

Patent Owner, Bot M8 LLC - Ex. 2013, p. 1


Registration Number 21,124
$=$

276900US90

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

INVENTOR(S) Jun HAISHIMA
SERIAL NO: New Application
FILING DATE: Herewith
FOR:
INFORMATION PROCESS DEVICE
FEE TRANSMITTAL

COMMISSIONER FOR PATENTS
ALEXANDRIA, VIRGINIA 22313

| FOR | NUMBER FILED | NUMBER <br> EXTRA | RATE | CALCULATIONS |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL CLAIMS | $3-20=$ | 0 | $\times \$ 50=$ | \$0.00 |
| INDEPENDENT CLAIMS | $1-3=$ | 0 | x $\$ 200=$ | \$0.00 |
| UTILITY APPLICATION SIZE FEE | 11-100 = | 0(each addtl. 50 <br> sheets over 100) | x $\$ 250=$ | \$0.00 |
| $\square$ MULTIPLE DEPENDENT CLAIMS (If applicable) |  |  | $+\$ 360=$ | \$0.00 |
| $\square$ LATE FILING OF DECLARATION |  |  | $+\$ 130=$ | \$0.00 |
|   <br> FILING FEE  <br> $(\$ 300.00)$ SEARC | EXAMINATION FEE BASIC FEES$(\$ 200.00)$ |  |  | \$1,000.00 |
|  |  |  |  | \$1,000.00 |
|  | $\square$ REDUCTION BY 50\% FOR FILING BY SMALL ENTITY |  |  | \$0.00 |
| $\square$ FILING IN NON-ENGLISH LANGUAGE |  |  | $+\$ 130=$ | \$0.00 |
| - RECORDATION OF ASSIGNMENT |  |  | $+\$ 40=$ | \$40.00 |
|  |  |  | TOTAL | \$1,040.00 |

$\square$ Please charge Deposit Account No. 15-0030 in the amount of $\$ 0.00 \mathrm{~A}$ duplicate copy of this sheet is enclosed.
$\square$ A check in the amount of $\mathbf{\$ 0 . 0 0}$ to cover the filing fee is enclosed.

- Credit card payment form is attached to cover the filing fee in the amount of $\mathbf{\$ 1 , 0 4 0 . 0 0}$

T The Director is hereby authorized to charge any additional fees which may be required for the papers being filed herewith and for which no check or credit card payment is enclosed herewith, or credit any overpayment to Deposit Account No. 15-0030. A duplicate copy of this sheet is enclosed.

| Respectfully Submitted, |
| :--- |
| OBLON, SPIVAK, McCLELLAND, |
| Mate:MAIER \& NEUSTADT, P.C. <br> Customer Number <br> 22850 <br> Tel. (703) $413-3000$ <br> Fax. (703) 413-2220 <br> (OSMMN 12/04)Masayasu Mori <br> Registration No. 47,301 |

Patent Owner, Bot M8 LLC - Ex. 2013, p. 3

## INFORMATION PROCESS DEVICE

## CROSS-REFERENCE TO THE RELATED APPLICATION (S)

This application is based upon and claims a priority from the prior Japanese Patent Application No. 2004-245377 filed on August, 25, 2004, the entire contents of which are incorporated herein by reference.

## BACKGROUND OF THE INVENTION

## 1. Field of the Invention

The present invention relates to an information process device in which a fault in hardware or software is inspected.

## 2. Description of Related Art

In a conventional information process device, data and programs required in calculation or control are stored in one memory area of a memory device such as a hard disk and a program for inspecting whether or not a fault such as damage, change or falsification occurs in the programs or data (hereinafter, abbreviated as "fault inspection program") is stored in the other memory area in the same memory device, as disclosed in Unexamined Japanese Publication No. 2003-331236.

Therefore, in a case that the damage occurs in the memory device, there is fear that the fault inspection program is also damaged. At that time, it cannot be guaranteed that the fault inspection program properly operates.

## SUMMARY OF THE INVENTION

In order to dissolve the above problems, the present invention has been done and has an object to provide an information process device in which it can be guaranteed that a fault inspection program properly operates even if a fault occurs in a memory device which is inspected through the fault inspection program.

In order to accomplish the above object, according to one aspect of the present invention, it is provided an information process device comprising:
a first memory device for storing a boot program executed when the information process device is started to operate;
a mother board on which the first memory device is provided;
a second memory device for storing an application program, the second memory device being connected to the mother board;
a control device for executing a fault inspection program to inspect whether or not a fault occurs in the second memory device;
wherein the fault inspection program is stored in the first memory device; and
wherein the control device executes the fault inspection program when the information process device is started to operate.

According to the information process device of the present invention, the fault inspection program is stored in the first memory device on the mother board which is independent from the second memory device, thereby even if the fault occurs in the second memory device, it can be guaranteed that the fault inspection program properly operates.

The above and further objects and novel features of the invention will more fully appear from the following detailed description when the same is read in connection with the accompanying drawings. It is to be expressly understood, however, that the drawings are for purpose of illustration only and not intended as a definition of the limits of the invention.

## BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification illustrate embodiments of the invention and, together with the description, serve to explain the objects, advantages and principles of the invention.

In the drawings,
Fig. 1 is a block diagram of an information process device according to the embodiment,

Fig. 2 is a flowchart of a start program executed when the information process device is started to operate, and

Fig. 3 is a perspective view of the information process device according to the embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, the embodiment according to the present invention will be described with reference to the drawings.

Fig. 1 is a block diagram of the embodiment according to the present invention. Fig. 3 is a perspective view of an information process device of the embodiment. As shown in Fig. 3, although the information process device 1 is a gaming machine for business use, such gaming machine utilizes an operating system (OS) which is generally used in a personal computer on sale. And under an operation circumstances thereof, a game soft program stored in a hard disk mentioned later is operated.

And as shown in Fig. 1, in the information process device 1 according to the embodiment, a CPU 12 , a ROM 13 , a RAM 14 , a bus 15 , connectors 16,17 , a port 18 , extended slots 19,20 are provided on a mother board 11.

The CPU 12 controls the information process device 1 of the embodiment and executes various programs. Therefore, the CPU 12 corresponds to a control device.

And the ROM 13 is a nonvolatile memory in which various control programs are stored, such control programs being required when the information process device 1 of the embodiment is started to operate. The ROM 13 corresponds to a first memory device. And in the ROM 13, as shown in Fig. 1, a boot program storing area 13a for storing a boot program, a fault inspection program storing area 13 b for storing a fault inspection program and a start program storing area 13 c for storing a start program are formed.

Here, the boot program stored in the boot program storing area 13a, the fault inspection program stored in the fault inspection program storing area 13 b and the start program stored in the start program storing area 13 c will be described hereinafter.

Further, the RAM 14 is a memory for temporarily storing various data calculated when the CPU 12 executes programs.

The bus 15 is constructed from a PCI bus in which a bridge circuit for frequency change is formed, and becomes a common signal bus through which transmission and receipt of signals are conducted among the CPU 12 , the ROM 13 , the RAM 14 , the connectors 16,17 , the port 18 and the extended slots $19,20$.

The connector 16 is a device to connect an output device 21 required when the
game soft program is operated, to the mother board 11.
Here, the output device 21 connected to the connector 16 is constructed from a liquid crystal display (see the reference number 21 in Fig. 3) and a sound output device (not shown) such as a speaker. Instead of the liquid crystal display (see the reference number 21 in Fig. 3), a CRT display and the like may be used.

The connector 17 is a device to connect an input device required when the game soft program is operated, to the mother board 11. Here, the input device 22 is constructed from a control panel 22 (see Fig. 3) provided with a plurality of button switches (not shown). The input device 22 may include the other devices such as a keyboard, a mouse and the like, and according to contents of the game soft program, a joystick and the like may be connected to the connector 17. And in Fig. 1, although only one connector 17 is shown, if a plurality of input devices 22 are used, plural connectors 17 are provided respectively corresponding to each of the input devices 22 .

And a hard disk $24(\mathrm{HDD})$ is connected to the port 18 through a flat cable 23.
And in the hard disk 24 connected to the port 18, there are formed an operating system (OS) storing area 24a for storing the OS, an extended BIOS (Basic Input Output System) storing area 24b for storing an extended BIOS and an application storing area 24 c for storing an application program which is the game soft program. Therefore, the hard disk 24 corresponds to a second memory device.

And the extended slot 19 is an insertion slot to connect a video board 25 to the mother board 11 .

Here, the video board 25 connected to the mother board 11 through the extended slot 19 is a board having a graphics-accelerator to display figures and characters on the liquid crystal display (see the reference number 21 in Fig. 3) which is one of the output devices 21 . The video board 25 can conduct performance with a resolution level and a graphics describing speed so that the operation of the game soft program in the information process device 1 of the embodiment can be properly executed.

And the extended slot 20 is an insertion slot to connect a sound board 26 to the mother board 11 .

Here, the sound board 26 connected to the mother board 11 through the extended slot 20 is a board having a chip such as FM sound source and PCM sound
source to output sounds from the speaker (not shown) which is one of the output devices 21 . The sound board 26 can conduct performance so that the operation of the game soft program in the information process device 1 of the embodiment can be properly executed.

Next, with reference to a flowchart shown in Fig. 2, it will be described an operation executed when the information process device 1 according to the embodiment is started to operate. Fig. 2 is a flowchart of a start program executed when the information process device 1 is started to operate.

In the information process device 1 of the embodiment, when the device 1 is started to operate, the start program stored in the start program storing area 13 c of the ROM 13 is executed by the CPU 12 .

That is to say, as shown in Fig. 2, when the start program is executed, at first in S11, a boot program is executed.

Here, the boot program is a program stored in the boot program storing area 13a of the ROM 13, and based on the boot program, initialization of various devices including the extended BIOS (Basic Input Output System) in the hard disk 24 and the OS (Operating System) in the hard disk 24 is executed.

At that time, since the OS (Operating System) in the hard disk 24 is loaded in the RAM 14 and started to operate, the ROM 13 may be called as a boot ROM at this point of view.

Next, when procedure of the start program shifts to $S 12$, the fault inspection program is executed.

Here, the fault inspection program is a program stored in the fault inspection program storing area 13b and through which a fault inspection in the hard disk 24 is executed. Concretely, according to the fault inspection program, it is inspected whether or not a damage occurs in the hard disk 24 or whether or not change or falsification of the program stored in the hard disk 24 is conducted.

Next, when procedure of the start program shifts to S13, it is determined whether or not a fault occurs in the hard disk 24. This determination is conducted based on an execution result of the fault inspection program obtained in S12.

At that time, if it is determined that the fault does not occur in the hard disk 24 (S13: NO), procedure shifts to S14, thereafter the application program stored in
the hard disk 24 is loaded in the RAM 14 and execution of the application program is started. On the other hand, if it is determined that the fault occurs in the hard disk 24 (S13: YES), procedure shifts to S15 and error display is conducted on the liquid crystal display (see the reference number 21 in Fig. 3) which is one of the output devices 21 .

As mentioned, in the information process device 1 according to the embodiment, as shown in Fig. 1, the fault inspection program is stored in the fault inspection program storing area 13b of the ROM 13 on the mother board 11 independently from the hard disk 24 , thereby even if a fault occurs in the hard disk 24 which is inspected by the fault inspection program, it can be guaranteed that the fault inspection program properly operates.

And as shown in Fig. 3, the information process device 1 of the embodiment is used as the gaming machine for business use, and as shown in Fig. 2, the fault inspection program stored in the ROM 13 is executed at the time that the information process device 1 is started to operate and the fault inspection in the hard disk 24 is executed before games are started. Therefore, measures to avoid troubles during gaming can be taken beforehand, without giving displeasure to a player of the gaming machine for business use.

Here, the present invention is not limited to the embodiment mentioned in the above and various modifications can be conducted within the scope of the present invention.

For example, as shown in Fig. 3, although the information process device 1 of the embodiment is used as the gaming machine for business use, the information process device 1 may be adopted for a personal computer on sale. In this case, the keyboard, the mouse or the joystick may be utilized as the input device, instead of the control panel 22.

And in the information process device 1 of the embodiment, although the hard disk 24 is used as the second memory device, a flash memory in which contents can be changed and stored may be used. In this case, the fault inspection program inspects whether or not a fault occurs in the flash memory.

The present invention can be adopted for the fault inspection in the information process device.

## WHAT IS CLAIMED IS:

1. An information process device comprising:
a first memory device for storing a boot program executed when the information process device is started to operate;
a mother board on which the first memory device is provided;
a second memory device for storing an application program, the second memory device being connected to the mother board;
a control device for executing a fault inspection program to inspect whether or not a fault occurs in the second memory device;
wherein the fault inspection program is stored in the first memory device; and
wherein the control device executes the fault inspection program when the information process device is started to operate.
2. The information process device according to claim 1, wherein the first memory device is a ROM provided on the mother board,
wherein the second memory device is a hard disk which is independent from the mother board, and
wherein the control device executes the fault inspection program stored in the ROM to inspect whether or not the fault occurs in the hard disk.
3. The information process device according to claim 1, wherein the information process device is utilized as a gaming machine for business use.

## ABSTRACT OF THE DISCLOSURE

In the information process device 1 , the fault inspection program is stored in the fault inspection program area 13 b of the ROM 13 provided on the mother board 11 which is independently arranged from the hard disk 24 , thereby even if a fault occurs in the hard disk 24 which is inspected by the fault inspection program, it can be guaranteed that the fault inspection program properly operates.


Patent Owner, Bot M8 LLC - Ex. 2013, p. 12

FIG. 2


Patent Owner, Bot M8 LLC - Ex. 2013, p. 13

FIG. 3


Patent Owner, Bot M8 LLC - Ex. 2013, p. 14

# Declaration and Power of Attorney For Patent Application <br> 特許出願宣言書及び委任状 <br> Japanese Language Declaration 

## 日本語宣合書


艤された通りです。
頓している発明内容について，私が敂初かつ唯一の咸明営（下記の氏名が一つの搰舍）もしくは最初かつ共同発明者（下゙記の名标が鏃数の場合）であると借していま な。

## 

本满に录付されています。$\qquad$月 $\qquad$日に㨡出され，米国出相潘かまたは特

$\qquad$ （陔当ける排昏）に信正されました。



認がめることを昰めます。

As a below named inventor，I hereby dedare that：

My residence，mailing address and citizenship are as stated next to my name．

I believe 1 am the original，first and sote inventor（if only one name is listed below）or an original，first and joint inventor （if plural names are listed below）of the subject matter which is claimed and for which a patent is sought on the invention entitled．

INFORMATION PROCESS DEVICE
the specification of which
$\square$ is attached hereto．
was filed on
as United States Application Number or PCT
Intemational Application Number
If applicable）
contents of the above identified specification，including the
claims，as amended by any amendment referred to above．
I acknowiedge the duty to disclose information which is
material to patentability as defined In Title 37 ，Code of
Federal Regulations，§ 1.56 ．

I hereby state that I have reviewed and understand the contents of the above identified specification，including the claims，as amended by any ammendment referred to above．

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37，Code of

## Japanese Language Declaration （日本签宣言煘）

 मा




等内を『ークすることで，示しています。

## Prior Foraign Application（s）

外圂での完行山远

（e）項に思－゙すいて下閭の米园

（Applicarion No．）
（Filing Date）
（出に整陉）


 た，




 を
 あることを路ふしています。











I hereby claim foreign priority undor Tithe 35．United States Cods．\％ 119 （a）－（d）or 385 （b）of any foreign application（s） for patent or inventor＇s cerificale，or $\$ 365(\mathrm{a})$ of any PCT International application which designated at lasst one country other than the United Siaies，Fisted belows and have also identified below，by checking the box，any foraign application for patent or inverior＇s cerificate，or PCT International application having a filing date before that of the application on which priority is claimed．

Priority Claimed



I hereby claim the benefit under Title 35，United Staies Code，$\$ 119(\mathrm{e})$ of any United States provisional application（s）listed below．
（Application No．）
（出吅橎㩝）
I hereby claim the benefit uruder Titte 35，United States Code，§ 120 of any United Staices application（\＄）．or § 365（c） of any PCT International application designating the United States，listed bslow and，insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT Incernational application in the manner provided by the firs？paragraph of Title 35 ，United States code．§ 112，1 acknoretsdige the duly to disclose information which is material to patentability as dafined in Titte 37，Code of Federal Regulations，$\$ 9.58$ winich became available batween the filing daie of the prior application and tho national or PCT intervational filing date of this application．

| （Status：Patented，Pending，Abandonsd） <br>  |
| :---: |
| （Status：Paiented，Pesruding，Abandoned） <br>  |

I hereby deciars that all statements mada herein of my own knowtedge are trua and isnat all statemmis made on information and belief are believod to be true；and further that these statements ware oroade with the krowiodge that willful false statements and the like so made are punishable by fine or imprisonment，or boon，under Section 1004 of Tifte 18 of the United States Conss and that such wialful false statamsents may feopardize ifie validity of the appicasion or any paient issuod thereon．

## Japanese Language Declaration （日本語宣言書）


 たは代理人として，下䟕の者を推名いたします。
 こと）

POWER OF ATTORNEY：As a named inventor，I hereby appoint the following attorney（s）and／or agent（s）to prosecute this application and transact all business in the Patent and Trademark Office connected therewith：（list name and registration number）

022850

## 窝頼送付先

Send Correspondence to：


Direct Telephone calls to：（name and telephone number）
（703）413－3000

| 羊蛃爻明者あたは第一の共同発明者の氏名 | Full name of sole or first inventor Jun HAISHIMA |
| :---: | :---: |
| 菱明者の尊名 日付 | Inventor＇s signature |
|  |  |
| 住阶 | $\begin{aligned} & \text { Residence } \\ & \text { Tokyo, Japan } \end{aligned}$ |
| 园絔 | Citizenship Japanese |
| 举便の完先 | Mailing Address 3－1－25，Ariake，Koto－ku，Tokyo 135－0063 Japan |

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHEET

08/18/2005 YPOLITE1 0000002911205121

| $01 . \mathrm{FC}: 1011$ | 300.00 OP |
| :--- | :--- |
| $02 \mathrm{FC}: 1111$ | 500.00 OP |
| $03 \mathrm{FC}: 1311$ | 200.00 OP |

PTO-1556
(5/87)

| PATEAT APPLACATNON FEE DETERNORNTOON RECORO Substilua for Form PTO-875 Enective Decomber |  |  |
| :---: | :---: | :---: |
| APPLICATION AS FILED - PART I <br> (Column i) <br> (Column 2) <br> SAMALL |  |  |
| FOR | NUMBER FLED NUMBER EXTRA | RATE (\$) |
| BASLC FEE <br> (3) CFR 116 (0). (b). of (c) | NA N/A | N/A |
| SEARCHEFEE <br> (37) CFR: 1 10 ( 4 ). (1). or (m) | N/A N/A | N NA |
| EKADAINATION FEE <br> (37) CFR i $10(0)$. (p). 아 (a)) | N/ N/A | NA |
| TOTAL CLANASS (37 CFR 1 16(t)) | $\Sigma$ munus $20=1$ | 2325 |
| INDEPENDENT CLAIAS <br> (37 OFR 1 16(n)) | minus $3=$ | 2000 |
| APPUCA NION SIZE FEE <br> (37 CFR 1 16(s)) | If the spacification and drawings axceed 100 sheets of paper. the application stze fee due is $\$ 250$ ( $\$ 125$ for small enfity) for each additional 50 sheets or fraction thereof. See 35 U.S.C. $41(a)(1)(G)$ and 37 CFR $1.16(\mathrm{~s})$. |  |
| AGUL TIPLE OEPENDENT CLAIA PRESEAT (37 CFR 1.160)) |  |  |

- If the difference in column 1 is less than zero. enter ${ }^{-} \sigma^{\text {c }}$ in column 2.

- If the entry in column 1 is toss than the entry in colimn 2 , write " $\sigma$ " in columin 3.
© If the "Highast Ptumbar Previoushy Paid For" IN THIS SPACE is lass than 20, enter "20"
000 If the "Highest Number Previously Paid For" IN THIS SPACE is less than 3, enter "3".
The "Highest Number Previoushy Paid For" (Total or Independenf) is the highest number found in the appropriate box in column 1.
This collection of tifformation is required by. 37 CFR 1.16. The tuformation is required to obtain or retain a benefit by the public which is to ale (and by sha USPTO to procass) an application. Confidentiality is govemed by 35 U.S.C. 122 end 37 CFR 1.14. This cotiection is estimated to lake inchuding gathering, praparing, and submitting the comptated appscation form to the USingis burden, should be sent to the Chief Infermation Offioar, U.S. Pelent on the amount of lime you require to compiate this and Trademark Ofica, U.S. Department of Commerce, P.O. B.O. Bor 1460, Alexamdria, VA 22313-8450.


## APPLICATION DATA SHEET

## APPLICATION INFORMATION

Application Type::
Subject Matter::
CD-ROM or CD-R?::
Title::
Attorney Docket Number::
Total Drawing Sheets::
Small Entity?::

REGULAR
UTILITY
NONE
INFORMATION PROCESS DEVICE 276900US90

## 3

 NOINVENTOR INFORMATION
Applicant Authority Type::
Primary Citizenship Country::
Status::
Given Name::
Family Name::
City of Residence::
Country of Residence::
Street of Mailing Address::
City of Mailing Address::
Country of Mailing Address:: Japan
Postal or Zip Code of Mailing Address:: 135-0063

## CORRESPONDENCE INFORMATION

Correspondence Customer Number:: 22850
REPRESENTATIVE INFORMATION
Representative Customer Number:: 22850
DOMESTIC PRIORITY INFORMATION

FOREIGN PRIORITY INFORMATION

| Application Number: | Country:: | Filing Date:: | Priority Claimed:: |
| :--- | :--- | :--- | :--- |
| 2004-245337 | Japan | $08 / 25 / 04$ | YES |
| Page 1 |  |  |  |

Patent Owner, Bot M8 LLC - Ex. 2013, p. 20

## ASSIGNMENT INFORMATION

Assignee Name:
Street of Mailing Address::
City of Mailing Address::
Country of Mailing Address::
Postal or Zip Code of Mailing Address:: 135-0063
IN RE APPLICATION OF: Jun HAISHIMA

| SERIAL NO: | New Application | GAU: |
| :--- | :--- | :--- |
| FILED: | Herewith | EXAMINER: |
| FOR: | INFORMATION PROCESS DEVICE |  |

## INFORMATION DISCLOSURE STATEMENT UNDER 37 CFR 1.97

## COMMISSIONER FOR PATENTS <br> ALEXANDRIA, VIRGINIA 22313

SIR:
Applicant(s) wish to disclose the following information.

## REFERENCES

- The applicant(s) wish to make of record the references listed on the attached form PTO-1449. Copies of the listed references are attached, where required, as are either statements of relevancy or any readily available English translations of pertinent portions of any non-English language references.
$\square$ A check or credit card payment form is attached in the amount required under 37 CFR §1.17(p).


## RELATED CASES

Attached is a list of applicant's pending application(s), published application(s) or issued patent(s) which may be related to the present application. In accordance with the waiver of 37 CFR 1.98 dated September 21, 2004, copies of the cited pending applications are not provided. Cited published and/or issued patents, if any, are listed on the attached PTO form 1449.$\square$ A check or credit card payment form is attached in the amount required under 37 CFR §1.17(p).

## CERTIFICATION

Each item of information contained in this information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this statement.No item of information contained in this information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application or, to the knowledge of the undersigned, having made reasonable inquiry, was known to any individual designated in 37 CFR §1.56(c) more than three months prior to the filing of this statement.
## DEPOSIT ACCOUNT

- Please charge any additional fees for the papers being filed herewith and for which no check or credit card payment is enclosed herewith, or credit any overpayment to deposit account number 15-0030. A duplicate copy of this sheet is enclosed.

Customer Number

Respectfully submitted,
OBLON, SPIVAK, McCLELLAND, MAIER \& NEUSTADT, P.C.

## Colmu Tivient

## Masayasu Mori

Registration No. 47,301
C. Irvin McClelland

Registration Number 21,124

SHEET
1 OF
1


Patent Owner, Bot M8 LLC - Ex. 2013, p. 23

# PATENT ABSTRACTS OF JAPAN 

（11）Publication number ：<br>2003－330793<br>（43）Date of publication of application ：21．11．2003

| （51）Int．CI． | $\begin{aligned} & \text { G06F } 12 / 08 \\ & \text { G06F } 12 / 06 \\ & \text { GO6F } \\ & 12 / 16 \end{aligned}$ |  |
| :---: | :---: | :---: |
| （21）Application number ：2002－139065 | （71）Applicant： | CANON INC |
| （22）Date of filing ： 14.05 .2002 | （72）Inventor： | KAWANABE TETSUYA AICHI TAKAO MASUMOTO KAZUYUKI SUWA TETSUYA HAMAMOTO AKIHIKO HIBI MAKOTO OSHIMA MASATO GOTOU FUMIHIRO ONO MITSUHIRO |

（54）INFORMATION PROCESSOR AND CONTROL METHOD THEREOF
（57）Abstract：
PROBLEM TO BE SOLVED：To solve the problem in conventional equipment that a DRAM to be checked is used，prior to the check of the DRAM to be checked，to execute a check program therefor，and this contradicts the purpose of operation test of the DRAM．
SOLUTION：This information processor has a CPU，an IRAM 3002a connected to the local bus of the CPU，and a ROM and RAM connected to the external bus of the CPU．This processor further has a cache controller 3101 for varying the memory capacity to be used as cache memory according to the operation mode of the device of the memory capacity of the IRAM 3002a to make the
 IRAM 3002a usable as cache memory．Programs or data are stored in the memory area other than that used as the cache memory in the IRAM 3002a，and the check program stored in the IRAM 3002a is executed to perform a memory check．

## LEGAL STATUS

［Date of request for examination］
［Date of sending the examiner＇s decision of rejection］
［Kind of final disposal of application other than the examiner＇s decision of rejection or application converted registration］
［Date of final disposal for application］
（19）日本国特許庁（J P）
（12）公開特許公報（A）
（11）特許出願公開番号
特開2003－330793
（P2003－330793A）
平成15年11月21日（2003．11．21）

（54）【発明の名称】情報処理装置及びその制御方法
（57）【要約】
【課題】チェック対象のDRAMをチェックする前 に，そのチェックプロクラムを実行するためにチェック対象のDRAMを使うことになってしまい，DRAMの動作テストという目的からすると矛盾したことになる。
【解決手段】 CPUと，CPUのローカルバスに接続 されたIRAM3002aと，CPUの外部バスに接続 されたROM及びRAMを備えた情報処理装置であっ て，IRAM3002aのメモリ容量の内，装置の動作 モードに応じてキャッシュメモリとして使用するメモリ容量を可変にしてIRAM3002 a をキャッシュメモ リとして利用可能にするキャッシュコントローラ310 1を有し，IRAM3002 a におけるキャッシュメモ リとして使用される以外のメモリ領域にプログラムやデ ータを格納し，そのIRAM3002aに格納されたチ ェックプログラムを実行してメモリチェックを行う。


Patent Owner，Bot M8 LLC－Ex．2013，p． 25

1
【特許請求の範囲】
【請求項1】 C P Uと，当該C P U のローカルバスに接続された内蔵メモリと，前記CPUの外部バスに接続 されたROM及びR AMを備えた情報処理装置であっ て，
前記内蔵メモリのメモリ容量の内，前記装置の動作モー ドに応じてキャッシュメモリとして使用するメモリ容量 を可変にして前記内蔵メモリをキャッシュメモリとして利用可能にするキャッシュコントローラと，
前記内蔵メモリにおける前記キャッシュメモリとして使用される以外のメモリ領域にデータを格納するデータ格納制御手段と，を有することを特徴とする情報処理装置。
【請求項2】前記データ格納制御手段は，前記メモリ領域に前記動作モードの情報を記憶することを特徴とす る請求項1に記載の情報処理装置。
【請求項3】前記R AMのメモリチェックが指示され ると，前記R OMに記憶されているチェック用プログラ ムを前記内蔵メモリにコピーする手段を有し，前記C P Uは前記内蔵メモリにコピーされた前記チェック用プロ グラムに基づいて前記R AMのメモリチェックを実行す ることを特徵とする請求項1に記載の情報処理装㯰。
【請求項4】CPUと，当該CPUのローカルバスに接続された内蔵メモリと，前記C P U の外部バスに接続 されたROM及びRAMを備えた情報処理装置における制御方法であって，
前記内蔵メモリのメモリ容量の内，前記装置の動作モー ドに応じてキャッシュメモリとして使用するメモリ容量 を可変にして前記内藏メモリをキャッシュメモリとして利用する工程と，
前記内蔵メモリにおける前記キャッシュメモリとして使用される以外のメモリ頋域にデータを格納するデータ格納制御工程と，を有することを特徴とする情報処理装置 における制御方法。
【請求項5】前記データ格納制御工程では，前記メモ リ領域に前記動作モードの情報を記億することを特徵と する請求項4に記載の制御方法。
【請求項6】前記RAMのメモリチェックが指示され ると，前記R OMに記境されているチェック用プログラ ムを前記内蔵メモリにコピーし，前記C P U は前記内蔵 メモリにコピーされた前記チェック用プロクラムに基づ いて前記RAMのメモリチェックを実行することを特徴 とする請求項4に記載の制御方法。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は，C P U の内蔵メモ リをキャッシュメモリとして使用する情報処理装置とそ の制御方法に関するものである。

