Control No. 95/000,660), Examiner Kenneth

Whittington stated in his first Office Action that while Kerr discloses the determination of the

“proper treatment” for packets of a message, it does not
expressly

teach the identification of a

sequence of components for processing the packets of a message, much less the claimed dynamic

identification:

Kerr does not explicitly teach any identification of a sequence of components as

part of its proper treatment of a message flow.

°857 5/10/2012 Office Action at 17, 22, 26.

As noted above ... proper treatment within [Kerr’s] router architecture comprises _

multiple processing stages ... but [Kerr] does not specifically outline the detail or

structure thereof.

°857 5/10/2012 Office Action at 20, 23, 27.

JNPR-IMPL_30024_

Page 49 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659

Art Unit: 3992
Page 48

However, Examiner respectfully submits that the scope of the claim limitations

are different between the claims of the instant reexamination proceedings and

concurrent reexamination proceedings They are spawned from different

patents. An example of scope variation of claim limitations is shown below:

Instant Proceeding 95/000660

Claim 1. A method in a computer system

for processing a message having a

sequence of packets, the method

comprising:

providing a plurality of components, each

component being a software routine for

converting data with an input format into

data with an output format;

for the first packet of the message,

identifying a sequence of components for

processing the packets of the message

such that the output format of the

components of the sequence match the

input format of the next component in the

sequence:

Claim 1. A method in a computer system

for processing packets of a message, the

method comprising:

receiving a packet of the message and a

data type of the message; analyzing the

data type of a first packet of the message

to dynamically identify a sequence of

components for processing a plurality of

packets of the message such that the

output format of the components of the

sequence match the input format of the

JNPR-IMPL_30024_

Page 50 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659

Art Unit: 3992
Page 49

and storing an indication of each of the

identified components so that the

sequence does not need to be re-identified

for subsequent packets of the message;

and for each ofa plurality of packets of the

message in sequence, for each of a

plurality of components in the identified

sequence, retrieving state information

relating to performing the processing of the

component with the previous packet of the

message; performing the processing of

the identified component with the packet

next component in the sequence, wherein

analyzing the data type of the first packet

of the message to dynamically identify the

sequence of components includes

selecting individual components to form

the sequence of components after the first

packet of the message is received;

storing an indication of each of the

identified components so that the

sequence does not need to be re-identified

for subsequent packets of the message:

for each of a plurality of components in the

identified sequence: performing the

processing of each packet by the identified

component; and storing state information

relating to the processing of the

component with the packet for use when

processing the next packet of the

message.

JNPR-IMPL_30024_

Page 51 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 50

Art Unit: 3992

and the retrieved state information; and

storing state information relating to the

processing of the component with the

packet for use when processing the next

packet of the message.

Therefore, based on the scope of the claim limitations, the rejections are

articulated for respective proceedings. As such, based on claim interpretation of

respective proceedings, different rejections are articulated.

It is for the same reasons, Examiner respectfully disagrees with PO’s assertion

that Kerr fails to disclose "dynamically identifying a non-predefined sequence of

components" for processing the packets of a message and the examiner has also failed

to present a prima facie case that Kerr anticipates this limitation of claim 1.

PO argues in pages 29-30:

JNPR-IMPL_30024_

Page 52 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 51

Art Unit: 3992

The PTO agrees that Kerr does not disclose “processing the packets of the message such

that the output format of the components match the input format of the next component.” Office

Action at 11. But the examiner states that “it was well-known to those of ordinary skill in the art

that certain operations of a packet must be performed in a certain order: e.g., if a packet is first

converted into an encrypted format by a first component, a subsequent component would be

unable to e.g. rewrite its headers (because it was expecting to receive the packet in
unencrypted

format),.” Office Action at 11. The Examiner then summarily concludes that “it was certainly at

least obvious for one of ordinary skill in the art to arrange the sequence of components in a

compatible manner, such that the output format of one matches the input format of the next—

rather than arranging them in an incompatible manner whereby various component(s) would be

unable to perform their function(s).” Ja The Examiner has failed to establish a prima facie case

of
obviousness

because the above statements
are

both technically incorrect and do not follow the

strict legal requirements set forth in Section V.B, above.

As an initial matter, the obviousness law requires that a prior art reference must be

considered in its entirety, including portions that would lead away from the claimed invention.

W.L. Gore & Assoc., Inc. yv. Garlock, Inc., 721 F.2d 1540, 1552-53 (Fed. Cir. 1983). Kerr

discloses a system and method for packet handling within an IP router. Kerr never discloses or

discusses the format of the data packets processed by its system. Presumably, this is because

Kerr limits its disclosure to an IP router and its components, which, by definition, are only

designed to handle packets in the IP (Internet Protocol) format—a single format. Nor is there

JNPR-IMPL_30024_

Page 53 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 52

Art Unit: 3992

any evidence that the “treatments” in Kerr change the format of the packet. Accordingly, Kerr

assumes that all packets will be in IP format, and therefore that the input and output of every

component will be a packet with an IP format. Given the single format of data (IP) that Kerr

processes, it teaches away from considering format compatibility when “dynamically identifying

a non-predefined sequence of components.”

PO’s arguments
miss the mark as a threshold matter because they fail to

address the actual aspects of Kerr that the Examiner relied upon in the Office Action.

The Office Action clearly identified Kerr's "plurality of device" as the claimed

“individual components" that are dynamically selected to create a sequence in

accordance with this claim limitation. The Examiner explained in detail in the Office

Action, how the process of selection among the various available plurality of device

occurs dynamically, after the first packet is received. OA at 4-5. Clearly, contrarily to

PO’s assertion, the format of IP packet clearly changes. One example is in column 4:

In a preferred embodiment, the entry in the flow cache

includes a pointer to a rewrite function for at least part of a

header for the packet 150. If this pointer is non-null, the

routing device 140 invokes the rewrite function to alter the

header for the packet 150.

Depending on the flow, its "proper treatment” may include performing various

distinct operations such as: "encryption"; header "rewrite"; "switching"; "access control";

"accounting"; and "authenticatlion]." Kerr at 4:20-60. Therefore, contrarily to PO’s

assertion, the |P packet format changes depending on “encryption” or header “rewrite”

etc.

JNPR-IMPL_30024_

Page 54 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 53

Art Unit: 3992

PO arques in page 30:

Nor would there be any “reason”—as
required by KSR—to consider

format
compatibility

in
Kerr. Kerr appears

to
0 be specifically designed |

to
handle

one
format (IP),

and
thus,

one of

ordinary would be unconcemed about matching
different formats. In fact, adding

functionality to check or compare the output format of a packet processed by one IP component

with the input format required by the next IP component, would add unnecessary and costly

overhead. In short, no skilled person looking at Kerr would add the claim requirement.

Not only is there no reason to add format compatibility to Kerr, the Office Action fails to

cite toa
single piece

of evidence for adding such a feature. See Office Action at 11. There is no

cited patent
or

printed
publication or any

other
document; instead, there are only bald assertions

without the evidentiary support required by the law.

As mentioned above, depending on the flow, its “proper treatment” may include

performing various distinct operations such as: "encryption"; header "rewrite";

"switching"; “access control”; "accounting"; and "authenticat[ion]." Kerr at 4:20-60.

Therefore, contrarily to PO’s assertion, the IP packet format changes depending on

“encryption” or header “rewrite” etc.

PO argues in page 30:

Not only is there no reason to add format compatibility to Kerr, the Office Action fails to

cite to a single piece of evidence for adding such
a feature. See Office Action at 11. There is no

cited patent or printed publication or any other document; instead, there are only bald assertions

without the evidentiary support required by the law.

JNPR-IMPL_30024_

Page 55 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 54

Art Unit: 3992

However, Examiner respectfully disagrees with PO’s assertion. Examiner stated

in prior Office Action page 21:

Regarding the limitation “such that the output format of the components ... match

the input format of the next component," it was well-known to those of ordinary skill in
|

the art that certain operations on a packet must be performed in a certain order: e.q., if

a packet is first converted into an encrypted format by a first component, a subsequent

component would be unable to, e.g., rewrite its headers (because it was expecting to

receive the packet in an unencrypted format). See id. at 4:31-32 (“encryption treatment

for packets.., in the message flow"), 4:57-58 ("rewrite function
for.., a header for the

packet"). Thus, it was certainly at least obvious for one of ordinary skill in the art to

arrange the sequence of components in a compatible manner, such that the output

format of one matches the input format of the next-- rather than arranging them in an

incompatible manner whereby various component(s} would be unable to perform their

function(s).

MPEP 2144.03 Section D states:

lf the examiner adds a reference in the next Office action after applicant's

rebuttal, and the newly added reference is added only as directly corresponding

evidence to support the prior common knowledge finding, and it does not result in a new

issue or constitute a new ground of rejection, the Office action may be made final...See

MPEP § 706.07(a).

Examiner produces the following as directly corresponding evidence to support

the prior common knowledge that output format of the components match the input

format of the next component:

JNPR-IMPL_30024_

Page 56 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 55

Art Unit: 3992

US PAT 6192409 states in column 1:

A full electronic switching system is connected with an

external X.25 protocol conversion unit by means of an IPC

(Inter Process Communication) or LAN (Local Area

Network) in order to communicate with an X.25 network

through a singie connection port. The IPC or LAN format of
the data from the switching system is converted into the

X.25 protocol format by the X.25 conversion unit so as to be

transferred to che external X.25 network. Conversely, the

X.25 protocol format from the external X.25 network is

converted into the IPC or LAN format so as to be transferred

to the switching system.

US PAT 6768738 states in column 13:

When a packet is inputted from an ith line 123-1 to a line

interface unit 122-i, a receiver circuit adds an internal

header including a line number j as an input line number 407

to the packet to thereby convert the received packet to an

internal packet format useful inside the router, then stores

the internal packet in the input FIFO buffer 126-1. At this

18

Clearly, it was well known, and certainly obvious for one of ordinary skill in the art

to arrange the components in a compatible manner, such that the output format of one

component matches the input format of the next. Examiner has cited these patents as

evidentiary support of the well-known aspect of the knowledge of ordinary skill in the art

during the time of the invention.

PO argues in pages 30-31:

JNPR-IMPL_30024_

Page 57 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 56

Art Unit: 3992

Furthermore, as explained above, Kerr
does

not discuss any “components” or “sequence

of components” —its
disclosure is limited to the determination of the proper treatment or

processing of packets. Thus, there is also no disclosure of dynamically identifying a non-

predefined sequence of components for processing the packets of the message “such that the

output format of the components of the non-predefined sequence match the input format of

the next component in the non-predefined sequence.”

Finally, the Examiner’s assertions are technically inaccurate. As noted above, the

Examiner states that the encryption processing disclosed in Kerr could not be performed before a

rewrite function for a header of a packet. Office Action at 11. The Examiner’s logic is
again

based on a
faulty understanding

of how IP routers
function,

as
welll

as a
misunderstanding «

of the

disclosure of Kerr. As explained
i

in

1

Section VI. A2 above,IP routers are limited to processing IP

packets, In addition, encryption
is

only performed upon
the contents within a packet—not the

packet’s header, while a “header rewrite” function only deals with the header of a packet. As a

fundamental tenant of IP routing, the packet header contains information that can be rewritten,

but this information is never encrypted—otherwise the packet would not be routable through

other routers on the network and the destination device will not accept it. Accordingly—

contrary
to the

assumption
of

the Examiner—a Subsequent
component would be able to process

the header of an
encrypted

Ip
packet, because

the packet
would still be in IP format and its

header would
not be

encrypted
Thus, the Examiner’s argument that it is well-known that

encryption o

of a
a packet

would
prevent subsequent components from processing

the header
ofthe

packet is incorrect.

However, Examiner respectfully disagrees with PO’s assertion. As explained

earlier, under the broadest reasonable interpretation of the claim language, Kerr

JNPR-IMPL_30024_

Page 58 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 57

Art Unit: 3992

discloses a "plurality of components" for processing messages. For example, claim 1 of

Kerr describes using a "plurality of devices" to apply “policy treatments" to a “plurality of

messages," where policy treatments are used to perform "access control,security,"

"queuing," "accounting," "traffic profiling,” eté. Id. at 10:27-40. Processing components

eT
can include "treatment with regard to switching," "access control," and "encryption." Id.

at 4:20-34. "[S]pecial processing" can include "authentication" techniques "useful for

implementing security ‘firewalls. Id. at 35-46. Kerr further discloses that a "rewrite

function" may be invoked "to alter the header for the packet." Id. at 4:55-62. These

components can be used for "converting data with an input format into data with an

output format," for example, the "encryption" and “rewrite” components to “alter” data to

be processed. Id. at 4:30- 31, 4:55-62. The processing components of Kerr comprise

"software routine" embodiments, as Kerr states that the processing instrumentality "may

include specific hardware constructed or programmed performing the process steps

described herein" or "a general purpose processor operating under program control." Id.

at see also Id. at Figs. 3-4 (illustrating software data structures).

Kerr discloses a "pointer" to the header rewrite "function" for a flow, which clearly

implies that at least the header rewrite operation is embodied as a discrete software

routine. Ex. 15 at 4:56-59. Moreover, one of ordinary skill in the art would understand

the operations in Kerr would be organized as software routines in any event. While it

can be practical to organize a short, simple program as a single software routine, those

of ordinary skill in the art appreciate it is essentially impossible to build a large, complex

piece of software such as Kerr without subdividing it into different software routines.

JNPR-IMPL_30024_

Page 59 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 58

Art Unit: 3992

Discrete operations such as encryption and authentication are the quintessence of

operations which would inevitably be organized as software routines by one of even

minimal skill in the art. Thus, such organization is at least inherent in Kerr.

Nevertheless, if it is determined that organizing the various operations as software

routines is not disclosed or inherent, it was certainly at least obvious for one of ordinary

skill to organize them as such.

When Kerr receives the first packet of a new flow, it determines the "proper

treatment" for the packets of the flow. Kerr 4:12-15. It records an indication of this

proper treatment in a flow record, so the proper treatment does not have to be

determined again for subsequent packets of the flow (which would be needlessly

inefficient). Kerr at 4:64-5:4. Depending on the flow, its "proper treatment” may include

performing various distinct operations such as: "encryption"; header "rewrite";

"switching"; "access control”; "accounting"; and "authenticat{ion]." Kerr at 4:20-60. Not

all operations are selected for ail flows: i.e., sometimes determining the proper

treatment “with regard to" an operation means not performing any formof the operation

at all. See Kerr at 4:20-22. For example: (1) authentication is explicitly described as

"special [non-standard] treatment" (Kerr at 4:35-39); (2) the pointer to a flow's header

"rewrite" function can be either defined or "null" (Kerr at 4:56-59); and (3) the proper

treatment "with regard to" encryption would be understood to include not performing any

encryption or decryption at all on its packets (e.g., where the flow is directed to a

destination outside a virtual private network, hence requiring no encryption or decryption

by the router) (see Kerr at 4:21-32).

JNPR-IMPL_30024_

Page 60 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 59

Art Unit: 3992

Determining the proper treatment may also include selecting a particular form of

an operation. For example, flows in Kerr encompass one direction of a connection only.

Kerr at 2:56 (“unidirectional stream"). Those of ordinary skill in the art understand that

where a router is performing encryption on the packets of an outgoing flow, the router

would also be performing decryption on the packets of the incoming flow for that

connection.

As another example, Kerr explicitly teaches there is a "pointer" to the header

"rewrite" function for a flow, rather than merely an on/off switch, clearly suggesting there

could be several possible "rewrite" functions that might be selected. Kerr at 4:56-59.

Whether disclosed or obvious, once it is determined these operations are embodied in

software routines, it is clear Kerr would identify some of these routines but not others as

the "proper treatment" for particular flows. For example, a first flow might be assigned

an authentication routine and a decryption routine, while a second flow might be

assigned a header rewrite routine and an encryption routine. And notably, this

identification is clearly performed dynamically, after receiving the first packet. Kerr at

4:13-14 ("At a step 224, the routing device builds a new entry in the flow cache" and

"determines proper treatment of packets... in the message flow’).

