

TRANSMITTAL LETTER UNDER 35 U.S.C. 371 PTO 1390, 3/99

	U.S. APPLICATION NO (If known, see 37 CFR 1.5 		$0 \quad$INTERNATIO PCT/IB98/0	$\begin{aligned} & \overline{\mathrm{AL}} \mathrm{APPI} \\ & 813 \end{aligned}$	ATION NO.	ATTORNEY'S DOCKET NUMBER PC10030A	
	17. \boxtimes The following fees are submitted BASIC NATIONAL FEE (37 CFR 1.492 (a)(1)-(5)): Search Report has been prepared by the EPO or IPO \qquad $\$ 840.00$ International preliminary examination fee paid to USPTO (37CFR 1.482) \qquad $\$ 670.00$ No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)) \qquad $\$ 760.00$ Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445 (a)(2)) paid to USPTO. \qquad $\$ 970.00$ International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4) \qquad $\$ 96.00$ ENTER APPROPRIATE BASIC FEE AMOUNT =					CALCULATIONS	PTO USE ONLY
						\$840	
	Surcharge of $\$$ from the earlie	or furnishing the oath ed priority date (37 C	\qquad	$\square 30$		\$	
	CLAIMS	NUMBER FILED	NUMBER EXTRA		RATE		
	Total Claims	- $20=$		X \$	18.00	\$	
	Independent Claims	$-3=$		X \$	78.00	\$78	
	MULTIPLE DEPENDENT CLAIM(s) (if applicable)			$+$	\$260.00	\$	
	TOTAL OF ABOVE CALCULATIONS =					\$918	
	Reduction by $1 / 2$ for filing by small entity, if applicable. Verified Small Entity Statement must also be filed. (Note: 37 CFR 1.9, 1.27, 1.28)					\$	
					SUBTOTAL $=$	\$918	
	Processing fee of $\$ 130.00$ for furnishing the English translation later than \square 20 \square 30 months from the earliest claimed priority date (37 CFR 1.492(f)).					\$	
	TOTAL NATIONAL FEE =					\$918	
	Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR $3.28,3.31$) $\$ 40.00$ per property TOTAL FEES ENCLOSED =					\$	
						\$918	
						Amount to be: Refunded Charged	\$
	a. A check in the amount of \$ \qquad to cover the above fees is enclosed. b. Please charge my Deposit Account No. 16-1445 in the amount of $\$ 918$ to cover the above fees. A duplicate copy of this sheet is enclosed. c. \quad The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No.16-1445. A duplicate copy of this sheet is enclosed. NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status. SEND ALL CORRESPONDENCE TO: Paul H. Ginsburg Pfizer Inc Karen DeBenedictis 235 East 42nd Street Name New York, NY 10017-5755 $32,977$ Registration Number						

- ARYL FUSED AZAPÓLYCYCLIC COMPOUNDS

Background of the invention

This invention relates to aryl fused azapolycyclic compounds, as defined more specifically by formula I below. Compounds of formula I bind to neuronal nicotnic acetyicholine specific receptor sites and are useful in modulating cholinergic function. Such compounds are useful in the treatment of inflammatory bowel disease (including but not limited to ulcerative coltts, pyoderma gangrenosum and Crohn's disease), irritable bowel syndromer._spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g, dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodıazepines, barbituates. opioids or cocaine), headache, stroke, traumatic brain injury (TBI), obsessive-compulsive disorder, psychosis, Huntington's Chorea, tardive dyskinesia, hyperkınesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petıt mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attentıon defict hyperactivity disorder (ADHD) and Tourette's Syndrome.

The compounds of this invention may also be used in combination with an antidepressant such as, for example, a tricycic antidepressant or a serotonin reuptake inhibiting antidepressant (SRI). in order to treat both the cognitive decline and depression associated with AD. PD. stroke, Huntington's Chorea or traumatıc brain ınjury (TBI): in combination with muscarinic agonists in order to stimulate both central muscarinic and nicotinic receptors for the treatment, for example, of ALS, cognitive dysfunction, age related cognitive decline, $A D, P D$, stroke, Huntington's Chorea and TBI, in combination with neurotrophic factors such as NGF in order to maximize cholinergic enhancement for the treatment, for example, of ALS, cognitive dysfunction, age related cognitive decline, AD, PD stroke, Huntington's Chorea and TBI; or in combination with agents that slow or arrest $A D$ such as cognition enhancers, amylord aggregation inhibitors, secretase inhibitors, tau kinase inhibitors, neuronal antunflammatory agents and estrogen-ilike therapy States Patent Application 08/963,852, which was filed on November 4, 1997. The foregoing application is owned in common with the present application, and is incorporated herein by reference in its entrety.

Summary of the Invention

This invention relates to aryl fused azapolycyclic compounds of the formula
Other compounds that bind to neuronal nicotinic receptor sites are referred to in United

R^{1} is hydrogen, $\left(C_{1}-C_{6}\right)$ alkyl, unconjugated $\left(C_{3}-C_{6}\right)$ alkenyl, benzyl, $X C(=O) R^{13}$ or $-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkyl;
R^{2} and R^{3} are selected, independently, from hydrogen, $\left(C_{2}-C_{6}\right)$ alkenyl, $\left(C_{2}-C_{6}\right)$ alkynyl, hydroxy, nitro, amino, halo, cyano, $-\mathrm{SO}_{\mathrm{q}}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl whereın q is zero, one or two, $\left(\mathrm{C}_{1} . \mathrm{C}_{6}\right.$) alkylamıno-, $\quad\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6} \text {) alkyl }\right]_{2}\right.$ amıno-, $\quad-\mathrm{CO}_{2} \mathrm{R}^{4}, \quad-\mathrm{CONR}^{5} \mathrm{R}^{6}, \quad-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8}, \quad-\mathrm{C}(=0) \mathrm{R}^{13}$. $-\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}$, aryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- or aryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-O-, wherein said aryl is selected from phenyl and naphthyl, heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- or heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-O-, wherern sald heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur, and $X^{2}\left(C_{0}-C_{6}\right)$ aikoxy- $\left(C_{0}-C_{6}\right)$ alkyl-, wherein X^{2} is absent or X^{2} is $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylamino- or $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-, and wherein the $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\right.$ C_{6}) aikyl- morety of sard $\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- contains at least one carbon atom, and wherem from one to three of the carbon atoms of said $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy $-\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- molety may optionally be replaced by an oxygen, nitrogen or sulfur atom, with the proviso that any two such heteroatoms must be separated by at least two carbon atoms, and wherem any of the alkyl moieties of said ($\mathrm{C}_{6} \mathrm{C}_{6}$) alkoxy-($\mathrm{C}_{0}-\mathrm{C}_{6}$) alkyl-may be optionally substituted with from two to seven fluorine atoms, and wheren one of the carbon atoms of each of the alkyl moreties of said aryi($\mathrm{C}_{0}-\mathrm{C}_{3}$) alkyl- and said heteroaryi-($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl- may optionally be replaced by an oxygen, nitrogen or sulfur atom, and wherenn each of the foregong aryl and heteroaryl groups may optionally be substrtuted with one or more substtuents, preferably from zero to two substituents, independently selected from $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluonne atoms. ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkoxy optonally substituted with from two to seven fluorine atoms, halo (e.g., chloro fluoro, bromo or ıodo), ($\mathrm{C}_{2}-\mathrm{C}_{6}$) alkenyl, ($\mathrm{C}_{2}-\mathrm{C}_{6}$) alkynyl, hydroxy, nitro, cyano, amino, (C_{1} -
C_{6})alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$ and $X C(=0) R^{13}$,
or R^{2} and R^{3}, together with the carbons to which they are attached. form a four to seven membered monocycic, or a ten to fourteen membered bicyclic, carbocyclic ring that can be saturated or unsaturated, wherein from one to three of the nonfused carbon atoms of said monocyclic rings, and from one to five of the carbon atoms of said bicyclic nngs that are not part of the benzo ring shown in formula I, may optronally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents, preferably from zero to two substituents for the monocyclic rings and from zero to three substituents for the bicyclic rings, that are selected, independently, from ($\mathrm{C}_{0}-\mathrm{C}_{6}$) alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl-, wheretn the total number of carbon atoms does not exceed six and wherein any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms; nitro. oxo, cyano, halo, $\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)$ alkenyl, $\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)$ alkynyl, hydroxy, amino, $\left(C_{1}-C_{6} \text {) alkylamino-, [(} C_{1}-C_{6} \text {)alkyl] }\right]_{2}$ amino-, $-\mathrm{CO}_{2} R^{4},-\operatorname{CONR}^{5} R^{6},-\mathrm{SO}_{2} N R^{7} R^{8},-\mathrm{C}(=0) R^{13}$, and $X C(=O) R^{13}$.
each $R^{4}, R^{5}, R^{6}, R^{7}, R^{8}$ and R^{13} is selected, independently, from hydrogen and $\left(C_{1}-C_{6}\right)$ alkyl, or R^{5} and R^{6}, or R^{7} and R^{8} together with the nitrogen to which they are attached, form a pyrrolidıne, piperıdine, morpholine, azetıdine, piperizine, $-\mathrm{N}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylpıperizine or thomorpholine ring, or a thiomorphoine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each X is, independently, ($C_{1}-C_{6}$)alkylene,
with the proviso that. (a) at least one of R^{1}, R^{2} and R^{3} must be the other than hydrogen, and (b) when R^{2} and R^{3} are hydrogen, R^{1} cannot be methyl or hydrogen;
and the pharmaceutically acceptable saits of such compounds.
Examples of heteroaryl groups that each of R^{2} and R^{3} can be are the following
thienyl, oxazoyl, isoxazolyl, pyridyl, pynmıdyl, thazolyl, tetrazolyl, isothiazolyl, triazolyl, imidazolyl, tetrazolyl, pyrroyl and the following groups

wherein one of R^{9} and R^{18} is hydrogen or $\left(C_{1}-C_{6}\right)$ alkyl, and the other is a bond to the benzo ning of formula 1 .

Examples of compounds of this invention are compounds of the formula I, and their pharmaceutically acceptable salts, wherein R^{2} and R^{3}, together with the benzo ring of formula I. form a bicycic ring system selected from the following

wherein R^{10} and R^{17} are selected, independently, from ($C_{0}-C_{6}$)alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkylwheren the total number of carbon atoms does not exceed six and wherein any of the alkyl moreties may optionally be substituted with from one to seven fiuorine atoms; nitro. cyano, halo, amino. ($C_{1}-C_{6}$)alkylamino-, $\left[\left(C_{1}-C_{6}\right) \text { alkyll }\right]_{2}$ amino-, $-\mathrm{CO}_{2} R^{4},-\mathrm{CONR}^{5} R^{6},-\mathrm{SO}_{2} N R^{7} R^{8},-\mathrm{C}(=O) \mathrm{R}^{13}$ $-X C(=O) R^{13}$, phenyl and monocyclic heteroaryl wherem said heteroaryl is defined as R^{2} and R^{3} are defined in the definition of compounds of the formula 1 above;

Other embodiments of this invention relate to compounds of the formula I, and their pharmaceutically acceptable salts, wherein R^{2} and R^{3}, together with the benzo ring of formula I. form a bicyclic or tricycic ning system selected from the following:

5

R

wherein R^{10} and R^{17} are defined as above and m is zero, one or two, and wherein one of the carbon atoms of ring A can optionally be replaced with oxygen or $-N\left(C_{1}-C_{6}\right)$ alkyl.

Other embodiments of this invention relate to compounds of the formula 1 , and their pharmaceutically acceptable salts, wheren nether R^{2} nor R^{3} is attached to the benzo ring of formula I via an oxygen atom

Other embodiments of this invention relate to compounds of the formula I wherein R^{1} is not methyl

Examples of specific compounds of the formula 1 are the following:
6-methyl-5,7-dıoxo-6,13-dıazatetracycio[9 3.1.0 $0^{210} \mathrm{O}^{48}$]pentadeca-2(10),3.8-triene hydrochloride;

6-methyl-5-oxo-6,13-diazatetracyclo[9.3 $10^{2.10} 0^{4.8}$]pentadeca-2(10),3,8-triene hydrochloride:

5,7-dimethyl-6-oxo-5,7,13-triazatetracyclo[9 3.1.0. ${ }^{2.10} 0^{4.8}$]pentadeca-2(10),3,8-tnene hydrochloride;

5,7-dioxo-6,13-dıazatetracyclo[9.3.1.0 $0^{2 \cdot 10} \cdot 0^{4.8}$]pentadeca-2(10),3,8-trıene hydrochloride;

5-oxo-6,13-diazatetracyclo[9.3.1.0. ${ }^{2.10} 0^{4.8}$]pentadeca-2(10),3,8-triene hydrochlonde;
6-oxo-5,7,13-triazatetracycio[9.3.1.0. $0^{2 \cdot t 0} \cdot 0^{48}$]pentadeca-2(10),3,8-triene hydrochloride:
4,5-difluoro-10-aza-tricyclo[6.3.1.0.7] dodeca-2(7),3.5-triene hydrochloride;
5-fluoro-10-aza-trıcycio[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene-4-carbonitrile hydrochioride;
4-ethynyl-5-fluoro-10-aza-tricyclo[6.3.1. 0^{27}]dodeca-2(7),3.5-triene hydrochioride;
5-ethynyl-10-aza-tricyclo[6.3.1.0.0.7]dodeca-2(7),3,5-triene-4-carbonitrile hydrochloride;
5-chloro-10-aza-tricyclo[6.3.1.0. $\left.{ }^{2.7}\right]$ dodeca-2(7),3,5-triene-4-carbonitrile hydrochloride;
4-ethynyl-5-chloro-10-aza-tricyclo[6.3.1.0 ${ }^{27}$]dodeca-2(7),3.5-triene hydrochloride;
5-oxa-7-methyl-6-oxo-7,13-dıazatetracyclo[9.3.1 $0^{2.10} 0^{48}$]pentadeca-2(10),3.8-triene hydrochloride;

4-fluoro-5-trifluoromethyl-10-aza-tricyclo[6.3.1.0 ${ }^{27}$]dodeca-2(7),3,5-triene hydrochloride;

4-chloro-5-trifluoromethyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene hydrochlonde;

5-trifluoromethyl-10-aza-tricyclo[6 $310^{2.7}$]dodeca-2(7).3.5-triene-4-carbonitrile hydrochloride:

4-ethynyl-5-trifluoromethyl-10-aza-tricyclo[6 $310^{2.7}$]dodeca-2(7).3.5-triene hydrochloride,

6-methyi-5-thia-5-dıoxa-6,13-Dıazatetracyclo[9.3 $1.0^{210} 0^{48}$]pentadeca-2(10), 38 triene hydrochloride;

7-dımethylamıno-5-thıa-5-dıoxa-6.13-Dıazatetracyclo[9.3.1.0 $0^{10} 0^{48}$]pentadeca-2(10),3.8-triene hydrochloride;

6,7-dıoxa-5,8,14-trıazatetracycio[10.3.1 $0^{211} 0^{49}$ hexadeca-2(11),3,9-triene hydrochloride; and

5,8-dimethyl-6,7-dıoxa-5,8,14-triazatetracyclo[10 $310^{211} 0^{49}$]hexadeca-2(11).3.9triene hydrochloride

This invention also relates to compounds of the formula
wherein P is hydrogen, methyl, COOR ${ }^{16}$ wheren R^{16} is ($C_{1}-C_{6}$)alkyl, allyl, 2,2,2-trichloroethyl or $\left(C_{1}-C_{6}\right)$ alkyl; $-C(=0) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in formula 1 above; $-C(=0) H$, $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl wherein the alkyl mosety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl or t-butoxycarbonyl (tBoc); and R^{14} and R^{15} are selected, independently, from hydrogen. ($C_{1}-C_{6}$)alkyl optionally substituted with from one to seven fluorine atoms, $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl, cyano, hydroxy, nitro, amino, $-O\left(C_{1}-C_{6}\right)$ alkyl or halo. with the proviso that R^{14} and R^{15} can not both be hydrogen when P is hydrogen or methyl. Such compounds are useful as intermediates in the synthesis of compounds of the formula 1 .

Unless otherwise indicated, the term "halo", as used herein, includes fluoro, chloro, bromo and iodo.

Uniess otherwise indicated, the term "alky!", as used herein. includes straight, branched or cyclic, and may include straight and cyclic alkyl moreties as well as branched and cyclic moreties.

The term "alkoxy", as used herein, means "alkyl-O-", wheren "alkyl" is defined as above

The term "alkylene, as used herein, means an alkyl radical having two available bonding stes (ie., -alkyl-), whereın "alkyl" is defined as above.

Unless otherwise indicated, the term "one or more substituents", as used herein, refers to from one to the maximum number of substituents possible based on the number of available bonding sites.

The term "treatment", as used herein, refers to reversing. alleviating. inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such condition or disorder The term "treatment", as used herem, refers to the act of treating, as "treating" is defined immediately above.

The compounds of formula I may have optical centers and therefore may occur in different enantiomeric configurations. The invention includes all enantiomers, diastereomers, and
other stereoisomers of such compounds of formula I, as well as racemic and other mixtures thereof.

The present invention also relates to all radiolabelled forms of the compounds of the formulae I. Preferred radiolabelled compounds of formula I are those wherein the radiolabels are selected from as ${ }^{3} \mathrm{H},{ }^{11} \mathrm{C},{ }^{14} \mathrm{C},{ }^{18} \mathrm{~F},{ }^{123}$, and ${ }^{125}$. Such radiolabelled compounds are useful as research and diagnostic tools in metabolism pharmacokinetics studies and in binding assays in both anımals and man.

The present invention also relates to a pharmaceutical composition for use in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, including a human, comprising an amount of a compound of the formula 1 , or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use and a pharmaceutically acceptable carrier.

The present invention also relates to a method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.

The present invention also relates to a method of treating a disorder or condition selected from inflammatory bowel disease (including but not limited to uicerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystona, chronic pain, acute pain. celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastnc acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular paisy, chemical dependencies and addictions (e.g, dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dysiexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzhermer's type (AD). Parkınson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound of the formula I , or a pharmaceutically acceptable salt thereof, that is effective in treating such disorder or condition.

The present invention also relates to a pharmaceutical composition for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irntable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue. pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulımia, anorexıa, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatıc brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesıa, dyslexıa, schizophrenia, multi-infarct dementia, age related cognitive decine, epilepsy, including pett mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention defict hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising an amount of a compound of the formula 1 , or a pharmaceutically accepable salt thereof, and a pharmaceutically acceptable carrier.

The present invention also relates to a method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising adminıstering to said mammal an amount of a compound comprising an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or alding in the cessation or lesseming of tobacco use

The present invention also relates to a method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amyiotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia. obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g, dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocane), headache, stroke, traumatıc brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decine. epilepsy, including
pett mal absence epliepsy, senile dementia of the Alzhermer's type (AD). Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprısing admınistering to a mammal in need of such treatment an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in treating such disorder or condition.

This invention also reiates to the pharmaceutically acceptable acid addition salts of the compounds of formula I. Examples of pharmaceutically acceptable acid addition salts of the compounds of formula I are the salts of hydrochloric acid, p-toluenesulfonic acid, fumaric acid, citric acid, succinic acıd, salıcylic acid, oxalic acid, hydrobromic acid, phosphoric acid, methanesulfonic acıd, tartaric acıd, malate, dı-p-toluoyl tartanic acıd, and mandelic acıd.

Detailed Description of the Invention
Except where otherwise stated, R^{1} through R^{18}, m and P, and structural formula in the reaction schemes and discussion that follow are defined as above.

III

[^0]Scheme 4

VIB

IC

Scheme 5

Scheme 6

η

IX
X

XI

XI

IF

5
Scheme 7

(ring $A=$ present or absent) XII

(ring $A=$ present or absent)

(ring $A=$ present or absent)

IG: (R^{2} and R^{3} form ring A)
III: (ring $A=$ absent)
-20-

5
Scheme 8

$$
\left(R^{18}=F \text { or }\left(C_{1}-C_{6}\right) \text { alkoxy }\right)
$$

IH

XXI

Scheme 10

IQ

Scheme 1-10 illustrate methods of synthesizing compounds of the formula I.
Referring to Scheme 1 , the starting material of formula III is reacted with trifluoroacetic anhydride, in the presence of pyridine, to form the compound of formula IV This reaction is typically conducted in methylene chloride at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature.

The compound of formula IV is then converted into the dinitro derivative of formula IIA by the following process. The compound of the formula IV is added to a mixture of 4 or more equivalents of trifluoromethanesulfonic acid $\left(\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OH}\right)$ and 2 to 3 equivalents of nitric acid, in a chlornated hydrocarbon solvent such as chloroform, dichoroethane (DCE) or methylene chloride. The resulting mixture is allowed to react for about 5 to 24 hours. Both of the foregoing reactions are generally conducted at a temperature ranging from about $-78^{\circ} \mathrm{C}$ to about $0^{\circ} \mathrm{C}$ for about 2 hours, and then allowed to warm to room temperature for the remaining time.

Reduction of the compound of formula lIA, using methods well known to those of skill in the art. yields the compound of formula IIB This reduction can be accomplished, for example, using hydrogen and a palladıum catalyst such as palladium hydroxide and running the reaction in methanol at about room temperature.

Referring to Scheme 2, the compound of formula IIA is converted into the corresponding compound wherein the trifluoroacetyl protecting group is replaced by a t-Boc protecting group (VIA) by reacting it first with an alkalı metal or alkaline earth metal (or ammonium) hydroxide or carbonate, and then reacting the isolated product from the foregoing reaction with di-tbutyidicarbonate. The reaction with the alkali or alkaine earth metal (or ammonium) hydroxide or carbonate is generally carried out in an aqueous alcohol, dioxane or tetrahydrofuran (THF) at a temperature from about room temperature to about $70^{\circ} \mathrm{C}$. preferably at about $70^{\circ} \mathrm{C}$, for about one to about 24 hours. The reaction of the isolated, unprotected amine or an acid addition satt of such amine, from the above reaction with di-t-butyldicarbonate is preferably carried out in a solvent such as THF, dioxane or methylene chloride at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature This reaction may or may not be conducted in the presence of a base. When the reactant is a salt of the amine, use of a base is preferred The resulting compound of formula VIA can be converted into the corresponding diamino derivative of formula VIB using the procedure described above for converting the dinitro compound of formula lla into the corresponding diamino compound of formula $\| \mathrm{B}$.

The conversion of the compound of formula VIB into the desired compound of the formula VII can be accomplished by reacting the compound of formula VIB with a compound of the formula

wherem R^{10} is hydrogen, ($C_{1}-C_{6}$)alkyl optionally substituted with from one to seven fluorine atoms, aryl-($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl wherein said aryl is selected from phenyl and naphthyl, or heteroaryl($C_{0}-C_{3}$)alkyl wheren said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteratoms selected from oxygen, nitrogen and sulfur, and wheren each of the foregoing aryl and heteroryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents, independently selected from ($C_{1}-C_{6}$) alkyl optionally substituted with from one to seven fluorine atoms. $\left(C_{1}-C_{6}\right)$ alkoxy optionally substituted with from one to seven fluorine atoms and cyano The preferred solvent for this reaction is a 10.1 mixture of ethanol:acetic acid The reaction temperature can range from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$. It is preferably about $60^{\circ} \mathrm{C}$. Other appropriate soivents include acetic acid, ethanol and isopropanol.

Alternate methods of preparing compounds of the formula VII the compound of formula VIB are described by Segelstern et al., Tetrahedron Lett., 1993, 34, 1897.

Removal of the t-Boc protecting group from the compound of formula VII yields corresponding compound of formula IA. The protecting group can be removed using methods well known to those of skill in the art. For example, the compound of formula VII can be treated with an anhydrous acid such as hydrochloric acid, hydrobromic acid, methanesulfonic acid, or trifluoroacetic acid, preferably hydrochloric acid in ethyl acetate, at a temperature from about $0^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, preferably from about room temperature to about $70^{\circ} \mathrm{C}$, for about one to 24 hours

The compound of formula VII can be converted into the corresponding compound of formula IB by reacting it with a compound of the formula $R^{17} Z$, wherenn R^{17} is defined as R^{10} is defined above, and Z is a leaving group such as a halo or sulfonate (e.g, chloro, bromo. mesylate or tosylate), in the presence of a base such as an alkalı metal hydride, hydroxide or carbonate, preferably potassium hydroxide, in a polar solvent such as water, dimethylsulfoxide (DMSO), THF or DMF, preferably a mixture of DMSO and water, and then removing the protecting group as described above The reaction with $R^{17} Z$ is generally carried out at a temperature from about room temperature to about $100^{\circ} \mathrm{C}$. preferably at about $50^{\circ} \mathrm{C}$, for about five hours

Scheme 3 illustrates an alternate method of preparing compounds of the formula $I B$ from the compound of formula VIA. This method is the preferred method of making compounds of the formula IB wherein R^{17} is a bulky group such as an aryl or heteroaryl containing group, or when R^{17} can not be attached, as illustrated in Scheme 2. by alkylation or aryl substitution methods. Referring to Scheme 3, the compound of formula VIA is reacted with the appropriate compound of formula $\mathrm{R}^{17} \mathrm{NH}_{2}$ in a polar solvent such as THF. DMF or DMSO, preferably THF, at a temperature from about room temperature to about $100^{\circ} \mathrm{C}$, preferably at the reflux temperature, for about four to eighteen hours. The resulting compound of formula XXIII is then converted into the corresponding compound of the formula XXIV by reducing the nitro group to an amino group using methods well known to those of skill in the art. Such methods are referred to above for the conversion of the compounds of the formula IIA into a compound of the formula IIB in Scheme 1, and exemplied in experimental Examples 12 B and 18B. Closure of the imidazole ring to form the corresponding compound of formula XXV can then be accomplished by reacting the compound of formula XXIV from the above reaction with a compound of the formula

wherein R^{10} is defined as above, as described above for converting compounds of the formula VIB into those of the formula VII

Removal of the protecting group from the compound of formula $X X V$ yields the corresponding compound of formula IB. This can be accomplished using methods well known in the art, for example, as described above for forming compounds of the formula IA from the corresponding compounds of the formula VII

Scheme 4 illustrates a method of preparing compounds of the formula IC. wherein R^{10} and R^{17} are as defined above. Referring to Scheme 4, the compound of formula VIB is reacted with a compound of the formula

(sodium bisulfite ethane dione addition adduct) in water or another polar solvent such as THF. DMF or DMSO. preferably a mixture of water and a water miscible solvent such as THF, for about one to four hours. The reaction temperature can range from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, and is preferably at about the reflux temperature.

Alternatively, the compound of formula VIB can be reacted with a compound of the formula

(double condensation reaction) in a polar solvent such as THF, water, or acetic acid, preferably a mixture of water and THF. This reaction is typically carried out at a temperature from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, preferably at the reflux temperature, for about two to four hours.

The desired quinoxoline of formula IC can then be formed by deprotecting the compound formed in either of the foregoing reactions, using the method described above for converting a compound of the formula VII into one of the formula IA

Scheme 5 illustrates a method of preparing compounds of the formula 1 wheren R^{2} and R^{3}, together with the benzo ning to which they are attached, form a benzoxazole ring system. Such a compound, wherein R^{1} is hydrogen, is depicted in Scheme 5 as chemical formula IE. Referring to Scheme 5, the compound of formula $X X I I$, wherein Y is nitro, halo, trifiuoromethanesulfonate or a diazonium salt. is reacted with potassium acetate or another alkali or alkaline earth metal carboxylate in a solvent such as dimethylsulfoxide (DMSO), DMF or acetonitrile, preferably DMSO. This reaction is generally allowed to run for about 12-24 hours Appropriate reaction temperatures range from about $70^{\circ} \mathrm{C}$ to about $140^{\circ} \mathrm{C}$ Approximately $100^{\circ} \mathrm{C}$ is preferred

The above reaction yields the compound of formula VIII, which can then be converted into the desired compound having formula IE by the following procedure. First. the compound of formula VIII is reduced by reaction with hydrogen and a palladium or platınum catalyst such as palladium hydroxide in methanol at a temperature from about $0^{\circ} \mathrm{C}$ to about $70^{\circ} \mathrm{C}$. preferably at about room temperature, to form the corresponding amino derivative The product of this reaction is then reacted with an acid chloride of the formula $\mathrm{R}^{10} \mathrm{COCl}$ or an acid anhydride of the formula $\left(\mathrm{R}^{10} \mathrm{CO}\right)_{2} \mathrm{O}$ wherein R^{10} is $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl, or a compound of the formula $\mathrm{R}^{10} \mathrm{C}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$, in an appropnate inert solvent such as decalin, chlorobenzene or xylenes. A mixture of xylenes is
preferred. This reaction is typically conducted at a temperature from about $120-150^{\circ} \mathrm{C}$, preferably at about $140^{\circ} \mathrm{C}$. When $\mathrm{R}^{\circ} \mathrm{COCl}$ is used as a reactant, it is preferable to add a stoicheometric amount of triethylamine (TEA) or another organic tertiary amine base and a catalytic amount of pyridinum p-toluenesulfonic acid or pyridinum p-toluenesulfonate (PPTs) to the reaction mixture. When $\mathrm{R}^{10} \mathrm{C}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ is used as a reactant, it is preferable to add a catalytic amount of PPTs to the reaction mixture

Removal of the trifluoroacetyl nitrogen protecting group yields the desired compound of the formula IE. This can be accomplished using methods well known to those of skill in the art, for example, reacting the protected compound with a lower alkanol and an aqueous alkali or aikaline earth metal (or ammonium) hydroxide or carbonate, aqueous sodium carbonate, at a temperature from about $50^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$. preferably at about $70^{\circ} \mathrm{C}$, for about two to six hours.

Scheme 6 illustrates the preparation of compounds of the formula 1 wherein R^{1} is hydrogen and R^{2} and R^{3}, together with the benzo ring to which they are attached, form a benzothiazole ring system. Referring to Scheme 6, the compound of formula III is reacted with trifluoroacetic anhydride to form the corresponding compound wherein the ring nitrogen is protected by a trifluoroacetyl group. and the resulting nitrogen protected compound is then reacted with two equivalents of trifluoromethanesulfonic anhydride and one equivalent of nitric acid to form the corresponding compound of formula IX , wheren there is a single nitro substituent on the benzo ring. The reaction with trifluoroacetic acid is typically conducted in the presence of pyridine. Both of the above reactions are typically conducted in a reaction inert solvent such as a chlorinated hydrocarbon solvent. preferably methylene chloride, at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature

The above transformation can also be accomplished using other nitration methods known to those skill in the art

Reduction of the nitro group to an amine group can be accomplished as described above to provide a compound of the formula IX'.

The compound of formula $I X^{\prime}$ is then reacted with a carboxylic acid halide or anhydride of the formula $R^{10} \mathrm{COX}$ or $\left(\mathrm{R}^{10} \mathrm{CO}\right)_{2} \mathrm{O}$. wheren X is halo and R^{10} is hydrogen or $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl, and pyridine, TEA or another tertiary amine base, to form a compound of the formula X. which can then be converted to the desired compound having formula XI by reacting it with Lawesson's reagent, which is depicted below

The reaction with $\mathrm{R}^{10} \mathrm{COX}$, wherein X is halo, or $\left(\mathrm{R}^{10} \mathrm{CO}\right)_{2} \mathrm{O}$ is generally carried out at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature. The reaction with Lawesson's reagent is generally carried out in a reaction inert solvent such as benzene or toluene, preferably toluene, at a temperature from about room temperature to about the reflux temperature of the reaction mixture, preferably at about the reflux temperature.

Closure to the benzothazole ring and nitrogen deprotection to form the desired compound of formula IF can be accomplished by reacting the compound of formula XI with potassium ferricyanide and sodium hydroxide in a mixture of water and methanol $\left(\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}\right)$, at a temperature from about $50^{\circ} \mathrm{C}$ to about $70^{\circ} \mathrm{C}$. preferably at about $60^{\circ} \mathrm{C}$ for about 1.5 hours.

Scheme 7 illustrates a method of preparing the compound of formula III, which is used as the starting material for the process of Scheme 1. or a compound of the formula IG. wherein R^{2} and R^{3} form a ring (labeled " A " in the Scheme), as defined above in the definition of compounds of the formula I. Referring to Scheme 7 , the compound of formula XII, wheren X^{1} and X^{2} are selected, independently, from chloro, fluoro, bromo and iodo, but where at least one of X^{1} and X^{2} is Br - or 1 -, reacted with cyclopentadiene, in the presence of magnesium metal. in a THF, dıoxane or other ethereal solvent. at a temperature from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, preferably at about the reflux temperature, to form a compound of the formula XIII Reaction of the resulting compound of formula Xill with N -methylmorpholine- N -oxide (NMO) and osmum tetroxide in acetone at about room temperature yields the corresponding compound of the formula XIIIA.

The compound having formula XIIIA is then converted into the corresponding compound of formula XIV using the following procedure. First, the compound of formula XIIIA is reacted with sodium periodate in a mixture of a chlorinated hydrocarbon, preferably dichloroethane (DCE), and water, or with lead tetraacetate in a chlorınated hydrocarbon solvent, at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, to generate a dialdehyde or glycal intermediate. The product of this reaction is then reacted with benzylamine and
sodium triacetoxyborohydride in a chlorinated hydrocarbon solvent at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature, to form the desired compound of formula XIV. Removal of the benzyl group from the compound of formula XIV yields the compound of formula III (when ring A is absent) or IG. (when ring A is present). This can be accomplished using methods well known to those of skill in the art, for example, optionally reacting the free base with one equivalent of acid, e.g., hydrochloric acid, (to form the corresponding acid addition salt), followed by hydrogen and palladium hydroxide in methanol at about room temperature.

In the reductive animation step described above and throughout this document, alternatives to benzyl amine. such as ammonia, hydroxylamine, alkoxy amines, methyl amine, allyl amıne, and substituted benzyl amines (e.g., diphenyimethyl amine and 2- and 4-alkoxy substituted benzyl amines) can also be used. They can be used as free bases, or as their salts, preferably their acetate salts, and can be subsequently removed by methods described for each by T W Greene and G M. Wuts, "Protective Groups in Organıc Synthesis", 1991, John Wiley \& Sons, New York NY

The procedure of Scheme 7 can also be used to prepare compounds of the formula 1 wherein R^{2} and R^{3} do not form a ring and are not both hydrogen, by replacing the starting material of formula XII with the appropriate compound having the formula

$X I I^{\prime}$

Scheme 8, 9 and 10 illustrate methods of preparing compounds of the formula 1 wherein R^{1} is hydrogen, and R^{2} and R^{3} represent a variety of different substituents, as defined above, but do not form a ring.

Scheme 8 illustrates a variation of the process shown in Scheme 7, which can be used to make a compound identical to that of formula III except that the benzo ring is substituted with a fluoro group or an alkoxy group (R^{18} in Scheme 8) This compound is depicted in Scheme 8 as chemical structure 1 H Referning to Scheme 8 . where, for example. R^{18} is $F, 1,3-$ difluorobenzene is reacted with a strong base such as an aikalı metal dialkylamine or an alkalı metal alkyl (or aryl) in an ethereal solvent such as ethyl ether or THF, at a temperature below $50^{\circ} \mathrm{C}$, followed by quenching with iodine or N -iodosuccinamide, to form 1,3-difluoro-2Iodobenzene The compound 1,3-difluoro-2-iodobenzene (structural formula XVI in Scheme 8) is then converted into the compound of formula IH by a series of reactions (represented in

Scheme 8 as $X V I \rightarrow X V I I \rightarrow X V I I I \rightarrow X I X \rightarrow \mid H)$ that are analogous to the senes of reactions described above and illustrated in Scheme 7 for converting compounds of the formula XIII into those of the formuia IG or III. Conversion of the compound of formula XVI into the compound of formula XVII can also be accomplished by treating a mixture of the compound of formula XVI and cyclopentadiene with an alkyl lithium reagent, preferably n-butyl lithrum, in an inert hydrocarbon solvent such as petroleum ether or methyl cyclohexane, at a temperature from about $-20^{\circ} \mathrm{C}$ to about room temperature, preferably at about $0^{\circ} \mathrm{C}$.

The compound of formula IH can then be converted into the corresponding nitrogen protected derivative of formula $X X$, using the methods described above for synthesizing the compound of formula IV in Scheme 1. Nitration of the compound of formula $X X$ using the method described above for preparing the compound of formula $I X$ in Scheme 6, yields the compound of formula $X X I$ wherein the benzo ring is substituted with both a fluoro and nitro group or an alkoxy group and nitro group. The compound of formula $X X I$ can be used to make a variety of compounds of the formula i wherem one of R^{2} and R^{3} is fluoro, using methods that are well known to those of skill in the art, for example, by first converting the nitro group to an amino group, converting the amino group to a variety of other substituents, as illustrated in Scheme 10 , and then removing the nitrogen protecting group.

The compound of formula $X X I$ acts as a regioisomeric functional equivalent of the compounds having formulas IIA, VIA and XXII, in that the fluonne atom of formula $X X I$ reacts similarly to the nitro and Y groups of formula IIA, VIA, and XXII. and thus can be subjected to the same series of reactions as those described above for the latter three compounds, providing an alternate means for preparing the products of such reactions. Similarly, the alkoxy group of formula $X X I$ ($R^{18}=$ alkoxy) may be converted into a hydroxyl group before or after introduction of the nitro group, and then converted to isomeric products as described above. Also, the trifluoromethanesulfonate salt of such hydroxy derivative can act as a Y-group as described.

Preparation of compounds of formula \mid where $R^{2}=-O\left(C_{1}-C_{6}\right)$ alkyl, $\left(C_{1}-C_{6}\right)$ alkyl or aryi wherein aryl is defined as above in the definition of formula I, and R^{3} is H or one of the other substituents described above in the definition of formula 1 . can be prepared as described above and illustrated in Scheme 8 by replacing one of the fluorme atoms of the compound of formula XV with -O-($\mathrm{C}_{1}-\mathrm{C}_{6}$)aikyl, $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl or aryl, respectively

Scheme 9 illustrates methods of preparing compounds of the formula I wherein: (a) R^{1} is hydrogen and R^{2} is $R^{7} R^{8} \mathrm{NO}_{2} S$-, (b) R^{1} and R^{2} are both chloro; and (c) R^{1} is hydrogen and R^{2} is $R^{13} \mathrm{C}(=0)$ - These compounds are referred to in Scheme 9 . respectively, as compounds of formulas IJ, IK and IL.

Referring to Scheme 9 . compounds of the formula IJ can be prepared by reacting the compound of formula IV with two or more equivalents of a halosulfonic acid, preferably chlorosulfonic acid, at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature. Reaction of the chlorosulfonic acid derivative so formed with an amine having the formula $R^{7} R^{8} N H$, wherein R^{7} and R^{8} are defined as above, followed by removal of the nitrogen protecting group, yrelds the desired compound having formula IJ.

Compounds of the formula IK can be prepared by reacting the compound of formula IV with iodine trichloride in a chlorinated hydrocarbon solvent, followed by removal of the nitrogen protecting group. The reaction with iodine trichloride is typically carried out at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, and is preferably carried out at about room temperature. In a similar fashion, the analogous mono- or dibrominated or mono- or diiododinated compounds can be prepared by reacting the compound of IV with N ıodosuccinımide or N -bromosuccinımide in a trifluromethanesulfonic acid solvent. followed by removal of the nitrogen protecting group as described above

Reaction of the compound of IV with an acid halide of the formula $R^{13} \mathrm{COCl}$ or an acid anhydride of the formula $\left(\mathrm{R}^{13} \mathrm{CO}\right)_{2} \mathrm{O}$. with or without a reaction inert solvent such as a chlorinated hydrocarbon solvent, preferably methylene chloride, in the presence of Lewis acid such as aluminum chloride, at a temperature from about $0^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, followed by nitrogen deprotection, yields the compound of formula IL. The reaction with the acid halide or anhydride can be carried out using other known Lewis acids or other Friedel-Crafts acylations methods that are known in the art.

The reactions described herein in which $\mathrm{NO}_{2},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{COR}^{13}, \mathrm{I}, \mathrm{Br}$ or Cl are introduced on the compound of formula IV, as depicted in Scheme 9 and described above. can be performed on any analogous compound whereIn R^{2} is hydrogen, $\left(C_{1}-\mathcal{C}_{6}\right)$ alkyl. halo ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkoxy or $-\mathrm{NHCONR}{ }^{7} \mathrm{R}^{8}$, producing compounds of the formula I wherein R^{2} and R^{3} are defined as in the definition of compounds of the formula l above.

Compounds that are identical to those of the formula IL. but which retain the nitrogen protecting group, can be converted into the corresponding O-acyl substituted compounds, i.e.. those wherein the $-C(=O) R^{13}$ group of formula IL is replaced with a $-\mathrm{O}-\mathrm{C}(=0) \mathrm{R}^{13}$ group. using Baeyer-Villiger processes well known to those skilled in the art. The resulting compounds can be partially hydrolyzed, as described in Example 35, to yield the corresponding hydroxy substituted compounds, and then alkylated to form the corresponding alkoxy substited compounds. Also, as described in Example 36, such O-acyl substrtuted compounds can be used to prepare variably substituted benzisoxazoles

Scheme 10 illustrates methods of making compounds of the formula I wherem: (a) R^{1} is hydrogen and R^{2} is chloro; (b) R^{1} is hydrogen and R^{2} is cyano. (c) R^{1} is hydrogen and R^{2} is amino; and (d) R^{1} is hydrogen and R^{2} is $R^{13} C(=O) N(H)$. These compounds are referred to in Scheme 10, respectively, as compounds of the formula IM, IN, IP and IQ.

Compounds of formula IM can be prepared from compounds of the formula IX' by generation of a diazonium salt with, for instance, an alkali metal nitrite and strong mineral acid (e.g., hydrochloric acid, sulfuric acid, hydrobromic acid) in water, followed by reaction with a copper halide salt, such as copper (1) chloride. Nitrogen deprotection by the methods described above yields the desired compound of formula $I M$. Alternative methods for the generation of diazonium salts, as known and practiced by those of skill in the art, can also be used. The foregoing reaction is generally carried out by temperatures ranging from about $0^{\circ} \mathrm{C}$ to about $60^{\circ} \mathrm{C}$, preferably about $60^{\circ} \mathrm{C}$ for about 15 minutes to one hour.

Reaction of the diazodium salt. prepared as described above, with potassium iodide in an aqueous medium provides the analogous iodide derivative This reaction is generally carried out at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature. The resulting compound, or its analogous N -tert-butyicarbonate protected form, can be used to prepare the corresponding cyano derivative by reaction with copper (I) cyanide and sodium cyanide in DMF, N,N-dımethylpropylurea (DMPU) or DMSO, preferably DMF, at a temperature from about $50^{\circ} \mathrm{C}$ to about $180^{\circ} \mathrm{C}$. preferably about $150^{\circ} \mathrm{C}$. Nitrogen deprotection as described above provides the desired compound of formula IM.

The above described iodide derivative can also be used to access a variety of other substituents such as aryl, acetylene and vinyl substituents, as well as the corresponding carbonyl esters and amides, by palladium and nickel catalyzed processes known to those of skill in the art, such as Heck. Suzukı and Stille couplıngs and Heck carbonylations.

Nitrogen deprotection of the compound of formula IX' provides the compound of the formula IP.

The compound of formula $\mid X$ ' can be reacted with a acyl group having the formula $R^{13} \mathrm{COCl}$ or $\left(\mathrm{R}^{13} \mathrm{CO}\right)_{2} \mathrm{O}$ using the methods described above, followed by nitrogen deprotection to provide compounds of the formula IQ. In a similar fashion, treatment of the protected amine with a compound having the formula $\mathrm{R}^{13} \mathrm{SO}_{2} \mathrm{X}$. when X is chloro or bromo, followed by nitrogen deprotection, provides the corresponding sulfonamide derivative.

Other suitable amine protecting groups that can be used, alternatively, in the procedures described throughout this document include $-\mathrm{COCF}_{3},-\mathrm{COCCl}_{3},-\mathrm{COOCH}_{2} \mathrm{CCl}_{3}$. $-\mathrm{COO}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl and $-\mathrm{COOCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$. These groups are stable under the conditions
described herein, and may be removed by methods described for each in Greene's "Protective Groups in Organic Chemistry", referred to above.

In each of the reactions discussed above, or illustrated in Schemes 1-10, above, pressure is not critical unless otherwise indicated. Pressures from about 0.5 atmospheres to about 5 atmospheres are generally acceptable, with ambient pressure, i.e., about 1 atmosphere, being preferred as a matter of convenience.

The compounds of the formula I and their pharmaceutically acceptable salts (hereafter "the active compounds") can be administered via etther the oral, transdermal (e.g., through the use of a patch), intranasal, sublingual, rectal, parenteral or topical routes. Transdermal and oral administration are preferred. These compounds are, most desirably, administered in dosages ranging from about 0.25 mg up to about 1500 mg per day, preferably from about 0.25 to about 300 mg per day in single or divided doses, although variations will necessarily occur depending upon the weight and condition of the subject being treated and the particular route of administration chosen. However, a dosage level that is in the range of about 001 mg to about 10 mg per kg of body weight per day is most desirably employed. Variations may nevertheless occur depending upon the weight and condition of the persons being treated and their individual responses to said medicament, as well as on the type of pharmaceutical formulation chosen and the time period and interval during which such administration is carried out. In some instances, dosage levels below the lower limit of the aforesand range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effects, provided that such larger doses are first divided into several small doses for administration throughout the day

The active compounds can be administered alone or in combination with pharmaceutically acceptable carriers or diluents by any of the several routes previously indicated. More particularly, the active compounds can be administered in a wide vanety of different dosage forms, e.g., they may be combined with various pharmaceutically acceptable inert carners in the form of tablets, capsules, transdermal patches, lozenges, troches, hard candies, powders, sprays, creams, salves, suppositories, jellies, gels, pastes, lotions, ontments, aqueous suspensions, injectable solutions, elixirs, syrups, and the like. Such carners include solid diluents or fillers, sterile aqueous media and vanious non-toxic organic solvents. in addition, oral pharmaceutical compositions can be suitably sweetened and/or flavored. In general, the active compounds are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight

For oral administration, tablets containing various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc can be used for tabletting purposes. Solid compositions of a similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugar] as well as high molecular weight polyethylene glycols. When aqueous suspensions and/or elixirs are desired for oral administration the active ingredient may be combined with various sweetening or flavoring agents, coloring matter and, if so desired, emulsifying and/or suspending agents, together with such diluents as water, ethanol, propylene glycol, glycerin and various combinations thereof.

For parenteral administration, a solution of an active compound in either sesame or peanut oll or in aqueous propylene glycol can be employed. The aqueous solutions should be suitably buffered (preferably pH greater than 8), If necessary, and the liquid diluent first rendered isotonic These aqueous solutions are suitable for intravenous injection purposes The oily solutions are suitable for intraarticular, intramuscular and subcutaneous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art.

It is also possible to administer the active compounds topically and this can be done by way of creams, a patch, jelles, gels, pastes, ontments and the like, in accordance with standard pharmaceutical practice.

Bıological Assay

The effectiveness of the active compounds in suppressing nicotine binding to specific receptor sites is determined by the following procedure which is a modification of the methods of Lippiello, P M. and Fernandes, K. G. (in The Binding of L- ${ }^{3}$ H]Nicotine To A Single Class of High-Affinity Sites in Rat Brain Membranes, Molecular Pharm, 29, 448-54, (1986)) and Anderson, D. J. and Arnenc, S. P (in Nicotinic Receptor Binding of ${ }^{3}$ H-Cystisine, ${ }^{3}$ H-Nicotine and ${ }^{3}$ H-Methylcarmbamylcholine in Rat Brain. European J Pharm., 253, 261-67 (1994)).

Procedure

Male Sprague-Dawley rats (200-300 g) from Charies River were housed in groups in hanging stainless steel wire cages and were mantained on a 12 hour light/dark cycle (7 a.m. -7 p.m. light period). They received standard Purina Rat Chow and water ad libitum.

The rats were killed by decapitation. Brans were removed immediately following decapitation. Membranes were prepared from brain tissue according to the methods of Lippiello and Fernandez (Molec Pharmacol, 29, 448-454, (1986) with some modifications. Whole brains were removed, rinsed with ice-cold buffer, and homogenized at 0° in 10 volumes of buffer (w / v) using a Brinkmann Polytron ${ }^{\text {TM }}$, setting 6, for 30 seconds. The buffer consisted of 50 mM Tris HCl at a pH of 7.5 at room temperature. The homogenate was sedımented by centrifugation (10 minutes; $50,000 \times \mathrm{g} ; 0$ to $4^{\circ} \mathrm{C}$. The supernatant was poured off and the membranes were gently resuspended with the Polytron and centrifuged again (10 minutes; $50,000 \times \mathrm{g} ; 0$ to $4^{\circ} \mathrm{C}$. After the second centrifugation, the membranes were resuspended in assay buffer at a concentration of $10 \mathrm{~g} / 100 \mathrm{~mL}$. The composition of the standard assay buffer was 50 mM Tris $\mathrm{HCl}, 120 \mathrm{mM}$ $\mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2 \mathrm{mM} \mathrm{MgCl}, 2 \mathrm{mM} \mathrm{CaCl} l_{2}$ and has a pH of 74 at room temperature.

Routine assays were performed in borosilicate glass test tubes. The assay mixture typically consisted of 0.9 mg of membrane protein in a final incubaton volume of 1.0 mL . Three sets of tubes were prepared wherein the tubes in each set contaned $50 \mu \mathrm{~L}$ of vehicle, blank, or test compound solution, respectively. To each tube was added $200 \mu \mathrm{~L}$ of $\left.{ }^{3} \mathrm{H}\right]$-nicotine in assay buffer followed by $750 \mu \mathrm{~L}$ of the membrane suspension The final concentration of nicotine in each tube was 0.9 nM . The final concentration of cytisine in the blank was $1 \mu \mathrm{M}$ The vehicle consisted of deionized water contaning $30 \mu \mathrm{~L}$ of 1 N acetic acid per 50 mL of water. The test compounds and cytisine were dissolved in vehicle. Assays were initiated by vortexing after addition of the membrane suspension to the tube. The samples were incubated at 0 to $4^{\circ} \mathrm{C}$ in an iced shaking water bath. Incubations were terminated by rapid filtration under vacuum through Whatman GF/B ${ }^{\text {TM }}$ glass fiber filters using a Brandel ${ }^{\text {TM }}$ muiti-manifold tissue harvester. Following the initial filtration of the assay mixture, filters were washed two times with ice-cold assay buffer (5 m each). The filters were then placed in counting vials and mixed vigorously with 20 ml of Ready Safe ${ }^{\text {TM }}$ (Beckman) before quantification of radioactivity. Samples were counted in a LKB Wallach Rackbeta ${ }^{\text {TM }}$ IIquid scintillation counter at 40-50\% efficiency All determinations were in triplicate

Calculations

Specific binding (C) to the membrane is the difference between total binding in the samples containing vehicle only and membrane (A) and non-specific binding in the samples containing the membrane and cytisine (B), i.e.,

Specific binding $=(C)=(A)-(B)$.
Specific binding in the presence of the test compound (E) is the difference between the total binding in the presence of the test compound (D) and non-specific binding (B), i.e., $(E)=(D)$ - (B).
$\%$ Inhibition $=(1-((E) /(C))$ times 100.
The compounds of the invention that were tested in the above assay exhibited $I C_{50}$ values of less than $10 \mu \mathrm{M}$.

The following experımental examples illustrate, but do not limit the scope of, this invention

EXAMPLE 1

10-AZA-TRICYCLO[6.3.10 $0^{2.7}$ DODECA-2(7),3.5-TRIENE
A) 1,4-Dihydro-1,4-methano-naphthaiene
(Based wholly or in part on a) Wittig, G.: Knauss, E. Chem Ber. 1958, 91, 895. b) Muir, D. J. Stothers, J. B. Can. J. Chem. 1993, 71, 1290.)

Magnesum turnings ($36.5 \mathrm{~g}, 1.5 \mathrm{M}$) were stirred in anhydrous THF (250 mL) in a dried 2 L 3 neck round bottom flask equipped with a 250 mL non-equalizing addition funnel with a nitrogen $\left(\mathrm{N}_{2}\right)$ flow adapter, mechanical stirrer and efficient condenser equipped with a N_{2} flow adapter The flask was stırred and warmed to reflux by a removable heatıng mantle. 2-Fluorobromobenzene (2 g) was added followed by 1 mL of 3 N ethylmagnesium bromide (EtMgBr in THF) The addition funnel was charged with a mıxture of cyclopentadiene (94.4 g , 143 M Prepared by the method described in: Org. Syn. Col. Vol. V, 414-418) and bromofluorobenzene ($250 \mathrm{~g}, 143 \mathrm{M}$) which was maintained at $0^{\circ} \mathrm{C}$ in a separate flask by an ice bath, and transferred to the addition funnel via cannula. Small portions ($\sim 1 \mathrm{~mL}$) of the intimate mixture were introduced to assist initiation (-4 x). After -15 minutes, the reaction initiated (exotherm, and vapor condensation), the heating mantle was removed and the contents of the addition funnel was added dropwise at such rate as to maintain reflux (1.5 hours) The heating mantle was re-applied and a reflux maintained for 15 hours. (TLC 100\% hexanes $R, 0.67$)

The reaction was cooled to room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$ and carefully with $1 \mathrm{~N} \mathrm{HCl}\left(200 \mathrm{~mL}\right.$, produces H_{2} evolution from unconsumed Mg) To this $\sim 50 \mathrm{~mL}$
concentrated HCl was added to dissolve solids. Total addition/quench time ~ 1 hour Saturated aqueous sodium chloride (NaCl) solution (300 mL) was added and product hexanes extracted until no potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ active product is removed. ($4 \times \sim 250$ mL). The combined organic layer was washed with saturated NaHCO_{3} solution (250 mL). sodium bicarbonate $\mathrm{Na}_{2} \mathrm{SO}_{4}$ dried and concentrated to an oil (200 g). The product was distilled at $78-83^{\circ} \mathrm{C} @ 15 \mathrm{~mm}$ ($131 \mathrm{~g}, 64 \%$). (An alternative workup is described on p. 419 Fieser and Fieser, Voi. I, Reagents for Organic Synthesis, Wiley, NY., NY.; 1967).

B) 1,2,3,4-Tetrahydro-1,4-methano-naphthalene-2,3-diol

(Except for the workup method and the quantrty of OsO_{4} used. based on VanRheenen, V; Cha, D.Y.; Hartley, W M. Org. Syn 1988, 6, 342.)

In a $2 L 3$ neck round bottom flask equipped with a N_{2} flow adapter, mechanical stirrer was placed 1,4-dihydro-1,4-methano-naphthalene ($795 \mathrm{~g}, 560 \mathrm{mmol}$) stirred in acetone (800 mL) and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and N -methyl morpholine N -oxide $(675 \mathrm{~g}, 576 \mathrm{mmol})$. To this was added osmium tetroxide $\left(\mathrm{OsO}_{4}\right)$ (15 mL of a $15 \mathrm{~mol} \% \mathrm{t}-\mathrm{BuOH}$ solution, $1.48 \mathrm{mmol} .0 .26 \mathrm{~mol} \%$) and the mixture was stirred vigorously. After 60 hours, the reaction was filtered, and the white product rinsed with acetone and arr dried (609 g). The mother liquor was concentrated to an oily solid acetone trituration, filtration and acetone rinse provided (27.4 g , total $88.3 \mathrm{~g} .89 \%$) (TLC 50\% EtOAc/hexanes R, ~0.5). mp 176-177.5 ${ }^{\circ} \mathrm{C}$.

C) 10-Benzyi-10-aza-tricyclo[6.3 1.0 ${ }^{27}$]dodeca-2(7),3.5-triene

(Based on Abdel-Magid, A. F.. Carson, K G. Harris, B. D.; Maryanoff, C. A.; Shah, R. D J. Org. Chem. 1996, 61. 3849, and Mazzocchı. P H: Stahly. B C. J. Med Chem 1979. 22. 455.)

1,2,3.4-Tetrahydro-1.4-methano-naphthaiene-2.3-dıol ($40 \mathrm{~g}, 227.3 \mathrm{mmol}$) was stirred in $\mathrm{H}_{2} \mathrm{O}(1050 \mathrm{~mL})$ and 1,2-dichloroethane (DCE) $(420 \mathrm{~mL})$ in a 2 L round bottom flask under nitrogen with cool water bath $\left(\sim 10^{\circ} \mathrm{C}\right)$. To this sodium periodate $\left(\mathrm{NaIO}_{4}\right)(51 \mathrm{~g} .239 \mathrm{mmol})$ and triethylbenzyl ammonium chloride $\left(\mathrm{Et}_{3} \mathrm{BnNCl}\right)(50 \mathrm{mg})$ were added. The resulting mixture was sturred for 1 hour (slight initial exotherm), then the layers were separated and the aqueous layer was extracted with DCE (200 mL) The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ (4 $\times 200 \mathrm{~mL}$, or until no reaction to starch iodide is observed in the aqueous wash) then dried through a cotton plug. To this was added benzyl amine ($25.5 \mathrm{~g}, 238.6 \mathrm{mmol}$) and the mixture was stirred for 2 minutes then immediately transferred into the sodium triacetoxyborohydride $\mathrm{NaHB}(\mathrm{OAC})_{3} / \mathrm{DCE}$ (see below) over 10 minutes

In a separate 2 L round botton flask flask under nitrogen was magnetically stirred $\mathrm{NaHB}(\mathrm{OAC})_{3}(154 \mathrm{~g} .0 .727 \mathrm{mmol})$ in DCE $(800 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ (Ice bath). To this was added the above mixture over 10 minutes, without delay after the dialdehyde and amine were mixed. The resulting orange mixture was allowed to warm to room temperature and stirred for 30-60 minutes.

The reaction was quenched by addition of saturated sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ solution ($\sim 300 \mathrm{~mL}$) carefully at first and the mixture was stırred for 1 hour (pH 9). The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 300 \mathrm{~mL})$. The organic layer was washed with saturated aqueous NaCl solution (200 mL), dried through a cotton plug, then evaporated to a red oil. This was dissolved in a minımum of $E t_{2} \mathrm{O}$ and filtered through a Silica pad (3×4 inch) eluting with 15% ethyl acetate (EtOAC)/hexanes $+1 \%$ of 37% aqueous ammonium hydroxide $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$ solution to remove baseline red color. Concentration affords a light yellow oil ($48.5 \mathrm{~g}, 1948 \mathrm{mmol}, 85.7 \%$). (TLC 10% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.75$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 716(\mathrm{~m}, 7 \mathrm{H}), 689(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $250.3\left[(M+1)^{+}\right]$.
D) 10-Aza-tricyclo[6.3.1 $0^{2.7}$ ddodeca-2(7).3.5-triene (For an alternative synthesis, see; Mazzocchi, P. H.; Stahly, B. C. J. Med Chem. 1979, 22, 455.)

10-Benzyl-10-aza-tricycio[6.3.1.0. $0^{2.7}$]dodeca-2(7),3.5-triene (70.65 g .284 mmol) was stirred in EtOAc (250 mL) and treated with 3 N HCl EtOAC (103 eq.) slowiy with cooling (ice bath) The resulting precipitate was filtered and rinsed with EtOAc The solids were dissolved in $\mathrm{MeOH}(250 \mathrm{~mL})$ in a parr bottle To this was added $\mathrm{Pd}(\mathrm{OH})_{2}(7 \mathrm{~g}$ of $20 \% \mathrm{wt} / \mathrm{C})$ and the mixture was shaken under $50-40 \mathrm{psi}$ of H_{2} for 24 hours or until done by TLC The reaction was filtered through a Celite pad and concentrated to an oily solid. This was azeotroped with methanol (MeOH) (3 x) then triturated with acetone, treated with ethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) to precipitate product and filtered. Concentration of the mother liquors and a second treatment provided an off white solid ($4895 \mathrm{~g} .251 \mathrm{mmol}, 88 \%$). (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.2$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~m}, 4 \mathrm{H}), 2.97(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~m}$, $1 H), 1.95(d, J=110 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{APCl} \mathrm{MS} m / e 160.2\left[(\mathrm{M}+1)^{*}\right]$.

EXAMPLE 2

4-FLUORO-10-AZA-TRICYCLO[6.3 1.0.2.7]DODECA-2(7).3.5-TRIENE HYDROCHLORIDE
A) 6-Fluoro-1,4-dihydro-1,4-methano-naphthalene
(Eisch, J. J.; Burlinson, N. E. J. Amer. Chem. Soc. 1976, 98, 753-761. Paquette, L. A.; Cottrell, D. M.; Snow, R. A. J. Amer. Chem. Soc. 1977, 99, 3723-3733.)

Magnesium turnings ($0.66 \mathrm{~g}, 27.2 \mathrm{mmol}$) were stirred in anhydrous THF (10 mL) in a flame dried 75 mL 3 neck round bottom flask equipped with a non-equalizing addition funnel with a N_{2} flow adapter, magnetic stirrer and efficient condenser equipped with a N_{2} flow adapter. The flask was stirred and warmed to refiux by a removable heating mantle. 2,5Difluorobromobenzene (0.1 g) was added followed by of 3 N EtMgBr in $\mathrm{THF}(0.1 \mathrm{~mL})$. The addition funnel was charged with an intımate mixture of cyclopentadiene ($171 \mathrm{~g}, 25.9 \mathrm{mmol}$) and 2,5 -difluorobromobenzene $(5.0 \mathrm{~g}, 25.9 \mathrm{mmol})$. Small portions ($\sim 0.2 \mathrm{~mL}$) of the intimate mixture were introduced to assist initiation ($\sim 4 \mathrm{x}$). After ~ 15 minutes, the reaction initiated (exotherm, and vapor condensation) and heating was maintained as necessary during the addition of the contents of the addition funnel. The reaction was then maintained at reflux for 1 hour

The reaction was cooled to room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}$ (20 mL) followed by aqueous 1 N HCl soiution (20 mL) to dissolve the solids Saturated aqueous NaCl solution (30 mL) was added and product was extracted with hexanes ($4 \times 25 \mathrm{~mL}$). The combined organic layer was washed with saturated aqueous NaHCO_{3} solution (25 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered through a Silica plug with hexanes rinse and concentrated to an oil Chromatography on Silica gel etuting with hexanes provided an oll ($780 \mathrm{mg}, 19 \%$). (TLC hexanes $R, 038$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 710(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{br}$ s. 1 H), $678(\mathrm{brs}, 1 \mathrm{H}), 6.59(\mathrm{~m}, 1 \mathrm{H}), 3.87$ (br s, 2 H$) 2.32(\mathrm{~d}, \mathrm{~J}=70 \mathrm{~Hz}, 1 \mathrm{H}), 225(\mathrm{~d} . \mathrm{J}=7.0 \mathrm{~Hz}$. 1H)
B) 6-Fluoro-1,2,3,4-tetrahydro-1,4-methano-naphthalene-2,3-diol

6-Fluoro-1.4-dihydro-1.4-methano-naphthalene ($680 \mathrm{mg}, 4.22 \mathrm{mmol}$) and N -methyl morpholine N -oxide ($599 \mathrm{mg}, 4.43 \mathrm{mmol}$) were stirred in acetone (50 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}$). To this was added a solution of $\mathrm{OsO}_{4}(0.2 \mathrm{~mL}, 2.5 \% \mathrm{wt}$. solution in $\mathrm{t}-\mathrm{BuOH}, 0.02 \mathrm{mmol}$) After 72 hours, florisıl (5 g) and saturated aqueous NaHSO_{3} solution (3 mL) were added and stirred for 1 hour The florisil was filtered and the filtrate concentrated to produce a crystalline product which was triturated with acetone and filtered ($524 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ
$7.10(\mathrm{dd}, \mathrm{J}=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, \mathrm{J}=80.2 .3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{ddd}, \mathrm{J}=8.0,8.0 .2 .3 \mathrm{~Hz}, 1 \mathrm{H})$, $379(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 192(\mathrm{dd}, \mathrm{J}=10.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $194\left(\mathrm{M}^{+}\right)$
C) 10-Benzyl-4-fluoro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene

6-Fluoro-1,2,3,4-tetrahydro-1,4-methano-naphthalene-2,3-diol ($524 \mathrm{mg}, 2.68 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{NBnCl}\left(10 \mathrm{mg}\right.$) were vigorously stirred in dichloroethane (15 mL) and $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL}$) then treated with sodium periodate $(0.603 \mathrm{mg}, 2.82 \mathrm{mmol})$. After 1.5 hours, the layers were separated and the aqueous layer extracted with DCE ($2 \times 20 \mathrm{~mL}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$ until no reaction to starch ıodide paper was observed. then with saturated aqueous NaCl solution (20 mL). The organic layer was dried through a cotton plug and treated with benzyl amine ($0.308 \mathrm{~mL}, 2.82 \mathrm{mmol}$) and stirred for 2 minutes then transferred to an addition funnel. This solution was added over ~ 10 minutes to a vigorously stirred cooled ($0^{\circ} \mathrm{C}$) mixture of $\mathrm{NaHB}(\mathrm{OAC})_{3}(1.82 \mathrm{~g} .8 .58 \mathrm{mmol})$ in DCE (50 mL). After addition was complete, the mixture was stirred without cooling for 2 hours. The mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (100 mL) and stirred for 1 hour, then the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with saturated aqueous NaCl solution (50 mL), dried through a cotton plug and concentrated. Chromatography on Silica gel provided an oll (520 $\mathrm{mg}, 80 \%$). ($\mathrm{TLC} 2 \%$ acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{R}_{\mathrm{f}} \mathrm{O} 40$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 718(\mathrm{~m}, 1 \mathrm{H}), 6.88$ $(\mathrm{m}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 169(\mathrm{~d}, \mathrm{~J}=10.5$ $\mathrm{Hz}, 1 \mathrm{H})$.

D) 4-Fiuoro-10-aza-tricyclo[6.3.1.0.7.7dodeca-2(7).3.5-triene hydrochloride
 10-Benzyl-4-fluoro-10-aza-trıcyclo[6.3.1 $0^{2.7}$]dodeca-2(7),3.5-triene ($390 \mathrm{mg}, 1.461$

 mmol), ammonium formate (3.04 g .48 .2 mmol) and $10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(30 \mathrm{mg})$ were combined in MeOH (50 mL) and brought to reflux under N_{2} for 15 hours. Ammonium formate (1.0 g) was added and reflux continued for 0.5 hour The reaction mixture was filtered through a Celite pad which was rinsed with MeOH The filtrate was concentrated. The residues were treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (30 mL) and product extracted with methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(3 \times 25 \mathrm{~mL})$. The organic layer was washed with saturated aqueous NaCl solution (50 mL), dried through a cotton plug and concentrated The residue was treated with $2 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH} \mathrm{(} 5 \mathrm{~mL}$) and concentrated then taken up in minımum of MeOH and saturated with $\mathrm{Et}_{2} \mathrm{O}$ After stirring 18 h , the white crystals were collected by filtration ($86 \mathrm{mg}, 28 \%$) (TLC$\left.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.27\right)$ (data for free base) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{~m}$, $1 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 4 \mathrm{H}), 2.61(\mathrm{dc} \mathrm{J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}$, 1H). APCI MS m/e $178.2\left[(\mathrm{M}+1)^{+}\right]$. $(\mathrm{HCl}$ salt $) \mathrm{mp} 260-262^{\circ} \mathrm{C}$.

EXAMPLE 3

4-METHYL-10-AZA-TRICYCLO[6 3 1.0 ${ }^{2.7}$]DODECA-2(7),3,5-TRIENE

HYDROCHLORIDE

The title compound was prepared by the methods described in Example 1 and 2 starting with 2-fluoro-5-methylbromobenzene. (data for free base) ${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.04(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-290(\mathrm{~m}, 4 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H})$, $2.35(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=115 \mathrm{~Hz}, 1 \mathrm{H})$ APCI MS m/e $174.2\left[(\mathrm{M}+1)^{+}\right] .(\mathrm{HCl}$ salt) $\mathrm{mp} 254-255^{\circ} \mathrm{C}$. Anal. Caled. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N} \mathrm{HCl} 1 / 3 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{C}, 53.44 ; \mathrm{H}, 5.11 ; \mathrm{N}, 5.19$. Found C . 53.73; H, 4.82; N, 5.15.

EXAMPLE 4

4-TRIFLUOROMETHYL-10-AZA-TRICYCLOI6.3.1.0 ${ }^{27}$]DODECA-2(7).3,5-TRIENE HYDROCHLORIDE (See Grunewald, G. L.; Paradkar, V M.; Pazhenchevsky, B.; Pleiss, M. A.; Sall, D. J., Seibel, W. L., Reitz, T J. J Org. Chem. 1983, 48, 2321-2327 Grunewald, G. L.; Markovich, K. M.: Sall, D. J. J. Med. Chem. 1987. 30. 2191-2208.)

The title compound was prepared by the methods described in Example 1 and 2° starting with 2-fluoro-5-trfluoromethylbromobenzene ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.71$ (s, $1 \mathrm{H}), 764(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=80 \mathrm{~Hz}, 1 \mathrm{H}) 346(\mathrm{~m}, 4 \mathrm{H}), 3.21(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.41(\mathrm{~m} .1 \mathrm{H}) .216(\mathrm{~d} . \mathrm{J}=11.5 \mathrm{~Hz} .1 \mathrm{H}) \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 228.2\left[(\mathrm{M}+1)^{+}\right]$(HCl salt) $\mathrm{mp} 244-246$ ${ }^{\circ} \mathrm{C}$. Anal Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N} \mathrm{HCl} 1 / 3 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{C}, 5344, \mathrm{H} .511, \mathrm{~N}, 5.19$. Found C. 53.77, H , 4 82; N. 5.18

EXAMPLE 5

3-TRIFLUOROMETHYL-10-AZA-TRICYCLO[6 310^{27} IDODECA-2(7).3,5-TRIENE HYDROCHLORIDE (Grunewald, G L.; Markovich, K M.; Sall, D. J. J. Med. Chem. 1987, 30, 2191-2208)

The title compound was prepared by the methods described in Example 1 and 2 starting with 2-fluoro-6-trifluoromethylbromobenzene ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.65$ (s , $2 \mathrm{H}) .7 .52(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 349-343(\mathrm{~m}, 3 \mathrm{H}) .3 .20(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}) .2 .18(\mathrm{~d}$, $J=115 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{APCl} \mathrm{MS} \mathrm{m} / \mathrm{e} 228.2\left[(\mathrm{M}+1)^{+}\right](\mathrm{HCl}$ salt $) \mathrm{mp} 275-277^{\circ} \mathrm{C}$.

EXAMPLE 6

3-FLUORO-10-AZA-TRICYCLO[6.3.1.0. ${ }^{2.7}$ DODECA-2(7).3.5-TRIENE HYDROCHLORIDE
A) 2,6-Difluoromodobenzene (Roe, A. M.; Burton, R. A., Willey, G. L.; Baines, M. W.; Rasmussen, A. C. J. Med. Chem. 1968, 11, 814-819. Tamborski, C.: Soloski, E. J. Org. Chem. 1966, 31, 746-749. Grunewald, G. L.; Arrington, H. S.; Bartlett, W. J.; Reitz, T. J.; Sall, D. J. J. Med. Chem. 1986, 29, 1972-1982.) 1,3-Difluorobenzene ($57.05 \mathrm{~g}, 0.5 \mathrm{M}$) in THF (75 mL) was added to a $-78^{\circ} \mathrm{C}$ stirred solution of n -butyllithum (n -BuLi) ($200 \mathrm{~mL} .2 .5 \mathrm{M} /$ hexanes, 0.5 M) and THF (500 mL) under N_{2}. By controlling the addition rate the internal temperature was maintained below $-70^{\circ} \mathrm{C}$. The total addition time was $-1 / 2$ hour. The resultıng slurry was stirred an additional $1 / 2$ hour, then the dispersion was treated with a solution of iodine (126.9 g. 0.5 M) in THF (300 mL) at a rate that maintained an internal temperature below $-70^{\circ} \mathrm{C}$. After complete addition the mixture was allowed to warm to room temperature, and was treated with $\mathrm{H}_{2} \mathrm{O}\left(100 \mathrm{~mL}\right.$) and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (100 mL) and stirred. The layers were separated and the aqueous layer extracted with hexanes ($2 \times 250 \mathrm{~mL}$). The combined organic layer was washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (100 mL), $\mathrm{H}_{2} \mathrm{O}$ (100 mL). saturated aqueous NaCl solution (100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ filtered and concentrated to give a yellow oil (106.5 g). Distillation at $\sim 1-5 \mathrm{~mm}$ at $-80^{\circ} \mathrm{C}$ provided a light yellow oll (89.5 g , 75%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~m}, 1 \mathrm{H}), 687(\mathrm{~m}, 2 \mathrm{H})$ GCMS m/e $240\left(\mathrm{M}^{+}\right)$.

B) 5-Fluoro-1,4-dihydro-1,4-methano-naphthalene

A solution of 2,6 -difluoroodobenzene $(5.0 \mathrm{~g}, 20.8 \mathrm{mmol})$ and cyclopentadiene (2.07 g . 31.3 mmol) was stirred at $0^{\circ} \mathrm{C}$ in P . ether ($70 \mathrm{~mL}, 40-60^{\circ} \mathrm{C}$) under N_{2} and treated with n -BuLI $(8.74 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexanes, 21.8 mmol$)$ dropwise over 10 minutes The reaction was quenched after 15 minutes by addition of aqueous 1 N HCl solution and the product was extracted with hexanes ($3 \times 50 \mathrm{~mL}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(50$ mL), saturated aqueous NaCl solution (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated Chromatography on Silica gel provided product as an oll ($1.5 \mathrm{~g}, 45 \%$) (TLC hexanes R_{t} 0.55). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 708$ (ddd, $\mathrm{J}=7.0,1.0 .0 .8 \mathrm{~Hz}, 1 \mathrm{H}$), 696 (ddd, $J=8.5,8.3 .7 .0$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.86 (brs, 2H), 672 (ddd, J=8.5,8.3,0.8 Hz, 1H), 4.25 (br s, 1H), 3.98 (br s, 1H), 2.36 (ddd, $J=7.2,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, \mathrm{J}=7.2,1.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{GCMS} \mathrm{m} / \mathrm{e} 160\left(\mathrm{M}^{+}\right)$.
C) 3-Fluoro-10-aza-tricyclo[6.310 0^{27}]dodeca-2(7).3.5-triene hydrochloride

The title compound was prepared by the methods described in Example 2B.C.D starting with 5-fluoro-1,4-dihydro-1,4-methano-naphthalene. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 736 (ddd $J=8.3,7.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (d. $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (t, J=8.3 Hz, 1 H), 3.62 (br s , $1 \mathrm{H}), 3.42-3.30(\mathrm{~m}, 3 \mathrm{H}), 3.21(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $178.4\left[(M+1)^{+}\right] . \operatorname{mp} 269-271^{\circ} \mathrm{C}$.

EXAMPLE 7

4-NITRO-10-AZATRICYCLO[6.3 1.0 ${ }^{2.7}$ DDODECA-2(7), 3.5-TRIENE

HYDROCHLORIDE

A) 1-(10-Aza-tricyclo[6.310 0^{27}]dodeca-2(7),3.5-trien-10-yl)-2,2,2-trifluoro-ethanone

10-Aza-tricyclo[6.3.1.0. ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride salt (12.4 g, 63.9 mmol) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL}$). This was cooled (ice bath) and treated with pyridine (12.65 g 160 mmol) followed by trifluoroacetic anhydride (TFAA) ($16.8 \mathrm{~g}, 11.3 \mathrm{~mL}, 80 \mathrm{mmol}$) from an addition funnel over 10 minutes. After -3 hours, the solution was poured into 0.5 N aqueous $\mathrm{HCl}(200 \mathrm{~mL}$) and the layers separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic layer was washed with 0.5 N aqueous $\mathrm{HCl}(50$ mL), $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and saturated aqueous NaHCO_{3} solution (50 mL). This solution was dried through a cotton plug, then diluted with $\sim 3 \%$ EtOAc and filtered through a 2 inch Silica pad eluted with $\sim 3 \%$ EtOAc/CH2 Cl_{2} Concentration afforded a clear ofl which crystalized to give white needles ($15.35 \mathrm{~g}, 60.2 \mathrm{mmol} .94 \%$). (TLC 30% EtOAc/hexanes R, 0.53). 'H NMR $(400 \mathrm{MHz} \mathrm{CDCl} 3$) $\delta 718(\mathrm{~m}, 4 \mathrm{H}), 4.29$ (br d, $\mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 384 (br d, $\mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.51 (dd, $J=126.1 .5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21 (br s. 1 H), $3.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.10(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~m}$, 1H), $192(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS $\mathrm{m} / \mathrm{e} 255\left(\mathrm{M}^{+}\right) . \mathrm{mp} 67-68^{\circ} \mathrm{C}$.
B) 1-(4-Nitro-10-aza-tricyclo[6 3 1.0 $0^{2.7}$]dodeca-2(7).3.5-trien-10-yl)-2,2,2-trifluoroethanone (Based on the method described by Coon, C. L., Blucher, W G. Hill, M. E. J Org Chem. 1973, 25, 4243)

To a solution of trifluoromethanesulfonic acid ($24 \mathrm{ml}, 13.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml) stırred a: $0{ }^{\circ} \mathrm{C}$ was slowly added nitric acid ($0.58 \mathrm{ml}, 274 \mathrm{mmol}$) generating a white precipitate. After 10 minutes the resulting mixture was cooled to $-78^{\circ} \mathrm{C}$ and treated with 1 -(10-aza-tricycio[6.3.1.0 ${ }^{27}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone (3.5 g, 13.7 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ dropwise from an addition funnel over 5 minutes. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes then warmed to $0^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was poured into a vigorously stirred ice (100 g) The layers were separated and the aqueous layer
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The organic layer was combined and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times$ 30 ml). The combined organic layer was washed with saturated aqueous NaHCO_{3} solution (20 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ then dried through a cotton plug and concentrated to give an orange oil that solidified on standing (4.2 g). Chromatography yielded pure product as a crystalline solid ($3.2 \mathrm{~g}, 78 \%$). (TLC 30% EtOAc/hexanes $\mathrm{Rf}_{\mathrm{f}} 0.23$). ${ }^{\mathrm{H}} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12$ (br d. $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.08 (br s, 1 H), 7.37 (br d, $\mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.38 ($\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (br d. $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H})$. $2.48(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, \mathrm{j}=10.8 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $300\left(\mathrm{M}^{+}\right)$.
C) 4-Nitro-10-azatricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3.5-triene hydrochloride

1-(4-Nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-
ethanone ($182 \mathrm{mg}, 0.61 \mathrm{mmol}$) was stirred with $\mathrm{Na}_{2} \mathrm{CO}_{3}(160 \mathrm{mg}, 1.21 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ for 18 hours. The mixture was concentrated, water was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was extracted with 1 N aqueous HCl ($3 \times 20 \mathrm{~mL}$) and the acidic layer washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The aqueous layer was basified to $\mathrm{pH} \sim 10$ with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ and product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layer was dried through a cotton plug and concentrated to an oll. This was dissolved in MeOH and treated with $1 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH}$, from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to afford product as a white solid ($73 \mathrm{mg}, 50 \%$). ($\mathrm{TLC} 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.38$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{-}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}) .818(\mathrm{dd}, \mathrm{J}=8.0 .2 .0 \mathrm{~Hz}, 1 \mathrm{H}), 759$ (d. $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 343(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{dd}, \mathrm{J}=130.130 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H})$, $2.08(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 205.1\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp} 265-270^{\circ} \mathrm{C}$

EXAMPLE 8

4-AMINO-10-AZATRICYCLO[6.310 ${ }^{2.7}$ ㄱDODECA-2(7).3.5-TRIENE HYDROCHLORIDE

4-Nitro-10-azatricycio[6.3.1.0 $0^{2.7}$]dodeca-2(7).3.5-triene (500 $\mathrm{mg}, 2.08 \mathrm{mmol}$) was stirred in 1,4-dioxane (40 mL) and treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) To this was added di-t-butyldicarbonate ($1.8 \mathrm{~g}, 831 \mathrm{mmol}$) After stirring 18 hours the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$, dried through a cotton plug and concentrated to provide an oll ($500 \mathrm{mg}, 91 \%$)

This oll ($500 \mathrm{mg}, 164 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$, treated with $10 \% \mathrm{Pd} / \mathrm{C}$ ($\sim 50 \mathrm{mg}$) and hydrogenated under a H_{2} atmosphere (45 ps) for 1 hour The mixture was filtered through a Celite pad and concentrated to a clear oll ($397 \mathrm{mg}, 88 \%$)

This oll ($50 \mathrm{mg}, 0.18 \mathrm{mmol}$) was stirred in 3 N HCl EtOAc (3 mL) for 2 hours then concentrated to a white solid ($25 \mathrm{mg}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 7.38-7.10(3 \mathrm{H})$, $3.60(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.25(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS $\mathrm{m} / \mathrm{e} 175.1\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp} 189-192^{\circ} \mathrm{C}$.

EXAMPLE 9
$\mathrm{N}^{1}-\left[10-A Z A T R I C Y C L O\left[6.3 .10^{-2.7}\right]\right.$ OODECA-2(7),3,5-TRIEN-4-YL]ACETAMIDE HYDROCHLORIDE
A) 1-(4-Amino-10-aza-tncyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2.2.2-trifluoroethanone

Hydrogenation of 1-(4-nitro-10-aza-tricyclo[6.3.1.0. ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2.2.2-trifluoro-ethanone ($2.0 \mathrm{~g}, 6.66 \mathrm{mmol}$) under a H_{2} atmosphere (40 psi) and $10 \% \mathrm{Pd} / \mathrm{C}(200$ mg) in MeOH over 1.5 hours, filtration through Celite and concentration affords a yellow oll (1.7 g). (TLC 50% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.27$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.99(\mathrm{~m}, 1 \mathrm{H}), 6.64$ (br s, 1 H$), 6.57(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~m}$, 1H). 1.90 ($\mathrm{d}, \mathrm{J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}$). GCMS m/e $270\left(\mathrm{M}^{+}\right)$.
B) $\quad \mathrm{N}$-(10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0.7 ${ }^{2.7}$ dodeca-2(7),3.5-trien-4-yl)acetamide

1-(4-Amıno-10-aza-tricyclo[6.3 1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-10-yl)-2,2.2-trifluoro-
ethanone ($850 \mathrm{mg}, 3.14 \mathrm{mmol}$) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$) and treated with triethyl amine ($0.53 \mathrm{~mL}, 3.76 \mathrm{mmol}$) and acetyl chloride ($0.23 \mathrm{~mL}, 3.2 \mathrm{mmol}$) then stirred 18 hours. Standard NaHCO_{3} workup yielded an ofl which was chromatographed to provide a clear oil (850 mg , 87%). (50\% EtOAc/hexanes $R_{f} 028$).
C) N^{1}-[10-Azatricyclo[6.3.10 $0^{2.7}$]dodeca-2(7),3,5-trien-4-yl]acetamide hydrochloride

N -(10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0.7]dodeca-2(7),3,5-trien-4-yl)-acetamide ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) was stirred with $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(70 \mathrm{mg}, 0.64 \mathrm{mmol}\right.$) in $\mathrm{MeOH}\left(10 \mathrm{~mL}\right.$) and $\mathrm{H}_{2} \mathrm{O}$ (2 mL) at $70^{\circ} \mathrm{C}$ for 18 hours. The mixture was concentrated, water was added and the product was extracted with EtOAc The organic layer was extracted with 1 N aqueous $\mathrm{HCl}(3 \times$ $20 \mathrm{~mL})$ and the acidic layer washed with EtOAc ($2 \times 20 \mathrm{~mL}$). The aqueous layer was basified to $\mathrm{pH}-10$ with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (s) and product was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic layer was dried (sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$) and concentrated to an oll This material was dissolved in MeOH and treated with $3 \mathrm{~N} \mathrm{HCl} \mathrm{EtOAc} \mathrm{(} 3 \mathrm{~mL}$), concentrated and recrystallized
from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to provide a solid ($40 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 9.98$ (s. 1 H), 9.02 (br m, NH), 7.65 (s. 1 H), 7.55 (br s, NH), 7.36 (d, J=8.0 Hz, 1 H), $7.20(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$. $1 \mathrm{H}), 3.33(\mathrm{~m}, 4 \mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS $\mathrm{m} / \mathrm{e} 217.2\left[(\mathrm{M}+1)^{+}\right] . \mathrm{mp} 225-230^{\circ} \mathrm{C}$.

EXAMPLE 10
 6-METHYL-5-THIA-7.13-DIAZATETRACYCLOT9.3.1.0.10.0 ${ }^{48}$ IPENTADECA-

2(10), 3,6.8-TETRAENE HYDROCHLORIDE

A) N -(10-Trifluorothioacetyl-10-aza-tricyclo[6 3 1.0 $0^{2.7}$]dodeca-2(7),3.5 -trien-4-yl)thioacetamide

N -(10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0.7.7]codeca-2(7).3,5-trien-4-yl)-acetamide ($850 \mathrm{mg}, 2.72 \mathrm{mmol}$) and 2.4-bis(4-methoxyphenyl)-1.3-dithia-2,4-diphosphetane-2,4-disulfide (Lawesson's reagent) ($1.1 \mathrm{~g}, 2.72 \mathrm{mmol}$) were combired in toluene (10 mL) and brought to reflux for 1.5 hours. After cooling the reaction was worked up with EtOAc/saturated aqueous NaHCO_{3} solution. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed on Silica gel to produce product ($410 \mathrm{mg}, 44 \%$) (50% EtOAc/hexanes R_{f} 0.38)
B) 6-Methyl-5-thia-7.13-diazatetracyclo[9.3.1.0 $=0.0$. -8]pentadeca-2(10),3,6,8-tetraene hydrochloride

The above oil. 2.2.2-trifiuoro- N -(10-trifluorothoacetyl-10-aza-tricycto[6.3.1.0.0.7]dodeca-2(7),3.5-trien-4-yl)-thioacetamide, (360 mg, 1.05 mmol) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{NaOH}(5 \mathrm{~mL})$ and added to potassium ferricyanide $\left(\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\right)(1.72 \mathrm{~g}, 5.23 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. This mixture was warmed to $60^{\circ} \mathrm{C}$ for 1.5 hours, cooled, concentrated and worked up with EtOAc/H2O This material was stirred in droxane (20 mL) and treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to achieve pH 10 . To this was added di-t-butyldicarbonate ($436 \mathrm{mg}, 2.0 \mathrm{mmol}$) and the mixture was stirred for 18 hours. The reaction was concentrated, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was chromatographed (Silica 30% EtOAc/hexanes $\mathrm{R}, 0.41$) to yield an ofl (100 mg).

The above product was treated with $3 \mathrm{~N} \mathrm{HCl} / E T O A C(3 \mathrm{~mL}$) and warmed to reflux for -15 minutes then concentrated to a solid which was azeotroped with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 x$). These solids were dissolved in a minimum amount of MeOH then saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. The resulting white crystaline powder was collected by filtration ($40 \mathrm{mg}, 14 \%$).
${ }^{\prime} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}$) $\delta 9.46$ (s, NH), 7.65 (s, 1H), 782 ($\mathrm{s}, 1 \mathrm{H}$), 7.65 (br m , NH), $3.36(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}$, $1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 231.1\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp} 183-184^{\circ} \mathrm{C}$.

EXAMPLE 11

4.5-DINITRO-10-AZA-TRICYCLO[6.3.1.0 ${ }^{27}$]DODECA-2(7).3,5-TRIENE
A) 1-(4,5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2.2-trifluoroethanone (Based on the method described in Coon, C. L.; Blucher, W G.; Hill, M. E. J. Org. Chem. 1973, 25, 4243. For an additional related example of dinitratıon see: Tanida, H.; Ishitobi, H.; Irie. T.; Tsushıma, T. J. Am. Chem. Soc. 1969, 91. 4512.)

To a solution of trifluoromethanesulfonic acid ($79.8 \mathrm{ml}, 902.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (550 $\mathrm{ml})$ stirred at $0^{\circ} \mathrm{C}$ was slowly added nitric acid ($19.1 \mathrm{ml}, 450.9 \mathrm{mmol}$) generating a white precipitate. After 10 minutes, 1-(10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2,2,2-trifluoro-ethanone ($50 \mathrm{~g}, 196 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ was added dropwise from an addition funnel over 30 minutes. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2.5 hours and then stirred at room temperature for 24 hours. The reaction mixture was poured into a vigorously stirred mixture of $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$ and ice (400 g). The layers were separated and the aqueous layer back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{mi})$. The organic layer was combined and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 300 \mathrm{ml})$. The combined aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{ml})$. The organic layer was combined and washed with saturated aqueous NaHCO_{3} solution (200 mL) and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ then dried through a cotton plug and concentrated to solids Trituration with EtOAc/hexanes produced off white solids which were filtered and dried (52 g . $151 \mathrm{mmol}, 77 \%$ The mother liquor was chromatographed to give an additional 4.0 g for a total of $56.0 \mathrm{~g}(82.8 \%)$. (TLC 50% EtOAc/hexanes $\left.\mathrm{R}_{\mathrm{f}} 0.29\right)^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 777$ (s. 1 H) , 7.75 ($\mathrm{s}, 1 \mathrm{H}$), $439(\mathrm{brd}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{brd}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}=13.0$ $\mathrm{Hz}, 1 \mathrm{H}$) , 3.49 (br s. 1 H), 344 (br s. 1 H) , 324 (br d. $\mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53 (m, 1H), 2.14 (d, $J=115 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $345\left(\mathrm{M}^{+}\right)$

B) 4,5-Dinitro-10-aza-tricyclo[6.3.10 ${ }^{237}$]dodeca-2(7),3,5-triene

1-(4,5-Dınitro-10-aza-trıcyclo[6.3.1.0.7]dodeca-2(7),3.5-trien-10-yi)-2.2.2-trifluoro-
ethanone ($3.7 \mathrm{~g}, 107 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.3 \mathrm{~g} .21 .4 \mathrm{mmol})$ were combined in $\mathrm{MeOH}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ then warmed to reflux for 18 hours. The reaction was cooled. concentrated, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ then dried through a cotton plug After concentration, the residue was chromatographed to provide brown solids. ($1.9 \mathrm{~g}, 71 \%$)

5 (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}, 0.36$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~s}, 2 \mathrm{H}), 3.17$ (br s. 2 H), 3.11 (d, J=12.6 Hz, 2H), $2.53(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, \mathrm{~J}=110 \mathrm{~Hz}, 1 \mathrm{H})$ GCMS m/e 249 (M^{+}).

EXAMPLE 12

6-METHYL-7-PROPYL-5,7,13-TRIAZATETRACYCLO[9.310 $0^{2.10}$. 0 . P PENTADECA2(10) 3,5,8-TETRAENE HYDROCHLORIDE
A) 4.5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester

4,5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene. (1.9 g, 7.6 mmol) was stirred in 1.4-dioxane (75 mL) and treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (10 mL). To this was added di-t-butyldıcarbonate ($3.31 \mathrm{~g}, 15.2 \mathrm{mmol}$). After stirring 6 hours the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with EtOAc $(4 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed to provide product ($1.9 \mathrm{~g}, 71 \%$). (TLC 30% EtOAchexanes $\left(\mathrm{NH}_{3}\right) \mathrm{R}, 058$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77$ (br s, 1 H), 7.72 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), $4.08(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.27(\mathrm{br} \mathrm{s} 1 \mathrm{H}),. 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 2.46$ $(\mathrm{m}, 1 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$.

B) 4.5-Diamino-10-aza-trıcyclo[6.3.1.0 ${ }^{27}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester

4.5-Dinitro-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7) 3.5-triene-10-carboxylic acid tertbutyl ester ($1.9 \mathrm{~g}, 544 \mathrm{mmol}$) was hydrogenated in MeOH under a H_{2} atmosphere (45 psi) over $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ for 1.5 hours then filtered through a Celite pad and concentrated to white solids ($1.57 \mathrm{~g}, 100 \%$). ($\mathrm{TLC} 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}, 0$ 14)
C) 6-Methyl-5.7.13-triazatetracyclo[9.3 1.0 ${ }^{210} 0^{48}$]pentadeca-2(10),3,5,8-tetraene-13carboxylic acid tert-butyl ester (For conditions, see; Segelstein, B. E., Chenard, B. L.; Macor, J. E., Post, R. J. Tetrahedron Lett. 1993, 34, 1897)

4,5-Diamıno-10-aza-tricyclo[6 3 1.0.7]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester ($700 \mathrm{mg}, 242 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}(10 \mathrm{~mL}$) and acetic acid (HOAc) (1 mL) and treated with 1 -ethoxyethylenemalononitrile ($329 \mathrm{mg}, 242 \mathrm{mmol}$). The resulting mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred 18 hours. The reaction was cooled, concentrated treated with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with EtOAc (3×50 $\mathrm{mL})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ After filtration and concentration, the residue was
chromatographed to provide brown solids ($247 \mathrm{mg}, 36 \%$) (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}}$ $0.28)$.
D) 6-Methyl-7-propyl-5.7,13-triazatetracyclo[9 3.1.0. ${ }^{2.10}$. 0. $^{4.8}$ pentadeca-2(10),3,5,8-tetraene-13-carboxylic acıd tert-butyl ester (For condıtons, see; Pilarskı, B. Liebigs Ann. Chem. 1983, 1078.)

6-Methyl-5.7.13-triazatetracyclo!9.3.1.0 ${ }^{2.10} 0^{48}$]pentadeca-2(10),3,5,8-tetraene-13carboxylic acid tert-butyl ester ($80 \mathrm{mg}, 0.267 \mathrm{mmol}$) was stirred in 50% aqueous NaOH solution (3 mL) and DMSO (1 mL) then treated with 1-iodopropane ($0.03 \mathrm{~mL}, 0.321 \mathrm{mmol}$). This mixture was warmed to $40^{\circ} \mathrm{C}$ for 2 hours then cooled, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 x)$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to an oll ($90 \mathrm{mg}, 0.253 \mathrm{mmol}$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}, 0.15$).
E) 6-Methyl-7-propyl-5,7,13-triazatetracycio[9.3.1.0 ${ }^{2.10} \underline{0}^{4.8}$]pentadeca-2(10),3,5,8tetraene hydrochloride

6-Methyl-7-propyl-5,7.13-trıazatetracyclo[9.3.1.0 $\left.0^{2.10} .0^{4.8}\right]$ pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester ($90 \mathrm{mg}, 0.253 \mathrm{mmol}$) was dissolved in 3 N HCl EtOAc (5 mL) and warmed to $100^{\circ} \mathrm{C}$ for $1 / 2$ hour. The mixture was cooled, concentrated, slurried in EtOAc, and filtered to provide a white solid ($25 \mathrm{mg}, 34 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz , DMSO_{6}) $\delta 9.56(\mathrm{~s}, \mathrm{NH}), 791(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{brm}, \mathrm{NH}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}$, $2 \mathrm{H}), 3.32(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) 1.85(\mathrm{~m}$, $2 \mathrm{H}), 0.97(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{mp} 147-150^{\circ} \mathrm{C}$

EXAMPLE 13

5,7.13-TRIAZATETRACYCLO[9.3.1.0 ${ }^{2} 10$ 0 $0^{4.8}$]PENTADECA-2(10),3.5.8-TETRAENE HYDROCHLORIDE
A) $\quad 5,7,13$-Triazatetracyclo[9.3 $10^{2.10} 0^{4.8}$]pentadeca-2(10),3,5.8-tetraene-13carboxylic acid tert-butyl ester (For conditions, see; Segelstern, B. E.: Chenard, B. L.; Macor, J E., Post. R. J. Tetrahedron Lett. 1993, 34, 1897.)

