
Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 343

Application of Information Technology n

WebEAV:
Automatic Metadata-driven Generation
of Web Interfaces to
Entity-Attribute-Value Databases

PRAKASH M. NADKARNI, MD, CYNTHIA M. BRANDT, MD, LUIS MARENCO, MD

A b s t r a c t The task of creating and maintaining a front end to a large institutional entity-
attribute-value (EAV) database can be cumbersome when using traditional client–server
technology. Switching to Web technology as a delivery vehicle solves some of these problems but
introduces others. In particular, Web development environments tend to be primitive, and many
features that client–server developers take for granted are missing. WebEAV is a generic
framework for Web development that is intended to streamline the process of Web application
development for databases having a significant EAV component. It also addresses some
challenging user interface issues that arise when any complex system is created. The authors
describe the architecture of WebEAV and provide an overview of its features with suitable
examples.

n J Am Med Inform Assoc. 2000;7:343–356.

The entity-attribute-value (EAV) physical database ar-
chitecture is widely used in clinical data repositories
(CDRs). Those CDRs with a major EAV component
include the pioneering HELP system1,2 (and its com-
mercial version, the 3M CDR3) and the Columbia–
Presbyterian Medical Center CDR.4,5 Entity-attribute-
value design addresses a problem that conventional
table design (i.e., one column per finding or param-
eter) cannot address. Specifically, data on several
thousand potential parameters can be stored for a pa-
tient across all clinical specialties. If these data are
modeled as one database field per parameter, numer-
ous tables are required to hold the data, and these
tables will require repeated modification as medicine
advances and new clinical and laboratory parameters
need to be recorded. Searching across numerous ta-
bles for all data on a single patient is also inefficient,
especially for the vast majority of patients, for whom

Affiliation of the authors: Yale University School of Medicine,
New Haven, Connecticut.

This work was supported by grant U01-CA-78266 from the Na-
tional Cancer Institute.

Correspondence and reprints: Prakash M. Nadkarni, MD, Cen-
ter for Medical Informatics, Yale University School of Medicine,
P.O. Box 208009, New Haven, CT 06520-8009;
e-mail: ^prakash.nadkarni@yale.edu&.

Received for publication: 10/1/99; accepted for publication:
2/2/00.

only a modest number of parameters are actually ap-
plicable.

In EAV design, we have (conceptually) a single table
that records the data as one row per finding. Each row
contains the following information: entity (patient
identification, visit, date/time etc.), attribute (the
name/identification of the parameter), and the value
of the parameter. Because attributes are not hard-
coded as database fields, this design does not require
revision as new clinical parameters enter the medical
domain. Data retrieval is also efficient. To retrieve all
the facts on a patient, one simply searches the entity
column(s) for the patient identification, ordering all
rows by date and time if necessary.

Although EAV architecture dramatically simplifies
CDR database design, it complicates user interface de-
sign significantly. Specifically, the global schema of an
EAV database (the way the data are actually orga-
nized into tables) differs greatly from its logical
schema (the way they are perceived as being orga-
nized). In our experience, end users tend to regard the
data as being stored conventionally as one database
field per attribute, even if they are not. Almost all an-
alytic programs, such as spreadsheet or statistics
packages, also expect input data to be organized con-
ventionally. Therefore, CDR system architects must
spend considerable effort simulating the logical
schema, especially when presenting data on a partic-
ular patient through forms or data entry screens. This

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/7/4/343/713438 by guest on 15 O
ctober 2020

Salesforce Ex. 1007 – Page 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

344 NADKARNI ET AL., Web Interface Generation for EAV Data

means converting EAV data to a conventional struc-
ture before they are presented to the user and trans-
lating the edited data back into EAV structure when
edits are to be posted back to the server.

There are currently several powerful front-end tools
for client–server database development. These in-
clude desktop database management systems such as
Microsoft Access, Paradox, and Visual Foxpro, as well
as programs such as Visual Basic and PowerBuilder.
Although such tools often make it possible to create
forms without programming, their form design facil-
ities are based on the one-record-per-screen metaphor.
They work well for conventional but not for EAV
data, where the data on one logical record (e.g., all
findings pertaining to a single patient event) are
stored as multiple physical records, with one record
per finding. Provision of form interfaces for EAV da-
tabases therefore requires much custom program-
ming.