Moreover, one of ordinary skill in the art would appreciate that certain operations

in Kerr must be performed in a certain order. E.g., rewriting or authenticating a packet's

original header is impossible if it has already been encrypted. One of ordinary skill in

the art would understand the necessity for such ordering, and arrange Kerr's operations

accordingly. Thus, oneof ordinary skill would understand the components must-be

JNPR-IMPL_30024_

Page 61 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 60

Art Unit: 3992

arranged in a suitable sequential order, for Kerr to simply function as described. And in

any event, it was certainly at least obvious to arrange them in a suitable sequential

order, so that Kerr could function properly as described. Thus, Kerr discloses and -

renders obvious these claim elements.

In regards to PO’s assertion regarding encrypting only IP packet contents and

not the header, RFC 1825 explains there are "two modes" for performing encryption:

(1) "Tunnel-mode," which encrypts and “encapsulates an entire IP datagram"

(including its IP header). Ex. 26 at 9. PO argues this mode is impossible. Response

at 21 ("the packet header.., is never encrypted, as it must remain a well-formatted IP

header in order for other routers to accept it and continue the routing process’).

(2) "Transport-mode," which encrypts and "encapsulates" only "an upper-layer

[transport] protocol (for example UDP or TCP)." Ex. 26 at 9. This is the mode described

by PO in its Response. Response at 21 ("encryption takes place in the transport layer

and above").

A router operating in Tunnel-mode encrypts the entire original IP packet from a

host (including the packet's original destination), and prepends a new, second header to

the packet. This second header can be used to address the packet to a second router

(as if through a "tunnel") across an untrusted backbone. See Ex. 26 at 4-5, 9. When the

second router receives the packet, it decrypts the original packet in its entirety,

examines its first, original header, and forwards the packet to its original destination.

Two distinct headers (one encrypted, one not) permit delivery to two distinct

destinations along the route (first to another router, then to an end host). See Ex. 26 at

JNPR-IMPL_30024_

Page 62 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 61

Art Unit: 3992

4-5, 9,This is the classic VPN design, and those of ordinary skill would certainly

understand that Tunnel-mode encryption (as opposed to Transport-mode) would be

used by for encryption to provide "virtual private network" feature. In contrast,

Transport-mode is typically used for only the special case of "host-to-host encryption,"

where there is no intervening gateway "present in the connection" that would perform

encryption for hosts as a service. See Ex. 26 at 4-5, 9. Therefore, PO's assertion that,

encryption happens only in IP packet contents, and not the header, is not entirely true.

Therefore, Examiner respectfully disagrees with PO’s assertion that Kerr teaches

away from the input/output compatibility requirement, and the Office Action includes

technical inaccuracies, while providing no "reason" or "evidence" showing that one of

skill in the art would add such compatibility to Kerr; there is no prima facie case of

obviousness.

PO argues in pages 31-32:

Claim 1 requires “for each of a plurality of components in the identified non-predefined

sequence, [1] retrieving state information relating to performing the processing of the component

with the previous packet of the message; [2] performing the processing of the identified

component with the packet and the retrieved state information; and [3] storing state information

relating to the processing of the component with packet for use when processing the next packet

JNPR-IMPL_30024_

Page 63 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 62

Art Unit: 3992

of the message.” In the| Related Litigation, the Court construed
state information as

“eons ias Specific
to

Software
routine

for_a specific message
that is not information

related

t
to an

overall path.”
”

Markman Order
at

14 & 2)
(emphasis added). Kerr discloses none

of the claimed
requirements

of
“retieving” “processing” a

and
“storing” message-specific

state

information for the components,

Just as
he

did with Decasper, the Examiner conflates the claim Tequirement
for “storing

an indication” of the path to avoid
re-identifying

it for subsequent packets (which appears above

the state
information imitations) and is state information

requirements. This
improper

conflation appears
on

Page
9 of

the Office Action, where 1the
separate

claim requirements are

lumped together. Theyare separate limitations and theymusttbe treated as such.

However, Examiner respectfully disagrees with PO’s assertion. Examiner

respectfully submits that "[I]n PTO reexamination, the standard of proof- a

preponderance of evidence — is substantially lower than in a civil case" and there is no

presumption of validity in reexamination proceedings.” 678 F.3d 1357, 1364 (Fed. Cir.

2012) (internal citations omitted); see also Old Reliable Wholesale, Inc. v. Cornell Corp.,

635 F.3d 539, 548 n.6 (Fed. Cir. 2011) ("Whereas clear and convincing evidence is

required to invalidate a patent in district court, a patent can be invalidated during PTO

reexamination by a simple preponderance of the evidence."). "Claims are given ‘their

broadest reasonable interpretation, consistent with the specification, in reexamination

proceedings.” /n re Trans Texas Holding Corp., 498 F.3d 1290, 1298 (Fed. Cir. 2007)

(quoting In re Yamamoto, 740 F.2d 1569, 1571 (Fed. Cir. 1984). "Giving claims the

broadest reasonable construction ‘serves the public interest by reducing the possibility

JNPR-IMPL_30024_

Page 64 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 63

Art Unit: 3992

that claims, finally allowed, will be given broader scope than is justified."" re Am.

Acad. ofSci. Tech Ctr, 367 F.3d 1359, 1365 (Fed. Cir. 2004) (quoting Yamamoto, 740

F.2d at 1571). "Construing claims broadly during prosecution is not unfair to the

applicant (or, in this case, the patentee), because the applicant has the opportunity to

amend the claims to obtain more precise claim coverage." /n re Trans Texas Holding

Corp., 498 F.3d 1290, 1298 (Fed. Cir. 2007) (citing Yamamoto, 740 F.2d at 1571-72

and In re Zletz, 893 F.2d 319, 322 (Fed. Cir. 1989)). "The Board is required to use a

different standard for construing claims than that used by district courts." /n re Ann.

Acad. ofSe/i. Tech Ctr., 367 F.3d 1359, 1369 (Fed. Cir. 2004). indeed, the Federal

Circuit has repeatedly held that "it is error for the Board to ‘apply the mode of claim

interpretation that is used by courts in litigation, when interpreting the claims of issued

patents in connection with determinations of infringement and validity.” Id. (citing Z/etz,

893 F.2d at 321); see also In re Morris, 127 F.3d 1048, 1054 (Fed. Cir. 1997) (“It would

be inconsistent with the role assigned to the PTO in issuing a patent to require it to

interpret the claims in the same manner as judges who, post-issuance, operate under

the assumption that the patent is valid)." Instead, the PTO is empowered and "obligated

to give claims their broadest reasonable interpretation during examination." Id. Thus, in

the instant case "the pending claims must be interpreted as broadly as their terms

reasonably allow." /n re Zletz, 893 F.2d 327.

In regards to alleged “conflating” accusition, Examiner submits that Examiner has

no such intention during the articulation of the rejections. The rejection was articulated

JNPR-IMPL_30024_

Page 65 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 64

Art Unit: 3992

based on the claim construct and claim limitations as well as rejection proposed by the

Third Party Requester’s Request. Kerr clearly teaches:

storing an indication of each of the identified components so that the non-

predefined sequence does not need to be re-identified for subsequent packets of

the message; and for each of a plurality of packets of the message in sequence,

for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the

component with the previous packet of the message; performing the processing

of the identified component with the packet and the retrieved state information;

and storing state information relating to the processing of the component with

the packet for use when processing the next packet of the message (After

receiving the first packet of a new flow, Kerr builds a new flow entry that is cached in

memory, which constitutes "storing". Kerr also explains that building and cachinga
flow entry upon receiving the first new packet in a flow is specifically performed so that

information "does not need to be re-identified for subsequent packets of the message,"

as that term is apparently construed by Implicit. Kerr explains that, for the sake of

efficiency: information about message flow patterns is used to identify packets for which

processing has already been determined, and therefore to process those packets

without having to re-determine the same processing Thus, in a preferred

embodiment, the routing device 140 does not separately determine, for each packet 150

in the message flow 160, the information stored in the entry in the flow cache. Rather,

when routing a packet 150 in the message flow 160, the routing device reads (Le.

JNPR-IMPL_30024_

Page 66 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 65

Art Unit: 3992

satisfying the retrieving step) the information from the entry in the flow cache and

treats the packet 150 according to the information in the entry in the flow cache. Ex 15

at 1:33-36, 4:64-5:4. In other words, when the first packet of a flow arrives, Kerr goes

through the somewhat expensive and elaborate process of determining how all the

packets of that flow should be treated: e.g., whether they should be encrypted, whether

they should be modified or partially re-written, and where they should be routed next. Id.

at 1:33-35, 4:13-60. It then records ail this information about the proper processing for a

flow by "build{ing] a new entry in the flow cache" for the flow (i.e. storing step), so the

proper processing does not have to be wastefully and redundantly determined again for

subsequent packets of the flow. Id. at 4:12-13. Kerr discloses this "state information"

element. Implicit has taken a broad view of the "state information” limitations, arguing

that they cover the retrieval, use, and storage of the identified sequence of components

(e.g., a flow record) after the first packet is received. As demonstrated above (for the

"storing an indication" element), Kerr retrieves, uses, and stores flow records in this

manner to facilitate processing of packets in the same message after the first packet is

received and a flow entry built. Kerr also discloses the retrieval, use, and storage of

state information on a component-by-component basis. For example, in one

embodiment of Kerr, there are components for access control, encryption, "special

treatment," accounting, rewrite, among others (i.e. processing step). Ex. 15 at 5:5-25.

The processing by these components is "all responsive to information in the entry in the

flow cache.” Id. at 5:9-10. As a specific example, an accounting component can

maintain state information, such as "time stamp" data; "a cumulative count for the

JNPR-IMPL_30024_

Page 67 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 66

Art Unit: 3992

number of packets," and "a cumulative count for the number of bytes.” Id. at 6:58-63.

Kerr later uses timing information to identify expired or otherwise invalid flows (among

other reasons). Id. at 5:52 - 6:19. As another example, Kerr can retrieve the latest

"usage information regarding relative use of network resources" in order to appropriately

prioritize traffic using the relevant component. Id. at 5:41-49).

PO arques in page 32:

Moreover, for the same reasons stated above in Section VLA.3 with respect to Decasper,

one of ordinary skill will recognize that conventional IP routers from the 1990s—like Decasper

and Kerr—by their very nature do not require packet-to-packet state information since each IP

packet can be and is routed independently. It is not surprising, therefore, that Kerr never

mentions “state” or “state information.” This is dispositive.

Ken's complete lack of disclosure notwithstanding, the Examiner states that “Implicit has

taken a broad view of the ‘state information’ limitations, arguing that they cover the retrieval,

use and storage of the identified sequence of components (e.g., a flow record) after the first

packet is received.” Office Action at 10. To the contrary, Implicit has never argued that the

claimed “state information” covers a “flow record” like that disclosed in Kerr. The Examiner

does not provide a citation
to support this statement, and Patent Owner is unaware of any

documout rent which would suppo rt this statement,

However, Examiner respectfully disagrees with PO’s assertion. In regards to

“state information”, Examiner submits that the "accounting component”: maintaining

"a cumulative count for the number of packets" and "a cumulative count for the number

of bytes" OA at 36, it is difficult to imagine how an accounting component could maintain

JNPR-IMPL_30024_ 02293365

Page 68 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 67

Art Unit: 3992

these cumulative counts without, for each packet, retrieving the previous count,

advancing it accordingly, and storing the result for use when processing the next packet

of the message. As another example ofa component that would maintain state

information across packets, is the "encryption" component. OA at 10. Kerr supports

"IP," and one of ordinary skill in the art be aware that according to the "Security

Architecture for IP" (RFC 1825), an encryption algorithm which "MUST" be supported is

the "ESP DEC-CBC" algorithm described in RFC 1829. Ex. 26 (RFC 1825) at 10, 21.

RFC 1829 explains that to apply this mandatory encryption algorithm, "an Initialization

Vector" must be placed in "[eJach datagram" to be encrypted (i.e., in each packet)--and

that a "common" technique for assigning these vectors "is simply a counter, beginning

with a random chosen value." Ex. 27 (RFC 1829) at 1. Thus, an IP security plugin

performing such encryption would, for each packet: retrieve the previous counter value;

apply it to encrypt the packet; increment the counter value; and store it for use when

encrypting the next packet. Given this standard background knowledge, this

implementation would be assumed, and it was at least obvious.

PO argues in page 33:

JNPR-IMPL_30024_

Page 69 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 68

Art Unit: 3992

Sticking with the improper “flow record” theme, the Office Action states that “Kerr

retrieves, uses, and stores flow records in this manner to facilitate processing of packets in the

same message after the first packet is received and a flow entry built.” Office Action at 10. But

the “flow records” in Kerr relate to the “proper treatments,” as explained above in Section

VILA.1. Those proper treatments concern the correct processing and are stored so that that the

packets of the same flow can be processed with the same treatments, but this has nothing to do

with state information about the components and the components’ use of that state information,

as required by the claims. Recognizing this deficiency and specifically referring to “state

information on a component-by-component basis,” the Office Action then refers to “components

for access control, encryption, ‘special treatment,’ accounting, rewrite, among others.” Id. Yet

these are merely processes that can be performed and that might be part of the “proper

treatments.” Again, they have nothing to do with the claimed state information. Nor does the

“timing information” referenced in the Office Action have anything to do with the claimed state

information, in part, because it is unrelated to processing packets of a message. Instead, the

timing information is strictly about expiring flow entries after they have no activity.

Additionally, for the reasons discussed in Section VILA.1 above, Kerr does not disclose
semen

the identification of a “sequence of components.” Instead, it teaches that routing devices

“determine[] proper treatment of packets” and “enter[] information regarding such proper

treatment in a data structure.” Accordingly, Kerr fails to disclose retrieving, using, or storing of

“information specific to a software routine for a specific message” “relating to performing the

processing of the component,” as required by claim 1.

However, Examiner respectfully disagrees with PO’s assertion. As explained

earlier, under the broadest reasonable interpretation of the claim language, Kerr

JNPR-IMPL_30024_

Page 70 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 69

Art Unit: 3992

discloses a "plurality of components" for processing messages. For example, claim 1 of

Kerr describes using a "plurality of devices" to apply "policy treatments" to a "plurality of

messages," where policy treatments are used to perform "access control,security,”

"queuing," "accounting," "traffic profiling," etc. Id. at 70:27-40. Processing components

can include "treatment with regard to switching," “access control," and "encryption." Id.

at 4:20-34. "[S]pecial processing" can include "authentication" techniques “useful for

implementing security 'firewalls."" Id. at 35-46. Kerr further discloses that a "rewrite

function" may be invoked "to alter the header for the packet.” Id. at 4:55-62. These

components can be used for "converting data with an input format into data with an

output format," for example, the "encryption" and "rewrite" components to “alter” data to

be processed. Id. at 4:30- 31, 4:55-62. The processing components of Kerr comprise

"software routine" embodiments, as Kerr states that the processing instrumentality "may

include specific hardware constructed or programmed performing the process steps

described herein" or "a general purpose processor operating under program control.” Id.

at 2:51-55; see also Id. at Figs. 3-4 (illustrating software data structures).

Examiner submits that the "accounting component": i.e., maintaining "a

cumulative count for the number of packets" and "a cumulative count for the number of

bytes" OA at 36, it is difficult to imagine how an accounting component could maintain

these cumulative counts without, for each packet, retrieving the previous count,

advancing it accordingly, and storing the result for use when processing the next packet

of the message. As another example of a component that would maintain state

information across packets, is the "encryption" component. OA at 10. Kerr supports

JNPR-IMPL_30024_

Page 71 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 70

Art Unit: 3992

"IP," and one of ordinary skill in the art be aware that according to the "Security

Architecture for IP" (RFC 1825), an encryption algorithm which "MUST" be supported is

the "ESP DEC-CBC" algorithm described in RFC 1829. Ex. 26 (RFC 1825) at 10, 21.

RFC 1829 explains that to apply this mandatory encryption algorithm, "an Initialization

Vector" must be placed in "[eJach datagram" to be encrypted (i.e., in each packet)--and

that a "common" technique for assigning these vectors “is simply a counter, beginning

with a random chosen value." Ex. 27 (RFC 1829) at 1. Thus, an IP security plugin

performing such encryption would, for each packet: retrieve the previous counter value;

apply it to encrypt the packet; increment the counter value; and store it for use when

encrypting the next packet. Given this standard background knowledge, this

implementation would be assumed, and it was at least obvious.