4,5-Diamıno-10-aza-trıcyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester ($1.0 \mathrm{~g}, 345 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}(10 \mathrm{~mL})$ and HOAc (1 mL) and treated with ethoxymethylenemalononitrile ($421 \mathrm{mg}, 3.45 \mathrm{mmol}$). The resulting mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred 18 hours. The reaction was cooled, concentrated treated with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), then dried
$\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and concentration, the residue was chromatographed to provide brown solids ($580 \mathrm{mg}, 56 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{1} 0.28$)
B) 5 5.7.13-triazatetracycio $\left[9.3 \cdot 1.0^{2.10} .0^{48}\right.$]pentadeca-2(10),3,5.8-tetraene hydrochloride 5,7,13-Triazatetracyclo[9.3.1.0 ${ }^{2.10} .0^{4.8}$]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester was converted to the title compound by the methods described in Example 12E. ' H NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.95$ (s .1 H), 7.67 ($\mathrm{s}, 2 \mathrm{H}$), 3.45 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}$), 3.31 (d, $J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $200.1\left[(M+1)^{\circ}\right] . m p>250^{\circ} \mathrm{C}$.

EXAMPLE 14

7-METHYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. $\mathbf{0}^{4.8}$]PENTADECA-2(10), 3,5,8TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 12D, 5.7.13triazatetracyclo[9.3.1. $0^{2.10} 0^{4.8}$]pentadeca-2(10),3.5.8-tetraene-13-carboxylic acid tert-butyl ester was converted to the title compound by reaction with Iodomethane followed by deprotection as described in Example 12E. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.97$ (s, 1H), 7.71 (s, $1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~d} . \mathrm{J}=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS}$ me $214.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 15

6-METHYL-5,7,13-TRIAZATETRACYCLO[9 $3.10^{2210} 0^{48}$ IPENTADECA-2(10),3,5,8TETRAENE HYDROCHLORIDE

6-Methyl-5,7.13-triazatetracyclo[9.3.1 $0^{2.10} 0^{48}$]pentadeca-2(10), 3.5.8-tetraene-13carboxylic acid tert-butyl ester was converted to the title compound by the methods described
 $1 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{br} \mathrm{d}, \mathrm{J}=110 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.10$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$). GCMS m/e $213.5\left(\mathrm{M}^{+}\right)$.

EXAMPLE 16

6.7-DIMETHYL-5.7,13-TRIAZATETRACYCLO[9.3.1.0 ${ }^{210} \underline{0}^{48}$ PPENTADECA-2(10).3.5.8-TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 12D. 6-methyl-5,7,13triazatetracyclo[9.3.1.0 $0^{2.10} 0^{48}$]pentadeca-2(10),3,5.8-tetraene-13-carboxylic acid tert-butyl
ester was converted to the title compound by reaction with iodomethane followed by deprotection as described in Example 12E. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d) $\delta 9.52$ (s, NH). $784(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{br} \mathrm{m}, \mathrm{NH}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 345(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~m} .2 \mathrm{H}), 3.04(\mathrm{~m}$, $2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~d}, \mathrm{~J}=110 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $228.2\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp}$ $225-230^{\circ} \mathrm{C}$.

EXAMPLE 17

7-PROPYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0 $2.10 .0^{4.8}$ PPENTADECA-2(10),3,5,8-

TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 12D, 5.7.13triazatetracyclo $9.3 \cdot 1 \cdot 0^{2.10} .0^{4.8}$]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-buty| ester was converted to the title compound by reaction with rodopropane followed by deprotection as described in Example 12E. 'H NMR (400 MHz . DMSO-d ${ }_{6}$) $\delta 9.52$ (s. 1 H), 9.45 (br s, NH), $7.97(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 783(\mathrm{br} \mathrm{m}, \mathrm{NH}), 4.43(\mathrm{~m}, 2 \mathrm{H}), 349(\mathrm{~m}, 2 \mathrm{H}), 3.33$ $(\mathrm{m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{APCl}$ MS m/e $242.2\left[(M+1)^{+}\right] . m p 170-171^{\circ} \mathrm{C}$ (subl.).

EXAMPLE 18

7-BUTYL-5,7,13-TRIAZATETRACYCLO[9.3.10 $0^{210} 0^{48}$ [PENTADECA-2(10),3,5,8TETRAENE HYDROCHLORIDE
A) 4-Butylamino-5-nitro-10-aza-tricyciol6.310 0^{27} Idodeca-2(7).3.5-triene-10-carboxylic acid tert-butyl ester (For conditions, see; Senskey, M D.: Bradshaw, J. D.. Tessier, C A. Youngs, W. J. Tetrahedron Lett. 1995, 36, 6217.)

4,5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester ($500 \mathrm{mg}, 143 \mathrm{mmol}$) and 1-butylamine (142 mL .143 mmol) were combined in THF (5 mL) and stirred 4 hours. The mixture was diluted with EtOAc (50 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to an oll. This oll was passed through a Silica gel filter column to remove baseline impurities eluting with 30% EtOAc/hexanes ($510 \mathrm{mg}, 1.41 \mathrm{mmol}, 99 \%$).
B) 4-Butylamino-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{27}$ dodeca-2(7).3.5-triene-10carboxylic acid tert-butyl ester

4-Butylamino-5-nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene-10-carboxylic acid tert-butyl ester ($460 \mathrm{mg}, 1.27 \mathrm{mmol}$) was treated with ammonium formate ($850 \mathrm{mg}, 12.7$
mmol) and $10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(50 \mathrm{mg})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ and brought to reflux for 1 hour then filtered through a Celite pad and concentrated. The solids were treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and dred by filtration through a cotton plug to give an oil ($440 \mathrm{mg}, 100 \%$)
C) 7-Butyl-5,7,13-triazatetracyclo[9 $310^{2.10}$. T 8]pentadeca-2(10), 3,5,8-tetraene-13carboxylic acid tert-butyl ester

4-Butylamıno-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester ($440 \mathrm{mg}, 1.27 \mathrm{mmol}$) was dissolved in EtOH (20 mL) and HOAc (2 mL) and treated with ethoxymethyienemalononitrile ($186 \mathrm{mg}, 1.52 \mathrm{mmol}$). The resulting mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred 18 hours. The reaction was cooled, concentrated, treated with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution then extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and concentration, the residue was chromatographed to provide a yellow oil ($400 \mathrm{mg}, 89 \%$) ($\mathrm{TLC} 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{1} \mathrm{O} 70$)
D) 7-Butyl-5,7,13-triazatetracyclo[9.3 1.0 ${ }^{2.10} .0^{48}$]pentadeca-2(10),3,5,8-tetraene hydrochloride

7-Butyl-5,7,13-triazatetracyclo[9.3.1.0 $0^{2,10} .0^{48}$]pentadeca-2(10),3,5,8-tetraene-13carboxylic acid tert-butyl ester was converted to the title compound by the methods described in Example 12E. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\left.-\mathrm{d}_{6}\right)} \delta 9.93$ (brs, NH), 9.68 ($\mathrm{s}, 1 \mathrm{H}$), $7.99(\mathrm{~s}, 1 \mathrm{H})$, $792(\mathrm{br} \mathrm{m}, \mathrm{NH}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 2 \mathrm{H}), 349(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m} .2 \mathrm{H}), 308(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}$, $1 \mathrm{H}), 215(\mathrm{~d}, \mathrm{~J}=110 \mathrm{~Hz}, 1 \mathrm{H}), 188(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=70 \mathrm{~Hz}, 3 \mathrm{H})$ APCI MS m/e $2562\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp} 204-208^{\circ} \mathrm{C}$

EXAMPLE 19

7-Isobutyl-5,7,13-triazatetracyclo[9.3.1 $0^{2.10} 0^{4.8}$]pentadeca-2(10),3,5,8-tetraene hydrochloride

4,5-Dinitro-10-aza-tricyclo[6.3.1 0^{27}]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester and isobutylamine were converted to the title compound utilizing the methods described in Example 18A-D. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 774$ (s. 1 H), 752 (s, 1 H) , 7.14 (s. 1 H), 390 (dd, $\mathrm{J}=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.04-297(\mathrm{~m}, 4 \mathrm{H}), 2.70(\mathrm{dd}, \mathrm{J}=12.8 .2 .3 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~m}$, 1H), $219(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~m}, 6 \mathrm{H}) \mathrm{APCl} \mathrm{MS} \mathrm{m} / \mathrm{e} 256.2\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp}$ $147-150^{\circ} \mathrm{C}$ (subl.).

EXAMPLE 20
6-METHYL-7-ISOBUTYL-5.7.13-TRIAZATETRACYCLO[9.3.1.0 $0^{210} .0^{4}$. PENTADECA2(10), 3,5,8-TETRAENE HYDROCHLORIDE
A) 6-Methyl-7-isobutyl-5,7,13-triazatetracycio[9.3.1.0 ${ }^{2.10}$. 0^{48}]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester

4-Amino-5-isobutylamino-10-aza-tricycio[6.3.1.0.7 ${ }^{2.7}$ ddodeca-2(7).3.5-triene-10carboxylic acid tert-butyl ester ($250 \mathrm{mg}, 0.74 \mathrm{mmol}$) from Example 19B was dissolved in EtOH $(10 \mathrm{~mL})$ and HOAC (2 mL) and treated with 1-ethoxyethylenemalononitrile ($118 \mathrm{mg}, 0.87$ mmol). The reaction proceeded as in Example 18C (18h) and was worked up similarly to provide product (TLC $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} \mathrm{O} .57$).
B) 6-Methyl-7-isobutyl-5.7.13-triazatetracyclo[9.3.1.0 ${ }^{2.10} \underline{0}^{4.8}$]pentadeca-2(10),3.5.8tetraene hydrochlonide

6-Methyl-7-isobutyl-5,7,13-triazatetracyclo[9.3.1 $\left.0^{2.10} 0^{4.8}\right]$ pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester was converted to the title compound by the methods described in Example 12E. APCI MS m/e $2703\left[(M+1)^{+}\right] \mathrm{mp} 129-130{ }^{\circ} \mathrm{C}$ (subl.)

EXAMPLE 21

7-PHENYL-5,7,13-TRIAZATETRACYCLO[9 310 2.10 0 4.8 $]$ PENTADECA-2(10),3,5,8TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 18A. 4.5-dinitro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester and aniline were converted to 4-phenylamino-5-nitro-10-aza-tricyclo[6.3.1 $0^{2.7}$]dodeca-2(7),3.5-triene-10carboxylic acid tert-butyl at $75^{\circ} \mathrm{C}$ for 4 hours in the couping step. This was then converted to the title compound utilizing the methods described in Example 18B,C.D ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.08(1 \mathrm{H}), 778-7.57(\mathrm{~m}, 7 \mathrm{H}), 347-3.00(\mathrm{~m}, 6 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~d}, \mathrm{~J}=115 \mathrm{~Hz}$, $1 \mathrm{H}) . \mathrm{APCIMS} m / \mathrm{e} 276.2\left[(\mathrm{M}+1)^{+}\right] . \mathrm{mp} 210-213^{\circ} \mathrm{C}$.

EXAMPLE 22

6-METHYL-7-PHENYL-5.7,13-TRIAZATETRACYCLOI9.3.1.0 $0^{210} 0^{48}$ PPENTADECA2(10), 3, 5,8-TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 21 and Example 20, 4.5-dinitro-10-azatricycio[6.3 $1 \mathrm{O}^{27}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester and aniline were
converted to the title compound. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.79$ ($\mathrm{s}, 1 \mathrm{H}$), 7.73-7.56 (m , $5 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 3.46-2.99(\mathrm{~m}, 6 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCl}$ MS $m / e 290.2\left[(\mathrm{M}+1)^{+}\right] . m p>250^{\circ} \mathrm{C}$.

EXAMPLE 23

7-NEOPENTYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0. ${ }^{2.10}$ 으․ PENTADECA2(10), 3.5.8-TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 18A-D, 4,5-dinitro-10-azatricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester and neopentylamine were converted to the title compound. t-Boc precursor GCMS m/e $369\left(\mathrm{M}^{+}\right)$. (HCl salt) $\mathrm{mp}>250^{\circ} \mathrm{C}$.

EXAMPLE 24

 TEIRAENE HYDROCHLORIDE

Utilizing the methods described in Example 21 and 20, 4,5-dinitro-10-aza-tricycto[6.3.1.0.7]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester and neopentylamine were converted to the title compound. ${ }^{1} \mathrm{H}$ NMR (400 MHz . DMSO- d_{6}) $\delta 7.31$ $(\mathrm{s}, 1 \mathrm{H}), 727(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{br} \mathrm{s}, \mathrm{NH}), 441(\mathrm{t}, \mathrm{J}=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.26(\mathrm{~m}, 6 \mathrm{H})$, $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=115 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$. t-Boc precursor APCI MS m/e $384.2[(\mathrm{M}+$ 1) ${ }^{+} \mathrm{mp}>250^{\circ} \mathrm{C}$.

EXAMPLE 25
 HMDROCHLORIDE (Based on the following procedure: Jones, R G.; McLaughlin, K. C. Org. Syn. 1963, 4, 824. b) Ehrlich. J., Bobert, M. T. J. Org. Chem. 1947, 522.)

4,5-Diamino-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-triene-10-carboxyluc acid tertbutyl ester ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$) was warmed to $80^{\circ} \mathrm{C}$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}$). To this butane 2.3dione ($0.034 \mathrm{~mL}, 0.38 \mathrm{mmol}$) was added under N_{2} for 2 hours. The reaction was cooled to room temperature and extracted with EtOAc $(3 \times 40 \mathrm{mt})$ The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{mi})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered. concentrated and chromatographed on Silica get to provide an oll ($120 \mathrm{mg}, 100 \%$) The ofl was dissolved in $2 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH} \mathrm{(} 5 \mathrm{~mL}$) and warmed to reflux for 30 minutes, then concentrated. Recrystallization from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ provided a white powder ($50 \mathrm{mg} .43 \%$) (TLC EtOAc $\mathrm{R}_{1} \mathrm{O}$ 14) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})
$\delta 7.85(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{brs}, 2 \mathrm{H}) .3 .32(\mathrm{~d} . \mathrm{J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 6 \mathrm{H})$, $2.24(\mathrm{~m}, 1 \mathrm{H}) .2 .13(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{t}$-Boc precursor APCI MS m/e $340.3\left[(\mathrm{M}+1)^{+}\right]$

EXAMPLE 26

5,8,14-TRIAZATETRACYCLO[10.3.1.0 $0^{211} 0^{49}$ HEXADECA-2(11),3,5,7,9-PENTAENE HYDROCHLORIDE
A) 1-(4,5-Diamıno-10-aza-tricyclo[6.3.10 ${ }^{27}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone

1-(4.5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2,2,2-trifluoroethanone ($3.0 \mathrm{~g}, 8.70 \mathrm{mmol}$) was hydrogenated in $\mathrm{MeOH}(30 \mathrm{ml})$ under $\mathrm{H}_{2}(45 \mathrm{psi})$ over $\mathrm{Pd}(\mathrm{OH})_{2}(300 \mathrm{mg}$ of $20 \mathrm{wt} \% / \mathrm{C}, 10 \% \mathrm{wt})$. After 2.5 hours the reaction was filtered through a Celite pad and rinsed with $\mathrm{MeOH}(30 \mathrm{ml})$. The solution was concentrated to a light brown oil which crystallized ($2.42 \mathrm{~g}, 96 \%$). (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{R}_{\mathrm{f}} 0.56$). APCI MS m/e 286.2 [(M+ 1) ${ }^{+}$] $\mathrm{mp} 129-131^{\circ} \mathrm{C}$.
B) 1-(5,8,14-Triazatetracyclo $10.3 .1 .0^{211}$ 의 - hexadeca-2(11),3,5,7,9-pentaene)-2,2,2-trifluoro-ethanone

1-(4.5-Diamıno-10-aza-tricyclo[6.3.1.0 ${ }^{27}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($500 \mathrm{mg}, 1.75 \mathrm{mmol}$) was stirred in THF (2 ml). This mixture was treated with $\mathrm{H}_{2} \mathrm{O}$ (2 mL) and giyoxal sodium bisulfite addition compound hydrate ($931 \mathrm{mg}, 3.50 \mathrm{mmol}$) then stirred at $55^{\circ} \mathrm{C}$ for 2.5 hours The reaction was cooled to room temperature and extracted with EtOAc ($3 \times 40 \mathrm{ml}$) The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed on Silica gel to provide an off white powder ($329 \mathrm{mg}, 60 \%$) (TLC 25\% EtOAc/hexanes R, 040). mp $164-166^{\circ} \mathrm{C}$.
C)

5,8,14-Triazatetracyclo[1031.0 ${ }^{211} \underline{0}^{49}$]hexadeca-2(11),3.5,7,9-pentaene hydrochloride

1-(5,8,14-Triazatetracyclo[10.3.1.0 $0^{211} .0^{49}$ hexadeca-2(11),3,5,7,9-pentaene)-2,2,2-trifluoro-ethanone ($320 \mathrm{mg}, 1.04 \mathrm{mmol}$) was slurried in $\mathrm{MeOH}(2.0 \mathrm{ml})$ and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}(221 \mathrm{mg}, 2.08 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{ml})$ The mixture was warmed to $70^{\circ} \mathrm{C}$ for 2 hours. then concentrated, treated with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$ The organic layer was dried through a cotton plug and concentrated to give a light yellow oil (183 $\mathrm{mg} .83 \%$) which solidified upon standing ($\mathrm{mp} 138-140^{\circ} \mathrm{C}$). This material was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$, treated with $3 \mathrm{M} \mathrm{HCVEtOAC}(3 \mathrm{ml})$, concentrated and azeotroped with MeOH
-56-
($2 \times 20 \mathrm{~mL}$) to give solids which were recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to afford product as a white solid ($208 \mathrm{mg}, 97 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Rf} 0.26$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz . $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.94(\mathrm{~s}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~d}, \mathrm{~J}=12.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{GCMS} \mathrm{m} / \mathrm{e} 211\left(\mathrm{M}^{+}\right) \mathrm{mp} 225-230^{\circ} \mathrm{C}$.

EXAMPLE 27

14METHML-5,8,14-TRIAZATETRACYCLO $10.3 .1 .0^{211}$. H HEXADECA-2(11),3,5,7,9PENTAENE HYDROCHLORIDE

5,8,14-Triazatetracycio[10.3.1.0 ${ }^{2 \cdot 11} .0^{4.9}$ hexadeca-2(11),3,5,7.9-pentaene $(207 \mathrm{mg}$. 0.98 mmol) was treated with 37% aqueous formaline solution (1 mL) and formic acid (1 mL) then warmed to $80^{\circ} \mathrm{C}$ for 1 hour. The reaction was poured into water, made basic $(\mathrm{NaOH}, \mathrm{pH}$ ~ 11) and extracted with EtOAc. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and chromatographed on Silica gel to provide a yellow solid. This was stirred in $\mathrm{MeOH}(2 \mathrm{~mL})$ and treated with 3 N HCl EtOAC (2 mL). After concentration the solids were recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to afford product as a white solid ($70 \mathrm{mg}, 27 \%$). ($2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{t}}$ 0.47). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 2 \mathrm{H}), 337(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H})$, $2.47(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{brs}, 3 \mathrm{H}), 1.84(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCl} \mathrm{MS} \mathrm{m} / \mathrm{e} 226.2[(\mathrm{M}+$ 1) $\left.{ }^{+}\right] . m p>250^{\circ} \mathrm{C}$.

EXAMPLE 28

5-OXA-7,13-DIAZATETRACYCLO[9.310 $0^{210} 0^{48}$ PENTADECA-2(10).3.6,8TETRAENE HYDROCHLORIDE
A) 2,2,2-Trifluoro-1-(4-hydroxy-5-nitro-10-aza-tricycio[6 3.10^{27}]dodeca-2(7),3,5-trien-10-yl)-ethanone

1-(4,5-Dinitro-10-aza-trıcyclo[6.3 1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2.2,2-trifluoroethanone ($900 \mathrm{mg}, 2.61 \mathrm{mmol}$) and potassium acetate (KOAc) ($2.6 \mathrm{~g}, 26.1 \mathrm{mmol}$) were dissolved in DMSO (10 mL) and warmed with stirng to $100^{\circ} \mathrm{C}$ for 16 hours. The mixture was cooled and diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL}$) then extracted with 80% EtOAc/hexanes ($6 \times 25 \mathrm{~mL}$). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated and purified by chromatography to give an oll ($575 \mathrm{mg}, 70 \%$) (TLC 50% EtOAc/hexanes $\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} \mathrm{O} .56$)
B) 2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6 3 1.0 ${ }^{\text {2.7. }}$]dodeca-2(7).3.5-trien-10-yl)-ethanone

2,2,2-Trifluoro-1-(4-hydroxy-5-nitro-10-aza-tricyclo[6.3.1.0. ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-ethanone ($575 \mathrm{mg}, 1.82 \mathrm{mmol}$) was hydrogenated in MeOH under a H_{2} atmosphere at (45 psi) over $10 \% \mathrm{Pd} / \mathrm{C}(80 \mathrm{mg})$ for 15 hours then filtered through a Celite pad and concentrated to white solids ($450 \mathrm{mg}, 86 \%$). (TLC $\left.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.6\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$. $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ 8 6.67-6.59 (m, 2H), $4.12(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}$. $2 H), 2.24(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{GCMS} \mathrm{m} / \mathrm{e} 286\left(\mathrm{M}^{+}\right)$.
C) 2,2,2-Trifluoro-1-(5-oxa-7,13-diazatetracyclo[9.3.1.0 ${ }^{2.10}$. on $^{4.8}$]pentadeca-2(10),3,6,8-tetraene)-ethanone (Goldstein, S. W.; Dambek, P. J. J. Het. Chem. 1990, 27, 335)

2,2.2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-ethanone ($150 \mathrm{mg}, 0.524 \mathrm{mmol}$), trimethyl orthoformate ($0.19 \mathrm{~mL}, 1.73 \mathrm{mmol}$) pyridinium-p-toluenesulfonic acid (PPTS. 18 mg .007 mmol) and xytenes (10 mL) were combined under nitrogen and stirred at $135^{\circ} \mathrm{C}$ for 18 hours. The mixture was cooled, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and purfied by chromatography to give an oll ($110 \mathrm{mg}, 71 \%$). (TLC 20% EtOAc/hexanes R $_{f}$ 0.40)
D) 5-Oxa-7.13-dıazatetracyclo[9.310 ${ }^{210} 0^{48}$]pentadeca-2(10),3.6.8-tetraene hydrochloride
2.2.2-Trifluoro-1-(5-oxa-7,13-diazatetracyclo[9.3 $10^{2}{ }^{10} 0^{48}$] pentadeca-2(10),3.6.8-tetraene)-ethanone ($110 \mathrm{mg}, 037 \mathrm{mmol}$) was stirred in $\mathrm{MeOH}\left(5 \mathrm{~mL}\right.$) and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (78 mg .0 .74 mmol) in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The stirred mixture was warmed to $80^{\circ} \mathrm{C}$ for 2 hours. concentrated to solids, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The product was extracted into aqueous 1 N HCl solution ($2 \times 40 \mathrm{~mL}$) which was washed with EtOAc then neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to $\mathrm{pH} \sim 10$. The product was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and chromatographed on Silica gel to produce an oil. (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{1} \mathrm{O} 19$).

The oil was dissolved in MeOH and treated with 3 N HCl EtOAc (4 mL) then concentrated, stirred in a minımum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated with hexanes After 18 hours, the product was collected by filtration ($55 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 847(\mathrm{~s}, 1 \mathrm{H})$. $7.70(\mathrm{~s} 1 \mathrm{H}), 765(\mathrm{~s} .1 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 310(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H})$. 2.15 (d. J=110 Hz, 1H) APCI MS m/e $201.03\left[(\mathrm{M}+1)^{+}\right]$

EXAMPLE 29
6-METHYL-5-OXA-7,13-DIAZATETRACYCLO[9.3.1.0.10.0 - PIPENTADECA2(10), 3,6.8-TETRAENE HYDROCHLORIDE
A) 2,2,2-Trifluoro-1-(6-methyl 5-oxa-7,13-diazatetracyclo[9.310 $0^{210} .0^{48}$]pentadeca-2(10),3,6,8-tetraene)-ethanone
2.2,2-Trifluoro-1-(4-hydroxy-5-amıno-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-$10-\mathrm{yl})$-ethanone ($150 \mathrm{mg}, 0.524 \mathrm{mmol}$), triethyl orthoacetate ($0.34 \mathrm{~mL}, 1.83 \mathrm{mmol}$), pyridinium-p-toluenesulfonic acid (PPTS, $20 \mathrm{mg}, 0.08 \mathrm{mmol}$) and xylenes (10 mL) were combined under nitrogen and stirred at $135^{\circ} \mathrm{C}$ for 18 hours. Workup, isolation and purification as in Example 28C provided the title compound ($90 \mathrm{mg}, 55 \%$).
B) 6-Methyl-5-oxa-7,13-diazatetracyclo[9.3.10 ${ }^{2.10} \underline{0}^{48}$]pentadeca-2(10),3,6.8-tetraene hydrochloride
2.2,2-Trifluoro-1-(6-methyl $\quad 5$-oxa-7,13-diazatetracyclo[9.3.1.0. $0^{2.10} .0^{48}$]pentadeca$2(10), 3,6,8$-tetraene)-ethanone ($90 \mathrm{mg}, 0.30 \mathrm{mmol}$) was stirred in $\mathrm{MeOH}(5 \mathrm{~mL})$ and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}(61 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The stirred mixture was warmed to $80^{\circ} \mathrm{C}$ for 2 hours, concentrated to solids, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed on Silica gel to produce an oll. (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.18$). ${ }^{\mathrm{h}} \mathrm{H}$ NMR (free base) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 740$ (s, $1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 3.05-2.98(\mathrm{~m}, 4 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 246(\mathrm{~m}, 1 \mathrm{H}), 1.98$ (d, J=10.5 Hz, 1H)

The onl was dissolved in MeOH and treated with 3 N HCl EtOAc (4 mL) then concentrated, stirred in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated with hexanes After 18 hours, the product was collected by filtration ($10 \mathrm{mg}, 13 \%$) APCI MS m/e $215.2\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp}>250^{\circ} \mathrm{C}$.

EXAMPLE 30

2-FLUORO-N-(5-HYDROXY-10-AZA-TRICYCLO[6.3.1 $0^{2.7}$ IDODECA-2(7),3.5-

TRIEN-4-YL)-BENZAMIDE HYDROCHLORIDE

2,2,2-Trifluoro-1-(4-hydroxy-5-amıno-10-aza-trıcyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-ethanone ($150 \mathrm{mg}, 0.524 \mathrm{mmol}$), 2-fluorobenzoyl chloride ($0.07 \mathrm{~mL}, 0.576 \mathrm{mmol}$), pyridinium-p-toluenesulfonic acid (PPTS, $20 \mathrm{mg}, 0.08 \mathrm{mmol}$), pyridine ($0.046 \mathrm{~mL}, 0.576 \mathrm{mmol}$) and xylenes (5 mL) were combined under nitrogen and stirred at $135^{\circ} \mathrm{C}$ for 18 hours. After 24 hours, additional PPTS (50 mg) was added and the material stirred at $135^{\circ} \mathrm{C}$ for an additional 24 hours Workup as above provided crude product ($145 \mathrm{mg}, 0.375 \mathrm{mmol}$) which was
combined with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})(80 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and heated to reflux After 3 hours, the reaction was cooled and diluted with water then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($4 \times 40 \mathrm{~mL}$), dried through a cotton plug then chromatographed to remove baseline impurity ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)$). The crude material was treated with excess 3 N HCl EtOAc and concentrated, then dissolved in a minımum of MeOH and the solution was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. After stirring 4 hours the product was collected by filtration $(85 \mathrm{mg}, 68 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.99(\mathrm{~m} .2 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 2 \mathrm{H})$. $6.82(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 196(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $3131\left[(M+1)^{+}\right] . m p 125-130{ }^{\circ} \mathrm{C}$ (subl.).

EXAMPLE 31
4CHLORO-10AZATRICYCLO(6.3.1.0 ${ }^{23}$ DODECA-2(7).3.5-TRIENE HYDROCHLORIDE
A) 1-(4-Chloro-10-aza-tricyclo[6.3 1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone

Copper(i)chloride (CuCl) was prepared as follows: $\mathrm{CuSO}_{4}(43 \mathrm{~g})$ and $\mathrm{NaCl}(1.2 \mathrm{~g})$ were dissolved in hot $\mathrm{H}_{2} \mathrm{O}(14 \mathrm{~mL})$ sodium bisulfite $\left(\mathrm{NaHSO}_{3}\right)(1 \mathrm{~g})$ and sodium hydroxide $(\mathrm{NaOH})(690 \mathrm{mg})$ were dissolved in $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$ and added to the hot acidic solution over 5 minutes. The precipitated white solids were filtered and washed with water.

1-(4-Amino-10-aza-trıcyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($460 \mathrm{mg}, 1.7 \mathrm{mmol}$) was dissolved in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and concentrated HCl solution(1 mL) then cooled to $0^{\circ} \mathrm{C}$ and treated with a solution of sodium nitrite $\left(\mathrm{NaNO}_{2}\right)(275 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}$ (1 mL) dropwise. To the resulting solution was added a CuCl (202 mg , prepared as described above, 2.04 mmol) in concentrated HCl solution (2 mL) over 10 minutes (gas evolution observed) The resulting solution was warmed to $60^{\circ} \mathrm{C}$ for 15 minutes, then was cooled to room temperature and extracted with EtOAc $(4 \times 30 \mathrm{~mL})$ After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solution was filtered and concentrated to an oil which was filtered through a Silica pad to remove baseline material eluting with 50% EtOAc/hexanes to give an oll ($470 \mathrm{mg}, 95 \%$).
B) 4-Chloro-10-azatricyclo[6.3.1.0.7.7dodeca-2(7) 3,5-triene hydrochloride

1-(4-Chloro-10-aza-tricyclo[6.3.1.0.7] ${ }^{2.7}$ dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-
ethanone ($470 \mathrm{mg}, 162 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(344 \mathrm{mg}, 3.24 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ were heated to reflux After 2 hours, the reaction was cooled and diluted with water then extracted with EtOAc ($4 \times 40 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to a yellow oll. The crude material was treated with excess 3 N HCl EtOAc and concentrated, then
dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was saturated with hexanes and stirred. After stirring 4 hours the product was collected by filtration ($155 \mathrm{mg}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR (free base) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 715(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.68,(\mathrm{~m}$, $2 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR (HCl salt) ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.30-$ $7.20(\mathrm{~m}, 3 \mathrm{H}), 3.30-3.15(\mathrm{~m}, 6 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e 194.1 $\left[(M+1)^{*}\right]$.

EXAMPLE 32
10-AZATRICYCLO[6 3.1.0~2.7~]DODECA-2(7),3.5-TRIEN-4-YL
CYANIDE HYDROCHLORIDE
A) 1-(4-lodo-10-aza-tricyclo[6 3.1.0 ${ }^{2.7}$]dodeca-2(7).3,5-trien-10-yl)-2,2,2-trifluoroethanone

1-(4-Amıno-10-aza-tricyclo[6.3.1.0 ${ }^{27}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($500 \mathrm{mg}, 1.85 \mathrm{mmol}$) was dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $(0.5 \mathrm{~mL})$ then cooled to $0^{\circ} \mathrm{C}$ and treated with a solution of sodium nitrite $\left(\mathrm{NaNO}_{2}\right)$ (140 mg , 2.04 mmol) in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ dropwise. Potassium iodide ($460 \mathrm{mg}, 2.78 \mathrm{mmol}$) in $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution (0.5 mL) was added over 10 minutes (reaction becomes dark red). The resulting solution was warmed to room temperature and stirred 18 hours. The reaction was quenched with NaHSO_{3} and water (pH 2.5) then extracted with EtOAc $(4 \times 30 \mathrm{~mL}$). After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solution was filtered and concentrated to a yellow oll which was chromatographed on Silica gel to provide a yellow oll. ($260 \mathrm{mg}, 37 \%$). (TLC 30% EtOAc/hexanes $R_{f} 0.70$). (A 54 g scale performed as above yielded $5 \mathrm{~g} .67 \%$).
B) 4-lodo-10-aza-tricyclo[6.3 1.0 ${ }^{27}$]dodeca-2(7).3.5-triene-10-carboxylic acid tert-butyl ester

1-(4-lodo-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2,2,2-trifluoroethanone (5 g .13 .1 mmol) and 37% saturated aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution (50 mL) were stirred in $\mathrm{MeOH}(250 \mathrm{ml})$ for 2 hours then concentrated and azeotroped with $\mathrm{MeOH}(2 \times 50 \mathrm{~mL})$. The resulting product was stirred in 1.4 -dioxane (75 mL) and treated with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL). To this was added di-t-butyidicarbonate $(5.71 \mathrm{~g}, 26.2 \mathrm{mmol}$). After stirring 18 hours the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed on Silica gel (TLC 20\% EtOAc/hexanes) to provide product as an oll ($4.9 \mathrm{~g}, 98 \%$).
C) 4-Cyano-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester (Utilizıng the methods described in House, H. O.; Fischer, W. F. J. Org. Chem 1969, 3626.)

CuCN ($108 \mathrm{mg}, 1.21 \mathrm{mmol}$) and NaCN ($59 \mathrm{mg}, 1.21 \mathrm{mmol}$) were combined in dry DMF (6 mL) and warmed to $150^{\circ} \mathrm{C}$ under N_{2} Solution occurs in 20 minutes. To this was added 4 -iodo-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3.5-triene-10-carboxylic acid tert-butyl ester ($232 \mathrm{mg}, 0.6 \mathrm{mmol}$) in DMF (3.5 mL) and the mixture was stirred for 18 hours at $150^{\circ} \mathrm{C}$. The reaction was cooled and diluted with 50% saturated aqueous NaCl solution and extracted with 50% EtOAc/hexanes ($3 \times 30 \mathrm{~mL}$). After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtration and concentration the product was isolated by chromatography ($86 \mathrm{mg}, 50 \%$). (TLC 20% EtOAc/hexanes $R_{f} 0.28$).
D) 10-Azatricyclo[6.3.1.0-2,7~]dodeca-2(7),3.5-trien-4-yl cyanide hydrochloride

4-Cyano-10-aza-tricyclo[6.3.1. 0^{27}]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester was treated with $3 \mathrm{~N} \mathrm{HCl} \mathrm{EtOAc} \mathrm{(} 6 \mathrm{~mL}$) and warmed to reflux for 2 hours, then concentrated, dissolved in a minimum of MeOH which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred 18 hours The product was collected by filtration ($49 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ 9.66 (brs. NH), 786 (br s, NH), 7.74-7.70 (m, 2H), $7.49(\mathrm{~d}, \mathrm{~J}=75 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33-2.97 (m, 6H), $2.17(\mathrm{~m}, 1 \mathrm{H}) .2 .01$ (d, J=11.0 Hz, 1H). GCMS m/e $184\left(\mathrm{M}^{+}\right) \mathrm{mp} 268-273^{\circ} \mathrm{C}$.

EXAMPLE 33

3-(10-AZATRICYCLOI6 310^{27} IDODECA-2(7).3.5-TRIEN-4-YL)-5-METHYL-1.2,4OXADIAZOLE HYDROCHLORIDE

4-Cyano-10-aza-tricyclo[6 3.10^{27}]dodeca-2(7).3.5-triene-10-carboxylic acid tert-butyl ester ($300 \mathrm{mg}, 11 \mathrm{mmol}$) was stirred in EtOH (10 mL) To this hydroxyl amine hydrochloride ($382 \mathrm{mg}, 5.5 \mathrm{mmol}$) and NaOH ($242 \mathrm{mg}, 605 \mathrm{mmol}$) were added and the mixture was warmed to reflux. After 45 minutes, the reaction was cooled, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford a yellow solid (110 $\mathrm{mg}, 0.35 \mathrm{mmol})$. This solid was dissoived in pyridine (1 mL) and treated with acetyl chloride $(0.03 \mathrm{~mL}, 0415 \mathrm{mmol})$ and warmed to $100^{\circ} \mathrm{C}$ for 18 hours. The reaction was cooled, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic extracts were washed with water and saturated aqueous NaCl solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Chromatography on Silica gel afforded product ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$). (25% EtOAc/hexanes $\mathrm{R}_{\mathrm{t}} 0.18$) This product was treated with $2 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH}(10 \mathrm{~mL})$, heated to $70^{\circ} \mathrm{C}$ for 1 hour, cooled, concentrated and recrystatlized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to provide product (15 mg). APCI MS m/e $242.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 34
1-(10-AZATRICYCLO[6 3.1.0 ${ }^{2.7}$]DODECA-2(7),3,5-TRIEN-4-YL)-1-ETHANONE HYDROCHLORIDE
A) 1-(4-Acetyl-10-aza-tricycio[6 $3.10^{2.7}$ dodeca-2(7).3,5-trien-10-yl)-2,2,2-trifluoroethanone

1-(10-Aza-tricyclo[6.3 1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone (253 $\mathrm{mg}, 10 \mathrm{mmol})$ and $\mathrm{ACCl}(0.68 \mathrm{~mL}, 10 \mathrm{mmol})$ were dissolved in DCE (3 mL) and treated with aluminum chloride $\left(\mathrm{AlCl}_{3}\right)$ (667 mg .5 .0 mmol). The resulting yellow mixture was stirred for 30 minutes then poured over ice and saturated aqueous NaHCO_{3} solution. After stirring 20 minutes the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layer was dried through a cotton plug then concentrated to a orange-yellow oil ($255 \mathrm{mg}, 86 \%$).
> B) 4-Acetyl-10-aza-tricyclo[6.3.1 0^{27}]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester

> 1-(4-Acetyl-10-aza-tricyclo[6.3.1 0^{27}]dodeca-2(7),3,5-tnen-10-yl)-2.2.2-trifluoro- ethanone ($13 \mathrm{~g}, 4.37 \mathrm{mmol}$) and 37% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution (10 mL) were stirred in MeOH $(30 \mathrm{ml})$ for 3 hours, then concentrated and azeotroped with $\mathrm{MeOH}(2 \times 50 \mathrm{~mL}$). (This product could be converted to an HCl salt directly: see the next example.) The resulting product was stirred in 1.4-dioxane (20 mL) and treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (5 mL). To this was added di-t-butyldicarbonate ($1.91 \mathrm{~g}, 8.74 \mathrm{mmol}$). After stırring 2 hours, the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. filtered, concentrated and chromatographed to provide an oll (1.3 g. 100\%). (TLC 40% EtOAc/hexanes Rf 0.56)
C) 1-(10-Azatricyclo[6.310 $0^{2.7}$]dodeca-2(7),3,5-trien-4-yI)-1-ethanone hydrochloride

4-Acetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene-10-carboxylic acid tert-butyl ester ($190 \mathrm{mg}, 0.63 \mathrm{mmol}$) was treated with excess 3 N HCI EtOAc and warmed to $70^{\circ} \mathrm{C}$ for 1 hour then concentrated and dissolved in a minımum of MeOH The resulting solution was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. After 18 hours the white crystalline product was collected by filtration ($81 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 975$ (br s. NH), 789 (s. 1H), 7.88 (d, $J=80 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{br} \mathrm{s}, \mathrm{NH}), 744(\mathrm{~d}, \mathrm{~J}=80 \mathrm{~Hz}, \mathrm{hH}), 3.33(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.22(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.00(\mathrm{br}$ $\mathrm{m}, 2 \mathrm{H}), 254(\mathrm{~s}, 3 \mathrm{H}) .2 .17(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$ GCMS m/e 201 (M) mp 198-202 ${ }^{\circ} \mathrm{C}$.

EXAMPLE 35
10-AZATRICYCLO[6.3.1.0 ${ }^{27}$ DDODECA-2(7).3.5-TRIEN-4-OL HYDROCHLORIDE
A) Acetıc acıd 10-trifluoroacetyl-10-aza-trıcyclo[6.3.1.0 ${ }^{27}$ dodeca-2(7),3,5-trien-4-yl ester

1-(4-Acetyl-10-aza-tricyclo[6.3.1.0 ${ }^{27}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-
ethanone ($2.5 \mathrm{~g}, 8.41 \mathrm{mmol}$) and 3-chloroperoxybenzoic acid ($\mathrm{m}-\mathrm{CPBA}$) (7.5 g .42 mmol) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) and warmed to $40^{\circ} \mathrm{C}$ for 18 hours. The mixture was cooled to room temperature, then treated with dimethylsulfide $\left(\mathrm{Me}_{2} \mathrm{~S}\right)(3 \mathrm{~mL}, 40.8 \mathrm{mmol})$ and stirred 24 hours. The resulting mixture was poured into ice and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(100 \mathrm{~mL})$ then extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 40 \mathrm{~mL})$. The organic layer was washed saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($3 \times 40 \mathrm{~mL}$) then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to afford an oll ($1.83 \mathrm{~g}, 69 \%$). (TLC EtOAc $\mathrm{R}_{\mathrm{f}} 0.80$).
B) 2.2.2-Trifluoro-1-(4-hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{27}$]dodeca-2(7),3,5-trien-10-yl)ethanone

Acetic acid 10-trifluoroacetyl-10-aza-tricyclo[6.3.1.0.0.7]dodeca-2(7),3,5-trien-4-yl ester ($900 \mathrm{mg}, 2.87 \mathrm{mmol}$) was stirred in $\mathrm{MeOH}\left(20 \mathrm{~mL}\right.$) and saturated aqueous NaHCO_{3} solution (15 mL) for 48 hours. The mixture was concentrated, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$) then dried through a cotton plug. Chromatography on Silica gel provided pure product ($420 \mathrm{mg}, 54 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{R}, 044$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $705(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~m}, 1 \mathrm{H}), 432(\mathrm{~m}, 1 \mathrm{H}), 384(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.16$ (br s, 1H), $3.09(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}) .1 .97(\mathrm{~d}, \mathrm{~J}=110 \mathrm{~Hz}, 1 \mathrm{H})$
C) 10-Azatricyclo[6.310 ${ }^{27}$]dodeca-2(7),3,5-trien-4-ol hydrochloride

2,2,2-Trifluoro-1-(4-hydroxy-10-aza-tricyclo[6.3.1 $0^{2.7}$]dodeca-2(7),3,5-trien-10-yl)ethanone ($50 \mathrm{mg}, 0.184 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(3 / 1,5 \mathrm{~mL}$), treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ ($40 \mathrm{mg}, 0.369 \mathrm{mmol}$) and warmed to $65^{\circ} \mathrm{C}$ for 2 hours. The mixture was concentrated, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ then dried through a cotton plug. Filtration through a Silica gel plug provided an oll ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) which was treated with $3 \mathrm{~N} \mathrm{HCl} \mathrm{EtOAc} \mathrm{(} 3 \mathrm{~mL}$) then concentrated, dissolved in a minimum of MeOH which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. After 18 hours the white crystalline product was collected by filtration ($10 \mathrm{mg}, 26 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDOD}_{3}$) $\delta 716$ (d, J=8.0 Hz, 1 H), 6.80 (d. $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 672 (dd, $\mathrm{J}=8.0 .2 .0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.28(4 \mathrm{H}), 3.09$ (dd, $J=145.12 .0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.32(\mathrm{~m}, 1 \mathrm{H}), 203(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 176.2\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp} 308(\mathrm{dec} .)^{\circ} \mathrm{C}$.

EXAMPLE 36
7-METHYL-5-OXA-6,13-DIAZATETRACYCLOI9.3.1.0 ${ }^{210} 0^{48}$ PPENTADECA-2.4(8).6,9-TETRAENE HYDROCHLORIDE
A) 1-(4-Acetyl-5-hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{\frac{2.7}{} \text {]dodeca-2(7),3,5-trien-10-yl)-2,2,2- }}$ trifluoro-ethanone

Acetic acid 10-trifluoroacetyl-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-trien-4-yl ester ($800 \mathrm{mg}, 2.55 \mathrm{mmol}$) was combined with $\mathrm{AlCl}_{3}\left(1.0 \mathrm{~g}, 7.65 \mathrm{mmol}\right.$) and warmed to $170^{\circ} \mathrm{C}$ for 2 hours. The mixture was cooled and treated with 1 N aqueous HCl solution (20 mL), extracted with EtOAc and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography affords an oll ($190 \mathrm{mg}, 24 \%$). (TLC EtOAc $\mathrm{R}, 0.75) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.58(\mathrm{~s}, 0.5 \mathrm{H}), 12.52(\mathrm{~s}, 0.5 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}$, $1 \mathrm{H}), 433(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{brs}, 1 \mathrm{H}), 3.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H})$, $2.35(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{br} \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}, 1 \mathrm{H})$.
B)
2.2,2-Trifluoro-1-(4-hydroxy-5-(1-hydroxyimino-ethyl)-10-aza-
tricyclo[$63110^{2.7}$]dodeca-2(7), 3.5-trien-10-yl]-ethanone
1-(4-Acetyl-5-hydroxy-10-aza-tricyclo[6.3 1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-10-yl)-2.2.2-trifluoro-ethanone ($190 \mathrm{mg}, 0.605 \mathrm{mmol}$), hydroxylamine $\mathrm{HCl}(99 \mathrm{mg}, 1.21 \mathrm{mmol}$) and NaOAc ($118 \mathrm{mg}, 1.21 \mathrm{mmol}$) were combined in $\mathrm{MeOH}(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and warmed to $65^{\circ} \mathrm{C}$ for 18 hours The mixture was cooled, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc which was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to provide a yellow oil ($177 \mathrm{mg}, 93 \%$).
C) 2,2.2-Trifluoro-7-Methyl-5-oxa-6,13-dıazatetracyclo $9.310^{2.10} \underline{0}^{48}$]pentadeca-2.4(8),6,9-tetraene-ethanone

The above oll, 2,2,2-trifluoro-1-[4-hydroxy-5-(1-hydroxyimino-ethyl)-10-azatricyclo[6.3 10^{27}]dodeca-2(7),3.5-trien-10-yl]-ethanone ($177 \mathrm{mg}, 054 \mathrm{mmol}$) was stirred in DCE (3 mL), treated with triethylamine ($04 \mathrm{~mL}, 2.8 \mathrm{mmol}$) and acetic anhydride ($\mathrm{Ac}_{2} \mathrm{O}$) (0.3 mL .2 .8 mmol) then stirred 18 hours. The reaction was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to a yellow oil which was dissolved in anhydrous DMF (3 mL) and treated with $60 \% \mathrm{NaH}$ in oll ($32 \mathrm{mg}, 108 \mathrm{mmol}$). After stirring 18 hours, additional $60 \% \mathrm{NaH}$ in oll was introduced (33 mg) and the mixture was stirred 2 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with 80% EtOAc/hexanes ($3 \times 30 \mathrm{~mL}$). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated and chromatographed to provide an oll (40\% EtOAc/hexanes $R_{f} 056$).
D) 7-Methyl-5-oxa-6,13-dıazatetracyclo[9.3.1 $0^{2.10} . \underline{U}^{4.8}$]pentadeca-2,4(8),6,9-tetraene hydrochloride

Utilizing the methods described in Example 9C, 2,2,2-Trifluoro-7-Methyl-5-oxa-6,13diazatetracyclo[9.3.1. $0^{210} .0^{48}$]pentadeca-2.4(8),6,9-tetraene-ethanone was converted to the title compound. This was treated with 3 N HCl EtOAc (3 mL), concentrated and dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which was saturated with hexanes and stirred. After 18 hours the white crystalline product was collected by filtration ($18 \mathrm{mg}, 13 \%$ overall). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{s}) $7.72(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 342-2.98(\mathrm{~m}, 6 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 215.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 37

4-(2-Methyl-2H-pyrazol-3-yl)-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene
hydrochloride and 4-(1-Methyl-1H-pyrazol-3-yl)-10-aza-tricyclo[6.3.1. $0^{2.7}$ dodeca-2(7),3.5triene hydrochloride

1-(4-Acetyl-10-aza-tricyclo[6.3.1 0^{27}]dodeca-2(7),3,5-trien-10-yl)-2.2.2-trifiuoroethanone ($1.0 \mathrm{~g}, 3.3 \mathrm{mmol}$) and dimethylformamide dımethylacetal (DMF-DMA) (4.0 g, 33.6 mmol) were warmed to $140^{\circ} \mathrm{C}$ for 18 hours. After cooling, a crystalline precipitate was filtered and rinsed with EtOAC ($690 \mathrm{mg}, 58 \%$).

The above solid. 3-dimethylamino-1-(10-trifluoroacetyl-10-azatricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3.5-trien-4-yl)-propenone, ($200 \mathrm{mg}, 056 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}(2 \mathrm{~mL})$ and treated with $5 \mathrm{~N} \mathrm{HCl} \mathrm{EtOH}(0.1 \mathrm{~mL})$ followed by methyl hydrazine (0.6 mmol). The resulting mixture was warmed to $70^{\circ} \mathrm{C}$ for 4 hours. The mixture was cooled. diluted with water and extracted with EtOAc. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated Chromatography on Silica gel provided a $3 / 1$ mixture of regioisomeric products (130 mg . 68%) (TLC 50\% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.40$)

The above oll ($130 \mathrm{mg}, 0.388 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})(82 \mathrm{mg}, 0775 \mathrm{mmol})$ were stirred in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ for 18 hours. After cooling the reaction was dituted with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dried through a cotton plug and concentrated. The product was purfied by chromatography on Silica gel and concentrated to an oll. The salt was generated with 2 N HCl MeOH , concentrated and recrystallized from $\mathrm{MeOH} / \mathrm{EtOAc}$ to provide a $3 / 1$ mixture of regioisomeric pyrrazoles ($85 \mathrm{mg}, 58 \%$). ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{4} 0.25$) TFAprecursor APCI MS m/e $336.2\left[(\mathrm{M}+1)^{\text {¹ }}\right]$

EXAMPLE 38
4,5-DICHLORO-10-AZATRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7),3.5-TRIENE HYDROCHLORIDE
A) 1-(4.5-Dichloro-10-aza-tricyclo[6.3.1.0-2.] ${ }^{2 .]}$ dodeca-2(7).3.5-trien-10-yl)-2,2,2-trifluoroethanone (Based on Campargne, E.; Thompson, W. J. Org. Chem. 1950, 72, 629.)

1-(10-Aza-tricycio[6.3.1.0.7.7dodeca-2(7),3,5-trien-10-yl)-2.2,2-trifluoro-ethanone (539 $\mathrm{mg}, 2.1 \mathrm{mmol}$) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and treated with ICl_{3} (s) ($982 \mathrm{mg}, 4.21 \mathrm{mmol}$). The resulting orange solution was stirred 0.5 hours, poured into saturated aqueous NaHSO_{3} solution (25 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, dried through a cotton plug and concentrated to an oll ($570 \mathrm{mg}, 84 \%$) (TLC 50\% EtOAc/hexanes $R_{f} 0.62$).
B) 4.5-dichloro-10-azatricyclo $6.3 .10^{2.7}$ ddodeca-2(7),3,5-triene hydrochioride

1-(4,5-Dichloro-10-aza-tricyclo[6.3.1 $0^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2,2,2-trifluoroethanone ($570 \mathrm{mg}, 175 \mathrm{mmol}$) was stirred in $\mathrm{MeOH}(25 \mathrm{~mL})$ and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})(5 \mathrm{~g}$, $47 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ The stirred mixture was warmed to $70^{\circ} \mathrm{C}$ for 4 hours, concentrated to solids, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc $(3 \times 40 \mathrm{~mL})$. The product was extracted into 1 N aqueous HCl solution ($2 \times 40 \mathrm{~mL}$) which was washed with EtOAc then neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to $\mathrm{pH} \sim 10$. Product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×40 mL), filtered through a cotton plug and concentrated to an oil ($400 \mathrm{mg}, 100 \%$)

The oil was dissolved in MeOH and treated with 3 N HCl EtOAc (4 mL) and concentrated, then dissolved in a minimum of MeOH and which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred 18 hours The product was collected by filtration ($210 \mathrm{mg}, 45 \%$) (TLC 50\% EtOAc/hexanes $\left.\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 008\right)^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d) s 7.58 ($\mathrm{s}, 2 \mathrm{H}$). 3 33-2.97 (m, $6 \mathrm{H}), 218(\mathrm{~m}, 1 \mathrm{H}), 199(\mathrm{~d}, \mathrm{~J}=105 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz .DMSO- d_{6}) $\delta 14102,13060$. 126.58, 45.54 40.55. 38.30 GCMS m/e 227, 229 (M^{+}) mp 283-291 ${ }^{\circ} \mathrm{C}$.

EXAMPLE 39

HMDROCHLORIDE

A) 10-Trifluoroacetyl-10-aza-tricyclo[6.310^{27} - dodeca-2(7),3,5-triene-4-sulfonyl chloride

1-(10-Aza-trıcycio[6 310^{27}]dodeca-2(7),3,5-trien-10-yl)-2.2.2-trifluoro-ethanone (530 mg .21 mmol) was added to chlorosulfonic acid ($2 \mathrm{~mL}, 30 \mathrm{mmol}$) and stirred for 5 minutes

5 The mixture was quenched with ice, extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to provide an oil ($640 \mathrm{mg}, 87 \%$). (TLC 30% EtOAc/hexanes $R_{f} 0.15$).

B) $\quad N^{4} \cdot N^{4}-$-Dimethyl-10-azatricyclo[6.3.1.0 ${ }^{2.7}$ ddodeca-2(7),3.5-triene-4-sulfonamide hydrochloride

10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0. $0^{2.7}$ dodeca-2(7),3,5-triene-4-sulfonyl chloride ($320 \mathrm{mg}, 0.9 \mathrm{mmol}$) was stirred in $\mathrm{THF}\left(10 \mathrm{~mL}\right.$) and treated with $40 \% \mathrm{Me}_{2} \mathrm{NH} / \mathrm{H}_{2} \mathrm{O}$ (1.5 mL). After 10 minutes the mixture was concentrated and chromatographed on Silica gel (TLC 30\% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.31$) to provide an oll ($256 \mathrm{mg}, 78 \%$). This material was dissolved in $\mathrm{MeOH}(6 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{OH}(2 \mathrm{~mL})$ and stirred 18 hours. The mixture was concentrated and azeotroped from $\mathrm{MeOH}(3 x)$ The resulting oll was dissolved in MeOH and treated with 3 N HCl EtOAc (4 mL), concentrated, dissolved in a minımum of MeOH and which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred 18 hours. The product was collected by filtration as a white powder (163 mg . 59%). (TLC $\left.10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.54\right)^{\mathrm{h}} \mathrm{H}$ NMR (data, free base) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.64(\mathrm{~m}, 2 \mathrm{H}), 741$ (d. J=80 Hz, 1H), $330(\mathrm{~m}, 2 \mathrm{H}$), 3.20 (d, J=12.5 Hz, 2H), 3.07 (dd, $\mathrm{J}=12.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 6 \mathrm{H}) 245,(\mathrm{~m} .1 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=110 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 128.43,124.16,122,75,46.67,46.55,4211,39.44,37.81$ GCMS m/e 266 (M^{+}) (data HCl salt) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.68-7.52(3 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~m}, 2 \mathrm{H})$, $3.04(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~d} . \mathrm{J}=110 \mathrm{~Hz}, 1 \mathrm{H})$ GCMS m/e 266 (M) . Anal Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{HCl}: \mathrm{C}, 5156, \mathrm{H}, 6.32$. N. 925 Found C. 51.36: H,6.09; N.9.09

EXAMPLE 40

4-(1-PYRROLIDINYLSULFONYL)-10-AZATRICYCLO[631027DODECA-2(7),3.5-

TRIENE HYDROCHLORIDE

The pyrrolidine analogue was prepared from 10-trifluoroacetyl-10-azatricyclo[6 3.1.0 ${ }^{27}$]dodeca-2(7),3,5-triene-4-sulfonyl chloride ($320 \mathrm{mg}, 0.9 \mathrm{mmol}$) as by substituting pyrroline in the couping step described in Example 39B. The TFA product was isolated as an oil ($314 \mathrm{mg}, 89 \%$) Deprotection and conversion to the salt as in Example 39B affords a white powder ($189 \mathrm{mg} .63 \%$). (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.60$). (TLC 50% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.65$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 766(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H})$, $737(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 330-3.15(\mathrm{~m}, 8 \mathrm{H}), 3.00(\mathrm{~m} \mathrm{2H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 198(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $172(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}(100 \mathrm{MHz} \mathrm{CDCl} 3) \delta 146.91,14408,136.65,127.90,124.18 .12236$ $5043,4787,4680,4663,42.11,39.63,2510 . \mathrm{APCl} \mathrm{MS} \mathrm{m} / \mathrm{e} 293\left[(\mathrm{M}+1)^{\star}\right]$. (data HCl salt) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 978$ (br s, NH), 81 (br s, NH), 773 (d, J=15 Hz, 1 H), 766 (dd, J=8.0.15 Hz, 1H), 7.53 (d, J=8.0 Hz, 1H), 3.39-3.01 (10H), 2.21 (m, 1H), 2.04 (d, J=11.0 $\mathrm{Hz}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 4 \mathrm{H})$. GCMS m/e $292\left(\mathrm{M}^{+}\right)$. Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{HCl} .1 / 2 \mathrm{MeOH} \cdot \mathrm{C}$, 54.07, H, 647: N, 8.51. Found C, 53.98, H.6.72, N, 8.12

EXAMPLE 41

5,13-DIAZATETRACYCLO[9.3 1.0. ${ }^{2.10}$. . $^{4.8}$]PENTADECA-2,4(8),9-TRIEN-6-ONE HYDROCHLORIDE (The title compound was prepared following the procedures described in Quallich, G. J.; Morrissey, P. M. Synthesis 1993, 51-53, treating 4.5-dinitro-10-azatricyclo[6.3.1 $0^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester as an equivalent to an ortho fluoro phenyl morety.) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}$) $\delta 10.42$ (s, NH). 9.88 (br s, NH), $7.52(\mathrm{brs}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.13(\mathrm{~m}, 4 \mathrm{H}), 2.93$ $(\mathrm{m}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $215.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 42

6-OXO-5-OXA-7, 13-DIAZATETRACYCLO[9.3.1.0 $0^{210} 0^{48}$ PPENTADECA-2(10),3,6,8TETRAENE HYDROCHLORIDE (For references, see: Nachman, R J. J. Het. Chem. 1982, 1545)

2,2.2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{27}$]dodeca-2(7),3.5-trien-$10-\mathrm{y} \mid$)-ethanone ($317 \mathrm{mg}, 111 \mathrm{mmol}$) was stirred in THF (10 mL), treated with carbonyldiimidazole ($269 \mathrm{mg}, 1.66 \mathrm{mmol}$) and warmed to $60^{\circ} \mathrm{C}$ for 18 hours. The mixture was concentrated, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$) and washed with 1 N aqueous HCl solution (3×10 mL) The organic layer was dried through a cotton plug, concentrated and chromatographed on Silica gel (50% EtOAc/Hexanes) to provide an oil (130 mg). This material converted to the title compound by the methods described in Example 9C. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) δ 1178 (s, NH), 9.56 (br s, NH), 763 (br s. NH), 724 (s, 1H), 707 (s,1H), 326 (br s, 2H), 3.16 (br t, J=9.5 Hz, 1H), $2.93(\mathrm{brs}, 1 \mathrm{H}), 218(\mathrm{~m}, 1 \mathrm{H}), 197(\mathrm{~d}, \mathrm{~J}=110 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $217.2\left[(M+1)^{+}\right]$.

EXAMPLE 43
3-TRIFLUOROMETHYL-10-AZA-TRICYCLO[6.310 $0^{2.7}$ DDODECA-2(7).3.5-TRIENE HYDROCHLORIDE (See Grunewald, G L., Paradkar, V. M.; Pazhenchevsky, B.; Pleiss, M A. Sall, D. J. Seibel, W L.; Rertz, T. J. J. Org. Chem. 1983, 48, 2321-2327 Grunewald, G. L : Markovich. K. M.; Sall. D. J. J. Med Chem 1987, 30, 2191-2208)

The title compound was prepared by the methods described in Example 1 and 2 starting with 2-fluoro-6-trifluoromethylbromobenzene. ' H NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.67-7.50$
$(3 \mathrm{H}), 365(\mathrm{brs}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 2 \mathrm{H}), 329(\mathrm{~s}, 1 \mathrm{H}), 3.28-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~d}$, $J=115 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 228.2\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) $\mathrm{mp} 275-277^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N} \mathrm{HCl} .1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.44$; H, 5.11: N. 5.19 Found $\mathrm{C}, 53.73, \mathrm{H}, 4.83 ;$ N, 5.16.

EXAMPLE 44

3-PHENYL-10-AZA-TRICYCLO[6.3.1 $0^{2.7}$]DODECA-2(7),3.5-TRIENE

HYDROCHLORIDE

A) 5-Fluoro-1,4-dihydro-1,4-methano-naphthalene and 5-iodo-1,4-dinydro-1,4-methano-naphthalene
(Elsch, J. J.; Burlinson, N E. J. Amer. Chem. Soc. 1976, 98, 753-761. Paquette, L. A.; Cottrell, D. M.; Snow, R. A. J. Amer. Chem. Soc. 1977, 99, 3723-3733.)

Magnesium turnings ($9.37 \mathrm{~g}, 385 \mathrm{mmol}$) were stırred in anhydrous THF (1000 mL) in a flame dried 2 L 3 neck round bottom flask equipped with a non-equalizing addition funnel with a N_{2} flow adapter, magnetic stirrer and efficient condenser equipped with a N_{2} flow adapter The flask was stirred and warmed to reflux by a removable heating mantle. 2,6-Difluoro-Iodobenzene (0.3 g) was added followed by of 3 N EtMgBr in $\mathrm{THF}(0.3 \mathrm{~mL}$). The addition funnel was charged with an intimate mixture of cyciopentadiene ($24.24 \mathrm{~g}, 367 \mathrm{mmol}$) and 2,6 -difluoro-todobenzene ($880 \mathrm{~g}, 367 \mathrm{mmol}$). Small portions (-1 mL) of the intimate mixture were introduced to assist initiation $(\sim 4 x)$. After ~ 15 minutes, the reaction initiated (exotherm, and vapor condensation) and heating was maintained as necessary during the addition of the contents of the addition funnel. The reaction was then maintained at reflux for -1 hour (no SM by GCMS).

The reaction was cooled to room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}$ (200 mL) followed by aqueous 1 N HCl solution (200 mL) to dissolve the solids. Product was extracted with hexanes ($4 \times 150 \mathrm{~mL}$) The combined organic layer was washed with saturated aqueous NaHCO_{3} solution (150 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered through a Silica plug with hexanes rinse and concentrated to an oil (70 g). Chromatography on Silica gel eluting with hexanes provided two lots (9.0 and 21.0 g). which contaned primarily 5-iodo-1.4-dihydro-1.4-methanonaphthalene. (TLC hexanes $R, 063$)
B) 5-lodo-1,2,3.4-tetrahydro-1,4-methano-naphthalene-2,3-diol

5-lodo-1,4-dihydro-1,4-methano-naphthalene (2 g g) and N -methył morpholine N -oxide (1761 g. 130 mmol) were strred in acetone $(90 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(13 \mathrm{~mL})$. To this was added a solution of $\mathrm{OsO}_{4}(0.2 \mathrm{~mL}, 2.5 \% \mathrm{wt}$ solution in $\mathrm{t}-\mathrm{BuOH}, 002 \mathrm{mmol}$) After 144 hours, florisil (5 g) and saturated aqueous NaHSO_{3} solution (3 mL) were added and stirred for $1 / 2$ hour. The
mixture was filtered through a Celite pad and the filtrate concentrated to produce an oil which was purfied by chromatography on Silica gel eluting with a gradient of hexanes to 100% EtOAc to provide a yellow solid (13.73 g). APCI MS m/e $301.1\left[(\mathrm{M}-1)^{+}\right]$.
C) 10-Benzyi-3-iodo-10-aza-trıcyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7).3,5-triene

5-lodo-1,2,3.4-tetrahydro-1,4-methano-naphthalene-2.3-diol ($8.33 \mathrm{~g}, 27.6 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{NBnCl}(10 \mathrm{mg})$ were vigorously stirred in dichloroethane (25 mL) and $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL}$) then treated with sodium periodate $(6.17 \mathrm{~g}, 29.0 \mathrm{mmol})$. After 1.5 hours, the layers were separated and the aqueous layer extracted with DCE ($2 \times 40 \mathrm{~mL}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$ until no reaction to starch iodide paper was observed, then with saturated aqueous NaCl solution (30 mL). The organic layer was dried through a cotton plug and treated with benzyl amine ($3.16 \mathrm{~mL}, 29.0 \mathrm{mmol}$) and stirred for 2 minutes then transferred to an addition funnel. This solution was added over ~ 10 minutes to a vigorously stirred cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of $\mathrm{NaHB}(\mathrm{OAc})_{3}(1872 \mathrm{~g} .88 .0 \mathrm{mmol})$ in DCE $(150 \mathrm{~mL})$. After addition was complete, the mixture was stirred without cooling for 2 hours. The mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (100 mL) and stirred for 1 hour, then the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined orgamc layer was washed with saturated aqueous NaCl solution (50 mL), dried through a cotton plug and concentrated. Chromatography on Silica gel provided an oil ($6.3 \mathrm{~g}, 61 \%$) (TLC 5\% EtOAc/hexanes R, 0.10). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 761(\mathrm{~d} . \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-$ $7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{AB} \mathrm{dd}, \mathrm{J}=14.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{br}$ s. 1 H) , 3.21 (br s, 1 H), 3.04 (br d. $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (br d, J=10.2 Hz, 1 H), 247 (d, J=10.0 $\mathrm{Hz}, 1 \mathrm{H}) .2 .39(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}) .2 .34(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{APCl} \mathrm{MS} \mathrm{m} / \mathrm{e} 376.0$ $\left[(M+1)^{+}\right]$
D) 10-Benzyl-3-phenyl-10-aza-tricycio[6.3102\%]dodeca-2(7).3.5-triene
(For a discussion, see: Miyaura, N: Suzuki, A Chem Rev 1995, 95, 24572483.)

10-Benzyl-3-iodo-10-aza-tricyclo[6 3.1.0 ${ }^{27}$]dodeca-2(7).3.5-triene ($375.3 \mathrm{mg}, 1.0$ mmol), potassium acetate ($785 \mathrm{mg}, 8.0 \mathrm{mmol}$) and phenyl boronic acid ($183 \mathrm{mg}, 1.5 \mathrm{mmol}$) were combined in $10 / 1 \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ The mixture was degassed (3 vacuum $/ \mathrm{N}_{2}$ cycles). treated with tetrakıs(triphenylphosphine)palladıum(0) (57.5 mg .005 mmol) and warmed to 90 ${ }^{\circ} \mathrm{C}$ for 18 h The reaction was cooled, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic layer was washed with brine (50 mL), dried (MgSO_{4}). filtered and concentrated to provide an oll ($180 \mathrm{mg} .55 \%$) (TLC 4\%EtOAc/hexanes Rf 0 18) GCMS m/e 325 (M).
E) 3-Phenyi-10-aza-tricyclo[6.3.1 0^{27}]dodeca-2(7),3.5-tnene hydrochioride

10-Benzyl-3-phenyl-10-aza-tricyclo[6.3.1.0 0^{27}]dodeca-2(7),3,5-triene was converted Into the title compound utilizing the conditions described in Example 2D (TLC 10\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} \mathrm{O} .30$). (data for free base) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 746-7.15$ (8 H), 3.17 ($\mathrm{brs}, 1 \mathrm{H}$), $3.01(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~d} . \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=10.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ (dd, $J=10.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $236.2\left[(\mathrm{M}+1)^{+}\right]$ (HCl salt) $\mathrm{mp} 262-265{ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N} . \mathrm{HCl} .1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 73.26 ; \mathrm{H}, 6.86 ; \mathrm{N}, 5.19$ Found C. 73.50; H, 6.77; N, 5.04.

EXAMPLE 45

3-HYDROXY-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7),3,5-TRIENE
HYDROCHLORIDE
A) 10-Benzyl-3-boronic acid-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7),3,5-triene 10-Benzyl-3-10do-10-aza-tricycio[6.3.1.0 ${ }^{27}$]dodeca-2(7),3,5-triene ($3.0 \mathrm{~g}, 7.99 \mathrm{mmol}$) was stirred in anhydrous THF (40 mL) at $-78^{\circ} \mathrm{C}$ under nitrogen and treated dropwise with nBuLi (3.84 mL of 2.5 M soln. in hexanes. 9.59 mmol) After 10 minutes, tri-isopropylborate ($461 \mathrm{~mL}, 20.0 \mathrm{mmol}$) was added dropwise. After $\sim 1 / 2$ hour, the reaction was poured into saturated aqueous NaHCO_{3} solution, stıred 5 minutes and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and concentrated The residue was dissolved in $30 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes and extracted with 1 N . NaOH aqueous solution ($4 \times 50 \mathrm{~mL}$). The combined aqueous basic layer was treated with concentrated HCl to achieve pH 8 and extracted with EtOAc ($4 \times 25 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and stripped. Chromatography on Silica gel eluting first with 3% EtOAc/hexanes to remove nonpolar components, then with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ provides the title compound. (TLC 25% EtOAc/hexanes R, 0 60)
B) 10-Benzyl-3-hydroxy-10-aza-tricyclo[6 310^{27}]dodeca-2(7),3,5-triene

10-Benzyl-3-boronic acid-10-aza-tricyclo[6.3 1.0.0.7]dodeca-2(7).3.5-triene (140 mg 048 mmol) dissolved in THF (5 mL) was treated with N -methyimorpholine- N -oxide (64.5 mg . 048 mmol) and brought to reflux for 1 hour. The reaction was concentrated and chromatographed on Silica gel to provide product. (TLC 25% EtOAc/hexanes $\mathrm{R}, 0.18$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.15(3 \mathrm{H}), 704(\mathrm{dd}, \mathrm{J}=8.0 .7 .0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, \mathrm{J}=80,1.0 \mathrm{~Hz}, 1 \mathrm{H}) .3 .53(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3.51(\mathrm{AB} \mathrm{d}, \mathrm{J}=140 \mathrm{~Hz}, 2 \mathrm{H}), 3.28$ (br s, 1H) , 306 (br s, 1 H), 2.91 (dd, $J=85.1 .5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (ddd, $J=85.15 .15 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 (d, J=110 Hz, 1H), $2.39(\mathrm{~d}, \mathrm{~J}=110 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 165(\mathrm{~d}, \mathrm{~J}=105 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $2665\left[(\mathrm{M}+1)^{+}\right]$
C) 3-Hydroxy-10-aza-tricyclo[6 3 1.0 ${ }^{27}$]dodeca-2(7),3,5-triene hydrochloride

10-Benzyl-3-hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene (160 $\mathrm{mg}, 0.60$ mmol) was converted into the title compound by the methods described in Example 1 D . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 715$ (dd, $\mathrm{J}=8.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.84 (d, $\mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.76 (d, $\mathrm{J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.51 (brs, 1H), 3.33-3.25(3H), $316(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.09(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ $(\mathrm{m}, 1 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=110 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCl}$ MS m/e $175.8\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) mp 253-255${ }^{\circ} \mathrm{C}$.

EXAMPLE 46
4.5-DIFLUORO-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7).3,5-TRIENE

HYDROCHLORIDE

The title compound was prepared by the methods described in Example 1 and 2 starting with 2,4,5-trifluorobromobenzene ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $348-3.13(6 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 196.2\left[(\mathrm{M}+1)^{+}\right] .(\mathrm{HCl}$ salt) $\mathrm{mp} 301-303{ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{1}, \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{~N} . \mathrm{HCl} .1 / 6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.30 ; \mathrm{H}, 5.30 ; \mathrm{N} .5 .97$ Found $\mathrm{C}, 56.66, \mathrm{H}, 541$; N, 5.96

EXAMPLE 47

6-ETHYL-5-OXA-7,13-DIAZATETRACYCLO[9.3.10 $0^{210} \underline{0}^{48}$ PENTADECA-2(10), 3,6,8TETRAENE HYDROCHLORIDE

2,2,2-Trifluoro-1-(4-hydroxy-5-amıno-10-aza-tricyclo[6.3.1 $0^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-ethanone and propionyl chloride were converted to the title compound following the procedures described in Example 30 and Goldsteın, S. W: Dambek, P. J J. Het. Chem. 1990, 27, 335. 'H NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 764(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 348(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}$, 2 H), 341 ($\mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.20(2 \mathrm{H}), 301$ ($\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.45 ($\mathrm{m}, 1 \mathrm{H}$), 2.17 ($\mathrm{d}, \mathrm{J}=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 142(\mathrm{t}, \mathrm{J}=75 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 229.2\left[(\mathrm{M}+1)^{+}\right]$

EXAMPLE 48

6-ISOPROPYL-5-OXA-7 13-DIAZATETRACYCLOI9 $310^{210} 0^{48}$ PIPENTADECA2(10) 3.6,8-TETRAENE HYDROCHLORIDE

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0. ${ }^{2.7}$]dodeca-2(7),3.5-trien-
10-yl)-ethanone and isobutyryl chloride were converted to the title compound following the procedures described in EXAMPLE 47 (TLC 25\% EtOAc/hexanes $R_{f} 0.14$) ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.65(2 \mathrm{H}), 3.49(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 341(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 333-319(3 \mathrm{H}) .2 .45(\mathrm{~m}$, $1 \mathrm{H}), 2.18(\mathrm{~d}, \mathrm{~J}=115 \mathrm{~Hz}, 1 \mathrm{H}), 145(\mathrm{~d}, \mathrm{~J}=70 \mathrm{~Hz}, 6 \mathrm{H})$. APCI MS m/e $243.2\left[(\mathrm{M}+1)^{+}\right](\mathrm{HCl}$ salt) mp $249-251^{\circ} \mathrm{C}$.

EXAMPLE 49

6-BENZYL-5-OXA-7.13-DIAZATETRACYCLOT9.310 $0^{2.10} 0^{48}$ PENTADECA-

2(10). 3,6.8-TETRAENE HYDROCHLORIDE

2,2,2-Trifluoro-1-(4-hydroxy-5-amıno-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-
10 -yl)-ethanone and phenyl-acetyl chioride were converted to the title compound following the procedures described in EXAMPLE 47. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.58$ (s, 1 H$), 7.36-7.24(5 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.18$ $(2 H), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $291.2\left[(\mathrm{M}+1)^{+}\right]$.

1. A compound of the formula

R^{1} is hydrogen. ($\mathrm{C}_{1}-\mathrm{C}_{6}$) alkyl, unconjugated ($\mathrm{C}_{3}-\mathrm{C}_{6}$) alkenyl, $\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}$ or $-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{O}-$ $\left(C_{1}-\mathrm{C}_{4}\right)$ alkyl;
R^{2} and R^{3} are selected, independently, from hydrogen, $\left(C_{2}-C_{6}\right)$ alkenyl, $\left(C_{2}-C_{6}\right)$ alkynyl, hydroxy, nitro amino. halo, cyano, $-\mathrm{SO}_{q}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wheren q is zero, one or two, $\left(C_{1}, C_{6}\right.$)alkylamino-, $\quad\left[\left(C_{1}-C_{6}\right) \text { alky }\right]_{2}$ amino-, $\quad-\mathrm{CO}_{2} R^{4}, \quad-\mathrm{CONR}^{5} \mathrm{R}^{6}, \quad-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8}, \quad-\mathrm{C}(=0) \mathrm{R}^{13}$. $-X C(=O) R^{13}$, aryl- $\left(C_{0}-C_{3}\right)$ alkyl- or aryl- $\left(C_{0}-C_{3}\right)$ alkyl-O-, wherein said aryl is selected from phenyl and naphthyl. heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- or heteroaryi- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-O-, wheren said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen. nitrogen and sulfur, and $X^{2}\left(C_{0}-C_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl-, wheren X^{2} is absent or X^{2} is $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylamıno- or $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyll }\right]_{2}$ amıno-, and wheren the $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}{ }^{-}\right.$ C_{6})alkyl- motety of said $\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- contans at least one carbon atom, and wherein from one to three of the carbon atoms of said ($\mathrm{C}_{0}-\mathrm{C}_{6}$)alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl-moiety may optionally be replaced by an oxygen, nitrogen or sulfur atom, with the proviso that any two such heteroatoms must be separated by at least two carbon atoms, and wherem any of the alkyl moretres of said ($\mathrm{C}_{6} \mathrm{C}_{6}$) alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- may be optionally substituted with from two to seven fluorine atoms. and wherein one of the carbon atoms of each of the alkyl moreties of said aryl-$\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- and said heteroaryl-($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl- may optionally be replaced by an oxygen, nitrogen or sulfur atom and wherein each of the foregoing aryl and heteroaryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents, independently selected from $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluorine atoms, $\left(C_{1}-C_{6}\right)$ alkoxy optionally substituted with from two to seven fluorine atoms. halo (e.g. chloro, fluoro, bromo or iodo), ($\mathrm{C}_{2}-\mathrm{C}_{6}$)alkenyl, ($\mathrm{C}_{2}-\mathrm{C}_{6}$)alkynyl, hydroxy, nitro, cyano, ammo, ($\mathrm{C}_{1}-$ C_{6})alkylamino-. $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=O) \mathrm{R}^{13}$ and $\mathrm{XC}(=O) \mathrm{R}^{13}$.
or R^{2} and R^{3}, together with the carbons to which they are attached, form a four to seven membered monocycic or ten to fourteen membered bicyclic, carbocyclic ring that can be saturated or unsaturated, wherein from one to three of the nonfused carbon atoms of said monocyclic rings, and from one to five of the carbon atoms of said bicycic rings that are not part
of the benzo ring shown in formula I, may optionaliy and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents, preferably from zero to two substituents for the monocychic rings and from zero to three substituents for the bicyclic rings, that are selected, independently, from ($\mathrm{C}_{1}-\mathrm{C}_{6}$) alkyl optionally substituted with from one to seven fluonne atoms, (C_{1}, C_{6}) alkoxy optionally substituted with from one to seven fluorine atoms, nitro, cyano, halo, ($\mathrm{C}_{2}-\mathrm{C}_{6}$) alkenyl, $\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)$ alkynyl, hydroxy, amino, ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkylamino and $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino, $\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=0) \mathrm{R}^{13}$ and $-\mathrm{XC}(=0) \mathrm{R}^{13}$;
each $R^{4}, R^{5}, R^{6}, R^{7}, R^{8}$ and R^{13} is selected, independently, from hydrogen and ($C_{1}-C_{6}$) alkyl, or R^{5} and R^{6}, or R^{7} and R^{8} together with the nitrogen to which they are attached, form a pyrrolidıne, piperıdine, morpholine, azetıdine, piperızıne. N - $\left(\mathrm{C}_{1}-\mathrm{C}_{5}\right)$ alkyipıperızıne or thromorpholine ring, or a thomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each X is, independently, $\left(C_{1}-C_{6}\right)$ alkylene;
with the proviso that: (a) at least one of R^{1}, R^{2} and R^{3} must be the other than hydrogen, and (b) when R^{2} and R^{3} are both hydrogen, R^{1} cannot be hydrogen or methyl;
or a pharmaceutically acceptable salt thereof;
2. A compound according to clam 1, wherem R^{2} and R^{3}, together with the benzo ring of formula $!$, form a bicyclic ring system selected from the following

wherein R^{10} and R^{17} are selected. Independently, from $\left(C_{0}-C_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkylwherem the total number of carbon atoms does not exceed six and wheren any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms, nitro. cyano, halo,
amıno, $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right.$) alkylamıno-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N \mathrm{R}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$, $-X C(=O) R^{13}$, phenyl and monocyclic heteroaryl, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur,
3. A compound according to claim 1, wherein R^{2} and R^{3} do not, together with the benzo ring of formula I, form a bicyclic or tricyclic ring system.
4. A compound according to ciam 1, wheren one or both of R^{2} and R^{3} are $-C(=O) R^{13}$ wherein R^{13} is $\left(C_{1}-C_{6}\right)$ aikyl.
5. A compound according to claim 1 , wherem one of R^{2} and R^{3} is $-C O R^{13}$ wherein R^{13} is $\left(C_{1}-C_{6}\right)$ alkyl or ($C_{1}-C_{3}$) alkyl optionally substituted with from one to seven fluorine atoms.
6. A compound according to claim 1, wherein one of R^{2} and R^{3} is CF_{3}, fluoro, cyano or $\mathrm{C}_{2} \mathrm{~F}_{5}$.

7 A pharmaceutical composition for use in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising an amount of a compound according to claim 1 that is effective in reducing nicotine addiction or alding in the cessation or lessening of tobacco use and a pharmaceutically acceptable carrier.
8. A method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising administenng to said mammal an amount of a compound according to claim 1 that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.
9. A pharmaceutical composition for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis. pyoderma gangrenosum and Crohn's disease), ırritable bowel syndrome. spastic dystonia. chronic pam, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia. obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g. dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis, Huntıngton's Chorea, tardive dyskınesıa, hyperkınesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decine, epilepsy, inciuding petit mal absence epilepsy, senile dementia of the Alzhemer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal,
comprising an amount of a compound according to claim 1 that is effective in treating such disorder or condition and a pharmaceutically acceptable carrier.

10 A method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastıc dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulima, anorexıa, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI). psychosıs, Huntıngton's Chorea, tardive dyskınesia, hyperkinesia, dyslexia, schizophrenıa, multıinfarct dementia, age reiated cognitive decline. epilepsy, including petit mal absence epilepsy, senile dementia of the Alzhemer's type (AD). Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound according to claim 1 that is effective in treating such disorder or condition.

11 A compound of the formula

wherein P is hydrogen, methyl. COOR^{16} wherem R^{16} is $\left(C_{1}-C_{6}\right)$ alkyl, allyl or 2,2,2trichioroethyl, $-C(=O) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in formula 1 above; $-C(=0) H$. $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl wherein the alkyl morety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl, t-butoxycarbonyl (t-Boc) or trifluoroacetyi, and R^{14} and R^{15} are selected, independently, from hydrogen. ($C_{1}-C_{6}$) alkyl optionally substituted with from one to seven fluorine atoms; $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl, cyano, hydroxy, nitro. amino, $-O\left(C_{1}-C_{6}\right)$ alkyl and halo, with the proviso that R^{14} and R^{15} can not both be hydrogen when P is hydrogen or methyl
12. A method for reducing nicotine addiction or arding in the cessation or lessening of tobacco use in a mammal, comprising administening to said mammal an amount of a compound comprising an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.
13. A method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastnc acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol. benzodıazepines. barbituates, opioids or cocane), headache, stroke, traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multıinfarct dementia age related cognitive dectine, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzhemer's type (AD), Parkinson's disease (PD). attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof;
that is effective in treating such disorder or condition
14. A compound of the formula

wherein R^{2} and R^{3} are defined as in claim 1 , and P^{\prime} is $C O O R^{16}$ wherein R^{16} is allyl, 2,2.2-trichloroethyl or ($C_{1}-C_{6}$) alkyl, $-C(=0) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in claim 2.
$5-\mathrm{C}(=\mathrm{O}) \mathrm{H},-\mathrm{C}(=\mathrm{O})\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein the alkyl molety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl, or t butoxycarbonyl (t -Boc).

Abstract
Compounds of the formula

and their pharmaceutically acceptable salts, whereın R^{1}, R^{2}, R^{3} and n are defined as in the specification, intermediates in the synthesis of such compounds, pharmaceutical compositions containing such compounds and methods of using such compounds in the treatment of neurological and psychological disorders are clamed.

Approved for use through 09/30/2000. OMB 0651-0032

Please type a plus sıgn (+) inside this box \rightarrow	Approved for use through 09/30/2000. OMB 0651-0032 Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE	
DECLARATION FOR UTILITY OR	Attorney Docket Number	PC 10030A
DESIGN PATENT APPLICATION (37 CFR 1.63)	First Named Inventor	Jotham Wadsworth COE
	COMPLETE IF KNOWN	
	Application Number	Not yet assigned
Declaration submitted with Initial Filing	Filing Date	Filed herewith
	Group Art Unit	Not yet assigned
	Examiner Name	Not yet assigned

As a below named inventor, I hereby declare that:
My residence, post office address, and citizenship are as stated below next to my name.
I believe 1 am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

ARYL FUSED AZAPOLYCYCLIC COMPOUNDS
(Title of the Invention)
the specification of which
\square is attached hereto
OR
\boxtimes was filed on (MM/DD/YYYY) 11/13/1998 as United States Application Number or PCT International
Application Number PCT//B98/01813 and was amended on (MM/DD/YYYY) (if applicable). I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment specifically referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56 .
I hereby claim foreign priority benefits under 35 U.S.C. 119(a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or $365(\mathrm{a})$ of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or of any PCT international application having a filing date before that of the application on which priority is claimed.

DECLARATION - POA FOR UTLLITY OR DESIGN, PTO SB 01, $3 / 99$
[Page 1 of 3]
Please type a plus sign (+) inside this box $\rightarrow \quad+\quad$ Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

[Page 3 of 3]
EXPRESS MAL NO EM484852791

Patent number

PATENT NUMBER
6410550
64 6410550

U.S. UTILITY PATENT APPLICATION

| GY O.IP.E. | PATENT DATE |
| :--- | :--- | :--- |
| SCANNED J JV | |

PREPARED AND APPROVED FOR ISSUE

ISSUING CLASSIFICATION								
original		CRoss reference(s)						
cLass	Subclass	class	SUBCLASS (ONE SUUBCLASS PeÉf Llock					
514	289	514	210.21	228.2	232:8	253.02	253.03	256
INTERNATIONAL CLASSIFICATIOM ${ }^{\text {a }}$			281	295	\cdots	\cdots		
A $6,1 \mathrm{k}$	$31 / 44$	546	43	74	97.			
761 k	$31 / 505$	544	58.2	60	125	126	242	361
cold	$221 / 22$					\%		
C07 ${ }^{\text {c }}$	$413 / 00$					\cdots		
A 1 \|P	$1 / 00$			\square Conitinued on Issue Stip Inside File Jacket				

The intormation disclosed herein may be restricted. Unauthorized disclosure may be prohibited by the United States Code Titte 35, Sections 122,181 and 368.
Possession outside the U.S. Patent \& Trademark Otfice is restricted to authorized employees and contractors only.
Form PTO-436A
(Rev. 6r9e)
Briefled 9-26.00

SEARCHED			
Class	Sub.	Date	Exmr.
546 514		$/_{26}^{9 /}$	
Upda	ted	$\begin{aligned} & 2 / 7 / 02 \\ & 1 \end{aligned}$	$B C$

SEARCH NOTES (INCLUDING SEARCH STRATEGY)		
	Date	Exmr.
	$\begin{gathered} 9 / 18 / 00 \\ 2 / 7 / 102 \end{gathered}$	$B C$
		BC

TRANSMITTAL LETTER TO THE UNITED STATES PATENT AND TRADEMARK OFFICE DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371

PCI0030A
U.S. APPLICATION NO. (If known, see 37 C.E.R. 1.5)

APPLICANT(S) FOR DO/EO/US

Jotham Wadsworth COE and Paige Roanne Palmer BROOKS
Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. \boxtimes This is the FIRST submission of items concerning a filing under 35 U.S.C. 371.
2. \square This is the SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
3. \boxtimes This express request to begin national examination procedures (35 U.S.C. 371 (f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35.U.S.C. 371(b) and PCT Articles 22 and 39(1).
4. \boxtimes A proper Demand for International Preliminary Examination was made by the $19^{\text {th }}$ month from the earliest claimed priority date.
5. \boxtimes A copy of the International Application as filed (35 U.S.C. 371(c)(2))
a. \boxtimes is transmitted herewith (required only if not transmitted by the International Bureau). b. $\quad \square \quad$ has been transmitted by the International Bureau. c. \square is not required, as the application was filed in the United States Receiving Office (RO/US). A translation of the International Application into English (35 U.S.C. 371(c)(2)).
6. \boxtimes Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371 (c)(3)) a. \square are transmitted herewith (required only if not transmitted by the International Bureau). b. $\quad \square \quad$ have been transmitted by the International Bureau. c. \square have not been made; however, the time limit for making such amendments has NOT expired. d. \boxtimes have not been made and will not be made.
7. \square A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
8. \boxtimes An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
9. \square A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371 (c)(5)).
Items 11. To 16. Below concern other documents(s) or information included:
10. \boxtimes An Information Disclosure Statement under 37 C.F.R. 1.97 and 1.98 .
11. \square An assignment document for recording. A separate cover sheet in compliance with 37 C.F.R. 3.28 and 3.31 is included.
12. \square A FIRST preliminary amendment.
\square A SECOND or SUBSEQUENT preliminary amendment.
13. \square A substitute specification.
14. \square A change of power of attorney and/or address letter.
15. \square Other items or information:

- ARYL FUSED AZAPOLLYCYCLIC COMPOUNDS

Background of the Invention
This invention relates to aryl fused azapolycyclic compounds, as defined more specifically by formula I below. Compounds of formula I bind to neuronal nicotinic acetylcholine specific receptor sites and are useful in modulating cholinergic function. Such compounds are useful in the treatment of inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain. acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, \wedge fotropte lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac, arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramusetlar palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine barheticratos
(and/or tobacco products), alcohol, benzodiazepines, $\lambda^{\text {barbittates. opioids }}$ or cocaine). headache. stroke, traumatic brain injury (TBI), obsessive-compulsive disorder, psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome

The compounds of this invention may also be used in combination with an antidepressant such as. for example, a tricyclic antidepressant or a serotonin reuptake inhibiting antidepressant (SRI), in order to treat both the cognitive decline and depression associated with AD. PD. stroke, Huntington's Chorea or traumatic brain injury (TBI): in combination with muscarinic agonists in order to stimulate both central muscarinic and nicotinic receptors for the treatment, for example, of ALS, cognitive dysfunction, age related cognitive decline, AD, PD, stroke. Huntington's Chorea and TBI; in combination with neurotrophic factors such as NGF in order to maximize cholinergic enhancement for the treatment, for example, of ALS, cognitive dysfunction, age related cognitive decline, AD, PD stroke, Huntington's Chorea and TBI; or in combination with agents that slow or arrest AD such as cognition enhancers, amyloid aggregation inhibitors, secretase inhibitors, tau kinase inhibitors, neuronal antiinflammatory agents and estrogen-like therapy. States Patent Application 08/963,852, which was filed on November 4, 1997. The foregoing application is owned in common with the present application, and is incorporated herein by reference in its entirety.

Summary of the Invention

This invention relates to aryl fused azapolycyclic compounds of the formula
Other compounds that bind to neuronal nicotinic receptor sites are referred to in United
now U,S, 6,020,335
 hydroxy, nitro, amino, halo, cyano, $-\mathrm{SO}_{q}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein q is zero, one or two, $\left(C_{1}, C_{6}\right.$) alkylamino-, $\quad\left[\left(C_{1}-C_{6}\right) \text { alkyl }\right]_{2}$ amino-. $\quad-\mathrm{CO}_{2} R^{4}, \quad-\mathrm{CONR}^{5} \mathrm{R}^{6}, \quad-\mathrm{SO}_{2} N R^{7} R^{8}, \quad-\mathrm{C}(=0) \mathrm{R}^{13}$. $-X C(=O) R^{13}$, aryl-($C_{0}-C_{3}$)alkyl- or aryl- $\left(C_{0}-C_{3}\right)$ alkyl-O-. wherein said aryl is selected from phenyl and naphthyl, heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- or heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-O-, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur, and $X^{2}\left(C_{0}-C_{6}\right)$ alkoxy- $\left(C_{0}-C_{6}\right)$ alkyl-. wherein X^{2} is absent or X^{2} is $\left(C_{1}-C_{6}\right)$ alkylamino- or $\left[\left(C_{1}-C_{6}\right) \text { alky }\right]_{2}$ amino-, and wherein the ($\mathrm{C}_{0}-\mathrm{C}_{6}$) alkoxy-($\mathrm{C}_{0^{-}}$ C_{6})alkyt-moiety of said $\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- contains at least one carbon atom, and wherein from one to three of the carbon atoms of said $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- moiety may optionally be replaced by an oxygen, nitrogen or sulfur atom, with the proviso that any two such heteroatoms must be separated by at least two carbon atoms, and wherein any of the alkyl moieties of said ($\mathrm{C}_{0}-\mathrm{C}_{6}$)alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- may be optionally substituted with from two to seven fluorine atoms, and wherein one of the carbon atoms of each of the alkyl moieties of said aryl($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl- and said heteroaryl-($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl- may optionally be replaced by an oxygen, nitrogen or sulfur atom, and wherein each of the foregoing aryl and heteroaryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents, independently selected from ($C_{1}-C_{6}$)alkyl optionally substituted with from one to seven fluorine atoms. ($C_{1}-C_{6}$)alkoxy optionally substituted with from two to seven fluorine atoms, halo (e.g. chloro. fluoro, bromo or iodo), ($\mathrm{C}_{2}-\mathrm{C}_{6}$)alkenyl, ($\mathrm{C}_{2}-\mathrm{C}_{6}$)alkynyl, hydroxy, nitro. cyano. amino, ($\mathrm{C}_{1}-$
C_{6})alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-. $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} R^{8},-\mathrm{C}(=0) \mathrm{R}^{13}$ and $X C(=O) R^{13}$;
or R^{2} and R^{3}, together with the carbons to which they are attached, form a four to seven membered monocyclic, or a ten to fourteen membered bicyclic, carbocyclic ring that can be saturated or unsaturated, wherein from one to three of the nonfused carbon atoms of said monocyclic rings, and from one to five of the carbon atoms of said bicyclic nings that are not part of the benzo ring shown in formula I, may optionally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionaliy be substituted with one or more substituents, preferably from zero to two substituents for the monocyclic rings and from zero to three substituents for the bicyclic rings, that are selected, independently, from ($\mathrm{C}_{0}-\mathrm{C}_{6}$)alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl-, wherein the total number of carbon atoms does not exceed six and wherein any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms; nitro. oxo, cyano, halo, ($\mathrm{C}_{2}-\mathrm{C}_{6}$)alkenyl, ($\mathrm{C}_{2}-\mathrm{C}_{6}$)alkynyl, hydroxy, amino, $\left(C_{1}-\mathrm{C}_{6}\right.$) alkylamino-. $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\right.$ alkyll ${ }_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=O) \mathrm{R}^{13}$, and $X C(=O) R^{13}$;
each $R^{4}, R^{5}, R^{6}, R^{7}, R^{8}$ and R^{13} is selected, independently, from hydrogen and ($C_{1}-C_{6}$) alkyl, or R^{5} and R^{6}, or R^{7} and R^{8} together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperizine, \sim - $\mathrm{N}-\left(\mathrm{C},-\mathrm{C}_{6}\right)$ alkylpipegikine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each X is, independently, $\left(C_{1}-C_{6}\right)$ alkylene:
with the proviso that: (a) at least one of R^{1}, R^{2} and R^{3} must be the other than hydrogen, and (b) when R^{2} and R^{3} are hydrogen, R^{1} cannot be methyl or hydrogen:
and the pharmaceutically acceptable salts of such compounds
Examples of heteroaryl groups that each of R^{2} and R^{3} can be are the following:
thienyl, oxazoyl, isoxazolyl. pyridyl, pyrimidyl, thiazolyl, tetrazolyl, isothiazolyl, triazolyl, imidazolyl, tetrazolyl, pyrroyl and the following groups:
\qquad

wherein one of R^{9} and R^{18} is hydrogen or $\left(C_{1}-C_{6}\right)$ alkyl, and the other is a bond to the benzol ring of formula I.

