
Express Mail Label Nos. EM 305150478 & EM 305150481

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent No.: 6,629,163 Group Art Unit: To be assigned

Inventors: Edward Balassanian Examiner: To be assigned

Issued: Sept. 30, 2003 Attorney Docket No.: 159291-0025(163)

Serial No.: 09/474,664 Reexam Control No.: To be assigned

Title) METHOD AND SYSTEM FOR Reexam Filing Date: To be assigned
DEMULTIPLEXING A FIRST

SEQUENCE OF PACKET
COMPONENTS TO IDENTIFY
SPECIFIC COMPONENTS
WHEREIN SUBSEQUENT
COMPONENTS ARE
PROCESSED WITHOUT RE-
IDENTIFYING COMPONENTS

REQUEST FOR INTER PARTES REEXAMINATION

Mail Stop Inter Partes Reexam

Attn: Central Reexamination Unit

Commissioner for Patents

P.O. Box 1450

Alexandria, Virginia 22313-1450

Sir or Madam:

Juniper Networks, Inc. (hereinafter “Requester”) respectfully requests inter partes

reexamination of U.S. Patent No. 6,629,163 (“the ‘163 patent”) entitled “Method and

System for Demultiplexing a First Sequence of Packet Components to Identify Specific

Components Wherein Subsequent Components are Processed Without Re-Identifying

Components.” This Request is made pursuant to 35 U.S.C. §§ 311-316 and 37 C.F.R.

§§ 1.906, 1.913 and 1.915. The ‘163 patent was filed on December 29, 1999 and issued

on September 30, 2003. The patent has not yet expired. Asa result of ex parte

reexamination, an Ex Parte Reexamination Certificate (7567th) issued for the ‘163 patent

2315571

JNPR-IMPL_30024_

Page 1 of 272 Implicit Exhibit 2001
Juniper v. Implicit

on June 22, 2010. Implicit Networks, Inc. (“Implicit”) has alleged that it is the current

assignee of the ‘163 patent. A copy of the ‘163 patent, in the format specified by

37 C.F.R. § 1.915(b)(5), is attached as Exhibit 1. The reexamination certificate is

attached as Exhibit 2.

This Request for /nter Partes Reexamination (“Request”) is being served on the

correspondent of record for the ‘163 patent (Newman Du Wors LLP, 1201 Third Avenue,

Suite 1600, Seattle, WA 98101) and on counsel for Implicit (Hosie Rice LLP,

Transamerica Pyramid, 34th Floor, 600 Montgomery Street, San Francisco, CA 94111).

This Request is also accompanied by the required fee as set forth in 37 C.F.R.

§ 1.20(c)(2) and the certificate required by 37 C.F.R. § 1.915(b)(6).

For the convenience of the Examiner, following is a table of contents for this

Request:

Major Section Page

I. INTRODUCTION 3

Il. DISCLOSURE OF CONCURRENT PROCEEDINGS 9

Il. CLAIMS FOR WHICH REEXAMINATION IS REQUESTED AND 10

CITATION OF PRIOR ART

IV. CLAIM CONSTRUCTION ADMISSIONS OF THE PATENT 18

OWNER

V. PERTINENCE AND MANNER OF APPLYING THE PRIOR ART 24

VI. CERTIFICATION PURSUANT TO 37 C.F.R. § 272

VIL IDENTIFICATION OF REAL PARTY IN INTEREST PURSUANT 272

TO 37 § 1.915(b)(8)

VU. CONCLUSION 272

Inter Partes Reexamination of

US. Patent No.6,629,163

JNPR-IMPL_30024_

Page 2 of 272 Implicit Exhibit 2001
Juniper v. Implicit

I. INTRODUCTION

The PTO should grant this Request and initiate infer partes reexamination

proceedings for the ‘163 patent in light of the invalidating prior art presented herein.

Virtually all of the art cited in this Request has never before been considered in

connection with the ‘163 patent claims, and the art clearly discloses every element of the

claims to be reexamined—including those elements that the patentee previously alleged

during prosecution to be distinguishing features over the prior art. Given the clear

teachings of this new prior art as explained below, this Request readily satisfies the

threshold requirement of presenting a “reasonable likelihood that the requester would

prevail” with respect to one or more of the challenged claims. 35 U.S.C. 312.

The ‘163 patent describes itself as relating “generally to a computer system for

data demultiplexing.” Ex. 1 at 1:11-12, 2:57-64. As explained in the background section

of the patent, contemporary computer systems “generate data in a wide variety of

formats,” including bitmap, encryption, and compression formats, and formats used for

packet-based communications such as TCP and IP. /d. at 1:24-29. To facilitate

processing of communications in this multi-format environment, the patent proposes a

“method and system for converting a message that may contain multiple packets from [a]

source format into a target format.” /d. at 2:38-40. The packet processing method as

claimed employed a “sequence” of components, such that a format conversion could be

performed by using a plurality of components taking a message through “various

intermediate formats” before reaching the final, target format. /d. at 2:47-49. An

illustration of such a conversion (from format D1 to D15) is illustrated in Figure 2 of the

‘163 patent:

Inter Partes Reexamination of

U.S. Patent No.6,629,163 3

JNPR-IMPL_30024_

Page 3 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Pt P2 P3 P4

OF b2
pte

DS
{NUL

2 D3 2

During the original prosecution and prior ex parte reexamination proceedings for

the ‘163 patent, the patentee emphasized a few specific features of its purported invention

in an attempt to distinguish prior art cited against it. The original claims as filed in 2003

described a method in which (1) a packet of a message was received, (2) a component

for processing the packet was identified, and then (3) certain steps relevant to packet

processing were performed involving “state information.” In response to an initial office

action rejecting all of the original claims, the patentee cancelled those claims and

proposed a new set of claims adding language to the effect that the identification of a

sequence of components for processing must be stored, “so that the sequence does not

need to be re-identified for subsequent packets of the message.” In other words, an

identification of components was to take place only for the first packet of a given

message; that identification was then to be stored and made available for subsequent

packets in the message, which could then essentially follow the lead of the first packet

through the sequence of components already identified.

The examiner issued a notice of allowance for the claims as thus amended, stating

that this new limitation—processing of subsequent packets “without re-identifying” a

new sequential order of components—was not taught or suggested in the prior art of

record. Indeed, the examiner underscored the importance of the limitation with an

examiner’s amendment to the patent title which included the words: “Wherein

Subsequent Components are Processed Without Re-Identifying Components.”

Inter Partes Reexamination of

USS. Patent No.6,629,163 4

JNPR-IMPL_30024_

Page 4 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Years later, the PTO initiated ex parte reexamination proceedings for the ‘163

patent on the request of a third party that had been accused of infringing the patent.’

During those proceedings, the patentee offered a new purported point of distinction in an

attempt to overcome the primary piece of prior art under consideration in the

reexamination—a paper called the “Mosberger” reference. Specifically, the patentee

argued that “[t]he '163 invention is about a system that, upon receipt of first message

packet, dynamically selects a sequence of components to create a path for processing the

message.” Ex. 35-I [Examiner Interview PowerPoint]. In other words, there is a specific,

sequential “order to [the] claims —first, packet is received, and then, component

sequence is identified based on packet.” /d. The patentee pointed to language from the

specification suggesting the importance of a “dynamic” approach in avoiding the

“overhead” that would otherwise be involved in calculating “each possible series of

conversion routines” in advance. Ex. 1 at 1:38-66. The patentee alleged that Mosberger,

by contrast, performed its identification of sequences before the first packet was received,

and therefore did not disclose the type of dynamic identification contemplated by the

claims.

After multiple rejections, the patentee was ultimately forced to amend its claims

(though purportedly only to “clarify” their original intent) to expressly include the step of

“dynamically identifying a non-predefined sequence of components.” The examiners in

the reexamination unit subsequently issued a notice of allowance for these claims as

amended. The allowance was expressly based on the patentee’s argument that

“Mosberger does not dynamically identify sequences.”

'
The litigation matter settled before conclusion of the ex parte reexamination

proceedings.

Inter Partes Reexamination of

U.S. Patent No.6,629,163 5

JNPR-IMPL_30024_

Page 5 of 272 Implicit Exhibit 2001
Juniper v. Implicit

The new prior art now presented in this Request plainly discloses the very

elements of the claimed invention that were supposedly found lacking during prior

prosecution of the ‘163 patent.

For example, a technical paper presented at an international telecommunications

conference in 1996 (“Pfeifer96”) demonstrates that researchers had already discovered

how to perform dynamic conversion from a source format into a target format using a

wide variety of formats:

Medisandian Fommat

.

Conversion

a“ Pune
Ex. AO2 at 118. To do this, Pfeifer96 teaches the use of what it calls a “dynamically

generated converter chain” —an approach indistinguishable from that claimed in the

‘163 patent (compare the following Fig. 6 of Pfeifer96 to Fig. 2 of the ‘163 patent):

Mea“

Zea ISDN ed

fax service image sgawtext > filtered text> speech > auduo format’ phone sermnice

gateway gateway

Id. at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech,

telephone delivery”); see also id. at 125 (characterizing “converter chain” as

“dynamically generated”). This reference was published over three years before the

Inter Partes Reexamination of

U.S. Patent No.6,629,163 6

JNPR-IMPL_30024_

Page 6 of 272 Implicit Exhibit 2001
Juniper v. Implicit

patentee had even filed the application that became the ‘163 patent. Pfeifer96 fully

anticipates and renders obvious every element of claims 1, 15, and 35 of the ‘163 patent,

both on its own and in combinations with other references as set forth in this Request.

And Pfeifer96 is hardly the only example of invalidating prior art dating from

years before the critical date of the ‘163 patent. Cisco Systems was also actively

involved in this technological space in 1996, when a pair of Cisco engineers filed an

application that ultimately issued as a patent (‘Kerr’). The Kerr patent teaches how

network administrators can flexibly configure systems with the use of a technology called

“flows,” in which the first packet of a message goes through several functions task by

task and then “caches” the information for high-speed use by subsequent packets. This

functionality was incorporated into actual Cisco products under the name “NetFlow,” as

elaborated in the following article excerpt from a 1997 trade publication:

Cisco stream ines routing, management

With Cco’s Nethle

functions task by tack

gut those tacks at highspeed f erat

about the few can then be wassed: on for network pagernent an ole

Inter Partes Reexamination of

USS. Patent No.6,629,163 7

JNPR-IMPL_30024_

Page 7 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Ex. 16 [InfoWorld Article]. The Kerr technology as embodied in NetFlow is still part of

Cisco’s product line to this day.” Kerr fully anticipates and renders obvious every

element of claims 1, 15, and 35 of the ‘163 patent, both on its own and in combinations

with other references as set forth in this Request.

This Request contains other invalidating references and combinations of

references. For example, a 1998 article (“Decasper98”) presents its own solution to the

“increasingly rapid pace” with which “[n]ew network protocols are being deployed

on the Internet,” by proposing an architecture with “code modules, called plugins, to be

dynamically added and configured at runtime.” Ex. 25 [Decasper98] at 229. As with

Kerr, the “information gathered by processing the first packet” is stored in a “cache,”

from which “/s/ubsequent packets” can obtain it “quickly and efficiently.” /d. at 231.

Finally, although this Request presents numerous prior art references teaching the

supposed shortcomings of the Mosberger reference cited in the prior ex parte

reexamination, it also explains how Mosberger is not nearly so limited as the patentee

argued to the PTO during those proceedings. Mosberger itself states that it would be

“straight-forward to add a dynamic module-loading facility.” Ex. 31 [Mosberger] at 71.

Thus viewed for the first time in this new light, Mosberger also anticipates and renders

obvious the ‘163 patent claims by itself or in combination with other references.

In summary, for these reasons and as detailed below, there is a reasonable—and

indeed compelling—likelihood that Requester will prevail on the proposed claim

rejections presented herein. Accordingly, this Request should be granted as to at least

See <http://www.cisco.com/en/US/products/ps6601/products ios protocol
group_home.html>.

Inter Partes Reexamination of

U.S. Patent No.6,629,163 8

JNPR-IMPL_30024_

Page 8 of 272 Implicit Exhibit 2001
Juniper v. Implicit

claims 1, 15, and 35of the ‘163 patent, and a certificate under 35 U.S.C. § 316(a)

ultimately issued cancelling all of these claims.

IL.
DISCLOSURE OF CONCURRENT PROCEEDINGS

Implicit has asserted the ‘163 patent against Requester in a District Court action

styled Jmplicit Networks, Inc. v. Juniper Networks, Inc. (N.D. Cal. Civ. No. Civ. No.

In the District Court action, Implicit alleges that it is the owner of the

‘163 patent by assignment. Implicit alleges that claims 1, 15, and 35 of the ‘163 patent

are infringed by Requester’s products. For example, in its first amended complaint

against Requester, Implicit describes the allegedly infringing functionality as follows:

37. Junos OS dynamically identifies a sequence of
actions to be performed on a data packet flow on the basis

of the first packet. The sequence of actions so identified is

applied to all the subsequent packets of the flow. The

actions to be performed are determined using policies
maintained by the system. Junos OS inspects data packets,

analyzes them against the various policies and performs the

appropriate actions as dictated by the applicable policies.
Junos OS performs de-multiplexing of data packets by

reassembling datagrams fragmented over multiple packets.

38. | Whenever a data packet transits Juniper networking

equipment running the Junos OS, Junos OS performs a

flow lookup to see if the packet belongs to an already
established session. If the packet does not belong to an

existing session, a new session is created with the packet as

the first packet of the session. The system them analyzes
the first packet to determine the various actions to be

performed on all the data packets of that session. The

sequence of actions determined on the basis of the first

packet forms a fast processing path. All subsequent packets
of the session are then processed through the fast

processing path.

Ex. 36-A [Complaint] at 10; see also Exs. 36-B — 36-D [Infringement Contentions].

Inter Partes Reexamination of

U.S. Patent No.6,629,163 9

JNPR-IMPL_30024_

Page 9 of 272 Implicit Exhibit 2001
Juniper v. Implicit

To date, the District Court has not construed any term of the ‘163 patent, although

the parties have briefed claim construction and a Markman hearing was held on January

18-19, 2012.

li, CLAIMS FOR WHICH REEXAMINATION IS REQUESTED AND
CITATION OF PRIOR ART

Reexamination of claims 1, 15, and 35 of the ‘163 patent is requested under

35 U.S.C. §§ 311-316 and 37 C.F.R. 1.906, 1.913 and 1.915 based on the following

references:

Prior Art Reference Prior Art Date Exhibit

Article entitled “Generic Conversion of
Communication Media for Supporting Personal

Mobility” by Tom Pfeifer and Radu Popescu-
Zeletin (“Pfeifer96”)

November 27, 1996 Ex. 3

Color version of Pfeifer96 (“Pfeifer96a”) November 27, 1996 Ex. 3-B

Specification entitled “ISDN Primary Rate User-

Network Interface Specification” from Northern

Telecom (“ISDN98”)

August 1998 Ex. 4

Book entitled “The Data Compression Book” by
Mark Nelson and Jean-Loup Gailly (“Nelson”)

November 6, 1995

Book entitled “Superdistribution: Objects as

Property on the Electronic Frontier” by Brad

Cox (“Cox”)

June 4, 1996 Ex. 6

Thesis entitled “Job and Stream Control in

Heterogeneous Hardware and Software

Architectures” by Stefan Franz (“Franz98”)

April 22, 1998

Thesis entitled “Dynamic Configuration

Management of the Equipment in Distributed

Communication Environments” by Sven van der

Meer (“Meer96”)

October 6, 1996

Inter Partes Reexamination of

U.S. Patent No.6,629,163 10

JNPR-IMPL_30024_

Page 10 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Prior Art Reference Prior Art Date Exhibit

Specification entitled RFC 793: “Transmission

Control Protocol” by Information Sciences

Institute (‘RFC 793”)

September 1981 Ex. 9

Book entitled “Principles of Information

Systems Analysis and Design” by Harlan D.

Mills, Richard C. Linger, and Alan R. Hevner

(“Mills”)

1986 Ex. 10

Thesis entitled “Generic Description of
Telecommunication Services and Dynamic
Resource Selection in Intelligent Communication

Environments” by Stefan Arbanowksi

(“Arbanowski96”)

October 6, 1996

Article entitled “Resource Selection in

Heterogeneous Communication Environments

using the Teleservice Descriptor’ by Tom

Pfeifer, Stefan Arbanowski, and Radu Popescu-
Zeletin (“Pfeifer97”)

December 19, 1997 Ex. 12

U.S. Patent No. 6,104,500 entitled “Networked

Fax Routing Via Email” by Hassam Alam,
Horace Dediu, and Scot Tupaj (‘Alam’)

April 29, 1998 Ex. 13

U.S. Patent No. 5,298,674 entitled “Apparatus
for Discriminating an Audio Signal as an

Ordinary Vocal Sound or Musical Sound” by

Sang-Lak Yun (“Yun”)

March 29, 1994

U:S. Pat. No. 6,243,667 entitled "Network Flow

Switching and Flow Data Export," by Darren R.

Kerr and Barry L. Bruins (“Kerr”)

May 28, 1996

Article entitled “Cisco NetFlow Switching

speeds traffic routing,” InfoWorld Magazine

(“NetFlow”)

July 7, 1997

Article entitled “A Concrete Security Treatment

of Symmetric Encryption” by M. Bellare et al.

(“Bellare97”)

October 27, 1997 Ex. 17

Inter Partes Reexamination of

U.S. Patent No.6,629,163 ll

JNPR-IMPL_30024_

Page 11 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Prior Art Reference Prior Art Date Exhibit

Article entitled “XOR MACs: New Methods for | 1995 Ex. 18

Message Authentication Using Finite

Pseudorandom Functions” by Mihir Bellare,
Roch Guerin, and Phillip Rogaway (“Bellare95”)

Book entitled “Local Area Network Concepts May 1996 Ex. 19

and Products: Routers and Gateways” from IBM

(“IBM96”)

Article entitled “Checkpoint Firewall-1 White September 1995 Ex. 20

Paper, Version 2.0” (“Checkpoint”)

USS. Pat. No. 5,835,726 entitled “System for December 15, 1993 Ex. 21

securing the flow of and selectively modifying

packets in a computer network,” by Shwed et al.

(“Shwed”)

US. Pat. No. 6,651,099 entitled “Method and June 30, 1999 Ex. 22

Apparatus for Monitoring Traffic in a Network”

by Russell S. Dietz et al. (“Dietz”)

Article entitled “Dynamic Reconfiguration of September 10,1998 | Ex. 23

Agent-Based Applications”) by Luc Bellisard,
Noel de Palma, and Michel Riveill (“Bellisard”’)

Publication entitled “DTE Firewalls Phase Two | July 22, 1997 Ex. 24

Measurement and Evaluation Report” by

Timothy L. Fraser et al. of Trusted Information

Systems (“Fraser”)

Article entitled “Router Plugins: A Software September 4, 1998 Ex. 25

Architecture for Next Generation Routers” by
Dan Decasper et al. (“Decasper98”)

Specification entitled RFC 1825: “Security August 1995 Ex. 26

Architecture for the Internet Protocol” by R.

Atkinson (“RFC 1825”)

Specification entitled RFC 1829: “The ESP August 1995 Ex, 27

DES-CBC Transform” by P. Karn et al.

1829”)

Inter Partes Reexamination of
l 2U.S. Patent No.6,629,163

JNPR-IMPL_30024_

Page 12 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Prior Art Reference Prior Art Date Exhibit

Specification entitled RFC 1883: “Internet December 1995 Ex. 28

Protocol, Version 6 (IPv6) Specification” by S.

Deering and R. Hinden (“RFC 1883”)

Book entitled “IPv6: The New Internet Protocol” | October 28, 1997 Ex. 29

by Christian Huitema (“Huitema’)

Article entitled “Crossbow: A Toolkit for May 29, 1997 Ex. 30

Integrated Services over Cell Switched IPv6” by
Dan Decasper et al. (“Decasper97”)

Dissertation entitled “Scout: A Path-Based 1997 Ex. 31

Operating System” by David Mosberger

(“Mosberger”)

Article entitled “Implementing Communication | October 1998 Ex. 32

Protocols in Java” by Bobby Krupczak al

(“HotLava”)

Article entitled “An Extensible Protocol January 22, 1996 Ex. 33

Architecture for Application-Specific

Networking” by Marc Fiuczynski al

(“Plexus”)

Article entitled “ComScript: An Environment for | December 1994 Ex. 34

the Implementation of Protocol Stacks and their

Dynamic Reconfiguration” by Murhimanya

Muhugusa ez. al

Most of these prior art references were not cited or considered by the PTO during

prosecution of the ‘163 patent and are not cumulative to the art of record in the original

file. Only one of the references relied upon in this Request were cited during the

prosecution of the ‘163 patent (/.e., Mosberger). However, the finding of a “reasonable

likelihood” under Section 312 is “not precluded by the fact that a patent or printed

publication was previously cited by or to the Office or considered by the Office.” 35

U.S.C. § 312(a).

Inter Partes Reexamination of

USS. Patent No.6,629,163 13

JNPR-IMPL_30024_

Page 13 of 272 Implicit Exhibit 2001
Juniper v. Implicit

A copy of each patent or printed publication relied upon in establishing each

substantial new question of patentability is included with this Request as required by

37 C.F.R. § 1.915(b)(4). These references are cited in the accompanying Information

Disclosure Statement and Form PTO/SB/08A.

Pfeifer96 was published by November 27, 1996, and is prior art under 35 U.S.C.

§ 102(a) and (b). See Ex. V07. Pfeifer96-C is another version of Pfeifer96 which is

substantively identical to Pfeifer96 except for its figures being rendered in color. Pfeifer-

96C bears the date November 25-27, 1996.

ISDN98 bears the date August 1998 and is prior art under 35 U.S.C. § 102(a) and

(b).

Nelson was published on November 6, 1995. See Ex. VO1 (document from

United States Copyright Office Public Catalog showing date of publication). It is prior

art under 35 U.S.C. § 102(a) and (b).

Cox was published on June 4, 1996. See Ex. V02 (document from United States

Copyright Office Public Catalog showing date of publication). It is prior art under 35

U.S.C. § 102(a) and (b).

Franz98 bears the date April 22, 1998, and is prior art under 35 U.S.C. § 102(a)

and (b).

Meer96 bears the date October 6, 1996, and is prior art under 35 U.S.C. § 102(a)

and (b).

RFC 793 bears the date September 1981, and is prior art under 35 U.S.C. § 102(a)

and (b).

Mills bears the date 1986, and is prior art under 35 U.S.C. § 102(a) and (b).

Inter Partes Reexamination of

USS. Patent No.6,629,163 14

JNPR-IMPL_30024_

Page 14 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Arbanowski96 bears the date October 6, 1996, and is prior art under 35 U.S.C.

§ 102(a) and (b).

Alam was filed on April 22, 1998, and is prior art under 35 U.S.C. § 102(e).

Yun was issued on March 29, 1994 and is prior art under 35 U.S.C. § 102(a) and

(b).

Kerr was filed on May 28, 1996 and is prior art under 35 U.S.C. § 102(e).

NetFlow bears the date July 7, 1997, and is prior art under 35 U.S.C. § 102(a) and

(b).

Bellare97 bears the legend 1997” and was published by October 22, 1997.

See Ex. V03 (document from IEEE website showing date of publication). It is prior art

under 35 U.S.C. § 102(a) and (b).

Bellare95 bears the date 1995, and is prior art under 35 U.S.C. § 102(a) and (b).

IBM96 bears the date May 1996, and is prior art under 35 U.S.C. § 102(a) and

(b).

Checkpoint bears the date September 1995, and is prior art under 35 U.S.C.

§ 102(a) and (b).

Shwed was filed June 17, 1996 and issued November 19, 1998, and is prior art

under 35 U.S.C. § 102(a) and (b).

Dietz was filed as a provisional application on June 30, 1999, and is prior art

under 35 U.S.C. § 102(e).

Bellisard was published on September 10, 1998. See Ex. V04. It is prior art

under 35 U.S.C. § 102(a) and (b).

Inter Partes Reexamination of

USS. Patent No.6,629,163 15

JNPR-IMPL_30024_

Page 15 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Fraser bears the date July 22, 1997, and is prior art under 35 U.S.C. § 102(a) and

(b).

Decasper98 bears the date September 1998, and was published by September 4,

1998. See Ex. VOS. It is prior art under 35 U.S.C. § 102(a) and (b). Decasper98B&W

bears the date 1998, and is a black & white version of Decasper98.

Decasper was published in 1998. See Ex. V06. It is prior art under 35 U.S.C.

§ 102(a) and (b).

RFC 1825 bears the date August 1995, and is prior art under 35 U.S.C. § 102(a)

and (b).

RFC 1829 bears the date August 1995, and is prior art under 35 U.S.C. § 102(a)

and (b).

RFC 1883 bears the date December 1995, and is prior art under 35 U.S.C.

§ 102(a) and (b).

Huitema was published on October 28, 1997. See Ex. V08 (document from

United States Copyright Office Public Catalog showing date of publication). It is prior

art under 35 U.S.C. § 102(a) and (b).

Decasper97 was published in 1997. See Ex. VO9. It is prior art under 35 U.S.C.

§ 102(a) and (b).

Mosberger bears the date 1997, and is prior art under 35 U.S.C. § 102(a) and (b).

HotLava bears the date October 1998, and is prior art under 35 U.S.C. § 102(a)

and (b).

Inter Partes Reexamination of

USS. Patent No.6,629,163 16

JNPR-IMPL_30024_

Page 16 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Plexus bears the date January 22, 1996, and is prior art under 35 U.S.C. § 102(a)

and (b).

ComScript was published in December 1994 and is prior art under 35 U.S.C.

§ 102(a) and (b). See Ex. 38 (document from publisher website indicating date of

publication)

The following other written evidence is also made of record, solely to help

explain the content of certain of the references listed in the table above. See MPEP

§ 2205,

Other Written Evidence Exhibit

FH: Original Claims Ex. 35-A

FH: 9/23/2002 Office Action Ex. 35-B

FH: 2/24/2003 Amendment Ex. 35-C

FH: 5/20/2003 Notice of Allowance Ex. 35-D

FH: Ex Parte Reexamination Request Ex. 35-E

FH: Order Granting Ex Parte Reexamination Request Ex. 35-F

FH: 7/7/2009 Office Action Ex. 35-G

FH: 9/1/2009 Amendment Ex. 35-H

FH: 10/23/2009 Interview Summary Ex. 35-I

FH: 12/4/2009 Final Office Action Ex. 35-J

FH: 12/18/2009 Response to Final Rejection Ex. 35-K

FH: 1/21/2010 Advisory Action Ex. 35-L

FH: 2/8/2010 Amendment After Final Ex. 35-M

FH: 3/2/2010 Notice of Intent to Issue Certificate Ex. 35-N

First Amended Complaint Ex. 36-A

Implicit Patent Infringement Contentions Ex. 36-B

Implicit Infringement Claim Chart (Security Devices) Ex. 36-C

Implicit Infringement Claim Chart (Application Acceleration) Ex. 36-D

Implicit Opening Claim Construction Brief Ex. 37-A

Inter Partes Reexamination of

U.S. Patent No.6,629,163 17

JNPR-IMPL_30024_

Page 17 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Other Written Evidence Exhibit

Defendants Responsive Claim Construction Brief Ex. 37-B

Implicit Reply Claim Construction Brief Ex. 37-C

Implicit Technical Tutorial Ex. 37-D

Defendants Technical Tutorial Ex. 37-E

Technical Tutorial Transcript Ex. 37-F

Implicit Claim Construction Slides Ex. 37-G

Defendants Claim Construction Slides Ex. 37-H

Claim Construction Transcript — Day Ex. 37-I

Claim Construction Transcript — Day 2 Ex. 37-J

Penn State University, CiteSeer Digital Library Ex. 38

IV. CLAIM CONSTRUCTION ADMISSIONS OF THE PATENT OWNER

A party requesting reexamination is permitted to submit admissions of the patentee in

support of its request or proposed grounds for rejection. “The admission can reside in the patent

file (made of record during the prosecution of the patent application) or may be presented during

the pendency of the reexamination proceeding or in litigation.” MPEP 2617(IID. Following is a

brief description of the prosecution of the ‘163 patent (original and reexamination history), as

well as statements by Implicit regarding claim construction in connection with its litigation

against Requester.

Note that, both here and throughout this Request, the claims are accorded their broadest

reasonable interpretation for purposes of reexamination only. Requester notes that claim

construction in reexamination is broader than claim construction in litigation. See /n re

Inter Partes Reexamination of

USS. Patent No.6,629,163 18

JNPR-IMPL_30024_

Page 18 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Yamamoto, 740 F.2d 1569, 1571 (Fed. Cir. 1984). Therefore, nothing in this Request should be

taken as an assertion regarding how the claims should be construed in litigation.*

A. Original Prosecution

During the original prosecution of the ‘163 patent, the patentee initially proposed 34

claims. Ex. 35-A [Original Claims] at 21-25. The PTO initially rejected all of these claims as

being anticipated by at least three patents: U.S. Patent No. 5,870,479 to Feiken et al. ("Feiken"),

U.S. Patent No. 5,425,029 to Hluchyj et al. ("Hluchyj"), and U.S. Patent No. 5,568,478 to Van

Loo, Jr. et al. ("Van Loo"). Ex. 35-B [9/23/2002 Office Action] at 2-6. In response, the patentee

cancelled those claims and proposed a new set of claims with additional language, including the

“storing” step “so that the sequence does not need to be re-identified for subsequent packets of

the message.” Ex. 35-C [2/24/2003 Amendment] at 2. The patentee also offered a few

arguments in an attempt to distinguish the cited prior art. /d. at 9-10. However, in issuing a

notice of allowance for the new claims, the examiner appeared to rely primarily on the new

limitations added to the claims. Ex. 35-D [5/20/2003 Notice of Allowance] at 2. The examiner

further entered an examiner’s amendment to the patent title, which was changed to: “Method and

System for Demultiplexing a First Sequence of Packet Components to Identify Specific

Components Wherein Subsequent Components are Processed Without Re-Identifying

Components.”

>

Moreover, nothing in this Request should be construed as expressing any position as to

whether the claims of the ‘163 patent claims constitute patentable subject matter under 35 U.S.C.

§ 101, or whether they satisfy the definiteness, enablement, best mode, or written description

requirements of 35 U.S.C. § 112, since these grounds of invalidity cannot properly be raised in a

request for reexamination. See MPEP § 2617 (“Other matters, such as... U.S.C. 112... will
not be considered when making the determination on the request and should not be presented in

the request.”); see also MPEP § (even limitations rejected for indefiniteness must be

examined).

Inter Partes Reexamination of

U.S. Patent No.6,629,163] 9

JNPR-IMPL_30024_

Page 19 of 272 Implicit Exhibit 2001
Juniper v. Implicit

B. Reexamination

On January 17, 2009, the PTO granted a request for ex parte reexamination of the '163

patent. Ex. 35-F [Order Granting Request for Ex Parte Reexamination]. Among other prior art

references not considered during the original prosecution of the '163 patent, the PTO determined

that a substantial new question of patentability existed based upon a 1997 doctoral dissertation

by David Mosberger, entitled “Scout: A Path-Based Operating System” (“Mosberger”). The

PTO subsequently issued an initial office action rejecting every single claim of the '163 patent as

anticipated by Mosberger. Ex. 35-G [07/07/2009 Office Action] at 5-13.

Implicit initially attempted to distinguish Mosberger without making any substantive

amendments to the claims. In its first office action response, Implicit argued that Mosberger

“configures paths (formed from a sequence of components) before receiving the ‘first packet of

the message.” Ex. 35-H [09/01/2009 Amendment] at 11 (emphasis in original). In contrast,

Implicit characterized the system claimed in the '163 patent as "configur[ing] paths at run-time

(i.e., after the first packet is received).” /d. (emphasis in original). Implicit pointed to the first

column of the ‘163 patent specification as “critical,” explaining that its claims required that

sequence of components be “Created Dynamically”:

In other words, the '163 Patent clearly states that the invention

requires the sequence of conversion routines (that form the paths)
to be identified at run-time, and disavows prior art systems (like

Mosberger) that use pre-configured paths, which are defined at

“build-time” before the first packet of a message is received.

Id. at 18. Implicit also presented these and other arguments in an interview with the Examiner,

along with a PowerPoint presentation. See Ex. 35-I [10/23/2009 Interview Summary].

The PTO initially rejected Implicit’s arguments, finding them to be “not persuasive.” In

a final office action, the PTO argued (among other things) that the distinction upon which

Implicit relied was not actually included in the claim language of the ‘163 patent. Ex. 35-J

Inter Partes Reexamination of

U.S. Patent No.6,629,163 20

JNPR-IMPL_30024_

Page 20 of 272 Implicit Exhibit 2001
Juniper v. Implicit

[12/04/2009 Final Office Action] at 13-14 (claimed invention “not recited as being dynamic in

nature”).

In response to the final office action, Implicit submitted an amendment that expressly

added the “dynamically” language to the claims, as well as the phrase “after the first packet is

received.” See Ex. 35-K [12/18/2009 Response to Final Rejection] at 10. Implicit claimed it

was adding this language merely to “further clarify” the scope of the existing claims. /d. The

PTO initially refused to enter these after-final amendments. See Ex. 35-L [1/21/2010 Advisory

Action]. Another interview was conducted, and Implicit submitted additional proposed

amendments a few days later, this time expressly inserting the “non-predefined” limitation. Ex.

35-M [2/8/2010 Amendment After Final].

After these additional amendments, the PTO finally removed its rejection of claims 1, 15,

and 35 based on Mosberger. The PTO decision expressly relied on Implicit’s argument “that

Mosberger does not dynamically identify sequences of components... .” Ex. 35-N [3/2/2010

Notice of Intent to Issue Ex Parte Reexamination Certificate] at 4.

Admissions Regarding Claim Construction

In additional to statements made during the prosecution history of the ‘163 patent, the

patentee has made additional admissions regarding the scope and meaning of the claims in the

allegations of its pleadings and infringement contentions prepared in connection with the

concurrent litigation with Requester involving the ‘163 patent. See Ex. 36-A [Complaint]; Exs.

36-B — 36-D [Infringement Contentions]. Information regarding the patent owner’s apparent

claim construction positions can be gleaned from these documents.

The patentee has also taken a number of express positions regarding claim construction in

connection with Markman proceedings held in the concurrent litigation. The patentee presented

Inter Partes Reexamination of 4

U.S. Patent No.6,629,163 2

JNPR-IMPL_30024_

Page 21 of 272 Implicit Exhibit 2001
Juniper v. Implicit

a technical tutorial describing the purported scope of the ‘163 patent claims, which is attached as

Exhibit 37-D. The parties claim construction briefs are also attached as Exhibits 37-A — 37-C

and are hereby incorporated by reference as if set forth herein.

For convenience, following is a chart summarizing the patent owner’s positions as set

forth in its claim construction briefs:

Te

Non-predefined

sequence of components

Sequence of components changeable at runtime

Dynamically identifying
a sequence of

Selecting at runtime a sequence of components

components

Input format Structure or appearance of data to be processed

Output format Structure or appearance of the data that results from processing

Selecting individual Selecting components that are not bound together by a compiler

components

Create/form [sequence Instantiate in memory
of components]

Processing [and all

variants|
Manipulating data with a program

based on the first packet
of the message

Plain meaning, no construction needed. In the alternative, relying on

information in the first packet of the message

Identify ... a sequence
of components ... such

that the output format ...

match[es] the input
format of the next

component

identify ... a sequence of components . . . such that the output format

is compatible with the input format of the next component

Message[s| A collection or stream of data that is related in some way
State information Information specific to a component for a specific message

The patentee has made additional express or implied admissions regarding claim

meaning and scope regarding claim terms not presented to the Court in the concurrent litigation.

For example, with respect to the term “demultiplexing,” the ‘163 patent states that “the

conversion system demultiplexes the messages by receiving the message, identifying the

sequence of conversion routines, and controlling the processing of each message by the

Inter Partes Reexamination of

U.S. Patent No.6,629,163 22

JNPR-IMPL_30024_

Page 22 of 272 Implicit Exhibit 2001
Juniper v. Implicit

identified sequence.” Ex. | at 2:61-24; see also Ex. 36-A [Complaint] at 10 (demultiplexing

performed “by reassembling datagrams fragmented over multiple packets”).

The patentee has made additional admissions of record in connection with the claim

construction proceedings for the concurrent litigation. For example, at the claim construction

hearing, Implicit provided the following statement regarding the meaning of “state information”

in the context of the ‘163 patent:

As you process that message in '163, you look at the first packet,

you figure out what it is, you figure out what it needs, you build

your processing path, and then you keep track of the other packets
that are related so you don't have to do that whole thing again.

The very essence of this system is to avoid the recursive packet-

by-packet building a new data path every time. You build it once

then you maintain state, which just means track what relates to that

message so you can route the rest of the packets belonging to that

message with the path that you have built.

That's what “maintaining state” means.

Ex. 37-J [1/19/12 Claim Construction Transcript] at 126.

These and other patentee admissions regarding claim construction (as set forth below) are

applied in the analysis that follows as a reflection of what the patentee views as at least a

reasonable construction of the claims at issue. Thus, for purposes of this Request, the “broadest

reasonable construction” of the claims under consideration cannot be understood to be any

narrower in scope than what for which the patentee itself has contended in litigation. Of course,

application of the broadest reasonable construction in these proceedings should be not taken as

an assertion or admission on the part of Requester regarding how the claims should be construed

in litigation.

Inter Partes Reexamination of

U.S. Patent No.6,629,163 23

JNPR-IMPL_30024_

Page 23 of 272 Implicit Exhibit 2001
Juniper v. Implicit

PERTINENCE AND MANNER OF APPLYING THE PRIOR ART

As shown in detail below, claims 1, 15, and 35 are invalid under 35 U.S.C. §§ 102 and

103 in light of the prior art references and combinations of references presented below.

Requester respectfully submits that the analysis presented below satisfies the threshold

requirement of showing a “reasonable likelihood that the requester would prevail with respect to

at least 1 of the claims challenged in the request.” 35 U.S.C. § 312(a). The following proposed

rejections should be adopted in their entirety.

For convenience in navigating the Request, following is a high-level summary of the base

references on which rejections are based both alone and in combination with other references:

e Pfeifer96 and its obviousness combinations begin on page 24.

Kerr and its obviousness combinations begin on page 112.

e Decasper98 and its obviousness combinations begin on page 177.

e Mosberger and its obviousness combinations begin on page 248.

HotLava begins on page 269.

A. Pfeifer96 (Exhibit A02)

The article “Generic Conversion of Communication Media for Supporting Personal

Mobility” by Tom Pfeifer and Radu Popescu-Zeletin (“Pfeifer96”) was published by November

27, 1996. Pfeifer96 is one of several references presented in this Request that describe what they

term the “Intelligent Personal Communication Support System ((PCSS),” which is an

“architecture” for supporting “personal mobility” to access “information any time, any place, in

any form.” Ex. AQ2 at 105, 117.

24

JNPR-IMPL_30024_

Page 24 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Id. at 118 (Figure 9: “Priorized media conversion in the iPCSS”). None of these iPCSS

references (including Pfeifer96) were considered during prosecution of the ‘163 patent.

1. Pfeifer96 Anticipates Claims 1, 15, and 35 Under § 102(a), (b)

(a) Claim 1

i. “A method... for processing a message”

Claim recites: “A method in a computer system for processing a message having a

sequence of packets, the method comprising... .” Under Implicit’s apparent claim

constructions, Pfeifer96 discloses this element. The IPCSS system is plainly illustrated as a

computer system:
computer system

sirelted
party| aeranealy

el Ecce coon ef ee
Con

Spain

25

JNPR-IMPL_30024_

Page 25 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Id. at 122 (Figure 11: “Components of the PCS-enhanced TINA* Access Session,” showing a

“dynamically generated Converter Chain” connecting the two parties). Pfeifer96 teaches a

“system/platform” implementing the “iPCSS architecture,” wherein communication between two

parties over “fixed” and/or “wireless networks” is mediated by a “chain of converters” which is

“dynamically generated.” Ex. at 119, 105, 114, 124. Each “converter” in this chain may

consist entirely of “software.” Jd. at 113-14. Under Implicit’s apparent claim constructions, a

“system/platform” capable of supporting such a software architecture would comprise “a

computer system.”

Claim 1 further recites the method is “for processing a message having a sequence of

packets.” Under Implicit’s apparent claim constructions, Pfeifer96 discloses this element.

Pfeifer96 discloses conversion of a message from one format to a different format, which

constitutes “processing” as that term is used in the patent. Specifically, Pfeifer96 teaches “the

controlled combination (concatenation) of various converters.” /d. at 105. For example, a chain

of converters could convert an incoming fax transmission into audible speech delivered to an

ISDN telephone:

alaw

Hae service image

gateway

Id. at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech, telephone

delivery”).

*
The “Telecommunications Information Networking Architecture (TINA)” was

“developed by a consortium which is currently the focus of worldwide attention.” /d. at 113.

iPCSS is an enhancement to this architecture, adding “Personal Communications Support.” /d.

at 105,

26

JNPR-IMPL_30024_

Page 26 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Pfeifer96 also discloses that a message may comprise a “series of packets.” For example,

Pfeifer96 explicitly discloses connections using the well-known “ISDN” network standard,

which one of ordinary skill in the art would understand is inherently packetized. Jd. at 109, 111.°

A voice call over an ISDN network, as illustrated in Pfeifer96 (see id.) would thus comprise “a

message having a sequence of packets.” In addition, Pfeifer96 discloses application in a

“TCP/IP-based” environment, which one of ordinary skill in the art would again be aware is

inherently packetized. /d. at 114 (‘controller framework ... controls... . data flow via fire

redirection, pipes or TCP/IP-based services”).° Thus, for example, “reception and delivery of

multimedia e-email” in a TCP/IP-based environment would comprise “a message havinga series

of packets.” /d. at 118, 126. Other packet-based embodiments are also disclosed. See, e.g., id.

at 126 (“sending and reception of .. . faxes”); id. at 105 (‘mobility of the user in fixed networks

and wireless networks”); id. at 118 (mobility “enabled by means of... . wireless network

interfaces and protocols (i.e. cordless, cellular and satellite) is fundamental for the provision of

ubiquitous, global connectivity”).

In short, Pfeifer96 teaches a “universal platform” meant to achieve “universal

connectivity” over both “fixed and wireless networks,” including communication of “message[s]

having a sequence of packets.” See id. at 105, 120, 117-18.

ii. “a plurality of components”

*
See, e.g., Ex. X05 (“ISDN Primary Rate User-Network Interface Specification;

Standard 08.01”) (August 1998) at 3-9 to 3-10 (Chapter 3-2: “Layer 2 frame structure,” where

discrete frames with their own “Frame check sequence(s)” would comprise “packets” under

Implicit’s apparent claim constructions. This reference is cited in this context solely to help

explain Pfeifer96. See MPEP § 2205.

°
See, e.g., Ex. X06 (RFC 791: “Internet Protocol [IP]’ Specification) (1981) at 1 (“The

Internet Protocol is designed for use in interconnected systems of packet-switched
communication networks.”). This reference is cited in this context solely to help explain
Pfeifer96. See MPEP § 2205.

27

JNPR-IMPL_30024_

Page 27 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 1 further recites: “providing a plurality of components, each component being a

software routine for converting data with an input format into data with an output format.”

Under Implicit’s apparent claim constructions, Pfeifer96 discloses this element.

Pfeifer96 teaches “the controlled combination (concatenation) of various converters.”

at 105.

Cemenivally gansnuied converter ohsin favcwing retials nasiet natgong
meade stream

/d. at 125 (Figure 12: “Converter chain, configured for a specific task,” depicting a “dynamically

generated converter chain” connecting an “incoming media stream” with an “outgoing media

stream”). For example, a chain of converters could convert an incoming fax transmission into

audible speech delivered to an ISDN telephone:

ce

mes te!{3ISDS

oF
Tax service lmege newitest filteradtext>’ speech > audio format phome service

gateway gateway

Id. at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech, telephone

delivery’).

As apparent from the above example (where a fax is converted througha series of five

intermediate formats to a telephone call), each converter converts “data with an input format into

data with an output format.” This property of a converter is even presented in an abstract, formal

28

JNPR-IMPL_30024_

Page 28 of 272 Implicit Exhibit 2001
Juniper v. Implicit

manner by Pfeifer96: “A media converter may be defined as a system entity, which input is

information I; with the semantic carried by a specific medium Mj, using a specific form (or

format) We obtain information Ip as output in another Medium M2 in format Fo, carrying a

semantic (see Figure 1).” /d. at 3.

Fi.Sp| media Ty Fy, 52)
converter

Id. at 105 (Figure 1: “Media converter system,” showing format alteration from F, to F2).

More concretely, each converter performs either a more sweeping “Media type

conversion” which alters the “medium type” (e.g., “Text-to-Speech” or “Optical character

recognition”), or a less sweeping “Media format conversion” which, e.g., “converts into another

format within the same type” (e.g., video to video, but with a different “frame/sampling rate .

resolution... [or] color depth”). /d. at 108, 125, 107. Under Implicit’s apparent claim

construction, either type of conversion would “convert[] data with an input format into data with

an output format,” because the data’s format is altered by the converter, and two mediums cannot

share the same format: e.g., text necessarily has a different format from audible speech, and

audible speech necessarily has a different format from video.

For example, the following diagram shows a chain of three converters chosen (“fat

arrows”) for “a specific task of conversion.” /d. at 109. A first converter performs a medium

format conversion (“MFC”), a second converter (chosen from a set of three possibile converters)

performs a medium type conversion (“MTC”), and a third converter performs another medium

format conversion (MFC):

29

JNPR-IMPL_30024_

Page 29 of 272 Implicit Exhibit 2001
Juniper v. Implicit

MTC: Macium type converter pees
MPC: Macium formal converter

scalable inputtoutnet parameters

EB
fixed inputfoutput parameters

Id. at 108 (Figure 4: “Medium type conversion with format adaptation”). As discussed above, in

all three cases (whether MTC or MFC), the data’s format is changed, because two mediums

cannot share the same format.

This use of “chains of converters” which transform data through a series of intermediate

formats is at the heart of the Pfeifer96 reference, and providing such chains clearly entails (as

recited by claim 1) “providing a plurality of components” (each component comprising a

converter) “for converting data with an input format into data with an output format.”

It is also clear that each component may comprise (as recited by claim 1) “a software

routine.” Pfeifer96 teaches a “Generic Converter Model” wherein each converter component

comprises at least two parts: (1) an “underlying” converter which may be comprised entirely of

software such as a “proprietary conversion library”; and (2) a software wrapper around the

underlying converter which provides a “Generic Converter Interface” for invoking it. /d. at 113-

14, 109.

30

JNPR-IMPL_30024_

Page 30 of 272 Implicit Exhibit 2001
Juniper v. Implicit

representation adapter
ublect onented packaging

application
programmer interlace

medium nOrWersion

Hbrary

id. at 113 (Figure 7: “Generic converter model,” showing an underlying converter (“proprietary

conversion library” and software wrapper around it comprising a “representation adapter” and

“application programmer interface”).

This “Generic Converter Interface” layer of software is needed around each underlying

converter because the iPCSS employs a “Generic Converter Framework,” wherein converters

from “different manufacturers” may be mixed and matched interchangeably to form

“dynamically generated converter chain[s].” See id. at 113-14, 108, 122-23. And “[t]o form

such a framework, the conversion tools utilized must” clearly “have unified interfaces.” Jd. at

114.

Thus, each converter is a software routine with, moreover, a “unified interface[]” for

invoking it.

ili. “dynamically identifying a non-predefined sequence”

Claim 1 further recites: “for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message such that the

output format of the components of the non-predefined sequence match the input format of the

next component in the non-predefined sequence, wherein dynamically identifying includes

selecting individual components to create the non-predefined sequence of components after the

31

JNPR-IMPL_30024_

Page 31 of 272 Implicit Exhibit 2001
Juniper v. Implicit

first packet is received.” Under Implicit’s apparent claim constructions, Pfeifer96 discloses this

element.