Kerr discloses a "pointer" to the header rewrite "function" for a flow, which clearly

implies that at least the header rewrite operation is embodied as a discrete software

routine. Ex. 15 at 4:56-59. Moreover, one of ordinary skill in the art would understand

the operations in Kerr would be organized as software routines in any event. While it

can be practical to organize a short, simple program as a single software routine, those

of ordinary skill in the art appreciate it is essentially impossible to build a large, complex

piece of software such as Kerr without subdividing it into different software routines.

Discrete operations such as encryption and authentication are the quintessence of

operations which would inevitably be organized as software routines by one of even

minimal skill in the art. Thus, such organization is at least inherent in Kerr.

Nevertheless, if it is determined that organizing the various operations.as. software

JNPR-IMPL_30024_

Page 72 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 71

Art Unit: 3992

routines is not disclosed or inherent, it was certainly at least obvious for one of ordinary

skill to organize them as such.

When Kerr receives the first packet of a new flow, it determines the "proper

treatment" for the packets of the flow. Kerr 4:12-15. It records an indication of this

|

proper treatment in a flow record, so the proper treatment does not have to be

determined again for subsequent packets of the flow (which would be needlessly

inefficient). Kerr at 4:64-5:4. Depending on the flow, its "proper treatment” may include

performing various distinct operations such as: "encryption"; header “rewrite”;

|

"switching"; "access control"; "accounting"; and "authenticat[ion]." Kerr at 4:20-60. Not

all operations are selected for all flows: i.e., sometimes determining the proper

treatment "with regard to" an operation means not performing any form of the operation

at all. See Kerr at 4:20-22. For example: (1) authentication is explicitly described as

“special [non-standard] treatment" (Kerr at 4:35-39); (2) the pointer to a flow's header

"rewrite" function can be either defined or "null" (Kerr at 4:56-59): and (3) the proper

treatment "with regard to" encryption would be understood to include not
performing any

encryption or decryption at all on its packets (e.g., where the flow is directed to a

destination outside a virtual private network, hence requiring no encryption or decryption

by the router) (see Kerr at 4:21-32).

Determining the proper treatment may also include selecting a particular form of

an operation. For example, flows in Kerr encompass one direction of a connection only.

Kerr at 2:56 ("unidirectional stream"). Those of ordinary skill in the art understand that

where a router is performing encryption on the packets of an outgoing flow, the router

JNPR-IMPL_30024_

Page 73 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 72

Art Unit: 3992

would also be performing decryption on the packets of the incoming flow for that

connection.

As another example, Kerr explicitly teaches there is a "pointer" to the header

"rewrite" function for a flow, rather than merely an on/off switch, clearly suggesting there

could be several possible "rewrite" functions that might be selected. Kerr at 4:56-59.

Whether disclosed or obvious, once it is determined these operations are embodied in

software routines, it is clear Kerr would identify some of these routines but not others as

the "proper treatment" for particular flows. For example, a first flow might be
assigned

an authentication routine and a decryption routine, while a second flow might be

assigned a header rewrite routine and an encryption routine. And notably, this

identification is clearly performed dynamically, after receiving the first packet. Kerr at

4:13-14 ("At a step 224, the routing device builds a new entry in the flow cache" and

“determines proper treatment of packets.., in the message flow’).

Moreover, one of ordinary skill in the art would appreciate that certain operations

in Kerr must be performed in a certain order. E.g., rewriting or authenticating a packet's

original header is impossible if it has already been encrypted. One of ordinary skillin

the art would understand the necessity for such ordering, and arrange Kerr's operations

accordingly. Thus, one of ordinary skill would understand the components must be

arranged ina Suitable sequential order, for Kerr to simply function as described. And in

any event, it was certainly at least obvious to arrange them in a suitable sequential

order, so that Kerr could function properly as described. Thus, Kerr discloses and

renders obvious these claim elements:

JNPR-IMPL_30024_

Page 74 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 73

Art Unit: 3992

Therefore, Examiner respectfully disagrees with PO’s assertion that Kerr does

not disclose the claimed state information; Kerr does not even mention state or state

information; Kerr does not teach any of the state information requirements "in as

complete detail as is contained in” claim 1, as required by the MPEP.

PO arques in page 34:

1. Kerr Fails to Disclose the Requirements in Claims 15 and 35

Regarding Dynamically Identifying a Non-Predefined Sequence of

Components

Like claim 1, claims 15 and 35 require “dynamically identifying” a “non-predefined

sequence of components.” The District Court construed “non-predefined sequence of

components” as sequence of software routines that was not identified before the first packet of

a message was received.” Markman Order at 6 (Ex. 2). For the same reasons set forth above in

Section VILA.1 with respect to claim 1, Kerr also fails to disclose these requirements in claims

15 and 35.

Examiner respectfully disagrees with PO’s assertion. Examiner has shown above

that all the cited limitations of claim 1 are taught by Kerr. Therefore, claims 15 and 35

are not patentable for the same reasons.

PO argues in page 34:

JNPR-IMPL_30024_

Page 75 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 74

Art Unit: 3992

2. Kerr Fails to Disclose the Requirements of Claims 15 and 35

Regarding “selecting individual components to create the [message-

specific] non-predefined sequence of components”

The District Court construed “selecting individual components,” which appears in claims

15 and 35, as “selecting the individual software routines of the sequence se that the input and

output formats of the software routines are compatible.” Markman Order at 11 (Ex. 2). As

explained above in Section VII.A.2 in connection with claim 1, the PTO agrees that Kerr does

not disclose the required input/output format compatibility. Nor would such compatibility be

obvious for the same reasons set forth in Section VIL.A.2.

Examiner respectfully disagrees with PO’s assertion. Examiner has shown above

that all the cited limitations of claim 1 are taught by Kerr. Therefore, claims 15 and 35

are not patentable for the same reasons.

PO argues in pages 34-35:

JNPR-IMPL_30024_

Page 76 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 75

Art Unit: 3992

3. Kerr Fails to Disclose the Requirements of Claims 15 and 35

Regarding “State Information”

Claim 15 requires that “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Claim 35 requires

that “for each packet of each message, invoking the identified non-predefined sequence of

components in sequence to perform the processing of each component for the packet wherein

each component saves message-specific state information so that that component can use the

saved message-specific state information when that component performs its processing on the

next packet of the message.” For the same reasons set forth above in Section VI.A.3 with

respect to claim 1, Kerr also fails to disclose these state information requirements in claims 15

and 35.

Examiner respectfully disagrees with PO’s assertion. Examiner has shown above

that all the cited limitations of claim 1 are taught by Kerr. Therefore, claims 15 and 35

are not patentable for the same reasons.

PO argues in page 35:

VU. SECONDARY INDICIA EVIDENCE OF NON-OBVIOUSNESS

In addition to the above arguments showing that claims 1, 15 and 35 are non-obvious,

Implicit presents the declaration of the inventor, attached as Exhibit 1. The declaration and the

exhibits attached to the declaration further show that the claims are non-obvious.

PO argues in page 2 of Declaration under 37 CFR 1.132:

JNPR-IMPL_30024_

Page 77 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 76

Art Unit: 3992

COMMERCIAL SUCCESS

7. Implicit’s patented invention manifested itself into various products sold to

sophisticated customers. For example, Implicit built the code for the first tablet computer, the Intel

Web Tablet, released in 2000; the code for a home gateway solution designed by Intel to be released

in 2001; and likewise provided the platform support for the Intel Media Player, released in 2004.

Implicit had contracts with many other big companies, too, including AMD, Raytheon, and

Thompson.

8. The commercial successes of the invention were due, in part, to the claimed

features in the ‘163 patent, in particular claims 1, 15 and 35. Implicit was able to succeed in

these contracts and commercial endeavors because of the following features: (1) dynamically

identifying a non-predefined sequence of components after receiving the first packet of a

message; (2) the dynamic identification is such that the output format of the components of the

non-predefined sequence match the input format of the next component in the sequence; and (3)

using message-specific state information for the components when processing the packets.

However, Examiner respectfully disagrees with PO’s assertion.

An affidavit or declaration attributing commercial success to a product or process

“constructed according to the disclosure and claims of [the] patent application” or other

equivalent language does not establish a nexus between the claimed invention and the

commercial success because there is no evidence that the product or process which

has been sold corresponds to the claimed invention, or that whatever commercial

success may have occurred is attributable to the product or process defined by the

claims. Ex parte Standish, 10 USPQ2d 1454, 1458 (Bd. Pat. App. & Inter. 1988).

JNPR-IMPL_30024_

Page 78 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 77

Art Unit: 3992

EWP Corp. v. Reliance Universal, Inc., 755 F.2d 898, 225 USPQ 20 (Fed. Cir.

1985) (evidence of licensing is a secondary consideration which must be carefully

appraised as to its evidentiary value because licensing programs may succeed for

reasons unrelated to the unobviousness of the product or process, e.g., license is

mutually beneficial or less expensive than defending infringement suits)

To be pertinent to the issue of nonobviousness, the commercial success of

devices falling within the claims of the patent must flow from the functions and

advantages disclosed or inherent in the description in the specification. Furthermore,

the success of an embodiment within the claims may not be attributable to

improvements or modifications made by others. in re Vamco Machine & Tool, Inc., 752

F.2d 1564, 224 USPQ 617 (Fed. Cir. 1985).

|

A patentee seeking to rely on commercial success must satisfy its burden of

showing "both that there is commercial success, and that the thing (product or method)

that is commercially successful is the invention disclosed and claimed in the
patent.”

Demaco Corp. v. F. Von Langsdorff Licensing Ltd., 851 F. 2d 1387 (Fed. Cir. 1988)

(noting theterm "nexus" is often used in this context). The Balassanian Declaration does

neither.

The Balassanian Declaration alleges that the alleged invention of the '163 patent

“manifested itself into various products sold to sophisticated customers,” and then

proceeds to list a number of alleged embodiments and "big companies” with which

Implicit allegedly "had contracts." Balassanian Declaration But, of course, merely

entering into "contracts" with companies that are "big" and "sophisticated" does not by

JNPR-IMPL_30024_

Page 79 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 78

Art Unit: 3992

itself show commercial success, and the Declaration does not even attempt to support

its claim of success in the marketplace with conventional indicia such as volumes sold

or revenue pertaining to the alleged embodiments. Moreover, the Declaration fails to

provide any evidence establishing that these products do in fact embody the patents-in-

suit, much less that it is the claimed features of the ' 163 patent that made these

products commercially successful. Brown& Williamson Tobacco, Corp. v. Phillip Morris,

Inc., 229 F.3d 1120, 1130 (Fed.Cir. 2000) (nexus “must explain how the product's

commercial success was caused, at least in part, by the claimed invention and not by

the economic and commercial factors unrelated to the technical quality of the patented

subject matter.").

The Balassanian Declaration thus fails to establish commercial success of the claimed

invention.

PO argues in pages 3-4 of Declaration under 37 CFR 1.132:

JNPR-IMPL_30024_

Page 80 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 79

Art Unit: 3992

LONG FELT BUT UNRESOLVED NEED

9. As the Internet changed in the late 1990’s, the prior non-modular, pre-baked

network operating systems were no longer workable. There is significant commentary in the

trade press about the need for a different and better solution.

10. For example, the Scout reference’s approach was discussed extensively in the

prior ex parte reexamination. (A copy of the Scout dissertation was attached to Juniper

Network’s reexamination request.) Commentators referred to the Scout approach as “static, ie.,

most configuration happens at build time, and runtime reconfiguration is impossible.” Ex. A to

this declaration at IMP127910. Dr. Larry Peterson was a Professor at the University of Arizona

and was the advisor for David Mosberger, who wrote the Scout dissertation. Dr. Peterson later

discussed and contrasted the ’163 invention, which was called “Strings,” in a paper dated
June

2001. Ex. B to this declaration. Dr. Peterson stated that “Strings defines a whole new

paradigm.” Ex. B at IMP127854. He then references the “dynamic configuration” aspect of

Strings, which is a direct reference to the dynamic identification claimed in the patent.

However, Examiner respectfully disagrees with PO’s assertion. Establishing long-

felt need requires objective evidence that an art recognized problem existed in the art

for a long period of time without solution. The relevance of long-felt need and the failure

of others to the issue of obviousness depends on several factors. First, the need must

have been a persistent one that was recognized by those of ordinary skill in the art. /n re

Gershon, 372 F.2d 535, 539, 152 USPQ 602, 605 (CCPA 1967) ("Since the alleged

problem in this case was first recognized by appellants, and others apparently have not

yet become aware of its existence, it goes without saying that there could not possibly

be any evidence of either a long felt need in the . art for a solution to a problem of

JNPR-IMPL_30024_

Page 81 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 80

Art Unit: 3992

dubious existence or failure of others skilled in the art who unsuccessfully attempted to

solve a problem of which they were not aware."); Orthopedic Equipment Co., Inc. v. All

Orthopedic Appliances, Inc., 707 F.2d 1376, 217 USPQ 1281 (Fed. Cir. 1983) (Although

the claimed invention achieved the desirable result of reducing inventories, there was

no evidence of any prior unsuccessful attempts to do so.).

Second, the long-felt need must not have been satisfied by another before the

invention by applicant. Newell Companies v. Kenney Mfg. Co., 864 F.2d 757, 768, 9

USPQ2d 1417, 1426 (Fed. Cir. 1988) (Although at one time there was a long-felt need

for a "do-it-yourself" window shade material which was adjustable without the use of

tools, a prior art product fulfilled the need by using a scored plastic material which could

be torn. "[O]nce another supplied the key element, there was no long-felt need or,

indeed, a problem to be solved".)

Third, the invention must in fact satisfy the long-felt need. /n re Cavanagh, 436

F.2d 491, 168 USPQ 466 (CCPA 1971).

Examiner agrees with the Third Party (Response pages 41-42): The Balassanian

Declaration also fails to prove that there was a long left but unresolved need in the field

that was somehow satisfied by the claimed invention. See /n re Cavanagh, 436 F.2d

491,495 (C.C.P.A. 1971). The Balassanian Declaration claims there was "significant

commentary" on this topic but cites only two references: (1) a single sentence from an

almost 200-page dissertation that makes no mention of PO's technology and (2) a short

paper of unstated origin or authorship regarding an PO product known as "Strings."

Balassanian Declaration 10: As to the first of these, although the cited-sentence

JNPR-IMPL_30024_

Page 82 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 81

Art Unit: 3992

asserts that "runtime reconfiguration is impossible" with respect to the "Scout" prior art

product, it does support this statement, and never states that Kerr or Decasper98 or any

number of other existing technologies lacked this feature. Nor does the Balassanian

Declaration explain how "runtime reconfiguration" has anything to do with the claims of

the '163 patent, especially after the District Court in the concurrent litigation rejected

PO's attempt fo construe the claims to cover sequences of components that were

merely "changeable at runtime.” App. R9 (Claim Construction Order) at 6. Without proof

of nexus to the patent claims, PO's reliance on this dissertation fails.

Similarly, the second cited reference makes a vague statement about PO's

alleged "Strings" embodiment "defin[ing] a whole new paradigm," but fails to connect

that statement to anything relating to the claimed invention. The Balassanian

Declaration again fails to provide any evidence establishing that the Strings product

actually embodied the '163 patent. Geo M. Martin Co. v.Alliance Mach. sys. Int

618 F.3d 1294, 1305 (Fed. Cir. 2010) ("Industry praise must be linked to the patented

invention."). And although the reference suggests at most that one other particular prior

art technology (object-oriented programming) may not have necessarily supported:

"dynamic configuration.., at runtime," it does not explain how this is relevant to the

claims as properly construed (i.e., after the District Court rejected INI's proposed

"runtime" construction). Nor does the reference state that Kerr or Decapser98 or other

known technologies lack this characteristic.

Finally, and perhaps most fundamentally, INI provides virtually none of the

context needed to-properly evaluate the paper for purposes of a-non-obviousness

JNPR-IMPL_30024_

Page 83 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 82

Art Unit: 3992

analysis--for example, whether this was an independent, scholarly or peer-reviewed

article as opposed to a paid piece commissioned by PO for use in marketing.