Examples of compounds of this invention are compounds of the formula I, and their pharmaceutically acceptable salts, wherein R^{2} and R^{3}, together with the benzo ring of formula I. form a bicyclic ring system selected from the following:

wherein R^{10} and R^{17} are selected, independently, from ($C_{0}-C_{6}$)alkoxy- $\left(C_{0}-C_{6}\right)$ alkylwherein the total number of carbon atoms does not exceed six and wherein any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms; nitro. cyano, halo. amino. ($\mathrm{C}_{1}-\mathrm{C}_{6}$) alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl] }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4}$. $-\mathrm{CONR}^{5} \mathrm{R}^{6}$, $-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=0) \mathrm{R}^{13}$. $-X C(=O) R^{13}$, phenyl and monocyclic heteroaryl wherein said heteroaryl is defined as R^{2} and R^{3} are defined in the definition of compounds of the formula I above:

Other embodiments of this invention relate to compounds of the formula I, and their pharmaceutically acceptable salts, wherein R^{2} and R^{3}, together with the benzo ring of formula I. form a bicyclic or tricyclic ring system selected from the following:

5

wherein R^{10} and R^{17} are defined as above and m is zero, one or two. and wherein one of the carbon atoms of ring A can optionally be replaced with oxygen or $-N\left(C_{1}-\mathrm{C}_{6}\right)$ alkyl.

Other embodiments of this invention relate to compounds of the formula I, and their pharmaceutically acceptable salts, wherein neither R^{2} nor R^{3} is attached to the benzo ring of formula I via an oxygen atom.

Other embodiments of this invention relate to compounds of the formula I wherein R^{\prime} is not methyl.

Examples of specific compounds of the formula I are the following:
6-methyl-5,7-dioxo-6.13-diazatetracyclo[9.3.1.0 $0^{2 \cdot 10} \cdot 0^{4.8}$]pentadeca-2(10).3.8-triene hydrochloride:

6-methyl-5-oxo-6.13-diazatetracyclo[9.3.1.0. $\left.0^{2.10} \cdot 0^{4.8}\right]$ pentadeca-2(10),3,8-triene hydrochloride;

5,7-dimethyl-6-oxo-5,7.13-triazatetracyclo[9.3.1.0. ${ }^{2.10} .0^{4.8}$]pentadeca-2(10),3,8-triene hydrochloride:

5,7-dioxo-6,13-diazatetracyclo[9.3.1. $0^{2.10} .0^{4.8}$]pentadeca-2(10),3.8-triene hydrochloride:

5-oxo-6.13-diazatetracyclo[9.3.1.0 $\left.0^{2.10} \cdot 0^{4.8}\right]$ pentadeca-2(10).3.8-triene hydrochloride;
6-oxo-5.7.13-triazatetracyclo[9.3.1.0 ${ }^{2.10} .0^{4.8}$]pentadeca-2(10),3,8-triene hydrochioride:
4,5-difluoro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene hydrochloride;
5-fluoro-10-aza-tricyclo[6.3.1.0.7]dodeca-2(7),3.5-triene-4-carbonitrile hydrochloride;
4-ethynyl-5-fluoro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride;
5-ethynyl-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-triene-4-carbonitrile hydrochloride;
5-chloro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene-4-carbonitrile hydrochloride;
4-ethynyl-5-chloro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene hydrochloride;
5-oxa-7-methyl-6-oxo-7,13-diazatetracyclo[9.3.1.0 $0^{2.10} .0^{4.8}$]pentadeca-2(10),3.8-triene hydrochloride;

4-fluoro-5-trifluoromethyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene hydrochloride;

4-chloro-5-trifluoromethyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene hydrochtoride:

5-trifluoromethyl-10-aza-tricyclo[6.3.1.0. ${ }^{2.7}$]dodeca-2(7).3.5-triene-4-carbonitrile hydrochloride:

4-ethynyl-5-trifluoromethyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene hydrochloride:

6-methyl-5-thia-5-dioxa-6.13-Diazatetracyclo[9.3.1.0.0.10 $0^{4.8}$]pentadeca-2(10).3.8triene hydrochloride:

7-dimethylamino-5-thia-5-dioxa-6.13-Diazatetracyclo[9.3.1.0.10.0.0.8. ${ }^{4.8}$ pentadeca-2(10),3,8-triene hydrochloride;
6.7-dioxa-5.8.14-triazatetracyclo[10.3.1.0 $0^{2.11} .0^{4.9}$]hexadeca-2(11),3.9-triene hydrochloride: and

5,8-dimethyl-6,7-dioxa-5,8,14-triazatetracyclo[10.3.1.0 $0^{2.11} .0^{4.9}$ hexadeca-2(11).3.9triene hydrochloride.

This invention also relates to compounds of the formula

wherein P is hydrogen, methyl, COOR^{16} wherein R^{16} is ($C_{1}-C_{6}$)alkyl, allyl, 2,2,2-trichloroethyl or $\left(C_{1}-C_{6}\right)$ alkyl; $-C(=0) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in formula 1 above; $-C(=O) H$, $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl or t-butoxycarbonyl (t Boc); and R^{14} and R^{15} are selected, independently, from hydrogen, ($C_{1}-C_{6}$)alkyl optionally substituted with from one to seven fluorine atoms; $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl, cyano, hydroxy, nitro. amino, $-\mathrm{O}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl or halo: with the proviso that R^{14} and R^{15} can not both be hydrogen when P is hydrogen or methyl. Such compounds are useful as intermediates in the synthesis of compounds of the formula I.

Unless otherwise indicated, the term "halo", as used herein, includes fluoro, chloro, bromo and iodo.

Unless otherwise indicated, the term "alkyl", as used herein. includes straight, branched or cyclic, and may inctude straight and cyclic alkyl moreties as well as branched and cyclic moieties.

The term "alkoxy", as used herein, means "alkyl-O-". wherein "alkyl" is defined as above.

The term "alkylene, as used herein, means an alkyl radical having two available bonding sites (i.e., -alkyl-), wherein "alkyl" is defined as above.

Uniess otherwise indicated, the term "one or more substituents", as used herein, refers to from one to the maximum number of substituents possible based on the number of available bonding sites.

The term "treatment", as used herein, refers to reversing. alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such condition or disorder. The term "treatment", as used herein, refers to the act of treating, as "treating" is defined immediately above.

The compounds of formula I may have optical centers and therefore may occur in different enantiomeric configurations. The invention includes all enantiomers, diastereomers, and
other stereoisomers of such compounds of formula I, as well as racemic and other mixtures thereof.

The present invention also relates to all radiolabeHed forms of the compounds of the formula\& 1. Preferred radiotabeked compounds of formula I are those wherein the radiolabels are selected from as ${ }^{3} \mathrm{H},{ }^{11} \mathrm{C},{ }^{14} \mathrm{C}, ~{ }^{18} \mathrm{~F},{ }^{123}$ I and ${ }^{125} \mathrm{I}$. Such radiolabèted compounds are useful as research and diagnostic tools in metabolism pharmacokinetics studies and in binding assays in both animals and man.

The present invention also relates to a pharmaceutical composition for use in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, including a human, comprising an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use and a pharmaceutically acceptable carrier.

The present invention also relates to a method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.

The present invention also relates to a method of treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis. vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amyotropic lateral sclerosis (ALS), cognitive dysfunction. hypertension, bulimia. anorexia. obesity, cardiac arrythmias, gastnc acid hypersecretion, ulcers, pheochromocytoma, progressive supraشusetleaflisy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis. Huntington's Chorea. tardive dyskinesia. hyperkinesia. dyslexia, schizophrenia. multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD). Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound of the formula I. or a pharmaceutically acceptable salt thereof, that is effective in treating such disorder or condition

The present invention also relates to a pharmaceutical composition for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety,

Amesotraphic. panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amyerropie lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive suprafacelourd palsy, chemical dependencies and addictions (e.g.. dependencies, or addictions to nicotine (and/or tobacco products), alcohol benzodiazepines, barbituzteratos opioids or cocaine). headache, stroke, traumatic brain injury (TBI), psychosis. Huntington's Chorea, lardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mail absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising an amount of a compound of the formula 1 , or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

The present invention also relates to a method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising administering to said _._mammal an amount of a compound comprising an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use

The present invention also relates to a method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylerropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmjas, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (egg., dependencies s on, or addictions to nicotine (and/or tobacco products). alcohol, bepzodiazepines, barbiturates. opioids or cocaine), headache, stroke, obsossue fampulsue dusaide (oct). traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia. hyperkinesia. dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including
petit mal absence epilepsy, senite dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in treating such disorder or condition.

This invention also relates to the pharmaceutically acceptable acid addition salts of the compounds of formula I. Examples of pharmaceutically acceptable acid addition salts of the compounds of formula I are the salts of hydrochloric acid, p-toluenesulfonic acid, fumaric acid, citric acid, succinic acid, salicylic acid, oxatic acid. hydrobromic acid, phosphoric acid, methanesulfonic acid, tantaric acid. malate, di-p-toluoyl tartaric acid, and mandelic acid.

Detailed Description of the Invention
Except where otherwise stated. R^{1} through $R^{18} . m$ and P. and structural formula I in the reaction schemes and discussion that follow are defined as above.

III
IV

IIA
IIB

12

-15-
\longleftarrow

VIB

IC

-16-

IE

-18-

5
Scheme 6 continued

XI

IF
-19-

5
Scheme 7

(ring $A=$ present or absent) XIII XII

(ring $A=$ present or absent)
XIIIA
\downarrow.

(ring $A=$ present or absent)
XIV
1

IG: $\quad\left(R^{2}\right.$ and R^{3} form ring A)
III: (ring $A=$ absent)

28

1Q

23

Scheme 1-10 illustrate methods of synthesizing compounds of the formula 1 .
Referring to Scheme 1, the starting material of formula III is reacted with trifluoroacetic anhydride, in the presence of pyridine, to form the compound of formula IV. This reaction is typically conducted in methylene chloride at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature

The compound of formula IV is then converted into the dinitro derivative of formula IIA by the following process. The compound of the formula IV is added to a mixture of 4 or more equivalents of trifluoromethanesulfonic acid $\left(\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OH}\right)$ and 2 to 3 equivaients of nitric acid, in dichlaroethane a chlorinated hydrocarbon solvent such as chloroform. dichoreethanethane (DCE) or methylene chloride. The resulting mixture is allowed to react for about 5 to 24 hours. Both of the foregoing reactions are generally conducted at a temperature ranging from about $-78^{\circ} \mathrm{C}$ to about $0^{\circ} \mathrm{C}$ for about 2 hours, and then allowed to warm to room temperature for the remaining time.

Reduction of the compound of formula IIA, using methods well known to those of skill in the art. yields the compound of formula IIB. This reduction can be accomplished, for example, using hydrogen and a palladium catalyst such as palladium hydroxide and running the reaction in methanol at about room temperature.

Referring to Scheme 2, the compound of formula IIA is converted into the corresponding compound wherein the trifluoroacetyl protecting group is replaced by a t-Boc protecting group. (VIA) by reacting it first with an alkali metal or alkaline earth metal (or ammonium) hydroxide or carbonate, and then reacting the isolated product from the foregoing reaction with di-tbutyldicarbonate. The reaction with the alkali or alkaline earth metal (or ammonium) hydroxide or carbonate is generally carried out in an aqueous alcohol, dioxane or tetrahydrofuran (THF) at a temperature from about room temperature to about $70^{\circ} \mathrm{C}$, preferably at about $70^{\circ} \mathrm{C}$. for about one to about 24 hours. The reaction of the isolated, unprotected amine or an acid addition salt of such amine, from the above reaction with di-t-butyldicarbonate is preferably carried out in a solvent such as THF, dioxane or methylene chloride at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature. This reaction may or may not be conducted in the presence of a base. When the reactant is a salt of the amine, use of a base is preferred. The resulting compound of formula VIA can be converted into the corresponding diamino derivative of formula VIB using the procedure described above for converting the dinitro compound of formula IIA into the corresponding diamino compound of formula IIB.

The conversion of the compound of formula VIB into the desired compound of the formula VII can be accomplished by reacting the compound of formula VIB with a compound of the formula

5

XXII
wherein R^{10} is hydrogen, $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluorine atoms, aryl-($C_{0}-C_{3}$)alkyl wherein said aryl is selected from phenyl and naphthyl, or heteroaryl($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteratoms selected from oxygen, nitrogen and sulfur, and wherein each of the foregoing aryl and heteroryll groups may optionally be substituted with one or more substituents, preferably from zero to two substituents, independently selected from ($C,-C_{6}$) alkyl optionally substituted with from one to seven fluorine atoms. ($C_{1}-C_{6}$)alkoxy optionally substituted with from one to seven fluorine atoms and cyano. The preferred solvent for this reaction is a 10:1 mixture of ethanol:acetic acid. The reaction temperature can range from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$. It is preferably about $60^{\circ} \mathrm{C}$. Other appropriate solvents include acetic acid, ethanol and isopropanol.

Alternate methods of preparing compounds of the formula VII the compound of formula VIB are described by Segetstein et al., Tetrahedron Lett., 1993, 34, 1897.

Removal of the $t-B o c$ protecting group from the compound of formula VII yields corresponding compound of formula IA. The protecting group can be removed using methods well known to those of skill in the art. For example, the compound of formula VII can be treated with an anhydrous acid such as hydrochloric acid. hydrobromic acid. methanesulfonic acid, or trifluoroacetic acid, preferably hydrochloric acid in ethyl acetate, at a temperature from about $0^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$. preferably from about room temperature to about $70^{\circ} \mathrm{C}$. for about one to 24 hours.

The compound of formula VII can be converted into the corresponding compound of formula IB by reacting it with a compound of the formula $R^{17} Z$, wherein R^{17} is defined as R^{10} is defined above, and Z is a leaving group such as a halo or sulfonate (egg., chloro, bromo. mesylate or tosylate), in the presence of a base such as an alkali metal hydride, hydroxide or carbonate, preferably potassium hydroxide. in a polar solvent such as water, dimethylsulfoxide (DMSO), THF or DMF, preferably a mixture of DMSO and water. and then removing the protecting group as described above. The reaction with $R^{17} Z$ is generally carried out at a temperature from about room temperature to about $100^{\circ} \mathrm{C}$. preferably at about $50^{\circ} \mathrm{C}$, for about five hours. from the compound of formula VIA. This method is the preferred method of making compounds of the formula IB wherein R^{17} is a bulky group such as an aryl or heteroaryl containing group, or when R^{17} can not be attached, as illustrated in Scheme 2. by alkylation or aryl substitution methods. Referring to Scheme 3, the compound of formula VIA is reacted with the appropriate compound of formula $\mathrm{R}^{17} \mathrm{NH}_{2}$ in a polar solvent such as THF. DMF or DMSO, preferably THF, at a temperature from about room temperature to about $100^{\circ} \mathrm{C}$, preferably at the reflux temperature, for about four to eighteen hours. The resulting compound of formula XXIII is then converted into the corresponding compound of the formula XXIV by reducing the nitro group to an amino group using methods well known to those of skill in the art. Such methods are referred to above for the conversion of the compounds of the formula IIA into a compound of the formula IIB in Scheme 1, and exempliexilid experimental Examples 12 B and 18B. Closure of the imidazole ring to form the corresponding compound of formula XXV can then be accomplished by reacting the compound of formula XXIV from the above ___reaction with a compound of the formula
 XXII corresponding compound of formula IB. This can be accomplished using methods well known in the art, for example, as described above for forming compounds of the formula IA from the corresponding compounds of the formula VII.

Scheme 4 illustrates a method of preparing compounds of the formula IC. wherein R^{10} and R^{17} are as defined above. Referring to Scheme 4, the compound of formula VIB is reacted with a compound of the formula
wherein R^{10} is defined as above, as described above for converting compounds of the formula VIB into those of the formula VII

Removal of the protecting group from the compound of formula $X X V$ yields the
 formula

Alternatively, the compound of formula VIB can be reacted with a compound of the

(double condensation reaction) in a polar solvent such as THF, water, or acetic acid, preferably a mixture of water and THF. This reaction is typically carried out at a temperature from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$. preferably at the reflux temperature, for about two to four
(sodium bisulfite ethane dione addition adduct) in water or another polar solvent such as THF, DMF or DMSO. preferably a mixture of water and a water miscible solvent such as THF, for about one to four hours. The reaction temperature can range from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$. and is preferably at about the reflux temperature. hours.

The desired quinoxoline of formula IC can then be formed by deprotecting the compound formed in either of the foregoing reactions, using the method described above for converting a compound of the formula VII into one of the formula IA.

Scheme 5 illustrates a method of preparing compounds of the formula I wherein R^{2} and R^{3}, together with the benzo ring to which they are attached, form a benzoxazole ring system. Such a compound, wherein R^{1} is hydrogen, is depicted in Scheme 5 as chemical formula IE. Referring to Scheme 5, the compound of formula $X X I I$, wherein Y is nitro, halo, trifluoromethanesulfonate or a diazonium salt. is reacted with potassium acetate or another alkali or alkaline earth metal carboxylate in a solvent such as dimethylsulfoxide (DMSO), DMF or acetonitrile, preferably DMSO. This reaction is generally allowed to run for about 12-24 hours. Appropriate reaction temperatures range from about $70^{\circ} \mathrm{C}$ to about $140^{\circ} \mathrm{C}$. Approximately $100^{\circ} \mathrm{C}$ is preferred.

The above reaction yields the compound of formula VIII, which can then be converted into the desired compound having formula IE by the following procedure. First. the compound of formula VIII is reduced by reaction with hydrogen and a palladium or platinum catalyst such as palladium hydroxide in methanol at a temperature from about $0^{\circ} \mathrm{C}$ to about $70^{\circ} \mathrm{C}$. preferably at about room temperature, to form the corresponding amino derivative. The product of this reaction is then reacted with an acid chloride of the formula $R^{10} \mathrm{COCl}$ or an acid anhydride of the formula $\left(R^{10} \mathrm{CO}\right)_{2} \mathrm{O}$ wherein R^{10} is $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl. or a compound of the formula $\mathrm{R}^{10} \mathrm{C}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$, in an appropriate inert solvent such as decalin, chlorobenzene or xylenes. A mixture of xylenes is
preferred. This reaction is typically conducted at a temperature from about $120-150^{\circ} \mathrm{C}$, preferably at about $140^{\circ} \mathrm{C}$. When $R^{\circ 0} \mathrm{COCl}$ is used as a reactant, it is preferable to add a Stoichiometric stoicheometrie amount of triethylamine (TEA) or another organic tertiary amine base and a人 catalytic amount of pyridinium p-toluenesulfonic acid or-pyfidinum-p-toluenesulfonate (PPTs) to the reaction mixture. When $\mathrm{R}^{10} \mathrm{C}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ is used as a reactant, it is preferable to add a catalytic amount of PPTs to the reaction mixture.

Removal of the trifluoroacetyl nitrogen protecting group yields the desired compound of the formula IE. This can be accomplished using methods well known to those of skill in the att, for example, reacting the protected compound with a lower alkanol and an aqueous alkali or alkaline earth metal (or ammonium) hydroxide or carbonate, aqueous sodium carbonate, at a temperature from about $50^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$. preferably at about $70^{\circ} \mathrm{C}$. for about two to six hours.

Scheme 6 illustrates the preparation of compounds of the formula 1 wherein R^{1} is hydrogen and R^{2} and R^{3}, together with the benzo ring to which they are attached, form a benzothiazole ring system. Referring to Scheme 6, the compound of formula III is reacted with trifluoroacetic anhydride to form the corresponding compound wherein the ring nitrogen is protected by a trifluoroacetyl group. and the resulting nitrogen protected compound is then reacted with two equivalents of trifluoromethanesulfonic anhydride and one equivalent of nitric acid to form the corresponding compound of formula IX. wherein there is a single nitro substituent on the benzo ring. The reaction with trifluoroacetic acid is typically conducted in the presence of pyridine. Both of the above reactions are typically conducted in a reaction inert solvent such as a chlorinated hydrocarbon solvent. preferably methylene chloride. at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature.

The above transformation can also be accomplished using other nitration methods known to those skill in the art

Reduction of the nitro group to an amine group can be accomplished as described above to provide a compound of the formula $\mid X$ '.

The compound of formula IX' is then reacted with a carboxylic acid halide or anhydride of the formula $R^{10} \mathrm{COX}$ or $\left(R^{10} \mathrm{CO}\right)_{2} \mathrm{O}$. wherein X is halo and R^{10} is hydrogen or $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl, and pyridine, TEA or another tertiary amine base, to form a compound of the formula X. which can then be converted to the desired compound having formula XI by reacting it with Lawesson's reagent. which is depicted below

The reaction with $R^{10} \mathrm{COX}$, wherein X is halo, or $\left(\mathrm{R}^{10} \mathrm{CO}\right)_{2} \mathrm{O}$ is generally carried out at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature. The reaction with Lawesson's reagent is generally carried out in a reaction inert solvent such as benzene or toluene, preferably toluene. at a temperature from about room temperature to about the reflux temperature of the reaction mixture, preferably at about the reflux temperature.

Closure to the benzothiazole ring and nitrogen deprotection to form the desired compound of formula IF can be accomplished by reacting the compound of formula XI with potassium ferricyanide and sodium hydroxide in a mixture of water and methanol $\left(\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}\right)$, at a temperature from about $50^{\circ} \mathrm{C}$ to about $70^{\circ} \mathrm{C}$, preferably at about $60^{\circ} \mathrm{C}$ for about 1.5 hours.

Scheme 7 illustrates a method of preparing the compound of formula III, which is used as the starting material for the process of Scheme 1. or a compound of the formula IG. wherein R^{2} and R^{3} form a ring (labeled " A " in the Scheme), as defined above in the definition of compounds of the formula I. Referring to Scheme 7. the compound of formula XII, wherein X^{1} and X^{2} are selected, independently, from chloro, fluoro, bromo and iodo. but where at least one of X^{1} and X^{2} is Br - or I -, reacted with cyclopentadiene, in the presence of magnesium metal, in a THF, dioxane or other ethereal solvent. at a temperature from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, preferably at about the reflux temperature, to form a compound of the formula XIII Reaction of the resulting compound of formula XIII with N -methylmorpholine-N-oxide (NMO) and osmium tetroxide in acetone at about room temperature yields the corresponding compound of the formula XIIIA.

The compound having formula XIIIA is then converted into the corresponding compound of formula XIV using the following procedure. First, the compound of formula XIIIA is reacted with sodium periodate in a mixture of a chlorinated hydrocarbon, preferably dichloroethane (DCE), and water, or with lead tetraacetate in a chlorinated hydrocarbon solvent, at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, to generate a dialdehyde or glycal intermediate. The product of this reaction is then reacted with benzylamine and material of formula XII with the appropriate compound having the formula
\qquad
sodium triacetoxyborohydride in a chlorinated hydrocarbon solvent at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature, to form the desired compound of formula XIV. Removal of the benzyl group from the compound of formula XIV yields the compound of formula III (when ring A is absent) or IG, (when ring A is present). This can be accomplished using methods well known to those of skill in the art. for example, optionally reacting the free base with one equivalent of acid, e.g., hydrochloric acid, (to form the corresponding acid addition salt), followed by hydrogen and palladium hydroxide in methanol at about room temperature.

In the reductive anımation step described above and throughout this document, alternatives to benzyl amine. such as ammonia, hydroxylamine, alkoxy amines, methyl amine, allyl amine, and substituted benzyl amines (e.g., diphenylmethyl amine and 2- and 4-alkoxy substituted benzyl amines) can also be used. They can be used as free bases, or as their salts. preferably their acetate salts, and can be subsequently removed by methods described for each by T. W. Greene and G.M. Wuts, "Protective Groups in Organic Synthesis", 1991, John Wiley \& Sons, New York. NY

The procedure of Scheme 7 can also be used to prepare compounds of the formula 1 wherein R^{2} and R^{3} do not form a ring and are not both hydrogen, by replacing the starting

$X I I^{\prime}$

Scheme 8, 9 and 10 illustrate methods of preparing compounds of the formula 1 wherein R^{1} is hydrogen; and R^{2} and R^{3} represent a variety of different substituents, as defined above, but do not form a ring.

Scheme 8 illustrates a variation of the process shown in Scheme 7, which can be used to make a compound identical to that of formula lll except that the benzo ring is substituted with a fluoro group or an alkoxy group (R^{18} in Scheme 8). This compound is depicted in Scheme 8 as chemical structure 1 H . Referring to Scheme 8 , where, for example. R^{18} is F, 1,3diffuorobenzene is reacted with a strong base such as an alkali metal dialkylamine or an alkali metal alkyl (or aryl) in an ethereal solvent such as ethyf ether or THF, at a temperature below $50^{\circ} \mathrm{C}$. followed by quenching with iodine or N -iodosuccinamide, to form 1.3-difluoro-2iodobenzene. The compound 1,3-difluoro-2-iodobenzene (structural formula XVI in Scheme 8) is then converted into the compound of formula IH by a series of reactions (represented in

Scheme 8 as $X V \mathrm{XI} \rightarrow X V I I \rightarrow X V I I I \rightarrow X I X \rightarrow i H)$ that are analogous to the series of reactions described above and illustrated in Scheme 7 for converting compounds of the formula XIII into those of the formula IG or III. Conversion of the compound of formula XVI into the compound of formula XVII can also be accomplished by treating a mixture of the compound of formula XVI and cyclopentadiene with an alkyl lithium reagent. preferably n-butyl lithium, in an inert hydrocarbon solvent such as petroleum ether or methyl cyclohexane, at a temperature from about $-20^{\circ} \mathrm{C}$ to about room temperature, preferably at about $0^{\circ} \mathrm{C}$.

The compound of formula IH can then be converted into the corresponding nitrogen protected derivative of formula $X X$, using the methods described above for synthesizing the compound of formula IV in Scheme 1. Nitration of the compound of formula $X X$ using the method described above for preparing the compound of formula $I X$ in Scheme 6, yields the compound of formula $X X I$ wherein the benzo ring is substituted with both a fluoro and nitro group or an alkoxy group and nitro group. The compound of formula $X X I$ can be used to make a variety of compounds of the formula I wherein one of R^{2} and R^{3} is fluoro, using methods that are well known to those of skill in the art, for example, by first converting the nitro group to an amino group, converting the amino group to a variety of other substituents, as illustrated in Scheme 10, and then removing the nitrogen protecting group.

The compound of formula $X X I$ acts as a regioisomeric functional equivalent of the compounds having formulas IIA, VIA and XXII, in that the fluorine atom of formula $X X I$ reacts similarly to the nitro and Y groups of formula IIA, VIA, and XXII. and thus can be subjected to the same series of reactions as those described above for the latter three compounds, providing an alternate means for preparing the products of such reactions. Similarly, the alkoxy group of formula $X X I$ ($R^{18}=$ alkoxy) may be converted into a hydroxyl group before or after introduction of the nitro group, and then converted to isomeric products as described above. Also, the trifluoromethanesulfonate salt of such hydroxy derivative can act as a Y-group as described.

Preparation of compounds of formula I where $R^{2}=-O\left(C_{1}-C_{6}\right)$ alkyl. ($C_{1}-C_{6}$) alkyl or aryl wherein aryl is defined as above in the definition of formula I. and R^{3} is H or one of the other substituents described above in the definition of formula l. can be prepared as described above and illustrated in Scheme 8 by replacing one of the fluorine atoms of the compound of formula $X V$ with -O-($C_{1}-C_{6}$)alkyl, $\left(C_{1}-C_{6}\right)$ alkyl or aryl, respectively

Scheme 9 illustrates methods of preparing compounds of the formula I wherein: (a) R^{1} is hydrogen and R^{2} is $R^{7} R^{8} \mathrm{NO}_{2} S$-: (b) R^{1} and R^{2} are both chioro; and (c) R^{1} is hydrogen and R^{2} is $R^{13} C(=O)$-. These compounds are referred to in Scheme 9. respectively, as compounds of formulas IJ, IK and IL.

Referring to Scheme 9, compounds of the formula IJ can be prepared by reacting the compound of formula IV with two or more equivalents of a halosulfonic acid. preferably chlorosulfonic acid, at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature. Reaction of the chlorosulfonic acid derivative so formed with an amine having the formula $R^{7} R^{8} N H$, wherein R^{7} and R^{8} are defined as above. followed by removal of the nitrogen protecting group. yields the desired compound having formula IJ.

Compounds of the formula IK can be prepared by reacting the compound of formula IV with iodine trichloride in a chlorinated hydrocarbon solvent, followed by removal of the nitrogen protecting group. The reaction with iodine trichloride is typically carried out at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, and is preferably carried out at about room temperature. In a similar fashion, the analogous mono- or dibrominated or mono- or diiododinated compounds can be prepared by reacting the compound of NV with N iodosuccinimide or N -bromosuccinimide in a triflurdmethanestifenie acid solvent. followed by removal of the nitrogen protecting group as described above.

Reaction of the compound of IV with an acid halide of the formula $\mathrm{R}^{13} \mathrm{COCl}$ or an acid anhydride of the formula $\left(\mathrm{R}^{13} \mathrm{CO}\right)_{2} \mathrm{O}$, with or without a reaction inert solvent such as a chlorinated hydrocarbon solvent. preferably methylene chloride, in the presence of Lewis acid such as aluminum chloride, at a temperature from about $0^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$. followed by nitrogen deprotection, yields the compound of formula IL. The reaction with the acid halige or anhydride can be carried out using other known Lewis acids or other Friedel-Crafts acylations methods that are known in the art.

The reactions described herein in which $\mathrm{NO}_{2},-\mathrm{SO}_{2} \mathrm{NR}^{\prime} \mathrm{R}^{8},-\mathrm{COR}^{13}, \mathrm{I}, \mathrm{Br}$ or Cl are introduced on the compound of formula IV. as depicted in Scheme 9 and described above. can be performed on any anaiogous compound wherein R^{2} is hydrogen, ($C_{1}-C_{6}$)alkyl, halo. ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkoxy or $-\mathrm{NHCONR}{ }^{7} \mathrm{R}^{8}$, producing compounds of the formula I wherein R^{2} and R^{3} are defined as in the definition of compounds of the formula I above.

Compounds that are identical to those of the formula IL. but which retain the nitrogen protecting group, can be converted into the corresponding O-acyl substituted compounds, i.e.. those wherein the $-C(=O) R^{13}$ group of formula IL is replaced with a $-O-C(=O) R^{13}$ group, using Baeyer-Villiger processes well known to those skilled in the art. The resulting compounds can be partially hydrolyzed, as described in Example 35, to yield the corresponding hydroxy substituted compounds, and then alkylated to form the corresponding alkoxy Astbstited compounds. Also, as described in Example 36, such O-acyl substituted compounds can be used to prepare variably substituted benzisoxazoles.

Scheme 10 illustrates methods of making compounds of the formula I wherein: (a) R^{1} is hydrogen and R^{2} is chloro; (b) R^{1} is hydrogen and R^{2} is cyano; (c) R^{1} is hydrogen and R^{2} is amino; and (d) R^{1} is hydrogen and R^{2} is $R^{13} C(=O) N(H)$-. These compounds are referred to in Scheme 10, respectively, as compounds of the formula IM. IN. IP and IQ.

Compounds of formula IM can be prepared from compounds of the formula IX' by generation of a diazonium salt with, for instance, an alkali metal nitrite and strong mineral acid (e.g., hydrochloric acid, sulfuric acid, hydrobromic acid) in water, followed by reaction with a copper halide salt, such as copper (1) chloride. Nitrogen deprotection by the methods described above yields the desired compound of formula $I M$. Alternative methods for the generation of diazonium salts, as known and practiced by those of skill in the art, can also be used. The foregoing reaction is generally carried out by temperatures ranging from about $0^{\circ} \mathrm{C}$ to about $60^{\circ} \mathrm{C}$, preferably about $60^{\circ} \mathrm{C}$ for about 15 minutes to one hour.

Reaction of the diazodium salt. prepared as described above, with potassium iodide in an aqueous medium provides the analogous iodide derivative. This reaction is generally carried out at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature. The resulting compound, or its analogous N-ter-butylcarbonate protected form, can be used to prepare the corresponding cyano derivative by reaction with copper (I) cyanide and sodium cyanide in DMF, N.N-dimethylpropylurea (DMPU) or DMSO, preferably DMF, at a temperature from about $50^{\circ} \mathrm{C}$ to about $180^{\circ} \mathrm{C}$. preferably about $150^{\circ} \mathrm{C}$. Nitrogen deprotection as described above provides the desired compound of formula IM.

The above described iodide derivative can also be used to access a variety of other substituents such as aryl, acetylene and vinyl substituents, as well as the corresponding carbonyl esters and amides, by palladium and nickel catalyzed processes known to those of skill in the art, such as Heck, Suzuki and Stille couplings and Heck carbonylations.

Nitrogen deprotection of the compound of formula IX' provides the compound of the formula IP.

The compound of formula $\mid X$ ' can be reacted with a acyl group having the formula $\mathrm{R}^{13} \mathrm{COCl}$ or $\left(\mathrm{R}^{13} \mathrm{CO}\right)_{2} \mathrm{O}$ using the methods described above, followed by nitrogen deprotection to provide compounds of the formula IQ. In a similar fashion, treatment of the protected amine with a compound having the formula $\mathrm{R}^{13} \mathrm{SO}_{2} \mathrm{X}$. when X is chloro or bromo, followed by nitrogen deprotection, provides the corresponding sulfonamide derivative.

Other suitable amine protecting groups that can be used, alternatively, in the procedures described throughout this document include $-\mathrm{COCF}_{3},-\mathrm{COCCl}_{3},-\mathrm{COOCH}_{2} \mathrm{CCl}_{3}$. $-\mathrm{COO}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl and $-\mathrm{COOCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$. These groups are stable under the conditions
described herein, and may be removed by methods described for each in Greene's "Protective Groups in Organic Chemistry", referred to above.

In each of the reactions discussed above, or illustrated in Schemes 1-10, above, pressure is not critical uniess otherwise indicated. Pressures from about 0.5 atmospheres to about 5 atmospheres are generally acceptable, with ambient pressure. i.e., about 1 atmosphere, being preferred as a matter of convenience.

The compounds of the formula I and their pharmaceutically acceptable salts (hereafter "the active compounds") can be administered via either the oral, transdermal (e.g., through the use of a patch), intranasal, sublingual, rectal, parenteral or topical routes. Transdermal and oral administration are preferred. These compounds are, most desirably, administered in dosages ranging from about 0.25 mg up to about 1500 mg per day. preferably from about 0.25 to about 300 mg per day in single or divided doses, although variations will necessarity occur depending upon the weight and condition of the subject being treated and the particular route of administration chosen. However, a dosage level that is in the range of about 0.01 mg to about 10 mg per kg of body weight per day is most desirably employed. Variations may nevertheless occur depending upon the weight and condition of the persons being treated and their individual responses to said medicament, as well as on the type of pharmaceutical formulation chosen and the time period and interval during which such administration is carried out. In some instances. dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effects, provided that such larger doses are first divided into several small doses for administration throughout the day.

The active compounds can be administered alone or in combination with pharmaceuticatly acceptable carriers or diluents by any of the several routes previously indicated. More particularly, the active compounds can be administered in a wide variety of different dosage forms, e.g., they may be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, transdermal patches. lozenges, troches, hard candies, powders, sprays, creams, salves, suppositories, jellies, gels, pastes, fotions, ointments. aqueous suspensions, injectable solutions, elixirs, syrups, and the like. Such carriers include solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents. In addition, oral pharmaceutical compositions can be suitably sweetened and/or flavored. In general, the active compounds are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight.

For oral administration, tablets containing various excipient such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate. sodium lauryl sulfate and talc can be used for tabletting purposes. Solid compositions of a similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugary as well as high molecular weight polyethylene glycols. When aqueous suspensions and/or elixirs are desired for oral administration the active ingredient may be combined with various sweetening or flavoring agents, coloring matter and, if so desired, emulsifying and/or suspending agents. together with such diluent as water, ethanol, propylene glycol, glycerin and various combinations thereof.

For parenteral administration, a solution of an active compound in either sesame or peanut oil or in aqueous propylene glycol can be employed. The aqueous solutions should be suitably buffered (preferably pH greater than 8), if necessary, and the liquid diluent first rendered isotonic. These aqueous solutions are suitable for intravenous injection purposes. The oily solutions are suitable for intraarticular, intramuscular and subcutaneous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art.

It is also possible to administer the active compounds topically and this can be done by way of creams, a patch, jellies, gels, pastes, ointments and the like, in accordance with standard pharmaceutical practice.

Biological Assay

The effectiveness of the active compounds in suppressing nicotine binding to specific receptor sites is determined by the following procedure which is a modification of the methods of Lippiello. P. M. and Fernandes. K. G. (in The Binding of L- ${ }^{3}$ h]Nicotine To A Single Class of High-Affinity Sites in Rat Brain Membranes, Molecular Pharm., 29. 448-54, (1986)) and Anderson. D. J. and Arneric, S. P. (in Nicotinic Receptor Binding of ${ }^{3} \mathrm{H}$-Cystisine, ${ }^{3} \mathrm{H}$-Nicotine and ${ }^{3}{ }^{3}$ H-Methyicarmbamyicholine In Rat Brain. European J. Pharm., 253. 261-67 (1994)).

-35-

Male Sprague-Dawley rats (200-300 g) from Charles River were housed in groups in hanging stainless steel wire cages and were maintained on a 12 hour light/dark cycle ($7 \mathrm{a} . \mathrm{m} .-7$ p.m. light period). They received standard Purina Rat Chow and water ad libitum.

The rats were killed by decapitation. Brains were removed immediately following decapitation. Membranes were prepared from brain tissue according to the methods of Lippiello and Fernandez (Moles Pharmacol; 29, 448-454, (1986) with some modifications. Whole brains were removed, rinsed with ice-cold buffer, and homogenized at 0° in 10 volumes of buffer (\mathbf{w} / v) using a Brinkmann Polytron ${ }^{\text {TM }}$, setting 6. for 30 seconds. The buffer consisted of 50 mM This HCl at a pH of 7.5 at room temperature. The homogenate was sedimented by centrifugation (10 minutes; $50,000 \times \mathrm{g}: 0$ to $4^{\circ} \mathrm{C}$. The supernatant was poured off and the membranes were gently resuspended with the Polytron and centrifuged again (10 minutes; $50,000 \times \mathrm{g} ; 0$ to $4^{\circ} \mathrm{C}$. After the second centrifugation, the membranes were resuspended in assay buffer at a concentration of $1.0 \mathrm{~g} / 100 \mathrm{~mL}$. The composition of the standard assay buffer was 50 mM This $\mathrm{HCl}, 120 \mathrm{mM}$ $\mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2 \mathrm{mM} \mathrm{MgCl} 2,2 \mathrm{mM} \mathrm{CaCl} 2$ and has a pH of 7.4 at room temperature.

Routine assays were performed in borosilicate glass test tubes. The assay mixture typically consisted of 0.9 mg of membrane protein in a final incubation volume of 1.0 mL . Three sets of tubes were prepared wherein the tubes in each set contained $50 \mu \mathrm{~L}$ of vehicle, blank, or test compound solution, respectively. To each tube was added $200 \mu \mathrm{~L}$ of [$\left.^{3} \mathrm{H}\right]$-nicotine in assay buffer followed by $750 \mu \mathrm{~L}$ of the membrane suspension. The final concentration of nicotine in each tube was 0.9 nM . The final concentration of cytisine in the blank was $1 \mu \mathrm{M}$. The vehicle consisted of deionized water containing $30 \mu \mathrm{~L}$ of 1 N acetic acid per 50 mL of water. The test compounds and cytisine were dissolved in vehicle. Assays were initiated by vortexing after addition of the membrane suspension to the tube. The samples were incubated at 0 to $4^{\circ} \mathrm{C}$ in an iced shaking water bath. Incubation were terminated by rapid filtration under vacuum through Whatman GF/B ${ }^{\text {TM }}$ glass fiber filters using a Brandel ${ }^{\text {TM }}$ multi-manifold tissue harvester. Following the initial filtration of the assay mixture, filters were washed two times with ice-cold assay buffer (5 m each). The filters were then placed in counting vials and mixed vigorously with 20 ml of Ready Safe ${ }^{T M}$ (Beckman) before quantification of radioactivity. Samples were counted in a LKB Wallach Rackbeta ${ }^{\text {TM }}$ liquid scintillation counter at 40-50\% efficiency. All determinations were in triplicate.
-36-

Calculations
Specific binding (C) to the membrane is the difference between total binding in the samples containing vehicle only and membrane (A) and non-specific binding in the samples containing the membrane and cytisine (B), i.e.,

Specific binding $=(C)=(A)-(B)$.
Specific binding in the presence of the test compound (E) is the difference between the total binding in the presence of the test compound (D) and non-specific binding (B), i.e., $(E)=(D)$ - (B).
$\%$ Inhibition $=(1-((E) /(C))$ times 100
The compounds of the invention that were tested in the above assay exhibited $I C_{50}$ values of less than $10 \mu \mathrm{M}$.

The following experimental examples illustrate, but do not limit the scope of, this invention.

EXAMPLE 1

10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$ DODECA-2(7),3.5-TRIENE
A) 1.4-Dihydro-1,4-methano-naphthalene
(Based wholly or in part on a) Wittig. G.; Knauss. E. Chem. Ber. 1958, 91, 895. b) Muir. D. J.: Stothers, J. B. Can. J. Chem. 1993. 71, 1290.)

Magnesium turnings ($36.5 \mathrm{~g}, 1.5 \mathrm{M}$) were stirred in anhydrous THF (250 mL) in a dried 2 L 3 neck round bottom flask equipped with a 250 mL non-equalizing addition funnel with a nitrogen $\left(N_{2}\right)$ flow adapter, mechanical stirrer and efficient condenser equipped with a N_{2} flow adapter. The flask was stirred and warmed to reflux by a removable heating mantle. 2-Fluorobromobenzene (2 g) was added followed by 1 mL of 3 N ethylmagnesium bromide (EtMgBr in THF). The addition funnel was charged with a mixture of cyclopentadiene (94.4 g . 1.43 M. Prepared by the method described in: Org. Syn. Col. Vol. V, 414-418) and bromofluorobenzene ($250 \mathrm{~g}, 1.43 \mathrm{M}$) which was maintained at $0^{\circ} \mathrm{C}$ in a separate flask by an ice bath, and transferred to the addition funnel via cannula. Small portions (-1 mL) of the intimate mixture were introduced to assist initiation ($-4 x$). After ~ 15 minutes, the reaction initiated (exotherm, and vapor condensation), the heating mantle was removed and the contents of the addition funnel was added dropwise at such rate as to maintain reflux (1.5 hours). The heating mantle was re-applied and a reflux maintained for 1.5 hours. (TLC 100\% hexanes $R_{1} 0.67$).

The reaction was cooled to room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$ and carefully with $1 \mathrm{~N} \mathrm{HCl}\left(200 \mathrm{~mL}\right.$. produces H_{2} evolution from unconsumed Mg). To this $-50 \mathrm{~mL}$
concentrated HCl was added to dissolve solids. Total addition/quench time -1 hour. Saturated aqueous sodium chloride (NaCl) solution (300 mL) was added and product hexanes extracted until no potassium permanganate $\left(\mathrm{KMnO}_{4}\right.$) active product is removed. ($4 \times \sim 250$ mL). The combined organic layer was washed with saturated NaHCO_{3} solution (250 mL). sodium bicarbonate $\mathrm{Na}_{2} \mathrm{SO}_{4}$ dried and concentrated to an oil (-200 g). The product was distilled at $78-83{ }^{\circ} \mathrm{C} @ 15 \mathrm{~mm}$ ($131 \mathrm{~g} .64 \%$). (An alternative workup is described on p. 419 Fieser and Fieser, Vol. I, Reagents for Organic Synthesis, Wiley, NY., NY.; 1967).

B) 1,2,3,4-Tetrahydro-1,4-methano-naphthalene-2,3-diol

(Except for the workup method and the quantity of OsO_{4} used, based on VanRheenen, V.; Cha, D.Y.; Hartley, W. M. Org. Syn. 1988, 6. 342.)

In a 2 L 3 neck round bottom flask equipped with a N_{2} flow adapter, mechanical stirrer was placed 1,4-dihydro-1.4-methano-naphthalene ($79.5 \mathrm{~g}, 560 \mathrm{mmol}$) stirred in acetone (800 mL) and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and N -methyl morpholine N -oxide ($67.5 \mathrm{~g}, 576 \mathrm{mmol}$). To this was added osmium tetroxide $\left(\mathrm{OsO}_{4}\right)(15 \mathrm{~mL}$ of a $15 \mathrm{~mol} \% \mathrm{t}-\mathrm{BuOH}$ solution, $1.48 \mathrm{mmol} .0 .26 \mathrm{~mol} \%$) and the mixture was stirred vigorously. After 60 hours. the reaction was filtered, and the white product rinsed with acetone and air dried (60.9 g). The mother liquor was concentrated to an oily solid: acetone trituration, filtration and acetone rinse provided (27.4 g , total $88.3 \mathrm{~g} .89 \%$). (TLC 50\% EtOAc/hexanes R, ~0.5). mp $176-177.5^{\circ} \mathrm{C}$.

C) 10-Benzyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7),3.5-triene

(Based on Abdel-Magid, A. F.: Carson, K. G.: Harris, B. D.: Maryanoff. C. A.: Shah, R. D. J. Org. Chem. 1996, 61, 3849; and Mazzocchi. P. H.; Stahly. B. C. J. Med. Chem. 1979. 22. 455.)

1,2.3.4-Tetrahydro-1.4-methano-naphthalene-2.3-diol ($40 \mathrm{~g}, 227.3 \mathrm{mmol}$) was stirred in $\mathrm{H}_{2} \mathrm{O}(1050 \mathrm{~mL})$ and 1.2-dichloroethane (DCE) (420 mL) in a 2 L round bottom flask under nitrogen with cool water bath ($-10^{\circ} \mathrm{C}$). To this sodium periodate (NaIO_{4}) (51 g .239 mmol) and triethylbenzyl ammonium chloride $\left(\mathrm{Et}_{3} \mathrm{BnNCl}\right)(50 \mathrm{mg})$ were added. The resulting mixture was stirred for 1 hour (slight initial exotherm), then the layers were separated and the aqueous layer was extracted with DCE (200 mL). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ (4 $\times 200 \mathrm{~mL}$, or until no reaction to starch iodide is observed in the aqueous wash) then dried through a cotton plug. To this was added benzyl amine (25.5 g .238 .6 mmol) and the mixture was stirred for 2 minutes then immediately transferred into the sodium triacetoxyborohydride $\mathrm{NaHB}(\mathrm{OAC})_{3}$ /DCE (see below) over 10 minutes.

In a separate 2 L round botton flask flask under nitrogen was magnetically stirred $\mathrm{NaHB}(\mathrm{OAC})_{3}(154 \mathrm{~g}, 0.727 \mathrm{mmol})$ in $\mathrm{DCE}(800 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ (ice bath). To this was added the above mixture over 10 minutes, without delay after the dialdehyde and amine were mixed. The resulting orange mixture was allowed to warm to room temperature and stirred for 30-60 minutes.

The reaction was quenched by addition of saturated sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ solution (-300 mL) carefully at first and the mixture was stirred for 1 hour (pH 9). The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 300 \mathrm{~mL})$. The organic layer was washed with saturated aqueous NaCl solution (200 mL), dried through a cotton plug, then evaporated to a red oil. This was dissolved in a minimum of $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a Silica pad (3×4 inch) eluting with 15% ethyl acetate (EtOAc)/hexanes $+1 \%$ of 37% aqueous ammonium hydroxide $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$ solution to remove baseline red color. Concentration affords a light yellow oil ($48.5 \mathrm{~g}, 194.8 \mathrm{mmol}, 85.7 \%$). (TLC 10% EtOAc/hexanes R, 0.75). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{~m}, 7 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $250.3\left[(M+1)^{*}\right]$.
D) 10-Aza-tricyclo[6.3.1. $0^{2.7}$ ddodeca-2(7).3.5-triene (For an alternative synthesis, see; Mazzocchi, P. H.; Stahly, B. C. J. Med. Chem. 1979, 22, 455.)

10-Benzyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene ($70.65 \mathrm{~g}, 284 \mathrm{mmol}$) was stirred in EtOAc (250 mL) and treated with $3 \mathrm{~N} \mathrm{HCIETOAc} \mathrm{(} 1.03 \mathrm{eq}$.) slowly with cooling (ice bath). The resulting precipitate was filtered and rinsed with EtOAc. The solids were dissolved in $\mathrm{MeOH}(250 \mathrm{~mL})$ in a parr bottle. To this was added $\mathrm{Pd}(\mathrm{OH})_{2}(7 \mathrm{~g}$ of $20 \% \mathrm{wt} / \mathrm{C}$) and the mixture was shaken under $50-40$ psi of H_{2} for 24 hours or until done by TLC. The reaction was filtered through a Celite pad and concentrated to an oily solid. This was azeotroped with methanol (MeOH) (3x) then triturated with acetone, treated with ethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) to precipitate product and filtered. Concentration of the mother liquors and a second treatment provided an off white solid ($48.95 \mathrm{~g} .251 \mathrm{mmol}, 88 \%$). (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{4} 0.2$). ${ }^{\prime} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{~m}, 4 \mathrm{H}), 2.97(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{~d} . \mathrm{J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~m}$, $1 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $160.2\left[(\mathrm{M}+1)^{*}\right]$.
-39-

EXAMPLE 2
 4-FLUORO-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7).3.5-TRIENE

 HYDROCHLORIDEA) 6-Fluoro-1,4-dihydro-1,4-methano-naphthalene
(Eisch, J. J.; Burlinson, N. E. J. Amer. Chem. Soc. 1976, 98, 753-761. Paquette, L. A.; Cottrell, D. M.: Snow, R. A. J. Amer. Chem. Soc. 1977. '99, 3723-3733.)

Magnesium turnings ($0.66 \mathrm{~g}, 27.2 \mathrm{mmol}$) were stirred in anhydrous THF (10 mL) in a flame dried 75 mL 3 neck round bottom flask equipped with a non-equalizing addition funnel with a N_{2} flow adapter, magnetic stirrer and efficient condenser equipped with a N_{2} flow adapter. The flask was stirred and warmed to refux by a removable heating mantle. 2.5Difluorobromobenzene (0.1 g) was added followed by of 3 NEtMgBr in THF (0.1 mL). The addition funnel was charged with an intimate mixture of cyclopentadiene (1.71 g .25 .9 mmol) and 2.5 -difluorobromobenzene (5.0 g .25 .9 mmol). Small portions ($\sim 0.2 \mathrm{~mL}$) of the intimate mixture were introduced to assist initiation $(\sim 4 x)$. After ~ 15 minutes, the reaction initiated (exotherm, and vapor condensation) and heating was maintained as necessary during the addition of the contents of the addition funnel. The reaction was then maintained at reflux for 1 hour.

The reaction was cooled to room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}$ (20 mL) followed by aqueous 1 N HCl solution (20 mL) to dissolve the solids. Saturated aqueous NaCl solution (30 mL) was added and product was extracted with hexanes ($4 \times 25 \mathrm{~mL}$). The combined organic layer was washed with saturated aqueous NaHCO_{3} solution (25 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. filtered through a Silica plug with hexanes rinse and concentrated to an oil. Chromatography on Silica gel eluting with hexanes provided an oil ($780 \mathrm{mg}, 19 \%$). (TLC hexanes R, 0.38). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .6 .80(\mathrm{br}$ s. 1 H) , 6.78 (brs, 1 H), $6.59(\mathrm{~m}, 1 \mathrm{H}) .3 .87(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) .2 .32(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d} . \mathrm{J}=7.0 \mathrm{~Hz}$. 1H)
B) 6-Fluoro-1,2,3.4-tetrahydro-1,4-methano-naphthalene-2,3-diol

6-Fluoro-1,4-dihydro-1,4-methano-naphthalene (680 mg .4 .22 mmol) and N -methyl morpholine N -oxide ($599 \mathrm{mg}, 4.43 \mathrm{mmol}$) were stirred in acetone (50 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. To this was added a solution of $\mathrm{OsO}_{4}(0.2 \mathrm{~mL}, 2.5 \% \mathrm{wt}$. solution in $\mathrm{t}-\mathrm{BuOH}, 0.02 \mathrm{mmol})$. After 72 hours, florisil (5 g) and saturated aqueous NaHSO_{3} solution (3 mL) were added and stirred for 1 hour. The florisil was filtered and the filtrate concentrated to produce a crystalline product which was triturated with acetone and filtered ($524 \mathrm{mg} .64 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S

$7.10(\mathrm{dd}, \mathrm{J}=8.0 .5 .0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, \mathrm{J}=8.0 .2 .3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (dd. $J=8.0,8.0 .2 .3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}) .1 .92(\mathrm{dd}, \mathrm{J}=10.0 .1 .5 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS me 194 (M^{*}).
C) 10-Benzyl-4-fluoro-10-aza-tricyclo[$6.3 .1 .0^{2.7}$]dodeca-2(7),3.5-triene

6-Fluoro-1,2,3,4-tetrahydro-1,4-methano-naphthaiene-2,3-diol ($524 \mathrm{mg}, 2.68 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{NBnCl}(10 \mathrm{mg})$ were vigorously stirred in dichloroethane (15 mL) and $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL}$) then treated with sodium periodate ($0.603 \mathrm{mg}, 2.82 \mathrm{mmol}$). After 1.5 hours, the layers were separated and the aqueous layer extracted with DCE $(2 \times 20 \mathrm{~mL})$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$ until no reaction to starch iodide paper was observed, then with saturated aqueous NaCl solution (20 mL). The organic layer was dried through a cotton plug and treated with benzyl amine ($0.308 \mathrm{~mL}, 2.82 \mathrm{mmol}$) and stirred for 2 minutes then transferred to an addition funnel. This solution was added over -10 minutes to a vigorously stirred cooled ($0^{\circ} \mathrm{C}$) mixture of $\mathrm{NaHB}(\mathrm{OAC})_{3}(1.82 \mathrm{~g} .8 .58 \mathrm{mmol})$ in DCE (50 mL). After addition was complete, the mixture was stirred without cooling for 2 hours. The mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (100 mL) and stirred for 1 hour, then the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with saturated aqueous NaCl solution (50 mL), dried through a cotton plug and concentrated. Chromatography on Silica gel provided an oil (520 $\mathrm{mg}, 80 \%$). ($\mathrm{TLC} 2 \%$ acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{R}_{\mathrm{f}} 0.40$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~m}, 1 \mathrm{H}), 6.88$ $(\mathrm{m}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}) .1 .69(\mathrm{~d}, \mathrm{~J}=10.5$ $\mathrm{Hz}, 1 \mathrm{H}$).

D) 4-Fluoro-10-aza-tricyclo[6.3.1.0. ${ }^{2,7}$ dodeca-2(7).3.5-triene hydrochloride
 10-Benzyl-4-fluoro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene (390 mg, 1.461

 mol). ammonium formate ($3.04 \mathrm{~g}, 48.2 \mathrm{mmol}$) and $10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(30 \mathrm{mg})$ were combined in $\mathrm{MeOH}(50 \mathrm{~mL})$ and brought to reflux under N_{2} for 1.5 hours. Ammonium formate (1.0 g) was added and reflux continued for 0.5 hour. The reaction mixture was filtered through a Celite pad which was rinsed with MeOH . The filtrate was concentrated. The residues were treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (30 mL) and product extracted with methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(3 \times 25 \mathrm{~mL})$. The organic layer was washed with saturated aqueous NaCl solution (50 mL), dried through a cotton plug and concentrated. The residue was treated with $2 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH} \mathrm{(} 5 \mathrm{~mL}$) and concentrated then taken up in minimum of MeOH and saturated with $\mathrm{Et}_{2} \mathrm{O}$. After stirring 18 h . the white crystals were collected by filtration ($86 \mathrm{mg}, 28 \%$). (TLC-41-
$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{1} 0.27$). (data for free base) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{~m}$, $1 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 4 \mathrm{H}), 2.61(\mathrm{dc} . \mathrm{J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}) .1 .87(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}$, 1H). APCI MS m/e $178.2\left[(\mathrm{M}+1)^{*}\right]$. (HCl salt) $\mathrm{mp} 260-262{ }^{\circ} \mathrm{C}$.

EXAMPLE 3

4-METHYL-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7),3.5-TRIENE HYDROCHLORIDE

The title compound was prepared by the methods described in Example 1 and 2 starting with 2-fluoro-5-methylbromobenzene. (data for free base) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.04(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 4 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H})$, $2.35(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $174.2\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) $\mathrm{mp} 254-255{ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3}$ N.HCl. $1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.44 ; \mathrm{H}, 5.11$; N. 5.19. Found C . 53.73; H, 4.82; N, 5.15

EXAMPLE 4

4-TRIFLUOROMETHYL-10-AZA-TRICYCLO[6.3.1.0 ${ }^{27}$]DODECA-2(7).3.5-TRIENE HYDROCHLORIDE (See Grunewald, G. L.; Paradkar, V. M.: Pazhenchevsky, B.; Pleiss, M. A.; Sall, D. J.; Seibel, W. L.; Reitz, T. J. J. Org. Chem. 1983, 48, 2321-2327. Grunewaid, G. L.; Markovich. K. M.: Sall, D. J. J. Med. Chem. 1987. 30. 2191-2208.)

The title compound was prepared by the methods described in Example 1 and 2^{-} starting with 2 -fluoro-5-trifluoromethylbromobenzene. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.71$ (s , 1 H) , 7.64 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (d, J=8.0 Hz, 1 H). 3.46 (m, 4 H). 3.21 (d, $\mathrm{J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}$). $2.41(\mathrm{~m} .1 \mathrm{H}), 2.16(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCl MS m/e $228.2\left[(\mathrm{M}+1)^{*}\right]$. (HCl salt) mp 244-246 ${ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N} . \mathrm{HCl} .1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} .53 .44$: H. 5.11: N. 5.19. Found C. 53.77: H, 4.82: N. 5.18.

EXAMPLE 5

3-TRIFLUOROMETHYL-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7) 3.5-TRIENE HYDROCHLORIDE (Grunewald, G. L.; Markovich. K. M.: Sall. D. J. J. Med. Chem. 1987, 30, 2191-2208.)

The title compound was prepared by the methods described in Example 1 and 2 starting with 2 -fluoro-6-trifluoromethylbromobenzene. ' H NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.65$ (s. 2 H). $7.52(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 3 \mathrm{H}) .3 .20(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}) .2 .18(\mathrm{~d}$. $J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $228.2\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) mp $275-277^{\circ} \mathrm{C}$.
-42-

EXAMPLE 6

3-FLUORO-10-AZA-TRICYCLO[6.3.1.0. ${ }^{2.7}$ DODECA-2(7).3.5-TRIENE HYDROCHLORIDE
A) 2,6-Difluoroiodobenzene (Roe, A. M.: Burton, R. A.: Willey, G. L.: Baines. M. W.; Rasmussen, A. C. J. Med. Chem. 1968, 11, 814-819. Tamborski, C.: Soloski, E. J. Org. Chem. 1966, 31, 746-749. Grunewald, G. L.; Arrington, H. S.; Bartlett, W. J.; Reitz, T. J.; Sall, D. J. J. Med. Chem. 1986, 29, 1972-1982.) 1.3-Difluorobenzene ($57.05 \mathrm{~g}, 0.5 \mathrm{M}$) in THF (75 mL) was added to a $-78^{\circ} \mathrm{C}$ stirred solution of n-butylithium (n -BuLi) ($200 \mathrm{~mL}, 2.5 \mathrm{M} /$ hexanes, 0.5 M) and THF (500 mL) under N_{2}. By controlling the addition rate the internal temperature was maintained below $-70^{\circ} \mathrm{C}$. The total addition time was $\sim 1 / 2$ hour. The resulting slurry was stirred an additional $1 / 2$ hour, then the dispersion was treated with a solution of iodine (126.9 g. 0.5 M) in THF (300 mL) at a rate that maintained an internal temperature below $-70{ }^{\circ} \mathrm{C}$. After complete addition the mixture was allowed to warm to room temperature, and was treated with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (100 mL) and stirred. The layers were separated and the aqueous layer extracted with hexanes ($2 \times 250 \mathrm{~mL}$). The combined organic layer was washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (100 mL) , $\mathrm{H}_{2} \mathrm{O}$ (100 mL). saturated aqueous NaCl solution (100 mL). dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ filtered and concentrated to give a yellow oil (106.5 g). Distillation at -1.5 mm at $-80^{\circ} \mathrm{C}$ provided a light yellow oil (89.5 g . $75 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H})$. GCMS m/e $240\left(\mathrm{M}^{+}\right)$.

B) 5-Fluoro-1.4-dihydro-1.4-methano-naphthalene

A solution of 2.6 -difluoroiodobenzene (5.0 g .20 .8 mmol) and cyclopentadiene (2.07 g. 31.3 mmol) was stirred at $0^{\circ} \mathrm{C}$ in P . ether ($70 \mathrm{~mL}, 40-60^{\circ} \mathrm{C}$) under N_{2} and treated with n - BuLi (8.74 mL .2 .5 M in hexanes, 21.8 mmol) dropwise over 10 minutes. The reaction was quenched after 15 minutes by addition of aqueous 1 N HCl solution and the product was extracted with hexanes ($3 \times 50 \mathrm{~mL}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ (50 mL), saturated aqueous NaCl solution (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$. filtered and evaporated. Chromatography on Silica gel provided product as an oil ($1.5 \mathrm{~g} .45 \%$). (TLC hexanes R_{1} 0.55). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08$ (ddd, $\mathrm{J}=7.0 .1 .0,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.96 (ddd, $\mathrm{J}=8.5,8.3 .7 .0$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.86 (br s. 2 H), 6.72 (ddd, J=8.5.8.3.0.8 Hz, 1H), 4.25 (brs, 1H), 3.98 (br s, 1H), 2.36 (ddd, $J=7.2,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30\left(\mathrm{ddd}, \mathrm{J}=7.2,1.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$). GCMS m/e $160\left(\mathrm{M}^{+}\right)$.
C) 3-Fluoro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene hydrochloride

The title compound was prepared by the methods described in Example 2B,C,D starting with 5 -fluoro-1,4-dihydro-1,4-methano-naphthalene. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 7.36 (ddd. J=8.3.7.3,5.0 Hz, 1H). 7.21 (d. J=7.3 Hz, 1H), 7.07 (t, J=8.3 Hz, 1 H), 3.62 (br s . $1 \mathrm{H})$, 3.42-3.30 (m, 3H), $3.21(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $178.4\left[(M+1)^{+}\right] . \mathrm{mp} 269-271^{\circ} \mathrm{C}$.

EXAMPLE 7

4-NITRO-10-AZATRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7).3.5-TRIENE HYDROCHLORIDE
A) 1-(10-Aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2,2,2-trifluoro-ethanone 10-Aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene hydrochloride salt (12.4 g. 63.9 mmol) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL). This was cooled (ice bath) and treated with pyridine (12.65 g 160 mmol) followed by trifluoroacetic anhydride (TFAA) ($16.8 \mathrm{~g}, 11.3 \mathrm{~mL}, 80 \mathrm{mmol}$) from an addition funnel over 10 minutes. After ~ 3 hours, the solution was poured into 0.5 N aqueous $\mathrm{HCl}(200 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic layer was washed with 0.5 N aqueous $\mathrm{HCl}(50$ $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and saturated aqueous NaHCO_{3} solution (50 mL). This solution was dried through a cotton plug, then diluted with -3% EtOAc and filtered through a 2 inch Silica pad eluted with -3% EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Concentration afforded a clear oil which crystallized to give white needles ($15.35 \mathrm{~g}, 60.2 \mathrm{mmol}$. 94%). (TLC 30% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.53$). 'H NMR $\left(400 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~m}, 4 \mathrm{H}) .4 .29(\mathrm{br} \mathrm{d} . \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}) .3 .84(\mathrm{brd}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ (dd, J=12.6.1.5 Hz, 1H), 3.21 (br s. 1 H), 3.10 (br s. 1 H), $3.10(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (m, 1H), $1.92(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{GCMS} \mathrm{m} / \mathrm{e} 255\left(\mathrm{M}^{+}\right) . \mathrm{mp} 67-68^{\circ} \mathrm{C}$.
B) 1-(4-Nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-10-y1)-2,2,2-trifluoroethanone (Based on the method described by Coon, C. L.; Blucher, W.G.; Hill, M. E. J. Org. Chem. 1973, 25, 4243.)

To a solution of trifluoromethanesulfonic acid (2.4 ml .13 .7 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml) stirred ai $0^{\circ} \mathrm{C}$ was slowly added nitric acid ($0.58 \mathrm{ml}, 27.4 \mathrm{mmol}$) generating a white precipitate. After 10 minutes the resulting mixture was cooled to $-78^{\circ} \mathrm{C}$ and treated with 1 -(10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone ($3.5 \mathrm{~g} . \quad 13.7$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ dropwise from an addition funnel over 5 minutes. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes then warmed to $0^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was poured into a vigorously stirred ice (100 g). The layers were separated and the aqueous layer
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The organic layer was combined and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times$ 30 ml). The combined organic layer was washed with saturated aqueous NaHCO_{3} solution (20 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ then dried through a cotton plug and concentrated to give an orange oil that solidified on standing (4.2 g). Chromatography yielded pure product as a crystalline solid ($3.2 \mathrm{~g}, 78 \%$). (TLC 30% EtOAc/hexanes $\mathrm{R}, 0.23$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12$ (br d. $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.08 (br s, 1 H), 7.37 ($\mathrm{br} \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$). 4.38 ($\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (br d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.59(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H})$. $2.48(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $300\left(\mathrm{M}^{+}\right)$.
C) 4-Nitro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride

1-(4-Nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2.2,2-trifluoroethanone ($182 \mathrm{mg}, 0.61 \mathrm{mmol}$) was stirred with $\mathrm{Na}_{2} \mathrm{CO}_{3}(160 \mathrm{mg}, 1.21 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ for 18 hours. The mixture was concentrated, water was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was extracted with 1 N aqueous HCl ($3 \times 20 \mathrm{~mL}$) and the acidic layer washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL}$). The aqueous layer was basified to $\mathrm{pH}-10$ with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ and product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layer was dried through a cotton plug and concentrated to an oil. This was dissolved in MeOH and treated with 1 N HCl MeOH , concentrated to solids which were recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to afford product as a white solid ($73 \mathrm{mg}, 50 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.38$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) ò $8.21(\mathrm{~s}, 1 \mathrm{H}) .8 .18(\mathrm{dd}, \mathrm{J}=8.0 .2 .0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (d. $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{dd}, \mathrm{J}=13.0 .13 .0 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H})$, $2.08(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) \cdot \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 205.1\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp} 265-270^{\circ} \mathrm{C}$.

EXAMPLE 8

4-AMINO-10-AZATRICYCLO[6.3.1.0.7. ${ }^{2.7}$ DODECA-2(7).3.5-TRIENE HYDROCHLORIDE

4-Nitro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene (500 mg, 2.08 mmol) was stirred in 1.4 -dioxane (40 mL) and treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL). To this was added di-t-butyldicarbonate ($1.8 \mathrm{~g}, 8.31 \mathrm{mmol}$). After stirring 18 hours the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$, dried through a cotton plug and concentrated to provide an oil ($500 \mathrm{mg} .91 \%$).

This oil ($500 \mathrm{mg}, 1.64 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL}$). treated with $10 \% \mathrm{Pd} / \mathrm{C}$ $(-50 \mathrm{mg})$ and hydrogenated under a H_{2} atmosphere (45 psi) for 1 hour. The mixture was filtered through a Celite pad and concentrated to a clear oil ($397 \mathrm{mg} .88 \%$).
-45-

This oil ($50 \mathrm{mg}, 0.18 \mathrm{mmol}$) was stirred in $3 \mathrm{~N} \mathrm{HCI} \mathrm{EtOAC} \mathrm{(} 3 \mathrm{~mL}$) for 2 hours then concentrated to a white solid ($25 \mathrm{mg}, 56 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 7.38-7.10(3 \mathrm{H})$, $3.60(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.25(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS}$ me $175.1\left[(\mathrm{M}+1)^{*}\right] \mathrm{mp} 189-192{ }^{\circ} \mathrm{C}$.

EXAMPLE 9

$\mathrm{N}^{\mathbf{1}-\left[10-A Z A T R I C Y C L O\left[6.3 .1 .0^{2.7}\right.\right.}$]DODECA-2(7),3.5-TRIEN-4-YL]ACETAMIDE HYDROCHLORIDE
A) 1-(4-Amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-10-yl)-2.2,2-trifluoroethanone

Hydrogenation of 1-(4-nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-10-yl)-2.2.2-trifluoro-ethanone ($2.0 \mathrm{~g}, 6.66 \mathrm{mmol}$) under a H_{2} atmosphere (40 psi) and $10 \% \mathrm{Pd} / \mathrm{C}(200$ mg) in MeOH over 1.5 hours, filtration through Celite and concentration affords a yellow oil (1.7 g). (TLC 50\% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.27$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.99(\mathrm{~m}, 1 \mathrm{H}) .6 .64$ (br s. 1 H), $6.57(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~m}$, $1 \mathrm{H}), 1.90(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $270\left(\mathrm{M}^{+}\right)$.
B) $\quad \mathrm{N}$-(10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-4-yl)acetamide

1-(4-Amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-10-yl)-2.2.2-trifluoroethanone ($850 \mathrm{mg}, 3.14 \mathrm{mmol}$) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and treated with triethyl amine $(0.53 \mathrm{~mL}, 3.76 \mathrm{mmol})$ and acetyl chloride ($0.23 \mathrm{~mL}, 3.2 \mathrm{mmol}$) then stirred 18 hours. Standard NaHCO_{3} workup yielded an oil which was chromatographed to provide a clear oil (850 mg . 87%). (50\% EtOAc/hexanes $R, 0.28$).
C) N^{1}-[10-Azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-4-yl]acetamide hydrochloride N -(10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-4-yl)-acetamide ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) was stirred with $\mathrm{Na}_{2} \mathrm{CO}_{3}(70 \mathrm{mg}, 0.64 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ for 18 hours. The mixture was concentrated, water was added and the product was extracted with EtOAc. The organic layer was extracted with 1 N aqueous $\mathrm{HCI}(3 \times$ 20 mL) and the acidic layer washed with EtOAc ($2 \times 20 \mathrm{~mL}$). The aqueous layer was basified to $\mathrm{pH}-10$ with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (s) and product was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic layer was dried (sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$) and concentrated to an oil. This material was dissolved in MeOH and treated with 3 N HCl EtOAc (3 mL). concentrated and recrystallized
from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to provide a solid ($40 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 9.98$ (s, 1H), 9.02 ($\mathrm{br} \mathrm{m}, \mathrm{NH}$), 7.65 ($\mathrm{s}, 1 \mathrm{H}$), 7.55 (br s. NH), 7.35 (d, J=8.0 Hz, 1 H), 7.20 (d, J=8.0 Hz. $1 \mathrm{H}), 3.33(\mathrm{~m}, 4 \mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS $\mathrm{m} / \mathrm{e} 217.2\left[(\mathrm{M}+1)^{+}\right] . \mathrm{mp} 225-230^{\circ} \mathrm{C}$.

EXAMPLE 10

6-METHYL-5-THIA-7.13-DIAZATETRACYCLO[9.3.1.0.10.0.8. ${ }^{\text {. }}$ PENTADECA-

2(10), 3,6,8-TETRAENE HYDROCHLORIDE

A) N -(10-Trifluorothioacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5 -trien-4-yl)thioacetamide

N -(10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]c odeca-2(7).3.5-trien-4-yl)-acetamide ($850 \mathrm{mg}, 2.72 \mathrm{mmol}$) and 2.4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide (Lawesson's reagent) ($1.1 \mathrm{~g}, 2.72 \mathrm{mmol}$) were combired in toluene (10 mL) and brought to reflux for 1.5 hours. After cooling the reaction was worked up with EtOAc/saturated aqueous NaHCO_{3} solution. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed on Silica gel to produce product ($410 \mathrm{mg}, 44 \%$). (50% EtOAc/hexanes R_{t} 0.38)
B) 6-Methyl-5-thia-7.13-diazatetracyclo[9.3.1.0 $0^{4.0}$ - pentadeca-2(10),3,6,8-tetraene hydrochloride

The above oil. 2.2.2-trifiuoro-N-(10-trifluorothioacetyl-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-4-yl)-thioacetamide, ($360 \mathrm{mg}, 1.05 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{NaOH}(5 \mathrm{~mL})$ and added to potassium ferricyanide $\left(\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\right)(1.72 \mathrm{~g}, 5.23 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. This mixture was warmed to $60^{\circ} \mathrm{C}$ for 1.5 hours, cooled, concentrated and worked up with $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$. This material was stirred in dioxane (20 mL) and treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to achieve pH 10. To this was added di-t-butyldicarbonate (436 mg .2 .0 mmol) and the mixture was stirred for 18 hours. The reaction was concentrated, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was chromatographed (Silica 30% EtOAc/hexanes $\mathrm{R}, 0.41$) to yield an oil (100 mg).

The above product was treated with $3 \mathrm{NHCUEROAC}(3 \mathrm{~mL}$) and warmed to reflux for -15 minutes then concentrated to a solid which was azeotroped with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 x)$. These solids were dissolved in a minimum amount of MeOH then saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. The resulting white crystalline powder was collected by filtration ($40 \mathrm{mg}, 14 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}$) $\delta 9.46$ (s. NH), 7.65 (s, 1H), 7.82 (s, 1H), 7.65 (br m. NH), 3.36 (m, 2H), $3.24(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}$. $1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} m / e 231.1\left[(\mathrm{M}+1)^{\circ}\right] . \mathrm{mp} 183-184{ }^{\circ} \mathrm{C}$.

EXAMPLE 11

4.5-DINITRO-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$ DDODECA-2(7),3,5-TRIENE
A) 1-(4.5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2.2-trifluoroethanone (Based on the method described in Coon, C. L.; Blucher, W. G.; Hill, M. E. J. Org. Chem. 1973, 25, 4243. For an additional related example of dinitration see: Tanida, H.; Ishitobi. H.; Irie. T.; Tsushima. T. J. Am. Chem. Soc. 1969, 91, 4512.)

To a solution of trifluoromethanesulfonic acid ($79.8 \mathrm{ml}, 902.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (550 $\mathrm{ml})$ stirred at $0^{\circ} \mathrm{C}$ was slowly added nitric acid ($19.1 \mathrm{ml}, 450.9 \mathrm{mmol}$) generating a white precipitate. After 10 minutes, 1-(10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2,2,2-trifluoro-ethanone ($50 \mathrm{~g}, 196 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ was added dropwise from an addition funnel over 30 minutes. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2.5 hours and then stirred at room temperature for 24 hours. The reaction mixture was poured into a vigorously stirred mixture of $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$ and ice (400 g). The layers were separated and the aqueous layer back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{ml})$. The organic layer was combined and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 300 \mathrm{ml})$. The combined aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{ml})$. The organic layer was combined and washed with saturated aqueous NaHCO_{3} solution (200 mL) and $\mathrm{H}_{2} \mathrm{O}$ (200 mL) then dried through a cotton plug and concentrated to solids. Trituration with EtOAc/hexanes produced off white solids which were filtered and dried (52 g . $151 \mathrm{mmol}, 77 \%$. The mother liquor was chromatographed to give an additional 4.0 g for a total of $56.0 \mathrm{~g}(82.8 \%)$ (TLC 50% EtOAc/hexanes $\mathrm{R}, 0.29)^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 7.77$ (s. 1 H) , 7.75 (s, 1 H), 4.39 (br d, J=13.0 Hz, 1H), 3.98 (br d, J=13.0 Hz, 1H), 3.65 (d, J=13.0 $\mathrm{Hz}, 1 \mathrm{H}$) , 3.49 (br s, 1 H) , 3.44 (br s. 1 H), 3.24 (br d, $\mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.53(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $345\left(\mathrm{M}^{+}\right)$.

B) 4.5-Dinitro-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7).3.5-triene

1-(4.5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2.2.2-trifluoro-
ethanone ($3.7 \mathrm{~g}, 10.7 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.3 \mathrm{~g} .21 .4 \mathrm{mmol})$ were combined in $\mathrm{MeOH}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ then warmed to reflux for 18 hours. The reaction was cooled. concentrated. treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ then dried through a cotton plug. After concentration, the residue was chromatographed to provide brown solids. ($1.9 \mathrm{~g} .71 \%$).

5 (TLC 5\% MeOH/CH2Cl $\mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Rt}_{\mathrm{f}} 0.36$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69$ (s, 2H), 3.17 (br s, $2 H$), 3.11 (d. J=12.6 Hz, 2H), $2.53(\mathrm{~m}, 1 \mathrm{H}), 2.07$ ($\mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}$). GCMS m/e $249\left(\mathrm{M}^{*}\right)$.

EXAMPLE 12

6-METHYL-7-PROPYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0. ${ }^{2.10}$. $0^{4.8}$ PENTADECA- 2(10) 3.5,8-TETRAENE HYDROCHLORIDE
A) 4.5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester
4.5-Dinitro-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7).3.5-triene. (1.9 g. 7.6 mmol) was stirred in 1,4-dioxane (75 mL) and treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (10 mL). To this was added di-t-butyldicarbonate ($3.31 \mathrm{~g}, 15.2 \mathrm{mmol}$). After stirring 6 hours the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with EtOAc $(4 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed to provide product ($1.9 \mathrm{~g}, 71 \%$). (TLC 30% EtOAc/hexanes $\left(\mathrm{NH}_{3}\right) \mathrm{R}, 0.58$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77$ (br s, 1 H), 7.72 (br s, 1 H). $4.08(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.27(\mathrm{brs.1H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 2.46$ $(\mathrm{m}, 1 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$.
B) 4.5-Diamino-10-aza-tricycio[6.3.1.0 ${ }^{27}$]dodeca-2(7),3.5-triene-10-carboxylic acid tert-butyl ester
4.5-Dinitro-10-aza-tricycio[6.3.1.0 $0^{2.7}$]dodeca-2(7) 3.5-triene-10-carboxylic acid tertbutyl ester (1.9 g .5 .44 mmol) was hydrogenated in MeOH under a H_{2} atmosphere (45 psi) over $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ for 1.5 hours then filtered through a Celite pad and concentrated to white solids ($1.57 \mathrm{~g}, 100 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}, 0.14$).
C) 6-Methyl-5.7.13-triazatetracyclo[9.3.1.0 ${ }^{2.10}$. 0^{48}]pentadeca-2(10), 3.5.8-tetraene-13carboxylic acid tert-butyi ester (For conditions, see: Segelstein, B. E.; Chenard, B. L.; Macor. J. E.: Post, R. J. Tetrahedron Lett. 1993, 34, 1897.)

4,5-Diamino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester ($700 \mathrm{mg}, 2.42 \mathrm{mmol}$) was dissolved in EtOH . 10 mL) and acetic acid (HOAc) (1 mL) and treated with 1 -ethoxyethylenemalononitrile ($329 \mathrm{mg}, 2.42 \mathrm{mmol}$). The resulting mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred 18 hours. The reaction was cooled, concentrated treated with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with EtOAc (3×50 $\mathrm{mL})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and concentration. the residue was
chromatographed to provide brown solids ($247 \mathrm{mg}, 36 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}}$ 0.28).
D) 6-Methyl-7-propyl-5.7.13-triazatetracyclol9.3.1.0. ${ }^{2.10}$. O. $_{\text {- }}$] pentadeca-2(10), 3.5.8-tetraene-13-carboxylic acid tert-butyl ester (For conditions, see; Pilarski, B. Liebigs Ann. Chem. 1983, 1078.)

6-Methyl-5.7.13-triazatetracyclo[9.3.1.0 $0^{2.10} .0^{4.8}$]pentadeca-2(10).3.5.8-tetraene-13carboxylic acid tert-butyl ester ($80 \mathrm{mg}, 0.267 \mathrm{mmol}$) was stirred in 50% aqueous NaOH solution (3 mL) and DMSO (1 mL) then treated with 1-iodopropane ($0.03 \mathrm{~mL}, 0.321 \mathrm{mmol}$). This mixture was warmed to $40^{\circ} \mathrm{C}$ for 2 hours then cooled, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 x)$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. filtered and concentrated to an oil ($90 \mathrm{mg}, 0.253 \mathrm{mmol}$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.15$).
E) 6-Methyl-7-propyl-5,7,13-triazatetracyclol9.3.1.0 ${ }^{2.10}$. O. $^{4.8}$] pentadeca-2(10),3.5,8tetraene hydrochloride

6-Methyl-7-propyl-5,7,13-triazatetracyclo[9.3.1.0 $\left.0^{2.10} .0^{4.8}\right]$ pentadeca-2(10),3.5,8-tetraene-13-carboxylic acid tert-butyl ester (90 mg .0 .253 mmol) was dissolved in 3 N HCl EtOAc (5 mL) and warmed to $100^{\circ} \mathrm{C}$ for $1 / 2$ hour. The mixture was cooled, concentrated, slurried in EtOAc, and filtered to provide a white solid ($25 \mathrm{mg} .34 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz . DMSO- d_{6}) $\delta 9.56(\mathrm{~s}, \mathrm{NH}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{br} \mathrm{m}, \mathrm{NH}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}$, $2 \mathrm{H}), 3.32(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) 1.85(\mathrm{~m}$, $2 \mathrm{H}) .0 .97(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{mp} 147-150^{\circ} \mathrm{C}$.

EXAMPLE 13
5,7,13-TRIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. $0^{4.8}$ DPENTADECA-2(10).3.5.8-TETRAENE HYDROCHLORIDE
A) \quad 5.7.13-Triazatetracyclo[9.3.1.0 $0^{2.10}$. O. $^{4.8}$]pentadeca-2(10).3.5.8-tetraene-13carboxylic acid tert-butyi ester (For conditions, see; Segelstein, B. E.: Chenard. B. L.; Macor, J. E.; Post. R. J. Tetrahedron Lett. 1993. 34. 1897.)
4.5-Diamino-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3.5-triene-10-carboxylic acid tertbutyl ester (1.0 g .3 .45 mmol) was dissolved in EtOH (10 mL) and HOAc (1 mL) and treated with ethoxymethylenemalononitrile ($421 \mathrm{mg}, 3.45 \mathrm{mmol}$). The resulting mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred 18 hours. The reaction was cooled, concentrated treated with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), then dried
$\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and concentration, the residue was chromatographed to provide brown solids ($580 \mathrm{mg}, 56 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}$, 0.28)
B) 5.7.13-triazatetracycio $9.3 .1 .0^{2.10}$. O. $^{-8}$]pentadeca-2(10), 3,5.8-tetraene hydrochloride

5,7,13-Triazatetracyclo[9.3.1.0 $0^{2.10} .0^{4.8}$]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester was converted to the title compound by the methods described in Example 12E. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.95$ (s, 1 H), 7.67 (s, 2H), 3.45 (br s, 2 H), 3.31 (d, $J=12.5 \mathrm{~Hz}, 2 \mathrm{H}$) , $3.13(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $200.1[(M+1)] . \mathrm{mp}>250^{\circ} \mathrm{C}$.

EXAMPLE 14

7-METHYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0.10.0.8 ${ }^{\text {4. }}$ PENTADECA-2(10) 3, 5,8TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 12D, 5.7.13triazatetracyclo[9.3.1.0 $0^{2 \cdot 10} .0^{4.8}$]pentadeca-2(10),3.5.8-tetraene-13-carboxylic acid tert-butyl ester was converted to the titte compound by reaction with iodomethane followed by deprotection as described in Example 12E. 'H NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.97$ (s, 1H), 7.71 (s, $1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) .3 .48(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~d} . \mathrm{J}=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{~m}, 1 \mathrm{H}) .2 .03(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{me} 214.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 15

6-METHYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0. ${ }^{2.10}$. $\mathbf{0}^{4.8}$ PENTADECA-2(10), 3.5.8-

TETRAENE HYDROCHLORIDE

6-Methyl-5.7.13-triazatetracyclo[9.3.1.0 $0^{2.10} .0^{4.8}$]pentadeca-2(10).3.5.8-tetraene-13carboxylic acid tert-butyl ester was converted to the title compound by the methods described in Example 12E. 'H NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 9.40$ ($\mathrm{br} \mathrm{m}, \mathrm{NH}$), 7.77 ($\mathrm{br} \mathrm{m}, \mathrm{NH}$), 7.70 (s, 1 H), $3.44(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{br} d, \mathrm{~J}=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.10$ (d, J=10.8 Hz, 1H). GCMS m/e $213.5\left(\mathrm{M}^{+}\right)$.

EXAMPLE 16

6,7-DIMETHYL-5,7.13-TRIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. $0^{4.8}$ PPENTADECA-2(10).3.5.8-TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 12D, 6-methyl-5,7,13triazatetracyclo $9.3 .1 .0^{2.10} .0^{4.8}$]pentadeca-2(10).3.5.8-tetraene-13-carboxylic acid tert-butyl
ester was converted to the title compound by reaction with iodomethane followed by deprotection as described in Example 12E. 'H NMR (400 MHz . DMSO-d ${ }^{\prime}$) $\delta 9.52$ (s. NH). $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{br} \mathrm{m}, \mathrm{NH}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~m} .2 \mathrm{H}), 3.04(\mathrm{~m}$. $2 H), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $228.2\left[(\mathrm{M}+1)^{+}\right] . \mathrm{mp}$ $225-230^{\circ} \mathrm{C}$.

EXAMPLE 17

TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 12D. 5.7.13triazatetracyclo[9.3.1.0 $0^{2.10} .0^{4.8}$]pentadeca-2(10),3,5.8-tetraene-13-carboxylic acid tert-butyl ester was converted to the title compound by reaction with iodopropane followed by deprotection as described in Example 12E. 'H NMR (400 MHz . DMSO-d ${ }_{6}$) $\delta 9.52$ (s. 1 H). 9.45 (br s, NH), 7.97 (s, 1H), 7.85 (s. 1H), 7.83 (br m, NH), 4.43 (m, 2H), 3.49 (m, 2H), 3.33 $(\mathrm{m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{APCl}$ MS m/e $242.2\left[(M+1)^{+}\right] . m p 170-171^{\circ} \mathrm{C}$ (subl.).

EXAMPLE 18

TETRAENE HYDROCHLORIDE

A) 4-Butylamino-5-nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene-10-carboxylic acid tert-butyl ester (For conditions. see; Senskey, M. D.; Bradshaw, J. D.: Tessier, C. A.: Youngs. W. J. Tetrahedron Lett. 1995, 36, 6217.)

4,5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester ($500 \mathrm{mg}, 1.43 \mathrm{mmol}$) and 1-butylamine (1.42 mL .14 .3 mmol) were combined in THF (5 mL) and stirred 4 hours. The mixture was diluted with EtOAc (50 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to an oil. This oil was passed through a Silica gel filter column to remove baseline impurities eluting with 30% EtOAc/hexanes ($510 \mathrm{mg}, 1.41 \mathrm{mmol}, 99 \%$).
B) 4-Butylamino-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{\text {2.7.7 }}$ dodeca-2(7).3.5-triene-10carboxylic acid tert-butyl ester

4-Butylamino-5-nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene-10-carboxylic acid tert-butyl ester ($460 \mathrm{mg}, 1.27 \mathrm{mmol}$) was treated with ammonium formate (850 mg .12 .7
mmol) and $10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(50 \mathrm{mg})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ and brought to reflux for 1 hour then filtered through a Celite pad and concentrated. The solids were treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and dried by filtration through a cotton plug to give an oil ($440 \mathrm{mg}, 100 \%$).
C) 7-Butyl-5.7.13-triazatetracyclol9.3.1.0 ${ }^{2.10}$. O. $^{4 .}$] pentadeca-2(10), 3.5.8-tetraene-13carboxylic acid tert-butyl ester

4-Butylamino-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene-10-carboxylic acid tert-butyl ester ($440 \mathrm{mg}, 1.27 \mathrm{mmol}$) was dissolved in EtOH (20 mL) and HOAc (2 mL) and treated with ethoxymethylenemalononitrile (186 mg .1 .52 mmol). The resulting mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred 18 hours. The reaction was cooled, concentrated, treated with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution then extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and concentration, the residue was chromatographed to provide a yellow oil. ($400 \mathrm{mg}, 89 \%$). ($\mathrm{TLC} 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}, 0.70$).
D)

7-Butyl-5,7,13-triazatetracyclo[9.3.1.0 ${ }^{2.10} .0^{4.8}$ pentadeca-2(10),3,5,8-tetraene hydrochloride

7-Butyl-5,7,13-triazatetracyclo[9.3.1.0 $\left.0^{2.10} .0^{4.8}\right]$ pentadeca-2(10),3,5,8-tetraene-13carboxylic acid tert-butyl ester was converted to the title compound by the methods described in Example 12E. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 9.93$ (brs, NH), $9.68(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H})$, 7.92 (br m, NH), $7.87(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}$. $1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t} . \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. APCI MS m/e $256.2\left[(M+1)^{\circ}\right] . \mathrm{mp} 204-208^{\circ} \mathrm{C}$.

EXAMPLE 19

7-Isobutyl-5:7.13-triazatetracyclo[9.3.1.0 $\left.{ }^{2.10} .0^{4.8}\right]$ pentadeca-2(10),3,5,8-tetraene hydrochloride

4,5-Dinitro-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester and isobutylamine were converted to the title compound utilizing the methods described in Example 18A-D. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74$ (s. 1 H). 7.52 (s, 1H). 7.14 (s. 1 H). 3.90 (dd. $\mathrm{J}=7.5 .2 .0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.04-2.97(\mathrm{~m}, 4 \mathrm{H}), 2.70$ (dd. J=12.8.2.3 Hz, 2 H), 2.42 (m, $1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~m}, 6 \mathrm{H})$. APCI MS m/e $256.2\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp}$ $147-150{ }^{\circ} \mathrm{C}$ (subl.).

EXAMPLE 20
6-METHYL-7-ISOBUTYL-5,7.13-TRIAZATETRACYCLO[9.3.1.0.10.0. 0^{4}. PENTADECA-

2(10) 3, 5, 8-TETRAENE HYDROCHLORIDE

A) 6-Methyi-7-isobutyl-5.7.13-triazatetracyclo[9.3.1.0 ${ }^{2.10}$. $0^{4.8}$]pentadeca-2(10),3.5.8-tetraene-13-carboxylic acid tert-butyl ester

4-Amino-5-isobutylamino-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3.5-triene-10carboxylic acid tert-butyl ester ($250 \mathrm{mg}, 0.74 \mathrm{mmol}$) from Example 19B was dissolved in EtOH $(10 \mathrm{~mL})$ and HOAC (2 mL) and treated with 1 -ethoxyethylenemalononitrile ($118 \mathrm{mg}, 0.87$ mmol). The reaction proceeded as in Example 18 C (18h) and was worked up similarly to provide product ($\mathrm{TLC} 3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{1} 0.57$).
B) 6-Methyl-7-isobutyl-5.7.13-triazatetracyclo[9.3.1.0 ${ }^{2.10}$.0.4.8 . pentadeca-2(10),3.5.8tetraene hydrochloride

6-Methyl-7-isobutyl-5,7,13-triazatetracycto[9.3.1.0 $0^{2.10} .0^{4.8}$]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester was converted to the title compound by the methods described in Example 12E. APCI MS m/e $270.3\left[(M+1)^{+}\right] . \mathrm{mp} 129-130^{\circ} \mathrm{C}$ (subl.).

EXAMPLE 21
7-PHENYL-5.7.13-TRIAZATETRACYCLO[9.3.1.0 $0^{2.10} .0^{4.8}$ PENTADECA-2(10),3,5,8TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 18A, 4,5-dinitro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene-10-carboxylic acid tert-butyl ester and aniline were converted to 4 -phenytamino-5-nitro-10-aza-tricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3.5-triene-10carboxylic acid tert-butyl at $75^{\circ} \mathrm{C}$ for 4 hours in the coupling step. This was then converted to the title compound utilizing the methods described in Example 18B.C.D. ${ }^{1} \mathrm{H}$ NMR (400 MHz . DMSO-d d_{6}) $9.08(1 \mathrm{H}), 7.78-7.57(\mathrm{~m}, 7 \mathrm{H}), 3.47-3.00(\mathrm{~m} .6 \mathrm{H}) .2 .23(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}$. 1H). APCI MS m/e $276.2\left[(M+1)^{\circ}\right] . m p 210-213^{\circ} \mathrm{C}$.

EXAMPLE 22

6-METHYL-7-PHENYL-5.7,13-TRIAZATETRACYCLO[9.3.1.0. ${ }^{2.10}$. $0^{4.8}$ PENTADECA-2(10).3.5.8-TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 21 and Example 20, 4.5-dinitro-10-azatricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3.5-triene-10-carboxylic acid tert-butyl ester and aniline were
converted to the title compound. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 7.79$ (s, 1H), 7.73-7.56 (m, 5 H), $7.32(\mathrm{~s}, 1 \mathrm{H}), 3.46-2.99(\mathrm{~m}, 6 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI}$ MS m/e $290.2\left[(M+1)^{+}\right] . m p>250^{\circ} \mathrm{C}$.

