
Express Mail Label Nos. EM 305148752US & EM 305149510US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent No.: Group Art Unit: To be assigned

Inventors: Edward Balassanian Examiner: To be assigned

Issued: May 10, 2010 Attorney Docket No.: 159291-0025(163)

Serial No.: 11/933,022 Reexam Control No.: To be assigned

Title) METHOD AND SYSTEM FOR Reexam Filing Date: To be assigned
DATA DEMULTIPLEXING

REQUEST FOR INTER PARTES REEXAMINATION

Mail Stop Inter Partes Reexam

Attn: Central Reexamination Unit

Commissioner for Patents

P.O. Box 1450

Alexandria, Virginia 22313-1450

Sir or Madam:

Juniper Networks, Inc. (hereinafter “Requester”) respectfully requests inter partes

reexamination of U.S. Patent No. 7,711,857 (“the ‘857 patent”) entitled “Method and

System for Data Demultiplexing.” This Request is made pursuant to 35 U.S.C. §§ 311-

316 and 37 §§ 1.906, 1.913 and 1.915. The ‘857 patent was filed on October 31,

2007 and issued on May 4, 2010. The patent has not yet expired. Implicit Networks, Inc.

(“Implicit”) has alleged that it is the current assignee of the ‘857 patent. A copy of the

‘857 patent, in the format specified by 37 C.F.R. § 1.915(b)(5), is attached as Exhibit 1.

The reexamination certificate is attached as Exhibit 2.

This Request for /Jnter Partes Reexamination (“Request”) is being served on the

correspondent of record for the ‘857 patent (Newman Du Wors LLP, 1201 Third Avenue,

Suite 1600, Seattle, WA 98101) and on counsel for Implicit (Hosie Rice LLP,

Inter Partes Reexamination of

U.S. Patent No7,711,857 1

JNPR-IMPL_30024_

Transamerica Pyramid, 34th Floor, 600 Montgomery Street, San Francisco, CA 94111).

This Request is also accompanied by the required fee as set forth in 37 C_F.R.

§ 1.20(c)(2) and the certificate required by 37 § 1.915(b)(6).

For the convenience of the Examiner, following is a table of contents for this

Request:

Major Section Page

I. INTRODUCTION 2

Il. DISCLOSURE OF CONCURRENT PROCEEDINGS 11

Il. CLAIMS FOR WHICH REEXAMINATION IS REQUESTED AND 12

CITATION OF PRIOR ART

IV. CLAIM CONSTRUCTION ADMISSIONS OF THE PATENT 21

OWNER

V. PERTINENCE AND MANNER OF APPLYING THE PRIOR ART 28

VI. CERTIFICATION PURSUANT TO 37 C.F.R. § 1.915(b)(7) 286

VIL IDENTIFICATION OF REAL PARTY IN INTEREST PURSUANT 286

TO 37 § 1.915(b)(8)

VU CONCLUSION 286

L INTRODUCTION

The PTO should grant this Request and initiate inter partes reexamination

proceedings for the ‘857 patent in light of the invalidating prior art presented herein.

Virtually all of the art cited in this Request has never before been considered in

connection with the ‘857 patent claims, and the art clearly discloses every element of the

claims to be reexamined—including those elements that the patentee previously alleged

during prosecution to be distinguishing features over the prior art. Given the clear

teachings of this new prior art as explained below, this Request readily satisfies the

Inter Partes Reexamination of

US. Patent No. 7,711,857 2

JNPR-IMPL_30024_

threshold requirement of presenting a “reasonable likelihood that the requester would

prevail” with respect to one or more of the challenged claims. 35 U.S.C. 312.

The ‘857 patent claims priority to a patent application filed on December 29, 1999

(App. No. 09/474,664) which issued as U.S. Pat. No. 6,629,163 (“the ‘163 patent’) on

September 30, 2003. See Ex. 49 (‘163 patent). A request for ex parte reexamination of

the ‘163 patent was submitted on December 15, 2008. The ensuing reexamination

proceeding (“the ‘163 Reexamination”) resulted in issuance of an Ex Parte

Reexamination Certificate (7567th) on June 22, 2010. See Ex. 2 (163 Reexamination

Certificate). The patent has not yet been subject to either ex parte or inter partes

reexamination.

The ‘857 patent describes itself as relating “generally to a computer system for

data demultiplexing.” Ex. 1 (857 patent) at 1:13-14, 2:58-65. As explained in the

background section of the ‘857 patent, contemporary computer systems “generate data in

a wide variety of formats,” including bitmap, encryption, and compression formats, and

formats used for packet-based communications such as TCP and IP. /d. at 1:21-28. To

facilitate processing of communications in this multi-format environment, the patent

proposes a “method and system for converting a message that may contain multiple

packets from [a] source format into a target format.” /d. at 2:39-41. The packet

processing method as claimed employed a “sequence” of components, such that a format

conversion could be performed by using a plurality of components taking a message

through “various intermediate formats” before reaching the final, target format. /d. at

2:48-50. An illustration of such a conversion (from format D1 to D15) is illustrated in

Figure 2of the ‘857 patent:

Inter Partes Reexamination of
.

U.S. Patent No.7,711,857 II. Concurrent Proceedings 3

JNPR-IMPL_30024_

P2 PS P4

D1

desDiS ‘Yow,

During the original prosecution and prior ex parte reexamination proceedings for

the ‘163 patent (parent to the ‘857 patent), the patentee emphasized a few specific

features of its purported invention in an attempt to distinguish prior art cited against it.

The original claims as filed in 2003 described a method in which (1) a packet of a

message was received, (2) a component for processing the packet was identified, and

then (3) certain steps relevant to packet processing were performed involving “state

information.” In response to an initial office action rejecting all of the original claims,

the patentee cancelled those claims and proposed a new set of claims adding language to

the effect that the identification of a sequence of components for processing must be

stored, “so that the sequence does not need to be re-identified for subsequent packets of

the message.” In other words, an identification of components was to take place only for

the first packet of a given message; that identification was then to be stored and made

available for subsequent packets in the message, which could then essentially follow the

lead of the first packet through the sequence of components already identified.

The examiner issued a notice of allowance for the claims as thus amended, stating

that this new limitation—processing of subsequent packets “without re-identifying” a

new sequential order of components—was not taught or suggested in the prior art of

record. Indeed, the examiner underscored the importance of the limitation with an

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 II. Concurrent Proceedings 4

JNPR-IMPL_30024_

examiner’s amendment to the patent title which included the words: “Wherein

Subsequent Components are Processed Without Re-Identifying Components.”

Years later, the PTO initiated ex parte reexamination proceedings for the ‘163

patent on the request of a third party that had been accused of infringing the patent.’

During those proceedings, the patentee offered a new purported point of distinction in an

attempt to overcome the primary piece of prior art under consideration in the

reexamination—a paper called the “Mosberger” reference. Specifically, the patentee

argued that “[t]he '163 invention is about a system that, upon receipt of first message

packet, dynamically selects a sequence of components to create a path for processing the

message.” Ex. 35-I (Examiner Interview PowerPoint). In other words, there is a specific,

sequential “order to [the] claims —first, packet is received, and then, component

sequence is identified based on packet.” /d. The patentee pointed to language from the

specification suggesting the importance of a “dynamic” approach in avoiding the

“overhead” that would otherwise be involved in calculating “each possible series of

conversion routines” in advance. Ex. | at 1:38-66. The patentee alleged that Mosberger,

by contrast, performed its identification of sequences before the first packet was received,

and therefore did not disclose the type of dynamic identification contemplated by the

claims.

After multiple rejections, the patentee was ultimately forced to amend its claims

(though purportedly only to “clarify” their original intent) to expressly include the step of

“dynamically identifying a non-predefined sequence of components.” The examiners in

the reexamination unit subsequently issued a notice of allowance for these claims as

'
The litigation matter settled before conclusion of the ex parte reexamination

proceedings.

Inter Partes Reexamination of
.

U.S. Patent No.7,711,857 II. Concurrent Proceedings 5

JNPR-IMPL_30024_

amended. The allowance was expressly based on the patentee’s argument that

“Mosberger does not dynamically identify sequences.”

The prosecution of the ‘857 patent included none of this scrutiny and discussion

of the Mosberger reference, even though the time period of this prosecution (from

October 31, 2007 to May 4, 2010) largely overlapped with the ‘163 reexamination

proceeding (from December 15, 2008 to June 22, 2010). Indeed, even though Mosberger

was presented in the ‘163 reexamination request of December 15, 2008, was found to

present a substantial new question of patentability against the ‘163 claims on January 17,

2009, and was the sole basis for the rejection of all ‘163 claims in an office action dated

July 7, 2009, the patentee did not submit an Information Disclosure Statement regarding

Mosberger in the ‘857 patent prosecution until January 29, 2010—several weeks after the

‘857 patent examiner had declared that the pertinent objections over the prior art had

been overcome. See Ex. 40-F (£857 1/29/2010 IDS) at 3; Ex. 40-D (‘857 12/11/2009

Final Rejection) at 3 (“Claims 6, 8, 9, 22-24 and 26-28 would be allowable ifa terminal

disclaimer is filed to overcome the obviousness-type double patenting rejection.”).

Thus, the examiner for the ‘857 patent prosecution was not made aware of the

simultaneously ongoing battle regarding the patentability of the ‘163 patent claims over

Mosberger. The patentee failed to timely bring these issues to the attention of the

examiner in the ‘857 patent prosecution, including, in particular, a complete omission of

the patentee’s office action response in the ‘163 patent reexamination dated February 8,

2010 (Ex. 35-M)—a document that Implicit has now characterized as “the most

important document in the entire case” against Requester in the concurrent district court

proceedings. Ex. 37-C (Implicit’s Reply of December 19, 2011 to Defendants’

Inter Partes Reexamination of
.

U.S. Patent No.7,711,857 II. Concurrent Proceedings 6

JNPR-IMPL_30024_

Responsive Claim Construction Brief) at 2. Accordingly, Requester now submits these

materials and issues so that the PTO may properly consider them in the first instance as

they bear upon the invalidity of the claims of the ‘857 patent.

Because Mosberger was not timely disclosed during prosecution of the ‘857

patent, prosecution focused entirely on another prior art reference known as Taylor (U.S.

Patent No. 6,785,730). The most prominent deficiency of Taylor alleged by patentee was

that Taylor purportedly discloses only a single component, and several of the

amendments made during prosecution related to this deficiency. See Ex. 40-C (9/24/2009

Amendment) at 5-7 (arguing that Taylor fails to disclose elements “relating to a plurality

of components in a sequence”). The patentee also alleged that Taylor failed to provide

adequate detail on the internal operation of its format translator component. /d. at 5-7

(“Taylor provides no details on the internal operation of the format translator 32.”). /d. at

5-7, 12 (independent claim 6), 14 G@ndependent claim 22). The examiner ultimately

allowed these claims without further explanation. Ex. 40-G (3/10/2010 Allowance).

All of the possible points of distinction raised during prosecution of the ‘857

patent (and its parent, the ‘163 patent) are now clearly and repeatedly addressed by the

prior art presented in this Request.

For example, a technical paper presented at an international telecommunications

conference in 1996 (“Pfeifer96”) demonstrates that researchers had already discovered

how to process a message using a “dynamically generated converter chain” consisting of

multiple components. Ex. 3 at 124 (emphasis added), 109-11.

Inter Partes Reexamination of
.

U.S. Patent No.7,711,857 II. Concurrent Proceedings 7

JNPR-IMPL_30024_

Gax service mmege > gawtext Hkered text> speech audio format> phone
sera

gstewsey gelewsy

Id. at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech,

telephone delivery”). Pfeifer96 also provides internal details regarding the operation of

its processing steps, observing, e.g., that selection of the chain of components is based on

analysis of a data type of the incoming message (e.g., whether its source “medium” is

fax, voice call, multimedia email, and so on) and of the message’s intended destination

(called party). /d. at 120, 109-11. This reference was published over three years before

the filing date of the application that became the parent of the ’857 patent. Pfeifer96

fully anticipates and renders obvious every element of claims 1, 4, and 10 of the ‘857

patent, both on its own and in combinations with other references as set forth in this

Request.

And Pfeifer96 is hardly the only example of invalidating prior art dating from

years before the critical date of the ‘857 patent. Cisco Systems was also actively

involved in this technological space in 1996, when a pair of Cisco engineers filed an

application that ultimately issued as a patent (“Kerr”). The Kerr patent teaches how

network administrators can flexibly configure systems with the use of a technology called

“flows,” in which several distinct functions are applied task-by-task by components to

the packets of a particular flow. E.g., Ex. 15 at 4:20-59. The various functions to be

applied to a flow are ascertained while processing the first packet of the flow, and this

information is then “cache[d]” for high-speed use by subsequent packets. Kerr also

provides internal details regarding its classification and treatment of flows, including

Inter Partes Reexamination of
.

U.S. Patent No.7,711,857 II. Concurrent Proceedings 8

JNPR-IMPL_30024_

analysis of a data type (e.g., “standard port numbers includ[ing]...FTP...TELNET...

an internet telephone protocol, or an internet video protocol”), and analysis of multiple

packet headers (including, e.g., “source” and “destination... IP... address” at layer 3,

and “port number[s]” at layer 4). /d. at 3:3-20. This functionality was incorporated into

actual Cisco products under the name “NetFlow,” as elaborated in the following article

excerpt from a 1997 trade publication:

Cisco stream ines routing, management

functions task by tank

aut
those tasks af hig:

Ex. 16 (InfoWorld Article). The Kerr technology as embodied in NetFlow is still part of

Cisco’s product line to this day.” Kerr fully anticipates and renders obvious every

element of claims 1, 4, and 10 of the ‘857 patent, both on its own and in combinations

with other references as set forth in this Request.

?
See <http://www.cisco.com/en/US/products/ps6601/products ios protocol

group_home.html>.

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 II. Concurrent Proceedings 9

JNPR-IMPL_30024_

This Request contains other invalidating references and combinations of

references. For example, a 1998 article (‘Decasper98”) presents its own solution to the

“increasingly rapid pace” with which “[n]ew network protocols . are being deployed

on the Internet,” by proposing an architecture with multiple “code modules, called

plugins, to be dynamically added and configured at runtime.” Ex. 25 (Decasper98) at 1.

A sequence of multiple plugin components may be assigned to process the packets of

each flow. E.g., id. at 5 (“Each flow table entry stores pointers [p/ura/] to the appropriate

plugins [plural]’). As with Kerr, the “information gathered by processing the first

packet” is stored in a “cache,” from which “[s]ubsequent packets” can obtain it “quickly

and efficiently.” /d. at 3. Decasper98 also provides internal details regarding its

classification and treatment of flows, including analysis of a data type (e.g., “protocol”

and “port’), and analysis of multiple packet headers (including, e.g., “source” and

“destination address” at layer 3, and “source” and “port” at layer 4). Jd. at 3.

As mentioned above, this Request also presents—for the first time—a robust

analysis and application of the Mosberger reference to the claims of the ‘857 patent. The

Request further explains how Mosberger is not nearly so limited as the patentee argued to

the PTO during the prior ex parte reexamination proceedings for the parent of the ‘857

patent. Mosberger itself states that it would be “straight-forward to add a dynamic

module-loading facility.” Ex. 31 (Mosberger) at 71. And to the extent that Mosberger is

still deemed to lack any elements of the ‘857 patent claims, obviousness combinations are

presented with related publications by others (e.g., the “Plexus” reference), at least one of

which also anticipates the ‘857 patent claims standing alone (the “HotLava” reference).

Inter Partes Reexamination of
.

U.S. Patent No.7,711,857 II. Concurrent Proceedings 10

JNPR-IMPL_30024_

In summary, for these reasons and as detailed below, there is a reasonable—and

indeed compelling—likelihood that Requester will prevail on the proposed claim

rejections presented herein. Accordingly, this Request should be granted as to at least

claims 1, 4, and 10 of the ‘857 patent, and a certificate under 35 U.S.C. § 316(a)

ultimately issued cancelling all of these claims.

I. DISCLOSURE OF CONCURRENT PROCEEDINGS

A requestfor inter partes reexamination is already pending for the ‘163 patent,

which is the parent of the ‘857 patent. Requesterfiled this earlier request on February

13, 2012, and it has now been assigned control number 95/000,659.

Implicit has asserted the ‘857 patent against Requester in a District Court action

styled /mplicit Networks, Inc. v. Juniper Networks, Inc. (N.D. Cal. Civ. No. Civ. No.

3:10-cv-04234-SI). In the District Court action, Implicit alleges that it is the owner of the

‘857 patent by assignment. Implicit alleges that claims 1, 4, and 10 of the ‘857 patent are

infringed by Requester’s products. For example, in its first amended complaint against

Requester, Implicit describes the allegedly infringing functionality as follows:

37. Junos OS dynamically identifies a sequence of
actions to be performed on a data packet flow on the basis

of the first packet. The sequence of actions so identified is

applied to all the subsequent packets of the flow. The

actions to be performed are determined using policies
maintained by the system. Junos OS inspects data packets,

analyzes them against the various policies and performs the

appropriate actions as dictated by the applicable policies.
Junos OS performs de-multiplexing of data packets by

reassembling datagrams fragmented over multiple packets.

38. | Whenever a data packet transits Juniper networking

equipment running the Junos OS, Junos OS performs a

flow lookup to see if the packet belongs to an already
established session. If the packet does not belong to an

existing session, a new session is created with the packet as

the first packet of the session. The system them analyzes

Inter Partes Reexamination of
.

U.S. Patent No.7,711,857 II. Concurrent Proceedings 11

JNPR-IMPL_30024_

the first packet to determine the various actions to be

performed on all the data packets of that session. The

sequence of actions determined on the basis of the first

packet forms a fast processing path. All subsequent packets
of the session are then processed through the fast

processing path.

Ex. 36-A (Complaint) at 10; see a/so Exs. 36-B (Infringement Contentions), 36-E and 36-

F (857 claim charts).

A Markman hearing was held on January 18-19, 2012, and the District Court

recently issued a Claim Construction Order on February 29, 2012. See Ex. 39 (Claim

Construction Order).

WW. CLAIMS FOR WHICH REEXAMINATION IS REQUESTED AND
CITATION OF PRIOR ART

Reexamination of claims 1, 4, and 10 of the ‘857 patent is requested under

35 U.S.C. §§ 311-316 and 37 §§ 1.906, 1.913 and 1.915 based on the following

references:

Prior Art Reference Prior Art Date Exhibit®

Article entitled “Generic Conversion of November 27, 1996 Ex. 3

Communication Media for Supporting Personal

Mobility” by Tom Pfeifer and Radu Popescu-
Zeletin (“Pfeifer96”)

Color version of Pfeifer96 (“Pfeifer96a”) November 27, 1996 | Ex. 3-B

Specification entitled “ISDN Primary Rate User- | August 1998 Ex. 4

Network Interface Specification” from Northern

Telecom (“ISDN98”)

Book entitled “The Data Compression Book” by |November 6, 1995 Ex. 5

Mark Nelson and Jean-Loup Gailly (“Nelson”)

> For the convenience of the examiner and the parties, exhibit numbers have

largely been maintained across the infer partes reexamination requests for the ‘163 and

patents.

Inter Partes Reexamination of
.

U.S. Patent No.7,711,857 II. Concurrent Proceedings 12

JNPR-IMPL_30024_

Prior Art Reference Prior Art Date Exhibit’

Book entitled “Superdistribution: Objects as

Property on the Electronic Frontier” by Brad

Cox (“Cox”)

June 4, 1996 Ex. 6

Thesis entitled “Job and Stream Control in

Heterogeneous Hardware and Software

Architectures” by Stefan Franz (“Franz98”)

April 22, 1998 Ex. 7

Thesis entitled “Dynamic Configuration

Management of the Equipment in Distributed

Communication Environments” by Sven van der

Meer (“Meer96”)

October 6, 1996 Ex. 8

Specification entitled RFC 793: “Transmission

Control Protocol” by Information Sciences

Institute (“RFC 793”)

September 1981 Ex. 9

Thesis entitled “Generic Description of
Telecommunication Services and Dynamic
Resource Selection in Intelligent Communication

Environments” by Stefan Arbanowksi

(“Arbanowski96”)

October 6, 1996

Article entitled “Resource Selection in

Heterogeneous Communication Environments

using the Teleservice Descriptor” by Tom

Pfeifer, Stefan Arbanowski, and Radu Popescu-
Zeletin (“Pfeifer97”)

December 19, 1997

US. Patent No. 6,104,500 entitled “Networked

Fax Routing Via Email” by Hassam Alam,
Horace Dediu, and Scot Tupaj (“Alam”)

April 29, 1998 Ex. 13

US. Patent No. 5,298,674 entitled “Apparatus
for Discriminating an Audio Signal as an

Ordinary Vocal Sound or Musical Sound” by

Sang-Lak Yun (“Yun”)

March 29, 1994

US. Pat. No. 6,243,667 entitled "Network Flow

Switching and Flow Data Export," by Darren R.

Kerr and Barry L. Bruins (“Kerr”)

May 28, 1996 Ex. 15

Inter Partes Reexamination of

U.S. Patent No.7,711,857 UI. Claims and Prior Art 13

JNPR-IMPL_30024_

Prior Art Reference Prior Art Date Exhibit’

Article entitled “Cisco NetFlow Switching

speeds traffic routing,” InfoWorld Magazine

(“NetFlow”)

July 7, 1997 Ex. 16

Article entitled “A Concrete Security Treatment

of Symmetric Encryption” by M. Bellare ef al.

(“Bellare97”)

October 27, 1997 Ex. 17

Article entitled “XOR MACs: New Methods for

Message Authentication Using Finite

Pseudorandom Functions” by Mihir Bellare,
Roch Guerin, and Phillip Rogaway (“Bellare95”)

1995 Ex. 18

Book entitled “Local Area Network Concepts
and Products: Routers and Gateways” from IBM

(“IBM96”)

May 1996

Article entitled “Checkpoint Firewall-1 White

Paper, Version 2.0” (“Checkpoint”)
September 1995

U.S. Pat. No. 5,835,726 entitled “System for

securing the flow of and selectively modifying

packets in a computer network,” by Shwed ef al.

(“Shwed”)

December 15, 1993

US. Pat. No. 6,651,099 entitled “Method and

Apparatus for Monitoring Traffic in a Network”

by Russell S. Dietz et al. (“Dietz”)

June 30, 1999

Article entitled “Dynamic Reconfiguration of

Agent-Based Applications”) by Luc Bellissard,
Noel de Palma, and Michel Riveill (“Bellissard”)

September 10, 1998 Ex. 23

Publication entitled “DTE Firewalls Phase Two

Measurement and Evaluation Report” by

Timothy L. Fraser ef al. of Trusted Information

Systems (“Fraser”)

July 22, 1997

Article entitled “Router Plugins: A Software

Architecture for Next Generation Routers” by
Dan Decasper ef al. (“Decasper98”)

September 1998 Ex. 25

Inter Partes Reexamination of

U.S. Patent No.7,711,857 UI. Claims and Prior Art 14

JNPR-IMPL_30024_

Prior Art Reference Prior Art Date Exhibit’

Specification entitled RFC 1825: “Security
Architecture for the Internet Protocol” by R.

Atkinson (“RFC 1825”)

August 1995 Ex. 26

Specification entitled RFC 1829: “The ESP

DES-CBC Transform” by P. Karn ef al. (“RFC

1829”)

August 1995 Ex, 27

Specification entitled RFC 1883: “Internet

Protocol, Version 6 (IPv6) Specification” by S.

Deering and R. Hinden (“RFC 1883”)

December 1995 Ex. 28

Article entitled “Crossbow: A Toolkit for

Integrated Services over Cell Switched IPv6” by
Dan Decasper et al. (“Decasper97”)

May 28, 1997

Dissertation entitled “Scout: A Path-Based

Operating System” by David Mosberger

(“Mosberger’)

1997

Article entitled “Implementing Communication

Protocols in Java” by Bobby Krupczak al

(“HotLava’)

October 1998

Article entitled “An Extensible Protocol

Architecture for Application-Specific

Networking” by Mare Fiuczynski et. al

(“Plexus”)

January 22, 1996

Article entitled “ComScript: An Environment for

the Implementation of Protocol Stacks and their

Dynamic Reconfiguration” by Murhimanya

Muhugusa et. al

December 1994 Ex. 34

Article entitled “The Active IP Option” by David

J. Wetherall e al. (“Wetherall”)
September 11, 1996 Ex. 47

Paper entitled “Active Gateway: A Facility for

Video Conferencing Traffic Control” by Shunge
Li etal. (“Li”)

February 1, 1997 Ex. 48

Inter Partes Reexamination of

U.S. Patent No.7,711,857 UI. Claims and Prior Art 15

JNPR-IMPL_30024_

Most of these prior art references were not cited or considered by the PTO during

prosecution of the ‘857 patent and are not cumulative to the art of record in the original

file. Only two of the references relied upon in this Request were cited during the

prosecution of the ‘857 patent (7.e., Mosberger and Dietz). However, neither was

discussed or applied by the Examiner at any time during prosecution of the ‘857 patent,

and the finding of a “reasonable likelihood” under Section 312 is “not precluded by the

fact that a patent or printed publication was previously cited by or to the Office or

considered by the Office.” 35 U.S.C. § 312(a).

A copy of each patent or printed publication relied upon in establishing each

substantial new question of patentability is included with this Request as required by

37 C.F.R. § 1.915(b)(4). These references are cited in the accompanying Information

Disclosure Statement and Form PTO/SB/08A.

Pfeifer96 bears the date November 27, 1996, and is prior art under 35 U.S.C.

§ 102(a) and (b). Pfeifer96a is substantively identical to Pfeifer96, except its figures are

rendered in color. Pfeifer96a also bears the date November 27, 1996.

ISDN98 bears the date August 1998, and is prior art under 35 U.S.C. § 102(a) and

(b).

Nelson was published on November 6, 1995. See Ex. 43 (document from United

States Copyright Office Public Catalog showing date of publication). It is prior art under

35 U.S.C. § 102(a) and (b).

Cox was published on June 4, 1996. See Ex. 44 (document from United States

Copyright Office Public Catalog showing date of publication). It is prior art under 35

U.S.C. § 102(a) and (b).

Inter Partes Reexamination of
US. Patent No.7,711,857 Ill. Claims and Prior Art 16

JNPR-IMPL_30024_

Franz98 bears the date April 22, 1998, and is prior art under 35 U.S.C. § 102(a)

and (b).

Meer96 bears the date October 6, 1996, and is prior art under 35 U.S.C. § 102(a)

and (b).

RFC 793 bears the date September 1981, and is prior art under 35 U.S.C. § 102(a)

and (b).

Arbanowski96 bears the date October 6, 1996, and is prior art under 35 U.S.C.

§ 102(a) and (b).

Pfeifer97 bears the date December 19, 1997, and is prior art under 35 U.S.C.

§ 102(a) and (b).

Alam was filed on April 22, 1998, and is prior art under 35 U.S.C. § 102(e).

Yun was issued on March 29, 1994 and is prior art under 35 U.S.C. § 102(a) and

(b).

Kerr was filed on May 28, 1996, and is prior art under 35 U.S.C. § 102(e).

NetFlow bears the date July 7, 1997, and is prior art under 35 U.S.C. § 102(a) and

(b).

Bellare97 bears the date October 22, 1997, and is prior art under 35 U.S.C.

§ 102(a) and (b).

Bellare95 bears the date 1995, and is prior art under 35 U.S.C. § 102(a) and (b).

IBM96 bears the date May 1996, and is prior art under 35 U.S.C. § 102(a) and

(b).

Checkpoint bears the date September 1995, and is prior art under 35 U.S.C.

§ 102(a) and (b).

Inter Partes Reexamination of

U.S. Patent No.7,71 1,857 IIL. Claims and Prior Art 17

JNPR-IMPL_30024_

Shwed was filed June 17, 1996 and issued November 19, 1998, and is prior art

under 35 U.S.C. § 102(a) and (b).

Dietz was filed as a provisional application on June 30, 1999, and is prior art

under 35 U.S.C. § 102(e).

Bellissard was published on September 10, 1998. See Ex. 45 (document showing

date of publication). Itis prior art under 35 U.S.C. § 102(a) and (b).

Fraser bears the date July 22, 1997, and is prior art under 35 U.S.C. § 102(a) and

(b).

Decasper98 bears the date September 1998, and is prior art under 35 U.S.C.

§ 102(a) and (b).

RFC 1825 bears the date August 1995, and is prior art under 35 U.S.C. § 102(a)

and (b).

RFC 1829 bears the date August 1995, and is prior art under 35 U.S.C. § 102(a)

and (b).

RFC 1883 bears the date December 1995, and is prior art under 35 U.S.C.

§ 102(a) and (b).

Huitema was published on October 28, 1997. See Ex. 46 (document from United

States Copyright Office Public Catalog showing date of publication). It is prior art under

35 U.S.C. § 102(a) and (b).

Decasper97 bears the date May 28, 1997, and is prior art under 35 U.S.C. 102(a)

and (b).

Mosberger bears the date 1997, and is prior art under 35 U.S.C. § 102(a) and (b).

Inter Partes Reexamination of

U.S. Patent No.7,71 1,857 IIL. Claims and Prior Art 18

JNPR-IMPL_30024_

HotLava bears the date October 1998, and is prior art under 35 U.S.C. § 102(a)

and (b).

Plexus bears the date January 22, 1996, and is prior art under 35 U.S.C. § 102(a)

and (b).

ComScript was published in December 1994 and is prior art under 35 U.S.C.

§ 102(a) and (b). See Ex. 38 (document from publisher website indicating date of

publication)

Wetherall bears the date September 11, 1996, and is prior art under 35 U.S.C.

§ 102(a) and (b).

Li bears the date February 1, 1997, and is prior art under 35 U.S.C. § 102(a) and

(b).

The following other written evidence is also made of record, solely to help

explain the content of certain of the references listed in the table above. See MPEP

§ 2205.

Other Written Evidence Exhibit

‘163 patent Ex. 49

‘163 patent: Ex Parte Reexamination Certificate Ex. 2

‘163 FH: Original Claims Ex. 35-A

‘163 FH: 9/23/2002 Office Action Ex. 35-B

FH: 2/24/2003 Amendment Ex. 35-C

‘163 FH: 5/20/2003 Notice of Allowance Ex. 35-D

‘163 Reexam FH: Ex Parte Reexamination Request Ex. 35-E

‘163 Reexam FH: Order Granting Ex Parte Reexamination Request | Ex. 35-F

‘163 Reexam FH: 7/7/2009 Office Action Ex. 35-G

‘163 Reexam FH: 9/1/2009 Amendment Ex. 35-H

‘163 Reexam FH: 10/23/2009 Interview Summary Ex. 35-I

US Patent
No

I, Claims and Prior Art 19

JNPR-IMPL_30024_

Other Written Evidence Exhibit

‘163 Reexam FH: 12/4/2009 Final Office Action Ex. 35-J

‘163 Reexam FH: 12/18/2009 Response to Final Rejection Ex. 35-K

‘163 Reexam FH: 1/21/2010 Advisory Action Ex. 35-L

“163 Reexam FH: 2/4/2010 Examiner Interview Summary Ex. 35-O

‘163 Reexam FH: 2/8/2010 Amendment After Final Ex. 35-M

‘163 Reexam FH: 3/2/2010 Notice of Intent to Issue Certificate Ex. 35-N

°857 FH: Original Claims Ex. 40-A

FH: 2/19/2008 Office Action Ex. 40-B

FH: 6/24/2009 Amendment Ex. 40-C

FH: 12/11/2009 Final Rejection Ex. 40-D

FH: 1/29/2010 Amendment Ex. 40-E

°857 FH: 1/29/2010 IDS Ex. 40-F

FH: 3/10/2010 Notice of Allowance Ex. 40-G

First Amended Complaint Ex. 36-A

Implicit Patent Infringement Contentions Ex. 36-B

Implicit ‘163 Infringement Claim Chart (Security Devices) Ex. 36-C

Implicit ‘163 Infringement Claim Chart (Application Acceleration) | Ex. 36-D

Implicit ‘857 Infringement Claim Chart (Security Devices) Ex. 36-E

Implicit ‘857 Infringement Claim Chart (Application Acceleration) | Ex. 36-F

Implicit Opening Claim Construction Brief Ex. 37-A

Defendants Responsive Claim Construction Brief Ex. 37-B

Implicit Reply Claim Construction Brief Ex. 37-C

Implicit Technical Tutorial Ex. 37-D

Defendants Technical Tutorial Ex. 37-E

Technical Tutorial Transcript Ex. 37-F

Implicit Claim Construction Slides Ex. 37-G

Defendants Claim Construction Slides Ex. 37-H

Claim Construction Transcript — Day 1 Ex. 37-I

Claim Construction Transcript — Day 2 Ex. 37-J

Inter Partes Reexamination of
U.S. Patent No.7,711,857 Claims and Prior Art 20

JNPR-IMPL_30024_

Other Written Evidence Exhibit

Claim Construction Order Ex. 39

Specification entitled RFC 791: “Internet Protocol: DARPA Internet | Ex. 41

Program Protocol Specification” by Information Sciences Institute in

September 1981 (“RFC 791”)

Specification entitled RFC 1700: “Assigned Numbers” by Network | Ex. 42

Working Group in October 1994 (“RFC 1700”)
Book entitled “IPv6: The New Internet Protocol” by Christian Ex. 29

Huitema (“Huitema”) published October 28, 1997

Document showing publication date of Comscript (Penn State Ex. 38

University, CiteSeer Digital Library)
Document showing publication date of Nelson Ex. 43

Document showing publication date of Cox Ex. 44

Document showing publication date of Bellissard Ex. 45

Document showing publication date of Huitema Ex. 46

Deposition of David Mosberger, Ph.D., September 16, 2011 Ex. 50

IV. CLAIM CONSTRUCTION ADMISSIONS OF THE PATENT OWNER

A party requesting reexamination is permitted to submit admissions of the patentee in

support of its request or proposed grounds for rejection. “The admission can reside in the patent

file (made of record during the prosecution of the patent application) or may be presented during

the pendency of the reexamination proceeding or in litigation.” MPEP 2617(IID. Following is a

brief description of the prosecution of the ‘857 patent, as well as statements by Implicit regarding

claim construction in connection with its litigation against Requester.

Note that, both here and throughout this Request, the claims are accorded their broadest

reasonable interpretation for purposes of reexamination only. The District Court in the

concurrent litigation proceedings issued an order two days ago construing certain claim terms of

the ‘857 patent. See Ex. 39. However, the Requester notes that claim construction in

reexamination is broader than claim construction in litigation. See Jn re Yamamoto, 740 F.2d

Inter Partes Reexamination of
US. Patent No.7,711,857 Ill. Claims and Prior Art 21

JNPR-IMPL_30024_

1569, 1571 (Fed. Cir. 1984). Therefore, nothing in this Request should be taken as an assertion

regarding how the claims should be construed in litigation.*

A. Original Prosecution of the ‘163 Patent

During the original prosecution of the ‘163 patent (the parent of the patent), the

patentee initially proposed 34 claims. Ex. 35-A (Original Claims) at 21-25. The PTO initially

rejected all of these claims as being anticipated by at least three patents: U.S. Patent No.

5,870,479 to Feiken et al. (“Feiken”), U.S. Patent No. 5,425,029 to Hluchyj et al. (“Hluchy]”),

and U.S. Patent No. 5,568,478 to Van Loo, Jr. et al. Van Loo”). Ex. 35-B (9/23/2002 Office

Action) at 2-6. In response, the patentee cancelled those claims and proposed a new set of

claims with additional language, including the “storing” step “so that the sequence does not need

to be re-identified for subsequent packets of the message.” Ex. 35-C (2/24/2003 Amendment) at

2. The patentee also offered a few arguments in an attempt to distinguish the cited prior art. /d.

at 9-10. However, in issuing a notice of allowance for the new claims, the examiner appeared to

rely primarily on the new limitations added to the claims. Ex. 35-D (5/20/2003 Notice of

Allowance) at 2. The examiner further entered an examiner’s amendment to the patent title,

which was changed to: “Method and System for Demultiplexing a First Sequence of Packet

Components to Identify Specific Components Wherein Subsequent Components are Processed

Without Re-Identifying Components.” /d.

*
Moreover, nothing in this Request should be construed as expressing any position as to

whether the claims of the ‘857 patent claims constitute patentable subject matter under 35 U.S.C.

§ 101, or whether they satisfy the definiteness, enablement, best mode, or written description

requirements of 35 U.S.C. § 112, since these grounds of invalidity cannot properly be raised in a

request for reexamination. See MPEP § 2617 (“Other matters, such as... U.S.C. 112... will
not be considered when making the determination on the request and should not be presented in

the request.”); see also MPEP § (even limitations rejected for indefiniteness must be

examined).

Inter Partes Reexamination of

USS. Patent No.7,711,857 IV. Claim Construction 22

JNPR-IMPL_30024_

B. Reexamination of the ‘163 Patent

On January 17, 2009, the PTO granted a request for ex parte reexamination of the '163

patent. Ex. 35-F (Order Granting Request for Ex Parte Reexamination). Among other prior art

references not considered during the original prosecution of the '163 patent, the PTO determined

that a substantial new question of patentability existed based upon a 1997 doctoral dissertation

by David Mosberger, entitled “Scout: A Path-Based Operating System” (“Mosberger”). The

PTO subsequently issued an initial office action rejecting every single claim of the '163 patent as

anticipated by Mosberger. Ex. 35-G (7/07/2009 Office Action) at 5-13.

Implicit initially attempted to distinguish Mosberger without making any substantive

amendments to the claims. In its first office action response, Implicit argued that Mosberger

“configures paths (formed from a sequence of components) before receiving the ‘first packet of

the message.” Ex. 35-H (9/01/2009 Amendment) at 11 (emphasis in original). In contrast,

Implicit characterized the system claimed in the '163 patent as "configur[ing] paths at run-time

(i.e., after the first packet is received).” /d. (emphasis in original). Implicit pointed to the first

column of the ‘163 patent specification as “critical,” explaining that its claims required that

sequence of components be “Created Dynamically”:

In other words, the '163 Patent clearly states that the invention

requires the sequence of conversion routines (that form the paths)
to be identified at run-time, and disavows prior art systems (like

Mosberger) that use pre-configured paths, which are defined at

“build-time” before the first packet of a message is received.

Id. at 18. Implicit also presented these and other arguments in an interview with the Examiner,

along with a PowerPoint presentation. See Ex. 35-I (10/23/2009 Interview Summary).

The PTO initially rejected Implicit’s arguments, finding them to be “not persuasive.” In

a final office action, the PTO argued (among other things) that the distinction upon which

Implicit relied was not actually included in the claim language of the ‘163 patent. Ex. 35-J

Inter Partes Reexamination of

USS. Patent No.7,711,857 IV. Claim Construction 23

JNPR-IMPL_30024_

(12/04/2009 Final Office Action) at 13-14 (claimed invention “not recited as being dynamic in

nature”).

In response to the final office action, Implicit submitted an amendment that expressly

added the “dynamically” language to the claims, as well as the phrase “after the first packet is

received.” See Ex. 35-K (12/18/2009 Response to Final Rejection) at 10. Implicit claimed it

was adding this language merely to “further clarify” the scope of the existing claims. /d. The

PTO initially refused to enter these after-final amendments. See Ex. 35-L (1/21/2010 Advisory

Action). Another interview was conducted, and Implicit submitted additional proposed

amendments a few days later, this time expressly inserting the “non-predefined” limitation. Ex.

35-M (2/8/2010 Amendment After Final).

After these additional amendments, the PTO finally removed its rejection of claims 1, 15,

and 35 based on Mosberger. The PTO decision expressly relied on Implicit’s argument “that

Mosberger does not dynamically identify sequences of components... .” Ex. 35-N (3/02/2010

Notice of Intent to Issue Ex Parte Reexamination Certificate) at 4.

C. Prosecution of the ‘857 Patent

During the original prosecution of the ‘857 patent, the patentee initially proposed 25

claims. Ex. 40-A (Original Claims) at 21-25. All of these claims were rejected over a single

prior art reference known as Taylor (U.S. Patent No. 6,785,730). Ex. 40-B (6/24/2009 Initial

Office Action) at 3-9. In order to distinguish Taylor, the patentee amended the claims to add

several new limitations. Ex. 40-C (9/24/2009 Amendment) at 4-8.

The most prominent deficiency of Taylor alleged by patentee was that Taylor discloses

only a single component, and several of the newly added limitations relate to this deficiency—as

argued by the patentee:

Inter Partes Reexamination of . .

U.S. Patent No.7,711,857 IV. Claim Construction 24

JNPR-IMPL_30024_

(1) “a sequence of components”—arguing “Taylor only discloses a single format

translator 32 and thus cannot teach or suggest storing state information relating to a plurality of

components in a sequence.” /d. at 5-7, 12 (independent claim 6), 14 (independent claim 22).

(2) “storing state information for each of a plurality of components’—arguing “Taylor

only discloses a single format translator 32 and thus cannot teach or suggest storing state

information relating to a plurality of components in a sequence.” /d.

(3) “storing an indication of the identified components’ —arguing: “Given that Taylor

only has a single component for the format translation, there is no suggestion of storing an

indication for each of the identified components.” /d.

A second deficiency of Taylor alleged by patentee was that Taylor provides no internal

details on the internal operation of its format translator component, and two of the newly added

limitations relate to this deficiency:

(1) “analyzfing] the data type ofa first packet”—arguing “Taylor provides no details on

the internal operation of the format translator 32.” at 5-7, 12 (independent claim 6), 14

(independent claim 22).

(2) “analyzing the plurality of headers of a first packet”—arguing “Taylor provides no

details on the internal operation of the format translator 32.” /d.

A third deficiency of Taylor which the patentee attempted to argue was that Taylor “only

deals with one message at a time,” but all of the claims containing newly added limitations

relating to this alleged deficiency (e.g., “a plurality of messages”) were subsequently rejected by

the Examiner and abandoned by the patentee. /d. at 11-13 (claims 1, 10, 19); Ex. 40-D

(12/11/2009 Final Rejection) at 4-8; Ex. 40-E (1/29/2010 Amendment) at 2-4.

Inter Partes Reexamination of . .

U.S. Patent No.7,711,857 IV. Claim Construction 25

JNPR-IMPL_30024_

Apparently persuaded regarding the first two deficiencies of Taylor but without

explaining the reasoning behind the decision, the Examiner indicated that the claims containing

the newly added limitations relating to those two deficiencies would be allowable (Ze.,

independent claims 6 and 22 and their dependent claims). Ex. 40-D (12/11/2009 Final

Rejection) at 3 (“Claims 6, 8, 9, 22-24 and 26-28 would be allowableif a terminal disclaimer is

filed to overcome the obviousness-type double patenting rejection”).

The patentee canceled the remaining claims, and added a single new independent claim

parallel to allowable method claim 6 *
but instead reciting a “computer-readable storage

medium.” Ex. 40-E (1/29/2009 Amendment) at 2-4. And thus the three independent claims

reciting limitations relating to the first two deficiences of Taylor were allowed (claims 6, 22, and

29), as were their dependent claims. Ex. 40-G (3/10/2010 Notice of Allowance) at 1 (without

explaining reasoning behind decision).

D. Admissions Regarding Claim Construction

In addition to statements made during the prosecution history of the ‘857 and ‘163

patents, the patentee has made additional admissions regarding the scope and meaning of the

claims in the allegations of its pleadings and infringement contentions prepared in connection

with the concurrent litigation with Requester involving the ‘857 patent. See Exs. 36-A

(Complaint), 36-B (Infringement Contentions), 36-C and 36-D (‘163 claim charts), 36-E and 36-

F claim charts). Information regarding the patent owner’s apparent claim construction

positions can be gleaned from these documents.

The patentee has also taken a number of express positions regarding claim construction in

connection with Markman proceedings held in the concurrent litigation. The patentee presented

*
The amendment inaccurately asserts “newly added claim 29. . . parallel[s] the structure

of method claim 22.” See Ex. 40-E (1/29/2009 Amendment) at 5, 2-4.

Inter Partes Reexamination of

USS. Patent No.7,711,857 IV. Claim Construction 26

JNPR-IMPL_30024_

a technical tutorial describing the purported scope of the ‘857 patent claims, which is attached as

Exhibit 37-D. The parties claim construction briefs are also attached as Exhibits 37-A — 37-C

and are hereby incorporated by reference as if set forth herein.

For convenience, following is a chart summarizing the patent owner’s positions as set

forth in its claim construction briefs:

Te

Dynamically identifying
a sequence of

Selecting at runtime a sequence of components

components

Input format Structure or appearance of data to be processed

Output format Structure or appearance of the data that results from processing

Selecting individual Selecting components that are not bound together by a compiler

components

Create/form [sequence Instantiate in memory
of components]

Processing [and all

variants|
Manipulating data with a program

based on the first packet
of the message

Plain meaning, no construction needed. In the alternative, relying on

information in the first packet of the message

Identify ... a sequence
of components ... such

that the output format ...

match[es] the input
format of the next

component

identify ... a sequence of components.. . such that the output format

is compatible with the input format of the next component

Messages] A collection or stream of data that is related in some way
State information Information specific to a component for a specific message

The patentee has made additional express or implied admissions regarding claim

meaning and scope regarding claim terms not presented to the Court in the concurrent litigation.

For example, with respect to the term “demultiplexing,” the ‘857 patent states that “the

conversion system demultiplexes the messages by receiving the message, identifying the

sequence of conversion routines, and controlling the processing of each message by the

identified sequence.” Ex. | at 2:62-65; see also Ex. 36-A (Complaint) at 10 (demultiplexing

performed “by reassembling datagrams fragmented over multiple packets”).

Inter Partes Reexamination of

U.S. Patent No.7,711,857 IV. Claim Construction 27

JNPR-IMPL_30024_

The patentee has made additional admissions of record in connection with the claim

construction proceedings for the concurrent litigation. For example, at the claim construction

hearing, Implicit provided the following statement regarding the meaning of “state information”

in the context of the ‘857 and ‘163 patents:

As you process that message in '163, you look at the first packet,

you figure out what it is, you figure out what it needs, you build

your processing path, and then you keep track of the other packets
that are related so you don't have to do that whole thing again.

The very essence of this system is to avoid the recursive packet-

by-packet building a new data path every time. You build it once

then you maintain state, which just means track what relates to that

message so you can route the rest of the packets belonging to that

message with the path that you have built.

That's what “maintaining state” means.

Ex. 37-J (1/19/12 Claim Construction Transcript) at 126.

These and other patentee admissions regarding claim construction (as set forth below) are

applied in the analysis that follows as a reflection of what the patentee views as at least a

reasonable construction of the claims at issue. Thus, for purposes of this Request, the “broadest

reasonable construction” of the claims under consideration cannot be understood to be any

narrower in scope than what for which the patentee itself has contended in litigation. Of course,

application of the broadest reasonable construction in these proceedings should be not taken as

an assertion or admission on the part of Requester regarding how the claims should be construed

in litigation.

V. PERTINENCE AND MANNER OF APPLYING THE PRIOR ART

As shown in detail below, claims 1, 4, and 10 of the ‘857 patent are invalid under 35

U.S.C. §§ 102 and 103 in light of the prior art references and combinations of references

presented below. Requester respectfully submits that the analysis presented below satisfies the

Inter Partes Reexamination of . .

U.S. Patent No.7,711,857 IV. Claim Construction 28

JNPR-IMPL_30024_

threshold requirement of showing a “reasonable likelihood that the requester would prevail with

respect to at least 1 of the claims challenged in the request.” 35 U.S.C. § 312(a). The following

proposed rejections should be adopted in their entirety.

For convenience in navigating the Request, following is a high-level summary of the base

references on which rejections are based both alone and in combination with other references:

e Decasper98 and its obviousness combinations begin on page 33.

e Mosberger and its obviousness combinations begin on page 100.

HotLava begins on page 126.

® Pfeifer96 and its obviousness combinations begin on page 130.

e Kerr and its obviousness combinations begin on page 224.

The following table summarizes the reasons for reexamination being sought, along with

page numbers for each corresponding section in this Request.

Claims Grounds of Unpatentability Statutory | Page
Basis

1, 4, 10 Anticipated by Decasper98 102(a),(b)

1,4, 10 Obvious over Decasper98 103

1, 4, 10 Obvious over Decasper98 in view of RFC 103

1825 and RFC 1829

1, 4, 10 Obvious over Decasper98 in view of RFC 103

1883

1, 4, 10 Obvious over Decasper98 in view of 103

Decasper97

1, 4, 10 Obvious over Decasper98 in view of 103

Decasper97, Bellare97, and Bellare95

1, 4, 10 Obvious over Decasper98 in view of IBM96 103

Inter Partes Reexamination of
.