## 【0002】

【従来の技術】近年，複数の機能モジュールを備える情 50

報処理装置では，ROM上にプログラムやデータを記滰 しておき，CPUかそのROMからプログラムやデータ を逐次読み出じて実行することにより所望の制御を行っ ている。また今日では，これら機器における機能が多種多様になってきている。例えば従来のプリンタ装㯰にメ モリカードのスロットを設けて，そのスロットに装着さ れたメモリカードに記憶されている画像情報を読み出 し，その画像情報に対してプリンタ自身で色処理など施 して画像を記録するフォトダイレクトプリンタ装置があ る。このような機器は，その処理スピードの高速化が望 まれ，その機器を制御しているC P U の駆動周波数がR OMやDRAMなどの外部メモリへのアクセスピードよ りも早いものが使われることが多い。このような高速C PUを採用した機器では，キャッシュメモリを備えて， できるだけ外部メモリへのアクセス回数を減少させると ともにプログラムの読み出しやデータ読み書きの際のC PUウエイト時間を堿少させている。
【0003】
【発明が解決しようとする課題】このような従来の機器 では，CPUがROMに書かれたプログラムを逐次読み出して実行する形式のもの（以後，従来例1と呼ぶ），或いは，キャッシュメモリを備えた機器においては，機器の電源投入時などに，ROMに書かれたプログラムや データなどを，一旦そのROMからDRAMにコピー或 いは展開し，キャッシュメモリを併用してDRAMに記憶されたプログラムをC P Uが実行する形式（以後，従来例2と呼ぶ）がある。
【 00014 】 このような機器において，製品の信頼性を向上させる目的で制御基板の動作テストなどが実施さ
30 れ，例えばC P Uのワークメモリとして使用されるDR AMのリード／ライトチェックも必要になる。このよう なチェックに際しては，従来例1の場合はDRAMへの読み書きをチェックするプログラムをROMに記憶して おき，このROMに書込まれているプログラムを実行し てDRAMの読み書きテストをすることが考えられる が，この方式はC P U がROMから逐次プログラムを読 み出し実行することになり，このチェックに要する時間 が長くなるという問題がある。
【 0005 】 1 また従来例 2 の方式では，一度，ROMの 40 プログラムをDRAMに展開する必要があり，チェック対象のDRAMをチェックする前に，そのチェックプロ クララを実行するためにチェック対象のDRAMを使う ことになってしまい，DRAMの動作テストという目的 からすると矛盾したことになる。従って，もしも製造上 の問題，或いはDRAM部品の不良によりDRAMが正常に動作できないときは，このような読み書きチェック自体も正常に行なわれなくなる。
〔 0 0 0 6 6 1 本発明は上記従来例に鑑みてなされたもの
で，高速メモリであるCPU内蔵メモリを効率良く使用 して，処理の高速化を図った情報処理装置及びその制御

## 3

方法を提供することを目的とする。
【0007】
【課題を解決するための手段】上記目的を達成するため に本発明の情報処理装置は以下のような構成を備える。即ち，CPUと，当該CPUのローカルバスに接続され た内蔵メモリと，前記C P U の外部バスに接続されたR OM及びRAMを備えた情報処理装置であって，前記内蔵メモリのメモリ容量の内，前記装置の動作モードに応 じてキャッシュメモリとして使用するメモリ容量を可変 にして前記内蔵メモリをキャッシュメモリとして利用可能にするキャッシュコントローラと，前記内藏メモリに おける前記キャッシュメモリとして使用される以外のメ モリ領域にデータを格納するデータ格納制御手段と，を有することを特徵とする。
【0008】上記目的を達成するために本発明の情報処理装置における制御方法は以下のような工程を備える。即ち，CPUと，当該C P Uのローカルバスに接続され た内藏メモリと，前記C P U の外部バスに接続されたR OM及びRAMを備えた情報処理装置における制御方法 であって，前記内蔵メモリのメモリ容量の内，前記装置 の動作モードに応じてキャッシュメモリとして使用する メモリ容量を可変にして前記内蔵メモリをキャッシュメ モリとして利用する工程と，前記内藏メモりにおける前記キャッシュメモリとして使用される以外のメモリ領域 にデータを格納するデータ格納制御工程と，を有するこ とを特徵とする。
【0009】
【発明の実施の形垫】以下，添付図面を参照して本発明 の好適な実施の形態を詳細に説明する。
【 0010 】［装置本体の概略説明］図 1 は，本発明の実施の形態に係るフォトダイレクトプリンタ装置100 0 の概観斜視図である。このフォトタイイレクトプリンタ装置1000は，ホストコンピュータ（PC）からデー夕を受信して印刷する，一般的なPCプリンタとしての機能と，メモリカードなどの記憶媒体に記境されている画像データを直接読み取って印刷したり，或いはデジタ ルカメラからの画像データを直接受信して印刷する機能 を備えている。
【0011】図1において，本実施の形態に係るフォト タイレクトプリンタ装置1000の外殼をなす本体は，下ケース1001，上ケース1002，アクセスカバー 1003 及び排出トレイ1004の外装部材を有してい る。また，下ケース1001は，このプリンタ装置10 00 の略下半部を，上ケース 1002 は本体の略上半部 をそれぞれ形成しており，両ケースの組合せによって内部に後述の各機構を収納する収納空間を有する中空体構造をなし，その上面部及び前面部にはそれぞれ開口部が形成されている。さらに，排出トレイ1004は，その一端部が下ケース1001に回転自在に保持され，その回転によって下ケース1001の前面部に形成される開 50

口部を開閉させ得るようになっている。このため，記録動作を実行させる際には，排出トレイ1004を前面側 へと回転させて開口部を開成させることにより，ここか ら記録シートが排出可能となると共に，排出された記録 シートを順次積載し得るようになっている。また，排紙 トレイ1004には，2枚の補助トレイ1004a，1 004 b が収納されており，必要に応じて各トレイを手前に引き出すことにより，用紙の支持面積を3段階に拡大，縮小できるようになっている。位をマイクロスイッチなどで検出することにより，ア る。
【OO13】また，上ケース1002の右側には，液晶表示部1006や各種キースイッチ等を備える操作パネ ル 1 0 1 0 が設けられている。この操作パネル 1 0 1 0 の構造は，図2を参照して詳しく後述する。1007は自動給送部で，記録シートを装置本体内へと自動的に給送する。 1008 は紙間選択レバーで，記録ヘッドと記録シートとの間隔を調整するためのレバーである。10 09はカードスロットで，ここにメモリカードを装着可
30 能なアダプタが挿入され，このアタプタを介してメモリ カードに記億されている画像データを直接取り込んで印刷することができる。このメモリカード（PC）として は，例えばコンパクトフラッシュ（登録商標）メモリ， スマートメディア，メモリスティック等がある。101 1 はビューワ（液晶表示部）で，この装置本体に着脱可能であり，PCカードに記憶されている画像の中からプ リントしたい画像を検索する場合などに，1 コマ毎の画像やインデックス画像などを表示するのに使用される。 1012は後述するデジタルカメラを接続するための端

## 続するためのUSBバスコネクタを示す。

【0 0 1 4 4 】図2は，本実施の形態に係る操作パネル1 010 の概倠図である。
【 0015 】図において，液晶表示部 1006 には，そ の左右に印刷されている項目に関するデータを各種設定 するためのメニュー項目が表示される。ここでに表示さ れる項目としては，印刷したい範囲の先頭写真番号，指定コマ番号（開始／一指定），印刷を終了したい範囲の最後の写真番号（終了），印刷部数（部数），印刷に使 50 用する用紙（記録シート）の種類（用紙種類），1 枚の

用紙に印刷する写真の枚数設定（レイアウト），印刷の品位の指定（品位），猳影した日付を印刷するかどうか の指定（日付印刷），写真を補正して印刷するかどうか の指定（画像補正），印刷に必要な用紙枚数の表示（用紙枚数）等がある。これら各項目は，カーソルキー 20 01 を用いて選択，或いは指定される。2002はモー ドキーで，このキー 2002 を押下する毎に，印刷の種類（インデックス印刷，全コマ印刷，1コマ印刷等）を切り替えることができ，これに応じてLED 2003 の対応するLEDが点灯される。2004はメンテナンス キーで，記録ヘッド1301のクリーニング等，プリン タのメンテナンスや印刷頒域指定モードに入るためのキ一である。2005は印刷開始キーで，印刷の開始を指示する時，或いはメンテナンスの設定を確立する際に押下される。2006は印刷中止キーで，印刷を中止させ る時や，メンテナンスの中止を指示する際に押下され る。
【 0 0 1 6 1 また，この操作パネル 1 0 1 0 の上部に は，押下可能な電源スイッチ（Powerスイッチ） 200 8 及びレジュームスイッチ（Resume スイッチ） 200 7 と，プリンタエンジン3004（図3）の動作状態を示す2色分のLED2009が配置されている。これら レジュームスイッチ2007，電源スイッチ2008か らの各入力信号は，後述するASIC3001（図3） のスイッチI／Fモジュールの管理のもとにプリンタェ ンジン3004にも出力されている。
【 0017 1 次に図3を参照して，本実施の形態に係る フォトタイレクトプリンタ装置1000の制御に係る主要部の構成を説明する。尚，この図3において，前述の図面と共通する部分は同じ記号を付与して，それらの説明を省略する。
【 0018 】図 3 において， 3000 は制御部（制御基板）を示している。3001はASIC（専用カスタム LSI）を示している。 3 0 0 2 はC P U で，後述する装置全体の各種制御処理及び，画像処理等を担当してい る。また，CPU3002の内部には，2次キャッシュ としても動作可能な 64 k バイトの内䀛RAM（IRA M）3002aを併せもつている。3003はメモリ で，CPU3002の制御プログラムを記憶する2Mバ ィトのフラッシュROM（FlashROM）3003a，及び実行時のプログラムを記憶し，画像データなどを記憶す るためのワークメモリとして機能する 8 M バイトのSD RAM3003bを有している。3004はプリンタェ ンジンで，ここでは，複数色のカラーインクを用いてカ ラー画像を印刷するインクジェットプリンタのプリンタ エンジンが搭載されている。3005はデジタルカメラ 3012を接続するためのポートとしてのUSBバスコ ネクタである。3006はビューワ1011を接続する ためのコネクタである。 3008 はUSBバスハブ USB HUB）で，このプリンタ装置1000がPC3010か

らの画像データに基ついて印刷を行う際には，PC 30 10 からのデータをそのままスルーし，USBバス 30 21を介してプリンタエンジン 3 0 0 4 に出力する。こ れにより，接続されているPC3010は，プリンタエ ンジン 3004 と直接，データや信号のやり取りを行っ て印刷を実行することができる（一般的な P Cプリンタ として機能する）。3009は電源コネクタで，電源3 013 により，商用ACから変換された直流電圧を入力 している。PC3010は一般的なパーソナルコンピュ －ータ，3011は前述したメモリカード（PCカー ド），3012はデジタルカメラである。
【0 O 1 9 】 尚，この制御部 3 0 0 0 とプリンタエンジ ン 3004との間の信号のやり取りは，前述したUSB バス3021 又はIEEE1284バス3022を介し て行われる。
【0020】更に，制御部3000とプリンタエンジン 3004 との間には，電源スイッチ2008及びレジュ ームスイッチ2007からの信号状態を示す 2 本のスイ ッチ信号線3023，及びプリンタエンジン3004内部の制御モジュール（CPUやASIC）をリセットす るためのエンジンリセット信号線 3024 が接続されて いる。2本のスイッチ信号線3023のそれぞれは，操作パネル1010に配置されたレジュームスイッチ20 07 ，電源スイッチ 2008 のそれぞれの押下状態に対応した信号を伝えるが，後述するASIC3001内部 のスイッチ $\mathrm{I} / \mathrm{F}$ 機能部の設定に応じて，これらスイッ チ2007，2008の押下状態を直接プリンタエンジ シ 3004 に伝送する（スルーモード）か，或いは，制御部3000によってエミュレートした信号としてプリ選択可能になっている。
【0021】図4は，CPU3002の機能構成を示す ブロック図である。
【0022】このCPU3002の内部には，命令コー ドフェッチ回路，演算ユニット，レジスタなどを含むC PUコア部3100と，キャッシュメモリを制御するキ ヤッシュコントローラ3101と，フラッシュROM3 003 a ，ASIC3001，SRAM3003bなど の外部メモリ空間へアクセスするためのバス制御回路を含めた外部メモリコントローラ3103と，2次キャッ シュメモリとしても動作可能な 64 k バイトの高速メモ リで構成されたIRAM3002 aとを備えている。 ［0023］なお，本実施の形㮩に係るキャッシュコン トローラ3101では，IRAM3002a内に，16 k バイト単位で 2 次キャッシュメモリとして使う領域を プログラム処理によりCPUコア 3 1 0 0 が任意に設定 できる。また，本実施の形態におけるキャッシュコント ローラ 3 1 0 1 は，1 次キャッシュメモリとして，命令 コードキャッシュ用とデータキャッシュ用にそれぞれ 4 k バイトのメモリを備えた所謂ハーバードアーキテクチ

Patent Owner，Bot M8 LLC－Ex．2013，p． 28

## 7

ャ構成となっている。キャッシュコントローラ3101 は，CPUコア3100よりの命令コードを読み出し， テータの読み書き要求に応じて，1 次キャッシュにその命令コードやデータがあれば（ヒット），その 1 次キャ ッシュから命令コードやデータの読み出しやデータの書 き込みを高速に行うことができる。また 1 次キャッシュ にその命令コードやデータがなく（ミスヒット），2次 キャッシュ（I R AM）にその命令コードやデータがあ れば（ヒット），その 2 次キャッシュからその命令やデ一タの読み出しやデータの書き込みを行い，ミスヒット したときは外部メモリコントローラ 3 1 0 3 を介して外部メモリ空間へのアクセスを行うようになっている。
【0024】このとき例えばSDRAM3003bへの アクセスは所定ワード数単位でバーストモードで高速に読み書きする。これとともに 2 次キャッシュ（IRA M）が有効な場合は，その 2 次キャッシュにその命令コ ードやデータを格納し，同時に 1 次キャッシュにその命令コードやデータを格納しておいて，CPUコア 310 0 から要求された命令コードの読み出しやデータの読み書き動作を行う。尚，これら 1 次キャッシュ及び 2 次キ ャッシュ領域は有限なので，CPUコア 3100 からの要求により， 1 次キャッシュが溢れる場合には，その溢 れてしまう命令コードやデータを1次キヤッシュから2次キャッシュ（I R AM）に移動する。更に 2 次キャッ シュが溢れる場合には，その溢れてしまうデータ中にS DRAM3003bへの未書込みデータがあるときに は，SDRAM3003bへ所定ワード数単位でバース トモードににより高速に書込み動作させるキャッシュフ ラッシュ動作を行う。また，IRAM3002aにおけ る 2 次キャッシュ頒域以外の領域も高速メモリとして使 うこともできるようになっている。以上のような構成を採用することで，この装置における制御処理スピードを高速化している。
【0025】図5は，ASIC3001の構成を示すフ ロック図で，この図 5 においても，前述の図面と共通す る部分は同じ記号を付与して，それらの説明を省略す る。
【0026】4001はPCカードインターフェース
（ $\mathrm{I} / \mathrm{F}$ ）部で，装着された PC Cード 3011 に記憶 されている画像データを読取ったり，或いは P C カード 3011 へのデータの書き込み等を行う。 4002 はI EEE1284インターフェース部で，プリンタェンジ ン 3004との間のデータのやり取りを行う。このIE EE12841／F部4002は，デジタルカメラ30 12 或いはPCカード3011に記憶されている画像デ一タを印刷する場合に使用されるバスである。4003 はUSBインターフェース部で，PC3010との間で のデータのやり取りを行う。4004はUSBホストイ ンターフェース部で，デジタルカメラ3012との間で のデータのやり取りを行う。4005は操作パネル・イ

ンターフェース部で，操作パネル1010からの各種操作信号を入力したり，表示部 1006 への表示データの出力などを行う。 4006 はビューワ・インターフェー ス部で，ビューワ 1 0 1 1 への画像データの表示を制御 している。4007aおよび4007bは各種スイッチ やLED4009等との間のインターフェースを制御す るスイッチ・インターフェース部である。
【002714011は，プリンタエンジン3004の リセット制御を行うレジスタである。このエンジンリセ ット・レジスタ4011は，他のASIC内の各モジュ ールがリセットスタート（リセット信号により起動）後 にはASIC3001によって自動的に初期化されるの と異なり，リセットスタート後も自動的には初期化され ることはなく，完全に電力供給がなくなった時に初めて初期化される。つまり，このレジスタ4011の設定値 を参照することにより，単純なりセットスタートである のか，或いはAC電源から電源3013を切り離す（電源供給断）ことによる純粋なハードリセットであるかを判別することができる。
【0 0 2 8 】 本実施の形態においては，電源オン中に電源スイッチ2008が押下される（電源オフ指示）とプ リンタエンジン部 3 0 0 4 が電源オフ動作を開始する。 そして，その電源オフ動作が終了するとその旨を検出し て，図9のステップS 19の電源断処理（PowerDown） に進み，スイッチI／F（4007a，b）を通して電源スイッチ2008の押下によるCPU3002にリセ ットを掛ける設定として，不要なクロック動作を停止さ せて省電力モードに移行する。この状態のときに電源ス イッチ2008が再び押下されるとリセットが掛かり， システムが起動できるようになっている。 4008 はC PUインターフェース部で，CPU3002との間での データのやり取りの制御を行っている。4010はこれ ら各部を接続する内部バス（A S I Cバス）である。
【 00 29 1 上述したように本実施の形態に係るフォト ダイレクトプリンタ装置1000では，CPU3002 が，図3のメモリ 3003 に記憶された制御プログラム に従って，画像処理に加えて，装置の各部の制御をも実行している。【 00310 I この制御プログラムは，機能モジュールご とにタスク化したマルチタスク形式で構成されており， そのタスク構成の主なものを示すと図6のようになる。
【0 0 3 1 1 図 6 は，本実施の形態に係るフォトダイレ クトプリンタ装置1000におけるタスクの構成を示す ブロック図である。
【0032】図6において，8000はシステムコント ロールタスクで，各タスク間でのイベント発行，イベン トの終了に伴うシーケンス制御や排他処理等，システム全体の調停を行っている。8001はキーイベントタス クを示し，操作パネル1010のキー操作に基づいて，押下されたキーの解析等を行う。8002はLCD表示

Patent Owner，Bot M8 LLC－Ex．2013，p． 29

## 9

部1006への表示タスクを示し，この表示タスクは表示部1006におけるUI制御或はメッセージ表示要求等が発生した時点で起動され，表示部1006への表示制御を実行している。8003はPCカード3011～ の読み書きによるデータの入出力により起動されるタス クを示す。8004はUSBバスを介して接続されるP C3010からのデータ転送制御するUSBプリンタタ スクで，USBのプリンタ割り込みにより起動され，P Cプリンタとしての機能を実行する。8005は，シス テムコントロールタスク8000により起動されるUS Bストレージタスクで，USBI／Fを通じてPC30 10 との間でコマンドやデータのやり取り行い，PC3 010 の要求に応じ，PCカード部 8003 と連携して PCカード3011への読み書き制御を行う。また，シ ステムコントロールタスク8000からのメッセージに応じて，下位タスクであるUSBコントロールタスク， USBバルクタスクの起動•終了を行う。8006は擬似ホストタスクで，USBを介して接続されるデジタル カメラ 3 0 1 2 からのデータの読込みや各種通信制御等 を実行する。8007はファイルタスクで，ファイルの オープン，クローズ，リード，ライト等の入出力制御を行う。
【0 0 3 3 18008はプリンタエンジン 3 0 0 4 と接続されるセントロニクス・インターフェースの通信制御 を行うセントロニクスタスクで，印刷データのDMA送信，ステータス応答等を実行する。8009は画像処理 タスクで，RGBデータを受取り，3D処理，四面体補完，色変換やスケーリング及び誤差拉散処理などにより YMCKデータを作成し，最終的にプリンタエンジン3 004 に出力するラスタイメージデータを作成する。 8 010はページ・クリエイトタスクで，JPEGデータ を伸長して画像データに変換したり，或はBMP形式の データからイメージデータを作成したり，或はHTML文書からイメージデータを作成するとともに，フォトデ一夕の補正，階調補正等の画像処理やRGBデータの作成等を行っている。8011はビューワタスクで，ビュ ーワ1011が接続されている状態で，ビューワ101 1 への表示制御を実行している。
【0 0 3 4 】 次に，命令コードやデータを含む制御コー ドの，メモリマップ上での配置について，図 7 乃至図 8 に示すメモリマップを参照して説明する。
〔0035】図7は，IRAM3002aのメモリマッ プを説明する図で，それぞれの動作モードでの使用方法 をIM1～IM4で示している。
【0036】図8は，フラッシュROM3003aのメ モリマップ（ROM）と，SDRAM3003bのメモ リマップ（S DRAM）を説明する図である。
【0 0 3 7 】 上記制御コードは，電気的に書き換え可能 な 2 MバイトのフラッシュROM3003 aに格納され ていて，図 8 のメモリアップ（ROM）に示したよう

に，本実施の形態では，2Mバイト中の上位 64 k バイ ト，つまり，P1にリセットスタート時に必要な特殊コ ードを配置し，残り部分（P2）には通常コード，つま り，後述する図 9 中のステップS 3～S 1 9 で示す処理用の制御コードなどを配置している。
【O 0 3 8 】 特殊コード部（ P 1 ）には，後述する図 1 0 （ロータ）及び図11（スタートアップ）の制御フロ一で示されるプログラムが格納されており，1kバイト のロータ（Loader）部（A1）と， 7 k バイトのスター 1）トアップ（StartUP）部（A 2），及び5 6 k バイトの アップデート（Update）部（A 3）とがある。【0 0 3 9 】 通常コード部（P 2 ）には，C P U の割り込みべクタ処理用のプロクラム部分であるシステムベク夕（SystemVector）部（A 4）と，P 2 に格納してある後述の図11 で説明する電源断（PowerDown）処理へ P 1 からジャンプするためのアドレスなどを格納してある ジャンプテーブル（JTBL）（A 5）と，電源断処理の制御コードを格納しているPowerDown（A6）と，前述の図6を参照して説明した各タスクの制御コードを格納し ている通常プログラム部（A7）と，データ部（A 8） と，及び，後述の図11で説明するRAMチェック処理用の制御コードを格納してあるチェッカー部（A9）と が格納されている。
【 O 0 4 0 】 次に，前述の特殊コード（ P 1）と通常コ ード（ P 2）との関連について図 9 以降のフローチャー トを参照して説明する。
【0 0 4 1 】 図 9 は，本実施の形態に係るフォトダイレ クトプリンタ装置1000の全体的な処理の流れを示す フローチャートである。
30 【OO421この処理は制御部3000のリセットが解除されることにより開始され，まずステップS 1 で，八 ードウェアによって自動的にフラッシュROM3003 a の先頭から 1 k バイトのローダ部（図 8 のA 1）が， CPU3002のIRAM3002 a の先頭から1kバ イト（図7のB1）にロードされ，IRAM3002a の先頭番地からのロータ部の制御コードが実行される。
このときIRAM3002aは，図7のIM1で示すよ うにマッピングされていて，2次キャッシュは禁止状態 である。このようにしてステップS 1 より制御プログラ 40 ムの実行を開始する。

【0 0 4 3 〕 このローダ部の制御コードに基づく処理を示すフローチャートが図10に示されている。【0044】図10において，まずステップS 1 0 0 で，CPU内臓レジスタの初期化を行い，次にステップ S 1 0 1 に進み，図7のIM2で示したB5 部分に，3 2 k バイトの 2 次キャッシュメモリ（L2Cache）配直さ せる。次にステップS 1 0 2 に進み，フラッシュROM 3003 a の図 8 のA 2 に格納されているスタートアッ プ制御コードをIRAM3002aの図7のB4にロー 50 ドする。そしてステップS 1 0 3 に進み，後述のスター

Patent Owner，Bot M8 LLC－Ex．2013，p． 30

11
トアップ・プロクラムなどが動作する上で必要になるス タックメモリ領域を，図7のB2に配置させるようにス タックポインタなどを設定してローダ部の処理を終了す る（IM2）。
【0045】次に，こうしてステップS102でIRA M3002aにロードされたスタートアップ部の制御コ ードを図 9 のステップS 2 で実行する。
【0046】図11は，図9のステップS2のスタート アップ制御処理を示すフローチャートである。
【0 0 4 7 】 このスタートアップ部の処理においては， まずステップS200で，エンジンリセット・レジスタ 4011 の内容を読み出し，エンジンリセットが解除済 みかどうかを調べる。解除済みでなけれぼ，ACプラグ をAC電源と接続することによる電源投入であるため，
「モード1」～「モード5」のいずれかであるかを判定 する。ここでは，電源投入時に押下されている操作パネ ル 1 0 1 0 のスイッチの押下状態の組み合わせに応じて「モード1」～「モード5」のいずれかが選択される。例えば，レジュームスイッチ 2007 ，電源スイッチ 2 008 ，及び所定のスイッチが全てオフ状態のときを「モード1」とすると，この「モード1」では通常のA Cオン時の処理を開始し，ステップS210でフラッシ ュ ROM3003aのJTBL（A5）～PowerDown （A6）のみをSDRAM3003bにコピーし，PI NF（B3）のモードを「パワーオン待機モード」と し，JTBL（A5）を介して図 9 のステップS 1 9 に ジャンプレて電源断処理を実行する。
【0 0 4 8 】 このステップS 19の電源断処理では，エ ンジンリセット・レジスタ4011を操作してプリンタ エンジン 3004 のリセットを解除し，スイッチI／F （4007a，b）をスルーモードに切り替えるととも に，電源スイッチ2008の押下によりCPU3002 にリセットを掛ける設定として，不要なクロック動作を停止させて省電力モードに移行する。この後，電源スイ ッチ2008が再び押下されることによりCPU300 2 にリセットが掛かり，これと同時にプリンタェンジン 3004 を起動させる。そしてCPU3002のリセッ トによりステップS 1 より起動されると，図11 のステ ップS 200の判定で，今度はエンジンリセットが解除済みとなるので，ステップS 260 に進んで「通常モー ド」での処理に移行する。
【O O 4 9 「「モード 2 」は，製造工程などにおける基板チェック工程用の検査モードである。この検査モード は，SDRAM3003bのリードノライトチェックを行うもので，まずステップS 2 2 0 で，2 次キャッシュ を禁止し，図7のIM2マップからIM3マップに切り替える準備を行う。次にステップS 2 2 1 に進み，フラ ッシュROM3003 aに格納されているChecker制御 コード（図8のA9）をIRAM3002aのB6ヘロ ードする（IM3）。次にステップS 2 2 2 に進み，そ 50

のChecker処理を実行してSDRAM3003bのリー ドノライトチェックを行う。このステップS222でS DRAM3003bをテストした結果をPINF（B
3）に格納しておく。ここで例えばエラーであった場合 には，これ以上プログラムを動作させてSDRAM30 03 b を使用すると暴走などの危険があるので，AS I C3001の特殊ボートなどにその旨を出力して動作を停止させる。一方，正常であった場合はステップS 2 2 3に進み，再びIRAM3002aのメモリマップをI
10 M2マップに切り替えるために 2 次キャッシュを 32 k バイト設定にして，モードを「検査モード1」とする。【00501「モード3」及び「モード 4 」 「は，製造工程などにおける検査モードである。この検査モードで は，各々ステップS230でモードを「検査モード 2」，もしくはステップS 240でモードを「検査モー ド3」と設定する。
【0051】「モード5」は，フラッシュROM300 3 b を書き換えるアップデートモードである。この場合 は，まずステップS250で，フラッシュROM300 A3）をSDRAM3003bのワーク2（C1）ヘコ ピーする。次にステップS 251 に進み，フラッシュR OM3003aのアップデート処理を実行する。このス テップS251 では，PCカード3011に格納された制御コードをフラッシュROM3003bに書き込むた めに，PCカード3011に格納されている所定の形式 のアップデートデータを読み出し，一旦，SDRAM3 003 b のワーク 3 （WOrk3）頒域（図8のC3）に2 MパイトのフラッシュROMイメージのデータ（図8の き込む。また後者（全体アップデート）の場合には，フ ラッシュROM3003aの全領域（P3）を消去し， SDRAM3003bのワーク領域（C3）に展開した もの全てをフラッシュROM3003aに書き込む。こ うしてフラッシュROM3003aのアップデートが正常に終了するとステップS252に進み，モードを「ア ップデートモード」としておく。
【0053】またステップS 200 において，図 9 のス テップS 19の電源断処理にて，スイッチI／F（40 07 a ，b）を電源スイッチ 2008 の押下によりCP

Patent Owner，Bot M8 LLC－Ex．2013，p． 31

U3002にリセットを㨆ける設定として，不要なクロ ック動作を停止させて省電力モードに移行させる。その後，電源スイッチ2008が再び押下されてリセットさ れたときには既にプリンタエンジン3004のエンジン リセットから解除済みなので「モード0」と判定され，ス テップS260に進んで，モードを「通常モード｣にす る。
10054］以上のようにして各種モードが雃定すると ステップS270に進み，各種モードをIRAM300 2aのPINF領域（B3）に格納する。次にステップ S 2 7 1 に進み，それ以降の処理をできるだけ高速に実行させるように，図7に示すIM4のマップに切り替え るために， 2 次キャッシュを 48 k バイト設定にする。 そしてステップS 272 に進み，フラッシュROM30 03aのJTBL（A5）～通常プロクラム（A7）部分をSDRAM3003bの通常プログラム領域（C 2）にコピーする。そしてC＿INTヘジャンプする。これ により図9のステップS3に進み，フラッシュROM3 003aに格納されているシステムベクタ部（A4）を IRAM3002aの先頭領域（B9）にコピーしてC PU3002の割り込み処理などを実行できるようにし ておく。
100551次にステップS4に進み，以降のステップ S5～S 18で示したタスクなどを動作させるべくOS を起動する。こうしてOSか起動されると，このOSの コンフィキュレーション情報に従って，ステップS5で初期化タスク（Initializer）が起動される。
100561次に，図12及び図13を参照して，図9 のステップS5の初期化タスク処理を説明する。
【00571図12は，図9のステップS5の初期化処 30理（Initializer）を説明するフローチャートである。 100581 まずステップS300で，ASIC300 1のエンジンリセットレジスタ（4011）及びスイッ于I／F（4007a，b）以外のレジスタなどを必要 に応じて初期化する。次にステップS 301に進み，O S の時間管理機能を動作させるためにタイマを起動す る。そしてステップS302に進み，必要に応じてプリ ンタエンジン3004のリセット解除してプリンタエン ジン3004を起動させる。
［00591図13は，ステップS302のエンジン信号の初期化処理を説明するフローチャートである。 （0060）まずステップS 400において，ステップ S270でIRAM3002aのPINF願域（B3） に格納されているモード情報を参照し，「検査モード 1」若しくは「検査モード2」かどうかを調へ，そうで あればこの処理を終了する。つまり「検査モード1」 （「モード2」）若しくは「「検査モード2」（「モード 3」）のときはエンジンリセット解除しない。 100611 一方ステップS 400で，「通常もー
ド｣｢「検査モード3」或いは「アップデートモード」