EXAMPLE 23

7-NEOPENTYL-5.7.13-TRIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. ${ }^{4.8}$ PENTADECA2(10), 3, 5.8-TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 18A-D, 4.5-dinitro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester and neopentylamine were converted to the title compound. t-Boc precursor GCMS m/e $369\left(\mathrm{M}^{+}\right)$. (HCl salt) $\mathrm{mp}>250^{\circ} \mathrm{C}$.

EXAMPLE 24

GMETHML-7-NEOPENTM-5.7.13-TRIAZATETRACYCLOT9.3.1.0 ${ }^{20}$ of ${ }^{48}$ PENTADECA-2(10),3,5.8TETRAENE HMDROCHLORDE

Utilizing the methods described in Example 21 and 20, 4,5-dinitro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene-10-carboxylic acid tert-butyl ester and neopentylamine were converted to the title compound. ${ }^{1} \mathrm{H}$ NMR (400 MHz . DMSO-d d_{6}) $\delta 7.31$ $(\mathrm{s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{br} \mathrm{s}, \mathrm{NH}), 4.41(\mathrm{t}, \mathrm{J}=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.26(\mathrm{~m}, 6 \mathrm{H})$, $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{t}$-Boc precursor APCI MS m/e $384.2[(\mathrm{M}+$ 1) ${ }^{\circ}$]. $m p>250^{\circ} \mathrm{C}$.

EXAMPLE 25

6.7-DIMETHML-5.8.14TRIAZATETRACYCLO $10.3 .10^{211}$ OHEXADECA-2(11),3.5.7.9PENTAENE

HMDROCHLORIDE (Based on the following procedure: Jones, R. G.; McLaughlin, K. C. Org. Syn. 1963. 4, 824. b) Ehrlich. J., Bobert. M. T. J. Org. Chem. 1947, 522.)
4.5-Diamino-10-aza-tricyclo[6.3.1. $0^{2.7}$]dodeca-2(7),3.5-triene-10-carboxylic acid tertbutyl ester ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$) was warmed to $80^{\circ} \mathrm{C}$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. To this butane 2.3dione ($0.034 \mathrm{~mL}, 0.38 \mathrm{mmol}$) was added under N_{2} for 2 hours. The reaction was cooled to room temperature and extracted with EtOAc $(3 \times 40 \mathrm{ml})$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed on Silica gel to provide an oil ($120 \mathrm{mg}, 100 \%$). The oil was dissolved in $2 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH} \mathrm{(} 5 \mathrm{~mL}$) and warmed to reflux for 30 minutes, then concentrated. Recrystallization from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ provided a white powder ($50 \mathrm{mg}, 43 \%$). (TLC EIOAc R, 0.14). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$)
$\delta 7.85(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{brs}, 2 \mathrm{H}), 3.32(\mathrm{~d} . \mathrm{J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 6 \mathrm{H})$, $2.24(\mathrm{~m}, 1 \mathrm{H}) .2 .13(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{t}$-Bod precursor APCI MS me 340.3 [(M+1) ${ }^{+}$].

EXAMPLE 26

5,8,14-TRIAZATETRACYCLO[10.3.1.0 ${ }^{2.11}$. 0 - HEXADECA-2(11),3,5,7,9-PENTAENE HYDROCHLORIDE
A) 1-(4,5-Diamino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone

1-(4.5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2,2,2-trifluoroethanone ($3.0 \mathrm{~g}, 8.70 \mathrm{mmol}$) was hydrogenated in MeOH (30 ml) under H_{2} (45 psi) over $\mathrm{Pd}(\mathrm{OH})_{2}(300 \mathrm{mg}$ of $20 \mathrm{wt} \% / \mathrm{C} .10 \% \mathrm{wt})$. After 2.5 hours the reaction was filtered through a Celite pad and rinsed with $\mathrm{MeOH}(30 \mathrm{ml})$. The solution was concentrated to a light brown oil which crystallized ($2.42 \mathrm{~g}, 96 \%$). (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{R}_{\mathrm{f}} 0.56$). APCI MS me 286.2 [(M + $1^{+}{ }^{+} \mathrm{mp} 129-131^{\circ} \mathrm{C}$.
B) 1-(5,8,14-Triazatetracyclo[10.3.1.0. ${ }^{2.11} . \underline{0}^{4.9}$ hexadeca-2(11), 3.5,7,9-pentaene)-2,2.2-trifluoro-ethanone

1-(4.5-Diamino-10-aza-tricyclo[6.3.1.0.0.i]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone (500 mg .1 .75 mmol) was stirred in THF (2 ml). This mixture was treated with $\mathrm{H}_{2} \mathrm{O}$ (2 mL) and glyoxal sodium bisulfate addition compound hydrate ($931 \mathrm{mg}, 3.50 \mathrm{mmol}$) then stirred at $55^{\circ} \mathrm{C}$ for 2.5 hours. The reaction was cooled to room temperature and extracted with EtOAc ($3 \times 40 \mathrm{ml}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{ml})$. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed on Silica gel to provide an off white powder ($329 \mathrm{mg}, 60 \%$). (TLC 25\% EtOAc/hexanes R, 0.40). mp 164-166 ${ }^{\circ} \mathrm{C}$.
C) $5,8.14$-Triazatetracyclo[10.3.1.0 ${ }^{2.11}$. $0^{4.9}$ hexadeca-2(11),3.5,7,9-pentaene hydrochloride

1-(5,8,14-Triazatetracyclo[10.3.1.0 $0^{2.11} .0^{4.9}$]hexadeca-2(11),3,5,7.9-pentaene)-2,2,2-trifluoro-ethanone ($320 \mathrm{mg}, 1.04 \mathrm{mmol}$) was scurried in $\mathrm{MeOH}(2.0 \mathrm{ml}$) and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}(221 \mathrm{mg}, 2.08 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{ml})$. The mixture was warmed to $70^{\circ} \mathrm{C}$ for 2 hours. then concentrated, treated with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The organic layer was dried through a cotton plug and concentrated to give a light yellow oil (183 $\mathrm{mg} .83 \%$) which solidified upon standing ($\mathrm{mp} 138-140^{\circ} \mathrm{C}$). This material was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$, treated with $3 \mathrm{M} \mathrm{HCVEtOAc}(3 \mathrm{ml})$, concentrated and azeotroped with MeOH
($2 \times 20 \mathrm{~mL}$) to give solids which were recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to afford product as a white solid (208 mg, 97\%). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{t}} 0.26$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz . $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.94(\mathrm{~s}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~d}, \mathrm{~J}=12.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{GCMS} \mathrm{m} / \mathrm{e} 211\left(\mathrm{M}^{+}\right) . \mathrm{mp} 225-230^{\circ} \mathrm{C}$.

EXAMPLE 27

14METHM-5,8,14-TRIAZATEIRACYCLO $10.3 .1 .0^{211}$ - ${ }^{\text {G9}}$ HEXADECA2(11).3.5.7.9PENTAENE

HYDROCHLORIDE

5,8,14-Triazatetracycto[10.3.1.0 $0^{2.11} .0^{4.9}$ h hexadeca-2(11), 3.5,7,9-pentaene (207 mg. 0.98 mmol) was treated with 37% aqueous formalise solution (1 mL) and formic acid (1 mL) then warmed to $80^{\circ} \mathrm{C}$ for 1 hour. The reaction was poured into water, made basic $(\mathrm{NaOH}, \mathrm{pH}$ $-11)$ and extracted with EtOAc. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and chromatographed on Silica gel to provide a yellow solid. This was stirred in $\mathrm{MeOH}(2 \mathrm{~mL})$ and treated with $3 \mathrm{~N} \mathrm{HCl} \operatorname{EtOAc}(2 \mathrm{~mL})$. After concentration the solids were recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to afford product as a white solid ($70 \mathrm{mg}, 27 \%$). ($2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}$: 0.47). 'H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71$ ($\mathrm{s}, 2 \mathrm{H}$), 7.80 ($\mathrm{s}, 2 \mathrm{H}$), 3.37 (br s. 2 H), 3.03 ($\mathrm{m}, 2 \mathrm{H}$). 2.47 (m, 2H), $2.32(\mathrm{~m}, 1 \mathrm{H}), 2.18$ (br s. 3H), $1.84(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCl}$ MS me $226.2[(\mathrm{M}+$ 1) ${ }^{*}$]. $m p>250^{\circ} \mathrm{C}$.

EXAMPLE 28

 TETRAENE HYDROCHLORIDE
A) 2.2.2-Trifluoro-1-(4-hydroxy-5-nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-ethanone

1-(4.5-Dinitro-10-aza-tricyclo[6.3.1.0.0.7]dodeca-2(7),3.5-trien-10-yl)-2.2.2-trifluoroethanone ($900 \mathrm{mg}, 2.61 \mathrm{mmol}$) and potassium acetate (KOA) ($2.6 \mathrm{~g}, 26.1 \mathrm{mmol}$) were dissolved in DMSO (10 mL) and warmed with stirring to $100^{\circ} \mathrm{C}$ for 16 hours. The mixture was cooled and diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ then extracted with 80% EtOAc/hexanes ($6 \times 25 \mathrm{~mL}$). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. filtered and concentrated and purified by chromatography to give an oil ($575 \mathrm{mg}, 70 \%$). (TLC 50% EtOAc/hexanes $\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{t}} 0.56$)
B) 2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{\text {2.7 }}$ dodeca-2(7),3,5-trien-10-yl)-ethanone

2,2,2-Trifluoro-1-(4-hydroxy-5-nitro-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-ethanone (575 mg .1 .82 mmol) was hydrogenated in MeOH under a H_{2} atmosphere at (45 psi) over $10 \% \mathrm{Pd} / \mathrm{C}(80 \mathrm{mg})$ for 1.5 hours then filtered through a Celite pad and concentrated to white solids ($450 \mathrm{mg}, 86 \%$) ($\mathrm{TLC} 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}$, 0.6). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$. $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 6.67-6.59 (m, 2H), $4.12(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}) .3 .07(\mathrm{~m}$. $2 H), 2.24(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $286\left(\mathrm{M}^{+}\right)$.
C) 2.2.2-Trifluoro-1-(5-oxa-7.13-diazatetracyclo[9.3.1.0 2.10. ${ }^{\text {4.8 }}$] pentadeca-2(10),3,6.8-tetraene)-ethanone (Goldstein, S. W.; Dambek, P. J. J. Het. Chem. 1990, 27, 335.)

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-$10-\mathrm{yl}$)-ethanone ($150 \mathrm{mg}, 0.524 \mathrm{mmol}$), trimethyl orthoformate ($0.19 \mathrm{~mL}, 1.73 \mathrm{mmol}$). pyridinum-p-toluenesulfonic acid (PPTS. $18 \mathrm{mg}, 0.07 \mathrm{mmol}$) and xylenes (10 mL) were combined under nitrogen and stirred at $135^{\circ} \mathrm{C}$ for 18 hours. The mixture was cooled. treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered. concentrated and purified by chromatography to give an oil ($110 \mathrm{mg}, 71 \%$). (TLC 20% EtOAc/hexanes R, 0.40)
D) 5 -Oxa-7.13-diazatetracyclol9.3.1.0 ${ }^{2.10} . \underline{O}^{4.8}$ pentadeca-2(10),3.6.8-tetraene hydrochloride
2.2.2-Trifluoro-1-(5-oxa-7.13-diazatetracyclo[9.3.1.0 $\left.0^{2.10} .0^{4.8}\right]$ pentadeca-2(10),3.6.8-tetraene)-ethanone ($110 \mathrm{mg}, 0.37 \mathrm{mmol}$) was stirred in $\mathrm{MeOH}(5 \mathrm{~mL})$ and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (78 mg .0 .74 mmol) in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The stirred mixture was warmed to $80^{\circ} \mathrm{C}$ for 2 hours. concentrated to solids, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The product was extracted into aqueous 1 N HCl solution ($2 \times 40 \mathrm{~mL}$) which was washed with EtOAc then neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to $\mathrm{pH} \sim 10$. The product was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and chromatographed on Silica gel to produce an oil. (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{1} \mathrm{O} .19$).

The oil was dissolved in MeOH and treated with $3 \mathrm{~N} \mathrm{HCl} \mathrm{EtOAc} \mathrm{(} 4 \mathrm{~mL}$) then concentrated, stirred in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated with hexanes. After 18 hours, the product was collected by filtration ($55 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.47$ ($\mathrm{s}, 1 \mathrm{H}$). $7.70(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H})$. 2.15 (d. J=11.0 Hz. 1H). APCI MS m/e $201.03\left[(\mathrm{M}+1)^{*}\right]$.

EXAMPLE 29
6-METHYL-5-OXA-7,13-DIAZATETRACYCLO[9.3.1.0 $0^{2.10} 0^{4.8}$ PENTADECA2(10), 3,6,8-TETRAENE HYDROCHLORIDE
A) 2.2,2-Trifluoro-1-(6-methyl 5-oxa-7.13-diazatetracyclo[9.3.1.0 ${ }^{2.10}$. T. $^{\text {B }}$]pentadeca2(10), 3,6,8-tetraene)-ethanone

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3.5-trien-$10-\mathrm{yl})$-ethanone ($150 \mathrm{mg}, 0.524 \mathrm{mmol}$), triethyl orthoacetate $(0.34 \mathrm{~mL}, 1.83 \mathrm{mmol})$, pyridinium-p-toluenesulfonic acid (PPTS, $20 \mathrm{mg}, 0.08 \mathrm{mmol}$) and xylenes (10 mL) were combined under nitrogen and stirred at $135^{\circ} \mathrm{C}$ for 18 hours. Workup, isolation and purification as in Example 28 C provided the title compound ($90 \mathrm{mg}, 55 \%$).
B) 6-Methyl-5-oxa-7,13-diazatetracycio[9.3.1.0 ${ }^{2.10} 0^{4.8}$]pentadeca-2(10),3,6,8-tetraene hydrochloride
2.2.2-Trifluoro-1-(6-methyl $\quad 5-0 x a-7.13$-diazatetracyclo[9.3.1.0 $\left.0^{2.10} .0^{4.8}\right]$ pentadeca2(10), 3,6.8-tetraene)-ethanone ($90 \mathrm{mg}, 0.30 \mathrm{mmol}$) was stirred in $\mathrm{MeOH}(5 \mathrm{~mL}$) and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}(61 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The stirred mixture was warmed to $80^{\circ} \mathrm{C}$ for 2 hours, concentrated to solids, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. concentrated, and chromatographed on Silica gel to produce an oil. (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{1} 0.18$). ${ }^{1} \mathrm{H}$ NMR (free base) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40$ (s, 1 H), 7.26 ($\mathrm{s}, 1 \mathrm{H}$), 3.05-2.98 (m, 4H). 2.72 (d, J=12.8 Hz, 2 H), $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 1.98$ (d, J=10.5 Hz, 1H).

The oil was dissolved in MeOH and treated with $3 \mathrm{~N} \mathrm{HCl} \mathrm{EtOAc} \mathrm{(} 4 \mathrm{~mL}$) then concentrated, stirred in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated with hexanes. After 18 hours, the product was collected by filtration ($10 \mathrm{mg} .13 \%$). APCI MS m/e $215.2\left[(M+1)^{+}\right] . \mathrm{mp}>250{ }^{\circ} \mathrm{C}$.

EXAMPLE 30

2-FLUORO-N-(5-HYDROXY-10-AZA-TRICYCLO[6.3.1.0. ${ }^{2.7}$]DODECA-2(7),3.5-

TRIEN-4-YL)-BENZAMIDE HYDROCHLORIDE

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-$10-\mathrm{yl}$)-ethanone ($150 \mathrm{mg}, 0.524 \mathrm{mmol}$), 2-fluorobenzoyl chloride ($0.07 \mathrm{~mL}, 0.576 \mathrm{mmol}$), pyridinium-p-toluenesulfonic acid (PPTS, $20 \mathrm{mg}, 0.08 \mathrm{mmol}$). pyridine ($0.046 \mathrm{~mL}, 0.576 \mathrm{mmol}$) and xylenes (5 mL) were combined under nitrogen and stirred at $135^{\circ} \mathrm{C}$ for 18 hours. After 24 hours, additional PPTS (50 mg) was added and the material stirred at $135^{\circ} \mathrm{C}$ for an additional 24 hours. Workup as above provided crude product ($145 \mathrm{mg}, 0.375 \mathrm{mmol}$) which was
combined with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})(80 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and heated to reflux. After 3 hours, the reaction was cooled and diluted with water then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 40 \mathrm{~mL})$. dried through a cotton plug then chromatographed to remove baseline impurity $\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)\right.$). The crude material was treated with excess 3 N HCl EtOAC and concentrated, then dissolved in a minimum of MeOH and the solution was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. After stirring 4 hours the product was collected by filtration ($85 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.99(\mathrm{~m} .2 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 2 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $313.1\left[(M+1)^{+}\right] . \mathrm{mp} 125-130^{\circ} \mathrm{C}$ (subl.).

EXAMPLE 31

4-CHLORO-10-AZATRICYCLO6.3.1. 0^{2} DODECA-2(7).3.5-TRIENE HMDROCHLORIDE

A) 1-(4-Chloro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3,5-trien-10-yl)-2.2.2-trifluoroethanone

Copper(I)chloride (CuCl) was prepared as follows: $\mathrm{CuSO}_{4}(4.3 \mathrm{~g})$ and $\mathrm{NaCl}(1.2 \mathrm{~g})$ were dissolved in hot $\mathrm{H}_{2} \mathrm{O}(14 \mathrm{~mL})$. sodium bisulfite $\left(\mathrm{NaHSO}_{3}\right)(1 \mathrm{~g})$ and sodium hydroxide $(\mathrm{NaOH})(690 \mathrm{mg})$ were dissolved in $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$ and added to the hot acidic solution over 5 minutes. The precipitated white solids were filtered and washed with water.

1-(4-Amino-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($460 \mathrm{mg}, 1.7 \mathrm{mmol}$) was dissolved in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and concentrated HCl solution(1 mL) then cooled to $0^{\circ} \mathrm{C}$ and treated with a solution of sodium nitrite $\left(\mathrm{NaNO}_{2}\right)(275 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}$ $(1 \mathrm{~mL})$ dropwise. To the resulting solution was added a $\mathrm{CuCl}(202 \mathrm{mg}$, prepared as described above, 2.04 mmol) in concentrated HCl solution (2 mL) over 10 minutes (gas evolution observed). The resulting solution was warmed to $60^{\circ} \mathrm{C}$ for 15 minutes, then was cooled to room temperature and extracted with EtOAc $(4 \times 30 \mathrm{~mL})$. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solution was filtered and concentrated to an oil which was filtered through a Silica pad to remove baseline material eluting with 50% EtOAc/hexanes to give an oil ($470 \mathrm{mg}, 95 \%$).
B) 4-Chloro-10-azatricycio[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene hydrochioride

1-(4-Chioro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2.2.2-trifluoro-
ethanone ($470 \mathrm{mg}, 1.62 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(344 \mathrm{mg} .3 .24 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ were heated to reflux. After 2 hours, the reaction was cooled and diluted with water then extracted with EtOAc ($4 \times 40 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. filtered and concentrated to a yellow oil. The crude material was treated with excess 3 N HCl EtOAc and concentrated, then
dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the sotution was saturated with hexanes and stirred. After stirring 4 hours the product was collected by filtration ($155 \mathrm{mg}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR (free base) $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.68,(\mathrm{~m}$, 2 H), $2.38(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR (HCl salt) (400 MHz , DMSO-d) $\delta 7.30-$ $7.20(\mathrm{~m}, 3 \mathrm{H}), 3.30-3.15(\mathrm{~m}, 6 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e 194.1 $\left[(M+1)^{*}\right]$.

EXAMPLE 32

10-AZATRICYCLO[6.3.1.0~2.7~]DODECA-2(7).3.5-TRIEN-4-YL
CYANIDE HYDROCHLORIDE
A) 1-(4-lodo-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-10-yl)-2,2.2-trifluoroethanone

1-(4-Amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2,2.2-trifluoroethanone (500 mg .1 .85 mmol) was dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $(0.5 \mathrm{~mL})$ then cooled to $0^{\circ} \mathrm{C}$ and treated with a solution of sodium nitrite (NaNO_{2}) (140 mg . 2.04 mmol) in $\mathrm{H}_{2} \mathrm{O}\left(2 \mathrm{~mL}\right.$) dropwise. Potassium iodide ($460 \mathrm{mg}, 2.78 \mathrm{mmol}$) in $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution (0.5 mL) was added over 10 minutes (reaction becomes dark red). The resulting solution was warmed to room temperature and stirred 18 hours. The reaction was quenched with NaHSO_{3} and water (pH 2.5) then extracted with EtOAc ($4 \times 30 \mathrm{~mL}$). After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solution was filtered and concentrated to a yellow oil which was chromatographed on Silica gel to provide a yellow oil. ($260 \mathrm{mg}, 37 \%$). (TLC 30% EtOAc/hexanes $R, 0.70$). (A 5.4 g scale performed as above yielded $5 \mathrm{~g}, 67 \%$).
B) 4-10do-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ ddodeca-2(7).3.5-triene-10-carboxylic acid tert-butyl ester

1-(4-lodo-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-2,2,2-trifluoroethanone (5 g .13 .1 mmol) and 37% saturated aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution (50 mL) were stirred in $\mathrm{MeOH}(250 \mathrm{ml})$ for 2 hours then concentrated and azeotroped with $\mathrm{MeOH}(2 \times 50 \mathrm{~mL})$. The resulting product was stirred in 1.4 -dioxane (75 mL) and treated with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL). To this was added di-t-butyldicarbonate (5.71 g .26 .2 mmol). After stirring 18 hours the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed on Silica gel (TLC 20% EtOAc/hexanes) to provide product as an oil ($4.9 \mathrm{~g}, 98 \%$).
C) 4-Cyano-10-aza-tricyclo[6.3.1.0.7.7dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester (Utilizing the methods described in: House. H. O.: Fischer, W. F. J. Org. Chem. 1969, 3626.)

CuCN (108 mg, 1.21 mmol) and $\mathrm{NaCN}(59 \mathrm{mg}, 1.21 \mathrm{mmol}$) were combined in dry DMF (6 mL) and warmed to $150^{\circ} \mathrm{C}$ under N_{2}. Solution occurs in 20 minutes. To this was added 4-iodo-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3.5-triene-10-carboxylic acid tert-butyl ester ($232 \mathrm{mg}, 0.6 \mathrm{mmol}$) in DMF (3.5 mL) and the mixture was stirred for 18 hours at $150{ }^{\circ} \mathrm{C}$. The reaction was cooled and diluted with 50% saturated aqueous NaCl solution and extracted with 50% EtOAc/hexanes ($3 \times 30 \mathrm{~mL}$). After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtration and concentration the product was isolated by chromatography ($86 \mathrm{mg} .50 \%$). (TLC 20% EtOAc/hexanes $R_{f} 0.28$).
D) 10-Azatricyclo[6.3.1.0-2,7-]dodeca-2(7).3.5-trien-4-yl cyanide hydrochloride 4-Cyano-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester was treated with $3 \mathrm{~N} \mathrm{HCl} \mathrm{EtOAc} \mathrm{(} 6 \mathrm{~mL}$) and warmed to reflux for 2 hours, then concentrated, dissolved in a minimum of MeOH which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred 18 hours. The product was collected by filtration ($49 \mathrm{mg} .73 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$) δ $9.66(\mathrm{br} \mathrm{s}, \mathrm{NH}), 7.86(\mathrm{br} \mathrm{s}, \mathrm{NH}), 7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-2.97(\mathrm{~m}, 6 \mathrm{H})$. $2.17(\mathrm{~m}, 1 \mathrm{H}) .2 .01\left(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$). GCMS m/e $184\left(\mathrm{M}^{+}\right) \mathrm{mp} 268-273^{\circ} \mathrm{C}$.

EXAMPLE 33

3-(10-AZATRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7).3.5-TRIEN-4-YL)-5-METHYL-1,2,4OXADIAZOLE HYDROCHLORIDE

4-Cyano-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7).3.5-triene-10-carboxylic acıd tert-butyl ester ($300 \mathrm{mg}, 1.1 \mathrm{mmol}$) was stirred in EtOH (10 mL). To this hydroxyl amine hydrochloride ($382 \mathrm{mg}, 5.5 \mathrm{mmol}$) and NaOH ($242 \mathrm{mg} . ~ 6.05 \mathrm{mmol}$) were added and the mixture was warmed to reflux. After 45 minutes, the reaction was cooled. diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford a yellow solid (110 $\mathrm{mg}, 0.35 \mathrm{mmol}$). This solid was dissolved in pyridine (1 mL) and treated with acetyl chloride (0.03 mL .0 .415 mmol) and warmed to $100^{\circ} \mathrm{C}$ for 18 hours. The reaction was cooled, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic extracts were washed with water and saturated aqueous NaCl solution. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Chromatography on Silica gel afforded product ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$). (25% EtOAc/hexanes $\mathrm{R}_{\mathrm{t}} 0.18$). This product was treated with $2 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH} \mathrm{(} 10 \mathrm{~mL}$), heated to $70^{\circ} \mathrm{C}$ for 1 hour, cooled. concentrated and recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to provide product (15 mg). APCI MS m/e 242.2 [($\left.\left.\mathrm{M}+1\right)^{+}\right]$.

EXAMPLE 34
1-(10-AZATRICYCLO[6.3.1.0 ${ }^{-2.7}$ DODECA-2(7),3,5-TRIEN-4-YL)-1-ETHANONE HYDROCHLORIDE
A) 1-(4-Acetyi-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-10-yl)-2.2.2-trifluoroethanone

1-(10-Aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2.2-trifluoro-ethanone (253 $\mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{AcCl}(0.68 \mathrm{~mL}, 10 \mathrm{mmol})$ were dissolved in DCE (3 mL) and treated with aluminum chloride $\left(\mathrm{AlCl}_{3}\right)(667 \mathrm{mg}, 5.0 \mathrm{mmol})$. The resulting yellow mixture was stirred for 30 minutes then poured over ice and saturated aqueous NaHCO_{3} solution. After stirring 20 minutes the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layer was dried through a cotton plug then concentrated to a orange-yellow oil ($255 \mathrm{mg}, 86 \%$).

B) 4-Acetyi-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester
 1-(4-Acetyl-10-aza-tricyclo[6.3.1.0.7.7dodeca-2(7),3.5-trien-10-yl)-2.2.2-trifluoro-

 ethanone ($1.3 \mathrm{~g}, 4.37 \mathrm{mmol}$) and 37% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution (10 mL) were stirred in MeOH (30 ml) for 3 hours, then concentrated and azeotroped with $\mathrm{MeOH}(2 \times 50 \mathrm{~mL}$). (This product could be converted to an HCl salt directly: see the next example.) The resulting product was stirred in 1.4 -dioxane (20 mL) and treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (5 mL). To this was added di-t-butyldicarbonate (1.91 g .8 .74 mmol). After stirring 2 hours, the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. filtered, concentrated and chromatographed to provide an oil (1.3 g. 100\%). (TLC 40% EtOAc/hexanes $R_{t} 0.56$).C) 1-(10-Azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-4-yl)-1-ethanone hydrochloride

4-Acetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene-10-carboxylic acid tert-butyl ester ($190 \mathrm{mg}, 0.63 \mathrm{mmol}$) was treated with excess $3 \mathrm{~N} \mathrm{HCI} \mathrm{EtOAC} \mathrm{and} \mathrm{warmed} \mathrm{to} 70^{\circ} \mathrm{C}$ for 1 hour then concentrated and dissolved in a minimum of MeOH . The resulting solution was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. After 18 hours the white crystalline product was collected by filtration ($81 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}\right.$) $\delta 9.75$ (br s. NH), 7.89 (s. 1H), 7.88 (d,
 m .2 H). $2.54(\mathrm{~s}, 3 \mathrm{H}) .2 .17(\mathrm{~m} .1 \mathrm{H}), 2.02(\mathrm{~d} . \mathrm{J}=11.0 \mathrm{~Hz} .1 \mathrm{H}$). GCMS m/e 201 (M*). mp 198-202 ${ }^{\circ} \mathrm{C}$.

EXAMPLE 35

10-AZATRICYCLO[6.3.1.0 ${ }^{2.7}$ DDODECA-2(7).3.5-TRIEN-4-OL HYDROCHLORIDE
A) Acetic acid 10-trifluoroacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7),3,5-trien-4-yI ester

1-(4-Acetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone (2.5 g .8 .41 mmol) and 3-chloroperoxybenzoic acid (m-CPBA) (7.5 g .42 mmol) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and warmed to $40^{\circ} \mathrm{C}$ for 18 hours. The mixture was cooled to room temperature, then treated with dimethylsulfide $\left(\mathrm{Me}_{2} \mathrm{~S}\right)(3 \mathrm{~mL}, 40.8 \mathrm{mmol})$ and stirred 24 hours. The resulting mixture was poured into ice and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(100 \mathrm{~mL})$ then extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 40 \mathrm{~mL})$. The organic layer was washed saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($3 \times 40 \mathrm{~mL}$) then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. filtered and concentrated to afford an oil ($1.83 \mathrm{~g} .69 \%$). (TLC EtOAC R, 0.80).
B) 2.2.2-Trifluoro-1-(4-hydroxy-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7).3.5-trien-10-yl)ethanone

Acetic acid 10-trifluoroacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-4-yl ester ($900 \mathrm{mg}, 2.87 \mathrm{mmol}$) was stirred in $\mathrm{MeOH}\left(20 \mathrm{~mL}\right.$) and saturated aqueous NaHCO_{3} solution (15 mL) for 48 hours. The mixture was concentrated, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ then dried through a cotton plug. Chromatography on Silica gel provided pure product ($420 \mathrm{mg} .54 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{R}, 0.44$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) δ $7.05(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}$: $1 \mathrm{H}) .3 .16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$.
C) 10-Azatricyclo[6.3.1.0 ${ }^{27}$]dodeca-2(7).3.5-trien-4-ol hydrochloride
2.2.2-Trifluoro-1-(4-hydroxy-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-trien-10-yl)ethanone ($50 \mathrm{mg}, 0.184 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(3 / 1,5 \mathrm{~mL}$), treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ ($40 \mathrm{mg}, 0.369 \mathrm{mmol}$) and warmed to $65^{\circ} \mathrm{C}$ for 2 hours. The mixture was concentrated, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ then dried through a cotton plug. Filtration through a Silica gel plug provided an oil ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) which was treated with $3 \mathrm{~N} \mathrm{HCl} \mathrm{EtOAc} \mathrm{(} 3 \mathrm{~mL}$) then concentrated. dissolved in a minimum of MeOH which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. After 18 hours the white crystalline product was collected by filtration ($10 \mathrm{mg} .26 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDOD}_{3}$) $\delta 7.16$ (d. J=8.0 Hz, 1H), 6.80 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.72 (dd, $J=8.0 .2 .0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.32-3.28(4 H), 3.09 (dd, $J=14.5 .12 .0 \mathrm{~Hz}, 2 \mathrm{H}$). $2.32(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 176.2\left[(\mathrm{M}+1)^{+}\right] . \mathrm{mp} 308(\mathrm{dec} .)^{\circ} \mathrm{C}$.

EXAMPLE 36

7-METHYL-5-OXA-6.13-DIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. ${ }^{4.8}$ PENTADECA-

2.4(8).6.9-TETRAENE HYDROCHLORIDE

A) 1-(4-Acetyl-5-hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ ddodeca-2(7).3.5-trien-10-yl)-2,2.2-trifluoro-ethanone

Acetic acid 10-trifluoroacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-4-yl ester $(800 \mathrm{mg}, 2.55 \mathrm{mmol})$ was combined with $\mathrm{AlCl}_{3}(1.0 \mathrm{~g}, 7.65 \mathrm{mmol})$ and warmed to $170^{\circ} \mathrm{C}$ for 2 hours. The mixture was cooled and treated with 1 N aqueous HCl solution (20 mL), extracted with EtOAc and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography affords an oil ($190 \mathrm{mg}, \mathbf{2 4 \%}$). (TLC EtOAc $\mathrm{R}, 0.75$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.58$ ($\mathrm{s}, 0.5 \mathrm{H}$), 12.52 (s, 0.5 H), 7.53 ($\mathrm{s}, 1 \mathrm{H}$), 6.86 (s , $1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H})$, $2.35(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{br} \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}, 1 \mathrm{H})$.
B)
2.2.2-Trifluoro-1-[4-hydroxy-5-(1-hydroxyimino-ethyl)-10-aza-
tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3.5-trien-10-y!]-ethanone
1-(4-Acetyl-5-hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-10-yl)-2.2.2-trifluoro-ethanone ($190 \mathrm{mg}, 0.605 \mathrm{mmol}$), hydroxylamine $\mathrm{HCl}(99 \mathrm{mg}, 1.21 \mathrm{mmol}$) and NaOAc ($118 \mathrm{mg}, 1.21 \mathrm{mmol}$) were combined in $\mathrm{MeOH}(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and warmed to $65^{\circ} \mathrm{C}$ for 18 hours. The mixture was cooled, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc which was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to provide a yellow oil ($177 \mathrm{mg}, 93 \%$).
C) 2.2.2-Trifluoro-7-Methyl-5-oxa-6,13-diazatetracyclo[9.3.1.0 ${ }^{2.10}$. O. $^{\text {4.8 }}$]pentadeca-2.4(8),6.9-tetraene-ethanone

The above oil, 2.2.2-trifluoro-1-[4-hydroxy-5-(1-hydroxyimino-ethyl)-10-azatricyclo[$6.3 .1 .0^{2.7}$]dodeca-2(7).3.5-trien-10-yl]-ethanone ($177 \mathrm{mg}, 0.54 \mathrm{mmol}$) was stirred in DCE (3 mL), treated with triethylamine $\left(0.4 \mathrm{~mL}, 2.8 \mathrm{mmol}\right.$) and acetic anhydride ($\mathrm{Ac}_{2} \mathrm{O}$) (0.3 mL .2 .8 mmol) then stirred 18 hours. The reaction was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to a yellow oil which was dissolved in anhydrous DMF (3 mL) and treated with $60 \% \mathrm{NaH}$ in oil ($32 \mathrm{mg}, 1.08 \mathrm{mmol}$). After stirring 18 hours. additional $60 \% \mathrm{NaH}$ in oil was introduced (33 mg) and the mixture was stirred 2 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with 80% EtOAc/hexanes ($3 \times 30 \mathrm{~mL}$). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. filtered and concentrated and chromatographed to provide an oil (40\% EtOAc/hexanes $R_{f} 0.56$).
-65-
D) 7-Methyl-5-oxa-6,13-diazatetracyclo[9.3.1.0. . $^{20} .0^{4.8}$]pentadeca-2,4(8),6.9-tetraene hydrochloride

Utilizing the methods described in Example 9C, 2,2.2-Trifluoro-7-Methyl-5-oxa-6.13diazatetracyclo[9.3.1.0 $0^{2.10} .0^{4.8}$]pentadeca-2.4(8),6.9-tetraene-ethanone was converted to the title compound. This was treated with 3 N HCl EtOAc (3 mL), concentrated and dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which was saturated with hexanes and stirred. After 18 hours the white crystalline product was collected by filtration ($18 \mathrm{mg}, 13 \%$ overall). ${ }^{1} \mathrm{H}$ NMR (400 MHz . $\mathrm{DMSO}_{\mathrm{s}}$) $\delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 3.42-2.98(\mathrm{~m}, 6 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}$, $\mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} m / e 215.2\left[(\mathrm{M}+1)^{+}\right]$

EXAMPLE 37

4-(2-Methyl-2H-pyrazol-3-yl)-10-aza-tricycto[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene hydrochloride and 4-(1-Methyl-1H-pyrazol-3-yl)-10-aza-tricyclol6.3.1. $0^{2.7}$ dodeca-2(7).3.5triene hydrochloride

1-(4-Acetyl-10-aza-tricyclo[6.3.1.0 ${ }^{27}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($1.0 \mathrm{~g}, 3.3 \mathrm{mmol}$) and dimethylformamide dimethylacetal (DMF-DMA) ($4.0 \mathrm{~g}, 33.6$ mol) were warmed to $140^{\circ} \mathrm{C}$ for 18 hours. After cooling, a crystalline precipitate was filtered and rinsed with EtOAc ($690 \mathrm{mg} .58 \%$).

The above solid. 3-dimethylamino-1-(10-trifluoroacetyl-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-4-yt)-propenone. ($200 \mathrm{mg}, 0.56 \mathrm{mmol}$) was dissolved in EtOH (2 mL) and treated with $5 \mathrm{~N} \mathrm{HCl} \mathrm{EtOH} \mathrm{(} 0.1 \mathrm{~mL}$) followed by methyl hydrazine (0.6 mol). The resulting mixture was warmed to $70^{\circ} \mathrm{C}$ for 4 hours. The mixture was cooled. diluted with water and extracted with EtOAc. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Chromatography on Silica gel provided a $3 / 1$ mixture of regioisomeric products (130 mg . 68\%). (TLC 50\% EtOAc/hexanes R, 0.40).

The above oil ($130 \mathrm{mg}, 0.388 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ (82 mg .0 .775 mmol) were stirred in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ for 18 hours. After cooling the reaction was diluted with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dried through a cotton plug and concentrated. The product was purified by chromatography on Silica gel and concentrated to an oil. The salt was generated with $2 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH} ,\mathrm{concentrated} \mathrm{and} \mathrm{recrystallized} \mathrm{from} \mathrm{MeOH/EtOAc} \mathrm{to} \mathrm{provide} \mathrm{a} 3 / 1$ mixture of regioisomeric pyrrazoles ($85 \mathrm{mg}, 58 \%$). ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}, 0.25$). TEAprecursor APCI MS me $336.2\left[(M+1){ }^{*}\right]$
-66-

EXAMPLE 38

4.5-DICHLORO-10-AZATRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7).3.5-TRIENE

HYDROCHLORIDE

A) 1-(4.5-Dichloro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-10-yl)-2,2,2-trifluoro-
ethanone (Based on Campaigne. E.; Thompson, W. J. Org. Chem. 1950. 72, 629.)
1-(10-Aza-tricyclo[6.3.1.0. ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2.2,2-trifluoro-ethanone (539 mg. 2.1 mmol) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and treated with ICl_{3} (s) ($982 \mathrm{mg}, 4.21 \mathrm{mmol}$). The resulting orange solution was stirred 0.5 hours, poured into saturated aqueous NaHSO_{3} solution (25 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL}$), dried through a cotton plug and concentrated to an oil ($570 \mathrm{mg}, 84 \%$) (TLC 50\% EtOAc/hexanes R, 0.62).
B) 4.5-dichloro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7),3.5-triene hydrochloride

1-(4.5-Dichloro-10-aza-tricyclo[6.3.1.0.0.7]dodeca-2(7),3.5-trien-10-yl)-2,2.2-trifluoroethanone ($570 \mathrm{mg}, 1.75 \mathrm{mmol}$) was stirred in $\mathrm{MeOH}(25 \mathrm{~mL})$ and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ (5 g . 47 mmol) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The stirred mixture was warmed to $70^{\circ} \mathrm{C}$ for 4 hours, concentrated to solids. diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The product was extracted into 1 N aqueous HCl solution ($2 \times 40 \mathrm{~mL}$) which was washed with EtOAc then neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to $\mathrm{pH} \sim 10$. Product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×40 mL). filtered through a cotton plug and concentrated to an oil ($400 \mathrm{mg}, 100 \%$).

The oil was dissolved in MeOH and treated with $3 \mathrm{~N} \mathrm{HCl} \mathrm{EtOAc} \mathrm{(} 4 \mathrm{~mL}$) and concentrated, then dissolved in a minimum of MeOH and which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred 18 hours. The product was collected by filtration ($210 \mathrm{mg}, 45 \%$). (TLC 50% EtOAc/hexanes $\left(\mathrm{NH}_{3}\right) \mathrm{R}_{1} 0.08$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) 57.58 ($\mathrm{s}, 2 \mathrm{H}$), 3.33-2.97 (m, 6 H). $2.18(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~d} . \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz} . \mathrm{DMSO}_{6}\right.$) $\delta 141.02 .130 .60$. 126.58. 45.54. 40.55. 38.30. GCMS m/e 227. $229\left(\mathrm{M}^{+}\right) \mathrm{mp} 283-291^{\circ} \mathrm{C}$.

EXAMPLE 39

N. ${ }^{4}$-DIMETHM-10-AZATRJCYCLO66.3.1. ${ }^{23}$ DODECA-2(7),3.5-TRUENE-4SULFONAMIDE

HYDROCHLORIDE

A) 10-Trifluoroacetyi-10-aza-tricycio[6.3.1.0 ${ }^{2.7}$ dodeca-2(7).3.5-triene-4-sulfonyl chloride

1-(10-Aza-tricyclo[6.3.1.0.7.]dodeca-2(7).3.5-trien-10-yl)-2.2.2-trifluoro-ethanone (530 mg . 2.1 mmol) was added to chlorosulfenic acid ($2 \mathrm{~mL}, 30 \mathrm{mmol}$) and stirred for 5 minutes.

The mixture was quenched with ice, extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to provide an oil ($640 \mathrm{mg}, 87 \%$). (TLC 30\% EtOAc/hexanes R, 0.15).
B) $\quad N^{4} \cdot N^{4}$-Dimethyl-10-azatricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7).3,5-triene-4-sulfonamide hyarochloride

10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0 $0^{2.7}$ dodeca-2(7),3,5-triene-4-sulfonyl chloride ($320 \mathrm{mg}, 0.9 \mathrm{mmol}$) was stirred in THF (10 mL) and treated with $40 \% \mathrm{Me}_{2} \mathrm{NH} / \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL}$). After 10 minutes the mixture was concentrated and chromatographed on Silica gel (TLC 30\% EtOAc/hexanes $R_{1} 0.31$) to provide an oil ($256 \mathrm{mg}, 78 \%$). This material was dissolved in $\mathrm{MeOH}(6 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{OH}(2 \mathrm{~mL})$ and stirred 18 hours. The mixture was concentrated and azeotroped from MeOH (3x) The resulting oil was dissolved in MeOH and treated with 3 N HCl EtOAc (4 mL), concentrated, dissolved in a minimum of MeOH and which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred 18 hours. The product was collected by filtration as a white powder (163 mg . 59%). (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}, 0.54$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (data, free base) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.64(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.07$ (dd. $J=12.5 .2 .2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.69(\mathrm{~s}, 6 \mathrm{H}) .2 .45,(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\dot{1} 128.43,124.16,122,75.46 .67,46.55,42.11,39.44,37.81$. GCMS m/e $266\left(\mathrm{M}^{+}\right)$. (data HCl salt) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ 7.68-7.52 (3H), $3.38(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~m}, 2 \mathrm{H})$, $3.04(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~d} . \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $266\left(\mathrm{M}^{+}\right)$. Anal. Catcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{HCl}: \mathrm{C}, 51.56$; H. 6.32: N. 9.25. Found C. 51.36: H.6.09; N.9.09.

EXAMPLE 40
4-(1-PYRROLIDINYLSULFONYL)-10-AZATRICYCLO[6.3.1.0 ${ }^{-2.7}$ DODECA-2(7),3.5-

TRIENE HYDROCHLORIDE

The pyrrolidine analogue was prepared from 10-trifluoroacetyl-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-triene-4-sulfonyl chloride ($320 \mathrm{mg}, 0.9 \mathrm{mmol}$) as by substituting pyrroline in the coupling step described in Example 39B. The TFA product was isolated as an oil ($314 \mathrm{mg}, 89 \%$). Deprotection and conversion to the salt as in Example 39B affords a white powder ($189 \mathrm{mg} .63 \%$). (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Rt}_{\mathrm{t}} 0.60$). (TLC 50% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.65$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H})$, $7.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.15(\mathrm{~m}, 8 \mathrm{H}) .3 .00(\mathrm{~m} 2 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}) .1 .98(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. $1.72(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.91,144.08,136.65,127.90,124.18 .122 .36$. 50.43. 47.87. 46.80. 46.63. 42.11. 39.63, 25.10. APCI MS m/e $293\left[(M+1){ }^{*}\right]$. (data HCl salt) ${ }^{\prime} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 9.78$ (br s, NH), 8.1 (br s, NH), 7.73 (d, J =1.5 Hz.1H), 7.66
(dd, J=8.0.1.5 Hz, 1H), $7.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.01(10 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.04$ (d, J=11.0 $\mathrm{Hz}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 4 \mathrm{H})$. GCMS m/e $292\left(\mathrm{M}^{+}\right)$. Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{HCl} .1 / 2 \mathrm{MeOH}: \mathrm{C}$, 54.07; H, 6.47; N, 8.51. Found C, 53.98; H.6.72; N. 8.12

EXAMPLE 41

5.13-DIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$.0 - $^{4.8}$]PENTADECA-2.4(8),9-TRIEN-6-ONE HYDROCHLORIDE (The title compound was prepared following the procedures described in Quallich, G. J.: Morrissey, P. M. Synthesis 1993. 51-53, treating 4.5-dinitro-10-azatricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3.5-triene-10-carboxylic acid tert-butyl ester as an equivalent to an ortho fluoro phenyi moiety.) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 10.42$ (s. NH). 9.88 (br s, NH), $7.52(\mathrm{brs}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.13(\mathrm{~m}, 4 \mathrm{H}), 2.93$ $(\mathrm{m}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $215.2\left[(\mathrm{M}+1)^{*}\right]$.

EXAMPLE 42

6-OXO-5-OXA-7.13-DIAZATETRACYCLO[9.3.1.0.2.10.0.8 ${ }^{4}$ PENTADECA-2(10), 3,6.8TETRAENE HYDROCHLORIDE (For references, see: Nachman, R. J. J. Het. Chem. 1982. 1545.)

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0.0.7]dodeca-2(7),3.5-trien-$10-\mathrm{yl})$-ethanone ($317 \mathrm{mg}, 1.11 \mathrm{mmol}$) was stirred in THF (10 mL), treated with carbonyldiimidazole ($269 \mathrm{mg}, 1.66 \mathrm{mmol}$) and warmed to $60^{\circ} \mathrm{C}$ for 18 hours. The mixture was concentrated, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with 1 N aqueous HCl solution (3×10 mL). The organic layer was dried through a cotton plug, concentrated and chromatographed on Silica gel (50% EtOAc/Hexanes) to provide an oil (130 mg). This material converted to the title compound by the methods described in Example 9C. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) δ 11.78 (s, NH), 9.56 ($\mathrm{br} \mathrm{s}, \mathrm{NH}$), 7.63 (br s. NH), 7.24 ($\mathrm{s}, 1 \mathrm{H}$), 7.07 ($\mathrm{s}, 1 \mathrm{H}$), 3.26 (br s, 2 H), 3.16 (br t. J=9.5 Hz, 1H), 2.93 (br s. 1 H), $2.18(\mathrm{~m}, 1 \mathrm{H}), 1.97$ (d. J=11.0 Hz, 1H). APCI MS m/e $217.2\left[(M+1)^{+}\right]$.

EXAMPLE 43

3-TRIFLUOROMETHYL-10-AZA-TRICYCLO[6.3.1.0 2.7 [DODECA-2(7).3.5-TRIENE HYDROCHLORIDE (See Grunewaid, G. L.; Paradkar, V. M.; Pazhenchevsky, B.: Pleiss, M. A.; Sall, D. J.; Seibel, W. L.: Reitz. T. J. J. Org. Chem. 1983, 48, 2321-2327. Grunewaid, G. L.: Markovich. K. M.; Sall. D. J. J. Med. Chem. 1987, 30, 2191-2208.)

The title compound was prepared by the methods described in Example 1 and 2 starting with 2-fluoro-6-trifluoromethylbromobenzene. ${ }^{\prime} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.67-7.50$
-69-
(3H), 3.65 (br s, 1H), 3.49-3.42 (m, 2H), 3.29(s, 1H), 3.28-3.16(m, 2H), $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~d}$. $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCl} \mathrm{MS} m / e 228.2\left[(\mathrm{M}+1)^{\circ}\right]$. (HCl salt) mp $275-277^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N} . \mathrm{HCl} .1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.44$: $\mathrm{H}, 5.11$: N. 5.19. Found $\mathrm{C}, 53.73$; $\mathrm{H}, 4.83$: $\mathrm{N}, 5.16$.

EXAMPLE 44

3-PHENYL-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$ DDODECA-2(7).3.5-TRIENE

HYDROCHLORIDE

A) 5-Fluoro-1,4-dihydro-1,4-methano-naphthalene and 5-iodo-1,4-dihydro-1.4-methano-naphthalene
(Eisch, J. J.; Burlinson, N. E. J. Amer. Chem. Soc. 1976. 98, 753-761. Paquette, L. A.; Cottrell, D. M.; Snow, R. A. J. Amer. Chem. Soc. 1977, 99, 3723-3733.)

Magnesium turnings (9.37 g .385 mmol) were stirred in anhydrous THF (1000 mL) in a flame dried 2 L 3 neck round bottom flask equipped with a non-equalizing addition funnel with a N_{2} flow adapter, magnetic stirrer and efficient condenser equipped with a N_{2} flow adapter. The flask was stirred and warmed to reflux by a removable heating mantle. 2,6-Difluoro-iodobenzene (0.3 g) was added followed by of 3 N EtMgBr in THF (0.3 mL). The addition funnel was charged with an intimate mixture of cyclopentadiene ($24.24 \mathrm{~g}, 367 \mathrm{mmol}$) and 2.6 -difluoro-iodobenzene ($88.0 \mathrm{~g}, 367 \mathrm{mmol}$). Small portions (-1 mL) of the intimate mixture were introduced to assist initiation $(\sim 4 x)$. After -15 minutes, the reaction initiated (exotherm, and vapor condensation) and heating was maintained as necessary during the addition of the contents of the addition funnel. The reaction was then maintained at reflux for -1 hour (no SM by GCMS).

The reaction was cooled to room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}$ (200 mL) followed by aqueous 1 N HCl solution (200 mL) to dissolve the solids. Product was extracted with hexanes ($4 \times 150 \mathrm{~mL}$). The combined organic layer was washed with saturated aqueous NaHCO_{3} solution (150 mL). dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. filtered through a Silica plug with hexanes rinse and concentrated to an oil (70 g). Chromatography on Silica gel eluting with hexanes provided two lots (9.0 and 21.0 g). which contained primarily 5-iodo-1.4-dihydro-1.4-methanonaphthalene. (TLC hexanes $R_{1} 0.63$).
B) 5-lodo-1.2.3.4-tetrahydro-1.4-methano-naphthalene-2.3-diol

5-iodo-1,4-dihydro-1,4-methano-naphthalene (2 g g) and N -methyl morpholine N -oxide (17.61 g .130 mmol) were stirred in acetone $(90 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(13 \mathrm{~mL})$. To this was added a solution of $\mathrm{OsO}_{4}(0.2 \mathrm{~mL}, 2.5 \% \mathrm{wt}$. solution in $\mathrm{t}-\mathrm{BuOH}, 0.02 \mathrm{mmol})$. After 144 hours, florisil (5 g) and saturated aqueous NaHSO_{3} solution (3 mL) were added and stirred for $1 / 2$ hour. The
mixture was filtered through a Celite pad and the filtrate concentrated to produce an oil which was purified by chromatography on Silica gel eluting with a gradient of hexanes to 100% EtOAc to provide a yellow solid (13.73 g). APCI MS m/e 301.1 [(M-1)*].

C) 10-Benzyl-3-iodo-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene

5-lodo-1,2,3.4-tetrahydro-1.4-methano-naphthalene-2.3-diol (8.33 g .27 .6 mmol) and $\mathrm{Et}_{3} \mathrm{NBnCl}(10 \mathrm{mg})$ were vigorously stirred in dichloroethane (25 mL) and $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL}$) then treated with sodium periodate $(6.17 \mathrm{~g}, 29.0 \mathrm{mmol})$. After 1.5 hours, the layers were separated and the aqueous layer extracted with DCE ($2 \times 40 \mathrm{~mL}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$ until no reaction to starch iodide paper was observed, then with saturated aqueous NaCl solution (30 mL). The organic layer was dried through a cotton plug and treated with benzyl amine ($3.16 \mathrm{~mL}, 29.0 \mathrm{mmol}$) and stirred for 2 minutes then transferred to an addition funnel. This solution was added over -10 minutes to a vigorously stirred cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of $\mathrm{NaHB}(\mathrm{OAC})_{3}(18.72 \mathrm{~g} .88 .0 \mathrm{mmol})$ in $\mathrm{DCE}(150 \mathrm{~mL})$. After addition was complete, the mixture was stirred without cooling for 2 hours. The mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (100 mL) and stirred for 1 hour, then the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL}$). The combined organic layer was washed with saturated aqueous NaCl solution (50 mL), dried through a cotton plug and concentrated. Chromatography on Silica gel provided an oil ($6.3 \mathrm{~g}, 61 \%$). (TLC 5\% EtOAc/hexanes R, 0.10). 'H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) o $7.61(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 $7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{AB} \mathrm{dd}, \mathrm{J}=14.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}$), 3.21 (brs, 1 H), 3.04 (br d. $\mathrm{J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (br d, J=10.2 Hz, 1 H), 2.47 ($\mathrm{d}, \mathrm{J}=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e 376.0 $\left[(M+1)^{*}\right]$.
D) 10-Benzyl-3-phenyl-10-aza-tricyclo[6.3.1.0 ${ }^{\text {2i}}$]dodeca-2(7).3.5-triene (For a discussion, see: Miyaura, N.; Suzuki. A. Chem. Rev. 1995, 95, $2457-$ 2483.)

10-Benzyl-3-iodo-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-triene (375.3 mg. 1.0 mmol), potassium acetate ($785 \mathrm{mg}, 8.0 \mathrm{mmol}$) and phenyl boronic acid ($183 \mathrm{mg}, 1.5 \mathrm{mmol}$) were combined in $10 / 1 \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was degassed (3 vacuum $/ \mathrm{N}_{2}$ cycles), treated with tetrakis(triphenylphosphine)palladium $(0)(57.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ and warmed to 90 ${ }^{\circ} \mathrm{C}$ for 18 h . The reaction was cooled, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic layer was washed with brine (50 mL). dried $\left(\mathrm{MgSO}_{4}\right)$. filtered and concentrated to provide an oil ($180 \mathrm{mg} .55 \%$). (TLC 4% EtOAc/hexanes R, 0.18). GCMS m/e 325 (M)*.
E) 3-Phenyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-tnene hydrochloride

10-Benzyl-3-phenyl-10-aza-tricyclo[6.3.1.0.7]dodeca-2(7),3.5-triene was converted into the title compound utilizing the conditions described in Example 2D. (TLC 10\% $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}, 0.30\right)$. (data for free base) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S 7.46-7.15 (8 H), 3.17 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), 3.01 ($\mathrm{m}, 2 \mathrm{H}$), 2.93 (d. J=13.0 Hz, 1 H), 2.72 (dd, J=10.5,2.5 Hz, 1 H), 2.63 (dd, $J=10.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $236.2\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) $\mathrm{mp} 262-265{ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N} . \mathrm{HCl} .1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 73.26 ; \mathrm{H}, 6.86 ; \mathrm{N}, 5.19$. Found C. 73.50; H. 6.77; N, 5.04.

EXAMPLE 45

3-HYDROXY-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7), 3.5-TRIENE HYDROCHLORIDE
A) 10-Benzyl-3-boronic acid-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene 10-Benzyl-3-iodo-10-aza-tricyclo[6.3.1.0.7 ${ }^{2.7}$ dodeca-2(7),3.5-triene ($3.0 \mathrm{~g}, 7.99 \mathrm{mmol}$) was stirred in anhydrous THF (40 mL) at $-78^{\circ} \mathrm{C}$ under nitrogen and treated dropwise with n BuLi (3.84 mL of 2.5 M soln. in hexanes. 9.59 mmol). After 10 minutes, tri-isopropylborate ($4.61 \mathrm{~mL}, 20.0 \mathrm{mmol}$) was added dropwise. After $-1 / 2$ hour. the reaction was poured into saturated aqueous NaHCO_{3} solution, stirred 5 minutes and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and concentrated. The residue was dissolved in $30 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes and extracted with 1 N . NaOH aqueous solution ($4 \times 50 \mathrm{~mL}$). The combined aqueous basic layer was treated with concentrated HCl to achieve pH 8 and extracted with EtOAc ($4 \times 25 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and stripped. Chromatography on Silica gel eluting first with 3% EtOAc/hexanes to remove nonpolar components, then with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ provides the title compound. (TLC 25% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.60$).
B) 10-Benzyl-3-hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ ddodeca-2(7).3.5-triene

10-Benzyl-3-boronic acid-10-aza-tricyclo[6.3.1.0. ${ }^{2.7}$]dodeca-2(7).3.5-triene (140 mg. 0.48 mmol) dissolved in THF (5 mL) was treated with N -methylmorpholine- N -oxide (64.5 mg . 0.48 mmol) and brought to reflux for 1 hour. The reaction was concentrated and chromatographed on Silica gel to provide product. (TLC 25% EtOAc/hexanes $R, 0.18$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.15(3 \mathrm{H}) .7 .04$ (dd. J= $\left.8.0 .7 .0 \mathrm{~Hz}, 1 \mathrm{H}\right) .6 .95(\mathrm{~m}, 2 \mathrm{H}) .6 .75$ (d. $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.59 (dd. J=8.0.1.0 Hz, 1 H). 3.53 ($\mathrm{br} \mathrm{s}, \mathrm{OH}$), 3.51 ($\mathrm{AB} \mathrm{d} . \mathrm{J}=14.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.28 (br s. 1 H) , 3.06 (brs, 1H), 2.91 (dd, J=8.5.1.5 Hz, 1H), 2.79 (ddd, J=8.5.1.5.1.5 Hz, 1H), 2.42 (d, J=11.0 Hz, 1H), 2.39 (d, J=11.0 Hz, 1H). $2.23(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $266.5\left[(\mathrm{M}+1)^{*}\right]$.
C) 3-Hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride

10-Benzyl-3-hydroxy-10-aza-tricyclo[6.3.1.0.7 ${ }^{2.7}$ dodeca-2(7),3.5-triene (160 mg, 0.60 mmol) was converted into the title compound by the methods described in Example $1 \mathrm{D} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15$ (dd, J=8.0.7.5 Hz, 1 H), 6.84 (d, J=7.5 Hz, 1H), 6.76 (d, J=8.0 $\mathrm{Hz}, 1 \mathrm{H}) .3 .51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.33-3.25(3 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ $(\mathrm{m}, 1 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $175.8\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) $\mathrm{mp} 253-255^{\circ} \mathrm{C}$.

EXAMPLE 46

4.5-DIFLUORO-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$ DODECA-2(7).3.5-TRIENE HYDROCHLORIDE

The titte compound was prepared by the methods described in Example 1 and 2 starting with 2.4.5-trifluorobromobenzene. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{t} . \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.48-3.13 (6H), $2.38(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 196.2\left[(\mathrm{M}+1)^{\mathrm{t}}\right] .(\mathrm{HCl}$ salt) $m p 301-303{ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{1}, \mathrm{H}_{1}, \mathrm{~F}_{2} \mathrm{~N} . \mathrm{HCl} .1 / 6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.30 ; \mathrm{H}, 5.30 ; \mathrm{N} .5 .97$. Found C. 56.66; H, 5.41; N, 5.96.

EXAMPLE 47

6-ETHYL-5-OXA-7.13-DIAZATETRACYCLO[9.3.1.0.10 $0^{4.8}$ PENTADECA-2(10), 3.6.8TETRAENE HYDROCHLORIDE

2,2.2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7).3.5-trien-10-yl)-ethanone and propionyl chloride were converted to the title compound following the procedures described in Example 30 and Goldstein, S. W.: Dambek, P. J. J. Het. Chem. 1990. 27, 335. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.64$ ($\mathrm{s}, 1 \mathrm{H}$). 7.62 ($\mathrm{s}, 1 \mathrm{H}$). 3.48 ($\mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}$. 2 H) , 3.41 (d, J=12.0 Hz, 2H), $3.20(2 \mathrm{H}), 3.01$ (q, J=7.5 Hz. 2H), $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.17$ (d, J=11.5 $\mathrm{Hz}, 1 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. APCI MS m/e $229.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 48

6-ISOPROPYL-5-OXA-7.13-DIAZATETRACYCLO19.3.1.0 ${ }^{2.10}$. 0^{43} IPENTADECA-

2(10).3.6.8-TETRAENE HYDROCHLORIDE

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3.5-trien-10-yl)-ethanone and isobutyryl chloride were converted to the title compound following the procedures described in EXAMPLE 47. (TLC 25\% EtOAc/hexanes R, 0.14). 'H NMR (400 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.65(2 \mathrm{H}), 3.49$ (br s. 2 H). 3.41 ($\mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.33-3.19 (3H), 2.45 (m. $1 \mathrm{H}) .2 .18(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 243.2\left[(\mathrm{M}+1)^{*}\right]$. (HCl salt) mp 249-251 ${ }^{\circ} \mathrm{C}$.

EXAMPLE 49

6-BENZYL-5-OXA-7.13-DIAZATETRACYCLO[9.3.1.0 ${ }^{2.10} 0^{4.8}$ PPENTADECA-2(10),3,6,8-TETRAENE HYDROCHLORIDE

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-trien-$10-\mathrm{yl})$-ethanone and phenyl-acetyl chloride were converted to the title compound following the procedures described in EXAMPLE 47. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.63$ (s, 1H), 7.58 (s, 1H), 7.36-7.24 (5H), 4.29 (s, 2H), 3.46 (d, J=2.5 Hz, 2H), 3.39 (d, J=12.0 Hz, 2H), 3.18 (2H), $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $291.2\left[(\mathrm{M}+1)^{+}\right]$.
-74-

1. A compound of the formula
R^{1} is hydrogen. ($Q_{1}-\mathrm{C}_{6}$)alkyl, unconjugated $\left(\mathrm{C}_{3}-\mathrm{C}_{6}\right)$ alkenyl, $\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}$ or $-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{O}$ ($C_{1}-C_{4}$) alkyl;
R^{2} and R^{3} are selected, independently, from hydrogen, $\left(C_{2}-C_{6}\right)$ alkenyl, $\left(C_{2}-C_{6}\right)$ alkynyl. hydroxy, nitro amino. halo, cyano, $-\mathrm{SO}_{\mathrm{q}}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein q is zero, one or two, $\left(\mathrm{C}_{1}, \mathrm{C}_{6}\right)$ alkylamino-, $\quad\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\right.$ alkyl K_{2} amino-, $\quad-\mathrm{CO}_{2} \mathrm{R}^{4}, \quad-\mathrm{CONR}^{5} \mathrm{R}^{6}, \quad-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8}, \quad-\mathrm{C}(=0) \mathrm{R}^{13}$. $-X C(=O) R^{13}$, aryl- $\left(C_{0}-C_{3}\right)$ alkyl- or aryl- $\left(C_{0}-C_{3}\right)$ alkyl-O-, wherein said aryl is selected from phenyl and naphthyl. heteroaryl-($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl- or heteroaryl-($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyt-O-, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen. nitrogen and sulfur, and $X^{2}\left(C_{0}-C_{6}\right)$ alkoxy- $\left(C_{0}-C_{6}\right)$ alkyl-, wherein X^{2} is absent or X^{2} is $\left(C_{1}-C_{6}\right)$ alkylamino- or $\left[\left(C_{1}-C_{6}\right) \text { alkyl }\right]_{2}$ amino-, and wherein the ($\mathrm{C}_{0}-\mathrm{C}_{6}$) alkoxy- $\left(\mathrm{C}_{0^{-}}\right.$ C_{6})alkyl- moiety of said $\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- contains at least one carbon atom, and wherein from one to three of the carbon atoms of said ($\mathrm{C}_{0}-\mathrm{C}_{6}$)alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- moiety may optionally be replaced by an oxygen, nitrogen or sulfur atom, with the proviso that any two such heteroatoms must be separated by at least two carbon atoms, and wherein any of the alkyl moieties of said ($\mathrm{C}_{0} \mathrm{C}_{6}$) alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- may be optionally substituted with from two to seven fluorine atoms. and wherein one of the carbon atoms of each of the alkyl moieties of said aryl($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl- and said heteroaryl-($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl- may optionally be replaced by an oxygen, nitrogen or sulfur atom. and wherein each of the foregoing aryl and heteroaryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents. independently selected from ($C_{1}-C_{6}$) alkyl optionally substituted with from one to seven fluorine atoms. ($\mathrm{C}_{1}-\mathrm{C}_{6}$) alkoxy optionally substituted with from two to seven fluorine atoms. halo (egg., chloro, fluoro, promo or jodo), ($\mathrm{C}_{2}-\mathrm{C}_{6}$) alkenyl, ($\mathrm{C}_{2}-\mathrm{C}_{6}$) alkynyl, hydroxy, nitro, cyano, amino, ($\mathrm{C}_{1}-$ C_{6})alkylamino. $\left[\left(\mathrm{C},-\mathrm{C}_{6}\right) \text { alkyl] }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{S} \oint_{2} N R^{7} R^{8},-\mathrm{C}(=O) \mathrm{R}^{13}$ and $X C(=O) R^{13}$;
or R^{2} and R^{3}, together with the carbons to which they are attached, form a four to seven membered monocyclic. or ten to fourteen membered bicyclic, carbocyclic ring that can be saturated or unsaturated. wherein from one to three of the nonfused carbon atoms of said monocyclic rings. and from one to five of the carbon atoms of said bicyclic rings that are not part
-75-
of the benzo ring shown in formula I, may optionally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents, preferably from zero to two substituents for the monocyclic rings and from zero to three substituents for the bicyclic rings, that are selected. independenty, from ($C_{1}-C_{6}$) alkyl optionally substituted with from one to seven fluorine atoms, ($C,-C_{6}$) alkoxy optionally substituted with from one to seven fluorine atoms, nitro, cyano, halo, $\left(\mathrm{C}_{2}-\mathrm{C}_{6} \text {) alkenyl, (} \mathrm{C}_{2}-\mathrm{C}_{6} \text {) alkynyl, hydroxy, amino. (} \mathrm{C}_{1}-\mathrm{C}_{6} \text {) alkylamino and [(} \mathrm{C}_{1}-\mathrm{C}_{6} \text {) alkyl] }\right]_{2}$ amino, $\mathrm{CO}_{2} R^{4},-\mathrm{CONR}^{5} R^{6},-\mathrm{SO}_{2} N R^{7} R^{8},-\mathrm{C}(=0) \mathrm{R}^{13}$ and $-\mathrm{XC}(=0) \mathrm{R}^{13}$:
each $R^{4}, R^{5}, R^{6}, R^{7}, R^{8}$ and R^{13} is selected, independently, from hydrogen and (C, C_{6}) alkyl, or R^{5} and R^{6}, or R^{7} and R^{8} together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, norpholine, azetidine. piperizine. $\mathrm{N}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylpiperizine or thiomorpholine ring, or a thionorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each X is, independently, $\left(C_{1}-C_{6}\right)$ alkylene;
with the proviso that: (a) at least one of R^{1}, R^{2} and R^{3} must be the other than hydrogen, and (b) when R^{2} and R^{3} are both hydrogen, R^{1} cannot be hydrogen or methyl;
or a pharmaceutically acceptable salt thereof;
2. A compound according to claim 1. wherein R^{2} and R^{3}. together with the benzo ring of formula I, form a bicyclic ring system selected from the following

wherein R^{10} and R^{17} are selected. independently, from ($C_{0}-C_{6}$) alkoxy- $\left(C_{0}-C_{6}\right)$ alkylwherein the total number of carbon atoms does not exceed six and wheyein any of the alkyl moieties may optonally be substituted with from one to seven fluorine atoms: hitro. cyano, halo.
 $-X C(=O) R^{13}$, phenyl and monocyclic heteroaryl, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur,
3. A compound according to claim 1, wherein R^{2} and R^{3} do not, together with the benzo ring of formula I, form a bicyclic or tricyclic ring system.
4. A compound according to claim 1 . wherein one or both of R^{2} and R^{3} are $-C(=O) R^{13}$ wherein R^{13} is $\left(C_{1}-C_{6}\right)$ alkyl.
5. A compound according to claim 1 , wherein one of R^{2} and R^{3} is $-C O R^{13}$ wherein R^{13} is $\left(C_{1}-C_{6}\right)$ alkyl or ($Q_{1}=E_{y}$ adreyl optionally substituted with from one to seven fluorine atoms.
6. A compound according to claim 1, wherein one of R^{2} and R^{3} is $C F_{3}$, fluoro. cyano or $\mathrm{C}_{2} \mathrm{~F}_{5}$.
7. A pharmaceutical composition for use in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising an amount of a compound according to claim 1 that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use and a pharmaceutfically acceptable carrier.
8. A method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising administering to said mammal an amount of a compound according to claim 1 that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.
9. A pharmaceutical composition for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome. spastic dystonia. chronic pain, acute pain, celiac sprue, pouckitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders. jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (egg., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke. traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia. dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline. epilepsy, including petit maI absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal.
compkising an amount of a compound according to claim 1 that is effective in treating such disorder or condition and a pharmaceutically acceptable carrier.

A method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasocorstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag. amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g. dependencies on, of addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, okioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis, Huntington's Chorea. tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multiinfarct dementia, age related cognitive decline. epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an dmount of a compound according to claim 1 that is effective in treating such disorder or condition.
11. A c\&mpound of the formula

wherein P is hydrogen. methyl. goOR ${ }^{16}$ wherein R^{16} is $\left(C_{1}-C_{6}\right)$ alkyl, allyl or 2,2,2trichloroethyl; $-C(=0) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in formula 1 above; $-C(=0) H$. $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluord or chloro atoms; benzyl, t-butoxycarbonyl (t-Boc) or trifluoroacetyl, and R^{14} and R^{15} are selected, independently, from hydrogen, ($C_{1}-C_{6}$) alkyt optionally substituted with from one to seven fluorine atoms; $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl. cyano, hydroxy. nitro. amino. $-O\left(C_{1}-C_{6}\right)$ alkyl and halo: with proviso that R^{14} and R^{15} can not both be hydrogen when P is hydrogen or methyl.

30
12. A method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in d mammal, comprising administering to said mammal an amount of a compound comprising an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.
13. A method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ylcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclekosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrytmmias, gastric acid hypersecretion, ulcers. pheochromocytoma, progressive supramuscula palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to neotine (and/or tobacco products), alcohol. benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, Ayperkinesia, dyslexia, schizophrenia, multiinfarct dementia. age related cognitive decline, epitepsy, including petit mal absence epitepsy. senile dementia of the Alzheimer's type (AD). Parkinson's disease (PD). attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal; comprising administering to a mammal in need of such treatment an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof;
-that is-effective in treating_sueh-disorder or condition._
14. A'Compound of the formula

$$
\left(1^{\prime}\right)
$$

wherein R^{2} and R^{3} are defined as in claim and P^{\prime} is COOR ${ }^{16}$ wherein R^{16} is allyl. 2.2.2-trichloroetnyl or $\left(C_{1}-C_{6}\right)$ alkyl; $-C(=O) N R^{5} R^{6}$ whereIn R^{5} and R^{6} are defined as in claim 2:

[^1] $-\mathrm{C}(=\mathrm{O}) \mathrm{H},-\mathrm{C}(=0)\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluor or chloro atoms; benzyl, or t butoxycarbonyl (t -Roc)

-80-

5
ARYL FUSED AZAPOLYCYCLIC COMPOUNDS
Abstract
\qquad and their pharmaceutically acceptable salts, wherein R^{1}. R^{2}. R^{3} anersare defined as in the
specification, intermediates in the synthesis of such compounds, pharmaceutical
compositions containing such compounds and methods of using such compounds in the
treatment of neurological and psychological disorders alatmect
a treatment of neurological and psychological disorders arectaimed.

DECLARATION FOR UTILITY OR DESIGN PATENT APPLICATION (37 CFR 1.63)

\boxtimes Declaration	Declaration submitted
Submitted after Initial with Initial Filing (surcharge Filing 37 CFR 1.16 (e)) required)	

Attorney Docket Number	PC 10030A
First Named Inventor	Jotham Wadsworth COE
COMPLETE IF KNOWN	
Application Number	Not yet assigned
Filing Date	Filed herewith
Group Art Unit	Not yet assigned
Examiner Name	Not yet assigned

As a below named inventor, I hereby declare that:
My residence, post office address, and citizenship are as stated below next to my name.
I, believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

ARYL FUSED AZAPOLYCYCLIC COMPOUNDS
(Title of the Invention)
the specification of which
\square is attached hereto
OR
\boxtimes was filed on (MM/DD/YYYY) $11 / 13 / 1998$ as United States Application Number or PCT International
Application Number PCT/IB98/01813 and was amended on (MM/DD/YYYY) (if applicable). I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment specifically referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56.
I hereby claim foreign priority benefits under 35 U.S.C. 119(a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or $365($ a) of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or of any PCT international application having a filing date before that of the application on which priority is claimed.

EXPRESS MAIL NO. EM48483 971

DECLARATION ---- Utility or Design Patent Application

Thereby claim the benefit under 35 U.S.C. 120 of any United States applications), or 365(c) of any PCT international application designating the United States of America, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. 112, I acknowledge the duty to disclose information which is material to patentability as defined in 37 U.S.C. 1.56, which became available between the filing date of the prior application and the national or PCT International filing date of this application

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such wilful false statements may jeopardize the validity of the application or any patent issued thereon.
Name of Sole or First Inventor: $\quad \square$ A petition has been filed for this unsigned inventor

Additional inventors are being named on the supplemental Additional Inventors) sheets) PTO/SB/02A attached hereto.

DECLARATION	ADDITIONAL INVENTOR (S) Supplemental Sheet

[Page 3 of 3]
DECLARATION - POA FOR UTILITY OR DESIGN, PTO SB 01, 3/99
EXPRESS MALL NO. QM.484850791
-
θ

DOIEO ETBLIOGRAFHTC DATA ENTRY

GERIAL NUMEER: 09 / 40201
IA NDMEER: FCT, TEOS, 01813COE
GIVEN NAME: gotham hadguorth
FRIGRTTY CLATMED (Y/N): Y
NO EASIC FEE (Y,N):
ATTORNE bOCKET NHMEER: FCI0030A
RECEIFT DATE: $09 \% 29 ; 59$

DELAY WATVED (Y/N):
DEMAND RECETVED (Y/N):
FRIORITY DATE: 12,$31 ; 97$
LS DESTGNATED ONLY (Y,N):Mame: Fall h bingelirg
FFIZER INC
STREET:
255 EAST $42 N D$ STREET
CITY: NEV YORE

- state/colntey: Ny ZTF: 10017575
EMA.IL:
AFFLICATION TITLES: ARYL FISED AZAFOLYCYCLIC COMFOUNDS

Patent application serial no
 $09 / 402010$

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHEET

10/01/1999 UCLAYBRO OO000152 16144509402010

$\begin{array}{ll}01 \mathrm{FC}: 970 & 840.00 \mathrm{CH} \\ 02 \mathrm{FC}: 964 & 76.00 \mathrm{CH}\end{array}$

PA NT COOPERATION TREATY
From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF ELECTION
(PCT Rule 61.2)

1. The designated Office is hereby notified of its election made:

X in the demand filed with the International preliminary Examining Authority on: 06 April 1999 (06.04.99)
\square in a notice effecting later election filed with the International Bureau on:
2. The election X was
\square was not
made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer:
Facsimile No.: $(41-22) 740.14 .35$	J. Zahra

Form PCT/IB/331 (July 1992)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.
2. This REPORT consists of a total of 5 sheets, including this cover sheet.
© This report is also accompanied by ANNEXES, ie. sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of 19 sheets.
3. This report contains indications relating to the following items:

1 Basis of the report
II \square Priority
III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
IV Lack of unity of invention
V \boxtimes Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations suporting such statement
VI Certain documents cited
VII \square Certain defects in the international application
VIII \square Certain observations on the international application

Form PCTAPEA/409 (cover sheet) (January 1994)

I. Basis of the report

1. This report has been drawn on the basis of (substitute sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments.):

Description, pages:
$1,6,10-22,26,28-30$, as originally filed 32-73
$2-5,5 A, 7,7 A, 8,9, \quad$ as received on 26/01/2000 with letter of 24/01/2000
$23-25,27,31$

Claims, No.:
14 (part) as originally filed
1-13,14 (part) as received on
26/01/2000 with letter of 24/01/2000
2. The amendments have resulted in the cancellation of:the description, pages:the claims,
Nos.:
\square the drawings,
sheets:
3. \boxtimes This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed (Rule 70.2(c)):
see separate sheet
4. Additional observations, if necessary:

III. Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

The questions whether the claimed invention appears to be novel, to involve an inventive step (to be non-obvious), or to be industrially applicable have not been examined in respect of:the entire international application.
(claims Nos. 7-10,12,13(Industrial Applicability).

because:

© the said intemational application, or the said claims Nos. 7-10,12,13 relate to the following subject matter which does not require an intemational preliminary examination (specify):

see separate sheet

\square the description, claims or drawings (indicate particular elements below) or said claims Nos. are so unclear that no meaningful opinion could be formed (specify):
\square the claims, or said claims Nos. are so inadequately supported by the description that no meaningful opinion could be formed.
\square no international search report has been established for the said claims Nos. .
V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)	Yes: No:	Claims Claims	$\begin{aligned} & 2,4-14 \\ & 1,3 \end{aligned}$	APR 242000
Inventive step (IS)	Yes: No:	Claims Claims	1-14	TEFHCEATER160Mgent
Industrial applicability (IA)	Yes: No:	Claims Claims	1-6,11,14	

2. Citations and explanations
see separate sheet

I BASIS

Description pages 2-4 and claim pages 74 and 75 as amended cannot be considered as the replacement ' $X^{2}\left(C_{0}-C_{6}\right)$ alkyl- and $X^{2}\left(C_{1}-C_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl' goes beyond the content of the application as originally filed (Art. 34(2)b) PCT). It should be noted that such an amendment was also not necessary. Due to the wording (e.g. page 74, line 19: 'contains at least one carbon atom' the original definition covers alkyl, alkoxy and alkoxyalkyl, each optionally substituted by X^{2} etc.. Thus, the International Preliminary Examination Report is based on the original pages 2-4 and 74,75.

III NON-ESTABLISHMENT

Claims 7-10,12 and 13 relate to subject-matter considered by this Authority to be covered by the provisions of Rule 67.1 (iv) PCT. Consequently, no opinion will be formulated with respect to the industrial applicability of the subject-matter of these claims (Article 34(4)(a)(i) PCT).

V REASONED STATEMENT

1. PRIOR ART

The documents cited in the International Search Report
D1: PAUL H. MAZZOCHI ET AL: 'Synthesis and pharmacological activity of 2,3,4,5-tetrahydro-1,5-methano-1H-3-benzaz epines' JOURNAL OF MEDICINAL CHEMISTRY., vol. 22, no. 4, 1979, pages 455-457, XP002090422
WASHINGTON US
D2: US-A-3 471503 (CARSON JOHN R) 7 October 1969
have been considered for the examination procedure.
2. NOVELTY

The subject-matter of Claims 1 and 3 is anticipated by D1 (Article 33(2) PCT). D1 discloses N alkyl derivatives of formula I which are covered from the definitions as set out in Claims 1 and 3 . The remaining claims are considered as novel.
3. INVENTIVE STEP

The novel subject-matter of Claims 1-14 appears to fulfil the requirements of Article 33(3) PCT because the pharmaceutical profile of the compounds of D1 and D2, i.e. antinociceptive and hypotensive properties, respectively differs from that of the present application. The pharmacological activity of the present compounds, i.e. the ability to bind to neuronal nicotinic acetylcholine specific receptor sites, is not obvious in view of D1 and/or D2.

4. INDUSTRIAL APPLICABILITY

No objection for Claims 1-6, 11 and 14. For the assessment of the present Claims 7-10, 12 and 13 on the question whether they are industrially applicable, no unified criteria exist in the PCT Contracting States. The patentability can also be dependent upon the formulation of the claims. The EPO, for example, does not recognize as industrially applicable the subject-matter of claims to the use of a compound in medical treatment, but may allow, however, claims to a known compound for first use in medical treatment and the use of such a compound for the manufacture of a medicament for a new medical treatment.

Other compounds that bind to neuronal nicotinic receptor sites are referred to in United States Patent Application 08/963,852, which was filed on November 4, 1997. The foregoing application is owned in common with the present application, and is incorporated herein by reference in its entirety.

Summary of the Invention

This invention relates to aryl fused azapolycyclic compounds of the formula

R^{1} is hydrogen, $\left(C_{1}-C_{6}\right)$ alkyl, unconjugated $\left(C_{3}-C_{6}\right)$ alkenyl, benzyl, $X C(=O) R^{13}$ or $-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkyl;
R^{2} and R^{3} are selected, independently, from hydrogen, $\left(C_{2}-C_{6}\right)$ alkenyl, $\left(C_{2}-C_{5}\right)$ alkynyl, hydroxy, nitro, amino, halo, cyano, $-\mathrm{SO}_{\mathrm{q}}\left(\mathrm{C}_{4}-\mathrm{C}_{6}\right)$ alkyl wherein q is zero, one or two, $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right.$)alkylamino-, $\quad\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyll }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4}, \quad-\mathrm{CONR}^{5} \mathrm{R}^{6}, \quad-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8}, \quad-\mathrm{C}(=0) \mathrm{R}^{13}$, $-\mathrm{XC}(=0) \mathrm{R}^{13}$, aryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- or aryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-O-, wherein said aryl is selected from phenyl and naphthyl, heteroaryl- $\left(\mathrm{C}_{\sigma}-\mathrm{C}_{3}\right)$ alkyl- or heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-O-, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur, and $X^{2}\left(C_{0}-C_{6}\right)$ alkyl- and $X^{2}\left(C_{1}-C_{6}\right)$ alkoxy $-\left(C_{0}-C_{6}\right)$ alkyl-, wherein X^{2} is absent or X^{2} is $\left(C_{1}-C_{6}\right)$ alkylamino- or $\left[\left(C_{1}-C_{6}\right) \text { alkyl }\right]_{2}$ amino-, and wherein the $\left(C_{\sigma}\right.$ C_{6})alkyl- or $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- moieties of said $\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- and $\mathrm{X}^{2}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0^{-}}\right.$ C_{6})alkyl- contains at least one carbon atom, and wherein from one to three of the carbon atoms of said $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- or $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{6}-\mathrm{C}_{6}\right)$ alkyl- moieties may optionally be replaced by an oxygen, nitrogen or sulfur atom, with the proviso that any two such heteroatoms must be separated by at least two carbon atoms, and wherein any of the alkyl moieties of said ($\mathrm{C}_{0^{-}}$ C_{6})alkyl- or $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- may be optionally substituted with from two to seven fluorine atoms, and wherein one of the carbon atoms of each of the alkyl moieties of said aryl($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl- and said heteroaryl-($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl- may optionally be replaced by an oxygen, nitrogen or sulfur atom, and wherein each of the foregoing aryl and heteroaryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents, independently selected from $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluorine atoms, $\left(C_{1}-C_{6}\right)$ alkoxy optionally substituted with from two to seven fluorine atoms, halo (e.g., chloro, fluoro, bromo or iodo), ($\mathrm{C}_{2}-\mathrm{C}_{6}$)alkenyl, $\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)$ alkynyl, hydroxy, nitro, cyano, amino, ($\mathrm{C}_{1}-$

SUBSTITUTE PAGE
C_{6})alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\right.$ alky l_{2} amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=0) \mathrm{R}^{13}$ and $-X C(=0) R^{13}$;
or R^{2} and R^{3}, together with the carbons to which they are attached, form a four to seven membered monocyclic, or a ten to fourteen membered bicyclic, carbocyclic ring that can be saturated or unsaturated, wherein from one to three of the non-fused carbon atoms of said monocyclic rings, and from one to five of the carbon atoms of said bicyclic rings that are not part of the benzo ring shown in formula I, may optionally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents, preferably from zero to two substituents for the monocyclic rings and from zero to three substituents for the bicyclic rings, that are selected, independently, from ($\mathrm{C}_{0}-\mathrm{C}_{6}$)alkyl- or ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl-, wherein the total number of carbon atoms does not exceed six and wherein any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms; nitro, oxo, cyano, halo, $\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)$ alkenyl, ($\mathrm{C}_{2^{-}}$ C_{5})alkynyl, hydroxy, amino, ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\right.$ alky $\|_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6}$, $\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=0) \mathrm{R}^{13}$, and $-\mathrm{XC}(=0) \mathrm{R}^{13}$;
each $R^{4}, R^{5}, R^{6}, R^{7}, R^{8}$ and R^{13} is selected, independently, from hydrogen and ($C_{1}-C_{6}$) alkyl, or R^{5} and R^{6}, or R^{7} and R^{8} together with the nitrogen to which they are attached, form a pyrolidine, piperidine, morpholine, azetidine, piperazine, $-\mathrm{N}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylpiperazine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each X is, independently, $\left(C_{1}-C_{6}\right)$ alkylene;
with the proviso that: (a) at least one of R^{1}, R^{2} and R^{3} must be the other than hydrogen, and (b) when R^{2} and R^{3} are hydrogen, R^{1} cannot be hydrogen, $\left(C_{1}-C_{6}\right)$ alkyl, or unconjugated $\left(\mathrm{C}_{3}-\mathrm{C}_{6}\right)$ alkenyl;
and the pharmaceutically acceptable salts of such compounds.
Examples of heteroaryl groups that each of R^{2} and R^{3} can be are the following:
thienyl, oxazoyl, isoxazolyl, pyridyl, pyrimidyl, thiazolyl, tetrazolyl, isothiazolyl, triazolyl, imidazolyl, tetrazolyl, pyrroyl and the following groups:

wherein one of R^{9} and R^{18} is hydrogen or $\left(C_{1}-C_{6}\right)$ alkyl, and the other is a bond to the benzo ring of formula 1 .

Examples of compounds of this invention are compounds of the formula 1 , and their pharmaceutically acceptable salts, wherein R^{2} and R^{3}, together with the benzo ring of formula I, form a bicyclic ring system selected from the following:

wherein R^{10} and R^{17} are selected, independently, from ($C_{0}-C_{6}$)alkyl- and ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkoxy($\mathrm{C}_{0}-\mathrm{C}_{6}$)alkyl- wherein the total number of carbon atoms does not exceed six and wherein any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms; nitro, cyano, halo, amino, ($C_{1}-C_{6}$)alkylamino-, $\left[\left(C_{1}-C_{6}\right)\right.$ alkyl l_{2} amino-, $-\mathrm{CO}_{2} R^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8}$, $C(=O) R^{13},-X C(=O) R^{13}$, phenyl and monocyclic heteroaryl wherein said heteroary! is defined as R^{2} and R^{3} are defined in the definition of compounds of the formula l above;

Other embodiments of this invention relate to compounds of the formula I, and their pharmaceutically acceptable salts, wherein R^{2} and R^{3}, together with the benzo ring of formula I, form a bicyclic or tricyclic ring system selected from the following:

SUBSTITUTE PAGE

5

wherein R^{10} and R^{17} are defined as above and m is zero, one or two, and wherein one of the carbon atoms of ring A can optionally be replaced with oxygen or $-N\left(C_{1}-C_{6}\right)$ alkyl.

Other embodiments of this invention relate to compounds of the formula I, and their pharmaceutically acceptable salts, wherein neither R^{2} nor R^{3} is attached to the benzo ring of formula I via an oxygen atom.

Other embodiments of this invention relate to compounds of the formula I, and their pharmaceutically acceptable salts, wherein R^{2} and R^{3} do not, together with the benzo ring of formula I, form a bicyclic or tricyclic ring system.

Other embodiments of this invention relate to compounds of the formula I wherein one or both of R^{2} and R^{3} are $-C(=O) R^{13}$, wherein R^{13} is $\left(C_{1}-C_{6}\right)$ alkyl. Further embodiments of this invention relate to compounds of the formula 1 wherein one or both of R^{2} and R^{3} are $-C(=O) R^{13}$, wherein R^{13} is $\left(C_{1}-C_{6}\right)$ alkyl or $\left(C_{1}-C_{3}\right)$ alkyl optionally substituted with from one to seven fluorine atoms. Other embodiments relate to compounds of the formula I wherein one of R^{2} and R^{3} is CF_{3}, fluoro, cyano or $\mathrm{C}_{2} \mathrm{~F}_{5}$. -;

Other embodiments of this invention relate to compounds of the formula I wherein R^{1} is not methyl.

Examples of specific compounds of the formula I are the following:
6-methyl-5,7-dioxo-6,13-diazatetracycio[9.3.1.0 ${ }^{2,10} .0^{4,8}$]pentadeca-2(10),3,8-triene hydrochloride;
wherein P is hydrogen, methyl, COOR ${ }^{16}$ wherein R^{16} is ($C_{4}-C_{6}$)alkyl, allyl, 2,2,2-trichioroethyl or $\left(C_{1}-C_{6}\right)$ alkyl; $-C(=0) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in formula 1 above; $-C(=O) H$, $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl or t-butoxycarbonyl (t Boc); and R^{14} and R^{15} are selected, independently, from hydrogen, $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluorine atoms; $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl, cyano, hydroxy, nitro, amino, $-O\left(C_{1}-C_{6}\right)$ alkyl or halo; with the proviso that R^{14} and R^{15} can not both be hydrogen when P is hydrogen, $\left(C_{1}-C_{6}\right)$ alkyl, or unconjugated $\left(C_{3}-C_{6}\right)$ alkenyl. Such compounds are useful as intermediates in the synthesis of compounds of the formula I.

The invention also relates to a compound of the formula

wherein R^{2} and R^{3} are defined above; and P^{\prime} is COOR^{16} wherein R^{16} is allyl, 2,2,2trichloroethyl or ($C_{1}-C_{6}$) alkyl; $-C(=O) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in claim 2; $\mathrm{C}(=\mathrm{O}) \mathrm{H},-\mathrm{C}(=0)\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl, or t butoxycarbonyl (t-Boc).

Unless otherwise indicated, the term "halo", as used herein, includes fluoro, chloro, bromo and iodo.

Unless otherwise indicated, the term "alkyl", as used herein, includes straight, branched or cyclic, and may include straight and cyclic alkyl moieties as well as branched and cyclic moieties.

The term "alkoxy", as used herein, means "alkyl-O-", wherein "alkyl" is defined as above.
The term "alkylene, as used herein, means an alkyl radical having two available bonding sites (i.e., -alkyl-), wherein "alkyl" is defined as above.

SUBSTITUTE PAGE

Unless otherwise indicated, the term "one or more substituents", as used herein, refers to from one to the maximum number of substituents possible based on the number of available bonding sites.

The term "treatment", as used herein, refers to reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such condition or disorder. The term "treatment", as used herein, refers to the act of treating, as "treating" is defined immediately above.

The compounds of formula I may have optical centers and therefore may occur in different enantiomeric configurations. The invention includes all enantiomers, diastereomers, and
other stereoisomers of such compounds of formula I, as well as racemic and other mixtures thereof.

The present invention also reiates to all radiolabeled forms of the compounds of the formula I. Preferred radiolabeled compounds of formula I are those wherein the radiolabels are selected from as ${ }^{3} \mathrm{H},{ }^{11} \mathrm{C},{ }^{14} \mathrm{C},{ }^{18} \mathrm{~F},{ }^{123} \mathrm{I}$ and ${ }^{125}$. Such radiolabeled compounds are useful as research and diagnostic tools in metabolism pharmacokinetics studies and in binding assays in both animals and man.

The present invention also relates to a pharmaceutical composition for use in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, including a human, comprising an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use and a pharmaceutically acceptable carrier.

The present invention also relates to a method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.

The present invention also relates to a method of treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBl), obsessive-compulsive disorder (OCD), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound of the formula I, or a phammaceutically acceptable salt thereof, that is effective in treating such disorder or condition.

The present invention also relates to a phamnaceutical composition for treating a disorder or condition selected from inflammatory bowel disease (inciuding but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), intitable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), obsessive-compulsive disorder (OCD), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

The present invention also relates to a method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising administering to said mammal an amount of a compound comprising an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.

The present invention also relates to a method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBl), obsessive-compulsive disorder (OCD), psychosis, Huntington's

Scheme 1-10 illustrate methods of synthesizing compounds of the formula I.
Referring to Scheme 1, the starting material of formula III is reacted with trifluoroacetic anhydride, in the presence of pyridine, to form the compound of formula IV. This reaction is typically conducted in methylene chloride at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature.

The compound of formula IV is then converted into the dinitro derivative of formula IIA by the following process. The compound of the formula IV is added to a mixture of 4 or more equivalents of trifluoromethanesulfonic acid $\left(\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OH}\right)$ and 2 to 3 equivalents of nitric acid, in a chlorinated hydrocarbon solvent such as chloroform, dichloroethane (DCE) or methylene chloride. The resulting mixture is allowed to react for about 5 to 24 hours. Both of the foregoing reactions are generally conducted at a temperature ranging from about $-78^{\circ} \mathrm{C}$ to about $0^{\circ} \mathrm{C}$ for about 2 hours, and then allowed to warm to room temperature for the remaining time.

Reduction of the compound of formula IIA, using methods well known to those of skill in the art, yields the compound of formula IIB. This reduction can be accomplished, for example, using hydrogen and a palladium catalyst such as palladium hydroxide and running the reaction in methanol at about room temperature.

Referring to Scheme 2, the compound of formula IIA is converted into the corresponding compound wherein the trifluoroacetyl protecting group is replaced by a t-Boc protecting group (VIA) by reacting it first with an alkali metal or alkaline earth metal (or ammonium) hydroxide or carbonate, and then reacting the isolated product from the foregoing reaction with di-tbutyldicarbonate. The reaction with the alkali or alkaline earth metal (or ammonium) hydroxide or carbonate is generally carried out in an aqueous alcohol, dioxane or tetrahydrofuran (THF) at a temperature from about room temperature to about $70^{\circ} \mathrm{C}$, preferably at about $70^{\circ} \mathrm{C}$, for about one to about 24 hours. The reaction of the isolated, unprotected amine or an acid addition salt of such amine, from the above reaction with di-t-butyldicarbonate is preferably carried out in a solvent such as THF, dioxane or methylene chloride at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature. This reaction may or may not be conducted in the presence of a base. When the reactant is a salt of the amine, use of a base is preferred. The resulting compound of formula VIA can be converted into the corresponding diamino derivative of formula VIB using the procedure described above for converting the dinitro compound of formula IIA into the corresponding diamino compound of formula IIB.