U.S. Patent No.7,71 V. Prior Art

JNPR-IMPL_30024_

1, 4, 10 Obvious over Decasper98 in view of IBM96 103

and Nelson

1, 4, 10 Obvious over Decasper98 in view of RFC 103

1825, RFC 1829, Decasper97, Bellare97,

Bellare95, IBM96, and Nelson

1, 4, 10 Obvious over Decasper98 in view of Fraser 103

1, 4, 10 Obvious over Decasper98 in view of Fraser, 103

RFC 1825, and RFC 1829

1, 4, 10 Obvious over Decasper98 in view of 103

Bellissard

1, 4, 10 Obvious over Decasper98 in view of 103

Bellissard, RFC 1825, and RFC 1829

1, 4, 10 Obvious over Decasper98 in view of 103

Wetherall

1, 4, 10 Obvious over Decasper98 in view of 103

Wetherall, RFC 1825, and RFC 1829

1, 4, 10 Obvious over Decasper98 in view of RFC 103

1825, RFC 1829, RFC 1883, Decasper97,

Bellare97, Bellare95, IBM906, Nelson,

Fraser, Bellissard, and Wetherall

1, 4, 10 Anticipated by Mosberger 102(a),(b)

1, 4, 10 Obvious over Mosberger 103

1, 4, 10 Obvious over Mosberger in view of 103

HotLava

1, 4, 10 Anticipated by HotLava 102(a),(b)

1, 4, 10 Obvious over Mosberger in view of Plexus 103

1, 4, 10 Obvious over Mosberger in view of 103

Comscript

1, 4, 10 Anticipated by Pfeifer96 102(a),(b)

1, 4, 10 Obvious over Pfeifer96 103

Inter Partes Reexamination of

US. Patent No.7,711,857 V. Prior Art

JNPR-IMPL_30024_

1, 4, 10 Obvious over Pfeifer96 in view of ISDN98 103

and Nelson

1, 4, 10 Obvious over Pfeifer96 in view of 103

Arbanowski96

1, 4, 10 Obvious over Pfeifer96 in view of Pfeifer97 103

1, 4, 10 Obvious over Pfeifer96 in view of Cox

1, 4, 10 Obvious over Pfeifer96 in view of Meer96 103

1, 4, 10 Obvious over Pfeifer96 in view of Meer96 103

and RFC 793

1, 4, 10 Obvious over Pfeifer96 in view of Franz98 103

1, 4, 10 Obvious over Pfeifer96 in view of ISDN98, 103

Nelson, Cox, Meer96, RFC 793, and

Franz98

1, 4, 10 Obvious over Pfeifer96 in view of Wetherall 103

1, 4, 10 Obvious over Pfeifer96 in view of 103

Wetherall, ISDN98, and Nelson

1, 4, 10 Obvious over Pfeifer96 in view of Li 103

1, 4, 10 Obvious over Pfeifer96 in view of Li, 103

ISDN98, and Nelson

1, 4, 10 Obvious over Pfeifer96 in view of Wetherall 103

and Li

1, 4, 10 Obvious over Pfeifer96 in view of 103

Wetherall, Li, ISDN98, and Nelson

1, 4, 10 Obvious over Pfeifer96 in view of Pfeifer97 103

and Alam

1, 4, 10 Obvious over Pfeifer96 in view of Pfeifer97 103

and Yun

1, 4, 10 Obvious over Pfeifer96 in view of Meer96, 103

Arbanowski96, Pfeifer97, and Franz98

Inter Partes Reexamination of

US. Patent No.7,711,857 V. Prior Art

JNPR-IMPL_30024_

1,4, 10 Obvious over Pfeifer96 in view of Meer96, 103

Arbanowski96, Pfeifer97, Franz98,

ISDN98, Nelson, Cox, RFC 793, Alam, and

Yun

1, 4, 10 Anticipated by Kerr 102(e)

1,4, 10 Obvious over Kerr 103

1, 4, 10 Obvious over Kerr in view of NetFlow 103

1, 4, 10 Obvious over Kerr in view of RFC 1825 and 103

1829

1, 4, 10 Obvious over Kerr in viewof Bellare97 and 103

Bellare95

1, 4, 10 Obvious over Kerr in view of IBM96 103

1, 4, 10 Obvious over Kerr in view of IBM96 and 103

Nelson

1, 4, 10 Obvious over Kerr in view of RFC 1825, 103

RFC 1829, Bellare97, Bellare95, IBM96,
and Nelson

1, 4, 10 Obvious over Kerr in view of Fraser 103

Obvious over Kerr in view of Fraser in view 103

of Bellare97 and Bellare95

1, 4, 10 Obvious over Kerr in view of Bellissard 103

1, 4, 10 Obvious over Kerr in view of Bellissard in 103

view of Bellare97 and Bellare95

1,4, 10 Obvious over Kerr in view of Wetherall 103

1, 4, 10 Obvious over Kerr in view of Wetherall in 103

view of Bellare97 and Bellare95

1, 4, 10 Obvious over Kerr in view of RFC 1825, 103

RFC 1829, Bellare97, Bellare95, IBM96,
Nelson, Fraser, Bellissard, and Wetherall

1, 4, 10 Obvious over Kerr in view of Checkpoint 103

and Shwed

Inter Partes Reexamination of

US. Patent No.7,711,857 V. Prior Art

JNPR-IMPL_30024_

1, 4, 10 Obvious over Kerr in view of Dietz 103

1, 4, 10 Obvious over Kerr in view of Pfeifer96 103

1, 4, 10 Obvious over Kerr in view of Pfeifer96, 103

ISDN98, and Nelson

A. Decasper98 (Exhibit 25)

The article “Router Plugins: A Software Architecture for Next Generation Routers” by

Dan Decasper ef al. (“Decasper98”) was published in September 1998, and it was not considered

during prosecution of the ‘857 patent.

1. Decasper98 Anticipates Claims 1, 4, and 10 Under § 102(a), (b)

(a) Claim 1

i. “A method... for processingpackets of a message”

Claim 1 recites: “A method in a computer system for processing packets of a message,

the method comprising” Under Implicit’s apparent claim constructions, Decasper98

discloses this element.

Claim 1 recites a method in “a computer system.” Decasper98 teaches “an extensible and

modular software architecture for high-performance . routers” which “allows code modules

called plugins to be dynamically loaded into the kernel and configured at run time.” Ex. 25 at

11. Under Implicit’s apparent claim constructions, a router capable of implementing such a

software architecture would comprise “a computer system.”

Claim 1 recites the method is for processing “packets of a message.” Decasper98

explains “it is very important to be able to quickly and efficiently classify packets into flows, and

to apply different policies to different flows; these are both things that our architecture excels at

doing.” Ex. 25 at 2. Flows may represent “longer lived packet streams”:

Inter Partes Reexamination of
.

U.S. Patent No.7,71 V. Prior Art

JNPR-IMPL_30024_

Because the deployment of multimedia data sources and

applications (e.g. real-time audio/video) will produce longer lived

packet streams with more packets per session than is common in

today’s environment, an integrated services router architecture

should support the notion of flows and build upon it.

Id. at 3 (emphasis added). A flow is defined as the set of packets which share the same values

for the following six header fields: “<source address, destination address, protocol, source port,

destination port, incoming interface>.” Id. at 3 (“Filters are specified as six-tuples: <source

address, destination address, protocol, source port, destination port, incoming interface>”), 5

(“entries in the flow table are identified by the same six tuple used to specify filters, but without

masks or wildcards (all fields have fully specified values). In other words, a flow table entry

unambiguously identifies a particular flow.”), 9 (‘each entry in the flow table corresponds to a

flow with a fully specified filter (one that contains no wildcards)”). A flow would comprise a

“message” under Implicit’s apparent claim constructions. See Section IV.

Claim 1 recites the method is for “processing” packets of a message. “One of the novel

features” of the Decasper98 design “is the ability to bind different plugins to individual flows.”

Id. at 1. The various plugins which may be bound to individual flows include, e.g., “plugins for

IP security” (e.g., “authentication and/or encryption’), “plugins implementing IPv6 options,”

“plugins for packet scheduling,” and a “statistics gathering plugin.” /d. at 4-5. Under Implicit’s

apparent claim constructions, the various operations performed by these plugins on the packets

of a flow would constitute “processing.”

ii. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Decasper98 discloses this element.

As packets arrive, they are classified into flows based on the values of several header

fields including “protocol,” “source port,” and “destination port.” /d. at 3,5. “[P]rotocol” would

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 102(a), (b) 34

JNPR-IMPL_30024_

comprise a data type under Implicit’s apparent claim constructions. Additionally, because

“source” and/or “destination port” typically contains a well-known port number indicating the

application above, this would also comprise a data type under Implicit’s apparent claim

constructions.°

ili. “dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Decasper98 discloses this element.

Before considering this element portion by portion, an overview is first presented of the

manner in which the plugins for a particular flow are selected and recorded.

“[E]very single packet” processed by Decasper98 proceeds through a certain “data path”

in the system’s “core.” /d. at4. Asa packet is moved through this “data path,” it encounters a

sequence of “gates.”

°
See, e.g., Ex. 42 (RFC 1700) (“Assigned Numbers”) (1994) at 16-19 (“WELL KNOWN

PORT NUMBERS?” including: “20... File Transfer”; Telnet”; “41... Graphics”; “58

... XNS Mail”; and so on. This reference is cited solely to help explain Decasper98. See MPEP

§ 2205,

Inter Partes Reexamination of
3 5U.S. Patent No.7,711,857 Decasper98 Under § 102(a), (b)

JNPR-IMPL_30024_

packet encountering

sequence of gates in

core

Filtertables
Fifth pacmanasonennenne

BMPSe 4, pargeorcen

Fitter BEC PREC

SESE
TERE

Perry SECs re

TER
ISS

IZA AREAS, SECE) RES
TOR, BEB}

Id. at 5 (Figure 3: “System Architecture and Data Path,” showing packet encountering a

sequence of “Gate[s]” as it moves through system “core”). “A gate is a point in the IP core

where the flow of execution branches off to an instance of a plugin.” /d. at 4 (emphasis in

original). The correct plugin instance for processing a packet at a particular gate is determined

by consulting a “filter table.” /d. at 5. “Filter tables store the bindings between filters and

plugins for each gate.” /d. “[T]here is one filter table for every gate” in the system,” and the

“filter table lookup algorithm finds the most specific . . . filter” matching the packet and “returns

the corresponding plugin instance’”—which is then invoked to perform the processing on that

packet for that gate. /d. at 7, 5.

Filter table lookups are “slow[]” and “expensive,” and the “processing” of a packet in a

system with gates” would require “n filter table lookups.” /d. at 5. It is for this reason that

these filter table lookups are performed only for the first packet of each flow. /d. at 5, 3.

When “the first packet of a new flow” arrives, “an entry” is created for it in a “flow table.” /d. at

Inter Partes Reexamination of
3 6U.S. Patent No.7,711,857 Decasper98 Under § 102(a), (b)

JNPR-IMPL_30024_

5. Each entry in the flow table “includes space for” a “pointer” to the correct “plugin instance”

for “each gate that is implemented in the core.” at 9. As the first packet encounters the

sequence of #7 gates, pointers to the correct plugin instances returned by the 7 filter table lookups

are recorded in the flow table entry. /d. at 9, 5.

Usually, filter table lookups are much slower than flow table

lookups. An entry for a flow in the flow table serves as a fast cache

for future lookups of packets belonging to that flow. Each flow

table entry stores pointers to the appropriate plugins for all gates
that can be encountered by packets belonging to the corresponding
flow.

Id. at 5. As “subsequent packets” of the flow arrive and encounter the sequence of 7 gates in the

“data path,” it is not necessary to perform a slow and expensive “filter table lookup” at each gate

in order to obtain the correct plugin instance—because pointers to the entire sequence of plugins

were recorded in the flow’s table entry as the first packet in the flow was processed. /d. at 4-5.

A portion of Figure 3 shows the above framework in action:

a a[er

Bebsscus.

Fitter 3

FUSEPER
BES

Eaeaeerecnene

3

iFiow table
Fine

comme [PEERS
Fig, secs] pes | Rta | ors

meses
¥

2,
SECt| Pst | ata | oprs

TOR, 25,85

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 102(a), (b) 37

JNPR-IMPL_30024_

Id. at 5 (portion of Figure 3). There are four “Gate[s]” in this sample system’s data path, each

with its own “Filter table[]” on the left. There are two flows, each with an entry in the “Flow

table.” /d. Because there are four gates, each flow entry contains four pointers to plugin

instances. /d. As the first packet of the first flow encounters each gate in turn on the data path,

the “Filter table” for that gate is applied to the packet to determine the correct plugin instance for

that gate, which is recorded in the flow’s table entry. /d. For example, at an IP security gate

(“SEC’/“IPSEC’), the plugin instance “SEC2” was chosen on the basis of the “SEC” filter table

on the left, and a pointer to this “SEC2” plugin instance was recorded in the first flow entry (in

column “SEC”). /d. Similar processing was applied at the other gates, with the result that the

plugin sequence SEC2, PS3, RT1, OPT2 was chosen for packets of the first flow, and recorded

in its flow table entry. Similar processing was applied to the first packet of the second flow, but

because its data was different, a different sequence of plugins was obtained from the series of

four filter table lookups: the sequence SEC1, PS1, RT1, OPT1.

With this general understanding of the plugin selection process in place, this claim

element can now be considered portion by portion.

Claim 1 recites “analyzing the data type of a first packet of the message to dynamically

identify a sequence of components for processing a plurality of packets of the message.” As

explained above, as the first packet of a flow traverses the data path, a sequence of plugin

instances is selected for the flow based on a series of filter table lookups. /d. at 4-5. Filter table

filters match against only six aspects of the packet: “the six-tuple <source address, destination

address, protocol, source port, destination port, incoming interface>.” Id. at 7,3. Because

“protocol” and “source port’ and/or “destination port’? would each comprise a “data type” under

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 102(a), (b) 38

JNPR-IMPL_30024_

Implicit’s apparent claim constructions, the plugins selected by the filter tables are identified by

“analyzing the data type of a first packet of the message.” See Claim above.

This identification of plugins is performed “dynamically” in at least two senses under

Implicit’s apparent claim constructions.

(a) “dynamically”: first sense

Because not one but “multiple packet classification steps (filter table lookups)” are

required to generate the sequence of plugins for a flow, this can lead “exponentially” to an

enormous number of valid sequences, “even with very few installed filters.” See id. at 7. The

various valid sequences are not stored or enumerated anywhere in the system ahead of time.

Instead, the sequence of plugins for a flow is generated algorithmically when the first packet of a

flow arrives, by applying a series of filter operations to packet data which was not available to

the system until the packet had arrived. See id. at 5-7.

Decasper98 explicitly considers and rejects a “theoretically possible” alternative

approach, which is to replace this system of multiple independent filters with “a single global

filter table.” /d. at 7. Under this alternative approach, only a single filter would apply to a

particular flow, and that single filter would specify the entire sequence of components to be

applied to it. See id. When the first packet arrived, the system would find the single matching

filter and then essentially just read off the sequence of components to be applied to that flow.

See id. Thus, the sequence would be pre-defined and readily identifiable as such in a specific

filter entry, even before the first packet arrived.

However, Decasper98 rejects this approach as “practically infeasible because the space

requirements for the global table can, even with very few installed filters, increase very quickly

(exponentially) to unacceptable levels.” /d. In other words, Decasper98’s multiple filter table

Inter Partes Reexamination of
3 9U.S. Patent No.7,711,857 Decasper98 Under § 102(a), (b)

JNPR-IMPL_30024_

approach leads to so many valid sequences that it is impossible to even indicate them ahead of

time in memory—since they would not fit.

Instead, Decasper98 adopts an algorithmic approach where the sequence of plugins for a

flow is identified dynamically on demand, by applying the sequence of multiple filters to the first

packet of the flow when it arrives.

(b) “dynamically”: second sense

Implicit has characterized the “dynamically identify” element as encompassing the ability

of a network “administrator” to modify or create “Policy Files to change how traffic is managed

at runtime.” Ex. 37-D [Implicit Technical Tutorial] at 35; see generally id. at 26-42. For

example, Implicit has applied this claim construction to the example of a “system administrator”

who can “dynamically” implement changing policies to block or permit access to YouTube for

certain times or users:

The beauty — and object — of the Implicit system lay in its flexibility.
Since a stateful path was not identified and instantiated until post-first
packet, the system could be changed, dynamically on the fly. New

components could be added, new rules or policies developed, all as

new needs arose. For example, a system administrator could decide

how to process particular types of traffic (no You Tube between noon

and one) and then change the rules — or policies — the next minute or

the next day (only CEO gets You Tube).

Ex. 37-A [Implicit Opening Claim Construction Brief] at 9 (emphasis added).

Decasper98 discloses “dynamically identify” under this apparent claim construction as

well:

Shown below are the commands necessary to load and configure [a

particular packet scheduling] plugin; this will give the reader a feel

for the simplicity and elegance with which plugins can be put into

operation. Note that these commands can be executed at any time,
even when network traffic is transiting through the system... .

Loading the plugin... . [specific load command given]

Inter Partes Reexamination of
4 0U.S. Patent No.7,711,857 Decasper98 Under § 102(a), (b)

JNPR-IMPL_30024_

Creating an instance... . [specific create command given]

Registering an instance... . [specific registration command given]

Adding a filter: this specifies a filter which matches all traffic

originating at IPv6 source address 3ffe:2000:400:11::4 and sets the

reserved bandwidth for all flows matching this filter to 80%

[specific filter command given]

From now on,all flows originating from the specified source

address will get at least 80% of the link bandwidth. Note that [this

plugin] can be turned off any time by unbinding or freeing the

instance or unloading the plugin module (which frees all instances

of the plugin automatically).

Ex. 25 at 9-10 (emphasis added). Because an administrator can add and configure plugins “at

any time, even when network traffic is transiting through the system,” Decasper98 clearly reads

on this Implicit construction of this “dynamically identify” element as well. /d. at 9.

Thus, in at least two senses, Decasper98 discloses that the identification of plugin

components is performed “dynamically,” under Implicit’s apparent claim constructions.

Claim 1 also recites “the output format of the components of the sequence match the

input format of the next component in the sequence.” Decasper98 discloses various plugin

components which could modify the format of a packet. For example, “plugins for IP security”

perform “authentication and/or encryption.” /d. at 2,5. Encryption converts packet data to an

encrypted format, and performing encryption or authentication can add a header to the packet’

which would also change the packet’s format under Implicit’s apparent claim constructions. As

another example, “plugins implementing IPv6 options” can add or remove IPv6 option headers

”
See, e.g., Ex. 25 (RFC 1825) (“Security Architecture for the Internet Protocol”) (1995)

at 3 (citing “two specific headers .. . used to provide security services in IPv4 and IPv6” which

may be added to a packet: an “IP Authentication Header” and an “IP Encapsulating Security

Payload [encryption]... header.” RFC 1925 is cited by Decapser98 to explain its “plugins for

IP security.” Ex. 25 (Decasper98) at 2 (“plugins for IP security” citing footnote “2”), 12

(footnote 2 citing “RFC 1825”). It is cited in this context solely to help explain Decasper98. See

MPEP § 2205.

Inter Partes Reexamination of
4U.S. Patent No.7,711,857 Decasper98 Under § 102(a), (b)

JNPR-IMPL_30024_

in the course of processing a packet.* Ex. 25 (Decasper98) at 4. Certain other plugin

components perform processing on a packet while leaving its format unchanged: e.g., “a

statistics gathering plugin.” /d. at 4. When applying any of the plugins of Decasper98 to a

system, one of ordinary skill in the art would understand the sequence of gates in the system’s

data path would be arranged in a compatible manner, such that the output format of one plugin

component would match the input format of the next. For example, if a first component accepts

packets in an unencrypted format (e.g., so it may process their [IPv6 headers) and a second

component encrypts packets in foto, the gate for the second component in the data path would

clearly need to follow that for the first, or the first component would be unable to perform its

processing.

Claim 1 also recites “selecting individual components to form the sequence of

components after the first packet of the message is received.” As explained above, a sequence of

individual filter tables is applied to select the sequence of individual plugins for a flow, while the

first packet of the flow traverses the data path. /d. at 5-7.

iv. “storing an indication of... the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Decasper98 discloses this element.

As explained above, each entry in the flow table “includes space for’ a “pointer” to the

correct “plugin instance” for “each gate that is implemented in the core.” /d. at 9. As the first

See, e.g., Ex. 29 (Huitema) (“IPv6: The New Internet Protocol”) (1997) at 15 (figure

showing “Daisy Chain” of IPv6 “extension headers’), 25 (“recommended order” of IPv6

extension headers includes “2. Hop-by-Hop options header 3. Destination options header”;

““onion-peeling’ procedure” for extension headers wherein “[e]ach successive layer would be

processed in turn, just like removing each layer of an onion in turn”). This reference is cited in

this context solely to help explain Decasper98, which refers to IPv6 options. See MPEP § 2205.

Inter Partes Reexamination of
4 2U.S. Patent No.7,711,857 Decasper98 Under § 102(a), (b)

JNPR-IMPL_30024_

packet of a new flow encounters each gate on the data path, the system “performs a lookup” in

the gate’s “filter table” to obtain the correct “plugin instance pointer” for the gate, which is then

“store[d]” in the “flow table.” /d. at 5. “Subsequent packets” of the flow obtain these pointers

not by performing filter table lookups of their own but by reading the pointers from the flow

table, “which temporarily stores the information gathered by processing the first packet.” /d. at

3, 5, 9. Since “filter table lookups are much slower than flow table lookups,” “[s]ubsequent

packets can benefit from faster lookup times.” /d. at 5.

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Decasper98

discloses this “state information” element.

Implicit has taken a broad view of the “state information” limitations, arguing they cover

the retrieval, use, and storage of the identified sequence of components (e.g., a flow record) after

the first packet is received. See Section TV. As demonstrated above (for the “storing an

indication” element), Decasper98 retrieves, uses, and stores flow records in this manner to

facilitate processing of packets in the same message after the first packet is received and a flow

entry built.

Decasper98 also discloses the retrieval, use, and storage of state information on a

component-by-component basis. As an initial matter, it is important to observe that Decasper98

expects its individual plugin components to maintain state across packets, and it makes explicit

provision for this in its architecture. Each entry in the flow table “includes space for... . [a] pair

of pointers for each gate that is implemented in the core. One pointer points to the plugin

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 102(a), (b) 43

JNPR-IMPL_30024_

instance that has been bound to the flow.” The second points to private data for that plugin

instance; it is used by the plugins to store per-flow ‘soft’ state.” Ex. 25 at 9 (emphasis added).

Thus, Decasper98 provides each individual plugin an area for maintaining its own state

information, and does so a “per-flow” basis: if a particular plugin instance appeared in two

flows, it would be given two such areas, so it could maintain a different set of state information

for each flow. See id.

Some particular ways in which individual components would maintain state information

across packets in the manner recited by claim 1 are discussed below. Since Decasper98 teaches

that its plugin components are selected on the basis of separate, independent filter tables,

virtually any combination of these components could be applied to a particular flow.

(a) IP security components

As first group of examples, Decasper98 teaches multiple plugin components for

implementing “IP security,” which refers to IP security standards including RFC 1825 (“Security

Architecture for the Internet Protocol”). See Ex. 25 at 2 (“plugins for IP Security” citing

footnote “2”), 12 (footnote “2” citing “RFC 1825”). RFC 1825 explains that various forms of

state information would be maintained by these components, including, e.g., “Key(s) used with

the authentication algorithm’; “Key(s) used with the encryption algorithm”; “Authentication

algorithm and algorithm mode being used”; “Encryption algorithm, algorithm mode, and

transform being used”; “cryptographic synchronisation or initialisation vector field for the

encryption algorithm”; “Lifetime of the key or time when key change should occur”; and

Le., “storing an indication of the identified component[]” per claim 1, as discussed

above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 102(a), (b) 44

JNPR-IMPL_30024_

“Lifetime of [the] Security Association.” Ex. 9 (RFC 1825) at 5-6.'° Under Implicit’s apparent

claim constructions, maintaining such state information would read on this “state information”

claim element.

(b) IPv6 options components

As a second group of examples, Decasper98 teaches multiple “plugins implementing

IPv6 options,” and cites the IPv6 specification (RFC 1883). Ex. 25 at 4, 12 (citation to “RFC

1883”: “Internet Protocol, Version 6 (Pv6) Specification”). RFC 1883 explains how state

information is maintained on a per-flow basis to support IPv6 options. See Ex. 28 (RFC 1883) at

29 (“Routers are free to... set up flow-handling state for any flow router may process its

IPv6 header .. includ[ing]. . . updating a hop-by-hop option The router may then choose

to ‘remember’ the results of those processing steps and cache that information... Subsequent

packets... may then be handled by referring to the cached information”)."’ Under Implicit’

apparent claim constructions, maintaining such state information would read on this “state

information” claim element.

(c) statistics gathering component

As another example, Decasper98 teaches “a statistics gathering plugin for network

management applications.” Ex. 25 at 4. “[N]etwork management applications . . . typically need

to monitor transit traffic at routers in the network, and to gather and report various statistics

thereof.” /d. at 2. In order to gather such statistics, this plugin would clearly need to maintain

state information: e.g., arithmetic counts of bytes or packets through the router which would be

retrieved, updated, and stored again with each packet. Under Implicit’s apparent claim

REC 1825 is cited by Decasper98, and is cited in this context solely to help explain

Decasper98. See MPEP § 2205.

RFC 1883 is cited by Decasper98, and is cited in this context solely to help explain

Decasper98. See MPEP § 2205.

Inter Partes Reexamination of
4 5U.S. Patent No.7,711,857 Decasper98 Under § 102(a), (b)

JNPR-IMPL_30024_

constructions, maintaining such state information would read on this “state information” claim

element.

(d) packet scheduling component

As another example, Decasper98 teaches “packet scheduling plugins,” including one

called “Deficient Round Robin which “implement[s] fair queuing among . flows.”

Ex. 25 at 9. Using DRR, it is possible for an administrator to stipulate that “all flows matching”

a certain “filter” should “get at least 80% of the link bandwidth.” /d. at 10. In order for the

plugin to enforce this limit, is would need to keep running track of the amount of bandwidth

these flows are using---which would entail updating state information regarding bandwidth

consumption as the packets in these flows are processed (and thereby contribute to that

consumption). Under Implicit’s apparent claim constructions, maintaining such state

information would read on this “state information” claim element.

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Decasper98 discloses this element.

As explained above, as packets arrive, they are classified into flows based on the

following packet header fields: “<source address, destination address, protocol, source port,

destination port... Ex. 25 at 3,5. The first three fields are found in an IP packet’s layer 3

header, and the final two in its layer 4 header (e.g., TCP or UDP).”

See, e.g., Ex. 41 (RFC 791) (IP Specification) (1981) at 11 (“Source Address”;
“Destination Address”; “Protocol”); Ex. 9 (RFC 793) (TCP Specification) (1981) at 15 (“Source

Port”; “Destination Port”). These references are cited in this context solely to help explain

Decasper98. See MPEP § 2205.

Inter Partes Reexamination of
4 6U.S. Patent No.7,711,857 Decasper98 Under § 102(a), (b)

JNPR-IMPL_30024_

Other aspects of this claim element are discussed above. See Claim above.

ii. “dynamically identify a sequence”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Decasper98 discloses this

element.

Regarding the limitation “analyzing the plurality of headers of a first packet of the

message to .. . identify a sequence of components,” Decasper98 teaches that as the first packet

of a flow traverses the data path, a sequence of plugin instances is selected for the flow based on

a series of filter table lookups. Ex. 25 at 4-5. Filter table filters match against only six aspects of

the packet: “the six-tuple <source address, destination address, protocol, source port,

destination port, incoming interface>.” Id. at 7,3. The first three are found in an IP packet’s

layer 3 header, and the following two are found in its layer 4 header.

Other aspects of this claim element are discussed above. See Claim 1(iit) above.

ii. “storing an indication of... the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Decasper98 discloses this element. See Claim I(iv)

above.

iy. “state information”

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 102(a), (b) 47

JNPR-IMPL_30024_

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Decasper98

discloses this element. See Claim 1(v) above.

(c) Claim 10

i. “A computer readable storage medium”

Claim 10 recites in pertinent part: “A computer readable storage medium, other than a

data transmission medium, containing instructions for processing packets of a message, the

instructions comprising at least one computer-executable module configured to... .” Under

Implicit’s apparent claim constructions, Decasper98 discloses this element.

Decasper98 teaches “router plugins” which are “software modules that are dynamically

loaded into the kernel and are responsible for performing certain specific functions on specified

network flows.” Ex. 25 at 2. One of ordinary skill would recognize such software modules

would be dynamically loaded from a “computer readable storage medium, other than a data

transmission medium”: e.g., from a hard disk in the device. Other aspects of this claim element

are discussed above. See Claim 1(i) above.

ii. Other claim elements

The remaining elements of claim 10 are also disclosed by Decasper98. See Claim 1

above.

2. Decasper98 Renders Obvious Claims 1, 4, and 10 Under § 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed or inherent over Decasper98, then the inclusion of those aspects certainly would be

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 102(a), (b) 48

JNPR-IMPL_30024_

obvious over Decasper98 in light of the background knowledge of one of ordinary skill in the art,

under 35 U.S.C. § 103.

(a) Claim 1

i. “A method... for processingpackets of a message”

Claim | recites: “A method in a computer system for processing packets of a message,

the method comprising... Under Implicit’s apparent claim constructions, Decasper98

renders obvious this element.

Decasper98 teaches “an extensible and modular software architecture for high-

performance... routers” which “allows code modules called plugins to be dynamically loaded

into the kernel and configured at run time.” Ex. 25 at 11. It was obvious to run this software

architecture in a “computer system.” Other aspects of this claim element are discussed above.

See Section V.A.1 (Decasper98 102) at Claim 1(i) above.

il. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Decasper98 renders obvious this

element.

As packets arrive, they are classified into flows based on the values of several header

fields including “protocol,” “source port,” and “destination port.” /d. at 3,5. “[P]rotocol” would

comprise a data type under Implicit’s apparent claim constructions. Because well-known port

numbers are typically used to indicate the application above, it was obvious the packet would

contain a source and/or destination port number which would comprise “a data type,” under

13

Impicit’s apparent claim constructions.

See, e.g., Ex. 42 (RFC 1700) (“Assigned Numbers”) (1994) at 16-19 (“WELL
KNOWN PORT NUMBERS?” including: “20 File Transfer”; “23... Telnet”;

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 103 49

JNPR-IMPL_30024_

iii. “dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Decasper98 renders obvious this

element.

Regarding the limitation “such that the output format of the components of the sequence

match the input format of the next component,” one of ordinary skill in the art would understand

the sequence of gates in the system’s data path should be arranged in a compatible manner, such

that the output format of one plugin component would match the input format of the next. For

example, if a first component accepts packets in an unencrypted format (e.g., so it may process

their IPv6 headers) and a second component encrypts packets in foto, it was obvious to position

the gate for the second component after the gate for the first, since otherwise the first component

would be unable to perform its processing. See Ex. 25 at 4-5.

Other aspects of this claim element are discussed above. See Section V.A.1 (Decasper98

102) at Claim above.

iv, “storing an indication of... the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Graphics”; “58... XNS Mail”; and so on. This reference is cited solely to help explain

Decasper98. See MPEP § 2205.

Inter Partes Reexamination of
5 0U.S. Patent No.7,711,857 Decasper98 Under § 103

JNPR-IMPL_30024_

Implicit’s apparent claim constructions, Decasper98 discloses this element. See Section V.A.1

(Decasper98 102) at Claim I{iv) above.

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Decasper98

renders obvious this “state information” element.

Implicit has taken a broad view of the “state information” limitations, arguing they cover

the retrieval, use, and storage of the identified sequence of components (e.g., a flow record) after

the first packet is received. See Section IV. As demonstrated above (for the “storing an

indication” element), Decasper98 retrieves, uses, and stores flow records in this manner to

facilitate processing of packets in the same message after the first packet is received and a flow

entry built.

Decasper98 also renders obvious the retrieval, use, and storage of state information on a

component-by-component basis. As an initial matter, it is important to observe that Decasper98

expects its individual plugin components to maintain state across packets, and it makes explicit

provision for this in its architecture. Each entry in the flow table “includes space for... . . [a] pair

of pointers for each gate that is implemented in the core. One pointer points to the plugin

instance that has been bound to the flow."* The second points to private data for that plugin

instance; it is used by the plugins to store per-flow ‘soft’ state.” Ex. 25 at 9 (emphasis added).

Thus, Decasper98 provides each individual plugin an area for maintaining its own state

4
Te. “storing an indication of the identified component[]” per claim 1, as discussed

above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 103 51

JNPR-IMPL_30024_

information, and does so a “per-flow” basis: if a particular plugin instance appeared in two

flows, it would be given two such areas, so it could maintain a different set of state information

for each flow. See id.

Some particular ways in which it was obvious for individual components to maintain

state information across packets in the manner recited by claim 1 are discussed below. Since

Decasper98 teaches that its plugin components are selected on the basis of separate, independent

filter tables, it was obvious for virtually any combination of these components to be applied to a

particular flow.

(a) IP security components

As a first group of examples, Decasper98 teaches multiple plugin components for

implementing “IP security,” which refers to IP security standards including RFC 1825 (“Security

Architecture for the Internet Protocol”), RFC 1826 (‘IP Authentication Header’) (describing

authentication), RFC 1827 (“IP Encapsulating Security Payload”) (describing encryption), and

RFC 1829 (“The ESP DES-CBC Transform”) (describing an algorithm which “MUST” be

supported for encrypting packets). See Ex. 25 (Decasper98) at 2 (“plugins for IP Security” citing

footnote “2”), 12 (footnote “2” citing “RFC 1825”); Ex. 26 (RFC 1825) at 10 (‘MUST support’),

19-21 (citing “RFC 1826,” “RFC 1827,” “RFC

RFC 1825 is relied on by Decasper98, and it and another standard it cites (RFC 1829)
are cited throughout this section solely to help explain Decasper98. See MPEP § 2205; Ex. 25 at

2, 7, 12 (Decasper98 citations to RFC 1825).

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 103 52

JNPR-IMPL_30024_

registers
callback

Ex. 25 at 4 (Figure 2, showing multiple “IPSEC” plugins: “SEC1 SEC2 SEC3”).

Since encryption and authentication are independent operations which need not be

applied to the same packet, it was obvious to provide distinct plugin components for encryption

and authentication. See, e.g., Ex. 26 (RFC 1825) at 8 (“The two IP security mechanisms

[authentication and encryption] may be used together or separately”).

RFC 1825 explains that various forms of state information would be maintained by these

plugin components, including, e.g., “Key(s) used with the authentication algorithm”; “Key(s)

used with the encryption algorithm”; “Authentication algorithm and algorithm mode being

used”; “Encryption algorithm, algorithm mode, and transform being used”; “cryptographic

synchronisation or initialisation vector field for the encryption algorithm”; “Lifetime of the key

or time when key change should occur”; and “Lifetime of [the] Security Association.” Ex. 26

(RFC 1825) at 5-6. Obvious implementations to maintain this state information would read on

this “state information” claim element, under Implicit’s apparent claim constructions. For

example, both the encryption and authentication component(s) would maintain “Lifetime of the

key or time when key change should occur.” See id. Maintaining a “Lifetime of the key” (as

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 103 53

JNPR-IMPL_30024_

opposed to maintaining “time when key change should occur’) at least renders obvious a

countdown implementation wherein the remaining lifetime is updated with each invocation of

the component.

Additionally, regarding encryption plugin component(s) in particular, an obvious

implementation of the encryption algorithm would read on this claim element in still another

manner, under Implicit’s apparent claim constructions. Decasper98 supports “the Internet

protocol stack,” and one of ordinary skill would be aware of common techniques for

implementing an encryption algorithm which “MUST” be supported by the security architecture

for the Internet Protocol: i.e., the “ESP DES-CBC” algorithm described in RFC Ex, 25

(Decasper98) at 7. In order to apply this required encryption algorithm, “an Initialization Vector

(IV) that is eight octets in length” must be placed in “[eJach datagram” to be encrypted (.e., in

each packet). Ex. 27 (RFC 1829) at 1. RFC 1829 explains that while the “method for selection

of IV values is implementation dependent,” a “common acceptable technique is simply a

counter, beginning with a random chosen value.” /d. One of ordinary skill would therefore be

familiar with this common technique, and find it obvious to apply to an encryption component of

Decasper98. Doing so would entail, for each packet, retrieving the previous counter value,

applying it to encrypt the packet, incrementing the counter value, and storing it for use when

encrypting the next packet. Under Implicit’s apparent claim constructions, this obvious

implementation would read on this “state information” claim element.

16
See Ex. 25 (RFC 1825) (“Security Architecture for the Internet Protocol”) at 10 (“the

IP Encapsulating Security Payload MUST support the use of the Data Encryption Standard

(DES) in Cipher-Block Chaining (CBC) Mode”), 21 (citing RFC 1829: “The ESP DES-CBC

Transform’). Again, RFC 1825 and RFC 1829 are cited in this section solely to help explain

Decasper98. See MPEP § 2205.

Inter Partes Reexamination of
5 4U.S. Patent No.7,711,857 Decasper98 Under § 103

JNPR-IMPL_30024_

(b) IPv6 options components

As second group of examples, Decasper98 teaches multiple “plugins implementing

IPv6 options,” and cites the IPv6 specification (RFC 1883). Ex. 25 at 4, 12 (citation to “RFC

1883”: “Internet Protocol, Version 6 (IPv6) Specification”). RFC 1883 explains how state

information is maintained on a per-flow basis to support IPv6 options. See id. (Decasper98) at

12 (citation to “RFC 1883”: “Internet Protocol, Version 6 (IPv6) Specification”); Ex. 28 (RFC

1883) at 29 (“Routers are free to... . set up flow-handling state for any flow... . a router may

process its IPv6 header... . includ[ing].. . updating a hop-by-hop option... . The router may

then choose to ‘remember’ the results of those processing steps and cache that information... .

Subsequent packets... may then be handled by referring to the cached information”).'” One of

ordinary skill in the art would therefore be familiar with the technique and find it obvious to

apply to Decasper98, which also employs a “flow’-based architecture. Under Implicit’s apparent

claim constructions, such maintenance of state information would read on this “state

information” claim element.

(c) statistics gathering component

As another example, Decasper98 teaches “a statistics gathering plugin for network

management applications.” Ex. 25 at 4. “[N]etwork management applications . typically need

to monitor transit traffic at routers in the network, and to gather and report various statistics

thereof.” /d. at 2. In order to gather such statistics, it was at least obvious for this plugin to

maintain state information comprising, e.g., arithmetic counts of bytes or packets through the

router which would be retrieved, updated, and stored again with each packet. Under Implicit’s

RFC 1883 is cited by Decasper98, and is cited in this context solely to help explain

Decasper98. See MPEP § 2205.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 103 55

JNPR-IMPL_30024_

apparent claim constructions, such maintenance of state information would read on this “state

information” claim element.

(d) packet scheduling component

As another example, Decasper98 teaches “two packet scheduling plugins,” including one

called “Deficient Round Robin [DRR]’ which “provides fair link bandwidth distribution among

different flows.” /d. at 9. In order for the plugin component to enforce such bandwidth

distribution, it was at least obvious for it to maintain state information tracking the amount of

bandwidth being used, and to update this state information upon processing each packet to reflect

the packet’s contribution to this bandwidth. Under Implicit’s apparent claim constructions, such

maintenance of state information would read on this “state information” claim element.

(e) firewall component

As another example, Decasper98 teaches “a firewall plugin.” /d. at 4. It was well-known

to those of ordinary skill in the art that it was useful for firewall functions to be implemented in a

stateful manner, such that previously seen packets affect the processing of subsequent packets.

Under Implicit’s apparent claim constructions, such maintenance of state information of state

information would read on this “state information” claim element.

(b) Claim 4

i. “A method... for processinga message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Decasper98 renders obvious this element.

8
See, for example, the Shwed and Checkpoint references cited herein.

Inter Partes Reexamination of
5 6U.S. Patent No.7,711,857 Decasper98 Under § 103

JNPR-IMPL_30024_

Decasper98 teaches “an extensible and modular software architecture for high-

performance .. . routers” which “allows code modules called plugins to be dynamically loaded

into the kernel and configured at run time.” Ex. 25 at 11. It was obvious to run this software

architecture in a “computer system.” Other aspects of this claim element are discussed above.

See Section V.A.1 (Decasper98 102) at Claim 4(1) above.

ii. “dynamically identify a sequence”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Decasper98 renders

obvious this element.

Regarding the limitation “such that the output format of the components of the sequence

match the input format of the next component,” see Claim above. Other aspects of this

claim element are discussed elsewhere above. See Section V.A.1 (Decasper98 102) at Claim

A(ii).

ii. “storing an indication of... the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Decasper98 discloses this element. See Section V.A.1

(Decasper98 102) at Claim 4(iii) above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 103 57

JNPR-IMPL_30024_

iv. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Decasper98

renders obvious this element. See Claim 1(v) above.

(c) Claim 10

i. “A computer readable storage medium”

Claim 10 recites: “A computer readable storage medium, other than a data transmission

medium, containing instructions for processing packets of a message, the instructions comprising

at least one computer-executable module configured to... .” Under Implicit’s apparent claim

constructions, Decasper98 renders obvious this element.

Decasper98 teaches “router plugins” which are “software modules that are dynamically

loaded into the kernel and are responsible for performing certain specific functions on specified

network flows.” Ex. 25 at 2. It was at least obvious that such software modules would be

dynamically loaded from a “computer readable storage medium, other than a data transmission

medium”—such as a hard disk in the device. Other aspects of this claim element are discussed

above. See Claim 1(i) above.

ii. Other claim elements

The remaining elements of claim 10 are also disclosed or rendered obvious by

Decasper98. See Claim 1 above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 Under § 103 58

JNPR-IMPL_30024_

3. Decasper98 in View of RFC 1825 and RFC 1829 Renders Obvious

Claims 1, 4, and 10 Under § 103

The specification RFC 1825 (“Security Architecture for the Internet Protocol”) (Ex. 26,

“REC 1825”) by R. Atkinson was published in August 1995. The specification RFC 1829 (“The

ESP DES-CBC Transform”) by P. Karn ef a/. was also published in August 1995. Neither was

considered during the prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 alone, then the inclusion of those aspects

certainly would be obvious over Decasper98 in view of RFC 1825 and RFC 1829 in light of the

background knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with RFC 1825 and RFC 1829

because Decasper98 expressly cites RFC 1825 to explain its “plugins for IP Security,” and RFC

1825 expressly cites RFC 1829 to explain an algorithm which “MUST” be supported for

encrypting packets. Ex. 25 (Decasper98) at 2 (“plugins for IP Security” citing footnote “[2]”),

12 (footnote citing “RFC 1825”); Ex. 26 (RFC 1825) at 10 (“the IP Encapsulating Security

Payload MUST support the use of the Data Encryption Standard (DES) in Cipher-Block

Chaining (CBC) Mode”), 21 (citing “RFC 1829”: “The ESP DES-CBC Transform”).

(a) Claim 1

Claim 1 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Decasper98 in view of RFC 1825 and RFC 1829 renders obvious this “state information”

element.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + RFC 1825 + RFC 1829 59

JNPR-IMPL_30024_

Decasper98 teaches multiple plugin components for implementing “IP security,” which

refers to IP security standards including RFC 1825 (“Security Architecture for the Internet

Protocol”), RFC 1826 (‘IP Authentication Header”) (describing authentication), RFC 1827 (“IP

Encapsulating Security Payload”) (describing encryption), and RFC 1829 (“The ESP DES-CBC

Transform’) (describing an algorithm which “MUST” be supported for encrypting packets). See

Ex. 25 (Decasper98) at 2 (“plugins for IP Security” citing footnote “2”), 12 (footnote “2” citing

“RFC 1825”); Ex. 26 (RFC 1825) at 10 (“MUST support”), 19-21 (citing “RFC 1826,” “RFC

1827,” “RFC 1829”).

| sets Kernel

medcsage
registers

to
phugins

registers
callback

fet

forwards

messages

Ex. 25 at 4 (Figure 2, showing multiple “IPSEC” plugins: “SEC1 SEC2 SEC3”).

Because there are multiple distinct IP security operations which may be performed (e.g.,

encryption and/or authentication) and these operations are independent and need not be applied

to the same packet, it was obvious to provide distinct plugin(s) for authentication and encryption.

See, e.g., Ex. 26 (RFC 1825) at 8 (“The two IP security mechanisms [authentication and

encryption] may be used together or separately”).

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + RFC 1825 + RFC 1829 60

JNPR-IMPL_30024_

RFC 1825 explains that various forms of state information would be maintained by these

plugin components, including, e.g., “Key(s) used with the authentication algorithm”; “Key(s)

used with the encryption algorithm”; “Authentication algorithm and algorithm mode being

used”; “Encryption algorithm, algorithm mode, and transform being used”; “cryptographic

synchronisation or initialisation vector field for the encryption algorithm”; “Lifetime of the key

or time when key change should occur”; and “Lifetime of [the] Security Association.” Ex. 26

(RFC 1825) at 5-6. Obvious implementations to maintain this state information would read on

this “state information” claim element, under Implicit’s apparent claim constructions. For

example, both the encryption and authentication component(s) would maintain “Lifetime of the

key or time when key change should occur.” See id. Maintaining a “Lifetime of the key” (as

opposed to maintaining “time when key change should occur’) at least renders obvious a

countdown implementation wherein the remaining lifetime is updated with each invocation of

the component.

Additionally, regarding the encryption plugin component(s) in particular, an obvious

implementation of the encryption algorithm would read on this claim element in still another

manner, under Implicit’s apparent claim constructions. RFC 1825 explains that the encryption

algorithm of RFC 1829 “MUST” be supported for encrypting packets. Ex. 26 (RFC 1825) at 10

(“the IP Encapsulating Security Payload MUST support the use of the Data Encryption Standard

(DES) in Cipher-Block Chaining (CBC) Mode”), 21 (citing RFC 1829: “The ESP DES-CBC

Transform”). RFC 1829 explains that in order to apply this required encryption algorithm, “an

Initialization Vector (IV) that is eight octets in length” must be placed in “[e]ach datagram” to be

encrypted (7.e., in each packet). Ex. 27 (RFC 1829) at 1. RFC 1829 further explains that while

the “method for selection of IV values is implementation dependent,” a “common acceptable

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + RFC 1825 + RFC 1829 61

JNPR-IMPL_30024_

technique is simply a counter, beginning with a random chosen value.” /d. It was therefore

obvious to apply this “common, acceptable” counter technique to an encryption component of

Decasper98. Doing so would entail, for each packet, retrieving the previous counter value,

applying it to encrypt the packet, incrementing the counter value, and storing it for use when

encrypting the next packet. Under Implicit’s apparent claim constructions, this obvious

implementation would read on this “state information” claim element.

To summarize, Decasper98 in view of RFC 1825 and RFC 1829 renders obvious distinct

plugin components for encryption and authentication which would maintain state information

across packets in the manner recited by claim 1. Considering these components either together

with each other or as combined with other stateful plugins discussed elsewhere above (e.g., IPv6

options components, a statistics gathering component, a packet scheduling component, a firewall

component), they would comprise “a plurality of components” as recited by this claim element.

See Section V.A.2 (Decasper98 103) at Claim 1(v) above. Since Decasper98 teaches that its

plugin components are selected on the basis of separate, independent filter tables, it was obvious

for virtually any combination of these components to be applied to a particular flow.

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Decasper98 in view of RFC 1825 and RFC 1829 renders obvious this element. See Claim 1

above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + RFC 1825 + RFC 1829 62

JNPR-IMPL_30024_

(c) Claim 10

Claim 10 recites in pertinent part: “for each of a plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of RFC 1825 and RFC 1829 renders obvious this element. See Claim 1 above.

4, Decasper98 in View of RFC 1883 Renders Obvious Claims 1, 4, and

10 Under § 103

The specification RFC 1883 (“Internet Protocol, Version 6 (IPv6) Specification”)

(Exhibit 28, “RFC 1883”) by S. Deering ef al. was published in December 1995. It was not

considered during the prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98, then the inclusion of those aspects certainly

would be obvious over Decasper98 in view of RFC 1883 in light of the background knowledge

of one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with RFC 1883, because

Decasper98 discloses “plugins implementing IPv6 options” and expressly cites to RFC 1883,

which explains IPv6 options. Ex. 25 (Decasper98) at 4 (“plugins implementing IPv6 options”),

12 (citation to “RFC 1883”).

(a) Claim 1

Claim 1 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

Inter Partes Reexamination of
6 3U.S. Patent No.7,711,857 Decasper98 + RFC 1825 + RFC 1829

JNPR-IMPL_30024_

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Decasper98 in view of RFC 1883 renders obvious this “state information” claim element.

Decasper98 teaches multiple “plugins implementing IPv6 options.” Ex. 25 at 4

(including Figure 2, showing multiple “IPOPT” plugins: “OPT1 OPT2 OPT3”). Decasper98

cites the IPv6 specification (RFC 1883), which explains how state information is maintained on a

per-flow basis to support IPv6 options. /d. at 12 (citation to “RFC 1883”); Ex. 28 (RFC 1883) at

29 (“Routers are free to... . set up flow-handling state for any flow a router may process its

IPv6 header... . includ[ing]... updating a hop-by-hop option... . The router may then choose

to ‘remember’ the results of those processing steps and cache that information... . Subsequent

packets ... may then be handled by referring to the cached information”). Because Decasper98

teaches a “flow’-based architecture and RFC 1883 explicitly discloses this flow-based technique

for processing IPv6 options, it was at least obvious to apply the technique to Decasper98’s IPv6

options plugins. Under Implicit’s apparent claim constructions, such maintenance of state

information would read on this “state information” claim element.

As combined with each other and/or other stateful plugins discussed elsewhere above

(e.g., IP security components, a statistics gathering component, a packet scheduling component,

a firewall component), such stateful IPv6 option component(s) would comprise “a plurality of

components” as recited by this claim element. See Section V.A.2 (Decasper98 103) at Claim

1(v) above. Since Decasper98 teaches that its plugin components are selected on the basis of

separate, independent filter tables, it was obvious for virtually any combination of these

components to be applied to a particular flow.