の場合はステップS401に進み，ズィッチ1／F（4 007 a ，b）をスルーモードに切り替える。次にステ ップS 402進み，エンジンリセットレジスタ4011 を参照してエンジンリセットが解除済みかどうか，即 ち，「通常モード」かどうかを調べ，そうであればステ ップS 4 1 0 に進む。ステップS 4 10では「アップデ ートモード」かとうかを調へ，そうでなければ本処理を終了する。
100621ステップS402で，エンジンリセット解
「アップデートモード」の場合にはステップS 4 0 3 に
進み，エンジンリセットを解除し，次にステップS 40
4に進んで，プリンタエンジン 3004のリセット処理 か終了して，電源スイッチ2008がオンされたのを検知することによりプリンタエンジン 3004がパワーオ こ動作できるようになるまで約 2 秒ほど待つ。そしてス テップS 4 1 0に進み，「アップデートモード」かどう かをみる。そうでなければ，即ち，「通常モード」若し くは「鈢査モード3」であれば本処理を終了する。
モード 6 1－方，ステップS 4 1 0 で「アップデート て，プリンタエンジン3004を自動的にパワーオンさ せる。即ち，ステップS 411 で，スイッチ $1 / \mathrm{F}$（4 007 a ，b）をCPUモード（スイッチ信号をCPU によりエミュレートする）に切り替え，次にステップS 412 で，プリンタエンジン 3004 に対する電源スイ ッチ信号（信号線 3 0 2 3）をオン状態で出力する。そ してステップS413で，プリンタエンジン3004が電源スイッチ2008のオン状態を十分に認識できるよ うに約 50 m 秒の閏待つ。そしてステップS 414 に進 み，電源スイッチ信号（信号線 3 O 2 3）をオフ状態に する。そしてステップS 415 に進み，スイッチI／F （4007a，b）をスルーモードに切り替えてステッ プS416に進み，プリンタエンジン3004がパワー オン状態に移行するのを待って本処理を終了する。【0064】以上のようにして，ステップS302のエ ンジン信号初期化処理が終了するとステップS303 （図12）に進み，IRAM3002aのPINF領域 （B3）に格納されているモード情報を参照する。ここ で「検査モード1」或いは「倹査モード2」が格納され ているときはステップS 3 0 5 に進み，チェッカタスク （図9のS18）を起動する。このチェッカタスク（S 18）は，製造ラインなどにおけるテスタとUSBI／ F4003を接続して，このインターフェースにより，特殊なコマンドの受信やステータスの送信を行うことに より，基板などのチェックなどを行うものである。例え ば，「検査モード1」の時には，ステップS 2 2 2 で実行したSDRAM3003bのチェックの結果を返送す るコマンドやステータスの返送が用意されている。
50 【00651 一方，ステップS303で，「通常モー

Patent Owner，Bot M8 LLC－Ex．2013，p． 32

15
ド」，「検査モード3」或いは「アップデートモード」 の場合はステップS304へ進み，通常の即ち，図9の ステップS7～S17で示した各種タスクを起動すべく システムコントロールタスク（S 6）を起動する。
【0066】ステップS6～S17は上記図6で説明し た制御プログラムで，機能モジュールごとにタスク化し たマルチタスク形式で構成されている。IRAM300 2aのワーク領域（図7のB8）や，SDRAM300 3 bのワーク 2 頒域（図 8 のC 1）およびワーク 3 領域 （図8のC3）は，プロクラムが実行する上での作業メ モリ領域として使用され，ここで実行されるプログラム は，SDRAM3003bの通常プログラム領域（図8 のC2）に全て格納され，SDRAM3003bの全体 に対して 1 次キャッシュ及び 2 次キャッシュの動作対象 とするようにして装置全体の処理スピードを高速化して いる。
【0067】図9のステップS6は，図6の8000で示したシステムコントロールタスクで，各タスク間での イベント発行，イベントの終了に伴うシーケンス制御や排他処理等，システム全体の調停を行っている。「通常 モード」の場合にはステップS 7～S 1 7 で示す全ての タスクを起動して通常動作モードを実行する。また「検査モード3」若しくは「アップデートモード」の場合に は，キーイベントタスク（S7）とLCDディスプレイ タスク（S 8）のみを特殊モードで起動して，フラッシ ュROM3003 a のバージョン情報などを表示部10 06 に表示して電源スイッチ 2008 の押下を待つ。
【0068】図9のステップS7は，図6の8001で説明したキーイベントタスクを示し，操作パネル101 0のキー操作により押下されたキーの解析等を行う。
【0069】図9のステップS 8 は，図6の8002で説明したLCD表示部1006への表示タスクを示し，表示部1006におけるUI制御或はメッセージ表示要求等が発生した時点で起動され，LCD表示部1006 への表示制御を実行している。
【0070】図9のステップS9は，図6の8011で説明したビューワタスクで，ビューワ1011が接続さ れている状態で，ビューワ 1 0 1 1 への表示制御を実行 している。ステップS10は，図6の8003で説明し た P Cカード3011への読み書きによるデータの入出力により起動されるタスクを示す。またステップS 1 1 は，図6の8007で説明したファイルタスクで，ファ イルのオープン，クローズ，リード，ライト等の入出力制御を行う。ステップS 1 2 は，図6の8004で説明 したUSBバスを介して接続されるPC3010からの データ転送により起動されるUSBプリンタタスクで， USBのプリンタ割り込みにより起動され，PCプリン夕としての機能を実行する。またステップS 1 3 は，図 6 の 8006 で説明した擬似USBホストタスクで，U SBを介して接続されるデジタルカメラ 3 0 1 2 からの

データの読込みや各種通信制御等を実行する。
【00711図9のステップS14は，図6の8005 で説明したUSBストレージタスクで，システムコント ロールタスク8000からのメッセージに応じて，下位 タスクであるUSBコントロールタスク，USBバルク タスクの起動•終了を行う。またステップS 1 5 は，図 6の8010で説明したページ・クリエイトタスクで， JPEGデータを伸長して画像データに変換したり，或 はBMP形式のデータからイメージデータを作成した り，或はHTML文書からイメージデータを作成すると ともに，フォトデータの補正，階調補正等の画像処理や RGBデータの作成等を行っている。またステップS 1 6 は，図 6 の 8009 で説明した画像処理タスクで，R GBデータを受取り，3D処理，四面体補完，色変換や スケーリング及び誤差拡散処理などによりYMCKデー夕を作成し，最終的にプリンタエンジン3004に出力 するラスタイメージデータを作成する。また，ここでは IRAM3002aのワーク1領域（図7のB8）を使用して画像処理速度を高速化している。更に，ステップ S17は，図6の8008で説明したセントロタスク で，プリンタエンジン3004と接続されるセントロニ クス・インターフェースを制御し，印刷データのDMA送信，ステータス応答等を実行する。
【0 0 7 2 】 また，電源スイッチが押下されプリンタエ ンジン 3004 がパワーオフ状態に遷移すると，その旨 をキーイベントタスク（S7）が検知してパワーオフ要求をシステムコントロールタスク（S6）に送り，シス テムコントロールタスク（ S 6）は前述したステップS 19 の電源断処理を実行し，スイッチI／F（4007

## 17

ムコードを実行することにより，前述した実施の形態の機能が実現されるだけでなく，そのプロクラムコードの指示に基づき，コンピュータ上で稼動しているOS（オ ペレーティングシステム）などが実際の処理の一部又は全部を行い，その処理によって前述した実施の形態の機能が実現される場合も含まれている。
【0076】更に，記憶媒体から読み出されたプロクラ ムコードが，コンピュータに挿入された機能拡張ボード やコンピュータに接続された機能拡張ユニットに備わる メモリに書きこまれた後，そのプログラムコードの指示 に基づき，その機能拡張ボードや機能拡張ユニットに備 わるCPUなどが実際の処理の一部又は全部を行い，そ の処理によって前述した実施の形態の機能が実現される場合も含む。
【00771 以上説明したように本実施の形態によれ ば，例えばDRAMの動作テストの場合は，キャッシュ メモリを使用禁止状態に設定し，高速メモリにD R AM のチェックプログラムを読み込んで動作させることによ り，DRAMの動作テストを高速化できる効果がある。【00781 またリセット時の各種モード状態を，高速 のキャッシュメモリの一部に格納することにより，高速 に各種モードを判定することができる。
【0 0 7 9 】 更に，画像処理等に際して，高速のキャッ シュメモリの一部を利用することで，機器のコストを上昇することなく高速な画像処理も可能となる効果があ る。【0 00801
【発明の効果】以上説明したように本発明によれば，高速メモリであるCP U内藏メモリを効率良く使用して，処理の高速化を図ることができる。
【図面の簡単な説明】

## 【図1】



【図1】本発明の実施の形態に係るフォトタイイレクトプ リンタ装置の概锥斜視図である。
【図2】本実施の形態に係るフォトタイイレクトプリンタ装置の操作パネルの概観図である。
【図3】本実施の形態に係るフォトタイレクトプリンタ装直の制御に係る主要部の構成を示すブロック図であ る。
【図4】図3に示すC PUの主要部の構成を示すブロッ ク図である。
10 【図5】図3に示すASICの構成を示すプロック図で ある。
【図6】本実施の形態に係るフォトタイレクトプリンタ装置の制御プログラムにおいて機能モジュールごとにタ スク化されたマルチタスク構成を説明する図である。
【図 71本実施の形態に係るフォトタイレクトプリンタ装置のCPU内蔵RAM（IRAM）のメモリマップを説明する図である。
【図8】本実施の形態に係るフォトダイレクトプリンタ装置のフラッシュROM及びSDRAMのメモリマップ を説明する図である。

【図9】本実施の形態に係るフォトダイレクトプリンタ装置の制御動作を説明するフローチャートである。
【図10】図9のステップS 1 におけるローダ部の処理 を説明するフローチャートである。
【図11】図9のステップS2におけるスタートアップ部の処理を説明するフローチャートである。
【図12】図9のステップS5における初期化部の処理 を説明するフローチャートである。
【図13】図12のステップS 302におけるエンジン 30 信号初期化部の処理を説明するフローチャートである。

【図2】


【図3】


【図5】


Patent Owner，Bot M8 LLC－Ex．2013，p． 35

【図 7】


【図8】


【図9】


【図 10 0】


Patent Owner，Bot M8 LLC－Ex．2013，p． 36
［図111
【図13】


【図12】


フロントページの続き
（72）発明者 桝本 和幸
東京都大田区下丸子 3 丁目 30 番 2 号 キヤ ノン株式会社内
（72）発明者 諏㔀 徹哉
東京都大田区下丸子 3 丁目 30 番 2 号 キヤ ノン株式会社内
（72）発明者 濱本 昭彦
東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内
（72）発明者 日比 真
東京都大田区下丸子 3 丁目 30 番 2 号 キヤ ノン株式会社內
（72）発明者 大島 真人
東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内
（72）発明者 後藤 史博
東京都大田区下丸子 3 丁目 30 番 2 号 キヤ ノン株式会社内

Patent Owner，Bot M8 LLC－Ex．2013，p． 37

```
(72) 発明者 小野 光洋 
```

    Fターム(参考) 5B005 JJ01 JJ11 KK12 MM04 UU42
    VV22 WW02
    5B018 GA03 MA01 MA03 NA02
    5B060 MM03
    
# PATENT ABSTRACTS OF JAPAN 

## （11）Publication number ： <br> 2003－331236 <br> （43）Date of publication of application ：21．11．2003

| （51）Int．CI． | $\begin{array}{ll} \text { G06K } 19 / 07 \\ \text { B42D } & 15 / 10 \\ \text { GO6F } & 12 / 16 \end{array}$ |
| :---: | :---: |
| （21）Application number ：2002－133060 | （71）Applicant ：TOSHIBA CORP |
| （22）Date of filing ：08．05．2002 | （72）Inventor：UCHIDA HIROYASU |

## （54）PORTABLE ELECTRONIC DEVICE

（57）Abstract：
PROBLEM TO BE SOLVED：To provide a portable electronic device capable of shortening a self－diagnosis processing time even when memory capacity is increased．
SOLUTION：When an IC card is driven，validity check is performed respectively only to a region for storing a selected application program in a program memory shown by regional information and a region in a working memory corresponding to the selected application program，based on the regional information stored in a data memory．


LEGAL STATUS
［Date of request for examination］
08．05．2002
［Date of sending the examiner＇s decision of 19．10．2004
rejection］
［Kind of final disposal of application other than the examiner＇s decision of rejection or
application converted registration］
［Date of final disposal for application］
［Patent number］
［Date of registration］
［Number of appeal against examiner＇s decision of rejection］
［Date of requesting appeal against examiner＇s
decision of rejection］
［Date of extinction of right］
BEST AVAILABLE COPY
（12）公開特許公報（A）
（11）特許出願公開番号特開2003－331236
（P2003－331236A）
（43）公開日 平成15年11月21日（2003．11．21）

| 1）In | 識別記号 | F I |  |  | テーマコード | （参考） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ）In |  | B42D $15 / 10$ | 521 |  | 2C005 |  |
|  | 521 | G06F 12／16 | 310 | H | 5B018 |  |
| B42D 15／10 | 521 |  | 320 | B | 5B035 |  |
| G06F 12／16 | 310 |  | 320 | B | 5 B 035 | $\cdots$ |
|  | 320 | G06K 19／00 |  | N |  |  |

審査請求 有 請求項の数 $3 \quad O L$（全 7 頁）

| $(21)$ 出願番号 | 特願2002－133060（P2002－133060） |
| :--- | :--- |
| （22）出願日 | 平成14年5月8日 5 （2002．5．8） |

（71）出願人 000003078
株式会社東芝
東京都港区芝浦一丁目1番1号
（72）発明者 内田 裕康神奈川県川崎市幸区柳町70番地 株式会社東芝柳町事業所内
（74）代理人 100058479
卉理士 鈴江 武彦（外6名）
Fターム（参考）2C005 MA18 MA21 MB03 MB10 SA22 TA28
5B018 GA03 HA13 JA12 NA01 NA04
5B035 AA02 BB09 CA29 CA31
（54）【発明の名称】携帯可能電子装置
（57）【要約】
【課題】メモリ容量が大きくなっても，自己診断処理時間の短縮が可能となる携帯可能電子装置を提供する。【解決手段】当該ICカードが起動されると，データメ モリに記憶されている領域情報に基づき，その領域情報 で示されるプロクラムメモリの選択されたアプリケーシ ョンプログラムが格納された領域，および，当該選択さ れたアプリケーションプログラムに対応するワーキング メモリの頒域に対してのみそれぞれ正当性チェックを行 なう。


Patent Owner，Bot M8 LLC－Ex．2013，p． 40

## 【特訐請求の範囲】

【請求項1】複数の領域に分割され，かつ，これら複数の領域のうち少なくとも 1 つの領域が選択的に使用さ れる第1のメモリと，少なくとも前記第1のメモリの各領域のうち選択された領域を示す領域情報を記憶してい る第2のメモリと，前記第1のメモリの選択された領域 に対してアクセスを行なうための制御部とを有し，選択的に外部との間でデータの入出力を行なう携帯可能電子装置において，
当該撘帯可能電子装置が起動されると，前記第2のメモ リ内の領域情報に基づき，その領域情報で示される前記第 1 のメモリの選択された須域に対してのみ正当性チェ ックを行なう自己診断手段を具備したことを特徴とする携帯可能電子装置。
【請求項2】前記第1のメモリは書換え不可能な不揮発性メモりおよび揮発性メモりの少なくともいずれが一方のメモリからなり，前記第2のメモリは書換え可能な不揮発性メモリからなることを特徴とする請求項1記載 の携帯可能電子装置。
【請求項3】少なくとも複数のアプリケーションプロ クラムが格納されたプログラムメモリと，このプログラ ムメモリに格納された複数のアプリケーションプログラ ムにそれぞれ対応し，そのアプリケーションプログラム の実行時に対応する領域が選択的に使用される複数の領域からなるワーキングメモリと，前記プログラムメモリ に格納された複数のアプリケーションプログラムのうち選択されたアプリケーションプロクラムが格納されてい る領域，および，当該選択されたアプリケーションプロ グラムに対応する前記ワーキンクメモリの領域を示す各領域情報を記憶している記憶手段と，前記プログラムメ モりに格納された複数のアプリケーションプログラムの うち選択されたアプリケーションプログラムを実行し，当該アプリケーションプログラムに対応する前記ワーキ ングメモリの領域を用いて所定の処理を行なう制御部と を有し，選択的に外部との間でデータの入出力を行なう携帯可能電子装置において，
当該挨帯可能電子装置が起動されると，前記記憶手段内 の領域情報に基づき，その領域情報で示される前記プロ グラムメモリの選択されたアプリケーションプログラム が格納された領域，および，当該選択されたアプリケー ションプロクラムに対応する前記ワーキングメモリの領域に対してのみそれぞれ正当性チェックを行なう自己診断手段を具備したことを特徴とする携帯可能電子装置。

## 【発明の詳細な説明】

【 0001 1
【発明の属する技術分野】本発明は，たとえば，データ を記憶する書換え可能な不揮発性メモリを有し，このメ モリに対してデータの読出しおよび書込みを行なって選択的に外部との間でデータの入出力を行なうICカード などの携帯可能電子装置に係り，特に複数のアプリケー 50

ションに対応した携帯可能電子装㯰に関する。
【0002】
【従来の技術】最近，擭帯可能電子装置として，書換え可能な不揮発性メモり，および，これらを制御するC P U（セントラル・プロセッシンク・ユニット）などの制御素子を有するICチップを内蔵した，いわゆるI Cカ ードか産業各方面で利用されている。
【0003】一般に，この種のICカードは，制御素子 の制御プログラムや複数のアプリケーションプロクラム
0 を格納したプログラムメモリ，および，制御素子が処理 を行なう際の処理データを一時的に保持するワーキング メモりを有しており，コマンドやレスポンスを用いて，外部装置（ICカードリータ・ライタ）との間でデータ の入出力を行なうようになっている。
【0004】
【発明が解決しようとする課題！最近のICカードは，
メモリの集積効率技術の向上と下記の理由から，メモリ容量の増大化が進んでいる。
（1）プログラムメモリ
20 •開発するICカードのICチップの品種を堿らすた め，1枚のICカードに多数のアプリケーションプロク ラムを書込んでおき，必要なアプリケーションプログラ ムのみをカード発行時に選択する。そのため，大きなプ ログラムメモリ領域が必須。
－ 1 つのアプリケーションプログラムに関しても複雑な制御が必要となり，プログラムメモリ領域が増大。
（2）ワーキングメモリ
－複雑な暗号化や計算が必要となり，ワーキングメモリ領域の増大が必須。
30 【0005】以上のように，ICカードのメモリ容量は増大する傾向にある。しかしながら，I C カードは，通常，使用する前にプログラムメモリ内容の正当性，およ び，ワーキングメモリの動作チェックを，全メモリエリ アに対し自己診断として行なうようになっている。その ため，メモリ領域が大きいと，自己診断処理時間が著し く増大し，以下の問題を抱えている。 －I Cカードの利用者は，自己診断処理による待ち時間 が長くなる。
－I Cカードの初期化，発行作業時間の増加となり，製
40 造行程の工数が多くなる。特に，I Cカードの初期化あ るいは発行する枚数が 10 万枚などになれば，その影響 は極めて大きいものとなる。 そこで，本発明は，メモリ容量が大きくなっても，自己診断処理時間の短縮が可能となる携帯可能電子装置を提供することを目的とする。

## 【0006】

【課題を解決するための手段】本発明の擭帯可能電子装置は，複数の領域に分割され，かつ，これら複数の領域 のうち少なくとも 1 つの領域が選択的に使用される第 1 のメモリと，少なくとも前記第1のメモリの各領域のう

Patent Owner，Bot M8 LLC－Ex．2013，p． 41

## 3

ち選択された領域を示す領域情報を記憶している第2の メモリと，前記第1のメモリの選択された領域に対して アクセスを行なうための制御部とを有し，選択的に外部 との間でデータの入出力を行なう携帯可能電子装置にお いて，当該携帯可能電子装置が起動されると，前記第2 のメモリ内の領域情報に基づき，その領域情報で示され る前記第1のメモリの選択された頞域に対してのみ正当性チェックを行なう自己診断手段を具備したことを特徴 とする。

## 【0007】

【発明の実施の形態】以下，本発明の実施の形態につい て図面を参照して説明する。図 1 は，本実施の形態に係 る携帯可能電子装置としてのICカードを取扱う端末装㯰の構成を概略的に示すものである。この端末装置は， I Cカード 1 をICカードリーダ・ライタ 2 を介してC PUなどからなる制御部3と接続可能にするとともに，制御部3にキーボード 4，CRT表示部5，プリンタ6 を接続して構成される。
【00081 I Cカード1 は，たとえば，商品購入など の際にユーザが保持し，暗証番号によるユーザの照合や商品購入額によるサービスポイントの計算・データ蓄積 などを行なうものであり，図2に示すように構成されて いる。すなわち，C P Uなどの制御素子（制御部）1 1，第1のメモリとしてのプェグラムメモリ12，第2 のメモリ（記憶手段）としてのデータメモリ13，第2 のメモリ（記憶手段）としてのワーキングメモリ 1 4， および，I Cカードリータ・ライタ2との電気的接触を得るためのコンタクト部15によって構成されており， これらのうち制御素子 11 ，データメモリ 12 ，ワーキ ングメモリ 1 3 ，および，プログラムメモリ 1 4 は1 つ のICチップ（あるいは，複数のI Cチップ）で構成さ れてICカード本体内に埋設されている。
【0009】プログラムメモリ12は，制御素子11の制御プログラムおよび複数のアプリケーションプログラ ムなどを記憶するものであり，たとえぼ，マスクROM などのICチップ製造時に最初に書込まれたら再度書換 えることができない書換え不可能な不揮発性メモリで構成されている。
【0 0 1 0 】 リータメモリ13は，各種データの記憶に使用され，たとえぼ，EEPROM（エレクトリカル・ イレーザブル・プログラムROM）やFeRAM（強誘電体RAM）などの書換え可能な不揮発性メモリで構成 されている。ワーキンクメモリ 1 4 は，制御素子 1 1 が処理を行なう際の処理データなどを一時的に保持するた めのメモリであり，たとえば，SRAM（スタティック RAM）などの書換え可能な揮発性メモリで構成されて いる。
【0 0 1 1 】 図3は，プログラムメモリ12の構成を模式的に示すもので，OS（オペレーションシステム）プ ログラムが格納されるOSプログラム領域 121 ，外部 50

装置と通信するためのI／F（インダーフェース）プロ グラムが格納される 1／F プログラム領域 1 2 2 ，複数 のアプリケーション，たとえば，第1，第2，第3のア プリケーションのプログラムが格納される第1 のアプリ ケーションプロクラム領域123，第2のアプリケーシ ョンプログラム領域 124 ，第3のアプリケーションプ ログラム領域 1 2 5 ，および，空き領域 1 2 6 から構成 されている。
【0 0 1 2 〕 このように，当該I Cカード 1 は，第1，
に，プログラメモリ 12 内にそれらのプログムが格納されているが，実際に使用するのは，たとえば，第2 のアプリケーションのみの場合がある。そのような場合，第2のアプリケーションのプログムが格納されて いる第2のアプリケーションプログラム領域 1 2 4，お よび，全てのアプリケーションの動作に必要なOSプロ グラムが格納されているOSプログラム領域 1 2 1 ，I ／Fプログラムが格納されているI／F プログラム領域 122 のみに対して正当性チェックを実施し，その他の領域（第1のアプリケーションプログラム領域 1 2 3 ，第3のアプリケーションプログラム領域125，空き領域 1 2 6）については，正当性チェックを実施しないよ うにすれば，プログラムメモリ 12 の正当性チェック処理時間が大幅に短縮できることとなる。
【 00113 】図 4 は，ワーキングメモリ 14 の構成を模式的に示すもので，プログラムメモリ 12 に格納された第1，第2，第3のアプリケーションプログラムにそれ ぞれ対応する複数（たとえば，3つ）の領域 141 ， 1 42 ， 143 ，および，未使用領域 144 から構成され使用する領域は各アプリケーションにより異な ョンプログラムは頒域 1 4 1 ，第2のアプリケーション プログラムは領域 1 4 2，第3 のアプリケーションプロ グラムは頒域 1 4 3 をそれぞれ使用するようになってい る。なお，領域 1 4 2 は，たとえば，領域 1 4 1 に所定 の領域142aを加えた領域となっており，また，領域 143 は，たとえば，領域 1 4 2 に所定の領域143a を加えた頋域となっている。
【0 O 1 4 】 】前記プログラムメモリ12の場合と同様
40 に，第1，第2，第3のアプリケーションの全てが使用 できるようになっているが，たとえば，第2のアプリケ ーションのみしか使用しない場合，第2のアプリケーシ ョンプログラムが使用する領域 1 4 2 のみ動作チェック を行なうことで，ワーキングメモリ 1 4 の動作チェック処理時間が大幅に短縮できることとなる。
【 O O 1 5 】 次に，本実施の形態における自己診断処理 について説明する。まず，プログラムメモリ12の自己診断を行なうためのカード初期化時あるいは発行時にお ける準備処理について説明する。I Cカード1 の初期化時あるいは発行時に，たとえば，図5に示すように，テ

Patent Owner，Bot M8 LLC－Ex．2013，p． 42

5
ータメモリ13の先頭バイトに，今回発行した内容に合 う必要なプログラムメモリ領域の数量nを，プログラム エリアチェック数量指定バイト131にセットする。た とえば，当該 I Cカード1 の運用時に使用するアプリケ ーションプログラムとして第2のアプリケーションプロ グラムのみが選択された場合，領域の数量nは「2」に セットされる。この場合，OSプログラム領域 1 2 1 お よびI／Fプログラム領域 12 2を 1 つの領域としてい る。
【0016】次に，プログラムエリアチェック数量指定 バイト131にセットされた数量nが「2」の場合，2個のチェックする各領域のスタートアドレス（領域情
報） 132,134 ，および，ストップアドレス（領域情報）1 3 3，1 3 5 をセットする。たとえば，図5に おいて表記されたプログラム1スタートアドレス13 2，プログラム1ストップアドレス133には，OSプ ログラム領域 1 2 1 および I／Fプログラム領域 122 を1つの領域として，その先頭アドレス，最終アドレス が格納され，プログラム2スタートアドレス134，プ ログラム 2 ストップアドレス 135 には，上記例によれ ば第2のアプリケーションプログラム領域 124 の先頭 アドレス，最終アドレスが格納される。次に，上記のよ うに指定したプログラム領域の全てのパイトを順に，1 バイトごとに論理和を取った値（ただし，析上がりは無視）を，プログラムェリア正当性チェックバイト136 としてセットする。
【0 0 1 7 】 次に，ワーキングメモリ 1 4 の自己診断を行なうためのカード初期化時あるいは発行時における準備処理について説明する。上述したプログラムメモリ1 2 と同様に，ICカード 1 の初期化時あるいは発行時 に，図5に示すように，ワーキンクェリアチェック数量指定パイト137に，今回発行した内容に必要なワーキ ンクメモリ領域の数量nをセットする。次に，ワーキン グエリアチェック数量指定バイト137にセットされた数量nが「1\}の場合, 1 個のチェックする領域のスタ ートアドレス138およびストップアドレス139をセ ットする。たとえば，図5において表記されたワーキン グメモリ1スタートアドレス138には，上記例によれ ばワーキンクメモリ 14 の領域 142 の先頭アドレスが格納され，ワーキングメモリ1ストップアドレス139 には，上記例によればワーキンクメモリ 14 の領域 14 2 の最終アドレスが格納される。
【0 0 1 8 】 次に，時間短縮を実現する自己診断処理に ついて図6に示すフローチャートを参照して説明する。 1 Cカード 1 をICカードリータ・ライタ 2 へ挿入セッ トすると，I Cカードリータ・ライタ2からICカード 1 の制御素子 11 へ電源，クロック信号，および，リセ ット信号などが供給される。そして，I C カード 1 の制御素子11 がリセット信号のオンからオフへの変化点を検出すると（ステップ S 1），リセット信号に対応した