The conversion of the compound of formula VIB into the desired compound of the formula VII can be accomplished by reacting the compound of formula VIB with a compound of the formula

wherein R^{10} is hydrogen, $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluorine atoms, aryl- $\left(C_{0}-C_{3}\right)$ alkyl wherein said aryl is selected from phenyl and naphthyl, or heteroaryl-(C_{0} $-C_{3}$)alkyl wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur, and wherein each of the foregoing aryl and heteroaryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents, independently selected from ($C_{1}-C_{6}$)alkyl optionally substituted with from one to seven fluorine atoms, ($C_{1}-C_{6}$)alkoxy optionally substituted with from one to seven fluorine atoms and cyano. The preferred solvent for this reaction is a $10: 1$ mixture of ethanol:acetic acid. The reaction temperature can range from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$. It is preferably about $60^{\circ} \mathrm{C}$. Other appropriate solvents include acetic acid, ethanol and isopropanol.

Alternate methods of preparing compounds of the formula VII the compound of formula VIB are described by Segelstein et al., Tetrahedron Lett., 1993, 34, 1897.

Removal of the t-Boc protecting group from the compound of formula VII yields corresponding compound of formula IA. The protecting group can be removed using methods well known to those of skill in the art. For example, the compound of formula VII can be treated with an anhydrous acid such as hydrochloric acid, hydrobromic acid, methanesulfonic acid, or trifluoroacetic acid, preferably hydrochloric acid in ethyl acetate, at a temperature from about $0^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, preferably from about room temperature to about $70^{\circ} \mathrm{C}$, for about one to 24 hours.

The compound of formula VII can be converted into the corresponding compound of formula $I B$ by reacting it with a compound of the formula $R^{17} Z$, wherein R^{17} is defined as R^{10} is defined above, and Z is a leaving group such as a halo or sulfonate (e.g., chioro, bromo, mesylate or tosylate), in the presence of a base such as an alkali metal hydride, hydroxide or carbonate, preferably potassium hydroxide, in a polar solvent such as water, dimethylsulfoxide (DMSO), THF or DMF, preferably a mixture of DMSO and water, and then removing the protecting group as described above. The reaction with $R^{17} Z$ is generally carried out at a temperature from about room temperature to about $100^{\circ} \mathrm{C}$, preferably at about $50^{\circ} \mathrm{C}$, for about five hours.

SUBSTITUTE PAGE

Scheme 3 illustrates an alternate method of preparing compounds of the formula $I B$ from the compound of formula VIA. This method is the preferred method of making compounds of the formula IB wherein R^{17} is a bulky group such as an aryl or heteroaryl containing group, or when R^{17} can not be attached, as illustrated in Scheme 2, by alkylation or aryl substitution methods. Referring to Scheme 3, the compound of formula VIA is reacted with the appropriate compound of formula $\mathrm{R}^{17} \mathrm{NH}_{2}$ in a polar solvent such as THF, DMF or DMSO, preferably THF, at a temperature from about room temperature to about $100^{\circ} \mathrm{C}$, preferably at the reflux temperature, for about four to eighteen hours. The resulting compound of formula XXIII is then converted into the corresponding compound of the formula XXIV by reducing the nitro group to an amino group using methods well known to those of skill in the art. Such methods are referred to above for the conversion of the compounds of the formula IIA into a compound of the formula $I I B$ in Scheme 1, and exemplified in experimental Examples 12B and 18B. Closure of the imidazole ring to form the corresponding compound of formula $X X V$ can then be accomplished by reacting the compound of formula XXIV from the above reaction with a compound of the formula

wherein R^{10} is defined as above, as described above for converting compounds of the formula VIB into those of the formula VII.

Removal of the protecting group from the compound of formula $X X V$ yields the corresponding compound of formula IB. This can be accomplished using methods well known in the art, for example, as described above for forming compounds of the formula IA from the corresponding compounds of the formula VII.

Scheme 4 illustrates a method of preparing compounds of the formula IC, wherein R^{10} and R^{17} are as defined above. Referring to Scheme 4, the compound of formula VIB is reacted with a compound of the formula

SUBSTITUTE PAGE
preferred. This reaction is typically conducted at a temperature from about $120-150^{\circ} \mathrm{C}$, preferably at about $140^{\circ} \mathrm{C}$. When $R^{10} \mathrm{COCl}$ is used as a reactant, it is preferable to add a stoichiometric amount of triethylamine (TEA) or another organic tertiary amine base and a catalytic amount of pyridinium p-toluenesulfonic acid or pyridinium p-toluenesulfonate (PPTs) to the reaction mixture. When $\mathrm{R}^{10} \mathrm{C}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ is used as a reactant, it is preferable to add a catalytic amount of PPTs to the reaction mixture.

Removal of the trifluoroacetyl nitrogen protecting group yields the desired compound of the formula IE. This can be accomplished using methods well known to those of skill in the art, for example, reacting the protected compound with a lower alkanol and an aqueous alkali or alkaline earth metal (or ammonium) hydroxide or carbonate, aqueous sodium carbonate, at a temperature from about $50^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, preferably at about $70^{\circ} \mathrm{C}$, for about two to six hours.

Scheme 6 illustrates the preparation of compounds of the formula I wherein R^{1} is hydrogen and R^{2} and R^{3}, together with the benzo ring to which they are attached, form a benzothiazole ring system. Referring to Scheme 6, the compound of formula III is reacted with trifluoroacetic anhydride to form the corresponding compound wherein the ring nitrogen is protected by a trifluoroacetyl group, and the resulting nitrogen protected compound is then reacted with two equivalents of trifluoromethanesulfonic anhydride and one equivalent of nitric acid to form the corresponding compound of formula 1 X , wherein there is a single nitro substituent on the benzo ring. The reaction with trifluoroacetic acid is typically conducted in the presence of pyridine. Both of the above reactions are typically conducted in a reaction inert solvent such as a chlorinated hydrocarbon solvent, preferably methylene chloride, at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature.

The above transformation can also be accomplished using other nitration methods known to those skill in the art.

Reduction of the nitro group to an amine group can be accomplished as described above to provide a compound of the formula IX'.

The compound of formula $\mid X$ ' is then reacted with a carboxylic acid halide or anhydride of the formula $R^{10} \mathrm{COX}$ or $\left(\mathrm{R}^{10} \mathrm{CO}\right)_{2} \mathrm{O}$, wherein X is halo and R^{10} is hydrogen or $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl, and pyridine, TEA or another tertiary amine base, to form a compound of the formula X, which can then be converted to the desired compound having formula XI by reacting it with Lawesson's reagent, which is depicted below.

SUBSTITUTE PAGE

Referring to Scheme 9 , compounds of the formula IJ can be prepared by reacting the compound of formula IV with two or more equivalents of a halosulfonic acid, preferably chlorosulfonic acid, at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature. Reaction of the chlorosulfonic acid derivative so formed with an amine having the formula $R^{7} R^{8} N H$, wherein R^{7} and R^{8} are defined as above, followed by removal of the nitrogen protecting group, yields the desired compound having formula IJ.

Compounds of the formula IK can be prepared by reacting the compound of formula IV with iodine trichloride in a chlorinated hydrocarbon solvent, followed by removal of the nitrogen protecting group. The reaction with iodine trichloride is typically carried out at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, and is preferably carried out at about room temperature. In a similar fashion, the analogous mono- or dibrominated or mono- or diiododinated compounds can be prepared by reacting the compound of IV with N iodosuccinimide or N -bromosuccinimide in a trifluoromethanesulfonic acid solvent, followed by removal of the nitrogen protecting group as described above.

Reaction of the compound of IV with an acid halide of the formula $\mathrm{R}^{13} \mathrm{COCl}$ or an acid anhydride of the formula $\left(\mathrm{R}^{13} \mathrm{CO}\right)_{2} \mathrm{O}$, with or without a reaction inert solvent such as a chiorinated hydrocarbon solvent, preferably methylene chloride, in the presence of Lewis acid such as aluminum chloride, at a temperature from about $0^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, followed by nitrogen deprotection, yields the compound of formula IL. The reaction with the acid halide or anhydride can be carried out using other known Lewis acids or other Friedel-Crafts acylation methods that are known in the art.

The reactions described herein in which $\mathrm{NO}_{2},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{COR}^{13}, \mathrm{I}, \mathrm{Br}$ or Cl are introduced on the compound of formula IV, as depicted in Scheme 9 and described above, can be performed on any analogous compound wherein R^{2} is hydrogen, ($C_{1}-C_{6}$)alkyl, halo, $\left(C_{1}-C_{6}\right)$ alkoxy or $-N H C O N R^{7} R^{8}$, producing compounds of the formula I wherein R^{2} and R^{3} are defined as in the definition of compounds of the formula l above.

Compounds that are identical to those of the formula IL, but which retain the nitrogen protecting group, can be converted into the corresponding O-acyl substituted compounds, i.e., those wherein the $-C(=0) R^{13}$ group of formula IL is replaced with a $-0-C(=O) R^{13}$ group, using Baeyer-Villiger processes well known to those skilled in the art. The resulting compounds can be partially hydrolyzed, as described in Example 35, to yield the corresponding hydroxy substituted compounds, and then alkylated to form the corresponding alkoxy substituted compounds. Also, as described in Example 36, such O-acyl substituted compounds can be used to prepare variably substituted benzisoxazoles.

1. A compound of the formula

R^{1} is hydrogen, $\left(C_{1}-C_{6}\right)$ alkyl, unconjugated $\left(C_{3}-C_{6}\right)$ alkenyl, $X C(=O) R^{13}$, benzyl or $\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkyl;
R^{2} and R^{3} are selected, independently, from hydrogen, $\left(C_{2}-C_{6}\right)$ alkenyl, ($C_{2}-C_{6}$)alkynyl, hydroxy, nitro, amino, halo, cyano, $-\mathrm{SO}_{\mathrm{q}}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein q is zero, one or two, $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4}, \quad-\mathrm{CONR}^{5} \mathrm{R}^{6}, \quad-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8}, \quad-\mathrm{C}(=0) \mathrm{R}^{13}$, $-\mathrm{XC}(=O) \mathrm{R}^{13}$, aryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- or aryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-O-, wherein said aryl is selected from phenyl and naphthyl, heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- or heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-O-, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur, $X^{2}\left(C_{0}-C_{6}\right)$ alkyl- and $X^{2}\left(C_{1}-C_{6}\right)$ alkoxy- $\left(C_{0}-C_{6}\right)$ alkyl-, wherein X^{2} is absent or X^{2} is $\left(C_{1}-C_{6}\right)$ alkylamino- or $\left[\left(C_{1}-C_{6}\right) \text { alkyl }\right]_{2}$ amino-, and wherein the ($C_{0^{-}}$ C_{6})alkyl- or ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- moieties of said $\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- or $\mathrm{X}^{2}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\right.$ C_{6})alkyl- contains at least one carbon atom, and wherein from one to three of the carbon atoms of said $\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- or $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- moieties may optionally be replaced by an oxygen, nitrogen or sulfur atom, with the proviso that any two such heteroatoms must be separated by at least two carbon atoms, and wherein any of the alkyl moieties of said ($\mathrm{C}_{0^{-}}$ $\left.C_{6}\right)$ alkyl- or $\left(C_{1}-C_{6}\right)$ alkoxy- $\left(C_{0}-C_{6}\right)$ alkyl- may be optionally substituted with from two to seven fluorine atoms, and wherein one of the carbon atoms of each of the alkyl moieties of said aryl-$\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- and said heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- may optionally be replaced by an oxygen, nitrogen or sulfur atom, and wherein each of the foregoing aryl and heteroaryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents, independently selected from $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluorine atoms, $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkoxy optionally substituted with from two to seven fluorine atoms, halo, $\left(\mathrm{C}_{2}-\right.$ C_{6})alkenyl, ($\mathrm{C}_{2}-\mathrm{C}_{6}$)alkynyl, hydroxy, nitro, cyano, amino, ($\mathrm{C}_{1}-\mathrm{C}_{6}$) alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\right.$ alkyll ${ }_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$ and $-\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}$;
or R^{2} and R^{3}, together with the carbons to which they are attached, form a four to seven membered monocyclic, or ten to fourteen membered bicyclic, carbocyclic ring that can be saturated or unsaturated, wherein from one to three of the nonfused carbon atoms of said monocyclic rings, and from one to five of the carbon atoms of said bicyclic rings that are not part

SUBSTITUTE PAGE

Of the benzo ring shown in formula 1, may optionally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents, preferably from zero to two substituents for the monocyclic rings and from zero to three substituents for the bicyclic rings, that are selected, independently, from $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluorine atoms, ($C_{1}-C_{6}$) alkoxy optionally substituted with from one to seven fluorine atoms, nitro, cyano, halo, $\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)$ alkenyl, $\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)$ alkynyl, hydroxy, amino, $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylamino and $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino, $\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=0) \mathrm{R}^{13}$ and $-\mathrm{XC}(=0) \mathrm{R}^{13}$;
wherein $R^{4}, R^{5}, R^{6}, R^{7}, R^{8}$ and R^{13} are selected, independently, from hydrogen and ($C_{1}-$ C_{6}) alkyl, or R^{5} and R^{6}, or R^{7} and R^{8} together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperazine, N - $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylpiperazine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and each X is, independently, ($C_{1}-C_{6}$) alkylene;
with the proviso that (a) at least one of R^{1}, R^{2} and R^{3} must be the other than hydrogen, and (b) when R^{2} and R^{3} are both hydrogen, R^{1} cannot be hydrogen, ($C_{1}-C_{6}$)alkyl, or unconjugated ($C_{3}-C_{6}$) alkenyl; or a pharmaceutically acceptable salt thereof,
2. A compound according to claim 1, wherein R^{2} and R^{3}, togethier with the benzo ring of formula I, form a bicyclic ring system selected from the following:

wherein R^{10} and R^{17} are selected, independently, from ($C_{0}-C_{6}$)alkyl- and $\left(C_{1}-C_{6}\right)$ alkoxy($\mathrm{C}_{0}-\mathrm{C}_{6}$)alkyl- wherein the total number of carbon atoms does not exceed six and wherein any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms; nitro, cyano, halo,

> SUBSTITUTE PAGE

AMENDED SHEET

amino, ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6} \text {) alky }\right]_{2}\right.$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=0) \mathrm{R}^{13}$, $-X C(=O) R^{13}$, phenyl and monocyclic heteroaryl, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur, and wherein $R^{4}, R^{5}, R^{6}, R^{7}, R^{8}$ and R^{13} are as defined in claim 1.
3. A compound according to claim 1, wherein R^{2} and R^{3} do not, together with the benzo ring of formula I, form a bicyclic or tricyclic ring system.
4. A compound according to claim 1, wherein one or both of R^{2} and R^{3} are $-C(=O) R^{13}$ wherein R^{13} is $\left(C_{1}-C_{6}\right)$ alkyl.
5. A compound according to claim 1, wherein one of R^{2} and R^{3} is $-C O R^{13}$ wherein R^{13} is $\left(C_{1}-C_{6}\right)$ alkyl or ($C_{1}-C_{3}$) alkyl optionally substituted with from one to seven fluorine atoms.
6. A compound according to claim 1, wherein one of R^{2} and R^{3} is $C F_{3}$, fluoro, cyano or $\mathrm{C}_{2} \mathrm{~F}_{5}$.
7. A pharmaceutical composition for use in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising an amount of a compound according to claim 1 that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use and a pharmaceutically acceptable carrier.
8. A method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising administering to said mammal an amount of a compound according to claim 1 that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.
9. A pharmaceutical composition for treating a disorder or condition selected from inflammatory bowel disease, ulcerative colitis, pyoderma gangrenosum, Crohn's disease, irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions; dependencies on, or addictions to, nicotine and/or tobacco products, alcohol, benzodiazepines, barbituates, opioids or cocaine; headache, stroke, traumatic brain injury (TBI), obsessive-compulsive disorder (OCD), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia; schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal,
comprising an amount of a compound according to claim 1 that is effective in treating such disorder or condition and a pharmaceutically acceptable carrier.
10. A method for treating a disorder or condition selected from inflammatory bowel disease, ulcerative colitis, pyoderma gangrenosum, Crohn's disease, irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions; dependencies on, or addictions to, nicotine and/or tobacco products, alcohol, benzodiazepines, barbituates, opioids or cocaine; headache, stroke, traumatic brain injury (TBI), obsessive-compulsive disorder (OCD), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound according to claim 1 that is effective in treating. such disorder or condition.
11. A compound of the formula

wherein P is hydrogen, methyl, COOR^{16} wherein R^{16} is ($C_{1}-C_{6}$)alkyl, allyl or 2,2,2trichloroethyl; $-C(=O) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in claim 1 above; $-C(=O) H$, $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl, t-butoxycarbonyl (t$B o c$) or trifluoroacetyl, and R^{14} and R^{15} are selected, independently, from hydrogen, ($C_{1}-$ C_{6})alkyl optionally substituted with from one to seven fluorine atoms; $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl, cyano, hydroxy, nitro, amino, $-O\left(C_{1}-C_{6}\right)$ alkyl and halo; with the proviso that R^{14} and R^{15} can not both be hydrogen when P is hydrogen, $\left(C_{1}-C_{6}\right)$ alkyl, or unconjugated $\left(C_{3}-C_{6}\right)$ alkenyl.

SUBSTITUTE PAGE
12. A method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising administering to said mammal an amount of a compound comprising an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.
13. A method for treating a disorder or condition selected from inflammatory bowel disease, ulcerative colitis, pyoderma gangrenosum, Crohn's disease, irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions; dependencies on, or addictions to, nicotine and/or tobacco products, alcohol, benzodiazepines, barbituates, opioids or cocaine; headache, stroke, traumatic brain injury (TBI), obsessive-compulsive disorder (OCD), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Aizheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof; that is effective in treating such disorder or condition.
14. A compound of the formula

wherein R^{2} and R^{3} are defined as in claim 1 ; and P^{\prime} is COOR ${ }^{16}$ wherein R^{16} is allyl, 2,2,2-trichloroethyl or $\left(C_{1}-C_{6}\right)$ alkyl; $-C(=O) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in claim 1;

1. X The applicant is hereby notified that the Internatonal Search Report has been established and is transmitted herewith.

Filing of amendments and statement under Article 19
The applicant is entitled. if he so wishes. toamend the claims of the International Application (see Rule 46):
When? The time fimit for filing such amendments is normally 2 months from the date of transmittal of the International Search Report: however. for more details. see the notes on the accompanying sheet

Where? Directly to the International Bureau if WIPO
34. chemin des Colombettes

1211 Geneva 20. Switzerland
Fascimile No.: (41-22• 740.14 .35
For more detailed instructions, see the notes in the accompanying sheet.
2.The applicant is hereby notified that no Internazonal Search Report will be established and that the declaration under Article $17(2)(a)$ to that effect is transmitted herenith.
3. \qquad With regard to the protest against payment of :an) additional fee(s) under Rule 40.2. the applicant is notified that:
the protest together with the decision therson has been transmitted to the International Bureau together with the applicants's request to forward the texts of boththe protest and the decision thereon to the designated Offices.
no decision has been made yet on the protest: the applicant will be notified as soon as a decision is made.
4. Further action(s): The applicant is reminded of the following:

Shortly after 18 months from the priority date, the international application will be published by the International Bureau. If the applicant wishes to avoid or postponepublication, a notice of withdrawal of the international application, or of the priority claim, must reach the International Bureau as provided in Rules 90bis. 1 and 90 bis.3. respectively. before the completion of the technical preparations for internatonal publication.

Within 19 months from the priority date, a demand for international preliminary examination must be filed if the applicant wishes to postpone the entry into the nationalphase until 30 months from the priority date (in some Offices even later).
Within $\mathbf{2 0}$ months from the priority date, the applicant must perform the prescribed acts for entry into the national phase before all designated Offices which have not been elected in the demand or in a later election within 19 months from the priority date or could not be elected because they are not bound by Chapter II.

Authorized otficer
Ralf Ockers

Form PCT/ISA/220 (January 1994)

These Notes are intended to give the basic instructions conceming the filing of amendments under articie 19. The Notes are based on the requirements of the Patent Cooperation Treaty, the Regulations and the Administrative Instrudions under that Tready. In case of discrepancy between these Notes and those requirements, the latter are applicable. For more detailed information, see also the PCT Applicant's Guide, a publication of WIPO.

In these Notes, "Article", "Rule", and "Section" refer to the provisions of the PCT, the PCT Regulations and the PCT Administrative Instructions respectively.

INSTRUCTIONS CONCERNING AMENDMENTS UNDER ARTICLE 19

The applicant has, after having received the intemational search report, one opportunity to annend the claime of the international application. It should however be emphasized that, since all parts of the international application (claims, description and drawings) may be amended during the intemational preliminary examination procedure, there is usualy no need to fije amendments of the claims under Articie 19 except where, e.g. the applicant wants the latter to be published for the purposes of provisional protection or has another reason for amending the claims before internationa pbulication. Furthermore, it should be emphasized that provisional protection is available in some States only.

What parts of the international application may be amended?
Under Article 19, only the claims may be amended.
During the international phase, the claims may also be amended (or further amended) under Aticle 34 before the International Preliminary Examining Authority. The description and drawinge may only be amonded under Article 34 before the Intemational Examining Authority.

Upon entry into the national phase, all parts of the international application may be amended under Altick 28 or, where applicable, Article 41.

When? Within 2 months from the date of transmitt al of the intemational search report or 16 monthe from the pnorty date, whichever time limit expires later. It should be noted, however, that the amendmente will be consured as having been received on time if they are received by the International Bureau after the expiretion of the applicable time timit but before the completion of the technica preparations for international publicedion (Rule 46.1).

Where not to file the amendmente?
The amendments may only be filed with the International Bureau and not with the receiving Otfice or the International Searching Authority (Rude 46.2).

Where a demand for intemational preiiminary examination has been fis filed, soe below.

How? Either by cancelting one or more entire claims, by adding one or more new claims or by amending the text of one or more of the daims as filed.

A replacement sheet must be submitted for each sheet of the claims which, on account of an amendmert or amendments, differs from the sheet originally filed.

All the claims appearing on a replacement sheet must be numbered in Arabic numerals. Where a claim ie cancelled, no renumbering of the other claims is required. In all cases where diains are renumbered, they must be renumbered consecutively (Administrative Instructions, Section 205(b)).

The amendments must be made in the language in which the international application to to be published.

What documents must/may accompany the amendmente?

Letter (Sectlon 205(b)):
The amendments must be submitted with a letter.
The letter will not be published with the intemational application and the amended claims. It should nok be confused with the "Statement under Article 19(1)" (see below, under "Statement under Article 19(1)").

The letter must be In English or French, at the choice of the appllcant. However, it the tanguage of the international application is English, the letter must be In English; if the language of the international application is French, the letter must be In French.

NOTES TO FORM PCT/ISA/220 (contInued)

The letter must indicate the differences between the claims as filed and the claims as amended. It must, in particular, indicate, in connection with each claim appearing in the international application (it being understood that identical indications conceming several claims may be grouped), whether
(i) the claim is unchanged;
(ii) the claim is cancelled;
(iii) the claim in new;
(iv) the claim replaces one or more daims as filed;
(v) the claim is the result of the division of a claim as filed.

The following examples llustrate the manner in which amendments must be explained in the accompanying letter:

1. [Where originally there were 48 claims and after amendment of some claims there are 51]: Claims 1 to $29,31,32,34,35,37$ to 48 replaced by amended claims bearing the same numbers; claims 30,33 and 36 unchanged; new claims 49 to 51 added."
2. [Where originally there were 15 claims and after amendment of all daims there are 11]: "Claims 1 to 15 replaced by amended claims 1 to 11 ."
3. Where originally there were 14 claims and the amendments consist in cancelling some claima and in adding new claims):
"Claims 1 to 6 and 14 unchanged; claims 7 to 13 cancelled; new claims 15, 16 and 17 added." or
"Claims 7 to 13 cancelled; now claims 15, 16 and 17 added; all other claims unchanged."
4. [Where various kinds of amendments are made]
"Claims 1-10 unchanged; clairns 11 to 13,18 and 19 cancelled; claims 14, 15 and 16 replaced by amended daim 14; claim 17 subdivided into amended claims 15, 16 and 17; new claims 20 and 21 added."

"Statement under articte 19(1)" (Rule 46.4)

The amendments may be accompanied by a statement explaining the amendments and indicating amy impact that such amendments might have on the description and the drawings (which cannot be amended under Article 19(1)).

The statement will be published with the international application and the amended claims.
h must be In the language in which the international appplication is to be published.
It must be briel, not exceeding $\mathbf{5 0 0}$ words if in English or if translated into English
th shoutd not be confused with and does not replace the letter indicating the differences between the claims as filed and as amended. It must be filed on a separate sheet and must be identified as such by a heading, preferably by using the words "Statement under Article 1 $\mathcal{Y}(1)$."
It may not contain any disparaging comments on the international search report or the relevance of citations contained in that report. Reference lo citations, relevant to a given claim, contained in the intemational search report may be made only in connection with an amendment of that claim.

Consequence H a demand for Internationad preliminary examinalion has already been filed
If, at the time of filing any amendments under Article 19, a demand for international preliminary examination has already been submitted, the applicant must preferably, at the same time of fling the amendmente with the Intemational Bureau, also fite a copy of such amendments with the intemational Preliminary Examining Aushority (see Rule 62.2(a), first sentence).

Consequence with regand to translation of the international application for entry into the mational phase
The applicant's attention is drawn to the fact that, where upon entry into the national phase, a tranalation of the daims as amended under Article 19 may have to be furnished to the designated/elected Offices, inatead of, or in addition to, the translation of the claims as filed.
For further details on the requirements of each designated/elected Otfice, see Volume II of the PCT Applicant's Guide.

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Acolicant's or agent's file reference PC10030AKXD	FOR FURTHER see Notification st Transmittal of international Search Report ACTION (Form PCT/ISA20) as well as. where applicable. item 5 below	
International application No.	International fling date (day/month/year)	(Eariest) Priority Date (dayimonthiyear)
PCT/ IB 98/01813	13/11/1998	31/12/1997

Applicant
PFIZER PRODUCTS INC. et al.
"His International Search Report has been prepared by this International Searching Althority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.

This International Search Report consists of a total of \qquad 3 sheets.
X It is also accompanied by a copy of each prior art document cited in this repor-

1. X Certain claims were found unsearchable (see Box I).
2.Unity of invention is lacking(see Box II).
3.The international application contains disclosure of a nucleotide and/or amino acid sequence listing and the international search was carried out on the basis of the sequence listing

filed with the international application.
furnisred by the applicant separately from the int=-national application.
but not eccompanied by a statement to $-=$ effect that it did not include
matter going beyond the disciosure in tr $=$:nternational application as filea.Transcribed by this Authority
2. With regard to the title, x
the text is approved as submitted by the applicar:
the text has been established by this Authority to :=ad as follows:
3. With regard to the abstract.

the text is approved as submitted by the applicart
the text has been established. according to Rule $\boldsymbol{\beta 8} \mathbf{2}$ (b). by this Authority as it appears in Box ill. The applicant may, within one month from she date of mailing of this International Search Report, submit comments to this Authority.
4. The figure of the drawings to be published with the abstract is: Figure No. \qquad \square as suggested by the applicant. None of the figures. because the applicant failed to suggest a figure. because this figure better characterizes the inven:on.

Form PCT/ISA/210 (first sheet) (July 1992)

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This Inte-ational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the foitowing reasons:

1. X E:aims Nos.: $\quad 8,10,12,13$
=:cause they relate to subject matter not required to be searched by this Authority, namely:
Semark: Although claims $8,10,12,13$
are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.Z:aims Nos.:
zecause they relate to parts of the International Application that do not comply with the prescribed requirements to such n extent that no meaningtul international Search can be carried out. specifically:
2. \square Siaims Nos.: =ecause they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This Inte-ational Searching Authority found multiple inventions in this international application. as follows:
1.

-is all required additional search fees were timely paid by the applicant. this International Search Report covers all \vdots archable claims.
2.-s all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment \therefore any additional fee.
3.-s only some of the required additional search fees were timely paid by the applicant. this International Search Report zvers only those claims for which fees were paid, specifically claims Nos.:
4. \square \therefore required additional search fees were timely paid by the applicant. Consequently, this International Search Report is - - stricted to the invention first mentioned in the claims: it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
\square No protest accompanied the payment of additional search fees.

[^2]

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6 :

C07D 221/22, A61K 31/435, C07D 471/08, 498/08, 513/08
(11) International Publication Number:
(43) International Publication Date:

WO 99/35131

15 July 1999 (15.07.99)
(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

With international search report. TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO

Published

A1
(75) Inventors/Applicants (for US only): COE, Jotham, Wadsworth
[US/US]; 8 Bush Hill Drive, Niantic, CT 06357 (US).
(75) Inventors/Applicants (for US only): COE, Jotham, Wadsworth
[US/US]; 8 Bush Hill Drive, Niantic, CT 06357 (US). BROOKS, Paige, Roanne, Palmer [US/US]; 9 Wyassup Road, North Stonington, CT 06359 (US).
(74) Agents: SPIEGEL, Allen, J. et al.; Pfizer Inc., 235 East 42nd Street, New York, NY 10017 (US).
(21) International Application Number:

PCT/IB98/01813
(22) International Filing Date:

13 November 1998 (13.11.98)
(30) Priority Data: 60/070,245

31 December 1997 (31.12.97)
US
(71) Applicant (for all designated States except US): PFIZER PRODUCTS INC. [US/US]; Eastern Point Road, Groton, CT 06340 (US).
(54) Title: ARYL FUSED AZAPOLYCYCLIC COMPOUNDS

(57) Abstract

Compounds of formula (I) and their pharmaceutically acceptable salts, wherein R^{1}, R^{2}, R^{3} and n are defined as in the specification, intermediates in the synthesis of such compounds, pharmaceutical compositions containing such compounds and methods of using such compounds in the treatment of neurological and psychological disorders are claimed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
B]	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	LS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	$\mathbf{K P}$	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

ARYL FUSED AZAPOLYCYCLIC COMPOUNDS

Background of the Invention

This invention relates to aryl fused azapolycyctic compounds, as defined more specifically by formula I below. Compounds of formula I bind to neuronal nicotinic acetylcholine specific receptor sites and are useful in modulating cholinergic function. Such compounds are useful in the treatment of inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), obsessive-compulsive disorder, psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome.

The compounds of this invention may also be used in combination with an antidepressant such as, for example, a tricyclic antidepressant or a serotonin reuptake inhibiting antidepressant (SRI), in order to treat both the cognitive decline and depression associated with AD, PD, stroke, Huntington's Chorea or traumatic brain injury (TBI); in combination with muscarinic agonists in order to stimulate both central muscarinic and nicotinic receptors for the treatment, for example, of ALS, cognitive dysfunction, age related cognitive decline, $A D, P D$, stroke, Huntington's Chorea and TBI; in combination with neurotrophic factors such as NGF in order to maximize cholinergic enhancement for the treatment, for example, of ALS, cognitive dysfunction, age related cognitive decline, AD, PD stroke, Huntington's Chorea and TBI; or in combination with agents that slow or arrest $A D$ such as cognition enhancers, amyloid aggregation inhibitors, secretase inhibitors, tau kinase inhibitors, neuronal antiinflammatory agents and estrogen-like therapy.

Other compounds that bind to neuronal nicotinic receptor sites are referred to in United States Patent Application 08/963,852, which was filed on November 4, 1997. The foregoing application is owned in common with the present application, and is incorporated herein by reference in its entirety.

Summary of the Invention
This invention relates to aryl fused azapolycyclic compounds of the formula

R^{1} is hydrogen, ($C_{1}-C_{6}$)alkyl, unconjugated $\left(C_{3}-C_{6}\right)$ alkenyl, benzyl, $X C(=O) R^{13}$ or $-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkyl;
R^{2} and R^{3} are selected, independently, from hydrogen, $\left(C_{2}-C_{6}\right)$ alkenyl, $\left(C_{2}-C_{6}\right)$ alkynyl, hydroxy, nitro, amino, halo, cyano, $-\mathrm{SO}_{q}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein q is zero, one or two, $\left(C_{1} C_{6}\right)$ alkylamino-, $\quad\left[\left(C_{1}-C_{6}\right) \text { alkyl }\right]_{2}$ amino-, $\quad-\mathrm{CO}_{2} R^{4}, \quad-\mathrm{CONR}^{5} \mathrm{R}^{6}, \quad-\mathrm{SO}_{2} N R^{7} R^{8}, \quad-\mathrm{C}(=O) \mathrm{R}^{13}$, $-X C(=O) R^{13}$, aryl- $\left(C_{0}-C_{3}\right)$ alkyl- or aryl- $\left(C_{0}-C_{3}\right)$ alkyl-O-, wherein said aryl is selected from phenyl and naphthyl, heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- or heteroaryl-($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl-O-, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur, and $X^{2}\left(C_{0}-C_{6}\right)$ alkoxy- $\left(C_{0}-C_{6}\right)$ alkyl-, wherein X^{2} is absent or X^{2} is $\left(C_{1}-C_{6}\right)$ alkylamino- or $\left[\left(C_{1}-C_{6}\right) \text { alkyl }\right]_{2}$ amino-, and wherein the $\left(C_{0}-C_{6}\right)$ alkoxy- $\left(C_{0}-\right.$ C_{6})alkyl- moiety of said $\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- contains at least one carbon atom, and wherein from one to three of the carbon atoms of said $\left(C_{0}-C_{6}\right)$ alkoxy- $\left(C_{0}-C_{6}\right)$ alkyl- moiety may optionally be replaced by an oxygen, nitrogen or sulfur atom, with the proviso that any two such heteroatoms must be separated by at least two carbon atoms, and wherein any of the alkyl moieties of said ($\mathrm{C}_{0} \mathrm{C}_{6}$) alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- may be optionally substituted with from two to seven fluorine atoms, and wherein one of the carbon atoms of each of the alkyl moieties of said aryl($\mathrm{C}_{0}-\mathrm{C}_{3}$) alkyl- and said heteroaryl-($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl- may optionally be replaced by an oxygen, nitrogen or sulfur atom, and wherein each of the foregoing aryl and heteroaryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents, independently selected from $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluorine atoms, $\left(C_{1}-C_{6}\right)$ atkoxy optionally substituted with from two to seven fluorine atoms, halo (e.g., chloro, fluoro, bromo or iodo), ($\mathrm{C}_{2}-\mathrm{C}_{6}$) alkenyl, $\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)$ alkynyl, hydroxy, nitro, cyano, amino, ($\mathrm{C}_{1}-$
C_{6})alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alky }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$ and $X C(=O) R^{13}$;
or R^{2} and R^{3}, together with the carbons to which they are attached, form a four to seven membered monocyclic, or a ten to fourteen membered bicyclic, carbocyclic ring that can be saturated or unsaturated, wherein from one to three of the nonfused carbon atoms of said monocyclic rings, and from one to five of the carbon atoms of said bicyclic rings that are not part of the benzo ring shown in formula 1, may optionally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents, preferably from zero to two substituents for the monocyclic rings and from zero to three substituents for the bicyclic rings, that are selected, independently, from ($\mathrm{C}_{0}-\mathrm{C}_{6}$) alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl-, wherein the total number of carbon atoms does not exceed six and wherein any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms; nitro, oxo, cyano, halo, $\left(C_{2}-C_{6}\right)$ alkenyl, $\left(C_{2}-C_{6}\right)$ alkynyl, hydroxy, amino, $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right.$) alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$, and $X C(=O) R^{13}$;
each $R^{4}, R^{5}, R^{6}, R^{7}, R^{8}$ and R^{13} is selected, independently, from hydrogen and $\left(C_{1}-C_{6}\right)$ alkyl, or R^{5} and R^{6}, or R^{7} and R^{8} together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperizine, $-N-\left(C_{1}-C_{6}\right)$ alkylpiperizine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each X is, independently, $\left(C_{1}-C_{6}\right)$ alkylene;
with the proviso that: (a) at least one of R^{1}, R^{2} and R^{3} must be the other than hydrogen, and (b) when R^{2} and R^{3} are hydrogen, R^{1} cannot be methyl or hydrogen;
and the pharmaceutically acceptable salts of such compounds.
Examples of heteroaryl groups that each of R^{2} and R^{3} can be are the following:
thienyl, oxazoyl, isoxazolyl, pyridyl, pyrimidyl, thiazolyl, tetrazolyl, isothiazolyl, triazolyl, imidazolyl, tetrazolyl, pyrroyl and the following groups:

wherein one of R^{9} and R^{18} is hydrogen or $\left(C_{1}-C_{6}\right)$ alkyl, and the other is a bond to the benzo ring of formula I.

Examples of compounds of this invention are compounds of the formula I, and their pharmaceutically acceptable salts, wherein R^{2} and R^{3}, together with the benzo ring of formula I, form a bicyclic ring system selected from the following:

wherein R^{10} and R^{17} are selected, independently, from ($C_{0}-C_{6}$)alkoxy-($C_{0}-C_{6}$)alkylwherein the total number of carbon atoms does not exceed six and wherein any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms; nitro, cyano, halo, amino, $\left(C_{1}-C_{6}\right)$ alkylamino-, $\left[\left(C_{1}-C_{6}\right) \text { alkyl }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$, $-X C(=O) R^{13}$, phenyl and monocyclic heteroaryl wherein said heteroaryl is defined as R^{2} and R^{3} are defined in the definition of compounds of the formula l above;

Other embodiments of this invention relate to compounds of the formula I, and their pharmaceutically acceptable salts, wherein R^{2} and R^{3}, together with the benzo ring of formula I, form a bicyclic or tricyclic ring system selected from the following:
-5-

5

wherein R^{10} and R^{17} are defined as above and m is zero, one or two, and wherein one of the carbon atoms of ring A can optionally be replaced with oxygen or $-\mathrm{N}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl.

Other embodiments of this invention relate to compounds of the formula 1 , and their pharmaceutically acceptable salts, wherein neither R^{2} nor R^{3} is attached to the benzo ring of formula I via an oxygen atom.

Other embodiments of this invention relate to compounds of the formula I wherein R^{1} is not methyl.

Examples of specific compounds of the formula I are the following:
6-methyl-5,7-dioxo-6,13-diazatetracyclo[9.3.1.0 $\left.0^{2.10} .0^{4.8}\right]$ pentadeca-2(10),3,8-triene hydrochloride;

6-methyl-5-oxo-6,13-diazatetracyclo[9.3.1.0 $0^{2.10} .0^{4.8}$]pentadeca-2(10),3,8-triene hydrochloride;

5,7-dimethyl-6-oxo-5,7,13-triazatetracyclo[9.3.1.0 $0^{2,10} .0^{4,8}$]pentadeca-2(10),3,8-triene hydrochloride;

5,7-dioxo-6,13-diazatetracyclo[9.3.1.0 $0^{2.10} .0^{4,8}$]pentadeca-2(10),3,8-triene hydrochloride;

5-oxo-6,13-diazatetracyclo[9.3.1.0 $0^{2.10} .0^{4.8}$]pentadeca-2(10),3,8-triene hydrochloride;
6-oxo-5,7,13-triazatetracyclo[9.3.1.0. $0^{2,10} .0^{4,8}$]pentadeca-2(10),3,8-triene hydrochloride;
4,5-difluoro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride;
5-fluoro-10-aza-tricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3,5-triene-4-carbonitrile hydrochloride;
4-ethynyl-5-fluoro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene hydrochloride;
5-ethynyl-10-aza-tricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3,5-triene-4-carbonitrile hydrochloride;
5-chloro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-4-carbonitrile hydrochloride;
4-ethynyl-5-chloro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene hydrochloride;
5-oxa-7-methyl-6-oxo-7,13-diazatetracyclo[9.3.1.0 $0^{2.10} .0^{4.8}$]pentadeca-2(10),3,8-triene hydrochloride;

4-fluoro-5-trifluoromethyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride;

4-chloro-5-trifluoromethyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride;

5-trifluoromethyl-10-aza-tricyclo[6.3.1.0 $0^{2,7}$ dodeca-2(7),3,5-triene-4-carbonitrile hydrochloride;

4-ethynyl-5-trifluoromethyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride;

6-methyl-5-thia-5-dioxa-6,13-Diazatetracyclo[9.3.1.0 $\left.0^{2,10} \cdot 0^{4,8}\right]$ pentadeca-2(10),3,8triene hydrochloride;

7-dimethylamino-5-thia-5-dioxa-6,13-Diazatetracyclo[9.3.1.0 $0^{2,10} .0^{4,8}$]pentadeca-
2(10),3,8-triene hydrochloride;
6,7-dioxa-5,8,14-triazatetracyclo[10.3.1.0 $0^{2.11} .0^{4,9}$]hexadeca-2(11),3,9-triene hydrochloride; and

5,8-dimethyl-6,7-dioxa-5,8,14-triazatetracyclo[10.3.1.0 $0^{2.11} .0^{4.9}$ hexadeca-2(11),3,9triene hydrochloride.

This invention also relates to compounds of the formula
wherein P is hydrogen, methyl, COOR ${ }^{16}$ wherein R^{16} is ($C_{1}-C_{6}$)alkyl, allyl, 2,2,2-trichloroethyl or $\left(C_{1}-C_{6}\right)$ alkyl; $-C(=O) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in formula 1 above; $-C(=O) H$, $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl or t-butoxycarbonyl (t Boc); and R^{14} and R^{15} are selected, independently, from hydrogen, ($C_{1}-C_{6}$)alkyl optionally substituted with from one to seven fluorine atoms; $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl, cyano, hydroxy, nitro, amino, $-O\left(C_{i}-C_{6}\right)$ alkyl or halo; with the proviso that R^{14} and R^{15} can not both be hydrogen when P is hydrogen or methyl. Such compounds are useful as intermediates in the synthesis of compounds of the formula 1 .

Unless otherwise indicated, the term "halo", as used herein, includes fluoro, chloro, bromo and iodo.

Unless otherwise indicated, the term "alkyl", as used herein, includes straight, branched or cyclic, and may include straight and cyclic alkyl moieties as well as branched and cyclic moieties.

The term "alkoxy", as used herein, means "alkyl-O-", wherein "alkyl" is defined as above.

The term "alkylene, as used herein, means an alkyl radical having two available bonding sites (i.e., -alkyl-), wherein "alkyl" is defined as above.

Unless otherwise indicated, the term "one or more substituents", as used herein, refers to from one to the maximum number of substituents possible based on the number of available bonding sites.

The term "treatment", as used herein, refers to reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such condition or disorder. The term "treatment", as used herein, refers to the act of treating, as "treating" is defined immediately above.

The compounds of formula I may have optical centers and therefore may occur in different enantiomeric configurations. The invention includes all enantiomers, diastereomers, and
other stereoisomers of such compounds of formula I, as well as racemic and other mixtures thereof.

The present invention also relates to all radiolabelled forms of the compounds of the formulae I. Preferred radiolabelled compounds of formula I are those wherein the radiolabels are selected from as ${ }^{3} \mathrm{H}, ~{ }^{11} \mathrm{C},{ }^{14} \mathrm{C},{ }^{18} \mathrm{~F},{ }^{123} \mathrm{I}$ and ${ }^{125} \mathrm{I}$. Such radiolabelled compounds are useful as research and diagnostic tools in metabolism pharmacokinetics studies and in binding assays in both animals and man.

The present invention also relates to a pharmaceutical composition for use in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, including a human, comprising an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use and a pharmaceutically acceptable carrier.

The present invention also relates to a method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.

The present invention also relates to a method of treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dysiexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound of the formula l, or a pharmaceutically acceptable salt thereof, that is effective in treating such disorder or condition.

The present invention also relates to a pharmaceutical composition for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to uicerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising an amount of a compound of the formula 1 , or a pharmaceutically accepable salt thereof, and a pharmaceutically acceptable carrier.

The present invention also relates to a method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising administering to said mammal an amount of a compound comprising an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.

The present invention also relates to a method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular paisy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including
petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in treating such disorder or condition.

This invention also relates to the pharmaceutically acceptable acid addition salts of the compounds of formula I. Examples of pharmaceutically acceptable acid addition salts of the compounds of formula I are the salts of hydrochloric acid, p-toluenesulfonic acid, fumaric acid, citric acid, succinic acid, salicylic acid, oxalic acid, hydrobromic acid, phosphoric acid, methanesulfonic acid, tartaric acid, malate, di-p-toluoyl tartaric acid, and mandelic acid.

Detailed Description of the Invention
Except where otherwise stated, R^{1} through R^{18}, m and P, and structural formula I in the reaction schemes and discussion that follow are defined as above.
 III

IIB

5

5

VIA

XXIII

XXIV

XXV

IB

Scheme 4

IC

PCT/IB98/01813
-16-

5

-17-

5

Scheme 7

(ring $A=$ present or absent) XIV

IG: (R^{2} and R^{3} form ring A)
III: (ring A = absent)
-20-

5

IH

XXI

-22-

5
Scheme 10

IQ

Scheme 1-10 illustrate methods of synthesizing compounds of the formula 1 .
Referring to Scheme 1, the starting material of formula III is reacted with trifluoroacetic anhydride, in the presence of pyridine, to form the compound of formula N . This reaction is typically conducted in methylene chloride at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature.

The compound of formula IV is then converted into the dinitro derivative of formula IIA by the following process. The compound of the formula IV is added to a mixture of 4 or more equivalents of trifluoromethanesulfonic acid $\left(\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OH}\right)$ and 2 to 3 equivalents of nitric acid, in a chlorinated hydrocarbon solvent such as chloroform, dichoroethane (DCE) or methylene chloride. The resulting mixture is allowed to react for about 5 to 24 hours. Both of the foregoing reactions are generally conducted at a temperature ranging from about $-78^{\circ} \mathrm{C}$ to about $0^{\circ} \mathrm{C}$ for about 2 hours, and then allowed to warm to room temperature for the remaining time.

Reduction of the compound of formula IIA, using methods well known to those of skill in the art, yields the compound of formula IIB. This reduction can be accomplished, for example, using hydrogen and a palladium catalyst such as palladium hydroxide and running the reaction in methanol at about room temperature.

Referring to Scheme 2, the compound of formula IIA is converted into the corresponding compound wherein the trifluoroacetyl protecting group is replaced by a t-Boc protecting group (VIA) by reacting it first with an alkali metal or alkaline earth metal (or ammonium) hydroxide or carbonate, and then reacting the isolated product from the foregoing reaction with di-tbutyldicarbonate. The reaction with the alkali or alkaline earth metal (or ammonium) hydroxide or carbonate is generally carried out in an aqueous alcohol, dioxane or tetrahydrofuran (THF) at a temperature from about room temperature to about $70^{\circ} \mathrm{C}$, preferably at about $70^{\circ} \mathrm{C}$, for about one to about 24 hours. The reaction of the isolated, unprotected amine or an acid addition salt of such amine, from the above reaction with di-t-butyldicarbonate is preferably carried out in a solvent such as THF, dioxane or methylene chloride at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature. This reaction may or may not be conducted in the presence of a base. When the reactant is a salt of the amine, use of a base is preferred. The resulting compound of formula VIA can be converted into the corresponding diamino derivative of formula VIB using the procedure described above for converting the dinitro compound of formula IIA into the corresponding diamino compound of formula IIB.

The conversion of the compound of formula VIB into the desired compound of the formula VII can be accomplished by reacting the compound of formula VIB with a compound of the formula

wherein R^{10} is hydrogen, $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluorine atoms, aryl- $\left(C_{0}-C_{3}\right)$ alkyl wherein said aryl is selected from phenyl and naphthyl, or heteroaryl($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteratoms selected from oxygen, nitrogen and sulfur, and wherein each of the foregoing aryl and heteroryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents, independently selected from ($C_{1}-C_{6}$) alkyl optionally substituted with from one to seven fluorine atoms, ($\mathrm{C}_{1}-\mathrm{C}_{6}$) alkoxy optionally substituted with from one to seven fluorine atoms and cyano. The preferred solvent for this reaction is a 10:1 mixture of ethanol:acetic acid. The reaction temperature can range from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$. It is preferably about $60^{\circ} \mathrm{C}$. Other appropriate solvents include acetic acid, ethanol and isopropanol.

Alternate methods of preparing compounds of the formula VII the compound of formula VIB are described by Segelstein et al., Tetrahedron Lett., 1993, 34, 1897.

Removal of the t-Boc protecting group from the compound of formula VII yields corresponding compound of formula IA. The protecting group can be removed using methods well known to those of skill in the art. For example, the compound of formula VII can be treated with an anhydrous acid such as hydrochloric acid, hydrobromic acid, methanesulfonic acid, or trifluoroacetic acid, preferably hydrochloric acid in ethyl acetate, at a temperature from about $0^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, preferably from about room temperature to about $70^{\circ} \mathrm{C}$, for about one to 24 hours.

The compound of formula VII can be converted into the corresponding compound of formula IB by reacting it with a compound of the formula $R^{17} Z$, wherein R^{17} is defined as R^{10} is defined above, and Z is a leaving group such as a halo or sulfonate (e.g., chloro, bromo, mesylate or tosylate), in the presence of a base such as an alkali metal hydride, hydroxide or carbonate, preferably potassium hydroxide, in a polar solvent such as water, dimethylsulfoxide (DMSO), THF or DMF, preferably a mixture of DMSO and water, and then removing the protecting group as described above. The reaction with $R^{17} Z$ is generally carried out at a temperature from about room temperature to about $100^{\circ} \mathrm{C}$, preferably at about $50^{\circ} \mathrm{C}$, for about five hours.

Scheme 3 illustrates an alternate method of preparing compounds of the formula IB from the compound of formula VIA. This method is the preferred method of making compounds of the formula $I B$ wherein R^{17} is a bulky group such as an aryl or heteroaryl containing group, or when R^{17} can not be attached, as illiustrated in Scheme 2, by alkylation or aryl substitution methods. Referring to Scheme 3 , the compound of formula VIA is reacted with the appropriate compound of formula $\mathrm{R}^{17} \mathrm{NH}_{2}$ in a polar solvent such as THF, DMF or DMSO, preferably THF, at a temperature from about room temperature to about $100^{\circ} \mathrm{C}$, preferably at the reflux temperature, for about four to eighteen hours. The resulting compound of formula XXIII is then converted into the corresponding compound of the formula XXIV by reducing the nitro group to an amino group using methods well known to those of skill in the art. Such methods are referred to above for the conversion of the compounds of the formula IIA into a compound of the formula IIB in Scheme 1, and exemplied in experimental Examples 12 B and 18 B . Closure of the imidazole ring to form the corresponding compound of formula XXV can then be accomplished by reacting the compound of formula XXIV from the above reaction with a compound of the formula

wherein R^{10} is defined as above, as described above for converting compounds of the formula VIB into those of the formula VII.

Removal of the protecting group from the compound of formula $X X V$ yields the corresponding compound of formula IB. This can be accomplished using methods well known in the art, for example, as described above for forming compounds of the formula IA from the corresponding compounds of the formula VII.

Scheme 4 illustrates a method of preparing compounds of the formula IC, wherein R^{10} and R^{17} are as defined above. Referring to Scheme 4, the compound of formula VIB is reacted with a compound of the formula

.
(sodium bisulfite ethane dione addition adduct) in water or another polar solvent such as THF, DMF or DMSO, preferably a mixture of water and a water miscible solvent such as THF, for about one to four hours. The reaction temperature can range from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, and is preferably at about the reflux temperature.

Alternatively, the compound of formula VIB can be reacted with a compound of the formula

(double condensation reaction) in a polar solvent such as THF, water, or acetic acid, preferably a mixture of water and THF. This reaction is typically carried out at a temperature from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, preferably at the reflux temperature, for about two to four hours.

The desired quinoxoline of formula IC can then be formed by deprotecting the compound formed in either of the foregoing reactions, using the method described above for converting a compound of the formula VII into one of the formula IA.

Scheme 5 illustrates a method of preparing compounds of the formula I wherein R^{2} and R^{3}, together with the benzo ring to which they are attached, form a benzoxazole ring system. Such a compound, wherein R^{1} is hydrogen, is depicted in Scheme 5 as chemical formula IE. Referring to Scheme 5, the compound of formula XXII, wherein Y is nitro, halo, trifluoromethanesulfonate or a diazonium salt, is reacted with potassium acetate or another alkali or alkaline earth metal carboxylate in a solvent such as dimethylsulfoxide (DMSO), DMF or acetonitrile, preferably DMSO. This reaction is generally allowed to run for about 12-24 hours. Appropriate reaction temperatures range from about $70^{\circ} \mathrm{C}$ to about $140^{\circ} \mathrm{C}$. Approximately $100^{\circ} \mathrm{C}$ is preferred.

The above reaction yields the compound of formula VIII, which can then be converted into the desired compound having formula IE by the following procedure. First, the compound of formula VIII is reduced by reaction with hydrogen and a palladium or platinum catalyst such as palladium hydroxide in methanol at a temperature from about $0^{\circ} \mathrm{C}$ to about $70^{\circ} \mathrm{C}$, preferably at about room temperature, to form the corresponding amino derivative. The product of this reaction is then reacted with an acid chloride of the formula $\mathrm{R}^{10} \mathrm{COCl}$ or an acid anhydride of the formula ($\left.\mathrm{R}^{10} \mathrm{CO}\right)_{2} \mathrm{O}$ wherein R^{10} is $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl, or a compound of the formula $\mathrm{R}^{10} \mathrm{C}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$, in an appropriate inert solvent such as decalin, chlorobenzene or xylenes. A mixture of xylenes is
preferred. This reaction is typicaliy conducted at a temperature from about $120-150^{\circ} \mathrm{C}$, preferably at about $140^{\circ} \mathrm{C}$. When $\mathrm{R}^{10} \mathrm{COCl}$ is used as a reactant, it is preferable to add a stoicheometric amount of triethylamine (TEA) or another organic tertiary amine base and a catalytic amount of pyridinium p-toluenesulfonic acid or pyridinum p-toluenesulfonate (PPTs) to the reaction mixture. When $\mathrm{R}^{10} \mathrm{C}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ is used as a reactant, it is preferable to add a catalytic amount of PPTs to the reaction mixture.

Removal of the trifluoroacetyl nitrogen protecting group yields the desired compound of the formula IE. This can be accomplished using methods well known to those of skill in the art, for example, reacting the protected compound with a lower alkanol and an aqueous alkali or alkaline earth metal (or ammonium) hydroxide or carbonate, aqueous sodium carbonate, at a temperature from about $50^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, preferably at about $70^{\circ} \mathrm{C}$, for about two to six hours.

Scheme 6 illustrates the preparation of compounds of the formula 1 wherein R^{1} is hydrogen and R^{2} and R^{3}, together with the benzo ring to which they are attached, form a benzothiazole ring system. Referring to Scheme 6, the compound of formula III is reacted with trifluoroacetic anhydride to form the corresponding compound wherein the ring nitrogen is protected by a trifluoroacetyl group, and the resulting nitrogen protected compound is then reacted with two equivalents of trifluoromethanesulfonic anhydride and one equivalent of nitric acid to form the corresponding compound of formula $I X$, wherein there is a single nitro substituent on the benzo ring. The reaction with trifluoroacetic acid is typically conducted in the presence of pyridine. Both of the above reactions are typically conducted in a reaction inert solvent such as a chlorinated hydrocarbon solvent, preferably methylene chloride, at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature.

The above transformation can also be accomplished using other nitration methods known to those skill in the art.

Reduction of the nitro group to an amine group can be accomplished as described above to provide a compound of the formula $I X$ '.

The compound of formula $\mid X$ ' is then reacted with a carboxylic acid halide or anhydride of the formula $R^{10} \mathrm{COX}$ or $\left(\mathrm{R}^{10} \mathrm{CO}\right)_{2} \mathrm{O}$, wherein X is halo and R^{10} is hydrogen or $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl, and pyridine, TEA or another tertiary amine base, to form a compound of the formula X, which can then be converted to the desired compound having formula XI by reacting it with Lawesson's reagent, which is depicted below.

PCT/IB98/01813
$-28-$

The reaction with $\mathrm{R}^{10} \mathrm{COX}$, wherein X is halo, or $\left(\mathrm{R}^{10} \mathrm{CO}\right)_{2} \mathrm{O}$ is generally carried out at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature. The reaction with Lawesson's reagent is generally carried out in a reaction inert solvent such as benzene or toluene, preferably toluene, at a temperature from about room temperature to about the reflux temperature of the reaction mixture, preferably at about the reflux temperature.

Closure to the benzothiazole ring and nitrogen deprotection to form the desired compound of formula IF can be accomplished by reacting the compound of formula XI with potassium ferricyanide and sodium hydroxide in a mixture of water and methanol $\left(\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}\right)$, at a temperature from about $50^{\circ} \mathrm{C}$ to about $70^{\circ} \mathrm{C}$, preferably at about $60^{\circ} \mathrm{C}$ for about 1.5 hours.

Scheme 7 illustrates a method of preparing the compound of formula III, which is used as the starting material for the process of Scheme 1, or a compound of the formula IG, wherein R^{2} and R^{3} form a ring (labeled " A " in the Scheme), as defined above in the definition of compounds of the formula I. Referring to Scheme 7, the compound of formula XII, wherein X^{1} and X^{2} are selected, independently, from chloro, fluoro, bromo and iodo, but where at least one of X^{1} and X^{2} is Br - or I -, reacted with cyclopentadiene, in the presence of magnesium metal, in a THF, dioxane or other ethereal solvent, at a temperature from about $40^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, preferably at about the reflux temperature, to form a compound of the formula XIII. Reaction of the resulting compound of formula XIII with N -methylmorpholine-N-oxide (NMO) and osmium tetroxide in acetone at about room temperature yields the corresponding compound of the formula XIIIA.

The compound having formula XIIIA is then converted into the corresponding compound of formula XIV using the following procedure. First, the compound of formula XIIIA is reacted with sodium periodate in a mixture of a chlorinated hydrocarbon, preferably dichloroethane (DCE), and water, or with lead tetraacetate in a chlorinated hydrocarbon solvent, at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, to generate a dialdehyde or glycal intermediate. The product of this reaction is then reacted with benzylamine and

PCT/IB98/01813
sodium triacetoxyborohydride in a chlorinated hydrocarbon solvent at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature, to form the desired compound of formula XIV. Removal of the benzyl group from the compound of formula XIV yields the compound of formula III (when ring A is absent) or IG, (when ring A is present). This can be accomplished using methods well known to those of skill in the art, for example, optionally reacting the free base with one equivalent of acid, e.g., hydrochloric acid, (to form the corresponding acid addition salt), followed by hydrogen and palladium hydroxide in methanol at about room temperature.

In the reductive animation step described above and throughout this document, alternatives to benzyl amine, such as ammonia, hydroxylamine, alkoxy amines, methyl amine, allyl amine, and substituted benzyl amines (e.g., diphenylmethyl amine and 2- and 4-alkoxy substituted benzyl amines) can also be used. They can be used as free bases, or as their salts, preferably their acetate salts, and can be subsequently removed by methods described for each by T. W. Greene and G.M. Wuts, "Protective Groups in Organic Synthesis", 1991, John Wiley \& Sons, New York, NY.

The procedure of Scheme 7 can also be used to prepare compounds of the formula I wherein R^{2} and R^{3} do not form a ring and are not both hydrogen, by replacing the starting material of formula XII with the appropriate compound having the formula

XII ${ }^{\prime}$

Scheme 8, 9 and 10 illustrate methods of preparing compounds of the formula 1 wherein R^{1} is hydrogen, and R^{2} and R^{3} represent a variety of different substituents, as defined above, but do not form a ring.

Scheme 8 illustrates a variation of the process shown in Scheme 7, which can be used to make a compound identical to that of formula III except that the benzo ring is substituted with a fluoro group or an alkoxy group (R^{18} in Scheme 8). This compound is depicted in Scheme 8 as chemical structure 1 H . Referring to Scheme 8 , where, for example, R^{18} is $F, 1,3-$ difluorobenzene is reacted with a strong base such as an alkali metal dialkylamine or an alkali metal alkyl (or aryl) in an ethereal solvent such as ethyl ether or THF, at a temperature below $50^{\circ} \mathrm{C}$, followed by quenching with iodine or N -iodosuccinamide, to form 1,3-difluoro-2iodobenzene. The compound 1,3-difluoro-2-iodobenzene (structural formula XVI in Scheme 8) is then converted into the compound of formula IH by a series of reactions (represented in

РСТ//B98/01813
$-30-$

Scheme 8 as $X V I \rightarrow X V I I \rightarrow X V I I I \rightarrow X I X \rightarrow(H)$ that are analogous to the series of reactions described above and illustrated in Scheme 7 for converting compounds of the formula XIII into those of the formula IG or III. Conversion of the compound of formula XVI into the compound of formula XVII can also be accomplished by treating a mixture of the compound of formula XVI and cyclopentadiene with an alkyl lithium reagent, preferably n-butyl lithium, in an inert hydrocarbon solvent such as petroleum ether or methyl cyclohexane, at a temperature from about $-20^{\circ} \mathrm{C}$ to about room temperature, preferably at about $0^{\circ} \mathrm{C}$.

The compound of formula $I H$ can then be converted into the corresponding nitrogen protected derivative of formula $X X$, using the methods described above for synthesizing the compound of formula IV in Scheme.1. Nitration of the compound of formula $X X$ using the method described above for preparing the compound of formula IX in Scheme 6, yields the compound of formula XXI wherein the benzo ring is substituted with both a fluoro and nitro group or an alkoxy group and nitro group. The compound of formula XXI can be used to make a variety of compounds of the formula I wherein one of R^{2} and R^{3} is fluoro, using methods that are well known to those of skill in the art, for example, by first converting the nitro group to an amino group, converting the amino group to a variety of other substituents, as illustrated in Scheme 10, and then removing the nitrogen protecting group.

The compound of formula XXI acts as a regioisomeric functional equivalent of the compounds having formulas IIA, VIA and XXII, in that the fluorine atom of formula $X X I$ reacts similarly to the nitro and Y groups of formula IIA, VIA, and XXII, and thus can be subjected to the same series of reactions as those described above for the latter three compounds, providing an alternate means for preparing the products of such reactions. Similarly, the alkoxy group of formula $X X I$ ($R^{18}=$ alkoxy) may be converted into a hydroxyl group before or after introduction of the nitro group, and then converted to isomeric products as described above. Also, the trifluoromethanesulfonate salt of such hydroxy derivative can act as a Y-group as described.

Preparation of compounds of formula I where $R^{2}=-O\left(C_{1}-C_{6}\right)$ alkyl, $\left(C_{1}-C_{6}\right)$ alkyl or aryl wherein aryl is defined as above in the definition of formula I, and R^{3} is H or one of the other substituents described above in the definition of formula I, can be prepared as described above and illustrated in Scheme 8 by replacing one of the fluorine atoms of the compound of formula XV with -O-($\left.C_{1}-C_{6}\right)$ alkyl, $\left(C_{1}-C_{6}\right)$ alkyl or aryl, respectively.

Scheme 9 illustrates methods of preparing compounds of the formula I wherein: (a) R^{1} is hydrogen and R^{2} is $R^{7} R^{8} \mathrm{NO}_{2} S$-; (b) R^{1} and R^{2} are both chloro; and (c) R^{1} is hydrogen and R^{2} is $R^{13} \mathrm{C}(=O)$-. These compounds are referred to in Scheme 9 , respectively, as compounds of formulas IJ, IK and IL.

Referring to Scheme 9, compounds of the formula IJ can be prepared by reacting the compound of formula $I V$ with two or more equivalents of a halosulfonic acid, preferably chlorosulfonic acid, at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature. Reaction of the chlorosulfonic acid derivative so formed with an amine having the formula $R^{7} R^{8} N H$, wherein R^{7} and R^{8} are defined as above, followed by removal of the nitrogen protecting group, yields the desired compound having formula IJ.

Compounds of the formula IK can be prepared by reacting the compound of formula IV with iodine trichloride in a chlorinated hydrocarbon solvent, followed by removal of the nitrogen protecting group. The reaction with iodine trichloride is typically carried out at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, and is preferably carried out at about room temperature. In a similar fashion, the analogous mono- or dibrominated or mono- or diiododinated compounds can be prepared by reacting the compound of IV with N iodosuccinimide or N -bromosuccinimide in a trifluromethanesulfonic acid solvent, followed by removal of the nitrogen protecting group as described above.

Reaction of the compound of IV with an acid halide of the formula $\mathrm{R}^{13} \mathrm{COCl}$ or an acid anhydride of the formula $\left(\mathrm{R}^{13} \mathrm{CO}\right)_{2} \mathrm{O}$, with or without a reaction inert solvent such as a chlorinated hydrocarbon solvent, preferably methylene chloride, in the presence of Lewis acid such as aluminum chloride, at a temperature from about $0^{\circ} \mathrm{C}$ to about $100^{\circ} \mathrm{C}$, followed by nitrogen deprotection, yields the compound of formula IL. The reaction with the acid halide or anhydride can be carried out using other known Lewis acids or other Friedel-Crafts acylations methods that are known in the art.

The reactions described herein in which $\mathrm{NO}_{2},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{COR}^{13}, \mathrm{I}, \mathrm{Br}$ or Cl are introduced on the compound of formula IV, as depicted in Scheme 9 and described above, can be performed on any analogous compound wherein R^{2} is hydrogen, ($C_{1}-C_{6}$)alkyl, halo, $\left(C_{1}-C_{6}\right.$) alkoxy or -NHCONR ${ }^{7} R^{8}$, producing compounds of the formula I wherein R^{2} and R^{3} are defined as in the definition of compounds of the formulal above.

Compounds that are identical to those of the formula IL, but which retain the nitrogen protecting group, can be converted into the corresponding O-acyl substituted compounds, i.e., those wherein the $-\mathrm{C}(=O) \mathrm{R}^{13}$ group of formula IL is replaced with a $-\mathrm{O}-\mathrm{C}(=O) \mathrm{R}^{13}$ group, using Baeyer-Villiger processes well known to those skilled in the art. The resulting compounds can be partially hydrolyzed, as described in Example 35, to yield the corresponding hydroxy substituted compounds, and then alkylated to form the corresponding alkoxy substited compounds. Also, as described in Example 36, such O-acyl substituted compounds can be used to prepare variably substituted benzisoxazoles.

PCT/IB98/01813

Scheme 10 illustrates methods of making compounds of the formula I wherein: (a) R^{1} is hydrogen and R^{2} is chloro; (b) R^{1} is hydrogen and R^{2} is cyano; (c) R^{1} is hydrogen and R^{2} is amino; and (d) R^{1} is hydrogen and R^{2} is $R^{13} C(=O) N(H)$-. These compounds are referred to in Scheme 10, respectively, as compounds of the formula IM, IN, IP and IQ.

Compounds of formula IM can be prepared from compounds of the formula $I X$ ' by generation of a diazonium salt with, for instance, an alkali metal nitrite and strong mineral acid (e.g., hydrochloric acid, sulfuric acid, hydrobromic acid) in water, followed by reaction with a copper halide salt, such as copper (I) chloride. Nitrogen deprotection by the methods described above yields the desired compound of formula IM. Alternative methods for the generation of diazonium salts, as known and practiced by those of skill in the art, can also be used. The foregoing reaction is generally carried out by temperatures ranging from about $0^{\circ} \mathrm{C}$ to about $60^{\circ} \mathrm{C}$, preferably about $60^{\circ} \mathrm{C}$ for about 15 minutes to one hour.

Reaction of the diazodium salt, prepared as described above, with potassium iodide in an aqueous medium provides the analogous iodide derivative. This reaction is generally carried out at a temperature from about $0^{\circ} \mathrm{C}$ to about room temperature, preferably at about room temperature. The resulting compound, or its analogous N-tert-butylcarbonate protected form, can be used to prepare the corresponding cyano derivative by reaction with copper (I) cyanide and sodium cyanide in DMF, N,N-dimethylpropylurea (DMPU) or DMSO, preferably DMF, at a temperature from about $50^{\circ} \mathrm{C}$ to about $180^{\circ} \mathrm{C}$, preferably about $150^{\circ} \mathrm{C}$. Nitrogen deprotection as described above provides the desired compound of formula IM.

The above described iodide derivative can also be used to access a variety of other substituents such as aryl, acetylene and vinyl substituents, as well as the corresponding carbonyl esters and amides, by palladium and nickel catalyzed processes known to those of skill in the art, such as Heck, Suzuki and Stille couplings and Heck carbonylations.

Nitrogen deprotection of the compound of formula IX' provides the compound of the formula IP.

The compound of formula IX' can be reacted with a acyl group having the formula $\mathrm{R}^{13} \mathrm{COCl}$ or $\left(\mathrm{R}^{13} \mathrm{CO}\right)_{2} \mathrm{O}$ using the methods described above, followed by nitrogen deprotection to provide compounds of the formula IQ. In a similar fashion, treatment of the protected amine with a compound having the formula $\mathrm{R}^{13} \mathrm{SO}_{2} \mathrm{X}$, when X is chloro or bromo, followed by nitrogen deprotection, provides the corresponding sulfonamide derivative.

Other suitable amine protecting groups that can be used, alternatively, in the procedures described throughout this document include $-\mathrm{COCF}_{3},-\mathrm{COCCl}_{3},-\mathrm{COOCH}_{2} \mathrm{CCl}_{3}$, $-\mathrm{COO}\left(\mathrm{C}_{4}-\mathrm{C}_{6}\right)$ alkyl and $-\mathrm{COOCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$. These groups are stable under the conditions
described herein, and may be removed by methods described for each in Greene's "Protective Groups in Organic Chemistry", referred to above.

In each of the reactions discussed above, or illustrated in Schemes 1-10, above, pressure is not critical unless otherwise indicated. Pressures from about 0.5 atmospheres to about 5 atmospheres are generally acceptable, with ambient pressure, i.e., about 1 atmosphere, being preferred as a matter of convenience.

The compounds of the formula I and their pharmaceutically acceptable salts (hereafter "the active compounds") can be administered via either the oral, transdermal (e.g., through the use of a patch), intranasal, sublingual, rectal, parenteral or topical routes. Transdermal and oral administration are preferred. These compounds are, most desirably, administered in dosages ranging from about 0.25 mg up to about 1500 mg per day, preferably from about 0.25 to about 300 mg per day in single or divided doses, although variations will necessarily occur depending upon the weight and condition of the subject being treated and the particular route of administration chosen. However, a dosage level that is in the range of about 0.01 mg to about 10 mg per kg of body weight per day is most desirably employed. Variations may nevertheless occur depending upon the weight and condition of the persons being treated and their individual responses to said medicament, as well as on the type of pharmaceutical formulation chosen and the time period and interval during which such administration is carried out. In some instances, dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effects, provided that such larger doses are first divided into several small doses for administration throughout the day.

The active compounds can be administered alone or in combination with pharmaceutically acceptable carriers or diluents by any of the several routes previously indicated. More particularly, the active compounds can be administered in a wide variety of different dosage forms, e.g., they may be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, transdermal patches, lozenges, troches, hard candies, powders, sprays, creams, salves, suppositories, jellies, gels, pastes, lotions, ointments, aqueous suspensions, injectable solutions, elixirs, syrups, and the like. Such carriers include solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents. In addition, oral pharmaceutical compositions can be suitably sweetened and/or flavored. in general, the active compounds are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight.

For oral administration, tablets containing various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc can be used for tabletting purposes. Solid compositions of a similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugar] as well as high molecular weight polyethylene glycols. When aqueous suspensions and/or elixirs are desired for oral administration the active ingredient may be combined with various sweetening or flavoring agents, coloring matter and, if so desired, emulsifying and/or suspending agents, together with such diluents as water, ethanol, propylene glycol, glycerin and various combinations thereof.

For parenteral administration, a solution of an active compound in either sesame or peanut oil or in aqueous propylene glycol can be employed. The aqueous solutions should be suitably buffered (preferably pH greater than 8), if necessary, and the liquid diluent first rendered isotonic. These aqueous solutions are suitable for intravenous injection purposes. The oily solutions are suitable for intraarticular, intramuscular and subcutaneous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art.

It is also possible to administer the active compounds topically and this can be done by way of creams, a patch, jellies, gels, pastes, ointments and the like, in accordance with standard pharmaceutical practice.

Biological Assay

The effectiveness of the active compounds in suppressing nicotine binding to specific receptor sites is determined by the following procedure which is a modification of the methods of Lippiello, P. M. and Fernandes, K. G. (in The Binding of L- $r^{3} \mathrm{H}$]Nicotine To A Single Class of High-Affinity Sites in Rat Brain Membranes, Molecular Pharm., 29, 448-54, (1986)) and Anderson, D. J. and Arneric, S. P. (in Nicotinic Receptor Binding of ${ }^{3}$ H-Cystisine, ${ }^{3}$ H-Nicotine and ${ }^{3}$ H-Methylcarmbamylcholine In Rat Brain, European J. Pharm., 253, 261-67 (1994)).

Procedure
Male Sprague-Dawley rats (200-300 g) from Charles River were housed in groups in hanging stainless steel wire cages and were maintained on a 12 hour light/dark cycle (7 a.m. -7 p.m. light period). They received standard Purina Rat Chow and water ad libitum.

The rats were killed by decapitation. Brains were removed immediately following decapitation. Membranes were prepared from brain tissue according to the methods of Lippiello and Fernandez (Molec Pharmacol, 29, 448-454, (1986) with some modifications. Whole brains were removed, rinsed with ice-cold buffer, and homogenized at 0° in 10 volumes of buffer (w/v) using a Brinkmann Polytron ${ }^{T M}$, setting 6, for 30 seconds. The buffer consisted of 50 mM Tris HCl at a pH of 7.5 at room temperature. The homogenate was sedimented by centrifugation (10 minutes; $50,000 \times \mathrm{g} ; 0$ to $4^{\circ} \mathrm{C}$. The supernatant was poured off and the membranes were gently resuspended with the Polytron and centrifuged again (10 minutes; $50,000 \times \mathrm{g} ; 0$ to $4^{\circ} \mathrm{C}$. After the second centrifugation, the membranes were resuspended in assay buffer at a concentration of $1.0 \mathrm{~g} / 100 \mathrm{~mL}$. The composition of the standard assay buffer was 50 mM Tris $\mathrm{HCl}, 120 \mathrm{mM}$ $\mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 2 \mathrm{mM} \mathrm{MgCl} 2,2 \mathrm{mM} \mathrm{CaCl} 2$ and has a pH of 7.4 at room temperature.

Routine assays were performed in borosilicate glass test tubes. The assay mixture typically consisted of 0.9 mg of membrane protein in a final incubation volume of 1.0 mL . Three sets of tubes were prepared wherein the tubes in each set contained $50 \mu \mathrm{~L}$ of vehicle, blank, or test compound solution, respectively. To each tube was added $200 \mu \mathrm{~L}$ of $\left[{ }^{3} \mathrm{H}\right]$-nicotine in assay buffer followed by $750 \mu \mathrm{~L}$ of the membrane suspension. The final concentration of nicotine in each tube was 0.9 nM . The final concentration of cytisine in the blank was $1 \mu \mathrm{M}$. The vehicle consisted of deionized water containing $30 \mu \mathrm{~L}$ of 1 N acetic acid per 50 mL of water. The test compounds and cytisine were dissolved in vehicle. Assays were initiated by vortexing after addition of the membrane suspension to the tube. The samples were incubated at 0 to $4^{\circ} \mathrm{C}$ in an iced shaking water bath. Incubations were terminated by rapid filtration under vacuum through Whatman GF/B ${ }^{\text {TM }}$ glass fiber filters using a Brandel ${ }^{T M}$ multi-manifold tissue harvester. Following the initial filtration of the assay mixture, filters were washed two times with ice-cold assay buffer (5 m each). The filters were then placed in counting vials and mixed vigorously with 20 ml of Ready Safe ${ }^{\text {TM }}$ (Beckman) before quantification of radioactivity. Samples were counted in a LKB Wallach Rackbeta ${ }^{T M}$ liquid scintillation counter at $40-50 \%$ efficiency. All determinations were in triplicate.

Calculations
Specific binding (C) to the membrane is the difference between total binding in the samples containing vehicle only and membrane (A) and non-specific binding in the samples containing the membrane and cytisine (B), i.e.,

Specific binding $=(C)=(A)-(B)$.
Specific binding in the presence of the test compound (E) is the difference between the total binding in the presence of the test compound (D) and non-specific binding (B), i.e., $(E)=(D)$ - (B).
$\%$ Inhibition $=(1-((E) /(C))$ times 100.
The compounds of the invention that were tested in the above assay exhibited $I C_{50}$ values of less than $10 \mu \mathrm{M}$.

The following experimental examples illustrate, but do not limit the scope of, this invention.

EXAMPLE 1
10-AZA-TRICYCLO[6.3.1.0 ${ }^{2,7}$]DODECA-2(7),3,5-TRIENE
A) 1,4-Dihydro-1,4-methano-naphthalene
(Based wholly or in part on a) Wittig, G.; Knauss, E. Chem. Ber. 1958, 91, 895. b) Muir, D. J.; Stothers, J. B. Can. J. Chem. 1993, 71, 1290.)

Magnesium turnings ($36.5 \mathrm{~g}, 1.5 \mathrm{M}$) were stirred in anhydrous THF (250 mL) in a dried 2 L 3 neck round bottom flask equipped with a 250 mL non-equalizing addition funnel with a nitrogen $\left(\mathrm{N}_{2}\right)$ flow adapter, mechanical stirrer and efficient condenser equipped with a N_{2} flow adapter. The flask was stirred and warmed to reflux by a removable heating mantle. 2-Fluorobromobenzene (2 g) was added followed by 1 mL of 3 N ethylmagnesium bromide (EtMgBr in THF). The addition funnel was charged with a mixture of cyclopentadiene $(94.4 \mathrm{~g}$. 1.43 M, Prepared by the method described in: Org. Syn. Col. Vol. V, 414-418) and bromofluorobenzene ($250 \mathrm{~g}, 1.43 \mathrm{M}$) which was maintained at $0{ }^{\circ} \mathrm{C}$ in a separate flask by an ice bath, and transferred to the addition funnel via cannula. Small portions ($\sim 1 \mathrm{~mL}$) of the intimate mixture were introduced to assist initiation $(\sim 4 x)$. After ~ 15 minutes, the reaction initiated (exotherm, and vapor condensation), the heating mantle was removed and the contents of the addition funnel was added dropwise at such rate as to maintain reflux (1.5 hours). The heating mantle was re-applied and a reflux maintained for 1.5 hours. (TLC 100% hexanes $R_{f} 0.67$).

The reaction was cooled to room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{~mL})$ and carefully with $1 \mathrm{~N} \mathrm{HCl}\left(200 \mathrm{~mL}\right.$, produces H_{2} evolution from unconsumed Mg). To this $\sim 50 \mathrm{~mL}$
concentrated HCl was added to dissolve solids. Total addition/quench time ~ 1 hour. Saturated aqueous sodium chloride (NaCl) solution (300 mL) was added and product hexanes extracted until no potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ active product is removed. ($4 \times \sim 250$ mL). The combined organic layer was washed with saturated NaHCO_{3} solution (250 mL), sodium bicarbonate $\mathrm{Na}_{2} \mathrm{SO}_{4}$ dried and concentrated to an oil ($\sim 200 \mathrm{~g}$). The product was distilled at $78-83{ }^{\circ} \mathrm{C} @ 15 \mathrm{~mm}$ ($131 \mathrm{~g}, 64 \%$). (An alternative workup is described on p. 419 Fieser and Fieser, Vol. I, Reagents for Organic Synthesis, Wiley, NY., NY.; 1967).

B) 1,2,3,4-Tetrahydro-1,4-methano-naphthalene-2,3-diol

(Except for the workup method and the quantity of OsO_{4} used, based on VanRheenen, V.; Cha, D.Y.; Hartley, W. M. Org. Syn. 1988, 6, 342.)

In a 2 L 3 neck round bottom flask equipped with a N_{2} flow adapter, mechanical stirrer was placed 1,4-dihydro-1,4-methano-naphthalene ($79.5 \mathrm{~g}, 560 \mathrm{mmol}$) stirred in acetone (800 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and N -methyl morpholine N -oxide $(67.5 \mathrm{~g}, 576 \mathrm{mmol})$. To this was added osmium tetroxide $\left(\mathrm{OsO}_{4}\right)$ (15 mL of a $15 \mathrm{~mol} \% \mathrm{t}-\mathrm{BuOH}$ solution, $1.48 \mathrm{mmol}, 0.26 \mathrm{~mol} \%$) and the mixture was stirred vigorously. After 60 hours, the reaction was filtered, and the white product rinsed with acetone and air dried $(60.9 \mathrm{~g})$. The mother liquor was concentrated to an oily solid: acetone trituration, filtration and acetone rinse provided (27.4 g , total $88.3 \mathrm{~g}, 89 \%$). (TLC 50\% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} \sim 0.5$). mp 176-177.5 ${ }^{\circ} \mathrm{C}$.
C) 10-Benzyl-10-aza-tricyclo[6.3.1.0. ${ }^{2.7}$ ddodeca-2(7),3,5-triene
(Based on Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849; and Mazzocchi, P. H.; Stahly, B. C. J. Med. Chem. 1979, 22, 455.)

1,2,3,4-Tetrahydro-1,4-methano-naphthalene-2,3-diol ($40 \mathrm{~g}, 227.3 \mathrm{mmol}$) was stirred in $\mathrm{H}_{2} \mathrm{O}(1050 \mathrm{~mL})$ and 1,2-dichloroethane (DCE) (420 mL) in a 2 L round bottom flask under nitrogen with cool water bath ($\sim 10^{\circ} \mathrm{C}$). To this sodium periodate $\left(\mathrm{NaIO}_{4}\right)(51 \mathrm{~g}, 239 \mathrm{mmol})$ and triethylbenzyl ammonium chloride ($\left.\mathrm{Et}_{3} \mathrm{BnNCl}\right)(50 \mathrm{mg})$ were added. The resulting mixture was stirred for 1 hour (slight initial exotherm), then the layers were separated and the aqueous layer was extracted with DCE (200 mL). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ (4 $\times 200 \mathrm{~mL}$, or until no reaction to starch iodide is observed in the aqueous wash) then dried through a cotton plug. To this was added benzyl amine ($25.5 \mathrm{~g}, 238.6 \mathrm{mmol}$) and the mixture was stirred for 2 minutes then immediately transferred into the sodium triacetoxyborohydride $\mathrm{NaHB}(\mathrm{OAc})_{3} / \mathrm{DCE}$ (see below) over 10 minutes.

In a separate 2 L round botton flask flask under nitrogen was magnetically stirred $\mathrm{NaHB}(\mathrm{OAC})_{3}(154 \mathrm{~g}, 0.727 \mathrm{mmol})$ in DCE $(800 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ (ice bath). To this was added the above mixture over 10 minutes, without delay after the dialdehyde and amine were mixed. The resulting orange mixture was allowed to warm to room temperature and stirred for 30-60 minutes.

The reaction was quenched by addition of saturated sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ solution ($\sim 300 \mathrm{~mL}$) carefully at first and the mixture was stirred for 1 hour (pH 9). The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 300 \mathrm{~mL})$. The organic layer was washed with saturated aqueous NaCl solution (200 mL), dried through a cotton plug, then evaporated to a red oil. This was dissolved in a minimum of $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a Silica pad ($3 \times 4 \mathrm{inch}$) eluting with 15% ethyl acetate (EtOAc)/hexanes $+1 \%$ of 37% aqueous ammonium hydroxide $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$ solution to remove baseline red color. Concentration affords a light yellow oil ($48.5 \mathrm{~g}, 194.8 \mathrm{mmol}, 85.7 \%$). (TLC $10 \% \mathrm{EtOAc} /$ hexanes $\mathrm{R}_{\mathrm{f}} 0.75$). . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{~m}, 7 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~d}$, $\mathrm{J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCl MS m/e $250.3\left[(M+1)^{+}\right]$.
D) 10-Aza-tricyclo[6.3.1.0 ${ }^{2,7}$ dodeca-2(7),3,5-triene (For an alternative synthesis, see; Mazzocchi, P. H.; Stahly, B. C. J. Med. Chem. 1979, 22, 455.)

10-Benzyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene ($70.65 \mathrm{~g}, 284 \mathrm{mmol}$) was stirred in EtOAc (250 mL) and treated with 3 N HCl EtOAc (1.03 eq.) slowly with cooling (ice bath). The resulting precipitate was filtered and rinsed with EtOAc. The solids were dissolved in MeOH (250 mL) in a parr bottle. To this was added $\mathrm{Pd}(\mathrm{OH})_{2}(7 \mathrm{~g}$ of $20 \% \mathrm{wt} / \mathrm{C})$ and the mixture was shaken under 50-40 psi of H_{2} for 24 hours or until done by TLC. The reaction was filtered through a Celite pad and concentrated to an oily solid. This was azeotroped with methanol (MeOH) (3x) then triturated with acetone, treated with ethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) to precipitate product and filtered. Concentration of the mother liquors and a second treatment provided an off white solid ($48.95 \mathrm{~g}, 251 \mathrm{mmol}, 88 \%$). (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.2$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~m}, 4 \mathrm{H}), 2.97(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~m}$, $1 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCl} \mathrm{MS} m / \mathrm{e} 160.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 2
 4-FLUORO-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7),3,5-TRIENE HYDROCHLORIDE

A) 6-Fluoro-1,4-dihydro-1,4-methano-naphthalene
(Eisch, J. J.; Burlinson, N. E. J. Amer. Chem. Soc. 1976, 98, 753-761. Paquette, L. A.; Cottrell, D. M.; Snow, R. A. J. Amer. Chem. Soc. 1977, 99, 3723-3733.)

Magnesium turnings ($0.66 \mathrm{~g}, 27.2 \mathrm{mmol}$) were stirred in anhydrous THF (10 mL) in a flame dried 75 mL 3 neck round bottom flask equipped with a non-equalizing addition funnel with a N_{2} flow adapter, magnetic stirrer and efficient condenser equipped with a N_{2} flow adapter. The flask was stirred and warmed to reflux by a removable heating mantle. 2,5Difluorobromobenzene (0.1 g) was added followed by of 3 N EtMgBr in $\mathrm{THF}(0.1 \mathrm{~mL}$). The addition funnel was charged with an intimate mixture of cyclopentadiene ($1.71 \mathrm{~g}, 25.9 \mathrm{mmol}$) and 2,5 -difluorobromobenzene ($5.0 \mathrm{~g}, 25.9 \mathrm{mmol}$). Small portions ($\sim 0.2 \mathrm{~mL}$) of the intimate mixture were introduced to assist initiation $(\sim 4 x)$. After ~ 15 minutes, the reaction initiated (exotherm, and vapor condensation) and heating was maintained as necessary during the addition of the contents of the addition funnel. The reaction was then maintained at reflux for 1 hour.

The reaction was cooled to room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ followed by aqueous 1 N HCl solution (20 mL) to dissolve the solids. Saturated aqueous NaCl solution (30 mL) was added and product was extracted with hexanes ($4 \times 25 \mathrm{~mL}$). The combined organic layer was washed with saturated aqueous NaHCO_{3} solution (25 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered through a Silica plug with hexanes rinse and concentrated to an oil. Chromatography on Silica gel eluting with hexanes provided an oil ($780 \mathrm{mg}, 19 \%$). (TLC hexanes $\mathrm{Rf}_{\mathrm{f}} 0.38$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 6.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.59(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.32(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}$, 1H).
B) 6-Fluoro-1,2,3,4-tetrahydro-1,4-methano-naphthalene-2,3-diol

6-Fluoro-1,4-dihydro-1,4-methano-naphthalene ($680 \mathrm{mg}, 4.22 \mathrm{mmol}$) and N -methyl morpholine N -oxide ($599 \mathrm{mg}, 4.43 \mathrm{mmol}$) were stirred in acetone (50 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}$). To this was added a solution of $\mathrm{OsO}_{4}(0.2 \mathrm{~mL}, 2.5 \% \mathrm{wt}$. solution in $\mathrm{t}-\mathrm{BuOH}, 0.02 \mathrm{mmol})$. After 72 hours, florisil (5 g) and saturated aqueous NaHSO_{3} solution (3 mL) were added and stirred for 1 hour. The florisil was filtered and the filtrate concentrated to produce a crystalline product which was triturated with acetone and filtered ($524 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$7.10(\mathrm{dd}, \mathrm{J}=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, \mathrm{J}=8.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{ddd}, \mathrm{J}=8.0,8.0,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dd}, \mathrm{J}=10.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $194\left(\mathrm{M}^{+}\right)$.
C) 10-Benzyl-4-fluoro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene

6-Fluoro-1,2,3,4-tetrahydro-1,4-methano-naphthalene-2,3-diol ($524 \mathrm{mg}, 2.68 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{NBnCl}(10 \mathrm{mg})$ were vigorously stirred in dichloroethane (15 mL) and $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL})$ then treated with sodium periodate ($0.603 \mathrm{mg}, 2.82 \mathrm{mmol}$). After 1.5 hours, the layers were separated and the aqueous layer extracted with DCE ($2 \times 20 \mathrm{~mL}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$ until no reaction to starch iodide paper was observed, then with saturated aqueous NaCl solution (20 mL). The organic layer was dried through a cotton plug and treated with benzyl amine ($0.308 \mathrm{~mL}, 2.82 \mathrm{mmol}$) and stirred for 2 minutes then transferred to an addition funnel. This solution was added over ~ 10 minutes to a vigorously stirred cooled ($0^{\circ} \mathrm{C}$) mixture of $\mathrm{NaHB}(\mathrm{OAC})_{3}(1.82 \mathrm{~g}, 8.58 \mathrm{mmol})$ in DCE (50 mL). After addition was complete, the mixture was stirred without cooling for 2 hours. The mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (100 mL) and stirred for 1 hour, then the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with saturated aqueous NaCl solution (50 mL), dried through a cotton plug and concentrated. Chromatography on Silica gel provided an oil (520 $\mathrm{mg} .80 \%$). ($\mathrm{TLC} 2 \%$ acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{R}_{\mathrm{f}} 0.40$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~m}, 1 \mathrm{H}), 6.88$ $(\mathrm{m}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=10.5$ $\mathrm{Hz}, 1 \mathrm{H})$.

D) 4-Fluoro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride

 10-Benzyl-4-fluoro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene ($390 \mathrm{mg}, 1.461$ mmol), ammonium formate $(3.04 \mathrm{~g}, 48.2 \mathrm{mmol})$ and $10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(30 \mathrm{mg})$ were combined in $\mathrm{MeOH}(50 \mathrm{~mL})$ and brought to reflux under N_{2} for 1.5 hours. Ammonium formate (1.0 g) was added and reflux continued for 0.5 hour. The reaction mixture was filtered through a Celite pad which was rinsed with MeOH. The filtrate was concentrated. The residues were treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (30 mL) and product extracted with methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(3 \times 25 \mathrm{~mL})$. The organic layer was washed with saturated aqueous NaCl solution (50 mL), dried through a cotton plug and concentrated. The residue was treated with $2 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH} \mathrm{(} 5 \mathrm{~mL}$) and concentrated then taken up in minimum of MeOH and saturated with $\mathrm{Et}_{2} \mathrm{O}$. After stirring 18 h , the white crystals were collected by filtration ($86 \mathrm{mg}, \mathbf{2 8 \%}$). (TLC$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{1} 0.27$). (data for free base) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{~m}$, $1 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 4 \mathrm{H}), 2.61(\mathrm{dd}, \mathrm{J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}$, $1 \mathrm{H})$. APCI MS m/e $178.2\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) $\mathrm{mp} 260-262^{\circ} \mathrm{C}$.

EXAMPLE 3

4-METHYL-10-AZA-TRICYCLO[6.3.1.0 ${ }^{-2.7}$]DODECA-2(7),3.5-TRIENE

HYDROCHLORIDE

The title compound was prepared by the methods described in Example 1 and 2 starting with 2-fluoro-5-methylbromobenzene. (data for free base) ${ }^{1} \mathrm{H} N \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.04(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 4 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H})$, $2.35(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $174.2\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) mp 254-255 ${ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N} . \mathrm{HCl} .1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.44 ; \mathrm{H}, 5.11 ; \mathrm{N}, 5.19$. Found C , 53.73; H, 4.82; N, 5.15.

EXAMPLE 4

4-TRIFLUOROMETHYL-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7),3,5-TRIENE HYDROCHLORIDE (See Grunewald, G. L.; Paradkar, V. M.; Pazhenchevsky, B.; Pleiss, M. A.; Sall, D. J.; Seibel, W. L.; Reitz, T. J. J. Org. Chem. 1983, 48, 2321-2327. Grunewald, G. L.; Markovich, K. M.; Sall, D. J. J. Med. Chem. 1987, 30, 2191-2208.)

The title compound was prepared by the methods described in Example 1 and 2 starting with 2-fluoro-5-trifluoromethylbromobenzene. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.71$ (s, $1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 4 \mathrm{H}), 3.21(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.41(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 228.2\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) mp 244-246 ${ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N} . \mathrm{HCl} .1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.44 ; \mathrm{H}, 5.11$; N, 5.19. Found $\mathrm{C}, 53.77$; H , 4.82; N, 5.18.

EXAMPLE 5

3-TRIFLUOROMETHYL-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$ [DODECA-2(7),3,5-TRIENE
HYDROCHLORIDE (Grunewald, G. L.; Markovich, K. M.; Sall, D. J. J. Med. Chem. 1987, 30, 2191-2208.)

The title compound was prepared by the methods described in Example 1 and 2 starting with 2-fluoro-6-trifluoromethylbromobenzene. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.65$ (s , 2 H), $7.52(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS $\mathrm{m} / \mathrm{e} 228.2\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) $\mathrm{mp} 275-277^{\circ} \mathrm{C}$.

EXAMPLE 6
 3-FLUORO-10-AZA-TRICYCLO[6.3.1.0. ${ }^{2.7}$]DODECA-2(7),3,5-TRIENE HYDROCHLORIDE

A) 2,6-Difluoroiodobenzene (Roe, A. M.; Burton, R. A.; Willey, G. L.; Baines, M. W.; Rasmussen, A. C. J. Med. Chem. 1968, 11, 814-819. Tamborski, C.; Soloski, E. J. Org. Chem. 1966, 31, 746-749. Grunewald, G. L.; Arrington, H. S.; Bartlett, W. J.; Reitz, T. J.; Sall, D. J. J. Med. Chem. 1986, 29, 1972-1982.) 1,3-Difluorobenzene ($57.05 \mathrm{~g}, 0.5 \mathrm{M}$) in THF (75 mL) was added to $\mathrm{a}-78^{\circ} \mathrm{C}$ stirred solution of n-butyllithium (n -BuLi) ($200 \mathrm{~mL}, 2.5 \mathrm{M} /$ hexanes, 0.5 M) and THF (500 mL) under N_{2}. By controlling the addition rate the internal temperature was maintained below $-70^{\circ} \mathrm{C}$. The total addition time was $\sim 1 / 2$ hour. The resulting slurry was stirred an additional $1 / 2$ hour, then the dispersion was treated with a solution of iodine (126.9 g .0 .5 M) in THF (300 mL) at a rate that maintained an internal temperature below $-70{ }^{\circ} \mathrm{C}$. After complete addition the mixture was allowed to warm to room temperature, and was treated with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (100 mL) and stirred. The layers were separated and the aqueous layer extracted with hexanes ($2 \times 250 \mathrm{~mL}$). The combined organic layer was washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (100 mL), $\mathrm{H}_{2} \mathrm{O}$ (100 mL), saturated aqueous NaCl solution (100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ filtered and concentrated to give a yellow oil (106.5 g). Distillation at $\sim 1-5 \mathrm{~mm}$ at $\sim 80^{\circ} \mathrm{C}$ provided a light yellow oil (89.5 g , $75 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H})$. GCMS m/e $240\left(\mathrm{M}^{+}\right)$.