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + RFC 1883 64

JNPR-IMPL_30024_

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Decasper98 in view of RFC 1883 renders obvious this element. See Claim 1 above.

(c) Claim 10

Claim 10 recites in pertinent part: “for each of a plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of RFC 1883 renders obvious this element. See Claim 1 above.

5. Decasper98 in View of Decasper97 Renders Obvious Claims 1, 4, and

10 Under § 103

The article “Crossbow: A Toolkit for Integrated Services over Cell Switched IPv6”

(Exhibit 30, “Decasper97”) by Dan Decasper e¢. a/ was published on May 28, 1997. Decasper97

was not considered during the prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 alone, then the inclusion of those aspects

certainly would be obvious over Decasper98 in view of Decasper97 in light of the background

knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with Decasper97, because both

describe a very similar architecture for dynamically loading router components on the basis of

independent filters. Compare Ex. 25 (Decasper98) at 5 (“entries in the flow table”), 2 (“New

plugins can be dynamically loaded at run time”), 5-7 (filter operation), 4 (“plugins implementing

IPv6 options, plugins for packet scheduling .. . and plugins for IP security”); Ex. 30

(Decasper97) at 308 (“Flow entries”), 307 (“dynamically loadable modules”), 307-08 (filter

Inter Partes Reexamination of
6 5U.S. Patent No.7,711,857 Decasper98 1883

JNPR-IMPL_30024_

operation), 307-08 (modules include “authentication modules encryption modules. . . IPv6

option modules... and packet scheduling modules.”).

Because Decasper98 and Decasper97 are similar in approach and detail, Decasper97

confirms the obviousness of claims 1, 4, and 10 in a number of ways. One particularly pertinent

aspect of Decasper97 is pointed out below.

(a) Claim 1

Claim recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Decasper98 in view of Decasper97 renders obvious this “state information” claim element.

As explained above, it was obvious over Decasper98 alone to employ distinct plugin

components for encryption and authentication, since encryption and authentication are

independent operations which need not be applied to the same packet. See Section V.A.2

(Decasper98 103) at Claim 1(v)(a) above. Decasper97 renders this even more obvious by

teaching precisely that: “Five different module types are supported in the initial version,”

including “authentication modules” and “encryption modules.” Ex. 30 at 307.

Stateful encryption and authentication algorithms are commonplace, and one of ordinary

skill in the art would have found it obvious to apply such stateful algorithms to these distinct

encryption and authentication components. For example, one of ordinary skill in the art would

be aware that for both stateful encryption” and stateful authentication”, a counter is typically

”
See, e.g., Ex. 17 (Bellare97) (“A Concrete Security Treatment of Symmetric

Encryption”) (1997) at 397 (“stateful encryption schemes, in which the ciphertext is a function of
some information, such as a counter, maintained by the encrypting party and updated with each

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Decasper97 66

JNPR-IMPL_30024_

maintained which influences the encryption or authentication operation, and which is updated

each time another operation is performed. Such a counter would comprise “state information”

which is retrieved each time another packet is to be encrypted or authenticated, used to perform

the encryption or authentication, and updated and stored so it may be used when encrypting or

authenticating the next packet.

To summarize, Decasper98 in view of Decasper97 renders obvious distinct plugin

components for encryption and authentication which would maintain state information across

packets in the manner recited by claim 1. Considering these components either together with

each other or as combined with other stateful plugins discussed elsewhere above (e.g., IPv6

options components, a statistics gathering component, a packet scheduling component, a firewall

component), they would comprise “a plurality of components” as recited by this claim element.

See Section V.A.2 (Decasper98 103) at Claim 1(v) above. Since Decasper98 teaches that its

plugin components are selected on the basis of separate, independent filter tables, it was obvious

for virtually any combination of these components to be applied to a particular flow.

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

encryption”). This reference is cited in this context solely to help explain the prior art. See

MPEP § 2205.

70
See, e.g., Ex. 18 (Bellare95) (“KOR MACs: New Methods for Message Authentication

Using Finite Pseudorandom Functions”) (1995) at 16 (“in a stateful [authentication algorithm]
the signer maintains information, in our case a counter, which he updates each time a message is

signed.”). This reference is cited in this context solely to help explain the prior art. See MPEP §

2205.

Inter Partes Reexamination of
6 7U.S. Patent No.7,711,857 Decasper98 + Decasper97

JNPR-IMPL_30024_

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Decasper98 in view of Decasper97 renders obvious this element. See Claim 1 above.

(c) Claim 10

Claim 10 recites in pertinent part: “for each ofa plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of RFC Decasper97 renders obvious this element. See Claim 1 above.

6. Decasper98 in View of Decasper97, Bellare97, and Bellare95 Renders

Obvious Claims 1, 4, and 10 Under § 103

The article “A Concrete Security Treatment of Symmetric Encryption” (Exhibit 17,

“Bellare97”) by M. Bellare ef a/. was published in 1997. The article “XOR MACs: New

Methods for Message Authentication Using Finite Pseudorandom Functions” (Exhibit 18,

“Bellare95”) by M. Bellare et al. was published in 1995. Neither was considered during the

prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 in view of Decasper97, then the inclusion of

those aspects certainly would be obvious over Decasper98 in view of Decasper97, Bellare97, and

Bellare95 in light of the background knowledge of one of ordinary skill in the art, under

35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 and Decasper97 with

Bellare97 and Bellare95, because Decasper98 and Decasper97 disclose encryption and

authentication operations, and Bellare97 and Bellare95 disclose specific encryption (Bellare97)

and authentication (Bellare95) algorithms which might be used.

Inter Partes Reexamination of
6 8U.S. Patent No.7,711,857 Decasper98 + Decasper97

JNPR-IMPL_30024_

Decasper98 repeatedly emphasizes the “extensibility” of its platform and expressly

declares: “Doubtless, additional plugin types will be introduced by third parties once we have

released our code into the public domain.” Ex. 25 at 6, 2,3, 11. Thus, additional plugins

implementing the algorithms of Bellare97 and Bellare95 would be exactly the sort of extensions

invited and supported by Decasper98.

(a) Claim 1

Claim recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions, these

references render obvious this “state information” claim element.

Bellare97 teaches “stateful encryption schemes, in which the ciphertext is a function of

some information, such as a counter, maintained by the encrypting party and updated with each

encryption.” Ex. 17 at 397 (emphasis in original). In its analysis of “some classic symmetric

encryption schemes,” Bellare97 concludes that a particular stateful scheme (“stateful XOR,

based on a finite “has the best security.” /d. at 396. “For the stateful XOR scheme we

show that... this scheme is about as good a scheme as one can possibly hope to get.” /d. It

was therefore obvious to employ such a stateful algorithm in an encryption component.

Bellare95 teaches “stateful” authentication algorithms in which “the signer maintains

information, in our case a counter, which he updates each time a message is signed.” Ex. 18 at

16. In more detail:

In a stateful message authentication scheme, the signer maintains

state across consecutive signing requests. (For example, in our

counter-based scheme the signer maintains a message counter.) In

such a case the signing algorithm can be thought of as taking an

Inter Partes Reexamination of
6 9U.S. Patent No.7,711,857 Decasper98 + Decasper97 + Bellare97 + Bellare95

JNPR-IMPL_30024_

additional input—the “current” state C, of the signer—and

returning an additional output—the signer’s next state.

Id. at 21. Bellare95 analyzes both stateless (“Randomized XOR”) and stateful (“Counter-Based

XOR”) authentication algorithms, and observes that “[t]he gain” of the stateful, counter-based

algorithm “is greater security.” /d. at 22-25 (analysis of stateless), 25-27 (analysis of stateful,

counter-based). It was therefore obvious to employ such a stateful algorithm in an authentication

component.

The counter used for both stateful encryption and stateful authentication would comprise

“state information” which is retrieved each time another packet is to be encrypted or

authenticated, used to perform the encryption or authentication, and updated and stored so it may

be used when encrypting or authenticating the next packet.

To summarize, Decasper98 in view of Decasper97, Bellare97, and Bellare95 renders

obvious distinct plugin components for encryption and authentication which would maintain

state information across packets in the manner recited by claim 1. Considering these

components either together with each other or as combined with other stateful plugins discussed

elsewhere above (e.g., IPv6 options components, a statistics gathering component, a packet

scheduling component, a firewall component), they would comprise “a plurality of components”

as recited by this claim element. See Section V.A.2 (Decasper98 103) at Claim 1(v) above.

Since Decasper98 teaches that its plugin components are selected on the basis of separate,

independent filter tables, it was obvious for virtually any combination of these components to be

applied to a particular flow.

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Decasper98 + Decasper97 + Bellare97 + Bellare95 70

JNPR-IMPL_30024_

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions, these

references render obvious this element. See Claim 1 above.

(c) Claim 10

Claim 10 recites in pertinent part: “for each of a plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, these references

render obvious this element. See Claim | above.

7. Decasper98 in View of IBM96 Renders Obvious Claims 1, 4, and 10

Under § 103

The book “Local Area Network Concepts and Products: Routers and Gateways” (Exhibit

19, “IBM96”) was published by IBM in May 1996. IBM96 was not considered during

prosecution of the 857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 alone, then the inclusion of those aspects

certainly would be obvious over Decasper98 in view of IBM96 in light of the background

knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with IBM96 because

Decasper98 teaches a general, extensible platform for implementing routers, and IBM96 teaches

features which would have been typical of routers of the time period.

(a) Claim 1

Claim | recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

Inter Partes Reexamination of
7U.S. Patent No.7,711,857 Decasper98 + Decasper97 + Bellare97 + Bellare95

JNPR-IMPL_30024_

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Decasper98 in view of IBM96 renders obvious this “state information” claim element.

During the pertinent time period, it was commonplace for routers to perform compression

on certain traffic being routed through them. This is repeatedly confirmed by IBM96. For

example, the “IBM 2210 Nways Multiprotocol Router” could perform “Data Compression over

Point-to-Point Protocol” using the “LZ77” compression algorithm. Ex. 19 at 84, 95-96. As

another example, IBM96 lists “Data compression” as one of the “Advantages” of its “IBM

AnyNet Product Family,” explaining that data compression “reduces the amount of data being

exchanged between partners, thus improving response time and reducing traffic over the

network.” /d. at 33. Similarly, IBM96 lists “Data compression” one of the “Benefits” of the

“2217 Nways Multiprotocol Concentrator” product, explains data compression “[p]rovides

higher data rates and improves response times at a lower cost.” /d. at 200-201.

In view of these various benefits of data compression, it was obvious that in addition to

supporting operations such as encryption and authentication, Decasper98 should also support

compression. Decasper98 repeatedly emphasizes the “extensibility” of its platform and

expressly declares: “Doubtless, additional plugin types will be introduced by third parties once

we have released our code into the public domain.” Ex. 25 at 6, 2,3, 11. Thus, additional

plugin(s) implementing compression would be exactly the sort of extensions invited and

expected by Decasper98.

IBM96 discusses and compares the performance of four specific compression algorithms,

the top three of which are all “LZ”-based compression algorithms. See Ex. 19 at 95-96

has compression ratio of “2.08:1”; “Stacker-LZS” a ratio of “BSD Compress-LZW” a

Inter Partes Reexamination of
USS. Patent No.7,711,857 Decasper98 + IBM96 72

JNPR-IMPL_30024_

ratio of “2.235:1”; and “Predictor” a ratio of “1.67:1”). Because the top three algorithms

discussed by IBM96 are LZ-based and because the “IBM 2210” router specifically uses the

algorithm, an LZ-based algorithm such as LZ77 would have been an obvious choice for

a compression component to be added to Decasper98. at 95-96, 84.

LZ compression algorithms are stateful, and an obvious implementation of them would

read on this “state information” claim element.”’ Maintaining such state information would

entail, for each packet: e.g., retrieving the state information, using it to perform the compression

processing, updating it to reflect the data in the most recent packet, and storing it so it can be

applied to the next packet.

More generally (and not confined to LZ-based algorithms), stateful (“adaptive”)

compression algorithms were commonplace at the time, and obvious implementations of them

would likewise read on this “state information” claim element.”

To summarize, Decasper98 in view of IBM96 renders obvious compression plugin

components employing “adaptive” algorithms which would maintain state information across

packets in the manner recited by claim 1. As combined with other stateful plugins discussed

elsewhere above (e.g., IP security components, [Pv6 options components, a statistics gathering

component, a packet scheduling component, a firewall component), they would comprise “a

plurality of components” as recited by this claim element. See Section V.A.2 (Decasper98 103)

21
See, e.g., Ex. 5 (Nelson) (“The Data Compression Book”) (1995) at 21 (LZ employs an

“adaptive” algorithm which maintains state information in form of, e.g., a sliding “4K-byte
window” of the most recent data seen, or an incrementally built dictionary based on of the

previously seen data), 18-19. This reference is cited in this context solely to help explain
IBM96. See MPEP § 2205.

See, e.g., Ex. 5 (Nelson) at 18 (“compression research in the last 10 years has

concentrated on adaptive models”), 18-19 (including Figures 2.2 and 2.3, showing state

information in form of a “Model” which is updated on each new piece of data). This reference is

cited in this context solely to help explain IBM96. See MPEP § 2205.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + IBM96 73

JNPR-IMPL_30024_

at Claim 1(v) above. Since Decasper98 teaches that its plugin components are selected on the

basis of separate, independent filter tables, it was obvious for virtually any combination of these

components to be applied to a particular flow.

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Decasper98 in view of IBM96 renders obvious this element. See Claim 1 above.

(c) Claim 10

Claim 10 recites in pertinent part: “for each of a plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of IBM96 renders obvious this element. See Claim 1 above.

8. Decasper98 in View of [BM96 and Nelson Renders Obvious Claims 1,

4, and 10 Under § 103

The treatise “The Data Compression Book” (Exhibit 5, “Nelson”) by Mark Nelson ef al.

was published on November 6, 1995. Nelson was not considered during the prosecution of the

patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 in view of IBM96, then the inclusion of those

aspects certainly would be obvious over Decasper98 in view of IBM96 and Nelson in light of the

background knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

Inter Partes Reexamination of
USS. Patent No.7,711,857 Decasper98 + IBM96 74

JNPR-IMPL_30024_

It was obvious to supplement the teachings of Decasper98 and IBM96 with Nelson,

because IBM9%6 discloses compression operations performed by routers, and Nelson teaches

specific compression algorithms which might be used.

Decasper98 repeatedly emphasizes the “extensibility” of its platform and expressly

declares: “Doubtless, additional plugin types will be introduced by third parties once we have

released our code into the public domain.” Ex. 25 at 6, 2,3, 11. Thus, additional plugins

implementing compression algorithms would be exactly the sort of extensions invited and

supported by Decasper98.

(a) Claim 1

Claim | recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Decasper98 in view of IBM96 and Nelson renders obvious this “state information” claim

element.

Nelson explains: “Adaptive coding . . . lead[s] to vastly improved compression ratios,”

and that “compression research in the last 10 years has concentrated on adaptive models.” Ex. 5

at 8, 18. Adaptive algorithms include such well-known algorithms as “Adaptive Huffman

Coding” (chapter 4; id. at 75), “Adaptive [Statistical] Modeling” (chapter 6; id. at 155),

“[Adaptive] Dictionary-Based Compression” (chapter 7: id. at 203), and “Sliding Window

Compression” (chapter 8; id. at 215); and the prominent “LZ” family of compression algorithms

(chapter 8 and 9, id. at 221, 255). All of these adaptive techniques are lossless, which would be

important for accurately transmitting information contained in network packets. See id. at 9

(“All of the compression techniques discussed through chapter 9 are ‘lossless’”). In view of the

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + IBM96 + Nelson 75

JNPR-IMPL_30024_

prominence, lossless nature, and improved compression ratios of adaptive algorithms, use of

such adaptive algorithms would have been an obvious choice for compression components.

Nelson further explains the stateful manner in which adaptive coding operates: “When

using an adaptive model, data does not have to be scanned once before coding in order to

generate statistics [used to perform compression]. Instead, the statistics are continually

modified as new characters are read in and coded. The general flow ofa program using an

adaptive model looks something like that shown in Figure[] 2.2” at 18 (emphasis added).

Ohskpest

|

Sade poms CeatkesSyimbcis
feed nat|

Id. at 19 (Figure 2.2: “General Adaptive Compression,” showing “Update Model” (7.e., update

state information) after encoding every piece of data). Nelson explains: “adaptive models start

knowing essentially nothing about the data” so “when the program first starts it doesn’t do a very

good job of compression.” /d. at 19. However, “[m]ost adaptive algorithms tend to adjust

quickly to the data stream and will begin turning in respectable compression ratios after only a

few thousand bytes.” /d.

Thus, an obvious implementation of an adaptive algorithm would entail, for each packet,

retrieving state information, using it to perform the compression processing, updating it to reflect

the data in the most recent packet, and storing it so it can be applied to the next packet.

As observed above, Nelson teaches a number of lossless, adaptive compression

algorithms in Chapters 1 to 9 which would have been obvious choices to apply to compression

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + IBM96 + Nelson 76

JNPR-IMPL_30024_

plugin components of Decasper98. See id. at 9 (‘All of the compression techniques discussed

through chapter 9 are ‘lossless””).

More narrowly, IBM96 teaches that its “2210” router employs the “LZ77” compression

algorithm, so use of that algorithm in particular would have been an obvious choice for at least

one compression plugin. See Ex. 19 (IBM96) at 95-96, 84. Nelson confirms this algorithm is

stateful and “adaptive” in the manner described above. Ex. 5 at 21 maintains a

“dictionary” comprised of, e.g., a sliding “4K-byte window’ of the most recently seen data).

To summarize, Decasper98 in view of IBM96 and Nelson renders obvious compression

plugin components employing “adaptive” algorithms which would maintain state information

across packets in the manner recited by claim 1. As combined with other stateful plugins

discussed elsewhere above (e.g., IP security components, I[Pv6 options components, a Statistics

gathering component, a packet scheduling component, a firewall component), they would

comprise “a plurality of components” as recited by this claim element. See Section V.A.2

(Decasper98 103) at Claim 1(v) above. Since Decasper98 teaches that its plugin components are

selected on the basis of separate, independent filter tables, it was obvious for virtually any

combination of components to be applied to a particular flow.

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Decasper98 in view of IBM96 and Nelson renders obvious this element. See Claim 1 above.

Inter Partes Reexamination of
7 7U.S. Patent No.7,711,857 Decasper98 + IBM96 + Nelson

JNPR-IMPL_30024_

(c) Claim 10

Claim 10 recites in pertinent part: “for each of a plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of IBM96 and Nelson renders obvious this element. See Claim above.

9, Decasper98 in View of RFC 1825, RFC 1829, Decasper97, Bellare97,

Bellare95, IBM96, and Nelson Renders Obvious Claims 1, 4, and 10

Under § 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Decasper98 alone or in combination with the

various grounds of rejection presented above, then the inclusion of those aspects certainly would

be obvious over Decasper98 in view of RFC 1825, RFC 1829, Decasper97, Bellare97, Bellare95,

IBM96, and Nelson, under 35 U.S.C. § 103 in light of the background knowledge of one of

ordinary skill in the art, under Implicit’s apparent claim constructions.

All of these references have already been combined with Decasper98 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Decasper98. This section briefly summarizes that material and shows the collective

combination of these references would be obvious as well.

Decasper98 teaches a general architecture for router/firewall plugins and repeatedly

emphasizes its “extensibility.” Ex. 25 at 1, 2, 3, 11, 6 (Doubtless, additional plugin types will

be introduced by third parties once we have released our code into the public domain.”).Claims

1, 4, and 10 recite elements regarding “state information” as relating to “a plurality of

components.”

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + IBM96 + Nelson 78

JNPR-IMPL_30024_

Decasper98 teaches “plugins for IP security,” and Decasper97 confirms the obviousness

of providing separate IP security plugin components for encryption and authentication. IBM96

confirms the obviousness of additional plugin components for compression.

RFC 1829 and Bellare97 confirm the obviousness of employing stateful encryption

algorithms which would read on these elements. Bellare95 confirms the obviousness of

employing stateful authentication algorithms which would read on these elements. Nelson

confirms the obviousness of employing stateful compression algorithms which would read on

these elements.

Since Decasper98 teaches that its plugin components are selected on the basis of separate,

independent filter tables, it was obvious that any two or more of these stateful components types

(encryption, authentication, compression) would be applied to a particular flow. This was

especially obvious since all three operations would be useful for implementing, e.g., a virtual

private network across an expensive link. See Ex. 25 (Decasper98) at 5 (“system is configured

as entry point into a virtual private network”). Moreover, Decasper98 teaches additional stateful

components which would read on these “state information” claim elements, including plugin

components for statistics gathering, packet scheduling, and firewall functions—and it was

obvious for any of these to be applied to a particular flow as well. See Sections V.C.1

(Decasper98 102) and V.C.2 (Decasper98 103) above.

Claims 1, 4, and 10 recite “dynamically identify a sequence of components.”

Decasper98 selects the sequence of plugin components for a flow on the basis of mu/tiple

independent filter tables. “[E|ven with very few installed filters,” this leads to “exponentially”

many valid component sequences—so many, in fact, that it is “infeasible” to even indicate them

in memory ahead of time. Ex. 25 at 7. Decasper98 therefore adopts an algorithmic approach, of

Inter Partes Reexamination of
USS. Patent No.7,711,857 Decasper98 + various 719

JNPR-IMPL_30024_

dynamically generating the sequence when the first packet of a flow arrives, by applying its

multiple independent filters to the packet data which did not exist in the system until the packet

arrived. Under Implicit’s apparent claim constructions, this technique alone reads on these

“dynamic[]” claim elements.

Moreover, Decasper98 also teaches that new plugin components may be added and

configured by an administrator at runtime, “even when network traffic is transiting through the

system”—and including at least to the moment a new flow would begin. /d. at 9. This also reads

on these “dynamic[]’ claim elements, under Implicit’s apparent claim constructions.

In short, there is no aspect of claims 1, 4, and 10 which was not obvious over the prior art

and combinations cited herein.

10. Decasper98 in View of Fraser Renders Obvious Claims 1, 4, and 10

Under § 103

The publication “DTE Firewalls: Phase Two Measurement and Evaluation Report”

(Exhibit 24, “Fraser”) by Timothy J. Fraser ef al. was published by Trusted Information Systems

on July 22, 1997. Fraser was not considered during prosecution of the patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 alone, then the inclusion of those aspects

certainly would be obvious over Decasper98 in view of Fraser in light of the background

knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with Fraser because

Decasper98 teaches an extensible architecture for implementing firewalls and routers, and Fraser

teaches a technique for enhancing the dynamic configurability of such an architecture.

While Decasper98 already teaches a platform which permits an administrator to

dynamically configure policies (expressed in filters) “even when network traffic is transiting

Inter Partes Reexamination of
USS. Patent No.7,711,857 Decasper98 + various 80

JNPR-IMPL_30024_

through the system” (Ex. 25 at 9), Fraser teaches a more comprehensive framework for such a

capability, and provides additional detail on how such a framework would be implemented.

(a) Claim 1

Claim | recites in pertinent part: “analyzing the data type of a first packet of the message

to dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Decasper98 in view Fraser renders

obvious this element.

Decasper98 alone renders obvious these elements. See Section V.A.2 (Decasper98 103)

at Claim 1. As applied to Decasper98, Fraser further underscores the “dynamic[]” nature of the

identification, under Implicit’s apparent claim constructions, as explained below.

Fraser teaches “Dynamic Policy Modules” which an administrator uses to control the

behavior of a firewall: e.g., these modules define which traffic flowing through the firewall

should be encrypted, and which network destinations should be accessible to which users. Ex.

24 at 10, 6-7.

Inter Partes Reexamination of 4

USS. Patent No.7,711,857 Decasper98 + Fraser 81

JNPR-IMPL_30024_

Strider EnclaveDonalds Enclave

‘giana

doen givene en
gidind ene d | | gine ang

gizme pray a gins prof d
gion eng dl

gizow_ pre)

Domain
traffic encrypted based

Domain from Exynamis Marae : :

swathes on instructions ina
Cnerypted Communication

:

iso os carted Commmnniat
ion. Dynamic Policy Module

Id. at 7 (Figure 3, showing encryption performed according to instructions in “Dynamic

Module[s]”; “The transient domains originating in dynamic modules are not shaded.”).

Fraser explains that before Dynamic Policy Modules were introduced, “the primary

method” for an administrator to alter a firewall’s “security policy” was “to edit the policy

specification and reboot the kernel for the updated policy to take effect.” /d. at 8. This approach

was “impractical for operational systems,” because “[r]estructuring the policy and rebooting

kernels for each change would result in an undesirable and impractical loss of service.” /d. at 9.

Dynamic Policy Modules address this “undesirable and impractical” situation by

allowing administrators to make minor or major alterations to a firewall’s policies without

rebooting the device:

The main contribution of dynamic policy module support. . . is

increased functionality. As described in section 2.1.2, dynamic

policy modules provide administrators with an organized
framework for managing policy change. Administrators can use

dynamic policy modules to specify the policy governing new

activities and trust relationships. They may add policy support for

a new activity or trust relationship to a [firewall] kernel by loading
the appropriate module. Similarly, they can remove the support by

unloading the module. Administrators may load and unload

modules as the kernel runs. The ability to dynamically reconfigure

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Fraser 82

JNPR-IMPL_30024_

a kernel's policy as it runs allows administrators to add and remove

policy support for trust relationships without requiring system
down-time and the resulting disruption of service availability. This

method of policy configuration is superior to the [previous]

method, which involved modifying a kernel's base policy

description and then rebooting the kernel.

Id. at 37.

Rather than being narrowly confined to controlling one or two policy options, Dynamic

Policy Modules provide a “wide-ranging ability” to change many aspects of a firewall’s policies.

See id. at 19.

Once made available, Dynamic Policy Modules become the primary means for

administrators to modify a firewall’s policies: “Dynamic policy modules are the atomic unit of

policy change. Typically, when administrators need to extend a policy to govern a new activity,

they will encapsulate the extension in a dynamic policy module.” /d. at 12.

It was obvious to apply the Dynamic Policy Modules framework of Fraser to Decasper98,

in order to provide a more comprehensive framework” for avoiding any “undesirable and

impractical” need to reboot the Decasper98 device under any circumstances. See id. at 9.

Decasper98 was an especially obvious candidate for this technique, because Fraser uses the

technique to control the policies of “application gateway firewall[s],” and Decasper98 teaches an

architecture that is “very well suited to Application Layer Gateways . and to security devices

like Firewalls.” /d. at 6; Ex. 25 at 2.

As applied to Decasper98, Dynamic Policy Modules would allow an administrator to

modify the policies which determine which plugins are assigned to which flows. See Ex. 25

5
Again, Decasper98 already teaches substantially this same technique of modifying the

system’s configured policies while the system is operating, but Fraser teaches a more

comprehensive framework for such a capability, and provides additional detail on how such a

framework would be implemented. See Ex. 25 (Decasper98) at 9 (adding and configuring a new

plugin “even when network traffic 1s transiting through the system’).

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Fraser 83

JNPR-IMPL_30024_

(Decasper98) at 7. The parallels between the two systems are particularly clear on this point.

For example, Fraser’s Dynamic Policy Modules control, e.g., which traffic is encrypted, and

Decasper98’s policies (expressed in filters) control, e.g., which flows are encrypted by an

encryption plugin. Ex. 24 at 7, Ex. 25 at 5-7.

Application of the above techniques to Decasper98 would be a straightforward task,

because unlike more “monolithic” prior art routers and firewalls, Decasper98 had been

specifically architected to divide its various functions into discrete “plugins” which were

“modular, “extensible,” and could be “dynamically loaded at runtime.” See e.g., Ex. 25 at 1-2.

Moreover, Decasper98 is already architected to permit changes to its configured policies (filters)

“even when network traffic is transiting through the system.” /d. at 9.

To summarize, the combination of Decasper98 and Fraser renders further obvious a

system in which the policies determining the identified sequence of plugin components could be

dynamically modified or dynamically added at any moment during runtime—while the system

was still operating. Under Implicit’s apparent claim constructions, such a system would clearly

read on “dynamically identify a sequence of components for processing a plurality of packets of

the message.”

(b) Claim 4

Claim 4 recites in pertinent part: “analyzing the plurality of headers of a first packet of

the message to dynamically identify a sequence of components for processing a plurality of

packets of the message such that the output format of the components of the sequence match the

input format of the next component in the sequence, wherein analyzing the plurality of headers

of the first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Fraser 84

JNPR-IMPL_30024_

message is received.” Under Implicit’s apparent claim constructions, Decasper98 in view of

Fraser renders obvious this element. See Claim 1 above.

(c) Claim 10

Claim 10 recites in pertinent part: “analyze the data type of a first packet of the message

to dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Decasper98 in view of Fraser renders

obvious this element. See Claim 1 above.

11. Decasper98 in View of Fraser, RFC 1825, and RFC 1829 Under § 103

All of these references have already been combined with Decasper98 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Decasper98. As applied to the previous combination of Decasper98 in viewof Fraser, RFC

1825 and RFC 1829 further confirm that “a plurality of components” in a sequence would

maintain “state information” across packets in the manner recited by claims 1, 4, and 10. See

Sections V.A.10 (Decasper98+Fraser) and V.A.3 (Decasper98+RFC 1825+RFC 1829) above.

12. Decasper98 in View of Bellissard Renders Obvious Claims 1, 4, and 10

Under § 103

The article “Dynamic Reconfiguration of Agent-Based Applications” (Exhibit 23,

“Bellissard”) by Luc Bellissard ef a/. was published by September 10, 1998. Bellissard was not

considered during prosecution of the ‘857 patent.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Fraser 85

JNPR-IMPL_30024_

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 alone, then the inclusion of those aspects

certainly would be obvious over Decasper98 in view of Bellissard in light of the background

knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with Bellissard because

Decasper98 teaches an extensible architecture for implementing firewalls and routers (Ex. 25 at

2), and Bellissard teaches a technique for enhancing the dynamic extensibility of such an

architecture, as will be explained below.

While Decasper98 already teaches a platform that allows administrators to dynamically

add and configure components “even when network traffic is transiting through the system” (Ex.

25 at 9), Bellissard provides additional detail on how such a system could operate, and on

another way in which it could be implemented.

(a) Claim 1

Claim 1 recites in pertinent part: “analyzing the data type of a first packet of the message

to dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.”

Under Implicit’s apparent claim constructions, Decasper98 alone renders obvious this

element. See Section V.A.2 (Decasper98 103) at Claim 1.

As applied to Decasper98, Bellissard further underscores the “dynamic[]” nature of the

identification under Implicit’s apparent claim constructions, as explained below.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Bellissard 86

JNPR-IMPL_30024_

Bellissard teaches a technique for “dynamically modifying” and “[d]ynamically

reconfiguring” an application while the application is s¢i// operating, without halting the

application in order to reconfigure it. Ex. 23 at 1-3. Bellissard explains the motivation for this

technique is that “new functionalities” may be “required by the users” at any time:

Reconfiguration is thus an answer to the problems of dynamically

modifying the application architecture (both in terms of agent
functions and of the sequence of actions to be performed), while

the application is operating. This cannot be achieved with current

techniques such as configuration of predefined parameters, because

it is impossible to predict all the new functionalities that can be

required by the users.

Id. at 2.

It was particularly obvious to apply the technique of Bellissard to the extensible

router/firewall architecture of Decasper98, because a “firewall” is precisely the example chosen

by Bellissard of “a typical full-size application” which would “emphasize the benefits of” the

Bellissard technique. /d. at 1; Ex. 25 (Decasper98) at 2 (“Our framework is also very well suited

to... security devices like Firewalls”). It was further obvious to apply the Bellissard technique

of “dynamic reconfiguration” to Decasper98, because Decasper98 repeatedly emphasizes that the

“extensibility” of its architecture permits new components to be “dynamically loaded at run

time.” E.g., Ex. 25 at 2 “Extensibility: New plugins can be dynamically loaded at run time”), 3

(“The primary goal of our proposed architecture was to build a modular and extensible

networking subsystem that supported the concept of flows,” including “Dynamic loading and

unloading of plugins at run time into the networking subsystem.”).

The “dynamic reconfiguration” of technique Bellissard includes performing the following

two operations “while the application is operating”: (1) “Modifying the architecture of an

application (adding/removing modules, and modifying the interconnection pattern)”; and (2)

“Modifying the implementation of a component.” Ex. 23 at 2.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Bellissard 87

JNPR-IMPL_30024_

As applied to Decasper98, the first operation (“Modifying the architecture of an

application” including “adding/removing modules”) would clearly encompass adding or

removing certain “plugin” modules of Decasper98 while the system of Decasper98 was still

operating. See Ex. 23 at 2; Ex. 25 (Decasper98) at 2 (“New plugins can be dynamically loaded

at run time.”), 6 (‘Doubtless, additional plugin types will be introduced by third parties once we

have released our code into the public domain.”). Bellissard explains “it is impossible to predict

all the new functionalities that can be required by users.” Ex. 23 at 2. In the context of the

extensible router/firewall architecture of Decasper98, providing the required “new

functionalities” would typically entail the provision of new Decasper98 plugins: e.g., to support a

new IPv6 option functionality, a new authentication functionality, a new compression

functionality, and so on. Indeed, Bellissard specifically teaches the insertion of a new

“compression” component into a firewall system while it is still operating. Ex. 23 at 2

(“insertion of a compression agent”). Using the Bellissard technique, such new plugins could be

“dynamically” added to Decasper98 while Decasper98 was still operating—with the advantage

that flows could begin to take advantage of the new functionalities immediately, and without

disrupting existing flows through the system. See Ex. 23 at

As applied to Decasper98, the second operation (“Modifying the implementation of a

component”) would clearly encompass modifying the implementation of a “plugin” module of

Decasper98 while the system of Decasper98 was still operating. See Ex. 23 at 2, Ex. 25 at 2.

For example, a more efficient, higher-performance implementation might become available for

an authentication plugin, or an encryption plugin, or a compression plugin, and so on. Using the

4
A gain, Decasper98 already teaches substantially this same technique, but Bellissard

provides additional detail on how such a system could operate and on another way in which it

could be implemented. See Ex. 25 (Decasper98) at 9 (adding and configuring a plugin “even

when network traffic is transiting through the systems”).

Inter Partes Reexamination of
8 8U.S. Patent No.7,711,857 Decasper98 + Bellissard

JNPR-IMPL_30024_

Bellissard technique, such a plugin could be “dynamically modified” to employ the new, more

efficient implementation while Decasper98 was still operating—with the advantage that the

plugin could begin to take advantage of the improved implementation immediately, and without

disrupting existing flows.

Application of the above techniques to Decasper98 would be an especially

straightforward task, because unlike more “monolithic” prior art routers and firewalls,

Decasper98 had been specifically architected to divide its various functions into discrete

“plugins” which were “modular, “extensible,” and could be “dynamically loaded at runtime.”

See e.g., Ex. 25 at 1-2.

To summarize, the combination of Decasper98 and Bellissard renders obvious a system

in which plugin components of Decasper98 could be dynamically modified or dynamically

added at any moment during runtime—while the system was still operating—and could thereby

take advantage of the newly added or modified components. Under Implicit’s apparent claim

constructions, such a system would clearly read on “dynamically identify a sequence of

components for processing a plurality of packets of the message.”

(b) Claim 4

Claim 4 recites in pertinent part: “analyzing the plurality of headers of a first packet of

the message to dynamically identify a sequence of components for processing a plurality of

packets of the message such that the output format of the components of the sequence match the

input format of the next component in the sequence, wherein analyzing the plurality of headers

of the first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.”

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Bellissard 89

JNPR-IMPL_30024_

Under Implicit’s apparent claim constructions, Decasper98 alone renders obvious this

element. See Section V.A.2 (Decasper98 103) at Claim 4. As applied to Decasper98, Bellissard

further underscores the “dynamic[]”’ nature of the identification under Implicit’s apparent claim

constructions, as explained above. See Claim 1 above.

(c) Claim 10

Claim 10 recites in pertinent part: “analyze the data type ofa first packet of the message

to dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Decasper98 in view of Bellissard

renders obvious this element. See Claim | above.

13. Decasper98 in View of Bellissard, RFC 1825, and RFC 1829 Under

§ 103

All of these references have already been combined with Decasper98 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Decasper98. As applied to the previous combination of Decasper98 in view of Bellissard,

RFC 1825 and RFC 1829 further confirm that “a plurality of components” in a sequence would

maintain “state information” across packets in the manner recited by claims 1, 4, and 10. See

Sections V.A.12 (Decasper98+Bellissard) and V.A.3 (Decasper98+RFC 1825+RFC 1829)

above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Bellissard 90

JNPR-IMPL_30024_

14, Decasper98 in View of Wetherall Renders Obvious Claims 1, 4, and

10 Under § 103

The article “The Active IP Option” (Exhibit 47, “Wetherall”) by David J. Wetherall and

David L. Tennenhouse was published by September 11, 1996. It was not considered during the

prosecution of the patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 alone, then the inclusion of those aspects

certainly would be obvious over Decasper98 in view of Wetherall in light of the background

knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with Wetherall because

Decasper98 teaches an extensible flow-based architecture for routers, and Wetherall teaches that

its “Active IP Option” technique is “a generic capability” that should be applied to “routers” and

“[fllows.” Ex. 25 (Decasper98) at 2; Ex. 47 (Wetherall) at 34-35.

(a) Claim 1

i. “A method in a computer system...’

Claim 1 recites: “A method in a computer system for processing packets of a message,

the method comprising... .” Under Implicit’s apparent claim constructions, Decasper98 in view

of Wetherall renders obvious this element.

Wetherall teaches an approach called “Active Networks,” which “break with tradition by

allowing the network to perform customized computations on the user data.” Ex. 47 at 33. “For

example, a user of an active network could send a customized video transcoding program to a

node within the network (e.g., a router) and request that the node execute that program when

processing their packets.” /d.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Wetherall 91

JNPR-IMPL_30024_

Wetherall “retrofit[s]” these “active capabilities” atop “the existing Internet” by

exploiting the existing “options mechanism of the IP layer to carry program fragments.” /d. at

35. IP options are of flexible length and type (‘generic type-length-value format of IP options”),

and Wetherall simply defines a new option type “to carry program fragments, which may be

encoded in a variety of languages.” /d. at 36.

iP Header User Data

ACTIVE Option
“ on program fragment

inserted in an IP option

we field of an IP packet

a en me
metivesk) feart eter ([nedeles[deutinasion]} irepiyip ...

type Length Dae

Id. at 35 (Figure 1: “Format of the Active IP Option Field,” showing “code” embedded in an IP

option field of a packet). Thereby, “passive packets of present day architecture” are replaced

“with active ‘capsules’ miniature programs that are executed at each router they traverse.” /d.

at 34-35.

Both the already-discussed components of Decasper98 and the actively-delivered

components of Wetherall would perform “processing” on the packets of a particular flow.

Ex. 47 (Wetherall) at 33 (‘a user of an active network could send a customized video transcoding

program to anode... and request that the node execute that program when processing their

packets.”) (emphasis added).

ii. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Decasper98 in view of Wetherall

renders obvious this element.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Wetherall 92

JNPR-IMPL_30024_

In addition to the data type analysis performed by Decasper, Wetherall further requires

that the data type of IP option field(s) in a packet be analyzed, to determine whether they contain

code. /d. at 35-36.

ill. “dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Decasper98 in view of Wetherall

renders obvious this element.

Wetherall teaches that each packet may contain both “User data” and one or more

programs in IP options field(s). /d. at 35 (“miniature programs,” and Figure 1 showing “User

Data” plus “IP options” fields). 36 (“These fragments are .. . executed by active routers along

the path taken by the datagram’).

Wetherall also teaches that “a user of an active network could send a customized video

transcoding program to a node within the network (e.g., a router) and request that the node

execute that program when processing their packets.” /d. at 33.

As applied to Decasper98, the first packet of a flow could contain one or more plugin

components to be used for performing coding or other operations such as encryption on the

packets of the flow. Decasper98 was an especially obvious target for this treatment, because it

repeatedly emphasizes that the “extensibility” of its architecture permits new components to be

“dynamically loaded at run time.” Ex. 25 at 2 (Extensibility: New plugins can be

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Wetherall 93

JNPR-IMPL_30024_

dynamically loaded at run time”), 3 (“The primary goal of our proposed architecture was to build

a modular and extensible networking subsystem that supported the concept of flows,” including

“Dynamic loading and unloading of plugins at run time into the networking subsystem.”). 6

(“Doubtless, additional plugin types will be introduced by third parties once we have released

our code into the public domain.”).

Either alone or as combined with other components identified for the flow by

Decasper98, these programs would comprise “a sequence of components for processing a

plurality of packets of the message.”

The “data type” of the first packet is analyzed under Implicit’s claims constructions, e.g.,

by analyzing the data type of the IP option field(s) to determine whether they contain code.

Decasper98 alone also analyzes other fields of the first packet which would comprise a “data

type,” as explained above. See Section V.A.2 (Decasper98 103) at Claim

The sequence is identified “dynamically” because some of its component(s) did not even

exist in the system until the first packet arrived. Indeed, it is difficult to imagine how a sequence

could be identified any more “dynamically” than by obtaining one or more of the identified

components from “the first packet” itself.

Other aspects of this element are discussed above. See Section V.A.2 (Decasper98 103)

at Claim

iv, “storing an indication of... the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Decasper98 in view of Wetherall renders obvious this

element.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Wetherall 94

JNPR-IMPL_30024_

Wetherall teaches that actively delivered programs “can leave information behind in a

node,” and that this information “may be in the form of programs.” Ex. 47 at 34. Wetherall also

teaches that such actively delivered programs would be stored and applied to subsequent packets

of a message. /d. at 33 (“a user... could send a customized video transcoding program to a

node within the network . and request that the node executed that program when processing

their packets.”) (emphasis added).

This element is further discussed above. See Section V.A.2 (Decasper98 103) at Claim

l{iv).

“state information”

Claim finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

Wetherall renders obvious this element

Wetherall teaches that each actively delivered component can “leave a small amount of

associated state at each node along the path it traverses.” Ex. 47 at 34. “Subsequent packets can

include code whose execution is dependent on this state.” /d.

This element is discussed further above. See Section V.A.2 (Decasper98 103) at Claim

I(v).

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Decasper98 in view of Wetherall renders obvious this element.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Wetherall 95

JNPR-IMPL_30024_

In addition to the need for Decasper98 alone to analyze a plurality of headers of the

message (see Section V.A.1 (Decasper98 102) at Claim 4(1)), Wetherall teaches that one or more

IP options headers would need to be analyzed in order to obtain the program(s) they contain. Ex.

47 at 35-36.

ii. dynamically identify a sequence of components”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Decasper98 in view of

Wetherall renders obvious this element.

In addition to the need for Decasper98 alone to analyze a plurality of headers of the first

packet to identify a sequence of components (see Section V.A.1 (Decasper98 102) at Claim

4(i1)), Wetherall teaches that one or more IP options headers would need to be analyzed as well,

in order to obtain the program(s) they contain. Ex. 47 at 35-36. Other aspects of this element are

discussed above. See Claim 1(iii) above.

ii. “storing an indication of... the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Decasper98 in view of Wetherall renders obvious this

element. See Claim I(iv) above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Wetherall 96

JNPR-IMPL_30024_

iv. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of Wetherall renders obvious this element. See Claim 1(v) above.

(c) Claim 10

Decasper98 in view of Wetherall renders obvious claim 10. See Claim 1 above.

18. Decasper98 in View of Wetherall, RFC 1825, and RFC 1829 Under

§ 103

All of these references have already been combined with Decasper98 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Decasper98. As applied to the previous combination of Decasper98 in view of Wetherall,

RFC 1825 and RFC 1829 further confirm that “a plurality of components” in a sequence would

maintain “state information” across packets in the manner recited by claims 1, 4, and 10. See

Sections V.A.14 (Decasper98+Wetherall) and V.A.3 (Decasper98+RFC 1825+RFC 1829)

above.

16. Decasper98 in View of RFC 1825, RFC 1829, RFC 1883, Decasper97,
Bellare97, Bellare95, IBM96, Nelson, Fraser, Bellissard, and

Wetherall Renders Obvious Claims 1, 4, and 10 Under § 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Decasper98 alone or in combination with the

various grounds of rejection presented above, then the inclusion of those aspects certainly would

be obvious over Decasper98 in view of RFC 1825, RFC 1829, RFC 1883, Decasper97,

Bellare97, Bellare95, IBM96, Nelson, Fraser, Bellissard, and Wetherall in light of the

Inter Partes Reexamination of

USS. Patent No.7,711,857 Decasper98 + Wetherall 97

JNPR-IMPL_30024_

background knowledge of one of ordinary skill in the art under 35 U.S.C. § 103, under Implicit’s

apparent claim constructions.

All of these references have already been combined with Decasper98 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Decasper98. This section briefly summarizes that material and shows the collective

combination of these references would be obvious as well.

Decasper98 teaches a general architecture for router/firewall plugins and repeatedly

emphasizes its “extensibility.” Ex. 25 at 1, 2,3, 11, 6 (Doubtless, additional plugin types will

be introduced by third parties once we have released our code into the public domain.”).

Claims 1, 4, and 10 recite elements regarding “state information” as relating to “a

plurality of components.”

Decasper98 teaches “plugins implementing IPv6 options” and “plugins for IP security.”

Id. at 4. Decasper97 confirms the obviousness of providing separate IP security plugin

components for encryption and authentication. IBM96 confirms the obviousness of additional

plugin components for compression.

RFC 1829 and Bellare97 confirm the obviousness of employing stateful encryption

algorithms which would read on these elements. Bellare95 confirms the obviousness of

employing stateful authentication algorithms which would read on these elements. Nelson

confirms the obviousness of employing stateful compression algorithms which would read on

these elements. RFC 1883 confirms the obvious of employing a stateful algorithm for

implementing IPv6 options which would read on these elements.

Since Decasper98 teaches that its plugin components are selected on the basis of separate,

independent filter tables, it was obvious that any two of more of these stateful component types

Inter Partes Reexamination of

US. Patent No.7,711,857 Decasper98 + various + Fraser + Bellissard + Wetherall 98

JNPR-IMPL_30024_

(encryption, authentication, compression, IPv6 options) would be applied to a particular flow.

This was especially obvious since the first three operations would be useful for implementing,

e.g., a virtual private network across an expensive link, and IPv6 options are of general

usefulness. See Ex. 25 (Decasper98) at 5 (“system is configured as entry point into a virtual

private network”). Moreover, Decasper98 teaches additional stateful components which would

read on these “state information” elements, including plugin components for statistics gathering,

packet scheduling, and firewall functions—and it was obvious for any of these to be applied to a

particular flow as well. See Sections V.C.1 (Decasper98 102) and V.C.2 (Decasper98 103)

above.

Claims 1, 4, and 10 recite “dynamically identify a sequence of components.”

Decasper98 selects the sequence of plugin components for a flow on the basis of multiple

independent filter tables. “[E]ven with very few installed filters,” this leads to “exponentially”

many valid component sequences—so many, in fact, that it is “infeasible” to even indicate them

in memory ahead of time. Ex. 25 at 7. Decasper98 therefore adopts an algorithmic approach, of

dynamically generating the sequence when the first packet of a flow arrives, by applying its

multiple independent filters to the packet data which did not exist in the system until the packet

arrived. Under Implicit’s apparent claim constructions, this technique alone reads on these

“dynamic[]|” claim elements.

Moreover, Decasper98 also teaches that new plugin components may be added and

configured by an administrator at runtime, “even when network traffic is transiting through the

system”—and including at least to the moment a new flow would begin. /d. at 9. This also reads

on these “dynamic[]” claim elements, under Implicit’s apparent claim constructions.

Inter Partes Reexamination of

US. Patent No.7,711,857 Decasper98 + various + Fraser + Bellissard + Wetherall 99

JNPR-IMPL_30024_

Like Decasper98, Fraser teaches dynamically configuring firewall policies while the

system is operating. It teaches a more comprehensive framework for this capability, and details

another manner in which it could be implemented. Under Implicit’s apparent claim

constructions, such dynamic configuration of policies would read on these “dynamic[]” claim

elements.

Like Decasper98, Bellissard teaches dynamically adding new components while the

system is operating. It provides additional detail on how such a system could operate, and on

another way in which it could be implemented. Bellisard further teaches the dynamic

modification of existing components—again, while the system is operating. Under Implicit’s

apparent claim constructions, both of these techniques would read on these “dynamic[]” claim

elements.

Wetherall teaches dynamically delivering new component(s) in the first packet of a

message, which would also read on these “dynamic[]” claim elements. Indeed, it is difficult to

imagine how a sequence could be identified any more “dynamically” than by obtaining one or

more of the identified components from the first packet itself.

In short, there is no aspect of claims 1, 4, and 10 which was not obvious over the prior art

and combinations cited herein.

B. Mosberger (Exhibit 31)

“Scout: A Path-Based Operating System,” is a dissertation submitted by David

Mosberger to the faculty of the Department of Computer Science at The University of Arizona

(Exhibit 31, “Mosberger’”). It was published in 1997.