初期応答信号（Answer to Reset：ATR）をICカー ドリータ・ライタ 2 へ出力する（ステップS 2）。次 に，制御素子11は，ICカードリータ・ライタ2から コマンドを受信すると（ステップS 3），受信したコマ ンドの内容を解析して処理する（ステップS 4）。
【0 0 1 9 】 また，I Cカード1 の制御素子11は，リ セット信号のオンからオフへの変化点を検出すると（ス テップS 1），ステップS 2 の処理と同時に，ICカー ド 1 内の電源チェック，プログラムメモリ 12 の正当性 チェック，ワーキングメモリ14の正当性チェックなど の自己診断処理を実施する（ステップS 5）。そして， その自己診断処理結果を，ステップS 2 でのATR出力後の最初のコマンド処理（ステップS 3）の結果と併せ てレスポンスとしてICカードリータ・ライタ2へ出カ する（ステップS 6）。なお，ステップS 5 の自己診断処理をステップS 2 の前に行ない，その自己診断処理結果をステップS 2 でATRとともにICカードリータ・ ライタ2～出力するようにしてもよい。
I 00 2 0 1 次に，ステップS 5 における自己診断処理明する。まず，I Cカード1 が正常に動作するのに必要 な電源に関する電圧レベル，および，電流チェックを行 なう（ステップS 1 1）。次に，プログラムメモリ 12 およびワーキングメモリ 14 の当該 I Cカード 1 の運用時に使用するアプリケーションに関連する各領域のみを チェックするため，当該 I Cカード1 の初期化時あるい は発行時にデータメモリ 1 3 内に書込まれたプロクラム メモリ12の領域情報132～135，および，プログ ラムエリア正当性チェックバイト136と，ワーキング る（ステップS 1 2）。
【0021】次に，取得した各領域情報に基づき，プロ クララムメモリ 12 の選択されたアプリケーションに必要 なアプリケーションプログラムが格納された領域，およ び，OSプログラム領域 121 ，I／Fプログラム領域 122 に対してのみ正当性チェックを行なうとともに （ステップS 1 3），ワーキングメモリ 14 の選択され たアプリケーションで用いる領域に対してのみ動作チェ ックを行なう（ステップS 14）。
40 【0 0 2 2 】ステップS 1 3 におけるプログラムメモリ 12 の自己診断，すなわち，正当性を確認する方法は，具体的には以下のようにして行なわれる。プログラムメ モり12の正当性チェックを行なう場合，データメモリ 13 の先頭に配置されているプログラムエリアチェック数量指定バイト 131 を取得し，その数量 n にしたが い，続いて配置されているスタートアドレス 1 3 2，ス トップアドレス 1 3 3 ，および，n＝2の場合，2個目 のスタートアドレス134，ストップアドレス135の各情報をそれぞれ取得する。これにより，今回チェック 50 を行なうプログラムメモリ 12 の領域情報を得ることが

できる。
【0023】次に，取得した各領域情報に基づき，プロ グラムメモリ 12 の選択されたアプリケーションに必要 なアプリケーションプログラムが格納された領域，この例では第2のアプリケーションプロクラム頒域 1 2 4， および，OSプログラム領域121，I／Fプログラム頒域 122 に対して，順に1バイトごとに論理和を取り （析上がりは無視），データメモリ13内のプログラム エリア正当性チェックバイト136の値と比較する。こ の比較の結果，両者が同一ならば，プログラムメモリ1 2 は初期化時あるいは発行時に対し変化かないものとみ なし，正当性があると判断する。
【0024】ステップS 1 4 におけるワーキンクメモリ 14 の自己診断，すなわち，動作チェック方法は，具体的には以下のようにして行なわれる。ワーキンクメモリ 14 の動作チェックを行なう場合，データメモリ13の先頭に配置されているワーキングェリアチェック数量指定バイト137を取得し，その数量nにしたがい，続い て配置されているスタートアドレス138，ストップア ドレス139を取得する。これにより，今回チェックを行なうワーキングメモリ 14 の頒域情報を得ることがで きる。
【00251次に，取得した各領域情報に基つき，ワー キンクメモリ 14 の選択されたアプリケーションで用い る領域，この例では領域 142 のみに対し，たとえば， テータ「OOhex」の書込み／読出しを行なった後， データ「FFhex」の書込み／読出しを行なうことに より，メモリが正常に動作するかなどを確認する。
【0026】次に，ステップS13，S 14 の自己診断 か終了すると，それ以外のあらかじめ定められた他の部分（たとえば，演算部など）に対する自己診断を行なう （ステップS 15）。ステップS 15の自己診断が終了 すると，それまで行なった自己診断の結果を制御素子 1 1へ出カレ（ステップS 16），自己診断処理を終了す る。
【0027】以上説明したように，上記実施の形態によ れば，実際のカード運用時に選択されたアプリケーショ ンに必要なプログラムメモリ領域，ワーキングメモリ領域のみに対して自己診断を行ない，実際のカード運用時 に使用しない不要なメモリ領域に対しては自己診断を行

なわないため，近年のメモリ容量の大きくなったI Cカ ードに対しても，自己診断処理時間の短縮が可能とな る。
【0028】また，メモリサイズが大容量化すると，一般的に生産時の歩留まりが悪くなる。しかしなから，本実施の形態のように，実際のカード運用時に必要なアプ リケーションのメモリ領域のみに対して自己診断するこ とで，もし未使用のメモリ領域に不良（欠陥）が見られ ても，運用上において問題がないため，歩留まりの向上 10 にもなる。

## 【0029】

【発明の効果】以上詳述したように本発明によれば，メ モリ容量が大きくなっても，自己診断処理時間の短縮が可能となる携帯可能電子装置を提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るICカードを取扱う端末装置の構成例を示すプロック図。
【図 2】ICカードの構成を概略的に示すブロック図。
【図3】プロクラムメモリの構成を模式的に示す構成 20 図。【図4】ワーキングメモリの構成を模式的に示す構成図。
【図5】データメモリに対するチェックするメモリ領域 の頒域情報の格納方法を説明するための図。
【図6】自己診断処理について説明するフローチャー卜。
【図7】図6における自己診断処理の詳細を説明するフ ローチャート。
【符号の説明】
$1 \cdots$ I Cカード（携帯可能電子装置）， $2 \cdots$ I Cカード
リータ・ライタ， $3 \cdots$ 制御部， $4 \cdots$ キーボード， $5 \cdots$ デ
ィスプレイ装置， $6 \cdots$ プリンタ， $11 \cdots$ 制御素子（制御
部），12‥プログラムメモリ（第1のメモリ），13 ‥データメモリ（第2のメモリ，記嬑手段），14‥ワワ ーキンクメモリ，15 ‥コンタクト部，121…OSプ ログラム領域，122 $\cdots \mathrm{I} / \mathrm{F}$ プログラム領域， 123 …第1のアプリケーションプログラム領域，124…第 2 のアプリケーションプログラム領域，125…第3の アプリケーションプログラム領域，126…空き領域， 40141,142 ， $143 \cdots$ 領域， $144 \cdots$ 未使用領域。

【図 1】


【図3】


【図5】


【図2】


【図4】


【図6】


Patent Owner，Bot M8 LLC－Ex．2013，p． 45


Patent Owner，Bot M8 LLC－Ex．2013，p． 46

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Jun HAISHIMA
SERIAL NO: New Application
FILED: Herewith
FOR: INFORMATION PROCESS DEVICE

GAU:
EXAMINER:

## SUBMISSION NOTICE REGARDING PRIORITY DOCUMENT(S)

## COMMISSIONER FOR PATENTS

ALEXANDRIA, VIRGINIA 22313
SIR:
Certified copies of the Convention Application(s) corresponding to the above-captioned matter:

- are submitted herewithwere filed in prior application filedwere submitted to the International Bureau in PCT Application Number Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.
Respectfully Submitted,
OBLON, SPIVAK, McCLELLAND,
MAIER \& NEUSTADT, P.C.

Customer Number 22850
Tel. (703) 413-3000
Fax. (703) 413-2220 (OSMMN 11/04)

C. Irvin MicClelland Registration Number 21,124

## 日 本 国 特 許 庁 <br> JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。
This is to certify that the annexed is a true copy of the following application as filed vith this Office．

```
出 願 年 月 日
Date of Application:
出 願 番 号
Application Number:
2004年 8月25日
特願 2004-245337
```



```
:用いる低先権の主張の基䂾
                    なる出謧の国コードと出餪
                    "号
                    re country code and number
                    your priority application,
            be used for filing abroad
        *)
            願人 アルゼ株式会社
                :plicant(s):
```

JP2004－245337

アルゼ株式会社

CERTIFIED COPY OF
PRIORITY DOCUMENT

特許庁長官
Commissioner， Japan Patent Office

$$
2005 \text { 年 }
$$

6 月


出証番号 出証特 $2005-304931$

【書類名】 特許願
【整理番号】
【提出日】
【あて先】
【国際特許分類】

## 【発明者】

【住所又は居所】東京都江東区有明 3 丁目 1 番地 25
【氏名】
【特許出願人】
【識別番号】
【氏名又は名称】
【代理人】
【識別番号】
【弁理士】
【氏名又は名称】 山中 郁生
【電話番号】 052－218－7161
【選任した代理人】
【識別番号】 100097009
【弁理士】
【氏名又は名称】 富澤 孝
【選任した代理人】
【識別番号】 100105751
【弁理士】
【氏名又は名称】 岡戸 昭佳
【手数料の表示】
【予納台帳番号】 041999
【納付金額】 16，000円
【提出物件の目録】
【物件名】
【物件名】
【物件名】
【物件名】

P04－0537
平成16年8月25日
特許庁長官 殿
G06F 12／16
A63F $5 / 04$
－はい『島 淳
598098526
アルゼ株式会社
100098431

【識別番号】

特許請求の範囲 1
明細書 1
図面 1
要約書 1

## 【書類名】特許請求の範囲

【請求項 1】
起動時に実行されるブートプログラムが記憶された第1記憶手段と，前記第1記憶手段 が実装されたマザーボードと，前記マザーボードに接続されるとともにアプリケーション プログラムが記憶された第 2 記憶手段と，前記第 2 記憶手段の障害を点検する障害点検プ ログラムを実行する制御手段と，を有する情報処理装置において，
前記障害点検プログラムを前記第1記憶手段に記憶したことによって，前記制御手段が前記障害点検プログラムを起動時に実行すること，を特徵とする情報処理装置。

## 【請求項 2】

請求項1に記載する情報処理装置であって，
業務用ゲーム装置として使用されること，を特徴とする情報処理装置。

## 【書類名】明細書

【発明の名称】情報処理装置
【技術分野】
【 00001 1】
本発明は，ハードウエアやソフトウエアの障害を点検する情報処理装置に関するもので ある。
【背景技術】
【 00002 】
従来の情報処理装置においては，演算や制御に必要なプログラムやデータをハードデイ スクなどの記憶装置の一領域に記憶するとともに，それらのプログラムやデータの破損•変更•改竄などの障害の点検を行うプログラム（以下，「障害点検プログラム」という。 ）も当該記憶装置の別領域に記憶していた（例えば，特許文献1参照）。

【特許文献1】特開2003－331236号公報（第3－4頁，第2図）
【発明の開示】
【発明が解決しようとする課題】
【 000031 】
従って，当該記憶装置に破損などが発生した場合には，障害点検プログラムまでも破損 していることがあり，このようなときには，障害点検プログラムの正当性を保証できなか った。

$$
\left.\begin{array}{llll}
0 & 0 & 0 & 4 \\
\hline
\end{array}\right]
$$

そこで，本発明は，上述した点を鑑みてなされたものであり，障害点検プログラムの点検対象である記憶装置に障害が発生しても，障害点検プログラムの正当性を保証できる情報処理装置を提供することを課題とする。
【課題を解決するための手段】
【 00005 〕
この課題を解決するために成された請求項1に係る発明は，起動時に実行されるブート プログラムが記憶された第 1 記憶手段（例えば，ROM13）と，前記第1記憶手段（例 えば，ROM13）が実装されたマザーボード（例えば，マザーボード11）と，前記マ ザーボード（例えば，マザーボード 1 1 ）に接続されるとともにアプリケーションプログ ラムが記憶された第 2 記憶手段（例えば，ハードディスク 24 ）と，前記第 2 記憶手段（例えば，ハードデイスク 2 4）の障害を点検する障害点検プログラムを実行する制御手段 （例えば，C P U 1 2）と，を有する情報処理装置（例えば，情報処理装置1）において －前記障害点検プログラムを前記第1記憶手段（例えば，R O M 1 3）に記憶したことに よって，前記制御手段（例えば，C P U 1 2）が前記障害点検プログラムを起動時に実行 すること，を特徴としている。

【0006】
尚，「第2記憶手段（例えば，ハードディスク 2 4）の障害を点検する」では，第2記憶手段（例えば，ハードディスク 2 4）というハードウエアの破損などの障害を点検した り，第2記憶手段（例えば，ハードディスク 2 4）に記憶されたソフトウエアの変更•改竄などの障害を点検したりする。

## 【0007】

また，請求項 2 に係る発明は，請求項 1 に記載する情報処理装置（例えば，情報処理装置1）であって，業務用ゲーム装置として使用されること，を特徴としている。
【発明の効果】
【0 0 0 8 】
すなわち，本発明の情報処理装置では，第 2 記憶手段とは別個のマザーボード上の第 1記憶手段に障害点検プログラムが記憶されていることから，障害点検プログラムの点検対象である第 2 記憶手段に障害が発生しても，障害点検プログラムの正当性を保証できる。

$$
\left.\begin{array}{llll}
0 & 0 & 0 & 9
\end{array}\right]
$$

特に，本発明の情報処理装置が業務用ゲーム装置として使用される場合には，障害点検出証特 2005 － 3049316

プログラムが起動時に実行されることによって，第 2 記憶手段の障害に対する点検を業務開始前に実行するので，遊技者に不快感を与えることなく，業務中のトラブルを事前に防止する対策を行うことができる。

## 【発明を実施するための最良の形態】

【0 0110 】
以下，本発明の実施の形態を図面を参照にして説明する。
図 1 は，本実施の形態に係る情報処理装置のブロック図である。図3 は，本実施の形態 に係る情報処理装置の斜視図である。図3に示すように，本実施の形態に係る情報処理装置1は，業務用ゲーム装置であるが，そのOS（オペレーティング・システム）として市販のパーソナルコンピュータに搭載されるものを使用しており，その動作環境の下で，後述するハードディスクに記憶されたゲームソフトを動作させている。

【0 0111 】
また，図1に示すように，本実施の形態に係る情報処理装置1では，マザーボード111上において，CP U1 2 や，R OM 1 3 ，RAM14，バス15，コネクタ16，17， ポート18，拡張スロット19， 20 などが配設されている。

【0 012 】
この点，CP U 12 は，本実施の形態に係る情報処理装置1を制御するものであって，各種のプログラムを実行するものである。従って，C P U 1 2 は，「制御手段」に相当す るものである。

【0 0 1 3 】
また，R OM 1 3 は，本実施の形態に係る情報処理装置1を起動する際に必要な各種の制御プログラムなどが格納されている不揮発性メモリであり，「第1記憶手段」に相当す るものである。そして，R O M 1 3 においては，図 1 に示すように，ブートプログラムが記憶されているブートプログラム記憶領域13aや，障害点検プログラムが記憶されてい る障害点検プログラム記憶領域 13 b ，開始プログラムが記憶されている開始プログラム記憶領域13cなどが形成されている。

尚，R OM13の各記憶領域13a，13b，13cに記憶されているブートプログラ ム，障害点検プログラム，開始プログラムについては，後述する。

【0 0 1 4 】
また，R AM14は，C P U 1 2 でプログラムを実行した際に演算される各種データを一時的に記憶しておくメモリである。

【0 0 1 5 】
また，バス 1 5 は，周波数変換のブリッジ回路が設けられたP C I バスであって，C P U12 や，R OM13，RAM14，コネクタ16，17，ポート18，拡張スロット1 9，20などとの間の信号のやりとりを行うための共通信号路である。

【 0016 】
また，コネクタ16は，ゲームソフトを動作させる際に必要な出力装置21を接続する機器である。

ここでは，コネクタ16に接続される出力装置21は，液晶ディスプレイ（図3の符号 21 参照）と，スピーカなどの音声出力装置（不図示）である。尚，液晶ディスプレイ（図 3 の符号 21 参照）に代わって，CRTディスプレイなどを使用してもよい。

$$
\left.【 \begin{array}{llll}
0 & 0 & 1 & 7
\end{array}\right]
$$

また，コネクタ17は，ゲームソフトを動作させる際に必要な入力装置22を接続する機器である。ここでは，コネクタ17に接続される入力装置22は，複数のボタンスイッ チ（不図示）などを備えた操作テーブル 22 （図 3 参照）である。尚，入力装置 22 には その他として，キーボードや，マウスなどがあるが，ゲームソフトの内容によっては， ジョイスティックなどをコネクタ17に接続することもある。また，図1では，コネクタ 17 は1個しか記載されていないが，入力装置 22 が複数個であるときは，それぞれ専用 のコネクタ17が設けられる。

【 001818 】
出証特 $2005-3049316$

Patent Owner，Bot M8 LLC－Ex．2013，p． 52

また，ポート18には，フラットケーブル 2 3 を介してハードディスク24（HDD） が接続されている。

【0019】
そして，ポート 18 に接続されたハードディスク 24 においては，OS（オペレーティ ング・システム）が記憶されているOS記憶領域 24 a や，拡張BIOS（ベーシック・ インプット・アウトプット・システム）が記憶されている拡張BIOS記憶領域24b， ゲームソフトであるアプリケーションプログラムが記憶されているアプリケーション記憶領域 24 c などが形成されている。従って，ハードディスク 24 は，「第 2 記憶手段」に相当するものである。

【0020】
また，拡張スロット19は，ビデオボード 25 を接続するための挿入口である。
尚，拡張スロット19を介して接続されたビデオボード 25 は，出力装置 21 の一つで ある液晶ディスプレイ（図3の符号21参照）に絵や文字を表示するためのグラフィック ス・アクセラレータを内藏したボードであって，本実施の形態に係る情報処理装置1にお けるゲームソフトの動作に耐え得るレベルの解像度や描画速度のパフォーマンスをもつも のである。

【0 021 1】
また，拡張スロット 20 は，サウンドボード 26 を接続するための挿入口である。
尚，拡張スロット 20 を介して接続されたサウンドボード 26 は，出力装置 21 の一つ であるスピーカ（不図示）から出力されるFM音源やPCM音源などのチップが載ったも のであり，本実施の形態に係る情報処理装置1におけるゲームソフトの動作に耐え得るレ ベルのパフォーマンスをもつものである。

【0 02 2】
続いて，本実施の形態に係る情報処理装置1を起動する際の動作について，図2 のフロ ーチャートに基づいて説明する。図2は，本実施の形態に係る情報処理装置を起動する際 に実行される開始プログラムのフローチャートを示した図である。

## 【0 0 2 3 】

本実施の形態に係る情報処理装置1では，起動されると，ROM13の開始プログラム記憶領域 13 c に記憶された開始プログラムがCPU12によって実行される。

【0 0 2 4】
すなわち，図 2 に示すように，開始プログラムが実行されると，先ず，S 1 1 において ブートプログラムが実行される。
この点，ブートプログラムとは，ROM13のブートプログラム記憶領域13aに記憶 されているものであり，ハードディスク 24 内にある拡張 B I OS（ベーシック・インプ ット・アウトプット・システム）を含めた各種デバイスの初期化や，ハードディスク24内にあるOS（オペレーティング・システム）の初期化が行われる。

【0025】
このとき，ハードディスク 24 内にあるOS（オペレーティング・システム）はRAM 14 にロードされ起動されることから，この観点からすれば，ROM13はブートROM と言える。

【0 026 】
次に，開始プログラムでは，S 12 に進むと，障害点検プログラムが実行される。
この点，障害点検プログラムとは，ROM13の障害点検プログラム記憶領域13aに記憶され，ハードディスク 24 の障害に対する点検を行うものであり，ハードディスク 2 4 自身の破損などの障害を点検したり，ハードディスク 24 に記憶されたプログラムの変更•改眓などの障害を点検したりする。

【 0027 】
次に，開始プログラムでは，S 1 3 に進むと，ハードディスク 24 の障害があるか否か を判断する。この判断は，上述したS12 の障害点検プログラムの実行結果に基づいて行 われる。

$$
\text { 出証特 } 2005-3049316
$$

【0 02 2 8 】
このとき，ハードデイスク 24 の障害がないと判断する場合には（S13：NO），S 14 に進んで，ハードディスク 24 内にあるアプリケーションプログラムをRAM14に ロードして，アプリケーションプログラムの実行を開始する。一方，ハードディスク24 の障害があると判断する場合には（S13：Y E S ），S 1 5 に進んで，出力装置 21 の一つである液晶ディスプレイ（図3の符号21参照）にエラー表示をする。

【0 029 9】
以上詳細に説明したように，本実施の形態に係る情報処理装置1では，図1に示すよう に，ハードディスク 24 とは別個のマザーボード 1 1 上のROM11の障害点検プログラ ム記憶領域 13 a a障害点検プログラムが記憶されていることから，障害点検プログラム の点検対象であるハードディスク 24 に障害が発生しても，障害点検プログラムの正当性 を保証できる。

【 003 3 1
また，本実施の形態に係る情報処理装置1 は，図3に示すように，業務用ゲーム装置と して使用されており，さらに，図2に示すように，ROM13に記憶された障害点検プロ グラムは起動時に実行され，ハードディスク 24 の障害に対する点検を業務開始前に実行 する。従って，業務用ゲーム装置の遊技者に不快感を与えることなく，業務中のトラブル を事前に防止する対策を行うことができる。
［00311］
尚，本発明は上記実施の形態に限定されるものでなく，その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば，本実施の形態に係る情報処理装置1は，図3に示すように，業務用ゲーム装置 として使用されているものであるが，この点，市販のパーソナルコンピュータであっても よく，この場合には，入力装置 22 には，操作テーブル 22 に代わって，キーボードや， マウス，ジョイスティックなどが使用され得る。

【0032】
また，本実施の形態に係る情報処理装置1では，「第2記憶手段」としてハードディス ク 24 を使用しているが，この点，電気的に内容を変更できるフラッシュ・メモリなどを使用してもよく，この場合には，障害点検プログラムは，フラッシュ・メモリなどの障害 に対する点検を行うことなる。
【産業上の利用可能性】
【0 0 3 3 】
本発明は，情報処理装置における障害の点検に適用し得る。
【図面の簡単な説明】
【 00034 】
【図1】本実施の形態に係る情報処理装置のブロック図である。
【図2】本実施の形態に係る情報処理装置を起動する際に実行される開始プログラム のフローチャートを示した図である。
【図 3】本実施の形態に係る情報処理装置の斜視図である。
【符号の説明】
【0 03 5】
1 情報処理装置
11 マザーボード
12 C P U
13 ROM
24 ハードディスク

## 【書類名】図面

【図1】


出証特 $2005-3049316$

Patent Owner，Bot M8 LLC－Ex．2013，p． 55


出証特 $2005-3049316$

【図3】


出証特 $2005-3049316$

Patent Owner，Bot M8 LLC－Ex．2013，p． 57

【書類名】要約書
【要約】
【課題】障害点検プログラムの点検対象である記憶装置に障害が発生しても，障害点検 プログラムの正当性を保証できる情報処理装置を提供すること。
【解決手段】情報処理装置1では，ハードディスク 24 とは別個のマザーボード 11 上 のROM11の障害点検プログラム記憶領域 1 3 a に障害点検プログラムが記憶されてい ることから，障害点検プログラムの点検対象であるハードディスク24に障害が発生して も，障害点検プログラムの正当性を保証できる。
【選択図】図1

出 願 人 履 歴 情 報

識別番号
1．変更年月日 ［変更理由］住 所氏 名

1998年7月23日新規登録
東京都江東区有明 3 丁目 1 番地 25
アルゼ株式会社


Registration Number 21,124
$=$

276900US90

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

INVENTOR(S) Jun HAISHIMA
SERIAL NO: New Application
FILING DATE: Herewith
FOR:
INFORMATION PROCESS DEVICE
FEE TRANSMITTAL

COMMISSIONER FOR PATENTS
ALEXANDRIA, VIRGINIA 22313

$\square$ Please charge Deposit Account No. 15-0030 in the amount of $\mathbf{\$ 0 . 0 0}$ A duplicate copy of this sheet is enclosed.
$\square$ A check in the amount of $\mathbf{\$ 0 . 0 0}$ to cover the filing fee is enclosed.

- Credit card payment form is attached to cover the filing fee in the amount of $\mathbf{\$ 1 , 0 4 0 . 0 0}$

T The Director is hereby authorized to charge any additional fees which may be required for the papers being filed herewith and for which no check or credit card payment is enclosed herewith, or credit any overpayment to Deposit Account No. 15-0030. A duplicate copy of this sheet is enclosed.

Date: $\qquad$

$$
8-17-65
$$

## Customer Number

22850
Tel. (703) 413-3000
Fax. (703) 413-2220
(OSMMN 12/04)

Respectfully Submitted, OBLON, SPIVAK, McCLELLAND, MAIER \& NEUSTADT, P.C.


Masayasu Mori
Registration No. 47,301
C. Irvin McClellan

Registration Number 21,124

# IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 

IN RE APPLICATION OF: Jun HAISHIMA

| SERIAL NO: | $11 / 205,121$ | GAU: |
| :--- | :--- | :--- |
| FILED: | August 17,2005 | EXAMINER: |
| FOR: | INFORMATION PROCESS DEVICE |  |

## INFORMATION DISCLOSURE STATEMENT UNDER 37 CFR 1.97

## COMMISSIONER FOR PATENTS

ALEXANDRIA, VIRGINIA 22313
SIR:
Applicant(s) wish to disclose the following information.

## REFERENCES

- The applicant(s) wish to make of record the reference(s) cited in the attached Extended European Search Report and listed on the attached form PTO-1449. Copies of the listed reference(s) are attached, where required, as are either statements of relevancy or any readily available English translations of pertinent portions of any non-English language reference(s).
$\square$ Online credit card payment is being made in the amount required under 37 CFR §1.17(p).
RELATED CASESAttached is a list of applicant's pending application(s), published application(s) or issued patent(s) which may be related to the present application. In accordance with the waiver of 37 CFR 1.98 dated September 21, 2004, copies of the cited pending applications are not provided. Cited published and/or issued patents, if any, are listed on the attached PTO form 1449.
$\square$ Online credit card payment is being made in the amount required under $37 \mathrm{CFR} \S 1.17(\mathrm{p})$.


## CERTIFICATION

Each item of information contained in this information disclosure statement was first cited in any communication from a foreign patent office in a counterpart foreign application not more than three months prior to the filing of this statement.No item of information contained in this information disclosure statement was cited in a communication from a foreign patent office in a counterpart foreign application or, to the knowledge of the undersigned, having made reasonable inquiry, was known to any individual designated in $37 \mathrm{CFR} \S 1.56$ (c) more than three months prior to the filing of this statement.
## DEPOSIT ACCOUNT

Please charge any additional fees for the papers being filed herewith and for which no check or credit card payment is enclosed herewith, or credit any overpayment to deposit account number 15-0030.

Respectfully submitted,


Customer Number
22850
Tel. (703) 413-3000
Fax. (703) 413-2220
(OSMMN 05/03)


Patent Owner, Bot M8 LLC - Ex. 2013, p. 63

European Patent Office
80298 MUNICH
GERMANY
Tel. +49 (0)89 2399-0
Fax +49 (0)89 2399-4465


For any questions about this communication:
Grünecker, Kinkeldey, this communication:
Tel. $:+31$ (0)70 3404500
Stockmair \& Schwanhäusser

| Anwaltssozietät Maximilianstrasse 58 80538 München ALLEMAGNE | ```GRUNECKER, KINKELLDEY, STOCKMAIR \& SCHWANHÄUSSER ANWALTSSOZIETATT 27. Dez. 2007 FRIST TERM EINGANG - RECEIVED``` | Date  <br>  27.12 .07 |
| :---: | :---: | :---: |
| Reference <br> EP36141DK900kap | Application No./Patent No. 05018280.7-2210 |  |
| Applicant/Proprietor Aruze Corp. |  |  |

Communication
The extended European search report is enclosed.
The extended European search report includes, pursuant to Rule 62 EPC, the European search report (R. 61 EPC ) or the partial European search report/ declaration of no search (R. 63 EPC ) and the European search opinion.

Copies of documents cited in the European search report are attached.

- 1 additional set(s) of copies of such documents is (are) enclosed as well.

The following have been approved:

- Abstract

Title

- The Abstract was modified and the definitive text is attached to this communication.

The following figure will be published together with the abstract: 1

## Refund of the search fee

If applicable under Article 9 Rules relating to fees, a separate communication from the Receiving Section on the refund of the search fee will be sent later.


Patent Owner, Bot M8 LLC - Ex. 2013, p
p. 65

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.
11-12-2007

| Patent document cited In search report |  | $\begin{aligned} & \text { Publication } \\ & \text { date } \end{aligned}$ |  | Patent family member(s) | Publication date |
| :---: | :---: | :---: | :---: | :---: | :---: |
| JP 9319445 | A | 12-12-1997 | NONE |  |  |
| JP 2000035888 | A | 02-02-2000 | NON |  |  |
| EP 0774716 | A | 21-05-1997 | DE DE US | $\begin{gathered} 69626463 \text { D1 } \\ 69626463 \text { T2 } \\ 5860122 \text { A } \end{gathered}$ | $\begin{aligned} & 10-04-2003 \\ & 26-02-2004 \\ & 12-01-1999 \end{aligned}$ |
| US 6449735 | B1 | 10-09-2002 | AU <br> DE <br> DE <br> EP <br> HK <br> KR <br> WO | $\begin{array}{r} 3580697 \mathrm{~A} \\ 69730430 \mathrm{D} 1 \\ 69730430 \mathrm{~T} 2 \\ 0909416 \\ 1017451 \\ \mathrm{~A} 1 \\ 20000022506 \end{array} \mathrm{~A}, ~$ | $\begin{aligned} & 21-01-1998 \\ & 30-09-2004 \\ & 15-09-2005 \\ & 21-04-1999 \\ & 06-05-2005 \\ & 25-04-2000 \\ & 08-01-1998 \end{aligned}$ |
| EP 0801387 | A | 15-10-1997 | $\begin{aligned} & \text { JP } \\ & \text { US } \end{aligned}$ | $\begin{aligned} & 9274541 \mathrm{~A} \\ & 6233108 \text { B1 } \end{aligned}$ | $\begin{aligned} & 21-10-1997 \\ & 15-05-2001 \end{aligned}$ |

EPO FORM P0459
For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

Patent Owner, Bot M8 LLC - Ex. 2013, p. 66


ABSTRACT / ZUSAMMENFASSUNG / ABREGE
05018280.7

In the information process device (1), the fault inspection program is stored in the fault inspection program area (13b) of the ROM (13) provided on the mother board (11) which is independently arranged from the hard disk (24), thereby even if a fault occurs in the hard disk (24) which is inspected by the fault inspection program, it can be guaranteed that the fault inspection program properly operates.

