
 

Abstract—Threshold problems in electric stimulation of 
nerve and muscle fibers have been studied from a theoretical 
standpoint using the excitation functional. Here the excitation 
functional is extended to magnetic stimulation of excitable 
nerve and muscle fibers. A unified derivation of the functional 
is done, for (non myelinated) nerve and muscle fibers, by means 
of the nonlinear cable equation with a Fitzhugh-Nagumo 
membrane model and a generalized Rattay’s activating 
function. The identification problem of the excitation functional 
for magnetic stimulation, from strength-duration experimental 
data, is briefly considered. 

I. INTRODUCTION

HE goal of electric and magnetic stimulation of 
excitable cells is to produce (or to block) action 

potentials in suitable locations. From the standpoint of a 
black box approach, the stimulation process may be 
described by a correspondence between each applied electric 
current history and a binary variable Λ that takes the value 0 
if stimulation fails and 1 if it succeeds (Fig.1).  

Fig.1.  Black box approach to electric and magnetic stimulation 

From the standpoint of the stimulation equipment, the black 
box comprises the electrodes (and their leads) or the 
magnetic coils, the volume conductor of the tissues and the 
target elements (nerve or muscle fibers, etc.). So, this black 
box may be considered as an electric load seen by the 
stimulating equipment. The binary variable may be obtained 
through an electric measurement (detection of action 
potential by recording electrodes) or by external 
manifestations (like muscle twitches, function inhibitions, 
etc). 
For the electrical stimulation, there is already a theoretical 
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tool, the excitation functional, introduced by R. Suárez-
Antola [1], [2]. It allows both a description and a prediction 
of the output given by the binary variable in the black box 
approach. As each system composed by the electrodes, the 
tissues and the target elements is unique (due to different 
spatial, temporal, electrical and in general, physiological 
properties), the black box must be duly identified from 
suitable experimental data. 
The experimental strength-duration curves for a given 
system can be used to obtain the excitation functional for the 
electrical stimulation of the just mentioned system [3]. 
The excitation functional opens a third way between a pure 
experimental approach and a pure computational approach 
(working with nonlinear cable equation for electrical 
stimulation). As an analytical tool (which parameters can be 
adjusted from real experimental data) it allows a 
mathematical formulation of threshold related problems of 
interest for biomedical engineering. For example, to find 
optimal pulse shapes given an optimization criterion [2]. So, 
it could be of certain interest to try to extend the excitation 
functional to magnetic stimulation. 
The purpose of this paper is threefold: (a) to extend the 
excitation functional to magnetic stimulation produced by 
external coils, (b) to present a unified derivation of the 
functional both for electric and magnetic stimulation, and (c) 
to briefly discuss the identification problem of the functional 
from experimental data (from strength-duration curves).   
A unified derivation is possible because (from the non linear 
cable equation with a generalized activating function [4] [5]) 
it is the external electric field parallel to the fibers the 
responsible of both magnetic and electric stimulation. One of 
the consequences of this extension is to have a tool that 
allows to characterize the system and to predict the outcome 
of the binary variable given a certain current history in the 
stimulating coil. 

This tool can be used also to pose and solve certain 
engineering problems related to the system, like how to 
shape an input current pulse in the stimulating coil that is 
both threshold and optimum from the standpoint of 
minimizing the energy dissipated per pulse in the tissues [6]. 

For the purposes of the present work, a suitable 
background in electric and magnetic stimulation may be 
found in [7]. Further information about electric stimulation 
can be found in [8] to [10], and in [11] to [16] for magnetic 
stimulation. 
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II. EXTENSION OF THE EXCITATION FUNCTIONAL TO THE 
MAGNETIC CASE 

A. Formulation for the electrode case 
The simplest formulation of the excitation functional 
corresponds to a single active electrode or a bipolar 
electrode and may be applied both to cathodic make 
excitation and to anodic break excitation [2]. The excitation 
functional when the excitable membrane is at rest prior to 
t=0 can be written in two steps. First we obtain a function 
qE(t), making the convolution of a history of injected current 
iE(t) with a non dimensional impulse response function GE(t) 
characteristic of the system (black box).  