B) 5-Fluoro-1,4-dihydro-1,4-methano-naphthalene

A solution of 2,6-difluoroiodobenzene ($5.0 \mathrm{~g}, 20.8 \mathrm{mmol}$) and cyclopentadiene (2.07 g , 31.3 mmol) was stirred at $0^{\circ} \mathrm{C}$ in P . ether ($70 \mathrm{~mL}, 40-60^{\circ} \mathrm{C}$) under N_{2} and treated with n -BuLi $(8.74 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexanes, 21.8 mmol) dropwise over 10 minutes. The reaction was quenched after 15 minutes by addition of aqueous 1 N HCl solution and the product was extracted with hexanes $(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(50$ mL), saturated aqueous NaCl solution $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. Chromatography on Silica gel provided product as an oil ($1.5 \mathrm{~g}, 45 \%$). (TLC hexanes R_{f} 0.55). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08$ (ddd, $\mathrm{J}=7.0,1.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.96 (ddd, $\mathrm{J}=8.5,8.3,7.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.86 (br s, 2H), 6.72 (ddd, $\mathrm{J}=8.5,8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (br s, 1H), 3.98 (br s, 1H), 2.36 (ddd, J=7.2,1.7,1.7 Hz, 1H), 2.30 (ddd, J=7.2,1.7.1.5 Hz, 1H). GCMS m/e 160 (M^{+}).

C) 3-Fluoro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene hydrochloride

The title compound was prepared by the methods described in Example 2B,C,D starting with 5 -fluoro-1,4-dihydro-1,4-methano-naphthalene. ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 7.36 (ddd, $J=8.3,7: 3,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.21(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{br} \mathrm{s}$, $1 \mathrm{H})$, 3.42-3.30(m,3H), $3.21(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $178.4\left[(M+1)^{+}\right] . m p 269-271^{\circ} \mathrm{C}$.

EXAMPLE 7
4-NITRO-10-AZATRICYCLO[6.3.1.0 ${ }^{2,7}$]DODECA-2(7),3,5-TRIENE

HYDROCHLORIDE

A) 1-(10-Aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone

10-Aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride salt (12.4 $\mathrm{g}, 63.9$ mmol) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL). This was cooled (ice bath) and treated with pyridine ($12.65 \mathrm{~g}, 160 \mathrm{mmol}$) followed by trifluoroacetic anhydride (TFAA) ($16.8 \mathrm{~g}, 11.3 \mathrm{~mL}, 80 \mathrm{mmol}$) from an addition funnel over 10 minutes. After ~ 3 hours, the solution was poured into 0.5 N aqueous $\mathrm{HCl}(200 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic layer was washed with 0.5 N aqueous $\mathrm{HCl}(50$ $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and saturated aqueous NaHCO_{3} solution $(50 \mathrm{~mL})$. This solution was dried through a cotton plug, then diluted with $\sim 3 \%$ EtOAc and filtered through a 2 inch Silica pad eluted with $\sim 3 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Concentration afforded a clear oil which crystallized to give white needles ($15.35 \mathrm{~g}, 60.2 \mathrm{mmol}, 94 \%$). (TLC 30% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.53$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{~m}, 4 \mathrm{H}), 4.29(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.51 (dd, $J=12.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21 (br s, 1H), $3.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), $3.10(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (m, $1 \mathrm{H}), 1.92(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{GCMS} \mathrm{m} / \mathrm{e} 255\left(\mathrm{M}^{+}\right) . \mathrm{mp} 67-68^{\circ} \mathrm{C}$.
B) 1-(4-Nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone (Based on the method described by Coon, C. L.; Blucher, W.G.; Hill, M. E. J. Org. Chem. 1973, 25, 4243.)

To a solution of trifluoromethanesulfonic acid ($2.4 \mathrm{ml}, 13.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml) stirred at $0{ }^{\circ} \mathrm{C}$ was slowly added nitric acid ($0.58 \mathrm{ml}, 27.4 \mathrm{mmol}$) generating a white precipitate. After 10 minutes the resulting mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with 1 -(10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone (3.5 g, 13.7 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 ml) dropwise from an addition funnel over 5 minutes. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes then warmed to $0^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was poured into a vigorously stirred ice (100 g). The layers were separated and the aqueous layer
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The organic layer was combined and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times$ 30 ml). The combined organic layer was washed with saturated aqueous NaHCO_{3} solution (20 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ then dried through a cotton plug and concentrated to give an orange oil that solidified on standing (4.2 g). Chromatography yielded pure product as a crystalline solid ($3.2 \mathrm{~g}, 78 \%$). (TLC 30% EtOAc/hexanes $\mathrm{Rf}_{\mathrm{f}} 0.23$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12$ (br d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.37(\mathrm{br} \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{br}$ $d, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{br} \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.48(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $300\left(\mathrm{M}^{+}\right)$.
C) 4-Nitro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride 1-(4-Nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($182 \mathrm{mg}, 0.61 \mathrm{mmol}$) was stirred with $\mathrm{Na}_{2} \mathrm{CO}_{3}(160 \mathrm{mg}, 1.21 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ for 18 hours. The mixture was concentrated, water was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was extracted with 1 N aqueous HCl $(3 \times 20 \mathrm{~mL})$ and the acidic layer washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The aqueous layer was basified to $\mathrm{pH} \sim 10$ with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ and product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layer was dried through a cotton plug and concentrated to an oil. This was dissolved in MeOH and treated with $1 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH}$, from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to afford product as a white solid ($73 \mathrm{mg}, 50 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left.\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.38\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{-}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{dd}, \mathrm{J}=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{dd}, \mathrm{J}=13.0,13.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H})$, $2.08(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 205.1\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp} 265-270^{\circ} \mathrm{C}$.

EXAMPLE 8

4-AMINO-10-AZATRICYCLO[6.3.1.0 ${ }^{2.7}$ DODECA-2(7),3,5-TRIENE HYDROCHLORIDE

4-Nitro-10-azatricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene ($500 \mathrm{mg}, 2.08 \mathrm{mmol}$) was stirred in 1,4-dioxane (40 mL) and treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL). To this was added di-t-butyldicarbonate ($1.8 \mathrm{~g}, 8.31 \mathrm{mmol}$). After stirring 18 hours the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL}$), dried through a cotton plug and concentrated to provide an oil ($500 \mathrm{mg}, 91 \%$).

This oil ($500 \mathrm{mg}, 1.64 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$, treated with $10 \% \mathrm{Pd} / \mathrm{C}$ $(\sim 50 \mathrm{mg})$ and hydrogenated under a H_{2} atmosphere (45 psi) for 1 hour. The mixture was filtered through a Celite pad and concentrated to a clear oil ($397 \mathrm{mg}, 88 \%$).

This oil ($50 \mathrm{mg}, 0.18 \mathrm{mmol}$) was stirred in $3 \mathrm{~N} \mathrm{HCIEAOC}(3 \mathrm{~mL}$) for 2 hours then concentrated to a white solid ($25 \mathrm{mg}, 56 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 7.38-7.10(3 \mathrm{H})$, $3.60(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.25(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS}$ $\mathrm{m} / \mathrm{e} 175.1\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp} 189-192{ }^{\circ} \mathrm{C}$.

EXAMPLE 9

$\mathrm{N}^{1}-\left[10-A Z A T R I C Y C L O\left[6.3 .1 .0^{2.7}\right.\right.$]DODECA-2(7),3,5-TRIEN-4-YL]ACETAMIDE HYDROCHLORIDE
A) 1-(4-Amino-10-aza-tricyclo[6.3.1.0. ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone

Hydrogenation of 1-(4-nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone ($2.0 \mathrm{~g}, 6.66 \mathrm{mmol}$) under a H_{2} atmosphere (40 psi) and $10 \% \mathrm{Pd} / \mathrm{C}(200$ mg) in MeOH over 1.5 hours, filtration through Celite and concentration affords a yellow oil (1.7 g). (TLC 50\% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.27$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{~m}, 1 \mathrm{H}), 6.64$ (br s, 1H), $6.57(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~m}$, 1H), 1.90 (d, J=10.8 Hz, 1H). GCMS m/e $270\left(\mathrm{M}^{+}\right)$.
B) $\quad \mathrm{N}$-(10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-4-yl)acetamide

1-(4-Amino-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($850 \mathrm{mg}, 3.14 \mathrm{mmol}$) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and treated with triethyl amine ($0.53 \mathrm{~mL}, 3.76 \mathrm{mmol}$) and acetyl chloride ($0.23 \mathrm{~mL}, 3.2 \mathrm{mmol}$) then stirred 18 hours. Standard NaHCO_{3} workup yielded an oil which was chromatographed to provide a clear oil (850 mg , 87\%). (50\% EtOAc/hexanes $R_{f} 0.28$).
C) $\mathrm{N}^{1}-$ - 10 -Azatricyclo[6.3.1.0 ${ }^{\frac{2.7}{7} \text {]dodeca-2(7),3,5-trien-4-yl]acetamide hydrochloride }}$ N -(10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-4-yl)-acetamide ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) was stirred with $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(70 \mathrm{mg}, 0.64 \mathrm{mmol}\right.$) in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ (2 mL) at $70^{\circ} \mathrm{C}$ for 18 hours. The mixture was concentrated, water was added and the product was extracted with EtOAc. The organic layer was extracted with 1 N aqueous $\mathrm{HCl}(3 \times$ $20 \mathrm{~mL})$ and the acidic layer washed with EtOAc $(2 \times 20 \mathrm{~mL})$. The aqueous layer was basified to $\mathrm{pH} \sim 10$ with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ and product was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic layer was dried (sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$) and concentrated to an oil. This material was dissolved in MeOH and treated with $3 \mathrm{~N} \mathrm{HCIEOAc}(3 \mathrm{~mL}$), concentrated and recrystallized
from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to provide a solid ($40 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}) $\delta 9.98$ (s, 1H), 9.02 (br m, NH), 7.65 ($\mathrm{s}, 1 \mathrm{H}$), 7.55 (br s, NH), 7.38 (d, $\mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.20 (d, J=8.0 Hz, $1 \mathrm{H}), 3.33(\mathrm{~m}, 4 \mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS}$ $\mathrm{m} / \mathrm{e} 217.2\left[(\mathrm{M}+1)^{+}\right] . \mathrm{mp} 225-230^{\circ} \mathrm{C}$. (20 mL) and treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to achieve pH 10 . To this was added di-t-butyldicarbonate ($436 \mathrm{mg}, 2.0 \mathrm{mmol}$) and the mixture was stirred for 18 hours. The reaction was concentrated, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was chromatographed (Silica 30\% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.41$) to yield an oil (100 mg).

The above product was treated with $3 \mathrm{~N} \mathrm{HCI} / \mathrm{EtOAc}(3 \mathrm{~mL})$ and warmed to reflux for ~ 15 minutes then concentrated to a solid which was azeotroped with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 x)$. These solids were dissolved in a minimum amount of MeOH then saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. The resulting white crystalline powder was collected by filtration ($40 \mathrm{mg}, 14 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta 9.46$ (s, NH), $7.65(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.65$ (br m, NH), $3.36(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}$, $1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} m / e 231.1\left[(\mathrm{M}+1)^{+}\right] . \mathrm{mp} 183-184^{\circ} \mathrm{C}$.

EXAMPLE 11

4,5-DINITRO-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7),3,5-TRIENE

A) 1-(4,5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone (Based on the method described in Coon, C. L.; Blucher, W. G.; Hill, M. E. J. Org. Chem. 1973, 25, 4243. For an additional related example of dinitration see: Tanida, H.; Ishitobi, H.; Irie, T.; Tsushima, T. J. Am. Chem. Soc. 1969, 91, 4512.)

To a solution of trifluoromethanesulfonic acid ($79.8 \mathrm{ml}, 902.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (550 $\mathrm{ml})$ stirred at $0^{\circ} \mathrm{C}$ was slowly added nitric acid ($19.1 \mathrm{ml}, 450.9 \mathrm{mmol}$) generating a white precipitate. After 10 minutes, 1-(10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone ($50 \mathrm{~g}, 196 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ was added dropwise from an addition funnel over 30 minutes. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2.5 hours and then stirred at room temperature for 24 hours. The reaction mixture was poured into a vigorously stirred mixture of $\mathrm{H}_{2} \mathrm{O}(500 \mathrm{ml})$ and ice $(400 \mathrm{~g})$. The layers were separated and the aqueous layer back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{ml})$. The organic layer was combined and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 300 \mathrm{ml})$. The combined aqueous layers were re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{ml})$. The organic layer was combined and washed with saturated aqueous NaHCO_{3} solution (200 mL) and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ then dried through a cotton plug and concentrated to solids. Trituration with EtOAc/hexanes produced off white solids which were filtered and dried (52 g , $151 \mathrm{mmol}, 77 \%$. The mother liquor was chromatographed to give an additional 4.0 g for a total of $56.0 \mathrm{~g}(82.8 \%)$. (TLC 50% EtOAc/hexanes $\left.\mathrm{Rf}_{\mathrm{f}} 0.29\right)^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77$ ($\mathrm{s}, 1 \mathrm{H}$), 7.75 ($\mathrm{s}, 1 \mathrm{H}$), $4.39(\mathrm{br} \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{br} \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}=13.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.49 (br s, 1H), 3.44 (br s, 1H), 3.24 (br d, J=12.6 Hz, 1H), 2.53 (m, 1H), 2.14 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $345\left(\mathrm{M}^{+}\right)$.

B) 4,5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene

1-(4,5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($3.7 \mathrm{~g}, 10.7 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.3 \mathrm{~g}, 21.4 \mathrm{mmol})$ were combined in $\mathrm{MeOH}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ then warmed to reflux for 18 hours. The reaction was cooled, concentrated, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ then dried through a cotton plug. After concentration, the residue was chromatographed to provide brown solids. ($1.9 \mathrm{~g}, 71 \%$).

5 (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.36$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~s}, 2 \mathrm{H}), 3.17$ (br s, $2 \mathrm{H}), 3.11(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $249\left(\mathrm{M}^{+}\right)$.

EXAMPLE 12

6-METHYL-7-PROPYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0. $0^{2.10}$. 0 4.8. . PENTADECA2(10), 3,5,8-TETRAENE HYDROCHLORIDE
A) 4,5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester

4,5-Dinitro-10-aza-tricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3,5-triene, (1.9 g. 7.6 mmol) was stirred in 1.4-dioxane (75 mL) and treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (10 mL). To this was added di-t-butyldicarbonate ($3.31 \mathrm{~g}, 15.2 \mathrm{mmol}$). After stirring 6 hours the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with EtOAc ($4 \times 25 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed to provide product ($1.9 \mathrm{~g}, 71 \%$). (TLC 30% EtOAc/hexanes $\left(\mathrm{NH}_{3}\right) \mathrm{R}_{1} 0.58$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.08(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 2.46$ ($\mathrm{m}, 1 \mathrm{H}$), $2.02(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$.
B) 4,5-Diamino-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$ dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester

4,5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester ($1.9 \mathrm{~g}, 5.44 \mathrm{mmol}$) was hydrogenated in MeOH under a H_{2} atmosphere (45 psi) over $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ for 1.5 hours then filtered through a Celite pad and concentrated to white solids ($1.57 \mathrm{~g}, 100 \%$). ($\mathrm{TLC} 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.14$).
C) 6-Methyl-5,7,13-triazatetracyclo[9.3.1.0 ${ }^{2.10}$. $0^{4.8}$]pentadeca-2(10),3,5,8-tetraene-13carboxylic acid tert-butyl ester (For conditions, see; Segelstein, B. E.; Chenard, B. L.; Macor, J. E.; Post, R. J. Tetrahedron Lett. 1993, 34, 1897.)

4,5-Diamino-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester ($700 \mathrm{mg}, 2.42 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}(10 \mathrm{~mL}$) and acetic acid (HOAc) (1 mL) and treated with 1-ethoxyethylenemalononitrile ($329 \mathrm{mg}, 2.42 \mathrm{mmol}$). The resulting mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred 18 hours. The reaction was cooled, concentrated treated with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with EtOAc (3 $\times 50$ $\mathrm{mL})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and concentration, the residue was
chromatographed to provide brown solids ($247 \mathrm{mg}, 36 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{t}}$ 0.28).
D) 6-Methyl-7-propyl-5,7,13-triazatetracyclo[9.3.1.0 ${ }^{2,10} .0^{4.8}$]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester (For conditions, see; Pilarski, B. Liebigs Ann. Chem. 1983, 1078.)

6-Methyl-5,7,13-triazatetracyclo[9.3.1.0 $0^{2,10} \cdot 0^{4.8}$]pentadeca-2(10),3,5,8-tetraene-13carboxylic acid tert-butyl ester ($80 \mathrm{mg}, 0.267 \mathrm{mmol}$) was stirred in 50% aqueous NaOH solution (3 mL) and DMSO (1 mL) then treated with 1-iodopropane ($0.03 \mathrm{~mL}, 0.321 \mathrm{mmol}$). This mixture was warmed to $40^{\circ} \mathrm{C}$ for 2 hours then cooled, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 x)$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to an oil ($90 \mathrm{mg}, 0.253 \mathrm{mmol}$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.15$).
E) 6-Methyl-7-propyl-5,7,13-triazatetracyclo[9.3.1.0 ${ }^{2,10}$. . $^{4.8}$]pentadeca-2(10),3,5,8tetraene hydrochloride

6-Methyl-7-propyl-5,7,13-triazatetracyclo[9.3.1.0 $0^{2,10} .0^{4,8}$] pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester ($90 \mathrm{mg}, 0.253 \mathrm{mmol}$) was dissolved in 3 N HCl EtOAc (5 mL) and warmed to $100^{\circ} \mathrm{C}$ for $1 / 2$ hour. The mixture was cooled, concentrated, slurried in EtOAc, and filtered to provide a white solid ($25 \mathrm{mg}, 34 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO_{6}) $\delta 9.56(\mathrm{~s}, \mathrm{NH}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{br} \mathrm{m}, \mathrm{NH}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}$, $2 \mathrm{H}), 3.32(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) 1.85(\mathrm{~m}$, 2 H), 0.97 ($\mathrm{m}, 3 \mathrm{H}$). $\mathrm{mp} 147-150^{\circ} \mathrm{C}$.

EXAMPLE 13

5,7,13-TRIAZATETRACYCLO[9.3.1.0.10.0.4.8 PENTADECA-2(10),3,5,8-TETRAENE HYDROCHLORIDE
A) $\quad 5,7,13$-Triazatetracyclo[9.3.1.0 ${ }^{2.10} .0^{4.8}$]pentadeca-2(10),3,5,8-tetraene-13carboxylic acid tert-butyl ester (For conditions, see; Segelstein, B. E.; Chenard, B. L.; Macor, J. E.; Post, R. J. Tetrahedron Lett. 1993, 34, 1897.)

4,5-Diamino-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester ($1.0 \mathrm{~g}, 3.45 \mathrm{mmol}$) was dissolved in EtOH (10 mL) and HOAc (1 mL) and treated with ethoxymethylenemalononitrile ($421 \mathrm{mg}, 3.45 \mathrm{mmol}$). The resulting mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred 18 hours. The reaction was cooled, concentrated treated with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), then dried
$5 \quad\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and concentration, the residue was chromatographed to provide brown solids ($580 \mathrm{mg}, 56 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{t}} 0.28$)
B) 5,7,13-triazatetracyclo[9.3.1.0 ${ }^{2.10}$. $0^{4,8}$] pentadeca-2(10),3,5,8-tetraene hydrochloride 5,7,13-Triazatetracyclo[9.3.1.0 $0^{2,10} .0^{4,8}$]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester was converted to the title compound by the methods described in Example 12E. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.31$ (d , $J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $200.1\left[(\mathrm{M}+1)^{+}\right] . \mathrm{mp}>250^{\circ} \mathrm{C}$.

EXAMPLE 14

7-METHYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0 ${ }^{2,10}$. 0 4.8]PENTADECA-2(10),3,5,8-

TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 12D, 5,7,13triazatetracyclo[9.3.1.0 $0^{2,10} .0^{4.8}$]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester was converted to the title compound by reaction with iodomethane followed by deprotection as described in Example 12E. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.97$ ($\mathrm{s}, 1 \mathrm{H}$) , 7.71 (s , 1 H), 7.67 ($\mathrm{s}, 1 \mathrm{H}$), $3.94(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 214.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 15

6-METHYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. 4. $^{\text {. }}$]PENTADECA-2(10),3,5,8-

TETRAENE HYDROCHLORIDE

6-Methyl-5,7,13-triazatetracyclo[9.3.1.0 $0^{2.10} .0^{4,8}$]pentadeca-2(10),3,5,8-tetraene-13carboxylic acid tert-butyl ester was converted to the title compound by the methods described in Example 12E. ${ }^{1} \mathrm{H}$ NMR (400 MHz ; DMSO- d_{6}) $\delta 9.40$ ($\mathrm{br} \mathrm{m}, \mathrm{NH}$), 7.77 ($\mathrm{br} \mathrm{m}, \mathrm{NH}$), 7.70 (s, $1 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{br} \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.10$ (d, J=10.8 Hz, 1H). GCMS m/e $213.5\left(\mathrm{M}^{+}\right)$.

EXAMPLE 16

6,7-DIMETHYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0. ${ }^{2.10}$. $\mathbf{0}^{4.8}$]PENTADECA-

2(10), 3,5,8-TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 12D, 6-methyl-5,7,13triazatetracyclo[9.3.1.0 $0^{2.10} .0^{4.8}$]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl
ester was converted to the title compound by reaction with iodomethane followed by deprotection as described in Example 12E. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 9.52$ (s, NH). $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{br} \mathrm{m}, \mathrm{NH}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~m}$, $2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCl} \mathrm{MS} \mathrm{m} / \mathrm{e} 228.2\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp}$ $225-230^{\circ} \mathrm{C}$.

EXAMPLE 17
7-PROPYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0. ${ }^{2.10} \cdot 0^{4.8}$]PENTADECA-2(10),3,5,8-

TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 12D, 5,7,13triazatetracyclo[9.3.1.0 $0^{2.10} \cdot 0^{4,8}$]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester was converted to the title compound by reaction with iodopropane followed by deprotection as described in Example 12E. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}\right) \delta 9.52(\mathrm{~s}, 1 \mathrm{H})$, 9.45 (br s, NH), $7.97(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{br} \mathrm{m}, \mathrm{NH}), 4.43(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 3.33$ $(\mathrm{m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{APCl}$ MS m/e $242.2\left[(M+1)^{+}\right] . m p 170-171^{\circ} \mathrm{C}$ (subl.).

EXAMPLE 18

7-BUTYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. $0^{4.8}$]PENTADECA-2(10),3,5,8TETRAENE HYDROCHLORIDE
A) 4-Butylamino-5-nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester (For conditions, see; Senskey, M. D.; Bradshaw, J. D.; Tessier, C. A.; Youngs, W. J. Tetrahedron Lett. 1995, 36, 6217.)

4,5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester ($500 \mathrm{mg}, 1.43 \mathrm{mmol}$) and 1-butylamine ($1.42 \mathrm{~mL}, 14.3 \mathrm{mmol}$) were combined in THF (5 mL) and stirred 4 hours. The mixture was diluted with EtOAc (50 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to an oil. This oil was passed through a Silica gel filter column to remove baseline impurities eluting with 30% EtOAc/hexanes ($510 \mathrm{mg}, 1.41 \mathrm{mmol}, 99 \%$).
B)

4-Butylamino-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene-10carboxylic acid tert-butyl ester

4-Butylamino-5-nitro-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester ($460 \mathrm{mg}, 1.27 \mathrm{mmol}$) was treated with ammonium formate ($850 \mathrm{mg}, 12.7$
$\mathrm{mmol})$ and $10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(50 \mathrm{mg})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ and brought to reflux for 1 hour then filtered through a Celite pad and concentrated. The solids were treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and dried by filtration through a cotton plug to give an oil ($440 \mathrm{mg}, 100 \%$).
C) 7-Butyl-5,7,13-triazatetracyclo[9.3.1.0 ${ }^{2.10}$.0 ${ }^{4,8}$]pentadeca-2(10),3,5,8-tetraene-13carboxylic acid tert-butyl ester

4-Butylamino-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester ($440 \mathrm{mg}, 1.27 \mathrm{mmol}$) was dissolved in EtOH (20 mL) and HOAc (2 mL) and treated with ethoxymethylenemalononitrile ($186 \mathrm{mg}, 1.52 \mathrm{mmol}$). The resulting mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred 18 hours. The reaction was cooled, concentrated, treated with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution then extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and concentration, the residue was chromatographed to provide a yellow oil. ($400 \mathrm{mg}, 89 \%$). ($\mathrm{TLC} 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.70$).

> D) \quad-Butyl-5,7,13-triazatetracyclo $\left[9.3 .1 .0^{2,10} \cdot 0^{4,8}\right]$ pentadeca-2(10),3,5,8-tetraene hydrochloride
> $\quad 7$-Butyl-5,7,13-triazatetracyclo[9.3.1.0 carboxylic acid tert-butyl ester was converted to the title compound by the methods described in Example $12 \mathrm{E} .{ }^{4} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 9.93(\mathrm{brs}, \mathrm{NH}), 9.68(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H})$, $7.92(\mathrm{br} \mathrm{m}, \mathrm{NH}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}$, $1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. APCl MS m/e $256.2\left[(\mathrm{M}+1)^{+}\right] . \mathrm{mp} \mathrm{204-208}{ }^{\circ} \mathrm{C}$.

EXAMPLE 19

7-Isobutyl-5,7,13-triazatetracyclo[9.3.1.0 ${ }^{2,10} . \underline{0}^{4,8}$]pentadeca-2(10),3,5,8-tetraene hydrochloride

4,5-Dinitro-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester and isobutylamine were converted to the title compound utilizing the methods described in Example 18A-D. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.14$ (s, 1 H), 3.90 (dd, J=7.5,2.0 Hz, 2H), 3.04-2.97 (m, 4H), 2.70 (dd, J=12.8,2.3 Hz, 2H), 2.42 (m, $1 H), 2.19(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} m / e 256.2\left[(\mathrm{M}+1)^{+}\right] \mathrm{mp}$ $147-150{ }^{\circ} \mathrm{C}$ (subl.).
A) 6-Methyl-7-isobutyl-5,7,13-triazatetracyclo[9.3.1.0 ${ }^{2.10} .0^{4.8}$]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester

4-Amino-5-isobutylamino-10-aza-tricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3,5-triene-10carboxylic acid tert-butyl ester ($250 \mathrm{mg}, 0.74 \mathrm{mmol}$) from Example 19 B was dissolved in EtOH $(10 \mathrm{~mL})$ and HOAc (2 mL) and treated with 1-ethoxyethylenemalononitrile ($118 \mathrm{mg}, 0.87$ mmol). The reaction proceeded as in Example 18 C (18h) and was worked up similarly to provide product ($\mathrm{TLC} 3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.57$).
B) 6-Methyl-7-isobutyl-5,7,13-triazatetracyclo[9.3.1.0 ${ }^{2.10}$ O 4,8] pentadeca-2(10),3,5,8tetraene hydrochloride

6-Methyl-7-isobutyl-5,7,13-triazatetracyclo[9.3.1.0 $0^{2,10} .0^{4,8}$]pentadeca-2(10),3,5,8-tetraene-13-carboxylic acid tert-butyl ester was converted to the title compound by the methods described in Example 12E. APCI MS m/e $270.3\left[(M+1)^{+}\right] . m p 129-130^{\circ} \mathrm{C}$ (subl.).

EXAMPLE 21

7-PHENYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0 ${ }^{2,10} .0^{4,8}$]PENTADECA-2(10),3,5,8TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 18A, 4,5-dinitro-10-azatricyclo[6.3.1.0 $0^{2,7}$ dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester and aniline were converted to 4 -phenylamino-5-nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene-10carboxylic acid tert-butyl at $75^{\circ} \mathrm{C}$ for 4 hours in the coupling step. This was then converted to the title compound utilizing the methods described in Example 18B,C,D. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO_{6}) $\delta 9.08(1 \mathrm{H}), 7.78-7.57(\mathrm{~m}, 7 \mathrm{H}), 3.47-3.00(\mathrm{~m}, 6 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}$, $1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS}$ m/e $276.2\left[(\mathrm{M}+1)^{+}\right] . \mathrm{mp} 210-213^{\circ} \mathrm{C}$.

EXAMPLE 22

6-METHYL-7-PHENYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0.2.10.0.8. ${ }^{4}$ PENTADECA2(10), 3,5,8-TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 21 and Example 20, 4,5-dinitro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester and aniline were
converted to the title compound. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.79$ (s, 1H), 7.73-7.56 (m 5 H), $7.32(\mathrm{~s}, 1 \mathrm{H}), 3.46-2.99(\mathrm{~m}, 6 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCl}$ MS $m / e 290.2\left[(\dot{M}+1)^{+}\right] . m p>250^{\circ} \mathrm{C}$.

EXAMPLE 23

7-NEOPENTYL-5,7,13-TRIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. 0 . 8 . PENTADECA-2(10),3,5,8-TETRAENE HYDROCHLORIDE

Utilizing the methods described in Example 18A-D, 4,5-dinitro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester and neopentylamine were converted to the title compound. t-Boc precursor GCMS m/e $369\left(\mathrm{M}^{+}\right)$. (HCl salt) $\mathrm{mp}>250^{\circ} \mathrm{C}$.

EXAMPLE 24

6-METHML-7-NEOPENTYL-5,7,13-TRIAZATETRACYCLO99.3.1.0 ${ }^{210}$. ${ }^{4}$. PENTADECA-2(10),3,5,8-

TEIRAENE HYDROCHLORIDE

Utilizing the methods described in Example 21 and 20, 4,5-dinitro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester and neopentylamine were converted to the title compound. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 7.31$ $(\mathrm{s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{br} \mathrm{s}, \mathrm{NH}), 4.41(\mathrm{t}, \mathrm{J}=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.26(\mathrm{~m}, 6 \mathrm{H})$, $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{t}$-Boc precursor APCI MS m/e $384.2[(\mathrm{M}+$ 1) ${ }^{+}$]. $m p>250^{\circ} \mathrm{C}$.

EXAMPLE 25

6,7-DIMETHML-5,8,14-TRIAZATEIRACYCLO[10.3.1. 0^{211}. . $^{-9}$ HEXADECA2 2 (11),3,5,7,9PENTAENE HYDROCHLORIDE (Based on the following procedure: Jones, R. G.; McLaughlin, K. C. Org. Syn. 1963, 4, 824. b) Ehrlich, J., Bobert, M. T. J. Org. Chem. 1947, 522.)

4,5-Diamino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$) was warmed to $80^{\circ} \mathrm{C}$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. To this butane 2,3dione ($0.034 \mathrm{~mL}, 0.38 \mathrm{mmol}$) was added under N_{2} for 2 hours. The reaction was cooled to room temperature and extracted with EtOAc ($3 \times 40 \mathrm{ml}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed on Silica gel to provide an oil ($120 \mathrm{mg}, 100 \%$). The oil was dissolved in $2 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH} \mathrm{(} 5 \mathrm{~mL}$) and warmed to reflux for 30 minutes, then concentrated. Recrystallization from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ provided a white powder ($50 \mathrm{mg}, 43 \%$). (TLC EtOAc $\mathrm{R}_{\mathrm{f}} 0.14$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO-d d_{6})
$\delta 7.85$ ($\mathrm{s}, 2 \mathrm{H}$), $3.50(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.32(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 6 \mathrm{H})$, $2.24(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{t}$-Boc precursor APC| MS m/e $340.3\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 26

5,8,14-TRIAZATETRACYCLO[10.3.1.0 ${ }^{2.11}$. $0^{4.9}$ HEXADECA-2(11),3,5,7,9-PENTAENE HYDROCHLORIDE
A) 1-(4,5-Diamino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$. dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone

1-(4,5-Dinitro-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($3.0 \mathrm{~g}, 8.70 \mathrm{mmol}$) was hydrogenated in MeOH (30 ml) under H_{2} (45 psi) over $\mathrm{Pd}(\mathrm{OH})_{2}(300 \mathrm{mg}$ of $20 \mathrm{wt} \% / \mathrm{C}, 10 \% \mathrm{wt})$. After 2.5 hours the reaction was filtered through a Celite pad and rinsed with $\mathrm{MeOH}(30 \mathrm{ml})$. The solution was concentrated to a light brown oil which crystallized ($2.42 \mathrm{~g}, 96 \%$). (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{R}_{\mathrm{f}} 0.56$). APCI MS m/e 286.2 [(M+ 1) ${ }^{+}$]. mp 129-131 ${ }^{\circ} \mathrm{C}$.
B) 1-(5,8,14-Triazatetracyclo[10.3.1.0 ${ }^{2,11} .0^{4.9}$ hexadeca-2(11),3,5,7,9-pentaene)-2,2,2-trifluoro-ethanone

1-(4,5-Diamino-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($500 \mathrm{mg}, 1.75 \mathrm{mmol}$) was stirred in THF (2 ml). This mixture was treated with $\mathrm{H}_{2} \mathrm{O}$ (2 mL) and glyoxal sodium bisulfite addition compound hydrate ($931 \mathrm{mg}, 3.50 \mathrm{mmol}$) then stirred at $55^{\circ} \mathrm{C}$ for 2.5 hours. The reaction was cooled to room temperature and extracted with EtOAc ($3 \times 40 \mathrm{ml}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed on Silica gel to provide an off white powder ($329 \mathrm{mg}, 60 \%$). (TLC 25\% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.40$). mp $164-166^{\circ} \mathrm{C}$.
C)

5,8,14-Triazatetracyclo[10.3.1.0 ${ }^{2.11} .0^{4.9}$ hexadeca-2(11),3,5,7,9-pentaene hydrochloride

1-(5,8,14-Triazatetracyclo[10.3.1.0 $\left.0^{2,11} .0^{4,9}\right]$ hexadeca-2(11),3,5,7,9-pentaene)-2,2,2-trifluoro-ethanone ($320 \mathrm{mg}, 1.04 \mathrm{mmol}$) was slurried in $\mathrm{MeOH}(2.0 \mathrm{ml})$ and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($221 \mathrm{mg}, 2.08 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{ml})$. The mixture was warmed to $70^{\circ} \mathrm{C}$ for 2 hours, then concentrated, treated with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The organic layer was dried through a cotton plug and concentrated to give a light yellow oil (183 $\mathrm{mg}, 83 \%$) which solidified upon standing ($\mathrm{mp} 138-140^{\circ} \mathrm{C}$). This material was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$, treated with $3 \mathrm{M} \mathrm{HCl} / \mathrm{EtOAc}(3 \mathrm{ml}$), concentrated and azeotroped with MeOH
($2 \times 20 \mathrm{~mL}$) to give solids which were recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to afford product as a white solid ($208 \mathrm{mg}, 97 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.26$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.94(\mathrm{~s}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~d}, \mathrm{~J}=12.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{GCMS} \mathrm{m} / \mathrm{e} 211\left(\mathrm{M}^{+}\right) . \mathrm{mp} 225-230^{\circ} \mathrm{C}$.

EXAMPLE 27

14-METHML-5,8,14-TRIAZATEIRACYCLO $10.3 .1 .0^{211}$. ${ }^{-29}$ HEXADECA-2(11),3,5,7,9PENTAENE

HYDROCHLORIDE

5,8,14-Triazatetracyclo[10.3.1.0 $0^{2.11} .0^{4.9}$]hexadeca-2(11),3,5,7,9-pentaene (207 mg, 0.98 mmol) was treated with 37% aqueous formaline solution (1 mL) and formic acid (1 mL) then warmed to $80^{\circ} \mathrm{C}$ for 1 hour. The reaction was poured into water, made basic $(\mathrm{NaOH}, \mathrm{pH}$ ~11) and extracted with EtOAc. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and chromatographed on Silica gel to provide a yellow solid. This was stirred in $\mathrm{MeOH}(2 \mathrm{~mL})$ and treated with 3 N HCl EtOAc (2 mL). After concentration the solids were recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to afford product as a white solid ($70 \mathrm{mg}, 27 \%$). ($2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}}$ 0.47). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H})$, $2.47(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.84(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 226.2[(\mathrm{M}+$ $1)^{+}$]. $\mathrm{mp}>250^{\circ} \mathrm{C}$.

EXAMPLE 28

5-OXA-7,13-DIAZATETRACYCLO[9.3.1.0 $\left.0^{2.10} \cdot 0^{4.8}\right]$ PENTADECA-2(10),3,6,8-

TETRAENE HYDROCHLORIDE

A) 2,2,2-Trifluoro-1-(4-hydroxy-5-nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-ethanone

1-(4,5-Dinitro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($900 \mathrm{mg}, 2.61 \mathrm{mmol}$) and potassium acetate (KOAc) ($2.6 \mathrm{~g}, 26.1 \mathrm{mmol}$) were dissolved in DMSO (10 mL) and warmed with stirring to $100^{\circ} \mathrm{C}$ for 16 hours. The mixture was cooled and diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ then extracted with 80% EtOAc/hexanes ($6 \times 25 \mathrm{~mL}$). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated and purified by chromatography to give an oil ($575 \mathrm{mg}, 70 \%$). (TLC 50% EtOAc/hexanes $\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.56$)
B) 2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0.7.7 ${ }^{2,7 o d e c a-2(7), 3,5-~}$ trien-10-yl)-ethanone

2,2,2-Trifluoro-1-(4-hydroxy-5-nitro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10yl)-ethanone ($575 \mathrm{mg}, 1.82 \mathrm{mmol}$) was hydrogenated in MeOH under a H_{2} atmosphere at (45 psi) over $10 \% \mathrm{Pd} / \mathrm{C}(80 \mathrm{mg})$ for 1.5 hours then filtered through a Celite pad and concentrated to white solids ($450 \mathrm{mg}, 86 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}$ f 0.6). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.67-6.59(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}$, $2 H), 2.24(m, 1 H), 1.94(d, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $286\left(\mathrm{M}^{+}\right)$.
C) 2,2,2-Trifluoro-1-(5-oxa-7,13-diazatetracyclo[9.3.1.0 ${ }^{2.10}$. $0^{4.8}$]pentadeca-2(10),3,6,8-tetraene)-ethanone (Goldstein, S. W.; Dambek, P. J. J. Het. Chem. 1990, 27, 335.)

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-ethanone ($150 \mathrm{mg}, 0.524 \mathrm{mmol}$), trimethyl orthoformate ($0.19 \mathrm{~mL}, 1.73 \mathrm{mmol}$), pyridinium-p-toluenesulfonic acid (PPTS, $18 \mathrm{mg}, 0.07 \mathrm{mmol}$) and xylenes (10 mL) were combined under nitrogen and stirred at $135^{\circ} \mathrm{C}$ for 18 hours. The mixture was cooled, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and purified by chromatography to give an oil ($110 \mathrm{mg}, 71 \%$). (TLC 20% EtOAc/hexanes R_{f} 0.40)
D) 5-Oxa-7,13-diazatetracyclo[9.3.1.0 ${ }^{2.10}$. D. $^{4.8}$]pentadeca-2(10),3,6,8-tetraene hydrochloride

2,2,2-Trifluoro-1-(5-oxa-7,13-diazatetracyclo[9.3.1.0 $0^{2,10} .0^{4.8}$]pentadeca-2(10),3,6,8-tetraene)-ethanone ($110 \mathrm{mg}, 0.37 \mathrm{mmol}$) was stirred in $\mathrm{MeOH}(5 \mathrm{~mL})$ and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($78 \mathrm{mg}, 0.74 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The stirred mixture was warmed to $80^{\circ} \mathrm{C}$ for 2 hours, concentrated to solids, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The product was extracted into aqueous 1 N HCl solution ($2 \times 40 \mathrm{~mL}$) which was washed with EtOAc then neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to $\mathrm{pH} \sim 10$. The product was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and chromatographed on Silica gel to produce an oil. (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.19$).

The oil was dissolved in MeOH and treated with $3 \mathrm{~N} \mathrm{HCl} \mathrm{EtOAc} \mathrm{(} 4 \mathrm{~mL}$) then concentrated, stirred in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated with hexanes. After 18 hours, the product was collected by filtration ($55 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.47(\mathrm{~s}, 1 \mathrm{H})$, $7.70(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H})$, $2.15(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $201.03\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 29

6-METHYL-5-OXA-7.13-DIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. 0 .8. $]$ PENTADECA-

2(10), 3,6,8-TETRAENE HYDROCHLORIDE

A) 2,2,2-Trifluoro-1-(6-methyl 5-oxa-7,13-diazatetracyclo[9.3.1.0 ${ }^{2,10} .0^{4.8}$]pentadeca2(10), 3,6,8-tetraene)-ethanone

2,2,2-Trifiuoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-trien-$10-\mathrm{yl})$-ethanone ($150 \mathrm{mg}, 0.524 \mathrm{mmol}$), triethyl orthoacetate ($0.34 \mathrm{~mL}, 1.83 \mathrm{mmol}$), pyridinium-p-toluenesulfonic acid (PPTS, $20 \mathrm{mg}, 0.08 \mathrm{mmol}$) and xylenes (10 mL) were combined under nitrogen and stirred at $135^{\circ} \mathrm{C}$ for 18 hours. Workup, isolation and purification as in Example 28 C provided the title compound ($90 \mathrm{mg}, 55 \%$).
B) 6-Methyl-5-oxa-7,13-diazatetracyclo[9.3.1.0 ${ }^{2.10}$. $0^{4,8}$] pentadeca-2(10),3,6,8-tetraene hydrochloride

2,2,2-Trifluoro-1-(6-methyl $\quad 5$-oxa-7,13-diazatetracyclo[9.3.1.0 $\left.0^{2,10} \cdot 0^{4,8}\right]$ pentadeca-2(10),3,6,8-tetraene)-ethanone ($90 \mathrm{mg}, 0.30 \mathrm{mmol}$) was stirred in MeOH (5 mL) and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}(61 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The stirred mixture was warmed to $80^{\circ} \mathrm{C}$ for 2 hours, concentrated to solids, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed on Silica gel to produce an oil. (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.18$). ${ }^{1} \mathrm{H}$ NMR (free base) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40$ (s, 1H), $7.26(\mathrm{~s}, 1 \mathrm{H}), 3.05-2.98(\mathrm{~m}, 4 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 1.98$ (d, J=10.5 Hz, 1H).

The oil was dissolved in MeOH and treated with 3 N HCl EtOAc (4 mL) then concentrated, stirred in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated with hexanes. After 18 hours, the product was collected by filtration ($10 \mathrm{mg}, 13 \%$). APCI MS $m / e 215.2\left[(M+1)^{+}\right] . \mathrm{mp}>250{ }^{\circ} \mathrm{C}$.

EXAMPLE 30

2-FLUORO-N-(5-HYDROXY-10-AZA-TRICYCLO[6.3.1.0. ${ }^{2.7}$]DODECA-2(7),3,5-TRIEN-4-YL)-BENZAMIDE HYDROCHLORIDE

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien10 -yl)-ethanone ($150 \mathrm{mg}, 0.524 \mathrm{mmol}$), 2-fluorobenzoyl chloride ($0.07 \mathrm{~mL}, 0.576 \mathrm{mmol}$), pyridinium-p-toluenesulfonic acid (PPTS, $20 \mathrm{mg}, 0.08 \mathrm{mmol}$), pyridine ($0.046 \mathrm{~mL}, 0.576 \mathrm{mmol}$) and xylenes (5 mL) were combined under nitrogen and stirred at $135^{\circ} \mathrm{C}$ for 18 hours. After 24 hours, additional PPTS (50 mg) was added and the material stirred at $135^{\circ} \mathrm{C}$ for an additional 24 hours. Workup as above provided crude product ($145 \mathrm{mg}, 0.375 \mathrm{mmol}$) which was
combined with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})(80 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and heated to reflux. After 3 hours, the reaction was cooled and diluted with water then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($4 \times 40 \mathrm{~mL}$), dried through a cotton plug then chromatographed to remove baseline impurity ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)$). The crude material was treated with excess 3 N HCl EtOAc and concentrated, then dissolved in a minimum of MeOH and the solution was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. After stirring 4 hours the product was collected by filtration ($85 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.99(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 2 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $313.1\left[(M+1)^{+}\right] . m p 125-130^{\circ} \mathrm{C}$ (subl.).

EXAMPLE 31

4-CHLORO-10-AZATRICYCLO[6.3.1.0 ${ }^{27}$]DODECA-2(7),3,5-TRIENE HYDROCHLORIDE
A) 1-(4-Chloro-10-aza-tricyclo[6.3.1.0. ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone

Copper(I)chloride (CuCl) was prepared as follows: $\mathrm{CuSO}_{4}(4.3 \mathrm{~g})$ and $\mathrm{NaCl}(1.2 \mathrm{~g})$ were dissolved in hot $\mathrm{H}_{2} \mathrm{O}(14 \mathrm{~mL})$. sodium bisulfite $\left(\mathrm{NaHSO}_{3}\right)(1 \mathrm{~g})$ and sodium hydroxide $(\mathrm{NaOH})(690 \mathrm{mg})$ were dissolved in $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$ and added to the hot acidic solution over 5 minutes. The precipitated white solids were filtered and washed with water.

1-(4-Amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($460 \mathrm{mg}, 1.7 \mathrm{mmol}$) was dissolved in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and concentrated HCl solution(1 $\mathrm{mL})$ then cooled to $0^{\circ} \mathrm{C}$ and treated with a solution of sodium nitrite $\left(\mathrm{NaNO}_{2}\right)(275 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}$ (1 mL) dropwise. To the resulting solution was added a $\mathrm{CuCl}(202 \mathrm{mg}$, prepared as described above, 2.04 mmol) in concentrated HCl solution (2 mL) over 10 minutes (gas evolution observed). The resulting solution was warmed to $60^{\circ} \mathrm{C}$ for 15 minutes, then was cooled to room temperature and extracted with EtOAc ($4 \times 30 \mathrm{~mL}$). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solution was filtered and concentrated to an oil which was filtered through a Silica pad to remove baseline material eluting with 50\% EtOAc/hexanes to give an oil ($470 \mathrm{mg}, 95 \%$).
B) 4-Chloro-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride

1-(4-Chioro-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($470 \mathrm{mg}, 1.62 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(344 \mathrm{mg}, 3.24 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ (10 mL) were heated to reflux. After 2 hours, the reaction was cooled and diluted with water then extracted with EtOAc ($4 \times 40 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to a yellow oil. The crude material was treated with excess 3 N HCl EtOAc and concentrated, then
dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was saturated with hexanes and stirred. After stirring 4 hours the product was collected by filtration ($155 \mathrm{mg}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR (free base) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.68$, (m, $2 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR (HCl salt) ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 7.30-$ $7.20(\mathrm{~m}, 3 \mathrm{H}), 3.30-3.15(\mathrm{~m}, 6 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e 194.1 $\left[(M+1)^{+}\right]$.

EXAMPLE 32

10-AZATRICYCLO[6.3.1.0~2,7~]DODECA-2(7),3,5-TRIEN-4-YL
CYANIDE HYDROCHLORIDE
A) 1-(4-lodo-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone

1-(4-Amino-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($500 \mathrm{mg}, 1.85 \mathrm{mmol}$) was dissolved in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $(0.5 \mathrm{~mL})$ then cooled to $0^{\circ} \mathrm{C}$ and treated with a solution of sodium nitrite (NaNO_{2}) (140 mg , 2.04 mmol) in $\mathrm{H}_{2} \mathrm{O}\left(2 \mathrm{~mL}\right.$) dropwise. Potassium iodide ($460 \mathrm{mg}, 2.78 \mathrm{mmol}$) in $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution (0.5 mL) was added over 10 minutes (reaction becomes dark red). The resulting solution was warmed to room temperature and stirred 18 hours. The reaction was quenched with NaHSO_{3} and water (pH 2.5) then extracted with EtOAc ($4 \times 30 \mathrm{~mL}$). After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solution was filtered and concentrated to a yellow oil which was chromatographed on Silica gel to provide a yellow oil. ($260 \mathrm{mg}, 37 \%$). (TLC 30% EtOAc/hexanes $R_{f} 0.70$). (A 5.4 g scale performed as above yielded $5 \mathrm{~g}, 67 \%$).
B) 4-Iodo-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester

1-(4-lodo-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($5 \mathrm{~g}, 13.1 \mathrm{mmol}$) and 37% saturated aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution (50 mL) were stirred in $\mathrm{MeOH}(250 \mathrm{ml})$ for 2 hours then concentrated and azeotroped with $\mathrm{MeOH}(2 \times 50 \mathrm{~mL})$. The resulting product was stirred in 1,4 -dioxane (75 mL) and treated with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL). To this was added di-t-butyldicarbonate ($5.71 \mathrm{~g}, 26.2 \mathrm{mmol}$). After stirring 18 hours the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed on Silica gel (TLC 20\% EtOAc/hexanes) to provide product as an oil ($4.9 \mathrm{~g}, 98 \%$).
C) 4-Cyano-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester (Utilizing the methods described in: House, H. O.; Fischer, W. F. J. Org. Chem. 1969, 3626.)

CuCN (108 mg, 1.21 mmol) and $\mathrm{NaCN}(59 \mathrm{mg}, 1.21 \mathrm{mmol}$) were combined in dry DMF (6 mL) and warmed to $150^{\circ} \mathrm{C}$ under N_{2}. Solution occurs in 20 minutes. To this was added 4-iodo-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester ($232 \mathrm{mg}, 0.6 \mathrm{mmol}$) in DMF (3.5 mL) and the mixture was stirred for 18 hours at $150^{\circ} \mathrm{C}$. The reaction was cooled and diluted with 50% saturated aqueous NaCl solution and extracted with 50% EtOAc/hexanes ($3 \times 30 \mathrm{~mL}$). After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtration and concentration the product was isolated by chromatography ($86 \mathrm{mg}, 50 \%$). (TLC 20% EtOAc/hexanes $R_{f} 0.28$).
D) 10-Azatricyclo[6.3.1.0~2,7-]dodeca-2(7),3,5-trien-4-y! cyanide hydrochloride

4-Cyano-10-aza-tricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester was treated with $3 \mathrm{~N} \mathrm{HCI} \mathrm{EtOAc} \mathrm{(} 6 \mathrm{~mL}$) and warmed to reflux for 2 hours, then concentrated, dissolved in a minimum of MeOH which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred 18 hours. The product was collected by filtration ($49 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ 9.66 (br s, NH), 7.86 (br s, NH), 7.74-7.70 (m, 2H), $7.49(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-2.97(\mathrm{~m}, 6 \mathrm{H})$, $2.17(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $184\left(\mathrm{M}^{+}\right) . \mathrm{mp} 268-273^{\circ} \mathrm{C}$.

EXAMPLE 33

3-(10-AZATRICYCLO[6.3.1.0 ${ }^{2,7}$]DODECA-2(7),3,5-TRIEN-4-YL)-5-METHYL-1,2,4OXADIAZOLE HYDROCHLORIDE

4-Cyano-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester ($300 \mathrm{mg}, 1.1 \mathrm{mmol}$) was stirred in EtOH (10 mL). To this hydroxyl amine hydrochloride ($382 \mathrm{mg}, 5.5 \mathrm{mmol}$) and NaOH ($242 \mathrm{mg}, 6.05 \mathrm{mmol}$) were added and the mixture was warmed to reflux. After 45 minutes, the reaction was cooled, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford a yellow solid (110 $\mathrm{mg}, 0.35 \mathrm{mmol})$. This solid was dissolved in pyridine (1 mL) and treated with acetyl chloride ($0.03 \mathrm{~mL}, 0.415 \mathrm{mmol}$) and warmed to $100^{\circ} \mathrm{C}$ for 18 hours. The reaction was cooled, treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic extracts were washed with water and saturated aqueous NaCl solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Chromatography on Silica gel afforded product ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$). (25% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.18$). This product was treated with $2 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH} \mathrm{(} 10 \mathrm{~mL}$), heated to $70^{\circ} \mathrm{C}$ for 1 hour, cooled, concentrated and recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to provide product (15 mg). APCI MS m/e $242.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 34
1-(10-AZATRICYCLO[6.3.1.0. ${ }^{2.7}$]DODECA-2(7),3,5-TRIEN-4-YL)-1-ETHANONE HYDROCHLORIDE
A) 1-(4-Acetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone

1-(10-Aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone (253 $\mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{AcCl}(0.68 \mathrm{~mL}, 10 \mathrm{mmol})$ were dissolved in DCE (3 mL) and treated with aluminum chloride $\left(\mathrm{AlCl}_{3}\right)(667 \mathrm{mg}, 5.0 \mathrm{mmol})$. The resulting yellow mixture was stirred for 30 minutes then poured over ice and saturated aqueous NaHCO_{3} solution. After stirring 20 minutes the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layer was dried through a cotton plug then concentrated to a orange-yellow oil ($255 \mathrm{mg}, 86 \%$).
B) 4-Acetyl-10-aza-tricycio[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tertbutyl ester

1-(4-Acetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifiuoroethanone ($1.3 \mathrm{~g}, 4.37 \mathrm{mmol}$) and 37% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution (10 mL) were stirred in MeOH $(30 \mathrm{ml})$ for 3 hours, then concentrated and azeotroped with $\mathrm{MeOH}(2 \times 50 \mathrm{~mL})$. (This product could be converted to an HCl salt directly: see the next example.) The resulting product was stirred in 1,4-dioxane (20 mL) and treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (5 mL). To this was added di-t-butyldicarbonate ($1.91 \mathrm{~g}, 8.74 \mathrm{mmol}$). After stirring 2 hours, the reaction was treated with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and chromatographed to provide an oil (1.3 g, 100\%). (TLC 40\% EtOAc/hexanes $R_{f} 0.56$).
C) 1-(10-Azatricyclo[6.3.1.0 ${ }^{2,7}$ ddodeca-2(7),3,5-trien-4-yl)-1-ethanone hydrochloride

4-Acetyl-10-aza-tricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester ($190 \mathrm{mg}, 0.63 \mathrm{mmol}$) was treated with excess 3 N HCl EtOAc and warmed to $70^{\circ} \mathrm{C}$ for 1 hour then concentrated and dissolved in a minimum of MeOH . The resulting solution was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. After 18 hours the white crystalline product was collected by filtration ($81 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}$) $\delta 9.75$ ($\mathrm{br} \mathrm{s}, \mathrm{NH}$), 7.89 (s, 1H), 7.88 (d, $\mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.74(\mathrm{br} \mathrm{s}, \mathrm{NH}), 7.44(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.22(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.00(\mathrm{br}$ $\mathrm{m}, 2 \mathrm{H}$), $2.54(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.02\left(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$). GCMS m/e 201 (M^{+}). mp 198-202 ${ }^{\circ} \mathrm{C}$.

EXAMPLE 35

10-AZATRICYCLO[6.3.1.0 ${ }^{2,7}$]DODECA-2(7),3,5-TRIEN-4-OL HYDROCHLORIDE
A) Acetic acid 10-trifluoroacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-4-yl ester

1-(4-Acetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($2.5 \mathrm{~g}, 8.41 \mathrm{mmol}$) and 3-chloroperoxybenzoic acid (m-CPBA) (7.5 g .42 mmol) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and warmed to $40^{\circ} \mathrm{C}$ for 18 hours. The mixture was cooled to room temperature, then treated with dimethylsulfide $\left(\mathrm{Me}_{2} \mathrm{~S}\right)(3 \mathrm{~mL}, 40.8 \mathrm{mmol})$ and stirred 24 hours. The resulting mixture was poured into ice and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(100 \mathrm{~mL})$ then extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 40 \mathrm{~mL})$. The organic layer was washed saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($3 \times 40 \mathrm{~mL}$) then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to afford an oil ($1.83 \mathrm{~g}, 69 \%$). (TLC EtOAc R f 0.80).
B) 2,2,2-Trifiuoro-1-(4-hydroxy-10-aza-tricyclo[6.3.1.0. ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)ethanone

Acetic acid 10-trifluoroacetyl-10-aza-tricycio[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-4-yl ester ($900 \mathrm{mg}, 2.87 \mathrm{mmol}$) was stirred in $\mathrm{MeOH}\left(20 \mathrm{~mL}\right.$) and saturated aqueous NaHCO_{3} solution (15 mL) for 48 hours. The mixture was concentrated, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ then dried through a cotton plug. Chromatography on Silica gel provided pure product ($420 \mathrm{mg}, 54 \%$). (TLC $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{R}_{\mathrm{f}} 0.44$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.05(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.16$ (brs, 1H), $3.09(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$.
C) 10-Azatricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7),3,5-trien-4-ol hydrochioride

2,2,2-Trifluoro-1-(4-hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-
ethanone ($50 \mathrm{mg}, 0.184 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(3 / 1,5 \mathrm{~mL}$), treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ ($40 \mathrm{mg}, 0.369 \mathrm{mmol}$) and warmed to $65^{\circ} \mathrm{C}$ for 2 hours. The mixture was concentrated, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ then dried through a cotton plug. Filtration through a Silica gel plug provided an oil ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) which was treated with 3 N HCI EtOAc (3 mL) then concentrated, dissolved in a minimum of MeOH which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred. After 18 hours the white crystalline product was collected by filtration ($10 \mathrm{mg}, 26 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDOD}_{3}\right) \delta 7.16(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.72 (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.32-3.28(4H), 3.09 (dd, $J=14.5,12.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.32(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} \mathrm{m} / \mathrm{e} 176.2\left[(\mathrm{M}+1)^{+}\right] . \mathrm{mp} 308(\mathrm{dec} .)^{\circ} \mathrm{C}$.

EXAMPLE 36
 7-METHYL-5-OXA-6,13-DIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. ${ }^{4.8}$]PENTADECA-
 2,4(8),6,9-TETRAENE HYDROCHLORIDE
 A) 1-(4-Acetyl-5-hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ [dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone

Acetic acid 10-trifluoroacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-4-yl ester ($800 \mathrm{mg}, 2.55 \mathrm{mmol}$) was combined with $\mathrm{AlCl}_{3}\left(1.0 \mathrm{~g}, 7.65 \mathrm{mmol}\right.$) and warmed to $170^{\circ} \mathrm{C}$ for 2 hours. The mixture was cooled and treated with 1 N aqueous HCl solution (20 mL), extracted with EtOAc and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography affords an oil ($190 \mathrm{mg}, 24 \%$). (TLC EtOAc $\mathrm{R}, 0.75) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.58(\mathrm{~s}, 0.5 \mathrm{H}), 12.52(\mathrm{~s}, 0.5 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}$, $1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H})$, $2.35(\mathrm{~m}, 1 \mathrm{H}), 1.97$ (br d, J=11.2 Hz, 1H).
B)

2,2,2-Trifluoro-1-[4-hydroxy-5-(1-hydroxyimino-ethyl)-10-aza-
tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl]-ethanone
1-(4-Acetyl-5-hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone ($190 \mathrm{mg}, 0.605 \mathrm{mmol}$), hydroxylamine $\mathrm{HCl}(99 \mathrm{mg}, 1.21 \mathrm{mmol}$) and NaOAc ($118 \mathrm{mg}, 1.21 \mathrm{mmol}$) were combined in $\mathrm{MeOH}(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and warmed to $65^{\circ} \mathrm{C}$ for 18 hours. The mixture was cooled, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc which was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to provide a yellow oil ($177 \mathrm{mg}, 93 \%$).
C) 2,2,2-Trifluoro-7-Methyl-5-oxa-6,13-diazatetracyclo[9.3.1.0 ${ }^{2,10} .0^{4,8}$. pentadeca-

2.4(8),6,9-tetraene-ethanone

The above oil, 2,2,2-trifluoro-1-[4-hydroxy-5-(1-hydroxyimino-ethyl)-10-azatricyclo[6.3.1.0 $0^{2,7}$ dodeca-2(7),3,5-trien-10-yl]-ethanone ($177 \mathrm{mg}, 0.54 \mathrm{mmol}$) was stirred in DCE (3 mL), treated with triethylamine $(0.4 \mathrm{~mL}, 2.8 \mathrm{mmol})$ and acetic anhydride $\left(\mathrm{Ac}_{2} \mathrm{O}\right)(0.3$ $\mathrm{mL}, 2.8 \mathrm{mmol}$) then stirred 18 hours. The reaction was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to a yellow oil which was dissolved in anhydrous DMF (3 mL) and treated with $60 \% \mathrm{NaH}$ in oil ($32 \mathrm{mg}, 1.08 \mathrm{mmol}$). After stirring 18 hours, additional $60 \% \mathrm{NaH}$ in oil was introduced (33 mg) and the mixture was stirred 2 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with 80% EtOAc/hexanes ($3 \times 30 \mathrm{~mL}$). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated and chromatographed to provide an oil (40% EtOAc/hexanes $R_{f} 0.56$).
D) 7-Methyl-5-oxa-6,13-diazatetracyclo[9.3.1.0 ${ }^{2.10}$. . $^{4.8}$]pentadeca-2,4(8),6,9-tetraene hydrochloride

Utilizing the methods described in Example 9C, 2,2,2-Trifluoro-7-Methyl-5-oxa-6,13diazatetracyclo[9.3.1.0 $0^{2,10} \cdot 0^{4,8}$]pentadeca-2,4(8),6,9-tetraene-ethanone was converted to the title compound. This was treated with 3 N HCl EtOAc (3 mL), concentrated and dissolved in a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which was saturated with hexanes and stirred. After 18 hours the white crystalline product was collected by filtration (18 mg, 13% overall). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d $_{6}$) $\delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 3.42-2.98(\mathrm{~m}, 6 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}$, $\mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $215.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 37

4-(2-Methyl-2H-pyrazol-3-yl)-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene
hydrochloride and 4-(1-Methyl-1H-pyrazol-3-yl)-10-aza-tricyclo[6.3.1. $0^{2,7}$ dodeca-2(7),3,5triene hydrochloride

1-(4-Acetyl-10-aza-tricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone ($1.0 \mathrm{~g}, 3.3 \mathrm{mmol}$) and dimethylformamide dimethylacetal (DMF-DMA) ($4.0 \mathrm{~g}, 33.6$ $\mathrm{mmol})$ were warmed to $140^{\circ} \mathrm{C}$ for 18 hours. After cooling, a crystalline precipitate was filtered and rinsed with EtOAc ($690 \mathrm{mg}, 58 \%$).

The above solid, 3-dimethylamino-1-(10-trifluoroacetyl-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-4-yl)-propenone, ($200 \mathrm{mg}, 0.56 \mathrm{mmol}$) was dissolved in EtOH (2 mL) and treated with $5 \mathrm{~N} \mathrm{HCl} \mathrm{EtOH} \mathrm{(} 0.1 \mathrm{~mL}$) followed by methyl hydrazine (0.6 mmol). The resulting mixture was warmed to $70^{\circ} \mathrm{C}$ for 4 hours. The mixture was cooled, diluted with water and extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Chromatography on Silica gel provided a $3 / 1$ mixture of regioisomeric products (130 mg , 68\%). (TLC 50\% EtOAc/hexanes $R, 0.40$).

The above oil ($130 \mathrm{mg}, 0.388 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})(82 \mathrm{mg}, 0.775 \mathrm{mmol})$ were stirred in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ for 18 hours. After cooling the reaction was diluted with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dried through a cotton plug and concentrated. The product was purified by chromatography on Silica gel and concentrated to an oil. The salt was generated with $2 \mathrm{~N} \mathrm{HCl} \mathrm{MeOH} ,\mathrm{concentrated} \mathrm{and} \mathrm{recrystallized} \mathrm{from} \mathrm{MeOH} / E t O A c$ to provide a $3 / 1$ mixture of regioisomeric pyrrazoles ($85 \mathrm{mg}, 58 \%$). ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R} \mathrm{f} 0.25$). TFAprecursor APCI MS m/e $336.2\left[(M+1)^{+}\right]$.

EXAMPLE 38

4,5-DICHLORO-10-AZATRICYCLO[6.3.1.0 ${ }^{2.7}$ [DODECA-2(7),3,5-TRIENE

 HYDROCHLORIDEA) 1-(4,5-Dichloro-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoroethanone (Based on Campaigne, E.; Thompson, W. J. Org. Chem. 1950, 72, 629.)

1-(10-Aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone (539 $\mathrm{mg}, 2.1 \mathrm{mmol}$) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and treated with $\mathrm{ICl}_{3}(\mathrm{~s})(982 \mathrm{mg}, 4.21 \mathrm{mmol})$. The resulting orange solution was stirred 0.5 hours, poured into saturated aqueous NaHSO_{3} solution (25 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, dried through a cotton plug and concentrated to an oil ($570 \mathrm{mg}, 84 \%$) (TLC 50\% EtOAc/hexanes $R_{f} 0.62$).
B) 4,5-dichloro-10-azatricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene hydrochloride

1-(4,5-Dichloro-10-aza-tricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-
ethanone ($570 \mathrm{mg}, 1.75 \mathrm{mmol}$) was stirred in $\mathrm{MeOH}(25 \mathrm{~mL})$ and treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})(5 \mathrm{~g}$. 47 mmol) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The stirred mixture was warmed to $70^{\circ} \mathrm{C}$ for 4 hours, concentrated to solids, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The product was extracted into 1 N aqueous HCl solution ($2 \times 40 \mathrm{~mL}$) which was washed with EtOAc then neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to $\mathrm{pH} \sim 10$. Product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×40 mL), filtered through a cotton plug and concentrated to an oil ($400 \mathrm{mg}, 100 \%$).

The oil was dissolved in MeOH and treated with $3 \mathrm{~N} \mathrm{HCl} \mathrm{EtOAc} \mathrm{(} 4 \mathrm{~mL}$) and concentrated, then dissolved in a minimum of MeOH and which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred 18 hours. The product was collected by filtration ($210 \mathrm{mg}, 45 \%$). (TLC 50% EtOAc/hexanes $\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.08$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 7.58(\mathrm{~s}, 2 \mathrm{H}), 3.33-2.97(\mathrm{~m}$, $6 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz,DMSO-d d_{6}) δ 141.02, 130.60, $126.58,45.54,40.55,38.30$. GCMS $m / e 227,229\left(\mathrm{M}^{+}\right) . \mathrm{mp} 283-291^{\circ} \mathrm{C}$.

EXAMPLE 39
 $N^{4}, N^{4}-D I M E T H M-10 A Z A T R I C Y C L O\left[6.3 .1 .0^{23}\right.$ DODECA-2(7),3,5-TRIENE-4SULFONAMIDE HYDROCHLORIDE

A) 10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7),3,5-triene-4-sulfonyl chloride

1-(10-Aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-2,2,2-trifluoro-ethanone (530 $\mathrm{mg}, 2.1 \mathrm{mmol}$) was added to chlorosulfonic acid ($2 \mathrm{~mL}, 30 \mathrm{mmol}$) and stirred for 5 minutes.

The mixture was quenched with ice, extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to provide an oil ($640 \mathrm{mg}, 87 \%$). (TLC 30% EtOAc/hexanes $R_{f} 0.15$).
B) $\quad \mathrm{N}^{4}, \mathrm{~N}^{4}$-Dimethyl-10-azatricyclo[6.3.1.0 ${ }^{2,7}$ dodeca-2(7),3,5-triene-4-sulfonamide hydrochloride

10-Trifluoroacetyl-10-aza-tricyclo[6.3.1.0 $0^{2.7}$]dodeca-2(7),3,5-triene-4-sulfonyl chloride ($320 \mathrm{mg}, 0.9 \mathrm{mmol}$) was stirred in THF (10 mL) and treated with $40 \% \mathrm{Me}_{2} \mathrm{NH} / \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL}$). After 10 minutes the mixture was concentrated and chromatographed on Silica gel (TLC 30% EtOAc/hexanes $R_{f} 0.31$) to provide an oil ($256 \mathrm{mg}, 78 \%$). This material was dissolved in $\mathrm{MeOH}(6 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{OH}(2 \mathrm{~mL})$ and stirred 18 hours. The mixture was concentrated and azeotroped from $\mathrm{MeOH}(3 x)$ The resulting oil was dissolved in MeOH and treated with 3 N HCl EtOAc (4 mL), concentrated, dissolved in a minimum of MeOH and which was saturated with $\mathrm{Et}_{2} \mathrm{O}$ and stirred 18 hours. The product was collected by filtration as a white powder (163 mg , 59%). (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.54$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (data, free base) ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.64(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.07$ (dd, $\mathrm{J}=12.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.69(\mathrm{~s}, 6 \mathrm{H}), 2.45,(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 128.43,124.16,122,75,46.67,46.55,42.11,39,44,37,81$. GCMS m/e $266\left(\mathrm{M}^{+}\right)$. (data HCl salt) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$) $\delta 7.68-7.52(3 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~m}, 2 \mathrm{H})$, $3.04(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. GCMS m/e $266\left(\mathrm{M}^{+}\right)$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{HCl}$: C, 51.56; H, 6.32; $\mathrm{N}, 9.25$. Found $\mathrm{C}, 51.36 ; \mathrm{H}, 6.09 ; \mathrm{N}, 9.09$.

EXAMPLE 40
4-(1-PYRROLIDINYLSULFONYL)-10-AZATRICYCLO[6.3.1.0 ${ }^{2.7}$.]DODECA-2(7),3,5-

TRIENE HYDROCHLORIDE

The pyrrolidine analogue was prepared from 10-trifluoroacetyl-10-azatricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene-4-sulfonyl chioride ($320 \mathrm{mg}, 0.9 \mathrm{mmol}$) as by substituting pyrroline in the coupling step described in Example 39B. The TFA product was isolated as an oil ($314 \mathrm{mg}, 89 \%$). Deprotection and conversion to the salt as in Example 39B affords a white powder ($189 \mathrm{mg}, 63 \%$). (TLC $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.60$). (TLC 50% EtOAc/hexanes R, 0.65). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H})$, 7.37 (d, J=8.0 Hz, 1H), 3.30-3.15 (m, 8H), $3.00(\mathrm{~m} 2 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.72(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.91,144.08,136.65,127.90,124.18,122.36$, $50.43,47.87,46.80,46.63,42.11,39.63,25.10$. APCI MS m/e $293\left[(M+1)^{+}\right]$. (data HCl salt) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.78(\mathrm{br} \mathrm{s}, \mathrm{NH}), 8.1(\mathrm{br} \mathrm{s}, \mathrm{NH}), 7.73(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$
(dd, J=8.0,1.5 Hz, 1H), $7.53(d, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.01(10 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~d}, \mathrm{~J}=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 4 \mathrm{H})$. GCMS m/e $292\left(\mathrm{M}^{+}\right)$. Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{HCl} .1 / 2 \mathrm{MeOH}$: C, 54.07; H, 6.47; N, 8.51. Found C, 53.98; H,6.72; N, 8.12

EXAMPLE 41

5,13-DIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. $\mathbf{0}^{4.8}$]PENTADECA-2,4(8),9-TRIEN-6-ONE HYDROCHLORIDE (The title compound was prepared following the procedures described in Quallich, G. J.; Morrissey, P. M. Synthesis 1993, 51-53, treating 4,5-dinitro-10-azatricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3,5-triene-10-carboxylic acid tert-butyl ester as an equivalent to an ortho fluoro phenyl moiety.) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 10.42$ (s, NH), 9.88 (br s, NH), $7.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.13(\mathrm{~m}, 4 \mathrm{H}), 2.93$ $(\mathrm{m}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{APCI} \mathrm{MS} m / e 215.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 42

6-OXO-5-OXA-7,13-DIAZATETRACYCLO[9.3.1.0 2.10. ${ }^{4.8}$ PENTADECA-2(10),3,6,8TETRAENE HYDROCHLORIDE (For references, see: Nachman, R. J. J. Het. Chem. 1982, 1545.)

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-10-yl)-ethanone ($317 \mathrm{mg}, 1.11 \mathrm{mmol}$) was stirred in THF (10 mL), treated with carbonyldiimidazole ($269 \mathrm{mg}, 1.66 \mathrm{mmol}$) and warmed to $60^{\circ} \mathrm{C}$ for 18 hours. The mixture was concentrated, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$) and washed with 1 N aqueous HCl solution (3×10 mL). The organic layer was dried through a cotton plug, concentrated and chromatographed on Silica gel (50% EtOAc/Hexanes) to provide an oil (130 mg). This material converted to the title compound by the methods described in Example 9C. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ 11.78 (s, NH), 9.56 (br s, NH), 7.63 (br s, NH), 7.24 (s, 1H), 7.07 ($\mathrm{s}, 1 \mathrm{H}$), 3.26 (br s, 2H), 3.16 (br t, J=9.5 Hz, 1H), 2.93 (br s, 1H), $2.18(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $217.2\left[(M+1)^{+}\right]$.

EXAMPLE 43

3-TRIFLUOROMETHYL-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7),3,5-TRIENE
HYDROCHLORIDE (See Grunewald, G. L.; Paradkar, V. M.; Pazhenchevsky, B.; Pleiss, M. A.; Sall, D. J.; Seibel, W. L.; Reitz, T. J. J. Org. Chem. 1983, 48, 2321-2327. Grunewald, G. L.; Markovich, K. M.; Sall, D. J. J. Med. Chem. 1987, 30, 2191-2208.)

The title compound was prepared by the methods described in Example 1 and 2 starting with 2-fluoro-6-trifluoromethylbromobenzene. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.67-7.50$
$(3 \mathrm{H}), 3.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 1 \mathrm{H}), 3.28-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~d}$, $\mathrm{J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}$). APCl MS $\mathrm{m} / \mathrm{e} 228.2\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) mp 275-277${ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N} . \mathrm{HCl} .1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.44 ; \mathrm{H}, 5.11 ; \mathrm{N}, 5.19$. Found C. 53.73; H, 4.83; N, 5.16.

EXAMPLE 44
3-PHENYL-10-AZA-TRICYCLO[6.3.1.0 ${ }^{\frac{2.7}{} \text { DDODECA-2(7),3,5-TRIENE }}$ HYDROCHLORIDE
A) 5-Fluoro-1,4-dihydro-1,4-methano-naphthalene and 5-iodo-1,4-dihydro-1,4-methano-naphthalene
(Eisch, J. J.; Burlinson, N. E. J. Amer. Chem. Soc. 1976, 98, 753-761. Paquette, L. A.; Cottrell, D. M.; Snow, R. A. J. Amer. Chem. Soc. 1977, 99, 3723-3733.)

Magnesium turnings ($9.37 \mathrm{~g}, 385 \mathrm{mmol}$) were stirred in anhydrous THF (1000 mL) in a flame dried 2 L 3 neck round bottom flask equipped with a non-equalizing addition funnel with a N_{2} flow adapter, magnetic stirrer and efficient condenser equipped with a N_{2} flow adapter. The flask was stirred and warmed to reflux by a removable heating mantle. 2,6-Difluoro-iodobenzene (0.3 g) was added followed by of 3 N EtMgBr in THF (0.3 mL). The addition funnel was charged with an intimate mixture of cyclopentadiene ($24.24 \mathrm{~g}, 367 \mathrm{mmol}$) and 2,6 -difluoro-iodobenzene ($88.0 \mathrm{~g}, 367 \mathrm{mmol}$). Small portions ($\sim 1 \mathrm{~mL}$) of the intimate mixture were introduced to assist initiation $(\sim 4 x)$. After ~ 15 minutes, the reaction initiated (exotherm, and vapor condensation) and heating was maintained as necessary during the addition of the contents of the addition funnel. The reaction was then maintained at reflux for ~1 hour (no SM by GCMS).

The reaction was cooled to room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ followed by aqueous 1 N HCl solution (200 mL) to dissolve the solids. Product was extracted with hexanes ($4 \times 150 \mathrm{~mL}$). The combined organic layer was washed with saturated aqueous NaHCO_{3} solution (150 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered through a Silica plug with hexanes rinse and concentrated to an oil (70 g). Chromatography on Silica gel eluting with hexanes provided two lots (9.0 and 21.0 g), which contained primarily 5-iodo-1,4-dihydro-1,4-methanonaphthalene. (TLC hexanes $R_{f} 0.63$).
B) 5-lodo-1,2,3,4-tetrahydro-1,4-methano-naphthalene-2,3-diol

5-lodo-1,4-dihydro-1,4-methano-naphthalene (20 g) and N -methyl morpholine N -oxide ($17.61 \mathrm{~g}, 130 \mathrm{mmol}$) were stirred in acetone $(90 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(13 \mathrm{~mL})$. To this was added a solution of $\mathrm{OsO}_{4}(0.2 \mathrm{~mL}, 2.5 \% \mathrm{wt}$. solution in $\mathrm{t}-\mathrm{BuOH}, 0.02 \mathrm{mmol}$). After 144 hours, florisil (5 g) and saturated aqueous NaHSO_{3} solution (3 mL) were added and stirred for $1 / 2$ hour. The
mixture was filtered through a Celite pad and the filtrate concentrated to produce an oil which was purified by chromatography on Silica gel eluting with a gradient of hexanes to 100% EtOAc to provide a yellow solid (13.73 g). APCI MS m/e 301.1 [($\left.\mathrm{M}-1)^{+}\right]$.
C) 10-Benzyl-3-iodo-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene

5-lodo-1,2,3,4-tetrahydro-1,4-methano-naphthalene-2,3-diol ($8.33 \mathrm{~g}, 27.6 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{NBnCl}(10 \mathrm{mg})$ were vigorously stirred in dichloroethane (25 mL) and $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$ then treated with sodium periodate $(6.17 \mathrm{~g}, 29.0 \mathrm{mmol})$. After 1.5 hours, the layers were separated and the aqueous layer extracted with DCE ($2 \times 40 \mathrm{~mL}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$ until no reaction to starch iodide paper was observed, then with saturated aqueous NaCl solution (30 mL). The organic layer was dried through a cotton plug and treated with benzyl amine ($3.16 \mathrm{~mL}, 29.0 \mathrm{mmol}$) and stirred for 2 minutes then transferred to an addition funnel. This solution was added over ~ 10 minutes to a vigorously stirred cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of $\mathrm{NaHB}(\mathrm{OAC})_{3}(18.72 \mathrm{~g}, 88.0 \mathrm{mmol})$ in DCE $(150 \mathrm{~mL})$. After addition was complete, the mixture was stirred without cooling for 2 hours. The mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (100 mL) and stirred for 1 hour, then the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed with saturated aqueous NaCl solution (50 mL), dried through a cotton plug and concentrated. Chromatography on Silica gel provided an oil ($6.3 \mathrm{~g}, 61 \%$). (TLC 5\% EtOAc/hexanes $\mathrm{Rf}_{\mathrm{f}} 0.10$). ${ }^{\top} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ $7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{AB} \mathrm{dd}, \mathrm{J}=14.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}$), 3.21 (br s, 1H), 3.04 (br d, $\mathrm{J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (br d, $\mathrm{J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 ($\mathrm{d}, \mathrm{J}=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e 376.0 $\left[(M+1)^{+}\right]$.
D) 10-Benzyl-3-phenyl-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ ddodeca-2(7),3,5-triene
(For a discussion, see: Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457 2483.)

10-Benzyl-3-iodo-10-aza-tricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3,5-triene (375.3 mg, 1.0 mmol), potassium acetate ($785 \mathrm{mg}, 8.0 \mathrm{mmol}$) and phenyl boronic acid ($183 \mathrm{mg}, 1.5 \mathrm{mmol}$) were combined in $10 / 1 \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was degassed (3 vacuum $/ \mathrm{N}_{2}$ cycles), treated with tetrakis(triphenylphosphine)palladium(0) ($57.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) and warmed to 90 ${ }^{\circ} \mathrm{C}$ for 18 h . The reaction was cooled, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic layer was washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to provide an oil ($180 \mathrm{mg}, 55 \%$). (TLC 4\%EtOAc/hexanes R, 0.18). GCMS m/e 325 (M) ${ }^{+}$.
E) 3-Phenyl-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene hydrochloride

10-Benzyl-3-phenyl-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene was converted into the title compound utilizing the conditions described in Example 2D. (TLC 10% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right) \mathrm{R}_{\mathrm{f}} 0.30$). (data for free base) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.15$ (8 H), 3.17 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), $3.01(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=10.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ (dd, $J=10.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $236.2\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) mp 262-265 ${ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N} . \mathrm{HCl} .1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 73.26 ; \mathrm{H}, 6.86 ; \mathrm{N}, 5.19$. Found $\mathrm{C}, 73.50$; $\mathrm{H}, 6.77$; $\mathrm{N}, 5.04$.

EXAMPLE 45

3-HYDROXY-10-AZA-TRICYCLO[6.3.1.0 ${ }^{2.7}$]DODECA-2(7),3,5-TRIENE

 HYDROCHLORIDEA) 10-Benzyl-3-boronic acid-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ ddodeca-2(7),3,5-triene 10-Benzyl-3-iodo-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene ($3.0 \mathrm{~g}, 7.99 \mathrm{mmol}$) was stirred in anhydrous THF (40 mL) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen and treated dropwise with n BuLi (3.84 mL of 2.5 M soln. in hexanes, 9.59 mmol). After 10 minutes, tri-isopropylborate ($4.61 \mathrm{~mL}, 20.0 \mathrm{mmol}$) was added dropwise. After $\sim 1 / 2$ hour, the reaction was poured into saturated aqueous NaHCO_{3} solution, stirred 5 minutes and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and concentrated. The residue was dissolved in $30 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes and extracted with 1 N NaOH aqueous solution ($4 \times 50 \mathrm{~mL}$). The combined aqueous basic layer was treated with concentrated HCl to achieve pH 8 and extracted with EtOAc $(4 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and stripped. Chromatography on Silica gel eluting first with 3% EtOAc/hexanes to remove nonpolar components, then with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ provides the title compound. (TLC 25% EtOAc/hexanes $R_{1} 0.60$).
B) 10-Benzyl-3-hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$ dodeca-2(7),3,5-triene

10-Benzyl-3-boronic acid-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene (140 mg, 0.48 mmol) dissolved in THF (5 mL) was treated with N -methylmorpholine- N -oxide $(64.5 \mathrm{mg}$, 0.48 mmol) and brought to reflux for 1 hour. The reaction was concentrated and chromatographed on Silica gel to provide product. (TLC 25% EtOAc/hexanes $R_{f} 0.18$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.15(3 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, \mathrm{J}=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3.51(\mathrm{AB} \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28$ (br s, 1H), 3.06 (br s, 1H), 2.91 (dd, $J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (ddd, J=8.5,1.5,1.5 Hz, 1H), 2.42 $(\mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCIMS $m / e 266.5\left[(M+1)^{+}\right]$.
C) 3-Hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-triene hydrochloride

10-Benzyl-3-hydroxy-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-triene (160 mg, 0.60 mmol) was converted into the title compound by the methods described in Example $1 \mathrm{D} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15$ (dd, $\left.\mathrm{J}=8.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.84(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (d, $\mathrm{J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.33-3.25(3 \mathrm{H}), 3.16(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ $(\mathrm{m}, 1 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H})$. APCl MS m/e $175.8\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) mp 253-255${ }^{\circ} \mathrm{C}$.

EXAMPLE 46
4,5-DIFLUORO-10-AZA-TRICYCLO[6.3.1.0 ${ }^{-2.7}$ DODECA-2(7),3,5-TRIENE

HYDROCHLORIDE

The title compound was prepared by the methods described in Example 1 and 2 starting with 2,4,5-trifluorobromobenzene. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.48-3.13 (6H), $2.38(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $196.2\left[(\mathrm{M}+1)^{+}\right] .(\mathrm{HCl}$ salt) $\mathrm{mp} 301-303{ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{~N} . \mathrm{HCl} .1 / 6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.30 ; \mathrm{H}, 5.30 ; \mathrm{N}, 5.97$. Found C, 56.66; H, 5.41; N, 5.96.

EXAMPLE 47

6-ETHYL-5-OXA-7,13-DIAZATETRACYCLO[9.3.1.0 ${ }^{2,10} \cdot 0^{4.8}$]PENTADECA-2(10),3,6,8TETRAENE HYDROCHLORIDE

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2,7}$]dodeca-2(7),3,5-trien-$10-\mathrm{yl})$-ethanone and propionyl chloride were converted to the title compound following the procedures described in Example 30 and Goldstein, S. W.; Dambek, P. J. J. Het. Chem. 1990, 27, 335. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}$, 2 H), $3.41(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(2 \mathrm{H}), 3.01(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~d}, \mathrm{~J}=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.42(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. APCI MS m/e $229.2\left[(\mathrm{M}+1)^{+}\right]$.

EXAMPLE 48

6-ISOPROPYL-5-OXA-7,13-DIAZATETRACYCLO[9.3.1.0. ${ }^{2,10}$. $0^{4.8}$ IPENTADECA2(10), 3,6,8-TETRAENE HYDROCHLORIDE

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 ${ }^{2.7}$]dodeca-2(7),3,5-trien-10-yl)-ethanone and isobutyryl chloride were converted to the title compound following the procedures described in EXAMPLE 47. (TLC 25\% EtOAc/hexanes $\mathrm{R}_{\mathrm{f}} 0.14$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.65(2 \mathrm{H}), 3.49(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.41(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.19(3 \mathrm{H}), 2.45(\mathrm{~m}$, $1 \mathrm{H}), 2.18(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}) . \mathrm{APCl} \mathrm{MS} \mathrm{m} / \mathrm{e} 243.2\left[(\mathrm{M}+1)^{+}\right]$. (HCl salt) mp 249-251 ${ }^{\circ} \mathrm{C}$.
-73-

EXAMPLE 49

6-BENZYL-5-OXA-7,13-DIAZATETRACYCLO[9.3.1.0 ${ }^{2.10}$. $0^{4.8}$ PENTADECA-

2(10), 3, 6,8-TETRAENE HYDROCHLORIDE

2,2,2-Trifluoro-1-(4-hydroxy-5-amino-10-aza-tricyclo[6.3.1.0 $0^{2,7}$]dodeca-2(7),3,5-trien-$10-\mathrm{yl}$-ethanone and phenyl-acetyl chloride were converted to the title compound following the procedures described in EXAMPLE 47. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.58$ $(\mathrm{s}, 1 \mathrm{H}), 7.36-7.24(5 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.18$ $(2 H), 2.42(m, 1 H), 2.15(d, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$. APCI MS m/e $291.2\left[(\mathrm{M}+1)^{+}\right]$.

CLAIMS

1. A compound of the formula

R^{1} is hydrogen, $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl, unconjugated $\left(\mathrm{C}_{3}-\mathrm{C}_{6}\right)$ alkenyl, $\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}$ or $-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{O}-$ $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkyl;
R^{2} and R^{3} are selected, independently, from hydrogen, $\left(C_{2}-C_{6}\right)$ alkenyl, $\left(C_{2}-C_{6}\right)$ alkynyl, hydroxy, nitro, amino, halo, cyano, $-\mathrm{SO}_{\mathrm{q}}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein q is zero, one or two, $\left(\mathrm{C}_{1} . \mathrm{C}_{6}\right.$) alkylamino-, $\quad\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-, $\quad-\mathrm{CO}_{2} \mathrm{R}^{4}, \quad-\mathrm{CONR}^{5} \mathrm{R}^{6}, \quad-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8}, \quad-\mathrm{C}(=0) \mathrm{R}^{13}$, $-\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}$, aryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- or aryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-O-, wherein said aryl is selected from pheny! and naphthyl, heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- or heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-O-, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur, and $X^{2}\left(C_{0}-C_{6}\right)$ alkoxy- $\left(C_{0}-C_{6}\right)$ alkyl-, wherein X^{2} is absent or X^{2} is ($C_{1}-C_{6}$)alkylamino- or $\left[\left(C_{1}-C_{6}\right) \text { alkyl }\right]_{2}$ amino-, and wherein the ($C_{0}-C_{6}$)alkoxy-($C_{0}-$ C_{6}) alkyl- moiety of said $\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- contains at least one carbon atom, and wherein from one to three of the carbon atoms of said $\left(C_{0}-C_{6}\right)$ alkoxy- $\left(C_{0}-C_{6}\right)$ alkyl- moiety may optionally be replaced by an oxygen, nitrogen or sulfur atom, with the proviso that any two such heteroatoms must be separated by at least two carbon atoms, and wherein any of the alkyl moieties of said ($\mathrm{C}_{0} \mathrm{C}_{6}$) alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- may be optionally substituted with from two to seven fluorine atoms, and wherein one of the carbon atoms of each of the alkyl moieties of said aryl($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl- and said heteroaryl-($\mathrm{C}_{0}-\mathrm{C}_{3}$)alkyl-may optionally be replaced by an oxygen, nitrogen or sulfur atom, and wherein each of the foregoing aryl and heteroaryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents, independently selected from ($\mathrm{C}_{1}-\mathrm{C}_{6}$) alkyl optionally substituted with from one to seven fluorine atoms, ($\mathrm{C}_{1}-\mathrm{C}_{6}$) alkoxy optionally substituted with from two to seven fluorine atoms, halo (e.g., chloro, fluoro, bromo or iodo), ($\mathrm{C}_{2}-\mathrm{C}_{6}$)alkenyl, ($\mathrm{C}_{2}-\mathrm{C}_{6}$)alkynyl, hydroxy, nitro, cyano, amino, ($\mathrm{C}_{1}-$ C_{6})alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=O) \mathrm{R}^{13}$ and $X C(=O) R^{13}$;
or R^{2} and R^{3}, together with the carbons to which they are attached, form a four to seven membered monocyclic, or ten to fourteen membered bicyclic, carbocyclic ring that can be saturated or unsaturated, wherein from one to three of the nonfused carbon atoms of said monocyclic rings, and from one to five of the carbon atoms of said bicyclic rings that are not part
of the benzo ring shown in formula I, may optionally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents, preferably from zero to two substituents for the monocyclic rings and from zero to three substituents for the bicyclic rings, that are selected, independently, from ($C_{1}-C_{6}$) alkyl optionally substituted with from one to seven fluorine atoms, ($\mathrm{C}_{1}-\mathrm{C}_{6}$) alkoxy optionally substituted with from one to seven fluorine atoms, nitro, cyano, halo, $\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right.$) alkenyl, ($\mathrm{C}_{2}-\mathrm{C}_{6}$) alkynyl, hydroxy, amino, ($\mathrm{C}_{1}-\mathrm{C}_{6}$) alkylamino and $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino, $\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$ and $-\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}$;
each $R^{4}, R^{5}, R^{6}, R^{7}, R^{8}$ and R^{13} is selected, independently, from hydrogen and ($C_{1}-C_{6}$) alkyl, or R^{5} and R^{6}, or R^{7} and R^{8} together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperizine, N - $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylpiperizine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each X is, independently, $\left(C_{1}-C_{6}\right)$ alkylene;
with the proviso that: (a) at least one of R^{1}, R^{2} and R^{3} must be the other than hydrogen, and (b) when R^{2} and R^{3} are both hydrogen, R^{1} cannot be hydrogen or methyl;
or a pharmaceutically acceptable salt thereof;
2. A compound according to claim 1, wherein R^{2} and R^{3}, together with the benzo ring of formula I, form a bicyclic ring system selected from the following:

wherein R^{10} and R^{17} are selected, independently, from ($C_{0}-C_{6}$)alkoxy- $\left(C_{0}-C_{6}\right)$ alkylwherein the total number of carbon atoms does not exceed six and wherein any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms; nitro, cyano, halo,
amino, $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylamino-, $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} N R^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$, $-X C(=O) R^{13}$, phenyl and monocyclic heteroaryl, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur,
3. A compound according to claim 1, wherein R^{2} and R^{3} do not, together with the benzo ring of formula I, form a bicyclic or tricyclic ring system.
4. A compound according to claim 1 , wherein one or both of R^{2} and R^{3} are $-C(=O) R^{13}$ wherein R^{13} is $\left(C_{1}-C_{6}\right)$ alkyl.
5. A compound according to claim 1, wherein one of R^{2} and R^{3} is $-\operatorname{COR}^{13}$ wherein R^{13} is $\left(C_{1}-C_{6}\right)$ alkyl or $\left(C_{1}-C_{3}\right)$ alkyl optionally substituted with from one to seven fluorine atoms.
6. A compound according to claim 1, wherein one of R^{2} and R^{3} is $C F_{3}$, fluoro, cyano or $\mathrm{C}_{2} \mathrm{~F}_{5}$.
7. A pharmaceutical composition for use in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising an amount of a compound according to claim 1 that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use and a pharmaceutically acceptable carrier.
8. A method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising administering to said mammal an amount of a compound according to claim 1 that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.
9. A pharmaceutical composition for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal,
comprising an amount of a compound according to claim 1 that is effective in treating such disorder or condition and a pharmaceutically acceptable carrier.
10. A method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multiinfarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound according to claim 1 that is effective in treating such disorder or condition.
11. A compound of the formula

wherein P is hydrogen, methyl, COOR^{16} wherein R^{16} is $\left(C_{1}-C_{6}\right)$ alkyl, allyl or 2,2,2trichloroethyl; $-C(=O) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in formula 1 above; $-C(=O) H$, $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl, t-butoxycarbonyl (t-Boc) or trifluoroacetyl, and R^{14} and R^{15} are selected, independently, from hydrogen, $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluorine atoms; $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl, cyano, hydroxy, nitro, amino, $-O\left(C_{1}-C_{6}\right)$ alkyl and halo; with the proviso that R^{14} and R^{15} can not both be hydrogen when P is hydrogen or methyl.
12. A method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising administering to said mammal an amount of a compound comprising an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.
13. A method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral scierosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dysiexia, schizophrenia, multiinfarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof;
that is effective in treating such disorder or condition.
14. A compound of the formula

wherein R^{2} and R^{3} are defined as in claim 1 ; and P^{\prime} is COOR^{16} wherein R^{16} is allyl, 2,2,2-trichloroethyl or ($C_{1}-C_{6}$)alkyl; $-C(=O) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in claim 2;
$5-\mathrm{C}(=\mathrm{O}) \mathrm{H},-\mathrm{C}(=\mathrm{O})\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl, or t butoxycarbonyl (t-Boc).