The examination is being carried out on the following application documents:
The application documents as originally filed

1. The following documents are referred to in this communication; the numbering will be adhered to in the rest of the procedure:

D1: JP-A-09319445 and the corresponding English abstract;
D2: JP-A-2000035888 and the corresponding English abstract;
D3: EP-A-0774716.
2.) The present application does not meet the requirements of Article 52(1) EPC because the subject-matter of claim 1 does not involve an inventive step within the meaning of Article 56 EPC; for the following reasons:

The applicant's attention is drawn to D1 which discloses:
an information process device comprising:
a first memory device (FROM 104) for storing a boot program executed when the information process device is started to operate; a second memory device (HDD 111) for storing an application program ("AP"); a control device (CPU 103) for executing a fault inspection program (diagnosing routine) to inspect whether or not a fault occurs in the second memory device (HDD 111; see abstract of D1) ; wherein the fault inspection program (diagnosing routine for diagnosing the hardware equipment; see abstract of D1) is stored in the first memory device (FROM 104; see abstract of D1); and wherein the control device (CPU) executes the fault inspection program (when the information process device is started to operate (when the power source is turned on; see abstract of D1).

D1 does not explicitely mentions a mother board on which the first memory device (FROM 104) is provided but it is obvious to the skilled person that for the kind of device mentioned on D1 (combined FAX and telephone) all the harware elements should preferably be concentrated on a single circuit board. It is also obvious that the HDD must be connected to this board.

Therefore all the features of D1 can in an obvious manner be derived from D1.

```
*
```

```
Datum cf Form 1507
```

The subjet-matter of claim 1 also lacks an inventive step with respect to D2 for similar reasons (see D2, HDD 24 containing an application program, ROM 22 containing fault processing program run by the CPU (20), it is obvious to the skilled person to have the ROM containing the system boot program and the CPU and the ROM on a mother board).
3.) The additional feature of claim 2 is known from either D1 or D2 and adds nothing inventive.
4.) The additional feature of claim 3 is known from D2 and adds nothing inventive.
5.) If the application is pursued and new claims are filed the indications listed below should be followed:

- The applicant should indicate in the letter of reply the difference of the subject-matter of the new claim vis-à-vis the state of the art and the significance thereof. Any argument showing the presence of an inventive step should be mentioned in the letter of reply.
- The two part form should be used for the independent claims on the basis of D1, D2 or D3 (Rule 43(1) EPC).
- Reference signs in parentheses should be inserted in the claims to increase their intelligibility, Rule 43(7) EPC. This applies to both the preamble and characterising portion (see the Guidelines, C-III, 4.19).
- To meet the requirements of Rule 42(1)(b) EPC, the documents D1,D2,D3 should be identified in the description and the relevant background art disclosed therein should be briefly discussed.
- The text of the description should be put into conformity with the new claims (Rule 42(1)(c) EPC).
- In order to facilitate the examination of the conformity of the amended application with the requirements of Article 123(2) EPC, the applicant is requested to clearly identify the amendments carried out, irrespective of whether they concern amendments by addition, replacement or deletion, and to indicate the passages of the application as filed on which these amendments are based.
If the applicant regards it as appropriate these indications could be submitted in handwritten form on a copy of the relevant parts of the application as filed.


## EUROPEAN PATENT OFFICE

Patent Abstracts of Japan


ABSTRACT : PROBLEM TO BE SOLVED: To provide an information processor with an automatic recording function which can receive a telephone or a facsimile coming at random even without setting an operating state at all times.

SOLUTION: This information processor has an automatic power source control circuit 109 provided with a means for turning on/off a power source in response to a prescribed activation factor and a means for outputting the activation factor information of power source ON, hard disk 107 for storing an OS and an AP for performing automatic TEL recording and automatic FAX reception, and FROM 104 for storing a BOOT program containing a routine for starting the OS and the routine of high-speed diagnosis/initialization processing for diagnosing/initializing a hardware environment required for executing the AP. When the power source is turned on, a CPU 103 starts the BOOT program. When the activation factor shown by the activation factor information is the arrival of a ringer, the AP is executed after the routine of high-speed diagnosis/initialization processing, and the command for power source turning-off is sent to the automatic power source control circuit 109.

COPYRIGHT: (C)1997,JPO
（43）公開日 平成9年（1997）12月12日


| （21）出闞番号 | 特限平8－132214 | （71）出頤人 | 00019／366 <br> 静岡！1 本地気株式会社 |  |
| :---: | :---: | :---: | :---: | :---: |
| （22）山闞日 | 平成8年（1996） 5 月27日 | （79）発明者 <br> （74）代理人 | 静岡県掛川市下俣 4 番 2 号杉浦 悦志 <br> 静岡県掛川市下俣 4 番 2 号株式会社内 <br> 卉理士 志賀 正武 | 静岡日本雨気 |

## （54）【発明の名称】 留守録機能付き情報処理装䁏

（57）【要約】
【課題】 常時稼働状態としなくても不定期に到来する電話やファクシミリの受信を行うことができる留守録機能付き情報処理装置を提供する。
【解決手段】所定の起動要因に応答し電源の投入•切断をする手段および電源投入の起動要因情報を出力する手段を含む自動電源制衘回路 1 O 9と，OSおよびTE L留守録，FAX自動受信を行うAPを記億するハード ディスク107と，OSを起動するルーチンおよびAP の実行に必要なハードウェア環境の診断•初期化のため の高速•診断初期化処理のルーチンを含む゚BOOTプロ グラムを記憶するFROM104とを有する。CPU1 O3は，電源投入によりBOOTプログラムを起動し，起動要因情報が示す起動要因がリンガ到来の場合には，高速•診断初期化処理のルーチンを実行後，APを実行 し，自動電源制御回路に電源切断の指令を送る。


## 【特許請求の範囲】

【請求項1】所定の起動要因に応答して電源を投大ま たは切断する手段および電源投入の起動要因を判別し，該判別結果を示す起動要因情報を出力する手段を備えた自動電源制御回路と，
a．オベレーディングシスデム，
b．電話の留守録処理およびファクシミリの自動受信邜理を行うププリケーションプログラム，および
c．前記オベレーティングシステムを起動するためのル ーチン並びに少なくとも前記アプリケーションプログラ ムの実行に必要とされるハードウェア環境の診断および初期化を高速に行う高速•診断初期化処理を行うための ルーチンを含んだBOOTブログラムを記憶する記憶手段と，
電源投入により前記BOOTプログラムの実行を開始 し，前記起動要因情報が示す起動要因がリンガの到来で ある場合には，前記高速•診断初期化処理を行うための ルーチンを実行した後，前記アプリケーションブログラ ムを実行し，この実行後，前記自動電源制御回路に電源切断の指令を送る制御手段とを具備することを特徴とす る留守録機能付き情報処理装置。
【請求項2】前記BOOTプログラムは，前記高速•診断初期化処理を行うためのルーチンの他，システムの全てのハードウェア環境の診断と初期化を行うための充実診断処理のルーチンを含み，
前記制御手段は，当該BOOTプログラムの実行の際， a．前記起動要因情報が示す起動要因がりンガの到来で ある場合には，前記高速•診断初期化処理を行うための ルーチンを実行した後，前記アプリケーションプログラ ムを実行し，この実行後，前記自動電源制御回路に電源切断の指令を送り，
b．前記起動要因情報が示す起動要因が電源投入のため のスイッチ操作である場合には，前記圥実診断処理のル一チンを実行した後，前記オペレーティングシステムを起動することを特徴とする請求項1記載の留守録機能付 き情報処理装置。
【請求項3】電源が供給されない状況下においても記憶内容を保持する不揮発性記憶手段を具備し，
前記制御手段は，前記リンガの到来により前記BOOT プログラムを実行し，その際のハードウェア環境の診断 において異常を検出した場合には，異常があったことを示すリンガ起動エラー情報とその異常の内容を示す情報 を前記不揮発性記憶手段に格納すると共に前記自動電源制御回路に電源切断の指令を送り，
前記スイッチ操作により前記BOOTプログラムを実行 し，その際のハードウェア環境の診断において異常を検出した場合は，その異常内容の表示を行うと共にシステ ムを停止させ，
前記BOOTプログラムの実行においいて前記不揮発性記憶手段に前記リンガ起動エラー情報が記憶されている場

合には前記不揮発性記億手段に記億された前記異常内容 を示す情報の表示を行うことを特徴とする請求項2に記載の留守録機能付き情報処理装置。
【請求項4】前記アプリケーションプログラムは，外来のリンがが電話に対応したものかファクシミリに対応 したものかを判別し，当該リンがが電話に対応したもの である場合には留守録着信処理を行い，ファクシミリに対応したものである場合には自動受信処理を行うもので あることを特徵とする請求項 1 ～3 のいずれか 1 の請求項に記載の留守録機能付き情報処理装置。
【発明の詳細な説明】
【OOO1】
【発明の属する技術分野】この発明は，ファクシミリ
（以下，FAXと略する。）および電話（以下，TEL と略する。）の通信機能を有すると共にいわつゆる留守録機能を有する情報処理装置に関する。
【0002】
【従来の技術】従来，情報処理装置に留守録機能を持た せるためには，常時，情報処理装置の電源を投入状態に しておくと共にそのシステムを起動状態としておき，オ ペレーティングシステム（以下，OSと略する。）とT ELの留守録処理を備えたFAXモデム用の業務用AP （以下，TELFAX専用APと称する。）を䄸働させ ておく必要があった。このための手段として，毎日，あ る決まった時間に情報処理装惪の電源を入れておくとい う方法を採っていた。
【 0003 】この種の従来技術については，例えば特開平05－061569号公報に開示されている。図6は同公報に開示された従来の装置の構成を示すものであ る。
【0004】図6に示す情報処理装置は，現在の時刻デ一夕を送出する時計手段たる時計回路部 6 0 1 と，外部 から設定される時刻デー夕を保持する保持手段たる時刻設定回路部 602 と，この保持した時刻データと時計回路部 601 からの時刻デー夕とを比較する比較手段たる自動起動回路部 603 と，この比較結果が一致したとき に自装置の電源を投入する電源投入手段たる電源スイッ千部604とにより構成されている。この公報に記載の技術によれば，毎日，ある決まった時間に情報情報玑理装置が自動起動されるため，結果的にシステムとAPと を常時稼働させておくことができる。
【0005】また，レジューム技術を利用することによ り高速に情報処理装置の起動を行うようにする技術も検討されていたが，この場合もなるべく消費電力を抑え，装惪の高速な再起動を実現する必要がある。特開平06 － 161590 号公報にこの種のレジューム技術を利用 した装置が開示されている。図7は同公報に開示された従来の装瞋の構成を示すものである。
【0006】図7に示す装瞋においては，主記憶装置7 01 のみに電源装置703から電源が供給され，主記憶 409319445A｜

装苦701以外への電源供給は遮断されており，これに より省電力化が図られている。そして，レジュームスイ ッチ707等からの起動要求があった場合，レジューム制御装置708の判断と制御により，そのまま主記憶装置フ O 1 の主記憶情報の内容で高速に起動することでA Pの作業再開が行われてる。この場合，TELFAX専用 APを常に楾働させるには，TELFAX専用APを常 に主記憶上に常駐させる必要がある。
【0007】
【発明が解決しようとする課題】ところで，上述した従来の留守録機能付き情報処理装置は以下の問題点を有し ていた。
【0008】（1）従来の留守録機能付き情報処理装置 は，起動中にかかってきたTELやFAXの着信を失敗 する可能性がある。すなわち，通常，情報処理装置の起動においては，環境の診断を行い，更にOSを起動し， その後に業務用のAPを起動し常駐させる，という一連 の処理を必要とし，この処理には大変長時間を要する。 このため，ある相手装置からの着信があった場合に，こ の一連の処理が長時間に及ぶことから，当該相手装置は大抵の場合にタイムアウトエラーとしての取扱い，すな わち，この情報処理装置の使用者が不在であるとみなし送信処理を止める取扱いをしてしまうからである。
【0009】（2）従来の留守録機能付き情報処理装置 は，リンガが来ない場合でも装置を稼嘲させておく必要 があり，このために無験な電力を消費してしまう。
【OO10】（3）上述したレジューム制御方式の装置 は，レジュームで復帰する際，ハードウェア不調が発生 したままで起動した場合に装置に異常が発生し，これに より業務用APが暴走してしまう可能性がある。
【 O 0 1 1 】 】 この発明は，以上説明した事情に鑑みてな されたものであり，電源を常時投入状態とし，システム を䄸働しておかなくても不定期に到来する電話やファク シミりの受信を行うことができ，また，留守録の際の異常発生による暴走の対策の施された留守録機能付き情報処理装置を提供することを目的とするものである。

## 【0012】

【課題を解決するための手段】請求項 1 に係る発明は，所定の起動要因に応答して電源を投入または切断する手段および電源投入の起動要因を判別し，該判別結果を示 す起動要因情報を出力する手段を備えた自動電源制御回路と，
a．オペレーティングシスデム，
b．電話の留守録処理およびファクシミリの自動受信処理を行うアプリケーションプログラム，および
c．前記オペレーティングシステムを起動するためのル一チン並びに少なくとも前記アプリケーションプログラ ムの実行に必要とされるハードウェア環境の診断および初期化を高速に行ら高速•診断初期化処理を行うための ルーチンを含んだBOOTプログラムを記憶する記憶手

段と，電源投入により前記BOOTプログラムの実行を開始し，前記起動要因情報が示す起動要因がリンガの到来である場合には，前記高速•診断初期化処理を行うた めのルーチンを実行した後，前記アプリケーションブロ グラムを実行し，この実行後，前記自動電源制御回路に電源切断の指令を送る制御手段とを具備することを特徴 とする留守録機能付き情報処理装置を要旨とする。
【OO13】請求項2に係る発明は，前記BOOTプロ グラムは，前記高速•診断初期化処理を行うためのルー チンの他，システムの全てのハードウェア環境の診断と初期化を行うための充実診断玑理のルーチンを含み，前記制御手段は，当該BOOTプログラムの実行の際，
a．前記起動要因情報が示す起動要因がリンガの到来で ある場合には，前記高速•診断初期化処理を行うためつの ルーチンを実行した後，前記アプリケーションプログラ ムを実行し，この実行後，前記自動電源制御回路に電源切断の指令を送り，
b．前記起動要因情報が示す起動要因が電源投入のため のスイッチ操作である場合には，前記充実診断処理のル一チンを実行した後，前記オペレーティングシステムを起動することを特徴とする請求項1記截の）留守録機能付 き情報処理表置を要旨とする。
【0014】請求項3に係る発明は，電源が供給されな い状況下においても記檍内容を保持する不揮発性記憶手段を具備し，前記制御手段は，前記リンガの到来により前記BOOTブログラムを実行し，その際のハードウェ ア環境の診断において異常を検出した場合には，異常が あったことを示すリンガ起動エラー情報とその異常の内容を示す情報を前記不揮発性記滰手段に格採すると共に前記自動電源制御回路に電源切断の指令を送り，前記ス イッチ操作により前記BOOTプログラムを実行し，そ の際のハードウェア環境の診断において異常を検出した場合は，その異常内容の表示を行うと共にシステムを停止させ，前記BOOTプログラムの実行において前記不揮発性記憶手段に前記リンガ起動エラー情報か記憶され ている場合には前記不揮発性記憶手段に記滰された前記異常内容を示す情報の表示を行うことを特徵とする請求項2に記載の留守録機能付き情報処理装惪を要旨とす る。
【0015】請求項4に係る発明は，前記アプリケーシ ヨンプログラムは，外来のリンガが電話に対応したもの かファクジミリに対応したものかを判別し，当該リンガ が電話に対応したものである場合には留守録着信処理を行い，ファクシミリに対応したものである場合には自動受信処理を行うものであることを特徴とする請求項1～ 3 のいずれか 1 の請求項に記載の留守録機能付き情報処理装置を要旨とする。
【0016】
【発明の実施の形態】以下，図面を参照し，本発明の実施の形態について説明する。

## A．第1の実施形態

図1は，本発明の第1の実施形態である留守録機能付き情報処理装置101の回路構成を示すブロック図であ る。同図において，103はこの情報玑理装置101の）制御中枢たるCPUである。このCPU103からバス 105が導出されており，このバス105にはRAM1 $02, ~ フ ラ ッ シ ュ \mathrm{FOM}$（以下，FROMと称する。） 104 および入出力機構 106 が接続されている。【OO17】入出力機構 1 0 6 は，CP P 1 0 3 と各種入出力装置との間で情報の授受が行われる際のインタフ ェースとしての役割を果す手段である。また，この入出力機構 106 は，後述する起動要因情報を保持し，CP U103に通知する役割を果す。
【0018】また，入出力機構106には，ハードディ スク107と，FAXモデム108と，自動電源制御回路109とが接続されている。さらにこの情報処理装置 101には，電源投入を指示するためのスイッチ110 と，この情報処理装置内の各部に電源を供給する電源回路114か設けられている。電源回路114は，このス イッチ110の操作または上記自動電源制御回路109 からの指令により電源投入／遮断が切り換えられるよう に構成されてている。
【OO19】FAXモデム108は，コネクタたるTE L端子113を介して外部電話回線と接続されている。 FAXモデム108は，この外部電話回線から到来する リンガを受信することにより，自動電源制御回路109 にリンガ信号を供給する。
【0020】自動電源制御回路109は，所定の起動要因があるとこれに応答して電源回路 1 1 4 の電源を自動 に投入または切断する手段を有している。この起動要因 の1つにFAXモデム108からのリンガ信号の到来が ある。自動電源制御回路109は，このリング信号を検出することにより，電源回路 1 1 4 のスイッチをON状態にして電源を投入し，この情報玑理装置を自動起動さ せる。また，自動電源制御回路 1 0 9 は，電源回路 1 1 4の電源投入が行われた場合にその起動要因が何である かを判別する電源投入要因判別手段と，その判別結果を上述した起動要因情報として入出力機構 106 に通知す る手段とを備えている。
【OO21】ハードディスク107は，周知の通り，記憶内容を変更することができ，かつ，電源が供給されな い状況下においても記憶内容を保持することができる不揮発性の記憶手段である。このハードディスク107に は，ソフトウェアとして，OS 1 1 2 と，TELFAX専用AP111とが分割して記憶されている。これらの うちTELFAX専用AP111は，外来のリンガに応答して，FAXO受信またはTELの留守録を行うため の一連の命令からなるアプリケーションプログラムであ る。
【OO2 2】FROM1O4も，記憶内容を変更するこ

とができ，電源が供給されない状況下においても記憶内容を保持することができる不揮発性の記憶手段である。 このFFOM104には，OS112をロードするルー チン，少なくとも上記TELFAX専用AP111の実行時に必要とされるシシスムのハードウェア環境の診断 と初期化を高速に行う高速•診断初期化処理をルーチン を含むBOOTブログラムが記憶されている。
【0023】次に本実施形態の動作について，リンガに よる電源ON時の場合とスイッチの投スによる電源ON時の場合とに分けて説明する。図2は電源ON時のBO OTプログラムの処理フローを示し，図らはリンガ起動 によるTELFAX専用AFの処理フローを示してあ る。
【OO24】最初に図2を参照し，電源ON時の処理に ついて説明する。外部の電話回線からのリンガが到来 L，FAXモデム108から自動電源制御回路109に リンガ信号が送られると，自動電源制御回路 1 0 9によ り電源回路 1 1 4 の電源投入が行われる。また，自動電源制御回路 1090 電源投入要因判別手段により，電源投入の起動要因の判別が行われ，その判別結果を示す起動要因情報，すなわち，この場合には起動要因がリンガ の到来であることを示す起動要因情報が入出力譏構 10 6経由でCPU103に送られる。
【0025】CPU103は，電源が投入されたことに より，FROM104内のBOOTプログラムの実行を開始する（ステップ 2 0 1）。まず，ステップ 2 0 2 に おいて，CPU103は，FROM104内にリンが起動エラー情報が無いかどうかを判断する。このリンガ起動エラ一情報がない場合にはステップ203に進み，入出力機構 106 から供給される起動要因情報に基づき起動要因を判別する。この場合，当該起動要因がリンガの到来であるとの判別結果が得られるため，ステップ20 3からステップ204に進み，実行対象を高速•診断初期化処理のルーチンに切り換え，少なくとも上記TEL FAX専用AP111の実行時に必要とされるハードウ ェア環境の診断と初期化を極めて短時間で処理する高速診断処理を実行する。この診断の最後に，正常に終了し たかどうかを判断し（ステッブ 2 O 5），正常に終了し た場合にはステップ206でFPOM104内のリンガ起動エラー情報をクリアする。
【0026】診断が終丁するとステップ207でリンガ での起動かどうかを再度調心゙，リンガでの起動の場合は ステップ 208 でTELFAX専用APを起動し，処理 を終了する（ステップ 2 0 9）。このようにリンガ起動 の場合には，極めて所要時間の短い高速診断処理を実行 した後，OSを起動することなく，直ちにTELFAX専用AP111の実行に移行するので，相手装置がタイ ムアウトエラーとして取扱うこともない。
【0027】一方，電源の起動がスイッチ1100押下 により行れるむた場合には，起動要因がスイッチ押下であ

ることを示す起動要因情報が大出力機構106経由でC PU103に送られる。このため，BOOTプログラム の実行においてステップ203に進んた際，その起動要因の判別において当該起動がリンガ起動でないとの判別結果が得られることからステップ211に進むこととな る。そして，ステッップ211に進むと，OSが動作する ために必要な全てのハードウェア環境の診断と初期化を行う充実診断処理を行う。その後，ステップ 205 に進 み，正常に終了したかどうかを判断し正常に終了した場合，ステップ206でリンガ起動エラー情報をクリアす る。そして，診断が終了するとステップ207でリンガ での起動かどうかを再度調べ，リンガでの起動でない場合はステップ218でOSを起動し，処理を終了する （ステップ209）。
【0028】次に起動中に異常が発生した場合の処理を説明を行う。最初にリンガによる起動中にハードウェア の異常が発生した場合を説明する。ステップ204のハ ードウェア診断で異常が発生した場合，その後，ステッ プ205で正常終了かどうかを調べる。ここで，異常が発生した場合，ステップ212で異常内容のエラー表示 を行う。このエラー表示処理の後，ステップ213で起動の要因を調べ，リンガ起動の場合は，ステップ214 でFROM104内にリンガ起動エラー情報をセット
し，ステップ215で異常内容の情報をFROM104内に格納する。次にスデップ216に進むと，CPU1 03はこのBOOTブログラムに従って自動電源制御回路109に電源切断の指令を送る。この結果，自動電源制御回路109は，電源回路114のスイッチをOFF状態とし，この情報処理装置を自動停止させる。これに より処理が終了することとなる。
【0029】もし，スイッチ110の押下により起動が行われた場合において，ステップ211のハードウェア診断で異常が発生した場合も，その後，ステップ205 で正常終丁かどうかを調べる。異常が発生した場合スデ ップ212で異常内容のエラー表示を行う。そして，エ ラー表示処理後，ステップ213で起動の要因を調べ，
リンガ起動でない場合は，FROM104内にステップ 219 でリンカ起動エラー情報をクリアし，ステップン 20 でこのままシステムを停止させる。
【0030】その後，再びこの情報処理装置の起動が行 われると，BOOTプログラムの実行の際，ステップ2 02 ごリンガ起動エラー情報が無いかどうかを判断す る。ここで，情報処理装置のリンガ起動は過去行われ， その際のBOOTプログラムの実行においてハードウェ アの異常が検出された場合，同BOOTプログラムのス テップ 2 1 4，215においてリンガ起動エラー情報お よび異常内容を示す情報がFROM104に格納され る。このFROM1O4は不揮発性の記憶手段であるた め，その後の電源断によって消滅しない。そして，今回 のBOOTプログラムの起動においてステップ202で

その内容を確認することとなり，その際にFROM10 4 内にリンガ起動エラー情報があれば，ステップ 210 で異常内容のエラー表示を行い，ステップ203に処理 が移行する。
【 O O 3 1 】次に，図3を用いて，リンガで起動した場合のTELFAX専用APの処理フローを説明する。ス テップ301でBOOTブログラムからTELFAX専用APが起動される。ステップ302で受信がTELか FAXかを調べる。TELの場合はステップ303で留守録の処理を行う。もし，ステップラ 02 2゙FAXの場合は，ステップ305でFAXの受信処理を行う。次に ステップ304に進むと，CPU103はこのBOOT プログラムに従って自動電源制御回路109に電源切断 の指令を送る。この結果，自動電源制御回路109は，
電源回路114のスイッチをOFF状態とし，この情報処理装置を自動停止させる。これにより処理が終了する こととなる。
【 O 0 3 2】 1 ．第2の実施形態
図4は，本発明の第2の実施形態である情報処理装置4 01 の回路構成を示すブロック図である。上記第1の実施形態では，ハードディスク107にTELFAX専用 AP111を搭載した。本実施形態は，このようにする代わりに，図4に示すように，BOOTプログラムが存在するFROM404の空き領域を用いてTELFAX專用AP411搭載するものである。他の構成につい ては，上記第1の実施形態と同様である。従って，図4 に示す構成において，前掲図 1 において示した各部と対応する各部分には，図1において使用している各符号と十の位および一の位の数字を同じくする400番台の符号を付すことにより上記第 1 の実施形態との対応関係を明確化し，構成の説明に代える。本実施形態においても上述した第1の実施形態と同様な作用効果が得られる。【0033】C．第3の実施形態
図5は，この発明の第3の実施形態である留守録機能付 き情報処理装置の構成を示すブロック図である。本実施形態は，上述の第1の実施形態におけるFROM104 を，バッテリー515によってバックアップされ，電源 を落としても内容が消去されないように構成した不揮発性メモり（以下，BUMと称する。）516と，内容を書き替えることができないROM504に置き換えたも のである。上記第 1 の実施形態においては，リンガ起動 エラー情報と異常内容の情報をFROM104に格納し たが，本実施形態ではこれらの情報をBUM516に格納するようにしている。また，上記第1の実施形態にお いてBOOTブログラムはFROM104に格納した が，本実施形態ではこのBOOTプログラムをROM5 O4に格納している。他の構成については，上記第1の実施形態と同様である。従って，図5に示す構成におい て，前掲図 1 において示した各部と対応する各部分に は，図 1 において使用している各符号と十の位および一

## （6）

の位の数字を同じくする500番台の符号を付すことに より上記第1の実施形態との対応関係を明碓化し，構成 の説明に代える。本実施形態においても上述した第1の実施形態と同様な作用効果が得られる。
【0034】
【発明の効果】本発明によれば以下の効果が得られる。
（1）本発明によれば，リンガが入った時に自動電源制御回路によって装置が起動されると共に起動要因の判定 が行われ，リンガによる起動であるとの判定結果が得ら れた場合には，装軍の高速起動が行われ，タイムアウト を生じさせることなく，TELFAX専用APを稼動さ せ，リンガ処理が行わっれ，業務終了後には装置の電源が OFFとされる。従って，本発明によれば，情報処理装置を常時稳働状態にしておかなくても，留守録機能を行 わせることができる。
（2）本発明によれば，情報処理装置を無駄に䅠働させ ることがないため，無駄な電力消費を減らすことができ る。
（3）本発明によれば，リンガ起動時にハードウェア環境の診断や初期化を行い，異常を検出した場合にその旨 の記録を残し，自動電源制御回路により装置の電源を切断するようにしたので，留守録起動中に装置に異常か溌生した場合でもハードウェアを暴走させることなく，暴走によるデー夕破壊等を防止することができる。
【図面の簡単な説明】
【図1】この発明の第1の実施形態である留守鍉機能付 き情報処理装置の構成を示すブロック図である。
【図2】同実施形態における電源ON時のBOOTプロ グラムの処理フローを示すフローチャートである。
【図3】同実施形態においてリンガ起動時に実行される TELFAX専用APの処理フローを示すフローチャー

トである。
【図4】この発明の第2の実施形態である留守録機能付 き情報処理装置の構成を示すブロック図である。
【図5】この発明の第3の実施形態である留守録機能付 き情報処理装置の構成を示すブロック図である。
【図6】従来の情報処理装置の構成を示すブロック図で ある。
【図7】従来の情報処理装置の構成を示すブロック図で ある。
【符号の説明】
101 ，401，501 留守録機能付き情報処理装置
$102.402,502$ RAM
$103.403,503 \mathrm{CPU}$（制御手段）
104，404
FROM（書替可能な不揮
発性記憶手段）
$504 \quad$ ROM
516 BUM（書替可能なく不揮発
性記憶手段）
105．405．505 バス
106.406 .506 入出力機構

107．407，507 ハードディスク
108．408，508 FAXモデム
109．409．509 自動電源制御回路
110，410，510 スイッチ
111．411，511 TELFAX専用AP（ア
プリケーションプログラム）
112．412．512 OS（オペレーティングシ
ステム）
113．413．513 TEL端子
114，414，514 電源回路

【図3】


【図1】


【図6】


【図2】


【図7】


フロントページの続き

| （51）Int．Cl． 6 | 識別記号 | 庁内整理番号 | FI |  | 伎術表示箇所 |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |

## EUROPEAN PATENT OFFICE

## Patent Abstracts of Japan



ABSTRACT : PROBLEM TO BE SOLVED: To reduce trouble and cost which are needed for the updation of a service program that makes a processing means execute a fault diagnosis, repair, etc., in a communication terminal.