The iPCSS aims to “allow[] people to make use of any kind of terminal located at their

whereabouts for obtaining access to their service.” /d. at 118. Because users are mobile and

move in and out of range of various “terminal equipment” with varying “capabilities,” it is not

possible to determine the specific media conversions that will be needed to achieve a connection

to the user until the first packet of the message to that user has been received by the iPCSS. See

id. at 119. This is why Pfeifer96 teaches a multi-stage call connection procedure, wherein the

connection request’ is received in the “Ist stage,” the called user’s “location” is ascertained in

the “2nd stage,” the available pieces of terminal equipment at that location and their

“capabilities” are ascertained in the “3rd stage,” and it is only in the “4th stage” that the specific

“terminal” to accept the call will be selected, and an appropriate “converter chain” to achieve a

connection to that terminal will be “dynamically generated.” /d. at 119, 124 (emphasis added).

7
One of ordinary skill would, of course, recognize that a connection request may

comprise the first packet of a message. See also Section IV (“message”).

32

JNPR-IMPL_30024_

Page 32 of 272 Implicit Exhibit 2001
Juniper v. Implicit

processing’
eormection
carnal

from basi cay

nau
forwarding

ad etapa.

stane:

aclecd terminal

io baale
call

DFOCRS
covenectio

cond

Id. at 119 (Figure 10: “PCS-based Intelligent Call Processing,” showing “select terminal” and

“configure media conversion” in the “4th stage” of establishing a connection); id. at 120 (“4th

... Then, the necessary converters are configured . . .”) (second emphasis added).

The following diagram provides a more granular (14-step) view of this call connection

procedure as implemented by the iPCSS architecture:

33

JNPR-IMPL_30024_

Page 33 of 272 Implicit Exhibit 2001
Juniper v. Implicit

geenene

Id. at 122 (Figure 11: “Components of the PCS-enhanced TINA Access Session,” showing the

connection request at step “1,” and the “dynamically generated Converter Chain” at end of

step “8e”) (emphasis added).

Processing in the iPCSS proceeds in this order for an obvious reason: it is not possible to

put together a suitable “chain of converters” between devices until the source and destination

devices are known, and the devices will not be known before the first packet of the call has

arrived. See id. at 114, 118-19. TheiPCSS will not know the source device and its medium

until the device initiates the call. /d. at 119-20. For example, is it a voice call, a fax, or an

email? /d at 119-20. And likewise the iPCSS will not know “the set” of possible destination

devices in the called “user’s current vicinity” until the call is initiated, because the user’s vicinity

(and hence the devices in that vicinity) can change from moment to moment. /d. For example,

is there a fax machine or computer nearby, or merely a telephone? See id. As explained by

Pfeifer96: “The iPCSS architecture... aim[s].. . to increase the nomadic user’s reachability by

introducing .. . the dynamic selection of terminals.” /d. at 122 (emphasis added).

34

JNPR-IMPL_30024_

Page 34 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Further confirming that, under Implicit’s apparent claim construction, Pfeifer96 teaches

the dynamic generation of converter chains to terminals which are dynamically selected after

initiation of a call, Pfeifer96 provides significant detail on the process by which an appropriate

“converter chain” is generated at “runtime.” /d. at 124, 116.

Once a call has been placed, “the set of all access devices in the [called] user’s current

vicinity” can be ascertained. /d. at 120. If none of these devices supports the “desired medium

of the call” (e.g., if there is no fax machine to accept a fax), then a component of the iPCSS

called the “Resource Configurator” will systematically evaluate the various possible “chains of

multiple converters” that could adapt the call to one of the available destination devices. /d. at

120, 124. Notably, the selection process does not merely involve picking one of a number of

pre-assembled chains, but rather the system “selects and configures one or multiple converters

dynamically to an appropriate converter chain.” /d. at 127 (emphasis added). At a high level,

this can be seen as simply selecting and sequentially ordering a number of converters to create a

chain of converters like the following to deliver a fax to a user having only a telephone in his

current vicinity:

alaw

Hae service image

gateway

Id. at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech, telephone

delivery”).

While finding a workable chain is certainly an aspect of the analysis performed by the

Resource Configurator, Pfeifer96 explains that the analysis performed by this component goes

even further. Specifically, the iPCSS performs a complex “Quality of Service” analysis which

35

JNPR-IMPL_30024_

Page 35 of 272 Implicit Exhibit 2001
Juniper v. Implicit

takes into account the following factors (and others besides) when considering the various

components that may be evaluated and ultimately assembled to form a chain of converters. /d. at

124, 114-16.

Pfeifer96 begins by recognizing that the various possible destination terminals in the

called user’s vicinity may have different “capabilities.” /d. at 124. For example, one terminal

may have only an “8 bit screen” while another has a higher resolution, and if “a 24 bit colour

image” is “to be displayed,” it would be preferable to use the latter. See id. at 115, 124.

Pfeifer96 also recognizes that the chain of converters necessary to reach a given terminal may

result in some degradation of the message. /d. at 115. For example, there may be a loss in the

“intelligibility” of a written fax message when it is read aloud by a Text-to-Speech converter, so

such a chain requiring such a conversion may be less desirable if there are better alternatives.

See id. at 115, 111.

Pfeifer96 further recognizes that each converter in a chain may have various settable

input and output parameters (e.g,. controlling “frame/sampling rate, quantization, resolution,

size, color depth . .. compression technique,” and so on), and that the parameters chosen for the

converters across any individual chain should be coordinated to avoid unnecessary loss of

information. See id. at 107-08, 115, 124.

36

JNPR-IMPL_30024_

Page 36 of 272 Implicit Exhibit 2001
Juniper v. Implicit

MTC: Macium type converter pees
MPC: Macium formal converter

scalable inputtoutnet parameters

EB
fixed inputfoutput parameters

Id. at 108 (Figure 4: “Medium type conversion with format adaptation”), 6 (explaining the “fat

arrows” in Figure 4 show a specific path of three converters using selected input/output

parameters). For example, “multiple lossy compression and decompression processes” across a

chain should be avoided “if possible,” with lossy compression performed “only finally, not as an

intermediate step.” /d. at 115.

Considering all of the above factors and others, the Resource Configurator will: (1)

“configure chains of multiple converters” to the various possible destination terminals; (2)

“evaluate their Quality of Service”; and (3) create the “chain most appropriate” for completing

the call. See id. at 124, 114-15. When it has finished this “complex evaluation” of the various

possible combinations of converters, the “result is... a dynamically generated converter

chain with stream interfaces to the appropriate media.” /d. at 124, 116 (emphasis added).

Pfeifer96 further states not only that the process of “[c]omparing different possibilities of

concatenating converters for a specific task requires a complex evaluation of the quality

parameters involved” but also that this “complex evaluation” must be “performed at runtime.”

37

JNPR-IMPL_30024_

Page 37 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Id. at 124, 116 (emphasis added). Of course, as demonstrated above, this elaborate analysis

cannot even begin until the first packet of the message has been received by the iPCSS. Among

other reasons, it is not until that moment that the system can know the desired source medium for

the call, as well as the set of possible destination terminals in the called user’s current vicinity

which might possibly receive the call, which is information necessary in order to properly select

the individual components in the proper sequential order to perform the required conversion. See

id. at 119, 122, 124; see also id. at 128 (‘creates an appropriate converter chain for the desired

task’).

Once a sequence of “one or multiple converters” has been “select[ed] and configure[ed]”

to form an “appropriate converter chain,” that chain is “instantiated as an object” in memory for

subsequent use by the system. /d. at 127.

Thus, Pfeifer96 teaches (as recited by claim 1) “for the first packet of the message,

dynamically identifying a non-predefined sequence of components for processing the packets of

the message.”

Pfeifer96 also teaches (as further recited by claim 1) that the sequence of components is

arranged “such that the output format of the components of the non-predefined sequence match

the input format of the next component in the non-predefined sequence.” See Claim above

(showing “each component being a software routine for converting data with an input format into

data with an output format”).

Pfeifer96 also teaches (as further recited by claim 1) that “dynamically identifying

includes selecting individual components to create the non-predefined sequence of components

after the first packet is received.” The very purpose of the “Generic Converter Framework”

disclosed by Pfeifer96 is to permit disparate individual converters from possibly different

38

JNPR-IMPL_30024_

Page 38 of 272 Implicit Exhibit 2001
Juniper v. Implicit

suppliers to be concatenated together on an “as needed” basis into chains. F.g., id. at 108

(“different manufacturers’), 114 (the various converters “must have unified interfaces”), 105

(“the controlled combination (concatenation) of various converters”). Pfeifer96 teaches the

controlled combination of individual converters, not the controlled application of chains defined

before the call even began.

After receiving the first packet of the message, Pfeifer96 concatenates individual

converters to form many possible chains that might be used to connect the message’s two

endpoints. See id. at 114, 124. The possible chains are compared to determine which would

provide the best “Quality of Service,” and a single, optimal chain is finally chosen for the call.

See id. at 115-16 (‘Comparing different possibilities of concatenating converters for a specific

task requires a complex evaluation of the quality parameters involved, performed at runtime’)

(emphasis added), 124 (“The result .. . is a dynamically generated converter chain”) (emphasis

added).

Because all of these possible chains are tailored to the specific message—i.e., they

connect only its two endpoints while using on/y mediums suitable for that message—none could

be generated ahead of time. See id.

iv. “storing an indication of... the identified components”

Claim 1 further recites “storing an indication of each of the identified components so that

the non-predefined sequence does not need to be re-identified for subsequent packets of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 discloses this element.

Once the Resource Configurator has finished its “complex evaluation” to create a

sequence of converters in a chain, that chain can be used in connection with a particular

“session,” a “grouping [of] specific activities in a service during a specific period of time.”

39

JNPR-IMPL_30024_

Page 39 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Id. at 120-21. The session or stream passes through the “dynamically generated converter

chain.” /d. at 124, 116 (emphasis added).

PCS entanced

puters Sesion Sim

Id. at 122 (Figure 11: “Components of the PCS-enhanced TINA Access Session,” showing the

“dynamically generated Converter Chain” between the two parties). See also Section iv above.

This dynamic generation of a converter chain occurs just once for each “session,” and as

implied by the existence of an incoming “stream interface[]” to the chain, it is used to process the

stream of packets from the source. See id. at 124, 122. See also, e.g., id. at 127 (the chain “is

instantiated as an object with stream interfaces”) (emphasis added). In other words, it is “with

respect to the possible converter chain” that “subsequent service processing establishes [a]

stream connection... /d. at 127. Thus, every packet in a particular stream or session can

make use of the “dynamically generated converter chain” without having to perform the

“complex evaluation” for every single packet. /d. at 126-27.

“state information”

Claim 1 further recites “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

40

JNPR-IMPL_30024_

Page 40 of 272 Implicit Exhibit 2001
Juniper v. Implicit

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

retrieved state information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 discloses this “state information” element.

As an initial matter, under Implicit’s apparent claim constructions, these “state

information” elements would be satisfied merely by “storing an indication of each of the

identified components so that the non-predefined sequence does not need to be re-identified” (as

in Section vi above) and then using the stored indications to invoke the identified components in

the sequence. See Section IV.C (“state information”). Pfeifer96 teaches such storing and such

use, and thus it satisfies these “state information” elements as well. See Claim 1(iv) above.

However, Pfeifer96 also discloses these “state information” elements under a claim

construction that requires component-by-component state information unrelated to the overall

sequence of conversion routines.

For example, Pfeifer96 teaches that as part of its “framework of type and format

converters” (illustrated in Figure 5), each component would maintain multiple “scalable

input/output parameters” which would comprise (as recited by claim 1) “state information

relating to the processing of the component” under Implicit’s apparent claim constructions. Ex.

A02 at 108-09.

Al

JNPR-IMPL_30024_

Page 41 of 272 Implicit Exhibit 2001
Juniper v. Implicit

three converters with selected

inpul/output parameters are

MTC: Medium type converter onosen for a particular chain

MFC: Medium format converter we lat arrows’)/

scgiatte inputloutout parameters

fixed inpulloutpul parameters

Id. at 108 (Figure 4: “Medium type conversion® with format adaptation”). As explained above,

such parameters are considered when performing the Quality of Service analysis comparing

many possible chains that might used. See Section iv above. Pfeifer96 teaches these parameters

control, e.g., “frame/sampling rate, quantization, resolution, size, color depth compression

technique,” and so on), and that the parameters chosen for the converters across any specific

chain should be coordinated to avoid unnecessary loss of information. See id. at 107-08, 115,

124; Section iv above. These parameters are “state information” which must be stored for each

component, and which must be retrieved by each component in order to perform its processing:

e.g., in order to know which input or output “sampling rate” or “compression technique” to use

when processing the packet. See id.

* Medium type conversion (MTC) changes the format as well, since two different

medium types cannot share the same format (e.g., text vs. audible speech). See Section 111 above.

42

JNPR-IMPL_30024_

Page 42 of 272 Implicit Exhibit 2001
Juniper v. Implicit

As another and more specific example, Pfeifer96 teaches a chain of converters for

delivering a fax to a user who has access to a telephone but not a fax machine:

Hing“

fax service image aw text > filtered text> speech amdic format > phen
gateway gateway

Id. at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech, telephone

delivery”). It would be apparent to one of ordinary skill in the art that at least a plurality of the

components in this chain would need to store and retrieve state information on a per packet

basis in order to perform the processing described by Pfeifer96. For example, there is a

component in the chain for adapting audio data to an ISDN phone connection. One of ordinary

skill in the art would understand ISDN is a stateful protocol and that it would be necessary for

this component to store and retrieve connection state on a per packet basis in order to correctly

perform the processing for its side of the ISDN connection.” As another example, there is a

“Text-to-speech” (TTS) component in the chain, and Pfeifer96 teaches that such converters

“analys[e] the grammatical structure of a sentence” in order to “improve the prosody of the

speech, that is the intonation and phrase melody.” /d. at 111-12. Since the packet boundaries in

an incoming stream of text will not generally be synchronized with the grammatical boundaries

of sentences, this component would on a per packet basis need to perform the processing of

monitoring for sentence boundaries and buffering accordingly (e.g., storing a trailing incomplete

See, e.g., Ex. X05 (“ISDN Primary Rate User-Network Interface Specification;
Standard 08.01”) (August 1998) at 3-18 (“Transmitter send sequence number”; “Transmitter

receive sequence number”; “The I format is used for frames that transfer information between

Layer 3 entities”), 3-20 (“When using I-frame commands, each point-to-point data link

connection endpoint has an associated send state variable” and “an associated acknowledge state

variable”), 4-54 (‘Call state”). This reference is cited in this context solely to help explain
Pfeifer96. See MPEP § 2205.

43

JNPR-IMPL_30024_

Page 43 of 272 Implicit Exhibit 2001
Juniper v. Implicit

sentence fragment until it can be retrieved to form complete sentence as subsequent packet(s)

atrive). When a complete sentence is finally obtained, the component can then perform the

additional processing of (1) assigning correct prosody to the sentence (e.g., with sensitivity to its

high and low points), and (2) creating the corresponding stream of audio for the utterance. Thus,

it is clear that at least a plurality of components in this sequence (audio-to-ISDN and Text-to-

Speech) would perform these “state information” operations, and would do so for each packet

(not merely a plurality of packets).

As another example, Pfeifer96 teaches a chain of converters for “reading temperature

values over a phone line” to a user with an ISDN telephone. Ex. A02 at 109.

Una
Alay [ISDE

temper electric value» digits text speech audio format» phone service

pateway

id. (Figure 5: “Converter chain for temperature to speech conversion with telephone delivery”).

As with the fax example above, this sequence contains both an audio-to-ISDN component and a

Text-to-Speech component, and thus it is clear that for this example as well, at least a plurality of

components in the sequence would perform the “state information” operations, and would do so

for each packet (not merely a plurality of packets).

Thus, it is clear from several perspectives and multiple examples that Pfeifer96 discloses

this “state information” claim element.

(b) Claim 15

i, “demultiplexingpackets of messages”

Claim 15 recites: “A method in a computer system demultiplexing packets of messages.”

Under Implicit’s apparent claim constructions, Pfeifer96 discloses this element. See Claim

44

JNPR-IMPL_30024_

Page 44 of 272 Implicit Exhibit 2001
Juniper v. Implicit

above (showing “A method in a computer system for processing a message having a sequence of

packets”). Under Implicit’s apparent claim constructions, “demultiplexing” a packet is satisfied

by routing a packet to the correct sequence of components for processing it—and it was obvious

for Pfeifer96 to perform this function. See Section IV (“demultiplexing”) above and Claim 1(i11)

above (showing “dynamically identifying a non-predefined sequence of components for

processing the packets of the message”).

ii. “dynamically identifying a non-predefined sequence”

Claim 15 further recites “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components,

wherein dynamically identifying includes selecting individual components to create the non-

predefined sequence of components after the first packet is received.” Under Implicit’s apparent

claim constructions, Pfeifer96 discloses this element. See Claim 1(i1i) (showing “for the first

packet of the message, dynamically identifying a non-predefined sequence of components for

processing the packets of the message”) and Claim I(iv) (showing “storing an indication of each

of the identified components so that the non-predefined sequence does not need to be re-

identified for subsequent packets of the message”) above.

iit. “different... sequences of components can be identified”

Claim 15 further recites “different non-predefined sequences of components can be

identified for different messages.” Under Implicit’s apparent claim constructions, Pfeifer96

discloses this element.

Since both the source and destination and the source and destination mediums will vary

across messages, it is clear that correspondingly different sequences of converters will generally

45

JNPR-IMPL_30024_

Page 45 of 272 Implicit Exhibit 2001
Juniper v. Implicit

be required. See, e.g., Ex. AO2 at 109, 111. For example, a first communication may extend

from a temperature sensor to an ISDN telephone:

&
RES

ee
text speech > audio format phone service

gateway

Id. at 109 (Figure 5: “Converter chain for temperature to speech conversion with telephone

delivery”). And a second communication may extend from a fax machine to an ISDN telephone,

and it will therefore have a correspondingly different sequence of converters:

Lbsage"

faze ISDN

fam service image © » speech audio format phone

gateway gateway

Id. at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech, telephone

delivery).

iv. “each component being a software routine”

Claim 15 further recites “each component being a software routine.” Under Implicit’s

apparent claim constructions, Pfeifer96 discloses this element. See Claim 1(ii) (showing same

element) above.

“selecting individual components”

Claim 15 further recites “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components.” Under Implicit’s apparent

claim constructions, Pfeifer96 discloses this element. See Claim 1(iii) (showing same element)

above.

vi. “state information”

46

JNPR-IMPL_30024_

Page 46 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 15 finally recites “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Under Implicit’s

apparent claim constructions, Pfeifer96 discloses this element. See Claim (showing similar

element) above.

(c) Claim 35

i. “instructions for demultiplexing packets of messages”

Claim 35 recites: “A computer-readable medium containing instructions for

demultiplexing packets of messages.” Under Implicit’s apparent claim constructions, Pfeifer96

discloses this element. One of ordinary skill would understand that the software of Pfeifer96

(including its sequences of software-based converters) would be stored on a “computer-readable

medium.” See Claim 1(i) above (showing “a computer system’).

ii. “dynamically identifying a... non-predefined sequence”

Claim 35 recites: “dynamically identifying a message-specific non-predefined sequence

of components for processing the packets of each message upon receiving the first packet of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 discloses this element. See

Claim 1(iii) (showing “for the first packet of the message, dynamically identifying a non-

predefined sequence of components for processing the packets of the message”) above.

iil. “subsequent packets... can use the... sequence”

Claim 35 further recites that “subsequent packets of the message can use the message-

specific non-predefined sequence identified when the first packet was received.” Under

Implicit’s apparent claim constructions, Pfeifer96 discloses this element. See Claim 1{iv)

47

JNPR-IMPL_30024_

Page 47 of 272 Implicit Exhibit 2001
Juniper v. Implicit

(showing “storing an indication of each of the identified components so that the non-predefined

sequence does not need to be re-identified for subsequent packets of the message”) above.

iv. “selecting indvidual components”

Claim 35 further recites that “dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of components.” Under

Implicit’s apparent claim constructions, Pfeifer96 discloses this element. See Claim

(showing “dynamically identifying includes selecting individual components to create the non-

predefined sequence of components after the first packet is received”) above.

“state information”

Claim 35 further recites “for each packet of the message, invoking the identified non-

predefined sequence of components in sequence to perform the processing of each component

for the packet wherein each component saves message-specific state information so that that

component can use the save message-specific state information when that component performs

its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Pfeifer96 discloses this element. See Claim 1(v) (showing similar element) above.

2. Pfeifer96 Renders Obvious Claims 1, 15, and 35 Under § 103

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed or inherent over Pfeifer96, then the inclusion of those aspects certainly would be

obvious over Pfeifer96, under 35 U.S.C. § 103.

(a) Claim 1

i. “A method in a computer system...”

Claim | recites: “A method in a computer system for processing a message having a

sequence of packets, the method comprising... .” Under Implicit’s apparent claim

constructions, Pfeifer96 renders obvious this element.

48

JNPR-IMPL_30024_

Page 48 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Pfeifer96 teaches a “system/platform” implementing the “iPCSS architecture,” wherein

communication between two parties over “fixed” and/or “wireless networks” is mediated by a

“chain of converters” which is “dynamically generated.” Ex. AO2 at 119, 105, 114, 122, 124. It

was obvious that a “computer system” would be used to perform the various mediation functions

disclosed by Pfeifer96, including, e.g., the “dynamically generated Converter Chain”. at 122,

113-14.

Claim 1 further recites the method is “for processing a message having a sequence of

packets.”

As an initial general matter informing all of the argument below, Pfeifer96 teaches a

“universal platform” meant to achieve “universal connectivity” over both “fixed and wireless

networks.” /d. at 105, 120, 117-18. Thus, it was obvious to support incoming communications

from at least any mainstream device over at least any mainstream communications medium,

including over the main communications mediums which are inherently packetized.

More specifically, Pfeifer96 discloses “Service Gateways” which are “tools...

responsible for transporting information into and out of the context of the iPCSS, i.e., connecting

the iPCSS to the world outside the TINA platform.” /d. at 126. These gateways must “consider

the specific properties of the connected information and communication services.” /d.

For example, Pfeifer96 explicitly discloses a Service Gateway for “voice connection with

the public telephone network,” for both incoming (“phone.in’) and outgoing (“phone.our’) voice

connections. /d. at 126 (emphasis in original). Because Pfeifer96 repeatedly discloses voice

connections using the well-known “ISDN” public telephone network standard, it was obvious

that incoming voice connections might be placed from ISDN telephones and therefore that the

Service Gateway should be capable of handling such incoming calls. /d. at 109, 111. One of

49

JNPR-IMPL_30024_

Page 49 of 272 Implicit Exhibit 2001
Juniper v. Implicit

ordinary skill in the art would be aware that ISDN is inherently packetized,’® and that therefore

an incoming voice call over an ISDN public telephone network would comprise “a message

having a sequence of packets.”

Relatedly, Pfeifer96 also discloses a Service Gateway for “sending and reception of .. .

faxes.” /d. at 126. One of ordinary skill in the art would be aware that fax machines are also

commonly positioned on ISDN networks and that certainly ISDN networks are capable of

transmitting fax data. Therefore it was obvious that the Service Gateway should be capable of

handing such incoming and outgoing fax communications. Because ISDN is inherently

packetized, each of these transmissions would comprise “a message having a sequence of

packets.”

Relatedly, iPCSS discloses communication over wireless networks. See id. at 105

(“mobility of the user in fixed networks and wireless networks”), 118 (mobility “enabled by

means of . wireless network interfaces and protocols (i.e. cordless, cellular and satellite) is

fundamentalfor the provision of ubiquitous, global connectivity’) (emphasis added). Because

many devices are accessible only via wireless networks, it was obvious that the system should

support communications to and from such devices. One of ordinary skill would recognize

wireless communications are inherently packetized, and that therefore any incoming

communication over a wireless network would comprise “a message having a series of packets.”

As another example, Pfeifer96 discloses a Service Gateway for “reception and delivery of

multimedia e-mail.” /d. at 126. Since email is at least predominantly transmitted over packet-

10
See. e, g., Ex. X05 (“ISDN Primary Rate User-Network Interface Specification;

Standard 08.01”) (August 1998) at 3-9 to 3-10 (Chapter 3-2: “Layer 2 frame structure,” where

discrete frames with their own “Frame check sequence(s)” would comprise “packets” under

Implicit’s apparent claim constructions. This reference is cited in this context solely to help

explain Pfeifer96. See MPEP § 2205.

50

JNPR-IMPL_30024_

Page 50 of 272 Implicit Exhibit 2001
Juniper v. Implicit

oriented networks (e.g., using the TCP/IP protocol suite), it was obvious that the system should

support such incoming communications, and any such incoming communication would comprise

“a message having a series of packets.” See also id. at 118 (Figure 9, showing “multimedia e-

email” transmitted by a user at a computer).

As another example, Pfeifer96 discloses a Service Gateway “for support of multimedia

conferencing.” /d. at 126. One of ordinary skill in the art would recognize that while it is

possible to transmit one medium over a non-packetized, analog phone line audio), at least

the predominant method of transmitting multimedia conferencing information is over a packet-

oriented network (such as one using TCP/IP). It was obvious that the system should support

such incoming and outgoing multimedia conferencing communications, and any such incoming

communication would comprise “a message having a series of packets.” See also id. at 118

(Figure 9, showing “multimedia e-email” transmitted by a user at a computer).

More generally, Pfeifer96 discloses various devices that the system would communicate

with. See, e.g., id. at 110 (“Braille output device”), 6 (temperature” sensor), 118 (‘video”

camera). It was obvious that because such devices typically do not have an independent

communications capability of their own, these devices are typically connected to computers

which can communicate with the outside world by use a packet-oriented network (such as one

using TCP/IP). Thus, it was obvious that the system should support communications to and from

these devices over packet-oriented networks, and any incoming communication from such a

device would comprise “a message having a series of packets.”

As a general matter, all of these specific instances of connectivity follow from the

teaching of a “universal platform” meant to achieve “universal connectivity” over both “fixed

and wireless networks.” /d. at 105, 120, 117-18.

51

JNPR-IMPL_30024_

Page 51 of 272 Implicit Exhibit 2001
Juniper v. Implicit

ii. “a plurality of components”

Claim 1 further recites: “providing a plurality of components, each component being a

software routine for converting data with an input format into data with an output format.”

Under Implicit’s apparent claim constructions, Pfeifer96 renders obvious this element.

As explained above, each converter component converts data with an input format into

data with an output format, and each is invoked via an “application programmer interface”:

representation adapter
, oblect oriented packaginghe application

|

programmer interface

ponpristary

corversion

Hbrary

medium ir

Id. at 113 (Figure 7: “Generic converter model”). While iPCSS-01 discusses “object oriented

packaging” as an element of these converter components, it is at least obvious that object

oriented software would comprise a “software routine,” or alternatively at least obvious to

organize object oriented software such that it would comprise a software routine.

ili. “dynamically identifying a non-predefined sequence”

Claim 1 further recites: “for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message such that the

output format of the components of the non-predefined sequence match the input format of the

next component in the non-predefined sequence, wherein dynamically identifying includes

selecting individual components to create the non-predefined sequence of components after the

first packet is received.” Under Implicit’s apparent claim constructions, Pfeifer96 renders

obvious this element.

52

JNPR-IMPL_30024_

Page 52 of 272 Implicit Exhibit 2001
Juniper v. Implicit

As discussed above, it was obvious for the system to accept incoming streams of packets

from a variety of devices, including computers, ISDN telephones and fax machines, and wireless

phones. See Claim 1(i) above. It was therefore also obvious that all of these types of incoming

packet streams would be routed to the dynamically generated converter chain for processing:

foe

stream
interfaces

Id. at 122 (Figure 11: “Components of the PCS-enhanced TINA Access Session,” showing the

“dynamically generated Converter Chain” between the two parties). The “dynamically generated

converter chain” is clearly architected in a general manner so as to be able to handle any of these

types of incoming packet streams as they arrived. E.g., id. at 124 (“a dynamically generated

converter chain with stream interfaces for the appropriate media is created”).

Claim 1 further recites that the “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components after the first packet is

received.” As explained above, after receiving the first packet of the message, Pfeifer96

concatenates individual converters to form many possible chains that might be used to connect

the message’s two endpoints. See Section V.A.1 (Pfeifer 102) at Claim 1(iii) above.

iv. “storing an indication of... the identified components”

53

JNPR-IMPL_30024_

Page 53 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 1 further recites “storing an indication of each of the identified components so that

the non-predefined sequence does not need to be re-identified for subsequent packets of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 renders obvious this

element.

The “dynamically generated converter chain” is generated only once for an incoming

communication and is used to process the entire communication. See id. at 122-27. Itis

therefore clear this chain is stored, and also obvious that it would be stored. For example,

“instantiat[ing]” the entire chain “as an object with stream interfaces” (for accepting the

incoming stream of packets) would comprise storing an indication of the components within it.

Id. 127.

“state information”

Claim 1 further recites “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

retrieved state information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 renders obvious this “state information”

element.

As an initial matter, Pfeifer96 teaches that as part of its “framework of type and format

converters” (illustrated in Figure 5), each component would maintain multiple “scalable

input/output parameters” which would comprise (as recited by claim 1) “state information

relating to the processing of the component” under Implicit’s apparent claim constructions. Ex.

A02 at 108-09.

54

JNPR-IMPL_30024_

Page 54 of 272 Implicit Exhibit 2001
Juniper v. Implicit

ATC: Madium tyne converter

MPC: Moadguim formal converter
we three converters with selected

"

input/output parameters are

Anogen fpr aparticular chain

(“fof arre

scalable inputoutnet parameters f
EB

fixed inputfoutput parameters

Id. at 108 (Figure 4: “Medium type conversion"? with format adaptation”). As explained above,

such parameters are considered when performing the Quality of Service analysis comparing

many possible chains that might used. See Claim above. Pfeifer96 teaches these

parameters control, e.g., “frame/sampling rate, quantization, resolution, size, color depth .

compression technique,” and so on), and that the parameters chosen for the converters across any

specific chain should be coordinated to avoid unnecessary loss of information. See id. at 107-08,

115, 124; Claim above. These parameters are “state information” which must be stored for

each component, and which must be retrieved by each component in order to perform its

processing: e.g., in order to know which input or output “sampling rate” or “compression

technique” to use when processing the packet. See id. It was obvious that any or all of the

components in any particular chain would maintain such “parameters,” and therefore obvious

that any or all of the components would satisfy the “state information” element of claim 1.

" Medium type conversion (MTC) changes the format as well, since two different

medium types cannot share the same format (e.g., text vs. audible speech). See Section 111 above.

55

JNPR-IMPL_30024_

Page 55 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Additionally and more specifically, the most obvious implementations of a number of the

components disclosed by Pfeifer96 would read on this claim element, and it was obvious that

such components would comprise at least “a plurality of the components” in various obvious

(and expressly disclosed) sequences.

(a) ISDN Adapter Components

Pfeifer96 teaches a component for adapting between audio data and an ISDN telephone

connection. Ex. AQ2 at 109, 111. As explained above, one of ordinary skill in the art would

understand ISDN is a stateful protocol, and hence it would be obvious for this component to

store and retrieve connection state on a per packet basis in order to correctly perform the

processing for its side of the ISDN connection.” It was further obvious that such an ISDN

adapter would be used for adapting either incoming and/or outgoing ISDN calls.

(b) Lossless Compression/Decompression Components

Pfeifer96 teaches that many of its converters would have a settable parameter “c”

specifying the “applied compression [and decompression] technique” employed by the

component as part of its conversion:

See, e.g., Ex. X05 (“ISDN Primary Rate User-Network Interface Specification;
Standard 08.01”) (August 1998) at 3-18 (“Transmitter send sequence number”; “Transmitter

receive sequence number”; “The I format is used for frames that transfer information between

Layer 3 entities”), 3-20 (“When using I-frame commands, each point-to-point data link

connection endpoint has an associated send state variable” and “an associated acknowledge state

variable”), 4-54 (“Call state”). This reference is cited in this context solely to help explain
Pfeifer96. See MPEP § 2205.

56

JNPR-IMPL_30024_

Page 56 of 272 Implicit Exhibit 2001
Juniper v. Implicit

generation of perceptible information: perception:
human media channels,

naman media
technical

SHaAnels

sysiems | technical technical
(examples) representation | wovarsion| Tepresefttation

mrmtred cont control data audhory: ar

waiten

contral data
speech

Gage seeartie, frre oy BE MESH

natural,
audio (m,n, audio im, SOUR, PRUSIC

technically raici mick Wisuall eye

Spoken video (m,n. th video im.n,c. aeturlanguage picture
photogr pholograch graphic

video imap image bitmap image legible text

camera igif, tf, fax,...} (GIF, TIFF. fax, 2)
re

tactic: skin
move vector image vector image
archive eas Braite

page description page
cescinnon

vibration signal

ipostscript, fpastscript tactile image

drawings adobe acrobat adobe acrobat)

proto
ex palanceCATT rameric nuMnerie

ancharitine handwritin haptic: skin
sensors for | handwriting handwriting

or ros force
ary physical | any digital any digital Btasp
parameter | representation representation RIESSUEE

flemiperat, es setttcesdtme Somes

nce
* Kinaesthetic: body

PPSSSUNE, composed mere mreweTen'

werocity,
document composed

force, movement

burnidity, composed erin iermic: skin

yoHage, mall composed oHacive: nose

smell

qustalive: tongue
taste

parameters:

AL media dependent
parameters

frame/sampling rate, quardization, resotution, six

applied cOMpLeSsION techniquet time, duration, etc.

color depth, etc}

Id. at 107 (Figure 3: “Generic conversion matrix”). Since Pfeifer does not cite specific

compression/decompression techniques (beyond observing some are “lossy”), one of ordinary

skill would draw from standard background knowledge regarding the range of compression/

decompression techniques that might be applied.

Because Pfeifer96 cautions that “multiple /ossy compression and decompression” across

the same converter chain should be “prohibit[ed] . if possible,” one of ordinary skill would be

motivated to apply lossless compression/decompression techniques when implementing these

converters. /d. at 115, 124 (emphasis added). In particular, one of ordinary skill would be aware

57

JNPR-IMPL_30024_

Page 57 of 272 Implicit Exhibit 2001
Juniper v. Implicit

that “adaptive” algorithms are among the leading lossless compression/decompression

techniques available, and obvious implementations of such “adaptive” algorithms would entail

maintaining “state information” across packets in the manner specified by claim 1. This standard

background knowledge is confirmed by citation to Ex. 5 (“The Data Compression Book” by

Mark Nelson et al., “Nelson”) (1996), which is cited in this context solely to help explain

Pfeifer96. See MPEP § 2205.

Nelson explains “Adaptive coding . . . lead[s] to vastly improved compression ratios,”

and that “compression research in the last 10 years has concentrated on adaptive models.” Ex. 5

at 8, 18. Adaptive algorithms include such well-known algorithms as “Adaptive Huffman

Coding” (chapter 4; id. at 75), “Adaptive [Statistical] Modeling” (chapter 6; id. at 155),

“[Adaptive] Dictionary-Based Compression” (chapter 7: id. at 203), and “Sliding Window

Compression” (chapter 8; id. at 215); and the prominent “LZ” family of compression algorithms

(chapter 8 and 9, id. at 221, 255). All of these adaptive techniques are lossless. See id. at 9 (“All

of the compression techniques discussed through chapter 9 are ‘lossless’”).

Nelson further explains the stateful manner in which adaptive coding operates: “When

using an adaptive model, data does not have to be scanned once before coding in order to

generate statistics [used to perform compression/decompression]. Instead, the statistics are

continually modified as new characters are read in and coded. The general flow of a

program using an adaptive model looks something like that shown in Figures 2.2 and 2.3.” /d. at

18 (emphasis added).

58

JNPR-IMPL_30024_

Page 58 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Oatgut
Symnibole me Pasadt faput

adeSyrnbal
Cocks

Figure 2.2 General Anarnive Compression,

Feure Geverat Anapiive Decompression.

Id. at 19 (showing “Update Model” (state information) after encoding or decoding every piece of

data). Nelson explains: “adaptive models start knowing essentially nothing about the data” so

“when the program first starts it doesn’t do a very good job of compression.” /d. at 19.

However, “Most adaptive algorithms tend to adjust quickly to the data stream and will begin

turning in respectable compression ratios after only a few thousand bytes.” /d.

Thus, an obvious implementation of an adaptive algorithm would entail, for each packet,

retrieving state information, using it to perform the compression or decompression processing,

updating it to reflect the data in the most recent packet, and storing it so it can be applied to the

next packet.

In view of their prominence and lossless nature, adaptive compression/decompression

schemes were an obvious choice for any iPCSS converter component performing compression/

decompression. Ex. 5 at 18 (“compression research in the last 10 years has concentrated on

59

JNPR-IMPL_30024_

Page 59 of 272 Implicit Exhibit 2001
Juniper v. Implicit

adaptive models”); Ex. at 115 (‘prohibit multiple lossy compression and decompression

processes, if possible’).

As evident from Pfeifer96 Figure 3, any component converting to or from audio or video

would have a settable compression parameter “c.” See Ex. AO2 at 107 (Figure 3: “Generic

conversion matrix”). Thus, it was obvious for any component converting to or from audio or

video to read on the “state information” element of claim 1, by performing adaptive compression

or decompression. Additionally, iPCSS-01 clearly envisions that multiple converters within the

same chain may perform compression or decompression (just preferably not multiple /ossy

compression or decompression, and adaptive algorithms are not lossy). See id. at 115 (“prohibit

multiple lossy compression and decompression processes, if possible”).

Thus, considering merely two converter chains expressly disclosed by Pfeifer96 in

Figures 5 and 6, it is evident both chains have at least two components which convert to or from

audio, and hence it was obvious that at least a plurality of their components would maintain

“state information” as recited by claim 1, for each packet.

conversion to audio conversion from audio

ELLE

ime re

mee

temper» electric value degets. text speech > audio format » phone service

gateway

Id. at 109 (Figure 5). conversion to audio conversion from audio

[haa

‘ala

fax service image sawtext filtered text’ speech audi format

gateway

60

JNPR-IMPL_30024_

Page 60 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Id. at 111 (Figure 6). Moreover, the last component in both chains is doubly stateful, because it

would also maintain ISDN connection state, as explained above.

As another example, Pfeifer96 teaches that a user with only a “telephone” may wish to

“attend” a “video conference.” /d. at 1. See also, e.g., id. at 15 (Figure 9: showing “speech”

input and “video” output). A clearly obvious chain for connecting this call would comprise an

ISDN adapter component for accepting an ISDN telephone call and converting it to audio, and a

second converter for converting the audio to a video conference format. Clearly both converters

would take audio as an input or output, hence it was obvious for every converter in this chain to

maintain “state information” as recited by claim 1, for each packet. And again, the ISDN

component is doubly stateful.

(c) Text-to-Speech Components

Pfeifer96 teaches a “Text-to-speech” (TTS) converter component. Pfeifer96 teaches that

such TTS converters “analys[e] the grammatical structure of a sentence” in order to “improve the

prosody of the speech, that is the intonation and phrase melody.” /d. at 8-9. Since the packet

boundaries in an incoming stream of text will not generally be synchronized with the

grammatical boundaries of sentences, it was obviously desirable for this component to buffer

textual data across packets in order to obtain complete sentences whose “grammatical structure”

could then be analyzed. /d. This would entail, for each packet, retrieving a previous incomplete

sentence fragment (lacking an ending), performing the processing of the newly delivered textual

data and as possible analyzing any complete sentences, and finally storing any remaining

sentence fragment from the new data. Because a TTS component is included in both of the

converter chains depicted in Figures 5 and 6 (analyzed above), this is yet another basis for

finding it was obvious that at least a plurality of the components in those chains (and other

61

JNPR-IMPL_30024_

Page 61 of 272 Implicit Exhibit 2001
Juniper v. Implicit

obvious chains incorporating a TTS component) would perform the “state information” elements

recited by claim 1.

(d) Speech Recognition Components

Pfeifer96 teaches a component which performs “speech recognition” to convert

“commands” and “dictation” to “text” (e.g., for converting an incoming voice call to a stream of

legible text on a user’s computer). See Ex. AOQ2 at 110, 112, 107, 118. Pfeifer96 explains that

such speech recognition software “can be speaker dependent,” but that “speaker adaptive”

software is more “flexible.” /d. at 112. One of ordinary skill would recognize that for such a

component to adaptively improve its recognition of a particular speaker’s voice, it would need to

retrieve prior information about the speaker’s voice, perform the processing of recognizing

speech using that information, and store updated information reflecting the speaker’s new

utterance.

To summarize, it was obvious for many of the components disclosed by Pfeifer96 to

maintain “state information” in the manner recited by claim 1 in order for them to function as

described, and it was certainly clear that at least “a plurality of the components” in certain

obvious chains would do so, for each packet.

(b) Claim 15

i, “demultiplexingpackets of messages”

Claim 15 recites: “A method in a computer system demultiplexing packets of messages.”

Under Implicit’s apparent claim constructions, Pfeifer96 renders obvious these elements. See

Claim 1(i) (showing “A method in a computer system for processing a message having a

sequence of packets”) above. Under Implicit’s apparent claim constructions, “demultiplexing” a

packet is satisfied by routing a packet to the correct sequence of components for processing it—

and it was obvious for Pfeifer96 to perform this function. See Section IV (“demultiplexing”)

62

JNPR-IMPL_30024_

Page 62 of 272 Implicit Exhibit 2001
Juniper v. Implicit

above and Claim (showing “dynamically identifying a non-predefined sequence of

components for processing the packets of the message”) above.

il. “dynamically identifying a non-predefined sequence”

Claim 15 further recites “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components,

wherein dynamically identifying includes selecting individual components to create the non-

predefined sequence of components after the first packet is received.” Under Implicit’s apparent

claim constructions, Pfeifer96 renders obvious this element. See Claim 1(iii) (showing “for the

first packet of the message, dynamically identifying a non-predefined sequence of components

for processing the packets of the message”) and Claim 1(iv) (showing “storing an indication of

each of the identified components so that the non-predefined sequence does not need to be re-

identified for subsequent packets of the message”) above.

ili. “different... sequences of components can be identified”

Claim 15 further recites “different non-predefined sequences of components can be

identified for different messages.” Under Implicit’s apparent claim constructions, Pfeifer96

renders obvious this element.

Since both the source and destination and the source and destination mediums will vary

across messages, it is clear that correspondingly different sequences of converters will generally

be required. See, e.g., Ex. at 109, 111. For example, a first communication may extend

from a temperature sensor to an ISDN telephone:

63

JNPR-IMPL_30024_

Page 63 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Ha’

alaw ED

temuper. electric value degits ext oc» speech > audio format» phone service

paleway

Id. at 109 (Figure 5: “Converter chain for temperature to speech conversion with telephone

delivery”). And a second communication may extend from a fax machine to an ISDN telephone,

and it will therefore have a correspondingly different sequence of converters:

dig ‘ne

&
fax gervice > image gawtext filtered text> speech audio format > phone service

gateway gateway

at 111 (Figure 6: “Converter chain: fax reception, conversion to text and speech, telephone

delivery).

iv. “each component being a software routine”

Claim 15 further recites “each component being a software routine.” Under Implicit’s

apparent claim constructions, Pfeifer96 renders obvious this element. See Claim 1(11) above

(showing “each component being a software routine’).

“selecting individual components”

Claim 15 further recites “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components.” Under Implicit’s apparent

claim constructions, Pfeifer96 renders obvious these elements. See Claim above (showing

“dynamically identifying includes selecting individual components to create the non-predefined

sequence of components”).

vi. “state information”

64

JNPR-IMPL_30024_

Page 64 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 15 finally recites “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Under Implicit’s

apparent claim constructions, Pfeifer96 renders obvious this element.

As an initial matter, Pfeifer96 teaches that as part of its “framework of type and format

converters” (illustrated in Figure 5), each component would maintain multiple “scalable

input/output parameters” which would comprise (as recited by claim 1) “state information

relating to the processing of the component” under Implicit’s apparent claim constructions. Ex.

8 at 108-09.

three converters with selected

input/output parameters are

_

chosen for a particular chain

Ciat arrows’)
MTC: Mecium tyne converter

MPC: Medium farmal comerter

scalable innutfoutout parameters

@ fed inpuloutput parameters

65

JNPR-IMPL_30024_

Page 65 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Id. at 108 (Figure 4: “Medium type conversion’ with format adaptation”). As explained above,

such parameters are considered when performing the Quality of Service analysis comparing

many possible chains that might used. See Section iv above. Pfeifer96 teaches these parameters

control, e.g., “frame/sampling rate, quantization, resolution, size, color depth . compression

technique,” and so on), and that the parameters chosen for the converters across any specific

chain should be coordinated to avoid unnecessary loss of information. See id. at 107-08, 115,

124; Claim 1(iii) above. These parameters are “state information” which must be stored for

each component, and which must be retrieved by each component in order to perform its

processing: e.g., in order to know which input or output “sampling rate” or “compression

technique” to use when processing the packet. See id. It was obvious that all of the components

in any particular chain would maintain such “parameters,” and therefore obvious that all of the

components would satisfy the “state information” elements of claim 1.

Pfeifer96 also renders this element obvious from other perspectives.

For example, Pfeifer96 teaches that a user with only a “telephone” may wish to “attend” a

“video conference.” /d. at 1. See also, e.g., id. at 15 (Figure 9: showing “speech” input and

“video” output). A clearly obvious chain for connecting this call would comprise an ISDN

adapter component for accepting an ISDN telephone call and converting it to audio, and a second

converter for converting the audio to a video conference format. Clearly both converters would

take audio as an input or output, hence it was obvious for every converter in this chain to

maintain “state information” as recited by claim 1, for each packet. And again, the ISDN

component would be doubly stateful. See Claim 1(v)(a) “ISDN Adapter Components”) and

(v)(b) (“Lossless Compression/Decompression’”) above.

Medium type conversion (MTC) changes the format as well, since two different

medium types cannot share the same format (e.g., text vs. audible speech). See Section 111 above.

66

JNPR-IMPL_30024_

Page 66 of 272 Implicit Exhibit 2001
Juniper v. Implicit

As another example, Pfeifer teaches that conversions may be performed to convert

“audio” to “video” and/or to “legible text” and/or to “Braille” (presumably for use by the blind).

See id. at 107. Thus, a conversion clearly within the scope of Pfeifer96 would be converting an

incoming ISDN voice call using a Speech Recognition component to produce video containing

legible text (e.g., for use by the deaf). See id. at 107, 111. As Pfeifer explains, “even

conversions that sound strange in the first place might be of very practical relevance”—and this

conversion is not at all strange or unexpected, particularly when viewing Figure 3. /d. at 109,

107. And clearly, it was obvious that every component in this obvious chain would maintain

state in the mannner recited by claim 15. The first component is an ISDN adapter, and it is

doubly stateful because it must maintain ISDN connection state, and because it has an audio

output. See Claim 1(v)(a) and (v)(b) above. The second and final component is triply stateful,

because it accepts audio input, performs speech recogntion, and emits video output. See Claim

1(v)(a), (v)(b), and (v)(d) (“Speech Recognition Components”) above.

(c) Claim 35

i, “instructions for demultiplexing packets of messages”

Claim 35 recites: “A computer-readable medium containing instructions for

demultiplexing packets of messages.” Under Implicit’s apparent claim constructions, Pfeifer96

renders obvious this element. It was obvious that the software executed by the computer system

of Pfeifer96 (including its sequences of software-based converters) would be stored on a

“computer-readable medium.” See Claim 1{i) (showing “a computer system”) above.

ii. “dynamically identifying a... non-prede fined sequence”

Claim 35 recites: “dynamically identifying a message-specific non-predefined sequence

of components for processing the packets of each message upon receiving the first packet of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 renders obvious this

67

JNPR-IMPL_30024_

Page 67 of 272 Implicit Exhibit 2001
Juniper v. Implicit

element. See Claim 1(i11) (showing “for the first packet of the message, dynamically identifying

a non-predefined sequence of components for processing the packets of the message”) above.

Pfeifer teaches that the “dynamically generated converter chain” is formed in the last of a series

of steps which are triggered by the receipt of an incoming connection request. See, e.g., Ex.

at 119 (Figure 10, including “configure media conversion” in “4th stage”), 122-24. And itis, of

course, obvious that a connection request could comprise the first package of a message.

iii. “subsequent packets ... can use the... sequence”

Claim 35 further recites that “subsequent packets of the message can use the message-

specific non-predefined sequence identified when the first packet was received.” Under

Implicit’s apparent claim constructions, Pfeifer96 renders obvious this element. See Claim I(iv)

(showing “storing an indication of each of the identified components so that the non-predefined

sequence does not need to be re-identified for subsequent packets of the message”) above.

iv. “selecting indvidual components”

Claim 35 further recites that “dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of components.” Under

Implicit’s apparent claim constructions, Pfeifer96 renders obvious this element. See Claim

(showing “dynamically identifying includes selecting individual components to create the non-

predefined sequence of components after the first packet is received”) above.