In short, as shown above, there is no evidence that PO's claimed embodiment

ever

experienced any commercial success, much less solved any problems or satisfied any

long felt needs in the field. Cavanagh, 436 F.2d at 495. Thus, this argument also fails.

PO argues in page 4 of Declaration under 37 CFR 1.132:

ll. Implicit has filed patent infringement lawsuits involving the patent, among

others. These lawsuits include:

* Implicit Networks, Inc. v. Advanced Micro Devices, Inc., Intel Corporation,

NVIDIA Corporation, Raza Microelectronics, RealNetworks, Inc. and

SunMicrosystems, Inc., C08-0184 JLR, U.S. District Court for the Western

District of Washington (asserting infringement of the patent).

Implicit Networks, Inc. v. Microsoft Corporation, CV09-5628, U.S. District

Court for the Northern District of California (asserting infringement of the *163

patent).

* Implicit Networks, Inc. v. Cisco Systems, Inc., C10-3606, U.S. District Court for

the Northern District of California (asserting infringement of the ’163 patent and

the °857 patent).

JNPR-IMPL_30024_

Page 84 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 83

Art Unit: 3992

Implicit Networks, Inc. v. Citrix Systems, Inc., C10-3766, U.S. District Court for

the Northern District of California (asserting infringement of the ’163 patent).

12. As part of the resolution of the lawsuits involving the °163 patent, numerous

companies have taken licenses under the °163 patent. These licenses also extend to other

patents in the Implicit portfolio (see Implicit’s Markman Brief referencing 13 patents). The

licenses concerning the °163 patent (which now number over 10 licenses} include such

companies as: Microsoft, IBM, Oracle, Sun, Cisco, and Citrix. See Implicit’s Markman Brief at

6.

Examiner respectfully disagrees with PO’s assertion.

EWP Corp. v. Reliance Universal, Inc., 755 F.2d 898, 225 USPQ 20 (Fed. Cir.

1985) (evidence of licensing is a secondary consideration which must be carefully

appraised as to its evidentiary value because licensing programs may succeed for

reasons unrelated to the unobviousness of the product or process, e.g., license is .

mutually beneficial or less expensive than defending infringement suits)

Examiner agrees with the Third Party (Response page 42):

Finally, the Balassanian Declaration fails to show any acquiescence through

licensing that would tend to show non-obviousness. PO is relying here on a number of

licenses reached as a result of litigation. Balassanian Declaration PO has

expressly admitted in the District Court proceedings that these licenses were "litigation

related conlpromises." App. R11 (PO Responses to Requests for Admission) at 12.

Without attaching the licenses themselves or undertaking any analysis of the terms and

amounts paid (and why), the Examiner cannot be expected to fairly evaluate whether

JNPR-IMPL_30024_

Page 85 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 84

Art Unit: 3992

such licenses reflect acknowledgements of the value of the alleged invention, or mere

payments to avoid the burdens and costs of litigation. Moreover, the Balassanian .

Declaration fails to present proof that any of the licensed products actually fall within the

scope of the claims at issue (e.g., by admission of the licensors or otherwise). Thus,

these licenses do not and cannot demonstrate non-obviousness.

Claim Rejections - 35 USC § 102

5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

(b) the invention was patented or described in a printed publication in this or a foreign country or in

public use or on sale in this country, more than one year prior to the date of application for patent in

the United States.

A person shall be entitled to a patent unless —

(e) the invention was described in (1) an application for patent, published under section 122(b), by
another filed in the United States before the invention by the applicant for patent or (2) a patent,

granted on an application for patent by another filed in the United States before the invention by the

applicant for patent, except that an international application filed under the treaty defined in section

351(a) shall have the effects for purposes of this subsection of an application filed in the United States

only if the international application designated the United States and was published under Article 21(2)
of such treaty in the English language.

Claim Rejections - 35 USC § 103

6. The following is a quotation of 35 U.S.C. 103(a) which forms the basis forall

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set

forth in section 102 of this title, if the differences between the subject matter sought to be patented and

the prior art are such that the subject matter as a whole would have been obvious at the time the

invention was made to a person having ordinary skill in the art to which said subject matter pertains.

Patentability shall not be negatived by the manner in which the invention was made.

JNPR-IMPL_30024_

Page 86 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: Page 85

Art Unit: 3992

The factual inquiries set forth in Graham v. John Deere Co., 383 U.S. 1, 148

USPQ 459 (1966), that are applied for establishing a background for determining

obviousness under 35 U.S.C. 103(a) are summarized as follows:

Determining the scope and contents of the prior art.

Ascertaining the differences between the prior art and the claims at issue.

Resolving the level of ordinary skill in the pertinent art.

Considering objective evidence present in the application indicating
obviousness or nonobviousness.

B
O

N

8. Claim 1 is rejected under 35 U.S.C. 103(a) as being unpatentable over Kerr et al.

(US PAT 6243667, hereinafter Kerr).

In regards to claim 1, Kerr discloses a method in a computer system (column

2, lines 30-32, However, those skilled in the art would recognize, after perusal of this

application, that embodiments of the invention may be implemented using a set of

general purpose computers operating under program control, and that modification of a

set of general purpose computers to implement the process steps and data structures

described herein would not require undue invention) for processing a message

having a sequence of packets (column 1 lines 59-60, The invention provides a

method and system for switching in networks responsive to message flow patterns. A

message "flow" is defined to comprise a set of packets to be transmitted between a

particular source and a particular destination. When routers in a network identify a new

message flow, they determine the proper processing for packets in that message flow

and cache that information for that message flow. Thereafter, when routers ina

network identify a packet which is part of that message flow, they process that packet

JNPR-IMPL_30024_

Page 87 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 86

Art Unit: 3992

according to the proper processing for packets in that message flow. The proper

processing may include a determination of a destination port for routing those packets

and a determination of whether access control permits routing those packets to their

indicated destination) the method comprising:

providing a plurality of components, each component being a software

routine for converting data with an input format into data with an output format

(Kerr discloses a "plurality of components" for processing messages. For example;

claim 1 of Kerr describes using a “plurality of devices" to apply "policy treatments" to a

"plurality of messages," where policy treatments are used to perform "access control,

... security," “queuing,” "accounting," "traffic profiling," etc. Id. at 10:27-40. Processing

Hou

components can include "treatment with regard to switching,” “access control," and

"encryption." Id. at 4:20-34. "[S]pecial processing" can include "authentication"

techniques "useful for implementing security ‘firewalls. Id. at 35-46. Kerr further

discloses that a "rewrite function" may be invoked "to alter the header for the packet."

ld. at 4:55-62. These components can be used for "converting data with an input format

into data with an output format," under Implicit! s apparent claim constructions, for

example (as described above), the "encryption" and "rewrite" components to “alter data

to be processed. Id. at 4:30- 31, 4:55-62. The processing components of Kerr comprise

"software routine" embodiments, as Kerr states that the processing instrumentality "may

include specific hardware constructed or programmed performing the process steps

described herein" or "a general purpose processor operating under program control." Id.

at 2:51-55: see. also .id.at-Figs..3-4 (illustrating software data structures));

JNPR-IMPL_30024_

Page 88 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 87

Art Unit: 3992

for the first packet of the message, dynamically identifying a non-

predefined sequence of components for processing the packets of the message

wherein dynamically identifying includes selecting individual components to

create the non-predefined sequence of components after the first packet is

received (claim 1, lines 31-40, column 4 lines 20-34, column 3 line 38-column 6 line 27

identifying a first one message of a first plurality of messages associated with an

application layer, said first plurality of messages having at least one policy treatment in

common, said first plurality of messages being identified in response to an address of a

selected source device and an address of a selected destination device, wherein said

policy treatment comprises at least one of the access control information, security

information, queuing information, accounting information, traffic profiling information,

and policy information; In a preferred embodiment, the proper treatment of packets 150

in the message flow 160 includes treatment with regard to switching (thus, the routing

device 140 determines an output port for switching packets 150 in the message flow

160), with regard to access control (thus, the routing device 140 determines whether

packets 150 in the message flow 160 meet the requirements of access control, as.

defined by access control lists in force at the routing device 140), with regard to

accounting (thus, the routing device 140 creates an accounting record for the message

flow 160), with regard to encryption (thus, the routing device 140 determines encryption

treatment for packets 150 in the message flow 160), and any special treatment for

packets 150 in the message flow 160. FIG. 2 shows a method for routing in networks

responsive to message flow patterns. In broad-overview, the method for routing-in

JNPR-IMPL_30024_

Page 89 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 88

Art Unit: 3992

networks responsive to message flow patterns comprises two parts. In a first part, the

routing device 140 builds and uses a flow cache described in further detail with regard

to FIG. 3), in which routing information to be used for packets 150 in each particular

message flow 160 is recorded and from which such routing information is retrieved for

use...A method 200 for routing in networks responsive to message flow patterns is

performed by the routing device 140. At a flow point 210, the routing device 140 is

disposed for building and using the flow cache. At a step 221, the routing device 140

receives a packet 150. At a step 222, the routing device 140 identifies a message flow

160 for the packet 150. In a preferred embodiment, the routing device 140 examines a

header for the packet 150 and identifies the IP address for the source device 120, the IP

address for the destination device 130, and the protocol type for the packet 150. The

routing device 140 determines the port number for the source device 120 and the port

number for the destination device 130 responsive to the protocol type. Responsive to

this set of information, the routing device 140 determines a flow key 310 (described with

reference to FIG. 3) for the message flow 160. At a step 223, the routing device 140

performs a lookup in a flow cache for the identified message flow 160. If the lookup is

unsuccessful, the identified message flow 160 is a "new" message flow 160, and the

routing device 140 continues with the step 224. If the lookup is successful, the

identified message flow 160 is an "old" message flow 160, and the routing device 140

continues with the step 225. In a preferred embodiment, the routing device 140

determines a hash table key responsive to the flow key 310. This aspect of the step

223 is described in further detail with regard.to FIG..3. At-a step 224, the routing device

JNPR-IMPL_30024_

Page 90 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 89

Art Unit: 3992

140 builds a new entry in the flow cache. The routing device 140 determines proper

treatment of packets 150 in the message flow 160 and enters information regarding

such proper treatment in a data structure pointed to by the new entry in the flow cache.

In a preferred embodiment, the routing device 140 determines the proper treatment by

performing a lookup in an IP address cache as shown in FIG. 4. In a preferred

embodiment, the proper treatment of packets 150 in the message flow 160 includes

treatment with regard to switching (thus, the routing device 140 determines an output

port for switching packets 150 in the message flow 160), with regard to access control

(thus, the routing device 140 determines whether packets 150 in the message flow 160

meet the requirements of access control, as defined by access control lists in force at

the routing device 140), with regard to accounting (thus, the routing device 140 creates

an accounting record for the message flow 160), with regard to encryption (thus, the

routing device 140 determines encryption treatment for packets 150 in the message

flow 160), and any special treatment for packets 150 in the message flow 160. Ina

preferred embodiment, the routing device 140 performs any special processing for new

message flows 160 at this time... Thereafter, the routing device 140 proceeds with the

step 225, using the information from the new entry in the flow cache, just as if the

identified message flow 160 were an "old" message flow 160 and the lookup in a flow

cache had been successful. At a step 225, the routing device 140 retrieves routing

information from the entry in the flow cache for the identified message flow 160. Ina

preferred embodiment, the entry in the flow cache includes a pointer to a rewrite

function for at least part of a header for the packet 150. If this pointer is.non-null,.the

JNPR-IMPL_30024_

Page 91 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 90

Art Unit: 3992

routing device 140 invokes the rewrite function to alter the header for the packet 150. At

a step 226, the routing device 140 routes the packet 150 responsive to the routing

information retrieved at the step 225. Thus, in a preferred embodiment, the routing

device 140 does not separately determine, for each packet 150 in the message flow

160, the information stored in the entry in the flow cache. Rather, when routing a

packet 150 in the message flow 160, the routing device 140 reads the information from

the entry in the flow cache and treats the packet 150 according to the information in the

entry in the flow cache. Thus, in a preferred embodiment, the routing device 140 routes

the packet 150 to an output port, determines whether access is allowed for the
packet

150, determines encryption treatment for the packet 150, and performs any special

treatment for the packet 150, all responsive to information in the entry in the flow cache.

In a preferred embodiment, the routing device 140 also enters accounting information in

the entry in the flow cache for the packet 150. When routing each packet 150 in the

message flow 160, the routing device 140 records the cumulative number of packets

150 and the cumulative number of bytes for the message flow 160. Because the routing

device 140 processes each packet 150 in the message flow 160 responsive to the entry

for the message flow 160 in the flow cache, the routing device 140 is able to implement

administrative policies which are designated for each message flow 160 rather than for

each packet 150);

and storing an indication of each of the identified components so that the

non-predefined sequence does not need to be re-identified for subsequent .

packets of the message; and for each of a plurality of packets of the message in

JNPR-IMPL_30024_

Page 92 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 91

Art Unit: 3992

sequence, for each of a plurality of components in the identified non-predefined

sequence, retrieving state information relating to performing the processing.of

the component with the previous packet of the message; performing the

processing of the identified component with the packet and the retrieved state

information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the .

message (After receiving the first packet ofa new flow, Kerr builds a new flow entry that

is cached in memory, which constitutes "storing". Kerr also explains that building and

caching a flow entry upon receiving the first new packet in a flow is specifically

performed so that information "does not need to be re-identified for subsequent packets

of the message," as that term is apparently construed by Implicit. Kerr explains that, for

the sake of efficiency: information about message flow patterns is used to identify

packets for which processing has already been determined, and therefore to process

those packets without having to re-determine the same processing Thus, ina

preferred embodiment, the routing device 140 does not separately determine, for each

packet 150 in the message flow 160, the information stored in the entry in the flow

cache. Rather, when routing a packet 150 in the message flow 160, the routing device

140 reads the information from the entry in the flow cache and treats the packet 150

according to the information in the entry in the flow cache. Ex. 15 at 1:33-36, 4:64-5:4.

In other words, when the first packet of a flow arrives, Kerr goes through the somewhat

expensive and elaborate process of determining how all the packets of that flow should

be treated: e.g.; whether they should be encrypted, whether they.should.be modified or

JNPR-IMPL_30024_

Page 93 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 92

Art Unit: 3992

partially re-written, and where they should be routed next. Id. at 1:33-35, 4:13-60. It then

records all this information about the proper processing for a flow by "build[ing] a new

entry in the flow cache" for the flow, so the proper processing does not have to be’

wastefully and redundantly determined again for subsecuent packets of the flow. Id. at

4:12-13. Kerr discloses this "state information" element. Implicit has taken a broad view

of the "state information" limitations, arguing that they cover the retrieval, use, and

storage of the identified sequence of components (e.g., a flow record) after the first

packet is received. As demonstrated above (for the "storing an indication" element),

Kerr retrieves, uses, and stores flow records in this manner to facilitate processing of

packets in the same message after the first packet is received and a flow entry built.

Kerr also discloses the retrieval, use, and storage of state information on a component-

by-component basis. For example, in one embodiment of Kerr, there are components

for access control, encryption, "special treatment," accounting, rewrite, among others.

Ex. 15 at 5:5-25. The processing by these components is "all responsive to information

in the entry in the flow cache." Id. at 5:9-10. As a specific example, an accounting

component can maintain state information, such as "time stamp" data, "a cumulative

count for the number of packets," and "a cumulative count for the number of bytes.” Id.

at 6:58-63. Kerr later uses timing information to identify expired or otherwise invalid

flows (among other reasons). Id. at 5:52 - 6:19. As another example, Kerr can retrieve

the latest "usage information regarding relative use of network resources” in order to

appropriately prioritize traffic using the relevant component. Id. at 5:41-49).

JNPR-IMPL_30024_

Page 94 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Controi Number: 95/000,659 Page 93

Art Unit: 3992

Kerr does not explicitly teach processing the packets of the message such

that the output format of the components match the input format of the next

component.

Regarding the limitation "such that the output format of the components ... match

the input format of the next component," it was well-known to those of ordinary skill in

the art that certain operations on a packet must be performed in a certain order: e.g., if

a packet is first converted into an encrypted format by a first component, a subsequent

component would be unable to, e.g., rewrite its headers (because it was expecting to

receive the packet in an unencrypted format). See id. at 4:31-32 (“encryption treatment

for packets.., in the message flow"), 4:57-58 ("rewrite function for.., a header for the

packet"). Thus, it was certainly at least obvious for one of ordinary skill in the art to

arrange the sequence of components in a compatible manner, such that the output

format of one matches the input format of the next-- rather than arranging them in an

incompatible manner whereby various component(s) would be unable to perform their

function(s).