Mosberger is here presented in a new light relative to the original prosecution of the ‘857

patent. As noted by statute, the finding of a “reasonable likelihood” under Section 312 is “not

Inter Partes Reexamination of
.

U.S. Patent No.7,711,857 Decasper98 + various + Fraser + Bellissard + Wetherall 100

JNPR-IMPL_30024_

precluded by the fact that a patent or printed publication was previously cited by or to the Office

or considered by the Office.” 35 U.S.C. § 312(a).

In this case, during prosecution of the ‘857 patent, Mosberger was disclosed by the

patentee alongside approximately 20 other references in its Information Disclosure Statement of

January 29, 2010, several weeks after the Examiner had declared that the pertinent rejections

over the prior art had been overcome. Ex. 40-D (12/11/2009 Final Rejection) at 3 (“Claims 6, 8,

9, 22-24 and 26-28 would be allowable if a terminal disclaimer is filed to overcome the

obviousness-type double patenting rejection.”); Ex. 40-F (1/29/2010 IDS). And Mosberger was

never discussed or applied by the Examiner at any time during prosecution of the ‘857 patent.

Indeed, no evidence exists that the Examiner considered any of the technical teachings of

Mosberger to a greater degree than documents are generally considered during a search of PTO

file records. See MPEP § 2640.

Thus, the anticipatory teachings of Mosberger are here presented in a new light.

Moreover, as combined with the various references below (which were not considered by the

Examiner), Mosberger is further considered in a new light. Finally, Mosberger is presented in a

new light when considered in the context of the ex parte reexamination proceedings for the ‘163

patent, including what Implicit has characterized as “the most important document in the entire

case’—a document that was never made of record in the prior prosecution of the ‘857 patent.

See Section I above.

Inter Partes Reexamination of
1 0U.S. Patent No.7,711,857 Mosberger Under § 102(a), (b)

JNPR-IMPL_30024_

1. Mosberger Anticipates Claims 1, 4, and 10 Under § 102(a) and (b)

(a) Claim 1

i. “A method... for processingpackets of a message”

Claim 1 recites: “A method in a computer system for processing packets of a message,

the method comprising” Under Implicit’s apparent claim constructions, Mosberger

discloses this element.

Mosberger discloses that Scout is an “operating system architecture that is designed

specifically to accommodate the needs of communication-centric systems.” Ex. 31 at 13. Scout

employs “a new abstraction called the path,’ which may be used for processing “a sequence of

network packets.” /d. at 13 (emphasis in original), 36.

ii. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Mosberger discloses this element.

Mosberger discloses a “Scout Packet Classifier” which “lets Scout pick a path and start

processing a packet.” /d. at 85-86.

Without Classifier: With Classifier:

Ethernet processing Ethernet demux => it’s an IP packet

Ethernet demux => ifs an IP packet| IP demux — it’s a UDP parket

IP processing Ethernet processing

IP demux => it’s a UDP packet IP processing

UDP processing UDP processing

Id. at 86. As shown in the right-hand column of this figure, processing performed “[w]ith” the

Scout Packet Classifier includes examining an “IP” packet to determine if it contains, e.g.,

“UDP” at the layer above. /d. As one of ordinary skill in the art would recognize, this

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 102(a), (b) 102

JNPR-IMPL_30024_

determination is based on the “Protocol” field in the IP packet header, which would comprise a

“data type” under Implicit’s apparent claim constructions.”°

iil. “dynamically identify a sequence of components”

Claim | further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Mosberger discloses this element.

Notably, during prosecution of the ‘163 Reexam, the examiner found that Mosberger

discloses a similar limitation. See Ex. 35-K (‘163 Reexam: Amendment of December 18, 2009)

at 3 (portion of ‘163 claim 1 reciting “for the first packet of the message, dynamically identifying

a sequence of components for processing the packets of the message. . . wherein dynamically

identifying includes selecting individual components to form the sequence of components after

the first packet is received”); Ex. 35-L (163 Reexam: Advisory Action of January 21, 2010) at 2

(“the proposed amendments, had they been entered, would not have overcome the stated

rejections because Mosberger also teaches dynamic selection of components immediately after

the first packet is received”). It was only after certain claims were further amended to recite a

“non-predefined” sequence that they were allowed. Ex. 35-M (‘163 Reexam: Amendment of

February 8, 2010) at 2 (“for the first packet of the message, dynamically identifying a non-

See, e.g., Ex. 41 (RFC 791) (IP Specification) (1981) at 14 (“Protocol: 8 bits”; “This

field indicates the next level protocol used in the data portion of the internet datagram. The

values for various protocols are specified in “Assigned Numbers’”). This reference is cited in

this context solely to help explain Mosberger. See MPEP § 2205.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 102(a), (b) 103

JNPR-IMPL_30024_

predefined sequence of components for processing the packets of the message such that the

output format of the components of the sequence match the input format of the next component

in the sequence, wherein dynamically identifying includes selecting individual components to

form the sequence of components after the first packet is received”); Ex. 35-O (‘163 Reexam:

Examiner Interview Summary of March 5, 2010) at 3 (quoting submission from Applicant

regarding the following point of discussion: “The following further amendment to Claim 1 that

adds the ‘non-predefined’ language to the amendment submitted on December 18, 2009:

"dynamically identifying a non-predefined sequence of components for processing the packets of

the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein dvnamically identifying includes

selecting individual components to form the non-predefined sequence of components after the

first packet is received" (the language with the single underline was added last December, and

the proposed new language to further distinguish over Mosberger is double underlined). It is

respectfully submitted that Mosberger does not teach the underlined language because the

Mosberger paths are predefined for the reasons set forth in the Patent Owner’s prior responses.”);

Ex. 35-N Reexam: Notice of Intent to Issue Certificate of March 2, 2010) at 4 (“the

amendments to the claims overcome the previous cited prior art in that Mosberger does not

dynamically identify sequences of components based only on the first packet with using pre-

defined fields. No other art of record has been found that renders these deficiencies obvious.”).

Of note, the claims of the ‘857 patent do not include this “pre-defined” language.

Mosberger teaches that a “path can be visualized as a vertical slice through a layered

system” which “typically traverses multiple modules [7.e., components].” Ex. 31 at 13. For

Inter Partes Reexamination of
1 04U.S. Patent No.7,711,857 Mosberger Under § 102(a), (b)

JNPR-IMPL_30024_

example, the following path is comprised of a sequence of components that obtains video data

from packets received at an FDDI network interface, and displays it on a computer monitor:

KBD DISPLAY

MPEG
—

Id. at 38 (Figure 2.4: “Example Path in Modular System”). See also id. at 37-39.

In addition to depicting a particular sequence of components instantiated as a “Path”

(green line), the figure immediately above also depicts a data structure which Mosberger refers

to as “the module graph.” /d. at 41 (“the module graph shown in Figure 2.4”). The module

graph defines the set of permissible linkages between individual components: “A pair of services

can be connected in the module graph only if they are compatible.” /d. at 67. Before a pair of

components can be “connected in the module graph,” they undergo “compatibility testing” to

ensure their input and output “interface[s]” are “compatible.” /d. at 67. “A pair of services

[components] is considered compatible if the interface provided by one service is compatible

with the interface expected by the other service and vice versa.” /d. at 68 (emphasis in original).

Inter Partes Reexamination of
1 0 5U.S. Patent No.7,711,857 Mosberger Under § 102(a), (b)

JNPR-IMPL_30024_

This set of permissible linkages between components is defined in the module graph at

“build time.”

Early
7 module ingliementaton

peth transformations

 modive gragh & taestornatont ses

Id. at 61 (Figure 3.1: “Scout Development Timeline”). Many paths through the module graph

are theoretically possible given the set of permissible linkages (e.g., in Figure 2.4, from ATM to

IP to UDP to RPC to NFS to VFS down to UFS to BCACHE to SCSI). However, at no point

does Mosberger go through the exercise of enumerating the various theoretically possible

sequences, or “pre-specifying” them into paths.

In fact, Mosberger explicitly rejects that approach. “There are two possible approaches”:

(1) “paths are pre-specified (externally)”; or (2) “paths are created (discovered) incrementally.”

Id. at 39. And pre-specification of paths is undesirable because: “[i]n many cases it is beneficial

to exploit information that is available at runtime only. For this reason, paths need to be created

and destroyed dynamically at runtime.” Mosberger explains:

[I]t may seem like pre-specifying paths is the right solution. In

such a case, the system would provide a table that translate the

properties of the desired path into a sequence of modules that the

path needs to traverse to satisfy these properties. Consider the

example system shown in Figure 2.4. In this system, there could be

a mapping that says that a path to display MPEG-encoded video on

Inter Partes Reexamination of
1 0 6U.S. Patent No.7,711,857 Mosberger Under § 102(a), (b)

JNPR-IMPL_30024_

a graphics display must start at module FDDI, go through IP etc.,

and stops at module DISPLAY. In other words, the mapping would

specify the path shown as the bold line in the figure.

Unfortunately, there are serious problems realizing this approach
in practice. Pre-specifying a path often requires detailed

knowledge of the internal workings of the modules encountered

along a path. For example, whether the path in Figure 2.4 should

go from IP to FDDI or to ATM will typically depend on the host

that is sending the video and the routing information that is

managed by the IP protocol. It certainly is imaginable to embed

such detailed knowledge in the part of the system that would

manage paths, but it is our contention that a much better solution is

to follow the second approach, i.e., to create paths incrementally.
With this approach, IP itself can make the decision whether or not

the path should extend to ATM or FDDI.

Id. at 40. Thus, the sequence of components to form a path is identified “incrementally” at

runtime, in response to conditions knowable only then. /d.

When the first packet of an incoming message arrives, it may result in one or more “short

paths” already created in the system being “extended” to form a complete sequence of

components for processing the message. /d. at 41 (“Short Paths”: “An artifact of creating paths

incrementally is that... the created path may be short. For example, with the module graph

shown in Figure 2.4, UDP might create a path through IP specifying that any remote host is

allowed to send packets to this path. In such a case, IP could not make a unique routing decision

because packets could arrive through ETH, ATM, or FDDI. The resulting path would be short as

it would go from UDP to IP only.”) (emphasis in original), 42 (“Extending Paths”), 44 (the path

extension operation “is invoked on the end of an existing path’).

In the course of extending the path in this manner from component to component, various

decisions are made “dynamicf[ally]”: e.g., “When data arrives from the path above the module, it

must make a dynamic routing decision to determined [sic] whether the data needs to be

forwarded to the [short] path at the lower left or the [short] path at the lower night.” /d. at 42

Inter Partes Reexamination of
1 0 7U.S. Patent No.7,711,857 Mosberger Under § 102(a), (b)

JNPR-IMPL_30024_

(emphasis added). This “dynamic routing decision” is “based on the contents of the data being

communicated.” /d. at 88.

Id. at 42 (Figure 2.5: “Dynamic Routing Decision”).

“[P ath creation is initiated at the module that is to form one end of the path. This module

uses the invariants to make a routing decision, that is, a decision as to which module a path with

the specified invariants must traverse next. Path creation is then forwarded to that next module.

This process repeats itself until either there is no next module (i.e., the edge of the module graph

has been reached) or until a module is reached that, based on the specified invariants, cannot

make a definite routing decision.” /d. at 41. See also id. at 47 (“a networking service would

typically create a path for its well-known address while the module is being initialized. Then,

whenever it receives a new connection request, the service may elect to create a new path to

handle the new connection.”).

Because paths in Mosberger are not “pre-specified” but rather identified “incrementally”

at runtime in this step-wise manner on the basis of various “dynamic” decisions, the sequence of

components for processing the packets of a message is “dynamically identif[ied],” under

Implicit’s claim constructions. /d. at 39-41.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 102(a), (b) 108

JNPR-IMPL_30024_

Claim 1 also recites that the sequence is identified by “analyzing the data type of a first

packet of the message.” The identified sequence would clearly depend, e.g., on whether the

Protocol field of the first packet indicates TCP or UDP, and this would comprise a “data type”

under Implicit’s apparent claim constructions.

Claim 1 also recites “such that the output format of the components of the sequence

match the input format of the next component in the sequence.” The module graph is consulted

while performing the incremental identification of components for a message, to assure the

linkages are compatible. The module graph defines the set ofpermissible linkages between

components: before a pair of components can even be “connected in the module graph,” they

undergo “compatibility testing” to ensure their input and output “interface[s]” are “compatible.”

Id. at 67. “A pair of services [components] is considered compatible if the interface provided by

one service is compatible with the interface expected by the other service and vice versa.” /d. at

68 (emphasis in original).

Claim 1 also recites: “selecting individual components to form the sequence of

components after the first packet of the message is received.” As explained above, various

individual components are selected in the course of incrementally identifying a sequence. See id.

at 39-44.

iv. “storing an indication of... the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Mosberger discloses this element.

Notably, during prosecution of the ‘163 Reexam, the examiner found that Mosberger

anticipates an identically-worded limitation. See Ex. 35-H Reexam: Amendment of

September 1, 2009) at 3 (portion of ‘163 claim 1 reciting “storing an indication of each of the

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 102(a), (b) 109

JNPR-IMPL_30024_

identified components so that the sequence does not need to be re-identified for subsequent

packets of the message”). The examiner observed: “Since paths are fixed for the lifetime of the

path (see p. 54, section 2.4.1.2), any thread created for that path must inherently be able to refer

to stored information related to that path in order to continually process messages.”). Ex. 35-J

(‘163 Reexam: Final Office Action of December 4, 2009) at 7.

And indeed, Mosberger discloses that “the sequence of modules being traversed is known

and fixed for the lifetime of a path.” Ex. 31 at 54 (section 2.4.1.2). To be known and fixed, the

sequence of modules for any given path must be stored as claimed in the patent.

“state information”

Claim finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Mosberger

discloses this “state information” element.

Notably, during prosecution of the ‘163 Reexam, the examiner found that Mosberger

anticipates a similar limitation. See Ex. 35-H Reexam: Amendment of September 1, 2009)

at 5 (portion of ‘163 claim 15 reciting “for each packet of the message, performing the

processing of the identified sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.”). The examiner

observed: “Since Mosberger discloses that packets may be fragmented, so a component may

need multiple packets before processing is possible (see pp. 86-88), the state of a component’s

processing of a fragment must be available for the subsequent processing of the next fragment in

that same component.” Ex. 35-J Reexam: Final Office Action of December 4, 2009) at 9.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 102(a), (b) 110

JNPR-IMPL_30024_

And indeed, Mosberger teaches that a layer 3 IP component would maintain state

information across packets in the manner recited by claim 1 of the ‘857 patent, in order to

perform layer 3 packet defragmentation. Ex. 31 (Mosberger) at 87 (“Once IP receives the

fragment... it will buffer the fragment until the entire datagram has been reassembled.”).

Additionally, Mosberger teaches that a layer 4 TCP component would maintain (and

adjust the size of) a “flow-control window” for the processing of its “bytestream.” /d. at 79. As

one of ordinary skill in the art would appreciate, performing flow control on a TCP bytestream

would entail maintaining state information across packets (e.g., sequence numbers) in the

manner recited by claim 1.7°

Moreover, Implicit has taken a broad view of the “state information” limitations, arguing

that they cover the retrieval, use, and storage of the identified sequence of components (e.g., a

flow record) after the first packet is received. See Section TV. Mosberger’s Scout retrieves, uses,

and stores flow records in this manner to facilitate processing of packets in the same message

after the first packet is received and a flow entry built. For example, Scout uses “threads” to

move data in paths. See Ex. 31 at 100-104. “[T]hreads inherit the scheduling parameters (policy

and priority) from the path they are executing in.” /d. 102. These parameters inform the thread

what priority it has in the path vis-a-vis other threads and must therefore be stored to make

inheritance possible or to preserve the thread when it does not have priority. See id. at 100-104.

For packets traversing the same path, threads retrieve and apply the same scheduling parameters

to ensure that packets of the same flow receive similar treatment.

26
See, e.g., Ex. 9 (RFC 793) (“Transmission Control Protocol” [TCP] Specification)

(1981) at 24 (section entitled “Sequence Numbers”: “A fundamental notion in the design is that

every octet of data sent over a TCP connection has a sequence number.”). This reference is cited

in this context solely to help explain Mosberger. See MPEP § 2205.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 102(a), (b) lil

JNPR-IMPL_30024_

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Mosberger discloses this element.

As explained above, Mosberger discloses a “Scout Packet Classifier” which “lets Scout

pick a path and start processing a packet.” Ex. at 85-86. This includes analysis of an

“Ethernet” header to determine “it’s an IP packet,” and analysis of an “IP” header to determine

“it’s a UDP packet.” See id. at 86.

fi. “dynamically identify a sequence”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Mosberger discloses this

element.

Regarding the limitation “analyzing the plurality of headers of a first packet of the

message to .. . identify a sequence of components,” Mosberger discloses a “Scout Packet

Classifier” which “lets Scout pick a path and start processing a packet.” Ex. 31 at 85-86. This

includes analysis of an “Ethernet” header to determine “it’s an IP packet,” and analysis of an

“IP” header to determine “it’s a UDP packet.” See id. at 86.

Other aspects of this claim element are discussed above. See Claim above.

Inter Partes Reexamination of
1 1 2U.S. Patent No.7,711,857 Mosberger Under § 102(a), (b)

JNPR-IMPL_30024_

iii. Other claim elements

The remaining elements of claim 4 are also disclosed by Mosberger. See Claim 1 above.

(c) Claim 10

Claim 10 recites in pertinent part: “A computer readable storage medium, other than a

data transmission medium, containing instructions for processing packets of a message, the

instructions comprising at least one computer-executable module configured to... .” Under

Implicit’s apparent claim constructions, Mosberger discloses this element.

Mosberger teaches a software-based system, and one of ordinary skill would recognize

this software would be dynamically loaded from a “computer readable storage medium, other

than a data transmission medium”: e.g., from a hard disk in the device. E.g., Ex. 30 at 20

(“entire system software”). Other aspects of this claim element are discussed above. See Claim

above.

The remaining elements of claim 10 are also disclosed by Mosberger. See Claim 1

above.

2. Mosberger Renders Obvious Claims 1, 4, and 10 Under § 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed or inherent over Mosberger, then the inclusion of those aspects certainly would be

obvious over Mosberger in light of the background knowledge of one of ordinary skill in the art,

under 35 U.S.C. § 103.

(a) Claim 1

i. “A method... for processingpackets of a message”

Claim | recites: “A method in a computer system for processing packets of a message,

the method comprising” Under Implicit’s apparent claim constructions, Mosberger

discloses this element. See Section V.B.1 (Mosberger 102) at Claim above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 102(a), (b) 113

JNPR-IMPL_30024_

ii. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Mosberger discloses this element. See

Section V.B.1 (Mosberger 102) at Claim above.

ill. “dynamically identify a sequence of components”

Claim 1| further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Mosberger renders obvious this

element.

As explained above, Mosberger discloses this element. See Section V.B.1 (Mosberger

102) at Claim 1(ii1) above. However, even if Mosberger is deemed not to have an express

disclosure of the “dynamically identify” limitation, one of ordinary skill in the art would have

immediately appreciated that the system disclosed in Mosberger could have been modified

without difficulty to include such functionality.

Specifically, during prior ex parte reexamination of the ‘163 patent, focus was placed on

the passage of Mosberger at page 71 to the effect that “the Scout module graph is presently

configured at build time and, hence, it is not possible to extend the graph at runtime.” Ex. 31 at

71. However, Mosberger goes on to expressly state “However, it is straight-forward to add a

dynamic module-loading facility to Scout.” Id. (emphasis added). Mosberger expresses further

confidence in the ease with which such a “dynamic loading” functionality could be added to the

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 103 114

JNPR-IMPL_30024_

disclosed Scout system, stating that the “actual dynamic loading” is not the “biggest issue” in

modifying Scout, but rather “the security issue.” Jd.*” And, of course, the claims of the ‘857

patent contain no limitation directed to any such “security issue”; in other words, even an

insecure implementation of “dynamic loading” would satisfy the “dynamically identify”

limitation of the ‘857 patent.

Mosberger earlier explains how an edge of the module graph would be reached: “path

creation is initiated at the module that is to form one end of the path This [routing decision]

process repeats itself until there is no next module (i.e., the edge of the module graph has been

reached).” at 41. By explaining that the proposed “dynamic module-loading facility” would

address the lack of an ability “to extend the [module] graph at runtime,” Mosberger clearly

communicates that these new, dynamically-loaded modules could permit a path to be

dynamically extended when the edge of the module graph had been reached. See id. at 71. To

pick a simple example, one of ordinary skill in the art would understand the “Protocol” field of a

layer 3 IP packet indicates the layer 4 protocol above. While this field commonly indicates TCP

or UDP, one of ordinary skill in the art would recognize it can call for many other layer 4

?7Tn connection with the concurrent litigation, a deposition of the author of the

Mosberger reference, David Mosberger, was conducted on September 16, 2011. See Ex. 50

(Mosberger Depo). Mr. Mosberger explained: “in the architecture we clearly tried to design it to

accommodate dynamic extensibility, and that’s what the statement on page 71 refers to.” Id. at

92:10-13. Asked, “How would the dynamic module loading facility work exactly?,” Mr.

Mosberger explained: “Well, it would be akin to basically a dynamically library loader as is used

on any modern operating system like Linux, Windows, UNIX, Mac OS. So that’s standard

technology basically, and then the only component that would be different — so a module in that

case you would most likely realize is a separate what’s often called a DLL or a dynamically
shared library.” Ex. 50 at 182:7-18. Mr. Mosberger also remarked that he “would very much

have liked to go in [the] direction [of writing more about the dynamic loading facility], but it

wasn’t considered to be a topic of research because it’s basically well-known technologies

Id. at 185:9-21.

29

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 103 115

JNPR-IMPL_30024_

protocols as well.?* Hence, it would be obvious for a “dynamic module-loading facility” as

proposed by Mosberger to dynamically load a suitable protocol module when, e.g., the first

packet of a message is received which indicates a layer 4 protocol not currently configured in the

module graph. See id. at 38 (showing module graph supporting “UDP,” but not TCP or other

possibilities), 41 (“the module graph shown in Figure 2.4”). This simple example is merely

illustrative, and many other dynamic extensions to the module graph are clearly possible: e.g.,

dynamically loading an application module based on the value of a layer 4 port number”

A system equipped with such a “dynamic module-loading facility” would thus clearly

read on this claim element: “analyzing the data type ofa first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence.”

Furthermore, Mosberger proposes yet another modification of Scout that would permit

“dynamically identifying,” which is “to configure a virtual machine module into the graph that

would allow interpreted code to be downloaded and executed inside Scout.” Ex. 31 at 71. For

example, Mosberger here drops a reference to footnote 39, which directs the reader to a reference

entitled “The Java Application Programming Interface.” Ex. 31 at 71, 167. One of ordinary skill

in the art would have appreciated that the Java programming environment can readily provide a

8
See, e.g., Ex. 42 (RFC 1700) (“Assigned Numbers”) (1994) at 8 (“In the Internet

Protocol (IP) . . . there is a field, called Protocol, to identify the next level protocol”; possible
values include “Stream ... Network Voice Protocol Reliable Data Protocol,” as well as TCP

and UDP). This reference is cited in this context solely to help explain Mosberger. See MPEP §

2205.

See, e.g., Ex. 42 (RFC 1700) at 16-18 (“WELL KNOWN PORT NUMBERS”

including “Telnet... Simple Mail Transfer... Graphics... XNS Mail” and so on. This

reference is cited in this context solely to help explain Mosberger. See MPEP § 2205.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 103 116

JNPR-IMPL_30024_

“virtual machine” to be used to permit code to be dynamically “downloaded and executed inside

Scout.” Jd.

Claim 1 also recites “such that the output format of the components of the sequence

match the input format of the next component in the sequence.” The dynamically loaded module

is clearly loaded for this very purpose: that its input format (e.g., a particular layer 3 or 4

protocol) would match the output format of the module at the end of the current, partially

identified sequence.

Claim 1 also recites “selecting individual components to form the sequence of

components after the first packet of the message is received.” The dynamically loaded module is

clearly an individual module, which is incrementally connected to a sequence of other module(s)

which had been individually selected.

Thus, the express suggestion of Mosberger to add a “dynamic module-loading facility to

Scout” renders obvious (or even further obvious) all aspects of this claim element.

iv. “storing an indication of . . . the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, renders obvious this element.

Because Mosberger teaches that “the sequence of modules being traversed is known and

fixed for the lifetime of a path,” it was certainly at least obvious that the sequence of modules for

any given path would be stored as recited in this element. Ex. 31 at 54.

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 103 117

JNPR-IMPL_30024_

the next packet of the message.” Under Implicit’s apparent claim constructions, Mosberger

renders obvious this “state information” element.

It was certainly at least obvious fort the layer 3 IP and layer 4 TCP components discussed

above to store state information across packets in the manner recited by this element, in order to

function as described. See Section V.B.1 (Mosberger 102) at Claim 1(v) above.

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Mosberger discloses this element. Section V.B.1 (Mosberger 102) at Claim 4(4)

above.

ii. “dynamically identify a sequence”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Mosberger renders obvious

this element.

Regarding the limitation “analyzing the plurality of headers of a first packet of the

message to .. . identify a sequence of components,” as part of the “dynamic module-loading

facility” proposed by Mosberger, it was obvious that components would be dynamically loaded

based on analysis of information in, e.g., a layer 3 or layer 4 header. See Claim 1(iti) above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger Under § 103 118

JNPR-IMPL_30024_

This is in addition to the other analysis of packet headers already performed by Mosberger. See

Section V.B.1 (Mosberger 102) at Claim 4(11) above. Other aspects of this element are discussed

above. See Claim above.

ill. “storing an indication of... the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Mosberger renders obvious this element. See Claim

l(iv) above.

iv. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Mosberger

renders obvious this element. See Claim 1(v) above.

(c) Claim 10

Mosberger renders obvious claim 10. See Claim 1 above.

3. Mosberger in View of HotLava Renders Obvious Claims 1, 4, and 10

Under § 103

The article “Implementing Communication Protocols in Java” (Exhibit 32, “HotLava”)

by Bobby Krupczak al. was published in October 1998. It describes a Java-based protocol

subsystem called “HotLava.” HotLava was not considered during the prosecution of the ‘857

patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Mosberger, then the inclusion of those aspects certainly

Inter Partes Reexamination of
1 1 9U.S. Patent No.7,711,857 Mosberger Under § 103

JNPR-IMPL_30024_

would be obvious over Mosberger in view of HotLava in light of the background knowledge of

one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Mosberger with HotLava because

Mosberger expressly invites consideration of a Java-based mechanism for “extending the module

graph at runtime.” Specifically, after disclosing that one could “configure a virtual machine

module into the graph that would allow interpreted code to be downloaded and executed inside

Scout,” Mosberger drops a reference to footnote 39, which directs the reader to a reference

entitled “The Java Application Programming Interface.” Ex. 31 at 71, 167. HotLava is precisely

the sort of Java-based solution for protocol implementation suggested by Mosberger.

(a) Claim 1

i. “A method... for processingpackets ofa message”

Claim 1 recites: “A method in a computer system for processing packets of a message,

the method comprising” Under Implicit’s apparent claim constructions, Mosberger in view

of HotLava renders obvious this element. See, e.g., Ex. 32 at 93-94, 95, 96, 97.

For example, HotLava states that “Java-based protocols execute alongside other Java

applications within a network computer... Id. at 97. “For each incoming or outgoing

message a protocol processes, it must identify the correct next protocol (if any) and forward the

message to it for processing.” Id. at 94. In the HotLava implementation, a message constitutes a

series of “packets [that are] are escorted through the protocol graph via non-preemptable

threads.” /d. at 96.

ii. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Mosberger in view of HotLava

renders obvious this element.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger + HotLava 120

JNPR-IMPL_30024_

HotLava explains: “For each incoming . message a protocol processes, it must identify

the correct next protocol ... and forward the message to it for processing.” /d. at 94.

AFP

ADSP | ZIP ASP PAP

agp ATR
\

bane tae

—opDP AARP

Ethernet. LocalTalk

Figure 1. Example protecol graph (AppleTalk).

Id. at 94. As one of ordinary skill in the art would understand, the “correct next protocol” is

generally ascertained by examining a field in the previous layer’s header which would a

comprise a “data type” under Implicit’s apparent claim constructions. See id. at 94 (“each

individual protocol removes and interprets headers from incoming messages received from

the network”) (emphasis in original).

ili. “dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Mosberger + HotLava 121

JNPR-IMPL_30024_

received.” Under Implicit’s apparent claim constructions, Mosberger in view of HotLava

renders obvious this element. See, e.g., Ex. 32 at 94, 95, 96, 99.

HotLava is built to handle components it calls “protocols,” each of which is described as

a “software module implementing a traditional communication protocol specification (e.g. TCP

or IP).” /d. The reference goes on to explain:

Protocols are traditionally composed in graphs, which provide
services to applications. The arrangements in which protocols

(depicted as nodes) may be composed to provide services are

described (and in some cases constrained) by a protocol graph

(Fig. 1), while a protocol stack is the actual sequence of protocols

through which messages of a particular session pass. The terms,

though, are often used interchangeably.

Id. at 93.

HotLava also expressly describes itself as a “dynamic” system: “In our Java-based

protocol architecture, special service classes dynamically construct protocol graphs at runtime

as applications need communications services.” /d. at 96; see also id. at Fig. 1.

HotLava explains that it is “natural to consider” the Java environment as a way of

addressing the need for “flexible communication protocols and services to support them,” as a

way of solving the problem of “the number and variety of Web- and network-based applications

[that] continue[] to increase.” /d. at 93. Using the system disclosed in HotLava, “protocols and

additional code required to support them can be downloaded and executed on the fly as needed.”

Id.; see also id. at 96 (This extensible architecture allows on-the-fly introduction of new or

replacement protocol code.”). Thus, “new classes, such as those making up our protocol

subsystem and protocol implementations, can be added dynamically” Id. at Among

other things, the HotLava approach overcomes shortcomings of certain “traditional” approaches

and systems, which had to be “completely recompiled and redeployed” in order to accommodate

change. /d.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger + HotLava 122

JNPR-IMPL_30024_

Not only is the protocol graph of software modules (“sequence of protocols”) determined

“dynamically ... at runtime,” each also receives a separate instantiation in memory; thus,

“multiple instances of the same protocol can be executing simultaneously.” /d. at 98. “For

example, an application needing AppleTalk services need only create an instance of its

corresponding service class.” Jd. at 96.

As explained earlier, Mosberger proposed configuring “a virtual machine module into

the graph that would allow interpreted code to be downloaded and executed inside Scout.” Ex.

31 at 71. As shown above, HotLava expressly provides “the ability to incorporate new protocol

classes... into the virtual machine.” Ex. 32 at 96. Thus, under the HotLava approach,

“protocols and additional code required to support them can be downloaded and executed on the

fly as needed.” /d. at 93. Incorporating into Scout the HotLava approach—a Java-based solution

as expressly proposed in Mosberger—thus clearly satisfies any perceived shortcoming of

Mosberger with respect to the “dynamically identifying” limitation.

iv. “storing an indication of... the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Mosberger in view of HotLava renders obvious this

element. See, e.g., Ex. 32 at 94, 96-97.

HotJava teaches that “the actual sequence of protocols” (the “protocol stack”) used for a

message will pertain to “a particular session pass.” /d. at 93. In other words, the system stores

“information about what protocol stack should be used with a given session.” Id. at 94.

The decision to maintain protocol graph configuration as “per-session” information was a

conscious design choice in HotLava, to facilitate “flexible communications services”:

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger + HotLava 123

JNPR-IMPL_30024_

The configuration of the protocol graph (e.g., what nodes and arcs

it contains) could be placed either in a protocol’s class information

or within the state information of each individual instantiation (or

protocol object) of that class. Placing the protocol graph in the

class fixes that protocol graph configuration for every protocol

object instantiation; placing the protocol graph configuration in

the object allows each individual session to determine and dictate

its own protocol graph. Because we desire flexible

communications services whereby each application can pick and

choose only the functionality it needs, we chose to place protocol

graph configuration in the per-session state information of

protocol objects rather than in their corresponding class.

Id. at 96-97.

state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Mosberger in

view of HotLava renders obvious this element. See, e.g., Ex. 32 at 94, 96-97,

In a section entitled, “Maintaining State,” HotLava discloses a number of details about

how state information is handled in the HotLava system. For example, each “software module”

(also called a “protocol,” see id. at 93) locates relevant “state information” as “one of the first

things” that happens “[w]hen a message is received from the network or a user requests that a

message be sent.” /d. at 94. This can include “per-instance information specific to a particular

user session.” /d. One specific example of state information provide is “keeping track of time,”

which is stored and retrieved and ultimately used to perform steps to “ensur[e] that certain events

happen in a timely manner.” Jd.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger + HotLava 124

JNPR-IMPL_30024_

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Mosberger in view of HotLava renders obvious this element.

HotLava explains: “For each incoming . message a protocol processes, it must identify

the correct next protocol .. . and forward the message to it for processing.” /d. at 94. As one of

ordinary skill in the art would understand, in order to do so identify the correct sequence of

protocols, a plurality of headers would be analyzed. See id. (each individual protocol

[component]... removes and interprets headers from incoming messages received from the

network’) (emphasis in original).

ii. “dynamically identify a sequence”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Mosberger in view of

HotLava renders obvious this element.

Regarding the limitation “analyzing the plurality of headers of a first packet of the

message to . identify a sequence of components,” HotLava explains: “For each incoming .. .

message a protocol processes, it must identify the correct next protocol . and forward the

message to it for processing.” /d. at 94. As one of ordinary skill in the art would understand, in

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger + HotLava 125

JNPR-IMPL_30024_

order to do so identify the correct sequence of protocols, a plurality of headers would be

analyzed. See id. (“each individual protocol [component] .. . removes and interprets headers

from incoming messages received from the network”) (emphasis in original).

Other aspects of this element are discussed above. See Claim 1(i11) above.

ili. “storing an indication of... the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Mosberger in view of HotLava renders obvious this

element. See Claim I(iv) above.

iv.
“state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Mosberger in

view of HotLava renders obvious this element. See Claim 1(v) above.

(c) Claim 10

Mosberger in view of HotLava renders obvious claim 10. See Claim 1 above.

4. HotLava Anticipates Claims 1, 4, and 10 Under § 102(a) and (b)

The HotLava reference not only renders the claims of the ‘857 patent when considered in

combination with Mosberger, but HotLava also independently and standing alone discloses each

and every element of claims 1, 4, and 10. Accordingly, HotLava also fully anticipates these

claims for the reasons set forth in detail above, which are incorporated by reference in this

proposed ground of rejection.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger + HotLava 126

JNPR-IMPL_30024_

5. Mosberger in View of Plexus Renders Obvious Claims 1, 4, and 10

Under § 103

The article “An Extensible Protocol Architecture for Application-Specific Networking”

(Exhibit 33, “Plexus”) by Marc Fiuczynski et. al was published in 1996 in Proceedings of the

1996 Winter USENIX Conference. It describes a system called “Plexus,” which is a

“networking architecture that allows applications to achieve high performance with customized

protocols.” Plexus was not considered during the prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Mosberger, then the inclusion of those aspects certainly

would be obvious over Mosberger in view of Plexus in light of the background knowledge of one

of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Mosberger with Plexus because Mosberger

expressly states it is “straight-forward to add a dynamic module-loading facility to Scout” (Ex.

31 at 71), and a “key aspect of Plexus is... protocol graph that can be dynamically changed

as applications come and go.” Ex. 33 at 55. Plexus does so in a way that “does not compromise

the safety of other applications or the operating system.” /d. at 55.

Following is an illustration of the manner in which Plexus performs what it expressly

calls “demultiplexing” in a protocol stack:

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger + Plexus 127

JNPR-IMPL_30024_

Plexus Protocol Graph

Recerve Path Send Path

fevice Diver
fet

Ethernet Cavios Deliver

Id. at 57, Fig. 1. “Packets sent by the application are pushed down the graph until they reach the

actual device.” /d.

“Plexus allows applications to define new protocols or to change the implementation of

existing protocols.” /d. Indeed, Plexus even “supports multiple implementations of the same

protocol for different endpoints.” /d. at 58.

The Plexus system is also “dynamic” under Implicit’s apparent claim construction

because it permits “[rJuntime adaptation.” /d. at 56. Specifically, “[a]pplications may add

extensions to the kernel at any point during the system’s execution without requiring superuser

privileges or a system reboot.” /d.; see also id. (“Plexus allows extensions to be safely loaded

and unloaded into a running system... .”).

Thus, to the extent that Mosberger is deemed to lack inadequate disclosure of the

“dynamically identifying” limitation for claims 1, 4, and 10, the combination of Mosberger with

Plexus clearly makes up for any such perceived deficiency.

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Mosberger + Plexus 128

JNPR-IMPL_30024_

6. Mosberger in View of ComScript Renders Obvious Claims 1, 4, and

10 Under § 103

The article “ComScript: An Environment for the Implementation of Protocol Stacks and

their Dynamic Reconfiguration” (Exhibit 34, “ComScript”) by Murhimanya Muhugusa ez. al.

was published in December 1994. It describes a communication protocol implementation called

“ComScript.” ComScript was not considered during the prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Mosberger, then the inclusion of those aspects certainly

would be obvious over Mosberger in view of ComScript in light of the background knowledge of

one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Mosberger with ComScript because

Mosberger expressly states it is “straight-forward to add a dynamic module-loading facility to

Scout” (Ex. 31 at 71), and Plexus expressly proposes an approach that “brings more flexibility by

allowing an application to dynamically (re)configure an entire protocol stack... Ex. 34 at 1.

ComScript provides, as an illustration, the following example of how the disclosed

system can be used to create a new protocol stack or sequence of “modules” on the fly for

purposes of a given session between hosts A and B:

An application running on host A establishes a communication

with a COMSCRIPT server (CS) on the remote machine B by

opening two connections, one for control information and the other

for data exchange. The control connection is used by the

application to send requests to the remote server. The application
then downloads its own code to host B using the control channel.

The execution of this code in the remote host results in the

creation of a protocol stack which can then be used by the

application to exchange data with host B.

Id. at 6-7; Fig. 10; see also Figs. 7-9 (illustrating how to add or remove a “module” froma stack;

“the number of configurable entities is unlimited”).

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger + ComScript 129

JNPR-IMPL_30024_

The ComScript system is also “dynamic” under Implicit’s apparent claim construction

because it expressly states that one its “primary goal[s]” is to “make protocol stacks truly

configurable at run time.” Id. at 8.

Thus, to the extent that Mosberger is deemed to lack inadequate disclosure of the

“dynamically identifying” limitation for claims 1, 4, and 10, the combination of Mosberger with

ComScript clearly makes up for any such perceived deficiency.

C. Pfeifer96 (Exhibit 3)

The article “Generic Conversion of Communication Media for Supporting Personal

Mobility” by Tom Pfeifer and Radu Popescu-Zeletin (“Pfeifer96”) was published by November

27, 1996. Pfeifer96 is one of several references presented in this Request that describe what they

term the “Intelligent Personal Communication Support System (iPCSS),” which is an

“architecture” for supporting “personal mobility” to access “information any time, any place, in

any form.” Ex. 3 at 105, 117.

Mediz andior Focal
ROSH

Id. at 118 (Figure 9: “Priorized media conversion in the iPCSS”).*” None of these iPCSS

references (including Pfeifer96) were considered during prosecution of the ‘857 patent.

Note the figures from Pfeifer96 in this Request are drawn from Ex. 3-B, but aside from

being in color, they are identical to the figures in Ex. 3.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Mosberger + ComScript 130

JNPR-IMPL_30024_

1. Pfeifer96 Anticipates Claims 1, 4, and 10 Under § 102(a), (b)

(a) Claim 1

i. “A method... for processingpackets of a message”

Claim 1 recites: “A method in a computer system for processing packets of a message,

the method comprising” Under Implicit’s apparent claim constructions, Pfeifer96 discloses

this element.

The iPCSS system is plainly illustrated as a computer system:
computer system

aaca
an

=

Id. at 122 (Figure 11: “Components of the PCS-enhanced TINA* Access Session,” showing a

“dynamically generated Converter Chain” connecting the two parties). Pfeifer96 teaches a

“system/platform” implementing the “iPCSS architecture,” wherein communication between two

parties over “fixed” and/or “wireless networks” is mediated by a “chain of converters” which is

“dynamically generated.” Ex. 3 at 119, 105, 114, 124. Each “converter” in this chain may

*!
The “Telecommunications Information Networking Architecture (TINA)” was

“developed by a consortium which is currently the focus of worldwide attention.” /d. at 113.

iPCSS is an enhancement to this architecture, adding “Personal Communications Support.” /d.

at 105,

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b) 131

JNPR-IMPL_30024_

consist entirely of “software.” /d. at 113-14. Under Implicit’s apparent claim constructions, a

“system/platform” capable of supporting such a software architecture would comprise “a

computer system.”

Claim 1 recites the method is “for processing... a message.” Pfeifer96 discloses

conversion of a message from one format to a different format, which constitutes “processing” as

that term is used in the patent. Specifically, Pfeifer96 teaches “the controlled combination

(concatenation) of various converters.” at 105.

irene dynamically gunersive: converter cthain (oaseting mauiigne teatat eutgot

mais sree TORS

HSE,

Id. at 125 (Figure 12: “Converter chain, configured for a specific task,” depicting a “dynamically

generated converter chain” connecting an “incoming media stream” with an “outgoing media

stream”). For example, a chain of converters could convert an incoming fax message into

audible speech delivered to an ISDN telephone:

ew

fax gervice: image gaw text filtered text speech audia faemat’> phone service
gateway Eeteway

/d. at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech, telephone

delivery”). As will be explained in more detail below, this use of “chains of converters” which

transform messages through a series of intermediate formats is at the heart of the Pfeifer96

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b) 132

JNPR-IMPL_30024_

reference, and providing such chains clearly entails (as recited by claim 1) “processing... a

message.”

Claim | recites the method is “for processing packets of a message.” Pfeifer96 discloses

this in several manners. For example, Pfeifer96 explicitly discloses connections using the well-

known “ISDN” network standard, which one of ordinary skill in the art would understand is

inherently packetized.* /d. at 109, 111. A voice call over an ISDN network, as illustrated in

Pfeifer96 (see id.) would thus comprise “packets of a message.” In addition, Pfeifer96 discloses

application in a “TCP/IP-based” environment, which one of ordinary skill in the art would again

understand is inherently packetized. /d. at 114 (‘controller framework ... controls .. . data flow

via fire redirection, pipes or TCP/IP-based services”).**> Thus, for example, “reception and

delivery of multimedia e-mail” in a TCP/IP-based environment would comprise “packets of a

message.” /d. at 118, 126. Other packet-based embodiments are also disclosed. See, e.g., id. at

105 (‘mobility of the user in fixed networks and wireless networks”) (one of ordinary skill

recognizing that wireless networks are inherently packetized), 118 (mobility “enabled by means

of... wireless network interfaces and protocols (i.e. cordless, cellular and satellite) is

fundamental for the provision of ubiquitous, global connectivity”), 126 (‘sending and reception

of .. . faxes”) (one of ordinary skill recognizing that fax machines are commonly positioned on

inherently packetized networks such as ISDN), 126 (“multimedia conferencing”).

See, e.g., Ex. 4 (ISDN98) (“ISDN Primary Rate User-Network Interface

Specification”) (August 1998) at 3-9 to 3-10 (Chapter 3-2: “Layer 2 frame structure,” where

discrete frames with their own “Frame check sequence(s)” would comprise “packets” under

Implicit’s apparent claim constructions. This reference is cited in this context solely to help

explain Pfeifer96. See MPEP § 2205.

See, e.g., Ex. 41 (RFC 791) (“Internet Protocol [IP]” Specification) (1981) at 1 (“The
Internet Protocol is designed for use in interconnected systems of packet-switched
communication networks.”). This reference is cited in this context solely to help explain
Pfeifer96. See MPEP § 2205.

Inter Partes Reexamination of
1 3 3U.S. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b)

JNPR-IMPL_30024_

In short, Pfeifer96 teaches a “universal platform” meant to provide “universal

connectivity” over both “fixed and wireless networks,” and this would include “a computer

system for processing packets ofa message.” See id. at 105, 120, 117-18.

il. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 discloses this element.

Packets of incoming messages of various data types are processed by Pfeifer96,

including, e.g.: voice calls; “multimedia e-mail”; “faxes”; “multimedia conferencing”; and so on.

E.g., Ex. 3 at 105, 118, 126; Claim above. As explained in the following section, an

incoming data type is crucial for determining the sequence of conversions needed to deliver the

message to its intended recipient at his or her current location.

il. “dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Pfeifer96 discloses this element.

Pfeifer96 explains: “The iPCSS architecture... aim[s]. . . to increase the nomadic

user’s reachability by introducing . the dynamic selection of terminals,” thereby “allow[ing]

people to make use of any kind of terminal located at their whereabouts for obtaining access to

their service.” Ex. 3 at 122, 118. Because users are mobile and move in and out of range of

various “terminal equipment” with varying “capabilities,” it is not possible to determine the

Inter Partes Reexamination of
1 3 4U.S. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b)

JNPR-IMPL_30024_

specific media conversions that will be needed to achieve a connection to the user until the first

packet of the message to that user has been received by the iPCSS. See id. at 119.

Specifically, when an incoming connection is initiated (7.e., when the first packet of the

message has been received by iPCSS), the system must determine: (1) a data type (e.g., the

“medium’) for the incoming message (e.g., 1s it a voice call, a fax, or an email?); and (2) its

intended “recipient” the “called party”). /d. at 120, 126-27. Once these are known, the

iPCSS can then determine: (3) the called party’s current “location”; and (4) “the set of all access

devices in” the called party’s “current vicinity” (e.g., is there an available telephone, fax

machine, or computer?). /d. at 120, 126-27. Once these are known, the iPCSS can then

determine if “a conversion into another medium” would be necessary to complete the connection

(e.g., if there is not a fax machine in the vicinity, could the fax be read to the user over the

telephone using a Text-to-Speech engine?). /d. at 120 (emphasis in original), 126-27, 111. Ifa

conversion is necessary, the iPCSS will then “dynamically” generate “an appropriate converter

chain” to accomplish the conversion, and the connection can proceed. /d. at 127 (emphasis

added), 120.

This is why Pfeifer96 teaches a multi-stage call connection procedure, wherein the

connection request is received in the “Ist stage,” the called user’s “location” is ascertained in the

“2nd stage,” the set of available access devices (“terminal equipment”) at that location and their

“capabilities” are ascertained in the “3rd stage,” and it is only in the “4th stage” that the specific

“terminal” to accept the call will be selected, and an appropriate “converter chain” to achieve a

connection to that terminal will be “dynamically generated.” /d. at 119, 124 (emphasis added).

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b) 135

JNPR-IMPL_30024_

fram basic cat
processing’
eormection
corral

cal
Fonwarding

ad etapa.

stane:

aclecd terminal

io baale
call

DFOCRS
covenectio

cond

Id. at 119 (Figure 10: “PCS-based Intelligent Call Processing,” showing “select terminal” and

“configure media conversion” in the “4th stage” of establishing a connection), 120 (“4th...

Then, the necessary converters are configured . . .”) (second emphasis added).

The following diagram provides a more granular (14-step) view of this call connection

procedure as implemented by the iPCSS architecture:

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b) 136

JNPR-IMPL_30024_

geenene

Id. at 122 (Figure 11: “Components of the PCS-enhanced TINA Access Session,” showing the

connection request at step “1,” and the “dynamically generated Converter Chain” at end of

step “8e”) (emphasis added).

Claim | recites “analyzing the data type of a first packet of the message.” As explained

above, when a connection begins, the iPCSS must determine a data type (e.g., “medium’”) for the

message in order to determine the necessary sequence of conversions (if any). /d. at 119-20,

126-27.

Claim 1 further recites “to dynamically identify a sequence of components for processing

a plurality of packets of the message.”

As explained above, if conversion is needed, the iPCSS will then “dynamically

generate[]” an “appropriate converter chain.” /d. at 127, 124. More specifically, after the first

packet of the message has arrived (and in the “4th stage” of the connection process), a

component called the “Resource Configurator” systematically evaluates various possible “chains

of multiple converters” that could adapt the message to one of the available destination devices.

Id. at 119-20, 124. Notably, the selection process does not merely involve picking one of a

Inter Partes Reexamination of
1 3 7U.S. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b)

JNPR-IMPL_30024_

number of pre-assembled chains, but rather the system “selects and configures one or multiple

converters dynamically to an appropriate converter chain.” /d. at 127 (emphasis added). Ata

high level, this can be seen as simply selecting and sequentially ordering a number of converters

to create a chain of converters like the following to deliver a fax to a user having only a

telephone in his current vicinity:

fax service > ilmmege newest > filteredtext> speech audio format > phone
galeway

Id. at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech, telephone

delivery”).

While finding a workable chain is certainly an aspect of the analysis performed by the

Resource Configurator, the Configurator goes even further and attempts to find an optimal chain.