“state information”

Claim 35 further recites “for each packet of the message, invoking the identified non-

predefined sequence of components in sequence to perform the processing of each component

for the packet wherein each component saves message-specific state information so that that

component can use the save message-specific state information when that component performs

its processing on the next packet of the message.” Under Implicit’s apparent claim

68

JNPR-IMPL_30024_

Page 68 of 272 Implicit Exhibit 2001
Juniper v. Implicit

constructions, Pfeifer96 renders obvious this element. See Claim 15(vi) (showing “for each

packet of each message, performing the processing of the identified non-predefined sequence of

components of the message wherein state information generated by performing the processing of

a component for a packet is available to the component when the component processes the next

packet of the message”) above.

3. Pfeifer96 in View of ISDN98 and Nelson Renders Obvious Claims 1,

15, and 35 Under § 103

The specification “ISDN Primary Rate User-Network Interface Specification” (Ex. 4,

“TSDN98”) was published in August 1998 by Northern Telecom. The treatise “The Data

Compression Book” (Ex. 5, “Nelson”) by Mark Nelson et al. was published on November 6,

1995. Neither was considered during the prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96 alone, then the inclusion of those aspects certainly

would be obvious over Pfeifer96 in view of ISDN98 and Nelson, under 35 U.S.C. § 103.

ISDN98 and Nelson were cited above under MPEP § 2205 as confirming that certain

information regarding ISDN (ISDN98) and compression (Nelson) would have been part of the

standard background knowledge of those of ordinary skill in the art. See Section V.A.2 above.

It was also obvious to apply these references directly to Pfeifer96.

Pfeifer96 teaches that many of its specific converters would have a “parameter”

specifying the “applied compression technique” employed by that converter. Ex. AQ2 at

107. Nelson (“The Data Compression Book”) would have been an obvious place to look for

information regarding the specific compression techniques that could be applied.

69

JNPR-IMPL_30024_

Page 69 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Pfeifer96 also teaches a converter for adapting audio data to ISDN. E.g., Ex. A02 at 109.

As the “ISDN Primary Rate User-Network Interface Specification,” ISDN98 would have been

obvious place to look for information regarding what creating such an adapter would entail.

4, Pfeifer96 in View of Arbanowksi96 Renders Obvious Claims 1, 15,

and 35 Under § 103

The dissertation “Generic Description of Telecommunication Services and Dynamic

Resource Selection in Intelligent Communication Environments” by Stefan Arbanowski (Exhibit

11, “Arbanowksi96”) was published on October 6, 1996, and it was not considered during

prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Arbanowksi96, under 35 U.S.C. § 103.

It was obvious to apply Arbanowksi96 to Pfeifer96 because both documents describe the

“Intelligent Personal Communication Support System with Arbanowksi96 presenting

further detail regarding, e.g., the dynamic selection of converter chains. See, e.g., Ex. 11 at 8,

13-14, 44-54 (“Dynamic Resource Selection”).

Because Pfeifer96 and Arbanowksi96 are so similar in approach and detail,

Arbanowksi96 reinforces and confirms the analysis presented in Section V.A.2 (Pfeifer96 103)

in many ways. Some exemplary aspects of Arbanowksi96 are pointed out particularly below.

(a) Claim 1

i, “A method in a computer system...”

Claim 1 recites: “A method in a computer system for processing a message having a

sequence of packets, the method comprising” Under Implicit’s apparent claim

constructions, Pfeifer96 in view of Arbanowksi96 renders obvious this element. Arbanowksi96

70

JNPR-IMPL_30024_

Page 70 of 272 Implicit Exhibit 2001
Juniper v. Implicit

confirms a “computer system” would be used. See, e.g., Ex. 11 at 6-8, 19 (“Computational

Objects”).

Claim | further recites the method is “for processing a message having a sequence of

packets.” Arbanowksi96 discloses that the “bearer” (which is “the physical network” connected

to an iPCSS “service gateway” can consist of the following network types, virtually all of which

are inherently packet-oriented:

possible values | short description

ATM Asynchronous Transler Mode [ITU-T L367]

FDI Fiber Distributed Data Interlace [ITU-T

ISDN Integrated Service Digital Network [ITU-T L320)

B-ISDN Broadband integrated Service Digital Network [ITU-T 1.321]

DODB Distributed Gueue Dual Bus [FEEE 802.6]

Ethernet normal 10Mobrt Ethernet 802.3)

GSM Global System for Mobile Communication

DES-1800 Digital Cellular System

PSTN Public Switched Telephone Network

Id. at 33 (Table 3-6: “Possible Values for the Attribute Bearer”). Thus, an incoming

communication over any of those packet-oriented networks would comprise “a message having a

sequence of packets.”

il. “a plurality of components”

Claim 1 further recites: “providing a plurality of components, each component being a

software routine for converting data with an input format into data with an output format.”

Under Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowksi96 renders

obvious these elements. See, e.g., id. at 9 (“iPCSS — Theory of Conversion”), 50 (“The example

71

JNPR-IMPL_30024_

Page 71 of 272 Implicit Exhibit 2001
Juniper v. Implicit

demonstrates a scenario with three converters and four terminals to lead into 60 possible

converter chains.”).

iit. “dynamically identifying a non-predefined sequence”

Claim | further recites: “for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message such that the

output format of the components of the non-predefined sequence match the input format of the

next component in the non-predefined sequence, wherein dynamically identifying includes

selecting individual components to create the non-predefined sequence of components after the

first packet is received.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of

Arbanowksi96 renders obvious this element.

As suggested by its title (“Generic Description of Telecommunication Services and

Dynamic Resource Selection in Intelligent Communication Environments”), Arbanowksi96

confirms that the chain of converters for connecting a call is identified dynamically and is not

predefined.

Like Pfeifer96, Arbanowksi96 discloses a four-stage call connection process wherein the

selection of a terminal in the user’s vicinity and the dynamic configuration of a chain of

converters to that terminal occurs in the final stage. F.g., id. at 6-7, 13-15, 49 (“Finding a

Matching Device”), 50 (“Finding a Possible Chain”).

72

JNPR-IMPL_30024_

Page 72 of 272 Implicit Exhibit 2001
Juniper v. Implicit

iron
Basie ‘all

to basic call

rormexae

POROCUN OF

awantion
directed to message bax a

contra!

le
*

media type! | Lisas
samvice type fediator

sins

device type ~ converter

Id. at 14 (Figure 2-9: “iPCSS — Call Handling”). Arbanowksi96 also provides additional detail

on the elaborate process by which many possible chains of converters are considered in the

course of initially connecting a call to one of the terminals in the called user’s current vicinity.

E.g., id. at 44 (the chosen terminal should not be “idle” and not “busy” or “down”), 49 (“Finding

a Matching Device”), 50 (“Finding a Possible Chain”: “The example demonstrates a scenario

with three converters and four terminals to lead into 60 possible converter chains”), 52

(“Calculating the most appropriate chain”)

ot

Oey
@|

wa al
iD “eyay

oy | AT

iC,

T= i, exe Td on iD

73

JNPR-IMPL_30024_

Page 73 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Id. at 51 (Figure 4-8: “Dynamic Resource Selection — Possible Converter Chains”). Because

iPCSS constructs many possible chains of individual converters and performs a complex

“Quality of Service” analysis on the possible chains in the course of connecting a call (7.e., after

it has received the first packet of the message), it is clear that the ultimately selected chain of

converters is selected “dynamically” and is not “predefined.” See, e.g., id. at 49-54.

Claim 1 further recites that the “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components after the first packet is

received.” Arbanowski96 makes clear that iPCSS considers the concatenation of many possible

individual converters in the course of connecting a call, and that the ultimately selected chain

will have been composed by selecting individual components. id. at 50 (“Finding a

Possible Chain”: “The example demonstrates a scenario with three converters and four terminals

to lead into 60 possible converter chains”).

iv. “storing an indication of... the identified components”

Claim 1 further recites “storing an indication of each of the identified components so that

the non-predefined sequence does not need to be re-identified for subsequent packets of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowks196

renders obvious this elements. Arbanowksi96 greatly elaborates on the process by which a

“dynamically generated converter chain” is selected for connecting an incoming call. See Ex.

AO2 at 125; Ex. 11 at 44-54 (“Dynamic Resource Selection’). The “dynamically generated

converter chain” of Pfeifer96 is generated only once for an incoming communication and it is

used to process the entire communication. See Ex. at 122-27. See also Section V.A.2

(Pfeifer96 103) at Claim 1(vi).

“state information”

74

JNPR-IMPL_30024_

Page 74 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 1 further recites “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

retrieved state information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowksi96 renders obvious this

“state information” elements. Arbanowksi96 provides additional detail on the types of

conversions and converter chains that might be assembled (e.g., Ex. 11 at 28-38), and additional

detail on the process by which the “scalable input/output parameters” of the converter

components in Pfeifer96 (which are “state information”) would be configured (e.g., id. at 50-54).

It thus confirms the analysis presented under Section V.A.2 (Pfeifer96 103) in several ways. See

Section V.A.2 (Pfeifer96 103) at Claim 1(v).

(b) Claim 15

i. “demultiplexing packets of messages”

Claim 15 recites: “A method in a computer system demultiplexing packets of messages.”

Under Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowksi96 renders

obvious this element. See Claim 1(1) (showing “A method in a computer system for processing a

message having a sequence of packets”) above.

ii. “dynamically identifying a non-predefined sequence”

Claim 15 further recites “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowksi96 renders

75

JNPR-IMPL_30024_

Page 75 of 272 Implicit Exhibit 2001
Juniper v. Implicit

obvious these elements. See Claim 1(ii1) (showing “for the first packet of the message,

dynamically identifying a non-predefined sequence of components for processing the packets of

the message”) and Claim 1(iv) (showing “storing an indication of each of the identified

components so that the non-predefined sequence does not need to be re-identified for subsequent

packets of the message”) above.

iii. “different... sequences of components can be identified”

Claim 15 further recites “different non-predefined sequences of components can be

identified for different messages.” Under Implicit’s apparent claim constructions, Pfeifer96 in

view of Arbanowksi96 renders obvious this element. See, e.g., Ex. 11 at 50 (“Finding a Possible

Chain”: “The example demonstrates a scenario with three converters and four terminals to lead

into 60 possible converter chains”). See also Claim 1(i1i) above.

iv. “each component being a software routine”

Claim 15 further recites “each component being a software routine.” Under Implicit’s

apparent claim constructions, Pfeifer96 in view of Arbanowksi96 renders obvious this element.

See Claim above (showing “each component being a software routine”).

“selecting individual components”

Claim 15 further recites “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components.” Under Implicit’s apparent

claim constructions, Pfeifer96 in view of Arbanowksi96 renders obvious this element. See

Claim 1(iv) (showing “dynamically identifying includes selecting individual components to

create the non-predefined sequence of components”) above.

vi. “state information”

Claim 15 finally recites “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

76

JNPR-IMPL_30024_

Page 76 of 272 Implicit Exhibit 2001
Juniper v. Implicit

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Under Implicit’s

apparent claim constructions, Pfeifer96 in view of Arbanowksi96 renders obvious this element.

See Claim 1(v) above (showing similar element).

(c) Claim 35

i. “instructions for demultiplexing packets of messages”

Claim 35 recites: “A computer-readable medium containing instructions for

demultiplexing packets of messages.” Under Implicit’s apparent claim constructions, Pfeifer96

in view of Arbanowksi96 renders obvious this element. See Claim 1(1) above (showing “a

computer system’).

ii. “dynamically identifying a... non-predefined sequence”

Claim 35 recites: “dynamically identifying a message-specific non-predefined sequence

of components for processing the packets of each message upon receiving the first packet of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowksi96

renders obvious this element. See Claim 1(iii) (showing “for the first packet of the message,

dynamically identifying a non-predefined sequence of components for processing the packets of

the message”) above.

iii. “subsequent packets ... can use the... sequence”

Claim 35 further recites that “subsequent packets of the message can use the message-

specific non-predefined sequence identified when the first packet was received.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowksi96 renders obvious this

element. See Claim 1(iv) (showing “storing an indication of each of the identified components

so that the non-predefined sequence does not need to be re-identified for subsequent packets of

the message”) above.

77

JNPR-IMPL_30024_

Page 77 of 272 Implicit Exhibit 2001
Juniper v. Implicit

iv. “selecting indvidual components”

Claim 35 further recites that “dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of components.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Arbanowksi96 renders obvious this

element. See Claim 1(i11) (showing “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components after the first packet is

received”) above.

“state information”

Claim 35 further recites “for each packet of the message, invoking the identified non-

predefined sequence of components in sequence to perform the processing of each component

for the packet wherein each component saves message-specific state information so that that

component can use the save message-specific state information when that component performs

its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Pfeifer96 in view of Arbanowksi96 renders obvious this element. See Claim 1(v)

(showing similar element) above.

5. Pfeifer96 in View of Pfeifer97 Renders Obvious Claims 1, 15, and 35

Under § 103

The article “Resource Selection in Heterogeneous Communication Environments using

the Teleservice Descriptor” by Tom Pfeifer, Stefan Arbanowski, and Radu Popescu-Zeletin

(Exhibit 12, “Pfeifer97”) was published by December 19, 1997, and it was not considered during

prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Pfeifer97, under 35 U.S.C. § 103.

78

JNPR-IMPL_30024_

Page 78 of 272 Implicit Exhibit 2001
Juniper v. Implicit

It was obvious to apply Pfeifer97 to Pfeifer96 because both documents describe the

“Intelligent Personal Communication Support System (iPCSS),” with Pfeifer97 presenting

further detail regarding, e.g., the dynamic selection of converter chains. See, e.g., Ex. 12 at 132,

143-50.

Because Pfeifer96 and Pfeifer97 are so similar in approach and detail, Pfeifer97

reinforces and confirms the analysis presented in Section V.A.2 (Pfeifer96 103) in many ways.

Some exemplary aspects of Pfeifer97 are pointed out particularly below.

(a) Claim 1

i. “a computer system”

Claim 1 recites: “A method in a computer system for processing a message having a

sequence of packets, the method comprising”. Under Implicit’s apparent claim

constructions, Pfeifer96 in view of Pfeifer97 renders obvious this elements. Pfeifer97 confirms a

“computer system” would be used. See, e.g., Ex. 12 at 150-52 (‘Computational Model”).

Claim 1 further recites the method is “for processing a message having a sequence of

packets.” Pfeifer97 discloses that the “bearer” (which is “the physical network” connected to an

iPCSS “service gateway” can consist of the following network types, virtually all of which are

inherently packet-oriented:

possibie values shart descriniion

ATM Asvuchroneus Transfer Mode (TU-T 13613

FODE Fibte Dusinbuted Data Interface (ITU-T
ISDN integrated Service Digital Network (ITU-T

B-ISDN Ereadband Integrated Service Dugital Network CIT

Phstributed Queue Dual Bus $02.6)

Ethemet mommual LOMbut Ethernet (TEER $02.55

She Global System: for Mobile Commnication

Pigitel Cellular Syaten:

PSTN Pubhe Switched Telephone Network

79

JNPR-IMPL_30024_

Page 79 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Id. at 137-38 (Table 6: “Possible Values for the Attribute Bearer”). Thus, an incoming

communication over any of those packet-oriented networks would comprise “a message having a

sequence of packets.”

il. “a plurality of components”

Claim 1 further recites: “providing a plurality of components, each component being a

software routine for converting data with an input format into data with an output format.”

Under Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders obvious

this element. See, e.g., id. at 136-37 (“Conversion”: “Some conversions are only possible by

using more than one conversion steps”), 148-49 (“Finding a Possible Converter Chain”).

iil. “dynamically identifying a non-predefined sequence”

Claim 1 further recites: “for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message such that the

output format of the components of the non-predefined sequence match the input format of the

next component in the non-predefined sequence, wherein dynamically identifying includes

selecting individual components to create the non-predefined sequence of components after the

first packet is received.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of

Pfeifer97 renders obvious this element.

Pfeifer97 confirms that the chain of converters for connecting a call is identified

dynamically and is not predefined. See, e.g., id. at 146 (“Dynamic Resource Selection’),

Like Pfeifer96, Pfeifer97 discloses a four-stage call connection process wherein the

selection of a terminal in the user’s vicinity and the dynamic configuration of a chain of

converters to that terminal occurs in the final stage. E.g., id. at 137, 143-45 (‘Automatic

Resource Selection” which “find[s] the most appropriate terminal . . . at the [called] user’s

current location dynamically”).

80

JNPR-IMPL_30024_

Page 80 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Pfeifer97 also provides additional detail on the elaborate process by which many possible

chains of converters are considered in the course of initially connecting a call to one of the

terminals in the called user’s current vicinity. id. at 145 (the chosen terminal should not be

“idle” and not “busy” or “down”), 147 (‘Calculating the Most Appropriate Device”), 148

(“Finding a Possible Converter Chain”: “Five converters and five terminals allow 600

combinations, and one hundred converters and terminals lead to over 500.000 theoretical

possibilities... The main task of the algorithm is therefore to reduce the space of search.”).

Because iPCSS constructs many possible chains of individual converters and performs a

complex “Quality of Service” analysis on the possible chains in the course of connecting a call

(7.e., after it has received the first packet of the message), it is clear that the ultimately selected

chain of converters is selected “dynamically” and is not “predefined.” See, e.g., id. at 145-50.

Claim 1 further recites that the “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components after the first packet is

received.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders

obvious this element. It is clear that iPCSS considers the concatenation of many possible

individual converters in the course of connecting a call, and that the ultimately selected chain

will have been composed by selecting individual components. id. at 148-49 (“Finding a

Possible Converter Chain”: “Five converters and five terminals allow 600 combinations, and one

hundred converters and terminals lead to over 500.000 theoretical possibilities”).

iv. “storing an indication of... the identified components”

Claim 1 further recites “storing an indication of each of the identified components so that

the non-predefined sequence does not need to be re-identified for subsequent packets of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders

obvious this element. Pfeifer97 greatly elaborates on the process by which a “dynamically

81

JNPR-IMPL_30024_

Page 81 of 272 Implicit Exhibit 2001
Juniper v. Implicit

generated converter chain” is selected for connecting an incoming call. See Ex. 3 at 124-25, Ex.

12 at 143-153 (‘Automatic Resource Selection”). The “dynamically generated converter chain”

of Pfeifer96 is generated only once for an incoming communication and it is used to process the

entire communication. See Ex. 3 at 122-27. See also Section V.A.2 (Pfeifer96 103) at Claim

l(iv).

“state information”

Claim 1 further recites “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

retrieved state information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders obvious this “state

information” element. Pfeifer97 provides additional detail on the types of conversions and

converter chains that might be assembled (e.g., Ex. 12 at 133-37, 143-44), and additional detail

on the process by which the “scalable input/output parameters” of the converter components in

Pfeifer96 (which are “state information”) would be configured (e.g., id. at 144-45, 149-50). It

thus confirms the analysis presented under Section V.A.2 (Pfeifer96 103) in several ways. See

Section V.A.2 (Pfeifer96 103) at Claim 1(v).

(b) Claim 15

i. “demultiplexingpackets of messages”

Claim 15 recites: “A method in a computer system demultiplexing packets of messages.”

Under Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders obvious

82

JNPR-IMPL_30024_

Page 82 of 272 Implicit Exhibit 2001
Juniper v. Implicit

this element. See Claim 1(1) above (showing “A method in a computer system for processing a

message having a sequence of packets”).

il. “dynamically identifying a non-predefined sequence”

Claim 15 further recites “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders obvious

this element. See Claim (showing “for the first packet of the message, dynamically

identifying a non-predefined sequence of components for processing the packets of the

message”) and Claim I(iv) (showing “storing an indication of each of the identified components

so that the non-predefined sequence does not need to be re-identified for subsequent packets of

the message”) above.

ili. “different... sequences of components can be identified”

Claim 15 further recites “different non-predefined sequences of components can be

identified for different messages.” Under Implicit’s apparent claim constructions, Pfeifer96 in

view of Pfeifer97 renders obvious this element. See, e.g., Ex. 12 at 19 (“Finding a Possible

Converter Chain”: “Five converters and five terminals allow 600 combinations, and one hundred

converters and terminals lead to over 500.000 theoretical possibilities”). See also Claim (iit)

above.

iv. “each component being a software routine”

Claim 15 further recites “each component being a software routine.” Under Implicit’s

apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders obvious this element. See

Claim 1(ii) above (showing “each component being a software routine’).

“selecting individual components”

83

JNPR-IMPL_30024_

Page 83 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 15 further recites “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components.” Under Implicit’s apparent

claim constructions, Pfeifer96 in view of Pfeifer97 renders obvious this element. See Claim

above (showing “dynamically identifying includes selecting individual components to

create the non-predefined sequence of components’).

vi. “state information”

Claim 15 finally recites “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Under Implicit’s

apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders obvious this element. See

Claim 1(v) above (showing similar element).

(c) Claim 35

i. “instructions for demultiplexing packets of messages”

Claim 35 recites: “A computer-readable medium containing instructions for

demultiplexing packets of messages.” Under Implicit’s apparent claim constructions, Pfeifer96

in view of Pfeifer97 renders obvious this element. See Claim above.

ii. “dynamically identifying a... non-predefined sequence”

Claim 35 recites: “dynamically identifying a message-specific non-predefined sequence

of components for processing the packets of each message upon receiving the first packet of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders

obvious this element. See Claim 1(iii) (showing “for the first packet of the message,

dynamically identifying a non-predefined sequence of components for processing the packets of

the message”) above.

84

JNPR-IMPL_30024_

Page 84 of 272 Implicit Exhibit 2001
Juniper v. Implicit

iii. “subsequent packets ... can use the... sequence”

Claim 35 further recites that “subsequent packets of the message can use the message-

specific non-predefined sequence identified when the first packet was received.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders obvious this

element. See Claim 1(vi) (showing “storing an indication of each of the identified components

so that the non-predefined sequence does not need to be re-identified for subsequent packets of

the message’) above.

iv. “selecting indvidual components”

Claim 35 further recites that “dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of components.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Pfeifer97 renders obvious this

element. See Claim (showing “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components after the first packet is

received”) above.

“state information”

Claim 35 further recites “for each packet of the message, invoking the identified non-

predefined sequence of components in sequence to perform the processing of each component

for the packet wherein each component saves message-specific state information so that that

component can use the save message-specific state information when that component performs

its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Pfeifer96 in view of Pfeifer97 renders obvious this element. See Claim 15(vi)

above (showing “for each packet of each message, performing the processing of the identified

non-predefined sequence of components of the message wherein state information generated by

85

JNPR-IMPL_30024_

Page 85 of 272 Implicit Exhibit 2001
Juniper v. Implicit

performing the processing of a component for a packet is available to the component when the

component processes the next packet of the message’).

6. Pfeifer96 in View of Cox Renders Obvious Claims 1, 15, and 35 Under

§ 103

The treatise “Superdistribution: Objects as Property on the Electronic Frontier” by Brad

Cox (Exhibit P04, “Cox”) was published on June 28, 1996. It was not considered during

prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Cox, under 35 U.S.C. § 103.

(a) Claim 1

i. “state information”

Claim 1 recites in part: “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

retrieved state information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 in view of Cox renders obvious this element.

The basic thesis of Cox is that “the software development industry” is in the midst of a

“Software Crisis” caused by its over-reliance on a “pay-per-copy” revenue model. See, e.g., Ex.

P04 at x-xi, 45-73 (Chapter 3: “Software Crisis”), 143-165 (Chapter 6: “Out of the Crisis”).

A major aspect of this crisis is that “small-granularity, reusable software components” are

essential for building complex systems in an efficient manner, yet it is precisely such small

86

JNPR-IMPL_30024_

Page 86 of 272 Implicit Exhibit 2001
Juniper v. Implicit

components which lack a suitable revenue model. See, e.g., id. at 51-53 (“Software

Complexity,” lamenting that “software is hand-crafted, fabricated from first principles and not

assembled from prefabricated components”), 153 (“We continue to fabricate everything from

first principles because there is no reliable way for those who might build smaller components to

get paid. No one invests in fabricating small software for others to assemble because the low-

tech revenue protection schemes do not work for small-granularity, low-priced objects such as

reusable software components.”).

Cox illustrates this lack of suitable revenue model for small, reusable components with a

telling example. Suppose “Vendor E” sells one of the smallest software components imaginable:

a “string compare component.” /d. at 153, 145.

Vendor E's best current option is to attach his small-granularity

product to something much larger, such as... [an off-the-shelf

compiler product]. The string compare component is then

perceived as free by the customer and by the vendor as a cost

center, not a profit center. This almost guarantees that managers
and stockholders will see inadequate incentives to test,

document, and maintain reusable components to the point that

others will be prepared to reuse them. The other option, which is

somewhat less feasible, is to bundle the string compare routine

with a large number of other components to produce a library large

enough to be worth the trouble of marketing it. The accepted
model for selling such libraries today is to charge a single

relatively large fee, typically in the $500-$5000 range, for a license

that allows the customer to include the library in larger

applications.

This leads directly to the debilitating consequences I discussed in

Chapter 2. Since the price is large and not proportional to utility,
the vendor's income arrives all at once at the very beginning of the

relationship with the customer. This leads to precisely the same

dysfunction that farmers and millers would suffer if the miller sold

the baker a license to replicate all the wheat and flour he might
ever need in advance. Since the fee is large and fixed, small bakers

couldn't afford it and large bakers would have an unfair advantage.
Worse yet, the miller would have no incentive to improve the

product over time.

87

JNPR-IMPL_30024_

Page 87 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Id. at 153-54 (emphasis added). See also id. at 31-33 (a pertinent section of “Chapter 2”).

The solution to this crisis, according to Cox, is “an invocation-based metering” approach

which Cox styles “Superdistribution.” See, e.g., id. at 155, 169 (““invocation-based revenue

collection’) (emphasis in original). The goal of this “Superdistribution” approach is to “provide

ameter that supports revenue collection for components of any granularity. /d. at 156

(emphasis added). Assessing royalties based on actual usage of a component would solve a

number of problems, including the problem of Vendor E:

Instead of paying a large fee up-front, all customers, large and

small, get the component for free. Later, when they begin to sell

their own products based on this component, they pay a

negotiated) fee for using their subvendor's product. The subvendor

now receives a continuing revenue stream that is directly

proportional to the utility his component provides to his customers.

Id. at 154.

Thus, central to this “Superdistribution” approach advocated by the book is this

cumulative “invocation-counting” mechanism which “merely collects information about

invocations”: 7.e., each time a software component employing this system is invoked, its usage

meter is incremented. See, e.g., id. at 174-75, 178. A “finanical institution” would later obtain

these “invocation counts” and convert them “to financial amounts due.” /d. at 182.

As suggested by its title (“Superdistribution’”), this entire book is devoted to proposing

this “invocation-based metering” approach it styles “Superdistribution,” and explaining the need

for it. See, e.g., id. at 155 (“Superdistribution” section in chapter entitled “Out of the Crisis”),

183 (“Everything is based on the simple invocation-metering logic discussed earlier”). Thus, the

excerpts cited above capture only a small portion of the extensive case made by the book for this

solution.

88

JNPR-IMPL_30024_

Page 88 of 272 Implicit Exhibit 2001
Juniper v. Implicit

In any event, upon reading Cox, one of ordinary skill in the art could not fail to see its

relevance to the small, reusable converter components of Pfeifer96. Though the Cox approach

could obviously be applied to metering the usage of any components in a large software system

such as iPCSS, the converter components of Pfeifer96 in particular would stand out as especially

likely candidates for this treatment, because Pfeifer96 express/y teaches they may be

“proprietary” external components obtained “from different manufacturers,” rather than

components developed purely internally. See Ex. A02 (Pfeifer96) at 108, 113-14.

representation adapter
Sbject oriented packaging

tee
on ,application

of’ Programmer interface

reclinnt

Id. (Pfeifer96) at 113 (Figure 7: “Generic converter model,” showing a “proprietary conversion

library”).

These converters are, moreover, the quintessence of the “small-granularity reusable

software components” discussed throughout Cox. E.g., Ex. P04 at 15, 35, 71, 90, 145, 153.

Indeed, Pfeifer96 teaches an entire infrastructure for mixing and matching these components

interchangeably into “converter chain[s]” for various purposes—so they are continually being

reused on even a message-by-message basis. Ex. AO2 at 116, 122-24.

Motivation to apply the “Superdistribution” technique to the iPCSS converters is supplied

throughout Cox, including fostering “a commercially robust market in prefabricated software

components.” See Ex. P04 at ix, 143, 163-64. Such a market would make it easier for the iPCSS

provider to quickly obtain high-quality converters to bridge between continuously emerging

89

JNPR-IMPL_30024_

Page 89 of 272 Implicit Exhibit 2001
Juniper v. Implicit

communications formats. See id. Or to put this more clearly from the supplier’s perspective,

unless the “Superdistribution” technique of “invocation-based metering” was supported by

iPCSS, would-be vendors of such proprietary conversion libraries would experience precisely the

economic conundrum that confronted Vendor E above, and thus few such libraries would be

offered for sale toiPCSS. See id. at 153-55.

Having determined to apply the “Superdistribution” technique to at least to the iPCSS

converter system, one of ordinary skill would recognize that as a general matter, a separate

invocation count must be maintained for each converter component. This is, simply, the Cox

technique: any distinct product being billed with the technique (such as a particular converter

component) requires its own invocation count. See, e.g., Ex. P04 (Cox) at 174-76. For

example, each converter product might be from a different vendor who needs to be separately

paid, and even if several converters were supplied by the same vendor, they may be priced

differently (e.g., depending on their complexity). See, e.g., Ex. A02 (Pfeifer96) at 109 (‘The

range of conversions varies tremendously in effort, cost, and required resources. Some kinds are

easy to implement with two lines of C code... while others are highly complex, requiring... .

approaches of artificial intelligence (e.g, speech recognition)”). Though conceivably the iPCSS

could choose not to apply the technique at al/ to a few low-value converters (e.g., if they are

available for free), itis obvious that any or all of the converters in any particular chain of

converters could employ the Cox technique.

Claim 1 recites in part: “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

90

JNPR-IMPL_30024_

Page 90 of 272 Implicit Exhibit 2001
Juniper v. Implicit

retrieved state information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the message.”

This element would clearly be satisfied by maintaining a cumulative invocation count for

each converter. A component’s invocation count is plainly “state information relating to the

processing of the component”: indeed, it incremented every time the component processes

another packet. Moreover, maintaining its invocation count would be an essential part of the

processing performed by the component, since without it, the entire economic model fails,

iPCSS would have no legal right to use the component, and it would have to be removed.

Indeed, the entire system of Cox is premised on the ability of these components to update their

invocation counts as an integral part of their processing. See, e.g., Ex. P04 at 174-76. And

finally, of course, maintaining a cumulative invocation count would clearly entail: (1) retrieving

the previous count each time the component is invoked (e.g., to process another packet), (2)

incrementing the previous count, and (3) storing the updated result.

As discussed above, it was obvious that any of all of the converters in a chain would

employ the Cox technique. Thus, although claim 1 recites “for each of a p/urality of packets of

the message in sequence, for each of a plurality of components in the. . . sequence,” Pfeifer96 in

view of Cox renders obvious that all of the above operations would be performed for each packet

and for each component.

(b) Claim 15

i, “state information”

Claim 15 recites in part: “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

91

JNPR-IMPL_30024_

Page 91 of 272 Implicit Exhibit 2001
Juniper v. Implicit

component when the component processes the next packet of the message.” Under Implicit’s

apparent claim constructions, Pfeifer96 in view of Cox renders obvious this element.

As explained above under Claim 1, Pfeifer96 in view of Cox renders obvious that each

component would generate state information (in form of a cumulative invocation count) which

was available to the component when the component process the next packet of the message (so

that it could increment the cumulative invocation count yet again).

(c) Claim 35

Claim 35 recites in part: “for each packet of the message, invoking the identified non-

predefined sequence of components in sequence to perform the processing of each component

for the packet wherein each component saves message-specific state information so that that

component can use the save message-specific state information when that component performs

its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Pfeifer96 in view of Cox renders obvious this element.

As explained above under Claim 1, Pfeifer96 in view of Cox renders obvious that each

component would generate state information (in form of a cumulative invocation count) which

was available to the component when the component process the next packet of the message (so

that it could increment the cumulative invocation count yet again). This cumulative count is

message-specific in sense that, e.g., it would clearly reflect the number of packets in the

particular message.

7. Pfeifer96 in View of Meer96 Renders Obvious Claims 1, 15, and 35

Under § 103

The dissertation “Dynamic Configuration Management of the Equipment in Distributed

Communication Environments” by Sven van der Meer (Exhibit 8, “Meer96”) was published on

October 6, 1996.

92

JNPR-IMPL_30024_

Page 92 of 272 Implicit Exhibit 2001
Juniper v. Implicit

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Meer96, under 35 U.S.C. § 103.

It was obvious to consider Pfeifer96 in view of Meer96 because both documents describe

the “Intelligent Personal Communication Support System (iPCSS),” and Meer96 cites to

Pfeifer96 for certain concepts. See Ex. 8 at 13, 15, 123 (citing Pfeifer96: “Generic Conversion of

Communication Media for supporting Personal Mobility. To appear in the proceedings of the

Third COST 237 Workshop . Nov 25-27, 1996”).

(a) Claim 1

Because Pfeifer96 and Meer96 are so similar in approach and detail, Meer96 reinforces

and confirms the analysis presented in Section V.A.2 (Pfeifer96 103) in many ways. See, e.g.,

Ex. 8 (Meer96) at 10 (Dynamic Terminal Selection”), 14 (‘Theory of Conversion”), 16

(“Generic Converter Model’). 69 (“Resource Configurator’).

One particularly pertinent manner in which Meer96 presents significant additional

information is regarding the “state information” element of claim | (“for each of a plurality of

packets of the message in sequence, for each of a plurality of components in the identified non-

predefined sequence, retrieving state information relating to performing the processing of the

component with the previous packet of the message; performing the processing of the identified

component with the packet and the retrieved state information; and storing state information

relating to the processing of the component with the packet for use when processing the next

packet of the message”).

Both Pfeifer96 and Meer96 teach that as a matter of internal architecture, each converter

is managed by its own “Mediator”:

93

JNPR-IMPL_30024_

Page 93 of 272 Implicit Exhibit 2001
Juniper v. Implicit

inccening: dpnanically ganensigd converter chain (exceing caus nosis} aigaing
SES: waa SITS

chain of

Mediator/
Converters

Resource

Configurator

Ex. (Pfeifer96) at 125 (Figure 12: “Converter chain, configured for a specific task,”

showing “Resource Configurator” having orchestrated an arrangement wherein each “Converter”

has its own “Mediator SAP”). See also, e.g., id. at 125 (‘Each converter is subordinated to its

specific MSAP,” which is “designed for the purpose of dynamic binding of converters”).

Meer96 echoes this general organization:

OPN POPE

beancary
Resource

Configurator

dynamically generated commenter chain

incering nuditde hosts and devices)

chain of
Meciator/

Mediator neediest

Converters

Terraeral

3

Mediator
|Converter

Converter

Ex. 8 (Meer96) at 73 (Figure 4-17: “Computational Modeling — Converter Chain,” showing

“ReCo” [Resource Configurator] having created a “dynamically generated converter chain”

94

JNPR-IMPL_30024_

Page 94 of 272 Implicit Exhibit 2001
Juniper v. Implicit

wherein each “Converter” has its own “Mediator’). See also, e.g., id. at 73-74 (each “Converter”

in the diagram “represents the real [conversion] resource, either implemented in software or

designed as hardware,” while each “Mediator” is “controlling software” which can

“parameterize” its Converter and “configure [its] stream interfaces”) (emphasis added).

As suggested by the phrase “covering multiple hosts and devices” in Figure 4-17, Meer96

teaches that while not required, it is possible for particular “converter units developed as

software” to reside on remote hosts. /d. at 73, 53-54. This flexibility of component positioning

is possible because there exist “well defined and practical tested interworking of different

network technologies.” See id. at 54. Specifically, Meer96 teaches that remotely positioned

converters could be communicated with in at least three manners: (1) “via shared file-systems”

as in “a UNIX operating system,” because “Network wide available files can be used to transmit

data from one application to another, without any consideration about the host the software is

running on”; (2) via “System V Inter-Process Communication (IPC),” which must “be taken into

account as [a possible] transmission service”; and (3) via “seamless FTP and HTTP connections”

which will be supported by “Future operating systems.” /d. at 53-55

Thus, using one of those three methods, the mediator for a remotely positioned converter

can ensure that as data arrives via the converter chain for processing, the data can be routed to

the remote converter and the remote converter can return its results. See id. at 53-54, 65-68.

One of ordinary skill would recognize that applying any of these three methods would

require use of a network transport protocol, since the converter being communicated with is

located across a network on a remote host. One of ordinary skill would find use of a network

transport protocol from the TCP/IP suite to be the most obvious choice, both because it was the

most popular protocol suite in the world at the time, and because it is integral to the “UNIX

95

JNPR-IMPL_30024_

Page 95 of 272 Implicit Exhibit 2001
Juniper v. Implicit

operating system” cited by Meer96_ See id. at 53. There are two network transport protocols

within TCP/IP—i.e., TCP and UDP. Either would be an obvious choice, but was especially

obvious because it provides for reliable delivery, and because it is the defau/t network transport

protocol for “FTP” and “HTTP,” and is also commonly used for implementing “shared file-

systems” in “UNIX” such as NFS (Network File System). See id.

Having made the obvious choice of TCP to communicate with a remote converter module

using any of the three methods mentioned above, one of ordinary skill would recognize that an

ongoing TCP connection from the mediator to the converter should be maintained, for

performance reasons. Since a remote converter must be contacted to process every packet in an

incoming stream, the additional overhead of opening and closing a new TCP connection to

deliver every incoming packet would obviously be unattractive, and easily avoided by simply

maintaining an ongoing TCP connection between the mediator and its remote converter.

And finally, one of ordinary skill would recognize that maintaining an ongoing TCP

connection to a remote converter module would certainly require maintaining “state information

relating to performing the processing of the component,” where “the component” can readily be

seen as comprising the tightly integrated combination of a converter and its mediator. See, e.g.,

id. at 73-74.

For example, TCP includes an outgoing sequence number with each packet," so

minimally, transmitting a packet from mediator to remote converter module would require, e.g.,

retrieving the current sequence number for that ongoing connection, adding one to it,

transmitting the packet, and then storing the new sequence number so it can be used for the next

See, e.g, Ex. G25 (RFC 794: “Transmission Control Protocol”) (1981) (‘RFC 793”) at

24 (section entitled “Sequence Numbers”: “A fundamental notion in the design is that every octet

of data sent over a TCP connection has a sequence number.”). This reference is cited in this

context solely to help explain the cited art. See MPEP § 2205.

96

JNPR-IMPL_30024_

Page 96 of 272 Implicit Exhibit 2001
Juniper v. Implicit

packet. This sequence number is, e.g., “state information relating to performing the process of

the component” because an absolutely essential part of the processing performed by this

component is delivering the data to the remote converter. For the same reason, this also reads on

“performing the processing of the identified component with the packet and the retrieved state

information,” since part of the essential processing of that component is transferring data from

“the [incoming] “packet” to the remote converter, and this requires placing that data in a packet

which is assigned a sequence number based on retrieved sequence number state information.

Thus, considering the most obvious implementation of any of the three methods disclosed

by Meer96 for communicating with remote converters, these “state information” elements would

be satisfied.

Claim 1 recites these “state information” elements in context of “for each of a plurality of

packets of the message in sequence.” Because all of the packets in an incoming communication

(“message”) would be processed by each component in the converter chain, a// of the packets

would be routed to any remote converter(s) in the chain.

Claim | also recites these “state information” elements in context of “for each of a

plurality of components in the identified non-predefined sequence.” Meer96 places no

restriction on the number of converters which could be positioned remotely, so it is obvious that

any or all of the converters in a chain might be remotely positioned. See id. at 53-54, 65-68, 73-

74,

(b) Claim 15

Again, because Pfeifer96 and Meer96 are so similar, Meer96 reinforces and confirms the

analysis presented in Section V.A.2 (Pfeifer96 103) in many ways. See, e.g., Meer96 at 10

(“Dynamic Terminal Selection”), 14 (‘Theory of Conversion”), 16 (“Generic Converter

Model”). 69 (“Resource Configurator’).

97

JNPR-IMPL_30024_

Page 97 of 272 Implicit Exhibit 2001
Juniper v. Implicit

One particularly pertinent manner in which Meer96 presents significant additional

information is regarding the “state information” element of claim 15 (“for each packet of each

message, performing the processing of the identified non-predefined sequence of components of

the message wherein state information generated by performing the processing of a component

for a packet is available to the component when the component processes the next packet of the

message’).

As discussed above under Claim 1, it was obvious that any or all of the components in a

converter chain would include a remotely positioned converter, and it was obvious for any such

component to maintain state information (e.g., in form of an outgoing TCP sequence number)

which would be updated and re-stored during the component’s processing of each packet of an

incoming message. See Claim 1 above. Transferring data to the remotely positioned converter

would be an essential part of the processing performed by such a component, and as explained

above, this would entail updating a TCP sequence number (which is “state information generated

by performing the processing of [the] component”), and would entail saving that current

sequence number so that it may be “available to the component when the component processes

the next packet of the message.”

(c) Claim 35

Again, because Pfeifer96 and Meer96 are so similar, Meer96 reinforces and confirms the

analysis presented in Section V.A.2 (Pfeifer96 103) in many ways. See, e.g., Meer96 at 10

(“Dynamic Terminal Selection”), 14 (“Theory of Conversion”), 16 (“Generic Converter

Model”). 69 (“Resource Configurator’).

One particularly pertinent manner in which Meer96 presents significant additional

information is regarding the “state information” element of claim 35 (“for each packet of the

message, invoking the identified non-predefined sequence of components in sequence to perform

98

JNPR-IMPL_30024_

Page 98 of 272 Implicit Exhibit 2001
Juniper v. Implicit

the processing of each component for the packet wherein each component saves message-

specific state information so that that component can use the save message-specific state

information when that component performs its processing on the next packet of the message’).

Pfeifer96 in view of Meer96 renders this element obvious. See Claim 15 (showing “for

each packet of each message, performing the processing of the identified non-predefined

sequence of components of the message wherein state information generated by performing the

processing of a component for a packet is available to the component when the component

processes the next packet of the message”) above.

8. Pfeifer96 in View of Meer96 and RFC 793 Renders Obvious Claims 1,

15, and 35 Under § 103

The specification RFC 793: “Transmission Control Protocol” (Ex. 9, “RFC 793”) by the

Information Sciences Institute was published in September 1981. It was not considered during

prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96 in view of Meer96, then the inclusion of those

aspects certainly would be obvious over Pfeifer96 in view of Meer96 and RFC 793, under

35 U.S.C. § 103.

RFC 793 was cited above under MPEP § 2205 as confirming that certain background

knowledge Pfeifer96 in view of Meer96 (immediately above). RFC 793 merely confirms that

certain information regarding the stateful operation of TCP would have been part of the standard

background knowledge of those of ordinary skill in the art.

It was also obvious to apply RFC 793 directly to Pfeifer96 and Meer96.

As RFC 793 is the original TCP specification, it would have been an obvious place to

look for information regarding the specific operation of that protocol.

99

JNPR-IMPL_30024_

Page 99 of 272 Implicit Exhibit 2001
Juniper v. Implicit

9, Pfeifer96 in View of Franz98 Renders Obvious Claims 1, 15, and 35

Under § 103

The dissertation “Job and Stream Control in Heterogeneous Hardware and Software

Architectures” by Stefan Franz (Ex. 7, “Franz98”) was published on April 22, 1998, and it was

not considered during prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Pfeifer96, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Franz98, under 35 U.S.C. § 103.

It was obvious to apply Franz98 to Pfeifer96 because the documents both describe the

“Intelligent Personal Communication Support System (iPCSS),” with Franz98 presenting further

detail regarding the control of jobs and streams in the iPCSS architecture. See, e.g., Ex. 7 at v,

91-94.

(a) Claim 1

Because Pfeifer96 and Franz98 are so similar in approach and detail, Franz98 reinforces

and confirms the analysis presented in Section V.A.2 (Pfeifer96 103) in many ways. See, e.g.,

Ex. 7 (Franz98) at 7-16 (including “Resource Configurator” and “Converter Framework”), 91-94

(including “Generic Converter Interface”).

One particularly pertinent manner in which Franz98 presents significant additional

information is regarding the “state information” element of claim 1 (“for each of a plurality of

packets of the message in sequence, for each of a plurality of components in the identified non-

predefined sequence, retrieving state information relating to performing the processing of the

component with the previous packet of the message; performing the processing of the identified

component with the packet and the retrieved state information; and storing state information

100

JNPR-IMPL_30024_

Page 100 of 272 Implicit Exhibit 2001
Juniper v. Implicit

relating to the processing of the component with the packet for use when processing the next

packet of the message”).

Both Pfeifer96 and Franz98 teach that as a matter of internal architecture, each converter

is managed by its own “Mediator”:

chain of

Mediator/
Converters

Resource

Configurator

Ex. AQ2 (Pfeifer96) at 125 (Figure 12: “Converter chain, configured for a specific task,”

showing “Resource Configurator” having orchestrated an arrangement wherein each “Converter”

has its own “Mediator SAP”). See also, e.g., id. at 124 (‘Each converter is subordinated to its

specific MSAP,” which is “designed for the purpose of dynamic binding of converters”).

Franz98 echoes this general organization:

10]

JNPR-IMPL_30024_

Page 101 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Resource

Configurator

chain of

Mediator/
Converters

hak if Terminal

Ex. 7 (Franz98) at 92 (Figure 6-1: “Location of Job and Stream Control within the context of the

iPCSS”). See also, e.g., id. at 101-06.

Franz98 presents an elaborate and systematic analysis of the various software building

blocks that would be needed for “Job Control and Stream Control” in the iPCSS. See, e.g., id. at

19 (“Types of Operating Systems” section), 50 (“Programs and Jobs” section”), 51 (“Processes”

section), 55 “Threads” section).

At the end of this lengthy analysis, Franz98 presents its conclusions about how the iPCSS

should be structured, based on these building blocks. See id. at 91-112 (chapter entitled

Realisation’).

In this “Realisation” chapter, Franz98 recapitulates some iPCSS architectural concepts

which would be familiar to readers of Pfeifer96, including that “one of the objectives of the

102

JNPR-IMPL_30024_

Page 102 of 272 Implicit Exhibit 2001
Juniper v. Implicit

iPCSS is media conversion... . To provide media conversion more than one converter may be

employed. The converters are enchained and the result is named a converter chain.” /d.

(Franz98) at 93.

Franz98 explains that because of the system’s focus, “the term job . . . and the term

converter introduced by the iPCSS can be used synonymously” in its architectural analysis. /d.

Franz98 explains that “the control of a single converter” should be “encapsulated by an

object named Mediator.” Id. at 93 (emphasis in original). When a Mediator object is created for

use in a chain, “a new process” is created for that Mediator “containing three threads.” /d. at

101. Thus, each Mediator has its own process. As for the “three threads,” “one of these threads

is associated to the Job Control [converter] where the other two implement the Stream Control”

for the converter’s “input stream and... output stream.” /d. at 101.

103

JNPR-IMPL_30024_

Page 103 of 272 Implicit Exhibit 2001
Juniper v. Implicit

GOT

Information! Manager

Chains

MEDIATOR

MEDTAS

input Stream
Thread

interigihe

Mediator
Process

Output Stream
Thread

Converter CJob}
Thread

Id. at 111 (Figure 6-9: “The final structure of the implementation”) (showing structure for a

single mediator and its associated converter).

Franz98 explains how threads work internally. See id. at 50-66. In a “multitasking”

system, it is “possible to load more than one program into memory, and these programs can “be

executed concurrently.” /d. at 50. Multitasking can be implemented using processes and

threads, and thread are “sometimes called lightweight processes.” /d. at 51, 55 (emphasis

removed). Threads have “several states of execution” including “Running” (e.g., while

JNPR-IMPL_30024_

Page 104 of 272 Implicit Exhibit 2001
Juniper v. Implicit

processing incoming data) and “Blocked” (e.g., while waiting for new data to arrive). See id. at

57, 50-55, 91-101 .
Essential information associated with a thread includes “the contents of the registers of

the CPU” and “the current activity represented by the value of the program counter of the CPU.”