9. Claim 1 is rejected under 35 U.S.C. 103(a) as being unpatentable over

Decasperg8.

In regards to claim 1, Decasper98 teaches a method in a computer system

JNPR-IMPL_30024_

Page 95 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 94

Art Unit: 3992

Monclitic Best-Efort Architecture Modutar

sented agree Series Asie

Kernel

Figure l. : Best Effortvs——
Extended Integrated Services Router (EISR)

for processing a message having a sequence of packets (Decasper98 explains: "it

is very important to be able to quickly and efficiently classify packets into flows, and to

apply different policies to different flows; these are both things that our architecture

excels at doing.” Ex. 25 at 2. Flows may represent “longer lived packet streams":

Because the deployment of multimedia data sources and applications (e.g. real-time

audio/video) will produce longer lived packet streams with more packets per session

than is common in today's environment, an integrated services router architecture

should support the notion of flows and build upon it. Id. at 3. A flow is defined as a group

of packets which satisfy a specific filter. See id. at 3 ("Sets of flows are specified using

filters Filters can also match individual end-to-end application flows"). Id. at 3. A flow

would comprise a "message" under Implicit's apparent claim constructions. See section

IV.C), the method comprising:

providing a plurality of components (Decasper98 teaches that "[o]ne of the

novel features of our design is the ability to bind different plugins to individual flows." Id.

at 1), each component being a software routine for converting data (\d. at 2

JNPR-IMPL_30024_

Page 96 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 95

Art Unit: 3992

("plugins are kernel software modules that are... responsible for performing certain

functions on specified network flows.") for the first packet of the message, dynamically

identifying a non-predefined sequence of components for processing the packets of the

message wherein dynamically identifying includes selecting individual components to

create the non-predefined sequence of components after the first packet is received

(When the first packet of a new flow arrives, Decasper98 performs an expensive series

of filter operations to determine the correct sequence of plugin components to be

applied to the flow. See Ex. 25 at 5-6 ("The processing of the first packet of a new flow..,

involves n filter table lookups to create a single entry in the flow table for the new flow.").

This expensive series of filter operations does not need to be repeated for subsequent

packets of the flow, because the new "entry... in the flow" table serves as a fast cache

for future lookup of packets belonging to that flow," and the entry "stores pointers to the

appropriate plugins." Id. at 5. Performance is thus enhanced for subsequent packets of

the flow, since "[u]sually, filter table lookups are much slower than flow table lookups.”

ld. See also id. at 3 ("Subsequent packets get this information from a fast flow cache

which temporarily stores the information gathered by processing the first packet.").

Decasper98 assigns the sequence of plugins to the flow on the basis of lookups in

multiple independent "filter tables." E.g., id. at 5-7 ("The processing of the first packet of

a new flow.., involves n filter table lookup to create a single entry in the flow table for the

new flow"); 7 ("multiple lookups (in different filter tables)"). E.g., a first filter table

determines whether afirst plugin is added to the sequence, a second independent filter

JNPR-IMPL_30024_

Page 97 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 96

Art Unit: 3992

table determines whether a second plugin is added, a third independent filter table

determines whether a third plugin is added, and so on. See ld. at 5-7.

cot,
REND

Each flow table entry stores

pointers to the appropriate

plugins for all gates that can

be encountered by packets

belonging to the

corresponding flow.

Figure 3. : System Architecture and Data Path

In the Alu, all flows start out being uncached (i.c., they do

not have an entry in the flow table). If an incoming packet
belongs to an uncached flow, its lookup in the flow table
data structure will fail (i.e., there is a cache miss). In this

case, the packet needs to be looked up in a different data

structure that we call a filter table, Filter tables store the

bindings between filters and plugins for each gate. The filter

table lookup algorithm finds the most specific matching
filter (described later) that has been installed in the table,
and returns the corresponding plugin instance. Usually,
filter table lookups are much slower than flow table

lookups. An entry for a flow in the flow table serves as a

fast cache for future lookups of packets belonging to that

flow. Each flow table entry stores pointers to the appropriate

plugins for all gates that can be encountered by packets

belonging to the corresponding flow. The processing of the

first packet of a new flow with.» gates involves
a

filter table
lookups to create a single entry in the flow table for the new

flow.

JNPR-IMPL_30024_

Page 98 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 97

Art Unit: 3992

for the first packet of the message, dynamically identifying a_non-

predefined sequence of components for processing the packets of the message

wherein dynamically identifying includes selecting individual components to

create the non-predefined sequence of components after the first packet is

received (when the first packet of a new flow arrives, Decasper98 performs an

expensive series of filter operations to determine the correct sequence of plugin

components to be applied to the flow. See Ex. 25 at 5-6 ("The processing of the first

packet of a new flow.., involves n filter table lookups to create a single entry in the flow

table for the new flow."). This expensive series of filter operations does not need. to be

repeated for subsequent packets of the flow, because the new "entry... in the flow" table

serves as a fast cache for future lookup of packets belonging to that flow,” and the entry

"stores pointers to the appropriate plugins.” Id. at 5. Performance is thus enhanced for

subsequent packets of the flow, since "[u]sually, filter table lookups are much slower

than flow table lookups." Id. See also id. at 3 (“Subsequent packets get this information

from a fast flow cache which temporarily stores the information gathered by processing

the first packet."). .
Decasper98 assigns the sequence of plugins to the flow on the basis of lookups

in multiple independent "filter tables." E.g., id. at 5-7 ("The processing of the first packet

of a new flow.., involves n filter table lookup to create a single entry in the flow table for

the new flow"); 7 ("multiple lookups (in different filter tables)"). E.g., a first filter table

determines whether a first plugin is added to the sequence, a second independent filter

JNPR-IMPL_30024_

Page 99 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 98

Art Unit: 3992

table determines whether a second plugin is added, a third independent filter table

determines whethera third plugin is added, and so on. See id. at 5-7.

This leads "exponentially" to an enormous number of possible sequences that

might be applied to the first packet of a flow when it arrives, "even with very few

installed filters." See Id. at 7.2. These various possible sequences are not stored or

enumerated anywhere in the system ahead of time. Instead, the sequence of plugins for

a flow is generated algorithmically when the first packet of a flow arrives, by applying a

series of filter operation to packet data which was not available to the system until that

moment. See id. at 5-7.

Decasper98 explicitly considers and rejects a "theoretically possible" alternative

approach, which is to replace this system of multiple independent filters with "a single

global filter table." Id. at 7. Under this alternative approach, only a single filter would

apply to a particular flow, and that single filter would specify the entire sequence of

components to be applied to it. See Id. When the first packet arrived, the system would

find the single matching filter and then essentially just read off the sequence of

components to be applied to that flow. See Id. Thus, the sequence would be pre-defined

and readily identifiable as such in a specific filter entry, even before the first packet

arrived.

However, Decasper98 rejects this approach as "practically infeasible because

the space requirements for the global table can, even with very few installed filters,

increase very quickly (exponentially) to unacceptable levels." Id. In other words,

Decasper98's multiple filter table approach implies-so many potential valid sequences

JNPR-IMPL_30024_

Page 100 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 99

Art Unit: 3992

that it is impossible to even enumerate them all ahead of time in memory--since they

would not fit.

Instead, Decasper98 adopts an algorithmic approach where the correct

sequence is generated dynamically on demand, by applying the series of multiple filters

to the first packet when it arrives. Thus, under Implicit's apparent claim constructions,

Decasper98 discloses "for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message.”

Decasper98 discloses this "dynamically identifying" claim element under Implicit's

apparent claim constructions. Decasper98 also teaches "selecting individual

components to create the non-predefined sequence of components after the first packet

is received." As explained above, after the first packet of a flow arrives, Descapser98

applies a series of independent filters to it, each of which may select a different

individual plugin. Id at 5-7. See also, e.g., id. at 4 (Figure 2, showing various individual

plugins that might be selected within each category, e.g., "BMP1 BMP2 BMP3"). The

very purpose of this architecture is to apply the fight specific individual plugins ina

tailored manner to each particular flow. E.g., id. at 2 (‘it is very important to be able to

quickly and efficiently classify packets into flows, and to apply different policies to

different flows"), 3, 7)

and storing an indication of each of the identified components so that the

non-predefined sequence does not need to be re-identified for subsequent

packets of the message; and for each of a plurality of packets of the message in

sequence, for each of a plurality of components in the identified non-predefined

JNPR-IMPL_30024_

Page 101 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 100

Art Unit: 3992

sequence, retrieving state information (pointers) relating to performing the

processing of the component with the previous packet of the message;

performing the processing of the identified component with the packet and the

retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next

packet of the message (

orawiny RSVPISSP.0 aamon

"S
e

o
h

A
O

N

@|

Each flow table entry stores

pointers to the appropriate

plugins for all gates that can

be encountered by packets

belonging to the

corresponding flow.

Figure 3. : System Architecture and Data Path

JNPR-IMPL_30024_

Page 102 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 101

Art Unit: 3992

in the Alu, all flows start out being uncached (i.e., they do

not have an entry in the flow table). If an incoming packet
belongs to an uncached flow, its lookup in the flow table
data structure will fail (i.e., there is a cache miss). In this

case, the packet needs to be looked up in a different data

structure that we call a filter table. Filter tables store the

bindings between filters and plugins for each gate. The filter
table lookup algorithm finds the most specific matching
filter (described later) that has been installed in the table,
and returns the corresponding plugin instance. Usually,
filter table lookups are much slower than flow table

lookups. An entry for a flow in the flow table serves as a

fast cache for future lookups of packets belonging to that

flow. Each flow table entry stores pointers to the appropriate

plugins for all gates that can be encountered by packets

belonging to the corresponding flow. The processing of the

first packet of a new flow with. gates involves filter table

lookups to create a single entry in the flowtable for the new

low.
Sea

JNPR-IMPL_30024_

Page 103 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659

Art Unit: 3992

This cycle is executed only for the first packet arriving on

an uncached flow. Subsequent packets follow a faster path
because of the cached entry in the flow table. Note that in

our system, we have created optimized implementations of
both the flow and filter tables, allowing for high

performance on both the cached and uncached paths. These

implementations are described in Section 3.

Cached flow processing involves the following sequence:

Processing at the first gate: When a packet from a

cached flow encounters the first gate, the A(U is called to

request the plugin instance. This time, the pointer to the

instance requested is already in the flow table. The flow
table is looked up efficiently, and the plugin instance

pointer corresponding to the calling gate is returned. No
filter table lookups are required.

Associating the packet with a flow index: Together
with the instance requested, the AIU returns a pointer to

the row in the flow table where the information associ-

ated with the flow is stored. This pointer is called the

flow index (FIX), and is stored in the packet’s mbuf?.

The instance is then called to process the packet, follow-

ing which the Ip stack passes the packet on to the next

gate.

Processing at subsequent gates: Once the packet has

made its way past the first gate, the AIU does not have to

be called upon to classify the packets at the remaining

gates. Macros implementing a gate can retrieve the

instance pointers cached in the flow table by accessing
the FIX stored in the packet. This allows us to pass pack-
ets to the appropriate instances in a very efficient man-

ner using an indirect function call instead of a

“hardwired” function call. We show in section 7 that this

does not imply significant performance penalties.

Page 102

JNPR-IMPL_30024_

Page 104 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 103

Art Unit: 3992

Decasper98 does not explicitly teach converting data with an input format into

data with an output format; processing the packet of the message such that the

output format matches the input format of the next component.

Regarding the limitation "such that the output format of the components ... match

the input format of the next component," it was well-known to those of ordinary skill in

the art that certain operations on a packet must be performed in a certain order: e.g., if

a packet is first converted into an encrypted format by a first component, a subsequent

component would be unable to, e.g., process any IPv6 option headers in the packet, or

to insert any new ones (because it was expecting to receive the packet in an

unencrypted format). Thus, it was certainly obvious for one of ordinary skill in the art to

arrange the sequence of components in a compatible manner, such that the output

format of one matches the input format of the next.

10. Claims 15 and 35 are rejected under 35 U.S.C. 102(e) as being anticipated by

Kerr et al. (US PAT 6243667, hereinafter Kerr).

In regards claim 15, Kerr anticipates a method in a computer system (column

2, lines 30-32, However, those skilled in the art would recognize, after perusal of this

application, that embodiments of the invention may be implemented using a set of

general purpose computers operating under program control, and that modification of a

set of general purpose computers to implement the process steps and data structures

described herein would not require undue invention) for demultiplexing packets of

messages (column 1 lines 59-60, The invention provides a method and system for

JNPR-IMPL_30024_

Page 105 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 104

Art Unit: 3992

switching in networks responsive to message flow patterns. A message "flow" is

defined to comprise a set of packets to be transmitted between a particular source and

a particular destination. When routers in a network identify a new message flow, they

determine the proper processing for packets in that message’flow and cache that

information for that message flow. Thereafter, when routers in a network identify a

packet which is part of that message flow, they process that packet according to the

proper processing for packets in that message flow. The proper processing may .

include a determination of a destination port for routing those packets and a

determination of whether access control permits routing those packets to their indicated

destination), the method comprising:

dynamically identifying a non-predefined sequence of components for

processing each message based on thefirst packet of the message so that

subsequent packets of the message can be processed without re-identifying the

components (claim 1, lines 31-40, column 4 lines 20-34, column3 line 38-column 6

line 27 identifying a first one message ofa first plurality of messages associated with an

application layer, said first plurality of messages having at least one policy treatment in

common, said first plurality of messages being identified in response to an address of a

selected source device and an address of a selected destination device, wherein said

policy treatment comprises at least one of the access control information, security

information, queuing information, accounting information, traffic profiling information,

and policy information; In a preferred embodiment, the proper treatment of packets 150

in the message flow 160 includes treatment with regard to switching (thus; the routing

JNPR-IMPL_30024_

Page 106 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 105

Art Unit: 3992

device 140 determines an output port for switching packets 150 in the message flow

160), with regard to access control (thus, the routing device 140 determines whether

packets 150 in the message flow 160 meet the requirements of access control, as

defined by access control lists in force at the routing device 140), with regarc to

accounting (thus, the routing device 140 creates an accounting record for the message

flow 160), with regard to encryption (thus, the routing device 140 determines encryption

treatment for packets 150 in the message flow 160), and any special treatment for

packets 150 in the message flow 160. FIG. 2 shows a method for routing in networks

responsive to message flow patterns. In broad overview, the method for routing in
-

networks responsive to message flow patterns comprises two parts. Ina first part, the

routing device 140 builds and uses a flow cache described in further detail with regard

to FIG. 3), in which routing information to be used for packets 150 in each particular

message flow 160 is recorded and from which such routing information is retrieved for

use...A method 200 for routing in networks responsive to message flow patterns is

performed by the routing device 140. At a flow point 210, the routing device 140 is

disposed for building and using the flow cache. At a step 221, the routing device 140

receives a packet 150. At a step 222, the routing device 140 identifies a message flow

160 for the packet 150. In a preferred embodiment, the routing device 140 examines a

header for the packet 150 and identifies the IP address for the source device 120, the IP

address for the destination device 130, and the protocol type for the packet 150. The

routing device 140 determines the port number for the source device 120 and the port

number for the destination device 130 responsive to the protocol type. Responsive to

JNPR-IMPL_30024_

Page 107 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 106

Art Unit: 3992

this set of information, the routing device 140 determines a flow key 310 (described with

reference to FIG. 3) for the message flow 160. At a step 223, the routing device 140

performs a lookup in a flow cache for the identified message flow 160. If the lookup is

unsuccessful, the identified message flow 160 is a "new" message flow 160, and the

routing device 140 continues with the step 224. If the lookup is successful, the

identified message flow 160 is an "old" message flow 160, and the routing device 140

continues with the step 225. In a preferred embodiment, the routing device 140

determines a hash table key responsive to the flow key 310. This aspect of the step

223 is described in further detail with regard to FIG. 3. At a step 224, the routing device

140 builds a new entry in the flow cache. The routing device 140 determines
proper

treatment of packets 150 in the message flow 160 and enters information regarding

such proper treatment in a data structure pointed to by the new entry in the flow cache.