( ) ( ) ( )∫ ⋅⋅−=
t

EEE duuiutGtq
0

.                                                  (1) 

In this case, by definition GE(0)=1. The injected current 
appears in (1) related to the fact that the electric field in a 
given point of the tissues is the product of iE(t) and a  vector 
function of the position of the considered point in the 
volume conductor [4]. 

In a second step, the maximum of qE(t) is taken from t=0 
onwards and compared with a threshold charge QTh,0. This 
threshold charge is not the charge injected by the electrode 
neither the charge that crosses the excitable membrane of the 
target fiber.  

A history of applied current is just threshold if and only if 
 

( ){ } 0,
0

ThE
t

Qtqmáx =
≥

.                                                        (2) 

Fig.2 shows three possible outcomes of the convolution 
 

 
Fig.2. Under threshold, just threshold and above threshold time evolution of 
qE(t) 

 
QTh,0 , which is a characteristic parameter of the system, 

allows the definition of the digital variable ΛE that was 
presented in the introduction. As will be seen in section D, in 
this case QTh,0 coincides with the well known limit threshold 
charge that can be obtained from strength-duration curves. 

B. Formulation for the coil case 
In the magnetic case, assuming that the membrane is at 

rest prior to t=0, we propose to convolve time derivative of 
the electric current in the coil ( )

dt
tdiC  with a non dimensional 

impulse response function GM(t) in order to obtain the time 
function iM(t). Here, by definition, GM(0)=1. 

 

( ) ( ) ( )
∫ ⋅⋅−=
t

C
MM du

du
udiutGti

0

.                                           (3) 

 

The derivative of the coil current appears in (3) related to the 
fact that the electric field in a given point of the tissues is the 
product of ( )

dt
tdiC and a vector function of the position of the 

considered point in the volume conductor [4], [5], [6], [16].  
In a second step, the maximum of iM(t) is taken from t=0 

onwards and compared with a threshold current ITh,0  (Fig. 3).  
 

 
Fig.3. Under threshold, just threshold and above threshold time evolution of 
iM(t) 
 

A history of current in the coil is just threshold when: 
 

( ){ } 0,
0

ThM
t

Itimáx =
≥

.                                                       (4) 

ITh,0 (a characteristic parameter of the system) allows 
again the definition of a digital variable, in this case ΛM. It 
can be obtained from experimental strength-duration curves, 
as shown in section IV. 

III.   A UNIFIED DERIVATION OF THE EXCITATION 
FUNCTIONAL  

The construction of the impulse response function and the 
threshold charge for electric stimulation, and the impulse 
response function and the threshold current for the magnetic 
stimulation of a (non myelinated) fiber will follow a 
common procedure. This allows an easier grasp of the 
similarities and differences between the two situations.   

Let us begin with the nonlinear cable equation with 
Rattay’s activating function generalized to take into account 
both electric and magnetic stimulation [4], [5], [6], [16]. To 
simplify the derivation we use the well known Fitzhugh-
Nagumo model for the unit membrane [17].  If the (possibly 
bended) target fiber is represented by a curve of directed arc 
length s measured from a suitable fixed point of the fiber, 

( )stv , is membrane voltage field and ( )stw , is the recovery 
variable field, both relative to their rest values, we obtain the 
following set of equations [6]: 

 

( ) ( )
s

s,tE
s
vwvcvbv

t
v e2

m2

2
2
m

32
m ∂

∂
−

∂
∂+⋅−⋅−⋅+−=

∂
∂ λλατ . (5a) 

( )wv
t
w

w γτ −=
∂
∂ .                                                               (5b)  

 
The time constant of the membrane is mτ , and wτ is the time 
constant of the recovery variable (under physiological 
conditions at least an order of magnitude greater than mτ ). 