Id. at 55. Those of ordinary skill understand that threads start and stop in the ordinary course of

multitasking, and when a thread stops “The only thing to do is to save the current activity and

the used set of registers of the CPU” (so they can restored when execution of that thread

resumes) /d. at 56 (emphasis added)

Thus, it would be clear to one of ordinary skill that when a converter thread is paused

(e.g., because it has finished processing a packet or for other reasons), “state information relating

to the processing of the component” (including at least the current values of “the program

counter of the CPU” and “the used set of registers of the CPU”) would be stored, in order that it

can be retrieved and restored and used by the converter for performing its processing when the

converter thread regains control (e.g., upon receiving the next packet). See id. at 55-57, 91-101.

This state information (including at least “the program counter of the CPU” and the “used

set of registers of the CPU”) is clearly “information relating to performing the processing of the

component’: indeed, the program counter and registers would change in response to virtually

instruction performed in the course of the converter’s processing of a packet, so their state at the

moment they were saved would clearly relate to that previous processing.

(b) Claim 15

Again, because Pfeifer96 and Franz98 are so similar, Franz98 reinforces and confirms the

analysis presented in Section V.A.2 (Pfeifer96 103) in many ways. See, e.g., Ex. 7 (Franz98) at

7-16 (including “Resource Configurator” and “Converter Framework”), 91-94 (including

“Generic Converter Interface”).

105

JNPR-IMPL_30024_

Page 105 of 272 Implicit Exhibit 2001
Juniper v. Implicit

One particularly pertinent manner in which Franz98 presents significant additional

information is regarding the “state information” element of claim 15 (“for each packet of each

message, performing the processing of the identified non-predefined sequence of components of

the message wherein state information generated by performing the processing of a component

for a packet is available to the component when the component processes the next packet of the

message’).

As clear from the discussion above under Claim 1, it was obvious that the current values

of the “program counter of the CPU” and the “the used set of registers of the CPU” are state

information generated by performing the processing of a converter, and that because a converter

has a thread, these values would be saved when the converter’s thread stops (e.g., upon finishing

its processing of a packet), and would be restored for use of the converter when the converter’s

thread resumes (e.g., upon receiving another packet to process).

(c) Claim 35

Again, because Pfeifer96 and Franz98 are so similar, Franz98 reinforces and confirms the

analysis presented in Section V.A.2 (Pfeifer96 in many ways. See, e.g., Ex. 7 (Franz98) at

7-16 (including “Resource Configurator” and “Converter Framework”), 91-94 (including

“Generic Converter Interface”).

One particularly pertinent manner in which Franz98 presents significant additional

information is regarding the “state information” element of claim 35 (“for each packet of the

message, invoking the identified non-predefined sequence of components in sequence to perform

the processing of each component for the packet wherein each component saves message-

specific state information so that that component can use the save message-specific state

information when that component performs its processing on the next packet of the message’).

106

JNPR-IMPL_30024_

Page 106 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Pfeifer96 in view of Franz98 renders this elements obvious. See Claim 15 (showing

similar element) above.

10. Pfeifer96 in View of ISDN98, Nelson, Cox, Meer96, RFC 793, and

Franz98 Renders Obvious Claims 1, 15, and 35 Under § 103

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Pfeifer96 alone or in combination with the

various grounds of rejection presented above, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of ISDN98, Nelson, Cox, Meer96, RFC 793, and Franz98

under 35 U.S.C. § 103, under Implicit’s apparent claim constructions.

All of these references have already been combined with Pfeifer96 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Pfeifer96. This section briefly summarizes that material and shows the collective combination

of these references would be obvious as well.

Pfeifer96 teaches an “iPCSS” system wherein a converter chain is “dynamically

generated” only after the first packet of a message is received. It also discloses and renders

obvious that the converter components would maintain “state information” in the manners

recited by claims 1, 15, and 35. It does so in several manners, including through use of ISDN

connection converter components (which would maintain state information in order to execute

the stateful ISDN protocol), and through use of components which perform compression or

decompression. ISDN98 confirms ISDN connections are stateful. Nelson confirms that obvious

implementations of compression/decompression algorithms for use with Pfeifer96 would be

stateful.

107

JNPR-IMPL_30024_

Page 107 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Cox teaches an “invocation-based metering” approach to software revenue collection

which would be obvious to apply to Pfeifer96, and maintaining a cumulative invocation count

would entail maintaining “state information.”

Meer97 explains that in the iPCSS system, a portion of every converter component could

be located across a stateful network connection (e.g., a TCP connection), which would require

maintaining “state information” for each. RFC 793 confirms such a TCP connection would be

stateful.

Franz98 explains that in the iPCSS system, every converter component would maintain

state information across packets because of the operating system “threading” structure used for

the converter component jobs.

In short, there is no aspect of claims 1, 15, and 35 which was not obvious over the prior

art and combinations cited herein.

11. Pfeifer96 in View of Pfeifer97 and Alam Renders Obvious Claims 1,

15, and 35 Under § 103

U.S. Pat. No. 6,104,500 entitled “Networked Fax Routing Via Email” by Hassan Alam ef

al. (Exhibit 13, “Alam”) was filed on April 29, 1998, and it was not considered during

prosecution of the ‘163 patent. It was obvious to apply Alam to Pfeifer96 and Pfeifer97 because

both of these iPCSS documents describe scenarios in which an incoming fax is routed via a chain

of converters to some other destination for consumption by the called party. Ex. A02

(Pfeifer96) at 111, Ex. 12 (Pfeifer97) at 10.

As explained above, such incoming fax scenarios may clearly read on claims 1, 15, and

35. E.g., Section V.A.1 (Pfeifer96 102) at Claim 1.

Alam confirms such routing would indeed be enabled, and supplies additional detail on

how the called party of such an incoming fax could be obtained. Specifically, Alam teaches that

108

JNPR-IMPL_30024_

Page 108 of 272 Implicit Exhibit 2001
Juniper v. Implicit

the fax image may be scanned, e.g., “to locate name fields . . . based upon their nearness to and

relationship with keywords. Keywords associated with the addressee’s name such as ‘To,’

‘Recipient,’ ‘Attn’ or ‘Dear’ point to the addressee name.” Ex. 13 at 9:15-21. Once the

destination party is determined, the iPCSS is clearly capable of determining that user’s location

and routing the communication to a terminal in the user’s vicinity. /.g., Ex. at 119, 123-24.

12. Pfeifer96 in View of Pfeifer97 and Yun Renders Obvious Claims 1, 15,

and 35 Under § 103

USS. Pat. No. 5,298,576 entitled “Apparatus for Discriminating an Audio Signal as an

Ordinary Vocal Sound or Musical Sound” by San-Lak Yun ef al. (Exhibit 14, “Yun”) was filed

on December 3, 1991 and issued on March 29, 1994. It was not considered during prosecution

of the ‘163 patent. It was obvious to apply Alam to Pfeifer96 and Pfeifer97 because together the

two iPCSS documents provide fuller detail on the iPCSS system, and because Pfeifer97 teaches a

specific conversion between “audio” and “video” wherein the audio is displayed as “music notes

on video.” Ex. 12 at 6.

By teaching an “apparatus for discriminating a received audio signal as vocal sound or

musical sound,” Yun suggests how that specific conversion would be implemented and applied

in practice. See Ex. 14 at Abstract. For example, example, incoming audio communications

could be routed in one manner if they contain music (e.g., to a screen for viewing “music notes

on video”), and in another if they contain voice (e.g., to a “speech recognition” component).

ig., Ex. 12 at 6 (display of music notes”; “speech recognition”). Such a conversion involving

audio to video conversion would read on claims 1, 15, and 35. See, e.g., Section V.A.1

(Pfeifer96 102) at Claim 1.

13. Pfeifer96 in View of Franz98, Meer96, Arbanowksi96, and Pfeifer97

Renders Obvious Claims 1, 15, and 35 Under § 103

109

JNPR-IMPL_30024_

Page 109 of 272 Implicit Exhibit 2001
Juniper v. Implicit

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Pfeifer96 alone or in combination with the

various grounds of rejection presented above, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Meer96, Franz98, Arbanowski96, and Pfeifer97, under

35 U.S.C. § 103, under Implicit’s apparent claim constructions.

All of these references have already been combined with Decasper98 in corresponding

sections above. Though each of these documents focuses on a different aspect of the iPCSS

platform, collectively they provide a comprehensive picture of the system as a whole, its design,

and possible uses.

14. Pfeifer96 in View of Arbanowski96, Pfeifer97, ISDN98, Nelson, Cox,

Meer96, RFC 793, Franz98, Alam, and Yun Renders Obvious Claims

1, 15, and 35 Under § 103

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Pfeifer96 alone or in combination with the

various grounds of rejection presented above, then the inclusion of those aspects certainly would

be obvious over Pfeifer96 in view of Arbanowski96, Pfeifer97, ISDN98, Nelson, Cox, Meer96,

RFC 793, Franz98, Alam, and Yun under 35 U.S.C. § 103, under Implicit’s apparent claim

constructions.

All of these references have already been combined with Pfeifer96 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Pfeifer96. This section briefly summarizes that material and shows the collective combination

of these references would be obvious as well.

Pfeifer96, Arbanowski96, Pfeifer97, Meer96, and Franz98 collectively provide a

comprehensive picture of the iPCSS platform, including its design and possible uses.

110

JNPR-IMPL_30024_

Page 110 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Pfeifer96 teaches an “iPCSS” system wherein a converter chain is “dynamically

generated” only after the first packet of a message is received. It also discloses and renders

obvious that the converter components would maintain “state information” in the manners

recited by claims 1, 15, and 35. It does so in several manners, including through use of ISDN

connection converter components (which would maintain state information in order to execute

the stateful ISDN protocol), and through use of components which perform compression or

decompression. ISDN98 confirms ISDN connections are stateful. Nelson confirms that obvious

implementations of compression/decompression algorithms for use with Pfeifer96 would be

stateful.

Cox teaches an “invocation-based metering” approach to software revenue collection

which would be obvious to apply to Pfeifer96, and maintaining a cumulative invocation count

would entail maintaining “state information.”

Meer97 explains that in the iPCSS system, a portion of every converter component could

be located across a stateful network connection (e.g., a TCP connection), which would require

maintaining “state information” for each. RFC 793 confirms such a TCP connection would be

stateful.

Franz98 explains that in the iPCSS system, every converter component would maintain

state information across packets because of the operating system “threading” structure used for

the converter component jobs.

Alam and Yun provide additional on how specific conversions might be implemented

and applied in practice.

In short, there is no aspect of claims 1, 15, and 35 which was not obvious over the prior

art and combinations cited herein.

il]

JNPR-IMPL_30024_

Page 111 of 272 Implicit Exhibit 2001
Juniper v. Implicit

B. Kerr (Exhibit 15)

U.S. Patent No. 6,243,667 entitled “Network Flow Switching and Flow Data Export” by

Darren R. Kerr et al. (“Kerr”) was filed on May 28, 1996, and it was not considered during

prosecution of the ‘163 patent.

1. Kerr Anticipates Claims 1, 15, and 35 Under § 102(e)

(a) Claim 1

i. “A method... for processinga message”

Claim 1 recites: “A method in a computer system for processing a message having a

sequence of packets, the method comprising... .” Under Implicit’s apparent claim

constructions, Kerr discloses this element.

As an initial matter, Kerr discloses “[a] method in a computer system.” For example,

Kerr expressly states that that embodiments of its invention “may be implemented using a set of

general purpose computers.” Ex. 15 at 2:30-32; see also id. at Figs. 1, 3 (illustrating data

structures in computer network).

Claim | further recites the method is “for processing a message having a sequence of

packets.” Kerr summarizes its invention in part as follows:

The invention provides a method and system for switching in

networks responsive to message flow patterns. A message "flow"

is defined to comprise a set of packets to be transmitted between a

particular source and a particular destination. When routers in a

network identify a new message flow, they determine the proper

processing for packets in that message flow... .

Id. at 1:48-55 (emphasis added).

ii. “a plurality of components .. .’

112

JNPR-IMPL_30024_

Page 112 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 1 further recites: “providing a plurality of components, each component being a

software routine for converting data with an input format into data with an output format.”

Under Implicit’s apparent claim constructions, Kerr discloses this element.

Kerr discloses a “plurality of components” for processing messages. For example, claim

1 of Kerr describes using a “plurality of devices” to apply “policy treatments” to a “plurality of

99 6
messages,” where policy treatments are used to perform “access control,” “security,” “queuing,”

99 66

“accounting,” “traffic profiling,” etc. /d. at 10:27-40. Processing components can include

“treatment with regard to switching,” “access control,” and “encryption.” /d. at 4:20-34.

“TS]pecial processing” can include “authentication” techniques “useful for implementing security

‘firewalls.’” at 35-46. Kerr further discloses that a “rewrite function” may be invoked “to

alter the header for the packet.” /d. at 4:55-62.

These components can be used for “converting data with an input format into data with

an output format,” under Implicit’s apparent claim constructions, for example (as described

above), the “encryption” and “rewrite” components to “alter” data to be processed. /d. at 4:30-

31, 4:55-62.

The processing components of Kerr comprise “software routine” embodiments, as Kerr

states that the processing instrumentality “may include specific hardware constructed or

programmed performing the process steps described herein” or “a general purpose processor

operating under program control.” Id. at 2:51-55; see also id. at Figs. 3-4 (illustrating software

data structures).

iil. “dynamically identifying a non-predefined sequence”

Claim | further recites: “for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message such that the

output format of the components of the non-predefined sequence match the input format of the

113

JNPR-IMPL_30024_

Page 113 of 272 Implicit Exhibit 2001
Juniper v. Implicit

next component in the non-predefined sequence, wherein dynamically identifying includes

selecting individual components to create the non-predefined sequence of components after the

first packet is received.” Under Implicit’s apparent claim constructions, Kerr discloses this

element.

Implicit has characterized the “dynamically identifying” element as encompassing the

ability of a network “administrator” to modify or create “Policy Files to change how traffic is

managed at runtime.” Ex. 37-D [Implicit Technical Tutorial] at 35; see generally id. at 26-42.

For example, Implicit has applied this claim construction to the example of a “system

administrator” who can “dynamically” implement changing policies to block or permit access to

YouTube for certain times or users:

The beauty — and object — of the Implicit system lay in its flexibility.
Since a stateful path was not identified and instantiated until post-first
packet, the system could be changed, dynamically on the fly. New

components could be added, new rules or policies developed, all as

new needs arose. For example, a system administrator could decide

how to process particular types of traffic (no You Tube between noon

and one) and then change the rules — or policies — the next minute or

the next day (only CEO gets You Tube).

Ex. 37-A [Implicit Opening Claim Construction Brief] at 5.

Kerr discloses “dynamically identifying” under Implicit’s apparent claim construction.

Kerr explains that a “message flow may be identified responsive to... . relative network

congestion or administrative policies.” Ex. 15 at 3:28-34. One specific example Kerr provides

of “enforcing administrative policies” is to “monitor . access using the HTTP protocol to

world wide web pages at particular sites.” /d. at 5:33-40. Policies may be applied and

information collected about access to “web page[s] in response to date and time of access,”

including parameters regarding “HTTP access” during “particular dates or times,” particularly

“accesses which occur outside normal working hours.” /d. at 9:34-60. Another example in Kerr

JNPR-IMPL_30024_

Page 114 of 272 Implicit Exhibit 2001
Juniper v. Implicit

is to “monitor usage information regarding relative use of network resources” in real time for

packet prioritization purposes. /d. at 5:41-49.

Kerr also makes clear that administrators can make other rule-based or policy changes

during runtime, which falls within the scope of “dynamically identifying a non-predefined

sequence of components” under Implicit’s apparent claim construction. See Section IV.C. For

example, Kerr evaluates “changed conditions” that may occur during the lifetime of a flow

after the first packet of that flow), such as “changes in access control lists or other changes

which might affect the proper treatment of packets 150 in the message flow 160.” Ex. 15 at

6:13-18. Ifa runtime change in an access control list so mandates, a flow will be “expired” in

the flow cache. /d.

The components disclosed in Kerr are used in a manner “such that the output format of

the components... match the input format of the next component,” under Implicit’s apparent

claim construction. See Section ITV.C. The Kerr system is properly capable of handling traffic

in “ethernet,” “IP,” “TCP,” and “UDP” formats (Ex. 15 at 2:48, 3:1, Fig. 4 (“IP address cache’)),

in addition to application-layer protocols such as “HTTP protocol or the FTP protocol” (id. at

9:54-55). As explained above, packets may be processed by multiple components in the course

of being successfully “transmitted between particular pairs of transport service access points.”

Id. at 2:57-58. Because packets compatibly move from component to component, this element is

satisfied under Implicit’s apparent claim construction.

The “dynamically identifying” as disclosed in Kerr (under Implicit’s apparent claim

construction) also “includes selecting individual components to create the non-predefined

sequence of components after the first packet is received.” As described above, the components

disclosed in Kerr are “select[ed]” as “individual components” (encryption, rewrite, etc.)

115

JNPR-IMPL_30024_

Page 115 of 272 Implicit Exhibit 2001
Juniper v. Implicit

associated with a particular flow entry. Figure 2A of Kerr, for example, shows the step “BUILD

NEW ENTRY,” which is executed after the step of “RECEIVE PACKET” and occurs only if the

packet is identified as “NEW” (Z.e., it is the first packet in a new flow). /d. at Fig. 2A. Implicit

has indicated that instantiating in memory constitutes “creating” for purposes of the patent. See

Section IV.C. Kerr discloses a “flow cache” that “comprises a memory,” in which message

flows are “cached” when the system “identiflies] a new message flow.” Ex. 15 at 1:52-54, 6:32.

iv. “storing an indication of... the identified components”

Claim 1 further recites “storing an indication of each of the identified components so that

the non-predefined sequence does not need to be re-identified for subsequent packets of the

message.” Under Implicit’s apparent claim constructions, Kerr discloses this element.

As explained above, after receiving the first packet of a new flow, Kerr builds a new flow

entry that is cached in memory, which constitutes “storing” under Implicit’s apparent claim

construction. Kerr also explains that building and caching a flow entry upon receiving the first

new packet in a flow is specifically performed so that information “does not need to be re-

identified for subsequent packets of the message,” as that term is apparently construed by

Implicit. Kerr explains that, for the sake of efficiency:

information about message flow patterns is used to identify packets
for which processing has already been determined, and therefore

to process those packets without having to re-determine the same

processing

Thus, in a preferred embodiment, the routing device 140 does not

separately determine, for each packet 150 in the message flow

160, the information stored in the entry in the flow cache. Rather,
when routing a packet 150 in the message flow 160, the routing
device 140 reads the information from the entry in the flow cache

and treats the packet 150 according to the information in the entry
in the flow cache.

Ex. 15 at 1:33-36, 4:64-5:4 (emphasis added).

116

JNPR-IMPL_30024_

Page 116 of 272 Implicit Exhibit 2001
Juniper v. Implicit

In other words, when the first packet of a flow arrives, Kerr goes through the somewhat

expensive and elaborate process of determining how ai// the packets of that flow should be

treated: e.g., whether they should be encrypted, whether they should be modified or partially re-

written, and where they should be routed next. /d. at 1:33-35, 4:13-60. It then records all this

information about the proper processing for a flow by “build[ing] a new entry in the flow cache”

for the flow, so the proper processing does not have to be wastefully and redundantly determined

again for subsequent packets of the flow. /d. at 4:12-13.

v. “state information”

Claim 1 further recites “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

retrieved state information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the message.” Under

Implicit’s apparent claim constructions, Kerr discloses this “state information” element.

Implicit has taken a broad view of the “state information” limitations, arguing that they

cover the retrieval, use, and storage of the identified sequence of components (e.g., a flow

record) after the first packet is received. See Section IV.C. As demonstrated above (for the

“storing an indication” element), Kerr retrieves, uses, and stores flow records in this manner to

facilitate processing of packets in the same message after the first packet is received and a flow

entry built.

Kerr also discloses the retrieval, use, and storage of state information on a component-by-

component basis. For example, in one embodiment of Kerr, there are components for access

control, encryption, “special treatment,” accounting, rewrite, among others. Ex. 15 at 5:5-25.

117

JNPR-IMPL_30024_

Page 117 of 272 Implicit Exhibit 2001
Juniper v. Implicit

The processing by these components is “all responsive to information in the entry in the flow

cache.” /d. at 5:9-10. As a specific example, an accounting component can maintain state

information, such as “time stamp” data, “a cumulative count for the number of packets,” and “a

cumulative count for the number of bytes.” /d. at 6:58-63. Kerr later uses timing information to

identify expired or otherwise invalid flows (among other reasons). /d. at 5:52 6:19. As another

example, Kerr can retrieve the latest “usage information regarding relative use of network

resources” in order to appropriately prioritize traffic using the relevant component. /d. at 5:41-

49. These would also satisfy the “state information” limitations under Implicit’s apparent claim

construction.

(b) Claim 15

i. “demultiplexingpackets of messages”

Claim 15 recites: “A method in a computer system demultiplexing packets of messages.”

Under Implicit’s apparent claim constructions, Kerr discloses this element. See Claim 1(1)

(showing “A method in a computer system for processing a message having a sequence of

packets”) above. Under Implicit’s apparent claim constructions, “demultiplexing” a packet is

satisfied by routing a packet to the correct sequence of components for processing it—and Kerr

performs this function. See Section IV.C. and, e.g., Claim (showing “dynamically

identifying a non-predefined sequence of components for processing the packets of the

message”) above.

ii. “dynamically identifying a non-predefined sequence”

Claim 15 further recites “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Kerr discloses this element. See Claim

118

JNPR-IMPL_30024_

Page 118 of 272 Implicit Exhibit 2001
Juniper v. Implicit

(showing “for the first packet of the message, dynamically identifying a non-predefined

sequence of components for processing the packets of the message”) and Claim I(iv) (showing

“storing an indication of each of the identified components so that the non-predefined sequence

does not need to be re-identified for subsequent packets of the message”) above.

ili. “different... sequences of components can be identified”

Claim 15 further recites “different non-predefined sequences of components can be

identified for different messages.” Under Implicit’s apparent claim constructions, Kerr discloses

this element. Rather than applying a single predefined sequence to all flows, Kerr “determines

proper treatment of packets 150 in the message flow” only when it “build a new entry in the flow

cache” for that specific flow. Ex. 15 at 4:12-18. This includes, e.g., “determin[ing] encryption

treatment for packets 150 in the message flow ... and any special treatment for packets 150 in

the message flow.” /d. at 4:31-34..

iv. “each component being a software routine”

Claim 15 further recites “each component being a software routine.” Under Implicit’s

apparent claim constructions, Kerr discloses this element. See Claim 1(i1) (showing “each

component being a software routine”) above.

“selecting individual components”

Claim 15 further recites “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components.” Under Implicit’s apparent

claim constructions, Kerr discloses this element. See Claim 1(i11) (showing “dynamically

identifying includes selecting individual components to create the non-predefined sequence of

components”) above.

vi. “state information”

119

JNPR-IMPL_30024_

Page 119 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 15 finally recites “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Under Implicit’s

apparent claim constructions, Kerr discloses this element. See Claim 1(v) (showing similar

“state information” element) above.

(c) Claim 35

i. “instructions for demultiplexing packets of messages”

Claim 35 recites: “A computer-readable medium containing instructions for

demultiplexing packets of messages.” Under Implicit’s apparent claim constructions, Kerr

6

discloses this element. Kerr teaches its invention may be performed by “a general purpose

processor operating under program control,” and it would be understood by those of ordinary

skill that such a controlling program would be loaded from a “computer-readable medium,” such

as a hard disk in the routing device. Ex. 15 at 2:53-54. See also Claim 15(i) showing

(“demultiplexing packets of messages”) above.

ii. “dynamically identifying a... non-predefined sequence”

Claim 35 recites: “dynamically identifying a message-specific non-predefined sequence

of components for processing the packets of each message upon receiving the first packet of the

message.” Under Implicit’s apparent claim constructions, Kerr discloses this element. See

Claim 1(iii) (showing “for the first packet of the message, dynamically identifying a non-

predefined sequence of components for processing the packets of the message”) above.

ili. “subsequent packets ... can use the... sequence”

Claim 35 further recites that “subsequent packets of the message can use the message-

specific non-predefined sequence identified when the first packet was received.” Under

120

JNPR-IMPL_30024_

Page 120 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Implicit’s apparent claim constructions, Kerr discloses this element. See Claim I(iv) (showing

“storing an indication of each of the identified components so that the non-predefined sequence

does not need to be re-identified for subsequent packets of the message”) above.

iv. “selecting indvidual components”

Claim 35 further recites that “dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of components.” Under

Implicit’s apparent claim constructions, Kerr discloses this element. See Claim 1(iii) (showing

“dynamically identifying includes selecting individual components to create the non-predefined

sequence of components after the first packet is received”) above.

v. “state information”

Claim 35 further recites “for each packet of the message, invoking the identified non-

predefined sequence of components in sequence to perform the processing of each component

for the packet wherein each component saves message-specific state information so that that

component can use the save message-specific state information when that component performs

its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Kerr discloses this element. See Claim 1(v) (showing similar “state information”

element) above.

2. Kerr Renders Obvious Claims 1, 15, and 35 Under § 103

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed or inherent over Kerr, then the inclusion of those aspects certainly would be obvious

over Kerr, under 35 U.S.C. § 103.

(a) Claim 1

i. “A method... for processinga message”

12]

JNPR-IMPL_30024_

Page 121 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 1 recites: “A method in a computer system for processing a message having a

sequence of packets, the method comprising... .” Under Implicit’s apparent claim

constructions, Kerr renders obvious this element.

Because Kerr teaches its invention may be performed by “a general purpose processor

operating under program control,” it was obvious to perform the method in a computer system.

Ex. 15 at 2:53-54.

ii. “a plurality of components...”

Claim 1 further recites: “providing a plurality of components, each component being a

software routine for converting data with an input format into data with an output format.”

Under Implicit’s apparent claim constructions, Kerr renders obvious this element.

Kerr discloses a plurality of distinct operations which may be performed on the packets

of a flow. For example, claim 1 of Kerr describes using a “plurality of devices” to apply “policy

treatments” to a “plurality of messages,” where policy treatments are used to perform “access

99 66 39

control,” “security,” “queuing,” “accounting,” “traffic profiling,” etc. at 10:27-40.

Processing components can include “treatment with regard to switching,” “access control,” and

“encryption.” at 4:20-34. “[S]pecial processing” can include “authentication” techniques

“useful for implementing security ‘firewalls.’” /d. at 35-46. Kerr further discloses that a

“rewrite function” may be invoked “to alter the header for the packet.” at 4:55-62.

Because these are distinct operations, it was obvious to implement them as distinct

software routines in accordance with ordinary programming practice. /d. at 2:53-54 (“general

purpose processor .. . under program control”). Indeed, Kerr expressly mentions its rewrite

operation would be implemented as such. /d. at 4:56-57 (“the flow cache includes a pointer to a

rewrite function”) (emphasis added).

122

JNPR-IMPL_30024_

Page 122 of 272 Implicit Exhibit 2001
Juniper v. Implicit

These components can be used for “converting data with an input format into data with

an output format,” under Implicit’s apparent claim constructions, for example (as described

above), the “encryption” and “rewrite” components to “alter” data to be processed. /d. at 4:30-

31, 4:55-62.

ili. “dynamically identifying a non-predefined sequence”

Claim 1 further recites: “for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message such that the

output format of the components of the non-predefined sequence match the input format of the

next component in the non-predefined sequence, wherein dynamically identifying includes

selecting individual components to create the non-predefined sequence of components after the

first packet is received.” Under Implicit’s apparent claim constructions, Kerr renders obvious

this element.

Implicit has characterized the “dynamically identifying” element as encompassing the

ability of a network “administrator” to modify or create “Policy Files to change how traffic is

managed at runtime.” Ex. 37-D [Implicit Technical Tutorial] at 35; see generally id. at 26-42.

For example, Implicit has applied this claim construction to the example of a “system

administrator” who can “dynamically” implement changing policies to block or permit access to

YouTube for certain times or users:

The beauty — and object — of the Implicit system lay in its flexibility.
Since a stateful path was not identified and instantiated until post-first
packet, the system could be changed, dynamically on the fly. New

components could be added, new rules or policies developed, all as

new needs arose. For example, a system administrator could decide

how to process particular types of traffic (no You Tube between noon

and one) and then change the rules — or policies — the next minute or

the next day (only CEO gets You Tube).

Ex. 37-A [Implicit Opening Claim Construction Brief] at 5.

123

JNPR-IMPL_30024_

Page 123 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Kerr discloses “dynamically identifying” under Implicit’s apparent claim construction.

Kerr explains that a “message flow may be identified responsive to... . relative network

congestion or administrative policies.” Ex. 15 at 3:28-34. One specific example Kerr provides

of “enforcing administrative policies” is to “monitor... access using the HTTP protocol to

world wide web pages at particular sites.” /d. at 5:33-40. Policies may be applied and

information collected about access to “web page[s] in response to date and time of access,”

including parameters regarding “HTTP access” during “particular dates or times,” particularly

“accesses which occur outside normal working hours.” /d. at 9:34-60. Another example in Kerr

is to “monitor usage information regarding relative use of network resources” in real time for

packet prioritization purposes. /d. at 5:41-49.

Kerr also makes clear that administrators can make other rule-based or policy changes

during runtime, which falls within the scope of “dynamically identifying a non-predefined

sequence of components” under Implicit’s apparent claim construction. See Section IV-C. For

example, Kerr evaluates “changed conditions” that may occur during the lifetime of a flow

after the first packet of that flow), such as “changes in access control lists or other changes

which might affect the proper treatment of packets 150 in the message flow 160.” Ex. 15 at

6:13-18. If a runtime change in an access control list so mandates, a flow will be “expired” in

the flow cache. /d.; see also, e.g., id. at 8:42-44 (after being “initially configured,” routing

device parameters “may be altered by an operator”).

Regarding the limitation “such that the output format of the components ... match the

input format of the next component,” it was well-known to those of ordinary skill in the art that

certain operations on a packet must be performed in a certain order: e.g., if a packet is first

converted into an encrypted format by a first component, a subsequent component would be

124

JNPR-IMPL_30024_

Page 124 of 272 Implicit Exhibit 2001
Juniper v. Implicit

unable to, e.g., rewrite its headers (because it was expecting to receive the packet in an

unencrypted format). See id. at 4:31-32 (“encryption treatment for packets . . . in the message

flow”), 4:57-58 (‘rewrite function for... a header for the packet”). Thus, it was certainly at

least obvious for one of ordinary skill in the art to arrange the sequence of components in a

compatible manner, such that the output format of one matches the input format of the next—

rather than arranging them in an incompatible manner whereby various component(s) would be

unable to perform their function(s).

Regarding the limitation “wherein dynamically identifying includes selecting individual

components,” as explained above it was obvious to implement each distinct (and individual)

operation performed on a flow as a distinct (and individual) software routine. See Claim 1(ii)

(showing “each component being a software routine”) above.

The “dynamically identifying” as disclosed in Kerr (under Implicit’s apparent claim

construction) also “includes selecting individual components to create the non-predefined

sequence of components after the first packet is received.” As described above, the components

disclosed in Kerr are “select[ed]” as “individual components” (encryption, rewrite, etc.)

associated with a particular flow entry. Figure 2A of Kerr, for example, shows the step “BUILD

NEW ENTRY,” which is executed after the step of “RECEIVE PACKET” and occurs only if the

packet is identified as “NEW” it is the first packet in a new flow). /d. at Fig. 2A. Implicit

has indicated that instantiating in memory constitutes “creating” for purposes of the patent. See

Section IV-C. Kerr discloses a “flow cache” that “comprises a memory,” in which message

flows are “cached” when the system “identif[ies] a new message flow.” Ex. 15 at 1:52-54, 6:32.

iv. “storing an indication of... the identified components”

125

JNPR-IMPL_30024_

Page 125 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 1 further recites “storing an indication of each of the identified components so that

the non-predefined sequence does not need to be re-identified for subsequent packets of the

message.” Under Implicit’s apparent claim constructions, Kerr renders obvious this element.

Kerr explains that when the first packet of a new flow arrives, the system “builds a new

entry in the flow cache” which “determines proper treatment of packets 150 in the message flow

and enters information regarding such treatment in a data structure pointed to by the new

entry in the flow cache” /d. at 4:12-16 (emphasis added).

As explained above, it was obvious to implement the various distinct operations which

may comprise this “proper treatment” as distinct software routines. See Claim 1(i1) above.

Such “proper treatment” would, then, consist of the selected sequence of these software

routines, so it was obvious (and necessary) that the “information regarding such treatment”

would comprise an indication of the selected routines. /d. at 4:12-16. Indeed, Kerr expressly

mentions doing so for the rewrite function, and there is no indication in Kerr that other routines

would or should be treated differently. /d. at 4:56-57 (“the flow cache includes a pointer to a

rewrite function”) (emphasis added).

“state information”

Claim 1 further recites “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

retrieved state information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the message.” Under

Implicit’s apparent claim constructions, Kerr renders obvious this “state information” element.

126

JNPR-IMPL_30024_

Page 126 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Implicit has taken a broad view of the “state information” limitations, arguing that they

cover the retrieval, use, and storage of the identified sequence of components (e.g., a flow

record) after the first packet is received. See Section IV.C. As demonstrated above (for the

“storing an indication” element), Kerr retrieves, uses, and stores flow records in this manner to

facilitate processing of packets in the same message after the first packet is received and a flow

entry built.

Kerr also renders obvious the retrieval, use, and storage of state information on a

component-by-component basis. For example, in one embodiment of Kerr, there are

components for access control, encryption, “special treatment,” accounting, rewrite, among

others. Ex. 15 at 5:5-25. The processing by these components is “all responsive to information

in the entry in the flow cache.” /d. at 5:9-10. Asa specific example, an accounting component

can maintain state information, such as “time stamp” data, “a cumulative count for the number of

packets,” and “a cumulative count for the number of bytes.” /d. at 6:58-63. Kerr later uses

timing information to identify expired or otherwise invalid flows (among other reasons). /d. at

5:52 As another example, Kerr can retrieve the latest “usage information regarding

relative use of network resources” in order to appropriately prioritize traffic using the relevant

component. /d. at 5:41-49.

As another example, an obvious implementation of the “encryption” component would

read on this “state information” element. Kerr supports “IP,” the Internet Protocol, and one of

ordinary skill would be aware that an encryption algorithm which “MUST” be supported by the

security architecture for the Internet Protocol is specified in RFC /d. at 3:5 (“IP (internet

See Ex. 26 (RFC 1825: “Security Architecture for the Internet Protocol”) (1995) at 10

(the encryption operation “MUST support the use of the Data Encryption Standard (DES) in

Cipher-Block Chaining (CBC) Mode”), 21 (citing “RFC 1829”: “The ESP DES-CBC

127

JNPR-IMPL_30024_

Page 127 of 272 Implicit Exhibit 2001
Juniper v. Implicit

protocol”). RFC 1829 explains that in order to apply its encryption algorithm, “an Initialization

Vector (IV) that is eight octets in length” must be placed in “[e]Jach datagram” to be encrypted

in each packet). See Ex. 27 (RFC 1829: “The ESP DES-CBC Transform” by P. Karn et al.)

(1995) at 1. RFC 1829 further explains that while the “method for selection of IV values is

implementation dependent,” a “common acceptable technique is simply a counter, beginning

with a random chosen value.” /d. One of ordinary skill would therefore find it obvious to apply

this technique to implement the encryption component of Kerr. Doing so would clearly entail,

for each packet: e.g., retrieving the previous counter value, applying it the packet it,

incrementing the counter value, and storing it for use when encrypting the next packet. Under

Implicit’s apparent claim constructions, this obvious implementation would read on this “state

information” claim element.

(b) Claim 15

i. “demultiplexingpackets of messages”

Claim 15 recites: “A method in a computer system demultiplexing packets of messages.”

Under Implicit’s apparent claim constructions, Kerr discloses this element. See Section V.B.1

(Kerr 102) at Claim 15(i) (showing same element) above.

ii. “dynamically identifying a non-predefined sequence”

Claim 15 further recites “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Kerr discloses this element. See Section V.B.1

(Kerr 102) at Claim 15(ii) (showing same element) above.

Transform’). RFC 1825 and RFC 1829 are cited in this section solely to help explain Kerr. See

MPEP § 2205.

128

JNPR-IMPL_30024_

Page 128 of 272 Implicit Exhibit 2001
Juniper v. Implicit

iii. “different... sequences of components can be identified”

Claim 15 further recites “different non-predefined sequences of components can be

identified for different messages.” Under Implicit’s apparent claim constructions, Kerr discloses

this element. See Section V.B.1 (Kerr 102) at Claim (showing same element) above.

iv. “each component being a software routine”

Claim 15 further recites “each component being a software routine.” Under Implicit’s

apparent claim constructions, Kerr renders obvious this element. See Claim 1(ii) (showing same

element) above.

“selecting individual components”

Claim 15 further recites “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components.” Under Implicit’s apparent

claim constructions, Kerr renders obvious this element. See Claim 1(i11) (showing same element)

above.

Vi. “state information”

Claim 15 finally recites “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Under Implicit’s

apparent claim constructions, Kerr renders obvious this element. See Claim 1(v) (showing

similar “state information” element) above.

(c) Claim 35

i. “instructions for demultiplexing packets of messages”

Claim 35 recites: “A computer-readable medium containing instructions for

demultiplexing packets of messages.” Under Implicit’s apparent claim constructions, Kerr

129

JNPR-IMPL_30024_

Page 129 of 272 Implicit Exhibit 2001
Juniper v. Implicit

renders obvious this element. Kerr teaches that its invention may be performed by “a general

purpose processor operating under program control,” and it was obvious to load such a

controlling program from a “computer-readable medium,” such as a hard disk in the routing

device. Ex. 15 at 2:53-54. See also Section V.B.1 (Kerr 102) at Claim (showing

“demultiplexing packets of messages”) above.

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites: “dynamically identifying a message-specific non-predefined sequence

of components for processing the packets of each message upon receiving the first packet of the

message.” Under Implicit’s apparent claim constructions, Kerr renders obvious this element.

See Claim 1(iii) (showing “for the first packet of the message, dynamically identifying a non-

predefined sequence of components for processing the packets of the message”) above.

iit. “subsequent packets ... can use the... sequence”

Claim 35 further recites that “subsequent packets of the message can use the message-

specific non-predefined sequence identified when the first packet was received.” Under

Implicit’s apparent claim constructions, Kerr renders obvious this element. See Claim (iv)

(showing “storing an indication of each of the identified components so that the non-predefined

sequence does not need to be re-identified for subsequent packets of the message”) above.

iv. “selecting indvidual components”

Claim 35 further recites that “dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of components.” Under

Implicit’s apparent claim constructions, Kerr renders obvious this element. See Claim

(showing same element) above.

“state information”

130

JNPR-IMPL_30024_

Page 130 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 35 further recites “for each packet of the message, invoking the identified non-

predefined sequence of components in sequence to perform the processing of each component

for the packet wherein each component saves message-specific state information so that that

component can use the save message-specific state information when that component performs

its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Kerr renders obvious this element. See Claim 1(v) (showing similar “state

information” element) above.

3. Kerr in View of NetFlow Renders Obvious Claims 1, 15, and 35 Under

§ 103

The article “Cisco NetFlow Switching speeds traffic routing” (Ex. 16, “NetFlow’”) by

Stephen Lawson was published on July 7, 1997 in the publication InfoWorld. NetFlow was not

considered during the prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Mosberger, then the inclusion of those aspects certainly

would be obvious over Kerr in view of NetFlow, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with NetFlow because Kerr is a Cisco

patent, and NetFlow is an article in a trade publication illustrating how the architecture of Kerr

manifested itself in an actual Cisco product feature (named “NetFlow’) that was available on the

market within the same time period.

The following illustrative figure appears in NetFlow as a description of the technology:

13]

JNPR-IMPL_30024_

Page 131 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Osco streamlines routing, management

Ex. 16 at 19.

The disclosure of NetFlow is consistent with and helps illustrate the disclosure of Kerr.

First, “NetFlow collects information about the first packet in a stream of data and caches it.” /d.

After receiving that first packet, a “flow” of “several functions” is then identified, including

99 66

functions such as “Switching task,” “Security task,” “Queuing task,” and “Accounting task.” Jd.

The first packet of traffic “goes through [the] several functions task by task.” Id. The NetFlow

system uses “routing and other information from thefirstpacket’ to handle the remaining

packets. /d. Thus, once the “cache learns about the flow” of functions, that flow is stored

(“cached”) so that the tasks can be carried out at “high speed” for “subsequent packets.” Id.

Information is gathered about the flow for “network management and planning.” State

information is also collected, retrieved, and used for each of the individual components

132

JNPR-IMPL_30024_

Page 132 of 272 Implicit Exhibit 2001
Juniper v. Implicit

99 Ge

(“functions”), in data structures such as the “Route table,” “Access list,” “Queuing priority,” and

“Accounting data.” /d.

Thus, to the extent that Kerr is deemed to lack inadequate disclosure of the relevant

limitations for claims 1, 15, and 35, the combination of Kerr with NetFlow clearly makes up for

any such perceived deficiency.

4. Kerr in View of RFC 1825 and RFC 1829 Renders Obvious Claims 1,

15, and 35 Under § 103

The specification RFC 1825 (“Security Architecture for the Internet Protocol”) (Ex. 26,

“RFC 1825”) by R. Atkinson was published in August 1995. The specification RFC 1829 (Ex.

27, “The ESP DES-CBC Transform’) by P. Karn ef al. was also published in August 1995.

Neither was considered during the prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Kerr alone, then the inclusion of those aspects certainly

would be obvious over Kerr in view of RFC 1825 and RFC 1829, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with RFC 1825 because Kerr applies

“encryption” to “IP” (Internet Protocol) packets, and RFC 1825 (“Security Architecture for the

Internet Protocol”) “describes the security mechanisms for IP version 4 (IPv4) and IP version 6

(IPv6) including “encryption.” Ex. 15 (Kerr) at 3:5 (IP (internet protocol)”), 4:30-31; Ex. 26

(RFC 1825) at 1. It was obvious to supplement the teachings of Kerr and RFC 1825 with RFC

1829, because RFC 1829 teaches an encryption algorithm which “MUST” be supported as part

of the RFC 1825 “Security Architecture.” Ex. 26 (RFC 1825) at 10 (the encryption operation

“MUST support the use of the Data Encryption Standard (DES) in Cipher-Block Chaining

(CBC) Mode”), 21 (citing “RFC 1829”: “The ESP DES-CBC Transform”).

(a) Claim 1

133

JNPR-IMPL_30024_

Page 133 of 272 Implicit Exhibit 2001
Juniper v. Implicit

i, “a plurality of components”

Claim recites in pertinent part: “providing a plurality of components, each component

being a software routine for converting data with an input format into data with an output

format.” Under Implicit’s apparent claim constructions, Kerr in view of RFC 1825 and 1829

renders obvious this element.

As part of its “Security Architecture for the Internet Protocol,” RFC 1825 teaches distinct

operations for “Encryption” and “Authentication”—either or both of which may be applied to a

packet. Ex. 26 at 1, 3-5, 8-9. The encryption operation is detailed in “RFC 1827” (“IP

Encapsulating Security Payload”) and the authentication operation is detailed in “RFC 1826”

(“IP Authentication Header”). See id. at 3-4, 8-9, 19.

Kerr already teaches the “encryption” of packets in a particular flow. Ex. 15 at 4:30-41.

Moreover, it was obvious for Kerr to support encryption and authentication operations as

suggested by RFC 1825, both in order to comply with the “Security Architecture for the Internet

Protocol,” and also to obtain the security advantages of encryption and authentication detailed by

RFC 1825. E.g., Ex. 26 at 1 (“Authentication”: “knowing that the data received is the same as

the data that was sent and that the claimed sender is in fact the actual sender.”; “Encryption: “A

mechanism that is commonly used to provide confidentiality.”).

Because encryption and authentication are distinct operations which would not

necessarily be applied to the same flow, it was obvious to implement them using distinct

components, and therefore also obvious to implement them as distinct software routines. See id.

at 3-5, 8-9.

A component which performed encryption on a packet in the manner described by RFC

1825 would add an “IP Encapsulating Security Payload ... header” to the packet. Ex. 26 (RFC

134

JNPR-IMPL_30024_

Page 134 of 272 Implicit Exhibit 2001
Juniper v. Implicit

1825) at 3. Under Implicit’s apparent claim constructions, this would comprise “converting data

with an input format into data with an output format.”

A component which performed authentication on a packet in the manner described by

RFC 1825 would add an “IP Authentication Header” to the packet. /d. Under Implicit’s

apparent claim constructions, this would comprise “converting data with an input format into

data with an output format.”

Thus, considering merely these two obvious components alone, they would comprise “a

plurality of components, each component being a software routine for converting data with an

input format into data with an output format” under Implicit’s apparent claim constructions.

il. “state information”

Claim 1 finally recites in pertinent part: “for each of a plurality of packets of the message

in sequence, for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the component with the

previous packet of the message; performing the processing of the identified component with the

packet and the retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next packet of the

message.” Under Implicit’s apparent claim constructions, Kerr in view of RFC 1825 and RFC

1829 renders obvious these “state information” elements.

As explained above, it was obvious to provide separate components for encryption and

authentication.

RFC 1825 explains that various forms of state information would be maintained by these

components, including, e.g., “Key(s) used with the authentication algorithm”; “Key(s) used with

the encryption algorithm”; “Authentication algorithm and algorithm mode being used”;

“Encryption algorithm, algorithm mode, and transform being used”; “cryptographic

135

JNPR-IMPL_30024_

Page 135 of 272 Implicit Exhibit 2001
Juniper v. Implicit

synchronisation or initialisation vector field for the encryption algorithm”; “Lifetime of the key

or time when key change should occur”; and “Lifetime of [the] Security Association.” Ex. 9

(RFC 1825) at 5-6. Obvious implementations to maintain this state information would read on

this claim element, under Implicit’s apparent claim constructions. For example, both the

encryption and authentication component would maintain “Lifetime of the key or time when key

change should occur.” See id. Maintaining a “Lifetime of the key” (as opposed to maintaining

“time when key change should occur’) at least renders obvious a countdown implementation

wherein the remaining lifetime is updated with each invocation of the component.

Additionally, regarding the encryption component in particular, an obvious

implementation of its encryption technique would read on these claim elements in still another

manner, under Implicit’s apparent claim constructions. RFC 1825 explains that the encryption

algorithm of RFC 1829 “MUST” be supported for encrypting packets. Ex. 26 (RFC 1825) at 10

(“the IP Encapsulating Security Payload MUST support the use of the Data Encryption Standard

(DES) in Cipher-Block Chaining (CBC) Mode”), 21 (citing RFC 1829: “The ESP DES-CBC

Transform”). RFC 1829 explains that in order to apply its encryption technique, “an

Initialization Vector (IV) that is eight octets in length” must be placed in “[e]ach datagram” to be

encrypted (7.e., in each packet). Ex. 27 (RFC 1829) at 1. RFC 1829 further explains that while

the “method for selection of IV values is implementation dependent,” a “common acceptable

technique is simply a counter, beginning with a random chosen value.” /d. It was therefore

obvious to apply this counter technique to the encryption component of Kerr. Doing so would

clearly entail, for each packet: e.g., retrieving the previous counter value, applying it the packet

it, incrementing the counter value, and storing it for use when encrypting the next packet. Under

136

JNPR-IMPL_30024_

Page 136 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Implicit’s apparent claim constructions, this obvious implementation would read on these claim

elements.

(b) Claim 15

i. “dynamically identifying a non-predefined sequence
”

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Kerr in view of RFC 1825 and RFC 1829 renders

obvious this element.

As explained above, one such obvious sequence would comprise a stateful encryption

compression component and a stateful authentication component. See Claim 1 above.

il. “state information”

Claim 15 finally recites in pertinent part: “for each packet of each message, performing

the processing of the identified non-predefined sequence of components of the message wherein

state information generated by performing the processing of a component for a packet is

available to the component when the component processes the next packet of the message.”

Under Implicit’s apparent claim constructions, Kerr in view of RFC 1825 and RFC 1829 renders

obvious this element. See Claim above (showing similar “state information” element).

