
United States Patent [19J

Bhide et al.

[54] PERFORMANCE OPTIMIZATIONS FOR
COMPUTER NETWORKS UTILIZING HTTP

[75] Inventors: Chandrashekhar W. Bhide, Sunnyvale;
Jagdeep Singh; Don Oestreicher, both
of Cupertino, all of Calif.

[73] Assignee: Shiva Corporation, Bedford, Mass.

[21] Appl. No.: 752,500

[22] Filed: Nov. 20, 1996

[51] Int. Cl.6
.....•• ... G06F 17/00

[52] U.S. Cl. 395/200.33; 395/200.49;
395/200.59

[58] Field of Search 395/200.32, 200.33,

[56]

395/200.58, 200.59, 200.49, 200.5; 364/551.01

References Cited

U.S. PATENT DOCUMENTS

4,891,785 1/1990 Donohoo 395/200.32
5,339,435 8/1994 Lubkin et al. 395/200.5

Start

552

Receive an HTTP request from a client

Analyze the HTTP request

No

Send the HTTP request to the
Web server

554

Yes

560

I 1111111111111111 11111 lllll lllll lllll 111111111111111 lllll 111111111111111111
US005852717 A

[11] Patent Number:

[45] Date of Patent:

5,852,717
Dec. 22, 1998

5,710,918 1/1998 Lagarde et al. 395/200.32

Primary Examiner-Ellis B. Ramirez
Attorney, Agent, or Firm-Townsend and Townsend and
Crew LLP

[57] ABSTRACT

Systems and methods of increasing the performance of
computer networks, especially networks connecting users to
the Web, are provided. Performance is increased by reducing
the latency the client experiences between sending a request
to the server and receiving a response. A connection cache
may be maintained by an agent on the network access
equipment to more quickly respond to request for network
connections to the server. Additionally, the agent may main
tain a cache of information to more quickly respond to
requests to get an object if it has been modified. These
enhancements and other described herein may be imple
mented singly or in conjunction to reduce the latency
involved in sending the requests to the server by saving
round-trip times between computer network components.

48 Claims, 15 Drawing Sheets

558

Send the HTTP request to the
proxy server

Stop

Netflix, Inc. - Ex. 1031, Page 000001
IPR2021-01319 (Netflix, Inc. v. CA, Inc.)

U.S. Patent

•

106 r
1/0

CONTROLLER

.

. -....-
j.

· /" 108

DISPLAY
ADAPTER

j.

' /3

MONITOR

Dec. 22, 1998

® • •

9

FIG. 1

r 104

SYSTEM
MEMORY

,~

'
'~ a

Sheet 1 of 15

5

3

r
CENTRAL

102

PROCESSOR

'~

j.

5,852,717

r::(.17
~

r

,1
120

SPEAKER

•
(122 ...

-

/' 112 ' 19 , /'116 , /'118

REMOVABLE KEYBD FIXED NETWORK
DISK DISK INTERFACE

FIG. 2

Netflix, Inc. - Ex. 1031, Page 000002

U.S. Patent Dec. 22, 1998 Sheet 2 of 15 5,852,717

202

D ..

206

Internet D
a

204

D ..
CJ

FIG. 3

Netflix, Inc. - Ex. 1031, Page 000003

U.S. Patent

C\J
LO
C\J

~

Q)
CJ)

::
e

CD

Dec. 22, 1998

co
LO
C\J

Sheet 3 of 15

~

Q)

~
Q)

en

CJ)
CJ)

Q) -u C: u Q)

<t: E
~-9-
0::,

1=~
Q)

z

0
co
C\J

5,852,717

Netflix, Inc. - Ex. 1031, Page 000004

U.S. Patent Dec. 22, 1998 Sheet 4 of 15 5,852,717

(Start)

'

Receive a client request to open a single V
network connection to the server

302

'

Send requests to the server to open multiple 1-----..
network connections to the server 304

,,
Send the following client request to the I-.---'

server using an open network connection
306

'

(Stop)

FIG. 5

Netflix, Inc. - Ex. 1031, Page 000005

U.S. Patent Dec. 22, 1998

Start

Receive a client request to open a single
network connection to the server

Scan a cache for an open network
connection to the server

No

360

Send the following client request to the
server using the open network connection