The fiber’s space constant is mλ . The parameters of the unit 
membrane model γα ,,,cb are positive. 
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Rattay’s generalized activating function is given by [4], [5], 
[6], [12], [16]: 
 

( ) ( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

→⋅⋅

→⋅⋅
=

∂
∂

−
magneticti

dt
dsF

electrictisF

s
s,tE

CM
2
m

EE
2
m

e2
m λ

λ
λ .                (6) 

 
The functions ( )sFE  and ( )sFM give the spatial distribution 
of the perturbation produced on the excitable membrane by 
the electric field due to the electrodes or induced by the time 
varying magnetic flux due to the coil, and may be called 
geometric form factors for electric and magnetic stimulation, 
respectively. Now, the stimulation is always a localized 
phenomenon. As a consequence, outside a certain interval of 
influence along the fiber, of length , the form factors may 
be neglected [6], [18], [19], [20]. If we assume that until the 
fiber reaches a threshold state, the fields of membrane 
voltage and recovery variable take their rest values at the end 
points of this interval of influence, it is possible to make a 
nonlinear modal analysis of the cable equations. The value 
of  depends of the form factor. If s is measured from the 
mid-point of the interval of influence, we may use the 
Fourier development: 
 

( ) ( ) ( ) ...2sin2cos2, 21 +⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅+⎟

⎠
⎞

⎜
⎝
⎛ ⋅⋅= stAstAstv ππ  

( ) ( ) ( ) ...2sin2cos2, 21 +⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅+⎟

⎠
⎞

⎜
⎝
⎛ ⋅⋅= stBstBstw ππ .          (7) 

( ) ...2sin2cos2
2,1, +⎟

⎠
⎞

⎜
⎝
⎛ ⋅⋅+⎟

⎠
⎞

⎜
⎝
⎛ ⋅⋅= sFsFsF MMM

ππ  

 
Substituting (7) in the nonlinear cable equation and 

eliminating the spatial dependence, we obtain a system of 
first order nonlinear ordinary differential equations in the 
unknown mode amplitudes ( )tA j and ( )tBk . Solving this 

system with suitable initial conditions, we obtain the mode 
amplitudes. The procedure is the same as already developed 
for stimulation by electrodes [18], [19]. The only difference 
between electric and magnetic stimulation in this approach is 
the forcing term. So the dynamics of the unforced fiber, after 
the end of the stimulating pulse, is the same if the length of 
the interval of influence is the same. 
Digital simulation of both cathodic make and anodic break 
electrical stimulation using up to seventeen mode amplitudes 
suggest that the first mode is the most relevant in 
determining threshold behavior of the fiber [20].   
   Truncation to the first mode, uncoupled, gives in both 
cases, a set of nonlinear ordinary differential equations in the 
mode amplitudes corresponding to membrane voltage and 
the recovery variable [19]. 

The study of threshold dynamics done with the 
aforementioned equations, with parameter’s values within 
the physiological ranges, shows that a threshold barrier may 
be defined in phase space ( )11, BA  such that when the phase 

point reaches the barrier, an action potential emerges [6], 
[19].   

The under threshold behavior can be described with 
enough accuracy, up to the threshold barrier, by the linear 
system: 

 

( )ti
dt
dFB CM ⋅⋅−− 1,

2
m112

2
m21

m   + A )  + (1   = 
dt

dA λαλπτ . 

( )11
1

w BA
dt

dB
⋅−= γτ .                (8) 

 
This approach is the equivalent, for a fiber with a non-
uniformly polarized membrane, to the classical discussion of 
Fitz-Hugh for a unit membrane [19]. Fig 4 shows the 
simplified dynamics in the ( )11, BA  state space. The results 
of the digital simulation suggest the introduction of a 
decaying and an amplifying set, separated by a threshold 
curve [19]. 

 
Fig 4. Sketch of the dynamics of the system, simplified by the threshold 
barrier. R is the rest state. The decaying set is shown as a shaded area 
bounded by the double arrowed threshold curve. 
 
The threshold curve is composed by: half-straight line taken 
from the threshold barrier and an orbit in the decaying set 
that is just tangent to the threshold barrier. The construction 
of the threshold barrier can be seen in [17]. 