Form PCT/SA/210 (second sheen) (Luly 1992)

Information on patent tamily members
PCT/IB 98/01813

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 3471503 A $\quad 07-10-1969$	NONE		

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference PC10030AKXD	FOR FURTHER $\begin{gathered}\text { see Notification of Transmittal of InternationalSearch Report } \\ \text { (Form PCT/ISA/220) as well as, where applicable, item } 5 \text { below }\end{gathered}$ ACTION	
International application No. PCT/IB 98/01813	International filing date (day/month/year) 13/11/1998	$\begin{gathered} \text { (Earliest) Priority, Date (day/month/year) } \\ 31 / 12 / 1997 \end{gathered}$
Applicant PFIZER PRODUCTS INC.		

This International Search Report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.

This International Search Report consists of a total of \qquad 3 sheets.
X It is also accompanied by a copy of each prior art document cited in this report.

1. X Certain claims were found unsearchable(see Box i).
2.Unity of invention is lacking(see Box II).
3.The international application contains disclosure of a nucleotide and/or amino acid sequence listing and the international search was carried out on the basis of the sequence listing
filed with the international application.
furnished by the applicant separately from the international application,
but not accompanied by a statement to the effect that it did not include matter going beyond the disclosure in the international application as filed.

Transcribed by this Authority
4. With regard to the title, X
the text is approved as submitted by the applicant
the text has been established by this Authority to read as follows:
5. With regard to the abstract,

X the text is approved as submitted by the applicant
\square the text has been established, according to Rule 38.2 (b), by this Authority as it appears in
Box III. The applicant may, within one month from the date of mailing of this International Search Report, submit comments to this Authority.
6. The figure of the drawings to be published with the abstract is:

Figure No. \qquad
 as suggested by the applicant.None of the figures. because the applicant failed to suggest a figure. because this figure better characterizes the invention.

Form PCT/ISA/210 (first sheet) (July 1992)

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. X Claims Nos.:
$8,10,12,13$
because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claims $8,10,12,13$
are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. \qquad Claims Nos.:
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking(Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
1.As all required additional search fees were timely paid by the applicant. this International Search Report covers all searchable claims.
2.As all searchable claims could be searched without effort justifying an additional fee. this Authority did not invitepayment of any additional fee.
3.As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
The additional search fees were accompanied by the applicant's protest.
\square No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

Form PCT/ISA2210 (second sheet) (July 1992)

U.S. Appl. No.

International Appl. No.
[20 months30 months

NOTES :	$:$

| 35 US.C. 371 - Recelpt of Request (PTO-1390) |
| :--- | :--- |
| Date Acceptable Oatt/ Declaration Received |
| Date Complete 35 U.S.C. 371 |
| 102(e) Date |
| Date of Completion of DO/EO 906 - Notification of Missing 102(e) Requirements |
| Date of Completion of DO/EO 907 - Notification of Acceptance for 102(e) Date |
| Date of Completion of DO/EO 911 - Application Accepted Uader 35 U.S.C. 111 |
| Date of Completion of DO/EO 905 - Notification of Missing Requirements |
| Date of Completion of DO/EO 916 - Notification of Defcetive Response |
| Date of Completion of DO/EO 903 - Notification of Acceptance |
| Date of Completion of DO/EO 909 - Notificatiou of Abandonment |

NOTIFICATION OF ACCEPTANCE OF APPLICATION UNDER 35 U.S.C. 371 AND 37 CFR 1.494 OR 1.495

1. The applicant is hereby advised that the United States Patent and Trademark Office in its capacity as C Designated Office (37 CFR 1.494), \square an Elected Office (37 CFR 1.495), has determined that the above identified international application has met the requirements of 35 U.S.C. 371, and is ACCEPTED for national patentability examination in the United States Patent and Trademark Office
2. The United States Application Number assigned to the application is shown above and the relevant dates are:

28 SEP 1999
35 U.S.C. 102(e) DATE

28 SEP 1999

DATE OF RECEIPT OF
35 U.S.C. 371 REQUIREMENTS

A Filing Receipt (PTO-103X) will be issued for the present application in due course. THE DATE appearing on the filing receipt as the "Filing date" is the date on which THE LAST OF THE 35 U.S.C. 371(C) REQUREMENTS HAS BEEN RECEIVED IN THE OFFICE. THIS DATE IS SHOWN ABOVE. The filing date of the above identified application is the international filing date of the international application (Article 11(3) and 35 U.S.C. 363). Once the Filing Receipt has been received, send all correspondence to the Group Art Unit designated thereon.
3. A request for immediate examination under 35 U.S.C. 371(f) was received on 28 SEP 1999 and the application will be examined in turn.
4. The following items have been received:
45.S: Basic National Fee.
\square Copy of the international application in:
\square a non-English language.
English.Translation of the international application into English.
Oath or Declaration of inventors(s) for DO/EO/US.
Copy of Article 19 amendments. \square Translation of Article 19 amendments into English. The Article 19 amendmentshave not been entered.The International Preliminary Examination Report in English and its Annexes, if any. Copy of the Annexes to the International Preliminary Examination Report (IPER). \square Translation of Annexes to the IPER into English.
The Annexes \square have \square have not been entered.
\square Preliminary amendment(s) filed \qquad and \qquad .
Information Disclosure Statement(s) filed \qquad and
Assignment document.
Power of Attorney and/or Change of Address.
Substitute specification filed \qquad
Statement Claiming Small Entity Status.
Priority Document.
Copy of the International Search Report and copies of the references cited therein. Other:

Applicant is reminded that any conmunication to the United States Patent and Trademark Office must be mailed to the address given in the heading and include the U.S. application no. shown above. (37 CFR 1.5)

FORM PCT/DO/EO/903 (December 1997)

1.

A compound of the formula

R^{1} is hydrogen. $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl, unconjugated $\left(\mathrm{C}_{3}-\mathrm{C}_{6}\right)$ alkenyl, $\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}$ or $-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{O}-$ ($\mathrm{C}_{1}-\mathrm{C}_{4}$)alkyl;
R^{2} and R^{3} are selected, independently, from hydrogen, $\left(C_{2}-C_{6}\right)$ alkenyl, $\left(C_{2}-C_{6}\right)$ alkynyl. hydroxy, nitro amino. halo, cyano, $-\mathrm{SO}_{q}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein q is zero, one or two, $\left(\mathrm{C}_{1} . \mathrm{C}_{6}\right.$) alkylamino-, $\quad\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6} \text {) alkyl }\right]_{2}\right.$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4}, \quad-\mathrm{CONR}^{5} \mathrm{R}^{6}, \quad-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8}, \quad-\mathrm{C}(=0) \mathrm{R}^{13}$ 。 $-X C(=O) R^{13}$, aryl- $\left(C_{0}-C_{3}\right)$ alkyl- or aryl- $\left(C_{0}-C_{3}\right)$ alkyl-O-, wherein said aryl is selected from phenyl and naphthyl. heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- or heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-O-, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen. nitrogen and sulfur, and $X^{2}\left(C_{0}-C_{6}\right)$ alkoxy- $\left(C_{0}-C_{6}\right)$ alkyl-, wherein X^{2} is absent or X^{2} is $\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylamino- or $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-, and wherein the $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\right.$ C_{6})alkyl- moiety of said $\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- contains at least one carbon atom, and wherein from one to three of the carbon atoms of said ($\mathrm{C}_{0}-\mathrm{C}_{6}$) alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl-moiety may optionally be replaced by an oxygen, nitrogen or sulfur atom, with the proviso that any two such heteroatoms must be separated by at least two carbon atoms, and wherein any of the alkyl moieties of said $\left(\mathrm{C}_{0} \mathrm{C}_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkyl- may be optionally substituted with from two to seven fluorine atoms. and wherein one of the carbon atoms of each of the alkyi moieties of said aryl-$\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl- and said heteroaryl- $\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)$ alkyl-may optionally be replaced by an oxygen, nitrogen or sulfur atom. and wherein each of the foregoing aryl and heteroaryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents. independently selected from $\left(C_{1}-C_{6}\right)$ alkyl optionally substituted with from one to seven fluorine atoms, $\left(C_{1}-C_{6}\right)$ alkoxy optionally substituted with from two to seven fluorine atoms. halo (e.g., chloro, fluoro, bromo or iodo), ($\mathrm{C}_{2}-\mathrm{C}_{6}$)alkenyl, ($\mathrm{C}_{2}-\mathrm{C}_{6}$) alkynyl, hydroxy, nitro, cyano, amino, ($\mathrm{C}_{1}-$ C_{6})alkylamino. $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}$ amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6} .-\mathrm{SO}_{2} N R^{7} R^{8} .-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$ and $X C(=0) R^{13}$.
or R^{2} and R^{3}, together with the carbons to which they are attached, form a four to seven membered monocyclic. or ten to fourteen membered bicyclic, carbocyclic ring that can be saturated or unsaturated. wheren from one to three of the nonfused carbon atoms of said monocyclic rings. and from one to five of the carbon atoms of said bicyclic rings that are not part
of the benzo ring shown in formula I, may optionally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents. preferably from zero to two substituents for the monocyclic rings and from zero to three substituents for the bicyclic rings, that are selected, independently, from ($C_{1}-C_{6}$) alkyl optionally substituted with from one to seven fluorine atoms, ($\mathrm{C},-\mathrm{C}_{6}$) alkoxy optionally substituted with from one to seven fluorine atoms, nitro, cyano, halo, $\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)$ alkenyl, $\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)$ alkynyl, hydroxy, amino, ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkylamino and $\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl}\right]_{2}$ amino, $\mathrm{CO}_{2} R^{4},-C O N R^{5} R^{6},-\mathrm{SO}_{2} N R^{7} R^{8},-\mathrm{C}(=O) \mathrm{R}^{13}$ and $-\mathrm{XC}(=0) \mathrm{R}^{13}$.
each $R^{4}, R^{5}, R^{6}, R^{7}, R^{8}$ and R^{13} is selected, independently, from hydrogen and ($C_{1}-C_{6}$) alkyl, or R^{5} and R^{6}, or R^{7} and R^{8} together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperizine. $N-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkylpiperizine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each X is, independently, $\left(C_{1}-C_{6}\right)$ alkylene;
with the proviso that: (a) at least one of R^{1}, R^{2} and R^{3} must be the other than hydrogen, and (b) when R^{2} and R^{3} are both hydrogen. R^{1} cannot be hydrogen or methyl;
or a pharmaceutically acceptable salt thereof;
2. A compound according to claim 1, wherein R^{2} and R^{3}, together with the benzo ring of formula I. form a bicyclic ring system selected from the following:

wherein R^{10} and R^{17} are selected. independently, from $\left(C_{0}-C_{6}\right)$ alkoxy- $\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$ alkylwherein the total number of carbon atoms does not exceed six and wherein any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms: nitro. cyano. halo.
amino, ($\mathrm{C}_{1}-\mathrm{C}_{6}$)alkylamino-, $\left(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\right.$ alkyl I_{2} amino-, $-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}$, $-\mathrm{XC}(=0) \mathrm{R}^{13}$. phenyl and monocyclic heteroaryl, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur,
3. A compound according to claim 1 , wherein R^{2} and R^{3} do not, together with the benzo ring of formula I . form a bicyclic or tricyclic ring system.
4. A compound according to claim 1. wherein one or both of R^{2} and R^{3} are $-C(=O) R^{13}$ wherein R^{13} is ($\left.C_{1}-C_{6}\right)$ alkyl.
5. A compound according to claim 1 , wherein one of R^{2} and R^{3} is $-C O R^{13}$ wherein R^{13} is ($C_{1}-C_{6}$)alkyl or ($C_{1}-C_{3}$)alkyl optionally substituted with from one to seven fluorine atoms.
6. A compound according to claim 1, wherein one of R^{2} and R^{3} is $C F_{3}$, fluoro, cyano or $\mathrm{C}_{2} \mathrm{~F}_{5}$.
7. A pharmaceutical composition for use in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising an amount of a compound according to claim 1 that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use and a pharmaceutically acceptable carrier.
8. A method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising administering to said mammal an amount of a compound according to claim 1 that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.
9. A pharmaceutical composition for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome. spastic dystonia. chronic pain. acute pain, celiac sprue, pouchitis. vasoconstriction, anxiety, panic disorder. depression. bipolar disorder, autism. sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g. dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke. traumatic brain injury (TBI). psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia. age related cognitive decline. epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD). Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal.
comprising an amount of a compound according to claim 1 that is effective in treating such disorder or condition and a pharmaceutically acceptable carrier.
10. A method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue. pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag. amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g.: dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines. barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI). psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multiinfarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD). Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound according to claim 1 that is effective in treating such disorder or condition.
11. A compound of the formula

wherein P is hydrogen, methyl, COOR^{16} wherein R^{16} is $\left(C_{1}-C_{6}\right)$ alkyl, allyl or 2.2.2trichloroethyl; $-C(=O) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in formula 1 above; $-C(=O) H$. $-\mathrm{C}(=\mathrm{O})\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl, t-butoxycarbonyl (t-Boc) or trifluoroacetyl, and R^{14} and R^{15} are selected, independently, from hydrogen. ($C_{1}-C_{6}$) alkyl optionally substituted with from one to seven fluorine atoms; $-C(=O)\left(C_{1}-C_{6}\right)$ alkyl. cyano hydroxy. nitro. amino. $-O\left(C_{1}-C_{6}\right)$ alkyl and hato: with the proviso that R^{14} and R^{15} can not both be hydrogen when P is hydrogen or methyl
12. A method for reducing nicotine addiction or aiding in the cessation or lessening of tobacco use in a mammal, comprising administering to said mammal an amount of a compound comprising an amount of a compound of the formula

or a pharmaceutically acceptable salt thereof, that is effective in reducing nicotine addiction or aiding in the cessation or lessening of tobacco use.
13. A method for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol. benzodiazepines. barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI). psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multiinfarct dementia. age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD). Parkinson's disease (PD). attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound of the formuta

or a pharmaceutically acceptable salt thereof:
that is effective in treating such disorder or condition.
14. A compound of the formula

wherein R^{2} and R^{3} are defined as in claim 1; and P^{\prime} is COOR^{16} wherein R^{16} is allyl. 2.2.2-trichloroethyl or $\left(C_{1}-C_{6}\right)$ alkyl; $-C(=O) N R^{5} R^{6}$ wherein R^{5} and R^{6} are defined as in claim 2 :
$5 \quad-\mathrm{C}(=\mathrm{O}) \mathrm{H},-\mathrm{C}(=\mathrm{O})\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)$ alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluoro or chloro atoms; benzyl, or t butoxycarbonyl (t-Boc).

Brende

Ibased structure seach on a ductionary search in the registryfile.

I peached for the set ihat has
C6/es = Benzere Nofuseon
$C 6 / e 5 S=$ benzere with fusson alloved
$C 5 / e s=c y c l o p e n t a r e ~ n o ~ f u s e o n ~$
C5/eSS = cyclo pentane with fusion allowed
NCS/es = pypendine No fusum
NCS/esS = pypendere unt fusion allowed
$S=$ Sare rerg syptern
allaws samening
I used this for a substructure Johnd. seanch

```
"> d his
```

(FILE 'HOME' ENTERED AT 07:04:44 ON 20 SEP 2000)

```
(FILE 'HOME' ENTERED AT 07:04:44 ON 20 SEP 2000)
FILE 'REGISTRY' ENTERED AT 07:04:48 ON, 20 SEP 2000
FILE 'REGISTRY' ENTERED AT 07:04:48 ON, 20 SEP 2000
            STR
            STR
        O S L1
        O S L1
        SCR 1840
        SCR 1840
        0 S L1 AND L3
        0 S L1 AND L3
        18336 S C6/ESS(S)C5/ESS(S)NC4/ESS
        18336 S C6/ESS(S)C5/ESS(S)NC4/ESS
        2 S L1 AND L3 SSS SAM SUB=L5
        2 S L1 AND L3 SSS SAM SUB=L5
        37 S L1 AND L3 SSS FUL SUB=L5
        37 S L1 AND L3 SSS FUL SUB=L5
FILE 'CAPLUS' ENTERED AT 07:07:13 ON 20 SEP 2000
FILE 'CAPLUS' ENTERED AT 07:07:13 ON 20 SEP 2000
        S L7
        S L7
FILE 'CAOLD' ENTERED AT 07:08:33 ON 20 SEP 2000
FILE 'CAOLD' ENTERED AT 07:08:33 ON 20 SEP 2000
        S L7
        S L7
FILE 'BEILSTEIN' ENTERED AT 07:08:38 ON 20 SEP 2000
FILE 'BEILSTEIN' ENTERED AT 07:08:38 ON 20 SEP 2000
        STR L1
        STR L1
            O S L10 FUL
            O S L10 FUL
FILE 'HCAPLUS' ENTERED AT 07:14:11 ON 20 SEP 2000
FILE 'HCAPLUS' ENTERED AT 07:14:11 ON 20 SEP 2000
        207 S COE J?/AU
        207 S COE J?/AU
        387 S BROOKS P?/AU
        387 S BROOKS P?/AU
            3 S L12 AND L13
            3 S L12 AND L13
                SELECT RN L14 1-3
                SELECT RN L14 1-3
FILE 'REGISTRY' ENTERED AT 07:14:33 ON 20 SEP 2000
FILE 'REGISTRY' ENTERED AT 07:14:33 ON 20 SEP 2000
        158 S E1-158
        158 S E1-158
FILE 'HCAPLUS' ENTERED AT 07:14:55 ON 20 SEP 2000
FILE 'HCAPLUS' ENTERED AT 07:14:55 ON 20 SEP 2000
            2 S L14 AND L15
            2 S L14 AND L15
            1 S L14 NOT L16
            1 S L14 NOT L16
FILE 'REGISTRY' ENTERED AT 07:16:50 ON 20 SEP 2000
FILE 'REGISTRY' ENTERED AT 07:16:50 ON 20 SEP 2000
    32259 S C6/ESS(S)C5/ESS(S)NC5/ESS
    32259 S C6/ESS(S)C5/ESS(S)NC5/ESS
            \ S L1 AND L3 SSS SAM SUB=L18
            \ S L1 AND L3 SSS SAM SUB=L18
        134 S Ll AND L3 SSS FUL SUB=L18
        134 S Ll AND L3 SSS FUL SUB=L18
FILE 'CAPLUS' ENTERED AT 07:18:32 ON 20 SEP 2000
FILE 'CAPLUS' ENTERED AT 07:18:32 ON 20 SEP 2000
            5 S L20
            5 S L20
FILE 'CAOLD' ENTERED AT 07:19:59 ON 20 SEP 2000
FILE 'CAOLD' ENTERED AT 07:19:59 ON 20 SEP 2000
            O S L20
            O S L20
FILE 'BEILSTEIN' ENTERED AT 07:20:15 ON 20 SEP 2000
FILE 'BEILSTEIN' ENTERED AT 07:20:15 ON 20 SEP 2000
    O S L10 FUL
    O S L10 FUL
FILE 'REGISTRY' ENTERED AT 07:20:39 ON 20 SEP 2000
FILE 'REGISTRY' ENTERED AT 07:20:39 ON 20 SEP 2000
                SAV L20 COLE402/A
```

 SAV L20 COLE402/A
    ```
```

LX ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2000 ACS
AA 2000:332706 HCAPLUS
TI Boron trichloride/tetra-n-butylammonium iodide: A mild, selective
combination reagent for the cleavage of 1.degree.-alkyl aryl ethers.
AU Coe, Jotham; Wirtz, Michael C.; Brooks, Paige R.;
Rescek, Diane M.; Woodworth, Graeme F.; Morgan, Bradley P.
CS Neuroscience, Pfizer, Inc, Groton, CT, 06340, USA
SO Book of Abstracts, 219 th ACS National Meeting, San Francisco, CA, March
26-30, 2000 (2000), ORGN-579 Publisher: American Chemical Society,
Washington, D. C.
CODEN: 69CLAC
DT Conference; Meeting Abstract
LA English
AB The combination of BCl 3 and anhyd. n-Bu4NI in CH 2 Cl 2 has been found to be
a valuable reagent for the cleavage of 1 o-alkyl aryl ethers to the
corresponding phenols. Methyl-, ethyl-, allyl- and benzyl-aryl ethers
readily cleave at low to ambient temp. when exposed to 1.1 equiv of
anhyd.
n -Bu4NI and 1.5 equiv of BCl 3 in CH 2 Cl 2 . The method is mild, generally
applicable, and operationally simple. In some cases the combination
reagent is more reactive than $\operatorname{BBr} 3$, yet it is less prone to the handling
difficulties assocd. with BBr3. Selective cleavage of electron rich
ethers is achieved in the presence of conjugated ethers.

```
```

=> d bub abs hitstr l16
'BUB' IS NOT A VALID FORMAT FOR FILE 'HCAPLUS'
ENTER DISPLAY FORMAT (BIB):end
=> d bib abs hitstr l16

```

```

ANSWER 1 OF 2 HCAPLUS COPYRIGHT 2000 ACS 1999:757856 HCAPLUS
DN 132:137145
TI Boron trichloride/tetra-n-butylammonium iodide: a mild, selective combination reagent for the cleavage of primary alkyl aryl ethers
AU • Brooks, Paige R.; Wirtz, Michael C.; Vetelino, Michael G.; Rescek, Diane M.; Woodworth, Graeme F.; Morgan, Bradley P.; Coe, Jotham W.
CS Central Research Division, Pfizer Inc., Groton, CT, 06340, USA
SO J. Org. Chem. (1999), 64(26), 9719-9721
CODEN: JOCEAH; ISSN: 0022-3263
PB American Chemical Society
DT Journal
LA English
OS CASREACT 132:137145
$A B$ The title reagents were used to cleave a variety of alkyl aryl ethers, e.g., 2-methoxynaphthalene, 3-methoxybenzonitrile, and 7 -(ethoxymethoxy) chromen-2-one, to give the phenols in 64 to 98% yields. No reaction was obsd. for sterically hindered compds. such as 2-isopropoxynaphthalene and 2,6-di-tert-butylmethoxybenzene. Compds.

```

\section*{with}
```

resonance stabilization of the alkoxy group, such as 4-
methoxybenzonitrile, undergo the dealkylation more slowly, or in the case of 6-methoxy-1-tetralone, not at all. The reaction requires 1.5 equiv.
BCl3 and an addnl. 1.0 equiv. for each added Lewis base substituent.
IT 93-04-9, 2-Methoxynaphthalene 93-18-5,
2-Ethoxynaphthalene 94-59-7, Safrole 311-28-4,
Tetra-n-butylammonium iodide 607-58-9, 1-(Benzyloxy) naphthalene
874-90-8, 4-Methoxybenzonitrile 1004-66-6,
2-Methoxy-1,3-dimethylbenzene 1078-19-9, 6-Methoxy-1-tetralone
1527-89-5, 3-Methoxybenzonitrile 2472-22-2,
6-Methoxy-2-tetralone 3188-13-4, Chloromethylethyl ether
5312-97-0, 2,5-Dimethoxybenzonitrile 5328-01-8,
1-Ethoxynaphthalene 10294-34-5, Boron trichloride
15799-79-8, 3-Methoxy-N,N-dimethylaniline 21144-16-1
23786-14-3, Methyl 4-methoxyphenylacetate 31005-03-5
52189-63-6
RL: RCT (Reactant)
(cleavage of alkyl aryl ethers to substituted phenols with boron trichloride and tetra-n-butylammonium iodide)
RN 93-04-9 HCAPLUS
CN Naphthalene, 2-methoxy- (8CI, 9CI) (CA INDEX NAME)

```


```

RN 1004-66-6 HCAPLUS
CN Benzene, 2-methoxy-1,3-dimethyl- (9CI) (CA INDEX NAME)

```


RN \(\begin{aligned} & \text { 1078-19-9 HCAPLUS } \\ & \text { CN } \\ & \\ & \\ & \text { NAME) }\end{aligned}\) (2Haphthalenone, 3,4-dihydro-6-methoxy- (7CI, 8CI, 9CI) (CA INDEX


RN 1527-89-5 HCAPLUS
CN Benzonitrile, 3-methoxy- (9CI) (CA INDEX NAME)


RN 2472-22-2 HCAPLUS
CN \(2(1 \mathrm{H})\)-Naphthalenone, 3,4 -dihydro-6-methoxy- (7CI, 8CI, 9CI) (CA INDEX NAME)


RN 3188-13-4 HCAPLUS
CN Ethane, (chloromethoxy)- (9CI) (CA INDEX NAME)

Searched by John Dantzman 703-308-4488


\footnotetext{
RN \(23786-14-3\) HCAPLUS
CN Benzeneacetic acid, 4-methoxy-, methyl ester (9CI) (CA INDEX NAME)

RN \(31005-03-5\) HCAPLUS
CN 2H-1-Benzopyran-2-one, 7 -(2-propenyloxy)- (9CI) (CA INDEX NAME)

RN 52189-63-6 HCAPLUS
CN Benzene, 1-fluoro-3,5-dimethoxy- (9CI) (CA INDEX NAME)


IT 257291-96-6P
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation) (cleavage of alkyl aryl ethers to substituted phenols with boron trichloride and tetra-n-butylammonium iodide)
RN 257291-96-6 HCAPLUS
CN 2H-1-Benzopyran-2-one, 7-(ethoxymethoxy)- (9CI) (CA INDEX NAME)


IT 90-15-3P, .alpha.-Naphthol 93-35-6P 99-07-0P,
3-(Dimethylamino) phenol 135-19-3P, .beta.-Naphthol, preparation
150-19-6P, 3-Methoxyphenol 576-26-1p, 2,6-Dimethylphenol
767-00-0P, 4-Hydroxybenzonitrile 873-62-1P,
3-Hydroxybenzonitrile 1126-61-0p, 4-Allylcatechol
14199-15-6P, Methyl 4-hydroxyphenylacetate 52727-28-3P
75996-29-1P 180526-90-3P
RL: SPN (Synthetic preparation); PREP (Preparation) Searched by John Dantzman 703-308-4488
}
(cleavage of alkyl aryl ethers to substituted phenols with boron trichloride and tetra-n-butylammonium iodide)


RN 93-35-6 HCAPLUS
CN 2H-1-Benzopyran-2-one, 7-hydroxy- (9CI) (CA INDEX NAME)


RN 99-07-0 HCAPLUS
CN Phenol, 3-(dimethylamino)- (9CI) (CA INDEX NAME)


RN 135-19-3 HCAPLUS
CN 2-Naphthalenol (9CI) (CA INDEX NAME)


RN 150-19-6 HCAPLUS
CN Phenol, 3-methoxy- (9CI) (CA INDEX NAME)


RN 576-26-1 HCAPLUS
CN Phenol, 2,6-dimethyl- (9CI) (CA INDEX NAME)

```

RN 767-00-0 HCAPLUS
CN Benzonitrile, 4-hydroxy- (9CI) (CA INDEX NAME)

```

RN 873-62-1 HCAPLUS
CN Benzonitrile, 3-hydroxy- (9CI) (CA INDEX NAME)

```

RN 1126-61-0 HCAPLUS
CN 1,2-Benzenediol, 4-(2-propenyl)- (9CI) (CA INDEX NAME)

```


RN 14199-15-6 HCAPLUS
CN Benzeneacetic acid, 4-hydroxy-, methyl ester (9CI) (CA INDEX NAME)


RN 52727-28-3 HCAPLUS
CN 2(1H)-Naphthalenone, 3,4-dihydro-6-hydroxy- (9CI) (CA INDEX NAME)


RN • 75996-29-1 HCAPLUS
CN 1,3-Benzenediol, 5-fluoro- (9CI) (CA INDEX NAME)


RN 180526-90-3 HCAPLUS
CN Benzonitrile, 5-hydroxy-2-methoxy- (9CI) (CA INDEX NAME)


IT 1516-95-6
RL: RCT (Reactant)
(failed cleavage of 2,6-di(tert-butyl) substituted phenolic ether with boron trichloride and tetra-n-butylammonium iodide)
RN 1516-95-6 HCAPLUS
CN Benzene, 1,3-bis(1,1-dimethylethyl)-2-methoxy- (9CI) (CA INDEX NAME)


IT 15052-09-2, 2-Isopropoxynaphthalene
RL: RCT (Reactant)
(failed cleavage of 2-isopropoxynaphthalene to .beta.-naphthol with boron trichloride and tetra-n-butylamonium iodide)
RN 15052-09-2 HCAPLUS
CN Naphthalene, 2-(1-methylethoxy)- (9CI) (CA INDEX NAME)


RE.CNT 44
RE
(1) Anton, K; Chem Ber 1984, V117, P2479 HCAPLUS
(2) Banwell, M; J Org Chem 1998, V63, P9139 HCAPLUS
(3) Bayer, H; J Med Chem 1991, V34, P2685 HCAPLUS
(5) Bhatt, M; J Organomet Chem 1978, V156, P221 HCAPLUS
(6) Bhatt, M; Synthesis 1983, P249 HCAPLUS

ALL CITATIONS AVAILABLE IN THE RE FORMAT

230615-19-7P 230615-20-0P 230615-21-1P
230615-22-2P 230615-23-3P 230615-24-4P
230615-25-5P 230615-26-6P 230615-27-7P
230615-28-8P 230615-29-9P 230615-30-2P
230615-31-3P 230615-32-4P 230615-33-5P
230615-34-6P 230615-35-7P 230615-36-8P
230615-37-9P 230615-38-0P 230615-39-1P
230615-40-4P 230615-41-5P 230615-42-6P
230615-43-7P 230615-44-8P 230615-45-9P
230615-46-OP 230615-52-8P 230615-75-5P
RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic
preparation); THU (Therapeutic use); BIOL (Biological study); PREP
(Preparation); USES (Uses)
            (prepn. of 1,5-methano-3-benzazepines and analogs as nicotinic
receptor
ligands)
RN 69718-72-5 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro- (9CI) (CA INDEX NAME)


RN 230614-99-0 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7-fluoro-2,3,4,5-tetrahydro-, hydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-00-6 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-methyl-, hydrochloride (9CI) (CA INDEX NAME)

- HCl
\[
\text { Searched by John Dantzman } 703-308-4488
\]

RN 230615-01-7 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-(trifluoromethyl)-, hydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-02-8 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-6-(trifluoromethyl)-, hydrochloride (9CI) (CA INDEX NAME)


HCl

RN 230615-03-9 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 6-fluoro-2,3,4,5-tetrahydro-, hydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-04-0 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-nitro-, monohydrochloride (9CI) (CA INDEX NAME)

Searched by John Dantzman 703-308-4488

- HCl

RN 230615-05-1 HCAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-amine, 2,3,4,5-tetrahydro-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-06-2 HCAPLUS
CN Acetamide, N-(2,3,4,5-tetrahydro-1,5-methano-1H-3-benzazepin-7-yl)-,
monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-07-3 HCAPLUS
CN 5,9-Methano-5H-thiazolo[4,5-h][3]benzazepine,
6,7,8,9-tetrahydro-2-methyl-
, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-08-4 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7,8-dinitro- (9CI) (CA INDEX NAME)


RN 230615-09-5 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine,
1,5,6,7,8,9-hexahydro-2-methyl-1-
propyl-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-10-8 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

\section*{RN 230615-11-9 HCAPLUS}

CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-1-methyl-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-12-0 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-2-methyl-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN . 230615-13-1 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-1,2-dimethyl-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-14-2 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-1-propyl-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-15-3 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h] [3]benzazepine, 1-butyl-1,5,6,7,8,9-hexahydro-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-16-4 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-1-(2-methylpropyl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-17-5 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-1-phenyl-,
monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-18-6 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3].benzazepine,
1,5,6,7,8,9-hexahydro-2-methyl-1-phenyl-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-19-7 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine,
1,5,6,7,8,9-hexahydro-2-methyl-1-
(2-methylpropyl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-20-0 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1-(2,2-dimethylpropyl)-
1,5,6,7,8,9-hexahydro-2-methyl-, monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-21-1 HCAPLUS
CN 6,10-Methano-6H-pyrazino[2,3-h][3]benzazepine, 7,8,9,10-tetrahydro-2,3-dimethyl-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-22-2 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1-(2,2-dimethylpropyl)-\(1,5,6,7,8,9\)-hexahydro-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-23-3 HCAPLUS
CN 6,10-Methano-6H-pyrazino[2,3-h][3]benzazepine, 6,7,8,9-tetrahydro-,
monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-24-4 HCAPLUS
CN 6,10-Methano-6H-pyrazino[2,3-h][3]benzazepine, 7, 8, 9, 10-tetrahydro-8-methyl-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-25-5 HCABLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, 6,7,8,9-tetrahydro-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-26-6 HCAPLUS
CN . 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine,
6,7,8,9-tetrahydro-2-methyl-,
monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-27-7 HCAPLUS
CN Benzamide, 2-fluoro-N-(2,3,4,5-tetrahydro-8-hydroxy-1,5-methano-1H-3-benzazepin-7-yl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-28-8 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7-chloro-2,3,4,5-tetrahydro-, hydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-29-9 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine-7-carbonitrile, 2,3,4,5-tetrahydro-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-30-2 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-(5-methyl-1,2,4-oxadiazol-3-yl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-31-3 HCAPLUS
CN Ethanone, 1-(2,3,4,5-tetrahydro-1,5-methano-1H-3-benzazepin-7-yl)-, hydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-32-4 HCAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 2,3,4,5-tetrahydro-, hydrochloride (9CI)
(CA INDEX NAME)

- HCl

RN 230615-33-5 HCAPLUS
CN 5,9-Methano-5H-isoxazolo[4,5-h][3]benzazepine,
6,7,8,9-tetrahydro-3-methyl-
, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-34-6 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine,
2,3,4,5-tetrahydro-7-(1-methyl-1H-pyrazol-5-
yl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-35-7 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine,
2,3,4,5-tetrahydro-7-(1-methyl-1H-pyrazol-3-
yl)-, monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-36-8 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7,8-dichloro-2,3,4,5-tetrahydro-, hydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-37-9 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine-7-sulfonamide, 2, 3, 4,5-tetrahydro-N, N-dimethyl-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-38-0 HCAPLUS
CN . Pyrrolidine, 1-[(2,3,4,5-tetrahydro-1,5-methano-1H-3-benzazepin-7yl) sulfonyl]-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-39-1 HCAPLUS
CN 5,9-Methanopyrrolo[2,3-h][3]benzazepin-2(1H)-one, 3,5,6,7,8,9-hexahydro-, monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-40-4 HCAPLUS
CN 5,9-Methano-2H-oxazolo[4,5-h][3]benzazepin-2-one, 3,5,6,7,8,9-hexahydro-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-41-5 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-6-phenyl-, hydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-42-6 HCAPLUS
CN 1,5-Methano-1H-3-benzazepin-6-ol, 2,3,4,5-tetrahydro-, hydrochloride (9CI)
(CA INDEX NAME)

- HCl

RN 230615-43-7 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7,8-difluoro-2,3,4,5-tetrahydro-, hydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-44-8 HCAPLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, 2-ethyl-6,7,8,9-tetrahydro-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-45-9 HCAPLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, 6,7,8,9-tetrahydro-2-(1-methylethyl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl
\begin{tabular}{ll} 
RN & \(230615-46-0\) HCAPLUS \\
CN & 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, \(6,7,8,9-\) tetrahydro-2- \\
& (phenylmethyl)-, monohydrochloride (9CI) (CA INDEX NAME)
\end{tabular}

```

 ligands)
 RN 62-53-3 HCAPLUS
CN Benzenamine (9CI) (CA INDEX NAME)

```

```

RN 78-81-9 HCAPLUS
CN 1-Propanamine, 2-methyl- (9CI) (CA INDEX NAME)

```

```

RN 79-03-8 HCAPLUS
CN Propanoyl chloride (9CI) (CA INDEX NAME)

```

```

RN 79-30-1 HCAPLUS
CN Propanoyl chloride, 2-methyl- (9CI) (CA INDEX NAME)

```

```

RN 100-46-9 HCAPLUS
CN Benzenemethanamine (9CI) (CA INDEX NAME)
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{Ph}$
RN 103-80-0 HCAPLUS
CN Benzeneacetyl chloride (9CI) (CA INDEX NAME)

```

```

RN 107-08-4 HCAPLUS
CN Propane, 1-iodo- (8CI, 9CI) (CA INDEX NAME)
Searched by John Dantzman 703-308-4488

```
```

H3C-CH2-CH2-I
RN 109-73-9 HCAPLUS
CN . 1-Butanamine (9CI) (CA INDEX NAME)
H3C-CH2-CH2-CH2-NH2
RN 123-75-1 HCAPLUS
CN Pyrrolidine (8CI, 9CI) (CA INDEX NAME)

```

RN 327-52-6 HCAPLUS
CN Benzene, 1-bromo-2,4,5-trifluoro- (8CI, 9CI) (CA INDEX NAME)

RN 372-18-9 HCAPLUS
CN Benzene, 1,3-difluoro- (9CI) (CA INDEX NAME)


RN 393-52-2 HCAPLUS
CN Benzoyl chloride, 2-fluoro- (9CI) (CA INDEX NAME)


RN 399-94-0 HCAPLUS
CN Benzene, 2-bromo-1,4-difluoro- (6CI, 8CI, 9CI) (CA INDEX NAME)
Searched by John Dantzman 703-308-4488

```

RN 431-03-8 HCAPLUS
CN 2,3-Butanedione (8CI, 9CI) (CA INDEX NAME)

```


RN 452-62-0 HCAPLUS
CN Benzene, 2-bromo-1-fluoro-4-methyl- (9CI) (CA INDEX NAME)


RN 542-92-7 HCAPLUS
CN 1,3-Cyclopentadiene (8CI, 9CI) (CA INDEX NAME)


RN 1072-85-1 HCAPLUS
CN Benzene, 1-bromo-2-fiuoro- (7CI, 8CI, 9CI) (CA INDEX NAME)


RN 5813-64-9 HCAPLUS
CN 1-Propanamine, 2,2-dimethyl- (9CI) (CA INDEX NAME)
\(\mathrm{Me}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\)
```

RN 68322-84-9 HCAPLUS
CN Benzene, 2-bromo-1-fluoro-4-(trifluoromethyl)- (9CI) (CA INDEX NAME)

```

```

RN 104540-42-3 HCAPLUS
CN Benzene, 2-bromo-1-fluoro-3-(trifluoromethyl)- (9CI) (CA INDEX NAME)

```

```

IT 4453-90-1P, 1,4-Dihydro-1,4-methanonaphthalene 13697-89-7P
, 2,6-Difluoroiodobenzene 58653-71-7P 61346-81-4P
63608-69-5P 230615-47-1P 230615-48-2P
230615-49-3P 230615-50-6P 230615-51-7P
230615-53-9P 230615-54-0P 230615-55-1P
230615-56-2P 230615-57-3P 230615-58-4P
230615-59-5P 230615-60-8P 230615-61-9P
230615-62-OP 230615-63-1P 230615-64-2P
230615-65-3P 230615-66-4P 230615-67-5P
230615-68-6P 230615-69-7P 230615-70-0P
230615-71-1P 230615-72-2P 230615-73-3P
230615-74-4P 230615-76-6P 230615-77-7P
230615-78-8P 230615-79-9P 230615-80-2P
230615-81-3P 230615-82-4P 230615-83-5P
230615-84-6P 230615-85-7P 230615-86-8P
230615-87-9P 230615-88-0P 230615-89-1P
230615-90-4P 230615-91-5P 230615-92-6P
230615-93-7P 230615-94-8P 230615-95-9P
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation) (prepn. of 1,5-methano-3-benzazepines and analogs as nicotinic
receptor
ligands)
RN 4453-90-1 HCAPLUS
CN 1,4-Methanonaphthalene, 1,4-dihydro- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

```



RN 58653-71-7 HCAPLUS
CN 1,4-Methanonaphthalene, 6-fluoro-1,4-dihydro- (9CI) (CA INDEX NAME)


RN 61346-81-4 HCAPLUS
CN 1,4-Methanonaphthalene, 5-fluoro-1,4-dihydro- (9CI) (CA INDEX NAME)


RN 63608-69-5 HCAPLUS
CN 1,4-Methanonaphthalene, 1,4-dihydro-5-iodo- (9CI) (CA INDEX NAME)


RN 230615-47-1 HCAPLUS
CN 1,4-Methanonaphthalene-2,3-diol, 1,2,3,4-tetrahydro- (9CI) (CA INDEX NAME)

```

RN 230615-48-2 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-3-(phenylmethyl)- (9CI)
(CA INDEX NAME)

```

```

RN 230615-49-3 HCAPLUS
CN 1,4-Methanonaphthalene-2,3-diol, 6-fluoro-1,2,3,4-tetrahydro- (9CI) (CA
INDEX NAME)

```


RN 230615-50-6 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine,
7-fluoro-2,3,4,5-tetrahydro-3-(phenylmethyl)(9CI) (CA INDEX NAME)


RN 230615-51-7 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-3-(trifluoroacetyl)(9CI) (CA INDEX NAME)

\(\begin{array}{ll}\text { RN } & 230615-53-9 \text { HCAPLUS } \\ \text { CN } & \text { 1,5-Methano-1H-3-benzazepine, } 2,3,4,5-\text { tetrahydro-7-nitro-3- } \\ & \text { (trifluoroacetyl)- (9CI) }\end{array}\)
RN 230615-54-0 HCAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid,
1,2,4,5-tetrahydro-7-nitro-
, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

RN 230615-55-1 HCAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid,
7-amino-1,2,4,5-tetrahydro-
, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)


RN 230615-56-2 HCAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-amine, 2,3,4,5-tetrahydro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-57-3 HCAPLUS
CN Acetamide, \(\mathrm{N}-[2,3,4,5\)-tetrahydro-3-(trifluoroacetyl)-1,5-methano-1H-3-benzazepin-7-yl]- (9CI) (CA INDEX NAME)
RN 230615-58-4 HCAPLUS
CN Ethanethioamide,
\(\mathrm{N}-[2,3,4,5\)-tetrahydro-3-(trifluoroacetyl)-1,5-methano-1H-3-benzazepin-7-yl]- (9CI) (CA INDEX NAME)

RN 230615-59-5 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7,8-dinitro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)

RN 230615-60-8 HCAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid, 1,2,4,5-tetrahydro-7,8-dinitro-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)


RN 230615-61-9 HCAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid, 7,8-diamino-1,2,4,5-tetrahydro-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

RN 230615-62-0 HCAPLUS
CN 5,9-Methanoimidazo [4,5-h][3]benzazepine-7(1H)-carboxylic acid, \(5,6,8,9\)-tetrahydro-2-methyl-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)


RN 230615-63-1 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine-7(1H)-carboxylic acid, 5,6,8,9-tetrahydro-2-methyl-1-propyl-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)


RN 230615-64-2 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h] [3]benzazepine-7(1H)-carboxylic acid,
\(5,6,8,9\)-tetrahydro-, 1,1 -dimethylethyl ester (9CI) (CA INDEX NAME)


RN 230615-65-3 HCAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid, 7-(butylamino)-1,2,4,5-tetrahydro-8-nitro-, 1, l-dimethylethyl ester (9CI) (CA INDEX NAME) Searched by John Dantzman 703-308-4488


RN 230615-66-4 HCAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid, 7-amino-8-(butylamino)-1,2,4,5-tetrahydro-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)


RN 230615-67-5 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine-7(1H)-carboxylic acid, 1-butyl-5,6,8,9-tetrahydro-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)


RN 230615-68-6 HCAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine-7(1H)-carboxylic acid, 5,6,8,9-tetrahydro-2-methyl-1-(2-methylpropyl)-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)


RN 230615-69-7 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine-7,8-diamine, 2,3,4,5-tetrahydro-3Searched by John Dantzman 703-308-4488
```

(trifluoroacetyl)- (9CI) (CA INDEX NAME)

```


RN 230615-70-0 HCAPLUS
CN 6,10-Methano-6H-pyrazino[2,3-h][3]benzazepine, 7,8,9,10-tetrahydro-8-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-71-1 HCAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 2,3,4,5-tetrahydro-8-nitro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-72-2 HCAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 8-amino-2,3,4,5-tetrahydro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-73-3 HCAPLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, 6,7,8,9-tetrahydro-7-(trifluoroacetyl)- (9CI) (CA INDEX NAME)
RN 230615-74-4 HCAPLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, 6,7,8,9-tetrahydro-2-methyl-7-
(trifluoroacetyl)- (9CI) (CA INDEX NAME)

\(\begin{array}{ll}\text { RN } & 230615-76-6 \text { HCAPLUS } \\ \text { CN } & \text { 1,5-Methano-1H-3-benzazepine, } 7 \text {-chloro-2, 3, 4,5-tetrahydro-3- } \\ & \text { (trifluoroacetyl)-(9CI) (CA INDEX NAME) }\end{array}\)


RN 230615-77-7 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-iodo-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-78-8 HCAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid,
1,2,4,5-tetrahydro-7-iodo-
, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

```

RN 230615-79-9 HCAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid, 7-cyano-1,2,4,5-tetrahydro-
, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

```


RN 230615-80-2 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7-acetyl-2,3,4,5-tetrahydro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-81-3 HCAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid, 7-acetyl-1,2,4,5-tetrahydro-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)


RN 230615-82-4 HCAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol,
2,3,4,5-tetrahydro-3-(trifluoroacetyl)-, acetate (ester) (9CI) (CA INDEX NAME)


RN 230615-83-5 HCAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 2,3,4,5-tetrahydro-3-(trifluoroacetyl)(9CI) (CA INDEX NAME)


RN 230615-84-6 HCAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 8-acetyl-2,3,4,5-tetrahydro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-85-7 HCAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 2,3,4,5-tetrahydro-8-[1(hydroxyimino) ethyl]-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-86-8 HCAPLUS
CN 5,9-Methano-5H-isoxazolo[4,5-h][3]benzazepine,
6,7,8,9-tetrahydro-3-methyl-
7-(trifluoroacetyl)- (9CI) (CA INDEX NAME)

Searched by John Dantzman 703-308-4488



RN 230615-88-0 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7,8-dichloro-2,3,4,5-tetrahydro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-89-1 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine-7-sulfonyl chloride, 2,3,4,5-tetrahydro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-90-4 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-(1-pyrrolidinylsulfonyl)-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)

\begin{tabular}{ll} 
RN \(230615-91-5\) HCAPLUS \\
CN \\
& 1,4-Methanonaphthalene-2,3-diol, \(1,2,3,4\)-tetrahydro-5-iodo- (9CI) (CA \\
& INDEX NAME)
\end{tabular}

```

RN 230615-92-6 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-6-iodo-3-(phenylmethyl)-
(9CI) (CA INDEX NAME)

```


RN 230615-93-7 HCAPLUS
CN 1,5-Methano-1H-3-benzazepine,
2,3,4,5-tetrahydro-6-phenyl-3-(phenylmethyl)(9CI) (CA INDEX NAME)


RN 230615-94-8 HCAPLUS
CN Boronic acid, [2,3,4,5-tetrahydro-3-(phenylmethyl)-1,5-methano-1H-3-benzazepin-6-yl]- (9CI) (CA INDEX NAME)

```

RN 230615-95-9 HCAPLUS
CN 1,5-Methano-1H-3-benzazepin-6-ol, 2,3,4,5-tetrahydro-3-(phenylmethyl)(9CI) (CA INDEX NAME)

```

```

RE.CNT 2
RE
(1) Carson, J; US 3471503 A 1969 HCAPLUS
(2) Mazzochi, P; Journal of Medicinal Chemistry 1979, V22(4), P455

```

\section*{Summary}

COLEMAN 09/402010 Page 1
=> d his
```

(FILE 'HOME' ENTERED AT 07:04:44 ON 20 SEP 2000)
FILE 'REGISTRY' ENTERED AT 07:04:48 ON 20 SEP 2000
STR
O S L1
SCR 1840
O S L1 AND L3
18336 S C6/ESS(S)C5/ESS (S)NC4/ESS
2 S L1 AND L3 SSS SAM SUB=L5
-37 S L1 AND L3 SSS FUL SUB=L5
EILE 'CAPLUS' ENTERED AT 07:07:13 ON 20 SEP 2000
S L L7
FILE 'CAOLD' ENTERED AT 07:08:33 ON 20 SEP 2000
O LT
FILE 'BEILSTEIN' ENTERED AT 07:08:38 ON 20 SEP 2000
STR L1
O S L10 FUL
FILE 'HCAPLUS' ENTERED AT 07:14:11 ON 20 SEP 2000
207 S COE J?/AU
387 S BROOKS P?/AU
3 S L12 AND L13
SELECT RN L14 1-3
FILE 'REGISTRY' ENTERED AT 07:14:33 ON 20 SEP 2000
158 S E1-158
FILE 'HCAPLUS' ENTERED AT 07:14:55 ON 20 SEP 2000
2 S L14 AND L15
1 S L14 NOT L16
FILE 'REGISTRY' ENTERED AT 07:16:50 ON 20 SEP 2000
32259 S C6/ESS (S)C5/ESS (S) NC5/ESS
7 S L1 AND L3 SSS SAM SUB=L18
134 S L1 AND L3 SSS FUL SUB=L18
FILE 'CAPLUS' ENTERED AT 07:18:32 ON 20 SEP 2000
5 S L20
FILE 'CAOLD' ENTERED AT 07:19:59 ON 20 SEP 2000 S colea Caplue
0 S L20
FILE 'BEILSTEIN' ENTERED AT 07:20:15 ON 20 SEP 200% coled Caolef

```
                \(\leftarrow\) AT 07:20:15 ON 20 SEP 200\% cule caolel
                \(\leftarrow\) AT 07:20:15 ON 20 SEP 200\% cule caolel
```

FILE 'REGISTRY' ENTERED AT 07:20:39 ON 20 SEP 2000
SAV L20 COLE402/A

```
L23
=> d que 120
LI
STR


NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED
GRAPH ATTRIBUTES:
RING (S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 12
STEREO ATTRIBUTES: NONE
LS SCR 1840


L18 32259 SEA FILE=REGISTRY ABB=ON PLU=ON C6/ESS(S)C5/ESS(S)NC5/ESS
L20 134 SEA FILE=REGISTRY SUB=L18 SSS FUL Li AND LU
```

=> d bib abs hitstr

```


RN 287973-25-5 CAPLUS
CN 5,9-Methanoimidazo[4,5-h] [3]benzazepin-2(1H)-one, 3,5,6,7,8,9-hexahydro-1,3-dimethyl- (9CI) (CA INDEX NAME)

RN 287973-27-7 CAPLUS
CN 1,5-Methano-1H-3-benzazepine-7-carbonitrile,
8-ethynyl-2,3,4,5-tetrahydro-
(9CI) (CA INDEX NAME)

RN 287973-28-8 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7-chloro-2,3,4,5-tetrahydro-8(trifluoromethyl) - (9CI) (CA INDEX NAME)


RN 287973-29-9 CAPLUS
CN 1,5-Methano-1H-3-benzazepine-7-carbonitrile, 2,3,4,5-tetrahydro-8-(trifluoromethyl)- (9CI) (CA INDEX NAME)


RN 287973-32-4 CAPLUS
CN 5,9-Methanopyrrolo [3,4-h][3]benzazepine-1, 3(2H,5H)-dione, 5, 6,7,8-tetrahydro- (9CI) (CA INDEX NAME)


RE.CNT 3
RE
(1) Cinciripini, P; ONCOLOGY 1998
(2) La Roche, H; WO 9528934 A 1995
(3) Williams, J; US 5803081 A 1998
```

\#> d bib abs hitstr 2

```


R2


AB Title compds. [I; R1 = H, alk(en)yl, alkoxyethyl, oxoalkyl, etc.; R2,R3 = H, halo, (di) (alkyl)amino, alkyl, etc.; R2R3 = atoms to complete a ring] were prepd. Thus, \(2-\mathrm{FC} 6 \mathrm{H} 4 \mathrm{Br}\) was cyclocondensed with cyclopentadiene and the product osmylated to give 1,2,3,4-tetrahydro-1,4-methanonaphthalene-2,3-diol which was treated with NaIO4 and the product cyclocondensed with PhCH2NH2 to give, after deprotection, I (R1-R3 = H) . Data for biol. activity of I were given.
IT 69718-72-5P 230614-99-OP 230615-00-6P
230615-01-7P 230615-02-8P 230615-03-9P
230615-04-0P 230615-05-1P 230615-06-2P
230615-07-3P 230615-08-4P 230615-09-5P
230615-10-8P 230615-11-9P 230615-12-0P 230615-13-1P 230615-14-2P 230615-15-3P 230615-16-4P 230615-17-5P 230615-18-6P

Searched by John Dantzman 703-308-4488
230615-19-7P 230615-20-0P 230615-21-1P
230615-22-2P 230615-23-3P 230615-24-4P
230615-25-5P 230615-26-6P 230615-27-7P
230615-28-8P 230615-29-9P 230615-30-2P
230615-31-3P 230615-32-4P 230615-33-5P
230615-34-6P 230615-35-7P 230615-36-8P
230615-37-9P 230615-38-OP 230615-39-1P
230615-40-4P 230615-41-5P 230615-42-6P
230615-43-7P 230615-44-8P 230615-45-9P
230615-46-OP 230615-52-8P 230615-75-5P
RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(prepn. of 1,5-methano-3-benzazepines and analogs as nicotinic
receptor
ligands)
RN 69718-72-5 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro- (9CI) (CA INDEX NAME)

RN 230614-99-0 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7-fluoro-2,3,4,5-tetrahydro-, hydrochloride (9CI) (CA INDEX NAME)

- HCl
RN 230615-00-6 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-methyl-, hydrochloride (9CI) (CA INDEX NAME)

- HCl
\[
\text { Searched by John Dantzman } 703-308-4488
\]
```

RN 230615-01-7 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-(trifluoromethyl)-,
hydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-02-8 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-6-(trifluoromethyl)-, hydrochloride (9CI) (CA INDEX NAME)


HCl

RN 230615-03-9 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 6-fluoro-2,3,4,5-tetrahydro-, hydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-04-0 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-nitro-, monohydrochloride (9CI) (CA INDEX NAME)

Searched by John Dantzman 703-308-4488

- HCl

RN 230615-05-1 CAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-amine, 2,3,4,5-tetrahydro-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-06-2 CAPLUS
CN Acetamide, N-(2,3,4,5-tetrahydro-1,5-methano-1H-3-benzazepin-7-yl)-,
monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-07-3 CAPLUS
CN 5,9-Methano-5H-thiazolo [4,5-h] [3]benzazepine,
6,7,8,9-tetrahydro-2-methyl-
; monohydrochloride (9CI) (CA INDEX NAME).


- HCl
```

RN 230615-08-4 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7,8-dinitro- (9CI) (CA
INDEX NAME)

```

RN 230615-09-5 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine,
1,5,6,7,8,9-hexahydro-2-methyl-1-
    propyl-, monohydrochloride (9CI) (CA INDEX NAME)
 cl. 18
- HCl

RN 230615-10-8 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-, monohydrochloride (9CI) (CA INDEX NAME)


- HCl

RN 230615-11-9 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-1-methyl-, monohydrochloride (9CI) (CA INDEX NAME)



HCl
RN 230615-12-0 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-2-methyl-, monohydrochloride (9CI) (CA INDEX NAME)

0.15
- HCl

RN 230615-13-1 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-1,2-dimethyl-, monohydrochloride (9CI) (CA INDEX NAME)

\(c .19\)

- HCl
\(\begin{array}{ll}\text { RN } & 230615-15-3 \text { CAPLUS } \\ \text { CN } & \text { 5,9-Methanoimidazo[4,5-h] [3]benzazepine, } 1 \text {-butyl-1, } 5,6,7,8,9 \text {-hexahydro-, } \\ & \text { monohydrochloride (9CI) (CA INDEX NAME) }\end{array}\)

c. .5
- HCl

RN 230615-16-4 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-1-(2-methylpropyl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-17-5 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1,5,6,7,8,9-hexahydro-1-phenyl-,
monohydrochloride (9CI) (CA INDEX NAME.)

```

\(c .15\)
```

 - HCl
 RN 230615-18-6 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine,
1,5,6,7,8,9-hexahydro-2-methyl-1-
phenyl-, monohydrochloride.(9CI) (CA INDEX NAME)

```


- HCl
```

RN 230615-19-7 CAPLUS

```
CN 5,9-Methanoimidazo [4,5-h][3]benzazepine,
1,5,6,7,8,9-hexahydro-2-methyl-1-
    (2-methylpropyl)-, monohydrochloride (9CI) (CA INDEX NAME)


HCl
```

RN 230615-20-0 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1-(2,2-dimethylpropyl)-
1,5,6,7,8,9-hexahydro-2-methyl-, monohydrochloride (9CI) (CA INDEX NAME)

```

\(a^{.5}\)



- HCl

RN 230615-22-2 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine, 1-(2,2-dimethylpropy1)-1,5,6,7,8,9-hexahydro-, monohydrochloride (9CI) (CA INDEX NAME)

\(c .{ }^{-5}\)
- HCl
```

RN 230615-23-3 CAPLUS
CN 6,10-Methano-6H-pyrazino[2,3-h][3]benzazepine, 6,7,8,9-tetrahydro-,
monohydrochloride (9CI) (CA INDEX NAME)

```

c. 21
- HCl

RN 230615-24-4 CAPLUS
CN 6,10-Methano-6H-pyrazino[2,3-h][3]benzazepine, 7,8,9,10-tetrahydro-8-methyl-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-25-5 CAPLUS
CN • 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, 6, 7, 8, 9-tetrahydro-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-26-6 CAPLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine,
6,7,8,9-tetrahydro-2-methyl-,
monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-27-7 CAPLUS
CN Benzamide, 2-fluoro-N-\{2,3,4,5-tetrahydro-8-hydroxy-1,5-methano-1H-3-benzazepin-7-yl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-28-8 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7-chloro-2,3,4,5-tetrahydro-, hydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-29-9 CAPLUS
CN 1,5-Methano-1H-3-benzazepine-7-carbonitrile, 2,3,4,5-tetrahydro-,
monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl
```

RN 230615-30-2 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-(5-methyl-1,2,4-
oxadiazol-3-yl)-, monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-31-3 CAPLUS
CN Ethanone, 1-(2,3,4,5-tetrahydro-1,5-methano-1H-3-benzazepin-7-yl)-, hydrochloride (9CI) (CA INDEX NAME)


0 HCl
```

RN 230615-32-4 CAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 2,3,4,5-tetrahydro-, hydrochloride
(9CI)
(CA INDEX NAME)

```

- HCl
```

RN 230615-33-5 CAPLUS
CN 5,9-Methano-5H-isoxazolo[4,5-h][3]benzazepine,
6,7,8,9-tetrahydro-3-methyl-
, monohydrochloride (9CI) (CA INDEX NAME)

```

0.24
- HCl

RN 230615-34-6 CAPLUS
CN 1,5-Methano-1H-3-benzazepine,
2,3,4,5-tetrahydro-7-(1-methyl-1H-pyrazol-5-
yl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-35-7 CAPLUS
CN 1,5-Methano-1H-3-benzazepine,
2,3,4,5-tetrahydro-7-(1-methyl-1H-pyrazol-3-
yl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-36-8 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7,8-dichloro-2,3,4,5-tetrahydro-, hydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN 230615-37-9 CAPLUS
CN 1,5-Methano-1H-3-benzazepine-7-sulfonamide, 2,3,4,5-tetrahydro-N,N-
dimethyl-, monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-38-0 CAPLUS
CN Pyrrolidine, 1-[(2,3,4,5-tetrahydro-1,5-methano-1H-3-benzazepin-7-yl)sulfonyl]-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-39-1 CAPLUS
CN 5,9-Methanopyrrolo[2,3-h][3]benzazepin-2(1H)-one, 3,5,6,7,8,9-hexahydro-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-40-4 CAPLUS
CN 5,9-Methano-2H-oxazolo[4,5-h][3]benzazepin-2-one, 3,5,6,7,8,9-hexahydro-, monohydrochloride (9CI) (CA INDEX NAME)

```

HCl
RN 230615-41-5 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-6-phenyl-, hydrochloride .(9CI) (CA INDEX NAME)

```

- HCl

RN 230615-42-6 CAPLUS
CN 1,5-Methano-1H-3-benzazepin-6-ol, 2,3,4,5-tetrahydro-, hydrochloride (9CI)
(CA INDEX NAME)

- HCl

RN • 230615-43-7 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7,8-difluoro-2,3,4,5-tetrahydro-, hydrochloride (9CI) (CA INDEX NAME)

- HCl
```

RN · 230615-44-8 CAPLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, 2-ethyl-6,7,8,9-tetrahydro-,
monohydrochloride (9CI) (CA INDEX NAME)

```

- HCl

RN 230615-45-9 CAPLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, 6,7,8,9-tetrahydro-2-(1-methylethyl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-46-0 CAPLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, 6,7,8,9-tetrahydro-2-(phenylmethyl)-, monohydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-52-8 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-, hydrochloride (9CI) (CA INDEX NAME)

- HCl

RN 230615-75-5 CAPLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, 6,7,8,9-tetrahydro-2-methyl(9CI) (CA INDEX NAME)

cl. 15

IT 230615-48-2P 230615-50-6P 230615-51-7P 230615-53-9P 230615-54-0P 230615-55-1P 230615-56-2P 230615-57-3P 230615-58-4P 230615-59-5P 230615-60-8P 230615-61-9P 230615-62-0P 230615-63-1P 230615-64-2P 230615-65-3P 230615-66-4P 230615-67-5P 230615-68-6P 230615-69-7P 230615-70-0P 230615-71-1P 230615-72-2P 230615-73-3P 230615-74-4P 230615-76-6P 230615-77-7P 230615-78-8P 230615-79-9P 230615-80-2P 230615-81-3P 230615-82-4P 230615-83-5P 230615-84-6P 230615-85-7P 230615-86-8P 230615-87-9P 230615-88-0P 230615-89-1P 230615-90-4P 230615-92-6P 230615-93-7P 230615-94-8P 230615-95-9P
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation) Searched by John Dantzman 703-308-4488
(prepn. of 1,5-methano-3-benzazepines and analogs as nicotinic
receptor
ligands)
RN 230615-48-2 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-3-(phenylmethyl)- (9CI) (CA INDEX NAME)


RN 230615-50-6 CAPLUS
CN 1,5-Methano-1H-3-benzazepine,
7-fluoro-2,3,4,5-tetrahydro-3-(phenylmethyl)(9CI) (CA INDEX NAME)


RN 230615-51-7 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-3-(trifluoroacetyl)(9CI) (CA INDEX NAME)


RN 230615-53-9 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-nitro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-54-0 CAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid,
1,2,4,5-tetrahydro-7-nitro-
, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)
Searched by John Dantzman 703-308-4488

```

RN 230615-55-1 CAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid,
7-amino-1,2,4,5-tetrahydro-
, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

```

```

RN 230615-56-2 CAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-amine, 2,3,4,5-tetrahydro-3-
(trifluoroacetyl)- (9CI) (CA INDEX NAME)

```


RN 230615-57-3 CAPLUS
CN Acetamide, \(N\) - [2, 3,4,5-tetrahydro-3-(trifluoroacetyl)-1,5-methano-1H-3-benzazepin-7-yl]- (9CI) (CA INDEX NAME)


RN 230615-58-4 CAPLUS
CN Ethanethioamide,
\(\mathrm{N}-[2,3,4,5\)-tetrahydro-3-(trifluoroacetyl)-1,5-methano-1H-3-benzazepin-7-yl]- (9CI) (CA INDEX NAME)


\begin{tabular}{ll} 
RN & \(230615-63-1\) CAPLUS \\
CN & 5,9-Methanoimidazo[4,5-h][3]benzazepine-7(1H)-carboxylic acid, \\
& 5,6,8,9-tetrahydro-2-methyl-1-propyl-, 1,1-dimethylethyl ester (9CI) (CA \\
& INDEX NAME)
\end{tabular}

RN 230615-64-2 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine-7(1H)-carboxylic acid,
5,6,8,9-tetrahydro-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

RN 230615-65-3 CAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid, 7-(butylamino)-1,2,4,5-tetrahydro-8-nitro-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)


RN . 230615-66-4 CAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid, 7-amino-8-(butylamino)-1,2,4,5-tetrahydro-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

> Searched by John Dantzman 703-308-4488

RN 230615-67-5 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine-7(1H)-carboxylic acid, 1-butyl-5,6,8,9-tetrahydro-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

RN 230615-68-6 CAPLUS
CN 5,9-Methanoimidazo[4,5-h][3]benzazepine-7(1H)-carboxylic acid, 5,6,8,9-tetrahydro-2-methyl-1-(2-methylpropyl)-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

RN • 230615-69-7 CAPLUS
CN 1,5-Methano-1H-3-benzazepine-7,8-diamine, 2,3,4,5-tetrahydro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)

RN 230615-70-0 CAPLUS
CN 6,10-Methano-6H-pyrazino[2,3-h][3]benzazepine, 7,8,9,10-tetrahydro-8-(trifluoroacetyl)- (9CI) (CA INDEX NAME)
Searched by John Dantzman 703-308-4488

RN 230615-71-1 CAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 2,3,4,5-tetrahydro-8-nitro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)

RN 230615-72-2 CAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 8-amino-2,3,4,5-tetrahydro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)

RN 230615-73-3 CAPLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine, 6,7,8,9-tetrahydro-7-(trifluoroacetyl)- (9CI) (CA INDEX NAME)

RN 230615-74-4 CAPLUS
CN 5,9-Methano-5H-oxazolo[4,5-h][3]benzazepine,
6,7,8,9-tetrahydro-2-methyl-7-
(trifluoroacetyl)- (9CI) (CA INDEX NAME)

RN 230615-76-6 CAPLUS
RN 230615-76-6 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7-chloro-2,3,4,5-tetrahydro-3-
CN 1,5-Methano-1H-3-benzazepine, 7-chloro-2,3,4,5-tetrahydro-3-
        (trifluoroacetyl)- (9CI) (CA INDEX NAME)
        (trifluoroacetyl)- (9CI) (CA INDEX NAME)

RN 230615-77-7 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-iodo-3-
    (trifluoroacetyl) - (9CI) (CA INDEX NAME)

RN 230615-78-8 CAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid,
1,2,4,5-tetrahydro-7-iodo-
, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

RN 230615-79-9 CAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid,
7-cyano-1,2,4,5-tetrahydro-
\(\quad 1,1\)-dimethylethyl ester (9CI) (CA INDEX NAME)


```

RN 230615-81-3 CAPLUS
CN 1,5-Methano-3H-3-benzazepine-3-carboxylic acid, 7-acetyl-1,2,4,5-
tetrahydro-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

```


RN 230615-82-4 CAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol,
2,3,4,5-tetrahydro-3-(trifluoroacetyl)-,
acetate (ester) (9CI) (CA INDEX NAME)


RN 230615-83-5 CAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 2,3,4,5-tetrahydro-3-(trifluoroacetyl)(9CI) (CA INDEX NAME)


RN 230615-84-6 CAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 8-acetyl-2,3,4,5-tetrahydro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-85-7 CAPLUS
CN 1,5-Methano-1H-3-benzazepin-7-ol, 2,3,4,5-tetrahydro-8-[1(hydroxyimino) ethyl]-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)


RN 230615-86-8 CAPLUS
CN 5,9-Methano-5H-isoxazolo[4,5-h] [3]benzazepine,
6,7,8,9-tetrahydro-3-methyl-
7-(trifluoroacetyl)- (9CI) (CA INDEX NAME)

\(\begin{array}{ll}\text { RN } & 230615-87-9 \text { CAPLUS } \\ \text { CN } & \text { 1,5-Methano-1H-3-benzazepine-7-propanamine, } 2,3,4,5-\text { tetrahydro- } \mathrm{N}, \mathrm{N}- \\ & \text { dimethyl-.gamma.-oxo-3-(trifluoroacetyl)- (9CI) } \\ & \text { (CA INDEX NAME) }\end{array}\)

RN 230615-88-0 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 7,8-dichloro-2,3,4,5-tetrahydro-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)

RN 230615-89-1 CAPLUS
RN 230615-89-1 CAPLUS
CN 1,5-Methano-1H-3-benzazepine-7-sulfonyl chloride, 2,3,4,5-tetrahydro-3-
CN 1,5-Methano-1H-3-benzazepine-7-sulfonyl chloride, 2,3,4,5-tetrahydro-3-
    (trifluoroacetyl)- (9CI) (CA INDEX NAME)
    (trifluoroacetyl)- (9CI) (CA INDEX NAME)

RN 230615-90-4 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-7-(1-pyrrolidinylsulfonyl)-3-(trifluoroacetyl)- (9CI) (CA INDEX NAME)

RN 230615-92-6 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-6-iodo-3-(phenylmethyl)(9CI) (CA INDEX NAME)
Searched by John Dantzman 703-308-4488

RN 230615-93-7 CAPLUS
CN 1,5-Methano-1H-3-benzazepine,
2,3,4,5-tetrahydro-6-phenyl-3-(phenylmethyl)-
(9CI) (CA INDEX NAME)

RN \(230615-94-8\) CAPLUS
CN Boronic acid, \([2,3,4,5\)-tetrahydro-3-(phenylmethyl)-1,5-methano-1H-3-
benzazepin-6-yl]- (9CI) (CA INDEX NAME)


RN 230615-95-9 CAPLUS
CN 1,5-Methano-1H-3-benzazepin-6-ol, 2,3,4,5-tetrahydro-3-(phenylmethyl)(9CI) (CA INDEX NAME)


RE.CNT 2
RE
(1) Carson, J; US 3471503 A 1969 CAPLUS
(2) Mazzochi, P; Journal of Medicinal Chemistry 1979, V22(4), P455
```

=> d bib abs hitstr 3

```
\begin{tabular}{ll} 
ANSWER 3 OF 5 CAPLUS COPYRIGHT 2000 ACS \\
IT \\
I993: 495893 CAPLUS \\
DN & Il9:95893 \\
TI Synthetic approaches to 11-hydroxycephalotaxine \\
AU Ikeda, Masazumi; Kosaka, Keigo; Sakakibara, Minoru; Okano, Masahiko \\
CS Kyoto Pharm. Univ., Kyoto, 607, Japan \\
SO Heterocycles (1993), \(35(1), 81-4\) \\
& CODEN: HTCYAM; ISSN: 0385-5414 \\
DT Journal \\
LA & \\
GI English
\end{tabular}


I
\(A B\) Several approaches to functionalize the cephalotaxine (I) skeleton based on the Pummerer reaction and Moriarty oxidn. are described.
IT 148679-83-8P
RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of)
RN 148679-83-8 CAPLUS
CN \(\quad 8 \mathrm{H}-10 \mathrm{a}, 5,11\)-[1] Propanyl[3]ylidene-6H-1,3-dioxolo[4,5-h]pyrrolo[2,1-
b] [3]benzazepine-6,14-dione, 5,9,10,11-tetrahydro-, [5S-
(5.alpha.,10a.beta.,11.beta.,13R*)]- (9CI) (CA INDEX NAME)


Searched by John Dantzman 703-308-4488
```

=> d bib abs hitstr 4

```


I
\(Q=\)

\(Q^{1}=\)


II
\(A B\) The title compds. [I; \(R=\) (halo)-2-pyrimidinyl, (halo)pyrazinyl,
(halo) quinolinyl, (un) substituted Ph, pyridinyl; R1R2 = C3-5 alkylene, C3-5 alkenylene, polycyclic alkanediyl moiety \(Q, Q 1\), atoms to complete a fused benzo ring; \(X=\) R3R4C, S, SO, SO2; R3, R4 \(=\mathrm{H}, \mathrm{C} 1-4\) alkyl; R3R4 = C2-4 alkylene; \(Y=C H 2, \mathrm{CH} 2 \mathrm{CH} 2, \mathrm{O}, \mathrm{S} ; \mathrm{n}=2-5\); dotted line represents optional double bond] and their pharmaceutically acceptable salts were prepd. as psychotropic agents, useful as antipsychotics and anxiolytics. Bicyclo[3.3.0]octane-2,4-dicaboxylic acid was refluxed 3 h in Ac20 to
give
its anhydride which was refluxed 48 h with 1 -(4-aminobutyl)-4-
(trifluoromethyl)piperazine in xylene to give, after acidification, methanocyclopentazepinedione II. In rats, II inhibited the conditioned avoidance response with an ED50 of \(46.17 \mathrm{mg} / \mathrm{kg}\) orally and inhibited apomorphine-induced stereotypy and climbing behavior with ED50 of 42.37 and \(18.89 \mathrm{mg} / \mathrm{kg}\) orally, resp.
IT 121305-54-2P 121305-55-3P 121305-69-9P 121305-70-2P
RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
(prepn. of, as antipsychotic)
RN 121305-54-2 CAPLUS
CN 1,5-Methano-1H-3-benzazepine-2,4(3H,5H)-dione, 3-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]- (9CI) (CA INDEX NAME)

```

RN 121305-55-3 CAPLUS
CN 1,5-Methano-1H-3-benzazepine-2,4(3H,5H)-dione,
3-[4-[4-(6-chloropyrazinyl)-
1-piperazinyl]butyl]- (9CI) (CA INDEX NAME)

```

```

RN 121305-69-9 CAPLUS
CN 1,5-Methano-1H-3-benzazepine-2,4(3H,5H)-dione, 3-[4-[4-(2-pyrimidinyl)-1-
piperazinyl]butyl]-, dihydrochloride (9CI) (CA INDEX NAME)

```

- 2 HCl

RN 121305-70-2 CAPLUS
CN 1,5-Methano-1H-3-benzazepine-2,4(3H,5H)-dione, 3-[4-[4-(6-chloropyrazinyl)-

1-piperazinyl]butyl]-, monohydrochloride (9CI) (CA INDEX NAME)


- HCl
```

=> d bib abs hitstr 5

| L21 ANSWER 5 OF 5 CAPLUS COPYRIGHT 2000 ACS | |
| :--- | :--- |
| AN | $1979: 432639$ CAPLUS |
| DN | $91: 32639$ |
| TI Synthesis and pharmacological activity of $2,3,4,5$-tetrahydro-1, 5-methano- | |
| 1H-3-benzazepines | |
| AU Mazzocchi, Paul H.; Stahly, Barbara C. | |
| CS | Dep. Chem., Univ. Maryland, College Park, MD, USA |
| SO J. Med. Chem. (1979), 22(4), 455-7 | |
| | CODEN: JMCMAR; ISSN: 0022-2623 |
| DT Journal | |
| LA English | |
| GI | |

```

```

I
AB The title compds. I (R = H, alkyl, allyl, etc.) were prepd. from 2,3-dioxobenzonorbornene. 3-Allyl-2,3,4,5-tetrahydro-1,5-methano-1H-3benzazepine oxalate (1:1) showed a slight antinociceptive activity in the mouse hot-plate assay and little antagonistic activity in the tail-flick assay. None of other I showed significant analgesic activity and all except 2,3,4,5-tetrahydro-3-(2-phenylethyl)-1,5-methano-1H-3-benzazepine oxalate (1:1) were toxic. Structure-activity relations are discussed.
IT 69718-72-5P
RL: RCT (Reactant); SPN (Synthetic preparation); RREP (Preparation) (prepn. and alkylation of)
RN 69718-72-5 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro- (9CI) (CA INDEX NAME)

```

```

IT 69718-73-6P 69718-78-1P 69718-80-5P
69718-83-8P 69718-85-0P 69718-87-2P
69718-89-4P
RL: SPN (Synthetic preparation); PREP (Preparation)
(prepn: and analgesic and narcotic antagonist activities of)
RN 69718-73-6 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-, ethanedioate (1:1) (9CI) (CA INDEX NAME)
CM 1
CRN 69718-72-5
Searched by John Dantzman 703-308-4488

```
```

 CMF C11 H13 N
 NN
 CM 2
 CRN 144-62-7
 CMF C2 H2 O4
    ```

```

RN 69718-78-1 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-3-methyl-, ethanedioate
(1:1) (9CI) (CA INDEX NAME)
CM 1
CRN 69718-77-0
CMF C12 H15 N

```

```

CM 2
CRN 144-62-7
CMF C2 H2 O4

```

```

RN . 69718-80-5 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-3-(2-phenylethyl)-, ethanedioate (1:1) (9CI) (CA INDEX NAME)
CM 1
CRN 69718-79-2
CMF C19 H21 N
Searched by John Dantzman 703-308-4488

```

```

CM 2
CRN 144-62-7
CMF C2 H2 O4

```

```

RN 69718-83-8 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 3-(cyclopropylmethyl)-2,3,4,5-tetrahydro-, ethanedioate (1:1) (9CI) (CA INDEX NAME)
CM 1
CRN .69718-82-7
CMF C15 H19 N

```


CM 2
CRN 144-62-7
CMF C2 H2 O4


RN 69718-85-0 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-3-propyl-, ethanedioate (1:1) (9CI) (CA INDEX NAME)

CM 1
CRN 69718-84-9
CMF C14 H19 N


CM 2
CRN 144-62-7
CMF C2 H2 O4


RN 69718-87-2 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-3-(2-propenyl)-, ethanedioate (1:1) (9CI) (CA INDEX NAME)

CM 1
CRN 69718-86-1
CMF C14 H17 N


CM 2
CRN 144-62-7
CMF C2 H2 O4


RN 69718-89-4 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-3-(3-methyl-2-butenyl)-, ethanedioate (1:1) (9CI) (CA INDEX NAME)

CM 1
CRN 69718-88-3
CMF C16 H21 N


CM 2
CRN 144-62-7
CMF C2 H2 O4


IT 69718-76-9P 69718-81-6P
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation) (prepn. and redn. of)
RN 69718-76-9 CAPLUS
CN 1,5-Methano-1H-3-benzazepine-2,4(3H,5H)-dione (9CI) (CA INDEX NAME)


RN 69718-81-6 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 3-(cyclopropylcarbonyl)-2,3,4,5-tetrahydro(9CI) (CA INDEX NAME)


IT 69718-77-0P 69718-84-9P
RL: SPN (Synthetic preparation); PREP (Preparation)
(prepn. of)
RN 69718-77-0 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-3-methyl- (9CI) (CA INDEX NAME)


RN 69718-84-9 CAPLUS
CN 1,5-Methano-1H-3-benzazepine, 2,3,4,5-tetrahydro-3-propyl- (9CI) (CA INDEX NAME)

\(\Rightarrow\) d que 123


NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:
RING (S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 12
STEREO ATTRIBUTES: NONE
L23 0 SEA FILE=BEILSTEIN SSS FUL L10
\begin{tabular}{|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. \\
\hline
\end{tabular}

EXAMINER
FAll l H GINGBUFG
FFIZEF IN E
ISS EAST 42NO STREET
dOTH FLOOR
NEW YORE NY 10017-5755

MAN: B
\begin{tabular}{|c|c|}
\hline ART UNIT & PAPER NUMBER \\
\(1 E 24\) & 3 \\
DATE MAILED: & \(0 / 20 / 0 \mathrm{a}\) \\
\hline
\end{tabular}

Please find below and/or attached an Office communication concerning this application or proceeding.
Responsive to communication(s) filed on \(\qquad\) .

\section*{This action is FINAL.}Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11; 453 0.G. 213.
A shortened statutory period for response to this action is set to expire \(\qquad\) month(s), or thirty days, whichever is longer, from the mailing date of this communication. Failure to respond within the period for response will cause the application to become abandoned. (35 U.S.C. § 133). Extensions of time may be obtained under the provisions of 37 CFR 1.136(a).

\section*{Disposition of Claims}

X Claim(s) 1-14 is/are pending in the application.

Of the above, claim(s) \(\qquad\) is/are withdrawn from consideration.

X Claim(s) 12 \(\qquad\) is/are allowed.

X Claim(s) 1-11, 13, and 14 is/are rejected.Claim(s) \(\qquad\) is/are objected to.Claims \(\qquad\) are subject to restriction or election requirement.

Application Papers
\(\square\) See the attached Notice of Draftsperson's Patent Drawing Review, PTO-948.The drawing(s) filed on \(\qquad\) is/are objected to by the Examiner.The proposed drawing correction, filed on \(\qquad\) is ■approved

\section*{disapproved.}The specification is objected to by the Examiner.The oath or declaration is objected to by the Examiner.
Priority under 35 U.S.C. § 119
\(\square\) Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § 119 (a)-(d).
\(\square\) All \(\square\) Some* \(\square\) None of the CERTIFIED copies of the priority documents have beenreceived.received in Application No. (Series Code/Serial Number) \(\qquad\) .received in this national stage application from the International Bureau (PCT Rule 17.2(a)).
*Certified copies not received: \(\qquad\) .
X Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § 119(e).

\section*{Attachment(s)}

【 Notice of References Cited, PTO-892
\(\square\) Information Disclosure Statement(s), PTO-1449, Paper No(s). \(\qquad\)
\(\square\) Interview Summary, PTO-413
\(\square\) Notice of Draftsperson's Patent Drawing Review, PTO-948
\(\square\) Notice of Informal Patent Application, PTO-152.

Art Unit: 1624

\section*{DETAILED ACTION}

Claims 1-14 are pending in the application.

\section*{Priority}
1. Any non-provisional application claiming the benefit of one or more prior filed copending nonprovisional applications or international applications designating the United States of America must contain or be amended to contain in the first sentence of the specification following the title a reference to each such prior application, identifying it by application number (consisting of the series code and serial number) or international application number and international filing date and indicating the relationship of the applications. Cross - references to other related applications may be made when appropriate.
"This application is a national stage entry under 35 U.S.C. § 371 of PCT/IB98/01813, filed November 13, 1998 which claims the benefit of U.S. Provisional Application No. 60/070,245, filed December 31, 1997." is suggested.

\section*{Claim Rejections - 35 USC § 112}
2. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims 1-11, 13 and 14 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. The following reasons apply:
a) A broad range or limitation together with a narrow range or limitation that falls within the broad range or limitation (in the same claim) is considered indefinite, since the resulting claim does not clearly set forth the metes and bounds of the patent protection desired. Note the explanation given by the Board of Patent Appeals and Interferences in Ex parte Wu, 10 USPQ2d 2031, 2033 (Bd. Pat. App. \& Inter. 1989), as to where broad language is followed by "such as" and then narrow language. The Board stated that this can render a claim indefinite by raising a question or doubt as to whether the feature introduced by such language is (a) merely exemplary of the remainder of the claim, and therefore not required, or (b) a required feature of the claims. Note also, for example, the decisions of Ex parte Steigewald, 131 USPQ 74 (Bd. App. 1961); Ex parte Hall, 83 USPQ 38 (Bd. App. 1948); and Ex parte Hasche, 86 USPQ 481 (Bd. App. 1949). In the present instance, claims 1 (and claims dependent thereon) recite the broad recitation "aryl and heteroaryl groups may optionally be substituted with one or more substituents", and the claims also recite "preferably from zero to two substituents" which is the narrower statement of the range/limitation.
b) Regarding claims 1 (and claims dependent thereon), the phrase "e.g." renders the claim indefinite because it is unclear whether the limitation(s) following the phrase are part of the claimed invention. See MPEP § 2173.05(d).
c) A broad range or limitation together with a narrow range or limitation that falls within the broad range or limitation (in the same claim) is considered indefinite, since the resulting claim does not clearly set forth the metes and bounds of the patent protection desired. Note the explanation given by the Board of Patent Appeals and Interferences in Ex parte Wu, 10 USPQ2d 2031, 2033 (Bd. Pat. App. \& Inter. 1989), as to where broad language is followed by "such as" and then narrow language. The Board stated that this can render a claim indefinite by raising a question or doubt as to whether the feature introduced by such language is (a) merely exemplary of the remainder of the claim, and therefore not required, or (b) a required feature of the claims. Note also, for example, the decisions of Ex parte Steigewald, 131 USPQ 74 (Bd. App. 1961); Ex parte Hall, 83 USPQ 38 (Bd. App. 1948); and Ex parte Hasche, 86 USPQ 481 (Bd. App. 1949). In the present instance, claims 1 (and claims dependent thereon) recite the broad recitation "monocyclic and bicyclic rings may optionally be substituted with one or more substituents", and the claims also recite "preferably from zero to two substituents for the monocyclic rings and from zero to three substituents for the bicyclic rings" which is the narrower statement of the range/limitation.
d) Claim 1 is vague and indefinite in that it is not known what is missing from the claim since the claim does not end with a period.
e) Claim 2 recites the limitation " \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkoxy- \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkyl-" in definition of \(\mathrm{R}^{10}\) and \(\mathrm{R}^{17}\). There is insufficient antecedent basis for this limitation in the claim.
f) Claim 2 recites the limitation "phenyl and monocyclic heteroaryl" in definition of \(\mathrm{R}^{10}\) and \(\mathrm{R}^{17}\). There is insufficient antecedent basis for this limitation in the claim.
g) Claim 9 is a substantial duplicate of claim 7, as the only difference is a statement of intended use which is not given material weight. Note In re Tuominen 213 USPQ 89.
h) Regarding claims 9, 10 and 13, the phrase "including but not limited to" renders the claim(s) indefinite because the claim(s) include(s) elements not actually disclosed (those encompassed by "including but not limited to"), thereby rendering the scope of the claim(s) unascertainable. See MPEP § 2173.05(d).
i) Regarding claims 9,10 and 13 , the phrase "e.g." renders the claim indefinite because it is unclear whether the limitation(s) following the phrase are part of the claimed invention. See MPEP § 2173.05(d).
j) Regarding claims 9, 10 and 13 , the phrase "including" renders the claim(s) indefinite because the claim(s) include(s) elements not actually disclosed (those encompassed by "including"), thereby rendering the scope of the claim(s) unascertainable. See MPEP § 2173.05(d).
k) Claim 11 is vague and indefinite in that the definitions of \(\mathrm{R}^{5}\) and \(\mathrm{R}^{6}\) are "defined as in formula I above", however, they are not defined within the claim.
1) A broad range or limitation together with a narrow range or limitation that falls within the broad range or limitation (in the same claim) is considered indefinite, since the resulting claim does not clearly set forth the metes and bounds of the patent protection desired. Note the explanation given by the Board of Patent Appeals and Interferences in Ex parte Wu, 10 USPQ2d 2031, 2033 (Bd. Pat. App. \& Inter. 1989), as to where broad language is followed by "such as" and then narrow language. The Board stated that this can render a claim indefinite by raising a question or doubt as to whether the feature introduced by such language is (a) merely exemplary of the remainder of the claim, and therefore not required, or (b) a required feature of the claims. Note also, for example, the decisions of Ex parte Steigewald, 131 USPQ 74 (Bd. App. 1961); Ex parte Hall, 83 USPQ 38 (Bd. App. 1948); and Ex parte Hasche, 86 USPQ 481 (Bd. App. 1949). In the present instance, claim 14 recites the broad recitation "from 1 to 3 halo atoms", and the claim also recites "from 1 to 3 fluoro or chloro atoms" which is the narrower statement of the range/limitation.

\section*{Claim Rejections - 35 USC § 102}
3. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

\footnotetext{
A person shall be entitled to a patent unless --
}

Art Unit: 1624
(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

Claims 1 and 3 are rejected under 35 U.S.C. 102(b) as being anticipated by Mazzocchi et al., Journal of Medicinal Chemistry. Mazzocchi teaches the compounds of the instant invention where \(\mathrm{R}^{1}\) is \(-\mathrm{CH}_{2} \mathrm{CH}_{2}\)-cyclopropyl, \(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\) or \(-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}\). See examples \(4 \mathrm{c}, 4 \mathrm{~d}, 4 \mathrm{e}\) or 4 f on page 456.

\section*{Claim Objections}
4. Claim 14 is objected to under 37 CFR 1.75 (c) as being in improper form because a multiple dependent claim should refer to other claims in the alternative only. See MPEP § 608.01(n).

\section*{Allowable Subject Matter}
5. Claim 12 is allowed. None of the prior art of record nor a search in the pertinent art area teaches the method of use of 2,3,4,5-tetrahydro-1,5-methano-1H-3-benzazepine as claimed herein.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Brenda Coleman whose telephone number is (703) 305-1880. The examiner can normally be reached on Monday thru Friday from 9:00 AM to 5:30 PM.

The fax phone number for this Group is (703) 308-4734 for "unofficial" purposes and the actual number for OFFICIAL business is 308-4556.

Application/Control Number: 09/402,010
Art Unit: 1624

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the Group receptionist whose telephone number is (703) 308-1235.

Brenda Coleman
September 26, 2000

\section*{Notice of References Cited}



FOREIGN PATENT DOCUMENTS


* A copy of this reference is not being furnished with this Office action. (See Manual of Patent Examining Procedure, Section 707.05(a).)

Notice of References Cited

Sept. 26. 2000
Part of Paper No. \(\qquad\)


Sir:

\section*{RESPONSE AND AMENDMENT UNDER 37 C.F.R. § 1.111}

This is responsive to the Office Action mailed September 29, 2000, a Response to which was due on December 29, 2000. Accordingly, this response is timely.

Applicants request the following amendments to the application be entered.

\section*{IN THE ABSTRACT}
at page 80 , lind 9 , " \(R^{3}\) and \(n\) " are deleted and - - and \(R^{3}-\) is substituted therefor;
at page 80 , line 12 , "are claimed" is deleted.

\section*{IN THE SPECIFICATION}
at page 1 , line 5 , add the following text:
-- This application is a national stage entry under 35 U.S.C. § 371 of PCT/IB98/01813, filed November 13, 1998 which claims the benefit of U.S. Provisional Application Ser. No. \(60 / 070,245\), filed December 31, 1997. --
at page 1 , line 13 , delete "amylotropic" and substitute therefor - amyotrophic - ;
at page 1 , line 15 , delete "supramuscular" and substitute therefor -- supranuclear --;
at page 1 , line 17 , delete "barbituates" and substitute therefor -- barbiturates --;
at page 3 , line 22 , "piperizine, \(-\mathrm{N}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylpiperizine" is deleted and -- piperazine, N - \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylpiperazine -- is substituted therefor;
at page 5 , after line 11 , the following paragraphs are inserted:
\(\nsim\) Other embodiments of this invention relate to compounds of the formula I , and their pharmaceutically acceptable salts, wherein \(R^{2}\) and \(R^{3}\) do not, together with the benzo ring of formula I, form a bicyclic or tricyclic ring system.

Other embodiments of this invention relate to compounds of the formula I wherein one or both of \(R^{2}\) and \(R^{3}\) are \(-C(=O) R^{13}\), wherein \(R^{13}\) is \(\left(C_{1}-C_{6}\right)\) alkyl. Further embodiments of this invention relate to compounds of the formula I wherein one or both of \(R^{2}\) and \(R^{3}\) are \(-C(=O) R^{13}\), wherein \(R^{13}\) is \(\left(C_{1}-C_{6}\right)\) alkyl or \(\left(C_{1}-C_{3}\right)\) alkyl optionally substituted with from one to seven fluorine atoms. Other embodiments relate to compounds of the formula I wherein one of \(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) is \(\mathrm{CF}_{3}\), fluors, cyano or \(\mathrm{C}_{2} \mathrm{~F}_{5}\). \(-\%\)
at page 7 , after line 15 insert the following text:

\section*{\(A^{3}\)}


—— wherein \(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) are defined above; and \(\mathrm{P}^{\prime}\) is \(\operatorname{COOR}^{16}\) wherein \(\mathrm{R}^{16}\) is allyl, 2,2,2trichloroethyl or \(\left(C_{1}-\mathrm{C}_{6}\right)\) alkyl; \(-\mathrm{C}(=O) \mathrm{NR}^{5} \mathrm{R}^{6}\) wherein \(\mathrm{R}^{5}\) and \(\mathrm{R}^{6}\) are defined as in claim 2; \(\mathrm{C}(=\mathrm{O}) \mathrm{H},-\mathrm{C}(=\mathrm{O})\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms, preferably with from 1 to 3 fluor or chloro atoms; benzyl, or tbutoxycarbonyl (t-Boc). .-
at page 8, line \(\bar{\chi}\), "radiolabelled" is deleted and -- radiolabeled -- is substituted therefor; at page 8 , line 8 , "formulae" is deleted, and -- formula -- is substituted therefor; at page 8 , line 9 , "radiolabelled" is deleted and -- radiolabeled -- is substituted therefor; at page 8 , line 26 , delete "amylotropic" and substitute therefor -- amyotrophic --; at page 8 , line 28 , delete "supramuscular" and substitute therefor -- supranuclear --; at page 8 , line \(3 \varphi\), delete "barbituates" and substitute therefor -- barbiturates --; at page 8 , line 31, after "(TBI)", the words -- obsessive-compulsive disorder (OCD) -are inserted;
at page o, line 9, delete "amylotropic" and substitute therefor -- amyotrophic --; at page 9, line 11, delete "supramuscular" and substitute therefor -- supranuclear --; at page 9 , line 13, delete "barbituates" and substitute therefor -- barbiturates --;
at page 9 , line 14 , after "(TBI)", the words -- obsessive-compulsive disorder (OCD) -are inserted;
at page 9 , line 19, "accepable" is deleted and -- acceptable -- is substituted therefor; at page 9, line 30, delete "amylotropic" and substitute therefor -- amyotrophic --;
at page \(\varphi\), line 32, delete "supramuscular" and substitute therefor -- supranuclear --;
at page \(\gamma\), line 34, delete "barbituates" and substitute therefor -- barbiturates --;
at page 9 line 35 , after "(TBI)", the words -- obsessive-compulsive disorder (OCD) -are inserted;
at page 23 , line 13, "dichoroethane" is deleted and -- dichloroethane -- is substituted therefor;
at page 24, line 9, "heteratoms" is deleted and -- heteroatoms -- is substituted therefor; at page 24, line 10, "heteroryl" is deleted and -- heteroaryl -- is substituted therefor; at page 25 , line 8 , "illustrated" is deleted and -- illustrated -- is substituted therefor; at page 25 , line 16 , "exemplied" is deleted and - exemplified - is substituted therefor; at page 27 , line 7 , "stoicheometric" is deleted and -- stoichiometric -- is substituted therefor;
at page 2 p, line 8 , "pyridinum" is deleted and -- pyridinium -- is substituted therefor; at page 31, line 17, "trifluromethansulfonic" is deleted and -- trifluoromethanesulfonic -is substituted therefor;
at page 31 , line 24, "acylations" is deleted and -- acylation -- is substituted therefor; at page 1 1, line 36, "substited" is deleted and -- substituted -- is substituted therefor;

\section*{IN THE CLAIMS}

Cancel claims 3, 4, 5, 6, 7, 11, 12 and 13.
Replace claims \(1,2,9,10\) and 14 with the amended versions immediately following:

\section*{1. (Once Amended) A compound of the formula}

\(R^{2}\) and \(R^{3}\), together with the carbons to which they are attached, form a four to seven membered monocyclic, or ten to fourteen membered bicyclic, carbocyclic ring that can be saturated or unsaturated, wherein from one to three of the nonfused carbon atoms of said monocyclic rings, and from one to five of the carbon atoms of said bicyclic rings that are not part of the benzo ring shown in formula I, may optionally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents that are selected, independently, from ( \(\mathrm{C}_{1}-\mathrm{C}_{6}\) ) alkyl optionally substituted with from one to seven fluorine atoms; \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkoxy optionally substituted with from one to seven fluorine atoms; nitro, cyano, halo, ( \(\mathrm{C}_{2}-\mathrm{C}_{6}\) ) alkenyl, \(\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)\) alkynyl, hydroxy, amino, \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylamino and ( \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl \()_{2}\) amino, \(-\mathrm{CO}_{2} \mathrm{R}^{4}\), \(-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}\) and \(-\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}\);
wherein each \(R^{4}, R^{5}, R^{6}, R^{7}, R^{8}\) and \(R^{13}\) is selected, independently, from hydrogen and ( \(C_{1}-C_{6}\) ) alkyl, or \(R^{5}\) and \(R^{6}\), or \(R^{7}\) and \(R^{8}\) together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperazine, \(-\mathrm{N}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylpiperazine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each \(X\) is, independently, \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylene;
or a pharmaceutically acceptable salt thereof.
2. (Once Amended) A compound according to claim 1, wherein \(R^{2}\) and \(R^{3}\), together with the benzo ring of formula \(I\), form a bicyclic ring system selected from the following:

wherein \(R^{10}\) and \(R^{17}\) are selected, independently, from ( \(C_{1}-C_{6}\) ) alkyl optionally substituted with from one to seven fluorine atoms; \(\left(C_{1}-C_{6}\right)\) alkoxy optionally substituted with from one to seven fluorine atoms; \(\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)\) alkenyl, \(\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)\) alkynyl, hydroxy, amino, ( \(\mathrm{C}_{1}-\) \(\mathrm{C}_{6}\) )alkylamino and \(\left(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right)_{2}\) amino, \(-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}\) and \(\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}\) and wherein \(\mathrm{R}^{4}, \mathrm{R}^{5}, \mathrm{R}^{6}, \mathrm{R}^{7}, \mathrm{R}^{8}\) and \(\mathrm{R}^{13}\) are as defined in claim 1.
9. (Once Amended) A pharmaceutical composition comprising an amount of a compound according to claim 1 and a pharmaceutically acceptable carrier.