(c) Claim 35

i, “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

RFC 1825 and RFC 1829 renders obvious this element.

137

JNPR-IMPL_30024_

Page 137 of 272 Implicit Exhibit 2001
Juniper v. Implicit

As explained above, one such obvious sequence would comprise a stateful encryption

compression component and a stateful authentication component. See Claim | above.

il. “state information”

Claim 35 finally recites in pertinent part: “for each packet of the message, invoking the

identified non-predefined sequence of components in sequence to perform the processing of each

component for the packet wherein each component saves message-specific state information so

that that component can use the save message-specific state information when that component

performs its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Kerr in view of RFC 1825 and RFC 1829 renders obvious this element. See Claim

1G1) above (showing similar “state information” element).

5, Kerr in View of Bellare97 and Bellare95 Renders Obvious Claims 1,

15, and 35 Under § 103

The article “A Concrete Security Treatment of Symmetric Encryption” (Ex. 17,

“Bellare97”) by M. Bellare ef a/. was published in 1997. The article “XOR MACs: New

Methods for Message Authentication Using Finite Pseudorandom Functions” (Ex. 18,

“Bellare95”) by M. Bellare et al. was published in 1995. Neither was considered during the

prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Kerr, then the inclusion of those aspects certainly would be

obvious over Kerr in view of Bellare97 and Bellare95, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with Bellare97, because Kerr

discloses “encryption” of the packets of a flow, and Bellare97 discloses a specific encryption

algorithm that could be used. Ex. 15 at 4:30-31. It was obvious to supplement the teachings of

138

JNPR-IMPL_30024_

Page 138 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Kerr and Bellare97 with Bellare95, because Bellare95 teaches a similar authentication algorithm

which could also be applied to the packets of a flow.

(a) Claim 1

i. “a plurality of components”

Claim 1 recites in pertinent part: “providing a plurality of components, each component

being a software routine for converting data with an input format into data with an output

format.” Under Implicit’s apparent claim constructions, Kerr in view of Bellare97 and Bellare95

renders obvious this element.

As explained above, it was obvious that each of the distinct operations that Kerr performs

on the packets of a flow (including its encryption operation) would be provided by a distinct

software routine. See Section V.B.2 (Kerr 103) at Claim 1(11) (showing same element).

Bellare95 teaches another operation that would advantageous to apply to the packets of a

flow—“ Authentication” —and it was obvious that this operation by provided by a distinct

software routine as well. Ex. 18 at 1 (“A message authentication scheme enables two parties

sharing a key .. . to authenticate their transmissions. This is one of the most widely used

cryptographic primitives,” and “as security concerns grow,” “it may become even more so”).

Because Kerr teaches encryption is selectively applied to specific flows, it was obvious to

treat authentication in the same manner. Ex. 15 at 4:30-31.

An encryption component would, of course, convert packet data from an unencrypted

format to an encrypted format, and under Implicit’s apparent claim constructions, this would

comprise “converting data with an input format into data with an output format.”

An authentication component would insert an extra field in the packet containing a

“message authentication code.” Ex. 18 at 1 (“Message authentication is usually accomplished by

including with each transmitted message A/a short string, called its ‘message authentication

139

JNPR-IMPL_30024_

Page 139 of 272 Implicit Exhibit 2001
Juniper v. Implicit

code’ (MAC) or ‘signature’). Under Implicit’s apparent claim constructions, this would also

comprise “converting data with an input format into data with an output format.”

Thus, considering merely these two obvious components alone, they would comprise “a

plurality of components, each component being a software routine for converting data with an

input format into data with an output format,” under Implicit’s apparent claim constructions

i. “state information”

Claim | finally recites in pertinent part: “for each of a plurality of packets of the message

in sequence, for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the component with the

previous packet of the message; performing the processing of the identified component with the

packet and the retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next packet of the

message.” Under Implicit’s apparent claim constructions, Kerr in view of Bellare97 and

Bellare95 renders obvious this element.

Bellare97 teaches “stateful encryption schemes, in which the ciphertext is a function of

some information, such as a counter, maintained by the encrypting party and updated with each

encryption.” Ex. 17 at 397 (emphasis in original). In its analysis of “some classic symmetric

encryption schemes,” Bellare97 concludes that a particular stateful scheme (“stateful XOR,

based on a finite PRF”) “has the best security.” /d. at 396. “For the stateful XOR scheme we

show that... this scheme is about as good a scheme as one can possibly hope to get.” /d. It

was therefore obvious to employ sucha stateful algorithm in an encryption component of Kerr,

particularly since Kerr does not specify a particular encryption algorithm.

140

JNPR-IMPL_30024_

Page 140 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Bellare95 teaches “stateful” authentication algorithms in which “the signer maintains

information, in our case a counter, which he updates each time a message is signed.” Ex. 18 at

16. In more detail:

In a stateful message authentication scheme, the signer maintains

state across consecutive signing requests. (For example, in our

counter-based scheme the signer maintains a message counter.) In

such a case the signing algorithm can be thought of as taking an

additional input—the “current” state C, of the signer—and

returning an additional output—the signer’s next state.

Id. at 21. Bellare95 analyzes both stateless (“Randomized XOR”) and stateful (“Counter-Based

XOR”) authentication algorithms, and observes that “[t]he gain” of the stateful, counter-based

algorithm “is greater security.” /d. at 22-25 (analysis of stateless), 25-27 (analysis of stateful,

counter-based). It was therefore obvious to employ such a stateful algorithm in an authentication

component of Kerr.

The counter used for both stateful encryption and stateful authentication would comprise

“state information” which is retrieved each time another packet is to be encrypted or

authenticated, used to perform the encryption or authentication, and updated and stored so it

may be used when encrypting or authenticating the next packet.

(b) Claim 15

i. “dynamically identifying a non-predefined sequence”

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Kerr in view of Bellare97 and Bellare95 renders

obvious this element.

14]

JNPR-IMPL_30024_

Page 141 of 272 Implicit Exhibit 2001
Juniper v. Implicit

As explained above, one such obvious sequence would comprise a stateful encryption

component and a stateful authentication component. See Claim 1 above.

il. “state information”

Claim 15 finally recites in pertinent part: “for each packet of each message, performing

the processing of the identified non-predefined sequence of components of the message wherein

state information generated by performing the processing of a component for a packet is

available to the component when the component processes the next packet of the message.”

Under Implicit’s apparent claim constructions, Kerr in view of Bellare97 and Bellare95 renders

obvious this element.

As explained above, it was obvious for the encryption and authentication components to

each employa stateful algorithm wherein a counter would comprise “state information” which is

updated during every encryption or authentication operation. See Claim 1(ii) above. This “state

information” is thus generated by performing the processing of the component, and is available

to the component when processing the next packet of the message. See id.

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

Bellare97 and Bellare95 renders obvious this element.

As explained above, it was obvious that one such sequence would comprise a stateful

encryption component and a stateful authentication component. See Claim | above.

ii. “state information”

142

JNPR-IMPL_30024_

Page 142 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 35 finally recites in pertinent part: “for each packet of the message, invoking the

identified non-predefined sequence of components in sequence to perform the processing of each

component for the packet wherein each component saves message-specific state information so

that that component can use the save message-specific state information when that component

performs its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Kerr in view of Bellare97 and Bellare95 renders obvious this element.

As explained above, it was obvious for the encryption and authentication components to

each employa stateful algorithm wherein a counter would comprise “state information” which is

updated during every encryption or authentication operation. See Claim above. This “state

information” is thus generated by performing the processing of the component, and is available

to the component when processing the next packet of the message. See id.

6. Kerr in View of IBM96 Renders Obvious Claims 1, 15, and 35 Under

§ 103

The book “Local Area Network Concepts and Products: Routers and Gateways” (Ex. 19,

“TBM96”) was published by IBM in May 1996. IBM96 was not considered during prosecution

of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Kerr alone, then the inclusion of those aspects certainly

would be obvious over Kerr in view of IBM96, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with IBM96 because Kerr teaches a

flow-based architecture for routing devices, and IBM96 teaches features which would have been

typical of routing devices of the time period.

(a) Claim 1

i. “a plurality of components”

143

JNPR-IMPL_30024_

Page 143 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim recites in pertinent part: “providing a plurality of components, each component

being a software routine for converting data with an input format into data with an output

format.” Under Implicit’s apparent claim constructions, Kerr in view of IBM96 renders obvious

this element.

During the pertinent time period, it was commonplace for routers to perform compression

on certain traffic being routed through them. This is repeatedly confirmed by IBM96. For

example, the “IBM 2210 Nways Multiprotocol Router” could perform “Data Compression over

Point-to-Point Protocol” using the “LZ77” compression algorithm. Ex. 19 at 84, 95-96. As

another example, IBM96 lists “Data compression” as one of the “Advantages” of its “IBM

AnyNet Product Family,” explaining that data compression “reduces the amount of data being

exchanged between partners, thus improving response time and reducing traffic over the

network.” /d. at 33. Similarly, IBM96 lists “Data compression” one of the “Benefits” of the

“2217 Nways Multiprotocol Concentrator” product, explains data compression “[p]rovides

higher data rates and improves response times at a lower cost.” /d. at 200-201.

In view of these various benefits of data compression, it was obvious that in addition to

supporting operations such as encryption and packet rewrite, Kerr should also support

compression. Because Kerr teaches encryption is selectively applied to specific flows, it was

obvious to treat compression in the same manner. /.g., Ex. 15 at 4:30-31.

As explained above, it was obvious that each of the distinct operations that Kerr performs

on the packets of a flow (including its encryption operation) would be provided by a distinct

software routine. See Section V.B.2 (Kerr 103) at Claim 1(11) (showing same element).

Likewise, it was obvious compression would be provided by a distinct software routine.

144

JNPR-IMPL_30024_

Page 144 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Since compressed data has a different format from uncompressed data, such a

compression component would “convert|] data with an input format into data with an output

format.” As combined with other component(s) from Kerr (e.g., which perform stateful

encryption), such a compression component would comprise “a plurality of components” which

read on this claim element.

i. “state information”

Claim | finally recites in pertinent part: “for each of a plurality of packets of the message

in sequence, for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the component with the

previous packet of the message; performing the processing of the identified component with the

packet and the retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next packet of the

message.” Under Implicit’s apparent claim constructions, Kerr in view of IBM96 renders

obvious these “state information” elements.

IBM96 discusses and compares the performance of four specific compression algorithms,

the top three of which are all “LZ”-based compression algorithms. See Ex. 19 at 95-96

has compression ratio of “2.08:1”; “Stacker-LZS” a ratio of “1.82:1”; “BSD Compress-LZW” a

ratio of “2.235:1”; and “Predictor” a ratio of “1.67:1”). Because the top three algorithms

discussed by IBM96 are LZ-based and because the “IBM 2210” router specifically uses the

algorithm, an LZ-based algorithm such as LZ77 would have been an obvious choice for

a compression component to be added to Kerr. /d. at 95-96, 84.

145

JNPR-IMPL_30024_

Page 145 of 272 Implicit Exhibit 2001
Juniper v. Implicit

LZ compression algorithms are stateful, and an obvious implementation of them would

read on these “state information” claim elements.’® Maintaining such state information would

entail, for each packet: e.g., retrieving the state information, using it to perform the

compression processing, updating it to reflect the data in the most recent packet, and storing it so

it can be applied to the next packet.

More generally (and not confined to LZ-based algorithms), stateful (“adaptive”)

compression algorithms were commonplace at the time, and obvious implementations of them

would likewise read on this “state information” claim element.”

(b) Claim 15

i. “dynamically identifying a non-predefined sequence”

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Kerr in view of IBM96 renders obvious this

element.

As explained above, one such obvious sequence would comprise a stateful compression

component combined with other component(s) (e.g., a stateful encryption component). See

Claim 1 above.

See, e.g., Ex. G09 (“Nelson”) (<The Data Compression Book” by Mark Nelson ef al.)
(1995) at 21 (LZ employs an “adaptive” algorithm which maintains state information in form of,

e.g., a sliding “4K-byte window’ of the most recent data seen, or an incrementally built

dictionary based on of the previously seen data), 18-19. This reference is cited in this context

solely to help explain IBM96. See MPEP § 2205.

"
See, e.g., Ex. G09 (Nelson) at 18 (“compression research in the last 10 years has

concentrated on adaptive models”), 18-19 (including Figures 2.2 and 2.3, showing state

information in form of a “Model” which is updated on each new piece of data). This reference is

cited in this context solely to help explain IBM96. See MPEP § 2205.

146

JNPR-IMPL_30024_

Page 146 of 272 Implicit Exhibit 2001
Juniper v. Implicit

ii. “state information”

Claim 15 finally recites in pertinent part: “for each packet of each message, performing

the processing of the identified non-predefined sequence of components of the message wherein

state information generated by performing the processing of a component for a packet is

available to the component when the component processes the next packet of the message.”

Under Implicit’s apparent claim constructions, Kerr in view of IBM96 renders obvious this

element.

As explained above, it was obvious for the compression component to employa stateful

algorithm (such as “LZ77”) whereby state information would be updated during every

compression operation. See Claim 1(ii) above. This “state information” is thus generated by

performing the processing of the component, and is available to the component when processing

the next packet of the message. See id.

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

IBM96 renders obvious this element.

As explained above, one such obvious sequence would comprise a stateful compression

component combined with other component(s) (e.g., a stateful encryption component). See

Claim 1 above.

ii. “state information”

Claim 35 finally recites in pertinent part: “for each packet of the message, invoking the

identified non-predefined sequence of components in sequence to perform the processing of each

147

JNPR-IMPL_30024_

Page 147 of 272 Implicit Exhibit 2001
Juniper v. Implicit

component for the packet wherein each component saves message-specific state information so

that that component can use the save message-specific state information when that component

performs its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Kerr in view of IBM96 renders obvious this element.

As explained above, it was obvious for the compression component to employa stateful

algorithm (such as “LZ77”) whereby state information would be updated during every

compression operation. See Claim 1(ii) above. This “state information” is thus generated by

performing the processing of the component, and is available to the component when processing

the next packet of the message. See id.

7. Kerr in View of IBM96 and Nelson Renders Obvious Claims 1, 15,

and 35 Under § 103

The treatise “The Data Compression Book” (Ex. 5, “Nelson”) by Mark Nelson et al. was

published on November 6, 1995. Nelson was not considered during the prosecution of the ‘163

patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Kerr in view of IBM96, then the inclusion of those aspects

certainly would be obvious over Kerr in view of IBM96 and Nelson, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr and IBM96 with Nelson, because

IBM96 disclose compression operations performed by routers, and Nelson teaches specific

compression algorithms which might be used.

(a) Claim 1

i, “a plurality of components”

Claim | recites in pertinent part: “providing a plurality of components, each component

being a software routine for converting data with an input format into data with an output

148

JNPR-IMPL_30024_

Page 148 of 272 Implicit Exhibit 2001
Juniper v. Implicit

format.” Under Implicit’s apparent claim constructions, Kerr in view of IBM96 and Nelson

renders obvious this element.

As explained above, one such obvious sequence would comprise a compression

component combined with other component(s) (e.g., a stateful encryption component). See

Section V.B.5 (Kerrt+IBM96) at Claim 1 above.

i. “state information”

Claim | finally recites in pertinent part: “for each of a plurality of packets of the message

in sequence, for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the component with the

previous packet of the message; performing the processing of the identified component with the

packet and the retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next packet of the

message.” Under Implicit’s apparent claim constructions, Kerr in view of IBM96 and Nelson

renders obvious this “state information” element.

Nelson explains: “Adaptive coding . . . lead[s] to vastly improved compression ratios,”

and that “compression research in the last 10 years has concentrated on adaptive models.” Ex. 5

at 8, 18. Adaptive algorithms include such well-known algorithms as “Adaptive Huffman

Coding” (chapter 4; id. at 75), “Adaptive [Statistical] Modeling” (chapter 6; id. at 155),

“[Adaptive] Dictionary-Based Compression” (chapter 7: id. at 203), and “Sliding Window

Compression” (chapter 8; id. at 215); and the prominent “LZ” family of compression algorithms

(chapter 8 and 9, id. at 221, 255). All of these adaptive techniques are lossless, which would be

important for accurately transmitting information contained in network packets. See id. at 9

999

(“All of the compression techniques discussed through chapter 9 are ‘lossless’”). In view of the

149

JNPR-IMPL_30024_

Page 149 of 272 Implicit Exhibit 2001
Juniper v. Implicit

prominence, lossless nature, and improved compression ratios of adaptive algorithms, use of

such an algorithm would have been an obvious choice for a compression component.

Nelson further explains the stateful manner in which adaptive coding operates: “When

using an adaptive model, data does not have to be scanned once before coding in order to

generate statistics [used to perform compression]. Instead, the statistics are continually

modified as new characters are read in and coded. The general flow ofa program using an

adaptive model looks something like that shown in Figure[] 2.2” at 18 (emphasis added).

Ohskpest

|

Sade poms CeatkesSyimbcis
feed nat|

id. at 19 (Figure 2.2: “General Adaptive Compression,” showing “Update Model” (7.e., update

state information) after encoding every piece of data). Nelson explains: “adaptive models start

knowing essentially nothing about the data” so “when the program first starts it doesn’t do a very

good job of compression.” /d. at 19. However, “[m]ost adaptive algorithms tend to adjust

quickly to the data stream and will begin turning in respectable compression ratios after only a

few thousand bytes.” /d.

Thus, an obvious implementation of an adaptive algorithm would entail, for each packet,

retrieving state information, using it to perform the compression processing, updating it to

reflect the data in the most recent packet, and storing it so it can be applied to the next packet.

More narrowly, IBM96 teaches that its “2210” router employs the “LZ77” compression

algorithm, so use of that algorithm in particular would have been an obvious design decision

150

JNPR-IMPL_30024_

Page 150 of 272 Implicit Exhibit 2001
Juniper v. Implicit

over IBM96. See Ex. 19 (IBM96) at 95-96, 84. Nelson confirms this algorithm was stateful and

“adaptive” in the manner described above. See, e.g., Ex. 5 at maintains a

“dictionary” comprised of, e.g., a sliding “4K-byte window” of the most recently seen data).

(b) Claim 15

i, “dynamically identifying a non-predefined sequence”

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Kerr in view of IBM96 and Nelson renders

obvious this element.

As explained above, one such obvious sequence would comprise a stateful compression

component combined with other component(s) (e.g., a stateful encryption component). See

Claim 1 above.

ii. “state information”

Claim 15 finally recites in pertinent part: “for each packet of each message, performing

the processing of the identified non-predefined sequence of components of the message wherein

state information generated by performing the processing of a component for a packet is

available to the component when the component processes the next packet of the message.”

Under Implicit’s apparent claim constructions, Kerr in view of IBM96 and Nelson renders

obvious this element.

As explained above, it was obvious for the compression component to employa stateful,

“adaptive” compression algorithm, wherein state information would be updated during every

compression operation. See Claim 1(ii) above. This “state information” is thus generated by

15]

JNPR-IMPL_30024_

Page 151 of 272 Implicit Exhibit 2001
Juniper v. Implicit

performing the processing of the component, and is available to the component when processing

the next packet of the message. See id.

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

IBM96 and Nelson renders obvious this element.

As explained above, one such obvious sequence would comprise a stateful compression

component combined with other component(s) (e.g., a stateful encryption and/or authentication

component). See Claim 1 above.

il. “state information”

Claim 35 finally recites in pertinent part: for each packet of the message, invoking the

identified non-predefined sequence of components in sequence to perform the processing of each

component for the packet wherein each component saves message-specific state information so

that that component can use the save message-specific state information when that component

performs its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Kerr in view of IBM96 and Nelson renders obvious this element.

As explained above, it was obvious for the compression component to employa stateful,

“adaptive” compression algorithm, wherein state information would be updated during every

compression operation. See Claim 1(ii) above. This “state information” is thus generated by

performing the processing of the component, and is available to the component when processing

the next packet of the message. See id.

152

JNPR-IMPL_30024_

Page 152 of 272 Implicit Exhibit 2001
Juniper v. Implicit

8. Kerr in View of RFC 1825, RFC 1829, Bellare97, Bellare95, IBM96,
and Nelson Renders Obvious Claims 1, 15, and 35 Under § 103

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Kerr alone or in combination with the various

grounds of rejection presented above, then the inclusion of those aspects certainly would be

obvious over Kerr in view of RFC 1825, RFC 1829, Bellare97, Bellare95, IBM96, and Nelson,

under 35 U.S.C. § 103, under Implicit’s apparent claim constructions.

All of these references have already been combined with Kerr in corresponding sections

above, and those sections should be consulted for the detailed manner of applying them to Kerr.

This section briefly summarizes that material and shows the collective combination of these

references would be obvious as well.

Kerr teaches a general flow-based architecture for router devices which applies, e.g.,

encryption, packet re-write, and any other “special treatment” to the packets of specific flows.

E.g., Ex. 15 at 4:29-60.

RFC 1825 and Bellare95 confirm the obviousness of employing an additional

component for authentication. IBM96 confirms the obviousness of employing an additional

component for compression.

Since Kerr teaches that its various possible operations are applied in a tailored manner to

each particular flow (see id. at 4:12-20), it was obvious that any two or more of these three types

of plugins (encryption, authentication, compression) might be applied to the same flow. This is

especially obvious since all three of those operations would be useful for implementing, e.g., a

virtual private network across an expensive link, as would be appreciated by one of ordinary skill

in the art.

Claims 1, 15, and 35 recite elements regarding “state information.”

153

JNPR-IMPL_30024_

Page 153 of 272 Implicit Exhibit 2001
Juniper v. Implicit

RFC 1829 and Bellare97 confirm the obviousness of employing a stateful encryption

algorithm which would read on these elements. Bellare95 confirms the obviousness of

employing a stateful authentication algorithm which would read on these elements. Nelson

confirms the obviousness of employing a stateful compression algorithm which would read on

these elements.

Claim | recites each component “being a software routine for converting data with an

input format into data with an output format.”

Performing encryption on a packet would convert it from an unencrypted to an encrypted

format, and likewise performing compression on a packet would convert it from an

uncompressed to a compressed format. Both of these operations would read on this “converting

data” element, under Implicit’s apparent claim constructions. Bellare95 confirms that

performing authentication on a packet would entail inserting an extra field into the packet, which

would also read on this “converting data” element, under Implicit’s apparent claim constructions.

Finally, in addition to the specific plugin components discussed immediately above

(encryption, authentication, compression), Kerr discloses a number of other components which

would read on the “state information” and/or “format” claim elements of claims 1, 15, and 35,

including plugin components for packet rewrite, accounting, and traffic profiling functions. See

Sections V.B.1 (Kerr 102) and V.B.2 (Kerr 103) above.

Since Kerr teaches that its various possible operations are applied in a tailored manner to

each particular flow, it was obvious for any of these various components to be applied to the

same flow as well, in addition to (or instead of) any of the encryption, authentication, or

compression components discussed immediately above.

154

JNPR-IMPL_30024_

Page 154 of 272 Implicit Exhibit 2001
Juniper v. Implicit

In short, there is no aspect of claims 1, 15, and 35 which was not obvious over the prior

art and combinations cited herein.

9, Kerr in View of Bellissard Renders Obvious Claims 1, 15, and 35

Under § 103

The article “Dynamic Reconfiguration of Agent-Based Applications” (Ex. 23,

“Bellissard”) by Luc Bellissard ef a/. was published by September 10, 1998. Bellissard was not

considered during prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Kerr alone, then the inclusion of those aspects certainly

would be obvious over Kerr in view of Bellissard, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with Bellissard because Kerr teaches

a general flow-based architecture for routers and firewalls (e.g., Ex. 15 at 4:12-48), and

Bellissard teaches a technique for enhancing the dynamic extensibility of such an architecture.

(a) Claim 1

i. “dynamically identifying a non-predefined sequence”

Claim 1 recites in pertinent part: “for the first packet of the message, dynamically

identifying a non-predefined sequence of components for processing the packets of the message

such that the output format of the components of the non-predefined sequence match the input

format of the next component in the non-predefined sequence.” Under Implicit’s apparent claim

constructions, Kerr in view Bellissard renders obvious this element.

Kerr alone renders obvious this element. See Section V.B.2 (Kerr 103) at Claim 1. As

applied to Kerr, Bellissard further underscores the “dynamic[]” nature of the identification, under

Implicit’s apparent claim constructions, as explained below.

155

JNPR-IMPL_30024_

Page 155 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Bellissard teaches a technique for “dynamically modifying” and “[d]ynamically

reconfiguring” an application while the application is s#i// operating, without halting the

application in order to reconfigure it. Ex. 23 at 1-3. Bellissard explains the motivation for this

technique is that “new functionalities” may be “required by the users” at any time:

Reconfiguration is thus an answer to the problems of dynamically

modifying the application architecture (both in terms of agent
functions and of the sequence of actions to be performed), while

the application is operating. This cannot be achieved with current

techniques such as configuration of predefined parameters, because

it is impossible to predict all the new functionalities that can be

required by the users.

Id. at 2.

It was particularly obvious to apply the technique of Bellissard to the router/firewall

architecture of Kerr, because a “firewall” is precisely the example chosen by Bellissard of “a

typical full-size application” which would “emphasize the benefits of” the Bellissard technique.

Id. at 1; Ex. 15 (Kerr) at 4:45-46 (also “useful for implementing security ‘firewalls’”).

The “dynamic reconfiguration” of technique Bellissard includes performing the following

two operations “while the application is operating”: (1) “Modifying the architecture of an

application (adding/removing modules, and modifying the interconnection pattern)”; and (2)

“Modifying the implementation of a component.” Ex. 23 at 2.

As applied to Kerr, the first operation (“Modifying the architecture of an application”

including “adding/removing modules”) would clearly encompass adding or removing certain

components of Kerr while the system of Kerr was still operating. See Ex. 23 at 2. Bellissard

explains “it is impossible to predict all the new functionalities that can be required by users.”

Ex. 23 at 2. In the context of the extensible router/firewall architecture of Kerr, providing the

required “new functionalities” would typically entail the provision of new Kerr components: e.g.,

to support a new authentication functionality, a new compression functionality, and so on.

156

JNPR-IMPL_30024_

Page 156 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Indeed, Bellissard specifically teaches the insertion of a new “compression” component into a

firewall system while it is still operating. Ex. 23 at 2 (‘insertion of a compression agent”).

Using the Bellissard technique, such new plugins could be “dynamically” added to Kerr while

Kerr was still operating—with the advantage that flows could begin to take advantage of the new

functionalities immediately, and without disrupting existing flows through the system. See Ex.

23 at 1-2.

As applied to Kerr, the second operation (“Modifying the implementation of a

component’) would clearly encompass modifying the implementation of a component of Kerr

while the system of Kerr was still operating. See Ex. 23 at 2. For example, a more efficient,

higher-performance implementation might become available for an encryption component, an

authentication component, or a compression component, and so on. Using the Bellissard

technique, such a component could be “dynamically modified” to employ the new, more

efficient implementation while Kerr was still operating—with the advantage that the component

could begin to take advantage of the improved implementation immediately, and without

disrupting existing flows.

To summarize, the combination of Kerr and Bellissard renders obvious a system in which

components of Kerr could be dynamically modified or dynamically added at any moment during

runtime—while the system was still operating—and could thereby take advantage of the newly

added or modified components. Under Implicit’s apparent claim constructions, such a system

would clearly read on “dynamically identifying a non-predefined sequence of components for

processing the packets of the message.”

(b) Claim 15

i. “dynamically identifying a non-predefined sequence”

157

JNPR-IMPL_30024_

Page 157 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Kerr in view of Bellissard renders obvious this

element. See Claim 1 above.

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

Bellissard renders obvious this element. See Claim 1 above.

10. Kerr in View of Fraser Renders Obvious Claims 1, 15, and 35 Under

§ 103

The publication “DTE Firewalls: Phase Two Measurement and Evaluation Report” (Ex.

24, “Fraser”) by Timothy J. Fraser ef a/. was published by Trusted Information Systems on July

22, 1997. Fraser was not considered during prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Kerr alone, then the inclusion of those aspects certainly

would be obvious over Kerr in view of Fraser, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Kerr with Fraser because Kerr teaches a

general flow-based architecture for routers and firewalls (e.g., Ex. 15 at 4:12-48), and Fraser

teaches a technique for enhancing the dynamic configurability of such an architecture.

(a) Claim 1

i. “dynamically identifying a non-predefined sequence”

158

JNPR-IMPL_30024_

Page 158 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 1 recites in pertinent part: “for the first packet of the message, dynamically

identifying a non-predefined sequence of components for processing the packets of the message

such that the output format of the components of the non-predefined sequence match the input

format of the next component in the non-predefined sequence.” Under Implicit’s apparent claim

constructions, Kerr in view Fraser renders obvious this element.

Kerr alone renders obvious this element. See Section V.B.2 (Kerr 103) at Claim 1. As

applied to Kerr, Fraser further underscores the “dynamic[]” nature of the identification, under

Implicit’s apparent claim constructions, as explained below.

Fraser teaches “Dynamic Policy Modules” which an administrator uses to control the

behavior of a firewall: e.g., these modules define which traffic flowing through the firewall

should be encrypted, and which network destinations should be accessible to which users. Ex.

24 at 10, 6-7.

Strider EnclaveDonalds Enclave

Sia
BELT SE

wigan ene ap-—-Ge | gine eng

vise. pra ghee. proj d
gine enga

glame_peoy

gion. a
gine pre]

Romain traffic encrypted based
Domain from Eyvaumis Moddle ep :

ssmapien on instructions ina
inerypted Communication

Non-enerypted Communication. Dynamic Policy Module

id. at 7 (Figure 3, showing encryption performed according to instructions in “Dynamic

Module[s]”; “The transient domains originating in dynamic modules are not shaded.”).

159

JNPR-IMPL_30024_

Page 159 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Fraser explains that before Dynamic Policy Modules were introduced, “the primary

method” for an administrator to alter a firewall’s “security policy” was “to edit the policy

specification and reboot the kernel for the updated policy to take effect.” /d. at 8. This approach

was “impractical for operational systems,” because “[rJestructuring the policy and rebooting

kernels for each change would result in an undesirable and impractical loss of service.” at 9.

Dynamic Policy Modules address this “undesirable and impractical” situation by

allowing administrators to make minor or major alterations to a firewall’s policies without

rebooting the device:

The main contribution of dynamic policy module support . . . is

increased functionality. As described in section 2.1.2, dynamic

policy modules provide administrators with an organized
framework for managing policy change. Administrators can use

dynamic policy modules to specify the policy governing new

activities and trust relationships. They may add policy support for

a new activity or trust relationship to a [firewall] kernel by loading
the appropriate module. Similarly, they can remove the support by

unloading the module. Administrators may load and unload

modules as the kernel runs. The ability to dynamically

reconfigure a kernel's policy as it runs allows administrators to

add and remove policy support for trust relationships without

requiring system down-time and the resulting disruption of service

availability. This method of policy configuration is superior to the

[previous] method, which involved modifying a kernel's base

policy description and then rebooting the kernel.

Id. at 37.

Rather than being narrowly confined to controlling one or two policy options, Dynamic

Policy Modules provide a “wide-ranging ability” to change many aspects of a firewall’s policies.

See id. at 19.

Once made available, Dynamic Policy Modules become the primary means for

administrators to modify a firewall’s policies: “Dynamic policy modules are the atomic unit of

160

JNPR-IMPL_30024_

Page 160 of 272 Implicit Exhibit 2001
Juniper v. Implicit

policy change. Typically, when administrators need to extend a policy to govern a new activity,

they will encapsulate the extension in a dynamic policy module.” /d. at 12.

It was obvious to apply the Dynamic Policy Modules framework of Fraser to Kerr, in

order to provide a more comprehensive framework’® for avoiding any “undesirable and

impractical” need to reboot the Kerr device under any circumstances. See id. at 9. Kerr was an

especially obvious candidate for this technique, because Fraser uses the technique to control the

policies of “firewall[s],” and Kerr teaches an architecture that is “useful for implementing

security ‘firewalls’.” /d. at 6; Ex. 15 at 4:45-46.

As applied to Kerr, Dynamic Policy Modules would allow an administrator to modify the

policies which determine which components are assigned to which flows. See, e.g., Ex. 15

(Kerr) at 4:13-19, 7:47-54. The parallels between the two systems are particularly clear on this

point. For example, Fraser’s Dynamic Policy Modules control, e.g., which traffic is encrypted,

and Kerr’s policies control, e.g., which flows are encrypted. Ex. 24 at 7, Ex. 15 at 4:12-34.

To summarize, the combination of Kerr and Fraser renders further obvious a system in

which the policies determining the identified sequence of plugin components could be

dynamically modified or dynamically added at any moment during runtime—while the system

was still operating. Under Implicit’s apparent claim constructions, such a system would clearly

read on “dynamically identifying a non-predefined sequence of components for processing the

packets of the message.”

(b) Claim 15

'8 Kerr already teaches the technique of modifying the system’s configured policies while

the system is operating, but Fraser teaches a more comprehensive framework for such a

capability, and provides additional detail on how such a framework would be implemented. See

Ex. B00 (Kerr) at 6:14-16 (“changes in access control lists” cause an existing flow “to be

expired”), 8:42-44 (after being “initially configured,” routing device parameters “may be altered

by an operator’).

16]

JNPR-IMPL_30024_

Page 161 of 272 Implicit Exhibit 2001
Juniper v. Implicit

i, “dynamically identifying a non-predefined sequence”

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Kerr in view of Fraser renders obvious this

element. See Claim 1 above.

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, Kerr in view of

Fraser renders obvious this element. See Claim 1 above.

11. Kerr in View of RFC 1825, RFC 1829, Bellare97, Bellare95, IBM96,
Nelson, Bellissard, and Fraser Renders Obvious Claims 1, 15, and 35

Under § 103

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Kerr alone or in combination with the various

grounds of rejection presented above, then the inclusion of those aspects certainly would be

obvious over Kerr in view of RFC 1825, RFC 1829, Bellare97, Bellare95, IBM96, Nelson,

Bellissard, and Fraser under 35 U.S.C. § 103, under Implicit’s apparent claim constructions.

All of these references have already been combined with Kerr in corresponding sections

above, and those sections should be consulted for the detailed manner of applying them to Kerr.

This section briefly summarizes that material and shows the collective combination of these

references would be obvious as well.

162

JNPR-IMPL_30024_

Page 162 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Kerr teaches a general flow-based architecture for router devices which applies, e.g.,

encryption, packet re-write, and any other “special treatment” to the packets of specific flows.

fi.g., Ex. 15 at 4:29-60.

RFC 1825 and Bellare95 confirm the obviousness of employing an additional

component for authentication. [IBM96 confirms the obviousness of employing an additional

component for compression.

Since Kerr teaches that its various possible operations are applied in a tailored manner to

each particular flow (see id. at 4:12-20), it was obvious that any two or more of these three types

of plugins (encryption, authentication, compression) might be applied to the same flow. This is

especially obvious since all three of those operations would be useful for implementing, e.g., a

virtual private network across an expensive link, as would be appreciated by one of ordinary skill

in the art.

Claims 1, 15, and 35 recite elements regarding “state information.”

RFC 1829 and Bellare97 confirm the obviousness of employing a stateful encryption

algorithm which would read on these elements. Bellare95 confirms the obviousness of

employing a stateful authentication algorithm which would read on these elements. Nelson

confirms the obviousness of employing a stateful compression algorithm which would read on

these elements.

Claim 1 recites each component “being a software routine for converting data with an

input format into data with an output format.”

Performing encryption on a packet would convert it from an unencrypted to an encrypted

format, and likewise performing compression on a packet would convert it from an

uncompressed to a compressed format. Both of these operations would read on this “converting

163

JNPR-IMPL_30024_

Page 163 of 272 Implicit Exhibit 2001
Juniper v. Implicit

data” element, under Implicit’s apparent claim constructions. Bellare95 confirms that

performing authentication on a packet would entail inserting an extra field into the packet, which

would also read on this “converting data” element, under Implicit’s apparent claim constructions.

Finally, in addition to the specific plugin components discussed immediately above

(encryption, authentication, compression), Kerr discloses a number of other components which

would read on the “state information” and/or “format” claim elements of claims 1, 15, and 35,

including plugin components for packet rewrite, accounting, and traffic profiling functions. See

Sections V.B.1 (Kerr 102) and V.B.2 (Kerr 103) above.

Since Kerr teaches that its various possible operations are applied in a tailored manner to

each particular flow, it was obvious for any of these various components to be applied to the

same flow as well, in addition to (or instead of) any of the encryption, authentication, or

compression components discussed immediately above.

Claims 1, 15, and 35 recite “dynamically identifying a... non-predefined sequence of

components.”

Kerr alone makes clear that administrators can make rule-based or policy changes during

runtime, which falls within the scope of “dynamically identifying a non-predefined sequence of

components” under Implicit’s apparent claim construction. F.g., Ex. 15 at 6:14-16 (“changes in

access control lists” can occur during an existing “flow,” causing it to “expire”), 8:42-44 (after

being “initially configured,” routing device parameters “may be altered by an operator’’).

Bellissard teaches dynamically adding new components and modifying existing

components while the system is operating. Under Implicit’s apparent claim constructions, both

of these techniques would read on these “dynamic[]” claim elements.

164

JNPR-IMPL_30024_

Page 164 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Like Kerr, Fraser teaches dynamically configuring firewall policies while the system is

operating. It teaches a more comprehensive framework for this capability, and details another

manner in which it could be implemented. Under Implicit’s apparent claim constructions, such

dynamic configuration of policies would read on these “dynamic[]” claim elements.

In short, there is no aspect of claims 1, 15, and 35 which was not obvious over the prior

art and combinations cited herein.

12. Kerr in View of Checkpoint and Shwed Renders Obvious Claims 1,

15, and 35 Under § 103

The paper “Checkpoint Firewall-1 White Paper, Version 2.0” (Ex. 20, “Checkpoint”) was

published by Checkpoint (the maker of the “Firewall-1” product) in September 1995. U.S. Pat.

No. 5,835,726 entitled “System for securing the flow of and selectively modifying packets in a

computer network,” by Shwed et al. (Ex. 21, “Shwed”) issued on November 19, 1998 to the

assignee Checkpoint.Software Technologies Ltd. Neither Checkpoint nor Shwed was considered

during the prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Kerr, then the inclusion of those aspects certainly would be

obvious over Kerr in view of Checkpoint, and further in view of Shwed, under 35 U.S.C. § 103.

Under Implicit’s apparent claim construction, the “dynamically” limitation requires some

degree of system configurability, and Kerr duly discloses a fully configurable network security

product. However, if Kerr is deemed to lack sufficient disclosure regarding system

configurability, combination with Checkpoint and Shwed cures any such deficiency. Checkpoint

and Shwed illustrate the fact that network security products such as firewalls have had the ability

to arbitrarily add and change rules and policies for years prior to the filing date of the ‘163

patent. And it would have been obvious to apply the teachings of Checkpoint and Shwed to the

165

JNPR-IMPL_30024_

Page 165 of 272 Implicit Exhibit 2001
Juniper v. Implicit

networking technologies in Kerr, to provide yet additional configurability options to address

changing security demands in a network environment.

For example, Checkpoint describes the “Inspection Module” of the Firewall-1 product as

“generic and flexible,” one that is “capable of learning and understanding any protocol, as well

as adapting to newly defined protocols and applications.” Ex. 20 at 20. It goes on to observe

that “[t]his capability is achieved by using high-level definitions, and requires no code

changes.” Id. Checkpoint explains that Firewall-1 is not limited to examining header data; it

can “extract data from the packet’s application content and store it to provide context.” at

14. Based on this information, the Firewall-1 “is able to dynamically allow and disallow

connections as necessary.” /d. The Firewall-1 is also able to store and use “state information

for each session through the gateway,” using a technology known as “Stateful Multi-Layer

Inspection.”

Shwed similarly shows the highly configurable nature of the claimed firewall, and even

includes a depiction of the “rule base editor”:

166

JNPR-IMPL_30024_

Page 166 of 272 Implicit Exhibit 2001
Juniper v. Implicit

RULE BASE EDITOR CORPORATE

PLE RULE j FILTER | ROUTER] UTILITES | PROPERTIES | TUTORIAL

WINDOWS: G22 NETWORK OBJECTS ISERWCES SYSTEM WiEW CLOG WEWER

NOLE SOURCE DESTINATION | SERVICES ACTION TRACK TP INSTALL GN

ANY MAILSERVERS SMTP ACCEPT GATEWAYS

© ria 302
toe. ay

2) c&o FINANCE
ANY Ay GATEWAYScro at HOW UA

3 TRUSTEDPARTIES) INTERNAL [| TALK STAT TELNET

4| INTERNAL ANY ANY ALERT
GATEWAYS

© © yay How

§ ANY
ap INTERNAL

SNY MAK. DST

FINANCE €) ES

Ket
RULE BASE SAVED TO ‘/FW/USERS /MARLUS /CORPORATE W

FPIG.3

Ex. 21 at Fig. 3. Shwed discloses a plurality of “packet filters,” each of which “can handle

changes in security rules with great flexibility as well as handle multiple security rules without

changing the structure of the packet filter itself” Id. at 6:35-39, see generally id. at 5:39 — 8:9.

“TE]ach packet filter Like Checkpoint, Shwed also discloses “stateful multi-layer inspection.”

Id. at 14:55-62.

Thus, to the extent that Kerr is deemed to lack inadequate disclosure of the relevant

limitations for claims 1, 15, and 35, the combination of Kerr with Checkpoint and Shwed clearly

makes up for any such perceived deficiency.

13. Kerr in View of Dietz Renders Obvious Claims 1, 15, and 35 Under

§ 103

U.S. Pat. No. 6,651,099 entitled “Method and Apparatus for Monitoring Traffic in a

Network” by Russell S. Dietz et al. (Ex. 22, “Dietz”) resulted from a patent application filed on

June 30, 1999. Dietz was not considered during the prosecution of the ‘163 patent.

167

JNPR-IMPL_30024_

Page 167 of 272 Implicit Exhibit 2001
Juniper v. Implicit

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Kerr, then the inclusion of those aspects certainly would be

obvious over Kerr in view of Dietz, under 35 U.S.C. § 103.

For example, Dietz, like Kerr, is expressly described as a “flow’-based system, as

illustrated in Figure 3, and thus it would have been obvious to jointly consider their combined

teachings:

we ene wom vie tem weet win nee sn yooh ya, none mums
mo Su

passer 367 aed

sete Biden on,BOP ANALYZE AND wee i
PRecoanize| EXTRACT aunpuniauel, [LOGKUP se cee

(7 PSOKEDL po PATTERN bom pearing POONVERBATION cam
FROM REC FLOW.

DATABAGELonne/
INFORMATION ERATION"

SELOW? REY | KNOWN OF FLOWS

ata i
pe

|

me bo een
pa

i

i i od ban
i * we j

i
we

UPDATE
PATTERN PARSE PROTOCOL “FLOW? i

i
i

MORE nO 1

boat AME i vow & STATE

\giassi FICATION?”
NOM eWN

EXTRACTION

i IDEM TIPIGATION. RECORD
iTRTABASE i c we

i i EG
ne esa aos

wan saan

pentnnnnene f cLassipicaty|

ata
j Sar ane

vA
FINALIZATION |

Sho

PSGCESSOR \
COMPILER

ING FAUC TON er STATES
Bot Sas

AND
=

OPTIMIZER i i

aes
Wace 3Latta i age RES t

:

Somes: i { |

j j

DESCIPTIO LAYER i ones MORE
i

LANGUAGE SELECTION DEBS on
~eneneent ‘nenanore? A

OPERATIONS coding
i ANALYZER |

i 1

i

Ex. 22 at Fig. 3. Dietz also discloses analysis of packets passing through the system “in real

time” in order to determine “the application program associated with the conversational flow.”

Id. at Abstract. In so doing, Dietz looks not only to the “protocol (e.g., http, ftp, H.323, VPN,

etc.),” but also “the application/use within the protocol.” /d. at 3:30-34. Thus, Dietz is able to

provide “a flexible processing system that can be tailored or adapted as new applications enter

168

JNPR-IMPL_30024_

Page 168 of 272 Implicit Exhibit 2001
Juniper v. Implicit

the client/server market” so it can classify and respond to flows based on application. /d. at 4:45

— 5:9.

Thus, to the extent that Kerr is deemed to lack inadequate disclosure of the relevant

limitations for claims 1, 15, and 35, the combination of Kerr with Dietz clearly makes up for any

such perceived deficiency.

14, Kerr in view of Pfeifer96 Renders Obvious Claims 1, 15, and 35

Under § 103

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Kerr alone, then the inclusion of those aspects certainly

would be obvious over Kerr in view of Pfeifer96, under 35 U.S.C. § 103.

(a) Claim 1

i. “processing a message having a series of packets”

Claim 1 recites: “A method in a computer system.” Under Implicit’s apparent claim

constructions, Kerr discloses this element.

Kerr discloses a “routing device” which, e.g., maintains data structures called “flow

entr[ies]” accessed via a “hash table.” Ex. B10 at Figure 3, 4:9. Under Implicit’s apparent claim

constructions, a routing device capable of supporting such data structures would comprise “a

computer system.”

ii. “processing a message having a series of packets”

Claim 1 further recites the method is “for processing a message having a sequence of

packets.” Under Implicit’s apparent claim constructions, Kerr discloses this element.

Kerr summarizes its invention in part as follows:

The invention provides a method and system for switching in

networks responsive to message flow patterns. A message "flow"

169

JNPR-IMPL_30024_

Page 169 of 272 Implicit Exhibit 2001
Juniper v. Implicit

is defined to comprise a set of packets to be transmitted between a

particular source and a particular destination. When routers in a

network identify a new message flow, they determine the proper

processing for packets in that message flow and cache that

information for that message flow. Thereafter, when routers in a

network identify a packet which is part of that message flow, they

process that packet according to the proper processing for packets
in that message flow. The proper processing may include a

determination of a destination port for routing those packets and a

determination of whether access control permits routing those

packets to their indicated destination.

Id. at 1:48-61.

iii. “a plurality of components”

Claim 1 further recites: “providing a plurality of components, each component being a

software routine for converting data with an input format into data with an output format.”

Under Implicit’s apparent claim constructions, Kerr in view of Pfeifer96 renders obvious this

element.

The essential idea of the Pfeifer96 system is that users are “mobile” and “nomadic,” but

they still wish to receive their electronic communications even when they are away from their

“well equipped” offices. Ex. at 19, 1. For example, a user may be away from his office in a

location where there is only a telephone—so if a fax is sent to his office, he will surely miss it.

See id. at 15, 17, 8. Pfeifer96 proposes a general solution to this problem, and this solution relies

on three related technologies. First, the system keeps track of the user’s current location: users

may “register” when they arrive at a location, or they may wear an “Active Badge” which tracks

their location automatically. /d. at 16,24. Second, the system keeps track of the specific

communications “access devices” in the user’s location which would be available to receive

incoming communications. /d. at 17. Third and most importantly, the system can dynamically

convert incoming communications into an entirely different medium, if there is not an access

170

JNPR-IMPL_30024_

Page 170 of 272 Implicit Exhibit 2001
Juniper v. Implicit

device in the vicinity capable of receiving the incoming communication in its original form. /d.

at 17, 21.

For example, if there is telephone but not a fax machine in the user’s current location, the

system can automatically phone the user and read himthe fax, by dynamically converting the

data from its original source medium (fax) to a medium supported by the access device in the

user’s vicinity (audio). /d. at 8, 20-21.

More specifically, the iPCSS performs this function by transparently observing incoming

communications at they enter its “Service Gateways.” Jd. at 17-21. By observing these

incoming communications, the system can ascertain: (1) the intended destination of an incoming

communication (7.e., the called party); and (2) the communication’s source medium (e.g., voice

call, videoconference, fax, etc.). /d. Knowing these two facts, the system can then determine if

there is a device in the called party’s “current vicinity” which could accept the source medium.

Id. at 17. If not, the system can dynamically generate a converter chain for converting the

communication to a medium which can be accepted by one of the nearby devices. /d. at 17-21.

Pfeifer96 styles this system the “Intelligent Personal Communications Support System

(iPCSS),” and its slogan is “information any time, any place, in any form.” Id. at 2, 14 (emphasis

in original).

It was obvious to apply this system of Pfeifer96 to Kerr, so Kerr could assure delivery of

incoming communications to users in their actual locations.