In a preferred embodiment, the routing device 140 determines the proper treatment by

performing a lookup in an IP address cache as shown in FIG. 4. In a preferred

embodiment, the proper treatment of packets 150 in the message flow 160 includes

treatment with regard to switching (thus, the routing device 140 determines an output

port for switching packets 150 in the message flow 160), with regard to access control

(thus, the routing device 140 determines whether packets 150 in the message flow 160

meet the requirements of access control, as defined by access control lists in force at

the routing device 140), with regard to accounting (thus, the routing device 140 creates

an accounting record for the message flow 160), with regard to encryption (thus, the

routing device 140-determines encryption treatment for packets. 150.in- the message

JNPR-IMPL_30024_

Page 108 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 107

Art Unit: 3992

flow 160), and any special treatment for packets 150 in the message flow 160. Ina

preferred embodiment, the routing device 140 performs any special processing for new

message flows 160 at this time... Thereafter, the routing device 140 proceeds with the

step 225, using the information from the new entry in the flow cache, just asif the

identified message flow 160 were an "old" message flow 160 and the lookup in a flow

cache had
been

successful. At a step 225, the routing device 140 retrieves routing

information from the entry in the flow cache for the identified message flow 160. Ina

preferred embodiment, the entry in the flow cache includes a pointer to a rewrite

function for at least part ofa header for the packet 150.If this pointer is non-null, the

routing device 140 invokes the
rewrite

function to alter the header for the packet 150. At

a step 226, the routing device 140 routes the packet 150 responsive to the routing

information retrieved at the step 225. Thus, in a preferred embodiment, the routing

device 140 does not separately determine, for each packet 150 in the message flow

160, the information stored in the entry in the flow cache. Rather, when routing a

packet 150 in the message flow 160, the routing device 140 reads the information from

the entry in the flow cache and treats the packet 150 according to the information in the

entry in the flow cache. Thus, in a preferred embodiment, the routing device 140 routes

the packet 150 to an output port, determines whether access is allowed for the packet

150, determines encryption treatment for the packet 150, and performs any special

treatment for the packet 150, all responsive to information in the entry in the flow cache.

In a preferred embodiment, the routing device 140 also enters accounting information in

the entry in the flow cache for the packet 150. When routing each packet 150 in the

JNPR-IMPL_30024_

Page 109 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 108

Art Unit: 3992

message flow 160, the routing device 140 records the cumulative number of packets

150 and the cumulative number of bytes for the message flow 160. Because the routing

device 140 processes each packet 150 in the message flow 160 responsive to the entry

for the message flow 160 in the flow cache, the routing device 140 is able to implement

administrative policies which are designated for each message flow 160 rather than for

each packet 150),

|

wherein different non-predefined sequences of components can be

identified for different messages, each component being a software routine, and

wherein dynamically identifying includes selecting individual components to

create the non-predefined sequence of components (Kerr discloses a "plurality of

components" for processing messages. For example, claim 1 of Kerr describes using a

"plurality of devices" to apply "policy treatments” to a "plurality of messages," where

policy treatments are used to perform "access control,security,” “queuing,”

“accounting,” "traffic profiling," etc. Id. at 10:27-40. Processing components can include

"treatment with regard to switching,” "access control," and "encryption." Id. at 4:20-34.

"[S]pecial processing” can include "authentication" techniques "useful for implementing

security ‘firewalls." Id. at 35-46. Kerr further discloses that a "rewrite function” may be

invoked "to alter the header for the packet." Id. at 4:55-62. These components can be

used for "converting data with an input format into data with an output format,” under

Implicit’ s apparent claim constructions, for example (as described above), the

"encryption" and "rewrite" components to “alter” data to be processed. Id. at 4:30- 31,

4:55-62. The processing components of Kerr comprise."software routine” embodiments,

JNPR-IMPL_30024_

Page 110 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 109

Art Unit: 3992

as Kerr states that the processing instrumentality “may include specific hardware

constructed or programmed performing the process steps described herein" or "a

general purpose processor operating under program control." Id. at 2:51-55; see also id.

at Figs. 3-4 (illustrating software data structures). Kerr discloses rather than applying a

single predefined sequence to all flows, Kerr "determines proper treatment of packets

150 in the message flOw" only when it "build a new entry in the flow cache" for that

specific flow. Ex. 15 at 4:12-18. This includes, e.g., "determin[ing] encryption treatment

for packets 150 in the message flow ... and any special treatment for packets 150 in

the message flow." Id. at 4:31-34.. and

for each packet of each message, performing the processing of the

identified non-predefined sequence of components of the message wherein state

information generated by performing the processing of a component for a packet

is available, to the component when the component processes the next packet of

the message (After receiving the first packet of a new flow, Kerr builds a new flow entry

that is cached in memory, which constitutes "storing". Kerr also explains that building

and caching a flow entry upon receiving the first new packet in a flow is specifically

performed so that information "does not need to be re-identified for subsequent packets

of the message," as that term is apparently construed by Implicit. Kerr explains that, for

the sake of efficiency: information about message flow patterns is used to identify

packets for which processing has already been determined, and therefore to process

those packets without having to re-determine the same processing Thus, ina

preferred embodiment, the routing device 140 does not separately determine, for each

JNPR-IMPL_30024_

Page 111 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 110

Art Unit: 3992

packet 150 in the message flow 160, the information stored in the entry in the flow

cache. Rather, when routing a packet 150 in the message flow 160, the routing device

140 reads the information from the entry in the flow cache and treats the packet 150

according to the information in the entry in the flow cache. Ex. 15 at 1:33-36, 4:64-5:4.

In other words, when the first packet of a flow arrives, Kerr goes through the somewhat

expensive and elaborate process of determining how all the packets of that flow should

be treated: e.g., whether they should be encrypted, whether they should be modified or

partially re-written, and where they should be routed next. Id. at 1:33-35, 4:13-60. It then

records all this information about the proper processing for a flow by "build[ing] a new

entry in the flow cache" for the flow, so the proper processing does not have to be

wastefully and redundantly determined again for subsequent packets of the flow.
id

at

4:12-13. Kerr discloses this "state information” element. Implicit has taken a broad view

of the "state information" limitations, arguing that they cover the retrieval, use, and

storage of the identified sequence of components (e.g., a flow record) after the first

packet is received. As demonstrated above (for the "storing an indication" element),

Kerr retrieves, uses, and stores flow records in this manner to facilitate processing of

packets in the same message after the first packet is received and a flow entry built.

Kerr also discloses the retrieval, use, and storage of state information ona
component-

by-component basis. For example, in one embodiment of Kerr, there are components

for access control, encryption, "special treatment," accounting, rewrite, among others.

Ex. 15 at 5:5-25. The processing by these components is "all responsive to information

in-the entry in the flow.cache."1d.-at-5:9-10.As.a specific example,an-accounting

JNPR-IMPL_30024_

Page 112 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 111

Art Unit: 3992

component can maintain state information, such as "time stamp" data, "a cumulative

count for the number of packets,” and "a cumulative count for the number of bytes." Id.

at 6:58-63. Kerr later uses timing information to identify expired or otherwise invalid

flows (among other reasons). Id. at 5:52 - 6:19. As another example, Kerr can retrieve

the latest "usage information regarding relative use of network resources" in order to

appropriately prioritize traffic using the relevant component. Id. at 5:41-49).

In regard to claim 35, Kerr anticipates a computer-readable medium

containing instructions (column 2, lines 30-32, However, those skilled in the art would

recognize, after perusal of this application, that embodiments of the invention may be

implemented using a set of general purpose computers operating under program

control, and that modification of a set of general purpose computers to implement the

process steps and data structures described herein would not require undue invention)

for demultiplexing packets of messages (column 1 lines 59-60, The invention

provides a method and system for switching in networks responsive to message flow

patterns. A message "flow" is defined to comprise a set of packets to be transmitted

between a particular source and a particular destination. When routers in a network

identify a new message flow, they determine the proper processing for packets in that

message flow and cache that information for that message flow. Thereafter, when

routers in a network identify a packet which is part of that message flow, they process

that packet according to the proper processing for packets in that message flow. The

proper_processing may include a determination of a destination port for.routing those

JNPR-IMPL_30024_

Page 113 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 112

Art Unit: 3992

packets and a determination of whether access control permits routing those packets to

their indicated destination), by method comprising:

dynamically identifying a message-specific non-predefined sequence of

components for processing the packets of each message upon receiving the first

packet of the message wherein subsequent packets of the message can use the

message-specific non-predefined sequence identified when the first packet was

received (claim 1, lines 31-40, column 4 lines 20-34, column 3 line 38-column 6 line 27

identifying a first one message ofa first plurality of messages associated with an

application layer, said first plurality of messages having at least one policy treatment in

common, said first plurality of messages being identified in response to an address of a

selected source device and an address of a selected destination device, wherein said

policy treatment comprises at least one of the access control information, security

information, queuing information, accounting information, traffic profiling information,

and policy information; In a preferred embodiment, the proper treatment of packets 150

in the message flow 160 includes treatment with regard to switching (thus, the routing

device 140 determines an output port for switching packets 150 in the message flow

160), with regard to access control (thus, the routing device 140 determines whether

packets 150 in the message flow 160 meet the requirements of access control, as

defined by access control lists in force at the routing device 140), with regard to

accounting (thus, the routing device 140 creates an accounting record for the message

flow 160), with regard to encryption (thus, the routing device 140 determines encryption

treatment for packets 150 in the message flow 160), and-any special treatment for

JNPR-IMPL_30024_

Page 114 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 113

Art Unit: 3992

packets 150 in the message flow 160. FIG. 2 shows a method for routing in networks

responsive to message flow patterns. In broad overview, the method for routing in

networks responsive to message flow patterns comprises two parts. Ina first part, the

routing device 140 builds and uses a flow cache described in further detail with regard

to FIG. 3), in which routing information to be used for packets 150 in each particular

message flow 160 is recorded and from which such routing information is retrieved for

use...A method 200 for routing in networks responsive to message flow patterns is

performed by the routing device 140. At a flow point 210, the routing device 140 is

disposed for building and using the flow cache. At a step 221, the routing device 140

receives a packet 150. At a step 222, the routing device 140 identifies a message flow

160 for the packet 150. In a preferred embodiment, the routing device 140 examines a

header for the packet 150 and identifies the IP address for the source device 120, the IP

address for the destination device 130, and the protocol type for the packet 150. The

routing device 140 determines the port number for the source device 120 and the port

number for the destination device 130 responsive to the protocol type. Responsive to

this set of information, the routing device 140 determines a flow key 310 (described with

reference to FIG. 3) for the message flow 160. At a step 223, the routing device 140

performs a lookup in a flow cache for the identified message flow 160. If the lookup is

unsuccessful, the identified message flow 160 is a "new" message flow 160, and the

routing device 140 continues with the step 224. If the lookup is successful, the

identified message flow 160 is an "old" message flow 160, and the routing device 140

continues with the step 225. In-a preferred embodiment, the routing device 140

JNPR-IMPL_30024_

Page 115 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 114

Art Unit: 3992

determines a hash table key responsive to the flow key 310. This aspect of the step

223 is described in further detail with regard to FIG. 3. Ata step 224, the routing device

140 builds a new entry in the flow cache. The routing device 140 determines proper

treatment of packets 150 in the message flow 160 and enters information regarding

such proper treatment in a data structure pointed to by the new entry in the flow cache.

In a preferred embodiment, the routing device 140 determines the proper treatment by

performing a lookup in an IP address cache as shown in FIG. 4. In a preferred

embodiment, the proper treatment of packets 150 in the message flow 160 includes

treatment with regard to switching (thus, the routing device 140 determines an output

port for switching packets 150 in the message flow 160), with regard to access control

(thus, the routing device 140 determines whether packets 150 in the message flow 160

meet the requirements of access control, as defined by access control lists in force at

the routing device 140), with regard to accounting (thus, the routing device 140 creates

an accounting record for the message flow 160), with regard to encryption (thus, the

routing device 140 determines encryption treatment for packets 150 in the message

flow 160), and any special treatment for packets 150 in the message flow 160. Ina

preferred embodiment, the routing device 140 performs any special processing for new

message flows 160 at this time... Thereafter, the routing device 140 proceeds with the

step 225, using the information from the new entry in the flow cache, just as if the

identified message flow 160 were an "old" message flow 160 and the lookup in a flow

cache had been successful. At a step 225, the routing device 140 retrieves routing

information from the entry in the flow cache for the identified message flow 160. Ina

JNPR-IMPL_30024_

Page 116 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: Page 115

Art Unit: 3992

preferred embodiment, the entry in the flow cache includes a pointer to a rewrite

function for at least part of a header for the packet 150. If this pointer is non-null, the

routing device 140 invokes the rewrite function to alter the header for the packet 150. At

a step 226, the routing device 140 routes the packet 150 responsive to the routing.

information retrieved at the step 225. Thus, in a preferred embodiment, the routing

device 140 does not separately determine, for each packet 150 in the message flow

160, the information stored the entry in the flow cache. Rather, when routing a

packet 150 in the message flow 160, the routing device 140 reads the information from

the entry in the flow cache and treats the packet 150 according to the information in the

entry in the flow cache. Thus, in a preferred embodiment, the routing device 140 routes

the packet 150 to an output port, determines whether access is allowed for the packet

150, determines encryption treatment for the packet 150, and performs any special

treatment for the packet 150, all responsive to information in the entry in the flow cache.

In a preferred embodiment, the routing device 140 also enters accounting information in

the entry in the flow cache for the packet 150. When routing each packet 150 in the

message flow 160, the routing device 140 records the cumulative number of packets

150 and the cumulative number of bytes for the message flow 160. Because the routing

device 140 processes each packet 150 in the message flow 160 responsive to the entry

for the message flow 160 in the flow cache, the routing device 140 is able to implement

administrative policies which are designated for each message flow 160 rather than for

each packet 150),

JNPR-IMPL_30024_

Page 117 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 116

Art Unit: 3992

and wherein dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of

components (Kerr discloses a "plurality of components" for processing messages. For

example, claim 1 of Kerr describes using a "plurality of devices" to agply "policy

treatments" to a "plurality of messages," where policy treatments are used to perform

"access control,security," "queuing," "accounting," "traffic profiling,” etc. Id. at 10:27-

at tt

40. Processing components can include "treatment with regard to switching," "access

control," and "encryption." Id. at 4:20-34. "[S]pecial processing” can include

"authentication" techniques "useful for implementing security firewalls." Id. at 35-46.

Kerr further discloses that a "rewrite function" may be invoked "to alter the header for

the packet." Id. at 4:55-62. These components can be used for "converting data with an

input format into data with an output format,” under Implicit’ s apparent claim

constructions, for example (as described above), the "encryption" and "rewrite"

components to “alter” data to be processed. Id. at 4:30- 31, 4:55-62. The processing

components of Kerr comprise "software routine” embodiments, as Kerr states that the

processing instrumentality "may include specific hardware constructed or programmed

performing the process steps described herein" or "a general purpose processor

operating under program control." Id. at 2:51-55; see also id. at Figs. 3-4 (illustrating

software data structures)); and

for each packet of the message, invoking the identified non-predefined

sequence of components in sequence to perform the processing of each

component for the packet wherein each component saves message-specific state

JNPR-IMPL_30024_

Page 118 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 117

Art Unit: 3992

information so that that component can use the saved message-specific state

information when that component performs its processing on the next packet of

the message (After receiving the first packet of a new flow, Kerr builds a new flow entry

that is cached in memory, which constitutes "storing". Kerr also explains that building

and caching a flow entry upon receiving the first new packet in a flow is specifically

performed so that information "does not need to be re-identified for subsequent packets

of the message," as that term is apparently construed by Implicit. Kerr explains that, for

the sake of efficiency: information about message flow patterns is used to identify

packets for which processing has already been determined, and therefore to process

those packets without having to re-determine the same processing Thus, ina

preferred embodiment, the routing device 140 does not separately determine, for each

packet 150 in the message flow 160, the information stored in the entry in the flow

cache. Rather, when routing a packet 150 in the message flow 160, the routing device

140 reads the information from the entry in the flow cache and treats the packet 150

according to the information in the entry in the flow cache. Ex. 15 at 1:33-36, 4:64-5:4.