\section*{14}
10. (Once Amended) A method for treating a disorder or condition selected from inflammatory bowel disease, ulcerative colitis, pyoderma gangrenosum, Crohn's disease, irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amyotrophic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supranuclear palsy, chemical dependencies and addictions; dependencies on, or addictions to, nicotine, tobacco products, alcohol, benzodiazepines, barbiturates, opioids or cocaine; headache, stroke, traumatic brain injury (TBI), obsessive-compulsive disorder (OCD), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, petit mat absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound according to claim 1 that is effective in treating such disorder or condition.


Z-methyl-5,7,13-triazatetracyclo[9.3.1. \(\left.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
6-methyl-5,7,13-triazatetracyclo[9.3.1.0 \(\left.{ }^{2,10} \cdot 0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
7-propyl-5,7,13-triazatetracyclo \(\left[9.3 \cdot 1 \cdot 0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
7-butyl-5,7,13-triazatetracyclo[9.3.1.0 \({ }^{2,10} .0^{4,8}\) ]pentadeca-2(10),3,5,8-tetraene;
6-methyl-7-isobutyl-5, , , 13-triazatetracyclo \(\left[9 \cdot 3 \cdot 1 \cdot 0^{2,10} \cdot 0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
7-phenyl-5,7,13-triazatetracyclo[9.3.1.0 \(\left.{ }^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
6-methyl-7-phenyl-5,7,13-triazatetracyclo \(\left[9.3 \cdot 1.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
7-neopentyl-5,7,13-triazatetracyclo[9.3.1.0 \(\left.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
6-methyl-7-neopentyl-5,7,13-triazatetracydlo \(\left[9.3 .1 .0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
6-methyl-5-oxa-7,13-diazatetracyclo \(\left[9.3 .1 .0^{2,10} 0^{4,8}\right]\) pentadeca-2(10),3,6,8-tetraene; and pharmaceutically acceptable salts thereof. --
-16. A compound according to claim 1 selected from the group consisting of:
6-methyl-5, 7 -dioxo-6,13-diazatetracyclo[9.3.1. \(0^{2,10} .0^{4,8}\) ]pentadeca-2(10),3,8-triene;
6-methyl-5-oxp-6,13-diazatetracyclo[9.3.1.0 \(\left.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,8-triene;
5,7-dimethyl-6-oxe-5,7,13-triazatetracyclo[9.3.1.0 \({ }^{2,10} .0^{4,8}\) ]pentadeca-2(10),3,8-triene;
5,7-dioxo-6,13-diazatetracyclo[9.3.1.0 \(\left.0^{2,10} \cdot 0^{4,8}\right]\) pentadeca-2(10),3,8-triene;
5-oxo-6,13-diazatetracyolo \(\left[9.3 .1 .0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,8-triene;
6-oxo-5,7,13-triazatetracycł\& \(\left[9.3 .1 .0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,8-triene;
6-methyl-5-thia-5-dioxo-6,13-diazatetracyclo \(\left[9.3 .1 .0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,6,8-tetraene;
7-dimethylamino-5-thia-5-dioxo-6, 1 dazatetracyclo[9.3.1. \(0^{2,10} .0^{4,8}\) ]pentadeca-2(10),3,6,8tetraene;
6,7-dioxo-5,8,14-triazatetracyclo[10.3.1.0 \({ }^{111} .0^{4,9}\) ]hexadeca-2(11),3,9-triene;
5,8-dimethyl-6,7-dioxo-5,8,14-triazatetracyclo [10.3.1.0 \(0^{2,11} .0^{4,9}\) hexadeca-2(11),3,9-triene;
5-oxa-7-methyl-6-oxo-7,13-diazatetracyclo[9.3.1. \(\left.Q^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,8-triene; \(=\) and pharmaceutically acceptable salts thereof.-
- . 1 . A compound according to claim 1 which is:

6-methyl-5-thia-7,13-diazatetracyclo[9.3.1. \(\left.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,6,8-tetraene;
or a pharmaceutically acceptable salt thereof. --
-- 18. A compound according to claim 1 which is:
6-methyl-7-propyl-5,7,13-triazatetracyclo \(\left[9.3 \cdot 1.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene; or a pharmaceutically acceptable salt thereof. --
-- 19. A compound according to claim 1 which is:
6,7-dimethyl-5,7,13-triazatetracyclo[9.3.1. \(\left.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
or a pharmaceutically acceptable salt thereof. --
-20 . A compound according to claim \(\rangle\) which is:
6,7-dimethyl-5,8,14-triazatetracyclo[10.3.1.0 \(0^{2,11} .0^{4,9}\) ]hexadeca-2(11),3,5,7,9-pentaene;
or a pharmaceutically acceptable salt thereof. --
8
-24. A compound according to claim 1 which is:
5,8,14-triazatetracyclo[10.3.1.0 \(\left.0^{2,11} .0^{4,9}\right]\) hexadeca-2(11),3,5,7,9-pentaene;
or a pharmaceutically acceptable salt thereof. --
--2Z. A compound according to claim \(y\) which is:
14-methyl-5,8,14-triazatetracyclo[10.3.1.0 \(\left.0^{2,11} .0^{4,9}\right]\) hexadeca-2(11),3,5,7,9-pentaene;
or a pharmaceutically acceptable salt thereof. --
\(-\quad\) 23. A compound according to claim \(y\) which is:
5-oxa-7,13-diazatetracyclo[9.3.1.0 \(\left.{ }^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,6,8-tetraene;
or a pharmaceutically acceptable salt thereof. --
-- 24 A compound according to claim \(x\) which is:
7-methyl-5-oxa-6,13-diazatetracyclo[9.3.1.0 \(\left.0^{2,10} .0^{4,8}\right]\) pentadeca-2,4(8),6,9-tetraene;
or a pharmaceutically acceptable salt thereof. --
-- 25. A compound according to claim which is:
5,13-diazatetracyclo \(\left[\right.\) e.3.1. \(0^{2,10} .0^{4,8}\) ]pentadeca-2,4(8),9-trien-6-one;
or a pharmaceutically acceptable salt thereof. --
-- 26. A compound according of clam in which is:
6-oxo-5-oxa-7,13-diazatetracyclo[9.3.1.0., \({ }^{2,10} 0^{4,8}\) ]pentadeca-2(10),3,6,8-tetraene; or a pharmaceutically acceptable salt thereof. -

\section*{REMARKS}

Applicants have amended the Abstract to correct the description of the variables as presented in the structure. Applicants have inserted a statement on page 1 of the application to indicate the priority required by 37 C.F.R. § 1.78. Applicants have corrected a number of typographical and spelling errors on pages \(1,3,8,9,23-25,27\) and 31 , as specifically set forth above.

Applicants have inserted text on page 5 relating to other embodiments of the invention that are fully supported by claims 3-6 as originally filed. The insertion of the text at page 7 of the structure of formula (I') and accompanying description has full literal support in claim 14 in the application as originally filed. The insertion of "obsessive-compulsive disorder" at pages 8 and 9 and claim 10 into the lists of diseases, disorders or conditions for which pharmaceutical compositions comprising the compounds of the invention, and methods employing those compounds/compositions is supported by the description at page 1 , line 18 .

Applicants have amended claim 1 such that it relates only to compounds where \(R^{2}\) and \(R^{3}\) join to form a ring and thus deletes the substituent list for \(R^{2}\) and \(R^{3}\) do not form a ring. This amendment has support in the specification at page 3 , lines \(7-19\); and from page 4 , line 8 to page 5 , line 8. Consistent with this amendment to claim 1, Applicants have canceled dependent claims \(3,4,5\) and 6 which all relate to compounds where the groups \(R^{2}\) and \(R^{3}\) do not together form a ring and now fall without the scope of amended claim 1. Further, Applicants have canceled claims 11, 12 and 13. Applicants have made these amendments and cancellations of claims without prejudice to file divisional application(s) drawn to the canceled subject matter.

Claim 2 now recites definitions of \(\mathrm{R}^{10}\) and \(\mathrm{R}^{17}\) that are consistent with the appropriate definitions in claim 1 from which it depends. Applicants have amended claim 9 to recite a pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier with the deletion of other descriptors in the claim. Applicants have canceled claim 7 to avoid overlap with claim 9. Applicants have amended claim 10 to correct several typographical, spelling and format errors. Applicants have amended claim 14 to insert a definition of \(\mathrm{R}^{5}\) and \(\mathrm{R}^{6}\) directly from claim 1 .

New claims 15 through 26 set forth species corresponding to the invention. New claim 15 is supported by Examples 13-15, 17-18, 20-24, and 29. New claim 16 is supported by the specification at page 5 , line 14 to page 6 , line 36 . New claims 17 through 26 are supported by Examples \(10,12,16,25,26,27,28,36,41\) and 42 , respectively.

All of the foregoing amendments have support in the application as filed. These amendments add no new matter to the application.

\section*{Rejection Under 35 U.S.C. § 112, Second Paragraph}

The Examiner has rejected claims \(1-11,13\) and 14 under 35 U.S.C. § 112 , second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. The Examiner has set forth the following particular objections:

\section*{a. Claim 1 - "Preferably from zero to two substituents"}

The Examiner has objected to the statements of "range/limitation" for "aryl and heteroaryl group" wherein both descriptors "optionally be substituted with one or more substituents" and "preferably from zero to two substituents" are present.

Applicants have deleted the particular passage from claim 1 in which "aryl and heteroaryl groups" are accompanied by these descriptors. Accordingly, this objection is now moot.

\section*{b. Claim 1 - "e.g."}

The Examiner has objected to the phrase "e.g." in claim 1.
Applicants have deleted the passage wherein that expression occurs from claim 1. Accordingly, this objection is now moot.

\section*{c. Claim 1 - "Preferably from zero to two substituents" - Mono/Bicyclic Rings}

The Examiner has objected to the statements of "range/limitation" for "monocyclic and bicyclic rings" wherein both descriptors "optionally be substituted with one or more substituents" and "preferably from zero to two substituents for the monocyclic rings and zero to three substituents for the bicyclic rings" are present.

Applicants have amended claim 1 to delete the phrase "preferably from zero to two substituents for the monocyclic rings and zero to three substituents for the bicyclic rings" and overcome this objection. Accordingly, Applicants request the Examiner withdraw this particular objection.

\section*{d. Claim 1 - Missing Period}

The Examiner has asserted that claim 1 is "vague and indefinite in that . . . the claim does not end with a period."

Applicants have amended claim 1 to insert a period at the end of the claim.

\section*{e. Claim 2 - "( \(\mathrm{C}_{0}-\mathrm{C}_{6}\) )alkoxy- \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkyl-"}

The Examiner urges 'that the limitation ' \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkoxy- \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkyl-' in the definition of \(\mathrm{R}^{10}\) and \(\mathrm{R}^{17 \text { " }}\) in claim 2 has insufficient antecedent basis in claim 1.

Applicants have amended claim 2 to replace the definitions of \(\mathrm{R}^{10}\) and \(\mathrm{R}^{17}\) to reflect the substituent pattern as set forth in claim 1. Accordingly, Applicants request withdrawal of this objection.

\section*{f. Claim 2 - Phenyl and Monocyclic Heteroaryl}

The Examiner urges "that the limitation 'phenyl and monocyclic heteroaryl' in the definition of \(\mathrm{R}^{10}\) and \(\mathrm{R}^{17 » \text { in claim } 2 \text { has insufficient antecedent basis in claim } 1 . ~}\)

Applicants have amended claim 2 to replace the definitions of \(\mathrm{R}^{10}\) and \(\mathrm{R}^{17}\) to reflect the substituent pattern as set forth in claim 1. Accordingly, Applicants request withdrawal of this objection.

\section*{g. Claim 9 - "Intended Use"}

The Examiner has objected to claim 9 as a substantial duplicate of claim 7 "as the only difference is a statement of intended use which is not given material weight."

Applicants have canceled claim 7 and amended claim 9 to recite a pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier. Accordingly, Applicants have overcome this objection.
h. Claims 9, 10 and 13 - "Including but not limited to"

The Examiner has objected to claims 9,10 and 13 because the phrase "including by not limited to" renders the claims indefinite.

Applicants have canceled claims 9 and 13 in this application and have amended claim 10 to avoid the use of the phrase to which the Examiner has objected. Accordingly, the Examiner should withdraw this objection.

\section*{i. Claims 9, 10 and 13 - "e.g"}

The Examiner has objected to claims 9,10 and 13 because the phrase "e.g." renders the claims indefinite.

Applicants have canceled claims 9 and 13 in this application and have amended claim 10 to avoid the use of the phrase to which the Examiner has objected. Accordingly, the Examiner should withdraw this objection.

\section*{i. Claims 9, 10 and 13 - "Including"}

The Examiner has objected to claims 9,10 and 13 because the phrase "including" renders the claims indefinite.

Applicants have canceled claims 9 and 13 in this application and have amended claim 10 to avoid the use of the term to which the Examiner has objected. Accordingly, the Examiner should withdraw this objection.

\section*{k. Claim 11 - "Defined as in formula I above"}

The Examiner has objected to the use of the phrase "defined as in formula I above" to define the substituents \(\mathrm{R}^{5}\) and \(\mathrm{R}^{6}\) in that claim.

Applicants have canceled claim 11 thereby rendering this objection moot.

\section*{1. Claim 14 - "From 1 to 3 halo atoms"}

The Examiner has objected to the statements of "range/limitation" for a particular alkyl moiety wherein both descriptors of substitution pattern, "from 1 to 3 halo atoms" and "preferably from 1 to 3 fluoro or chloro atoms", are present.

Applicants have amended claim 1 to delete the phrase "preferably from 1 to 3 fluoro or chloro atoms" and overcome this objection. Accordingly, Applicants request the Examiner withdraw this particular objection.

\section*{Rejection Under 35 U.S.C. § 102}

The Examiner has rejected claims 1 and 3 under 35 U.S.C. § 102(b) as being anticipated by Mazzocchi et al., J. Med. Chem., 22(4): 455-457 (1979) ("Mazzocchi"). The Examiner asserts that Mazzocchi 'teaches the compounds of the instant invention where \(\mathrm{R}^{1}\) is \(-\mathrm{CH}_{2} \mathrm{CH}_{2}\) cyclopropyl, \(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\) or \(-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CMe}_{2}\)."

Applicants have amended claim 1 to exclude certain classes of compounds without prejudice to file divisional applications thereto. The claims presently cover compounds of formula I wherein \(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) together form an additional ring. The amendments to claim 1 render this objection moot because the compounds as claimed do not encompass the compounds of Mazzocchi and hence cannot be anticipated by that reference under 35 U.S.C. § 102.

Accordingly, Applicants request that the Examiner withdraw this rejection.

\section*{Claim Objections - Claim 14}

The Examiner has objected to claim 14 as being in improper form because a multiple dependent claim should refer to other claims in the alternative only.

Applicants have amended claim 14 to insert definition of the substituent groups \(\mathrm{R}^{5}\) and \(\mathrm{R}^{6}\) into the claim itself and thereby canceled the dependence upon claim 2. Accordingly, Applicants have overcome this particular claim objection.

Applicants believe the present amendments render the set of pending claims in condition for allowance and request the issuance of a Notice of Allowance. If a telephone interview would
assist the furtherance of the prosecution of this application, the Examiner is invited to contact the undersigned.

Respectfully submitted,

Date: \(12 / 29 / 2000\)

Pfizer, Inc
Patent Department, 20th Floor
235 East 42nd Street
New York, NY 10017-5755
(212) 733-5086


Rroy F. Waldron
Registration No. 42,208
Attorney for Applicant(s)

\section*{ATTACHMENT TO RESPONSE AND AMENDMENT MARKED-UP VERSIONS OF AMENDED CLAIMS}
1. (Once Amended) A compound of the formula

\(\mathrm{R}^{1}\) is hydrogen, \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl, unconjugated \(\left(\mathrm{C}_{3}-\mathrm{C}_{6}\right)\) alkenyl, \(\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}\), benzyl or \(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{O}-\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)\) alkyl;
[ \(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) are selected, independently, from hydrogen, \(\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)\) alkenyl, \(\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)\) alkynyl, hydroxy, nitro, amino, halo, cyano, \(-\mathrm{SO}_{\mathrm{q}}\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl wherein q is zero, one or two, \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right.\) )alkylamino-, \(\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}\) amino-, \(-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}\), \(-\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}\), aryl- \(\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)\) alkyl- or aryl- \(\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)\) alkyl-O-, wherein said aryl is selected from phenyl and naphthyl, heteroaryl- \(\left(\mathrm{C}_{0}-\mathrm{C}_{3}\right)\) alkyl- or heteroaryl-( \(\left.\mathrm{C}_{0}-\mathrm{C}_{3}\right)\) alkyl-O-, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur, and \(\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkoxy- \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkyl-, wherein \(\mathrm{X}^{2}\) is absent or \(\mathrm{X}^{2}\) is \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylamino- or \(\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}\) amino-, and wherein the ( \(\mathrm{C}_{0^{-}}\) \(\mathrm{C}_{6}\) ) alkoxy- \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkyl- moiety of said \(\mathrm{X}^{2}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkoxy- \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkyl- contains at least one carbon atom, and wherein from one to three of the carbon atoms of said \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkoxy- \(\left(\mathrm{C}_{0^{-}}\right.\) \(\mathrm{C}_{6}\) )alkyl- moiety may optionally be replaced by an oxygen, nitrogen or sulfur atom, with the proviso that any two such heteroatoms must be separated by at least two carbon atoms, and wherein any of the alkyl moieties of said \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkoxy- \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkyl- may be optionally substituted with from two to seven fluorine atoms, and wherein one of the carbon atoms of each of the alkyl moieties of said aryl-( \(\mathrm{C}_{0}-\mathrm{C}_{3}\) ) alkyl- and said heteroaryl-( \(\left.\mathrm{C}_{0}-\mathrm{C}_{3}\right)\) alkyl- may optionally be replaced by an oxygen, nitrogen or sulfur atom, and wherein each of the foregoing aryl and heteroaryl groups may optionally be substituted with one or more substituents, preferably from zero to two substituents, independently selected from \(\left(C_{1}-C_{6}\right)\) alkyl optionally substituted with from one to seven fluorine atoms, \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkoxy optionally substituted with from two to seven fluorine atoms, halo (e.g., chloro, fluoro, bromo or iodo), ( \(\mathrm{C}_{2}-\mathrm{C}_{6}\) )alkenyl, ( \(\mathrm{C}_{2}-\mathrm{C}_{6}\) ) alkynyl, hydroxy, nitro, cyano, amino, \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylamino-, \(\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}\) amino-, \(-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6}\), \(-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}\) and \(-\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}\); ]
[or] \(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\), together with the carbons to which they are attached, form a four to seven membered monocyclic, or ten to fourteen membered bicyclic, carbocyclic ring that can be
saturated or unsaturated, wherein from one to three of the nonfused carbon atoms of said monocyclic rings, and from one to five of the carbon atoms of said bicyclic rings that are not part of the benzo ring shown in formula \(I\), may optionally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents [, preferably from zero to two substituents for the monocyclic rings and from zero to three substituents for the bicyclic rings,] that are selected, independently, from \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl optionally substituted with from one to seven fluorine atoms [,] ; ( \(C_{1}-C_{6}\) ) alkoxy optionally substituted with from one to seven fluorine atoms [,]; nitro, cyano, halo, \(\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)\) alkenyl, \(\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)\) alkynyl, hydroxy, amino, \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylamino and \(\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\right.\) alkyl \(]_{2}\) amino, \(-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}\) and \(-\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}\);
wherein each \(R^{4}, R^{5}, R^{6}, R^{7}, R^{8}\) and \(R^{13}\) is selected, independently, from hydrogen and ( \(C_{1}-C_{6}\) ) alkyl, or \(R^{5}\) and \(R^{6}\), or \(R^{7}\) and \(R^{8}\) together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperazine, \(-\mathrm{N}-\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)\) alkylpiperazine [piperizine, \(\mathrm{N}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylpiperizine] or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each X is, independently, \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylene;
[with the proviso that: (a) at least one of \(\mathrm{R}^{1}, \mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) must be the other than hydrogen, and (b) when \(R^{2}\) and \(R^{3}\) are both hydrogen, \(R^{1}\) cannot be hydrogen or methyl;]
or a pharmaceutically acceptable salt thereof [;] .
2. (Once Amended) A compound according to claim 1 , wherein \(R^{2}\) and \(R^{3}\), together with the benzo ring of formula \(I\), form a bicyclic ring system selected from the following:

wherein \(R^{10}\) and \(R^{17}\) are selected, independently, from \(\left(C_{1}-C_{6}\right)\) alkyl optionally substituted with from one to seven fluorine atoms; \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkoxy optionally substituted with from one to seven fluorine atoms; ( \(\mathrm{C}_{2}-\mathrm{C}_{6}\) )alkenyl, ( \(\mathrm{C}_{2}-\mathrm{C}_{6}\) )alkynyl, hydroxy, amino, ( \(\mathrm{C}_{1}\) ) \(\underline{C}_{6}\) )alkylamino and \(\left(\left(\mathrm{C}_{1}-\mathrm{C}_{6} \text { )alkyl }\right)_{2}\right.\) amino, \(-\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}\) and -
\(\underline{\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}}\left[\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\right.\) alkoxy- \(\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)\) alkyl- wherein the total number of carbon atoms does not exceed six and wherein any of the alkyl moieties may optionally be substituted with from one to seven fluorine atoms; nitro, cyano, halo, amino, ( \(\mathrm{C}_{1}-\mathrm{C}_{6}\) )alkylamino-, \(\left[\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right]_{2}\) amino-, \(\mathrm{CO}_{2} \mathrm{R}^{4},-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13},-\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}\), phenyl and monocyclic heteroaryl, wherein said heteroaryl is selected from five to seven membered aromatic rings containing from one to four heteroatoms selected from oxygen, nitrogen and sulfur,] and wherein \(R^{4}, R^{5}, R^{6}, R^{7}\), \(\mathrm{R}^{8}\) and \(\mathrm{R}^{13}\) are as defined in claim 1.
9. (Once Amended) A pharmaceutical composition [for treating a disorder or condition selected from inflammatory bowel disease (including but not limited to ulcerative colitis, pyoderma gangrenosum and Crohn's disease), irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amylotropic lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supramuscular palsy, chemical dependencies and addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI), psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, including petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal,] comprising an amount of a compound according to claim 1 [that is effective in treating such disorder or condition] and a pharmaceutically acceptable carrier.
10. A method for treating a disorder or condition selected from inflammatory bowel disease, [(including but not limited to] ulcerative colitis, pyoderma gangrenosum , [and] Crohn's disease [ ) ], irritable bowel syndrome, spastic dystonia, chronic pain, acute pain, celiac sprue, pouchitis, vasoconstriction, anxiety, panic disorder, depression, bipolar disorder, autism, sleep disorders, jet lag, amyotrophic [amylotropic] lateral sclerosis (ALS), cognitive dysfunction, hypertension, bulimia, anorexia, obesity, cardiac arrythmias, gastric acid hypersecretion, ulcers, pheochromocytoma, progressive supranuclear [supramuscular] palsy, chemical dependencies and addictions;' dependencies on, or addictions to, nicotine, tobacco products, alcohol, benzodiazepines, barbiturates, opioids or cocaine; headache, stroke, traumatic brain injury (TBI), obsessive-compulsive disorder (OCD), [chemical dependencies and
addictions (e.g., dependencies on, or addictions to nicotine (and/or tobacco products), alcohol, benzodiazepines, barbituates, opioids or cocaine), headache, stroke, traumatic brain injury (TBI),] psychosis, Huntington's Chorea, tardive dyskinesia, hyperkinesia, dyslexia, schizophrenia, multi-infarct dementia, age related cognitive decline, epilepsy, [including] petit mal absence epilepsy, senile dementia of the Alzheimer's type (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD) and Tourette's Syndrome in a mammal, comprising administering to a mammal in need of such treatment an amount of a compound according to claim 1 that is effective in treating such disorder or condition.
14. (Once Amended) A compound of the formula

wherein \(R^{2}\) and \(R^{3}\) are defined as in claim 1 ; and \(P^{\prime}\) is COOR \({ }^{16}\) wherein \(R^{16}\) is allyl, 2,2,2-trichloroethyl or \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl; \(-\mathrm{C}(=\mathrm{O}) \mathrm{NR}^{5} \mathrm{R}^{6}\) wherein \(\mathrm{R}^{5}\) and \(\mathrm{R}^{6}\) are [defined as in claim 2] selected, independently, from hydrogen and ( \(C_{1}-C_{6}\) ) alkyl, or \(R^{5}\) and \(R^{6}\) together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperazine, \(-\mathrm{N}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylpiperazine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone ; \(-\mathrm{C}(=\mathrm{O}) \mathrm{H},-\mathrm{C}(=\mathrm{O})\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms [, preferably with from 1 to 3 fluoro or chloro atoms]; benzyl, or t-butoxycarbonyl ( \(\mathrm{t}-\mathrm{Boc}\) ).


\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

IN RE APPLICATION OF: J. W. Coe et al. :
Examiner: B. Coleman
SER. NO.: 09/402,010
Group Art Unit: 1624
FILING DATE: September 28, 1999
TITLE: ARYL FUSED AZAPOLYCYCLIC : COMPOUNDS

Assistant Commissioner for Patents
Washington, D.C. 20231
Sir:

\section*{INFORMATION DISCLOSURE STATEMENT TRANSMITTAL LETTER}

Applicants submit herewith an Information Disclosure Statement pursuant to 37 C.F.R. §§ 1.97(c) and 1.98 with accompanying Form PTO-A820. This Statement is being filed after the mailing of a first Office Action on the merits but before the mailing date of either a final action or a notice of allowance. The submission of this Statement is accompanied by the fee of \(\$ 180.00\) as required under 37 C.F.R. § 1.17(p).

The Commissioner is hereby authorized to charge any additional fees which may be required under 37 C.F.R. \(\S \S 1.16\) and 1.17 , or to credit any overpayment, to Deposit Account No. 16-1445. Two copies of this paper are enclosed.

Respectfully submitted,

Date:


Pfizer Inc
Patent Department, 20th Floor 235 East 42nd Street
New York, NY 10017-5755
(212) 733-5086

01/08/2001 vaMil
00000116161445
09402010
\(01 \mathrm{FC}: 126\)
180.00 CH


IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: J. W. Coe et al.
SER. NO.: 09/402,010

\author{
Examiner: B. Coleman
}

Group Art Unit: 1624
FILING DATE: September 28, 1999
TITLE: ARYL FUSED AZAPOLYCYCLIC COMPOUNDS

Assistant Commissioner for Patents
Washington, D.C. 20231
Sir:
INFORMATION DISCLOSURE STATEMENT PURSUANT TO 37 C.F.R. \& 1.97 ET SEQ.
Applicants herewith make available to the U.S. Patent and Trademark Office this Information Disclosure Statement pursuant to 37 C.F.R. §§ 1.97 and 1.98, a Form PTO-FB-A820 (2x). This Information Disclosure Statement contains a listing of references which were cited in a Search Report issued by the International Searching Authority on February 3, 1999. A copy of the Search Report and the references are enclosed herewith.

The Examiner is requested to consider carefully the complete text of these references in connection with the examination of the above-identified application in accordance with 37 C.F.R. § 1.104(a). It is believed the Examiner will concur with Applicants' belief that the subject matter presently claimed is neither anticipated nor rendered obvious by the foregoing references.

It is requested that the references listed on the attached form PTO-FB-A820 be included in the "References Cited" portion of any patent issuing from this application (M.P.E.P. § 1302.12).

The references listed on the PTO-FB-A820 are as follows:


Attorney Docket No. PC10030A

\section*{U.S. Patents}

3,471,503, issued October 7, 1969

\section*{Other Documents}
P. Mazzocchi et al., "Synthesis and Pharmacological Activity of 2,3,4,5-Tetrahydro-1,5-methano-1H-3-benzazepines," J. Med. Chem., 22(4), 455-457 (1979).

Applicants also bring to the attention of the Examiner U.S. co-pending application Ser. No. 09/514,002, filed February 25, 2000, which is a continuation in part application of the present application.

A favorable response is earnestly solicited.

Date:


Respectfully submitted,

Date:


Pfizer Inc
Patent Department, 20th Floor 235 East 42nd Street
New York, NY 10017-5755
(212) 733-5086


I hereby certify that this correspondence is being deposited with the United States Postal Service as first-class mail in an envelope


\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

IN RE APPLICATION OF: J. W. Coe et al.
SER. NO.: 09/402,010
Examiner: B. Coleman

FILING DATE: September 28, 1999
Group Art Unit: 1624

TITLE: ARYL FUSED AZAPOLYCYCLIC COMPOUNDS

Assistant Commissioner for Patents
Washington, D.C. 20231
Sir:

\section*{TRANSMITTAL LETTER}

Transmitted herewith is [X] a Response and Amendment; in the above-identified application.

The fee has been calculated as shown below.

\(\square \quad\) Multiple Dependent Claim(s) fee
\(\$ 260.00\) \(\qquad\)
* If the entry in column 2 is less than the entry in column 4, write " 0 " in column 5.
** \(\quad\) If the "Highest No. Previously Paid for" is less than 20, write " 20 " in this space. If the "Highest No. Previously Paid for" is less than 3, write " 3 " in this space.
\(\boxtimes \quad\) No additional fee is required.

Patent Application Attorney Docket No. PC10030A


A Petition for Extension of Time for responding within \(\qquad\) months of the response date is also enclosed. The Commissioner is authorized to charge the fee pursuant to 37 C.F.R. § 1.17(a)(2) in the amount of \$ \(\qquad\) . Two copies of this paper are enclosed.

Please charge Deposit Account No. 16-1445 in the amount of \$ \(\qquad\) - Two copies of this paper are enclosed.

The Commissioner is hereby authorized to charge any additional fees which may be required under 37 C.F.R. \(\S \S 1.16\) and 1.17, or credit any overpayment, to Deposit Account No. 16-1445. Two copies of this paper are enclosed.

Date: \(\qquad\)

Respectfully submitted,


Attorney for Applicants
Reg. No. 42,208
Pfizer, Inc
Patent Department, 20th Floor
235 East 42nd Street
New York, NY 10017-5755
(212) 733-5086


Please find below and/or attached an Office communication concerning this application or proceeding.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c} 
Application No. \\
\(09 / 402,010\)
\end{tabular} & Applternt(s) \\
\hline \begin{tabular}{c} 
Examiner \\
Brenda Coleman et al.
\end{tabular} & \begin{tabular}{c} 
Art Unit \\
1624
\end{tabular} \\
\hline
\end{tabular}
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

\section*{Period for Reply}

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE \(\qquad\) MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.
- Extensions of time may be available under the provisions of 37 CFR 1.136 (a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. \(\S 133\) ).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).
Status
1) Responsive to communication(s) filed on Jan 3, 2001

2a) \(\square\) This action is FINAL.
2b) This action is non-final.
3) \(\square\) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11; 453 O.G. 213.

\section*{Disposition of Claims}
4) Claim(s) 1, 2, 8-10, and 14-26 is/are pending in the application.

4a) Of the above, claim(s) \(\qquad\) is/are withdrawn from consideration.
5) \(\square\)Claim(s) \(\qquad\) is/are allowed.
6) Claim(s) 1, 2, 8-10, and 14-26 is/are rejected.
7) \(\square\)Claim(s) \(\qquad\) is/are objected to.
8)Claims \(\qquad\) are subject to restriction and/or election requirement.

\section*{Application Papers}
9) \(\square\) The specification is objected to by the Examiner.
10) \(\square\) The drawing(s) filed on \(\qquad\) is/are objected to by the Examiner.

111 \(\square\)
The proposed drawing correction filed on \(\qquad\) is: a) \(\square\) approved b) \(\square\) disapproved.
12) \(\square\)The oath or declaration is objected to by the Examiner.

\section*{Priority under 35 U.S.C. § 119}
13) \(\square\) Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § 119 (a)-(d).
a) \(\square\)

All b) \(\square\) Some* c) \(\square\)
\(\square\) None of:
1. \(\square\) Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \(\qquad\) .
3. \(\square\) Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
*See the attached detailed Office action for a list of the certified copies not received.
14) Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § \(119(\mathrm{e})\).

\section*{Attachment(s)}
\begin{tabular}{ll}
\(15) \square\) Notice of References Cited (PTO-892) & 18) \(\square\) Interview Surmary (PTO-413) Paper No(s). \\
16) \(\square\) Notice of Draftsperson's Patent Drawing Review (PTO-948) & 19) \(\square\) Notice of Informal Patent Application (PTO-152) \\
17) \(\square\) Information Disclosure Statement(s) (PTO-1449) Peper No(s). 5 & 20) \(\square\) Other:
\end{tabular}

\section*{DETAILED ACTION}

Claims 1, 2, 8-10 and 14-26 are pending in the application.
This action is in response to applicants' amendment dated January 3, 2001. Claim 17, 76, 78, 91 and 97 were amended and claim 96 was canceled.

\section*{Response to Arguments}

Applicant's arguments filed January 3, 2001 have been fully considered with the following effect:
1. The applicant's amendments are sufficient to overcome the 35 U.S.C. § 112, second paragraph rejections of the last office action which are hereby withdrawn.
2. The applicant's amendments are sufficient to overcome the 35 U.S.C. § 102 anticipation rejection of the last office action which is hereby withdrawn.

In view of the amendment dated January 3, 2001, the following new grounds of rejection apply:

\section*{Claim Rejections - 35 USC § 112}

The following is a quotation of the first paragraph of 35 U.S.C. 112:
The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

Art Unit: 1624
3. Claim 16 is rejected under 35 U.S.C. 112, first paragraph, as containing subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. The amendment filed January 3, 2001, included the addition of claim 16 which contains eleven species that are not described in the specification.

Applicant is required to cancel the new matter in the reply to this Office action.
4. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims \(15,16,25\) and 26 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. The following reasons apply:
a) Claim 15 recites the limitation "7-phenyl" in the seventh and eighth species. There is insufficient antecedent basis for this limitation in the claim.
b) Claim 16 recites the limitation "5,7-dioxo" in the first and fourth species. There is insufficient antecedent basis for this limitation in the claim.
c) Claim 16 recites the limitation " \(5-0 \times 0\) " in the second and fifth species. There is insufficient antecedent basis for this limitation in the claim.
d) Claim 16 recites the limitation "6-oxo" in the third, sixth and eleventh species. There is insufficient antecedent basis for this limitation in the claim.
e) Claim 16 recites the limitation " 5 -dioxo" in the seventh and eighth species. There is insufficient antecedent basis for this limitation in the claim.
f) Claim 16 recites the limitation " 6,7 -dioxo" in the ninth and tenth species. There is insufficient antecedent basis for this limitation in the claim.
g) Claim 25 recites the limitation "6-one" in the species. There is insufficient antecedent basis for this limitation in the claim.
h) Claim 26 recites the limitation " 6 -oxo" in the species. There is insufficient antecedent basis for this limitation in the claim.
i) Claim 26 is vague and indefinite in that it is not known what is meant by \(2(10), 3,6,8\)-tetraene where the double bond to the 6 position creates a pentavalent carbon atom.

\section*{Double Patenting}

The nonstatutory double patenting rejection is based on a judicially created doctrine grounded in public policy (a policy reflected in the statute) so as to prevent the unjustified or improper timewise extension of the "right to exclude" granted by a patent and to prevent possible harassment by multiple assignees. See In re Goodman, 11 F.3d 1046, 29 USPQ2d 2010 (Fed. Cir. 1993); In re Longi, 759 F.2d 887, 225 USPQ 645 (Fed. Cir. 1985); In re Van Ornum, 686 F.2d 937, 214 USPQ 761 (CCPA 1982); In re Vogel, 422 F.2d 438, 164 USPQ 619 (CCPA 1970);and, In re Thorington, 418 F.2d 528, 163 USPQ 644 (CCPA 1969).

A timely filed terminal disclaimer in compliance with 37 CFR 1.321(c) may be used to overcome an actual or provisional rejection based on a nonstatutory double patenting ground provided the conflicting application or patent is shown to be commonly owned with this application. See 37 CFR 1.130(b).

Effective January 1, 1994, a registered attorney or agent of record may sign a terminal disclaimer. A terminal disclaimer signed by the assignee must fully comply with 37 CFR 3.73(b).
5. Claims \(1,2,8-10\) and 14-26 are provisionally rejected under the judicially created doctrine of obviousness-type double patenting as being unpatentable over claims \(1,2,7-11,15,17,18,21-\) 24, 27-29 and 32 of copending Application No. 09/514,002. Although the conflicting claims are not identical, they are not patentable distinct from each other because the compounds of the instant invention embrace the compounds of 09/514,002.

This is a provisional obviousness-type double patenting rejection because the conflicting claims have not in fact been patented.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Brenda Coleman whose telephone number is (703) 305-1880. The examiner can normally be reached on Monday thru Friday from 9:00 AM to 5:30 PM.

The fax phone number for this Group is (703) 308-4734 for "unofficial" purposes and the actual number for OFFICIAL business is 308-4556.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the Group receptionist whose telephone number is (703) 308-1235.

\section*{Brenda Coleman}

Brenda Coleman
July 24, 2001



\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

IN RE APPLICATION OF: J. W. Coe et al. :
Examiner: B. Coleman
SER. NO.: 09/402,010
Group Art Unit: 1624
FILING DATE: September 28, 1999
TITLE: ARYL FUSED AZAPOLYCYCLIC
COMPOUNDS

Commissioner for Patents
Washington, D.C. 20231
Sir:

\section*{RESPONSE AND AMENDMENT UNDER 37 C.F.R. \& 1.111}

This is responsive to the Office Action mailed July 25, 2001, a Response to which is due on October 25, 2001. Applicants have submitted herewith a Petition for Extension of Time to extend the period of response up to and including November 25, 2001 and paid the requisite fee. Accordingly, this response is timely.

Applicants request the following amendments to the application be entered.

\section*{IN THE CLAIMS}


Cancel claims 16, 25 and 26.
Replace claims 14 and 15 with the amended version immediately following (marked-up versions are set forth in the Appendix hereto)


\section*{CLEAN COPY- ENTER}
14. (Twice Amended) A compound of the formula ( \(\mathrm{I}{ }^{\prime}\) )




R
- wherein \(R^{2}\) and \(\mathrm{R}^{3}\), together with the carbons to which they are attached, form a four to seven membered monocyclic, or ten to fourteen membered bicyclic, carbocyclic ring that can be
saturated or unsaturated, wherein from one to three of the nonfused carbon atoms of said monocyclic rings, and from one to five of the carbon atoms of said bicyclic rings that are not part of the benzo ring shown in formula I, may optionally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents that are selected, independently, from ( \(\mathrm{C}_{1}-\mathrm{C}_{6}\) ) alkyl optionally substituted with from one to seven fluorine atoms; ( \(\mathrm{C}_{1}-\mathrm{C}_{6}\) )alkoxy optionally substituted with from one to seven fluorine atoms; nitro, cyano, halo, ( \(\mathrm{C}_{2}-\mathrm{C}_{6}\) ) alkenyl, \(\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)\) alkynyl, hydroxy, amino, \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylamino and ( \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl \()_{2}\) amino, \(-\mathrm{CO}_{2} \mathrm{R}^{4}\), \(-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}\) and \(-\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}\);
wherein each \(R^{4}, R^{5}, R^{6}, R^{7}, R^{8}\) and \(R^{13}\) is selected, independently, from hydrogen and ( \(C_{1}-C_{6}\) ) alkyl, or \(R^{5}\) and \(R^{6}\), or \(R^{7}\) and \(R^{8}\) together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperazine, \(-\mathrm{N}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylpiperazine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each X is, independently, \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylene;
and \(\mathrm{P}^{\prime}\) is \(\operatorname{COOR}^{16}\) wherein \(\mathrm{R}^{16}\) is allyl, 2,2,2-trichloroethyl or \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl; \(-C(=O) N R^{5} R^{6}\) wherein \(R^{5}\) and \(R^{6}\) are selected, independently, from hydrogen and \(\left(C_{1}-C_{6}\right)\) alkyl, or \(R^{5}\) and \(R^{6}\) together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperazine, \(-\mathrm{N}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylpiperazine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; \(\mathrm{C}(=\mathrm{O}) \mathrm{H},-\mathrm{C}(=\mathrm{O})\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms; benzyl, or t-butoxycarbonyl ( t -Boc).

3
15. (Amended) A compound according to claim 1 selected from the group consisting of:

5,7,13-triazatetracyclo[9.3.1. \(\left.0^{2,10}: 0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
7-methyl-5,7,13-triazatetracyclo[9.3.1.0 \(\left.{ }^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
6-methyl-5,7,13-triazatetracyclo[9.3.1.0 \(\left.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
7-propyl-5,7,13-triazatetracyclo[9.3.1.0 \(\left.{ }^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
7-butyl-5,7,13-triazatetracyclo[9.3.1. \(0^{2,10} .0^{4,8}\) ]pentadeca-2(10),3,5,8-tetraene;
6-methyl-7-isobutyl-5,7,13-triazatetracyclo[9.3.1.0 \(\left.{ }^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8tetraene;

7-neopentyl-5,7,13-triazatetracyclo \(\left[9 \cdot 3 \cdot 1.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;

6-methyl-7-neopentyl-5,7,13-triazatetracyclo \(\left[9.3 .1 .0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8tetraene;

6-methyl-5-oxa-7,13-diazatetracyclo[9.3.1. \(\left.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,6,8-tetraene; and pharmaceutically acceptable salts thereof.

\section*{REMARKS}

Applicants have amended claim 14 to replace the term "defined as in claim 1 " as applied to the variables \(R^{2}\) and \(R^{3}\) with the actual definitions of those variable as set forth in claim 1. Also, Applicants have amended claim 15 to delete the seventh and eighth listed species. Applicants have canceled claims 16,25 and 26. Applicants make these cancellations without prejudice to their right to prosecute the subject matter of canceled claims in related continuation applications. None of these amendments adds new matter to the application.

\section*{Rejection Under 35 U.S.C. § 112, First Paragraph}

The Examiner has rejected claim 16 under 35 U.S.C. § 112, first paragraph, "as containing subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention."

Applicants have canceled claim 16 thereby rendering this rejection moot. Applicants make this cancellation without prejudice to their right to prosecute the subject matter of canceled claim 16 in related continuation applications.

\section*{Rejection Under 35 U.S.C. § 112 , Second Paragraph}

The Examiner has rejected claims \(15,16,25\) and 26 under 35 U.S.C. § 112 , second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention. The Examiner has set forth the following particular objections:
a) Claim 15: "7-phenyl"

The Examiner has objected to the recitation of the "limitation ' 7 -phenyl' in the seventh and eighth species" of claim 15 as having "insufficient antecedent basis" in claim 1.

Applicants have deleted the seventh and eighth compounds from claim 15. Accordingly, this objection is now moot.
b)-f) Claim 16: "5,7-dioxo", "5-oxo", "6-oxo", "5-dioxo" and "6,7-dioxo"

The Examiner has objected to claim 16 as having "insufficient antecedent basis" to support the presence of the terms: " 5,7 -dioxo" in the first and fourth species, " 5 -oxo" in the second and fifth species, " 6 -oxo" in the third, sixth and eleventh species, " 5 -dioxo" in the seventh and eighth species and " 6,7 -dioxo"in the ninth and tenth species.

Applicants have canceled claim 16, as noted above, thereby rendering this series of objections moot.
g) Claim 25: " 6 -one"

The Examiner has objected to the "limitation ' 6 -one' in the species" in claim 25 as "having insufficient antecedent basis."

Applicants have deleted claim 25, thereby rendering this objection moot. Applicants make this cancellation without prejudice to their right to prosecute the subject matter of canceled claim 25 in related continuation applications.

\section*{h) -i) Claim 26: " 6 -oxo" and double bond at 6-position}

The Examiner has objected to the "limitation ' 6 -oxo' in the species" in claim 26 as "having insufficient antecedent basis." In addition, the Examiner has asserted that claim 26 is "vague and indefinite in that it is not known what is means by \(2(10), 3,6,8\),-tetraene where the double bond to the 6 position creates a pentavalent carbon atom.

Applicants have deleted claim 26, thereby rendering this objection moot. Applicants make this cancellation without prejudice to their right to prosecute the subject matter of canceled claim 26 in related continuation applications.

\section*{Obviousness-Type Double Patenting}

The Examiner has provisionally rejected claims 1, 2, 8-10 and 14-26 under the doctrine of obviousness-type double patenting as being unpatentable over claims \(1,2,7-11,15,17,18\), 21-24, 27-29 and 32 of co-pending application Ser. No. 09/514,002. The Examiner states that although "the conflicting claims are not identical, they are not patentably distinct from each other because the compounds of the instant invention embrace the compounds of" Ser. No. 09/514,002.

Applicants traverse. The currently pending claims as amended herein do not present any conflict with the claims in co-pending parent application No. 09/514,002. The claims of the present application relate to compounds of formula (I) wherein the \(R^{2}\) and \(R^{3}\) groups together with carbon atoms to which they are attached form a ring structure. The claims of co-pending parent application No. 09/514,002 relate solely to those compounds of formula (I) wherein the \(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) groups do not together with carbon atoms to which they are attached form a ring structure. Accordingly, in the absence of any conflicting claims, the Examiner is requested to withdraw this obviousness-type double pending rejection.

Applicants believe the present amendments render the set of pending claims in condition for allowance and request the prompt issuance of a Notice of Allowance. If a telephone interview would assist the furtherance of the prosecution of this application, the Examiner is kindly invited to contact the undersigned.

Respectfully submitted,


Pfizer, Inc
Patent Department, 20th Floor
235 East 42nd Street
New York, NY 10017-5755
(212) 733-5086

\section*{APPENDIX TO RESPONSE AND AMENDMENT USSN 09/402,010}

\section*{MARKED-UP VERSIONS OF AMENDED CLAIMS - DO NOT ENTER}

Please enter claims 14 and 15 amended as set forth below:
14. (Twice Amended) A compound of the formula (I')

wherein \(\mathrm{R}^{2}\) and \(\mathrm{R}^{3}\) [are-definedas in claim \(1 ;\) ] , together with the carbons to which they are attached, form a four to seven membered monocyclic, or ten to fourteen membered bicyclic, carbocyclic ring that can be saturated or unsaturated, wherein from one to three of the nonfused carbon atoms of said monocyclic rings, and from one to five of the carbon atoms of said bicyclic rings that are not part of the benzo ring shown in formula I, may optionally and independently be replaced by a nitrogen, oxygen or sulfur, and wherein said monocyclic and bicyclic rings may optionally be substituted with one or more substituents that are selected, independently, from ( \(\mathrm{C}_{1}\) \(\left.-\mathrm{C}_{6}\right)\) alkyl optionally substituted with from one to seven fluorine atoms; \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkoxy optionally substituted with from one to seven fluorine atoms; nitro, cyano, halo, \(\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)\) alkenyl, \(\left(\mathrm{C}_{2}-\mathrm{C}_{6}\right)\) alkynyl, hydroxy, amino, \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylamino and \(\left(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right) \text { alkyl }\right)_{2}\) amino, \(-\mathrm{CO}_{2} \underline{\mathrm{R}}^{4}\), \(-\mathrm{CONR}^{5} \mathrm{R}^{6},-\mathrm{SO}_{2} \mathrm{NR}^{7} \mathrm{R}^{8},-\mathrm{C}(=\mathrm{O}) \mathrm{R}^{13}\) and \(-\mathrm{XC}(=\mathrm{O}) \mathrm{R}^{13}\);
wherein each \(R^{4}, R^{5}, R^{6}, R^{7}, R^{8}\) and \(R^{13}\) is selected, independently, from hydrogen and \(\left(C_{1}-C_{6}\right)\) alkyl, or \(R^{5}\) and \(R^{6}\), or \(R^{7}\) and \(R^{8}\) together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperazine, \(-\mathrm{N}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylpiperazine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; and
each X is, independently, ( \(\mathrm{C}_{1}-\mathrm{C}_{6}\) )alkylene;
and \(\mathrm{P}^{\prime}\) is \(\operatorname{COOR}^{16}\) wherein \(\mathrm{R}^{16}\) is allyl, 2,2,2-trichloroethyl or \(\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl; \(C(=O) N R^{5} R^{6}\) wherein \(R^{5}\) and \(R^{6}\) are selected, independently, from hydrogen and \(\left(C_{1}-C_{6}\right)\) alkyl, or \(R^{5}\) and \(R^{6}\) together with the nitrogen to which they are attached, form a pyrrolidine, piperidine, morpholine, azetidine, piperazine, \(-\mathrm{N}-\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkylpiperazine or thiomorpholine ring, or a thiomorpholine ring wherein the ring sulfur is replaced with a sulfoxide or sulfone; \(\mathrm{C}(=\mathrm{O}) \mathrm{H},-\mathrm{C}(=\mathrm{O})\left(\mathrm{C}_{1}-\mathrm{C}_{6}\right)\) alkyl wherein the alkyl moiety may optionally be substituted with from 1 to 3 halo atoms; benzyl, or t-butoxycarbonyl ( \(\mathrm{t}-\mathrm{Boc}\) ).
15. (Amended) A compound according to claim 1 selected from the group consisting of:
5,7,13-triazatetracyclo[9.3.1. \(\left.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
7-methyl-5,7,13-triazatetracyclo[9.3.1.0 \(0^{2,10} .0^{4,8}\) ]pentadeca-2(10),3,5,8-tetraene;
6-methyl-5,7,13-triazatetracyclo[9.3.1.0 \(\left.0^{2,10} \cdot 0^{4,8}\right]\) pentadeca-2 (10),3,5,8-tetraene;
7-propyl-5,7,13-triazatetracyclo[9.3.1.0 \({ }^{2,10} .0^{4,8}\) ]pentadeca-2(10),3,5,8-tetraene;
7-butyl-5,7,13-triazatetracyclo[9.3.1.0 \(\left.{ }^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
6-methyl-7-isobutyl-5,7,13-triazatetracyclo [9.3.1.0 \(\left.{ }^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
[ 7 phenyl-5,7,13-triazatetracyelo \(\left[9.3 \cdot 1.0^{2,19} . \theta^{4,8}\right.\) ]pentadeca \(2(10), 3,5,8\) tetraene;
6 methyl 7 phenyl-5,7,13-triazatetracyele \(\left[9.3 .1 .0^{2,19} \cdot 0^{4,8}\right.\) ]pentadeea- \(2(10), 3,5,8\) tetraene; ]
7-neopentyl-5,7,13-triazatetracyclo[9.3.1.0 \(\left.{ }^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
6-methyl-7-neopentyl-5,7,13-triazatetracyclo \(\left[9.3 \cdot 1.0^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,5,8-tetraene;
6-methyl-5-oxa-7,13-diazatetracyclo[9.3.1.0 \(\left.{ }^{2,10} .0^{4,8}\right]\) pentadeca-2(10),3,6,8-tetraene;
and pharmaceutically acceptable salts thereof.


I hereby certify that this correspondence is being deposited with the United States Postal Service as first-class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231 on this 16 ty day of November, 2001.


IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
IN RE APPLICATION OF: J. W. COE et al.
APPLICATION NO.: 09/402,010
Examiner: B. Coleman
Group Art Unit: 1624
FILING DATE: September 28, 1999
TITLE: ARYL FUSED AZAPOLYCYCLIC COMPOUNDS

Commissioner for Patents
Washington, D.C. 20231
Sir:

\section*{SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT PURSUANT TO 37 C.F.R. § 1.97 ET SEQ.}

Applicant herewith makes available to the U.S. Patent and Trademark Office this Supplemental Information Disclosure Statement pursuant to 37 C.F.R. § 1.98, and a Form PTO-FB-A820 (2x). This Supplemental Information Disclosure Statement contains a listing of references cited in the PCT Search Report (copy enclosed) for International Application No. PCT/IB01/00153 (published as WO 01/62736 A1) (a counterpart of a CIP application of the present application, U.S. Serial No. 09/514,002). References cited on the enclosed Search Report that were previously cited an earlier Information Disclosure Statement (filed December 29, 2000) are not listed in this Statement.

The Examiner is requested to consider carefully the complete text of these references in connection with the examination of the above-identified application in accordance with 37 C.F.R. § 1.104(a). It is believed the Examiner will concur with Applicant's belief that the subject matter presently claimed is neither anticipated nor rendered obvious by the foregoing references.
12/04/2001 MGEBRER1 00000088 16144509402010
\(01 \mathrm{FC}: 126 \quad 180.00 \mathrm{ch}\)

Patent Application Attorney Docket No. PC10030A

It is requested that the references listed on the attached form PTO-FB-A820 be included in the "References Cited" portion of any patent issuing from this application (M.P.E.P. § 1302.12).

The references listed on the PTO-FB-A820 are as follows:

\section*{Foreign Patents}

EP 1078 637, published February 28, 2001
EP 0955 301, published November 10, 1999
WO 00/45846, published August 10, 2000
WO 00/44755, published August 3, 2000
WO 99/55680, published November 4, 1999
A favorable response is earnestly solicited.
Respectfully submitted,
Date:

no. F. Waldron
Attorney for Applicants)
Reg. No. 42,208
Pfizer Inc
Patent Department
150 East 42nd Street (150/05/49)
New York, NY 10017-5755
(212) 733-5086




\section*{PETITION FOR EXTENSION OF TIME PURSUANT TO 37 C.F.R. §1.136(a) \(\frac{\%}{\frac{}{\sigma}}\)}

Pursuant to the provisions of 37 C.F.R. \(\S \S 1.7\) and 1.136 , it is requested that the terio for response to the Examiner's Action in this application, mailed on July 25, 2001, and having an original period for response of three months, which expired on October 25, 2001, be extended by one month(s), such that it expires on November 25, 2001.

Authorization is hereby provided to charge the amount of \$110.00 as stated under 37 C.F.R. \(\S 1.17(\mathrm{a})(1)\), as well as any additional fees required, or to credit any overpayment to Deposit Account No. 16-1445. Two copies of this paper are enclosed.

Respectfully submitted,

Date:


Pfizer, Inc
Patent Department
150 East 42nd Street (150/05/49)
New York, NY 10017-5755
(212) 733-5086

ROY F. WALDRON
(Typed or printed name of person)

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

IN RE APPLICATION OF: J. W. Woe et al.
Examiner: B. Coleman
SER. NO.: 09/402,010
Group Art Unit: 1624
FILING DATE: September 28, 1999
TITLE: ARYL FUSED AZAPOLYCYCLIC COMPOUNDS

Commissioner for Patents
Washington, D.C. 20231
Sir:

\section*{TRANSMITTAL LETTER}

Transmitted herewith is [X] a Response and Amendment; [X] a Petition for Extension of Time; [X] a Supplemental Information Disclosure Statement; and [X] a Form PTO-FB-A820 (2x); in the above-identified application.

The fee has been calculated as shown below.
CLAIMS AS AMENDED

\(\boxtimes \quad\) No additional fee is required.
\(\boxtimes \quad\) A Petition for Extension of Time for responding within one month(s) of the response date is also enclosed. The Commissioner is authorized to charge the fee pursuant to 37 C.F.R. \(\S 1.17(\mathrm{a})(2)\) in the amount of \(\$ \mathbf{1 1 0 . 0 0}\) to Pfizer Deposit Account No. 16-1445. Two copies of this paper are enclosed.

Applicants submit herewith an Information Disclosure Statement pursuant to 37 C.F.R. \(\S \S 1.97\) (c) and 1.98 with accompanying Form PTO-A820 (2x). This Statement is being filed more than three months after the filing date of the application and after the receipt of a First Office Action on the merits, but before the mailing date of either a final action under \(\S 1.113\) or a notice of allowance under § 1.311. The Commissioner is hereby authorized to charge the requisite fee under 1.17 (p) of \(\mathbf{\$ 1 8 0 . 0 0}\) to Deposit Account No. 16-1445, as well as any other additional fees which may be required under 37 C.F.R. §§ 1.16 and 1.17, or to credit any overpayment, to Deposit Account No. 16-1445. Two copies of this paper are enclosed.

Please charge Deposit Account No. 16-1445 in the amount of \$ \(\qquad\) . Two copies of this paper are enclosed.

The Commissioner is hereby authorized to charge any additional fees which may be required under 37 C.F.R. \(\S \S 1.16\) and 1.17 , or credit any overpayment, to Deposit Account No. 16-1445. Two copies of this paper are enclosed.


Attorney for Applicants
Reg. No. 42,208
Pfizer, Inc
Patent Department
150 East 42nd Street (150/05/49)
New York, NY 10017-5755
(212) 733-5086
(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets


\section*{EUROPEAN PATENT APPLICATION}
(43) Date of publication:
28.02.2001 Bulletin 2001/09
(21) Application number: 00307254.3
(22) Date of filing: \(\mathbf{2 3 . 0 8 . 2 0 0 0}\)
(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GRIE IT LI LU MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI
(30) Priority: 27.08.1999 US 151089 P
(71) Applicant: Pfizer Products Inc.

Groton, Connecticut 06340 (US)
(72) Inventors:
- Coe, Jotham Wadsworth Groton, Connecticut 06340 (US)
- Harrigan, Edmund Patrick Groton, Connecticut 06340 (US)
- O'Neill, Brian Thomas

Groton, Connecticut 06340 (US)
- Sands, Steven Bradley Groton, Connecticut 06340 (US)
(74) Representative:

Simpson, Alison Elizabeth Fraser et al Urquhart-Dykes \& Lord,
30 Welbeck Street
London W1G 8ER (GB)
(54) Composition for the treatment and prevention of nicotine addiction containing a nicotine receptor agonist and an anti-depressant or anti-anxiety drug
(57) Pharmaceutical compositions are disclosed for the treatment of nicotine dependence or addiction, tobacco dependence or addiction, reduction of nicotine withdrawal symptoms or aiding in the cessation or lessening of tobacco use or substance abuse. The pharma-
ceutical compositions are comprised of a therapeutically effective combination of a nicotine receptor partial agonist and an anti-depressant or anxiolytic agent and a pharmaceutically acceptable carrier. The method of using these compounds is also disclosed.

\section*{Description}

\section*{Background of the Invention}
[0001] The present invention relates to pharmaceutical compositions for the treatment of nicotine dependence or addiction in a mammal (e.g. human) comprising a nicotine receptor partial agonist (NRPA) and an antidepressant or anxiolytic agent. The term NRPA refers to all chemical compounds which bind at neuronal nicotinic acetylcholine specific receptor sites in mammalian tissue and elicit a partial agonist response. A partial agonist response is defined here to mean a partial, or incomplete functional effect in a given functional assay. Additionally, a partial agonist will also exhibit some degree of antagonist activity by its ability to block the action of a full agonist (Feldman, R.S., Meyer, J.S. \& Quenzer, L.F. Principles of Neuropsychopharmacology, 1997; Sinauer Assoc. Inc.). The present invention may be used to treat mammals (e.g. humans) for tobacco dependence or addiction and nicotine dependence or addiction; to palliate the effects of nicotine withdrawal and to enhance the outcomes of other smoking cessation therapies.
[0002] The invention also relates to aryl fused azapolycylic compounds that bind to neuronal nicotinic ácetylcholine specific receptor sites and are useful in modulating cholinergic function and are referred to in WO 9818798-A1, WO 9935131-A1 and WO 9955680-A1. The foregoing applications are owned in common with the present application and are incorporated herein by reference in their entireties.
[0003] The NRPA compounds that bind to neuronal nicotinic receptor sites can be used in combination with an anti-depressant such as for example, a tricyclic antidepressant (e.g. amitryptyline, imipramine), a serotonin reuptake inhibitor anti-depressant (SRI) (e.g. sertraline, paroxetine, or fluoxetine), an atypical anti-depressant (bupropion, nefazodone), or a monoamine oxidase inhibitor (e.g., phenelzine, Iranytcypromine) in order to treat the depression associated with addiction such as to nicotine or tobacco, alcohol dependence, cocaine addiction or tobacco or nicotine dependence independently of other psychiatric iliness. The compounds that bind to neuronal nicotinic receptor sites can be used in combination with anxiolytic agents, such as for example, a benzodiazepine (e.g. diazepam, alprazolam, chlordiazepoxide) or non-benzodiazepine anxiolytics (e.g. buspirone, hydroxyzine, doxepin) in order to treat the anxiety associated with addiction such as to nicotine or tobacco, alcohol dependence, cocaine addiction or tobacco or nicotine dependence independently of other psychiatric illness.
[0004] Tobacco dependence represents the most important preventable cause of illness and death in our society, responsible for more than 400,000 deaths each year. Half of all smokers will die of diseases directly related to tobacco use, and many smokers will suffer sig-
nificant morbidity.
[0005] People smoke because of the reinforcing effects of nicotine. Nicotine is a powerful psychoactive agent that activates the same brain pathways as co- caine and other psychostimulants, producing agent-associated tolerance and withdrawal effects.
[0006] Nicotine replacement therapies (NRTs) have been used for smoking cessation. These are available in the form of gum, the transdermal patch, and nasal inhaler. The gum Nicorette® (nicotine polacrilex) delivers nicotine through buccal absorption following chewing. There are also non-nicotine pharmacologic therapies for treating nicotine addiction.

\section*{Summary of Invention}
[0007] The invention provides a pharmaceutical composition for treating nicotine dependence or addiction, tobacco dependence or addiction, reducing nicotine withdrawal symptoms or aiding in the cessation or lessening of tobacco use or substance abuse. The therapeutically effective pharmaceutical combination is comprised of a nicotine receptor partial agonist and an antidepressant or anxiolytic agent and a pharmaceutically acceptable carrier.
[0008] In a more specific embodiment of the invention, the anti-depressant is selected from a tricyclic antidepressant, a serotonin reuptake inhibitor anti-depressant (SRI), an atypical anti-depressant or a monoamine oxidase inhibitor, their pharmaceutically active salts and their optical isomers. In another more specific embodiment of the invention, the anti-depressant is selected from amitryptyline, imipramine, sertraline, paroxetine, fluoxetine, bupropion, nefazodone, phenelzine, tranylcypromine, moclobemide, venlafaxine or a pharmaceutically acceptable salt or their optical isomers thereof. A preferred antidepressant is buproprion hydrochloride or one of its optical isomers.
[0009] In another more specific embodiment of this invention, the nicotine receptor partial agonist is selected from:

9-bromo-1,2,3,4,5,6-hexahydro-1.5-methano-pyri-do[1,2-a][1,5]diazocin-8-one; 9-chloro-1 ,2, 3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2-a][1,5]diazocin-8-one; 9-fluoro-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2-a][1,5]diazocin-8-one; 9-ethyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyrido [1,2-a][1,5]diazocin-8-one; 9-methyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2-a][1,5]diazocin-8-one; 9-phenyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2-a][1,5]diazocin-8-one;
9-vinyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyrido [1,2-a][1,5]diazocin-8-one; 9-bromo-3-methyl-1,2,3,4,5,6-hexahydro-
1.5-methano-pyrido[ 1,2-a][1,5]diazocin-8-one;

3-benzyl-9-bromo-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[1,2-aं][1,5]diazocin-8-one;
3-benzyl-9-chloro-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[1,2-a][1.5]diazocin-8-one; 9-acetyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2a][1,5]diazocin-8-one;
9-iodo-1,2,3,4,5,6-hexahydro-1,5-methano-pyrido [1,2a][1,5]diazocin-8-one
9-cyano-1,2,3,4:5,6-hexahydro-1,5-methano-pyrido \([1,2 \mathrm{a}][1,5]\) diazocin-8-one;
9-ethynyl-1,2,3,4,5;6-hexahydro-1 :5-methano-py-rido[1,2a][1,5]diazocin-8-one;
9-(2-propenyi)-1,2,3,4.5,6-hexahydro-1,5-meth-ano-pyrido[1,2a][1,5]diazocin-8-one;
9-(2-propyl)-1,2,3,4,5,6-hexahydro-1,5-methano-pyrido[1,2a][1,5]diazocin-8-one;
9-carbomethoxy-1 ,2,3,4,5,6-hexahydro-1,5-meth-ano-pyrido[1,2a][ 1,5 ]diazocin-8-one;
9-carboxyaldehyde-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[1,2a][1,5]diazocin-8-one;
9-(2,6-difluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ \(1,2 a][1,5]\) diazocin-8-one;
9-phenyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2a][1,5]diazocin-8-one;
9-(2-fluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[1,2a][1,5]diazocin-8-one;
9-(4-fluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ \(1,2 a][1,5]\) diazocin-8-one;
9-(3-fluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[1,2a][ 1,5]diazocin-8-one;
9-(3,5-difluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[1,2a][1,5]diazocin-8-one;
9-(2,4-difluorophenyl)-1,2,3;4,5,6-hexahydro-
1,5-methano-pyrido[1,2a][1,5]diazocin-8-one;
9-(2,5-difluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ \(1,2 \mathrm{a}][1,5]\) diazocin-8-one;
6-methyl-5-oxo-6, 13-diazatetracyclo\{9.3.1.0 \({ }^{2.10}\). 04.8]pentadeca-2(10),3,8-triene;

5-oxo-6,13-diazatetracyclo[9.3.1.0 \(0^{2.10} \cdot 0^{4.8}\) ]penta-deca-2(10),3,8-triene;
6-oxo-5,7,13-triazatetracyclo[9.3.1.0 \(0^{2.10} .0^{4.8}\) ]pen-tadeca-2(10),3,8-triene;
4,5-difluoro-10-aza-tricyclo[6.3.1.0 \({ }^{2.7}\) ]dodeca-2(7), 3,5-triene;
5-fluoro-10-aza-tricydo[6.3.1.0 \({ }^{2.7}\) ]dodeca-2(7), -3,5-triene-4-carbonitrile;
4-ethynyl-5-fluoro-10-aza-tricyclo[6.3.1.0 \({ }^{2.7}\) ]do-deca-2(7),3,5-triene;
5-ethynyl-10-aza-tricyclo[6.3.1.0 \(0^{2.7}\) ]dodeca-2(7), 3,5-triene-4-carbonitrile;
6-methyl-5-thia-5-dioxa-6,13-diazatetracydo [9.3.1.0 \(0^{2.10} 0^{4.8}\) ]pentadeca-2(10),3,8-triene; 10-aza-tricyclo[6.3.1.0 \({ }^{2.7}\) ]dodeca-2(7),3,5-triene; 4-fluoro-10-aza-tricyclo[6.3.1 .02.7]dodeca-2(7), 3,5-triene;
4-methyl-10-aza-tricyclo[6.3.1.0 \(0^{2.7}\) ]dodeca-2(7), 3,5-triene;
4-trifluoromethyl-10-aza-tricyclo[6.3.1.0 \({ }^{2.7}\) ]do-
deca-2(7),3,5-triene;
4-nitro-10-azatricyclo[6.3.1.0 \({ }^{2.7}\) ]dodeca-2(7), 3.5-triene;

7-methyl-5,7,13-triazatetracyclo[9.3.1.0 \(0^{2.10} .0^{4.8}\) ] pentadeca-2(10),3,5,8-tetraene;
6-methyl-5,7,13-triazatetracyclo[9.3.1.0 \(\left.{ }^{2.10} .0^{4.8}\right]\)
pentadeca-2(10), 3,5,8-tetraene;
6,7-dimethyl-5,7,13-triazatetracyclo[9.3.1.0 \(0^{2.10}\).
04.8]pentadeca-2(10),3,5,8-tetraene;

6-methyl-7-phenyl-5,7,13-triazatetracyclo

6,7-dimethyl-5,8,14-triazatetracyclo\{10.3.1.02.11.
\(\left.0^{4.9}\right]\) hexadeca-2(11), 3,5,7,9-pentaene;
5,8,14-triazatetracyclo[10.3.1.0 \(0^{2.11} .0^{4.9}\) ]hexadeca-
2(11),3,5,7,9-pentaene;
14-methyl-5.8,14-triazatetracyclo[10.3.1.0 \(0^{2.11} 0^{4.9}\) ]
hexadeca-2(11),3,5,7,9-pentaene;
5-oxa-7,13-diazatetracyclo[9.3.1.0 \(\left.0^{2.10} .0^{4.8}\right]\) penta-deca-2(10), 3,6,8-tetraene;
6-methyl-5-oxa-7,13-diazatetracyclo[9.3.1.02.10. \(0^{4.8}\) ]pentadeca-2(10), 3,6,8-tetraene;
4-chloro-10-azatricyclo[6.3.1.0 \(0^{2.7}\) ]dodeca-2(7), 3,5-triene;
10-azatricyclo[6.3.1.02.7]dodeca-2(7),3,5-trien-
4-yl cyanide;
1-(10-azatricyclo[6.3.1.0 \(0^{2.7}\) ]dodeca-2(7),3,5-trien-
4-yl)-1-ethanone;
10-azatricyclo[6.3.1.02.7]dodeca-2(7),3,5-trien-4-ol;
7-methyl-5-oxa-6,13-diazatetracycio[9.3.1.0.10
\(0^{4.8}\) ]pentadeca-2.4(8),6,9-tetraene;
4,5-dichloro-10-azatricyclo[6.3.1.0 \({ }^{2.7}\) ]dodeca-2(7),
3,5-triene;
11-azatricycio[7.3.1.0 \({ }^{2.7}\) ]trideca-2(7),3,5-triene-
1-[11-azatricyclo[7.3.1.0 2,7]trideca-2(7),3,5-trien-5-yl]-1-ethanone;
1-[11-azatricyclo[7.3.1.02.7]trideca-2(7),3,5-trien-5-yl]-1-propanone;
4-fluoro-11-azatricyclo[7.3.1.0 \(0^{2.7}\) ]trideca-2(7), 3,5-triene-5-carbonitrile;
5-fluoro-11-azatricyclo[7.3.1.0 \(\left.0^{2.7}\right]\) trideca-2(7), 3,5-triene-4-carbonitrile; 6-methyl-7-thia-5,14-diazatetracyclo\{10.3.1.0 \(0^{2.10}\). 04.8]hexadeca-2(10),3,5,8-tetraene; 6-methyl-5,7,14-triazatetracyclo[10.3.1.0 \(0^{2.10 .04 .8}\) ] hexadeca-2(10), 3,5,8-tetraene;
6,7-dimethyl-5,7,14-triazatetracyclo[10.3.1.0 \(0^{2,10}\). 04.8 3 hexadeca-2(10),3,5,8-tetraene;
ca-2(11), 3,5,7,9-pentaene;
7-methyl-5,8,15-triazatetracyclo[11.3.1.0 \(0^{2.11} .0^{4.9}\) ] heptadeca-2(11),3,5,7,9-pentaene;
6-methyl-5,8,15-triazatetracyclo[11.3.1.02.11.04.9] heptadeca-2(11),3,5,7,9-pentaene:
6,7-dimethyl-5,8,15-triazatetracyclo[11.3.1.0 \(0^{2.11}\).
04.9 \(h\) heptadeca-2(11),3,5,7,9-pentaene;

7-oxa-5,14-diazatetracyclo[10.3.1.02.10.04.8]hexa-deca-2(10),3,5,8-tetraene;
6-methyl-7-oxa-5,14-diazatetracyclo\{10.3.1.02.10 04.8]hexadeca-2(10), 3,5,8-tetraene;

5-methyl-7-oxa-6,14-diazatetracyclo[10.3.1.0 \(0^{2.10}\)
04.8]hexadeca-2(10),3,5,8-tetraene;

6-methyl-5-oxa-7,14-diazatetracyclo\{10.3.1.02.10 04.8]hexadeca-2(10), 3,6,8-tetraene;

7-methyl-5-oxa-6,14-diazatetracyclo [10.3.1.02.10 04.8]hexadeca-2(10),3,6,8-tetraene;

4,5-difluoro-11-azatricyclo[7.3.1.0 \(\left.0^{2.7}\right]\) trideca-2(7),
3,5-triene;
4-chloro-5-fluoro-11-azatricyclo[7.3.1.0 \(0^{2.7}\) ]trideca2(7), 3,5-triene
5-chloro-4-fluoro-11-azatricyclo[7.3.1.0 \({ }^{2.7}\) ]trideca-2(7),3,5-triene;
4-(1-ethynyl)-5-fluoro-11-azatricycio[7.3.1.0 2.7]tri-deca-2(7).3,5-triene;
5-(1-ethynyl)-4-fluoro-11-azatricyclo[7.3.1.0 \(0^{2.7}\) ]tri-deca-2(7),3,5-triene;
5,6-difluoro-11-aza-tricyclo[7.3.1.02.7]trideca-
2,4,6-triene;
6-trifluoromethyl-11-aza-tricyclo[7.3.1.0 \({ }^{2.7}\) ]trideca-2,4,6-triene;
6-methoxy-11-aza-tricyclo[7.3.1.0 \(\left.0^{2.7}\right]\) trideca-2(7), 3,5-triene
11 -aza-tricyclo[7.3.1.0 \(0^{2.7}\) ]trideca-2(7),3,5-trien-6-ol;
6-fluoro-11-aza-tricyclo[7.3.1.0 2.7]trideca-2(7), 3,5-triene;
11 -aza-tricycio[7.3.1.0 \(0^{2.7}\) ]trideca-2(7),3,5-trien-5-ol;
4-nitro-11-aza-tricyclo[7.3.1.02.7]trideca-2(7), 3,5-triene;
5-nitro-11-aza-tricyclo[7.3.1.0².7]trideca-2(7), 3,5-triene;
5-fluoro-11-aza-tricyclo[7.3.1.0 \(\left.{ }^{2.7}\right]\) trideca-2(7), 3,5-triene; and
6-hydroxy-5-methoxy-11-aza-tricyclo[7.3.1.0 \(\left.0^{2.7}\right]\) tri-deca-2(7),3,5-triene and
their pharmaceutically acceptable salts and their optical isomers.
[0010] Preferably, the nicotine receptor partial agonist is selected from

\footnotetext{
9-bromo-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2-a][1,5]diazocin-8-one;
9-chloro-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2-a][1,5]diazocin-8-one;
9-fluoro-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-
}
do[1,2-a][1,5]diazocin-8-one;
9-acetyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2a][1,5]diazocin-8-one;
9-iodo-1,2,3,4,5,6-hexahydrol 1,5-methano-pyrido
[1,2a][1,5]diazocin-8-one;
9-cyano-1,2.3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2a][1,5]diazocin-8-one;
9-carbomethoxy-1,2,3,4,5,6-hexahydro-1,5-meth-ano-pyrido[ \(1,2 a][1,5\) ]diazocin-8-one;
9 -carboxyaldehyde-1,2,3,4,5,6-hexahydro-1,5-methano-pyrido[1,2a][1,5]diazocin-8-one; 9-(2,6-difluorophenyl)-1,2,3,4,5,6-hexahydro-1,5-methano-pyrido[1,2a][1,5]diazocin-8-one; 9-phenyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2a][1,5]diazocin-8-one;
9-(2-fluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ \(1,2 \mathrm{a}\) ][ 1,5 ]diazocin-8-one;
6-methyl-5-thia-5-dioxa-6, 13 -diazatetracyclo
[9.3.1.0 \({ }^{2.10} .0^{4.8}\) ]pentadeca-2(10), 3,8-triene;
4-fluoro-10-aza-tricyclo[6.3.1.0 \({ }^{2.7}\) ]dodeca-2(7),
3,5-triene;
4-trifluoromethyl-10-aza-tricyclo[6.3.1.0 \(0^{2.7}\) ]do-deca-2(7),3,5-triene;
4-nitro-10-azatricyclo[6.3.1.0 \(0^{2.7}\) ]dodeca-2(7), 3,5-triene;
6-methyl-5,7,13-triazatetracyclo[9.3.1.02.10.04.8] pentadeca-2(10),3,5,8-tetraene;
6,7-dimethyl-5,8,14-triazatetracyclo[10.3.1.02.11
04.9 hexadeca-2(11), 3,5,7,9-pentaene

5,8,14-triazatetracyclo[10.3.1.02.11.04.9]hexadeca-
2(11),3,5,7,9-pentaene;
5-oxa-7,13-diazatetracyclo[9.3.1.0 \({ }^{2 \cdot 10} \cdot 0^{4,8}\) ]penta-deca-2(10),3,6,8-tetraene;
6-methyl-5-oxa-7,13-diazatetracyclo[9.3.1.0.0.10
04.8]pentadeca-2(10),3,6,8-tetraene;

10-azatricyclo[6,3.1.02.7]dodeca-2(7), 3,5-trien-4-yl cyanide;
1-(10-azatricyclo[6.3.1.02.7]dodeca-2(7),3,5-trien-
4-yl)-1-ethanone;
11-azatricyclo[7.3.1.02.7]trideca-2(7),3,5-triene-5-carbonitrile;
1-[11-azatricyclo[7.3.1.02.7]trideca-2(7),3,5-trien-
5-ylf-1-ethanone;
1-[11-azatricyclo[7.3.1.0 \({ }^{2.7}\) ]trideca-2(7),3,5-trien-5-yl]-1-propanone;
4-fluoro-11-azatricyclo[7.3, 1.02.7]trideca-2(7),
3,5-triene-5-carbonitrile;
5-fluoro-11-azatricyclo[7.3.1.02.7] trideca-2(7),
3,5-triene-4-carbonitrile;
6-methyl-7-thia-5,14-diazatetracyclo[10.3.1.0 \({ }^{2.10}\)
\(0^{4.8} \mathrm{Jhexadeca}\)-2(10),3,5,8-tetraene;
6-methyl-5,7,14-triazatetracyclo[10.3.1.0 \(0^{2,10} .0^{4.8}\) ] hexadeca-2(10), 3,5,8-tetraene;
6,7-dimethy-5,7,14-triazatetracycto[10.3.1.02.10.
\(0^{4.8}\) ] hexadeca-2(10), 3,5,8-tetraene;
6-methyl-7-oxa-5,14-diazatetracyclo\{10.3.1.0 \(0^{2.10}\)
04.8 hexadeca-2(10), 3,5,8-tetraene;

6-methyl-5-oxa-7,14-diazatetracyclo[10.3.1.02.10
```

$0^{4.8}$ Jhexadeca-2(10),3,6,8-tetraene;
5,6-difluoro-11-aza-tricyclo[7.3.1.0 $0^{2.7}$]trideca-
2,4,6-triene;
6-trifluoromethyl-11-aza-tricyclo[7.3.1.02.7]trideca-
2,4,6-triene;
6-methoxy-1.1-aza-tricyclo[7.3.1.02.7]trideca-2(7),
3,5-triene;
6-fluoro-11-aza-tricyclo[7.3.1.0 $\left.{ }^{2.7}\right]$ trideca-2(7),
3,5-triene; and
11-aza-tricyclo[7.3.1.02.7]trideca-2(7),3,5-trien-
5-ol and

```
their pharmaceutically acceptable salts and their optical isomers.
[0011] The invention also provides a method of treating a mammal having a condition which presents with tobacco or nicotine addiction, nicotine withdrawal symptoms, alcohol dependence or cocaine or other substance addiction. The mammal is administered a nicotine receptor partial agonist or a pharmaceutically acceptable salt thereof, and an antidepressant or anxiolytic agent or a pharmaceutically acceptable salt thereof. The nicotine receptor partial agonist and the anti-depressant or anxiolytic agent are present in amounts that render the composition effective in the treatment of tobacco or nicotine addiction, nicotine withdrawal symptoms, alcohol dependence or cocaine or other substance addiction. In a more specific embodiment of the invention, the anti-depressant is selected from a tricyclic anti-depressant, a serotonin reuptake inhibitor anti-depressant, (SRI), an atypical anti-depressant, and a monoamine oxidase inhibitor. In another more specific embodiment of this invention anxiolytic agent is selected from a benzodiazepine or a non-benzodiazepine anxiolytic. In another more specific embodiment of this invention, the anxiolytic agent is a benzodiazepine or a nonbenzodiazepine anxiolytic. In a more specific embodiment of the invention, the anxiolytic agent is selected from diazepam, alprazolam, chlordiazepoxide, buspirone, hydroxyzine and doxepin or a pharmaceutically acceptable salt thereof. A preferable anxiolytic is doxepin or a pharmaceutically acceptable salt or optical isomers thereof.
[0012] In another more specific embodiment of this invention the nicotine receptor partial agonist is selected from

\footnotetext{
9-bromo-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2-a][1,5]diazocin-8-one;
9-chioro-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2-a][1,5]diazocin-8-one;
9-fluoro-1.2,3,4,5,6-hexahydro-1,5-methano-pyrido [ \(1,2-\mathrm{a}][1,5]\) diazocin-8-one;
9-ethyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyrido [1,2-a][1,5]diazocin-8-one;
9-methyl-1, 2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2-a][1,5]diazocin-8-one;
9-phenyl-1 , 2,3,4,5,6-hexahydro-1,5-methano-pyri-
}
do[1,2-a][1,5]diazocin-8-one;
9 -vinyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyrido
[1,2-a][1,5]diazocin-8-one;
9-bromo-3-methyl-1, 2, 3, 4,5,6-hexahydro-
1,5-methano-pyrido[1,2-a][ 1,5 ]diazocin-8-one: 3-benzyl-9-bromo-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ 1,2 -a][ 1,5 ]diazocin-8-one; 3-benzyl-9-chloro-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ 1,2 -a][ 1,5 ]diazocin- 8 -one;
9-acetyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2a][1,5]diazocin-8-one;
9-iodo-1,2,3,4,5,6-hexahydro-1,5-methano-pyrido [1,2a][1,5]diazocin-8-one;
9-cyano-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2a][1,5]diazocin-8-one;
9-ethynyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyrido \(1,2 a][1,5] d i a z o c i n-8\)-one;
9-(2-propenyl)-1,2,3;4,5,6-hexahydro-1,5-meth-
ano-pyrido[ \(1,2 a][1,5\) ]diazocin-8-one;
9-(2-propyl)-1,2,3,4,5,6-hexahydro-1,5-methanopyrido \(1,2 a][1,5\) ]diazocin-8-one;
9-carbomethoxy-1,2,3,4,5,6-hexahydro-1,5-meth-ano-pyrido[ \(1,2 \mathrm{a}][1,5] d i a z o c i n-8\)-one; 9 -carboxyaldehyde-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ 1,2 a][ 1,5 ]diazocin-8-one; -
9-(2,6-difluorophenyl)-1,2,3,4,5,6-hexahydro- \({ }^{\text {a }}\)
1,5-methano-pyrido[1,2a][1,5]diazocin-8-one; 9-phenyl-1,2,3,4,5,6-hexahydro-1,5-methano-pyri-do[1,2a][1,5]diazocin-8-one;
9-(2-fluorophenyl)-1,2,3,4,5,6-hexahydro-
1.5-methano-pyrido[1,2a][1.5]diazocin-8-one;

9-(4-fluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ 1,2 a][ 1,5 ]diazocin-8-one:
9-(3-fluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ 1,2 a] [ 1,5 ]diazocin-8-one;
9-(3,5-difluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ \(1,2 \mathrm{2a}\) ][1,5]diazocin-8-one;
9-(2,4-difluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ \(1,2 a][1,5\) ]diazocin-8-one;
9-(2,5-difluorophenyl)-1,2,3,4,5,6-hexahydro-
1,5-methano-pyrido[ \(1,2 \mathrm{La}\) [1,5]diazocin-8-one;
6-methyl-5-oxo-6,13-diazatetracyclo \(9.3 .1 .0^{2.10}\). \(0^{4.8}\) ]pentadeca-2(10),3,8-triene;
5-oxo-6, 13-diazatetracyclo[9.3.1.02.10.04.8]penta-deca-2(10),3,8-triene;
6-oxo-5,7,13-triazatetracyclo[9.3.1.0 \(0^{2.10} \cdot 0^{4.8}\) ]pen-tadeca-2(10), 3,8-triene;
4,5-difluoro-10-aza-tricyclo[6.3.1.0 \({ }^{2.7}\) ]dodeca-2(7), 3,5-triene;
5-fluoro-10-aza-tricyclo[6.3.1.02.7]dodeca-2(7), 3,5-triene-4-carbonitrile;
4-ethynyl-5-fluoro-10-aza-tricyclo[6.3.1.0 \(0^{2.7}\) ]do-deca-2(7), 3,5-triene;
5-ethynyl-10-aza-tricyclo[6.3.1.02.7]dodeca-2(7), 3,5-triene-4-cabonitrile;
6-methyl-5-thia-5-dioxa-6, 13-diazatetracyclo [9.3.1.02.10.04.8]pentadeca-2(10),3,8-triene;
10-aza-tricyclo[6.3.1 - \(0^{2.7}\) ]dodeca-2(7),3,5-triene;

4-fluoro-10-aza-tricycio[6.3.1.0 \({ }^{2.7}\) ]dodeca-2(7), 3,5-triene;
4-methyl-10-aza-tricyclo[6.3.1.0 \({ }^{2.7}\) ]dodeca-2(7), 3.5-triene:

4-trifluoromethyl-10-aza-tricyclo[6.3.1.02.7]do-deca-2(7).3,5-triene;
4-nitro-10-azatricyclo[6.3.1.0 \({ }^{2.7}\) ]dodeca-2(7),
3,5-triene;
7-methyl-5,7,13-triazatetracyclo[9.3.1.02.10.04.8]
pentadeca-2(10),3,5,8-tetraene;
6-methyl-5,7,13-triazatetracyclo[9.3.1.02.10.04.8] pentadeca-2(10),3,5,8-tetraene;
6,7-dimethyl-5,7,13-triazatetracyclo[9.3.1.0 \({ }^{2.10}\) 04.8 pentadeca-2(10), 3,5,8-tetraene; 6-methyl-7-phenyl-5,7,13-triazatetracyclo
[9.3.1.0 \({ }^{2.10} .0^{4.8}\) ]pentadeca-2(10),3,5,8-tetraene;
6,7-dimethyl-5,8,14-triazatetracyclo[10.3, 1.02.11 04.9 hexadeca-2(11), 3,5,7,9-pentaene;

5,8,14-triazatetracyclo[ \(10.3 .1 .0^{2.11} .0^{4.9}\) ]hexadeca2(11), 3,5,7,9-pentaene;
14-methyl-5,8,14-triazatetracyclo[10.3.1.02.11.04.9]
hexadeca-2(11), 3,5,7,9-pentaene;
5-oxa-7,13-diazatetracyclo[9.3.1.0 \({ }^{2.10} .0^{4.8}\) ]penta-deca-2(10), 3,6,8-tetraene;
6-methyl-5-oxa-7,13-diazatetracyclo[9.3.1.0 \({ }^{2.10}\). 04.8]pentadeca-2(10), 3,6,8-tetraene;

4-chloro-10-azatricyclo[6.3.1.02.7]dodeca-2(7), 3,5-triene;
10-azatricyclo[6.3.1.02.7]dodeca-2(7), 3,5-trien-4-yl cyanide;
1-(10-azatricyclo[6.3.1.0 \({ }^{2.7}\) ]dodeca-2(7),3,5-trien-
4-yl)-1-ethanone;
10-azatricyclo[6.3.1.02.7]dodeca-2(7),3,5-trien-4-ol;
7-methyl-5-oxa-6, 13-diazatetracyclo(9.3.1.02.10.
04.8]pentadeca-2,4(8),6,9-tetraene;

4,5-dichloro-10-azatricyclo[6.3.1 1.0.7]dodeca-2(7),
3,5-triene;
11-azatricyclo[7.3.1.02.7]trideca-2(7),3,5-triene-5-carbonitrile;
1-[11-azatricyclo[7.3.1.0 \({ }^{2.7}\) ]trideca-2(7), 3,5-trien-5-yl]-1-ethanone;
1-[11-azatricyclo[7.3.1.0 \({ }^{2.7}\) ]trideca-2(7), 3,5-trien-
5-yII-1-propanone;
4-fluoro-11-azatricyclo[7.3.1.02.7]trideca-2(7),
3,5-triene-5-carbonitrile;
5-fluoro-11-azatricyclo(7.3.1.02.7)trideca-2(7), 3,5-triene-4-carbonitrile;
6-methyl-7-thia-5, 14-diazatetracyclo[10.3.1.0 \({ }^{2.10}\). 04,8 hexadeca-2(10), 3,5,8-tetraene;
6-methyl-5,7,14-triazatetracyclo[10.3.1.0 \(\left.0^{2,10.0^{4.8}}\right]\) hexadeca-2(10),3,5,8-tetraene;
6,7-dimethyl-5,7,14-triazatetracyclo [10.3.1.02.10. 04.8 ]hexadeca-2(10), 3,5,8-tetraene; 5,7,14-triazatetracyclo[10,3.1.0 \(0^{2.10} .0^{4.8}\) ]hexadeca2(10), 3,5,8-tetraene;
5,6-dimethyl-5,7,14-triazatetracycio[10.3.1.02.10. 04.8 ]hexadeca-2(10), 3,6,8-tetraene;

5-methyl-5,7,14-triazatetracyclo[10.3.1.0 \(0^{2.10 .04 .8}\) ] hexadeca-2(10), 3,6,8-tetraene;
6-(trifluoromethyl)-7-thia-5,14-diazatetracyclo
[10.3.1.0 \({ }^{2.10 .04 .8] \text { hexadeca-2(10),3.5,8-tetraene; }}\)
5,8,15-triazatetracyclo[11.3.1.0 \(0^{2.11}, 0^{4.9}\) heptade-ca-2(11), 3,5,7,9-pentaene;
7-methyl-5,8,15-triazatetracycio[11.3.1.0 \(0^{2.11} .0^{4.9}\) ] heptadeca-2(11), 3,5,7,9-pentaene;
6-methyl-5,8, 15-triazatetracyclo[11.3.1.02.11.04.9] heptadeca-2(11), 3,5,7,9-pentaene; 6,7-dimethyl-5,8,15-triazatetracyclo(11.3.1.02.11 04.9 heptadeca-2(11), 3,5,7,9-pentaene;

7-oxa-5,14-diazatetracyclo[10.3.1.0 \({ }^{2.10} \cdot 0^{4.8}\) ]hexa-deca-2(10), 3,5,8-tetraene;
6-methyl-7-oxa-5,14-diazatetracyclo[10.3.1.0 \(0^{2.10 .}\) 04.8 hexadeca-2(10), 3,5,8-tetraene;

5-methyl-7-oxa-6,14-diazatetracyclo[10.3.1.02.10. \(0^{4,8}\) 万hexadeca-2(10), 3,5,8-tetraene;
6-methyl-5-oxa-7, 14-diazatetracyclo[10.3. 1.00.10. \(\left.0^{4,8}\right]\) hexadeca- \(2(10), 3,6,8\)-tetraene; 7-methyl-5-oxa-6,14-diazatetracyclo[10.3.1.02.10. \(0^{4.8} \mathrm{~J}\) hexadeca-2(10), 3,6,8-tetraene;
4,5-difluoro-11-azatricyclo[7.3.1.0 \(0^{2.7}\) ]trideca-2(7), 3,5-triene;
4-chloro-5-fluoro-11-azatricyclo[7.3.1.02.7]trideca2(7), 3,5-triene;
5-chloro-4-fluoro-11-azatricyclo[7.3.1.02.7]trideca2(7), 3,5-triene;
4-(1-ethynyl)-5-fluoro-11-azatricyclo[7.3.1.02.7]tri-deca-2(7), 3,5-triene;
5-(1-ethynyl)-4-fluoro-11-azatricyclo[7.3.1.0 \({ }^{2.7}\) ]tri-deca-2(7),3,5-triene;
5,6-difluoro-11-aza-tricyclo[7.3.1.0 \({ }^{2.7}\) ]trideca-2,4,6-triene;
6-trifluoromethyl-11-aza-tricyclo[7.3.1.02.7]trideca-2,4,6-triene;
6-methoxy-11-aza-tricyclo[7.3.1.0 \({ }^{2.7}\) ]trideca-2(7), 3,5-triene;
11-aza-tricyclo[7.3, 1.0 \(0^{2.7}\) ]trideca-2(7),3,5-trien-6-ol;
6-fluoro-11-aza-tricyclo[7.3.1.02.7]trideca-2(7), 3,5-triene;
11-aza-tricyclo[7.3.1.0 \({ }^{2.7}\) ]trideca-2(7),3,5-trien-5-ol;
4-nitro-11-aza-tricyclo[7.3.1.0 \({ }^{2.7}\) ]trideca-2(7), 3,5-triene;
5-nitro-11-aza-tricyclo[7.3.1.02.7]trideca-2(7), 3,5-triene;
5-fluoro-11-aza-tricyclo[7.3.1.0.7.7trideca-2(7), 3,5-triene; and
6-hydroxy-5-methoxy-11-aza-tricyclo[7.3.1.02.7]tri-deca-2(7),3,5-triene and
their pharmaceutically acceptable salts and their optical isomers.
[0013] Preferably, the nicotine receptor partial agonist is selected from```


[^0]:    VIA
    
    $R^{17} \mathrm{HN}$
    
    
    XXV
    
    IB

[^1]:    -79-

[^2]:    Fom PCT.ISA210 (second sheel) (daly 1992)