As an internet router, Kerr is positioned at a natural chokepoint in the network where

communication flows to many remote users may be observed transparently as they travel through

the router device. Ex. B10 at 2:56-61; Ex. at 23. And of course as a router, Kerr is

ideally suited to re-routing those flows for delivery to the users’ actual locations, as necessary.

17]

JNPR-IMPL_30024_

Page 171 of 272 Implicit Exhibit 2001
Juniper v. Implicit

In fact, under Implicit’s apparent claim construction, routers can be said to “convert”

communications in the course of routing them; e.g., Kerr teaches “encryption” as one of the

operations that may be applied to all of the packets ofa particular flow. Ex. B10 at 4:4:31.

Moreover, Kerr already tracks all incoming and outgoing communications (“flows”),

maintaining a separate data structure for each called a “flow entry.” /d. at 3:4-4-17, 4:28-29,

Figure 3.

A message flow 160 consists of a unidirectional stream of packets
150 to be transmitted between particular pairs of transport service

access points (thus, network-layer addresses and port numbers). In

a broad sense, a message flow 160 thus refers to a communication

"circuit" between communication endpoints. In a preferred

embodiment, a message flow 160 is defined by a network-layer
address for a particular source device 120, a particular port number

at the source device 120, a network-layer address for a particular
destination device 130, a particular port number at the destination

device 130, and a particular transmission protocol type.

Id. at 2:56-68. Thus, a “flow” is precisely the set of data which would need to be re-routed and

converted if the called party was, e.g., not in his office.

Again like the system of Pfeifer96, Kerr is aware of, and tracks, the intended destination

of the incoming communication: “the particular destination device 130 [of a flow] is identified

by its IP (internet protocol) address.” /d. at 3:15-17. Thus, Kerr would know precisely where a

flow was heading: e.g., to a fax device in the user’s office.

Again like the system of Pfeifer96, Kerr tracks the specific medium of communication

which would be flowing toward the destination: e.g., whether it is “an internet telephone

protocol, or an internet video protocol such as the “CUSeeMe” protocol; these protocols are

known in the art of networking.” /d. at 3:13-15 (emphasis added). And in fact, telephone and

video are two of the very mediums which iPCSS automatically detects and converts:

172

JNPR-IMPL_30024_

Page 172 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Se eerenttone’ Pomensk

Sonversion.

AT we
Ex. AQ2 at 15 (Figure 9: “Priorized media conversion in the iPCSS”).

Thus, considering Kerr in view of Pfeifer96 essentially poses this question to Kerr:

knowing and tracking all this information about each flow (including its intended destination

device, its source medium), and being responsible for routing the flow onward to its intended

destination—what should be done if the user is not in the vicinity of the destination device?

Clearly, an obvious answer is to apply the system of Pfeifer96, whereby a flow can be re-routed

and converted for connection to a device at the user’s current location, rather than terminating

uselessly at a device in a vacant office.

This obviousness is further heightened by the straightforward compatibility of the two

architectures: the one would fit into the other seamlessly.

Kerr teaches a “flow” architecture for processing packets with high performance:

It would therefore be advantageous to provide techniques in which

the amount of processing required for any individual packet could

be reduced. With inventive techniques described herein,
information about message flow patterns is used to identify packets
for which processing has already been determined, and therefore to

process those packets without having to re-determine the same

processing. The amount of processing required for any individual

packet is therefore reduced.

Information about message flow patterns would also be valuable

for providing information about use of the network, and could be

173

JNPR-IMPL_30024_

Page 173 of 272 Implicit Exhibit 2001
Juniper v. Implicit

used for a variety of purposes by network administrators, routing

devices, service providers, and users.

Ex. B10 at 1:29-43. When the first packet of a flow arrives, Kerr goes through the somewhat

expensive and elaborate process of determining how a// the packets of that flow should be

treated: e.g., whether they should be encrypted, whether their packet headers should re-written,

and where they should be routed next. /d. at 1:33-35, 4:13-60. It then records all this

information about the proper processing for a flow by “build[ing] a new entry in the flow cache”

for the flow, so the proper processing does not have to be wastefully and redundantly determined

again for subsequent packets of the flow. /d. at 4:12-13.

Thus, in a preferred embodiment, the routing device 140 does not

separately determine, for each packet 150 in the message flow 160,
the information stored in the entry in the flow cache. Rather, when

routing a packet 150 in the message flow 160, the routing device

140 reads the information from the entry in the flow cache and

treats the packet 150 according to the information in the entry in

the flow cache.

Ex. BO] at 4:64-5:3.

It is clearly at this moment, when determining the proper processing for the flow, that the

system of Kerr would simply query the system of Pfeifer96 to determine if some additional

amount of processing would be appropriate for this flow. E.g., if iPCSS determines the user is

not at the destination device, it could then (in its usual manner) dynamically generate a suitable

converter chain for connecting the flow to a device in the user’s current location. Ex. AQ2 at 17-

21. A reference to the converter chain would then simply be recorded in the flow entry, as part

of the processing to be applied to all subsequent the packets of the flow. As explained by Kerr:

“Tt will be clear to those skilled in the art, after perusing this application, that the concept of a

message flow is quite broad, and encompasses a wide variety of possible alternatives within the

scope and spirit of the invention.” Ex. B10 at 3:21-24.

174

JNPR-IMPL_30024_

Page 174 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Returning now more specifically this claim element, this portion of Claim 1 recites:

“providing a plurality of components, each component being a software routine for converting

data with an input format into data with an output format.”

Though Kerr teaches components of its own for converting data in a particular flow (e.g.,

to perform encryption or to re-write packet headers), it is not necessary to analyze these because

Kerr would incorporate the dynamically generated converter chains of Pfeifer96, which have

already been applied to this claim element above. As explained above, such a converter chain

would comprise “a plurality of components, each component being a software routine for

converting data with an input format into data with an output format.” See Section V.A.1

(Pfeifer96 102) at Claim 1(iii).

iv. “dynamically identifying a non-predefined sequence”

Claim 1 further recites: “for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message such that the

output format of the components of the non-predefined sequence match the input format of the

next component in the non-predefined sequence.” Under Implicit’s apparent claim

constructions, Kerr in view of Pfeifer96 renders obvious this element.

When the first packet of a new flow is received, Kerr “builds a new entry in the flow

cache” for it, “determines proper treatment of packets . in the message flow,” and records that

information in the flow entry. See Ex. B10 at 4:12-52; Section 111 above. As explained above,

part of determining the “proper treatment” for packets in the flow would include performing the

Pfeifer96 procedure of determining if the flow should be re-routed through a converter chain for

delivery to a user at his actual location—and dynamically generating a suitable chain if so. See

Section iii above. As explained elsewhere above, this Pfeifer96 procedure would read on these

claim elements. See Section V.A.1 (Pfeifer96 102) at Claim I(iv).

175

JNPR-IMPL_30024_

Page 175 of 272 Implicit Exhibit 2001
Juniper v. Implicit

“selecting individual components”

Claim 1 further recites that “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components after the first packet is

received.” Under Implicit’s apparent claim constructions, Pfeifer96 discloses this element.

As explained above, part of determining the “proper treatment” for packets in the flow

would include performing the Pfeifer96 procedure of determining if the flow should be re-routed

through a converter chain for delivery to a user at his actual location. See Section ili above. As

explained above, this Pfeifer96 procedure would read on these claim elements. See Section

V.A.1 (Pfeifer96 102) at Claim I(iv).

vi. “storing an indication of... the identified components”

Claim 1 further recites “storing an indication of each of the identified components so that

the non-predefined sequence does not need to be re-identified for subsequent packets of the

message.” Under Implicit’s apparent claim constructions, Pfeifer96 discloses this element.

As explained above, it was obvious that a reference to the dynamically generated

converter chain for a flow would be stored in the flow’s entry. See Section iti above. Kerr

explains the purpose of its flow entries and their implementation as follows:

It would therefore be advantageous to provide techniques in which

the amount of processing required for any individual packet could

be reduced. With inventive techniques described herein,

information about message flow patterns is used to identify packets
for which processing has already been determined, and therefore to

process those packets without having to re-determine the same

processing. The amount of processing required for any individual

packet is therefore reduced... .

Thus, in a preferred embodiment, the routing device 140 does not

separately determine, for each packet 150 in the message flow

160, the information stored in the entry in the flow cache. Rather,

when routing a packet 150 in the message flow 160, the routing
device 140 reads the information from the entry in the flow

176

JNPR-IMPL_30024_

Page 176 of 272 Implicit Exhibit 2001
Juniper v. Implicit

cache and treats the packet 150 according to the information in the

entry in the flow cache.

Ex. B10 at 1:29-37, 4:64-5-4 (emphasis added).

vii. “state information”

Claim 1 further recites “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

retrieved state information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the message.” Under

Implicit’s apparent claim constructions, Pfeifer96 discloses this “state information” element.

As explained above, the system of Kerr in view of Pfeifer96 would incorporate the

dynamically generated converter chains of Pfeifer96, and these would read on these claim

elements. See Section iii; Section V.A.1 (Pfeifer96 103) at Claim 1(vii).

(b) Claims 15 and 35

The combination of Kerr and Pfeifer would also render obvious claims 15 and 35, for the

reasons set forth immediately above as to claim 1, and in light of the fact that both Kerr and

Pfeifer separately disclose every limitation of claims 15 and 35 for the reasons set forth in

Section V.A.1 and V.B.1.

Decasper98 (Exhibit 25)

The article “Router Plugins: A Software Architecture for Next Generation Routers” by

Dan Decasper ef al. (“Decasper98”) was published in October 1998. Decasper98 was not

considered during prosecution of the ‘163 patent.

1. Decasper98 Anticipates Claims 1, 15, and 35 Under § 102(a), (b)

177

JNPR-IMPL_30024_

Page 177 of 272 Implicit Exhibit 2001
Juniper v. Implicit

(a) Claim 1

i. “A method... for processing a message”

Claim | recites: “A method in a computer system for processing a message having a

sequence of packets, the method comprising... .” Under Implicit’s apparent claim

constructions, Decasper98 discloses this element.

Decasper98 teaches “an extensible and modular software architecture for high-

performance .. . routers” which “allows code modules called plugins to be dynamically loaded

into the kernel and configured at run time.” Ex. 25 at 11. Under Implicit’s apparent claim

constructions, a router capable of implementing such a software architecture would comprise “a

computer system.”

Claim 1 further recites the method is “for processing a message having a sequence of

packets.” Decasper98 explains: “it 1s very important to be able to quickly and efficiently classify

packets into flows, and to apply different policies to different flows; these are both things that

our architecture excels at doing.” Ex. 25 at 2. Flows may represent “longer lived packet

streams”:

Because the deployment of multimedia data sources and

applications (e.g. real-time audio/video) will produce longer lived

packet streams with more packets per session than is common in

today’s environment, an integrated services router architecture

should support the notion of flows and build upon it.

id. at A flow is defined as a group of packets which satisfy a specific filter. See id. at 3 (‘Sets

of flows are specified using fi/ters Filters can also match individual end-to-end application

flows”). at3. A flow would comprise a “message” under Implicit’s apparent claim

constructions. See Section IV.C.

ii. “a plurality of components”

178

JNPR-IMPL_30024_

Page 178 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 1 further recites: “providing a plurality of components, each component being a

software routine for converting data with an input format into data with an output format.”

Under Implicit’s apparent claim constructions, Decasper98 discloses this element.

Decasper98 teaches that “[o]ne of the novel features of our design is the ability to bind

different plugins to individual flows.” /d. at 1.

These “plugins” are software routines under Implicit’s apparent claim constructions. See

id. at 2 (‘plugins are kernel software modules that are . . . responsible for performing certain

functions on specified network flows.”).

These “plugins” also convert data with an input format into data with an output format.

Under Implicit’s apparent claim construction, all of the plugins taught by Decasper98 would read

on these claim elements, including “plugins implementing IPv6 options, plugins for packet

scheduling ... plugins for IP security a routing plugin, a statistics gathering plugin...a

firewall plugin,” and so on. Ex. 25 at 4. Additional examples are set forth below.

(a) IP security components

As a first group of examples, Decasper98 teaches multiple plugin components for

implementing “IP security,” which refers to IP security standards including RFC 1825 (“Security

Architecture for the Internet Protocol”), RFC 1826 (‘IP Authentication Header”), RFC 1827 (“IP

Encapsulating Security Payload”), and RFC 1829 (“The ESP DES-CBC Transform”). See Ex.

25 at 2 (“plugins for IP Security” citing footnote “[2]”), 12 (footnote “[2]” citing “RFC 1825”);

Ex. 26 (RFC 1825) at 3 (citing “two specific headers . . . used to provide security in IPv4 and

179

JNPR-IMPL_30024_

Page 179 of 272 Implicit Exhibit 2001
Juniper v. Implicit

IPv6” which may be added to a packet: an authentication header (detailed in RFC 1826) and an

encryption header (detailed in RFC 1827)).”

message
pluck

registers
to

phugins

registers Pe
callback

fet

forwards

messages =
Ex. 25 at 4 (Figure 2, showing multiple “IPSEC” plugins: “SEC1 SEC2 SEC3”).

As taught by both Decasper98 and RFC 1825, these IP security operations are used to

form virtual private networks. Compare Ex. 25 at 5 (“IP security processing has to be done if the

system is configured as entry point into a virtual private network”), Ex. 26 (RFC 1825) at 4

(“building private virtual networks across an untrusted backbone”).

A plugin component which performed encryption on a packet in the manner described by

RFC 1825 would add an “IP Encapsulating Security Payload ... header” to the packet. See Ex.

26 (RFC 1825) at 3. Under Implicit’s apparent claim constructions, this would comprise

“converting data with an input format into data with an output format.”

A plugin component which performed authentication on a packet in the manner described

by RFC 1825 would add an “IP Authentication Header” to the packet. /d. Under Implicit’s

RFC 1825 is relied on by Decasper98, and is cited throughout this section solely to

help explain Decasper98. See MPEP § 2205; Ex. 25 at 2, 7, 12 (Decasper98 citations to RFC

1825).

180

JNPR-IMPL_30024_

Page 180 of 272 Implicit Exhibit 2001
Juniper v. Implicit

apparent claim constructions, this would comprise “converting data with an input format into

data with an output format.”

(b) IPv6 options components

As a second group of examples, Decasper98 teaches multiple “plugins implementing

IPv6 options.” Ex. 25 at 4. See also id. at 6 (some plugins “can be very simple (e.g., a dozen

lines of code for an IP option plugin)”) (further clarifying there would be multiple such option

plugins).

sete Kernel

meceage
pluci

i registers©
PIMGINS "eiaite

OPTS PSES

Id. at 4 (Figure 2, showing multiple “IPOPT” plugins: “OPT1 OPT2 OPT3”).

Components which perform such IPv6 option processing would add or remove IPv6

option headers in the course of processing the packet.” Under Implicit’s apparent claimp p g p p pp

0
See, e.g., Ex. 29 (“IPv6: The New Internet Protocol” by Christian Huitema) (1997) at

15 (figure showing “Daisy Chain” of “extension headers”), 25 (“recommended order” of
IPv6 extension headers includes “2. Hop-by-Hop options header 3. Destination options header”;

““onion-peeling’ procedure” for extension headers wherein “[e]ach successive layer would be

processed in turn, just like removing each layer of an onion in turn”). This reference is cited in

this context solely to help explain Decasper98, which refers to IPv6 options. See MPEP § 2205.

18]

JNPR-IMPL_30024_

Page 181 of 272 Implicit Exhibit 2001
Juniper v. Implicit

constructions, this would comprise “converting data with an input format into data with an

output format.”

iit. “dynamically identifying a non-predefined sequence”

Claim | further recites: “for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message such that the

output format of the components of the non-predefined sequence match the input format of the

next component in the non-predefined sequence, wherein dynamically identifying includes

selecting individual components to create the non-predefined sequence of components after the

first packet is received.” Under Implicit’s apparent claim constructions, Decasper98 discloses

this element—and it does so in at least two distinct manners, as will be explained below.

When the first packet of a new flow arrives, Decasper98 performs an expensive series of

filter operations to determine the correct sequence of plugin components to be applied to the

flow. See Ex. 25 at 5-6 (“The processing of the first packet of a new flow . . . involves n filter

table lookups to create a single entry in the flow table for the new flow.”). This expensive series

of filter operations does not need to be repeated for subsequent packets of the flow, because the

new “entry in the flow table serves as a fast cache for future lookup of packets belonging to

that flow,” and the entry “stores pointers to the appropriate plugins.” /d. at 5. Performance is

thus enhanced for subsequent packets of the flow, since “[u]sually, filter table lookups are much

slower than flow table lookups.” /d. See also id. at 3 (“Subsequent packets get this information

from a fast flow cache which temporarily stores the information gathered by processing the first

packet.’”).

Decasper98 assigns the sequence of plugins to the flow on the basis of lookups in

multiple independent “filter tables.” E.g., id. at 5-7 (“The processing of the first packet of a new

flow ... involves 7 filter table lookup to create a single entry in the flow table for the new

182

JNPR-IMPL_30024_

Page 182 of 272 Implicit Exhibit 2001
Juniper v. Implicit

flow”), 7 (multiple lookups (in different filter tables)”). a first filter table determines

whethera first plugin is added to the sequence, a second independent filter table determines

whether a second plugin is added, a third independent filter table determines whether a third

plugin is added, and so on. See id. at 5-7.

This leads “exponentially” to an enormous number of possible sequences that might be

applied to the first packet of a flow when it arrives, “even with very few installed filters.” See id.

at These various possible sequences are not stored or enumerated anywhere in the system

ahead of time. Instead, the sequence of plugins for a flow is generated algorithmically when the

first packet of a flow arrives, by applying a series of filter operation to packet data which was not

available to the system until that moment. See id. at 5-7.

Decasper98 explicitly considers and rejects a “theoretically possible” alternative

approach, which is to replace this system of multiple independent filters with “a single global

filter table.” /d. at 7. Under this alternative approach, only a single filter would apply to a

particular flow, and that single filter would specify the entire sequence of components to be

applied toit. See id. When the first packet arrived, the system would find the single matching

filter and then essentially just read off the sequence of components to be applied to that flow.

See id. Thus, the sequence would be pre-defined and readily identifiable as such in a specific

filter entry, even before the first packet arrived.

However, Decasper98 rejects this approach as “practically infeasible because the space

requirements for the global table can, even with very few installed filters, increase very quickly

(exponentially) to unacceptable levels.” /d. In other words, Decasper98’s multiple filter table

21

Compare to Implicit’s Infringement Contentions for this same claim element: “Because

of the configurability of policy expressions, and traffic/applications specifications, there are near

infinite resultant processing sequences — non-predefined — which will execute.” Ex. 36-B at 16-

17,

183

JNPR-IMPL_30024_

Page 183 of 272 Implicit Exhibit 2001
Juniper v. Implicit

approach implies so many potential valid sequences that it is impossible to even enumerate them

all ahead of time in memory—since they would not fit.

Instead, Decasper98 adopts an algorithmic approach where the correct sequence is

generated dynamically on demand, by applying the series of multiple filters to the first packet

when it arrives. Thus, under Implicit’s apparent claim constructions, Decasper98 discloses “for

the first packet of the message, dynamically identifying a non-predefined sequence of

components for processing the packets of the message.”

Decasper98 discloses this element in another manner as well. Implicit has characterized

the “dynamically identifying” element as encompassing the ability of a network “administrator”

to modify or create “Policy Files to change how traffic is managed at runtime.” Ex. 37-D

[Implicit Technical Tutorial] at 35; see generally id. at 26-42. For example, Implicit has applied

this claim construction to the example of a “system administrator” who can “dynamically”

implement changing policies to block or permit access to YouTube for certain times or users:

The beauty — and object — of the Implicit system lay in its flexibility.
Since a stateful path was not identified and instantiated until post-first
packet, the system could be changed, dynamically on the fly. New

components could be added, new rules or policies developed, all as

new needs arose. For example, a system administrator could decide

how to process particular types of traffic (no You Tube between noon

and one) and then change the rules — or policies — the next minute or

the next day (only CEO gets You Tube).

Ex. 37-A [Implicit Opening Claim Construction Brief] at 5 (emphasis added).

Decasper98 discloses “dynamically identifying” under this apparent claim construction as

well:

Shown below are the commands necessary to load and configure [a

particular packet scheduling] plugin; this will give the reader a feel

for the simplicity and elegance with which plugins can be put into

operation. Note that these commands can be executed at any time,
even when network traffic is transiting through the system... .

184

JNPR-IMPL_30024_

Page 184 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Loading the plugin... . [specific load command given]

Creating an instance... . [specific create command given]

Registering an instance... . [specific registration command given]

Addingafilter: this specifies a filter which matches all traffic

originating at IPv6 source address 3ffe:2000:400:11::4 and sets the

reserved bandwidth for all flows matching this filter to 830%

[specific filter command given]

From now on, all flows originating from the specified source

address will get at least 80% of the link bandwidth. Note that [this

plugin] can be turned off any time by unbinding or freeing the

instance or unloading the plugin module (which frees all instances

of the plugin automatically).

Ex. 25 at 9-10 (emphasis added). Because an administrator can add and configure plugins “at

any time, even when network traffic is transiting through the system,” Decasper98 clearly reads

on this Implicit construction of these “dynamically identifying” claim elements as well. /d. at 9.

Thus in at least two manners, Decasper98 discloses this “dynamically identifying” claim

element under Implicit’s apparent claim constructions.

Decasper98 also teaches “that the output format of the components of the non-predefined

sequence match the input format of the next component in the non-predefined sequence.” See

Claim (showing “providing a plurality of components, each component being a software

routine for converting data with an input format into data with an output format”) above.

Decasper98 also teaches “selecting individual components to create the non-predefined

sequence of components after the first packet 1s received.” As explained above, after the first

packet of a flow arrives, Descapser98 applies a series of independent filters to it, each of which

may select a different individual plugin. /d. at 5-7. See also, e.g., id. at 4 (Figure 2, showing

various individual plugins that might be selected within each category, e.g., “BMP1 BMP2

BMP3”). The very purpose of this architecture is to apply the right specific individual plugins in

185

JNPR-IMPL_30024_

Page 185 of 272 Implicit Exhibit 2001
Juniper v. Implicit

a tailored manner to each particular flow. E.g., id. at 2 (“it is very important to be able to quickly

and efficiently classify packets into flows, and to apply different policies to different flows’), 3,

7.

iv. “storing an indication of... the identified components”

Claim 1 further recites “storing an indication of each of the identified components so that

the non-predefined sequence does not need to be re-identified for subsequent packets of the

message.” Under Implicit’s apparent claim constructions, Decasper98 discloses this element.

Decasper98 explains each flow has its own “entry” in a “flow table.” /d. at 5 (including

“a flow table entry unambiguously identifies a particular flow’). As the sequence of individual

plugins for a flow is determined by applying a series of “filter tables,” pointers to the correct

plugin instances are returned and then “stored in the row of the flow table which corresponds to

our packet’s flow.” See id. at 5-6. And thus, “[e]ach flow table entry stores pointers to the

appropriate plugins.” /d. at 5.

Decasper98 further explains the reason for storing an indication of each identified plugin

component in this manner is to enhance performance: “filter table lookups are much slower than

flow table lookups,” and the “entry for a flow in the flow table serves as a fast cache for future

lookups of packets belonging to that flow.” Jd. at 5. Thus, the initial cycle of evaluating filter

tables “is executed only for the first packet arriving on an uncached flow,” while “[s]ubsequent

packets follow a faster path because of the cached entry in the flow table.” at 5-6.

“state information”

Claim 1 further recites “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

186

JNPR-IMPL_30024_

Page 186 of 272 Implicit Exhibit 2001
Juniper v. Implicit

retrieved state information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the message.” Under

Implicit’s apparent claim constructions, Decasper98 discloses this “state information” element.

Implicit has taken a broad view of the “state information” limitations, arguing that they

cover the retrieval, use, and storage of the identified sequence of components (e.g., a flow

record) after the first packet is received. See Section IV.C. As demonstrated above (for the

“storing an indication” element), Decasper98 retrieves, uses, and stores flow records in this

manner to facilitate processing of packets in the same message after the first packet is received

and a flow entry built.

Decasper98 also discloses the retrieval, use, and storage of state information on a

component-by-component basis, as shown by the following examples. Since Decasper98

teaches that its plugin components are selected on the basis of separate, independent filter tables,

virtually any combination of these components could be applied to a particular flow.

(a) IP security components

As a first group of examples, Decasper98 teaches multiple plugin components for

implementing “IP security,” which refers to IP security standards including RFC 1825 (“Security

Architecture for the Internet Protocol”). See Ex. 25 at 2 (“plugins for IP Security” citing

footnote 12 (footnote “[2]” citing “RFC 1825”). RFC 1825 explains that various forms of

state information would be maintained by these components, including, e.g., “Key(s) used with

the authentication algorithm”; “Key(s) used with the encryption algorithm”; “Authentication

algorithm and algorithm mode being used”; “Encryption algorithm, algorithm mode, and

transform being used”; “cryptographic synchronisation or initialisation vector field for the

encryption algorithm”; “Lifetime of the key or time when key change should occur”; and

187

JNPR-IMPL_30024_

Page 187 of 272 Implicit Exhibit 2001
Juniper v. Implicit

“Lifetime of [the] Security Association.” Ex. 9 (RFC 1825) at 5-6.” Under Implicit’s apparent

claim constructions, maintaining such state information would read on these “state information”

claim elements.

(b) IPv6 options components

As a second group of examples, Decasper98 teaches multiple “plugins implementing

IPv6 options.” Ex. 25 at 4. Decasper98 cites the IPv6 specification (RFC 1883), which explains

how state information may be maintained on a per-flow basis to support IPv6 options. See id.

(Decasper98) at 12 (citation to “RFC 1883”: “Internet Protocol, Version 6 (IPv6)

Specification”); Ex. 28 (RFC 1883) at 29 (“Routers are free to... . set up flow-handling state for

any flow... .arouter may process its IPv6 header .. includ[ing] . . . updating a hop-by-hop

option... The router may then choose to ‘remember’ the results of those processing steps and

cache that information... . Subsequent packets ... may then be handled by referring to the

cached information”). Under Implicit’s apparent claim constructions, maintaining such state

information would read on this “state information” element.

(c) statistics gathering component

As another example, Decasper98 teaches “a statistics gathering plugin for network

management applications.” Ex. 25 at 4. “[N]etwork management applications . . . typically need

to monitor transit traffic at routers in the network, and to gather and report various statistics

thereof.” /d. at 2. In order to gather such statistics, this plugin would clearly need to maintain

state information: e.g., arithmetic counts of bytes or packets through the router which would be

retrieved, updated, and stored again with each packet. Under Implicit’s apparent claim

2
As explained above, RFC 1825 is relied on by Decasper98, and is cited throughout this

section solely to help explain Decasper98. See MPEP § 2205; Ex. 25 at 2, 7, 12 (Decasper98
citations to RFC 1825).

188

JNPR-IMPL_30024_

Page 188 of 272 Implicit Exhibit 2001
Juniper v. Implicit

constructions, maintaining such state information would read on this “state information”

element.

(d) packet scheduling component

As another example, Decasper98 teaches “packet scheduling plugins,” including one

called “Deficient Round Robin [DRR]” which “implement[s] fair queuing among. . . flows.” /d.

at 9. Using DRR, it is possible for an administrator to stipulate that “all flows matching” a

certain “filter” should “get at least 80% of the link bandwidth.” /d. at 10. In order for the plugin

to enforce this limit, is would need to keep running track of the amount of bandwidth these flows

are using---which would entail updating state information regarding bandwidth consumption as

the packets in these flows are processed (and thereby contribute to that consumption). Under

Implicit’s apparent claim constructions, maintaining such state information would read on this

“state information” element.

(b) Claim 15

i. “demultiplexing packets of messages”

Claim 15 recites: “A method in a computer system demultiplexing packets of messages.”

Decasper98 discloses these elements. See Claim 1(i) (showing “A method in a computer system

for processing a message having a sequence of packets”) above. Under Implicit’s apparent claim

constructions, “demultiplexing” a packet is satisfied by routing a packet to the correct sequence

of components for processing it—and Decasper98 performs this function. See Section IV.C and,

e.g., Claim (showing “dynamically identifying a non-predefined sequence of components

for processing the packets of the message”) above.

ii. “dynamically identifying a non-predefined sequence”

Claim 15 further recites “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

189

JNPR-IMPL_30024_

Page 189 of 272 Implicit Exhibit 2001
Juniper v. Implicit

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Decasper98 discloses this element. See Claim

1(itt) (showing “for the first packet of the message, dynamically identifying a non-predefined

sequence of components for processing the packets of the message”) and Claim 1(iv) (showing

“storing an indication of each of the identified components so that the non-predefined sequence

does not need to be re-identified for subsequent packets of the message”) above.

iii. “different... sequences of components can be identified”

Claim 15 further recites “different non-predefined sequences of components can be

identified for different messages.” Under Implicit’s apparent claim constructions, Decasper98

discloses this element.

Decasper98 explains: “it is very important to be able to... apply different policies to

different flows.” Ex. 25 at 2. This is why Decasper98 applies a series of filters to each flow,

wherein each filter may select a specific plugin component implementing a different policy. See

id. at 5-7.

iv. “each component being a software routine”

Claim 15 further recites “each component being a software routine.” Under Implicit’s

apparent claim constructions, Decasper98 discloses this element. See Claim 1(ii) (showing “each

component being a software routine”) above.

“selecting individual components”

Claim 15 further recites “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components.” Under Implicit’s apparent

claim constructions, Decasper98 discloses this element. See Claim 1(iii) (showing “dynamically

identifying includes selecting individual components to create the non-predefined sequence of

components”) above.

190

JNPR-IMPL_30024_

Page 190 of 272 Implicit Exhibit 2001
Juniper v. Implicit

vi. “state information”

Claim 15 finally recites “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Under Implicit’s

apparent claim constructions, Decasper98 discloses this element. See Claim 1(v) (showing

similar “state information” element) above..

(c) Claim 35

i. “instructions for demultiplexing packets of messages”

Claim 35 recites: “A computer-readable medium containing instructions for

demultiplexing packets of messages.” Under Implicit’s apparent claim constructions,

Decasper98 discloses this element.

Decasper98 teaches “router plugins” which are “software modules that are dynamically

loaded into the kernel and are responsible for performing certain specific functions on specified

network flows.” Ex. 25 at 2. One of ordinary skill would recognize such software modules

would be dynamically loaded from a “computer-readable medium,” such as a hard disk in the

device. See also Claim 15(1) showing (“demultiplexing packets of messages”) above.

ii. “dynamically identifying a... non-predefined sequence”

Claim 35 recites: “dynamically identifying a message-specific non-predefined sequence

of components for processing the packets of each message upon receiving the first packet of the

message.” Under Implicit’s apparent claim constructions, Decasper98 discloses this element.

See Claim (showing “for the first packet of the message, dynamically identifying a non-

predefined sequence of components for processing the packets of the message’) above.

ili. “subsequent packets ... can use the... sequence”

19]

JNPR-IMPL_30024_

Page 191 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 35 further recites that “subsequent packets of the message can use the message-

specific non-predefined sequence identified when the first packet was received.” Under

Implicit’s apparent claim constructions, Decasper98 discloses this element. See Claim I(iv)

(showing “storing an indication of each of the identified components so that the non-predefined

sequence does not need to be re-identified for subsequent packets of the message”) above.

iv. “selecting indvidual components”

Claim 35 further recites that “dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of components.” Under

Implicit’s apparent claim constructions, Decasper98 discloses this element. See Claim 1(i11)

(showing “dynamically identifying includes selecting individual components to create the non-

predefined sequence of components after the first packet is received”) above.

“state information”

Claim 35 further recites “for each packet of the message, invoking the identified non-

predefined sequence of components in sequence to perform the processing of each component

for the packet wherein each component saves message-specific state information so that that

component can use the save message-specific state information when that component performs

its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Decasper98 discloses this element. See Claim 1(v) (showing similar “state

information” element) above.

2. Decasper98 Renders Obvious Claims 1, 15, and 35 Under § 102(a), (b)

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed or inherent over Decasper98, then the inclusion of those aspects certainly would be

obvious over Decasper98, under 35 U.S.C. § 103.

(a) Claim 1

192

JNPR-IMPL_30024_

Page 192 of 272 Implicit Exhibit 2001
Juniper v. Implicit

i, “A method in a computer system”

Claim 1 recites: “A method in a computer system for processing a message having a

sequence of packets, the method comprising... .” Under Implicit’s apparent claim

constructions, Decasper98 renders obvious this element.

Decasper98 teaches “an extensible and modular software architecture for high-

performance. . . routers” which “allows code modules called plugins to be dynamically loaded

into the kernel and configured at run time.” Ex. 25 at 11. It was obvious to run this software

architecture on a “computer system.”

Claim 1 further recites the method is “for processing a message having a sequence of

packets.” Under Implicit’s apparent claim constructions, Decasper98 discloses this element. See

Section V.C.1 (Decasper98 102) at Claim 1(i) (showing same element).

il. “a plurality of components”

Claim 1 further recites: “providing a plurality of components, each component being a

software routine for converting data with an input format into data with an output format.”

Under Implicit’s apparent claim constructions, Decasper98 renders obvious this element.

Decasper98 teaches: “One of the novel features of our design is the ability to bind

different plugins to individual flows.” Ex. 25 at 1. “[P]lugins are .. . software modules that are .

.. responsible for performing certain functions on specified network flows,” and to the extent a

software module differs from a software routine, it was obvious to implement these plugins as

software routines.

These “plugins” also convert data with an input format into data with an output format.

Under Implicit’s apparent claim construction, obvious implementations of all of the plugins

taught by Decasper98 would read on these claim elements, including “plugins implementing

IPv6 options, plugins for packet scheduling . . . plugins for IP security a routing plugin, a

193

JNPR-IMPL_30024_

Page 193 of 272 Implicit Exhibit 2001
Juniper v. Implicit

statistics gathering plugin . . . a firewall plugin,” and so on. Ex. 25 at 4. Additional examples

are set forth below.

(a) IP security components

As a first group of examples, Decasper98 teaches multiple plugin components for

implementing “IP security,” which refers to IP security standards including RFC 1825 (“Security

Architecture for the Internet Protocol”), RFC 1826 (“IP Authentication Header”), and RFC 1827

(“IP Encapsulating Security Payload”). See Ex. 25 at 2 (“plugins for IP Security” citing footnote

12 (footnote “[2]” citing “RFC 1825”); Ex. 26 (RFC 1825) at 3 (citing “two specific

headers . used to provide security in IPv4 and IPv6” which may be added to a packet: an

authentication header (detailed in RFC 1826) and an encryption header (detailed in RFC

sets Kernel

message
caet registers

to plugins
sisters

registers
caliback

fet

Ex. 25 at 4 (Figure 2, showing multiple “IPSEC” plugins: “SEC1 SEC2 SEC3”).

3 REC 1825 is relied on by Decasper98, and is cited throughout this section solely to

help explain Decasper98. See MPEP § 2205; Ex. 25 at 2, 7, 12 (Decasper98 citations to RFC

1825).

194

JNPR-IMPL_30024_

Page 194 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Since there are multiple distinct and independent IP security operations which may be

performed (e.g., encryption and/or authentication) and multiple distinct IP security plugins (e.g.,

“SEC1 SEC2 SEC3”), it was obvious to at least provide a distinct plugin for authentication and a

second distinct plugin for encryption.

A plugin component which performed encryption on a packet in the manner described by

RFC 1825 would add an “IP Encapsulating Security Payload ... header” to the packet. See Ex.

26 (RFC 1825) at 3. Under Implicit’s apparent claim constructions, this would comprise

“converting data with an input format into data with an output format.”

A plugin component which performed authentication on a packet in the manner described

by RFC 1825 would add an “IP Authentication Header” to the packet. /d. at 3. Under Implicit’s

apparent claim constructions, this would comprise “converting data with an input format into

data with an output format.”

Thus, considering merely these two obvious plugin components alone, they would

comprise “a plurality of components, each component being a software routine for converting

data with an input format into data with an output format,” under Implicit’s apparent claim

constructions.

(b) IPv6 options components

As asecond group of examples, Decasper98 teaches multiple “plugins implementing

IPv6 options.” Ex. 25 at 4.

195

JNPR-IMPL_30024_

Page 195 of 272 Implicit Exhibit 2001
Juniper v. Implicit

fitters |

massage recisters
Lo ORI Le eennennnnnnnnnntntnnne

Id. at 4 (Figure 2, showing multiple “IPOPT” plugins: “OPT1 OPT2 OPT3”).

Given the known “onion-peeling procedure” which is used to process these IPv6 option

headers, it was at least obvious for these IPv6 options components to add or remove these

headers in the course of processing a packet.2* Under Implicit’s apparent claim constructions,

this would comprise “converting data with an input format into data with an output format.”

iit. “dynamically identifying a non-predefined sequence”

Claim 1 further recites: “for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message such that the

output format of the components of the non-predefined sequence match the input format of the

next component in the non-predefined sequence, wherein dynamically identifying includes

selecting individual components to create the non-predefined sequence of components after the

See, e.g., Ex. 29 (“IPv6: The New Internet Protocol” by Christian Huitema) (1997) at

15 (figure showing “Daisy Chain” of “extension headers”), 25 (“recommended order” of
IPv6 extension headers includes “2. Hop-by-Hop options header 3. Destination options header”;

““onion-peeling’ procedure” for extension headers wherein “[e]ach successive layer would be

processed in turn, just like removing each layer of an onion in turn”). This reference is cited in

this context solely to help explain Decasper98, which refers to IPv6 options. See MPEP § 2205.

196

JNPR-IMPL_30024_

Page 196 of 272 Implicit Exhibit 2001
Juniper v. Implicit

first packet is received.” Under Implicit’s apparent claim constructions, Decasper98 renders

obvious this element.

As explained above, Decasper98 discloses this element in at least two distinct manners.

See Section V.C.1 (Decasper98 102) at Claim

Regarding the limitation “such that the output format of the components ... match the

input format of the next component,” it was well-known to those of ordinary skill in the art that

certain operations on a packet must be performed in a certain order: e.g., if a packet is first

converted in foto into an encrypted format by a first component, a subsequent component would

be unable to, e.g., process any IPv6 option headers in the packet, or to insert any new ones

(because it was expecting to receive the packet in an unencrypted format). Thus, it was certainly

obvious for one of ordinary skill in the art to arrange the sequence of components in a

compatible manner, such that the output format of one matches the input format of the next.

iv. “storing an indication of... the identified components”

Claim 1 further recites “storing an indication of each of the identified components so that

the non-predefined sequence does not need to be re-identified for subsequent packets of the

message.” Under Implicit’s apparent claim constructions, Decasper98 discloses this element.

See Section V.C.1 (Decasper98 102) at Claim (iv).

“state information”

Claim 1 further recites “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

retrieved state information; and storing state information relating to the processing of the

component with the packet for use when processing the next packet of the message.” Under

197

JNPR-IMPL_30024_

Page 197 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Implicit’s apparent claim constructions, Decasper98 renders obvious this “state information”

element.

Implicit has taken a broad view of the “state information” limitations, arguing that they

cover the retrieval, use, and storage of the identified sequence of components (e.g., a flow

record) after the first packet is received. See Section IV.C. As demonstrated above (for the

“storing an indication” element), Decasper98 retrieves, uses, and stores flow records in this

manner to facilitate processing of packets in the same message after the first packet is received

and a flow entry built.

Decasper98 also renders obvious the retrieval, use, and storage of state information on a

component-by-component basis, as shown by the following examples. Since Decasper98

teaches that its plugin components are selected on the basis of separate, independent filter tables,

it was obvious that virtually any combination of these components would be applied to a

particular flow.

(a) IP security components

As a first group of examples, Decasper98 teaches multiple plugin components for

implementing “IP security,” which refers to IP security standards including RFC 1825 (“Security

Architecture for the Internet Protocol”), RFC 1826 (“IP Authentication Header’) (describing

authentication), RFC 1827 (“IP Encapsulating Security Payload”) (describing encryption), and

RFC 1829 (“The ESP DES-CBC Transform”) (describing an algorithm which “MUST” be

supported for encrypting packets). See Ex. 25 (Decasper98) at 2 (“plugins for IP Security” citing

198

JNPR-IMPL_30024_

Page 198 of 272 Implicit Exhibit 2001
Juniper v. Implicit

footnote 12 (footnote “[2]” citing “RFC 1825”); Ex. 26 (RFC 1825) at 10 (MUST

support”), 19-21 (citing “RFC 1826,” “RFC 1827,” “RFC

As explained above, it was obvious to provide separate plugin components for encryption

and authentication. See Claim above.

RFC 1825 explains that various forms of state information would be maintained by these

components, including, e.g., “Key(s) used with the authentication algorithm”; “Key(s) used with

the encryption algorithm”; “Authentication algorithm and algorithm mode being used”;

“Encryption algorithm, algorithm mode, and transform being used”; “cryptographic

synchronisation or initialisation vector field for the encryption algorithm”; “Lifetime of the key

or time when key change should occur”; and “Lifetime of [the] Security Association.” Ex. 9

(RFC 1825) at 5-6. Obvious implementations to maintain this state information would read on

this claim element, under Implicit’s apparent claim constructions. For example, both the

encryption and authentication component would maintain “Lifetime of the key or time when key

change should occur.” See id. Maintaining a “Lifetime of the key” (as opposed to maintaining

“time when key change should occur”) at least renders obvious a countdown implementation

wherein the remaining lifetime is updated with each invocation of the component.

Additionally, regarding the encryption component in particular, an obvious

implementation of its encryption technique would read on this claim element in still another

manner, under Implicit’s apparent claim constructions. RFC 1825 explains that the encryption

algorithm of RFC 1829 “MUST” be supported for encrypting packets. Ex. 26 (RFC 1825) at 10

(“the IP Encapsulating Security Payload MUST support the use of the Data Encryption Standard

*5
As explained above, RFC 1825 is relied on by Decasper98, and it and another standard

it cites (RFC 1829) are cited throughout this section solely to help explain Decasper98. See

MPEP § 2205; Ex. 25 at 2, 7, 12 (Decasper98 citations to RFC 1825).

199

JNPR-IMPL_30024_

Page 199 of 272 Implicit Exhibit 2001
Juniper v. Implicit

(DES) in Cipher-Block Chaining (CBC) Mode”), 21 (citing RFC 1829: “The ESP DES-CBC

Transform”). RFC 1829 explains that in order to apply its encryption technique, “an

Initialization Vector (IV) that is eight octets in length” must be placed in “[e]ach datagram” to be

encrypted (7.e., in each packet). See Ex. 27 (which is RFC 1829: “The ESP DES-CBC

Transform” by P. Karn et al.) (1995) at 1. RFC 1829 further explains that while the “method for

selection of IV values is implementation dependent,” a “common acceptable technique is simply

a counter, beginning with a random chosen value.” /d. One of ordinary skill would therefore be

familiar with this counter technique, and find it obvious to apply to the encryption component of

Decasper98. Doing so would clearly entail, for each packet: e.g., retrieving the previous counter

value, applying it the packet it, incrementing the counter value, and storing it for use when

encrypting the next packet. Under Implicit’s apparent claim constructions, this obvious

implementation would read on this claim element.

(b) IPv6 options components

As a second group of examples, Decasper98 teaches multiple “plugins implementing

IPv6 options.” Ex. 25 at 4. Decasper98 cites the IPv6 specification (RFC 1883), which explains

how state information may be maintained on a per-flow basis to support IPv6 options. See id.

(Decasper98) at 12 (citation to “RFC 1883”: “Internet Protocol, Version 6 (IPv6)

Specification”); Ex. 28 (RFC 1883) at 29 (‘Routers are free to... set up flow-handling state for

any flow... .arouter may process its [Pv6 header .. . includ[ing]. . . updating a hop-by-hop

option... The router may then choose to ‘remember’ the results of those processing steps and

cache that information Subsequent packets may then be handled by referring to the

cached information”). Because Decasper98 teaches “flows” and RFC 1883 explicitly discloses

this flow-based technique for processing IPv6 options, it was certainly at least obvious that

200

JNPR-IMPL_30024_

Page 200 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Decasper98’s IPv6 options plugins would apply the technique. Under Implicit’s apparent claim

constructions, such maintenance of state information would read on this “state information”

element.

(c) statistics gathering component

As another example, Decasper98 teaches “a statistics gathering plugin for network

management applications.” Ex. 25 at 4. “[N]etwork management applications . . . typically need

to monitor transit traffic at routers in the network, and to gather and report various statistics

thereof.” /d. at 2. In order to gather such statistics, it was certainly at least obvious for this

plugin to maintain state information comprising, e.g., arithmetic counts of bytes or packets

through the router which would be retrieved, updated, and stored again with each packet. Under

Implicit’s apparent claim constructions, such maintenance of state information would read on

this “state information” element.

(d) packet scheduling component

As another example, Decasper98 teaches “two packet scheduling plugins,” including one

called “Deficient Round Robin [DRR]” which “provides fair link bandwidth distribution among

different flows.” /d. at 9. In order for the plugin component to enforce such bandwidth

distribution, it was certainly at least obvious for it to maintain state information tracking the

amount of bandwidth being used, and to update this state information upon processing each

packet to reflect the packet’s contribution to this bandwidth. Under Implicit’s apparent claim

constructions, such maintenance of state information would read on this “state information”

element.

(e) firewall component

201

JNPR-IMPL_30024_

Page 201 of 272 Implicit Exhibit 2001
Juniper v. Implicit

As another example, Decasper98 teaches “a firewall plugin.” /d. at 4. It was well-known

to those of ordinary skill in the art that it was useful for firewall functions to be implemented in a

stateful manner, such that previously seen packets affect the processing of subsequent packets.”°

Under Implicit’s apparent claim constructions, such maintenance of state information of state

information would read on this “state information” element.

(b) Claim 15

i. “demultiplexing packets of messages”

Claim 15 recites: “A method in a computer system demultiplexing packets of messages.”

Under Implicit’s apparent claim constructions, Decasper98 discloses “demultiplexing packets of

messages” and renders obvious that the method would be performed in a “computer system.”

See Claim 10) and Section V.C.1 (Decasper98 102) at Claim 15(i) above.

ii. “dynamically identifying a non-predefined sequence”

Claim 15 further recites “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Decasper98 discloses this element. See Section

V.C.1 (Decasper98 102) at Claim (showing “for the first packet of the message,

dynamically identifying a non-predefined sequence of components for processing the packets of

the message”) and Claim I(iv) (showing “storing an indication of each of the identified

components so that the non-predefined sequence does not need to be re-identified for subsequent

packets of the message”) above.

ili. “different... sequences of components can be identified”

6
See, for example, the Shwed and Checkpoint references cited herein.

202

JNPR-IMPL_30024_

Page 202 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 15 further recites “different non-predefined sequences of components can be

identified for different messages.” Under Implicit’s apparent claim constructions, Decasper98

discloses this element. See Section V.C.1 (Decasper98 102) at Claim above.

iv. “each component being a software routine”

Claim 15 further recites “each component being a software routine.” Under Implicit’s

apparent claim constructions, Decasper98 renders obvious this element. See Claim 1(ii)

(showing same element) above.

“selecting individual components”

Claim 15 further recites “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components.” Under Implicit’s apparent

claim constructions, Decasper98 discloses this element. See Section V.C.1 (Decasper98 102) at

Claim (showing same element) above.

Vi. “state information”

Claim 15 finally recites “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Under Implicit’s

apparent claim constructions, Decasper98 renders obvious this element. See Claim 1(v) above

(showing similar “state information” element).

(c) Claim 35

i. “instructions for demultiplexing packets of messages”

Claim 35 recites: “A computer-readable medium containing instructions for

demultiplexing packets of messages.” Under Implicit’s apparent claim constructions,

Decasper98 renders obvious this element.

203

JNPR-IMPL_30024_

Page 203 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Decasper98 teaches “router plugins” which are “software modules that are dynamically

loaded into the kernel and are responsible for performing certain specific functions on specified

network flows.” Ex. 25 at 2. It was obvious that such software modules would be dynamically

loaded from a “computer-readable medium,” such as a hard disk in the device.

ii. “dynamically identifying a... non-prede fined sequence”

Claim 35 recites: “dynamically identifying a message-specific non-predefined sequence

of components for processing the packets of each message upon receiving the first packet of the

message.” Under Implicit’s apparent claim constructions, Decasper98 discloses this element.