The linear dynamic system (8) can be recast in a matrix 
form:  

( ) ( ) ( ) 11,
2

m  eti
dt
dFtxtx

dt
d

CM ⋅⋅⋅+⋅Α= λ .                       (9) 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1

1

B

A
x     

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

=Α

ww

mm

τ
γ

τ

τ
αλπ

τ

1

 11
2

2
m2

     ⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

1e .        (10) 

 
In the matrix A, the spatial properties appear in the 

element  
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

2

2
m2

m

 11 λπ
τ

 through the non-dimensional 

number mλ . The other elements of the matrix A depend 

only on unit membrane properties through the parameters 
wm ,,, ττγα . 

The solution, beginning from the rest state, and until the 
first arrival to the threshold barrier, is:      
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 ( ) ( ) ( )( )∫ ⋅⋅⋅⋅= Α−
t

0
1

ut
C1,M

2
m dueeui

du
dF tx λ .                 (11) 

 
From the results of digital simulation (summarized in Fig 

4) the condition that characterizes a just threshold magnetic 
stimulation is (Fig.5): 

 

[ )
( ){ } ptxnT

t
=

+∞∈
max

,0
.                                       (12) 

 

 
Fig.5. Graphical interpretation of Eq.(12). The unit vector n is normal to 
the threshold barrier.  
 

There are analytical formulae for the unit vector n  and 
the distance p as functions of system’s parameters [19], [20]. 
We put ( )tx  from (11) into (12) and define: 
(a) The impulse response function 

 ( )
1

1

en
eentG T

tT

M

Α⋅
=   .                                                          (13) 

(b) The threshold current 

11,
20, enF

pI T
Mm

Th ⋅⋅
=

λ
  .                                                    (14) 

Then we obtain the just threshold condition for magnetic 
stimulation in terms of the excitation functional (equivalent 
to (3) and (4) combined) 

 

[ )
( ) ( )

0,Th

t

0

C
M

,0t
Idu

du
uid

utGmax =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−∫
+∞∈

.                   (15) 

 
The same procedure applied to electric stimulation gives 

11,
20, enF

pQ T
Em

Th ⋅⋅
=

λ
            ( )

1

1

en
eentG T

tT

E

Α⋅
=  

So, if the parameters of the unit membrane are the same, 
the only difference in the impulse response function (in the 
framework of this mathematical model) is due to different 
values of  related with differences in the form factor. 

The activation of peripheral nerves can be studied under 
the following modeling conditions: the medium can be 
considered as homogeneous, the fiber can be considered as 
straight and unbounded but the external electric field varies 
in a region along the fiber [12]. 

In the framework of the present mathematical model, the 
degree of spatial localization of the perturbation of the 
peripheral nerve membrane due to the external field is given 

by the length of the interval of influence .  
It is possible to show that an approximate formula for the 

time constant of the cathodal strength-duration curve for a 
nerve fiber is given by [21] 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

≈

2

2
m2

m
S

 1
t

λπ

τ .                                                               (16) 

The chronaxy is proportional to tS. For a given peripheral 
nerve, in the electric stimulation is smaller than in the 
magnetic stimulation case. From (16) it follows that 
chronaxies for electric stimulation should be smaller than 
chronaxies for magnetic stimulation. This explains the 
experimental findings [13].  

Equation (16) is obtained from the simplest model for the 
impulse response function. A more realistic model of GM 
(given by (13)) is sketched in Fig.6.  

 

 
Fig.6. Schematic representation of an impulse response function taken 

from [19]. 
 
It allows the calculation of the chronaxies both for 

cathodic and anodic stimulations. However, despite the 
analytical formulae are different, the same theoretical 
predictions about the behavior of chronaxies for electric and 
magnetic stimulation of peripheral nerves are derived from 
this more complete model.  

IV. THE IDENTIFICATION OF THE IMPULSE RESPONSE 
FUNCTIONS 

For electric stimulation, the identification problem of the 
excitation functional is already studied in [2], [3], [6]. 