This paper describes WebEAV, a Web-oriented pro-
gramming framework that minimizes the amount of
programming by permitting the automatic generation
of Web-based forms for input and display of EAV
data. The forms that are generated provide a robust
set of features and functionality. We are using
WebEAV for two production EAV databases:

n ACT/DB, a database system for managing clinical
studies data.6,7 This is in multidepartment produc-
tion use at Yale and at the Vanderbilt University
Cancer Center. It is also the basis for a special stud-
ies database for the U.S. National Cancer Institute–
supported Cancer Genetics Network initiative.8

n SENSELAB,9,10 a collection of heterogeneous neuro-
science data (sequences, neuronal models, circuits,
experiments, etc.) centered on the olfactory system.

Background

Developing Traditional Front Ends for EAV Data

In this section, we discuss the significant maintenance
problems that arise when traditional client–server ap-
proaches are used to create front ends for complex,
multi-user EAV databases. We first describe two ap-
proaches for browsing and editing EAV data that are
based on mapping sets of attributes to tables that re-
side on the client and are managed by a desktop da-
tabase management system. These tables transiently
capture data from the server, and the user manipu-
lates the data through forms based on these tables.

The availability of client-side tables greatly simplifies
presentation of data that have many-to-one relation-

ships, where the ‘‘many’’ records are to be displayed
simultaneously with the ‘‘one’’ record. For example, a
physician inspecting a cancer patient’s demographic
data may also wish to see details of multiple past ep-
isodes of surgery or radiotherapy. Traditional client–
server systems handle these presentation needs by let-
ting the developer create subforms, one or more of
which can be embedded in the main form. Thus, sur-
gery and radiotherapy data, which are also transiently
captured in their own tables, are displayed in separate
subforms within the demographics form. As dis-
cussed later, simulating subforms that also permit
data entry and editing on the Web requires compli-
cated programming.

Static Table-based Mapping

In static mapping, each client table reflects an individ-
ual data collection instrument. This is a paper-based
or electronic form used to gather or present data on
a set of related clinical parameters, e.g., routine he-
matology or a standard clinical chemistry panel such
as the SMA-14. Each field on a particular form (e.g.,
the field ‘‘Hemoglobin’’) is mapped to a counterpart
in the EAV schema (the attribute ID for hemoglobin,
e.g., 1135). For such purposes, most traditional client–
server environments provide a ‘‘tag’’ for every object
in a form. The tag can contain arbitrary developer-
assigned text whose interpretation is left to program
code; thus, the attribute ID can be stored in the tag.
The drawbacks of this mapping approach are as fol-
lows.

n A large system may require several hundred tables,
each with associated forms. The forms and tables
can take up considerable space on a client machine,
even if the tables are generally empty. It is possible
to save space by storing, on clients within individ-
ual departments, only those tables and forms that
the department needs to use. Maintenance of de-
partment-specific sets of tables, however, consti-
tutes significant administrative and manpower over-
head.

n Revisions and bug fixes to tables and forms require
the corresponding tables or forms to be reinstalled
on individual machines. In our experience, many
nonstandard data collection instruments that are
being devised for brand-new protocols change re-
peatedly—often four or more times—as investiga-
tors iteratively converge on a decision regarding the
set of parameters to be gathered.

n The number of form-entry fields per form is limited
to the maximum number of database fields per ta-
ble (typically, 255), which may be limiting for large

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/7/4/343/713438 by guest on 15 O
ctober 2020

Salesforce Ex. 1007 – Page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 345

data collection instruments (e.g., certain psychiatry
questionnaires such as personality inventories).
One must then use inelegant workarounds such as
splitting up a large data collection instrument into
two or more separate forms based on separate ta-
bles.

Dynamic Table-based Mapping

Dynamic table-based mapping, a significant improve-
ment over static mapping, was implemented in an
earlier version of ACT/DB. Here, the client has a few
general-purpose, reusable tables with numerous data-
base fields whose mapping to attributes in the EAV
schema can change, depending on the form being dis-
played. That is, these tables are used to transiently
capture all EAV, irrespective of the DCI.