See Section V.C.1 (Decasper98 102) at Claim 1(iii) (showing “for the first packet of the

message, dynamically identifying a non-predefined sequence of components for processing the

packets of the message”) and Claim (showing “different non-predefined sequences of

components can be identified for different messages”) above.

iii. “subsequent packets... can use the... sequence”

Claim 35 further recites that “subsequent packets of the message can use the message-

specific non-predefined sequence identified when the first packet was received.” Under

Implicit’s apparent claim constructions, Decasper98 discloses this element. See Section V.C.1

(Decasper98 102) at Claim I(iv) (showing “storing an indication of each of the identified

components so that the non-predefined sequence does not need to be re-identified for subsequent

packets of the message’) above.

iv. “selecting indvidual components”

Claim 35 further recites that “dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of components.” Under

Implicit’s apparent claim constructions, Decasper98 discloses this element. See Section V.C.1

204

JNPR-IMPL_30024_

Page 204 of 272 Implicit Exhibit 2001
Juniper v. Implicit

(Decasper98 102) at Claim (showing “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components”) above.

“state information”

Claim 35 further recites “for each packet of the message, invoking the identified non-

predefined sequence of components in sequence to perform the processing of each component

for the packet wherein each component saves message-specific state information so that that

component can use the save message-specific state information when that component performs

its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Decasper98 renders obvious this element. See Claim 1(v) above (showing similar

“state information” element).

3. Decasper98 in View of RFC 1825 and RFC 1829 Renders Obvious

Claims 1, 15, and 35 Under § 103

The specification RFC 1825 (“Security Architecture for the Internet Protocol”) (Ex. 26,

“RFC 1825”) by R. Atkinson was published in August 1995. The specification RFC 1829 (“The

ESP DES-CBC Transform”) by P. Karn ef a/. was also published in August 1995. Neither was

considered during the prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 alone, then the inclusion of those aspects

certainly would be obvious over Decasper98 in view of RFC 1825 and RFC 1829, under

35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with RFC 1825 and RFC 1829

because Decasper98 expressly cites RFC 1825 to explain its “plugins for IP Security,” and RFC

1825 expressly cites RFC 1829 to explain an algorithm which “MUST” be supported for

encrypting packets. Ex. 25 (Decasper98) at 2 (“plugins for IP Security” citing footnote “[2]”),

205

JNPR-IMPL_30024_

Page 205 of 272 Implicit Exhibit 2001
Juniper v. Implicit

12 (footnote “[2]” citing “RFC 1825”); Ex. 26 (RFC 1825) at 10 (‘the IP Encapsulating Security

Payload MUST support the use of the Data Encryption Standard (DES) in Cipher-Block

Chaining (CBC) Mode”), 21 (citing RFC 1829: “The ESP DES-CBC Transform”).

i. “a plurality of components”

Claim 1 recites in pertinent part: “providing a plurality of components, each component

being a software routine for converting data with an input format into data with an output

format.” Under Implicit’s apparent claim constructions, Decasper98 in view of RFC 1825 and

RFC 1829 renders obvious this element.

(a) IP security components

Decasper98 teaches multiple plugin components for implementing “IP security,” which

refers to IP security standards including RFC 1825 (“Security Architecture for the Internet

Protocol”), RFC 1826 (“IP Authentication Header’), and RFC 1827 (“IP Encapsulating Security

Payload”). See Ex. 25 at 2 (“plugins for IP Security” citing footnote “[2]”), 12 (footnote “[2]”

citing “RFC 1825”); Ex. 26 (RFC 1825) at 3 (citing “two specific headers . . . used to provide

security in IPv4 and IPv6” which may be added to a packet: an authentication header (detailed in

RFC 1826) and an encryption header (detailed in RFC 1827)).

fitters

me¢sage
ta mbiae egisters

pruigins insiance

Messages

206

JNPR-IMPL_30024_

Page 206 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Ex. 25 at 4 (Figure 2, showing multiple “IPSEC” plugins: “SEC1 SEC2 SEC3”).

Since there are multiple distinct and independent IP security operations which may be

performed (e.g., encryption and/or authentication) and multiple distinct IP security plugins (e.g.,

“SEC1 SEC2 SEC3”), it was obvious to at least provide a distinct plugin for authentication and a

second distinct plugin for encryption.

A plugin component which performed encryption on a packet in the manner described by

RFC 1825 would add an “IP Encapsulating Security Payload ... header” to the packet. See Ex.

26 (RFC 1825) at 3. Under Implicit’s apparent claim constructions, this would comprise

“converting data with an input format into data with an output format.”

A plugin component which performed authentication on a packet in the manner described

by RFC 1825 would add an “IP Authentication Header” to the packet. Under Implicit’s

apparent claim constructions, this would comprise “converting data with an input format into

data with an output format.”

Thus, considering merely these two obvious plugin components alone, they would

comprise “a plurality of components, each component being a software routine for converting

data with an input format into data with an output format,” under Implicit’s apparent claim

constructions.

il. “state information”

Claim 1 finally recites in pertinent part: “for each of a plurality of packets of the message

in sequence, for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the component with the

previous packet of the message; performing the processing of the identified component with the

packet and the retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next packet of the

207

JNPR-IMPL_30024_

Page 207 of 272 Implicit Exhibit 2001
Juniper v. Implicit

message.” Under Implicit’s apparent claim constructions, Decasper98 in view of RFC 1825 and

RFC 1829 renders obvious this “state information” element.

(a) IP security components

Decasper98 teaches multiple plugin components for implementing “IP security,” which

refers to IP security standards including RFC 1825 (“Security Architecture for the Internet

Protocol”). See Ex. 25 at 2 (“plugins for IP Security” citing footnote “[2]”), 12 (footnote “[2]”

citing “RFC 1825”).

As explained above, it was obvious to provide separate plugin components for encryption

and authentication. See Claim 1(i)(a) above.

RFC 1825 explains that various forms of state information would be maintained by these

components, including, e.g., “Key(s) used with the authentication algorithm”; “Key(s) used with

the encryption algorithm”; “Authentication algorithm and algorithm mode being used”;

“Encryption algorithm, algorithm mode, and transform being used”; “cryptographic

synchronisation or initialisation vector field for the encryption algorithm”; “Lifetime of the key

or time when key change should occur’; and “Lifetime of [the] Security Association.” Ex. 9

(RFC 1825) at 5-6. Obvious implementations to maintain this state information would read on

this claim element, under Implicit’s apparent claim constructions. For example, both the

encryption and authentication component would maintain “Lifetime of the key or time when key

change should occur.” See id. Maintaining a “Lifetime of the key” (as opposed to maintaining

“time when key change should occur’) at least renders obvious a countdown implementation

wherein the remaining lifetime is updated with each invocation of the component.

Additionally, regarding the encryption component in particular, an obvious

implementation of its encryption technique would read on this claim element in still another

208

JNPR-IMPL_30024_

Page 208 of 272 Implicit Exhibit 2001
Juniper v. Implicit

manner, under Implicit’s apparent claim constructions. RFC 1825 explains that the encryption

algorithm of RFC 1829 “MUST” be supported for encrypting packets. Ex. 26 (RFC 1825) at 10

(“the IP Encapsulating Security Payload MUST support the use of the Data Encryption Standard

(DES) in Cipher-Block Chaining (CBC) Mode”), 21 (citing RFC 1829: “The ESP DES-CBC

Transform”). RFC 1829 explains that in order to apply its encryption technique, “an

Initialization Vector (IV) that is eight octets in length” must be placed in “[e]ach datagram” to be

encrypted in each packet). Ex. 27 (RFC 1829) at 1. RFC 1829 further explains that while

the “method for selection of IV values is implementation dependent,” a “common acceptable

technique is simply a counter, beginning with a random chosen value.” /d. It was therefore

obvious to apply this counter technique to the encryption component of Decasper98. Doing so

would clearly entail, for each packet: e.g., retrieving the previous counter value, applying it the

packet it, incrementing the counter value, and storing it for use when encrypting the next packet.

Under Implicit’s apparent claim constructions, this obvious implementation would read on this

claim element.

(b) Claim 15

i. “dynamically identifying a non-predefined sequence”

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Decasper98 in view of RFC 1825 and RFC 1829

renders obvious this element.

As explained above, one such obvious sequence would comprise a stateful encryption

component and a stateful authentication component. See Claim 1 above.

ii. “state information”

209

JNPR-IMPL_30024_

Page 209 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 15 finally recites in pertinent part: “for each packet of each message, performing

the processing of the identified non-predefined sequence of components of the message wherein

state information generated by performing the processing of a component for a packet is

available to the component when the component processes the next packet of the message.”

Under Implicit’s apparent claim constructions, Decasper98 in view of RFC 1825 and RFC 1829

renders obvious this element. See Claim 1(ii) above (showing similar “state information”

elements).

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of RFC 1825 and RFC 1829 renders obvious this element.

As explained above, one such obvious sequence would comprise a stateful encryption

component and a stateful authentication component. See Claim 1 above.

ii. “state information”

Claim 35 finally recites in pertinent part: “for each packet of the message, invoking the

identified non-predefined sequence of components in sequence to perform the processing of each

component for the packet wherein each component saves message-specific state information so

that that component can use the save message-specific state information when that component

performs its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Decasper98 in view of RFC 1825 and RFC 1829 renders obvious this element.

See Claim 1(ii) above (showing similar “state information” element).

210

JNPR-IMPL_30024_

Page 210 of 272 Implicit Exhibit 2001
Juniper v. Implicit

4. Decasper98 in View of RFC 1883 and Huitema Renders Obvious

Claims 1, 15, and 35 Under § 103

The specification RFC 1883 (“Internet Protocol, Version 6 (IPv6) Specification”) (Ex.

28, “RFC 1883”) by S. Deering ef a/. was published in December 1995. The book “IPv6: The

New Internet Protocol” (Ex. 29, “Huitema”) by Christian Huitema was published on October 28,

1997. Neither was considered during the prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98, then the inclusion of those aspects certainly

would be obvious over Decasper98 in view of RFC 1883 and Huitema, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with RFC 1883 and Huitema

because Decasper98 discloses “plugins implementing IPv6 options,” which are explained by

RFC 1883 and Huitema. Ex. 25 at 4 (“plugins implementing IPv6 options”). Moreover,

Decasper98 and Huitema expressly cite to RFC 1883. /d. at 12 (citation to “RFC 1883”); Ex. 29

at 43.

i. “a plurality of components”

Claim 1 recites in pertinent part: “providing a plurality of components, each component

being a software routine for converting data with an input format into data with an output

format.” Under Implicit’s apparent claim constructions, Decasper98 in view of RFC 1883 and

Huitema renders obvious this element.

(a) IPv6 options components

Decasper98 teaches multiple “plugins implementing IPv6 options.” Ex. 25 at 4.

21]

JNPR-IMPL_30024_

Page 211 of 272 Implicit Exhibit 2001
Juniper v. Implicit

message tegisters
to plugins

g

instance

id. at 4 (Figure 2, showing multiple “IPOPT” plugins: “OPT1 OPT2 OPT3”).

Given the “onion-peeling procedure” taught by Huitema to process these IPv6 option

headers, it was at least obvious for these IPv6 options components to add or remove these

headers in the course of processing a packet. See Ex. 29 (Huitema) at 15 (figure showing “Daisy

Chain” of IPv6 “extension headers”), 25 (“recommended order” of IPv6 extension headers

29,
includes “2. Hop-by-Hop options header 3. Destination options header”; “‘onion-peeling’

procedure” for extension headers wherein “[e]ach successive layer would be processed in turn,

just like removing each layer of an onion in turn”). Under Implicit’s apparent claim

constructions, this would comprise “converting data with an input format into data with an

output format.”

Thus, considering merely multiple IPv6 option components alone, or one or more IPv6

option components as combined with other components (e.g., a stateful encryption and/or

authentication component), these would comprise “a plurality of components, each component

being a software routine for converting data with an input format into data with an output

format,” under Implicit’s apparent claim constructions.

ii. “state information”

212

JNPR-IMPL_30024_

Page 212 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 1 finally recites in pertinent part: “for each of a plurality of packets of the message

in sequence, for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the component with the

previous packet of the message; performing the processing of the identified component with the

packet and the retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next packet of the

message.” Under Implicit’s apparent claim constructions, Decasper98 in view of RFC 1883 and

Huitema renders obvious this “state information” element.

(a) IPv6 options components

Decasper98 teaches multiple “plugins implementing IPv6 options.” Ex. 25 at 4.

Decasper98 cites the IPv6 specification (RFC 1883), which explains how state information may

be maintained on a per-flow basis to support IPv6 options. See id. at 12 (citation to “RFC

1883”); Ex. 28 (RFC 1883) at 29 (“Routers are free to... set up flow-handling state for any flow

....arouter may process its IPv6 header... . includ[ing]. updating a hop-by-hop option .

The router may then choose to ‘remember’ the results of those processing steps and cache that

information Subsequent packets... may then be handled by referring to the cached

information”). Because Decasper98 teaches “flows” and RFC 1883 explicitly discloses this

flow-based technique for processing IPv6 options, it was certainly at least obvious for

Decasper98’s IPv6 options plugins to apply the technique. Under Implicit’s apparent claim

constructions, such maintenance of state information would read on this “state information”

element.

(b) Claim 15

i. “dynamically identifying a non-predefined sequence”

213

JNPR-IMPL_30024_

Page 213 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Decasper98 in view of RFC 1883 and Huitema

renders obvious this element.

As explained above, one such obvious sequence would comprise multiple stateful IPv6

option components, or one or more stateful IPv6 option components as combined with other

components (e.g., a stateful encryption and/or stateful authentication component). See Claim 1

above.

il. “state information”

Claim 15 finally recites in pertinent part: “for each packet of each message, performing

the processing of the identified non-predefined sequence of components of the message wherein

state information generated by performing the processing of a component for a packet is

available to the component when the component processes the next packet of the message.”

Under Implicit’s apparent claim constructions, Decasper98 in view of RFC 1883 and Huitema

renders obvious this element. See Claim above (showing similar “state information”

elements).

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of RFC 1883 and Huitema renders obvious this element.

214

JNPR-IMPL_30024_

Page 214 of 272 Implicit Exhibit 2001
Juniper v. Implicit

As explained above, one such obvious sequence would comprise multiple stateful IPv6

option components, or one or more stateful IPv6 option components as combined with other

components (e.g., a stateful encryption and/or stateful authentication component). See Claim 1

above.

ii. “state information”

Claim 35 finally recites in pertinent part: “for each packet of the message, invoking the

identified non-predefined sequence of components in sequence to perform the processing of each

component for the packet wherein each component saves message-specific state information so

that that component can use the save message-specific state information when that component

performs its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Decasper98 in view of RFC 1883 and Huitema renders obvious this element. See

Claim 1(ii) above (showing similar “state information” element).

5. Decasper98 in View of Decasper97 Renders Obvious Claims 1, 15, and

35 Under § 103

The article “Crossbow: A Toolkit for Integrated Services over Cell Switched IPv6” (Ex.

30, “Decasper97”) by Dan Decasper ev. a/ was published on May 29, 1997. Decasper97 was not

considered during the prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 alone, then the inclusion of those aspects

certainly would be obvious over Decasper98 in view of Decasper97, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with Decasper97, because both

describe a very similar architecture for dynamically loading router components on the basis of

independent filters. Compare Ex. 25 (Decasper98) at 5 (“entries in the flow table”), 2 (“New

plugins can be dynamically loaded at run time”), 5-7 (filter operation), 4 (“plugins implementing

215

JNPR-IMPL_30024_

Page 215 of 272 Implicit Exhibit 2001
Juniper v. Implicit

IPv6 options, plugins for packet scheduling . . . and plugins for IP security”); Ex. 30

(Decasper97) at 4 (“Flow entries”), 3 (“dynamically loadable modules”), 3-4 (filter operation), 3-

4 (modules include “authentication modules encryption modules .. . IPv6 option modules. . .

and packet scheduling modules.”).

(a) Claim 1

Because Decasper98 and Decasper97 are similar in approach and detail, Decasper97

confirms the obviousness of claim 1 in a number of ways. One particularly pertinent aspect of

Decasper97 is pointed out below.

i. “a plurality of components”

Claim | recites in pertinent part: “providing a plurality of components, each component

being a software routine for converting data with an input format into data with an output

format.” Under Implicit’s apparent claim constructions, Decasper98 in view of Decasper97

renders obvious this element.

Though it was obvious over Decasper98 alone to employ distinct components for

encryption and authentication (since they are distinct operations not always performed together

on the same packet), Decasper97 renders this even more obvious by teaching precisely that. See

Ex. 30 at 3 (“Five different module types are supported in the initial version,” including

“authentication modules” and “encryption modules”).

One of ordinary skill was aware that encryption and authentication each typically operate

by inserting an additional header in the packet. Adding such a header would comprise

“converting data with an input format into data with an output format” under Implicit’s apparent

claim constructions.

216

JNPR-IMPL_30024_

Page 216 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Thus, considering merely an encryption component and an authentication component

assigned to a particular flow, these alone would comprise “a plurality of components” which

read on this claim elements.

Since Decasper98 teaches that its plugins components are selected on the basis of

separate, independent filter tables, it was obvious that virtually any combination of the

components discussed below would be applied to a particular flow, including (as here) the

combination of an encryption and an authentication component. Because encryption and

authentication operations often go hand in hand, the combination of an encryption and an

authentication component was a particularly obvious one of these many combinations.

il. “state information”

Claim 1 finally recites in pertinent part: “for each of a plurality of packets of the message

in sequence, for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the component with the

previous packet of the message; performing the processing of the identified component with the

packet and the retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next packet of the

message.” Under Implicit’s apparent claim constructions, Decasper98 in view of Decaspser97

renders obvious this “state information” element.

Stateful encryption and authentication algorithms are commonplace, and one of ordinary

skill in the art would have found it obvious to employ such stateful algorithms in an encryption

component and an authentication component. For example, one of ordinary skill in the art would

be aware that for both stateful encryption’’ and stateful authentication’®, a counter is typically

*7
See, e.g., Ex. G04 (“Bellare97”) (“A Concrete Security Treatment of Symmetric

Encryption” by M. Bellare ef a/.) (August 15, 1997) at 397 (“stateful encryption schemes, in

217

JNPR-IMPL_30024_

Page 217 of 272 Implicit Exhibit 2001
Juniper v. Implicit

maintained which influences the encryption or authentication operation, and which is updated

each time another operation is performed. Such a counter would comprise “state information”

which is retrieved each time another packet is to be encrypted or authenticated, used to perform

the encryption or authentication, and updated and stored so it may be used when encrypting or

authenticating the next packet.

(b) Claim 15

Because Decasper98 and Decasper97 are similar in approach and detail, Decasper97

confirms the obviousness of claim 15 in a number of ways. One particularly pertinent aspect of

Decasper97 is pointed out below.

i. “dynamically identifying a non-predefined sequence”

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Decasper98 in view of Decasper97 renders

obvious this element.

As explained above, one such obvious sequence would comprise a stateful encryption

component and a stateful authentication component. See Claim 1 above.

ii. “state information”

which the ciphertext is a function of some information, such as a counter, maintained by the

encrypting party and updated with each encryption”). This reference is cited in this context

solely to help explain the prior art. See MPEP § 2205.

8
See, e.g., Ex. G12 (“Bellare95”) (“XOR MACs: New Methods for Message

Authentication Using Finite Pseudorandom Functions” by M. Bellare et al.) (1995) at 16 (“ina
stateful [authentication algorithm] the signer maintains information, in our case a counter, which

he updates each time a message is signed.”). This reference is cited in this context solely to help

explain the prior art. See MPEP § 2205.

218

JNPR-IMPL_30024_

Page 218 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 15 finally recites in pertinent part: “for each packet of each message, performing

the processing of the identified non-predefined sequence of components of the message wherein

state information generated by performing the processing of a component for a packet is

available to the component when the component processes the next packet of the message.”

Under Implicit’s apparent claim constructions, Decasper98 in view of Decasper97 renders

obvious this element.

As explained above, it was obvious for the encryption and authentication components to

each employa stateful algorithm wherein a counter would comprise “state information” which is

updated during every encryption or authentication operation. See Claim above. This “state

information” is thus generated by performing the processing of the component, and is available

to the component when processing the next packet of the message. See id.

(c) Claim 35

Because Decasper98 and Decasper97 are similar in approach and detail, Decasper97

confirms the obviousness of claim 35 in a number of ways. One particularly pertinent aspect of

Decasper97 is pointed out below.

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of Decasper97 renders obvious this element.

As explained above, one such obvious sequence would comprise a stateful encryption

component and a stateful authentication component. See Claim 1 above.

ii. “state information”

219

JNPR-IMPL_30024_

Page 219 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 35 finally recites in pertinent part: “for each packet of the message, invoking the

identified non-predefined sequence of components in sequence to perform the processing of each

component for the packet wherein each component saves message-specific state information so

that that component can use the save message-specific state information when that component

performs its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Decasper98 in view of Decasper97 renders obvious this element.

As explained above, it was obvious for the encryption and authentication components to

each employa stateful algorithm wherein a counter would comprise “state information” which is

updated during every encryption or authentication operation. See Claim above. This “state

information” is thus generated by performing the processing of the component, and is available

to the component when processing the next packet of the message. See id.

6. Decasper98 in View of Decasper97, Bellare97, and Bellare95 Renders

Obvious Claims 1, 15, and 35 Under § 103

The article “A Concrete Security Treatment of Symmetric Encryption” (Ex. 17,

“Bellare97”) by M. Bellare ef a/. was published in 1997. The article “XOR MACs: New

Methods for Message Authentication Using Finite Pseudorandom Functions” (Ex. 18,

“Bellare95”) by M. Bellare et al. was published in 1995. Neither was considered during the

prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 in view of Decasper97, then the inclusion of

those aspects certainly would be obvious over Decasper98 in view of Decasper97, Bellare97, and

Bellare95, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 and Decasper97 with

Bellare97 and Bellare95, because Decasper98 and Decasper97 disclose encryption and

220

JNPR-IMPL_30024_

Page 220 of 272 Implicit Exhibit 2001
Juniper v. Implicit

authentication operations, and Bellare97 and Bellare95 disclose specific encryption (Bellare97)

and authentication (Bellare95) algorithms which might be used.

Decasper98 repeatedly emphasizes the “extensibility” of its platform and expressly

declares: “Doubtless, additional plugin types will be introduced by third parties once we have

released our code into the public domain.” Ex. 25 at 6, 2,3, 11. Thus, additional plugins

implementing the algorithms of Bellare97 and Bellare95 would be exactly the sort of extensions

supported and expected by Decasper98.

(a) Claim 1

i. “a plurality of components”

Claim | recites in pertinent part: “providing a plurality of components, each component

being a software routine for converting data with an input format into data with an output

format.” Under Implicit’s apparent claim constructions, these references render obvious this

element.

As explained above, it was obvious that one such sequence would comprise an encryption

component and an authentication component. See Section V.C.5 (Decasper98+Decasper97) at

Claim above.

ii. “state information”

Claim 1 finally recites in pertinent part: “for each of a plurality of packets of the message

in sequence, for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the component with the

previous packet of the message; performing the processing of the identified component with the

packet and the retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next packet of the

22]

JNPR-IMPL_30024_

Page 221 of 272 Implicit Exhibit 2001
Juniper v. Implicit

message.” Under Implicit’s apparent claim constructions, these references render obvious this

“state information” element.

Bellare97 teaches “stateful encryption schemes, in which the ciphertext is a function of

some information, such as a counter, maintained by the encrypting party and updated with each

encryption.” Ex. 17 at 397 (emphasis in original). In its analysis of “some classic symmetric

encryption schemes,” Bellare97 concludes that a particular stateful scheme (“stateful XOR,

based on a finite PRF”) “has the best security.” /d. at 396. “For the stateful XOR scheme we

show that... this scheme is about as good a scheme as one can possibly hope to get.” /d. It

was therefore obvious to employ such a stateful algorithm in an encryption component.

Bellare95 teaches “stateful” authentication algorithms in which “the signer maintains

information, in our case a counter, which he updates each time a message is signed.” Ex. 18 at

16. In more detail:

In a stateful message authentication scheme, the signer maintains

state across consecutive signing requests. (For example, in our

counter-based scheme the signer maintains a message counter.) In

such a case the signing algorithm can be thought of as taking an

additional input—the “current” state C, of the signer—and

returning an additional output—the signer’s next state.

Id. at 21. Bellare95 analyzes both stateless (“Randomized XOR”) and stateful (“Counter-Based

XOR”) authentication algorithms, and observes that “[t]he gain” of the stateful, counter-based

algorithm “is greater security.” /d. at 22-25 (analysis of stateless), 25-27 (analysis of stateful,

counter-based). It was therefore obvious to employ such a stateful algorithm in an authentication

component.

The counter used for both stateful encryption and stateful authentication would comprise

“state information” which is retrieved each time another packet is to be encrypted or

222

JNPR-IMPL_30024_

Page 222 of 272 Implicit Exhibit 2001
Juniper v. Implicit

authenticated, used to perform the encryption or authentication, and updated and stored so it

may be used when encrypting or authenticating the next packet.

(b) Claim 15

i. “dynamically identifying a non-predefined sequence
”

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, these references render obvious this element.

As explained above, one such obvious sequence would comprise an encryption

component and an authentication component. See Section V.C.5 (Decasper98+Decasper97) at

Claim 1(i) above.

il. “state information”

Claim 15 finally recites in pertinent part: “for each packet of each message, performing

the processing of the identified non-predefined sequence of components of the message wherein

state information generated by performing the processing of a component for a packet is

available to the component when the component processes the next packet of the message.”

Under Implicit’s apparent claim constructions, these references render obvious this element.

As explained above, it was obvious for the encryption and authentication components to

each employa stateful algorithm wherein a counter would comprise “state information” which is

updated during every encryption or authentication operation. See Claim 1(i1) above. This “state

information” is thus generated by performing the processing of the component, and is available

to the component when processing the next packet of the message. See id.

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

223

JNPR-IMPL_30024_

Page 223 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, these references

render obvious this element.

As explained above, it was obvious that one such sequence would comprise an encryption

component and an authentication component. See Section V.C.5 (Decasper98+Decasper97) at

Claim 1(i) above.

ii. “state information”

Claim 35 finally recites in pertinent part: “for each packet of the message, invoking the

identified non-predefined sequence of components in sequence to perform the processing of each

component for the packet wherein each component saves message-specific state information so

that that component can use the save message-specific state information when that component

performs its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, these references render obvious this element.

As explained above, it was obvious for the encryption and authentication components to

each employa stateful algorithm wherein a counter would comprise “state information” which is

updated during every encryption or authentication operation. See Claim above. This “state

information” is thus generated by performing the processing of the component, and is available

to the component when processing the next packet of the message. See id.

7. Decasper98 in View of IBM96 Renders Obvious Claims 1, 15, and 35

Under § 103

The book “Local Area Network Concepts and Products: Routers and Gateways” (Ex. 19,

“IBM96”) was published by IBM in May 1996. IBM96 was not considered during prosecution

of the ‘163 patent.

224

JNPR-IMPL_30024_

Page 224 of 272 Implicit Exhibit 2001
Juniper v. Implicit

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 alone, then the inclusion of those aspects

certainly would be obvious over Decasper98 in view of IBM96, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with IBM96 because

Decasper98 teaches a general, extensible platform for implementing routers, and IBM96 teaches

features which would have been typical of routers of the time period.

(a) Claim 1

i.
“a plurality of components”

Claim | recites in pertinent part: “providing a plurality of components, each component

being a software routine for converting data with an input format into data with an output

format.” Under Implicit’s apparent claim constructions, Decasper98 in view of IBM96 renders

obvious this element.

During the pertinent time period, it was commonplace for routers to perform compression

on certain traffic being routed through them. This is repeatedly confirmed by IBM96. For

example, the “IBM 2210 Nways Multiprotocol Router” could perform “Data Compression over

Point-to-Point Protocol” using the “LZ77” compression algorithm. Ex. 19 at 84, 95-96. As

another example, IBM96 lists “Data compression” as one of the “Advantages” of its “IBM

AnyNet Product Family,” explaining that data compression “reduces the amount of data being

exchanged between partners, thus improving response time and reducing traffic over the

network.” /d. at 33. Similarly, IBM96 lists “Data compression” one of the “Benefits” of the

“2217 Nways Multiprotocol Concentrator” product, explains data compression “[p]rovides

higher data rates and improves response times at a lower cost.” /d. at 200-201.

In view of these various benefits of data compression, it was obvious that in addition to

supporting operations such as encryption and authentication, Decasper98 should also support

225

JNPR-IMPL_30024_

Page 225 of 272 Implicit Exhibit 2001
Juniper v. Implicit

compression. Decasper98 repeatedly emphasizes the “extensibility” of its platform and

expressly declares: “Doubtless, additional plugin types will be introduced by third parties once

we have released our code into the public domain.” Ex. 25 at 6, 2,3, 11. Thus, an additional

plugin implementing compression would be exactly the sort of extensions supported and

expected by Decasper98.

Since compressed data has a different format from uncompressed data, such a

compression component would “convert[] data with an input format into data with an output

format.” As combined with other component(s) from Decasper98 (e.g., which perform stateful

encryption and/or authentication), such a compression component would comprise “a plurality of

components” which read on this claim element.

Since Decasper98 teaches that its plugins components are selected on the basis of

separate, independent filter tables, it was obvious that virtually any combination of the

components discussed below would be applied to a particular flow, including (as here) the

combination of a compression component with other components.

ii. “state information”

Claim | finally recites in pertinent part: “for each of a plurality of packets of the message

in sequence, for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the component with the

previous packet of the message; performing the processing of the identified component with the

packet and the retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next packet of the

message.” Under Implicit’s apparent claim constructions, Decasper98 in view of IBM96 renders

obvious this “state information” element.

226

JNPR-IMPL_30024_

Page 226 of 272 Implicit Exhibit 2001
Juniper v. Implicit

IBM96 discusses and compares the performance of four specific compression algorithms,

the top three of which are all “LZ”-based compression algorithms. See Ex. 19 at 95-96 (“LZ77”

has compression ratio of “2.08:1”; “Stacker-LZS” a ratio of “1.82:1”; “BSD Compress-LZW” a

ratio of “2.235:1”; and “Predictor” a ratio of “1.67:1”). Because the top three algorithms

discussed by IBM96 are LZ-based and because the “IBM 2210” router specifically uses the

“LZ77 algorithm, an LZ-based algorithm such as LZ77 would have been an obvious choice for

a compression component to be added to Decasper98. /d. at 95-96, 84.

LZ compression algorithms are stateful, and an obvious implementation of them would

read on this “state information” claim element.”” Maintaining such state information would

entail, for each packet: e.g., retrieving the state information, using it to perform the

compression processing, updating it to reflect the data in the most recent packet, and storing it so

it can be applied to the next packet.

More generally (and not confined to LZ-based algorithms), stateful (‘adaptive’)

compression algorithms were commonplace at the time, and obvious implementations of them

would likewise read on this “state information” claim element.*”

(b) Claim 15

i, “dynamically identifying a non-predefined sequence”

See, e.g., Ex. G09 (“Nelson”) (“The Data Compression Book” by Mark Nelson ef al.)
(1995) at 21 (LZ employs an “adaptive” algorithm which maintains state information in form of,

e.g., a sliding “4K-byte window’ of the most recent data seen, or an incrementally built

dictionary based on of the previously seen data), 18-19. This reference is cited in this context

solely to help explain IBM96. See MPEP § 2205.

See, e.g., Ex. G09 (Nelson) at 18 (“compression research in the last 10 years has

concentrated on adaptive models”), 18-19 (including Figures 2.2 and 2.3, showing state

information in form of a “Model” which is updated on each new piece of data). This reference is

cited in this context solely to help explain IBM96. See MPEP § 2205.

227

JNPR-IMPL_30024_

Page 227 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Decasper98 in view of IBM96 renders obvious

this element.

As explained above, one such obvious sequence would comprise a stateful compression

component combined with other component(s) (e.g., a stateful encryption and/or authentication

component). See Claim 1 above.

il. “state information”

Claim 15 finally recites in pertinent part: “for each packet of each message, performing

the processing of the identified non-predefined sequence of components of the message wherein

state information generated by performing the processing of a component for a packet is

available to the component when the component processes the next packet of the message.”

Under Implicit’s apparent claim constructions, Decasper98 in view of IBM96 renders obvious

this element.

As explained above, it was obvious for the compression component to employa stateful

algorithm (such as “LZ77”) whereby state information would be updated during every

compression operation. See Claim above. This “state information” is thus generated by

performing the processing of the component, and is available to the component when processing

the next packet of the message. See id.

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

228

JNPR-IMPL_30024_

Page 228 of 272 Implicit Exhibit 2001
Juniper v. Implicit

the first packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of IBM96 renders obvious this element.

As explained above, one such obvious sequence would comprise a stateful compression

component combined with other component(s) (e.g., a stateful encryption and/or authentication

component). See Claim | above.

i. “state information”

Claim 35 finally recites in pertinent part: “for each packet of the message, invoking the

identified non-predefined sequence of components in sequence to perform the processing of each

component for the packet wherein each component saves message-specific state information so

that that component can use the save message-specific state information when that component

performs its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Decasper98 in view of IBM96 renders obvious this element.

As explained above, it was obvious for the compression component to employa stateful

algorithm (such as “LZ77”) whereby state information would be updated during every

compression operation. See Claim 1(ii) above. This “state information” is thus generated by

performing the processing of the component, and is available to the component when processing

the next packet of the message. See id.

8. Decasper98 in View of IBM96 and Nelson Renders Obvious Claims 1,

15, and 35 Under § 103

The treatise “The Data Compression Book” (Ex. 5, “Nelson”) by Mark Nelson et al. was

published on November 6, 1995. Nelson was not considered during the prosecution of the ‘163

patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 in view of IBM96, then the inclusion of those

229

JNPR-IMPL_30024_

Page 229 of 272 Implicit Exhibit 2001
Juniper v. Implicit

aspects certainly would be obvious over Decasper98 in view of IBM96 and Nelson, under

35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 and IBM96 with Nelson,

because IBM96 disclose compression operations performed by routers, and Nelson teaches

specific compression algorithms which might be used.

Decasper98 repeatedly emphasizes the “extensibility” of its platform and expressly

declares: “Doubtless, additional plugin types will be introduced by third parties once we have

released our code into the public domain.” Ex. 25 at 6, Thus, an additional plugin

implementing a compression algorithm would be exactly the sort of extension supported and

expected by Decasper98.

(a) Claim 1

i. “a plurality of components”

Claim recites in pertinent part: “providing a plurality of components, each component

being a software routine for converting data with an input format into data with an output

format.” Under Implicit’s apparent claim constructions, these references render obvious this

element.

As explained above, one such obvious sequence would comprise a compression

component combined with other component(s) (e.g., a stateful encryption and/or authentication

component). See Section V.C.7 (Decasper98+IBM96) at Claim 1 above.

ii. “state information”

Claim | finally recites in pertinent part: “for each of a plurality of packets of the message

in sequence, for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the component with the

previous packet of the message; performing the processing of the identified component with the

230

JNPR-IMPL_30024_

Page 230 of 272 Implicit Exhibit 2001
Juniper v. Implicit

packet and the retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next packet of the

message.” Under Implicit’s apparent claim constructions, these references render obvious this

“state information” element.

Nelson explains: “Adaptive coding . . . lead[s] to vastly improved compression ratios,”

and that “compression research in the last 10 years has concentrated on adaptive models.” Ex. 5

at 8, 18. Adaptive algorithms include such well-known algorithms as “Adaptive Huffman

Coding” (chapter 4; id. at 75), “Adaptive [Statistical] Modeling” (chapter 6; id. at 155),

Adaptive] Dictionary-Based Compression” (chapter 7: id. at 203), and “Sliding Window

Compression” (chapter 8; id. at 215); and the prominent “LZ” family of compression algorithms

(chapter 8 and 9, id. at 221, 255). All of these adaptive techniques are lossless, which would be

important for accurately transmitting information contained in network packets. See id. at 9

(“All of the compression techniques discussed through chapter 9 are ‘lossless’”). In view of the

prominence, lossless nature, and improved compression ratios of adaptive algorithms, use of

such an algorithm would have been an obvious choice for a compression component.

Nelson further explains the stateful manner in which adaptive coding operates: “When

using an adaptive model, data does not have to be scanned once before coding in order to

generate statistics [used to perform compression]. Instead, the statistics are continually

modified as new characters are read in and coded. The general flow of a program using an

adaptive model looks something like that shown in Figure[] 2.2” /d. at 18 (emphasis added).

23]

JNPR-IMPL_30024_

Page 231 of 272 Implicit Exhibit 2001
Juniper v. Implicit

pocorn Cagdhes

Id. at 19 (Figure 2.2: “General Adaptive Compression,” showing “Update Model” update

state information) after encoding every piece of data). Nelson explains: “adaptive models start

knowing essentially nothing about the data” so “when the program first starts it doesn’t do a very

good job of compression.” /d. at 19. However, “[m]ost adaptive algorithms tend to adjust

quickly to the data stream and will begin turning in respectable compression ratios after only a

few thousand bytes.” Jd.

Thus, an obvious implementation of an adaptive algorithm would entail, for each packet,

retrieving state information, using it to perform the compression processing, updating it to

reflect the data in the most recent packet, and storing it so it can be applied to the next packet.

More narrowly, IBM96 teaches that its “2210” router employs the “LZ77” compression

algorithm, so use of that algorithm in particular would have been an obvious design decision

over IBM96. See Ex. 19 (IBM96) at 95-96, 84. Nelson confirms this algorithm was stateful and

“adaptive” in the manner described above. See, e.g., Ex. 5 at 21 (“LZ77” maintains a

“dictionary” comprised of, e.g., a sliding “4K-byte window” of the most recently seen data).

(b) Claim 15

i. “dynamically identifying a non-predefined sequence”

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

232

JNPR-IMPL_30024_

Page 232 of 272 Implicit Exhibit 2001
Juniper v. Implicit

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, these references render obvious this element.

As explained above, one such obvious sequence would comprise a stateful compression

component combined with other component(s) (e.g., a stateful encryption and/or authentication

component). See Claim | above.

i. “state information”

Claim 15 finally recites in pertinent part: “for each packet of each message, performing

the processing of the identified non-predefined sequence of components of the message wherein

state information generated by performing the processing of a component for a packet is

available to the component when the component processes the next packet of the message.”

Under Implicit’s apparent claim constructions, these references render obvious this element.

As explained above, it was obvious for the compression component to employa stateful,

“adaptive” compression algorithm, wherein state information would be updated during every

compression operation. See Claim 1(ii) above. This “state information” is thus generated by

performing the processing of the component, and is available to the component when processing

the next packet of the message. See id.

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, these references

render obvious this element.

233

JNPR-IMPL_30024_

Page 233 of 272 Implicit Exhibit 2001
Juniper v. Implicit

As explained above, one such obvious sequence would comprise a stateful compression

component combined with other component(s) (e.g., a stateful encryption and/or authentication

component). See Claim 1 above.

il. “state information”

Claim 35 finally recites in pertinent part: “for each packet of the message, invoking the

identified non-predefined sequence of components in sequence to perform the processing of each

component for the packet wherein each component saves message-specific state information so

that that component can use the save message-specific state information when that component

performs its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, these references render obvious this element.

As explained above, it was obvious for the compression component to employa stateful,

“adaptive” compression algorithm, wherein state information would be updated during every

compression operation. See Claim above. This “state information” is thus generated by

performing the processing of the component, and is available to the component when processing

the next packet of the message. See id.

9, Decasper98 in View of RFC 1825, RFC 1829, Decasper97, Bellare97,

Bellare95, IBM96, and Nelson Renders Obvious Claims 1, 15, and 35

Under § 103

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Decasper98 alone or in combination with the

various grounds of rejection presented above, then the inclusion of those aspects certainly would

be obvious over Decasper98 in view of RFC 1825, RFC 1829, Decasper97, Bellare97, Bellare95,

IBM96, and Nelson, under 35 U.S.C. § 103, under Implicit’s apparent claim constructions.

All of these references have already been combined with Decasper98 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

234

JNPR-IMPL_30024_

Page 234 of 272 Implicit Exhibit 2001
Juniper v. Implicit

to Decasper98. This section briefly summarizes that material and shows the collective

combination of these references would be obvious as well.

Decasper98 teaches a general architecture for router/firewall plugins and repeatedly

emphasizes its “extensibility.” Ex. 25 at 1, 2, 3, 11, 6 (Doubtless, additional plugin types will

be introduced by third parties once we have released our code into the public domain.”).

Decasper98 teaches “plugins for IP security,” and Decasper97 confirms the obviousness

of providing separate plugin components for encryption and authentication. confirms the

obviousness of an additional plugin component for compression.

Since Decasper98 teaches that its plugin components are selected on the basis of separate,

independent filter tables, it was obvious that any two or more of these three types of plugins

(encryption, authentication, compression) might be applied to the same flow. This is especially

obvious since all three operations would be useful for implementing, e.g., a virtual private

network across an expensive link. See Ex. 25 (Decasper98) at 5 (“system is configured as entry

point into a virtual private network”).

Claims 1, 15, and 35 recite elements regarding “state information.”

RFC 1829 and Bellare97 confirm the obviousness of employing a stateful encryption

algorithm which would read on these elements. Bellare95 confirms the obviousness of

employing a stateful authentication algorithm which would read on these elements. Nelson

confirms the obviousness of employing a stateful compression algorithm which would read on

these elements.

Claim | recites each component “being a software routine for converting data with an

input format into data with an output format.”

235

JNPR-IMPL_30024_

Page 235 of 272 Implicit Exhibit 2001
Juniper v. Implicit

RFC 1825 confirms the obviousness of inserting separate headers into a packet for both

encryption and authentication, and this would read on this “converting data” element, under

Implicit’s apparent claim constructions. Performing compression on a packet would read on this

“converting data” element as well, under Implicit’s apparent claim constructions.

Finally, in addition to the specific plugin components discussed immediately above

(encryption, authentication, compression), Decasper98 discloses a number of other plugin

components which would read on the “state information” and/or “format” claim elements of

claims 1, 15, and 35, including plugin components for IPv6 options, statistics gathering, packet

scheduling, and firewall functions. See Sections V.C.1 (Decasper98 102) and V.C.2

(Decasper98 103) above. Since Decasper98 teaches that its plugin components are selected on

the basis of separate, independent filter tables, it was obvious for any of these various plugin

components to be applied to the same flow as well, in addition to (or instead of) any of the

encryption, authentication, or compression components discussed immediately above.

In short, there is no aspect of claims 1, 15, and 35 which was not obvious over the prior

art and combinations cited herein.

10. Decasper98 in View of Bellissard Renders Obvious Claims 1, 15, and

35 Under § 103

The article “Dynamic Reconfiguration of Agent-Based Applications” (Ex. 23,

“Bellissard”) by Luc Bellissard a/. was published by September 10, 1998. Bellissard was not

considered during prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 alone, then the inclusion of those aspects

certainly would be obvious over Decasper98 in viewof Bellissard, under 35 U.S.C. § 103.

236

JNPR-IMPL_30024_

Page 236 of 272 Implicit Exhibit 2001
Juniper v. Implicit

It was obvious to supplement the teachings of Decasper98 with Bellissard because

Decasper98 teaches an extensible architecture for implementing firewalls and routers, and

Bellissard teaches a technique for enhancing the dynamic extensibility of such an architecture.

While Decasper98 already teaches a platform wherein an administrator can dynamically

add and configure components “even when network traffic is transiting through the system” (Ex.

25 at 9), Bellissard provides additional detail on how such a system could operate and on another

way in which it could be implemented.

(a) Claim 1

i. “dynamically identifying a non-predefined sequence”

Claim 1 recites in pertinent part: “for the first packet of the message, dynamically

identifying a non-predefined sequence of components for processing the packets of the message

such that the output format of the components of the non-predefined sequence match the input

format of the next component in the non-predefined sequence.” Under Implicit’s apparent claim

constructions, Decasper98 in view Bellissard renders obvious this element.

Decasper98 alone renders obvious these elements. See Section V.C.2 (Decasper98 103)

at Claim 1. As applied to Decasper98, Bellissard further underscores the “dynamic[]” nature of

the identification, under Implicit’s apparent claim constructions, as explained below.

Bellissard teaches a technique for “dynamically modifying” and “[d]ynamically

reconfiguring” an application while the application is s#i// operating, without halting the

application in order to reconfigure it. Ex. 23 at 1-3. Bellissard explains the motivation for this

technique is that “new functionalities’ may be “required by the users” at any time:

Reconfiguration is thus an answer to the problems of dynamically

modifying the application architecture (both in terms of agent
functions and of the sequence of actions to be performed), while

the application is operating. This cannot be achieved with current

techniques such as configuration of predefined parameters, because

237

JNPR-IMPL_30024_

Page 237 of 272 Implicit Exhibit 2001
Juniper v. Implicit

it is impossible to predict all the new functionalities that can be

required by the users.

Id. at 2.

It was particularly obvious to apply the technique of Bellissard to the extensible

router/firewall architecture of Decasper98, because a “firewall” is precisely the example chosen

by Bellissard of “a typical full-size application” which would “emphasize the benefits of” the

Bellissard technique. /d. at 1; Ex. 25 (Decasper98) at 2 (“Our framework is also very well suited

to... security devices like Firewalls”). It was further obvious to apply the Bellissard technique

of “dynamic reconfiguration” to Decasper98, because Decasper98 repeatedly emphasizes that the

“extensibility” of its architecture which permits new components to be “dynamically loaded at

run time.” Ex. 25 at 2 (Extensibility: New plugins can be dynamically loaded at run

time”), 3 (“The primary goal of our proposed architecture was to build a modular and extensible

networking subsystem that supported the concept of flows,” including “Dynamic loading and

unloading of plugins at run time into the networking subsystem.”).

The “dynamic reconfiguration” of technique Bellissard includes performing the following

two operations “while the application is operating”: (1) “Modifying the architecture of an

application (adding/removing modules, and modifying the interconnection pattern)”; and (2)

“Modifying the implementation of a component.” Ex. 23 at 2.

As applied to Decasper98, the first operation (“Modifying the architecture of an

application” including “adding/removing modules”) would clearly encompass adding or

removing certain “plugin” modules of Decasper98 while the system of Decasper98 was still

operating. See Ex. 23 at 2; Ex. 25 (Decasper98) at 2 (“New plugins can be dynamically loaded

at run time.”), 6 (“Doubtless, additional plugin types will be introduced by third parties once we

have released our code into the public domain.”). Bellissard explains “it is impossible to predict

238

JNPR-IMPL_30024_

Page 238 of 272 Implicit Exhibit 2001
Juniper v. Implicit

all the new functionalities that can be required by users.” Ex. 23 at 2. In the context of the

extensible router/firewall architecture of Decasper98, providing the required “new

functionalities” would typically entail the provision of new Decasper98 plugins: e.g., to support a

new IPv6 option functionality, a new authentication functionality, a new compression

functionality, and so on. Indeed, Bellissard specifically teaches the insertion of a new

“compression” component into a firewall system while it is still operating. Ex. 23 at 2

(“insertion of a compression agent”). Using the Bellissard technique, such new plugins could be

“dynamically” added to Decasper98 while Decasper98 was still operating—with the advantage

that flows could begin to take advantage of the new functionalities immediately, and without

disrupting existing flows through the system. See Ex. 23 at

As applied to Decasper98, the second operation (“Modifying the implementation of a

component”) would clearly encompass modifying the implementation of a “plugin” module of

Decasper98 while the system of Decasper98 was still operating. See Ex. 23 at 2, Ex. 25 at 2.

For example, a more efficient, higher-performance implementation might become available for

an authentication plugin, or an encryption plugin, or a compression plugin, and so on. Using the

Bellissard technique, such a plugin could be “dynamically modified” to employ the new, more

efficient implementation while Decasper98 was still operating—with the advantage that the

plugin could begin to take advantage of the improved implementation immediately, and without

disrupting existing flows.

Application of the above techniques to Decasper98 would be an especially

straightforward task, because unlike more “monolithic” prior art routers and firewalls,

A gain, Decasper98 already teaches substantially this same technique, but Bellissard

provides additional detail on how such a system could operate and on another way in which it

could be implemented. See Ex. 25 (Decasper98) at 9 (adding and configuring a plugin “even

when network traffic is transiting through the systems”).

239

JNPR-IMPL_30024_

Page 239 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Decasper98 had been specifically architected to divide its various functions into discrete

“plugins” which were “modular, “extensible,” and could be “dynamically loaded at runtime.”