SOLUTION: A karaoke terminal 3 has a ROM 22 and the ROM 22 stores a service program which makes a CPU 20 execute processing that checks and repairs the failure, etc., of a hard disk drive 24. The drive 24 stores an area where an application program which makes the CPU 20 carry out karaoke play processing, etc., is stored and the service program which makes the CPU 20 execute processing that checks and repairs the failure, etc., of the terminal 3 . In the case of updating the service program, a new service program transmitted from a public line network 2 is inputted to the CPU 20 through a communication interface 28 and the CPU 20 writes the new service program in the drive 24.

COPYRIGHT: (C)2000,JPO

は，このようなアブリケーションブログラムにしたがっ てCPU20により実行される処理が正常に実行されて いるかをテストする故障診断ブログラムP3や，アブリ ケーションブログラムにしたがった処理が正常に実行さ れていない場合に，CPU2Oに修復処理を実行させる修復プログラムP 4 などが記憶されている。
【OO13】図1において，操作部26は，テンキーや モード切換キーなどの各種のキースイッチを備えてお
り，使用者がこれらのスイッチを操作して，予約する力 ラオケ曲の曲番号等を入力することができる。上述した ように，カラオケ端末3の電源がオンされると，ハード ディスク装置24に記憶されたアプリケーションプログ ラムがRAM23にロードざれ，カラオケ演奏処理が開始されるが，カラオケ端末3の起動時に操作部26で特殊なキー操作を行うことにより，ハードディスク装置2 4またはPOM22からサービスプログラムがPAM2 3にロードされ，故障診断等のサービスプログラムが実行されるようになっている。このように本実施形態で は，通常のカラオケ演奏処理を行う場合と，故障診断等 のサービスプログラムを実行する場合との起動方法を分 けている。本実施形態によれば，サービスプログラムの起動時に特殊なキー操作を必要とするので，通常時に䛊 ってサービスプログラムが実行されてしまうといった䛊操作を低減できる。なお，サービスプログラムを実行さ せる専用のスイッチ等を操作部26に設け，このスイッ千を押下することによりサービスプログラムが実行され るようにしてもよい。この場合，専用スイッチにカバー等を設けておき，誤って押下される可能性を少なくする ことが好ましい。
【OO14】音源装置27は，カラオケ曲データに含ま れる楽音データに基づいて，楽音信号を生成するもので ある。RAM23にロードされたカラオケ曲データが順次音源装置27に入力され，これにより音源装置27は楽音信号を順次生成し，生成した楽音信号をスピーカ2 9に出力する。スピーカ29は，音源装置27において生成された楽音信号をアナワグデータに変換した後増幅 して放出し，これによりカラオケ曲データに対応した演奏がなされる。
【0015】素示部25はモニタを備えており，カラオ ケ演奏時にCDーROM等から読み出した映像をモニタ に出力する。このとき，モニ夕に表示される映像には， カラオケ曲データに含まれる歌詞データに基づいた歌詞 が合成されて出力される。また，このカラオケ端末ろに異常が発生した場合には，その異常内容等を表示する。
【0 0 1 6】 公衆回線網2からカラオケ端末3に送信さ れるデータは，通信インターフェース28を介してRA M23やハードディスク装置24に書き込まれるように なっている。
【OO17】C．カラオケ端末の動作
次に，上述した構成のカラオケ端末3の動作について説

明する。
$\mathrm{C}-1$ ．サービスプログラム配信処理
まず，センタ1から公衆回線網2を介して送信されたサ ービスブログラムをハードディスク装置24のサービス記憶エリア 24 c に書き込むサービスプログラム配信処理について説明する。上述したようにセンタ1から公衆回線網2を介してサービスブログラム含んだサービスブ ログラムデータがカラオケ端末3に送信される。このよ うにセンタ1から送信されるサービスプログラムデータ のヘッダには，上述した故障診断プログラムP3や修復 プログラムP4などのプログラムの種類が書き込まれて いる。
【0 0 1 8 】センタ1 から送信されるサービスプログラ ムデータは，通信インターフェース28を介してCPU 20に入力される。CPU20は入力されるサービスプ ログラムデータのヘッダから，このサービスプログラム を書き込む゙エリアを指定し，ハードディスク装置24の サービス記憶エリア 24 c に書き迈む。例えば，送信さ れたサービスプログラムが故障診断プログラムP3であ る場合には，サービス記憶エリア 24 c に既に書き込ま れている故障診断プログラムP3上に新たに送信された故障診断プログラムP3を上書きする。このようにし
て，ハードディスク装置24に記憶されたサービスプロ グラムが更新される。
【0019】本実施形態に係る通信カラオケシステムで は，ハードディスク装置24に関するサービスブログラ ム以外のサービスプログラムを書き換え可能なハードデ ィスク装置24に記憶するようにしたので，サービスプ ログラムを更新する場合にも，センタ1から公衆回線網 2を介してサービスプログラムを送信すれぼよい。従来 のカラオケ装置では，サービスプログラムがROMに記憶されていたので，サービスプログラムを更新する場合 には，ROM交換を行う必要があったが，このカラオケ端末3ではそのような作業を行う必要がなく，簡単かつ低コストでサービスブログラムを更新することができ る。また，従来では，サービスプログラムの更新が困難 または不可能な場合があり，新たなアプリケーションプ ログラムの変更や周辺機器の追加を行う自由度が制限さ れることもあった。しかし，このカラオケ端末ろでは， サービスプログラムの更新が簡易かつ低コストで実施で きるため，アプリケーションプログラムの変更や周辺機器の追加などの自由度が大きくなる。
【0020】なお，上述したようにセンタ1から公衆回線網2を介して送信されるサービスプログラムデータに限らず，CD－ROM等に記憶されたサービスプログラ ムデータを図示せぬCD－ROMドライブ等により読み出して，ハードディスク装置24に記憶されたサービス プログラムを更新するようにしてもよい。
【0021】また，本実施形態においては，ハードディ スク装置24のサービス記憶エリア24cに既にサービ

域，およびサービスプログラムを記憶する第2の領域を有する磁気記億手段と，前記磁気記憶手段に関するサー ビスプログラムを記憶する不揮発性メモリと，前記磁気記憶手段に記憶された前記アプリケーションプログラ
ム，前記サービスプログラム，または前記不揮発性メモ リに記憶された前記磁気記憶手段に関するサービスプロ グラムにしたがった処理を実行する処理手段と，通信網 を介して送信されるサービスプログラムを受信した場合 に，前記磁気記憶手段における第2の領域に，受信した サービスブログラムを書き込む書込手段とを具備するこ とを特徴としている。
【0006】また，請求項2に記載の通信端末は，請求項1に記載の通信端末において，前記不揮発性メモリ
は，書き換え可能なフラッシュメモリであり，通信網を介して送信される前記磁気記憶手段に関するサービスプ ログラムを受信した場合，前記書込手段は，前記不揮発性メモリに，受信した前記磁気記憶手段に関するサービ スプログラムを書き込むことを特徵としている。
【0007】また，請求項3に記載の通信端末は，誚求項1または2に記載の通信端末において，前記アブリケ ーションプログラム，前記サービスプログラムまたは前記磁気記憶手段に関するサービスプログラムにしたがっ た処理の実行開始を前記処理手段に指示する入力手段を さらに具備し，前記処理手段は，第1の処理手順により前記入力手段から処理開始指示がス力された場合，前記 アプリケーションブログラムにしたがった処理を実行 し，前記第1の処理手順と異なる第2の処理手順により前記入力手段から処理開始指示がス力された場合，前記 サービスプログラムまたは前記磁気記憶手段に関するサ ービスプログラムにしたがった処理を実行することを特徵としている。
【0008】また，請求項4に記載の通信システムは，通信網を介して送信されるデータを受信する通信端末で あって，所定のアプリケーションプログラムを記憶する第1の領域，およびサービスプログラムを記憶する第2 の領域を有する磁気記憶手段と，前記磁気記憶手段に関 するサービスプログラムを記憶する不揮発性メモリと，前記磁気記憶手段に記憶された前記アプリケーションプ ログラム，前記サービスプログラム，または前記不揮発性メモりに記憶された前記磁気記憶手段に関するサービ スプログラムにしたがった処理を実行する処理手段と，通信網を介して送信されるサービスプログラムを受信し た場合に，前記磁気記憶手段における第2の領域に，受信したサービスプログラムを書き込む書込手段とを有す る通信端末と，前記通信端末に通信網を介してサービス プログラムを送信するデータ送信装置とを具備すること を特徵としている。
【0009】
【発明の実施の形態】以下，図面を参照して本発明の実施形態について説明する。

A．通信システム
まず，図1は本発明の一実施形態に係る通信ケシステム の構成を示す図であり，この実施形態においては，本発明が適用される通信システムから通信カラオケシステムで ある場合について説明する。同図において，符号1は通信カラオケシステムのセンタ局（データ送信装置）を示 す。センタ1には，公衆電話回線あるいはI SDN等の公衆回線網（通信網）2を介して複数のカラオケ端末
（通信端末）3が接続されておう，センタ1は公衆回線網2を介して各カラオケ端末3に後述するアプリケーシ ョンプログラムやサービスプログラムを配信することが できるようになっている。
【OO10】B．カラオケ端末の構成
次に，カラオケ端末3について説明する。図2に示すよ うに，カラオケ端末3は，アプリケーションプログラム やサービスプログラムなどの各種プログラムにしたがっ て装置各部を制御するCPU（処理手段，書込手段） 2 Oを備えている。CPU2Oには，バス21を介してR OM（不揮発性メモリ）22，RAM23，ハードディ スク装置（磁気記憶手段） 24 ，表示部 25 ，操作部 （ス力手段）26，音源装置27および通信インターフ ェース28が接続されている。
【0011】図3に示すように，ROM22には，当該 カラオケ端末を起動するために必要な起動プログラムが記憶されている。また，ROM 22 には，上述した起動 プログラム以外にも，ハードディスク装置24を初期化 する初期化プログラムP1，およびハードディスク装置 24 を検査するHDD検査プログラムP2などが記憶さ れている。これらの初期化プログラムP1およびHDD検査プログラムP2は，図1に示すハードディスク装置 24 に対して検査処理や初期化処理などを行うサービス プログラムである。PAM23は，上述したプログラム データや，カラオケ曲データを一時的に記億するためな どに使用する。
【0012】図4に示すように，ハードディスク装置2 4は，アブリケーションプログラムを記憶するアプリケ ーション記憶エリア（第1の領域）24aと，多数の力 ラオケ曲データを記憶するカラオケ曲記憶エリア 24 b と，サービスプログラムを記憶するサービス記憶エリア （第2の領域） 24 c とを有している。通常，カラオケ端末3の電源がオンされると，図1に示すROM22に記憶された起動プログラムが読み出され，これによりア プリケーション記憶エリア24aに記憶されたアプリケ ーションプログラムがRAM23にロードされるように なっている。また，使用者にカラオケ曲番号が指定され ると，CPU2OがRAM23にロードされたアプリケ ーションプログラムにしたがって行う制御により，カラ オケ曲記憶エリア24bから指定されたカラオケ曲デー夕が読み出され，RAM23にロードされる。サービス記憶エリア 24 c に記憶されているサービスプログラム

【特許請求の範囲】
【請求項1】通信網を介して送信されるデータを受信 する通信端末であって，
所定のアプリケーションプログラムを記憶する第1の領域，およびサービスプログラムを記憶する第2の領域を有する磁気記憶手段と，
前記磁気記憶手段に関するサービスプログラムを記憶す る不揮発性メモりと，
前記磁気記憶手段に記憶された前記アプリケーションプ ログラム，前記サービスプログラム，または前記不揮発性メモりに記憶された前記磁気記憶手段に関するサービ スプログラムにしたがった処理を実行する処理手段と，
通信網を介して送信されるサービスプログラムを受信し た場合に，前記磁気記憶手段における第2の領域に，受信したサービスプログラムを書き込む書込手段とを具備 することを特徴とする通信端末。
【請求項2】前記不揮発性メモりは，書き換え可能な フラッシュメモリであり，
通信網を介して送信される前記磁気記憶手段に関するサ一ビスプログラムを受信した場合，前記書込手段は，前記不揮発性メモ！！，受信した前記磁気記憶手段に関す るサービスブログラムを書き込むことを特徴とする請求項1に記載の通信端末。
【請求項3】前記アプリケーションプログラム，前記 サービスプログラムまたは前記磁気記憶手段に関するサ ービスプログラムにしたがった処理の実行開始を前記処理手段に指示する入力手段をさらに具備し，
前記処理手段は，第1 1 処理手順により前記入力手段か ら処理開始指示がス力された場合，前記アプリケーショ ンプログラムにしたがった処理を実行し，前記第1の処理手順と異なる第2の処理手順により前記入力手段から処理開始指示が大力された場合，前記サービスブログラ ムまたは前記磁気記憶手段に関するサービスプログラム にしたがった処理を実行することを特徴とする請求項 1 または2に記載の通信端末。
【請求項4】通信網を介して送信されるデータを受信 する通信端末であって，所定のアプリケーションプログ ラムを記憶する第1の領域，およびサービスプログラム を記憶する第2の領域を有する磁気記憶手段と，前記磁気記憶手段に関するサービスプログラムを記憶する不揮発性メモリと，前記磁気記憶手段に記憶された前記アプ リケーションプログラム，前記サービスプログラム，ま たは前記不揮発性メモりに記憶された前記磁気記憶手段 に関するサービスプログラムにしたがった処理を実行す る処理手段と，通信網を介して送信されるサービスプロ グラムを受信した場合に，前記磁気記憶手段における第 2の領域に，受信したサービスプログラムを書き込む書込手段とを有する通信端末と，
前記通信端末に通信網を介してサービスプログラムを送信するデー夕送信装置とを具備することを特徵とする通

信システム。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は，故障診断や修復な どをコンピュータに実行きせるサービスプログラムを記億した通信端末，およびこの通信端末を備えた通信シス テムに関する。
【0002】
【従来の技術】近年，い的ゆるカラオケ装苦には通信機能を有するものがあり，ホスト局から通信網を介して送信される曲データに基づいて，端末であるカラオケ装置 が演奏を実行する通信カラオケシステムが普及してい る。このような通信カラオケシステムでは，新しいアプ リケーションブログラム，例えばカラオケ演奏処理ブロ グラムや歌唱採点プログラムなどを各端末であるカラオ ケ装置に供給する場合，センタ局から通信網を介して新 しいアプリケーションプログラムデータを送信してい
る。端末であるカラオケ装置側では，このアプリケーシ ョンブログラムを受信して，ハードディスク装置などに記憶させている。
【0003】
【発明が解決しようとする課題】ところで，上述したよ うな通信カラオケシステムにおいては，カラオケ装置の故障診断，検査，修復，およびアプリケーションプログ ラムに対するテストや故障診断などをコンピュータに実行させるサービスブログラムは，カラオケ装置内のRO Mに記憶されており，書き換えることが不可能であつ
た。従って，上述したように新しいアプリケーションプ ログラムを通信網を介してホスト局から送信した場合に も，そのアプリケーションプログラムに対してテストや故障診断等を実行させるサービスプログラムを更新する には，カラオケ装置内のROMを，新しいサービスプロ グラムが記憶されたROMに交換する必要があった。こ のため，サービスプログラムの更新には，手間やコスト がかかっていた。また，ROMはハードディスクなどと比較して小容量であるため，サービスプログラムが大容量の記憶領域を必要とする場合には，サービスプログラ ムを記憶させることはできなかった。
【0004】本発明は，上記の事情を考虑してなされた ものであり，故障診断や修復などを処理手段に実行させ るサービスプログラムの更新にかかる手間やコストを低減することが可能であり，かつ大容量のサービスプログ ラムを記憶することが可能な通信端末，およびこの通信端末を備える通信システムを提供することを目的とす る。
【0005】
【課題を解決するための手段】上記課題を解決するた め，本発明の請求項 1 に記載の通信端末は，通信網を介 して送信されるデータを受信する通信端末であって，所定のアプリケーションプログラムを記憶する第1の領
（12）公 開 特 許 公 執（A）
（11）特許出殿公開番号特開2000－35888
（ $\mathrm{P} 2000-35888 \mathrm{~A}$ ）
（43）公閎日 平成12年2月2！（2．000．2．2）

| （51）Int．Cl．${ }^{7}$ |  |  | F I |  |  | テーマコード（枀考） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G06F | 9／445 |  | C 06 F | 9／06 | 420 J | 5 B 076 |
|  | 13／00 | 351 |  | 13／00 | $3 \dot{1} \mathrm{H}$ | 5 B 089 |
| G 10 K | 15／04 | 302 | C 10 K | 15／04 | 302 D | 5 D 108 |

榅查請求 未請求 請求項の数 4 OL（全 7 頁）

（54）【発明の名称】 活信端末および雨信シスデム
（57）【要約】
【課題】 通信端末において，故障診断や修復などを玑理手段に実行させるサービスプログラムの更新になかる手間やコストを低減する。
【解決手段】 カラオケ端末3は，ROM 2 2 を有して おり，ROM22には，ハードディスク装䈯24の故障等を蚞査•修復する処理をC P U 2 Oに実行させるサー ビスプログラムが記憶されている。ハードディスク装置 24には，CPU2Oにカラオケ演奏処理等を実行させ るアプリケーションプログラムを記憶するエリアと，こ の力ラオケ端末3の故障等を検査•修復する処理をC P U 2 O に実行させるサービスプログラムが記憶されてい る。サービスプログラムを更新する場合には，公衆回線網2から送信される新たなサービスプログラムを通信イ ンターフェース28を介してCPU2Oに入力され，C PU2Oが新しいサービスプログラムをハードディスク装置24に書き込さ。


スプログラムが記憶されており，記億されたサービスプ ログラムを，送信される新たなサービスプログラムに書 き換える場合について説明したが，サービス記憶エリア 24 c にサービスブログラムが記憶されていない状態 で，公衆回線網2を介して送信されるサービスプログラ ムを書き込むようにしてもよい。また，サービス記憶工 リア 24 c に既に記憶されたサービスブログラムに加え て，公軣回線網2を介して送信されるサービスプログラ ムを書き込むようにしてもよい。
【0022】 C －2．カラオケ端末異常時の復旧処理
次に，このカラオケ端末3を起動したときに，何らかの異常が発生した場合の復旧処理について図5を用いて説明する。同図に示すように，まず，使用者によりカラオ ケ端末3の電源がオン゙されると，ROM 22 に記憶され た起動プログラムが読み出される（ステップS a 1）。 この後，カラオケ端末3に異常が発生しない場合には
（ステップS a 2 ），ハードディスク装置24のアプリ ケーション記憶エリア24aに記憶されたアプリゲーシ ョンプログラムがRAM23にロードされ，通常のカラ オケ演奏処理がなされる（ステッブS a 3）。
【0023】一方，このカラオケ端末3に異常が発生し た場合（ステップS a 2），その異常がハードディスク装置24に関する異常であるか否かを判断する（ステッ プSa4）。ここで，ハードディスク装置24に関する異常であると判断した場合，CPU2OによりROM2 2に記憶されたHDD娭查プログラムP2が実行され （ステップS a 5），ハードディスク装置24の異常内容がチェックされる。そして，異常内容が碓認される と，碓認された内容が表示部25のモニ夕に表示される （ステップS a 6）。
【0024】この後，表示部25のモニ夕に表示された異常内容がハードディスク装置24自体の損備でない場合，例えば記憶されているデータか破㙼された場合など には，CPU20により初期化プログラムP1 が実行さ れ（ステップSa7），ハードディスク装置24を初期化する。この後，ハードディスク装置24の初期化が正常に終了したかが碓認され（ステップS a 8），初期化 が正常に終了した場合，ハードディスク装置24のバッ クアッブデータが記憶されたCDーPOMから，CDー ROMドライブ（図示略）によりバックアップデータを読み出し，ハードディスク装惪24へ書き込む（ステッ ブSa9）。このようにして，ハードディスク装置24 の異常に対する復旧処理が終了する。一方，ハードディ スク装置24の初期化が不可能な場合には，表示部25 のモニ夕に修復不能であることが表示される（ステップ Sa10）。修復不可能が表示された場合，例えばハー ドディスク装置24自体が損傷している場合には，カラ オケ端末ろの製造者や修理会社等に修理を依頼する。
【 0 0 2 5】このようにして，ハードディスク装惪24 の復旧処理が行われた後，ハードディスク装置24以外

の異常が発生しているか否かが判断される（ステップS a 1 1）。ここで，他に異常が発生していない場合に は，ハードディスク装置24からアブリケーションプロ グラムがRAM23にロードされ，通常のカラオケ演奏処理が行われる（ステップSa3）。
【0026】一方，ステップSa9でハードディスク装置24以外の異常があると判断された場合には，CPU 20によりハードディスク装置24に記憶された故障診断プログラムP3が実行される（ステップS a 1 2）。故障診断ブログラムP3が実行されると，カラオケ端末 3 のハードディスク装置24以外の各部について故障診断が行えれ，表示部25にモニタに異常内容が表示され る（ステップSa13）。
【0027】そして，ハードディスク装置24に記憶さ れた修復プログラムP4が実行され，ステップS a 13 で診断された異常内容の修復処理が行われる（ステップ Sal4）。そして，修復プログラムP4に基づく修復処理により，異常が修復されると（ステップS a 1 5），通常のカラオケ演奏処理が実行される（ステップ Sa3）。修復プログラムP4による修復が不可能な場合，表示部25のモ二夕にその旨が表示される（ステッ プSa16）。この場合，使用者は，カラオケ端末3の製造者や修理会社等に修理を依頼する必要がある。
【0028】なお，カラオケ端末3を起動したときに （ステップSa1），発生した異常がハードディスク装置24以外の異常である場合（ステップSa4）には， CPU20は上述したステップS a 1 2以下の処理を実行する。
【0029】上述したようにカラオケ端末3は，ハード ディスク装置24にサービスプログラムを記憶している ので，サービスプログラムをROMに記憶した従来装惪 と比較して，サービスプログラムを記憶するエリアを大 きくすることが可能である。つまり，大容量のサービス プログラムを記憶させることも可能となる。しかし，R OM等と比較して故障等が発生する可能性が高いハード ディスク装置24にサービスプログラムを記憶させた場合，ハードディスク装置24のデータが破壊されるなど の異常が発生することも考えられる。この点を考虑し
て，このカラオケ端末ろでは，ハードディスク装置 24 に関するサービスプログラムはR OM 2 2 に記憶させて いる。これにより，ハードディスク装置240データが破塄された場合にも，上述したようにハードディスク装置24の復旧処理を行うことができる。ハードディスク装置24を復旧した後には，ハードディスク装置24に記憶されたサービスプログラムを実行することが可能と なり，ハードディスク装置24以外の故障に対しても修復等の処理を行うことができる。
【0030】なお，上述したカラオケ端末3における異常時の復旧処理は，使用者が操作部26を操作すること により，図 4 に示すフローチャートにしたがって，初期
（6）開2000－35888（P2000－35888A）

化ブログラムP1，HDD検査プログラムP2，故障診断プログラムP3，修復プログラムP4などをそれぞれ実行させるようにしてもよいし，ROM 2 2に上述した ような復旧処理をCPU2Oに実行させる復旧処理プロ グラムを記憶させておき，異常が発生した場合には，こ の復旧処理プログラムにしたがって上述した復旧処理が なされるようにしてもよい。
【0031】また，カラオケ端末3に異常が発生してい ない場合にも，使用者が操作部26を操作することによ り，初期化ブログラムP1，HDD検查プログラムP
2，故障診断プログラムP3抽よび修復プログラムP4 などをCPU20に実行させることも可能である。
【0032】D．変形例
上述した実施形態におけるROM22の代わりに書き換 え可能なフラッシュメモリを用いるようにしてもよい。 このようにすれば，フラッシュメモリに記億されたハー ドディスク装置24に関するサービスブログラムを書き換えることが可能となる。これにより，センタ1からハ ードディスク装置 24 に関するサービスプログラムデー夕をカラオケ端末3に配信すれば，フラッシュメモリに記憶されたサービスプログラムが更新されるので，サー ビスプログラムの更新にかかる手間やコスト低減するこ とできる。
【0033】
【発明の効果】以上説明したように，本発明によれば，磁気記憶手段に記憶されたサービスプログラムを書き換 えることにより，サービスプログラムを更新することが

【図1】


できるため，故障診断や修復などを処理手段に実行させ るサービスプログラムの更新にかかる手間やコストを低㳚することが可能である。また，磁気記憶手段にサービ スブログラムを記憶しているので，大容量のサービスブ ログラムを記憶することが可能である。

## 【図面の簡単な説明】

【図1】本発明の一実施形態に係る通信ジステムの構成を示す図である。
【図2】前記通信システムにおけるカラオケ端末の構成を示すブロック図である。
【図3】前記カラオケ端末の構成要素であるROMの内部構成を示す図である。
【図4】前記カラオケ端末の構成要素であるハードデ ィスク装直の内部構成を示すブロック図である。
【図5】前記カラオケ端末に異常が発生した場合の，復旧処理の一例を示すフローチャートである。
【符号の説明】
$1 \cdots$ センタ（データ送信装置），2 $\cdots$ 公衆回線網（通信網），3 $\cdots$ カラオケ端末（通信端末）， $20 \cdots \mathrm{CPU}$
（処理手段，書込手段）， $21 \cdots$ バス， $22 \cdots \mathrm{ROM}$ （不揮発性メモり）， $23 \cdots$ RAM， $24 \cdots$ ハードディ スク装置，24a…アプリケーション記憶エリア（第1 の領域）， $24 \mathrm{c} \cdots$ サービス記憶エリア（第2の領域），25 $\cdots$ 表示部， $26 \cdots$ 操作部（入力手段）， 27 $\cdots$ 音源装置， $28 \cdots$ 通信インターフェース， $29 \cdots$ スピ一力


【図3】


【図5】

（図4）


## EUROPEAN PATENT APPLICATION

(43) Date of publication:
(51) Int. $\mathrm{Cl}^{6}$ : G06F 11/20, G06F 11/14
21.05.1997 Bulletin 1997/21
(21) Application number: 96118255.7
(22) Date of filing: 14.11.1996
(84) Designated Contracting States: DE FR GB
(30) Priority: 14.11.1995 JP 295832/95
(71) Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
Kadoma-shi, Osaka-fu, 571 (JP)
(72) Inventors:

- Owada, Kiyoshi Osakafu, Hirakatashi 573 (JP)
- Kobayashi, Susumu Osakafu, Osakashi, Asahiku, 535 (JP)
(74) Representative: Kügele, Bernhard et al NOVAPAT INTERNATIONAL SA, 9, Rue du Valais 1202 Geneve (CH)


## (54) Back-up unit

(57) A backup unit comprises a first storage means (10) containing at least one program (11) and a setup file (12) in which the operating environment of this program is written; a second storage means (20) used when the first storage means (10) has a fault; a duplicaton means (31) for duplicating the program (11) and the setup file (12) contained in the first storage means (10) into the second storage means (20); and an identifier conversion means (31) for converting identifiers included in the setup file (12) of the first storage means (10) and relating to the first storage means (10) into identifiers relating to the second storage means (20), when the duplication is performed. Therefore, when the operation of an information processor is stopped due to a fault in the first storage means (10), the second storage means (20) enables temporary operation of the information processor. In addition, it is possible to employ, as the second storage means (20), a recording medium that is lower in price and writing speed than the first storage means (10).

Fig. 2

$\qquad$ 0774716 A1_1_>

## Description

## FIELD OF THE INVENTION

The present invention relates to a backup unit having a countermeasure against a fault in an external storage unit, such as a hard disk drive (hereinafter referred to as HDD).

## BACKGROUND OF THE INVENTION

Since an operating system (hereinafter referred to as OS) for an information processor is contained in an external storage unit, such as an HDD, if the HDD itself or the content of the HDD is destroyed, the information processor cannot be started.

As a precaution against such an accident, a duplicate of the contents of the external storage unit is usually retained in a tape unit or the like. Such a duplicate is called a backup.

A description is given of a procedure for generating a backup with reference to figure 10. Initially, a tape unit for backup is mounted on an information processor equipped with an HDD (step S81). Then, data in the HDD is copied to backup tapes (step S82). In this method, two backup tapes are employed, i.e., a tape to which the OS of the HDD is copied and a tape to which user's data is copied. Hereinatter, the former is called an OS installation tape and the latter is called a user's data tape.

When the HDD has a fault after generation of the backup, a user executes a procedure shown in figure 11, as a countermeasure against the fault.

Initially, the user checks the extent of the fault (step S91). When the fault is destruction of data stored in the HDD, the user immediately sets the OS installation tape in a tape drive unit which is mounted on the information processor (step S93). When the HDD itself is destroyed physically, the user replaces the HDD with another one (step S92) and sets the OS installation tape (step S93). Thereafter, the user starts an OS installing tool from the OS installation tape (step S94), whereby the OS is installed in the HDD (step S95).

Further, the user resets the system of the information processor according to his work (step S96). Thereafter, the user sets the user's data tape (step S97) and restores the data from this tape into the HDD (step S98).

Another countermeasure against the fault in the external storage unit is to duplicate the external storage unit. More specifically, two external storage units having equal performances are prepared, and data of the same contents are written in both the external storage units simultaneously. In this case, even when one of the external storage units is out of order, the user can operate the information processor continuously using the other storage unit operating normally.

However, the conventional method employing the backup tapes have the following drawbacks.

Firstly, when the external storage unit is destroyed, since the external storage unit must be replaced with another one, the operation of the information processor is stopped until the replacement is completed.

Secondly, when the contents of the external storage unit are destroyed, after reinstallation of the OS, the user resets the system of the information processor according to his work, so that resetting of the present file is necessary. For the resetting, the operation of the information processor must be stopped for half a day.

On the other hand, the method of duplicating the external storage unit has the following drawback.

In this method, since data of the same contents are written simultaneously, two (first and second) external storage units having equal writing performances must be used. Hence, it is impossible to use an expensive and high-speed HDD as the first storage unit while using an inexpensive and low-speed optical disk for the second storage unit. Therefore, the cost of the external storage units is doubled according to the amount of data duplicated.