One table is used to display data in the main form.
The number of subform tables required depends on
the maximum number of subforms per form across
the system. In our experience, five or six reusable
subform tables generally suffice.

The fields in such tables are named serially. In ACT/
DB, which uses strong data typing, one designates
such fields to hold strings, integers, decimal numbers,
dates, and so forth. Thus, the first database field for
string data would be named ‘‘S01.’’ Strong typing
greatly reduces the programming needed for client-
side data validation. For example, the built-in vali-
dation facilities of many traditional client–server en-
vironments prevent entry of alphabets in numeric
fields, and date fields reject invalid dates, even han-
dling leap-year logic correctly. ‘‘Pictures,’’ which are
templates to restrict data entry, such as ‘‘(999) 999-
9999’’ for phone numbers, also assist validation and
data standardization.

The server’s metadata (‘‘data dictionary’’) records, for
every form, the mapping of specific database fields to
their corresponding form fields. Subsets of the map-
ping metadata are replicated programmatically on de-
mand on individual clients, on the basis of the forms
that each client uses. When a particular form is about
to be opened, its mapping metadata are refreshed
from the server if the latter are more recent, as deter-
mined by a comparison of time stamps. If the new
metadata are incompatible with the old (e.g., the num-
ber of fields for one or more data types has changed),
the user can be warned that the form on the client is
obsolete.

Depending on the client software and setup, it may
or may not be possible to automatically download the
current version of the form from a ‘‘forms server.’’
With Microsoft Access, for example, form transfer
without workflow interruption requires clients to

have a full version of Access installed. If, however,
clients are using Access Runtime (which allows un-
restricted application distribution, without per-ma-
chine licensing costs), this is not possible, because all
forms are treated as having been ‘‘compiled’’ into the
application.

By using other metadata—such as the data type and
brief description of attributes, the order in which they
are to appear in the form, and their aggregation into
logical groups—it is possible to write a code library
to generate forms, and their mapping metadata, au-
tomatically. ACT/DB and SENSELAB both contain such
a library, which is described by Nadkarni et al.11

Dynamic table-based mapping solves the table prolif-
eration problem, but the maximum-fields-per-form
limitation remains. The limit may in fact be reached
sooner than with static mapping; for example, all the
available string or integer database fields may be used
up during the creation of a large form, even if most
of the date fields are unused. The dynamic mapping
approach also fails to fully address the forms-main-
tenance problem, because the existence of an obsolete
form, while detected correctly, interrupts workflow if
the form must be manually downloaded and rein-
stalled. Furthermore, with a large form the delay
caused by metadata downloading and metadata ver-
sion checking may be significant.

Form Reuse Issues

Multiple departments may use the same data collec-
tion instrument with varying degrees of detail. Thus,
in a hematology panel, tracking of peripheral pro-
myelocytes or metamyelocytes may be important for
cancer chemotherapy but not for routine screening. If
one creates numerous department-specific forms for
what is fundamentally the same instrument, forms
proliferation becomes hard to manage. Reuse of forms
that record the greatest common denominator of in-
formation is therefore preferred. However, if a given
department is concerned with only 5 parameters on a
form that has placeholders for 20, it can confuse users
who see many more form-entry fields than are appro-
priate to their needs. Especially if data are being en-
tered through transcription from paper forms, it is im-
portant that the data entry person not be presented
with fields that do not exist on the paper form.

ACT/DB addresses this issue by permitting the de-
signer to specify, for a given study, which fields on a
given form are required. When a particular user opens
the form, then, based on the current study, the back-
ground color of ‘‘required’’ fields is dynamically set
to a pale yellow to indicate which fields on the form
can be ignored. This solution is a partial one, because

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/7/4/343/713438 by guest on 15 O
ctober 2020

Salesforce Ex. 1007 – Page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

346 NADKARNI ET AL., Web Interface Generation for EAV Data

the form is still busier than it should be; ideally, fields
that are not required should simply not be shown.
One can write generic code to dynamically make non-
required fields invisible, but with traditional client–
server front ends, the form does not reformat; un-
sightly gaps indicate invisible fields. Form esthetics
becomes a factor if hardcopy is required. Later in this
article we discuss how WebEAV addresses this prob-
lem.