For magnetic stimulation, let us consider a linear ramp of 
electric current in the coil. From the excitation functional 
(15) it follows that for a ramp of duration tP, that produces a 
suitable depolarization of the fiber membrane in the interval 
of influence, the threshold slope  ( )P

ThC t
dt

di ,  is given by: 

( )
( )∫ ⋅

=
Pt

M

Th
P

ThC

duuG

I
t

dt
di

0

0,, .                                                      (17) 

From (15) when the ramp duration tends to zero, we derive 

( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅= PThC

p
pTh ti

dt
dtI ,0, lim .                                                (18) 

Once ITh,0 is known, from (16) and (17) it follows 

( )
( )⎟

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂
∂=

P
ThC

Th

P
PM

t
dt

di
I

t
tG

,

0, .                                                     (19) 
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This means that the impulse response functions may be 
obtained from experimental strength-duration curves for 
magnetic stimulation. These experimental curves can be 
done using equipment similar to the one described in [22]. 
However the derivative makes it an ill posed problem. A 
way out of this difficulty is to use analytical formulae (13) 
and (14) derived in this paper and adjust the parameters of 
(15) to the experimental data. 

V. FINAL COMMENTS 
The excitation functional is a systemic property. From the 

standpoint of attaining the threshold in a given target fiber in 
an external electric field, an action potential can emerge 
under four modeling circumstances: (a) the external field is 
uniform and the fiber crosses a region of fast variation of the 
electrical conductivity of the medium, (b) the external field 
is uniform and the medium can be considered as 
homogeneous but the fiber bends, (c) the external field is 
uniform and the medium can be considered as homogeneous 
but the fiber originates or terminates (short circuit or open 
circuit conditions), (d) the medium can be considered as 
homogeneous, the fiber can be considered as straight and 
unbounded but the external electric field varies in a region 
along the fiber. The model of the present paper applies to 
circumstances (b) and (d), because what matters is the spatial 
variation of the projection of the electric field tangential to 
the fiber and its time variation. This time variation is 
proportional to: time variation of the current in the electrode 
case, and the time derivative of the current circulating in the 
working coils. An extension to cases (a) and (c) could be 
done. 

In the magnetic case the determination of the form factor 
is a difficult problem that deserves further study. 

However, once determined GM(t) and ITh,0, the binary 
output response of a given target fiber to different pulse 
shapes in the coil could be predicted and contrasted with 
experiments,  assuming that the system composed by the 
coil, volume conductor and target fiber remains unchanged.  

An extension of the present derivation of the excitation 
functional for magnetic excitation, to take into account lag 
effects in the activation of the excitation channels in fiber’s 
membrane, and myelinated fibers, both neglected in this 
paper, remains to be done.  

REFERENCES 
[1] R. Suárez Antola, "Optimal pulse shape for pacing excitable tissues", 

Physics in Medicine and Biology, vol. 39a, pag. 432, 1994. 
[2] R. Suárez-Ántola “Contributions to the study of optimal biphasic 

pulse shapes for functional electric stimulation: An analytical 
approach using the excitation functional”, in Proc. of the 29th Annual 
International Conference of the IEEE Engineering in Medicine and 
Biology Society, Lyon, France, 2007, 1: pp. 2440-2443. 

[3] R. Suarez-Antola, “Optimal pulse shapes and durations for cathodic 
pacing of excitable tissues” presented at the World Congress on 
Medical Physics and Biomedical Engineering, Sydney, Australia, 
August 2003, Track: 19. Signal Processing, Paper Nº 2191, [CD-
ROM] ISBN 1877040142.  

[4] B. Roth and P. Basser, “A model of the stimulation of a nerve fiber by 
electromagnetic induction”, IEEE Transactions on Biomedical 
Engineering, vol. 37, N°6, pp. 588-597, June 1990. 

[5] S. Nagarajan and D. Durand, “A generalized cable equation for 
magnetic stimulation of Axons”, IEEE Transactions on Biomedical 
Engineering, vol. 43, N°3, pp. 304-312, March 1996. 

[6] D. Suárez-Bagnasco “Electric and magnetic stimulation of fibers: 
discussion of optimal pulse shapes and design of equipment to 
produce them”, M.Sc. Thesis in Biomedical Engineering, Favaloro 
University, Buenos Aires, Argentina, 2010. 

[7] J. P. Reilly, Applied Bioeletricity: from electrical stimulation to 
electropathology. New York: Springer-Verlag, 1998, ch. 4 to 9.  