## SUMMARY OF THE INVENTION

It is an object of the present invention to provide a backup unit equipped with first and second storage means, that enables temporary operation of an information processor using the second storage means when the first storage means is out of order, and that reduces the time during which the operation of the information processor is stopped.

It is another object of the present invention to provide a backup unit employing, for the second storage means, a storage unit having a writing speed lower than that of the first storage means.

It is a further object of the present invention to provide a backup unit that facilitates restoration of the contents of the first storage means from the contents of the second storage means.

Other objects and advantages of the invention will become apparent from the detailed description that follows. The detailed description and specific embodiments described are provided only for illustration since various additions and modifications within the scope of the invention will be apparent to those of skill in the art from the detailed description.

According to a first aspect of the present invention, a backup unit comprises a first storage means containing at least one program and a setup file in which the operating environment of this program is written; a second storage means used when the first storage means has a fault; a duplication means for duplicating the program and the setup file contained in the first storage means, into the second storage means; and an identifier conversion means for converting identifiers included in the setup file of the first storage means and relating to the first storage means, into identifiers relating to the second storage means, when the duplication is performed. Therefore, when the operation of an information
$\qquad$ 0774716A1_1_>
processor is stopped due to a fault in the first storage means, the second storage means enables temporary operation of the information processor. In addition, it is possible to employ, as the second storage means, a recording medium that is lower in price and writing speed than the first storage means.

According to a second aspect of the present invention, the above-mentioned backup unit further comprises a setup file managing means for judging whether at least one setup file contained in the first storage means has been updated. When the setup file managing means judges that the setup file has been updated, the duplication means duplicates the updated file of the first storage means, into the second storage means. Therefore, it is possible to store the latest setup file without troubling the user.

According to a third aspect of the present invention, the above-mentioned backup unit further comprises a switch means for selecting one of the first storage means and the second storage means as a storage means for booting. Therefore, when the operation of an information processor is stopped due to a fault in the first storage means, the second storage means enables temporary operation of the information processor without bothering the user with conversion of identifiers and other processes, so that the time during which the operation is stopped is reduced.

According to a fourth aspect of the present invention, the above-mentioned backup unit further comprises a fault detecting means for detecting a fault in the first storage means. When a fault is detected in the first storage means by the fault detecting means, the switch means selects the second storage means as a storage means for booting. Therefore, when the operation of an information processor is stopped due to a fault in the first storage means, the second storage means enables temporary operation of the information processor without troubling the user.

According to a fifth aspect of the present invention, in the above-mentioned backup unit, the program includes at least a program of an operating system, and the setup file includes at least a setup file of the operating system.

According to a sixth aspect of the present invention, the above-mentioned backup unit further comprises means for designating one of the first storage means and the second storage means as a source of duplication while designating the other as a target of duplication, and the duplication means duplicates the program and the setup file in the storage means designated as a source of duplication, into the storage means designated as a target of duplication. Therefore, data in the backup storage means can be restored in the other storage means. In addition, changes given to the data in the backup storage means during the temporary operation thereof are reflected in the restored data.

## BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram illustrating an information processor employing a backup unit according to a first embodiment of the invention.

Figure 2 is a flowchart illustrating a procedure for generating a backup using the backup unit according to the first embodiment.

Figure 3 is a flowchart illustrating a procedure of a countermeasure against a fault in the backup unit according to the first embodiment.

Figures 4(a) and 4(b) are tables illustrating a setup file before conversion by the backup unit according to the first embodiment and a setup file after the conversion, respectively.

Figure 5 is a block diagram illustrating an information processor employing a backup unit according to a second embodiment of the invention.

Figure 6 is a flowchart illustrating a procedure for generating a backup using the backup unit according to the second embodiment.

Figure 7 is a flowchart illustrating a procedure for detecting a fault in the backup unit according to the second embodiment when the information processor is started.

Figure 8 is a flowchart illustrating a procedure of a countermeasure against a fault in the backup unit according to the second embodiment.

Figure 9 is a flowchart illustrating a procedure for updating backup data by the backup unit according to the second embodiment.

Figure 10 is a flowchart illustrating a procedure for generating a backup using a conventional backup unit.

Figure 11 is a flowchart illustrating a procedure of a countermeasure against a fault in the conventional backup unit.

## DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Patent Owner, Bot M8 LLC - Ex. 2013, p. 90
sion of data, and other processes, and a system loading switch unit 32 for selecting one of the HDD 10 and the HDD 20 as a storage unit for booting (i.e., starting).

The first HDD 10, the second HDD 20, the central control unit 30, and the internal memory unit 50 are connected with each other through an internal bus 60 and an external bus 70

In the information processor equipped with the backup unit so constructed, when the first HDD 10 has a fault, the user takes a countermeasure against the fault, which will be described hereinafter using figures 2 , 3 , and 4(a) and 4(b). Figure 2 is a flowchart showing a procedure for generating a backup using the backup unit according to the first embodiment. Figure 3 is a flowchart showing a procedure of a countermeasure adopted by the user when the HDD 10 has a fault. Figure 4(a) shows an example of a setup file 12 before it is converted by the backup unit, and figure 4(b) shows an example of a setup file 23 after conversion.

First of all, a procedure for generating a backup against a fault in the HDD 10 will be described using figure 2.

The user instructs the duplication and conversion unit 31 to duplicate and convert the contents of the first HDD 10. Receiving the instruction, the duplication and conversion unit 31 duplicates the OS 11 to generate the OS 21 (step S11) and duplicates the setup file 12 to generate the setup file 22 (step S12). When the HDD 10 contains user's data, this data is also duplicated and stored in the HDD 20 (step S13).

Thereafter, as shown in figures 4(a) and 4(b), the duplication and conversion unit 31 converts a portion of data in the setup file 22 in the HDD 20, which portion is coded in device identifiers of the HDD 10, into data coded in device identifiers of the HDD 20, thereby generating the setup file 23 (step S14). After the conversion, the duplication and conversion unit 31 stores the setup file 23 in the HDD 20 to complete the backup.

In case where the information processor includes a third external storage unit (not shown), the setup file 12 includes device identifiers of the third storage unit, but these device identifiers are not converted.

Next, the process of user's countermeasure against the fault in the HDD 10 will be described using figure 3.

When the HDD 10 has a fault, the user changes the target of OS loading from the first HDD 10 to the second HDD 20 by the system loading switch unit 32 (step S21), and the user loads the OS 21 and the setup file 23 to boot the system from the second HDD 20 (step S22). Then, the user decides whether the HDD 10 should be recovered or not (step S23). When the decision is not to recover the HDD 10, the user operates the information processor temporarily using the second HDD until an HDD for replacement is prepared.

On the other hand, when the decision is to recover the HDD 10, the user judges the extent of the fault in the HDD 10 (step S24). When the HDD 10 is physically destroyed and another HDD for replacement is not available soon (step S30), the user operates the infor-
mation processor temporarily using the second HDD until an HDD for replacement is prepared. When an HDD for replacement is available, the user stops the operation of the system (step S31) and replaces the first HDD 10 with the new HDD (step S32). Then, the user returns to step S21.

When the fault is destruction of data in the HDD 10 , the user restores the contents of the HDD 10. In this case, it is necessary to restore the contents of the HDD 20 into the HDD 10. Hereinafter, a procedure of regenerating the first HDD 10 using the system booted for the temporary operation of the second HDD 20 will be described.

Initially, the user designates the second HDD 20 as a source of duplication and conversion and the first HDD 10 as a target of duplication and conversion. Then the user instructs the duplication and conversion unit 31 to duplicate the contents of the second HDD 20 into the first HDD 10. Receiving the instruction, the duplication and conversion unit 31 duplicates the OS 21 to generate the OS 11 (step S25) and duplicates the setup file 22 to generate the setup file 12 (step S26). When the HDD 20 contains user's data, this data is also duplicated and stored in the HDD 10 (step S27). Finally, the target of OS loading is returned to the first HDD 10 by the system loading switch unit 32 (step S28).

In the above-mentioned backup unit, the HDD 10 (first storage means) contains at least one program and a setup file in which an operating environment of this program is written. The duplication and conversion unit 31 (duplication means) duplicates the program and the setup file of the first HDD 10 into the second HDD 20 (second storage means). When the setup file is duplicated, if the setup file includes identifiers relating to the first HDD 10, the duplication and conversion unit 31 (identifier conversion means) converts these identifiers to identifiers relating to the second HDD 20. Further, the system loading switch unit 32 (switch means) selects the second HDD 20 as a storage unit for booting and boots the system from the second HDD 20. Therefore, it is possible for the user to operate the information processor temporarily, so that the inoperable time of the information processor can be reduced.

Furthermore, the duplication and conversion unit 31 (designation means) designates the second HDD 20 as a source of duplication and the first HDD 10 as a target of duplication, and duplicates the contents of the second HDD 20 into the first HDD 10. Therefore, the contents of the backup storage unit can be restored into the other storage unit. In addition, any changes to the data in the backup storage unit which has been temporarily operated will be reflected in the restored data.

## [Embodiment 2]

Figure 5 is a block diagram illustrating an information processor employing a backup unit according to a second embodiment of the present invention.

The backup unit comprises an HDD 10 serving as a
$\qquad$ 0774716A1_1_>
first storage means when the information processor operates normally, a rewritable optical disk 40 serving as a second storage means when the first HDD 10 is out of order, a central control unit 30 for instructing duplication of data and other processes, and an internal memory unit 50.

The HDD 10 contains an OS 11 and a setup file 12 on the basis of the OS 11. The optical disk 40 contains an OS 41 which is a duplicate of the OS 11 and a setup file 42 which is a duplicate of the setup file 12.

The central control unit 30 comprises a duplication and conversion unit 31 for duplication of data, conversion of data, and other processes, a system loading switch unit 32 for selecting one of the HDD 10 and the optical disk 40 as a storage unit for booting, a setup file correction detector 33 , and an HDD fault detector 34 .

The HDD 10, the optical disk 40, the central control unit 30, and the internal memory unit 50 are connected with each other through an internal bus 60 and an external bus 70 .

In the information processor equipped with the backup unit so constructed, when the HDD 10 has a fault, the user takes a countermeasure against the fault, which will be described hereinafter using figures 6 through 8. Figure 6 is a flowchart showing a procedure for generating a backup using the backup unit according to the second embodiment. Figure 7 is a flowchart showing the operation of the HDD fault detector 34 when the information processor is started. Figure 8 is a flowchart showing a procedure of a countermeasure against HDD fault. Figure 9 is a flowchart showing a procedure for updating a backup.

First of all, a procedure for generating a backup against HDD fault will be described using figure 6.

The user mounts the rewritable optical disk 40 as a second storage means (step S41) and instructs the duplication and conversion unit 31 to duplicate and convert the contents of the HDD 10. Receiving the instruction, the duplication and conversion unit 31 duplicates the OS 11 to generate an OS 41 (step S42). Subsequently, the unit 31 generates a setup file 42 by converting a portion of data in the setup file 12, which portion is coded in device identifiers of the HDD 10, into data coded in device identifiers of the optical disk 40 , and stores the setup file 42 in the optical disk 40 (step S43). In this second embodiment, in order to save the storage region of the optical disk 40, duplication of the setup file 12 is not performed. When the HDD 10 contains user's data, this data is also duplicated and stored in the optical disk 40 (step S44).

Next, the operation of the HDD fault detector 34 will be described using figure 7.

When the information processor is started, the HDD fault detector 34 judges whether the HDD 10 has a fault or not by detecting, for example, "reading or writing error" of the HDD 10 or "access time out" to the HDD 10 (step S45). When the HDD 10 has no fault, the information processor is started by the HDD 10 (step S47). On the other hand, when the HDD 10 has a fault, the

HDD fault detector 34 instructs the system loading switch unit 32 to change the target of OS loading from the HDD 10 to the optical disk 40 (step S46). The system loading switch unit 32 loads the OS 41 and the setup file 42 to boot the system from the optical disk 40 (step S48). Thereafter, the information processor is operated temporarily by the optical disk 40 until the HDD 10 is replaced with another HDD.

After the detection of the HDD fault, the user takes a countermeasure against the fault, which will be described hereinafter using figure 8.

When a fault is detected in the HDD 10, the user changes the target of OS loading from the HDD 10 to the optical disk 40 by the system loading switch unit 32 (step S61), and the user loads the OS 41 and the setup file 42 to boot the system from the optical disk 40 (step S62). Then, the user decides whether the HDD 10 should be recovered or not (step S63). When the decision is not to recover the HDD 10, the user operates the information processor temporarily using the optical disk 40 until an HDD for replacement is prepared.

On the other hand, when the decision is to recover the HDD 10, the user judges the extent of the fault (step S64). When the HDD 10 is physically destroyed and an HDD for replacement is not available soon (step S69), the user operates the information processor temporarily using the optical disk 40 until an HDD for replacement is prepared. If an HDD for replacement is available, the user stops the operation of the system (step S70) and replaces the HDD 10 with the new HDD (step S71). Then, the user returns to step S61.

When the fault is destruction of data in the HDD 10, the user restores the contents of the HDD 10. In this case, it is necessary to restore the contents of the optical disk 40 into the HDD 10. Hereinafter, a procedure of regenerating the first HDD 10 using the system booted for the temporary operation of the optical disk 40 will be described.

Initially, the user designates the optical disk 40 as a source of duplication and conversion and the HDD 10 as a target of duplication and conversion. Then, the user instructs the duplication and conversion unit 31 to duplicate and convert the contents of the optical disk 40 into the HDD 10. Receiving the instruction, the duplication and conversion unit 31 duplicates the OS 41 to generate the OS 11 (step S65) and duplicates the setup file 42 to generate the setup file 12 (step S66). At this time, the duplication and conversion unit 31 converts a portion of data in the setup file 12 , which portion is coded in device identifiers of the optical disk 40, into data coded in device identifiers of the HDD 10 (step S67). When the optical disk 40 contains user's data, this data is also duplicated and stored in the HDD 10. To complete the processing, the system loading switch unit 32 returns the target of OS loading to the HDD 10 (step S68).

When data in the HDD 10 is updated, backup data corresponding to the updated, i.e., latest, data must be stored in the optical disk 40. Hereinafter, a procedure for updating backup data will be described using figure 9 .
$\qquad$ 0774716A1_I_>

When the user corrects the setup file 12 in the HDD 10 during operation of the information processor, the setup file correction detector 33 detects the correction of the setup file 12 by , for example, comparing the change time of the setup file 12 with the generation time of the setup file 42 (step S51). In the case where the correction of the setup file 12 is done after the backup. the duplication and conversion unit 31 duplicates the setup file 12 in the HDD 10 into the setup file 42 in the optical disk 40 while converting identifiers relating to the HDD to identifiers relating to the optical disk (step S52), whereby the setup file 42 is updated. On the other hand, in the case where the correction of the setup file 12 is done before the backup, the setup file 12 is not updated.

As described above, according to the second embodiment of the invention, the HDD 10 (first storage means) contains at least one program and a setup file in which an operating environment of this program is written. The duplication and conversion unit 31 (duplication means) duplicates the program and the setup file of the HDD 10 into the optical disk 40 (second storage means). When the setup file includes identifiers relating to the HDD 10, the duplication and conversion unit 31 (identifier conversion means) converts these identifiers to identifiers relating to the optical disk 40 . Therefore, it is possible to employ, as the second storage means, a recording medium that is lower in price and writing speed than the first storage means.

Further, when the HDD fault detector 34 (fault detecting means) detects a fault in the HDD 10, the system loading switch unit 32 (switch means) loads the OS 41 and the setup file 42 from the optical disk 40 to boot the system. Therefore, even when the operation of the information processor is stopped due to the HDD fault, the optical disk 40 enables temporary operation of the information processor without bothering the user with conversion of identifiers and other processes.

Furthermore, the setup file correction detector 33 (setup file managing means) checks whether or not the setup file in the HDD 10 is updated and, when it is updated, the updated file is duplicated in the optical disk 40. Therefore, it is possible to store the setup file 42 corresponding to the latest setup file 12 , without troubling the user. In addition, when the user restores the HDD 10 using the system of the optical disk 40 , which system is booted for the temporary operation, since changes given to the setup file 42 by the user during the temporary operation are reflected in the setup file 12 as latest data, the HDD 10 can be regenerated with no necessity of changing the setup file 12 .

The backup unit of the present invention is not restricted to those described for the first and second embodiments. Although in the first and second embodiments an HDD or an optical disk is used as the second external storage unit, a floppy disk or a rewritable ROM, such as an EEPROM or a flash ROM, may be used with the same effects as mentioned above.

In the first and second embodiments of the invention, the duplication and conversion unit 31, the system
loading switch unit 32, the setup file correction detector 33, and the HDD fault detector 34 are implemented by software, i.e., programs loaded to the central control unit 30. However, these constituents may be implemented by hardware. Further, when these constituents are implemented by software, their programs may be stored in the HDD 10. In addition, a program for generating the system loading switch unit 32 may be stored in a ROM in the information processor.

## Claims

1. A backup unit (Fig.1) comprising:
a first storage means (10) containing at least one program (11) and a setup file (12) in which the operating environment of this program (11) is written;
a second storage means (20) used when the first storage means (10) has a fault;
a duplication means (31) for duplicating the program (11) and the setup file (12) contained in the first storage means (10) into the second storage means (20); and
an identifier conversion means (31) for converting identifiers included in the setup file (12) of the first storage means (10) and relating to the first storage means (10), into identifiers relating to the second storage means (20), when the duplication is performed.
2. A backup unit as defined in claim 1 (Fig.5) comprising:
a setup file managing means (33) for judging whether at least one setup file (12) contained in the first storage means (10) has been updated; wherein, when the setup file managing means (33) judges that the setup file (12) has been updated, the duplication means (31) duplicates the updated file (12) of the first storage means (10) into the second storage means (40).
3. A backup unit as defined in claim 1 comprising a switch means (32) for selecting one of the first storage means (10) and the second storage means (40) as a storage means for booting.
4. A backup unit as defined in claim 3 comprising:
a fault detecting means (34) for detecting a fault in the first storage means (10); wherein, when a fault is detected in the first storage means (10) by the fault detecting means (34), the switch means (32) selects the second storage means (40) as a storage means for booting.
5. A backup unit as defined in any of claims 1 to 4
$\qquad$ 0774716A1_1_>
wherein the program (11) includes at least a program of an operating system, and the setup file (12) includes at least a setup file of the operating system.
6. A backup unit as defined in claim 1 comprising:
means (31) for designating one of the first storage means (10) and the second storage means (40) as a source of duplication while designating the other as a target of duplication;
wherein said duplication means (31) duplicates the program (11 or 41) and the setup file (12 or 42 ) in the storage means ( 10 or 40 ) designated as a source of duplication, into the storage means (10 or 40) designated as a target of duplication.
$\qquad$ 0774716A1_I_>

Fig. 1


Fig. 2


Fig. 3


Patent Owner, Bot M8 LLC - Ex. 2013, p. 97


Fig. 5


12
$\qquad$

Fig. 6

$\qquad$ 0774716A1_1_

## EP 0774716 A1

Fig. 7

$\qquad$ _0774716A1_I_>

Patent Owner, Bot M8 LLC - Ex. 2013, p. 101

Fig. 8


Fig. 9

$\qquad$

Fig. 10 Prior Art


Fig. 11 Prior Art


European Patent
EUROPEAN SEARCH REPORT

$\qquad$ 0774716A1_」>

Patent Owner, Bot M8 LLC - Ex. 2013, p. 106

(12)

## EUROPEAN PATENT APPLICATION

(43) Date of publication: 15.10.1997 Bulletin $1997 / 42$
(21) Application number: 97302369.0
(22) Date of filing: 07.04.1997
(84) Designated Contracting States: DE FR GB
(30) Priority: 08.04.1996 JP 85533/96
(71) Applicant: CANON KABUSHIKI KAISHA Tokyo (JP)
(51) Int Cl.6: G11B 20/18

## Description

## BACKGROUND OF THE INVENTION

This invention relates to a storage device equipped with a storage medium, a method of controlling the device, a storage system and a method of controlling the storage system.

In a magnetic storage device accommodating a storage medium such as a hard disk, it is usual for the storage medium to have defective storage areas that do not impiement the storage function. To deal with a storage area having such a defect, substitution processing is executed. In substitution processing, a substitute storage area is prepared and is substituted for the defective storage area. In addition to substitution processing set when the product is shipped, substitution processing can be performed also with regard to defects that occur afresh during use of the device

Substitution processing according to the prior art will be described with reference to Fig. 7.

Shown in Fig. 7 are a storage device 71 having ordinary storage areas 72 and substitute storage areas 73 set aside in order that substitution processing may be executed if some of the ordinary storage areas 72 develop defects. Shown at 74 is a substitute-area management area (referred to as a "defect list" or the like) for storing information indicating which areas have defects and which of the substitute storage areas 73 have been substituted for them.

Defective areas are of two types, namely a defective area 75 which existed from the outset at shipping of the storage device 71 from the factory, and a defective area 76 which developed subsequently during use of the device. When each of these areas is subjected to substitution processing, the defective area is replaced by a substitute storage area and information relating to the substitution is stored in the substitute-area management area 74.

By way of example, Japanese Patent Application Laid-Open (KOKAI) No. 4-266117 describes a storage device in which the storage areas of the storage device are monitored to determine, at reading or writing of data, the number of reading/writing retries and occurrence of errors per each storage area. By recording the number of read/write retries associated with each storage area of the storage device, storage areas deemed to be likely to fail or storage areas in which defects have occurred during use can be replaced by substitute storage areas automatically.

However, with the conventional storage device of this kind, substitution processing for dealing with defects that have occurred anew during use of the device is executed in response to an instruction from the user.

Further, as described in Japanese Patent Application Laid-Open No. 4-266117, the detection and prediction of the occurrence of defects is limited to storage areas actually accessed. More specifically, the detec-
tion and prediction of defects in storage areas is not carried out with regard to storage areas currently vacant and unused but to which data are likely to be written in the future or with regard to storage areas in which data
period of time

Another problem is that satisfactory detection and prediction of the occurrence of defects cannot be carried out because such detection and prediction is performed only when a read instruction or write instruction is implemented as an actual accessing operation.

## SUMMARY OF THE INVENTION

Accordingly, an object of the present invention is to provide a storage device, a method of controlling the same and a storage system in which the detection and prediction of the occurrence of defects in all storage areas of the storage device can be performed accurately and automatically, and in which a storage area that has become defective can be replaced by another storage area automatically.

A further object of the present invention is to provide a storage device, a method of controlling the same and a storage system in which accessing as by an ordinary read instruction or write instruction can be executed while detection and prediction of the occurrence of defects in storage areas is carried out.

According to the present invention, the foregoing objects are attained by providing a storage device equipped with a storage medium, comprising checking means for checking for defects in storage areas by performing reading and writing of data over all storages areas constituting the storage medium, accumulating means which, when an error that has occurred by checking performed by the checking means is an error for which retry is possible, is for accumulating the number of times this has occurred, and detecting means for detecting fault locations in the storage areas based upon the type of error that has occurred by checking performed by the checking means or the number of occurrences accumulated by the accumulating means.

In a preferred embodiment, the device further comprises substitution means for substituting another storage area for a storage area having a defect detected by the detecting means. Providing the substitution means makes it unnecessary for the substitution to be performed by the user.

In a preferred embodiment, the detecting means detects a storage area under examination as being a defective location if the number of occurrences accumulated by the accumulating means exceeds a predetermined number or if the error that has occurred by checking performed by the checking means is an error for which retry is impossible.

In a preierred embodiment, the storage device has a control instruction for checking for defects in storage areas by performing control in such a manner that in-
structions from elsewhere are not accepted during execution of checking by the checking means, wherein the checking means checks for defects in the storage areas using this control instruction. By employing this control instruction, storage areas other than storage areas being checked are capable of accepting instructions from elsewhere.

In a preferred embodiment, the storage device further comprises holding means for holding data read out by the checking means, wherein the checking means checks for defects of the storage areas by re-reading data out of a storage area after it has been checked by the checking means and comparing the read data and the data held by the holding means. Adopting this arrangement makes it possible to improve the accuracy of the check performed by the checking means.

In a preferred embodiment, the check performed by the checking means is executed at predetermined times. According to the present invention, the foregoing objects are attained by providing a storage system equipped with a plurality of storage devices, comprising checking means for checking for defects in storage areas by performing reading and writing of data over all storages areas constituting a storage medium provided in each storage device of the plurality thereof, accumulating means which, when an error that has occurred by checking performed by the checking means is an error for which retry is possible, is for accumulating the number of times this has occurred, detecting means for detecting fault locations in the storage areas based upon the type of error that has occurred by checking performed by the checking means or the number of occurrences accumulated by the accumulating means, monitoring means for monitoring status of detection of each storage device of the plurality thereof by the detecting means, and substitution means for substituting one storage device for another in dependence upon status of detection monitored by the monitoring means.

According to the present invention, the foregoing objects are attained by providing a method of controlling a storage device equipped with a storage medium, comprising a checking step of checking for defects in storage areas by performing reading and writing of data over all storages areas constituting the storage medium, an accumulating step which, when an error that has occurred by checking performed at the checking step is an error for which retry is possible, is a step of accumulating the number of times this has occurred, and a detecting step of detecting fault locations in the storage areas based upon the type of error that has occurred by checking performed at the checking step or the number of occurrences accumulated at the accumulating step.

According to the present invention, the foregoing objects are attained by providing a method of controlling a storage system equipped with a plurality of storage devices, comprising a checking step of checking for defects in storage areas by performing reading and writing of data over all storages areas constituting a storage
medium provided in each storage device of the plurality thereof, an accumulating step which, when an error that has occurred by checking performed at the checking step is an error for which retry is possible, is a step of 5 accumulating the number of times this has occurred, a detecting step of detecting fault locations in the storage areas based upon the type of error that has occurred by checking performed at the checking slep or the number of occurrences accumulated at the accumulating step, a monitoring step of monitoring status of detection of each storage device of the plurality thereof at the detecting step, and a substitution step of substituting one storage device for another in dependence upon status of detection monitored at the monitoring step.

According to the present invention, the foregoing objects are attained by providing a computer readable memory storing program codes of control processing for controlling a storage device equipped with a storage medium, the memory comprising a program code of a checking step of checking for defects in storage areas by performing reading and writing of data over all storages areas constituting the storage medium, a program code of an accumulating step which, when an error that has occurred by checking performed at the checking step is an error for which retry is possible, is a step of accumulating the number of times this has occurred, and a program code of a detecting step of detecting fault locations in the storage areas based upon the type of error that has occurred by checking performed at the checking step or the number of occurrences accumulated at the accumulating step.

Thus, in accordance with the present invention, as described above, it is possible to provide a storage device, a method of controlling the same and a storage system in which the detection and prediction of the occurrence of defects in all storage areas of the storage device can be performed accurately and automatically, and in which a storage area that has become defective can be substituted by another storage area automatically.

Further, it is possible to provide a storage device, a method of controlling the same and a storage system in which accessing as by an ordinary read instruction or write instruction can be executed while detection and ed in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

Fig. 1 is a block diagram illustrating a preferred system for implementing a storage device according to a first embodiment of the present invention;
Fig. 2 is a flowchart illustrating the flow of processing executed according to the first embodiment;
Fig. 3 is a flowchart illustrating the flow of processing executed according to a second embodiment of the invention;
Fig. 4 is a flowchart illustrating the flow of processing executed according to a third embodiment of the invention;
Fig. 5 is a flowchart illustrating the flow of processing executed in order to perform the processing described in connection with the second and third embodiments of the invention;
Fig. 6 is a diagram for describing processing executed according to a third embodiment of the invention;
Fig. 7 is a diagram showing the structure of the memory map of a floppy disk storing a program for processing according to the present invention; and Fig. 8 is a diagram showing the structure of the memory map of a floppy disk storing a program for processing according to the present invention.

## DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of the present invention will be described in detail with reference to the drawings.

Fig. 1 is a block diagram illustrating a preferred system for implementing a storage device according to a first embodiment of the present invention.

Shown in Fig. 1 are a storage device 1 comprising a storage medium such as a hard disk, a CPU (central processing unit) 2 for subjecting the elements of the system to various control, and a memory 3. The memory 3 includes a defect checking program 3 a for executing processing described in the first embodiment, and a re-try-count storage area 3b. It is assumed that the detailed construction of the storage device 1 is similar to that of the storage device 71 shown in Fig. 7.

The processing executed in accordance with the first embodiment will now be described with reference to the flowchart of Fig. 2.

Fig. 2 is a flowchart illustrating the flow of processing executed according to the first embodiment. First, in outline, data stored in each of the plurality of storage areas of storage device 1 are read out of each area successively in response to a read instruction and occurrence of a defect in a storage area owing to the read instruction is detected or predicted. If a defect is detected, substitution processing is executed. Further, data read out of each area in response to the read instruction are written to each corresponding storage area successively in response to a write instruction, and occurrence of a defect in a storage area owing to the write instruction is detected or predicted. If a defect is detected, substi-
tution processing is executed.
Further, the number of retries for reading storage areas of the storage device 1 in response to the read instruction is stored and, if the number of retries in re-
5 gard to a storage area exceeds a predetermined threshold value, this storage area is subjected to substitution processing. A similar operation is performed with regard to the write instruction as well.

It should be noted that each of the plurality of stor0 age areas is assigned a number for distinguishing the storage area. Detection and prediction of the occurrence of a defect in each area is performed in the order of these numbers.

The details of the above-mentioned processing will 5 now be described.

Step S201 in Fig. 2 calls for initialization, to "1", of a counter "block", which counts the numbers of the storage areas that undergo defect detection and prediction. This is followed by step S202, at which it is determined whether all storage areas have undergone defect detection and prediction processing. If defect detection and prediction is finished for all storage areas ("YES" at step S 202 ), then processing is terminated. If defect detection and prediction is not finished for all storage areas ("NO" 5 at step S202), then the program proceeds to step S203.