It does so by performing a complex “Quality of Service (QoS)” analysis which compares

multiple possible “chains” which could be configured to accomplish the conversion, in order to

“select the chain most appropriate for the desired task.” /d. at 124, 115. Factors included in this

QoS comparison of possible chains include: (1) “Intelligibility” (e.g., it would be preferable to

avoid chains employing Optical Character Recognition or Speech Recognition components, as

opposed to chains which would allow the recipient to experience the message in more of its

original form); (2) “Quality degradation due to entropy reduction” (e.g., it would be preferable to

avoid chains delivering “24 bit” image data to devices with an “8 bit screen”); (3) “Quality

degradation due to lossy compression/decompression” (e.g., it would be preferable to avoid

chains that would perform “multiple lossy compression and decompression”); and (4) “Delay”

(e.g., it would be preferable to avoid chains employing a Text-to-Speech component, which

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b) 138

JNPR-IMPL_30024_

“might wait for the end of a sentence” to determine “correct prosody”). /d. at 115-16, 124. As

summarized by Pfeifer96: “Comparing different possibilities of concatenating converters for a

specific task requires a complex evaluation of the quality parameters involved, performed at

runtime.” /d. at 116 (emphasis added).

This complex generation and comparison of possible candidate chains is performed at

runtime, after the first packet of the incoming message has arrived, because all of the candidate

chains are custom-tailored to convert from the specific data type of the incoming message fo a

data type which can be received by one of the devices in the recipient’s current vicinity. /d. at

115-16, 119-20, 124. The incoming data type may change from message to message, and the

recipient’s location (and hence the devices in that vicinity) may change from moment to moment

as well. Thus, when the most “appropriate converter chain” is finally selected from among these

candidates, it has been (as described by Pfeier96) “dynamically generated”—on demand, as

needed. /d. at 124, 127.

Under Implicit’s apparent claims constructions, this iPCSS technique would comprise (as

recited by claim 1) “dynamically identify[ing] a sequence of components for processing a

plurality of packets of the message.”

Claim 1 further recites “such that the output format of the components of the sequence

match the input format of the next component in the sequence.” Pfeifer96 teaches “the

controlled combination (concatenation) of various converters.” /d. at 105.

Inter Partes Reexamination of
1 3 9U.S. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b)

JNPR-IMPL_30024_

inccening: dpnanically ganensigd converter chain (exceing caus nosis} aigaing
SES: waa SITS

Id. at 125 (Figure 12: “Converter chain, configured for a specific task,” depicting a “dynamically

generated converter chain” connecting an “incoming media stream” with an “outgoing media

stream”). For example, a chain of converters could convert an incoming fax transmission into
2

audible speech delivered to an ISDN telephone:

ax service bmage rawitext ?filteredtext > speech audio format phone servec

gslewsy getewey

Id. at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech, telephone

delivery”). As apparent from the above example (where a fax is converted through a series of

five intermediate formats to a telephone call), the converters are arranged “such that the output

format of the components of the sequence match the input format of the next component in the

sequence.”

Pfeifer96 explains in more detail: “A media converter may be defined as a system entity,

which input is information I, with the semantic carried by a specific medium Mj, using a

specific form (or format) We obtain information I, as output in another Medium Mp in format

F, carrying a semantic S2 (see Figure 1).” /d. at 106.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b) 140

JNPR-IMPL_30024_

iM. So} media. i(v).F) 82)ir eonverter

Id. at 105 (Figure 1: “Media converter system,” showing format alteration from F; to F2). More

concretely, each converter performs either a more sweeping “Media type conversion” which

alters the “medium type” (e.g., “Text-to-Speech” or “Optical character recognition”), or a less

sweeping “Media format conversion” which, e.g., “converts into another format within the same

type” (e.g., video to video, but with a different “frame/sampling rate... resolution... [or] color

depth”). /d. at 108, 125, 107. The format is altered in either case, because two mediums cannot

share the same format: e.g., text necessarily has a different format from audible speech, and

audible speech necessarily has a different format from video. And in either case, it is necessary

to arrange the converters “such that the output format of the components... match the input

format of the next component.” For example, the following diagram shows a chain of three

converters chosen (“fat arrows’) for “a specific task of conversion.” /d. at 109. A first converter

performs a medium format conversion (“MFC”), a second converter (chosen froma set of three

possibile converters) performs a medium type conversion (“MTC”), and a third converter

performs another medium format conversion (MFC):

Inter Partes Reexamination of
1 4U.S. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b)

JNPR-IMPL_30024_

ATC: Madium tyne converter poset
MFC. Mectum formal converter

scalable inputtoutnet parameters

EB
fixed inputfoutput parameters

Id. at 108 (Figure 4: “Medium type conversion with format adaptation”). Thus, under Implicit’s

apparent claims constructions, Pfeifer96 discloses that (as recited by claim 1) “the output format

of the components of the sequence match the input format of the next component in the

sequence.”

Claim | further recites “analyzing the data type of the first packet of the message to

dynamically identify the sequence of components includes selecting individual components to

form the sequence of components after the first packet of the message is received.” As explained

above, Pfeifer96 teaches “the controlled combination (concatenation) of various [individual]

converters,” and these individual components are dynamically assembled into many possible

candidate chains after the first packet of the message is received. /d. at 105, 115-16, 119-20,

124. Thus, the candidate chain which is ultimately chosen (as well as all the candidate chains

which were not) is formed by selecting individual components after the first packet of the

message was received.

Inter Partes Reexamination of
1 4 2U.S. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b)

JNPR-IMPL_30024_

iv. “storing an indication of . . . the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 discloses this element.

Once the Resource Configurator has finished its “complex evaluation” to create a

sequence of converters in a chain, that chain can be used in connection with a particular

“session,” a “grouping [of] specific activities in a service during a specific period of time.”

Ex. 3 at 120-21. The session or stream passes through the “dynamically generated converter

chain.” /d. at 124, 116 (emphasis added).

SBrramnicay

goneraiedDoeeried Cant

Id. at 122 (Figure 11: “Components of the PCS-enhanced TINA Access Session,” showing the

“dynamically generated Converter Chain” between the two parties). See also Claim above.

This dynamic generation of a converter chain occurs just once for each “session,” and as

implied by the existence of an incoming “stream interface[]” to the chain, it is used to process the

stream of packets from the source. See id. at 124, 122. See also, e.g., id. at 127 (the chain “is

instantiated as an object with stream interfaces”) (emphasis added). In other words, it is “with

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b) 143

JNPR-IMPL_30024_

respect to the possible converter chain” that “subsequent service processing establishes [a]

stream connection... /d. at 127. Thus, every packet in a particular stream or session can

make use of the “dynamically generated converter chain” without having to perform the

“complex evaluation” for every single packet. /d. at 126-27.

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96

discloses this element.

As an initial matter, under Implicit’s apparent claim constructions, this “state

information” element would be satisfied merely by “storing an indication of each of the

identified components so that the sequence does not need to be re-identified for subsequent

packets of the message” as in Claim 1(iv) above, and then using the stored indications to invoke

the identified components in the sequence. See Section IV. Pfeifer96 teaches such storing and

such use, and thus it satisfies this “state information” element as well. See Claim 1(iv) above.

However, Pfeifer96 also discloses this “state information” element under a claim

construction that requires component-by-component state information unrelated to the overall

sequence of conversion routines.

For example, Pfeifer96 teaches that as part of its “framework of type and format

converters” (illustrated in Figure 5), each component would maintain multiple “scalable

input/output parameters” which would comprise (as recited by claim 1) “state information

relating to the processing of the component” under Implicit’s apparent claim constructions. Ex.

3 at 108-09.

Inter Partes Reexamination of
1 4 4U.S. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b)

JNPR-IMPL_30024_

three converters with selected

inpul/output parameters are

MTC: Medium type converter onosen for a particular chain

MFC: Medium format converter we lat arrows’)/

scgiatte inputloutout parameters

fixed inpulloutpul parameters

Id. at 108 (Figure 4: “Medium type conversion with format adaptation”). These parameters

control, e.g., “frame/sampling rate, quantization, resolution, size, color depth compression

technique” and so on, and they are considered when performing the complex Quality of Service

analysis comparing possible candidate chains, described above. /d. at 107-08, 114-16; Claim

1(i1i) above. Pfeifer96 teaches, for example, that the parameters chosen for the converters across

a specific chain should be coordinated to avoid unnecessary loss of information. See Ex. 3 at

107-08, 115 (e.g., “multiple lossy compression and decompression processes” should be

avoided), 124. These parameters are “state information relating to the processing of the

component” which would be used for processing each packet: e.g., to determine which input or

output “sampling rate” or “compression” technique should be used. /d.

As another example, Pfeifer96 teaches a chain of converters for communicating a fax to a

user who has access to a telephone but not a fax machine:

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b) 145

JNPR-IMPL_30024_

Gax service mmege > gawtext Hkered text> speech audio format> phone
sera

gstewsey gelewsy

Id. at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech, telephone

delivery”). It would be apparent to one of ordinary skill in the art that at least “a plurality of

components” in this sequence would maintain state information across packets in the manner

recited by claim 1, in order to perform the processing described by Pfeifer96. For example, there

is a component in the chain for adapting audio data to an ISDN phone connection. One of

ordinary skill in the art would recognize ISDN is a stateful protocol and that this component

would therefore maintain state information across packets in order to correctly execute the ISDN

protocol. As another example, there is a “Text-to-speech” (TTS) component in the chain, and

Pfeifer96 teaches that such a component would employ “buffering processes” in order to “wait

for the end of a sentence or paragraph before determining the correct prosody” for the generated

speech. /d. at 115, 125. See also id. at 111-12 (‘analys[e] the grammatical structure of a

sentence” to “improve the prosody of the speech, that is the intonation and phrase melody.”).

Thus, at least “a plurality of components” in this sequence would read on this “state information”

element.

As another example, Pfeifer96 teaches a chain of converters for “reading temperature

values over a phone line” to a user with an ISDN telephone. /d. at 109.

*
See, e.g., Ex. 4 (ISDN98) (“ISDN Primary Rate User-Network Interface

Specification”) (August 1998) at 3-18 (“Transmitter send sequence number”; “Transmitter

receive sequence number”; “The I format is used for frames that transfer information between

Layer 3 entities”), 3-20 (“When using I-frame commands, each point-to-point data link

connection endpoint has an associated send state variable” and “an associated acknowledge state

variable”), 4-54 (“Call state”). This reference is cited in this context solely to help explain
Pfeifer96. See MPEP § 2205.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b) 146

JNPR-IMPL_30024_

hua

alany ISDN

temper“ electric value» digests fest
co speech aude format» phone service

gateway

Id. (Figure 5: “Converter chain for temperature to speech conversion with telephone delivery”).

As with the fax example above, this sequence contains both an audio-to-ISDN component and a

Text-to-Speech component, and thus it is clear that for this example as well, at least “a plurality

of components” in the sequence would read on this “state information” element.

Thus, it is clear from several perspectives and examples that Pfeifer96 discloses this

“state information” claim element.

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Pfeifer96 discloses this element.

As explained above, Pfeifer96 discloses a method “for processing packets of messages,”

including voice or fax messages comprised of ISDN packets, multimedia e-mail messages

comprised of TCP/IP packets, wireless messages comprised of packets, and multimedia

conferencing messages comprised of packets. See Claim 1(1) above. Such packets would

contain a plurality of headers (e.g., a layer 2 header, a layer 3 header, and so on).

ii. “dynamically identify a sequence of components”

Claim 4 further recites: “analyzing the plurality of headers ofa first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b) 147

JNPR-IMPL_30024_

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Pfeifer96 discloses this

element.

As explained above, Pfeifer96 discloses a method “for processing packets of messages,”

including voice or fax messages comprised of ISDN packets, multimedia e-mail messages

comprised of TCP/IP packets, and wireless messages comprised of packets. See Claim 1(i)

above. Such packets would contain a plurality of headers (e.g., a layer 2 header, a layer 3

header, and so on).

As further explained above, when an incoming connection is initiated (and after the first

packet of the message has been received), the iPCSS must determine (1) a data type (e.g., the

“medium’) for the incoming message (e.g., is it a voice call, a fax, or an email?); and (2) its

intended “recipient” (7.e., the “called party”). See Claim 1(iii) above.

One of ordinary skill would recognize that ascertaining the called party would minimally

entail analyzing at least a layer 2 and a layer 3 header: e.g., analyzing a layer 3 header to obtain a

destination address, and analyzing a layer 2 header to reach the layer 3 header (including, e.g.,

confirming the validity of a layer 2 frame check sequence).

The other aspects of this claim element are discussed above. See Claim 1(i11) above.

iii. “storing an indication of... the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 discloses this element. See Claim 1(iv) above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b) 148

JNPR-IMPL_30024_

iv. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96

discloses this element. See Claim above.

(c) Claim 10

i. “A computer readable storage medium”

Claim 10 recites: “A computer readable storage medium, other than a data transmission

medium, containing instructions for processing packets of a message, the instructions comprising

at least one computer-executable module configured to... .” Under Implicit’s apparent claim

constructions, Pfeifer96 discloses this element.

Pfeifer96 discloses what is plainly a software-based system, and one of ordinary skill

would understand this software would be stored on a “computer readable storage medium, other

than a data transmission medium.” F.g., Ex. 3 at 122 (Figure 11), 113 (‘converter software”).

For example, it would be stored on a hard disk.

Other aspects of this claim element are discussed above. See Claim 1(i) above.

ii. Other claim elements

The remaining elements of claim 10 are also disclosed by Pfeifer96. See Claim 1 above.

2. Pfeifer96 Renders Obvious Claims 1, 4, and 10 Under § 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed or inherent over Pfeifer96, then the inclusion of those aspects certainly would be

obvious over Pfeifer96 in light of the background knowledge of one of ordinary skill in the art,

under 35 U.S.C. § 103.

Inter Partes Reexamination of
1 4 9U.S. Patent No.7,711,857 Pfeifer96 Under § 102(a), (b)

JNPR-IMPL_30024_

(a) Claim 1

i. “A method... for processingpackets of a message”

Claim 1 recites: “A method in a computer system for processing packets of a message,

the method comprising... .” Under Implicit’s apparent claim constructions, Pfeifer96 renders

obvious this element.

Pfeifer96 teaches a “system/platform” implementing the “iPCSS architecture,” wherein

communication between two parties over “fixed” and/or “wireless networks” is mediated by a

“chain of converters” which is “dynamically generated.” Ex. 3 at 119, 105, 114, 122, 124. It

was obvious that a “computer system” would be used to perform the various mediation functions

disclosed by Pfeifer96, including, e.g., the “dynamically generated Converter Chain”. /d. at 122,

113-14.

Claim 1 recites the method is for processing “packets of a message.”

Pfeifer96 teaches a “universal platform” meant to achieve “universal connectivity” over

both “fixed and wireless networks.” /d. at 105, 120, 117-18. Thus, as a general matter, it was

obvious to support incoming communications from any mainstream device over any mainstream

communication medium, including the many mediums which are inherently packetized.

More specifically, Pfeifer96 discloses “Service Gateways” which are “tools... .

responsible for transporting information into and out of the context of the iPCSS, 1.e., connecting

the iPCSS to the world outside the TINA platform.” /d. at 126. These gateways must “consider

the specific properties of the connected information and communication services.” /d.

For example, Pfeifer96 discloses a Service Gateway for “voice connection with the

public telephone network,” for both incoming (“phone.in’) and outgoing (“phone.our’) voice

connections. /d. at 126 (emphasis in original). Because Pfeifer96 repeatedly discloses its

support for voice connections using the well-known “ISDN” public telephone network standard,

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 103 150

JNPR-IMPL_30024_

it was obvious the system should and would be capable of handling such incoming ISDN calls.

Id. at 109, 111. Since ISDN is inherently packetized,** such incoming calls would each comprise

“packets of a message.”

Relatedly, Pfeifer96 also discloses a Service Gateway for “sending and reception of .

faxes.” /d. at 126. One of ordinary skill would understand that fax machines are also commonly

positioned on ISDN networks, so it was obvious the system should and would be capable of

handling such fax transmissions. Since ISDN is inherently packetized, such incoming

transmissions would each comprise “packets of a message.”

Pfeifer96 also discloses communication over wireless networks. See id. at 105 (“mobility

of the user in fixed networks and wireless networks”), 118 (mobility “enabled by means of... .

wireless network interfaces and protocols (i.e. cordless, cellular and satellite) is fundamental for

the provision of ubiquitous, global connectivity’) (emphasis added). Because many devices are

accessible only via wireless networks, it was obvious the system should and would support

communication with such devices over wireless networks. Since wireless networks are

inherently packetized, such incoming communications would comprise “packets of a message.”

As another example, Pfeifer96 discloses a Service Gateway for “reception and delivery of

multimedia e-mail.” /d. at 126. Since email predominantly transmitted over packet-oriented

networks such as TCP/IP, it was obvious the system should and would support such incoming

communications, which would each comprise “packets of a message.” See also id. at 118

(Figure 9, showing “multimedia e-email” transmitted by a user at a computer).

8
See, e.g., Ex. 4 (ISDN98) (“ISDN Primary Rate User-Network Interface

Specification”) (August 1998) at 3-9 to 3-10 (Chapter 3-2: “Layer 2 frame structure,” where

discrete frames with their own “Frame check sequence(s)” would comprise “packets” under

Implicit’s apparent claim constructions. This reference is cited in this context solely to help

explain Pfeifer96. See MPEP § 2205.

Inter Partes Reexamination of
1 5U.S. Patent No.7,711,857 Pfeifer96 Under § 103

JNPR-IMPL_30024_

As another example, Pfeifer96 discloses a Service Gateway “for support of multimedia

conferencing.” /d. at 126. One of ordinary skill would recognize that while it is possible to

transmit audio over a non-packetized, analog phone line, the predominant means of transmitting

multimedia information is over a packet-oriented network. It was therefore obvious the system

should and would support such incoming communications, which would each comprise “packets

of a message.”

As a final set of examples, Pfeifer96 discloses various input/output devices which iPCSS

would convert from or to. id. at 110 (“Braille output device”), 6 (‘temperature” sensor),

118 (“video” camera). Because such devices typically do not have a communications capability

of their own, it was obvious they would be connected to computers which would communicate

with the outside world through use of a packet-oriented network such TCP/IP. It was therefore

obvious the system should and would support such incoming communications, which would

each comprise “packets of a message.”

All of the specific instances of connectivity described above are obvious for at least the

reason that Pfeifer96 teaches a “universal platform” meant to achieve “universal connectivity”

over both “fixed and wireless networks.” /d. at 105, 120, 117-18.

il. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 renders obvious this

element. See Claim 1(1) above and Section V.C.1 (Pfeifer96 102) at Claim 1(ii).

ili. “dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 Under § 103 152

JNPR-IMPL_30024_

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Pfeifer96 renders obvious this

element.

As explained above, it was obvious for the system to accept incoming streams of packets

from a variety of devices, including computers, ISDN telephones and fax machines, and wireless

phones. See Claim 1(i) above. It was therefore also obvious that all of these various types of

incoming packet streams should and would be routed to the corresponding dynamically

generated converter chain for processing:

Synandoally
he

Eomeorte Chatn AF
SCORE

a. | me

aan Ex aN

stream
interfaces

Ex. 3 at 122 (Figure 11, showing the “dynamically generated Converter Chain” between the two

parties). See also id. at 124 (‘a dynamically generated converter chain with stream interfaces for

the appropriate media is created”).

Other aspects of this claim element are discussed above. See Section V.C.1 (Pfeifer96

102) at Claim 1(iii) above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 103 153

JNPR-IMPL_30024_

iv. “storing an indication of . . . the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 renders obvious this element.

The “dynamically generated converter chain” is generated only once for an incoming

communication and is used to process the entire communication. See Ex. 3 at 122-27. It was

therefore obvious this chain should and would be stored. For example, “instantiat[ing]” the

entire chain “as an object with stream interfaces” (for accepting the incoming stream of packets)

would comprise storing an indication of the components within it under Implicit’s apparent claim

constructions. /d. at 127.

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96

renders obvious this “state information” element.

As an initial matter, Pfeifer96 teaches that as part of its “framework of type and format

converters” (illustrated in Figure 5), each component would maintain multiple “scalable

input/output parameters” which would comprise (as recited by claim 1) “state information

relating to the processing of the component” under Implicit’s apparent claim constructions. Ex.

3 at 108-09.

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 Under § 103 154

JNPR-IMPL_30024_

ATC: Madium tyne converter

MPC: Moadguim formal converter
we three converters with selected

"

input/output parameters are

Anogen fpr aparticular chain

(“fof arre

scalable inputfoutput parameters
oF

EB
fixed inputfoutput parameters

Id. at 108 (Figure 4: “Medium type conversion® with format adaptation”). These parameters

control, e.g., “frame/sampling rate, quantization, resolution, size, color depth compression

technique” and so on, and they are considered when performing the complex Quality of Service

analysis comparing possible candidate chains, described above. /d. at 107-08, 114-16; Claim

1Gii) above. Pfeifer96 teaches, for example, that the parameters chosen for the converters across

a specific chain should be coordinated to avoid unnecessary loss of information. See Ex. 3 at

107-08, 115 (e.g., “multiple lossy compression and decompression processes” should be

avoided), 124. These parameters are “state information relating to the processing of the

component” which would be used for processing each packet: e.g., to determine which input or

output “sampling rate” or “compression” technique should be used. /d. It was obvious that any

or all of the components in a particular chain would maintain such “parameters,” and therefore

Medium “ype conversion (MTC) changes the format as well, since two different

medium types cannot share the same format (e.g., text vs. audible speech). See Section 111 above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 103 155

JNPR-IMPL_30024_

obvious that any or all of the components would satisfy the “state information” element of claim

1.

Additionally, obvious implementations of a number of the components disclosed by

Pfeifer96 would read on this claim element, and it was obvious that such components would

comprise at least “a plurality of the components” in various expressly disclosed and obvious

sequences.

(a) ISDN Adapter Components

Pfeifer96 expressly discloses a component for adapting from audio data to an outgoing

ISDN telephone connection, so it was obvious to also employ such an adapter to perform the

necessary task of obtaining audio (or other data) from an incoming ISDN connection. Ex. 3 at

109 (Figure 5), 111 (Figure 6). Because ISDN is a stateful protocol, it was obvious for such

components to maintain state information in the manner recited by claim 1 in order to correctly

execute the ISDN protocol.*’

(b) Lossless Compression/Decompression Components

Pfeifer96 teaches that its “audio” and “video” converter components would have a

settable parameter “c” which specifies the “applied compression technique” employed by the

component as part of its conversion:

See, e.g., Ex. 4 (ISDN98) (“ISDN Primary Rate User-Network Interface

Specification”) (August 1998) at 3-18 (“Transmitter send sequence number”; “Transmitter

receive sequence number”; “The I format is used for frames that transfer information between

Layer 3 entities”), 3-20 (“When using I-frame commands, each point-to-point data link

connection endpoint has an associated send state variable” and “an associated acknowledge state

variable”), 4-54 (“Call state”). This reference is cited in this context solely to help explain
Pfeifer96. See MPEP § 2205.

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 Under § 103 156

JNPR-IMPL_30024_

generation of perceptible information: perception:
human media channels, human

media
technical

channels

Systems [technical technical
(examples) representation | wovarsion| Tepresefttation

mrmtred cont control data audhory: ar

waiten

contral data
speech

Hanguage metic fre tlin fon Sour. Pousk

natural,
audio (m,n, audio im, SOUNG, MUSIC

technically raici mick Wisuall eye

Spoken video (m,n. th video im.n,c. aeturlanguage picture
photogr pholograch graphic

video imap image bitmap image legible text

camera igif, tf, fax,...} (GIF, TIFF. fax, 2)

move vector image vector image ‘actle
sxin

archive eas Braite
page description page

cescinnon
vibration signal

ipostscript, fpastscript tactile image

drawings adobe acrobat adobe acrobat)

phote text text arielCATT rameric
nuMnerie

ancharitine handwritin haptic: skin
sensors for | handwriting handwriting

or ros force
ary physical | any digital any digital STeSP
parameter | representation representation RIESSUEE

flemiperat, es setttcesdtme Somes

nce
* Kinaesthetic: body

PPSSSUNE, composed mere mreweTen'

werocity,
document composed

force, movement

burnidity, composed erin iermic: skin

yoHage, mall composed oHacive: nose

smell

qustalive: tongue
taste

parameters:

AL media dependent
parameters

frame/sampling rate, quardization, resotution, six

applied cOMpLeSsION techniquet time, duration, etc.

color depth, etc}

Ex. 3 at 107 (Figure 3: “Generic conversion matrix’). See also id. at 108 (Figure 5, showing

various “input/output parameters” per converter component) and 115 (“multiple lossy

compression and decompression” across a chain should be avoided). Since Pfeifer96 discloses

both “input” and “output” parameters and discloses “multiple compression and

decompression” operations across a chain, it would be understood (and was obvious) that

corresponding decompression techniques would be included in the converter framework. See id.

Since Pfeifer96 cautions “lossy” compression/decompression techniques should be

avoided but does not specify particular algorithms, one of ordinary skill would draw from

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Pfeifer96 Under § 103 157

JNPR-IMPL_30024_

standard background knowledge regarding suitable lossless algorithms that might be applied. /d.

at 115, 124. In particular, one of ordinary skill would find it obvious to employ an “adaptive”

algorithm because they were among the leading lossless compression/decompression techniques

available—and obvious implementations of such “adaptive” algorithms would entail maintaining

1.38 Hence, it was obvious that“state information” across packets in the manner recited by claim

any component converting to or from audio or video would read on the “state information”

element of claim 1, by performing adaptive compression or decompression.

Pfeifer96 expressly discloses two converter chains which each contain two components

that convert to or from audio, and thus on this basis alone it was obvious that “a plurality of

components” in these chains would maintain “state information” across packets in the manner

recited by claim 1:

conversion fo audio corversion from audio

op
ine cae

emmy,

alaw
Ey fe A

temuper. electric value > degtts we text speech > audio format» phone service

Baieway

id. at 109 (Figure 5). conversion to audio conversion frorn audio

gateway

Hee

38
See, e.g., Ex. 5 (Nelson) (“The Data Compression Book” by Mark Nelson ef al.) (1996)

at 8 (‘Adaptive coding .. . lead[s] to vastly improved compression ratios”), 18 (“compression
research in the last 10 years has concentrated on adaptive models”), 18-19 (including Figures 2.2

and 2.3 showing state information “continually modified as new characters are read in and

coded”). This reference is cited in this context solely to help explain Pfeifer96. See MPEP §

2205.

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 Under § 103 158

JNPR-IMPL_30024_

Id. at 111 (Figure 6). Moreover, the final component in each chain is doubly stateful because it

would also maintain ISDN connection state across packets, as explained above.

As another example, Pfeifer96 teaches that a user with only a “telephone” may wish to

“attend” a “video conference.” at 104. See also, e.g., id. at 118 (Figure 9: showing “speech”

input and “video” output). A simple and obvious chain for connecting this call would comprise

an ISDN adapter component for accepting an ISDN telephone call and converting it to audio, and

a second converter for converting the audio to a video conference format. Both converters would

convert to or from audio, hence it was obvious for every converter component in this chain to

maintain “state information” across packets in the manner recited by claim 1. And again, the

components in this chain would be doubly stateful because they would also maintain ISDN state

across packets, as explained above.

(c) Text-to-Speech Components

Pfeifer96 teaches a “Text-to-speech” (TTS) converter component, and it was obvious for

this component to maintain state information across packets in the manner recited by claim 1,

because Pfeifer96 expressly discloses “buffering processes” employed by this component to

“wait for the end of a sentence or paragraph before determining the correct prosody.” Ex. 3 at

115, 125. See also id. at 111-12 (‘analys[e] the grammatical structure of a sentence” to

“improve the prosody of the speech, that is the intonation and phrase melody.”).

Because a TTS component is included in both of the converter chains depicted in Figures

5 and 6 (discussed above), this is another basis for finding it was obvious that “a plurality of

components” in those chains (and in other obvious chains incorporating a TTS component)

would read on the “state information” element recited by claim 1.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 103 159

JNPR-IMPL_30024_

(d) Speech Recognition Components

Pfeifer96 teaches a component which performs “speech recognition” to convert

“commands” and “dictation” to “text” (e.g., for converting an incoming voice call to a stream of

legible text on a user’s computer). See Ex. 3 at 110, 112, 107, 118. Pfeifer96 explains that such

speech recognition software “can be speaker dependent,” but that “speaker adaptive” software is

more “flexible.” /d. at 112. In order for such a component to adaptively improve its recognition

of a particular speaker’s voice over time, it was obvious for it to maintain state information

across packets in the manner recited by claim 1.

To summarize, it was obvious for many of the converter components disclosed by

Pfeifer96 to maintain “state information” across packets in the manner recited by claim 1 in

order for them to function as described, including ISDN adapter components, lossless

compression/decompression components, TTS components, and speech recognition components.

It is also clear that such components comprise “a plurality of components” in certain sequences

expressly disclosed by Pfeifer96 (e.g., id. at 109, 111), and that they would comprise a “plurality

of components” in many other useful and obvious converter sequences.

(b) Claim 4

i, “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Pfeifer96 renders obvious this element.

As explained above, Pfeifer96 renders obvious a method “for processing packets of

messages,” including voice or fax messages comprised of ISDN packets, wireless messages

comprised of packets, multimedia e-mail messages comprised of TCP/IP packets, multimedia

conferencing messages comprised of packets, and messages from various input/output devices

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 103 160

JNPR-IMPL_30024_

comprised of packets. See Claim 1(i) above. Such packets would contain a plurality of headers

(e.g., a layer 2 header, a layer 3 header, and so on).

il. “dynamically identify a sequence of components”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Pfeifer96 renders obvious

this element.

As explained above, Pfeifer96 discloses a method “for processing packets of messages,”

including voice or fax messages comprised of ISDN packets, wireless messages comprised of

packets, multimedia e-mail messages comprised of TCP/IP packets, multimedia conferencing

messages comprised of packets, and messages from various input/output devices comprised of

packets. See Claim 1(1) above. Such packets would contain a plurality of headers (e.g., a layer 2

header, a layer 3 header, and so on).

As further explained above, when an incoming connection is initiated (and after the first

packet of the message has been received), the iPCSS must determine (1) a data type (e.g., the

“medium”) of the incoming message (e.g., is it a voice call, a fax, or an email?); and (2) its

intended “recipient” (7.e., the “called party”). See Claim 1(iii) above.

One of ordinary skill would find it obvious to ascertain the called party by analyzing a

plurality of headers, including at least a layer 2 and a layer 3 header: e.g., analyzing a layer 3

header to obtain a destination address, and analyzing a layer 2 header to reach the layer 3 header

Inter Partes Reexamination of

USS. Patent No.7,711,857 Pfeifer96 Under § 103 161

JNPR-IMPL_30024_

(including, e.g., confirming the validity of a layer 2 frame check sequence). One of ordinary

skill would also find it obvious to ascertain a data type by analyzing a plurality of headers: e.g.,

analyzing a layer 4 header to obtain a destination TCP/IP port, and analyzing the layer 2 and

layer 3 headers to reach the layer 4 header.

Other aspects of this claim element are discussed above. See Claim 1(iii) above.

ili. “storing an indication of... the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 renders obvious this element. See Claim I(iv)

above.

iv. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96

renders obvious this element. See Claim 1(v) above.

(c) Claim 10

i. “A computer readable storage medium”

Claim 10 recites: “A computer readable storage medium, other than a data transmission

medium, containing instructions for processing packets of a message, the instructions comprising

at least one computer-executable module configured to... .” Under Implicit’s apparent claim

constructions, Pfeifer96 renders obvious this element.

Pfeifer96 discloses what is plainly a software-based system, and one of ordinary skill

would understand this software would be stored on a “computer readable storage medium, other

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 Under § 103 162

JNPR-IMPL_30024_

than a data transmission medium.” F.g., Ex. 3 at 122 (Figure 11), 113 (‘converter software”).

For example, it would be stored on a hard disk.

Other aspects of this claim element are discussed above. See Claim 1(i) (showing

“processing packets of a message’) above.

ii. Other claim elements

The remaining elements of claim 10 are also rendered obvious by Pfeifer96. See Claim 1

above.

3. Pfeifer96 in View of ISDN98 and Nelson Renders Obvious Claims 1, 4,

and 10 Under § 103

The specification “ISDN Primary Rate User-Network Interface Specification” (Exhibit 4,

“ISDN98”) was published in August 1998 by Northern Telecom. The treatise “The Data

Compression Book” (Exhibit 5, “Nelson”) by Mark Nelson ef a/. was published in 1996. Neither

was considered during the prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96 alone, then the inclusion of those aspects certainly

would be obvious over Pfeifer96 in view of ISDN98 and Nelson in light of the background

knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Pfeifer96 with ISDN98 because Pfeifer96

expressly discloses components for adapting data for an ISDN network interface, and ISDN98

(the “ISDN Primary Rate User-Network Interface Specification”) would have been an obvious

place to look for further details regarding the implementation of such ISDN components. Ex. 3

at 109, 111. It was further obvious to supplement these teachings with Nelson, because Pfeifer96

teaches that many of its converters would have a “parameter” specifying “applied compression

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 Under § 103 163

JNPR-IMPL_30024_

technique,” and Nelson (“The Data Compression Book”) would have been an obvious place to

look for information regarding specific compression techniques that could be applied. /d. at 107.

(a) Claim 1

i. “A method in a computer system...”

Claim | recites in pertinent part: “A method in a computer system for processing packets

of a message, the method comprising... .” Under Implicit’s apparent claim constructions,

Pfeifer96 in view of ISDN98 and Nelson renders obvious this element.

ISDN98 clarifies that incoming ISDN transmissions (e.g., voice calls or fax

transmissions) would comprise “packets of a message.” In a chapter entitled “Layer 2 frame

structure,” ISDN98 provides a diagram showing various fields of a layer 2 frame, including a

“Frame check sequence.” Ex. 4 at 3-9 to 3-10. Under Implicit’s apparent claim constructions,

such discrete frames would comprise “packets.” See also, e.g., id. at 4-37 (Layer 3 message

formats’).

ii. “state information”

Claim 1 finally recites in pertinent part: “for each of a plurality of components in the

identified sequence: performing the processing of each packet by the identified component; and

storing state information relating to the processing of the component with the packet for use

when processing the next packet of the message.” Under Implicit’s apparent claim

constructions, Pfeifer96 in view of ISDN98 and Nelson renders obvious this element.

(a) ISDN Adapter Components

Pfeifer96 expressly discloses a component for adapting from audio data to an outgoing

ISDN telephone connection, so it was obvious to also employ such an adapter to perform the

necessary task of obtaining audio (or other data) from an incoming ISDN connection. Ex. 3 at

109 (Figure 5), 111 (Figure 6). ISDN98 confirms ISDN isa stateful protocol, and that it would

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + ISDN98 + Nelson 164

JNPR-IMPL_30024_

be obvious for such components to maintain state information in the manner recited by claim 1 in

order to correctly execute the ISDN protocol. For example, ISDN98 teaches that the layer 2 “I

format is used for frames that transfer information between Layer 3 entities,” and each I frame

has a “send sequence number” and a “receive sequence number.” Ex. 4 at 3-18. Consequently,

“[w|hen using I-frame commands, each point-to-point data link connection endpoint” maintains

“an associated send state variable” and “an associated acknowledge state variable.” /d. at 3-20.

See also, e.g., id. at 4-54 (“Call state”).

(b) Lossless Compression/Decompression Components

Pfeifer96 teaches that a number of its converter components would havea settable

parameter “c” which specifies the “applied compression technique” employed by the component

as part of its conversion:

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + ISDN98 + Nelson 165

JNPR-IMPL_30024_

generation of perceptible information: perception:
human media channels, human

media
technical

channels

Systems [technical technical
(examples) representation | wovarsion| Tepresefttation

mrmtred cont control data audhory: ar

waiten

contral data
speech

Hanguage metic fre tlin fon Sour. Pousk

natural,
audio (m,n, audio im, SOUNG, MUSIC

technically raici mick Wisuall eye

Spoken video (m,n. th video im.n,c. aeturlanguage picture
photogr pholograch graphic

video imap image bitmap image legible text

camera igif, tf, fax,...} (GIF, TIFF. fax, 2)

move vector image vector image ‘actle
sxin

archive eas Braite
page description page

cescinnon
vibration signal

ipostscript, fpastscript tactile image

drawings adobe acrobat adobe acrobat)

phote text text arielCATT rameric
nuMnerie

ancharitine handwritin haptic: skin
sensors for | handwriting handwriting

or ros force
ary physical | any digital any digital STeSP
parameter | representation representation RIESSUEE

flemiperat, es setttcesdtme Somes

nce
* Kinaesthetic: body

PPSSSUNE, composed mere mreweTen'

werocity,
document composed

force, movement

burnidity, composed erin iermic: skin

yoHage, mall composed oHacive: nose

smell

qustalive: tongue
taste

parameters:

AL media dependent
parameters

frame/sampling rate, quardization, resotution, six

applied cOMpLeSsION techniquet time, duration, etc.

color depth, etc}

Ex. 3 at 107 (Figure 3: “Generic conversion matrix’). See also id. at 108 (Figure 5, showing

various “input/output parameters” per converter component) and 115 (“multiple lossy

compression and decompression” across a chain should be avoided). Since Pfeifer96 discloses

both “input” and “output” parameters and discloses “multiple compression and

decompression” operations across a chain, it would be understood (and was obvious) that

corresponding decompression techniques would be included in the converter framework. See id.

Since Pfeifer96 cautions “lossy” compression/decompression techniques should be

avoided but does not specify particular algorithms, one of ordinary skill would be motivated to

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Pfeifer96 + ISDN98 + Nelson 166

JNPR-IMPL_30024_

employ a suitable lossless compression/decompression algorithms for these converter

components. /d. at 115, 124.

In particular, an “adaptive” algorithm was an obvious choice for such lossless

compression/decompression, as taught by Nelson. Nelson explains that “[a]daptive coding ...

lead[s] to vastly improved compression ratios,” and that “compression research in the last 10

years has concentrated on adaptive models.” Ex. 5 at 8, 18. Adaptive algorithms include such

well-known algorithms as “Adaptive Huffman Coding” (chapter 4; id. at 75), “Adaptive

[Statistical] Modeling” (chapter 6; id. at 155), “Dictionary-Based Compression” (chapter 7: id. at

203), “Sliding Window Compression” (chapter 8; id. at 215); and the prominent “LZ” family of

adaptive compression algorithms (chapter 8 and 9, id. at 221, 255). All of these adaptive

techniques are lossless. See id. at 9 (“All of the compression techniques discussed through

chapter 9 are ‘lossless’”).

Nelson explains the stateful manner in which adaptive coding operates: “When using an

adaptive model, data does not have to be scanned once before coding in order to generate

statistics [usedto perform compression/decompression].Instead, the statistics are continually

modified as new characters are read in and coded. The general flow ofa program using an

adaptive model looks something like that shown in Figures 2.2 and 2.3.” /d. at 18 (emphasis

added).

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + ISDN98 + Nelson 167

JNPR-IMPL_30024_

Oatgut
Symnibole me Pasadt faput

adeSyrnbal
Cocks

Figure 2.2 General Anarnive Compression,

Fruse 23 Geveral, Anaprve Decompression.

Id. at 19 (showing “Update Model” (state information) after encoding or decoding every piece of

data). Nelson explains: “adaptive models start knowing essentially nothing about the data” so

“when the program first starts it doesn’t do a very good job of compression.” /d. at 19.

However, “Most adaptive algorithms tend to adjust quickly to the data stream and will begin

turning in respectable compression ratios after only a few thousand bytes.” /d.

Thus, an obvious implementation of an adaptive algorithm would maintain state

information across packets in the manner recited by claim 1, in order to attain these “respectable

compression ratios.” /d.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + ISDN98 + Nelson 168

JNPR-IMPL_30024_

Pfeifer96 expressly discloses two converter chains which each contain two components

that convert to or from audio, and thus on this basis alone it was obvious that “a plurality of

components” in these chains would maintain “state information” across packets in the manner

recited by claim 1:

conversion to audio conversion from audio

feed
Ay©)

fest > speech audio fommat phone serace

geioway

conversion to audio conversion from audio

ISDN

fax service raw text > filtered text epeech © audio format phone sevice

gateway gateway

Id. at 111 (Figure 6). Moreover, the final component in each chain is doubly stateful because it

would also maintain ISDN connection state across packets, as explained above.

As another example, Pfeifer96 teaches that a user with only a “telephone” may wish to

“attend” a “video conference.” /d. at 104. See also, e.g., id. at 118 (Figure 9: showing “speech”

input and “video” output). A simple and obvious chain for connecting this call would comprise

an ISDN adapter component for accepting an ISDN telephone call and converting it to audio, and

a second converter for converting the audio to a video conference format. Both converters would

convert to or from audio, hence it was obvious for every converter component in this chain to

maintain “state information” across packets in the manner recited by claim 1. And again, the

components in this chain would be doubly stateful because they would also maintain ISDN state

across packets, as explained above.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + ISDN98 + Nelson 169

JNPR-IMPL_30024_

To summarize, it was obvious for many of the converter components disclosed by

Pfeifer96 to maintain “state information” across packets in the manner recited by claim 1 in

order for them to function as described, including the ISDN adapter components and lossless

compression/decompression components discussed immediately above, and the TTS components

and speech recognition components discussed elsewhere above. See Section V.C.2 (Pfeifer96) at

Claim 1(v) above. It is also clear that such components comprise “a plurality of components” in

certain sequences expressly disclosed by Pfeifer96 (e.g., id. at 109, 111), and that they would

comprise a “plurality of components” in many other useful and obvious converter sequences.

(b) Claim 4

i. “A method... for processinga message”

Claim 4 recites in pertinent part: “A method in a computer system for processing a

message, the message having a plurality of headers, the method comprising... .” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of ISDN98 and Nelson renders

obvious this element.

As explained above, these references render obvious a method “for processing packets of

messages,” including voice or fax messages comprised of ISDN packets. See Claim 1(i) above.

Such packets would contain a plurality of headers (e.g., a layer 2 header, a layer 3 header, and so

on). See, e.g., Ex. 4 ISDN98) at 3-9 (“Layer 2 frame structure”), 4-37 (“Layer 3 message

formats”).

ii. “state information”

Claim 4 finally recites in pertinent part: “for each of a plurality of components in the

identified sequence: performing the processing of each packet by the identified component; and

storing state information relating to the processing of the component with the packet for use

when processing the next packet of the message.” Under Implicit’s apparent claim

Inter Partes Reexamination of
1 7 0U.S. Patent No.7,711,857 Pfeifer96 + ISDN98 + Nelson

JNPR-IMPL_30024_

constructions, Pfeifer96 in view of ISDN98 and Nelson renders obvious this element. See Claim

1(i1) above.

(c) Claim 10

i. “A computer readable storage medium”

Claim 10 recites in pertinent part: “A computer readable storage medium, other than a

data transmission medium, containing instructions for processing packets of a message, the

instructions comprising at least one computer-executable module configured to... .” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of ISDN98 and Nelson renders

obvious this element. See Claim 1(i) (showing “processing packets of a message’) above.

fi. “state information”

Claim 10 finally recites in pertinent part: “for each of a plurality of components in the

identified sequence: perform the processing of each packet by the identified component; and

store state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Pfeifer96 in view of ISDN98 and Nelson renders obvious this element. See Claim above.

4, Pfeifer96 in View of Arbanowksi96 Renders Obvious Claims 1, 4, and

105 Under § 103

The dissertation “Generic Description of Telecommunication Services and Dynamic

Resource Selection in Intelligent Communication Environments” by Stefan Arbanowski (Exhibit

11, “Arbanowksi96”) was published on October 6, 1996, and it was not considered during

prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96, then the inclusion of those aspects certainly would

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + ISDN98 + Nelson 171

JNPR-IMPL_30024_

be obvious over Pfeifer96 in view of Arbanowksi96 in light of the background knowledge of one

of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to apply Arbanowksi96 to Pfeifer96 because both documents describe the

“Intelligent Personal Communication Support System (iPCSS),” with Arbanowksi96 presenting

further detail regarding, e.g., the dynamic selection of converter chains. See, e.g., Ex. 11 at 8,

13-14, 44-54 (“Dynamic Resource Selection’).

Because Pfeifer96 and Arbanowksi96 are so similar in approach and detail,

Arbanowksi96 reinforces and confirms the analysis of claims 1, 4, and 10 presented in Section

V.C.2 (Pfeifer96 103) in many ways. Some exemplary aspects of Arbanowksi96 are pointed out

particularly below.

(a) Claim 1

i. “A method in a computer system...’

Claim | recites: “A method in a computer system for processing packets of a message,

the method comprising” Under Implicit’s apparent claim constructions, Pfeifer96 in view

of Arbanowksi96 renders obvious this element.

Arbanowksi96 further confirms a “computer system” would be used. Ex. 11 at 6-8,

19 “Computational Objects’).

Claim | recites the method is “for processing packets of a message.” Arbanowksi96

discloses that the “bearer” (which is “the physical network” connected to an iPCSS “service

gateway’) can consist of the following network types, virtually all of which are inherently

packet-oriented:

Inter Partes Reexamination of
USS. Patent No.7,711,857 Pfeifer96 + Arbanowski96 172

JNPR-IMPL_30024_

possible values|short description

AIM Asynchronous Transier Mode [ITU-T L367]

FODI Fiber Distributed Data Interlace [ITU-T

ISDN Integrated Service Digital Network [ITU-T L320)

B-ISDN Broadband Integrated Service Digital Network (ITU-T

DODB Distributed Queue Dual Bus [IEEE 802.6]

Ethemet normal 70Mbit Ethernet HEEE 602.3]

GSM Global System for Mobile Communication

Digital Cellular System

PSTN Public Switched Telephone Network

Id. at 33 (Table 3-6: “Possible Values for the Attribute Bearer”). See also Ex. 3 (Pfeifer96) at

126 (‘Service Gateways” for “phone... fax... mail... multimedia conferencing,” etc.). Thus,

an incoming communication over any of those packet-oriented networks would comprise

“packets of a message.”

ii. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowski96

renders obvious this element.

As explained in the following section, Arbanowski96 further confirms an incoming data

type is crucial for determining the series of conversions needed to deliver the message to its

intended recipient at his or her current location. See also Claim 1(i) above.

iil. “dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Arbanowski96 173

JNPR-IMPL_30024_

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowski96

renders obvious this element.

As explained above, when an incoming connection is initiated (/.e., when the first packet

of the message has been received by iPCSS), the system must determine (1) a data type (e.g., the

“medium’’) for the incoming message (e.g., is it a voice call, a fax, or an email?); and (2) its

intended “recipient” the “called party”). See Section V.C.1 (Pfeifer96 102) at Claim 1(iti)

above. Arbanowski96 confirms that determining a data type for the incoming message is a

crucial part of selecting an appropriate sequence of converters for the message. Ex. 11 at

13 (adaptation of the medium type to the available set of terminals”; “In most cases they require

conversions of the medium type or at least the medium format, because . . . different services

mostly use different media types and media formats.”), 28 (“Medium” being a key attribute of

the “Service Description”).

And as suggested by its title (“Generic Description of Telecommunication Services and

Dynamic Resource Selection in Intelligent Communication Environments”), Arbanowksi96 also

confirms the sequence of converters is identified dynamically.

Like Pfeifer96, Arbanowksi96 discloses a four-stage call connection process wherein the

selection of a terminal in the user’s vicinity and the dynamic configuration of a chain of

converters to that terminal occurs in the final stage. F.g., id. at 6-7, 13-15, 49 (“Finding a

Matching Device”), 50 (“Finding a Possible Chain’).

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Arbanowski96 174

JNPR-IMPL_30024_

irom basic call to basic call

Bror essing ow coressine {

ronnection
cad Wecton oF

awantion

contral
contred

Tanf FOSTERS,"*
media (pe! lic oh RCO

semice type / tak ot
Tadiatr am)

device ype forwarding omer

Id. at 14 (Figure 2-9: “iPCSS — Call Handling,” showing “dynamic resource configuration” in

4th stage). Arbanowksi96 provides additional detail on the elaborate process by which many

possible candidate chains of converters are assembled and evaluated for their potential “Quality

of Service” in the course of connecting the call. E.g., Ex. 11 at 49 (“Finding a Matching

Device”), 50 (“Finding a Possible Chain”: “The example demonstrates a scenario with three

converters and four terminals to lead into 60 possible converter chains”), 52 (“Calculating the

most appropriate chain”), 53 (“AIL possible converter chains are stored as temporary solutions.

The next step is now, to calculate the Quality of Service for every single temporary solution.”).

. Fy

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Arbanowski96 175

JNPR-IMPL_30024_

Id. at 51 (Figure 4-8: “Dynamic Resource Selection — Possible Converter Chains”). Because

iPCSS constructs many possible candidate chains and performs a complex Quality of Service

analysis on these candidate chains in the course of connecting a call (7.e., after it has received the

first packet of the message), it is clear that the ultimately selected chain of converters is selected

“dynamically,” under Implicit’s claim constructions. See id. at 49-54.

Arbanowski96 also further confirms that iPCSS considers the concatenation of many

possible individual converter components in the course of connecting a call, and that the

ultimately selected chain will have been composed by selecting individual components. F.g., id.

at 50 (“Finding a Possible Chain”: “The example demonstrates a scenario with three converters

and four terminals to lead into 60 possible converter chains’).

iv. “storing an indication of... the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowksi96 renders obvious this

element.

As explained by Pfeifer96, once an optimal “converter chain” for the incoming message

has been generated, the chain “is instantiated as an object with stream interfaces.” Ex. 3 at 127.