In other words, when the first packet of a flow arrives, Kerr goes through the somewhat

expensive and elaborate process of determining how all the packets of that flow should

be treated: e.g., whether they should be encrypted, whether they should be modified or

partially re-written, and where they should be routed next. Id. at 1:33-35, 4:13-60. It then

records all this information about the proper processing for a flow by “build[ing] a new

entry in the flow cache" for the flow, so the proper processing does not have to be

wastefully and redundantly determined again for subsequent packets-of the flow. Id.-at

JNPR-IMPL_30024_

Page 119 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 118

Art Unit: 3992

4:12-13. Kerr discloses this "state information" element. Implicit has taken a broad view

of the "state information” limitations, arguing that they cover the retrieval, use, and

storage of the identified sequence of components (e.g., a flow record) after the first

packet is received. As demonstrated above (for the "storing an indication” element),

Kerr retrieves, uses, and stores flow records in this manner to facilitate processing.of

packets in the same message after the first packet is received and a flow entry built.

Kerr also discloses the retrieval, use, and storage of state information on a component-

by-component basis. For example, in one embodiment of Kerr, there are components

for access control, encryption, "special treatment," accounting, rewrite, among others.

Ex. 15 at 5:5-25. The processing by these components is "all responsive to information

in the entry in the flow cache.” Id. at 5:9-10. As a specific example, an accounting

component can maintain state information, such as "time stamp" data, "a cumulative

count for the number of packets," and "a cumulative count for the number of bytes.” Id.

at 6:58-63. Kerr later uses timing information to identify expired or otherwise invalid

flows (among other reasons). Id. at 5:52 - 6:19. As another example, Kerr can retrieve

the latest "usage information regarding relative use of network resources" in order to

appropriately prioritize traffic using the relevant component. Id. at 5:41-49).

11. Claims 15 and 35 are rejected under 35 U.S.C. 102(b) as being anticipated by

Decasperg8.

In regards to claim 15, Decasper98 anticipates a method in a computer system

JNPR-IMPL_30024_

Page 120 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 119

Art Unit: 3992

itanolitie Gest-CHort Architecture

Modular Ex
Extended Integrated

Sees AceoN=} \
User

\
p

am

Figure t. : Best Effortyvs———

Extended Integrated Services Router (EISR)

for demultiplexing packets of messages (Decasper98 explains: "it is very

important to be able to quickly and efficiently classify packets into flows, and to apply

different policies to different flows; these are both things that our architecture excels at

doing.” Ex. 25 at 2. Flows may represent “longer lived packet streams": Because the

deployment Ofmultimedia data sources and applications (e.g. real-time audio/video) will

produce longer lived packet streams with more packets per session than is common in

today's environment, an integrated services router architecture should support the

notion of flows and build upon it. Id. at 3. A flow is defined as a group of packets which

satisfy a specific filter. See id. at 3 ("Sets of flows are specified using filters Filters

can also match individual end-to-end application flows"). Id. at 3. A flow would comprise

a "message" under Implicit's apparent claim constructions. See section IV.C), the

method comprising:

dynamically identifying a non-predefined sequence of components for

processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the

components, wherein different non-predefined sequences of components can be

JNPR-IMPL_30024_

Page 121 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 120

Art Unit: 3992

identified for different messages (when the first packet of a new flow arrives,

Decasper98 performs an expensive series of filter operations to determine the correct

sequence of plugin components to be applied to the flow. See Ex. 25 at 5-6 ("The

processing of the first packet of a new flow.., involves n filter table lookups to create a

single entry in the flow table for the new flow."). This expensive series of filter operations

does not need to be repeated for subsequent packets of
the flow, because the new

"entry... in the flow" table serves as a fast cache for future lookup of packets belonging

to that flow," and the entry “stores pointers to the appropriate plugins." Id. at 5.

Performance is thus enhanced for subsequent packets of the flow, since “[ujsually, filter

table lookups are much slower than flow table lookups." Id. See also id. at 3

(“Subsequent packets get this information from a fast flow cache which temporarily

stores the information gathered by processing the first packet." Decasper98 explains: "it

is very important to be able to... apply different policies to different flows." Ex. 25 at 2.

This is why Decasper98 applies a series of filters to each flow, wherein each filter may

select a specific plugin component implementing a different policy. See Id. at 5-7).

Decasper98 assigns the sequence of plugins to the flow on the basis of lookups

in multiple independent "filter tables." E.g., id. at 5-7 ("The processing of the first packet

of a new flow.., involves n filter table lookup to create a single entry in the flow table for

the new flow"): 7 ("multiple lookups (in different filter tables)"). E.g., a first filter table

determines whether a first plugin is added to the sequence, a second independent filter

table determines whether a second plugin is added, a third independent filter table

determines whether a third plugin is added, and so on. See id. at-5-7.

JNPR-IMPL_30024_

Page 122 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 121

Art Unit: 3992

This leads "exponentially" to an enormous number of possible sequences that

might be applied to the first packet of a flow when it arrives, “even with very few

installed filters." See Id. at 7.2. These various possible sequences are not stored or

enumerated anywhere in the system ahead of time. Instead, the sequence of plugins for

a flow is generated algorithmically when the first packet of a flow arrives, by applying a

series of filter operation to packet data which was not available to the system until that

moment. See id. at 5-7.

Decasper98 explicitly considers and rejects a "theoretically possible” alternative

approach, which is to replace this system of multiple independent filters with "a single

global filter table." Id. at 7. Under this alternative approach, only a single filter would

apply to a particular flow, and that single filter would specify the entire sequence of

components to be applied to it. See Id. When the first packet arrived, the system would

find the single matching filter and then essentially just read off the sequence of

components to be applied to that flow. See Id. Thus, the sequence would be pre-defined

and readily identifiable as such in a specific filter entry, even before the first packet

arrived.

However, Decasper98 rejects this approach as "practically infeasible because

the space requirements for the global table can, even with very few installed filters,

increase very quickly (exponentially) to unacceptable levels." Id. In other words,

Decasper98's multiple filter table approach implies so many potential valid sequences

that it is impossible to even enumerate them all ahead of time in memory--since they

JNPR-IMPL_30024_

Page 123 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 122

Art Unit: 3992

Instead, Decasper98 adopts an algorithmic approach where the correct

sequence is generated dynamically on demand, by applying the series of multiple filters

to the first packet when it arrives. Thus, under Implicit's apparent claim constructions,

Decasper98 discloses "for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message."

Decasper98 discloses this "dynamically identifying" claim element under Implicit's

apparent claim constructions. Decasper98 also teaches "selecting individual

components to create the non-predefined sequence of components after the first packet

is received." As explained above, after the first packet of a flow arrives, Descapser98

applies a series of independent filters to it, each of which may select a different

individual plugin. Id at 5-7. See also, e.g., id. at 4 (Figure 2, showing various
individual

plugins that might be selected within each category, e.g., "BMP1 BMP2 BMP3"). The

very purpose of this architecture is to apply the fight specific individual plugins in a

tailored manner to each particular flow. E.g., id. at 2 (“it is very important to be able to

quickly and efficiently classify packets into flows, and to apply different policies to

different flows"), 3, 7.

JNPR-IMPL_30024_

Page 124 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 123

Art Unit: 3992

RSVBISSP.d seman)

es

C
e

er
r

ih ib

Flow tabie Each flow table entry storesfern pio
eT mer

pointers to the appropriate
ax

Semen se

emer

plugins for ail gates that can

= im be encountered by packets
ewan poms Furs faery

belonging to the

corresponding flow.

Figure 3. : System Architecture and Data Path

In the all flows start out being uncached (i.c¢., they do

not have an entry in the flow table). If an incoming packet

belongs to an uncached flow, its lookup in the flow table

data structure will fail there is a cache miss). In this

case, the packet needs to be looked up in a different data

structure that we call a filter table. Filter tables store the

bindings between filters and plugins for each gate. The filter
table lookup algorithm finds the most specific matching
filter (described later) that has been installed in the table,
and returns the corresponding plugin instance. Usually,
filter table lookups are much slower than flow table

lookups. An entry for a flow in the flow table serves as a

fast cache for future lookups of packets belonging to that

flow. Each flow table entry stores pointers to the appropriate

plugins for all gates that can be encountered by packets

belonging to the corresponding flow. The processing of the

first packet of a new flow with gates involves a filter table

look kups to create a single entry in the flow table’ for the |
new

flow.

JNPR-IMPL_30024_

Page 125 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659

Art Unit: 3992

This cycle is executed only for the first packet arriving on

an uncached flow. Subsequent packets follow a faster path
because of the cached entry in the flow table. Note that in

our system, we have created optimized implementations of
both the flow and filter tables, allowing for high

performance on both the cached and uncached paths. These

implementations are described in Section 5.

Cached flow processing involves the following sequence:

Processing at the first gate: When a packet from a

cached flow encounters the first gate, the is called to

request the plugin instance. This time, the pointer to the

instance requested is already in the flow table. The flow
table is looked up efficiently, and the plugin instance

pointer corresponding to the calling gate is returned. No
filter table lookups are required.

Associating the packet with a flow index: Together
with the instance requested, the AIU returns a pointer to

the row in the flow table where the information associ-

ated with the flow is stored. This pointer is called the

flaw index (FIX), and is stored in the packet’s mbuf?.

The instance is then called to process the packet, follow-

ing which the Ip stack passes the packet on to the next

gate.

Processing at subsequent gates: Once the packet has

made its way past the first gate, the AIU does not have to

be called upon to classify the packets at the remaining

gates. Macros implementing a gate can retrieve the

instance pointers cached in the flow table by accessing
the FIX stored in the packet. This allows us to pass pack-
ets to the appropriate instances in a very efficient man-

ner using an indirect fiunction call instead of a

“hardwired” function call. We show in section 7 that this

does not imply significant performance penalties.

Page 124

each component being a software routine (id. at 2 (“plugins are kernel

software modules that are.., responsible for performing certain functions on specified

JNPR-IMPL_30024_

Page 126 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Contro! Number: 95/000,659 Page 125

Art Unit: 3992

network flows.") for the first packet of the message, dynamically identifying a non-

predefined sequence of components for processing the packets of the message

wherein dynamically identifying includes selecting individual components to create the

non-predefined sequence of components after the first packet is received (When the

first packet of a new flow arrives, Decasper98 performs an expensive series of filter

operations to determine the correct sequence of plugin components to be applied to the

flow. See Ex. 25 at 5-6 ("The processing of the first packet of a new flow.., involves n

filter table lookups to create a single entry in the flow table for the new flow."). This

expensive series of filter operations does not need to be repeated for subsequent

packets of the flow, because the new "entry... in the flow" table serves as a fast cache

for future lookup of packets belonging to that flow," and the entry "stores pointers to the

appropriate plugins." Id. at 5. Performance is thus enhanced for subsequent packets of

the flow, since "[uJsually, filter table lookups are much slower than flow table lookups."

ld. See also id. at 3 ("Subsequent packets get this information from a fast flow cache

which temporarily stores the information gathered by processing the first packet.").

Decasper98 assigns the sequence of plugins to the flow on the basis of lookups in

multiple independent "filter tables." E.g., id. at 5-7 ("The processing of the first packet of

a new flow.., involves n filter table lookup to create a single entry in the flow table for the

new flow"): 7 ("multiple lookups (in different filter tables)"). E.g., a first filter table

determines whethera first plugin is added to the sequence, a second independent filter

table determines whether a second plugin is added, a third independent filter table

determines. whether.a-third plugin is added, and.so_on. See Id. at 5-7, and wherein

JNPR-IMPL_30024_

Page 127 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 126

Art Unit: 3992

dynamically identifying includes selecting individual components to create the non-

predefined sequence of components; and

for each packet of each message, performing the processing of the

identified non-predefined sequence of components of the message wherein state

information generated by performing the processing of a component for a packet

is available, to the component when the component processes the next packet of

the message (

RSWPISSPid samc)

Each flow table entry stores

meammrecuen ane henner
meena pointers to the appropriateek meee

Pin Sire fay pense
Smee pittgins for all gates that can

be encounteredby packets

|
we feo belonging to the

corresponding flow.

Figure 3. : System Architecture and Data Path

JNPR-IMPL_30024_

Page 128 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 127

Art Unit: 3992

In the AIU, all flows start out being uncached (i.e., they do

not have an entry in the flow table). If an incoming packet

belongs to an uncached flow, its lookup in the flow table

data structure will fail (i.e., there is a cache miss). In this

case, the packet needs to be looked up in a different data

structure that we call a filter table. Filter tables store the

bindings between filters and plugins for each gate. The filter
table lookup algorithm finds the most specific matching
filter (described later) that has been installed in the table,
and returns the corresponding plugin instance. Usually,
filter table lookups are much slower than flow table

lookups. An entry for a flow in the flow table serves as a

fast cache for future lookups of packets belonging to that

flow. Each flow table entry stores pointers to the appropriate

plugins for all gates that can be encountered by packets

belonging to the corresponding flow. The processing of the

first packet of a new flow with» gates involves a filter table

lookups to createa single entry in the flow table for the new

Ba TET

JNPR-IMPL_30024_

Page 129 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659

Art Unit: 3992

This cycle is executed only for the first packet arriving on

an uncached flow. Subsequent packets follow a faster path
because of the cached entry in the flow table. Note that in

our system, we have created optimized implementations of
both the flow and filter tables, allowing for high

performance on both the cached and uncached paths. These

implementations are described in Section 5.

Cached flow processing involves the following sequence:

e Processing at the first gate: When a packet from a

cached flow encounters the first gate, the AtU is called to

request the plugin instance. This time, the pointer to the

instance requested is already in the flow table. The flow

table is looked up efficiently, and the plugin instance

pointer corresponding to the calling gate is returned. No
filter table lookups are required.”

Associating the packet with a flow index: Together
with the instance requested, the AIU returns a pointer to

the row in the flow table where the information associ-

ated with the flow is stored. This pointer is called the

flow index (FIX), and is stored in the packet’s mbuf?,

The instance is then called to process the packet, follow-

ing which the Ip stack passes the packet on to the next

gate.

Processing at subsequent gates: Once the packet has

made its way past the first gate, the AIU does not have to

be called upon to classify the packets at the remaining

gates. Macros implementing a gate can retrieve the

instance pointers cached in the flow table by accessing

the FIX stored in the packet. This allows us to pass pack-
ets to the appropriate instances in a very efficient man-

ner using an indirect function call instead of a

“hardwired” function call. We show in section 7 that this

does not imply significant performance penalties.

Page 128

JNPR-IMPL_30024_

Page 130 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 129

Art Unit: 3992

In regards to claim 35, Decasper98 anticipates a computer-readable medium

containing instructions

Monolitic Best-€ttort Architecture

Modular Extended itsgrated Services Architecture

Rioae
Rave

User
‘Useri

tot

Figure : Best Effort-vs———
Extended Integrated Services Router (EISR)

for demultiplexing packets of messages (Decasper98 explains: "it is
very

important to be able to quickly and efficiently classify packets into flows, and to apply

different policies to different flows; these are both things that our architecture excels at

doing." Ex. 25 at 2. Flows may represent "longer lived packet streams": Because the

deployment Ofmultimedia data sources and applications (e.g. real-time audio/video) will

produce longer lived packet streams with more packets per session than is common in

today's environment, an integrated services router architecture should support the

notion of flows and build upon it. Id. at 3. A flow is defined as a group of packets which

satisfy a specific filter. See id. at 3 (Sets of flows are specified using filters Filters

can also match individual end-to-end application flows"). Id. at 3. A flow would comprise

a "message" under Implicit's apparent claim constructions. See section IV.C), by

method comprising:

dynamically identifying a message-specific non-predefined sequence of

components for processing the packets of each message upon receiving the first

JNPR-IMPL_30024_

Page 131 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 130

Art Unit: 3992

packet of the message wherein subsequent packets of the message can use the

message-specific non-predefined sequence identified when the first packet was

received, and wherein dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of

components (when the first packet of a new flow arrives, Decasper98 performs an

expensive series of filter operations to determine the correct sequence of plugin

components to be applied to the flow. See Ex. 25 at 5-6 ("The processing of the first

packet of a new flow.., involves n filter table lookups to create a single entry in the flow

table for the new flow."). This expensive series of filter operations does not need to be

repeated for subsequent packets of the flow, because the new "entry... in the flow" table

serves as a fast cache for future lookup of packets belonging to that flow," and the entry

"stores pointers to the appropriate plugins." Id. at 5. Performance is thus enhanced for

subsequent packets of the flow, since "[u]sually, filter table lookups are much slower

than flow table lookups.” Id. See also id. at 3 (‘Subsequent packets get this information

from a fast flow cache which
temporarily

stores the information gathered by processing

the first packet.").