See e.g., Ex. 25 at 1-2.

To summarize, the combination of Decasper98 and Bellissard renders obvious a system

in which the plugin components of Decasper98 could be dynamically modified or dynamically

added at any moment during runtime--while the system was still operating—and could thereby

take advantage of the newly added or modified components. Under Implicit’s apparent claim

constructions, such a system would clearly read on “dynamically identifying a non-predefined

sequence of components for processing the packets of the message.”

(b) Claim 15

i. “dynamically identifying a non-predefined sequence”

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Decasper98 in view of Bellissard renders obvious

this element. See Claim 1 above.

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of Bellissard renders obvious this element. See Claim 1 above.

11. Decasper98 in View of Fraser Renders Obvious Claims 1, 15, and 35

Under § 103

240

JNPR-IMPL_30024_

Page 240 of 272 Implicit Exhibit 2001
Juniper v. Implicit

The publication “DTE Firewalls: Phase Two Measurement and Evaluation Report” (Ex.

24, “Fraser’) by Timothy J. Fraser ef a/. was published by Trusted Information Systems on July

22, 1997. Fraser was not considered during prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Decasper98 alone, then the inclusion of those aspects

certainly would be obvious over Decasper98 in viewof Fraser, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Decasper98 with Fraser because

Decasper98 teaches an extensible architecture for implementing firewalls and routers, and Fraser

teaches a technique for enhancing the dynamic configurability of such an architecture.

While Decasper98 already teaches a platform wherein an administrator can dynamically

configure policies (expressed in filters) “even when network traffic is transiting through the

system” (Ex. 25 at 9), Fraser teaches a more comprehensive framework for such a capability, and

provides additional detail on how such a framework would be implemented.

(a) Claim 1

i. “dynamically identifying a non-predefined sequence”

Claim 1 recites in pertinent part: “for the first packet of the message, dynamically

identifying a non-predefined sequence of components for processing the packets of the message

such that the output format of the components of the non-predefined sequence match the input

format of the next component in the non-predefined sequence.” Under Implicit’s apparent claim

constructions, Decasper98 in view Fraser renders obvious this element.

Decasper98 alone renders obvious these elements. See Section V.C.2 (Decasper98 103)

at Claim 1. As applied to Decasper98, Fraser further underscores the “dynamic[]” nature of the

identification, under Implicit’s apparent claim constructions, as explained below.

24]

JNPR-IMPL_30024_

Page 241 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Fraser teaches “Dynamic Policy Modules” which an administrator uses to control the

behavior of a firewall: e.g., these modules define which traffic flowing through the firewall

should be encrypted, and which network destinations should be accessible to which users. Ex.

24 at 10, 6-7.

Donalds Enclave Strider Enclave

Chee

giane_s gieme_aert_d pheceuy cel pina. #

pine eb ease fee puma eng aay RO BREAST
gina. gral € gino, proj ad eR, pizen_ gray al

*
pleimo_proj

Domain
|

traffic encrypted based
Biamain fram Dynamic Mpdale

Rncrypted Commenication
on

instructions
na

Non-eserypted Cammunication Dyn amic Pol icy Module

Id. at 7 (Figure 3, showing encryption performed according to instructions in “Dynamic

Module[s]”; “The transient domains originating in dynamic modules are not shaded.”).

Fraser explains that before Dynamic Policy Modules were introduced, “the primary

method” for an administrator to alter a firewall’s “security policy” was “to edit the policy

specification and reboot the kernel for the updated policy to take effect.” /d. at 8. This approach

was “impractical for operational systems,” because “[rJestructuring the policy and rebooting

kernels for each change would result in an undesirable and impractical loss of service.” /d. at 9.

Dynamic Policy Modules address this “undesirable and impractical” situation by

allowing administrators to make minor or major alterations to a firewall’s policies without

rebooting the device:

The main contribution of dynamic policy module support . . . is

increased functionality. As described in section 2.1.2, dynamic

242

JNPR-IMPL_30024_

Page 242 of 272 Implicit Exhibit 2001
Juniper v. Implicit

policy modules provide administrators with an organized
framework for managing policy change. Administrators can use

dynamic policy modules to specify the policy governing new

activities and trust relationships. They may add policy support for

a new activity or trust relationship to a [firewall] kernel by loading
the appropriate module. Similarly, they can remove the support by

unloading the module. Administrators may load and unload

modules as the kernel runs. The ability to dynamically reconfigure
a kernel's policy as it runs allows administrators to add and remove

policy support for trust relationships without requiring system
down-time and the resulting disruption of service availability. This

method of policy configuration is superior to the [previous]

method, which involved modifying a kernel's base policy

description and then rebooting the kernel.

Id. at 37.

Rather than being narrowly confined to controlling one or two policy options, Dynamic

Policy Modules provide a “wide-ranging ability” to change many aspects of a firewall’s policies.

See id. at 19.

Once made available, Dynamic Policy Modules become the primary means for

administrators to modify a firewall’s policies: “Dynamic policy modules are the atomic unit of

policy change. Typically, when administrators need to extend a policy to govern a new activity,

they will encapsulate the extension in a dynamic policy module.” /d. at 12.

It was obvious to apply the Dynamic Policy Modules framework of Fraser to Decasper98,

in order to provide a more comprehensive framework” for avoiding any “undesirable and

impractical” need to reboot the Decasper98 device under any circumstances. See id. at 9.

Decasper98 was an especially obvious candidate for this technique, because Fraser uses the

technique to control the policies of “application gateway firewall[s],” and Decasper98 teaches an

*
Again, Decasper98 already teaches substantially this same technique of modifying the

system’s configured policies while the system is operating, but Fraser teaches a more

comprehensive framework for such a capability, and provides additional detail on how such a

framework would be implemented. See Ex. 25 (Decasper98) at 9 (adding and configuring a new

plugin “even when network traffic 1s transiting through the system’).

243

JNPR-IMPL_30024_

Page 243 of 272 Implicit Exhibit 2001
Juniper v. Implicit

architecture that is “very well suited to Application Layer Gateways . and to security devices

like Firewalls.” /d. at 6; Ex. 25 at 2.

As applied to Decasper98, Dynamic Policy Modules would allow an administrator to

modify the policies which determine which plugins are assigned to which flows. See Ex. 25

(Decasper98) at 7. The parallels between the two systems are particularly clear on this point.

For example, Fraser’s Dynamic Policy Modules control, e.g., which traffic is encrypted, and

Decasper98’s policies (expressed in filters) control, e.g., which flows are encrypted by an

encryption plugin. Ex. 24 at 7, Ex. 25 at 5-7.

Application of the above techniques to Decasper98 would be a straightforward task,

because unlike more “monolithic” prior art routers and firewalls, Decasper98 had been

specifically architected to divide its various functions into discrete “plugins” which were

“modular, “extensible,” and could be “dynamically loaded at runtime.” See e.g., Ex. 25 at 1-2.

Moreover, Decasper98 is already architected to permit changes to its configured policies (filters)

“even when network traffic is transiting through the system.” /d. at 9.

To summarize, the combination of Decasper98 and Fraser renders further obvious a

system in which the policies determining the identified sequence of plugin components could be

dynamically modified or dynamically added at any moment during runtime—while the system

was still operating. Under Implicit’s apparent claim constructions, such a system would clearly

read on “dynamically identifying a non-predefined sequence of components for processing the

packets of the message.”

(b) Claim 15

i. “dynamically identifying a non-predefined sequence
”

Claim 15 recites in pertinent part: “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

244

JNPR-IMPL_30024_

Page 244 of 272 Implicit Exhibit 2001
Juniper v. Implicit

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Decasper98 in view of Fraser renders obvious this

element. See Claim 1 above.

(c) Claim 35

i. “dynamically identifying a... non-predefined sequence”

Claim 35 recites in pertinent part: “dynamically identifying a message-specific non-

predefined sequence of components for processing the packets of each message upon receiving

the first packet of the message.” Under Implicit’s apparent claim constructions, Decasper98 in

view of Fraser renders obvious this element. See Claim 1 above.

12. Decasper98 in View of RFC 1825, RFC 1829, RFC 1883, Huitema,
Decasper97, Bellare97, Bellare95, IBM96, Nelson, Bellissard, and

Fraser Renders Obvious Claims 1, 15, and 35 Under § 103

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, suggested, or obvious over Decasper98 alone or in combination with the

various grounds of rejection presented above, then the inclusion of those aspects certainly would

be obvious over Decasper98 in view of RFC 1825, RFC 1829, RFC 1883, Huitema, Decasper97,

Bellare97, Bellare95, IBM96, Nelson, Bellissard, and Fraser under 35 U.S.C. § 103, under

Implicit’s apparent claim constructions.

All of these references have already been combined with Decasper98 in corresponding

sections above, and those sections should be consulted for the detailed manner of applying them

to Decasper98. This section briefly summarizes that material and shows the collective

combination of these references would be obvious as well.

Decasper98 teaches a general architecture for router/firewall plugins and repeatedly

emphasizes its “extensibility.” Ex. 25 at 1, 2, 3, 11, 6 (“Doubtless, additional plugin types will

be introduced by third parties once we have released our code into the public domain.”).

245

JNPR-IMPL_30024_

Page 245 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Decasper98 teaches “plugins for IP security,” and Decasper97 confirms the obviousness

of providing separate plugin components for encryption and authentication. IBM96 confirms

the obviousness of an additional plugin component for compression. Decasper98 also teaches

“plugins implementing IPv6 options.” /d. at 4.

Since Decasper98 teaches that its plugin components are selected on the basis of separate,

independent filter tables, it was obvious that any two or more of these four types of plugins

(encryption, authentication, compression, IPv6 options) might be applied to the same flow. This

is especially obvious since the first three operations would be useful for implementing, e.g., a

virtual private network across an expensive link, and IPv6 options are of general usefulness. See

Ex. 25 (Decasper98) at 5 (“system is configured as entry point into a virtual private network”).

Claims 1, 15, and 35 recite elements regarding “state information.”

RFC 1829 and Bellare97 confirm the obviousness of employing a stateful encryption

algorithm which would read on these elements. Bellare95 confirms the obviousness of

employing a stateful authentication algorithm which would read on these elements. Nelson

confirms the obviousness of employing a stateful compression algorithm which would read on

these elements. RFC 1883 confirms the obvious of employing a stateful algorithm for

implementing IPv6 options which would read on these elements.

Claim | recites each component “being a software routine for converting data with an

input format into data with an output format.”

RFC 1825 confirms the obviousness of inserting separate headers into a packet for both

encryption and authentication, and this would read on this “converting data” element, under

Implicit’s apparent claim constructions. Performing compression on a packet would read on this

“converting data” element as well, under Implicit’s apparent claim constructions. Huitema

246

JNPR-IMPL_30024_

Page 246 of 272 Implicit Exhibit 2001
Juniper v. Implicit

confirms the obviousness of adding of removing headers while processing IPv6 options, which

would read on the “converting data” element as well, under Implicit’s apparent claim

constructions.

In addition to the specific plugin components discussed immediately above (encryption,

authentication, compression, IPv6 options), Decasper98 discloses a number of other plugin

components which would read on the “state information” and/or “format” claim elements of

claims 1, 15, and 35, including plugin components for statistics gathering, packet scheduling, and

firewall functions. See Sections V.C.1 (Decasper98 102) and V.C.2 (Decasper98 103) above.

Since Decasper98 teaches that its plugin components are selected on the basis of separate,

independent filter tables, it was obvious for any of these various plugin components to be

applied to the same flow as well, in addition to (or instead of) any of the encryption,

authentication, compression, or IPv6 options components discussed immediately above.

Claims 1, 15, and 35 recite “dynamically identifying a... non-predefined sequence of

components.”

Decasper98 selects the sequence of plugin components for a flow on the basis of multiple

independent filters, which “even with very few installed filters” leads to “exponentially” many

valid component sequences—so many, in fact, that it is “infeasible” to even list them in memory

ahead of time. Ex. 25 at 7. Decasper98 therefore adopts an algorithmic approach, of

dynamically generating the sequence when the first packet of a flow arrives, by applying its

multiple independent filters to the packet data which did not exist in the system until the packet

arrived. Under Implicit’s apparent claim constructions, this technique alone reads on these

“dynamic[]” claim elements.

247

JNPR-IMPL_30024_

Page 247 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Moreover, Decasper98 also teaches that new plugin components may be added and

configured by an administrator at runtime, “even when network traffic is transiting through the

system”—including at least up to the very moment before a new flow would begin. /d. at 9.

This also reads on these “dynamic[]” claim elements, under Implicit’s apparent claim

constructions.

Like Decasper98, Bellissard teaches dynamically adding new components while the

system is operating. It provides additional detail on how such a system could operate, and on

another way in which it could be implemented. Bellisard further teaches the dynamic

modification of existing components—again, while the system is operating. Under Implicit’s

apparent claim constructions, both of these techniques would read on these “dynamic[]” claim

elements.

Like Decasper98, Fraser teaches dynamically configuring firewall policies while the

system is operating. It teaches a more comprehensive framework for this capability, and details

another manner in which it could be implemented. Under Implicit’s apparent claim

constructions, such dynamic configuration of policies would read on these “dynamic[]” claim

elements.

In short, there is no aspect of claims 1, 15, and 35 which was not doubly or triply obvious

over the prior art and combinations cited herein.

D. Mosberger (Exhibit 31)

“Scout: A Path-Based Operating System,” is a dissertation submitted by David

Mosberger to the faculty of the Department of Computer Science at The University of Arizona

(Exhibit 31, “Mosberger’). It was published in 1997,

Mosberger was previously considered by the PTO during ex parte reexamination

proceedings, during which time the PTO initially sustained multiple anticipation rejections over

248

JNPR-IMPL_30024_

Page 248 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Mosberger, concluding that each and every element of claims 1, 15, and 35 was disclosed in the

reference. However, after a number of exchanges with the patentee, the PTO ultimately accepted

the patentee’s arguments that one of the claim limitations was missing—‘“dynamically

identifying’ —and issued a notice of intent to issue a reexamination certificate based on the

patentee’s assertion that “Mosberger does not dynamically identify sequences of components.”

Notwithstanding this prior consideration, Mosberger is presented here in a new light in at

least two ways. First, a more detailed explanation is provided regarding the “dynamic” nature of

Mosberger, contrary to the representations of the patentee during ex parte reexamination.

Second, to the extent Mosberger is still deemed as lacking adequate disclosure on the “dynamic”

limitation, a number of obviousness combinations of Mosberger and other references are

provided below, which clearly satisfy any purported deficiency in Mosberger. The PTO has not

previously considered any of these combinations.

In any event, the finding of a “reasonable likelihood” under Section 312 is “not precluded

by the fact that a patent or printed publication was previously cited by or to the Office or

considered by the Office.” 35 U.S.C. § 312(a).

1. Mosberger Anticipates Claims 1, 15, and 35 Under § 102(a) and (b)

(a) Claim 1

i. “A method... for processinga message”

Claim | recites: “A method in a computer system for processing a message having a

sequence of packets, the method comprising... .” Under Implicit’s apparent claim

constructions, Mosberger discloses this element.

Mosberger discloses that Scout is an “operating system architecture that is designed

specifically to accommodate the needs of communication-centric systems.” Ex. 31 at 13. Scout

249

JNPR-IMPL_30024_

Page 249 of 272 Implicit Exhibit 2001
Juniper v. Implicit

uses paths for processing a “sequence of network packets” and uses demultiplexing to “find the

appropriate path for a given message.” /d. at 36, 85.

il. “a plurality of components...”

Claim | further recites: “providing a plurality of components, each component being a

software routine for converting data with an input format into data with an output format.”

Under Implicit’s apparent claim constructions, Mosberger discloses this element.

Mosberger discloses a “plurality of components” for processing messages. For example,

Mosberger describes the use of paths to process a dataflow through a series of software modules.

See Ex. 31 at 36; see also id. Figure 2.4. Modules are “entities that route data through the

system.” /d. at Some “typical examples are modules that implement networking protocols,

such as IP, UDP, or TCP.” /d. at 62. Mosberger describes series of modules as a “linear

sequence of components.” /d. at 57.

Mosberger’s paths are capable of “converting data with an input format into data with an

output format.” Generally speaking, a path is “a dataflow that starts at a source device and ends

at a destination device.” /d. at 36. A series of “modules” makes up a path. Ina path, “each

module processes data in a well-defined manner.” Ex. 31 at 37. Asa result, paths can, for

example, “transform a series of network packets into a sequence of SCSI disk blocks.” /d.at 36.

Figure 2.4 of Mosberger “shows a sample path as a bold line starting at module FDDI, passing

through IP, UDP, MFLOW, MPEG, WiMP, and finally arriving at DISPLAY.” /d. at 37; see

also id. Figure 2.4.

iii. “dynamically identifying a non-predefined sequence
”

Claim 1 further recites: “for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message such that the

output format of the components of the non-predefined sequence match the input format of the

250

JNPR-IMPL_30024_

Page 250 of 272 Implicit Exhibit 2001
Juniper v. Implicit

next component in the non-predefined sequence, wherein dynamically identifying includes

selecting individual components to create the non-predefined sequence of components after the

first packet is received.” Under Implicit’s apparent claim constructions, Mosberger discloses

this element.

Mosberger discloses “dynamically identifying” under Implicit’s apparent claim

construction. Mosberger identifies two possible approaches to path creation: (a) “paths are pre-

specified” or (b) “paths are created (discovered) incrementally.” Ex. 31 at 39. Mosberger rejects

the “pre-specifying paths” approach a system that “provide[s] a table that translates the

properties of the desired path into a sequence of modules that the path needs to traverse to satisfy

these properties” — in favor of a system that “create[s] paths incrementally.” /d.at 40. This is

because “[i]n many cases it is beneficial to exploit information that is available at runtime only.

For this reason, paths need to be created and destroyed dynamically at runtime.” /d. at 39. As

Mosberger explains, “runtime covers all the steps that occur after the system has been booted on

the target machine. During that time, paths may be created, used, and destroyed.” /d. at 61; see

also id. Figure 3.1.

Mosberger also makes clear that path changes can happen during runtime. For example,

Mosberger explains that “a command-line interpreter is likely to create a path to the input device

(e.g., the keyboard) during initialization.” Ex. 31 at 47. “New paths” can then be created

through the “handling of key-strokes.” /d.

Moreover, given Implicit’s apparent claim constructions, Mosberger expressly illustrates

that the Scout system can make “dynamic routing decicion[s]”:

25]

JNPR-IMPL_30024_

Page 251 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Figure 2.5: Dynamic Routing Decision

Id. at 42 (emphasis in original).

The components disclosed in Mosberger are also used in a manner “such that the output

format of the components .. . match the input format of the next component,” under Implicit’s

apparent claim construction. See Section IV(C). In Mosberger’s system, “a data-item arrives at

the input queue, the path is scheduled for execution, and the “ransformed data is deposited in an

output queue.” Ex. 31 at 48. As explained previously, data may be processed by multiple

components (or modules) in the course of moving through a path. See id.at 36; see also Figure

2.4. Because packets compatibly move from component to component, this element is satisfied

under Implicit’s apparent claim construction.

The “dynamically identifying” as disclosed in Mosberger (under Implicit’s apparent

claim construction) also “includes selecting individual components to create the non-predefined

sequence of components after the first packet is received.” In Mosberger’s system, individual

modules can “make a dynamic routing decision” to ensure that data is “processed appropriately.”

Ex. 31 at 41-42; see also Figure 2.5. This “dynamic routing decision” is “based on the contents

of the data being communicated.” /d. at 88. Itis designed to be able “to exploit information that

is available at runtime only.” /d. at 36. As Mosberger explains:

252

JNPR-IMPL_30024_

Page 252 of 272 Implicit Exhibit 2001
Juniper v. Implicit

path creation is initiated at the module that is to form one end of
the path. This module uses the invariants to make a routing

decision, that is, a decision as to which module a path with the

specified invariants must traverse next. Path creation is then

forwarded to that next module. This process repeats itself until

either there is no next module (i.e., the edge of the module graph
has been reached) or until a module is reached that, based on the

specified invariants, cannot make a definite routing decision. As

part of making a routing decision, a module is free to update the

invariants since new invariants may become available in that

module or old invariants may be invalid beyond that module.

Id. at 40.

iv. “storing an indication of... the identified components”

Claim 1 further recites “storing an indication of each of the identified components so that

the non-predefined sequence does not need to be re-identified for subsequent packets of the

message.” Under Implicit’s apparent claim constructions, Mosberger discloses this element.

As explained above, paths form when modules make “dynamic routing decision[s]” that

are “based on the contents of the data being communicated.” Ex. 31 at 41-41, 88. “Stages”

along the path “provide a place to store information that is path-specific, but private to the

modules.” /d. at 73; see also id. Figure 3.5. Once a path is formed, the “sequence of modules

being traversed is known and fixed for the lifetime of a path.” /d. at 54. To be known and fixed,

the sequence of modules for any given path must be stored as claimed in the patent.

v. “state information”

Claim | further recites “for each of a plurality of packets of the message in sequence, for

each of a plurality of components in the identified non-predefined sequence, retrieving state

information relating to performing the processing of the component with the previous packet of

the message; performing the processing of the identified component with the packet and the

retrieved state information; and storing state information relating to the processing of the

253

JNPR-IMPL_30024_

Page 253 of 272 Implicit Exhibit 2001
Juniper v. Implicit

component with the packet for use when processing the next packet of the message.” Under

Implicit’s apparent claim constructions, Mosberger discloses these “state information” elements.

Implicit has taken a broad view of the “state information” limitations, arguing that they

cover the retrieval, use, and storage of the identified sequence of components (e.g., a flow

record) after the first packet is received. See Section IV(C). Mosberger’s Scout retrieves, uses,

and stores flow records in this manner to facilitate processing of packets in the same message

after the first packet is received and a flow entry built. For example, Scout uses “threads” to

move data in paths. See Ex. 31 at 100-104. “[T]hreads inherit the scheduling parameters (policy

and priority) from the path they are executing in.” /d. 102. These parameters inform the thread

what priority it has in the path vis-a-vis other threads and must therefore be stored to make

inheritance possible or to preserve the thread when it does not have priority. See id. at 100-104.

For packets traversing the same path, threads retrieve and apply the same scheduling parameters

to ensure that packets of the same flow receive similar treatment.

(b) Claim 15

i, “demultiplexing packets of messages”

Claim 15 recites: “A method in a computer system demultiplexing packets of messages.”

Under Implicit’s apparent claim constructions, Mosberger discloses this element. See Claim 1(i)

(showing “A method in a computer system for processing a message having a sequence of

packets”) above. Under Implicit’s apparent claim constructions, “demultiplexing” a packet is

satisfied by routing a packet to the correct sequence of components for processing it—and

Mosberger performs this function. See Section IV(C) and, e.g., Claim (showing

“dynamically identifying a non-predefined sequence of components for processing the packets of

the message”) above. In any event, Mosberger contains an elaborate discussion of

254

JNPR-IMPL_30024_

Page 254 of 272 Implicit Exhibit 2001
Juniper v. Implicit

demultiplexing, including an entire section of a chapter on Scout architecture devoted to the

subject (Section 3.4, entitled “Demultiplexing”). Ex. 31 at 85-99.

il. “dynamically identifying a non-predefined sequence”

Claim 15 further recites “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Mosberger discloses this element. See Claim

1(iii) (showing “for the first packet of the message, dynamically identifying a non-predefined

sequence of components for processing the packets of the message”) and Claim I(iv) (showing

“storing an indication of each of the identified components so that the non-predefined sequence

does not need to be re-identified for subsequent packets of the message”) above.

iit. “different... sequences of components can be identified”

Claim 15 further recites “different non-predefined sequences of components can be

identified for different messages.” Under Implicit’s apparent claim constructions, Mosberger

discloses this element. Mosberger expressly illustrates how different messages can be handled

with different sequences of components:

255

JNPR-IMPL_30024_

Page 255 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Figure 2.2: Example Modular System

Id. at 35; see also Claim 1(i1) and (11) (showing “plurality of components” and “dynamically

identifying includes selecting individual components to create the non-predefined sequence of

components”) above.

iv. “each component being a software routine”

Claim 15 further recites “each component being a software routine.” Under Implicit’s

apparent claim constructions, Mosberger discloses this element. See Claim (showing “each

component being a software routine”) above.

“selecting individual components”

Claim 15 further recites “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components.” Under Implicit’s apparent

claim constructions, Mosberger discloses this element. See Claim 1(iii) (showing “dynamically

identifying includes selecting individual components to create the non-predefined sequence of

components”) above.

256

JNPR-IMPL_30024_

Page 256 of 272 Implicit Exhibit 2001
Juniper v. Implicit

vi. “state information”

Claim 15 finally recites “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Under Implicit’s

apparent claim constructions, Mosberger discloses this element. See Claim 1(v) (showing

similar “state information” element) above.

(c) Claim 35

i. “instructions for demultiplexing packets of messages”

Claim 35 recites: “A computer-readable medium containing instructions for

demultiplexing packets of messages.” Under Implicit’s apparent claim constructions, Mosberger

discloses this element. Mosberger makes the design choice to implement its system “using a

relatively low-level language such as C” which is then translated into “machine code.” /d. at 71.

One of ordinary skill would have understood that the machine code would be stored and

executed on a physical computer-readable medium. See also Claim showing

(“demultiplexing packets of messages”) above.

ii. “dynamically identifying a... non-predefined sequence”

Claim 35 recites: “dynamically identifying a message-specific non-predefined sequence

of components for processing the packets of each message upon receiving the first packet of the

message.” Under Implicit’s apparent claim constructions, Mosberger discloses this element. See

Claim (showing “for the first packet of the message, dynamically identifying a non-

predefined sequence of components for processing the packets of the message”) above.

iit. “subsequent packets ... can use the... sequence”

257

JNPR-IMPL_30024_

Page 257 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim 35 further recites that “subsequent packets of the message can use the message-

specific non-predefined sequence identified when the first packet was received.” Under

Implicit’s apparent claim constructions, Mosberger discloses this element. See Claim 1(iv)

(showing “storing an indication of each of the identified components so that the non-predefined

sequence does not need to be re-identified for subsequent packets of the message”) above.

iv. “selecting individual components”

Claim 35 further recites that “dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of components.” Under

Implicit’s apparent claim constructions, Mosberger discloses this element. See Claim

(showing “dynamically identifying includes selecting individual components to create the non-

predefined sequence of components after the first packet is received”) above.

“state information”

Claim 35 further recites “for each packet of the message, invoking the identified non-

predefined sequence of components in sequence to perform the processing of each component

for the packet wherein each component saves message-specific state information so that that

component can use the save message-specific state information when that component performs

its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Mosberger discloses this element. See Claim 1(v) (showing similar “state

information” element) above.

2. Mosberger Renders Obvious Claims 1, 15, and 35 Under § 102(a), (b)

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed or inherent over Mosberger, then the inclusion of those aspects certainly would be

obvious over Mosberger in light of the background knowledge of one of ordinary skill in the art,

under 35 U.S.C. § 103.

258

JNPR-IMPL_30024_

Page 258 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Mosberger discloses all of the limitations of Claims 1, 15, and 35— including the

“dynamically identifying” limitation—for the reasons set forth above. However, even if

Mosberger is deemed not to have an express disclosure of the “dynamically identifying”

limitation, one of ordinary skill in the art would have immediately appreciated that the system

disclosed in Mosberger could have been modified without difficulty to include such

functionality.

Specifically, during prior ex parte reexamination of the ‘163 patent, focus was placed on

the passage of Mosberger at page 71 to the effect that “the Scout module graph is presently

configured at build time and, hence, it is not possible to extend the graph at runtime.” Ex. 31 at

71. However, Mosberger goes on to expressly state “However, it is straight-forward to add a

dynamic module-loading facility to Scout.” Id. Mosberger expresses further confidence in the

ease with which such a “dynamic loading” functionality could be added to the disclosed Scout

system, stating that the “actual dynamic loading” is not the “biggest issue” in modifying Scout,

but rather “the security issue.” /d. And, of course, the claims of the ‘163 patent contain no

limitation directed to any such “security issue”; in other words, even an insecure implementation

of “dynamic loading” would satisfy the “dynamically identifying” limitation of the ‘163 patent.

Furthermore, Mosberger proposes yet another modification of Scout that would permit

“dynamically identifying,” which is “to configure a virtual machine module into the graph that

would allow interpreted code to be downloaded and executed inside Scout.” /d. For example,

Mosberger here drops a reference to footnote 39, which directs the reader to a reference entitled

“The Java Application Programming Interface.” Ex. 31 at 71, 167. One of ordinary skill in the

art would have appreciated that the Java programming environment can readily provide a

259

JNPR-IMPL_30024_

Page 259 of 272 Implicit Exhibit 2001
Juniper v. Implicit

“virtual machine” to be used to permit code to be dynamically “downloaded and executed inside

Scout.” Jd.

3. Mosberger in View of HotLava Renders Obvious Claims 1, 15, and 35

Under § 103

The article “Implementing Communication Protocols in Java” (Ex. 32, “HotLava”) by

Bobby Krupezak al was published in October 1998. It describes a Java-based protocol

subsystem called “HotLava.” HotLava was not considered during the prosecution of the ‘163

patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Mosberger, then the inclusion of those aspects certainly

would be obvious over Mosberger in view of HotLava, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Mosberger with HotLava because

Mosberger expressly invites consideration of a Java-based mechanism for “extending the module

graph at runtime.” Specifically, after disclosing that one could “configure a virtual machine

module into the graph that would allow interpreted code to be downloaded and executed inside

Scout,” Mosberger drops a reference to footnote 39, which directs the reader to a reference

entitled “The Java Application Programming Interface.” Ex. 31 at 71, 167. HotLava is precisely

the sort of Java-based solution for protocol implementation suggested by Mosberger.

HotLava provides additional disclosure to supplement the teachings of Mosberger on at

least the following aspects of the ‘163 patent claims.

i. “A method... for processinga message”

Claim | recites: “A method in a computer system for processing a message having a

sequence of packets, the method comprising... Under Implicit’s apparent claim

260

JNPR-IMPL_30024_

Page 260 of 272 Implicit Exhibit 2001
Juniper v. Implicit

constructions, Mosberger in view of HotLava renders obvious this element. See, e.g., Ex. 32 at

93-94, 95, 96, 97.

For example, HotLava states that “Java-based protocols execute alongside other Java

applications within a network computer” Id. at 97. “For each incoming or outgoing

message a protocol processes, it must identify the correct next protocol (if any) and forward the

message to it for processing.” Id. at 94. In the HotLava implementation, a message constitutes a

series of “packets [that are] are escorted through the protocol graph via non-preemptable

threads.” /d. at 96.

il. “a plurality of components...”

Claim 1 further recites: “providing a plurality of components, each component being a

software routine for converting data with an input format into data with an output format.”

Under Implicit’s apparent claim constructions, Mosberger in view of HotLava renders obvious

this element. See, e.g., Ex. 32 at 93, 94, 95.

HotLava is built to handle components it calls “protocols,” each of which is described as

a “software module implementing a traditional communication protocol specification (e.g. TCP

or IP).” /d. The reference goes on to explain:

Protocols are traditionally composed in graphs, which provide
services to applications. The arrangements in which protocols

(depicted as nodes) may be composed to provide services are

described (and in some cases constrained) by a protocol graph

(Fig. 1), while a protocol stack is the actual sequence of protocols

through which messages of a particular session pass. The terms,

though, are often used interchangeably.

Id. at 93. Figure 1 of HotLava discloses an example protocol graph illustrating a plurality of

components:

26]

JNPR-IMPL_30024_

Page 261 of 272 Implicit Exhibit 2001
Juniper v. Implicit

ADSP zip ASP PAP

\ AEP
| ATP NIBP

por AARP

ethernet _LocalTalk

Figure 1. Kxample protovceal graph (Apple Taik).

Id. at 94. Moreover, HotLava explains that, “[f]or each incoming or outgoing message a

protocol processes, it must identify the correct next protocol (if any) and forward the message to

it for processing.”

ili. “dynamically identifying a non-predefined sequence”

Claim 1 further recites: “for the first packet of the message, dynamically identifying a

non-predefined sequence of components for processing the packets of the message such that the

output format of the components of the non-predefined sequence match the input format of the

next component in the non-predefined sequence, wherein dynamically identifying includes

selecting individual components to create the non-predefined sequence of components after the

first packet is received.” Under Implicit’s apparent claim constructions, Mosberger in view of

HotLava renders obvious this element. See, e.g., Ex. 32 at 94, 95, 96, 99.

HotLava expressly describes itself as a “dynamic” system: “In our Java-based protocol

architecture, special service classes dynamically construct protocol graphs at runtime as

applications need communications services.” /d. at 96; see also id. at Fig. 1.

202

JNPR-IMPL_30024_

Page 262 of 272 Implicit Exhibit 2001
Juniper v. Implicit

HotLava explains that it is “natural to consider” the Java environment as a way of

addressing the need for “flexible communication protocols and services to support them,” as a

way of solving the problem of “the number and variety of Web- and network-based applications

[that] continue[] to increase.” /d. at 93. Using the system disclosed in HotLava, “protocols and

additional code required to support them can be downloaded and executed on the fly as needed.”

Id.; see also id. at 96 (‘This extensible architecture . allows on-the-fly introduction of new or

replacement protocol code.”). Thus, “new classes, such as those making up our protocol

subsystem and protocol implementations, can be added dynamically” Id. at 95. Among

other things, the HotLava approach overcomes shortcomings of certain “traditional” approaches

and systems, which had to be “completely recompiled and redeployed” in order to accommodate

change. /d.

Not only is the protocol graph of software modules (“sequence of protocols”) determined

“dynamically ... at runtime,” each also receives a separate instantiation in memory; thus,

“multiple instances of the same protocol can be executing simultaneously.” /d. at 98. “For

example, an application needing AppleTalk services need only create an instance of its

corresponding service class.” /d. at 96.

As explained earlier, Mosberger proposed configuring “a virtual machine module into

the graph that would allow interpreted code to be downloaded and executed inside Scout.” Ex.

31 at 71. As shown above, HotLava expressly provides “the ability to incorporate new protocol

classes .. . into the virtual machine.” Ex. 32 at 96. Thus, under the HotLava approach,

“protocols and additional code required to support them can be downloaded and executed on the

fly as needed.” /d. at 93. Incorporating into Scout the HotLava approach—a Java-based solution

263

JNPR-IMPL_30024_

Page 263 of 272 Implicit Exhibit 2001
Juniper v. Implicit

as expressly proposed in Mosberger—thus clearly satisfies any perceived shortcoming of

Mosberger with respect to the “dynamically identifying” limitation.

iv. “storing an indication of... the identified components”

Claim 1 further recites “storing an indication of each of the identified components so that

the non-predefined sequence does not need to be re-identified for subsequent packets of the

message.” Under Implicit’s apparent claim constructions, Mosberger in view of HotLava

renders obvious this element. See, e.g., Ex. 32 at 94, 96-97.

HotJava teaches that “the actual sequence of protocols” (the “protocol stack”) used for a

message will pertain to “a particular session pass.” /d. at 93. In other words, the system stores

“information about what protocol stack should be used with a given session.” Id. at 94.

The decision to maintain protocol graph configuration as “per-session” information was a

conscious design choice in HotLava, to facilitate “flexible communications services”:

The configuration of the protocol graph (e.g., what nodes and arcs

it contains) could be placed either in a protocol’s class information

or within the state information of each individual instantiation (or

protocol object) of that class. Placing the protocol graph in the

class fixes that protocol graph configuration for every protocol

object instantiation; placing the protocol graph configuration in

the object allows each individual session to determine and dictate

its own protocol graph. Because we desire flexible

communications services whereby each application can pick and

choose only the functionality it needs, we chose to place protocol

graph configuration in the per-session state information of

protocol objects rather than in their corresponding class.

Id. at 96-97.

v. “state information”

Claim 1 finally recites in pertinent part: “for each of a plurality of packets of the message

in sequence, for each of a plurality of components in the identified non-predefined sequence,

retrieving state information relating to performing the processing of the component with the

264

JNPR-IMPL_30024_

Page 264 of 272 Implicit Exhibit 2001
Juniper v. Implicit

previous packet of the message; performing the processing of the identified component with the

packet and the retrieved state information; and storing state information relating to the

processing of the component with the packet for use when processing the next packet of the

message.” Under Implicit’s apparent claim constructions, Mosberger in view of HotLava

renders obvious this element. See, e.g., Ex. 32 at 94, 96-97.

In a section entitled, “Maintaining State,’ HotLava discloses a number of details about

how state information is handled in the HotLava system. For example, each “software module”

(also called a “protocol,” see id. at 93) locates relevant “state information” as “one of the first

things” that happens “[w]hen a message is received from the network or a user requests that a

message be sent.” /d. at 94. This can include “per-instance information specific to a particular

user session.” /d. One specific example of state information provide is “keeping track of time,”

which is stored and retrieved and ultimately used to perform steps to “ensur[e] that certain events

happen in a timely manner.”

(b) Claim 15

i, “demultiplexingpackets of messages”

Claim 15 recites: “A method in a computer system demultiplexing packets of messages.”

Under Implicit’s apparent claim constructions, Mosberger discloses this element. See Claim 1(i)

(showing “A method in a computer system for processing a message having a sequence of

packets”) above. Under Implicit’s apparent claim constructions, “demultiplexing” a packet is

satisfied by routing a packet to the correct sequence of components for processing it—and

Mosberger in combination with HotLava performs this function and renders it obvious. See

Section IV(C) and, e.g., Claim 1(iii) (showing “dynamically identifying a non-predefined

sequence of components for processing the packets of the message”) above; see also 31 at 94,

Fig. 1.

265

JNPR-IMPL_30024_

Page 265 of 272 Implicit Exhibit 2001
Juniper v. Implicit

ii. “dynamically identifying a non-predefined sequence”

Claim 15 further recites “dynamically identifying a non-predefined sequence of

components for processing each message based on the first packet of the message so that

subsequent packets of the message can be processed without re-identifying the components.”

Under Implicit’s apparent claim constructions, Mosberger in combination with HotLava renders

obvious this element. See Claim (showing “for the first packet of the message,

dynamically identifying a non-predefined sequence of components for processing the packets of

the message”) and Claim 1(iv) (showing “storing an indication of each of the identified

components so that the non-predefined sequence does not need to be re-identified for subsequent

packets of the message’) above.

iil. “different... sequences of components can be identified”

Claim 15 further recites “different non-predefined sequences of components can be

identified for different messages.” Under Implicit’s apparent claim constructions, Mosberger in

combination with HotLava renders obvious this element. See 31 at 94, Fig. 1; see also Claim

and (iii) (showing “plurality of components” and “dynamically identifying includes

selecting individual components to create the non-predefined sequence of components”) above.

iv. “each component being a software routine”

Claim 15 further recites “each component being a software routine.” Under Implicit’s

apparent claim constructions, Mosberger in combination with HotLava renders obvious this

element. See Claim 1(ii) (showing “each component being a software routine”) above.

“selecting individual components”

Claim 15 further recites “dynamically identifying includes selecting individual

components to create the non-predefined sequence of components.” Under Implicit’s apparent

claim constructions, Mosberger in combination with HotLava renders obvious this element. See

266

JNPR-IMPL_30024_

Page 266 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Claim (showing “dynamically identifying includes selecting individual components to

create the non-predefined sequence of components”) above.

Vi. “state information”

Claim 15 finally recites “for each packet of each message, performing the processing of

the identified non-predefined sequence of components of the message wherein state information

generated by performing the processing of a component for a packet is available to the

component when the component processes the next packet of the message.” Under Implicit’s

apparent claim constructions, Mosberger in combination with HotLava renders obvious this

element. See Claim 1(v) (showing similar “state information” element) above.

(c) Claim 35

i. “instructions for demultiplexing packets of messages”

Claim 35 recites: “A computer-readable medium containing instructions for

demultiplexing packets of messages.” Under Implicit’s apparent claim constructions, Mosberger

in combination with HotLava renders obvious this element. HotLava is coded in primarily in

Java, which can be run using a “virtual machine” on a “variety of platforms without

recompilation.” Ex. 32 at 94; see also id. at 97 (describing use of native “adapters” such as ones

written in “C for Solaris”). One of ordinary skill would have understood that the code for

HotLava would be stored and executed on a physical computer-readable medium. See also

Claim showing (“demultiplexing packets of messages”) above.

ii. “dynamically identifying a... non-predefined sequence”

Claim 35 recites: “dynamically identifying a message-specific non-predefined sequence

of components for processing the packets of each message upon receiving the first packet of the

message.” Under Implicit’s apparent claim constructions, Mosberger in combination with

HotLava renders obvious this element. See Claim (showing “for the first packet of the

207

JNPR-IMPL_30024_

Page 267 of 272 Implicit Exhibit 2001
Juniper v. Implicit

message, dynamically identifying a non-predefined sequence of components for processing the

packets of the message’) above.

iit. “subsequent packets ... can use the... sequence”

Claim 35 further recites that “subsequent packets of the message can use the message-

specific non-predefined sequence identified when the first packet was received.” Under

Implicit’s apparent claim constructions, Mosberger in combination with HotLava renders

obvious this element. See Claim 1(iv) (showing “storing an indication of each of the identified

components so that the non-predefined sequence does not need to be re-identified for subsequent

packets of the message’) above.

iv. “selecting indvidual components”

Claim 35 further recites that “dynamically identifying includes selecting individual

components to create the message-specific non-predefined sequence of components.” Under

Implicit’s apparent claim constructions, Mosberger in combination with HotLava renders

obvious this element. See Claim (showing “dynamically identifying includes selecting

individual components to create the non-predefined sequence of components after the first packet

is received”) above.

“state information”

Claim 35 further recites “for each packet of the message, invoking the identified non-

predefined sequence of components in sequence to perform the processing of each component

for the packet wherein each component saves message-specific state information so that that

component can use the save message-specific state information when that component performs

its processing on the next packet of the message.” Under Implicit’s apparent claim

constructions, Mosberger in combination with HotLava renders obvious this element. See Claim

1(v) (showing similar “state information” element) above.

268

JNPR-IMPL_30024_

Page 268 of 272 Implicit Exhibit 2001
Juniper v. Implicit

4. HotLava Anticipates Claims 1, 15, and 35 Under § 102(a) and (b)

The HotLava reference not only renders the claims of the ‘163 patent when considered in

combination with Mosberger, but HotLava also independently and standing alone discloses each

and every element of claims 1, 15, and 35. Accordingly, HotLava also fully anticipates these

claims for the reasons set forth in detail above, which are incorporated by reference in this

proposed ground of rejection.

5. Mosberger in View of Plexus Renders Obvious Claims 1, 15, and 35

Under § 103

The article “An Extensible Protocol Architecture for Application-Specific Networking”

(Ex. 33, “Plexus”) by Marc Fiuczynski ez. al was published in 1996 in Proceedings of the 1996

Winter USENIX Conference. It describes a system called “Plexus,” which is a “networking

architecture that allows applications to achieve high performance with customized protocols.”

Plexus was not considered during the prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Mosberger, then the inclusion of those aspects certainly

would be obvious over Mosberger in view of Plexus, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Mosberger with Plexus because Mosberger

expressly states it is “straight-forward to add a dynamic module-loading facility to Scout” (Ex.

31 at 71), and a “key aspect of Plexus is... [a] protocol graph that can be dynamically changed

as applications come and go.” Ex. 33 at 55. Plexus does so in a way that “does not compromise

the safety of other applications or the operating system.” at 55.

Following is an illustration of the manner in which Plexus performs what it expressly

calls “demultiplexing” in a protocol stack:

269

JNPR-IMPL_30024_

Page 269 of 272 Implicit Exhibit 2001
Juniper v. Implicit

Plexus Protocol Graph

Recerve Path Send Path

Top

|

i Sevies Crier fash Ethemet Gevies Crver

Id. at 57, Fig. 1. “Packets sent by the application are pushed down the graph until they reach the

actual device.” /d.

“Plexus allows applications to define new protocols or to change the implementation of

existing protocols.” /d. Indeed, Plexus even “supports multiple implementations of the same

protocol for different endpoints.” /d. at 58.

The Plexus system is also “dynamic” under Implicit’s apparent claim construction

because it permits “[rJuntime adaptation.” /d. at 56. Specifically, “[a]pplications may add

extensions to the kernel at any point during the system’s execution without requiring superuser

privileges or a system reboot.” /d.; see also id. (“Plexus allows extensions to be safely loaded

and unloaded into a running system... .”).

Thus, to the extent that Mosberger is deemed to lack inadequate disclosure of the

“dynamically identifying” limitation for claims 1, 15, and 35, the combination of Mosberger with

Plexus clearly makes up for any such perceived deficiency.

270

JNPR-IMPL_30024_

Page 270 of 272 Implicit Exhibit 2001
Juniper v. Implicit

6. Mosberger in View of ComScript Renders Obvious Claims 1, 15, and

35 Under § 103

The article “ComScript: An Environment for the Implementation of Protocol Stacks and

their Dynamic Reconfiguration” (Ex. 34, “ComScript”) by Murhimanya Muhugusa ev. a/ was

published in December 1994. It describes a communication protocol implementation called

“ComScript.” ComScript was not considered during the prosecution of the ‘163 patent.

If certain aspects recited in claims 1, 15, and 35 of the ‘163 patent are not deemed to be

disclosed, inherent, or obvious over Mosberger, then the inclusion of those aspects certainly

would be obvious over Mosberger in view of ComScript, under 35 U.S.C. § 103.

It was obvious to supplement the teachings of Mosberger with ComScript because

Mosberger expressly states it is “straight-forward to add a dynamic module-loading facility to

Scout” (Ex. 31 at 71), and Plexus expressly proposes an approach that “brings more flexibility by

allowing an application to dynamically (re)configure an entire protocol stack... Ex. 34 at 1.

ComScript provides, as an illustration, the following example of how the disclosed

system can be used to create a new protocol stack or sequence of “modules” on the fly for

purposes of a given session between hosts A and B:

An application running on host A establishes a communication

with a COMSCRIPT server (CS) on the remote machine B by

opening two connections, one for control information and the other

for data exchange. The control connection is used by the

application to send requests to the remote server. The application
then downloads its own code to host B using the control channel.

The execution of this code in the remote host results in the

creation of a protocol stack which can then be used by the

application to exchange data with host B.

Id. at 6-7; Fig. 10; see also Figs. 7-9 (illustrating how to add or remove a “module” from a stack;

“the number of configurable entities is unlimited”).

27)

JNPR-IMPL_30024_

Page 271 of 272 Implicit Exhibit 2001
Juniper v. Implicit

The ComScript system isalso “dynamic” under Implicit’s apparent claim construction

because it expressly states that one its “primary goal[s]” is to “make protocol stacks truly

configurable at run time.” Id. at 8.

Thus, to the extent that Mosberger is deemed to lack inadequate disclosure of the

“dynamically identifying” limitation for
claims 1, 15, and 35, the combination of Mosberger with

ComScript clearly makes up for any such perceived deficiency.

|

VI. CERTIFICATION PURSUANT TO 37 C.E.R. § 1.915(B)(7)

The Requester hereby certifies that
the estoppel provisions of 37 C.F.R. § 1.915(b)(7)

would not prohibit the granting of this Request for Inter Partes Reexamination.

VII. IDENTIFICATION OF REAL PARTY IN INTEREST PURSUANT TO 37 C.E.R.

§ 1.915(B)(8) |

The real party in interest is J uniper Networks, Inc.

VILL CONCLUSION

The Requester requests that claims 1, 15 , and 35 of the ‘163 patent be reexamined in

view of the prior art and grounds discussed in this Request for Inter Partes Reexamination.
The

Requester
also requests the issuance of a certificate under 35 U.S.C. § 3

16(a) cancelling
at least

claims 1, 15, and 35.
|

Respectfully submitted,

IRELL & MANELLA LLP

Dated: February 13, 2012 Ce
David McPhie, Reg. No.56,412

840 Newport Center Drive, Suite 400 Certificate of Mailing

Newport Beach, CA 92660 Lhereby certify that this correspondence is being deposited
with the

(949)760-0991 U.S. Postal Service as Express Mail Label Nos. EM305148562US and EM305148576US

addressed to: Mail Stop Jnter Partes Reexam, Central Reexamination Unit,

Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on

February 13, 2012.

Stisan Langworthy G

272

JNPR-| MPL_30024_02291 789

Page 272 of 272 Implicit Exhibit 2001
Juniper v. Implicit