Arbanowski96 provides further detail on this process, further confirming this object would

endure throughout the connection, e.g.: “If a valid converter chain was found, the included

converters have to be configured. This means, that streams have to be connected, the quality of

service parameters have to be controlled and the connection has to be managed up the end of the

session.”). Ex. 11 at 52-53 (at end of section entitled “Calculating the most appropriate chain”).

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Arbanowski96 176

JNPR-IMPL_30024_

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96 in

view of Arbanowksi96 renders obvious this element.

Arbanowksi96 provides additional detail on the types of conversions and converter

chains that might be assembled (e.g., Ex. 11 at 28-38), and additional detail on the process by

which the “scalable input/output parameters” of the converter components in Pfeifer96 (which

are “state information”) would be configured (e.g., id. at 50-54). It thus confirms the analysis

presented under Section V.C.2 (Pfeifer96 103) in several ways. See Section V.C.2 (Pfeifer96

103) at Claim 1(v).

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Pfeifer96 in view of Arbanowksi96 renders obvious this element.

As explained above, Pfeifer96 in view of Arbanowski96 renders obvious a method “for

processing packets of messages,” including messages arriving via packet-oriented technologies

such as “ATM,” “ISDN,” and “Ethernet.” See Claim 1(i) above. Such packets would contain a

plurality of headers (e.g., a layer 2 header, a layer 3 header, and so on).

il. “dynamically identify a sequence of components”

Claim 4 further recites: “analyzing the plurality of headers ofa first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Arbanowski96 177

JNPR-IMPL_30024_

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of

Arbanowksi96 renders obvious this element.

As explained above, when an incoming connection 1s initiated (and after the first packet

of the message has been received), the iPCSS must determine (1) a data type (e.g., the

“medium’”) of the incoming message (e.g., is it a voice call, a fax, or an email?); and (2) its

intended “recipient” the “called party”). See Section V.C.1 (Pfeifer96 102) at Claim 1(iii)

above. Arbanowski96 confirms that determining the identity of the called party is a crucial part

of selecting an appropriate sequence of converters for the message; once determined it is

internally represented by a “Personal Identifier (PID),” and this PID drives the selection of

suitable terminal for receiving the message in the called party’s current location. Ex. 11 at 1

(“PID”), 6 (multi stage functional mapping from the PID of the called party .. . to a physical

terminal .. . at the location of the called person”).

One of ordinary skill would find it obvious to ascertain the called party by analyzing a

plurality of headers, including at least a layer 2 and a layer 3 header: e.g., analyzing a layer 3

header to obtain a destination address, and analyzing a layer 2 header to reach the layer 3 header

(including, e.g., confirming the validity of a layer 2 frame check sequence). One of ordinary

skill would also find it obvious to ascertain a data type by analyzing a plurality of headers: e.g.,

analyzing a layer 4 header to obtain a destination TCP/IP port, and analyzing the layer 2 and

layer 3 headers to reach the layer 4 header.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Arbanowski96 178

JNPR-IMPL_30024_

Other aspects of this claim element are discussed above. See Claim 1(iit) above.

iil. “storing an indication of... the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowksi96 renders obvious this

element. See Claim I(iv) above.

iv. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96 in

view of Arbanowksi%6 renders obvious this element. See Claim 1(v) above.

(c) Claim 10

i. “A computer readable storage medium”

Claim 10 recites: “A computer readable storage medium, other than a data transmission

medium, containing instructions for processing packets of a message, the instructions comprising

at least one computer-executable module configured to... .” Under Implicit’s apparent claim

constructions, Pfeifer96 in view of Arbanowski96 renders obvious this element. See Claim 1(4)

(showing “processing packets of a message’) above.

ii. Other claim elements

The remaining elements of claim 10 are also rendered obvious by Pfeifer96 in view of

Arbanowski96. See Claim 1 above.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Arbanowski96 179

JNPR-IMPL_30024_

5, Pfeifer96 in View of Pfeifer97 Renders Obvious Claims 1, 4, and 10

Under § 103

The article “Resource Selection in Heterogeneous Communication Environments using

the Teleservice Descriptor” by Tom Pfeifer, Stefan Arbanowski, and Radu Popescu-Zeletin

(Exhibit 12, “Pfeifer97”) was published by December 19, 1997, and it was not considered during

prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Pfeifer97 in light of the background knowledge of one of

ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to apply Pfeifer97 to Pfeifer96 because both documents describe the

“Intelligent Personal Communication Support System (iPCSS),” with Pfeifer97 presenting

further detail regarding, e.g., the dynamic selection of converter chains. See, e.g., Ex. 12 at 132,

143-50.

Because Pfeifer96 and Pfeifer97 are so similar in approach and detail, Pfeifer97

reinforces and confirms the analysis of claims 1, 4, and 10 presented in Section V.C.2 (Pfeifer96

103) in many ways. Some exemplary aspects of Pfeifer97 are pointed out particularly below.

(a) Claim 1

i. “A method in a computer system...”

Claim | recites: “A method in a computer system for processing packets of a message,

the method comprising... Under Implicit’s apparent claim constructions, Pfeifer96 in view

of Pfeifer97 renders obvious this element.

Pfeifer97 further confirms a “computer system” would be used. Ex. 12 at 150-52

(“Computational Model”).

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Pfeifer97 180

JNPR-IMPL_30024_

Claim 1 recites the method is “for processing packets of a message.” Pfeifer97 discloses

that the “bearer” (which is “the physical network” connected to an iPCSS “service gateway”) can

consist of the following network types, virtually all of which are inherently packet-oriented:

possible values | short description

ATM Asynchronous Transfer Mode (ITU-T £361)

FDDI Fibre Distributed Data Interface (ITU-T
Eb

ISDN,
‘|

Integrated Service Digital Network (ITU-T 1320)

B-ISDN Broadband Integrated Service Digital Network (ITU-T 1.321)

DQODB Distributed Queue Dual Bus

Ethernet normal LOMbit Ethernet (IEEE $02.3)

GSM Global System for Mobile Communication

DCS- Digital Cellular System

|

PSTN Public Switched Telephone Network

Id. at 138 (Table 6: “Possible Values for the Attribute Bearer”). See also id. at 151 (Figure 9,

showing “Service Gateways’); Ex. 3 (Pfeifer96) at 126 (“Service Gateways” for “phone . . . fax .

mail... multimedia conferencing,” etc.). Thus, an incoming communication over any of

those packet-oriented networks would comprise “a message having a sequence of packets.”

ii. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders

obvious this element.

As explained in the following section, Pfeifer97 further confirms an incoming data type is

crucial for determining the series of conversions needed to deliver the message to its intended

recipient at his or her current location. See a/so Claim 1(i) above.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Pfeifer97 181

JNPR-IMPL_30024_

iii. “dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders

obvious this element.

As explained above, when an incoming connection is initiated (7.e., when the first packet

of the message has been received by iPCSS), the system must determine (1) a data type (e.g., the

“medium’’) for the incoming message (e.g., is it a voice call, a fax, or an email?); and (2) its

intended “recipient” (7.e., the “called party”). See Section V.C.1 (Pfeifer96 102) at Claim

above.

Pfeifer97 confirms that determining a data type for the incoming message is a crucial part

of selecting an appropriate sequence of converters for the message. Ex. 12 at 133

(“automated, intelligent decisions how to. .. bridge any form of communication with any other

.... For automated handling, the heterogeneity of communication has to be classified precisely,

allowing the system to match components for various purposes within a huge construction kit’),

134-35 (“Medium” being a key attribute of the “Teleservice Descriptor’).

Pfeifer97 also confirms the sequence of converters is identified dynamically. Pfeifer97

teaches that as part of the “Automatic Resource Selection” performed by iPCSS, the system will

“find the most appropriate terminal for a requested Teleservice at the [called] user’s current

location dynamically.” /d. at 143. Pfeifer97 provides additional detail on the elaborate process

Inter Partes Reexamination of . .

USS. Patent No.7,711,857 Pfeifer96 + Pfeifer97 182

JNPR-IMPL_30024_

by which many possible candidate chains of converters to a terminal device are assembled and

evaluated for their potential “Quality of Service” in the course of connecting the call. id. at

147 (Calculating the Most Appropriate Device”), 148 (“Finding a Possible Converter Chain”:

“Each possible combination of converters with a final terminal [device] must be evaluated”;

“three converters and four terminals” lead to “60 possible converter chains”), 149 (“Calculating

the most appropriate chain”: “The temporary solutions are store and analyzed the next step

is to calculate the QoS [Quality of Service] for every single temporary solution”). Because

iPCSS constructs many possible candidate chains and performs a complex Quality of Service

analysis on these candidate chains in the course of connecting a call (7.e., after it has received the

first packet of the message), it is clear that the ultimately selected chain of converters is selected

“dynamically,” under Implicit’s claim constructions. See id. at 146-50.

Pfeifer97 also confirms the converter components are arranged “such that the output

format of the components of the sequence match the input format of the next component in the

sequence.” at 146 (“The converters connected in series have only to meet one condition:

The Teleservice produced by the output of a connected converter has to match the Teleservice

of the inputof its successor.”).

Pfeifer97 also confirms that iPCSS considers the concatenation of many possible

individual converter components in the course of connecting a call, and that the ultimately

selected chain will have been composed by selecting individual components. F.g., id. at 148

(“Finding a Possible Converter Chain”: “three converters and four terminals” lead to “60

possible converter chains”).

iv. “storing an indication of... the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Pfeifer97 183

JNPR-IMPL_30024_

Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders obvious this

element.

As explained by Pfeifer96, once an optimal “converter chain” for the incoming message

has been generated, the chain “is instantiated as an object with stream interfaces.” Ex. 3 at 127.

Pfeifer97 provides further detail on this process, further confirming this object would endure

throughout the connection, e.g.: “Ifa valid converter chain was found, the included converters

have to be configured. This means, that streams have to be connected, the QoS [Quality of

Service] parameters have to be controlled and the connection has to be managed up the end of

the session.”). Ex. 12 at 149-50 (at end of section entitled “Calculating the most appropriate

chain”). Thus, an indication of the identified components is stored so it can be used for the

entirety of the session.

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96 in

view of Pfeifer97 renders obvious this element.

Pfeifer97 provides additional detail on the types of conversions and converter chains that

might be assembled (e.g., Ex. 12 at 135-36, 142-43), and additional detail on the process by

which the “scalable input/output parameters” of the converter components in Pfeifer96 (which

are “state information”) would be configured (e.g., id. at 144-45, 149-50). It thus confirms the

analysis presented under Section V.C.2 (Pfeifer96 103) in several ways. See Section V.C.2

(Pfeifer96 103) at Claim I(v).

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Pfeifer97 184

JNPR-IMPL_30024_

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Pfeifer96 in view of Pfeifer97 renders obvious this element.

As explained above, Pfeifer96 in view of Pfeifer97 renders obvious a method “for

processing packets of messages,” including messages arriving via packet-oriented technologies

such as “ATM,” “ISDN,” and “Ethernet.” See Claim 1(i) above. Such packets would contain a

plurality of headers (e.g., a layer 2 header, a layer 3 header, and so on).

fi. “dynamically identify a sequence of components”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of

Pfeifer97 renders obvious this element.

As explained above, when an incoming connection is initiated (and after the first packet

of the message has been received), the iPCSS must determine (1) a data type (e.g., the

“medium’) of the incoming message (e.g., is it a voice call, a fax, or an email?); and (2) its

intended “recipient” the “called party”). See Section V.C.1 (Pfeifer96 102) at Claim

above. Pfeifer97 confirms that determining the identity of the called party is a crucial part of

selecting an appropriate sequence of converters for the message. E.g., Ex. 12 at 143 (“find the

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Pfeifer97 185

JNPR-IMPL_30024_

most appropriate terminal for a requested Teleservice at the [called] user’s current location

dynamically”).

One of ordinary skill would find it obvious to ascertain the called party by analyzing a

plurality of headers, including at least a layer 2 and a layer 3 header: e.g., analyzing a layer 3

header to obtain a destination address, and analyzing a layer 2 header to reach the layer 3 header

(including, e.g., confirming the validity of a layer 2 frame check sequence). One of ordinary

skill would also find it obvious to ascertain a data type by analyzing a plurality of headers: e.g.,

analyzing a layer 4 header to obtain a destination TCP/IP port, and analyzing the layer 2 and

layer 3 headers to reach the layer 4 header.

Other aspects of this claim element are discussed above. See Claim above.

iii. “storing an indication of... the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders obvious this

element. See Claim I(iv) above.

iv.
“state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96 in

view of Pfeifer97 renders obvious this element. See Claim 1(v) above.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Pfeifer97 186

JNPR-IMPL_30024_

(c) Claim 10

i. “A computer readable storage medium”

Claim 10 recites: “A computer readable storage medium, other than a data transmission

medium, containing instructions for processing packets of a message, the instructions comprising

at least one computer-executable module configured to... .” Under Implicit’s apparent claim

constructions, Pfeifer96 in view of Pfeifer97 renders obvious this element. See Claim 1(i)

(showing “processing packets of a message”) above.

il. Other claim elements

The remaining elements of claim 10 are also rendered obvious by Pfeifer96 in view of

Pfeifer97. See Claim 1 above.

6. Pfeifer96 in View of Cox Renders Obvious Claims 1, 15, and 35 Under

§ 103

The treatise “Superdistribution: Objects as Property on the Electronic Frontier’ by Brad

Cox (Exhibit 6, “Cox”) was published on June 28, 1996. It was not considered during

prosecution of the patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Cox in light of the background knowledge of one of

ordinary skill in the art, under 35 U.S.C. § 103.

(a) Claim 1

Claim recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Pfeifer97 187

JNPR-IMPL_30024_

processing the next packet of the message.” Under Implicit’s apparent claim constructions,

Pfeifer96 in view of Cox renders obvious this element.

The general thesis of Cox is that “the software development industry” is in the midst of a

“Software Crisis” caused by its over-reliance on a “pay-per-copy” revenue model. See, e.g., Ex.

6 at x-xi, 45-73 (Chapter 3: “Software Crisis”), 143-165 (Chapter 6: “Out of the Crisis”).

A major aspect of this crisis is that “small-granularity, reusable software components” are

essential for building complex systems in an efficient manner, yet it is precisely such small

components which lack a suitable revenue model. F.g., id. at 51-53 (“Software Complexity,”

lamenting that “software is hand-crafted, fabricated from first principles and not assembled from

prefabricated components”), 153 (‘We continue to fabricate everything from first principles

because there is no reliable way for those who might build smaller components to get paid. No

one invests in fabricating small software for others to assemble because the low-tech revenue

protection schemes do not work for small-granularity, low-priced objects such as reusable

software components.”).

Cox illustrates this lack of suitable revenue model for small, reusable components with a

telling example. Suppose “Vendor E” sells one of the smallest software components imaginable:

a “string compare component.” /d. at 153, 145.

Vendor E's best current option is to attach his small-granularity

product to something much larger, such as. . . [an off-the-shelf

compiler product]. The string compare component is then

perceived as free by the customer and by the vendor as a cost

center, not a profit center. This almost guarantees that managers
and stockholders will see inadequate incentives to test,

document, and maintain reusable components to the point that

others will be prepared to reuse them. The other option, which is

somewhat less feasible, is to bundle the string compare routine

with a large number of other components to produce a library large

enough to be worth the trouble of marketing it. The accepted
model for selling such libraries today is to charge a single

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Cox 188

JNPR-IMPL_30024_

relatively large fee, typically in the $500-$5000 range, for a license

that allows the customer to include the library in larger

applications.

This leads directly to the debilitating consequences I discussed in

Chapter 2. Since the price is large and not proportional to utility,
the vendor's income arrives all at once at the very beginning of the

relationship with the customer. This leads to precisely the same

dysfunction that farmers and millers would suffer if the miller sold

the baker a license to replicate all the wheat and flour he might
ever need in advance. Since the fee is large and fixed, small bakers

couldn't afford it and large bakers would have an unfair advantage.
Worse yet, the miller would have no incentive to improve the

product over time.

Id. at 153-54 (emphasis added). See also id. at 31-33 (a pertinent section of “Chapter 2”).

The solution to this crisis, according to Cox, is “an invocation-based metering” approach

which Cox styles “Superdistribution.” E.g., id. at 155, 169 (“invocation-based revenue

collection’) (emphasis in original). The goal of this “Superdistribution” approach is to “provide

a meter that supports revenue collection for components of any granularity. /d. at 156

(emphasis added). Assessing royalties based on actual usage of a component would solve a

number of problems, including the problem of Vendor E:

Instead of paying a large fee up-front, all customers, large and

small, get the component for free. Later, when they begin to sell

their own products based on this component, they pay a

negotiated) fee for using their subvendor's product. The subvendor

now receives a continuing revenue stream that is directly

proportional to the utility his component provides to his customers.

Id. at 154.

Thus, central to this “Superdistribution” approach advocated by the book is this

cumulative “invocation-counting” mechanism which “merely collects information about

invocations”: each time a software component employing this system is invoked, its usage

meter is incremented. See, e.g., id. at 174-75, 178. A “finanical institution” would later obtain

these “invocation counts” and convert them “to financial amounts due.” /d. at 182.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Cox 189

JNPR-IMPL_30024_

As suggested by its title (“Superdistribution’”), this entire book is devoted to proposing

this “invocation-based metering” approach it styles “Superdistribution,” and explaining the need

for it. E.g., id. at 155 (“Superdistribution” section in chapter entitled “Out of the Crisis”), 183

(“Everything is based on the simple invocation-metering logic discussed earlier”). The excerpts

cited above capture only a small portion of the extensive case made by the book for this solution.

One of ordinary skill in the art would readily see the relevance of Cox to the small,

reusable converter components of Pfeifer96. Though the Cox approach could obviously be

applied to metering the usage of any components in a large software system such as iPCSS, the

converter components of Pfeifer96 in particular would stand out as especially obvious candidates

for this treatment, because Pfeifer96 expressly teaches they may be “proprietary” external

components obtained “from different manufacturers,” rather than components developed

internally. Ex. 3 (Pfeifer96) at 108, 113-14.

representation adapter
ublect onented packaging

application
programmer interlace

proprictiary

Id. (Pfeifer96) at 113 (Figure 7: “Generic converter model,” showing a “proprietary conversion

library”).

These converters of Pfeifer96 thus epitomize the “small-granularity reusable software

components” discussed throughout Cox. -.g., Ex. 6 at 15, 35, 71, 90, 145, 153. Indeed,

Pfeifer96 teaches an entire infrastructure for mixing and matching these components

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Cox 190

JNPR-IMPL_30024_

interchangeably into “converter chain[s]” for various purposes—so they are continually being

reused on even a message-by-message basis. /.g., Ex. 3 at 116, 122-24.

Motivation to apply the “Superdistribution” technique to the iPCSS converters is supplied

throughout Cox, including fostering “a commercially robust market in prefabricated software

components.” See Ex. 6 at ix, 143, 163-64. Such a market would make it easier for the iPCSS

provider to quickly obtain high-quality converters to bridge between continuously emerging

communications formats. See id. Without such an approach, potential vendors of such

proprietary conversion libraries would experience precisely the economic difficulties facing

Vendor E in the example above, and thus few such libraries would be available to iPCSS. See id.

at 153-55.

Every distinct product being billed with the Cox technique requires its own invocation

count, and it was obvious for any or all of the converters in a particular chain to employ the

technique. E.g., Ex. 6 (Cox) at 174-76. Each converter could come from a different vendor

(who must be separately paid), and even converters from the same vendor may be priced

differently (e.g., depending on complexity). Ex. 3 (Pfeifer96) at 109 (“The range of

conversions varies tremendously in effort, cost, and required resources. Some kinds are easy to

implement with two lines of C code .. . while others are highly complex, requiring

approaches of artificial intelligence (e.g, speech recognition)’).

Maintaining its invocation count would be an integral part of the processing performed

by each component, since without it the economic model fails and iPCSS would lose the use of

the component. And maintaining an invocation count per component would clearly entail (as

recited by claim 1) “performing the processing of the each packet by the identified component;

and storing state information relating to the processing of the component with the packet for use

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Cox 191

JNPR-IMPL_30024_

when processing the next packet of the message”—when the count will be retrieved and

incremented again.

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message..” Under Implicit’s apparent claim constructions,

Pfeifer96 in view of Cox renders obvious this element. See Claim 1 above.

(c) Claim 10

Claim 10 recites in pertinent part: “for each of a plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96 in

view of Cox renders obvious this element.

7. Pfeifer96 in View of Meer96 Renders Obvious Claims 1, 4, and 10

Under § 103

The dissertation “Dynamic Configuration Management of the Equipment in Distributed

Communication Environments” by Sven van der Meer (Exhibit 8, “Meer96”) was published on

October 6, 1996.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Meer96 in light of the background knowledge of one of

ordinary skill in the art, under 35 U.S.C. § 103.

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 + Cox 192

JNPR-IMPL_30024_

It was obvious to consider Pfeifer96 in view of Meer96 because both documents describe

the “Intelligent Personal Communication Support System (iPCSS),” and Meer96 cites to

Pfeifer96 for certain concepts. See Ex. 8 at 15 (citations to “Pfeifer96b”), 123 (“Pfeifer96b”:

“Generic Conversion of Communication Media for supporting Personal Mobility. To appear in

the proceedings of the Third COST 237 Workshop . . . Nov 25-27, 1996”).

Because Pfeifer96 and Meer96 are so similar in approach and detail, Meer96 reinforces

and confirms the analysis of claims 1, 4, and 10 presented in Section V.C.2 (Pfeifer96 103) in

many ways. E.g., Ex. 8 (Meer96) at 10 (“Dynamic Terminal Selection”), 14 (‘Theory of

Conversion”), 69 (“Resource Configurator’). Some particularly pertinent aspects of Meer96 are

pointed out below.

(a) Claim 1

Claim 1 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.”

Both Pfeifer96 and Meer96 teach that as a matter of internal architecture, each converter

is managed by its own “Mediator”:

inaaering: Ayianioady guneraind convener ihain jomverng oaatiine pate ‘CARN

seca eres
us

sone atroat

chain of

Mediator/
Converters

Resource

Configurator

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Meer96 193

JNPR-IMPL_30024_

Ex. 3 (Pfeifer96) at 125 (Figure 12: “Converter chain, configured for a specific task,” showing

“Resource Configurator” having orchestrated an arrangement wherein each “Converter” has its

own “Mediator SAP”). See also id. at 124 (“Each converter is subordinated to its specific

MSAP,” which is “designed for the purpose of dynamic binding of converters”). Meer96 echoes

this general organization:

CRM CPE

boundary
Resource

Configurator

dynarcicaly generated converter chair

{oorering miulicds hosis and devines)

‘,

|

chain of
Mediator/
Converters

Mextahor

Mediator Tepminal

.| Mectlatce

le
Converter

al pee |
Convertermeee

|g

Ex. 8 (Meer96) at 73 (Figure 4-17: “Computational Modeling Converter Chain,” showing

“ReCo” [Resource Configurator] having created a “dynamically generated converter chain”

wherein each “Converter” has its own “Mediator”. See also, e.g., id. at 73-74 (each “Converter”

in the diagram “represents the real [conversion] resource,” while each “Mediator” is “controlling

software” which can “parameterize” its Converter and “configure [its] stream interfaces”).

As suggested by the phrase “covering multiple hosts and devices” in Figure 4-17, Meer96

teaches that while not required, it is possible for particular “converter units developed as

software” to reside on remote hosts. /d. at 73 (Figure 4-17), 53-54. This flexibility of

component positioning is possible because there exist “well defined and practical tested

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Meer96 194

JNPR-IMPL_30024_

interworking of different network technologies.” See id. at 54. Specifically, Meer96 teaches that

remotely positioned converters could be communicated with in at least three manners: (1) “via

shared file-systems” as in “a UNIX operating system,” because “[n]Jetwork wide available files

can be used to transmit data from one application to another, without any consideration about the

host the software is running on”; (2) via “System V Inter-Process Communication (IPC),” which

must “be taken into account as [a possible] transmission service”; and (3) via “seamless FTP and

HTTP connections” which will be supported by “[fJuture operating systems.” /d. at 54-55.

Thus, using one of these three methods, the mediator for a remotely positioned converter

can ensure that as data arrives via the converter chain for processing, the data can be routed to

the remote converter and the remote converter can return its results. See id. at 53-54, 65-68.

One of ordinary skill would recognize that applying any of these three methods would

require use of a network transport protocol, since the converter being communicated with is

located across a network on a remote host. One of ordinary skill would find use of a network

transport protocol from the TCP/IP suite to be the most obvious choice, both because it was the

most popular protocol suite in the world at the time, and because it is integral to the “UNIX

operating system” cited by Meer96 /d. at 54. There are two network transport protocols within

TCP/IP: 7.e., TCP and UDP. Either would be an obvious choice, but 7CP was especially obvious

because (unlike UDP) it provides for “reliable data transmission with sophisticated error

detection and correction,” and because it is the defau/t network transport protocol for “FTP” and

“HTTP,” and is also commonly used for implementing “shared file-systems” in “UNIX” such as

NFS (Network File System). See id. at 54, 112.

Having made the obvious choice of TCP to communicate with a remote converter module

using any of the three methods mentioned above, one of ordinary skill would recognize the

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 + Meer96 195

JNPR-IMPL_30024_

desirability of maintaining an ongoing TCP connection to the converter, for reasons of

performance. Since a remote converter must be contacted to process every packet in an

incoming stream, the additional overhead of opening and closing a new TCP connection to

deliver every incoming packet would clearly be unattractive, and easily avoided by simply

maintaining an ongoing TCP connection between the mediator and its remote converter.

And finally, one of ordinary skill would recognize that maintaining an ongoing TCP

connection to a remote converter module would entail maintaining “state information” across

packets in the manner recited by claim 1. See, e.g., id. at 53, 73-74. For example, TCP includes

an outgoing sequence number with each packet,” so transmitting a packet of the message from a

mediator to a remote converter module would entail retrieving the most recent sequence number,

advancing it, and storing the updated result so it could be used when processing the next packet

of the message. The sequence number is “state information relating to the processing of the

component” because it is used to transmit message data to the remote converter module for

processing.

Thus, considering the most obvious implementation of any of the three methods disclosed

by Meer96 for communicating with remote converters, this “state information” element would be

satisfied.

Meer96 places no restriction on the number of converters which could be positioned

remotely, so itis obvious that any or all of the converters in a chain might be remotely

positioned. See id. at 53-54, 65-68, 73-74.

See, e.g, Ex. 9 (RFC 793) (“Transmission Control Protocol” [TCP] Specification)

(1981) at 24 (section entitled “Sequence Numbers”: “A fundamental notion in the design is that

every octet of data sent over a TCP connection has a sequence number.”). This reference is cited

in this context solely to help explain the cited art. See MPEP § 2205.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Meer96 196

JNPR-IMPL_30024_

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message..” Under Implicit’s apparent claim constructions,

Pfeifer96 in view of Meer96 renders obvious this element. See Claim | above.

(c) Claim 10

Claim 10 recites in pertinent part: “for each of a plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96 in

view of Meer96 renders obvious this element. See Claim 1 above.

8. Pfeifer96 in View of Meer96 and RFC 793 Renders Obvious Claims 1,

4, and 10 Under § 103

The specification RFC 793: “Transmission Control Protocol” (Exhibit 9, “RFC 793”) by

the Information Sciences Institute was published in September 1981. It was not considered

during prosecution of the 857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96 in view of Meer96, then the inclusion of those

aspects certainly would be obvious over Pfeifer96 in view of Meer96 and RFC 793 in light of the

background knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

RFC 793 was cited immediately above under MPEP § 2205 as confirming certain

background knowledge regarding the stateful operation of TCP. See Section V.C.7

(Pfeifer96+Meer96) above.

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 + Meer96 197

JNPR-IMPL_30024_

It was also obvious to consider Pfeifer96 and Meer96 in view of RFC 793. As explained

above, TCP was an obvious choice for communicating with remote converter modules using any

of the three methods taught by Meer96. See Section V.C.7 (Pfeifer96+Meer96) above. Since

RFC 793 is the TCP specification, it would have been an obvious place to look for information

regarding the specific operation of that protocol.

In particular, RFC 793 confirms that maintaining an ongoing TCP connection to a remote

converter module would entail maintaining state across packets in the manner recited by claims

1,4, and 10. See Ex. 9 at 24 (section entitled “Sequence Numbers”: “A fundamental notion in

the design is that every octet of data sent over a TCP connection has a sequence number.”);

Section V.C.7 (Pfeifer96+Meer96) above.

9, Pfeifer96 in View of Franz98 Renders Obvious Claims 1, 4, and 10

Under § 103

The dissertation “Job and Stream Control in Heterogeneous Hardware and Software

Architectures” by Stefan Franz (Exhibit 7, “Franz98”) was published on April 22, 1998, and it

was not considered during prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Franz98 in light of the background knowledge of one of

ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to apply Franz98 to Pfeifer96 because the documents both describe the

“Intelligent Personal Communication Support System (iPCSS),” with Franz98 presenting further

detail regarding the control of jobs and streams in the iPCSS architecture. See, e.g., Ex. 7 at v,

91-94.

Inter Partes Reexamination of
1 9 8U.S. Patent No.7,711,857 Pfeifer96 + Meer96 + RFC 793

JNPR-IMPL_30024_

Because Pfeifer96 and Franz98 are so similar in approach and detail, Franz98 reinforces

and confirms the analysis of claims 1, 4, and 10 presented in Section V.C.2 (Pfeifer96 103) in

many ways. Ex. 7 (Franz98) at 7-16 (including “Resource Configurator” and “Converter

Framework”), 91-94 (including “Generic Converter Interface”). Some particularly pertinent

aspects of Franz98 are pointed out below.

(a) Claim 1

Claim recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.”

Both Pfeifer96 and Franz98 teach that as a matter of internal architecture, each converter

is managed by its own “Mediator”:

Innemning Ahiaivally ganercind converter obsin jerraring muitos pastel capa

SEER Seeks wise

chain of

Mediator/
Converters

Resource

Configurator

Ex. 3 (Pfeifer96) at 125 (Figure 12: “Converter chain, configured for a specific task,” showing

“Resource Configurator” having orchestrated an arrangement wherein each “Converter” has its

own “Mediator SAP”). See also id. at 124 (“Each converter is subordinated to its specific

MSAP,” which is “designed for the purpose of dynamic binding of converters”). Franz98 echoes

this general organization:

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 + Franz98 199

JNPR-IMPL_30024_

Resource

Configurator

chain of

-sieanguanusngasngaannaoasesen Medistor/
Converters

hak

Mediator erminal

Converter

Ex. 7 (Franz98) at 92 (Figure 6-1: “Location of Job and Stream Control within the context of the

iPCSS”). See also id. at 101-06.

Franz98 presents an elaborate, systematic analysis of the various software building blocks

that would be needed for “Job Control and Stream Control” in the iPCSS. id. at 50

(“Programs and Jobs” section’), 51 (“Processes” section), 55 (“Threads” section), 58 (“The File

System” section).

At the end of this lengthy analysis, Franz98 presents its conclusions regarding how

iPCSS should be structured, based on these building blocks. See id. at 91-112 (chapter entitled

Realisation”). In this “Realisation” chapter, Franz98 recapitulates some iPCSS architectural

concepts which would be familiar to readers of Pfeifer96, including that “one of the objectives of

the iPCSS is media conversion To provide media conversion more than one converter may

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Franz98 200

JNPR-IMPL_30024_

be employed. The converters are enchained and the result is named a converter chain.” /d.

(Franz98) at 93.

Franz98 explains that because of the system’s focus, “the term job .. . and the term

converter introduced by the iPCSS can be used synonymously” in its architectural analysis. /d.

Franz98 explains that “the control of a single converter” should be “encapsulated by an

object named Mediator.” Id. at 93 (emphasis in original). When a Mediator object is created for

use in a chain, “a new process is created” for that Mediator “containing three threads.” /d. at

101. Thus, each Mediator has its own process. And regarding the “three threads”: “one of these

threads is associated to the Job Control [converter] whereas the other two implement the Stream

Control” for the converter’s “input stream and output stream.” /d.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Franz98 201

JNPR-IMPL_30024_

GOT

Information! Manager

MEDIATOR Ped Mediator
Process

MEDTAR LoV
Rea

Goantent

task.

TAKE,

Inpul Stream

Thread
Output Stream

Thread
noe Guipat

Interfghe | SHteriece
|

Converter CJob}
Thread

Id. at 111 (Figure 6-9: “The final structure of the implementation”) (showing structure for a

single mediator and its associated converter).

Franz98 explains how threads work internally. See id. at 50-66. In a “multitasking”

system, it is “possible to load more than one program into the memory,” and these programs can

“be executed concurrently.” /d. at 50. Multitasking can be implemented using processes and

threads, and thread are “sometimes called lightweight processes.” Id. at 51, 55 (emphasis in

original). Threads have “several states of execution” including “Running” (e.g., while

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Franz98 202

JNPR-IMPL_30024_

processing incoming data) and “Blocked” (e.g., while waiting for new data to arrive). See id. at

57, 50-55, 91-101 .
Essential information associated with a thread includes “the contents of the registers of

the CPU” and “the current activity represented by the value of the program counter of the CPU.”

Id. at 55. Those of ordinary skill understand that threads start and stop in the ordinary course of

multitasking, and when a thread stops, “The only thing to do is to save the current activity and

the used set of registers of the CPU” (so they can restored when execution of the thread

resumes). /d. at 56 (emphasis added).

Thus, when a converter thread is paused (e.g., because it has finished processing a packet

or for other reasons), “state information relating to the processing of the component” (including

at least the current values of “the program counter of the CPU” and “the used set of registers of

the CPU”) is stored and subsequently re-loaded when the converter thread regains control (e.g.,

upon receiving the next packet). See id. at 55-57, 91-101.

This state information (including at least “the program counter of the CPU” and the “used

set of registers of the CPU”) is clearly “information relating to the processing of the component”;

indeed, the program counter and registers would change in response to virtually instruction

performed in the course of the converter’s processing of a packet, so their state at the moment

they were saved would clearly relate to that previous processing.

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message..” Under Implicit’s apparent claim constructions,

Pfeifer96 in view of Franz98 renders obvious this element. See Claim 1 above.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Franz98 203

JNPR-IMPL_30024_

(c) Claim 10

Claim 10 recites in pertinent part: “for each of a plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96 in

view of Franz98 renders obvious this element. See Claim 1 above.

10. Pfeifer96 in View of ISDN98, Nelson, Cox, Meer96, RFC 793, and

Franz98 Renders Obvious Claims 1, 4, and 10 Under § 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Pfeifer96 alone or in combination with the

various grounds of rejection presented above, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of ISDN98, Nelson, Cox, Meer96, RFC 793, and Franz98

under 35 U.S.C. § 103, under Implicit’s apparent claim constructions.

All of these references have already been combined with Pfeifer96 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Pfeifer96. This section briefly summarizes that material and shows the collective combination

of these references would be obvious as well.

Claims 1, 4, and 10 recite “dynamically identify a sequence of components.”

Pfeifer96 teaches an “iPCSS” system which “dynamically generate[s]” a chain of

converter components after the first packet of a message is received. Ex. 3 at 124.

Claims 1, 4, and 10 recite elements regarding “state information” as relating to “a

plurality of components.”

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 + Franz98 204

JNPR-IMPL_30024_

Pfeifer96 teaches converter components that would maintain “state information” across

packets in the manner recited by claims 1, 4, and 10: e.g., components for adapting ISDN

connections, and components which perform compression/decompression. ISDN98 confirms the

obviousness of employing stateful ISDN protocol adapter algorithms which would read on these

elements. Nelson confirms the obviousness of employing stateful compression/decompression

algorithms which would read on these elements.

Cox teaches an “invocation-based metering” technique which was obvious to apply to the

converter components of Pfeifer96, and this technique would read on these elements.

Meer97 explains that in the iPCSS system, a portion of every converter component could

be located across a stateful network connection (e.g., a TCP connection). RFC 793 confirms the

obviousness of employing a stateful connection algorithm in this context, which would read on

these elements.

Franz98 explains that in the iPCSS system, each converter component would maintain

state information across packets in a manner which would read on these elements, because of the

operating system “threading” structure used for the converter component jobs.

In short, there is no aspect of claims 1, 4, and 10 which was not obvious over the prior art

and combinations cited herein.

11. Pfeifer96 in View of Wetherall Renders Obvious Claims 1, 4, and 10

Under § 103

The article “The Active IP Option” (Exhibit 47, “Wetherall”) by David J. Wetherall and

David L. Tennenhouse was published by September 11, 1996. It was not considered during the

prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96 alone, then the inclusion of those aspects certainly

Inter Partes Reexamination of .

USS. Patent No.7,711,857 Pfeifer96 + various 205

JNPR-IMPL_30024_

would be obvious over Pfeifer96 in view of Wetherall in light of the background knowledge of

one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Pfeifer96 with Wetherall. Pfeifer96

discloses application-specific “Service Gateways” and the processing of incoming “video.” Ex.

3 at 126, 118. Wetherall teaches that its “Active IP Option” technique is “a generic capability”

that should be applied in particular to “application-specific service gateways” including “video

gateways.” Ex. 47 at 35, 33.

(a) Claim 1

i. “A method in a computer system...”

Claim 1 recites: “A method in a computer system for processing packets of a message,

the method comprising” Under Implicit’s apparent claim constructions, Pfeifer96 in view

of Wetherall renders obvious this element.

Wetherall teaches a technique called “Active Networks,” which “break with tradition by

allowing the network to perform customized computations on the user data.” Ex. 47 at 33. “For

example, a user of an active network could send a customized video transcoding program to a

node within the network (e.g., a router) and request that the node execute that program when

processing their packets.” /d.

Wetherall “retrofit[s]” these “active capabilities” atop “the existing Internet” by

exploiting the existing “options mechanism of the IP layer to carry program fragments.” /d. at

35. IP options are of flexible length and type (“generic type-length-value format of IP options’),

and Wetherall simply defines a new option type “to carry program fragments, which may be

encoded in a variety of languages.” /d. at 36.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 206

JNPR-IMPL_30024_

iP Header User Date.

program fragment

ve eg inserted in an iP option
field of an IP packet

J
wet ives teraz

ute)
ype Bangi tag, ywalue

Id. at 35 (Figure 1: “Format of the Active IP Option Field,” showing “code” in the “Tcl”

programming language’ embedded in an IP option field of a packet). Thereby, “passive packets

of present day architecture” are replaced “with active ‘capsules’ — miniature programs that are

executed at each router [or other device] they traverse.” /d. at 34-35 (‘video gateways” and

“application-specific service gateways” cited as other devices to support the technique).

Both the already-discussed components of Pfeifer96 and the actively-delivered

components of Wetherall would perform “processing” on the packets of a particular incoming

data stream (which would comprise a “messsage” under Implicit’s claim constructions). F.g.,

Ex. 47 (Wetherall) at 33 (‘a user of an active network could send a customized video transcoding

program to anode .. . and request that the node execute that program when processing their

packets.”) (emphasis added).

ii. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Wetherall renders

obvious this element.

“Ex. 47 (Wetherall) at 37 (“Our first language encoding is Tcl, which is processed by a

... Tcl interpreter” in the receiving device’s “kernel”).

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 207

JNPR-IMPL_30024_

In addition to the data type analysis performed by Pfeifer96 alone, Wetherall further

requires that the data type of IP option field(s) in a packet be analyzed, to determine whether

they contain code. /d. at 35-36.

ill. “dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Wetherall renders

obvious this element.

Wetherall teaches that each packet may contain both “User data” and one or more

programs in IP options field(s). /d. at 35 (“miniature programs,” and Figure 1 showing “User

Data” plus “IP options” fields). 36 (“These fragments are .. . executed by active routers along

the path taken by the datagram’).

Wetherall also teaches that “a user of an active network could send a customized video

transcoding program to a node within the network (e.g., a router) and request that the node

execute that program when processing their packets.” /d. at 33.

Pfeifer96 already employs converter components which apply “appropriate

encoding/decoding” algorithms for “[c]onverting video formats.” Ex. 3 (Pfeifer96) at 113.

Applying Wetherall to Pfeifer96, a first packet of a video stream sent to Pfeifer96 could

contain both video data and one or more programs for performing coding and/or other

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 208

JNPR-IMPL_30024_

conversions on that video stream. Ex. 3 (Pfeifer96) at 118 (Figure 9 showing incoming “video”

converted to various mediums).

Either alone or as combined with other converter components identified for the message

by Pfeifer96, these programs would comprise “a sequence of components for processing a

plurality of packets of the message.”

The “data type” of the first packet is analyzed under Implicit’s claims constructions, e.g.,

by analyzing the data type of the IP option field(s) to determine whether they contain code.

Pfeifer96 alone also analyzes the source medium of the first packet (e.g., whether it is video

message), which would also comprise analyzing a “data type.” See Section A.B.1 (Pfeifer 102)

at Claim

The sequence is identified “dynamically” because some of its component(s) did not even

exist in the system until the first packet arrived. Indeed, it is difficult to imagine how a sequence

could be identified any more “dynamically” than by obtaining one or more of the identified

components from “the first packet” itself.

Other aspects of this element are discussed above. See Section V.C.2 (Pfeifer96 103) at

Claim

iv. “storing an indication of... the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Wetherall renders obvious this

element.

Wetherall teaches that actively delivered programs “can leave information behind in a

node,” and that this information “may be in the form of programs.” Ex. 47 at 34. Wetherall also

teaches that such actively delivered programs would be stored and applied to subsequent packets

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 + Wetherall 209

JNPR-IMPL_30024_

of a message. /d. at 33 user... could send a customized video transcoding program to a

node within the network .. . and request that the node executed that program when processing

their packets.”) (emphasis added).

This element is discussed further above. See Section V.C.2 (Pfeifer96 103) at Claim

I(iv).

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96 in

view of Wetherall renders obvious this “state information” element

Wetherall teaches that each actively delivered component can “leave a small amount of

associated state at each node along the path it traverses.” Ex. 47 at 34. “Subsequent packets can

include code whose execution is dependent on this state.” /d.

This element is discussed further above. See Section V.C.2 (Pfeifer96 103) at Claim

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Pfeifer96 in view of Wetherall renders obvious this element.

In addition to the need for Pfeifer96 alone to analyze a plurality of headers of the

message (see Section V.C.1 (Pfeifer96 102) at Claim Wetherall teaches that one or more IP

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 210

JNPR-IMPL_30024_

options headers would need to be analyzed in order to obtain the program(s) they contain. Ex.

47 at 35-36.

il. dynamically identify a sequence of components”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of

Wetherall renders obvious this element.

In addition to the need for Pfeifer96 alone to analyze a plurality of headers of the first

packet to identify a sequence of components (see Section V.C.1 (Decasper98 102) at Claim

4(ii)), Wetherall teaches that one or more IP options headers would need to be analyzed as well,

in order to obtain the program(s) they contain. Ex. 47 at 35-36. Other aspects of this element are

discussed above. See Claim 1(ii1) above.

iil. “storing an indication of... the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Wetherall renders obvious this

element. See Claim (iv) above.

iv. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

Inter Partes Reexamination of
2 1U.S. Patent No.7,711,857 Pfeifer96 + Wetherall

JNPR-IMPL_30024_

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96 in

view of Wetherall renders obvious this element. See Claim 1(v) above.

(c) Claim 10

Pfeifer96 in view of Wetherall renders obvious claim 10. See Claim 1 above.

12. Pfeifer96 in View of Wetherall, ISDN98, and Nelson Renders Obvious

Claims 1, 4, and 10 Under § 103

All of these references have already been combined with Pfeifer96 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Pfeifer96. As applied to the previous combination of Pfeifer96 in view of Wetherall, ISDN98

and Nelson further confirm that “a plurality of components” in a sequence would maintain “state

information” across packets in the manner recited by claims 1, 4, and 10. See Sections V.A.11

(Pfeifer96+Wetherall) and V.A.3 (Pfeifer96+ISDN98+Nelson) above.

13. Pfeifer96 in View of Li Renders Obvious Claims 1, 4, and 10 Under

§ 103

The paper “Active Gateway: A Facility for Video Conferencing Traffic Control” (Exhibit

48, “Li”) by Shunge Li and Bharat Bhargava was published on February 1, 1997. It was not

considered during the prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Li in light of the background knowledge of one of ordinary

skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Pfeifer96 with Li. Pfeifer96 teaches a

“Services Gateway[]” for “multimedia conferencing,” and the processing of incoming “video” as

controlled by adjustable “Quality of Service (QoS) parameters.” Ex. 3 at 126,118,115. Li

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 212

JNPR-IMPL_30024_

teaches an “Active Gateway” which applies “active network” technology to “video conferencing

traffic and quality of service (QoS) control.” Ex. 48 at 24, 1.

(a) Claim 1

i. “A method in a computer system...”

Claim | recites: “A method in a computer system for processing packets of a message,

the method comprising... .” Under Implicit’s apparent claim constructions, Pfeifer96 in view

of Li renders obvious this element.

Both Pfeifer96 and Li teach that the packets of an incoming message arrive at a

“gateway” where they are processed, and such a gateway would comprise “a computer system”

under Implicit’s apparent claim constructions. Ex. 3 (Pfeifer96) at 23 (“Service Gateways,” e.g.,

for “multimedia conferencing”); Ex. 48 (Li) at 10 (Figure 3: “Components of an Active

Gateway” for video conferencing, including “Input Packet Queues’).

il. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Li renders

obvious this element. Pfeifer96 teaches this, and Li additionally determines a data type of a

packet by determining if it is an “active network” packet containing embedded “Tcl scripts.” See

Section V.C.1 (Pfeifer96 102) at Claim 1(i1); Ex. 48 at 7.

iii. “dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 213

JNPR-IMPL_30024_

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Li renders

obvious this element.

Implicit has characterized the “dynamically identify” element as encompassing the ability

of a network “administrator” to modify or create “Policy Files to change how traffic is managed

at runtime.” Ex. 37-D (Implicit Technical Tutorial) at 35; see generally id. at 26-42. For

example, Implicit has applied this claim construction to the example of a “system administrator”

who can “dynamically” implement changing policies to block or permit access to YouTube for

certain times or users:

The beauty — and object — of the Implicit system lay in its flexibility.
Since a stateful path was not identified and instantiated until pest-first
packet, the system could be changed, dynamically on the fly. New

components could be added, new rules or policies developed, all as

new needs arose. For example, a system administrator could decide

how to process particular types of traffic (no You Tube between noon

and one) and then change the rules — or policies — the next minute or

the next day (only CEO gets You Tube).

Ex. 37-A Umplicit Opening Claim Construction Brief) at 9 (emphasis added).

Li takes such dynamic configurability by a human administrator at run-time for granted

as “typical” of the prior art—-and extends the notion even further by permitting dynamic

configuration of its “active gateways” to be performed by Tcl programs embedded in “active

network” packets:

An active network isn't something that is different from current

networks in its entirety For example, a typical commercial

router... can be easily configured by system administrators based

on their running environments. This kind of configurability is very
limited compared to the programmability the active network

offers, however, because human knowledge about when and what

to configure in the router under a certain condition has not been

incorporated into a program; the configuration task is currently

performed through human interaction with the router at run

time. With active network, we can program this human knowledge

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 214

JNPR-IMPL_30024_

into the configuration task and launch the program at the

intermediate routers. Routers will no longer need the system
administrators to configure them; the program does it all...

Active gateways support many control policies and scheduling

policies that can be either static or dynamic or both. During

initialization, an active gateway loads predefined policies. During
execution of a program, a newly defined policy can be taken into

effect by replacing the current policy. This dynamic

reconfigurability of policies can be programmed in Tcl scripts.
Each policy has a unique policy number and is implemented as a

Tcl procedure. Therefore, a policy can be overwritten by

redefining the corresponding Tcl procedure on-the-fly.

Ex. 48 at 3, 12 (emphasis added). Regarding these “Tcl scripts,” Li teaches they “are

encapsulated in UDP datagrams, which are in turn delivered in conventional networks.” at 7.

By embedding these Tcl scripts in IP packets, Li is expressly following the teaching of the

Wetherall article discussed above. See Ex. 48 (Li) at 3 (citing the Wetherall article

and observing it teaches “Tcl scripts... embedded in IP packets”).

The difference in emphasis between Wetherall and Li is that Li stresses these actively-

delivered Tcl programs can be used to dynamically reconfigure the policies of the receiving

device. E.g., id. at 13 (‘dynamical reconfiguration of parameters and policies”).

Regarding such dynamic reconfiguration by Tcl scripts, Li teaches certain “primitives”

which “are the smallest programmable units that can perform the most basic functionality for a

specific application in an active network.” /d. at 11. Primitives include operations on Quality of

Service (“QoS”) parameters such as “network QoS (querying link latency, throughput), and

application QoS (querying delay, jitter, connection information).” /d.

Li teaches “QoS Parameters” can be embedded directly in the headers of a packet:

UDP Header|RIP Header | QoS Parameters| Video Data

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 215

JNPR-IMPL_30024_

Id. at 14 (Table 2: Data Encapsulation in Modified Version of NV,” where NV is a “modified”

version of “a popular Internet video conferencing tool called Network Video”).

It was obvious to apply the dynamic configuration techniques of Li to Pfeifer96, because

Pfeifer96 also teaches the processing of incoming “video” and “multimedia conferencing”

messages, and does so based on “Quality of Service (QoS) parameters” concerning “delay,”

“jitter,” “input/output data volume” (throughput), and a number of other QoS aspects. Ex. 3

(Pfeifer96) at 119-20, 118, 126.