Creating Web-based Interfaces

The World Wide Web offers a unique opportunity to
simplify database deployment. In typical Web data-
base applications, a user’s browser requests data from
a remote Web server, which in turn requests them
from a database server. (The latter may reside on the
same machine as the Web server or on a machine in
the same network.) After the database server returns
the requested data, the Web server formats it into a
Web page (in the form of hypertext markup language,
or HTML) and sends it to the browser. Additional
‘‘application server’’ software may be placed between
Web and database servers; this includes a transaction
monitor for tasks such as pooling of database connec-
tions to improve response time and reduce database
server load.

The advantages of Web deployment are summarized
below:

n Problems of maintaining form versions go away,
because all forms reside on a Web server, to be
downloaded on demand by a client browser.
Changes to a given form are automatically available
the next time a Web browser accesses the server.

n Web browsers use extremely clever caching algo-
rithms that the developer can leverage. When a
browser visits a particular page on a Web site, its
contents are cached on the local machine. During a
subsequent visit to the same page, only those com-
ponents (i.e., the HTML, embedded images, ap-
plets, or code libraries) that have changed since the
last visit are re-downloaded.

n The HTML page- or form-rendering model is both
simpler and smarter than that of traditional client–
server environments. By default, the objects on a
page automatically reformat whenever the browser
window is resized or whenever the user changes
the font size. Traditional client–server pro-
grammers, in contrast, must devote much effort to
physical screen size issues. For fine control, ‘‘cas-
cading style sheets,’’ 12 a standard promulgated
by the international Web-related standards body,

the World-Wide Web Consortium (http://www.
w3.org/), provide a high-level means of document
formatting. A ‘‘style’’ is effectively a macro that per-
mits the font, color, positioning, and visibility of
HTML segments to be specified in exquisite detail.
Formatting attributes can be altered by ‘‘client-side’’
code. (Client-side code is code that is part of the
page and runs in the browser. It is typically written
using the language JavaScript or VBScript, or both.)
Modest coding efforts achieve dramatic changes in
screen appearance.

n Web-based solutions result in significantly lower
deployment costs. Browsers are given away free,
and therefore per-seat client licenses are not neces-
sary.

For these reasons, the Web is increasingly the medium
of choice for multi-user application deployment, es-
pecially for databases. However, Web database appli-
cations that must support data editing and entry are
significantly more complex to develop than tradi-
tional client–server applications, for several reasons.

Communication between browser and Web server via
the HTTP protocol is intrinsically ‘‘stateless.’’ 13 That
is, once the server has handed a page to the browser,
it closes the connection and ‘‘forgets’’ about the client.
To maintain state, the developer must store state data
either on a Web page (using ‘‘hidden’’ or invisible
form fields) or in ‘‘cookies,’’ which are text items in
attribute-value form that are stored by the user’s
browser on the local machine.

Web forms require much more custom programming
than traditional client–server environments for client-
side data validation, because Web form fields are
typeless and ‘‘pictures’’ are unavailable. While server-
side validation can be done (and should be done
anyway), providing an error message after the Web
form is submitted (and after a variable delay) can
cause user frustration. Satisfactory ergonomics are fa-
cilitated by maximal validation at the client browser
before form submission, through client-side scripting.
Ideally, an error message should appear immediately
after the user tries to move from the field with erro-
neous data to the next field.

In our opinion, many Web development tools are
much less mature than traditional client–server en-
vironments, and the edit–test–debug cycle is greatly
lengthened. Currently, for example, simple errors such
as undeclared or misspelled variables, which would
be trapped at compile/edit time in traditional client–
server environments, remain undetected until run-
time. Web development environments desperately

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/7/4/343/713438 by guest on 15 O
ctober 2020

Salesforce Ex. 1007 – Page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Journal of the American Medical Informatics Association Volume 7 Number 4 Jul / Aug 2000 347

need an equivalent of the UNIX lint utility,14 which
detects questionable constructs in C code.