[8] D. Durand, “Electrical Stimulation of Excitable Systems”, in 
Biomedical Engineering Fundamentals, The Biomedical Engineering 
Handbook, J. Bronzino Ed., Boca Raton: CRC Press, 2006, ch 28, 
pp1-21.  

[9] D. Merrill, M. Bikson and J. Jefferys, “Electrical stimulation of 
excitable tissue: design of efficacious and safe protocols”, Journal of 
Neuroscience Methods, vol. 141, pp 171-198, 2005. 

[10] R. Testerman, M. Rise and P. Stypulkowski, “Electrical stimulation as 
therapy for neurological disorders: the basics of implantable 
neurological stimulators”, IEEE Engineering in Medicine and Biology 
Magazine, pp 74-78, September/October 2006. 

[11] C. Hovey and R. Jalinous (2008, July). The Guide to Magnetic 
Stimulation. [Online]. pp.1-44. Available: 
http://www.icts.uci.edu/neuroimaging/GuidetoMagneticStimulation20
08.pdf 

[12] Y. Roth and A. Zangen, “Transcranial Magnetic Stimulation of Deep 
Brain Regions”, in Biomedical Engineering Fundamentals, The 
Biomedical Engineering Handbook, J. Bronzino Ed., Boca Raton: 
CRC Press, 2006, ch 37, pp1-25. 

[13] B. Recoskie, T. Scholl and B. A. Chronik, “The discrepancy between 
human peripheral nerve chronaxie as measured using magnetic and 
electric field stimuli: the relevance to MRI gradient coil safety”, 
Physics in Medicine and Biology, vol. 54, pp 5965 - 5979, 2009. 

[14] The Oxford Handbook of Transcranial Stimulation, E. Wassermann, 
C. Epstein, U. Ziehmann, V. Walsh, T. Paus, S. Lisanby Eds., New 
York: Oxford University Press, 2008. 

[15] H. Massihullah, H. Slagter, G. Tononi and B. Postle, “Repetitive 
transcranial magnetic stimulation affects behavior by biasing 
endogenous cortical oscillations”, Frontiers in Integrative 
Neuroscience, vol. 3, pp 1-12, June 2009. 

[16] E. Basham, Z. Yang, N. Tchemodanov, W. Liu, “Magnetic stimulation 
of neural tissue: techniques and system design”, in, Implantable 
neural prostheses 1, D.D. Zhou y E. Greenbaum Eds., New York: 
Springer Verlag, 2009, pp293-351. 

[17] R. Fitzhugh, "Mathematical models of excitation and propagation in 
nerve” in Biological engineering, H. P. Schwan (Ed.), New York: 
McGraw-Hill, 1969, pp 1-85. 

[18] R. Suárez-Antola, A. Siccardi-Schiffino, “A modal approach to 
threshold dynamics for excitable tissues stimulated by external 
electrodes I. One state variable model for a fiber”, Physica D, vol. 89, 
pp 427 - 438, 1996. 

[19] A. Sicardi-Schifino y R. Suárez-Antola, "From synergetics to 
biological excitability" in Biological Complexity, E. Mizraji (Ed.), 
Montevideo: DIRAC, 1997, pp 180-199. A free copy can be requested 
to diego.suarez07@gmail.com. 

[20] H. Korenko, “Nonlinear modal analysis of non-uniform excitation of 
nerve fibers”, Dissertation, Institute of Physics, Universidad de la 
República, Montevideo, 1997.  

[21] R. Suarez-Antola, “The time constants for the electric stimulation of 
nerves and muscle fibres by point electrodes” in Proc. of the 2nd 
IEEE-EMBS Conference on Neural Engineering, 2005, Arlington, 
Virginia, pp. 652-655.  

[22] A. Peterchev, R. Jalinous, S. Lisanby, “Transcranial magnetic 
stimulator inducing near-rectangular pulses with controlable pulse 
width (cTMS)”, IEEE Transactions on Biomedical Engineering, vol. 
55, N°1, pp 257-266, January 2008. 

4833

LUMENIS EX1044 
Page 5

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/