As applied to Pfeifer96, these techniques would permit the dynamic reconfiguration of

Pfeifer’s QoS parameters (or other policies) at any moment during runtime up to the first packet

of an incoming message, and would even permit the QoS parameters for the message to be

contained in the first packet itself. Ex. 48 (Li) at 14, 12. The QoS parameters are crucial for

identifying the most appropriate sequence of conversion components for a message, and altering

the QoS parameters could alter the sequence of components identified. Ex. 3 (Pfeifer96) at 120

(“Comparing different possibilities of concatenating converters for a specific task requires a

complex evaluation of the quality parameters involved, performed at runtime.”). The

combination of Pfeifer96 and Li would therefore “dynamically identify a sequence of

components for processing a plurality of packets of the message,” under Implicit’s apparent

claim constructions.

The sequence is identified by “analyzing the data type of a first packet of the message”

because, e.g., the sequence is based on a determination of the message’s source medium (e.g., is

it video?). This and other aspects of the larger claim element are discussed above. See Section

V.C.2 (Pfeifer96 103) at Claim

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 216

JNPR-IMPL_30024_

iv. “storing an indication of . . . the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 renders obvious this element. See Section

V.C.2 (Pfeifer96 103) at Claim I(iv).

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96

renders obvious this element. See Section V.C.2 (Pfeifer96 103) at Claim 1(v).

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Pfeifer96 in view of Li renders obvious this element.

In addition to Pfeifer96’s existing need to analyze a plurality of headers of the message,

Li teaches that a header containing pertinent “QoS Parameters” would need to be analyzed as

well.

| UDP Header|REP Header |QoS Parameters | Video Data

Ex. 48 at 14 (Table 2).

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 217

JNPR-IMPL_30024_

ii. dynamically identify a sequence of components”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Li

renders obvious this element.

In addition to Pfeifer96’s existing need to analyze a plurality of headers of the message to

dynamically identify a sequence of components, Li teaches that a header containing pertinent

“QoS Parameters” would need to be analyzed as well. Ex. 48 at 14. Other aspects of this

element are discussed above. See Claim (iit).

ili. “storing an indication of. . . the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 renders obvious this element. See Claim 1(iv)

above.

iv. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Pfeifer96

renders obvious this element. See Claim 1(v) above.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 218

JNPR-IMPL_30024_

(c) Claim 10

Pfeifer96 in view of Li renders obvious claim 10. See Claim 1 above.

14, Pfeifer96 in View of Li, ISDN98, and Nelson Renders Obvious Claims

1, 4, and 10 Under § 103

All of these references have already been combined with Pfeifer96 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Pfeifer96. As applied to the previous combination of Pfeifer96 in view of Li, ISDN98 and

Nelson further confirm that “a plurality of components” in a sequence would maintain “state

information” across packets in the manner recited by claims 1, 4, and 10. See Sections V.A.13

(Pfeifer96+Li) and V.A.3 (Pfeifer96+ISDN98+Nelson) above.

15. Pfeifer96 in View of Wetherall and Li Renders Obvious Claims 1, 4,

and 10 Under § 103

These references have already been combined with Pfeifer96 in corresponding sections

above, and those sections should be consulted for the detailed manner of applying them to

Pfeifer96.

It was obvious to supplement the teachings of Pfeifer96 with Wetherall and Li. Pfeifer96

discloses application-specific “Services Gateways” (e.g., for “multimedia conferencing”), and

the processing of incoming “video” as controlled by “Quality of Service (QoS) parameters.” Ex.

3 at 126, 118, 115. Wetherall teaches “Active Networks,” which is “a generic capability” that

should be applied in particular to “application-specific service gateways” including “video

gateways.” Ex. 47 at 35, 33. Li expressly cites Wetherall and is similarly directed to providing

an “active network” capability, including through provision of an “Active Gateway” which

applies “active technology to... video conferencing traffic and quality of service (QoS)

control.” Ex. 48 (Li) at 24, 1.

Inter Partes Reexamination of

U.S. Patent No.7,71 Pfeifer96 + Wetherall 219

JNPR-IMPL_30024_

The combination of these references would enable the first packet of an incoming

message to contain both: (1) per Wetherall, one or more components for processing the

message; and (2) per Li, “QoS Parameters” which would influence the selection of components

for the converter sequence. For at least these reasons, the identification of components would be

performed “dynamically,” based on the first packet of the message.

Li also teaches that by sending the system active packets containing suitable Tcl

configuration scripts, the system’s controlling policies and parameters could be dynamically

reconfigured at any moment during runtime up to the first packet of an incoming message.

Under Implicit’s apparent claim constructions, such a system would also read the “dynamic[]’”

aspect of these claims.

16. Pfeifer96 in View of Wetherall, Li, ISDN98, and Nelson Renders

Obvious Claims 1, 4, and 10 Under § 103

All of these references have already been combined with Pfeifer96 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Pfeifer96. As applied to the previous combination of Pfeifer96 in view of Wetherall and Li,

ISDN98 and Nelson further confirm that “a plurality of components” in a sequence would

maintain “state information” across packets in the manner recited by claims 1, 4, and 10. See

Sections V.A.15 (Pfeifer96+Wetherall+Li) and V.A.3 (Pfeifer96+ISDN98+Nelson) above.

17. Pfeifer96 in View of Pfeifer97 and Alam Renders Obvious Claims 1, 4,

and 10 Under § 103

U'S. Pat. No. 6,104,500 entitled “Networked Fax Routing Via Email” by Hassan Alam

al. (Exhibit 13, “Alam”) was filed on April 29, 1998, and it was not considered during

prosecution of the ‘163 patent. It was obvious to apply Alam to Pfeifer96 and Pfeifer97 because

both of these iPCSS documents describe scenarios in which an incoming fax is routed via a chain

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Pfeifer96 + Wetherall 220

JNPR-IMPL_30024_

of converters to some other destination for consumption by the called party. Ex. 3

(Pfeifer96) at 111, Ex. 12 (Pfeifer97) at 10.

As explained above, such incoming fax scenarios may clearly read on claims 1, 4, and 10.

E.g., Section V.C.1 (Pfeifer96 102).

Alam confirms such routing would indeed be enabled, and supplies additional detail on

how the called party of such an incoming fax could be obtained. Specifically, Alam teaches that

the fax image may be scanned, e.g., “to locate name fields . . . based upon their nearness to and

relationship with keywords. Keywords associated with the addressee’s name such as ‘To,’

‘Recipient,’ ‘Attn’ or ‘Dear’ point to the addressee name.” Ex. 13 at 9:15-21. Once the

destination party is determined, the iPCSS is clearly capable of determining that user’s location

and routing the communication to a terminal in the user’s vicinity. E.g., Ex. 3 at 119, 123-24.

18. Pfeifer96 in View of Pfeifer97 and Yun Renders Obvious Claims 1, 4,

and 10 Under § 103

USS. Pat. No. 5,298,576 entitled “Apparatus for Discriminating an Audio Signal as an

Ordinary Vocal Sound or Musical Sound” by San-Lak Yun ef a/. (Exhibit 14, “Yun”) was filed

on December 3, 1991 and issued on March 29, 1994. It was not considered during prosecution

of the ‘857 patent. It was obvious to apply Alam to Pfeifer96 and Pfeifer97 because together the

two iPCSS documents provide fuller detail on the iPCSS system, and because Pfeifer97 teaches a

specific conversion between “audio” and “video” wherein the audio is displayed as “music notes

on video.” Ex. 12 at 6.

By teaching an “apparatus for discriminating a received audio signal as vocal sound or

musical sound,” Yun suggests how that specific conversion would be implemented and applied

in practice. See Ex. 14 at Abstract. For example, example, incoming audio communications

could be routed in one manner if they contain music (e.g., to a screen for viewing “music notes

Inter Partes Reexamination of . 4

USS. Patent No.7,711,857 Pfeifer96 + various 221

JNPR-IMPL_30024_

on video”), and in another if they contain voice (e.g., to a “speech recognition” component).

Eg., Ex. 12 at 6 (display of music notes”; “speech recognition”). Such a conversion involving

audio to video conversion would read on claims 1, 4, and 10 of the ‘857 patent. See, e.g.,

Section V.C.1 (Pfeifer96 102).

19. Pfeifer96 in View of Meer96, Arbanowksi96, Pfeifer97, and Franz98
Renders Obvious Claims 1, 4, and 10 Under § 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Pfeifer96 alone or in combination with the

various grounds of rejection presented above, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Meer96, Arbanowski96, Pfeifer97, and Franz98 in light of

the background knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103, under

Implicit’s apparent claim constructions.

All of these references have already been combined with Decasper98 in corresponding

sections above. Though these documents emphasize different aspects of the iPCSS platform,

collectively they provide a comprehensive picture of the system as a whole, including its design

and possible uses.

20. Pfeifer96 in View of Meer96, Arbanowski96, Pfeifer97, Franz98,
ISDN98, Nelson, Cox, RFC 793, Alam, and Yun Renders Obvious

Claims 1, 4, and 10 Under § 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Pfeifer96 alone or in combination with the

various grounds of rejection presented above, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Meer96, Arbanowski96, Pfeifer97, Franz98, ISDN98,

Nelson, Cox, RFC 793, Alam, and Yun in light of the background knowledge of one of ordinary

skill in the art under 35 U.S.C. § 103, under Implicit’s apparent claim constructions.

Inter Partes Reexamination of .

USS. Patent No.7,711,857 Pfeifer96 + various 222

JNPR-IMPL_30024_

All of these references have already been combined with Pfeifer96 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Pfeifer96. This section briefly summarizes that material and shows the collective combination

of these references would be obvious as well.

Claims 1, 4, and 10 recite “dynamically identify a sequence of components.”

Pfeifer96 teaches an “iPCSS” system which “dynamically generate[s]” a chain of

converter components after the first packet of a message is received. Ex. 3 at 124. Meer96,

Arbanowski96, Pfeifer97, and Franz98 also provide pertinent details on this process.

Claims 1, 4, and 10 recite elements regarding “state information” as relating to “a

plurality of components.”

Pfeifer96 teaches converter components that would maintain “state information” across

packets in the manner recited by claims 1, 4, and 10: e.g., components for adapting ISDN

connections, and components which perform compression/decompression. ISDN98 confirms the

obviousness of employing stateful ISDN protocol adapter algorithms which would read on these

elements. Nelson confirms the obviousness of employing stateful compression/decompression

algorithms which would read on these elements.

Cox teaches an “invocation-based metering” technique which was obvious to apply to the

converter components of Pfeifer96, and this technique would read on these elements.

Meer97 explains that in the iPCSS system, a portion of every converter component could

be located across a stateful network connection (e.g., a TCP connection). RFC 793 confirms the

obviousness of employing a stateful connection algorithm in this context, which would read on

these elements.

Inter Partes Reexamination of .

USS. Patent No.7,711,857 Pfeifer96 + various 223

JNPR-IMPL_30024_

Franz98 explains that in the iPCSS system, each converter component would maintain

state information across packets in a manner which would read on these elements, because of the

operating system “threading” structure used for the converter component jobs.

Alam and Yun provide additional on how specific conversions might be implemented

and applied in practice.

Finally and more generally, Pfeifer96, Meer96, Arbanowski96, Pfeifer97, and Franz98

collectively provide a comprehensive picture of the iPCSS platform, including its design and

possible uses.

In short, there is no aspect of claims 1, 4, and 10 which was not obvious over the prior art

and combinations cited herein.

D. Kerr (Exhibit 15)

U’S. Patent No. 6,243,667 entitled “Network Flow Switching and Flow Data Export” by

Darren R. Kerr ef al. (“Kerr”) was filed on May 28, 1996, and it was not considered during

prosecution of the ‘857 patent.

1. Kerr Anticipates Claims 1, 4, and 10 Under § 102(e)

(a) Claim 1

i. “A method... for processingpackets of a message”

Claim | recites: “A method in a computer system for processing packets of a message,

the method comprising... .” Under Implicit’s apparent claim constructions, Kerr discloses this

element.

Kerr discloses “[a] method in a computer system.” For example, Kerr expressly states

that embodiments of its invention “may be implemented using a set of general purpose

computers.” Ex. 15 at 2:30-32; see also id. at Figs. 1, 3 (illustrating data structures in computer

network).

Inter Partes Reexamination of .

USS. Patent No.7,711,857 Pfeifer96 + various 224

JNPR-IMPL_30024_

Claim 1 further recites the method is “for processing a message having a sequence of

packets.” Kerr summarizes its invention in part as follows:

The invention provides a method and system for switching in

networks responsive to message flow patterns. A message "flow"

is defined to comprise a set of packets to be transmitted between a

particular source and a particular destination. When routers in a

network identify a new message flow, they determine the proper

processing for packets in that message flow...

Id. at 1:48-55 (emphasis added). In a preferred embodiment, packets are classified into flows on

the basis of five packet header fields: “IP address for the source device”; “IP address for the

99, 66 99, 66

destination device”; “protocol type”; “port number for the source device”; and “port number for

the destination device.” /d. at 3:55-65. See also id. at 2:61-3:2. Under Implicit’s apparent claim

constructions, a set of packets sharing the same values for those five header fields would

comprise a “message.”

ii. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Kerr discloses this element.

Packets are classified into flows as follows:

Ata step 221, the routing device 140 receives a packet 150.

At a step 222, the routing device 140 identifies a message flow 160

for the packet 150. In a preferred embodiment, the routing device

140 examines a header for the packet 150 and identifies the IP

address for the source device 120, the IP address for the destination

device 130, and the protocol type for the packet 150. The routing
device 140 determines the port number for the source device 120

and the port number for the destination device 130 responsive to

the protocol type.

Responsive to this set of information, the routing device 140

determines a flow key 310 (described with reference to FIG. 3) for

the message flow 160.

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Kerr Under § 102(a), (b) 225

JNPR-IMPL_30024_

Id. at 3:55-67 (emphasis added). “[P]rotocol type” would comprise a data type under Implicit’s

apparent claim constructions. Additionally, because the source and/or destination port number is

typically “a standard port number” indicating the application above (e.g., ...TELNET...

an internet telephone protocol, or an internet video protocol such as the ‘CUSeeMe’ protocol”), it

would also comprise a data type under Implicit’s apparent claim constructions. /d. at 3:5-14.

ili. “dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Kerr discloses this element.

Implicit has characterized the “dynamically identify” element as encompassing the ability

of a network “administrator” to modify or create “Policy Files to change how traffic is managed

at runtime.” Ex. 37-D [Implicit Technical Tutorial] at 35; see generally id. at 20-42. For

example, Implicit has applied this claim construction to the example of a “system administrator”

who can “dynamically” implement changing policies to block or permit access to YouTube for

certain times or users:

The beauty — and object — of the Implicit system lay in its flexibility.
Since a stateful path was not identified and instantiated until post-first
packet, the system could be changed, dynamically on the fly. New

components could be added, new rules or policies developed, all as

new needs arose. For example, a system administrator could decide

how to process particular types of traffic (no You Tube between noon

and one) and then change the rules — or policies — the next minute or

the next day (only CEO gets You Tube).

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Kerr Under § 102(a), (b) 226

JNPR-IMPL_30024_

Ex. 37-A [Implicit Opening Claim Construction Brief] at 9 (emphasis added).

Kerr discloses “dynamically identify” under Implicit’s apparent claim construction. Kerr

explains that a “message flow may be identified responsive to. .. . relative network congestion

or administrative policies.” Ex. 15 at 3:28-34. One specific example Kerr provides of

“enforcing administrative policies” is to “monitor... access using the HTTP protocol to world

wide web pages at particular sites.” /d. at 5:33-40. Policies may be applied and information

collected about access to “web page[s] in response to date and time of access,” including

parameters regarding “HTTP access” during “particular dates or times,” particularly “accesses

which occur outside normal working hours.” /d. at 9:34-60. Another example in Kerr is to

“monitor usage information regarding relative use of network resources” in real time for packet

prioritization purposes. /d. at 5:41-49.

Kerr also makes clear that administrators can make other rule-based or policy changes

during runtime, which falls within the scope of “dynamically identify a sequence of

components” under Implicit’s apparent claim construction. See Section IV. For example, Kerr

evaluates “changed conditions” that may occur during the lifetime of a flow after the first

packet of that flow), such as “changes in access control lists or other changes which might

affect the proper treatment of packets 150 in the message flow 160.” Ex. 15 at 6:13-18. Ifa

runtime change in an access control list so mandates, a flow will be “expired” in the flow cache.

Id.

The sequence of components is identified by “analyzing the data type of a first packet of

the message” because the sequence is tailored per flow, and flows are classified based on

multiple header fields which would comprise a data type, including “protocol type” and “port

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Kerr Under § 102(a), (b) 227

JNPR-IMPL_30024_

number for the source” and/or “port number for the destination.” /d. at 4:20-34, 3:58-67, 3:9-14.

See also Claim 1(i1) above.

The components disclosed in Kerr are used in a manner “such that the output format of

the components .. . match the input format of the next component,” under Implicit’s apparent

claim construction. See SectionTV. The Kerr system is properly capable of handling traffic in

“ethernet,” “IP,” “TCP,” and “UDP” formats (Ex. 15 at 2:48, 3:1, Fig. 4 (‘IP address cache’)), in

addition to application-layer protocols such as “HTTP protocol or the FTP protocol” (id. at 9:54-

55). As explained above, packets may be processed by multiple components in the course of

being successfully “transmitted between particular pairs of transport service access points.” /d.

at 2:57-58. Because packets compatibly move from component to component, this element is

satisfied under Implicit’s apparent claim construction.

The “dynamically identify” element as disclosed in Kerr (under Implicit’s apparent claim

construction) also “includes selecting individual components to form the sequence of

components after the first packet of the message is received.” As described above, the

components disclosed in Kerr are “select[ed]” as “individual components” (encryption, rewrite,

etc.) associated with a particular flow entry. Figure 2A of Kerr, for example, shows the step

“BUILD NEW ENTRY,” which is executed after the step of “RECEIVE PACKET” and occurs

only if the packet is identified as “NEW” it is the first packet in a new flow). /d. at Fig. 2A.

Implicit has indicated that instantiating in memory constitutes “creating” for purposes of the

patent. See Section IV. Kerr discloses a “flow cache” that “comprises a memory,” in which

message flows are “cached” when the system “identiflies] a new message flow.” Ex. 15 at 1:52-

54, 6:32.

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Kerr Under § 102(a), (b) 228

JNPR-IMPL_30024_

iv. “storing an indication of . . . the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Kerr discloses this element.

As explained above, after receiving the first packet of a new flow, Kerr builds a new flow

entry that is cached in memory, which constitutes “storing” under Implicit’s apparent claim

construction. Kerr also explains that building and caching a flow entry upon receiving the first

new packet in a flow is specifically performed so that information “does not need to be re-

identified for subsequent packets of the message,” as that term is apparently construed by

Implicit. Kerr explains that, for the sake of efficiency:

information about message flow patterns is used to identify packets
for which processing has already been determined, and therefore

to process those packets without having to re-determtine the same

processing

Thus, in a preferred embodiment, the routing device 140 does not

separately determine, for each packet 150 in the message flow

160, the information stored in the entry in the flow cache. Rather,
when routing a packet 150 in the message flow 160, the routing
device 140 reads the information from the entry in the flow cache

and treats the packet 150 according to the information in the entry
in the flow cache.

Ex. 15 at 1:33-36, 4:64-5:4 (emphasis added).

In other words, when the first packet of a flow arrives, Kerr goes through the somewhat

expensive and elaborate process of determining how the packets of that flow should be

treated: e.g., whether they should be encrypted, whether they should be modified or partially re-

written, and where they should be routed next. /d. at 1:33-35, 4:13-60. It then records all this

information about the proper processing for a flow by “build[ing] a new entry in the flow cache”

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Kerr Under § 102(a), (b) 229

JNPR-IMPL_30024_

for the flow, so the proper processing does not have to be wastefully and redundantly determined

again for subsequent packets of the flow. /d. at 4:12-13.

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr discloses

this “state information” element.

Implicit has taken a broad view of the “state information” limitations, arguing that they

cover the retrieval, use, and storage of the identified sequence of components (e.g., a flow

record) after the first packet is received. See Section TV. As demonstrated above (for the

“storing an indication” element), Kerr retrieves, uses, and stores flow records in this manner to

facilitate processing of packets in the same message after the first packet is received and a flow

entry built.

Kerr also discloses the retrieval, use, and storage of state information on a component-by-

component basis. For example, in one embodiment of Kerr, there are components for access

control, encryption, “special treatment,” accounting, rewrite, among others. Ex. 15 at 5:5-25.

The processing by these components is “all responsive to information in the entry in the flow

cache.” /d. at 5:9-10. As a specific example, an accounting component can maintain state

information, such as “time stamp” data, “a cumulative count for the number of packets,” and “a

cumulative count for the number of bytes.” /d. at 6:58-63. Kerr later uses timing information to

identify expired or otherwise invalid flows (among other reasons). /d. at 5:52 — 6:19. As another

example, Kerr can retrieve the latest “usage information regarding relative use of network

resources” in order to appropriately prioritize traffic using the relevant component. /d. at 5:41-

Inter Partes Reexamination of
2 3 0U.S. Patent No.7,711,857 Kerr Under § 102(a), (b)

JNPR-IMPL_30024_

49. These would also satisfy the “state information” limitations under Implicit’s apparent claim

construction.

(b) Claim 4

i. “A method... for processinga message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Kerr discloses this element.

As explained above, as packets arrive, they are classified into flows based on the

following packet header fields: “IP address for the source device”; “IP address for the destination

device”; “protocol type”; “port number for the source device”; and “port number for the

destination device.” /d. at 3:55-65. The first three fields are found in an IP packet’s layer 3

header, and the final two in its layer 4 header (e.g., TCP or UDP).*!

Other aspects of this claim element are discussed above. See Claim 1(i) above.

ii. “dynamically identify a sequence”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

See, e.g., Ex. 41 (REC 791) (IP Specification) (1981) at 11 (“Source Address”;
“Destination Address”; “Protocol”); Ex. 9 (RFC 793) (TCP Specification) (1981) at 15 (“Source

Port”; “Destination Port”). These references are cited in this context solely to help explain Kerr.

See MPEP § 2205.

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Kerr Under § 102(a), (b) 231

JNPR-IMPL_30024_

message is received.” Under Implicit’s apparent claim constructions, Kerr discloses this

element.

Regarding the limitation “analyzing the plurality of headers of a first packet of the

message to .. . identify a sequence of components,” Kerr teaches that the sequence is tailored per

flow, and flows are classified based on multiple header fields which would comprise a data type,

including “protocol type” and “port number for the source” and/or “port number for the

destination.” Ex. 15 at 4:20-34, 3:58-67, 3:9-14. See also Claim 1(ii) above.

Other aspects of this claim element are discussed above. See Claim above.

iil. “storing an indication of . the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Kerr discloses this element. See Claim 1{iv) above.

iv. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr discloses

this element. See Claim 1(v) above.

(c) Claim 10

i, “A computer readable storage medium”

Claim 10 recites in pertinent part: “A computer readable storage medium, other than a

data transmission medium, containing instructions for processing packets of a message, the

instructions comprising at least one computer-executable module configured to... .” Under

Implicit’s apparent claim constructions, Kerr discloses this element.

Inter Partes Reexamination of
2 3 2U.S. Patent No.7,711,857 Kerr Under § 102(a), (b)

JNPR-IMPL_30024_

Kerr teaches its invention may be performed by “a general purpose processor operating

under program control,” and it would be understood by those of ordinary skill that such a

controlling program would be loaded from a “computer readable storage medium, other than a

data transmission medium”: e.g., from a hard disk in the device. Ex. 15 at 2:53-54.

Other aspects of this claim element are discussed above. See Claim 1(i) above.

ii. Other claim elements

The remaining elements of claim 10 are also disclosed by Kerr. See Claim 1 above.

2. Kerr Renders Obvious Claims 1, 4, and 10 Under § 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed or inherent over Kerr, then the inclusion of those aspects certainly would be obvious

over Kerr in light of the background knowledge of one of ordinary skill in the art, under

35 U.S.C. § 103.

(a) Claim 1

i. “A method... for processingpackets ofa message”

Claim 1 recites: “A method in a computer system for processing packets of a message,

the method comprising... .” Under Implicit’s apparent claim constructions, Kerr renders

obvious this element.

Because Kerr teaches its invention may be performed by “a general purpose processor

operating under program control,” it was obvious to perform the method in a computer system.

Ex. 15 at 2:53-54. Other aspects of this claim element are discussed above. See Section V.D.1

(Kerr 102) at Claim 1(i) above.

il. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Kerr renders obvious this element.

Inter Partes Reexamination of
2 3 3U.S. Patent No.7,711,857 Kerr Under § 102(a), (b)

JNPR-IMPL_30024_

As packets arrive, they are classified into flows on the basis of five header fields

including “protocol type,” “port number for the source,” and “port number for the destination.”

Ex. 15 at 3:55-67. “[P]rotocol type” would comprise a data type under Implicit’s apparent claim

constructions. Additionally, because the source and/or destination port number is typically “a

standard port number” indicating the application above (e.g., “FTP... TELNET . . . an internet

telephone protocol, or an internet video protocol such as the ‘CUSeeMe’ protocol”), it was

obvious this would comprise “a data type” under Implicit’s apparent claim constructions. /d. at

il. “dynamically identify a sequence of components”

Claim | further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Kerr renders obvious this element.

Regarding the limitation “sequence of components,” it was obvious that the various

distinct operations performed on the packets of a particular flow would be organized as distinct

components. This is an elementary design technique, well-understood by those of ordinary skill

in the art. Indeed, Kerr expressly mentions its rewrite operation would be implemented as such.

Ex. 15 at 4:56-57 (“the flow cache includes a pointer to a rewrite function’) (emphasis added).

Regarding the limitation “such that the output format of the components ... match the

input format of the next component,” it was well-known to those of ordinary skill in the art that

certain operations on a packet must be performed in a certain order: e.g., if a packet is first

Inter Partes Reexamination of

USS. Patent No.7,711,857 Kerr Under § 103 234

JNPR-IMPL_30024_

converted into an encrypted format by a first component, a subsequent component would be

unable to, e.g., rewrite its headers (because it was expecting to receive the packet in an

unencrypted format). See Ex. 15 at 4:31-32 (‘encryption treatment for packets .. . in the

message flow”), 4:57-58 (“rewrite function for .. . a header for the packet”). Thus, it was at

least obvious for one of ordinary skill in the art to arrange the sequence of components in a

compatible manner, such that the output format of one matches the input format of the next—

rather than arranging them in an incompatible manner whereby various component(s) would be

unable to perform their function(s).

Other aspects of this claim element are discussed above. See Section V.D.1 (Kerr 102) at

Claim above.

iv. “storing an indication of... the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Kerr discloses this element. See Section V.D.1 (Kerr

102) at Claim (iv) above.

Kerr explains that when the first packet of a new flow arrives, the system “builds a new

entry in the flow cache” which “determines proper treatment of packets 150 in the message flow

and enters information regarding such treatment in a data structure pointed to by the new

entry in the flow cache” Ex. 15 at 4:12-16 (emphasis added). Since it was obvious to implement

the various distinct operations comprising the proper treatment as distinct components,

“enter[ing] information regarding such treatment” would comprise storing an indication of the

corresponding components. See Claim above. Indeed, Kerr expressly mentions storing an

indication of the rewrite function component in the data structure. /d. at (“the flow

cache includes a pointer to a rewrite function”) (emphasis added).

Inter Partes Reexamination of

USS. Patent No.7,711,857 Kerr Under § 103 235

JNPR-IMPL_30024_

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr renders

obvious this “state information” element.

Implicit has taken a broad view of the “state information” limitations, arguing that they

cover the retrieval, use, and storage of the identified sequence of components (e.g., a flow

record) after the first packet is received. See Section IV. As demonstrated above (for the

“storing an indication” element), Kerr retrieves, uses, and stores flow records in this manner to

facilitate processing of packets in the same message after the first packet is received and a flow

entry built.

Kerr also renders obvious the retrieval, use, and storage of state information on a

component-by-component basis. For example, in one embodiment of Kerr, there are

components for access control, encryption, “special treatment,” accounting, rewrite, among

others. Ex. 15 at 5:5-25. The processing by these components is “all responsive to information

in the entry in the flow cache.” /d. at 5:9-10. Asa specific example, an accounting component

can maintain state information, such as “time stamp” data, “a cumulative count for the number of

packets,” and “a cumulative count for the number of bytes.” at 6:58-63. Kerr later uses

timing information to identify expired or otherwise invalid flows (among other reasons). /d. at

5:52 —6:19. As another example, Kerr can retrieve the latest “usage information regarding

relative use of network resources” in order to appropriately prioritize traffic using the relevant

component. /d. at 5:41-49,

Inter Partes Reexamination of

USS. Patent No.7,711,857 Kerr Under § 103 236

JNPR-IMPL_30024_

As another example, an obvious implementation of the “encryption” component would

read on this “state information” element. Kerr supports “IP,” the Internet Protocol, and one of

ordinary skill would be aware of common techniques for implementing an encryption algorithm

which “MUST” be supported by the security architecture for the Internet Protocol: i.e., the “ESP

DES-CBC” algorithm described in RFC 1829.” In order to apply this required encryption

algorithm, “an Initialization Vector (IV) that is eight octets in length” must be placed in “[e]ach

datagram” to be encrypted (7.e., in each packet). Ex. 27 (RFC 1829) at 1. RFC 1829 explains

that while the “method for selection of IV values is implementation dependent,” a “common

acceptable technique is simply a counter, beginning with a random chosen value.” /d. One of

ordinary skill would therefore find it obvious to apply this common technique to implement the

encryption component of Kerr. Doing so would clearly entail, for each packet, retrieving the

previous counter value, applying it to encrypt the packet, incrementing the counter value, and

storing it for use when encrypting the next packet. Under Implicit’s apparent claim

constructions, this obvious implementation would read on this “state information” claim element.

(b) Claim 4

i. “A method... for processinga message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Kerr discloses this element. See Section V.D.1 (Kerr 102) at Claim 4(i) above.

See Ex. 26 (RFC 1825) (“Security Architecture for the Internet Protocol”) (1995) at 10

(the encryption operation “MUST support the use of the Data Encryption Standard (DES) in

Cipher-Block Chaining (CBC) Mode”), 21 (citing “RFC 1829”: “The ESP DES-CBC

Transform’). RFC 1825 and RFC 1829 are cited in this section solely to help explain Kerr. See

MPEP 2205.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Kerr Under § 103 237

JNPR-IMPL_30024_

ii. “dynamically identify a sequence”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Kerr renders obvious this

element.

Regarding the limitation “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence,” Kerr discloses this element. See Section V.D.1

(Kerr 102) at Claim 4(ii) above. Other aspects of this claim element are discussed above. See

Claim 1(iii) above.

ili. “storing an indication of. . . the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Kerr renders obvious this element. See Claim I(iv)

above.

iv. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr renders

obvious this element. See Claim 1(v) above.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Kerr Under § 103 238

JNPR-IMPL_30024_

(c) Claim 10

i. “A computer readable storage medium”

Claim 10 recites in pertinent part: “A computer readable storage medium, other than a

data transmission medium, containing instructions for processing packets of a message, the

instructions comprising at least one computer-executable module configured to... .” Under

Implicit’s apparent claim constructions, Kerr renders obvious this element.

Kerr teaches its invention may be performed by “a general purpose processor operating

under program control,” and it was obvious that such a controlling program would be loaded

from a “computer readable storage medium, other than a data transmission medium”: e.g., from a

hard disk in the device. Ex. 15 at 2:53-54. Other aspects of this claim element are discussed

above. See Claim 1(i) above.

il. Other claim elements

The remaining elements of claim 10 are also rendered obvious by Kerr. See Claim |

above.

3. Kerr in View of NetFlow Renders Obvious Claims 1, 4, and 10 Under

§ 103

The article “Cisco NetFlow Switching speeds traffic routing” (Exhibit 16, “NetFlow”) by

Stephen Lawson was published on July 7, 1997 in the publication InfoWorld. NetFlow was not

considered during the prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Kerr, then the inclusion of those aspects certainly would be

obvious over Kerr in view of NetFlow in light of the background knowledge of one of ordinary

skill in the art, under 35 U.S.C. § 103.

Inter Partes Reexamination of

USS. Patent No.7,711,857 Kerr Under § 103 239

JNPR-IMPL_30024_

It was obvious to supplement the teachings of Kerr with NetFlow because Kerr is a Cisco

patent, and NetFlow is an article in a trade publication illustrating how the architecture of Kerr

manifested itself in an actual Cisco product feature (named “NetFlow’) that was available on the

market within the same time period.

The following illustrative figure appears in NetFlow as a description of the technology:

Cisce streamlines routing, management

alnal the Sow on then bepassed ont for network management ated oh

Ex. 16 at 19.

The disclosure of NetFlow is consistent with and helps illustrate the disclosure of Kerr.

First, “NetFlow collects information about the first packet in a stream of data and caches it.” /d.

After receiving that first packet, a “flow” of “several functions” is then identified, including

functions such as “Switching task,” “Security task,” “Queuing task,” and “Accounting task.” Jd.

The first packet of traffic “goes through [the] several functions task by task.” Id. The NetFlow

system uses “routing and other information from thefirstpacket’ to handle the remaining

Inter Partes Reexamination of

USS. Patent No.7,71 Kerr + NetFlow 240

JNPR-IMPL_30024_

packets. /d. Thus, once the “cache learns about the flow” of functions, that flow is stored

(“cached”) so that the tasks can be carried out at “high speed” for “subsequent packets.” Id.

Information is gathered about the flow for “network management and planning.” State

information is also collected, retrieved, and used for each of the individual components

(“functions”), in data structures such as the “Route table,” “Access list,” “Queuing priority,” and

“Accounting data.”

Thus, to the extent that Kerr is deemed to lack inadequate disclosure of the relevant

limitations for claims 1, 4, and 10, the combination of Kerr with NetFlow clearly makes up for

any such perceived deficiency.

4. Kerr in View of RFC 1825 and RFC 1829 Renders Obvious Claims 1,

4, and 10 Under § 103

The specification RFC 1825 (“Security Architecture for the Internet Protocol”) (Exhibit

26, “RFC 1825”) by R. Atkinson was published in August 1995. The specification RFC 1829

(Exhibit 27, “The ESP DES-CBC Transform”) by P. Karn ef a/. was also published in August

1995. Neither was considered during the prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Kerr alone, then the inclusion of those aspects certainly

would be obvious over Kerr in view of RFC 1825 and RFC 1829 in light of the background

knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with RFC 1825 because Kerr applies

“encryption” to “IP” (Internet Protocol) packets, and RFC 1825 (“Security Architecture for the

Internet Protocol”) “describes the security mechanisms for IP version 4 (IPv4) and IP version 6

(IPv6) including “encryption.” Ex. 15 (Kerr) at 3:5 (IP (internet protocol)”), 4:30-31; Ex. 26

(RFC 1825) at 1. It was obvious to supplement the teachings of Kerr and RFC 1825 with RFC

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + NetFlow 241

JNPR-IMPL_30024_

1829, because RFC 1829 teaches an encryption algorithm which “MUST” be supported as part

of the RFC 1825 “Security Architecture.” Ex. 26 (RFC 1825) at 10 (the encryption operation

“MUST support the use of the Data Encryption Standard (DES) in Cipher-Block Chaining

(CBC) Mode”), 21 (citing “RFC 1829”: “The ESP DES-CBC Transform’).

(a) Claim 1

Claim 1 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr

in view of RFC 1825 and RFC 1829 renders obvious this “state information” element.

As part of its “Security Architecture for the Internet Protocol,” RFC 1825 teaches distinct

operations for “Encryption” and “Authentication” —either or both of which may be applied to a

packet. Ex. 26 (RFC 1825) at 1, 3-5, 8-9. The encryption operation is detailed in “RFC 1827”

(“IP Encapsulating Security Payload”) and the authentication operation is detailed in “RFC

1826” (“IP Authentication Header”). See id. at 3-4, 8-9, 19.

Kerr already teaches the “encryption” of packets in a particular flow. Ex. 15 at 4:30-41.

Moreover, it was obvious for Kerr to support encryption and authentication operations as

suggested by RFC 1825, both in order to comply with the “Security Architecture for the Internet

Protocol,” and also to obtain the security advantages of encryption and authentication detailed by

RFC 1825. E.g., Ex. 26 at 1 (‘Authentication”: “knowing that the data received is the same as

the data that was sent and that the claimed sender is in fact the actual sender.”; “Encryption: “A

mechanism that is commonly used to provide confidentiality.”).

Because encryption and authentication are distinct operations that need not be applied to

the same packet, it was obvious to implement them as distinct components. See, e.g.,id. at 8

Inter Partes Reexamination of

USS. Patent No.7,711,857 Kerr + RFC 1825 + RFC 1829 242

JNPR-IMPL_30024_

(“The two IP security mechanisms [authentication and encryption] may be used together or

separately”).

RFC 1825 explains that various forms of state information would be maintained by these

encryption and authentication components, including, e.g., “Key(s) used with the authentication

algorithm”; “Key(s) used with the encryption algorithm”; “Authentication algorithm and

algorithm mode being used”; “Encryption algorithm, algorithm mode, and transform being

used”; “cryptographic synchronisation or initialisation vector field for the encryption algorithm”;

“Lifetime of the key or time when key change should occur”; and “Lifetime of [the] Security

Association.” Ex. 26 (RFC 1825) at 5-6. Obvious implementations to maintain this state

information would read on this “state information” claim element, under Implicit’s apparent

claim constructions. For example, both the encryption and authentication component(s) would

maintain “Lifetime of the key or time when key change should occur.” See id. Maintaining a

“Lifetime of the key” (as opposed to maintaining “time when key change should occur’) at least

renders obvious a countdown implementation wherein the remaining lifetime is updated with

each invocation of the component.

Additionally, regarding the encryption component in particular, an obvious

implementation of its encryption algorithm would read on this claim element in still another

manner, under Implicit’s apparent claim constructions. RFC 1825 explains that the encryption

algorithm of RFC 1829 “MUST” be supported for encrypting packets. Ex. 26 (RFC 1825) at 10

(“the IP Encapsulating Security Payload MUST support the use of the Data Encryption Standard

(DES) in Cipher-Block Chaining (CBC) Mode”), 21 (citing RFC 1829: “The ESP DES-CBC

Transform”). RFC 1829 explains that in order to apply this required encryption algorithm, “an

Initialization Vector (IV) that is eight octets in length” must be placed in “[e]ach datagram” to be

Inter Partes Reexamination of
24 3U.S. Patent No.7,71 Kerr + RFC 1825 + RFC 1829

JNPR-IMPL_30024_

encrypted (7.e., in each packet). Ex. 27 (RFC 1829) at 1. RFC 1829 further explains that while

the “method for selection of IV values is implementation dependent,” a “common acceptable

technique is simply a counter, beginning with a random chosen value.” /d. It was therefore

obvious to apply this “common, acceptable” counter technique to an encryption component of

Decasper98. Doing so would entail, for each packet, retrieving the previous counter value,

applying it to encrypt the packet, incrementing the counter value, and storing it for use when

encrypting the next packet. Under Implicit’s apparent claim constructions, this obvious

implementation would read on this “state information” claim element.

To summarize, Kerr in view of RFC 1825 and RFC 1829 renders obvious distinct

components for encryption and authentication which would maintain state information across

packets in the manner recited by claim 1. Additional stateful Kerr components are discussed

above. See Section V.D.2 (Kerr 103) at Claim 1(v).

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr

in view of RFC 1825 and RFC 1829 renders obvious this element. See Claim 1 above.

(c) Claim 10

Claim 10 recites in pertinent part: “for each of a plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

RFC 1825 and RFC 1829 renders obvious this element. See Claim 1 above.

Inter Partes Reexamination of
24 4U.S. Patent No.7,71 Kerr + RFC 1825 + RFC 1829

JNPR-IMPL_30024_

5, Kerr in View of Bellare97 and Bellare95 Renders Obvious Claims 1,

4, and 35 Under § 103

The article “A Concrete Security Treatment of Symmetric Encryption” (Exhibit 17,

“Bellare97”) by M. Bellare et a/. was published in 1997. The article “XOR MACs: New

Methods for Message Authentication Using Finite Pseudorandom Functions” (Exhibit 18,

“Bellare95”) by M. Bellare et al. was published in 1995. Neither was considered during the

prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Kerr, then the inclusion of those aspects certainly would be

obvious over Kerr in view of Bellare97 and Bellare95 in light of the background knowledge of

one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with Bellare97, because Kerr

discloses “encryption” of the packets of a flow, and Bellare97 discloses a specific encryption

algorithm that could be used. Ex. 15 (Kerr) at 4:30-31. It was obvious to supplement the

teachings of Kerr and Bellare97 with Bellare95, because Bellare95 teaches a similar

authentication algorithm which could also be applied to the packets of a flow.

(a) Claim 1

Claim 1 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr

in view of Bellare97 and Bellare95 renders obvious this “state information” claim element.

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Bellare97 + Bellare95 245

JNPR-IMPL_30024_

As explained above, it was obvious that each of the various distinct operations performed

by Kerr on the packets of a particular flow (including its encryption operation) would be

organized as distinct components. See Section V.D.2 (Kerr 103) at Claim above.

Bellare95 teaches another distinct operation that would advantageous to apply to the

packets of a flow—“Authentication”—and it was obvious that this operation would be provided

by a distinct component as well. Ex. 18 (Bellare95) at 1 (“A message authentication scheme

enables two parties sharing a key . . . to authenticate their transmissions. This is one of the most

widely used cryptographic primitives,” and “as security concerns grow,” “it may become even

more so”).

Because Kerr teaches encryption is selectively applied to specific flows, it was obvious to

treat authentication in the same manner. /.g., Ex. 15 (Kerr) at 4:30-32.

Regarding the implementation of the distinct encryption component, Bellare97 teaches

“stateful encryption schemes, in which the ciphertext is a function of some information, such as a

counter, maintained by the encrypting party and updated with each encryption.” Ex. 17 at 397

(emphasis in original). In its analysis of “some classic symmetric encryption schemes,”

Bellare97 concludes that a particular stateful scheme (“stateful XOR, based on a finite PRF”)

“has the best security.” /d. at 396. “For the stateful XOR scheme we show that . . . this scheme

is about as good a scheme as one can possibly hope to get.” /d. It was therefore obvious to

employ sucha stateful algorithm in an encryption component.

Regarding the implementation of the distinct authentication component, Bellare95

teaches “stateful” authentication algorithms in which “the signer maintains information, in our

case a counter, which he updates each time a message is signed.” Ex. 18 at 16. In more detail:

In a stateful message authentication scheme, the signer maintains

state across consecutive signing requests. (For example, in our

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Bellare97 + Bellare95 246

JNPR-IMPL_30024_

counter-based scheme the signer maintains a message counter.) In

such a case the signing algorithm can be thought of as taking an

additional input—the “current” state C, of the signer—and

returning an additional output—the signer’s next state.

Id. at 21. Bellare95 analyzes both stateless (“Randomized XOR”) and stateful (“Counter-Based

XOR”) authentication algorithms, and observes that “[t]he gain” of the stateful, counter-based

algorithm “is greater security.” /d. at 22-25 (analysis of stateless), 25-27 (analysis of stateful,

counter-based). It was therefore obvious to employ such a stateful algorithm in an authentication

component.

The counter used for both stateful encryption and stateful authentication would comprise

“state information” which is retrieved each time another packet is to be encrypted or

authenticated, used to perform the encryption or authentication, and updated and stored so it may

be used when encrypting or authenticating the next packet.

To summarize, Kerr in view of Bellare97 and Bellare95 renders obvious distinct

components for encryption and authentication which would maintain state information across

packets in the manner recited by claim 1. Additional stateful Kerr components are discussed

above. See Section V.D.2 (Kerr 103) at Claim 1(v).

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr

in view of Bellare97 and Bellare95 renders obvious this element. See Claim 1 above.

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Bellare97 + Bellare95 247

JNPR-IMPL_30024_

(c) Claim 10

Claim 10 recites in pertinent part: “for each of a plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

Bellare97 and Bellare95 renders obvious this element. See Claim | above.

6. Kerr in View of IBM96 Renders Obvious Claims 1, 4, and 10 Under

§ 103

The book “Local Area Network Concepts and Products: Routers and Gateways” (Exhibit

19, “IBM96”) was published by IBM in May 1996. IBM96 was not considered during

prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Kerr alone, then the inclusion of those aspects certainly

would be obvious over Kerr in view of IBM96 in light of the background knowledge of one of

ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with IBM96 because Kerr teaches a

flow-based architecture for routing devices, and IBM96 teaches features which would have been

typical of routing devices of the time period.

(a) Claim 1

Claim | recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr

in view of IBM96 renders obvious this “state information” claim element.

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + Bellare97 + Bellare95 248

JNPR-IMPL_30024_

During the pertinent time period, it was commonplace for routers to perform compression

on certain traffic being routed through them. This is repeatedly confirmed by IBM96. For

example, the “IBM 2210 Nways Multiprotocol Router” could perform “Data Compression over

Point-to-Point Protocol” using the “LZ77” compression algorithm. Ex. 19 at 84, 95-96. As

another example, IBM96 lists “Data compression” as one of the “Advantages” of its “IBM

AnyNet Product Family,” explaining that data compression “reduces the amount of data being

exchanged between partners, thus improving response time and reducing traffic over the

network.” /d. at 33. Similarly, IBM96 lists “Data compression” one of the “Benefits” of the

“2217 Nways Multiprotocol Concentrator” product, explains data compression “[p]rovides

higher data rates and improves response times at a lower cost.” /d. at 200-201.

In view of these various benefits of data compression, it was obvious that in addition to

supporting operations such as encryption, Kerr should also support compression. Because Kerr

teaches encryption is selectively applied to specific flows, it was obvious to treat compression in

the same manner. /.g., Ex. 15 at 4:30-31.

IBM96 discusses and compares the performance of four specific compression

algorithms, the top three of which are all “LZ”-based compression algorithms. See Ex. 19 at 95-

96 (“LZ77” has compression ratio of “2.08:1”; “Stacker-LZS” a ratio of “1.82:1”; “BSD

Compress-LZW” a ratio of “2.235:1”; and “Predictor” a ratio of “1.67:1”). Because the top three

algorithms discussed by IBM96 are LZ-based and because the “IBM 2210” router specifically

uses the “LZ77” algorithm, an LZ-based algorithm such as LZ77 would have been an obvious

choice for a compression component to be added to Kerr. /d. at 95-96, 84.

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + IBM96 249

JNPR-IMPL_30024_

LZ compression algorithms are stateful, and an obvious implementation of them would

read on this “state information” claim element.” Maintaining such state information would

entail, for each packet: e.g., retrieving the state information, using it to perform the compression

processing, updating it to reflect the data in the most recent packet, and storing it so it can be

applied to the next packet.

More generally (and not confined to LZ-based algorithms), stateful (“adaptive”)

compression algorithms were commonplace at the time, and obvious implementations of them

would likewise read on this “state information” claim element.“

To summarize, Kerr in view of IBM96 renders obvious a compression component

employing an “adaptive” algorithm which would maintain state information across packets in the

manner recited by claim 1. Additional stateful Kerr components are discussed above. See

Section V.D.2 (Kerr 103) at Claim 1(v).

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr

in view of IBM96 renders obvious this element. See Claim 1 above.

See, e.g., Ex. 5 (Nelson) (“The Data Compression Book”) (1995) at 21 (LZ employs an

“adaptive” algorithm which maintains state information in form of, e.g., a sliding “4K-byte
window” of the most recent data seen, or an incrementally built dictionary based on of the

previously seen data), 18-19. This reference is cited in this context solely to help explain
IBM96. See MPEP § 2205.

“
See, e.g., Ex. 5 (Nelson) at 18 (“compression research in the last 10 years has

concentrated on adaptive models”), 18-19 (including Figures 2.2 and 2.3, showing state

information in form of a “Model” which is updated on each new piece of data). This reference is

cited in this context solely to help explain IBM96. See MPEP § 2205.

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + IBM96 250

JNPR-IMPL_30024_

(c) Claim 10

Claim 10 recites in pertinent part: “for each of a plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

IBM96 renders obvious this element. See Claim | above.

7. Kerr in View of IBM96 and Nelson Renders Obvious Claims 1, 4, and

10 Under § 103

The treatise “The Data Compression Book” (Exhibit 5, “Nelson”) by Mark Nelson ef al.

was published on November 6, 1995. Nelson was not considered during the prosecution of the

patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Kerr in view of IBM96, then the inclusion of those aspects

certainly would be obvious over Kerr in view of IBM96 and Nelson in light of the background

knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr and IBM96 with Nelson, because

IBM96 discloses compression operations performed by routers, and Nelson teaches specific

compression algorithms which might be used.

(a) Claim 1

Claim | recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

processing the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr

in view of IBM96 and Nelson renders obvious this “state information” claim element.