Decasper98 assigns the sequence of plugins to the flow on the basis of lookups

in multiple independent "filter tables." E.g., id. at 5-7 ("The processing of the first packet

of a new flow.., involves n filter table lookup to create a single entry in the flow table for

the new flow"): 7 ("multiple lookups (in different filter tables)"). E.g., a first filter table

determines whethera first plugin is added to the sequence, a second independent filter

JNPR-IMPL_30024_

Page 132 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 131

Art Unit: 3992

table determines whether a second plugin is added, a third independent filter table

determines whether a third plugin is added, and so on. See id. at 5-7.

This leads "exponentially" to an enormous number of possible sequences that

might be applied to the first packet of a flow when it arrives, “even with very few

installed filters.” See Id. at 7.2. These various possible sequences are not stored or

enumerated anywhere in the system ahead of time. Instead, the sequence of plugins for

a flow is generated algorithmically when the first packet of a flow arrives, by applying a

series of filter operation to packet data which was not available to the system until that

moment. See id. at 5-7.

Decasper98 explicitly considers and rejects a "theoretically possible" alternative

approach, which is to replace this system of multiple independent filters with "a single

global filter table." Id. at 7. Under this alternative approach, only a single filter would

apply to a particular flow, and that single filter would specify the entire sequence of

components to be applied to it. See Id. When the first packet arrived, the system would

find the single matching filter and then essentially just read off the sequence of

components to be applied to that flow. See Id. Thus, the sequence would be pre-defined

and readily identifiable as such in a specific filter entry, even before the first packet

arrived.

However, Decasper98 rejects this approach as "practically infeasible because

the space requirements for the global table can, even with very few installed filters,

increase very quickly (exponentially) to unacceptable levels." Id. In other words,

Decasper98's multiple filter table approach. implies so many potential valid sequences

JNPR-IMPL_30024_

Page 133 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 132

Art Unit: 3992

that it is impossible to even enumerate them all ahead of time in memory--since they

would not fit.

Instead, Decasper98 adopts an algorithmic approach where the correct

sequence is generated dynamically on demand, by applying the series of multiple filters

to the first packet when it arrives. Thus, under Implicit's apparent claim constructions,

Decasper98 discloses "for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message."

Decasper98 discloses this "dynamically identifying" claim element under Implicit's

apparent claim constructions. Decasper98 also teaches "selecting individual

components to create the non-predefined sequence of components after the first packet

is received." As explained above, after the first packet of a flow arrives, Descapser98

applies a series of independent filters to it, each of which may select a different

individual plugin. Id at 5-7. See also, e.g., id. at 4 (Figure 2, showing various individual

plugins that might be selected within each category, e.g., "BMP1 BMP2 BMP3"). The

very purpose of this architecture is to apply the fight specific individual plugins in a

tailored manner to each particular flow. E.g., id. at 2 (“it is very important to be able to

quickly and efficiently classify packets into flows, and to apply different policies to

different flows"), 3, 7.

JNPR-IMPL_30024_

Page 134 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659

Art Unit: 3992

tag ERS PIS

Each flow table entry stores

pointers to the appropriate

plugins for all gates that can

be encountered by packets

belonging to the

corresponding flow.

Figure3. : System Architecture and Data Path

In the Alu, all flows start out being uncached (i.c., they do

not have an entry in the flow table). If an incoming packet

belongs to an uncached flow, its lookup in the flow table

data structure will fail (i.e., there is a cache miss). In this

case, the packet needs to be looked up in a different data

structure that we call a filter table. Filter tables store the

bindings between filters and plugins for each gate. The filter
table lookup algorithm finds the most specific matching
filter (described later) that has been installed in the table,
and returns the corresponding plugin instance. Usually,
filter table lookups are much slower than flow table

lookups. An entry for a flow in the flow table serves as a

fast cache for future lookups of packets belonging to that

flow. Each flow table entry stores pointers to the appropriate

plugins for all gates that can be encountered by packets

belonging to the corresponding flow. The processing of the

first packetof a new flow with.» gates involvesa filter table

lookups to create a single entry in the flow table for the new
flow.

Page 133

JNPR-IMPL_30024_

Page 135 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659

Art Unit: 3992

This cycle is executed only for the first packet arriving on

an uncached flow. Subsequent packets follow a faster path
because of the cached entry in the flow table. Note that in

our system, we have created optimized implementations of
both the flow and filter tables, allowing for high

performance on both the cached and uncached paths. These

implementations are described in Section 5.

Cached flow processing involves the following sequence:

* Processing at the first gate: When a packet from a

cached flow encounters the first gate, the Alu is called to

request the plugin instance. This time, the pointer to the

instance requested is already in the flow table. The flow
table is looked up efficiently, and the plugin instance

pointer corresponding to the calling gate is returned. No
filter table lookups are required.

* Associating the packet with a flow index: Together
with the instance requested, the AIU returns a pointer to

the row in the flow table where the information associ-

ated with the flow is stored. This pointer is called the

flaw index (FIX), and is stored in the packet’s mbuf?.

The instance is then called to process the packet, follow-

ing which the tp stack passes the packet on to the next

gate.

* Processing at subsequent gates: Once the packet has

made its way past the first gate, the atu does not have to

be called upon to classify the packets at the remaining

gates. Macros implementing a gate can retrieve the

instance pointers cached in the flow table by accessing
the FIX stored in the packet. This allows us to pass pack-
ets to the appropriate instances in a very efficient man-

ner using an indirect function call instead of a

“hardwired” function call. We show in section 7 that this

does not imply significant performance penalties.

Page 134

and for each packet of the message, invoking the identified non-predetined

sequence of components in sequence to perform the processing of each

JNPR-IMPL_30024_

Page 136 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 135

Art Unit: 3992

component for the packet wherein each component saves message-specific state

information so that that component can use the saved message-specific state

information when that component performs its processing on the next packet of

the message

|

RSVPISSP.daamon
[Man ager]

Each flow table entry stores

“acm mene
tie pointers to the appropriate

ax cutie |atl een plugins for all gates that canLESS be encountered by packets

arenes
ason| or | ave [omer

belonging to the

corresponding flow.

Figure 3. System Architecture and Data Path

JNPR-IMPL_30024_

Page 137 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 136

Art Unit: 3992

In the Alu, all flows start out being uncached (i.e., they do

not have an entry in the flow table). If an incoming packet
belongs to an uncached flow, its lookup in the flow table

data structure will fail there is a cache miss). In this

case, the packet needs to be looked up in a different data

structure that we call a filter table. Filter tables store the

bindings between filters and plugins for each gate. The filter
table lookup algorithm finds the most specific matching
filter (described later) that has been installed in the table,
and returns the corresponding plugin instance. Usually,
filter table lookups are much slower than flow table

lookups. An entry for a flow in the flow table serves as a

fast cache for future lookups of packets belonging to that

flow. Each flow table entry stores pointers to the appropriate

plugins for all gates that can be encountered by packets

belonging to the corresponding flow. The processing of the

first packet of a new flow with.» gates involvesn filter table

lookups to createa single entry in the flow table for the new

 iaiiiaaiiiaeeaameeaaaads

JNPR-IMPL_30024_

Page 138 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659

Art Unit: 3992

This cycle is executed only for the first packet arriving on

an uncached flow. Subsequent packets follow a faster path
because of the cached entry in the flow table. Note that in

our system, we have created optimized implementations of
both the flow and filter tables, allowing for high

performance on both the cached and uncached paths. These

implementations are described in Section 5.

Cached flow processing involves the following sequence:

Processing at the first gate: When a packet from a

cached flow encounters the first gate, the aiU is called to

request the plugin instance. This time, the pointer to the

instance requested is already in the flow table. The flow
table is looked up efficiently, and the plugin instance

pointer corresponding to the calling gate is returned. No
filter table lookups are required,

Associating the packet with a flow index: Together
with the instance requested, the AIU returns a pointer to

the row in the flow table where the information associ-

ated with the flow is stored. This pointer is called the

flow index (FIX), and is stored in the packet’s mbuf!.
The instance is then called to process the packet, follow-

ing which the tp stack passes the packet on to the next

gate.

Processing at subsequent gates: Once the packet has

made its way past the first gate, the AIU does not have to

be called upon to classify the packets at the remaining

gates. Macros implementing a gate can retrieve the

instance pointers cached in the flow table by accessing
the FIX stored in the packet. This allows us to pass pack-
ets to the appropriate instances in a very efficient man-

ner using an indirect function call instead of a

“hardwired” function call. We show in section 7 that this

does not imply significant performance penalties.

Page 137

JNPR-IMPL_30024_

Page 139 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 138

Art Unit: 3992

Service of Papers

12. After the filing of a request for reexamination by a third party requester, any

document filed by either the patent owner or the third party requester must be served on

the other party (or parties where two or more third party requester proceedings are

merged) in the reexamination proceeding in the manner provided in 37 CFR 1.248. See

37 CFR 1.550(t’).

Extensions of Time

13. Extensions of time under 37 CFR 1.136(a) will not be permitted in inter partes

reexamination proceedings because the provisions of 37 CFR 1.136 apply only to "an

applicant" and not to parties in a reexamination proceeding. Additionally, 35 U.S.C.

314(c) requires that inter partes reexamination proceedings "will be conducted with

special dispatch" (37 CFR 1.937). Patent owner extensions of time in inter partes

reexamination proceedings are provided for in 37 CFR 1.956. Extensions of time are not

available for third party requester comments, because a comment period of 30 days

from service of patent owner's response is set by statute 35 U.S.C. 314(b)(3). Time

periods may be extended only upon a strong showing of sufficient cause.

Notification of Concurrent Proceedings

14. The patent owner is reminded of the continuing responsibility under 37 CFR

1.985(a), to apprise the Office of any litigation activity, or other prior or concurrent

proceeding, involving the 6,629,163 patent throughout the course of this reexamination

JNPR-IMPL_30024_

Page 140 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 139

Art Unit: 3992

proceeding. The third party requester is also reminded of the ability to similarly apprise

the Office of any such activity or proceeding throughout the course of this reexamination

proceeding. See MPEP 2686 and 2686.04.

Conclusion

15. This is an ACTION CLOSING PROSECUTION (ACP); see MPEP § 2671.02.
16. (1) Pursuant to 37 CFR 1.951(a), the patent owner may once file written

comments limited to the issues raised in the reexamination proceeding and/or present a

proposed amendment to the claims which amendment will be subject to the criteria of

37 CFR 1.116 as to whether it shall be entered and considered. Such comments and/or

proposed amendments must be filed within a time period of 30 days or one month

(whichever is longer) from the mailing date of this action. Where the patent owner files

such comments and/or a proposed amendment, the third party requester may once file

comments under 37 CFR 1.951(b) responding to the patent owner's submission within
30 days from the date of service of the patent owner's submission on the third party

requester.
17. (2) if the patent owner does not timely file comments and/or a proposed
amendment pursuant to 37 CFR 1.951(a), then the third party requester is precluded
from filing comments under 37 CFR 1.951(b).
18. Appeal cannot be taken from this action, since it is not a final Office action.

19. All correspondence relating to this inter partes reexamination proceeding should

be directed:

By EFS: Registered users may submit via the electronic filing system EFS-Web, at

httos://efs.uspto.gov/efile/myportal/efs-registered

By Mail to: Mail Stop Inter Partes Reexam

Attn: Central Reexamination Unit

Commissioner for Patents

United States Patent & Trademark Office

P.O. Box 1450

Alexandria, Virginia 22313-1450

JNPR-IMPL_30024_

Page 141 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Application/Control Number: 95/000,659 Page 140

Art Unit: 3992

By FAX to: (571) 273-9900
Central Reexamination Unit

By hand: Customer Service Window
Attn: Central Reexamination Unit

Randolph Building, Lobby Level

401 Dulany Street

Alexandria, VA 22314

For EFS-Web transmissions, 37 CFR 1.8(a)(1)(i) (C) and (ii) states that

correspondence (except for a request for reexamination and a corrected or replacement
request for reexamination) will be considered timely filed if (a) it is transmitted via the
Office’s electronic filing system in accordance with 37 CFR 1.6(a)(4), and (b) includes a

certificate of transmission for each piece of correspondence stating the data of

transmission, which is prior to the expiration of the set period of time in the Office action.

Any inquiry concerning this communication or earlier communications from the

examiner, or as to the status of this proceeding, should be directed to the Central

Reexamination Unit at telephone number (571) 272-7705.

/Salman Ahmed/
Salman Ahmed

Primary Examiner
Central Reexamination Unit - Art Unit 3992

(571) 272-8307

Conferee: Conferee:

/Ovidio Escalante/ /Daniel Ryman/

JNPR-IMPL_30024_

Page 142 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Reexamination Application/Control No. Applicant(s)/Patent Under
Reexamination

6629163ca Certificate Number

Requester Correspondence Address: Patent Owner Third Party

lrell and Manella, LLP

830 Newport Center Dr.
, Ste 400

Newport Beach CA 92660

LITIGATION REVIEW ISAI
(examiner initials)

03/28/2012
(date)

Case Name Director Initials

3:10¢v4234 (OPEN) Implicit Networks, Inc v. Juniper Networks, nye

3:10cv3766 (CLOSED) Implicit Networks, Inc v. Citrix Systems,

3:10cv3746 (OPEN) Implicit Networks, Inc v. Hewlett-Packard

5:10cv3606 (OPEN) Implicit Networks, Inc v. Cisco Systems,

3:10cv3606 (CLOSED) Implicit Networks, Inc v. Cisco Systems

(OPEN) Implicit Networks, Inc v. F5 Networks

(CLOSED) implicit Networks, Inc v. Microsoft

2:08cv184(CLOSED) Implicit Networks, Inc v. A M Devices

COPENDING OFFICE PROCEEDINGS

TYPE OF PROCEEDING NUMBER

U.S. Patent and Tradernark Office DOC, CODE RXFILJKT

JNPR-IMPL_30024_

Page 143 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Reexamination

IIIT

Application/Control No.

95000659

Applicant(s)/Patent Under
Reexamination

6629163
Certificate Date Certificate Number

COPENDING OFFICE PROCEEDINGS

TYPE OF PROCEEDING NUMBER

US. Patent and Trademark Office DOC. CODE RXFILJKT

JNPR-IMPL_30024_

Page 144 of 146 Implicit Exhibit 2003
Juniper v. Implicit

Search Notes

Application/Control No. Applicant(s)/Patent Under
Reexamination

95000659 6629163

SALMAN AHMED 3992

SEARCHED

Class Subclass Date Examiner

None None

SEARCH NOTES

Search Notes Date Examiner

File hstory 3/28/2012 SA

Patent prosecution history 3/28/2012 SA

1

INTERFERENCE SEARCH

Class Subclass Date Examiner

U.S. Patent and Trademark Office Part of Paper No. 07600201

JNPR-IMPL_30024_

Page 145 of 146 Implicit Exhibit 2003
Juniper v. Implicit

ane
Spe

Pes
SEES

Na

POA
ON

Cae
teak

IRELL & MANELLA, LLP
DAVID MCPHIE

840 NEWPORT CENTER DR., STE 400
NEWPORT BEACH, CA 92660

TRON
BONNe

RUE

Ca

Ge

Ba

RE
me as ality

CoS
ce Es

ee son

pees
Lote ye

us Sayapa
SeerectRete

ay

RON SI CORSICA
GaBu i on rae

une

se At!

MAIL
UNITED STATES POSTAL SERVICE

Visit us at usps.com

Label 107R, January 2008

JNPR-IMPL_30024_022

ve

443

Page 146 of 146 Implicit Exhibit 2003
Juniper v. Implicit