Design Objectives

Coding Web forms by hand to support robust data
browsing and editing is tedious and error-prone.
WebEAV is a framework for simplifying such devel-
opment. These are its objectives:

n The WebEAV framework should automatically gen-
erate forms based on attribute metadata. For effi-
ciency reasons, it is desirable to pregenerate as
much of a form as possible, so that most of the form
is static (i.e., unchanged between consecutive uses).
However, the form must also contain dynamic com-
ponents that change the form’s behavior on the ba-
sis of the currently logged-on user and, in the case
of ACT/DB, the current study.

n The esthetics of a program-generated form cannot
be 100 per cent satisfactory. It is desirable, therefore,
to generate forms that can be customized by (non-
programmer) lead users with graphical Web-page
editors. Providing form-editing capability enfran-
chises users and improves user satisfaction while
freeing developers for more intellectually challeng-
ing tasks.

n The Web forms must be responsive in relatively
low-bandwidth situations. Therefore, once a form is
downloaded, to-and-fro communication must be
minimized. In high-bandwidth traditional client–
server applications, in contrast, a client may re-
peatedly contact the server during data entry, e.g.,
to populate values in a pull-down menu. A form
must therefore contain almost all the scripting code
and data, including mapping metadata, needed to
function autonomously, until the user submits the
form.

n WebEAV should not be limited to managing EAV
data alone. Most production EAV databases, includ-
ing our own, store certain types of homogeneous
data, e.g., patient demographics, in conventional
form for efficiency purposes.

n The ideas embodied in WebEAV should be suffi-
ciently generic to permit porting to other hardware
and software platforms.

Our description of WebEAV in this paper is intended
to be comprehensive enough that Web developers in
biomedical institutions should be able to derive useful
ideas from our work even if they do not intend to
inspect or use WebEAV code itself.

System Description

WebEAV is currently implemented on the Windows
NT platform. It uses Microsoft Internet Information
Server as the Web server and Microsoft Transaction
Server as the application server; both are part of the
default installation of Windows NT Server version 4.0.
It uses Active Server Pages, or ASP (described shortly)
for server programming. We use Oracle as the data-
base engine (although none of the code in WebEAV is
Oracle-specific). On our test system, the database
server resides on the same machine as the Web server,
while in our production system it resides on a sepa-
rate machine.

Choice of Software Platform

WebEAV uses ASP technology on the server end.
Originally devised by Microsoft for use on their Web
server (Internet Information Server, IIS), ASP is also
available through a third-party vendor (Chili!Soft) for
non-Microsoft Web servers running on non-Windows
platforms.

ASP allows a developer to place programming code
(written in a ‘‘lightweight’’ scripting language such as
VBScript, Javascript, and PerlScript) at multiple places
in a Web page. (HTML itself is only a markup lan-
guage that specifies formatting, not a programming
language.) This page is saved with a special file ex-
tension (.asp instead of .html). When a browser re-
quests the page, the Web server first passes the page
to an interpreter, which executes each instance of em-
bedded code and generates text that is inserted into
the page at one or more points. When the browser
receives the page, all server-side code has been re-
moved. On Windows NT, the ASP processor and
VBScript and JavaScript interpreters are part of the
default NT installation.

ASP is not unique in its approach: PHP (http://
www.php.net/) is a popular freeware C/Perl-like lan-
guage environment for UNIX/Windows NT that
works on identical principles. Java Server Pages
(JSP),15 which is also available on a variety of Web
servers, works in a similar fashion. (The techniques
we describe may be readily adapted to PHP or JSP.)
The ASP programming model has both advantages
and disadvantages.

n ASP offers somewhat higher development through-
put than alternatives such as Common Gateway In-
terface (CGI) programming. (CGI was the first
framework defined for Web programming and is
supported on all Web servers.) Many complex as-
pects of Web programming are encapsulated in rel-

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/7/4/343/713438 by guest on 15 O
ctober 2020

Salesforce Ex. 1007 – Page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