Inter Partes Reexamination of 4

USS. Patent No.7,711,857 Kerr + IBM96 251

JNPR-IMPL_30024_

Nelson explains: “Adaptive coding . . . lead[s] to vastly improved compression ratios,”

and that “compression research in the last 10 years has concentrated on adaptive models.” Ex. 5

at 8, 18. Adaptive algorithms include such well-known algorithms as “Adaptive Huffman

Coding” (chapter 4; id. at 75), “Adaptive [Statistical] Modeling” (chapter 6; id. at 155),

[Adaptive] Dictionary-Based Compression” (chapter 7: id. at 203), and “Sliding Window

Compression” (chapter 8; id. at 215); and the prominent “LZ” family of compression algorithms

(chapter 8 and 9, id. at 221, 255). All of these adaptive techniques are lossless, which would be

important for accurately transmitting information contained in network packets. See id. at 9

999

(“All of the compression techniques discussed through chapter 9 are ‘lossless’”). In view of the

prominence, lossless nature, and improved compression ratios of adaptive algorithms, use of

such adaptive algorithms would have been an obvious choice for compression components.

Nelson further explains the stateful manner in which adaptive coding operates: “When

using an adaptive model, data does not have to be scanned once before coding in order to

generate statistics [used to perform compression]. Instead, the statistics are continually

modified as new characters are read in and coded. The general flow of a program using an

adaptive model looks something like that shown in Figure[] 2.2” /d. at 18 (emphasis added).

Read lnpet
Synbate og oot Choco

Id. at 19 (Figure 2.2: “General Adaptive Compression,” showing “Update Model” update

state information) after encoding every piece of data). Nelson explains: “adaptive models start

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + IBM96 + Nelson 252

JNPR-IMPL_30024_

knowing essentially nothing about the data” so “when the program first starts it doesn’t do a very

good job of compression.” /d. at 19. However, “[m]ost adaptive algorithms tend to adjust

quickly to the data stream and will begin turning in respectable compression ratios after only a

few thousand bytes.” /d.

Thus, an obvious implementation of an adaptive algorithm would entail, for each packet,

retrieving state information, using it to perform the compression processing, updating it to reflect

the data in the most recent packet, and storing it so it can be applied to the next packet.

As observed above, Nelson teaches a number of lossless, adaptive compression

algorithms in Chapters 1 to 9 which would have been obvious choices for a compression

component of Kerr. See id. at 9 (“All of the compression techniques discussed through chapter 9

are ‘lossless’”).

More narrowly, IBM96 teaches that its “2210” router employs the “LZ77” compression

algorithm, so use of that algorithm in particular would have been an obvious choice for a

compression component. See Ex. 19 (IBM96) at 95-96, 84. Nelson confirms this algorithm is

stateful and “adaptive” in the manner described above. /.g., Ex. 5 at 21 maintains a

“dictionary” comprised of, e.g., a sliding “4K-byte window” of the most recently seen data).

To summarize, Kerr in view of IBM96 and Nelson renders obvious a compression

component employing an “adaptive” algorithm which would maintain state information across

packets in the manner recited by claim 1. Additional stateful Kerr components are discussed

above. See Section V.D.2 (Kerr 103) at Claim 1(v).

(b) Claim 4

Claim 4 recites in pertinent part: “for each of a plurality of components in the identified

sequence: performing the processing of each packet by the identified component; and storing

state information relating to the processing of the component with the packet for use when

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + IBM96 + Nelson 253

JNPR-IMPL_30024_

processing the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr

in view of IBM96 and Nelson renders obvious this element. See Claim | above.

(c) Claim 10

Claim 10 recites in pertinent part: “for each ofa plurality of components in the identified

sequence: perform the processing of each packet by the identified component; and store state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

IBM9
6

and Nelson renders obvious this element. See Claim 1 above.

8. Kerr in View of RFC 1825, RFC 1829, Bellare97, Bellare95, IBM96,
and Nelson Renders Obvious Claims 1, 4, and 10 Under § 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Kerr alone or in combination with the various

grounds of rejection presented above, then the inclusion of those aspects certainly would be

obvious over Kerr in view of RFC 1825, RFC 1829, Bellare97, Bellare95, IBM96, and Nelson in

light of the background knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103,

under Implicit’s apparent claim constructions.

All of these references have already been combined with Kerr in corresponding sections

above, and those sections should be consulted for the detailed manner of applying them to Kerr.

This section briefly summarizes that material and shows the collective combination of these

references would be obvious as well.

Kerr teaches a general flow-based architecture for router devices, and it anticipates and

renders obvious all elements of claims 1, 4, and 10.

Claims 1, 4, and 10 recite elements regarding “state information” as relating to “a

plurality of components.”

Inter Partes Reexamination of

USS. Patent No.7,711,857 Kerr + IBM96 + Nelson 254

JNPR-IMPL_30024_

Kerr teaches, e.g., encryption, packet re-write, and various other “special treatment”

applied to the packets of specific flows. Ex. 15 at 4:29-60. RFC 1825 and Bellare95

confirm the obviousness of employing an additional component for authentication. IBM96

confirms the obviousness of employing an additional component for compression.

RFC 1829 and Bellare97 confirm the obviousness of employing stateful encryption

algorithms which would read on these elements. Bellare95 confirms the obviousness of

employing stateful authentication algorithms which would read on these elements. Nelson

confirms the obviousness of employing stateful compression algorithms which would read on

these elements.

Since Kerr teaches that its various operations are applied in a manner tailored to each

flow (e.g., id. at 4:12-20), it was obvious that any two of more of these stateful components

(encryption, authentication, compression) would be applied to a particular flow. This was

especially obvious since all three of these operations would be useful for implementing, e.g., a

virtual private network across an expensive link—as would be appreciated by one of ordinary

skill in the art. Moreover, Kerr teaches additional stateful components which read on these

“state information” claim elements, and it was also obvious for any of these to be applied to a

particular flow as well. See Sections V.B.1 (Kerr 102) and V.B.2 (Kerr 103) above.

In short, there is no aspect of claims 1, 4, and 10 which was not obvious over the prior art

and combinations cited herein.

9. Kerr in View of Fraser Renders Obvious Claims 1, 4, and 10 Under

§ 103

The publication “DTE Firewalls: Phase Two Measurement and Evaluation Report”

(Exhibit 24, “Fraser”) by Timothy J. Fraser ef al. was published by Trusted Information Systems

on July 22, 1997. Fraser was not considered during prosecution of the ‘857 patent.

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + Fraser 255

JNPR-IMPL_30024_

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Kerr alone, then the inclusion of those aspects certainly

would be obvious over Kerr in view of Fraser in light of the background knowledge of one of

ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with Fraser because Kerr teaches a

general flow-based architecture for routers and firewalls (e.g., Ex. 15 at 4:12-48), and Fraser

teaches a technique for enhancing the dynamic configurability of such an architecture.

(a) Claim 1

Claim 1 recites in pertinent part: “analyzing the data type of a first packet of the message

to dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Kerr in view Fraser renders obvious

this element.

Kerr alone renders obvious these elements. See Section V.D.2 (Kerr 103) at Claim 1. As

applied to Kerr, Fraser further underscores the “dynamic[]” nature of the identification, under

Implicit’s apparent claim constructions, as explained below.

Fraser teaches “Dynamic Policy Modules” which an administrator uses to control the

behavior of a firewall: e.g., these modules define which traffic flowing through the firewall

should be encrypted, and which network destinations should be accessible to which users. Ex.

24 at 10, 6-7.

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + Fraser 256

JNPR-IMPL_30024_

Strider EnclaveDonalds Enclave

‘giana

doen gine engl
gidind ene d | | gine ang

gizme pray a gins prof d
gion eng dl

gizow_ pre)

Domain
traffic encrypted based

Domain from Exynamis Marae : :

swathes on instructions ina
Cnerypted Communication

:

iso os carted Commmnniat
ion. Dynamic Policy Module

Id. at 7 (Figure 3, showing encryption performed according to instructions in “Dynamic

Module[s]”; “The transient domains originating in dynamic modules are not shaded.”).

Fraser explains that before Dynamic Policy Modules were introduced, “the primary

method” for an administrator to alter a firewall’s “security policy” was “to edit the policy

specification and reboot the kernel for the updated policy to take effect.” /d. at 8. This approach

was “impractical for operational systems,” because “[r]estructuring the policy and rebooting

kernels for each change would result in an undesirable and impractical loss of service.” /d. at 9.

Dynamic Policy Modules address this “undesirable and impractical” situation by

allowing administrators to make minor or major alterations to a firewall’s policies without

rebooting the device:

The main contribution of dynamic policy module support. . . is

increased functionality. As described in section 2.1.2, dynamic

policy modules provide administrators with an organized
framework for managing policy change. Administrators can use

dynamic policy modules to specify the policy governing new

activities and trust relationships. They may add policy support for

a new activity or trust relationship to a [firewall] kernel by loading
the appropriate module. Similarly, they can remove the support by

unloading the module. Administrators may load and unload

modules as the kernel runs. The ability to dynamically reconfigure

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + Fraser 257

JNPR-IMPL_30024_

a kernel's policy as it runs allows administrators to add and remove

policy support for trust relationships without requiring system
down-time and the resulting disruption of service availability. This

method of policy configuration is superior to the [previous]

method, which involved modifying a kernel's base policy

description and then rebooting the kernel.

Id. at 37.

Rather than being narrowly confined to controlling one or two policy options, Dynamic

Policy Modules provide a “wide-ranging ability” to change many aspects of a firewall’s policies.

See id. at 19.

Once made available, Dynamic Policy Modules become the primary means for

administrators to modify a firewall’s policies: “Dynamic policy modules are the atomic unit of

policy change. Typically, when administrators need to extend a policy to govern a new activity,

they will encapsulate the extension in a dynamic policy module.” /d. at 12.

It was obvious to apply the Dynamic Policy Modules framework of Fraser to Kerr, in

order to provide a more comprehensive framework* for avoiding any “undesirable and

impractical” need to reboot the Decasper98 device under any circumstances. See id. at 9. Kerr

was an obvious candidate for this technique, because Fraser uses the technique to control the

policies of “firewall[s],” and Kerr teaches an architecture that is “useful for implementing

security ‘firewalls’.” /d. at 6; Ex. 15 (Kerr) at 4:45-46.

As applied to Kerr, Dynamic Policy Modules would allow an administrator to modify the

policies which determine which components are assigned to which flows. See, e.g., Ex. 15

Kerr already teaches the technique of modifying the system’s configured policies while

the system is operating, but Fraser teaches a more comprehensive framework for such a

capability, and provides additional detail on how such a framework would be implemented. See,

e.g., Ex. 15 (Kerr) at 6:14-16 (“changes in access control lists” cause an existing flow “to be

expired”), 8:42-44 (after being “initially configured,” routing device parameters “may be altered

by an operator’).

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + Fraser 258

JNPR-IMPL_30024_

(Kerr) at 4:13-19, 7:47-54. The parallels between the two systems are particularly clear on this

point. For example, Fraser’s Dynamic Policy Modules control, e.g., which traffic is encrypted,

and Kerr’s policies control, e.g., which flows are encrypted. Ex. 24 at 7, Ex. 15 at 4:12-34.

To summarize, the combination of Kerr and Fraser renders further obvious a system in

which the policies determining the identified sequence of components could be dynamically

modified or dynamically added at any moment during runtime—while the system was still

operating. Under Implicit’s apparent claim constructions, such a system would clearly read on

“dynamically identify a sequence of components for processing a plurality of packets of the

message.”

(b) Claim 4

Claim 4 recites in pertinent part: “analyzing the plurality of headers of a first packet of

the message to dynamically identify a sequence of components for processing a plurality of

packets of the message such that the output format of the components of the sequence match the

input format of the next component in the sequence, wherein analyzing the plurality of headers

of the first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Kerr in view of Fraser

renders obvious this element. See Claim 1 above.

(c) Claim 10

Claim 10 recites in pertinent part: “analyze the data type of a first packet of the message

to dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + Fraser 259

JNPR-IMPL_30024_

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Kerr in view of Fraser renders obvious

this element. See Claim 1 above.

10. Kerr in View of Fraser, Bellare97, and Bellare95 Renders Obvious

Claims 1, 4, and 10 Under § 103

All of these references have already been combined with Kerr in corresponding sections

above, and those sections should be consulted for the detailed manner of applying them to Kerr.

As applied to the previous combination of Kerr in view of Fraser, Bellare97 and Bellare95

further confirm that “a plurality of components” in a sequence would maintain “state

information” across packets in the manner recited by claims 1, 4, and 10. See Sections V.B.9

(Kerr+Fraser) and V.B.5 (Kerr+Bellare97+Bellare95) above.

11. Kerr in View of Bellissard Renders Obvious Claims 1, 4, and 10

Under § 103

The article “Dynamic Reconfiguration of Agent-Based Applications” (Exhibit 23,

“Bellissard”) by Luc Bellissard et a/. was published by September 10, 1998. Bellissard was not

considered during prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Kerr alone, then the inclusion of those aspects certainly

would be obvious over Kerr in view of Bellissard in light of the background knowledge of one of

ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with Bellissard because Kerr teaches

a general flow-based architecture for routers and firewalls (e.g., Ex. 15 at 4:12-48), and

Bellissard teaches a technique for enhancing the dynamic extensibility of such an architecture.

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + Fraser 260

JNPR-IMPL_30024_

(a) Claim 1

Claim 1 recites in pertinent part: “analyzing the data type of a first packet of the message

to dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Kerr in view Bellissard renders

obvious this element.

Kerr alone renders obvious this element. See Section V.D.2 (Kerr 103) at Claim 1. As

applied to Kerr, Bellissard further underscores the “dynamic[]” nature of the identification under

Implicit’s apparent claim constructions, as explained below.

Bellissard teaches a technique for “dynamically modifying” and “[d]ynamically

reconfiguring” an application while the application is s¢i// operating, without halting the

application in order to reconfigure it. Ex. 23 at 1-3. Bellissard explains the motivation for this

technique is that “new functionalities” may be “required by the users” at any time:

Reconfiguration is thus an answer to the problems of dynamically

modifying the application architecture (both in terms of agent
functions and of the sequence of actions to be performed), while

the application is operating. This cannot be achieved with current

techniques such as configuration of predefined parameters, because

it is impossible to predict all the new functionalities that can be

required by the users.

Id. at 2.

It was particularly obvious to apply the technique of Bellissard to the router/firewall

architecture of Kerr, because a “firewall” is precisely the example chosen by Bellissard of “a

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Bellissard 261

JNPR-IMPL_30024_

typical full-size application” which would “emphasize the benefits of” the Bellissard technique.

Id. at 1; Ex. 15 (Kerr) at 4:45-46 (also “useful for implementing security ‘firewalls’”).

The “dynamic reconfiguration” of technique Bellissard includes performing the following

two operations “while the application is operating”: (1) “Modifying the architecture of an

application (adding/removing modules, and modifying the interconnection pattern)”; and (2)

“Modifying the implementation of a component.” Ex. 23 at 2.

As applied to Kerr, the first operation (“Modifying the architecture of an application”

including “adding/removing modules”) would clearly encompass adding or removing certain

“plugin” modules of Kerr while the system of Kerr was still operating. See Ex. 23 at 2.

Bellissard explains “it is impossible to predict all the new functionalities that can be required by

users.” Ex. 23 at 2. In the context of the router/firewall architecture of Kerr, providing the

required “new functionalities” would typically entail the provision of new Kerr components: e.g.,

to support a new authentication functionality, a new compression functionality, and so on.

Indeed, Bellissard specifically teaches the insertion of a new “compression” component into a

firewall system while it is still operating. Ex. 23 at 2 (“insertion of a compression agent’).

Using the Bellissard technique, such new plugins could be “dynamically” added to Kerr while

Kerr was still operating—with the advantage that flows could begin to take advantage of the new

functionalities immediately, and without disrupting existing flows through the system. See Ex.

23 at 1-2.

As applied to Kerr, the second operation (“Modifying the implementation of a

component”) would clearly encompass modifying the implementation of a component of Kerr

while the system of Kerr was still operating. See Ex. 23 at 2. For example, a more efficient,

higher-performance implementation might become available for an encryption component, an

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Bellissard 262

JNPR-IMPL_30024_

authentication component, or a compression plugin, and so on. Using the Bellissard technique,

such a plugin could be “dynamically modified” to employ the new, more efficient

implementation while Kerr was still operating—with the advantage that the component could

begin to take advantage of the improved implementation immediately, and without disrupting

existing flows.

To summarize, the combination of Kerr and Bellissard renders obvious a system in which

the plugin components of Kerr could be dynamically modified or dynamically added at any

moment during runtime—while the system was still operating—and could thereby take

advantage of the newly added or modified components. Under Implicit’s apparent claim

constructions, such a system would clearly read on “dynamically identify a sequence of

components for processing a plurality of packets of the message.”

(b) Claim 4

Claim 4 recites in pertinent part: “analyzing the plurality of headers of a first packet of

the message to dynamically identify a sequence of components for processing a plurality of

packets of the message such that the output format of the components of the sequence match the

input format of the next component in the sequence, wherein analyzing the plurality of headers

of the first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Kerr in viewof Bellissard

renders obvious this element. See Claim 1 above.

(c) Claim 10

Claim 10 recites in pertinent part: “analyze the data type of a first packet of the message

to dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Kerr + Bellissard 263

JNPR-IMPL_30024_

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Kerr in view of Bellissard renders

obvious this element. See Claim | above.

12. Kerr in View of Bellissard, Bellare97, and Bellare95 Renders Obvious

Claims 1, 4, and 10 Under § 103

All of these references have already been combined with Kerr in corresponding sections

above, and those sections should be consulted for the detailed manner of applying them to Kerr.

As applied to the previous combination of Kerr in view of Bellissard, Bellare97 and Bellare95

further confirm that “a plurality of components” in a sequence would maintain “state

information” across packets in the manner recited by claims 1, 4, and 10. See Sections V.B.11

(Kerr+Bellissard) and V.B.5 (Kerr+Bellare97+Bellare95) above.

13. Kerr in View of Wetherall Renders Obvious Claims 1, 4, and 10

Under § 103

The article “The Active IP Option” (Exhibit 47, “Wetherall”) by David J. Wetherall and

David L. Tennenhouse was published by September 11, 1996. It was not considered during the

prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Kerr alone, then the inclusion of those aspects certainly

would be obvious over Kerr in view of Wetherall in light of the background knowledge of one of

ordinary skill in the art, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with Wetherall because Kerr teaches a

general flow-based architecture for routers, and Wetherall teaches that its “Active IP Option”

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Bellissard 264

JNPR-IMPL_30024_

technique is “a generic capability” that should be applied to “routers” and “[fJlows.” Ex. 15

(Kerr) at 4:12-18; Ex. 47 (Wetherall) at 34-35.

(a) Claim 1

i. “A method in a computer system...”

Claim | recites: “A method in a computer system for processing packets of a message,

the method comprising... .” Under Implicit’s apparent claim constructions, Kerr in view of

Wetherall renders obvious this element.

Wetherall teaches an approach called “Active Networks,” which “break with tradition by

allowing the network to perform customized computations on the user data.” Ex. 47 at 33. “For

example, a user of an active network could send a customized video transcoding program to a

node within the network (e.g., a router) and request that the node execute that program when

processing their packets.” /d.

Wetherall “retrofit[s]” these “active capabilities” atop “the existing Internet” by

exploiting the existing “options mechanism of the IP layer to carry program fragments.” /d. at

35. IP options are of flexible length and type (‘generic type-length-value format of IP options”),

and Wetherall simply defines a new option type “to carry program fragments, which may be

encoded in a variety of languages.” at 36.

TP optione (lPwe ‘Pye

Uaeer DakeHeader

ACTIVE Option
we

program fragment

we inserted in an IP option
field of an IP packetog

JL
LE (fnodel==(deatination?} frephy ...ative tyes}

ype Langth va die

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Wetherall 265

JNPR-IMPL_30024_

Id. at 35 (Figure 1: “Format of the Active IP Option Field,” showing “code” embedded in an IP

option field of a packet). Thereby, “passive packets of present day architecture” are replaced

“with active ‘capsules’ — miniature programs that are executed at each router they traverse.” /d.

at 34-35.

Both the already-discussed components of Kerr and the actively-delivered components of

Wetherall would perform “processing” on the packets of a particular flow. Ex. 47

(Wetherall) at 33 (“a user of an active network could send a customized video transcoding

program to anode... and request that the node execute that program when processing their

packets.”) (emphasis added).

il. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Kerr in view of Wetherall renders

obvious this element.

In addition to the data type analysis performed by Kerr alone, Wetherall further requires

that the data type of IP option field(s) in a packet be analyzed, to determine whether they contain

code. /d. at 35-36.

ill. “dynamically identify a sequence of components”

Claim | further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Wetherall 266

JNPR-IMPL_30024_

received.” Under Implicit’s apparent claim constructions, Kerr in view of Wetherall renders

obvious this element.

Wetherall teaches that each packet may contain both “User data” and one or more

programs in IP options field(s). /d. at 35 (“miniature programs,” and Figure 1 showing “User

Data” plus “IP options” fields). 36 (“These fragments are .. . executed by active routers along

the path taken by the datagram”).

Wetherall also teaches that “a user of an active network could send a customized video

transcoding program to a node within the network (e.g., a router) and request that the node

execute that program when processing their packets.” /d. at 33.

As applied to Kerr, which already processes incoming video, the first packet of a video

flow could contain one or more programs to be used for performing coding and/or other

operations on the packets of the flow. Ex. 15 (Kerr) at 3:13-14 (flow conveying “an internet

video protocol such as the ‘CUSeeMe’ protocol”).

Either alone or as combined with other components identified for the flow by Kerr, these

programs would comprise “a sequence of components for processing a plurality of packets of the

message.”

The “data type” of the first packet is analyzed under Implicit’s claims constructions, e.g.,

by analyzing the data type of the IP option field(s) to determine whether they contain code. Kerr

alone also analyzes other fields of the first packet which would comprise a “data type,” as

explained above. See Section V.D.1 (Kerr 102) at Claim

The sequence is identified “dynamically” because some of its component(s) did not even

exist in the system until the first packet arrived. Indeed, it is difficult to imagine how a sequence

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Wetherall 267

JNPR-IMPL_30024_

could be identified any more “dynamically” than by obtaining one or more of the identified

components from “the first packet” itself.

Other aspects of this element are discussed above. See Section V.D.2 (Kerr 103) at

Claim

iv. “storing an indication of... the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Kerr in view of Wetherall renders obvious this element.

Wetherall teaches that actively delivered programs “can leave information behind in a

node,” and that this information “may be in the form of programs.” Ex. 47 at 34. Wetherall also

teaches that such actively delivered programs would be stored and applied to subsequent packets

of a message. /d. at 33 user... could send a customized video transcoding program to a

node within the network .. . and request that the node executed that program when processing

their packets.”) (emphasis added).

This element is discussed further above. See Section V.D.2 (Kerr 103) at Claim I{(iv).

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

Wetherall renders obvious this “state information” element

Wetherall teaches that each actively delivered component can “leave a small amount of

associated state at each node along the path it traverses.” Ex. 47 at 34. “Subsequent packets can

include code whose execution is dependent on this state.” /d.

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + Wetherall 268

JNPR-IMPL_30024_

This element is discussed further above. See Section V.D.2 (Kerr 103) at Claim 1(v).

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Kerr in view of Wetherall renders obvious this element.

In addition to the need for Kerr alone to analyze a plurality of headers of the message

(see Section V.D.1 (Kerr 102) at Claim Wetherall teaches that one or more IP options

headers would need to be analyzed in order to obtain the program(s) they contain. Ex. 47 at 35-

36,

ii. dynamically identify a sequence of components”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Kerr in view of Wetherall

renders obvious this element.

In addition to the need for Kerr alone to analyze a plurality of headers of the first packet

to identify a sequence of components (see Section V.D.1 (Kerr 102) at Claim 4(i1)), Wetherall

teaches that one or more IP options headers would need to be analyzed as well, in order to obtain

the program(s) they contain. Ex. 47 at 35-36. Other aspects of this element are discussed above.

See Claim above.

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + Wetherall 269

JNPR-IMPL_30024_

iii. “storing an indication of . . . the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Kerr in view of Wetherall renders obvious this element.

See Claim (iv) above.

iv. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

Wetherall renders obvious this element. See Claim 1(v) above.

(c) Claim 10

Kerr in view of Wetherall renders obvious claim 10. See Claim 1 above.

14, Kerr in View of Wetherall, Bellare97, and Bellare95 Renders Obvious

Claims 1, 4, and 10 Under § 103

All of these references have already been combined with Kerr in corresponding sections

above, and those sections should be consulted for the detailed manner of applying them to Kerr.

As applied to the previous combination of Kerr in view of Wetherall, Bellare97 and Bellare95

further confirm that “a plurality of components” in a sequence would maintain “state

information” across packets in the manner recited by claims 1, 4, and 10. See Sections V.B.13

(Kerrt+Wetherall) and V.B.4 (Kerr+Bellare97+Bellare95) above.

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + Wetherall 270

JNPR-IMPL_30024_

15. Kerr in View of RFC 1825, RFC 1829, Bellare97, Bellare95, IBM96,
Nelson, Fraser, Bellissard, and Wetherall Renders Obvious Claims 1,

15, and 35 Under § 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Kerr alone or in combination with the various

grounds of rejection presented above, then the inclusion of those aspects certainly would be

obvious over Kerr in view of RFC 1825, RFC 1829, Bellare97, Bellare95, IBM96, Nelson,

Fraser, Bellissard, and Wetherall in light of the background knowledge of one of ordinary skill in

the art under 35 U.S.C. § 103, under Implicit’s apparent claim constructions.

All of these references have already been combined with Kerr in corresponding sections

above, and those sections should be consulted for the detailed manner of applying them to Kerr.

This section briefly summarizes that material and shows the collective combination of these

references would be obvious as well.

Kerr teaches a general flow-based architecture for router devices, and it anticipates and

renders obvious all elements of claims 1, 4, and 10.

Claims 1, 4, and 10 recite elements regarding “state information” as relating to “a

plurality of components.”

Kerr teaches, e.g., encryption, packet re-write, and various other “special treatment”

applied to the packets of specific flows. E.g., Ex. 15 at 4:29-60. RFC 1825 and Bellare95

confirm the obviousness of employing an additional component for authentication. IBM96

confirms the obviousness of employing an additional component for compression.

RFC 1829 and Bellare97 confirm the obviousness of employing stateful encryption

algorithms which would read on these elements. Bellare95 confirms the obviousness of

employing stateful authentication algorithms which would read on these elements. Nelson

Inter Partes Reexamination of 4

USS. Patent No.7,711,857 Kerr + various 271

JNPR-IMPL_30024_

confirms the obviousness of employing stateful compression algorithms which would read on

these elements.

Since Kerr teaches that its various operations are applied in a manner tailored to each

flow (e.g., id. at 4:12-20), it was obvious that any two of more of these stateful components

(encryption, authentication, compression) would be applied to a particular flow. This was

especially obvious since all three of these operations would be useful for implementing, e.g., a

virtual private network across an expensive link—as would be appreciated by one of ordinary

skill in the art. Moreover, Kerr teaches additional stateful components which read on these

“state information” claim elements, and it was also obvious for any of these to be applied to a

particular flow as well. See Sections V.B.1 (Kerr 102) and V.B.2 (Kerr 103) above.

Claims 1, 4, and 10 recite “dynamically identify a sequence of components.”

Kerr alone makes clear that administrators can make rule-based or policy changes during

runtime, which falls within the scope of “dynamically identifying a non-predefined sequence of

components” under Implicit’s apparent claim construction. Ex. 15 at 6:14-16 (“changes in

access control lists” can occur during an existing “flow,” causing it to “expire”), 8:42-44 (after

being “initially configured,” routing device parameters “may be altered by an operator’).

Like Kerr, Fraser teaches dynamically configuring firewall policies while the system is

operating. It teaches a more comprehensive framework for this capability, and details another

manner in which it could be implemented. Under Implicit’s apparent claim constructions, such

dynamic configuration of policies would read on these “dynamic[]” claim elements.

Bellissard teaches dynamically adding new components and modifying existing

components while the system is operating. Under Implicit’s apparent claim constructions, both

of these techniques would read on these “dynamic[]” claim elements.

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + various 272

JNPR-IMPL_30024_

Wetherall teaches dynamically delivering new component(s) in the first packet of a

message, which would also read on these “dynamic[]” claim elements. Indeed, it is difficult to

imagine how a sequence could be identified any more “dynamically” than by obtaining one or

more of the identified components from the first packet itself.

In short, there is no aspect of claims 1, 4, and 10 which was not obvious over the prior art

and combinations cited herein.

16. Kerr in View of Checkpoint and Shwed Renders Obvious Claims 1, 4,

and 10 Under § 103

The paper “Checkpoint Firewall-1 White Paper, Version 2.0” (Exhibit 20, “Checkpoint’)

was published by Checkpoint (the maker of the “Firewall-1” product) in September 1995. U.S.

Pat. No. 5,835,726 entitled “System for securing the flow of and selectively modifying packets in

a computer network,” by Shwed et al. (Exhibit 21, “Shwed”) issued on November 19, 1998 to

the assignee Checkpoint.Software Technologies Ltd. Neither Checkpoint nor Shwed was

considered during the prosecution of the ‘857 patent.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Kerr, then the inclusion of those aspects certainly would be

obvious over Kerr in view of Checkpoint, and further in view of Shwed, in light of the

background knowledge of one of ordinary skill in the art, under 35 U.S.C. § 103.

Under Implicit’s apparent claim construction, the “dynamically” limitation requires some

degree of system configurability, and Kerr duly discloses a fully configurable network security

product. However, if Kerr is deemed to lack sufficient disclosure regarding system

configurability, combination with Checkpoint and Shwed cures any such deficiency. Checkpoint

and Shwed illustrate the fact that network security products such as firewalls have had the ability

to arbitrarily add and change rules and policies for years prior to the claimed priority date of the

Inter Partes Reexamination of
USS. Patent No.7,711,857 Kerr + various 273

JNPR-IMPL_30024_

‘857 patent. And it would have been obvious to apply the teachings of Checkpoint and Shwed to

the networking technologies in Kerr, to provide yet additional configurability options to address

changing security demands in a network environment.

For example, Checkpoint describes the “Inspection Module” of the Firewall-1 product as

“generic and flexible,” one that is “capable of learning and understanding any protocol, as well

as adapting to newly defined protocols and applications.” Ex. 20 at 20. It goes on to observe

that “[t]his capability is achieved by using high-level definitions, and requires no code

changes.” Id. Checkpoint explains that Firewall-1 is not limited to examining header data; it

can “extract data from the packet’s application content and store it to provide context.” /d. at

14. Based on this information, the Firewall-1 “is able to dynamically allow and disallow

connections as necessary.” /d. The Firewall-1 is also able to store and use “state information

for each session through the gateway,” using a technology known as “Stateful Multi-Layer

Inspection.”

Shwed similarly shows the highly configurable nature of the claimed firewall, and even

includes a depiction of the “rule base editor”:

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Kerr + Checkpoint + Shwed 274

JNPR-IMPL_30024_

RULE BASE EDITOR : CORPORATE

PLE RULE j FILTER | ROUTER] UTILITES | PROPERTIES | TUTORIAL

WINDOWS: NETWORK OBJECTS RISERVICES e@f SYSTEM VIEW CLOG VIEWER

NO.) SOURCE DESTINATION | SERVICES ACTION TRACK TT INSTALL ON

ANY MAILSERVERS SMTP ACCEPT GATEWAYS

© ria 302
Loe ay

2) c&o FINANCE
ANY Ay GATEWAYScro at 6) HOWE UA

3| TRUSTEDPARTIES INTERNAL | TALK RSTAT TELNET Dot
Ge

4| INTERNAL ANY ANY ALERT
GATEWAYS

© © ® HowH

ANY ig INTERNAL
ANY MAH. DST

FINANCE €) Ba

RULE BASE SAVED TO ‘/FW/USERS /MARLUS /CORPORATE W

FPIG.3

Ex. 21 at Fig. 3. Shwed discloses a plurality of “packet filters,” each of which “can handle

changes in security rules with great flexibility as well as handle multiple security rules without

changing the structure of the packet filter itself” Id. at 6:35-39, see generally id. at 5:39 — 8:9.

“TE]ach packet filter Like Checkpoint, Shwed also discloses “stateful multi-layer inspection.”

Id. at 14:55-62.

Thus, to the extent that Kerr is deemed to lack inadequate disclosure of the relevant

limitations for claims 1, 4, and 10, the combination of Kerr with Checkpoint and Shwed clearly

makes up for any such perceived deficiency.

17. Kerr in View of Dietz Renders Obvious Claims 1, 4, and 10 Under

§ 103

U.S. Pat. No. 6,651,099 entitled “Method and Apparatus for Monitoring Traffic in a

Network” by Russell S. Dietz et al. (Exhibit 22, “Dietz”) resulted from a patent application filed

on June 30, 1999.

Inter Partes Reexamination of

U.S. Patent No.7,711,857 Kerr + Checkpoint + Shwed 275

JNPR-IMPL_30024_

During prosecution of the “857 patent, Dietz was disclosed by the patentee alongside

approximately 20 other references in its Information Disclosure Statement of January 29, 2010,

several weeks after the Examiner had declared that the pertinent rejections over the prior art had

been overcome. Ex. 40-D (12/11/2009 Final Rejection) at 3 (“Claims 6, 8, 9, 22-24 and 26-28

would be allowable if a terminal disclaimer is filed to overcome the obviousness-type double

patenting rejection.”); Ex. 40-F (1/29/2010 IDS). However, the finding ofa “reasonable

likelihood” under Section 312 is “not precluded by the fact that a patent or printed publication

was previously cited by or to the Office or considered by the Office.” 35 U.S.C. § 312(a). Dietz

was never discussed or applied by the Examiner at any time during prosecution of the ‘857

patent, and no evidence exists that the Examiner considered any of the technical teachings of

Dietz to a greater degree than documents are generally considered during a search of PTO file

records. See MPEP § 2640. Moreover, as combined with Kerr (which was not considered by the

Examiner), Dietz is here considered in a new light.

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Kerr, then the inclusion of those aspects certainly would be

obvious over Kerr in view of Dietz in light of the background knowledge of one of ordinary skill

in the art, under 35 U.S.C. § 103.

For example, Dietz, like Kerr, is expressly described as a “flow’-based system, as

illustrated in Figure 3, and thus it would have been obvious to jointly consider their combined

teachings:

Inter Partes Reexamination of
.

USS. Patent No.7,711,857 Kerr + Dietz 276

JNPR-IMPL_30024_

parsen go)
308

ye tee
ANA

WE
AND

ii se"
WENTIEING BUD UNIQUE!

Moone eer

AN Low
dinoeenntinny CONVERSATION MEME

FLOW,
DATABASE

é
 oRteation ley FLOW REY

KNOW
OE FLOWS

sta? ri i

| peewee ene i
Be

ecnnertennennetenennennescese } pom

i be atdete et

32*
UPGATE Ko?

PROTOOCH, vO" Nes
“Nowe,

“FLOW?
& STATE CLASSIFICATIC KNOWN

IDENTIFICATION RECORDEXTRACTION
DATABASE

fo :

OY pannetannnnnencas
FE

q

sonneresanneeees

f CLASSIFICATNE |
538 FINALIZATION

i

i

t

'

319 —, STATE
’

Lo
INSTRUCTION

HORE STATES! WOhrnmnct
Saray

COMPILER
|

SATABASE

t

t

i

i

i

1

i

j

i

PAT

TER.
paRsk |

t

non
i

Sa
(soe

ac, i

i

i

i

OPTIMIZER

STATE MORE
“mcnenlind RACICTE SE enn

COPERATION
OPERATIONS

ANALYZERbe
LAYER

SEE ECTIONG

Ex. 22 at Fig. 3. Dietz also discloses analysis of packets passing through the system “in real

time” in order to determine “the application program associated with the conversational flow.”

Id. at Abstract. In so doing, Dietz looks not only to the “protocol (e.g., http, ftp, H.323, VPN,

etc.),” but also “the application/use within the protocol.” /d. at 3:30-34. Thus, Dietz is able to

provide “a flexible processing system that can be tailored or adapted as new applications enter

the client/server market” so it can classify and respond to flows based on application. /d. at 4:45

— 5:9,

Thus, to the extent that Kerr is deemed to lack inadequate disclosure of the relevant

limitations for claims 1, 4, and 10, the combination of Kerr with Dietz clearly makes up for any

such perceived deficiency.

Inter Partes Reexamination of
.

U.S. Patent No.7,711,857 Kerr + Dietz 277

JNPR-IMPL_30024_ 02292235

18. Kerr in view of Pfeifer96 Renders Obvious Claims 1, 4, and 10 Under

§ 103

If certain aspects recited in claims 1, 4, and 10 of the ‘857 patent are not deemed to be

disclosed, inherent, or obvious over Kerr alone, then the inclusion of those aspects certainly

would be obvious over Kerr in view of Pfeifer96 in light of the background knowledge of one of

ordinary skill in the art, under 35 U.S.C. § 103.

(a) Claim 1

i. “A method... for processingpackets of a message”

Claim 1 recites: “A method in a computer system for processing packets of a message,

the method comprising” Under Implicit’s apparent claim constructions, Kerr discloses this

element. See Section V.D.1 (Kerr 102) at Claim 1(4) above.

il. “receiving a packet of the message”

Claim 1 further recites: “receiving a packet of the message and a data type of the

message.” Under Implicit’s apparent claim constructions, Kerr discloses this element. See

Section V.D.1 (Kerr 102) at Claim 1(1i) above.

iil. dynamically identify a sequence of components”

Claim 1 further recites: “analyzing the data type of a first packet of the message to

dynamically identify a sequence of components for processing a plurality of packets of the

message such that the output format of the components of the sequence match the input format of

the next component in the sequence, wherein analyzing the data type of the first packet of the

message to dynamically identify the sequence of components includes selecting individual

components to form the sequence of components after the first packet of the message is

received.” Under Implicit’s apparent claim constructions, Kerr in view of Pfeifer96 renders

obvious this element.

Inter Partes Reexamination of .

USS. Patent No.7,711,857 Kerr + Pfeifer96 278

JNPR-IMPL_30024_

The essential motivation for the Pfeifer96 system is that users are “mobile” and

“nomadic,” and still wish to receive their electronic communications even when away from their

“well equipped” offices. Ex. 3 at 122, 104. For example, a user may be visiting a location where

there is only a telephone, soif a fax is sent to his office he will miss it. See 7d. at 118, 120, 111.

Pfeifer96 proposes a general solution to this problem, which relies on three related technologies.

First, the system keeps track of the user’s location: users may “register” when they arrive at a

location, or may wear an “Active Badge” which tracks their location automatically. /d. at 126-

27, 119. Second, the system keeps track of the specific “access devices” in the user’s location

which would be available to receive incoming communications. /d. at 120. Third and most

important, if there is not an access device in current location which would be capable of

receiving the communication in its original form, the system can dynamically convert the

communication into an entirely different medium. Id. at 120, 124. For example, if there is phone

but not a fax machine in the user’s current location, the system can automatically call the user

and read him the fax, by dynamically converting the data from its original source medium (fax)

to a medium supported by the access device in the user’s vicinity (audio). /d. at 111, 123-24.

The iPCSS performs this function by observing incoming communications at they enter

its “Service Gateways.” /d. at 120-24. By doing so, the system can ascertain: (1) the intended

destination of an incoming communication (i.e., the called party); and (2) the medium of the

incoming communication (e.g., voice call, videoconference, fax, etc.). /d. Knowing these two

facts, the system can then determine if there is a device in the called party’s “current vicinity”

which could accept the communication in its original form. /d. at 120. If not, the system can

dynamically generate a converter chain for converting the communication to a medium which

can be accepted by one of the nearby devices. /d. at 120-24.

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Pfeifer96 279

JNPR-IMPL_30024_

Pfeifer96 styles this system the “Intelligent Personal Communications Support System

(iPCSS),” and its slogan is “information any time, any place, in any form.” Id. at 105, 117

(emphasis in original).

It was obvious to apply this iPCSS system to Kerr, so Kerr could also assure delivery of

communications to users in their actual locations. As a router, Kerr is well-positioned to observe

communications directed to many different users. Ex. 15 at Figure 1. And as a router, Kerr

is well-equipped to convert and re-route these communications as needed for successful delivery.

Kerr already tracks the various pieces of information which would be needed to apply the

Pfeifer96 technique. For each incoming flow, Kerr tracks the flow’s “particular destination

device” (so Pfeifer96 can determine if the flow would be delivered uselessly to a vacant office),

and itsmedium, e.g.,““an internet telephone protocol, or an internet video protocol such as the

“CUSeeMe” protocol” (so Pfeifer96 can determine if conversion to another medium is needed to

deliver the flow to a device in the user’s vicinity). Ex. 15 (Kerr) at 2:64-65, 3:57-67, 3:13-14.

Meodiaondine Formsk

Senwereionont i
Yo esLo EX

& ¥

Ex. 3 (Pfeifer96) at 118 (showing conversion of incoming telephone and video data)

When the first packet of a new flow arrives, Kerr goes through the somewhat expensive

and elaborate process of determining how al/ the packets of that flow should be treated: e.g.,

whether they should be encrypted, whether their packet headers should re-written, and where the

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Pfeifer96 280

JNPR-IMPL_30024_

packets of the flow should be routed next. /d. at 1:33-35, 4:13-67. Itis clearly at this moment,

when determining the proper processing for the flow, that Kerr would simply query the Pfeifer96

system to determine if conversion and re-routing of the flow would be appropriate. if

Pfeifer96 determines the user is away from the destination device, it could then (in its usual

manner) dynamically generate a suitable converter chain for connecting the flow to a device in

the user’s current location. Ex. 3 (Pfeifer96) at 120-24.

Thus, as explained above for Pfeifer96 alone, the combined system would “dynamically

identify a sequence of components for processing a plurality of packets of the message.” See

Section V.C.1 (Pfeifer96 102) at Claim 1(iii) above. The identification is performed by

“analyzing the data type of the first packet,” e.g., by determining the medium of the first packet

(e.g., “an internet telephone protocol, or an internet video protocol”). Ex. 15 (Kerr) at 3:13-14.

Because Pfeifer96 would dynamically generate the chain in its usual manner, the other

aspects of this claim element have been covered above in a section dealing specifically with

Pfeifer96. See Section V.C.1 (Pfeifer96 102) at Claim 1(ii1) above. Additionally, Kerr teaches

components which might also be added to a particular sequence. See Section V.D.2 (Kerr 103)

at Claim above.

iv. “storing an indication of... the identified components”

Claim 1 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Kerr in view of Pfeifer96 renders obvious this element.

When Kerr has determined the “proper treatment” for a new flow by examining its first

packet, it “builds a new entry in the flow cache” and “enters information regarding such proper

treatment in a data structure pointed to by the new entry.” Ex. 15 at 4:12-17. “Thus... the

routing device 140 does not separately determine, for each packet 150 in the message flow 160,

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Pfeifer96 281

JNPR-IMPL_30024_

the information stored in the entry in the flow cache. Rather, when routing a packet 150 in the

message flow 160, the routing device 140 reads the information from the flow cache and treats

the packet 150 according to the information in the entry in the flow cache.” /d. at 4:64-5:4.

Because the “proper treatment” for packets of the flow would include the converter chain

specifically generated for the flow by Pfeifer96, the chain would obviously be stored in the same

“data structure,” and for the same reason. /d. at 4:15-16, 4:65-66. And thus, Pfeifer96 in view of

Kerr renders obvious storing an indication of both the dynamically generated component

sequence of Pfeifer96 as well as any indigenous components of Kerr, so the sequence does not

need to be re-identified for subsequent packets of the message (flow).

“state information”

Claim 1 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

Pfeifer96 renders obvious this element.

Because Pfeifer96 in context of Kerr would employ substantially the same sequences of

converter components as Pfeifer96 alone, this element has been covered above in a section

dealing with Pfeifer96. See Section V.C.2 (Pfeifer96 103) at Claim above Additionally,

Kerr teaches components which might also be added to a particular sequence. See Section V.D.2

(Kerr 103) at Claim 1(v) above.

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Pfeifer96 282

JNPR-IMPL_30024_

(b) Claim 4

i. “A method... for processing a message”

Claim 4 recites: “A method in a computer system for processing a message, the message

having a plurality of headers, the method comprising... .” Under Implicit’s apparent claim

constructions, Kerr discloses this element.

As packets arrive at Kerr, they are classified into flows based on the following packet

header fields: “IP address for the source device”; “IP address for the destination device”;

“protocol type”; “port number for the source device”; and “port number for the destination

device.” Ex. 15. at 3:55-65. The first three fields are found in an IP packet’s layer 3 header, and

the final two in its layer 4 header (e.g., TCP or UDP).*°

ii. “dynamically identify a sequence”

Claim 4 further recites: “analyzing the plurality of headers of a first packet of the

message to dynamically identify a sequence of components for processing a plurality of packets

of the message such that the output format of the components of the sequence match the input

format of the next component in the sequence, wherein analyzing the plurality of headers of the

first packet of the message to dynamically identify the sequence of components includes

selecting individual components to form the sequence of components after the first packet of the

message is received.” Under Implicit’s apparent claim constructions, Kerr in view of Pfeifer96

renders obvious this element.

Regarding the limitation “analyzing the plurality of headers ofa first packet of the

message,” as explained above, Kerr would supply two pieces of information to Pfeifer96 in order

See, e.g., Ex. 41 (RFC 791) (IP Specification) (1981) at 11 (“Source Address”;
“Destination Address”; “Protocol”); Ex. 9 (RFC 793) (TCP Specification) (1981) at 15 (“Source

Port”; “Destination Port”). These references are cited in this context solely to help explain Kerr.

See MPEP § 2205.

Inter Partes Reexamination of

U.S. Patent No.7,71 Kerr + Pfeifer96 283

JNPR-IMPL_30024_

for Pfeifer96 to dynamically generate an appropriate converter chain: (1) the flow’s “particular

destination device” (so Pfeifer96 can determine whether the flow would be delivered uselessly to

a vacant office); and (2) the flow’s medium, e.g., “an internet telephone protocol, or an internet

video protocol such as the “CUSeeMe” protocol” (so Pfeifer96 can determine if conversion to

another medium is needed to deliver the flow to a device in the user’s vicinity). See Claim

above; Ex. 15 (Kerr) at 2:64-65, 3:57-67, 3:13-14. The first is gotten from “the IP address for

the destination device” in the first packet’s layer 3 header, and the second from a “port number”

in its layer 4 header. Ex. 15 at 3:60-61, 3:12-14. Other aspects of this element are discussed

above. See Claim above.

il. “storing an indication of... the identified components”

Claim 4 further recites: “storing an indication of each of the identified components so that

the sequence does not need to be re-identified for subsequent packets of the message.” Under

Implicit’s apparent claim constructions, Kerr in view of Pfeifer96 renders obvious this element.

See Claim 1(iv) above.

iy. “state information”

Claim 4 finally recites: “for each of a plurality of components in the identified sequence:

performing the processing of each packet by the identified component; and storing state

information relating to the processing of the component with the packet for use when processing

the next packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

Pfeifer96 renders this element. See Claim 1(v) above.

(c) Claim 10

Kerr in view of Pfeifer96 renders obvious claim 10. See Claim 1 above.

Inter Partes Reexamination of .

USS. Patent No.7,711,857 Kerr + Pfeifer96 284

JNPR-IMPL_30024_

19, Kerr in view of Pfeifer96, ISDN98, and Nelson Renders Obvious

Claims 1, 4, and 10 Under § 103

Pfeifer96 has already been combined with Kerr, and ISDN98 and Nelson have already

been combined with Pfeifer96 in corresponding sections above. See Sections V.D.18

(Kerr+Pfeifer96) and V.C.3 (Pfeifer96+ISDN98+Nelson) above. Those sections should be

consulted for the detailed manner of applying them to these references. As applied to the

previous combination of Kerr in view of Pfeifer96, ISDN98 and Nelson further confirm that “a

plurality of components” in a sequence generated by Pfeifer96 would maintain “state

information” across packets in the manner recited by claims 1, 4, and 10. See id.

Inter Partes Reexamination of

USS. Patent No.7,711,857
285

JNPR-IMPL_30024_

VI. CERTIFICATION PURSUANT TO 37 C.F.R. § 1.915(B)(7)

The Requester hereby certifies that the estoppel provisions of 37 C.F.R. § 1.915(b)(7)

would not prohibit the granting of this Request for /nter
Partes

Reexamination.

VIL. IDENTIFICATION OF
REAL

PARTY IN INTEREST
PURSUANT

TO 37 C.F.R.

§ 1.915(B)(8)

The real party in interest is Juniper Networks, Inc.

VU. CONCLUSION

The Requester requests that claims 1, 4, and 10 of the ‘857 patent be reexamined in view

of the prior art and grounds discussed in this Request for /nter Partes Reexamination. The

Requester also requests the issuance of a certificate under 35 U.S.C. § 316(a) cancelling at least

claims 1, 4, and 10.

Dated: March 2, 2012

840 Newport Center Drive, Suite 400

Newport Beach, CA 92660

(949)760-0991

Inter Partes Reexamination of
“US. Patent No.7,711,857

Respectfully submitted,

TRELL & MANELLA LLP

David McPhie, Reg. No.56,412

Certificate of Mailing

hereby certify that this correspondence is being deposited with the

U.S. Postal Service as Express Mail Label Nos. EM3051485752US and EM305149510US

addressed to: Mail Stop Jnter Partes Reexam, Central Reexamination Unit,

Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on

March 2, 2012.

Dpter)PnaucticgSusan Langworthy

286

JNPR-IMPL_30024_