Data stored in a storage area corresponding to content indicated by the counter "block" are read out by a read instruction (read block) at step S203. If data cannnot be read out at the first operation, retry is carried out by the system. This is followed by step S204, at which it is determined whether the storage area for which the data read operation was performed in response to the read instruction has developed an unrecoverable error (referred to as an "unrecoverable readout error") even when readout is retried. If such an error has occurred ("YES" at step S204), then the program proceeds to step S205, where substitution processing is executed. This is followed by step S206, at which error processing such as issuance of an error warning is executed. The procalls for incrementing of the content of an adding coun- ter R[block] (block $=n$, where $n$ is the $n$th storage area) which counts up the number of retries (retry count) in response to the read instruction. Next, at step $\mathbf{S} 209$, it
is determined whether the content of the adding counter R[block] is greater than a maximum retry count Rmax that has been set in advance. If the content of the adding counter R[block] is greater than the maximum retry count Rmax ("YES" at step S209), then the program proceeds to step S210, at which this storage area undergoes substitution processing. If the content of the adding counter R[block] is equal to or less than the maximum retry count Rmax ("NO" at step S209), on the other hand, then the program proceeds to step S211.

The data that have been read out by the read instruction at step S 203 are written to the corresponding storage area at step S 211 in response to a write instruction (write block). This is followed by step S212, at which it is determined whether the storage area for which the data write operation was performed in response to the write instruction has developed an unrecoverable error (referred to as an "unrecoverable write error") even when writing is retried. If such an error has occurred ("YES" at step S212), then the program proceeds to step S216, where substitution processing is executed. If an error has not occurred ("NO" at step S212), on the other hand, then the program proceeds to step S213.

It is determined at step S213 whether writing of this storage area in response to the write instruction is to be retried or not. In case of retry ("YES" at step S213), the program proceeds to step S214. If retry is not to be carried out ("NO" at step S213), then the program proceeds to step S217.

With regard to a storage area from which writing is to be retried in response to the write instruction, step S214 calls for incrementing of the content of an adding counter W[block] (block $=\mathrm{n}$, where n is the n th storage area) which counts up the number of retries (retry count) in response to the write instruction. Next, at step S215, it is determined whether the content of the adding counter W[block] is greater than a maximum retry count Wmax that has been set in advance. If the content of the adding counter W[block] is greater than the maximum retry count Wmax ("YES" at step S215), then the program proceeds to step S216, at which this storage area undergoes substitution processing. If the content of the adding counter W[block] is equal to or less than the maximum retry count Wmax ("NO" at step S215), on the other than, then the program proceeds to step S217.

The content of the counter "block" is incremented at step S217, whence the program returns to step S202. The processing described in connection with steps S202 ~ S217 is repeated until detection and prediction of occurrence of defects is finished for storage areas. When all storage areas have been subjected to detection and prediction of defect occurrence, processing is terminated.

The content of the adding counter R[block] and W [block] may be stored in the retry-count storage area of the memory 3 shown in Fig. 1 or in a prescribed storage area of the storage device 1.

In accordance with the first embodiment, as de-
scribed above, each of the plurality of storage areas constituting the storage device 1 undergo reading and writing of data in response to read/write instructions successively and all storage areas can be automatically subjected to processing for detecting and predicting the occurrence of defective areas in response to the read/ write instructions. If a defect is detected, substitution processing can be executed automatically.

Further, the number of retries of the read/write instructions is stored in regard to the storage areas of the storage device 1 and, if the number of retry count regarding a storage area has exceeded a predetermined threshold value, this storage area can be subjected to substitution processing automatically.

As a result of the operation described above, partial defects present in the plurality of storage areas constituting the storage device 1 can be detected and predicted automatically.

## <Second Embodiment>

In the first embodiment, storage areas can be automatically subjected to processing for detecting and predicting the occurrence of defects in response to read/ write instructions by writing data, which have been read out of a storage area, to the same storage area. However, if, during execution of an initial read instruction and the ensuing write instruction with regard to a certain storage area the same storage area is subjected to a write operation by the user, the data that have been written by the user will be destroyed by the ensuing write instruction in the arrangement described in the first embodiment. Accordingly, in the first embodiment, it is required that the defect detection and prediction applied to storage areas of the storage device be executed under conditions in which the user is not present or under conditions in which other write instructions initiated by the user are forbidden. In other words, a problem with the first embodiment is that ordinary accessing cannot be carried out while detection and prediction of the occurrence of defects is being implemented.

Accordingly, in a second embodiment of the invention, an "inseparable read/write instruction" (ARDWR: Atomic ReaD/WRite) is introduced with respect to disk read/write. The ARDWR instruction allows read/write instructions to be executed successively without interruption. In other words, until execution of a read/write instruction implemented by the ARDWR instruction is finished, an interrupt by another instruction is forbidden. The other instruction is executed only after execution of the ARDWR instruction is completed. More specifically, with regard to a storage area for which defect detection and prediction has not been executed by the ARDWR instruction, another instruction such as an ordinary read instruction or write instruction can be executed. As a result, it is possible to subject storage areas to defect detection and prediction processing even if the user is present or even if another write instruction entered by

Patent Owner, Bot M8 LLC - Ex. 2013, p. 111
the user is not forbidden.
This may readily be implemented by extending the command system of an SCSI (Small Computer System Interface), which is a standard for connecting computer peripherals. It is also possible to implement the foregoing on the software level.

Further, a buffer (memory) area equivalent to one block of a storage area is prepared in order to implement the ARDWR instruction. When the ARDWR instruction is applied to a certain storage area, the data that have been stored in this area are read out, the read data are held in the above-mentioned buffer temporarily and the held data are written again to the same storage area to which the ARDWR instruction was applied. Since the data read out of a certain storage area are written to this storage area after first being placed in the buffer, the stored data will not undergo any change after issuance of the ARDWR instruction.

The processing executed in the second embodiment will now be described with reference to the flowchart of Fig. 3.

Fig. 3 is a flowchart illustrating the flow of processing executed according to the second embodiment.

In response to the ARDWR instruction, a counter "block", which counts the numbers of the storage areas that undergo defect detection and prediction, is initialized to " 1 " at step S301. This is followed by step S302, at which it is determined whether all storage areas have undergone defect detection and prediction processing. If defect detection and prediction is finished up to the final storage area ("YES" at step S302), then processing is terminated. If defect detection and prediction is not finished for all storage areas ("NO" at step S302), then the program proceeds to step 5303 .

At step S303, data stored in a storage area corresponding to content indicated by the counter "block" are read out by the ARDWR instruction (ARDWR block), the data are placed in a buffer temporarily and then written back to the same storage area. This is followed by step S304, at which it is determined whether the storage area for which the data read/write operation was performed in response to the ARDWR instruction has developed a recoverable error (referred to as a "recoverable ARDWR error") owing to retry of the storage area. If such an error has occurred ("YES" at step S304), then the program proceeds to step S305. If it is found at step S304 that an error has not occurred ("NO" at step S304), then the program proceeds to step S306.

With regard to a storage area for which an error has occurred owing to the ARDWR instruction, step S305 calls for incrementing of the content (block $=n$, where $n$ is the nth storage area) of an adding counter E[block] which counts up the number of times the error has occurred owing to the ARDWR instruction. Next, at step S306, it is determined whether the content of the adding counter E[block] is greater than a cumulative error count Emax that has been set in advance. If the content of the adding counter E[block] is greater than the cumulative
error count Emax ("YES" at step S306), then the program proceeds to step S307, at which this storage area undergoes substitution processing. If the content of the adding counter E[block] is equal to or less than the cuother hand, then the program proceeds to step S308.

The content of the counter "block" is incremented at step S 308 , whence the program returns to step S 302 . The processing described in connection with steps S308 is repeated until detection and prediction of occurrence of defects is finished for storage areas. When all storage areas have been subjected to detection and prediction of defect occurrence, processing is terminated.

It should be noted that the content of the adding counter E [block] may be stored in the retry-count storage area of the memory 3 shown in Fig. 1 or in a prescribed storage area of the storage device 1.

In accordance with the first embodiment, as described above, each of the plurality of storage areas constituting the storage device 1 can undergo reading and writing of data in response to the ARDWR instruction successively without an interruption caused by another write instruction, and storage areas can be automatically subjected to processing for detecting and predicting the occurrence of defective areas in response to the ARDWR instruction. If a defect is detected, substitution processing can be executed automatically.

Further, it is possible to subject storage areas to defect detection and prediction processing even if the user is absent or even if another write instruction entered by the user is not forbidden.

Further, the number of times errors occur with regard to storage areas of the storage device in response to the ARDWR instruction can be stored and, if the error count exceeds a predetermined threshold value with regard to a particular storage area, this storage area can be subjected to substitution processing automatically.

As a result of the operation described above, partial defects present in the plurality of storage areas constituting the storage device 1 can be detected and predicted automatically.
<Third Embodiment>
In a third embodiment of the invention, the arrangement of the second embodiment is so adapted that after the ARDWR instruction is executed, data are again read out of the storage area, to which the ARDWR instruction was applied in response to a read instruction and these data are compared with the data that were read out by the ARDWR instruction. This makes it possible to detect and predict even more accurately the occurrence of defects in the storage areas of the storage device.

The processing executed in the third embodiment will now be described with reference to the flowchart of Fig. 4.

Fig. 4 is a flowchart illustrating the flow of process-
ing executed according to the third embodiment.
In response to the ARDWR instruction and a read instruction that follows the ARDWR instruction, a counter "block", which counts the numbers of the storage areas that undergo defect detection and prediction, is initialized to "1" at step S401. This is followed by step S402, at which it is determined whether all storage areas have undergone defect detection and prediction processing. If defect detection and prediction is finished up to the final storage area ("YES" at step S402), then processing is terminated. If defect detection and prediction is not finished up to the final storage area ("NO" at step S402), then the program proceeds to step S403.

At step S403, data stored in a storage area corresponding to content indicated by the counter "block" are read out by the ARDWR instruction (ARDWR block), the data are placed in a buffer temporarily and then written back to the same storage area. This is followed by step S404, at which the data stored in this storage area are read out by the read instruction (read block). Next, at step S405, with regard to data stored in a certain storage area, it is determined whether the data read out by the ARDWR instruction and the data read out by the read instruction that followed the ARDWR instruction are different. If the data are identical ("NO" at step S405), the program proceeds to step S406. If the data are different ("YES" at step S405), however, then the program proceeds to step S409.

It is determined at step S 406 whether the storage area for which the data read/write operation was performed in response to the ARDWR instruction has developed a recoverable error (referred to as a "recoverable ARDWR error") owing to retry of the storage area. If such an error has occurred ("YES" at step S406), then the program proceeds to step S407. If it is found at step S406 that an error has not occurred ("NO" at step S406), then the program proceeds to step S 408 .

With regard to a storage area for which an error has occurred owing to the ARDWR instruction, step S407 calls for incrementing of the content (block $=\mathrm{n}$, where n is the nth storage area) of an adding counter E[block] which counts up the number of times the error has occurred owing to the ARDWR instruction. Next, at step S408, it is determined whether the content of the adding counter E[block] is greater than a cumulative error count Emax that has been set in advance. If the content of the adding counter E [block] is greater than the cumulative error count Emax ("YES" at step S408), then the program proceeds to step S409, at which this storage area undergoes substitution processing. If the content of the adding counter E [block] is equal to or less than the cumulative error count Emax ("NO" at step S408), on the other hand, then the program proceeds to step S410.

The content of the counter "block" is incremented at step S410, whence the program returns to step S402. The processing described in connection with step S402 $\sim$ S408 is repeated until detection and prediction of occurrence of defects is finished for storage areas. When
all storage areas have been subjected to detection and prediction of defect occurrence, processing is terminated.

It should be noted that the content of the adding 5 counter E[block] may be stored in the retry-count storage area of the memory 3 shown in Fig. 1 or in a prescribed storage area of the storage device 1.

Further, the third embodiment is obtained by adding the processing of step S 404 in Fig. 4 to the second em10 bodiment. However, it is also possible to apply the processing of step S404 to the first embodiment or to other embodiments.

In accordance with the third embodiment, as described above, data stored in a storage area after execution of the ARDWR instruction can be read out again by a read instruction and these data can be compared with the data that were read out by the ARDWR instruction, thereby making possible more accurate automatic detection and prediction of occurrence of defective storage areas. If a defect is detected, substitution processing can be executed automatically.

Further, the number of times errors occur with regard to storage areas of the storage device in response to the ARDWR instruction can be stored and, if the error count exceeds a predetermined threshoid value with regard to a particular storage area, this storage area can be subjected to substitution processing automatically.

As a result of the operation described above, partial defects present in the plurality of storage areas constituting the storage device 1 can be detected and predicted automatically.

The processing described in the first through third embodiments can be started up periodically at fixed intervals, such as once a day or once a week, or at startup or shut-down of the system, by the system software or built-in firmware, or manually at the volition of the administrator.

Further, in order to avoid a decline in overall system performance owing to the processing for detecting and predicting the occurrence of defects in storage areas in accordance with the second and third embodiments, it is possible to adopt an arrangement in which the processing for detecting and predicting the occurrence of defects in storage areas is executed at a selected time, namely when the load on the system is low

Processing executed by such an arrangement will now be described with reference to Fig. 5.

Fig. 5 is a flowchart illustrating the flow of processing executed to perform the processing described in connection with the second and third embodiments of the invention.

Step S501 in Fig. 5 calls for measurement of the load Lsys, which indicates the load on the system at a certain point in time. This is followed by step S502, at 5 which it is determined whether Lsys is less than a predetermined constant $L$. If the load equal to or greater than the predetermined constant L ("NO" at step S502), the program proceeds to step S501. On the other hand,
if the load is less than the predetermined constant $L$ ("YES" at step S502), then the program proceeds to step S503. Here the occurrence of defects in the storage areas of the storage device 1 is detected and predicted using any of the arrangements of the first through third embodiments.

Thus, when the system load is high, the invention is not started up and is prevented from influencing other operations.

It is also possible to adopt an arrangement in which the occurrence of defects in the storage areas of the storage device 1 is detected and predicted depending upon overall conditions inclusive of the number of users and the present time (i.e., whether it is late at night, a holiday, etc.).

## <Fourth Embodiment>

In the first through third embodiments, the occurrence of defects in the storage areas of a single storage device is detected and predicted. A fourth embodiment of the invention is adapted to detect and predict the occurrence of defects in the storage areas of a plurality of storage devices such as a disk array.

The processing executed in the fourth embodiment will now be described with reference to the flowchart of Fig. 6.

Fig. 6 is a diagram for describing the processing executed according to the fourth embodiment.

Shown in Fig. 6 is a storage device array 10 comprising a plurality of storage devices $11 \sim 14$, a CPU (central processing unit) 30 for subjecting the elements of the system to various control, and a memory 30. The memory 30 has a defect checking program (not shown) for executing processing described in the fourth embodiment, as well retry-count storage areas, the number of which correspond to the number of storage devices 11 $\sim 14$, for periorming a function identical with that of the retry-count storage area 3 b described above in connection with Fig. 1. It is assumed that the detailed construction of the storage devices $11 \sim 14$ is similar to that of the conventional storage device 71 shown in Fig. 7.
Further, the retry-count storage areas may be provided in individual storage areas.

If a total number of errors obtained by summing the number of errors that have occurred in each of the storage areas of any of the storages devices $11 \sim 14$, or if the number of errors that have occurred in each storage area of the storage areas of any of the storages devices $11 \sim 14$, exceeds a predetermined threshold value, substitution processing is executed on a perdevice basis. This can be implemented by sending a message to the user or system administrator and having the user or administrator intervene, or, as shown in Fig. 6, by setting aside the storage device 14 as a spare storage device that usually is not used and executing substitution processing automatically.

In accordance with the first through fourth embodi-
ments, as described above, the occurrence of defects in the storage areas of a storage device can be predicted and substitution processing can be executed to automatically substitute another storage area for one that has failed. This furnishes the storage device with a high reliability and makes it easy to use. Further, storage areas can be subjected to substitution processing and the save effects can be obtained even when a failure has actually occurred.

The present invention can be applied to a system constituted by a plurality of devices (e.g., a host computer, interface, reader, printer, etc.) or to an apparatus comprising a single device (e.g., a copier or facsimile machine, etc.).

Further, it goes without saying that the object of the present invention can also be achieved by providing a storage medium storing program codes for performing the aforesaid functions of the foregoing embodiments to a system or an apparatus, reading the program codes with a computer (e.g., a CPU or MPU) of the system or apparatus from the storage medium, and then executing the program.

In this case, the program codes read from the storage medium implement the functions according to the embodiments, and the storage medium storing the program codes constitutes the invention.

Further, the storage medium, such as a floppy disk, hard disk, optical disk, magneto-optical disk, CD-ROM, CD-R, magnetic tape, non-volatile type memory card or ROM can be used to provide the program codes.

Furthermore, besides the case where the aforesaid functions according to the embodiments are implemented by executing the program codes read by a computer, the present invention covers a case where an operating system (OS) or the like working on the computer performs a part of or the entire process in accordance with the designation of program codes and implements the functions according to the embodiments.

Furthermore, the present invention further covers a case where, after the program codes read from the storage medium are written to a function extension board inserted into the computer or to a memory provided in a function extension unit connected to the computer, a CPU or the like contained in the function extension board or function extension unit performs a part of or the entire process in accordance with the designation of program codes and implements the function of the above embodiments.

In a case where the present invention is applied to the above-mentioned storage medium, program codes corresponding to the flowcharts described earlier are stored on this storage medium. More specifically, modules illustrated in the example of the memory map of Fig. 8 are stored on the storage medium.

Specifically, it will suffice to store program codes of at least a "checking module", an "accumulating module" and a "detecting module" on the storage medium.

The "checking module" checks for defects in stor-
$\qquad$ 0801387A2_I_>
age areas by performing reading and writing of data over all storages areas constituting a storage medium. The "accumulating module" is a module which, when an error that has occurred by checking, is an error for which retry is possible, accumulates the number of times this has occurred. The "detecting module" detects fault locations in the storage areas based upon the type of error that has occurred by checking or the number of occurrences accumulated by the accumulating module.

As many apparently widely different embodiments of the present invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific embodiments thereof except as defined in the appended claims.

## Claims

1. A storage device equipped with a storage medium, characterized by comprising:
checking means ( $2,3 a$ ) for checking for defects in storage areas by performing reading and writing of data over all storages areas constituting the storage medium;
accumulating means ( $2,3 \mathrm{a}, 3 \mathrm{~b}$ ) which, when an error that has occurred by checking performed by said checking means is an error for which retry is possible, is for accumulating the number of times this has occurred; and detecting means (2, 3a, 3b) for detecting fault locations in the storage areas based upon the type of error that has occurred by checking performed by said checking means or the number of occurrences accumulated by said accumulating means.
2. The device according to claim 1 , further comprising substitution means for substituting another storage area for a storage area having a defect detected by said detecting means.
3. The device according to any-preceding claim, wherein said detecting means detects a storage area under examination as being a defective location if the number of occurrences accumulated by said accumulating means exceeds a predetermined number or if the error that has occurred by checking performed by said checking means is an error for which retry is possible.
4. The device according to any preceding claim, wherein the storage device has a control instruction for inhibiting instructions from elsewhere during execution of checking by said checking means, thereby allowing checking for defects in the storage areas:
said checking means checking for defects in the storage areas using said control instruction.
5. The device according to claim 4, further comprising
6. The device according to any preceding claim, wherein the check performed by said checking means is executed at predetermined times.
7. A storage system equipped with a plurality of storage devices, characterized by comprising:
checking means $(20,30)$ for checking for defects in storage areas by performing reading and writing of data over all storage areas constituting a storage medium provided in each storage device of the plurality thereof;
accumulating means $(20,30)$ which, when an error that has occurred by checking performed by said checking means is an error for which retry is possible, is for accumulating the number of times this has occurred;
detecting means $(20,30)$ for detecting fault locations in the storage areas based upon the type of error that has occurred by checking performed by said checking means or the number of occurrences accumulated by said accumulating means;
monitoring means $(20,30)$ for monitoring status of detection of each storage device of the plurality thereof by said detecting means; and substitution means $(20,30)$ for substituting one storage device for another in dependence upon status of detection monitored by said monitoring means.
8. A method of controlling a storage device equipped with a storage medium, characterized by comprising:
a checking step (S201, S202, S203, S207, S211, S213, S217, S301, S302, S303, S308, S401, S402, S403, S404, S410) of checking for defects in storage areas by performing reading and writing of data over all storages areas constituting the storage medium;
an accumulating step (S208, S214, S305, S407) which, when an error that has occurred by checking performed at said checking step is an error for which retry is possible, is a step of accumulating the number of times this has oc-
curred; and
a detecting step (S204, S209, S212, S215, S304, S306, S405, S406, S408) of detecting fault locations in the storage areas based upon the type of error that has occurred by checking performed at said checking step or the number of occurrences accumulated at said accumulating step.
9. The method according to claim 8, further comprising a substitution step of substituting another storage area for a storage area having a defect detected at said detecting step.
10. The method according to any of claims 8 and 9 , wherein said detecting step detects a storage area under examination as being a defective location if the number of occurrences accumulated at said accumulating step exceeds a predetermined number or if the error that has occurred by checking performed at said checking step is an error for which retry is impossible.
11. The method according to any of claims 8 to 10 , wherein the method has a control instruction for inhibiting instructions from elsewhere during execution of checking at said checking means, thereby allowing checking for defects in the storage areas;
said checking step checking for defects in the storage areas using said control instruction.
12. The method according to claim 11, further comprising a data holding step of holding data read out at said checking step;
said checking step checking for defects of the storage areas by re-reading data out of a storage area after it has been checked at said checking step and comparing the read data and the data held at said data holding step.
13. The method according to any of claims $B$ to 12 , wherein the check performed at said checking step is executed at predetermined times.
14. A method of controlling a storage system equipped with a plurality of storage devices: characterized by comprising:
a checking step (S201, S202, S203, S207,
S211, S213, S217, S301, S302, S303, S308,
S401, S402, S403, S404, S410) of checking for defects in storage areas by performing reading and writing of data over all storages areas constituting a storage medium provided in each storage device of the plurality thereof;
an accumulating step (S208, S214, S305, S407) which, when an error that has occurred by checking performed at said checking step is
an error for which retry is possible, is a step of accumulating the number of times this has occurred;
a detecting step (S204, S209, S212, S215, S304, S306, S405, S406, S408) of detecting fault locations in the storage areas based upon the type of error that has occurred by checking periormed at said checking step or the number of occurrences accumulated at said accumulating step;
a monitoring step (S205, S210, S216, S307, S409) of monitoring status of detection of each storage device of the plurality thereof at said detecting step; and
a substitution step (S205, S210, S216, S307, S409) of substituting one storage device for another in dependence upon status of detection monitored at said monitoring step.
15. A computer readable memory storing program codes of control processing for controlling a storage device equipped with a storage medium, the memory characterized by comprising:
a program code of a checking step ( S 201 , S202, S203, S207, S211, S213, S217, S301, S302, S303, S308, S401, S402, S403, S404, S410) of checking for defects in storage areas by performing reading and writing of data over all storages areas constituting the storage medium;
a program code of an accumulating step (S208, S214, S305, S407) which, when an error that has occurred by checking performed at said checking step is an error for which retry is possible, is a step of accumulating the number of times this has occurred; and
a program code of a detecting step (S204, S209, S212, S215, S304, S306, S405, S406, S408) of detecting fault locations in the storage areas based upon the type of error that has occurred by checking performed at said checking step or the number of occurrences accumulated at said accumulating step.
16. A method of substituting substitute storage areas for defective storage areas in a storage medium in a storage device comprising the steps of;
controlling the storage device to automatically check all storage areas for defects; and substituting another storage area for a storage area having a defect.
17. A method of detecting defective storage areas in a storage medium in a storage device, comprising the steps of;
$\qquad$ 0801387A2_1_>
writing data to all storage areas of the storage medium;
reading the data from the storage areas; and comparing the read and written data.
18. A method as claimed in any of claims 16 and 17 in combination with any one or more of the method steps defined in claims 8 to 14 .
19. A storage medium processed according to any one of claims 8 to 14 and 16 to 18 .
$\qquad$ 0801387A2_I_>



FIG. 3


FIG. 4


FIG. 5


FIG. 7


FIG. 8

| DIRECTORY |
| :---: |
| CHECKING MODULE |
| ACCUMULATING MODULE |
| DETECTING MODULE |


(12)

EUROPEAN PATENT APPLICATION
(88) Date of publication A3:
(51) Int Cl.6: G11B 20/18
17.06.1998 Bulletin 1998/25
(43) Date of publication A2: 15.10.1997 Bulletin 1997/42
(21) Application number: 97302369.0
(22) Date of filing: 07.04.1997
(84) Designated Contracting States: DE FR GB
(30) Priority: 08.04.1996 JP 85533/96
(71) Applicant: CANON KABUSHIKI KAISHA Tokyo (JP)
(72) Inventor: Inoue, Sunao Ohta-ku, Tokyo (JP)
(74) Representative:

Beresford, Keith Denis Lewis et al BERESFORD \& Co.
2-5 Warwick Court High Holborn London WC1R 5DJ (GB)
(54) Storage device, method of controlling same, storage system and method of controlling same
(57) All storage areas constituting a storage medium 1 are checked for defects by successively reading and writing data. If an error that has occurred owing to the checking operation is an error for which retry is pos-
sible, the number of times this occurs is accumulated in a retrial-count storage area 36 of a memory. A faulty storage area is detected based upon the type of error that has occurred by checking or the number of occurrences that have been accumulated.

FIG. 1

$\qquad$


European Patent
Office

$\qquad$ 0801387A3_1_>

| Electronic Acknowledgement Receipt |  |
| :---: | :---: |
| EFS ID: | 2767588 |
| Application Number: | 11205121 |
| International Application Number: |  |
| Confirmation Number: | 2910 |
| Title of Invention: | Information process device |
| First Named Inventor/Applicant Name: | Jun Haishima |
| Customer Number: | 22850 |
| Filer: | Marvin Jay Spivak/kiyondra memillan |
| Filer Authorized By: | Marvin Jay Spivak |
| Attorney Docket Number: | 276900US90 |
| Receipt Date: | 25-JAN-2008 |
| Filing Date: | 17-AUG-2005 |
| Time Stamp: | 14:10:18 |
| Application Type: | Utility under 35 USC 111(a) |

## Payment information:

| Submitted with Payment |  | no |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| File Listing: |  |  |  |  |  |
| Document Number | Document Description | File Name | File Size(Bytes) /Message Digest | $\begin{gathered} \text { Multi } \\ \text { Part /.zip } \end{gathered}$ | Pages (if appl.) |
| 1 |  | 276900USIDS.pdf | 3413752 | yes | 64 |
|  |  |  |  |  |  |


|  | Multipart Description/PDF files in .zip description |  |  |
| :---: | :---: | :---: | :---: |
|  | Document Description | Start | End |
|  | Information Disclosure Statement Letter | 1 | 1 |
|  | Information Disclosure Statement (IDS) Filed | 2 | 2 |
|  | NPL Documents | 3 | 8 |
|  | Foreign Reference | 9 | 18 |
|  | Foreign Reference | 19 | 26 |
|  | Foreign Reference | 27 | 45 |
|  | Foreign Reference | 46 | 64 |
| Warnings: |  |  |  |
| Information: |  |  |  |
|  | Total Files Size (in bytes): | 3413752 |  |
| This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503. |  |  |  |
| New Applications Under 35 U.S.C. 111 |  |  |  |
| If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application. |  |  |  |
| National Stage of an International Application under 35 U.S.C. 371 |  |  |  |
| If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. |  |  |  |
| New International Application Filed with the USPTO as a Receiving Office |  |  |  |
| If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application. |  |  |  |

PLUS Search Results for S/N 11205121, Searched Mon Mar 17 17:15:12 EDT 2008
The Patent Linguistics Utility System (PLUS) is a USPTO automated search system for U.S. Patents from 1971 to the present PLUS is a query-by-example search system which produces a list of patents that are most closely related linguistically to the application searched. This search was prepared by the staff of the Scientific and Technical Information Center, SIRA.

```
4 6 2 1 1 8 4 9 9
4 5 9 9 5 5 8 7 6
4 9 7 4 1 6 8 9 9
504398499
538804599
576089399
5 7 8 1 1 2 5 9 9
5 8 1 9 0 5 4 9 9
590335399
2006004800899
20060203230 99
4 8 5 0 0 2 7 8 0
4 3 0 6 2 8 8 8 0
4 3 7 5 6 7 2 8 0
4 4 0 4 6 0 3 8 0
4 7 6 1 6 7 6 8 0
4 9 5 8 3 7 3 8 0
5 2 0 6 8 2 0 8 0
5 9 0 3 5 8 0 8 0
6 4 0 0 8 3 8 8 0
7 1 3 5 3 4 4 8 0
20010012390 80
20050010890 }8
20060161319 }8
5 3 2 1 3 5 4 7 6
563004676
5 7 4 0 0 5 2 7 6
580884676
6 0 0 5 7 6 0 7 6
621921676
621921676
380342076
4 2 4 9 4 1 3 7 6
4 2 5 4 3 7 4 7 6
4 2 6 1 2 0 6 7 6
4 2 6 3 5 7 2 7 6
4 3 3 0 7 1 2 7 6
4 3 7 7 7 4 3 7 6
4 3 9 9 3 7 2 7 6
4 4 1 3 7 3 8 7 6
4 4 4 5 5 2 0 7 6
4 4 6 3 6 0 9 7 6
4 4 6 8 6 1 5 7 6
4 4 8 8 1 1 4 7 6
4 4 9 1 7 2 8 7 6
4 5 0 1 1 2 4 7 6
4 5 1 4 7 2 3 7 6
4 5 6 0 6 2 9 7 6
4 5 8 2 0 9 5 7 6
4 5 8 6 1 4 7 7 6
```