No

Yes

No

Yes 366

Sheet 5 of 15 5,852,717

352

354

358

Send a request to the server to open a
network connection

Stop

Send at least one request to the server to _______ _,
open a network connection to the server

FIG. 6

Netflix, Inc. - Ex. 1031, Page 000006

U.S. Patent Dec. 22, 1998 Sheet 6 of 15 5,852,717

C Start)

·~
Receive a client request to get an object from r---,

the server and forward to the server 402

Receive the object from the server and r--....,
forward to the client

404

Receive a client request to get the object
from the server if it has been modified and r-...., 406

forward to the server

Receive a response from the server that the
object has not been modified and forward to 408

the client

Store an identifier for the object and a
..............

timestamp in a cache 410

Receive a client request to get the object
..............

from the server if it has been modified 412

A

FIG. 7 A

Netflix, Inc. - Ex. 1031, Page 000007

U.S. Patent Dec. 22, 1998

No

Yes
416

Create a response that the object has
not been modified and send to

the client

Sheet 7 of 15 5,852,717

418

Send the client request to get the object
from the server if it has been modified

420

Receive and forward the response that
the object has not been modified or the

object to the client

422

Update the cache

Stop

FIG. 78

Netflix, Inc. - Ex. 1031, Page 000008

U.S. Patent Dec. 22, 1998

Yes

Start

452

Get an identifier for an object from
the cache

No

Yes

No

Stop

Sheet 8 of 15 5,852,717

456

Send a request to get the object
from the server if it has been

modified

458

Update the cache

FIG. 8

Netflix, Inc. - Ex. 1031, Page 000009

U.S. Patent

C\I
0
l.()

,_
(l)
(J)

::
e

CD

Dec. 22, 1998

co
0
l.()

-.:t-
0
l.()

CX)
0
l.()

,_
Q)

C:
Q)

en

(J)
en
Q) -u C
u Q)

<C E
-c .9-
0 ::::,
}; 0-
a> LU
z

Sheet 9 of 15 5,852,717

C\I .,....
l.()

,_
Q)

C:
Q)

en

t
a..

0 .,....
l.()

Netflix, Inc. - Ex. 1031, Page 000010

U.S. Patent Dec. 22, 1998

Start

552

Receive an HTTP request from a client

Analyze the HTTP request

No

Send the HTTP request to the
Web server

554

Yes

560

Sheet 10 of 15 5,852,717

558

Send the HTTP request to the
proxy server

Stop

FIG. 10

Netflix, Inc. - Ex. 1031, Page 000011

U.S. Patent Dec. 22, 1998

N 0
0 ,-
c.o co

~ 0
Q) 0 en :c ;:
0 "E
m -~

(.)

Sheet 11 of 15

c.o
0
c.o

co
0
c.o

en
en

....
Q)

C:
Q)

en

Q)
U C
(.) Q)

~E
~ 0.. -
0 ~

~jI
Q)

z

0
(.)
0 e~

Cl.. (.)
-c .s
Oen
~
Q)

z

5,852,717

,-
,--

C)

LL

Netflix, Inc. - Ex. 1031, Page 000012

U.S. Patent Dec. 22, 1998 Sheet 12 of 15 5,852,717

C Start

'

Intercept a first client request to open a
r""-

network connection to the server 622

'

Immediately respond that the network
r--.,

connection has been opened 624

,

Intercept a second client request to the r,.......,
server 626

,

Send the second client request and an
r,.......,

identifier for the server to the agent 628

,,

(Stop)

FIG. 12

Netflix, Inc. - Ex. 1031, Page 000013

U.S. Patent Dec. 22, 1998 Sheet 13 of 15

(Start J

'"

Receive a request from the client hook, the
request including an identifier for the server

5,852,717

......__,552

Send a request to the server to open a network
654 connection or use a cached connection i---,._,

Send the request to the server over an open i---,._, 656 network connection

...
(Stop)

FIG. 13

Netflix, Inc. - Ex. 1031, Page 000014

U.S. Patent Dec. 22, 1998 Sheet 14 of 15

(Start)

' .

Store a first header in a request from the
client hook to the server

Receive a second request from the client hook

5,852,717

k-.., 6 7 2

that includes differences between the first r--- 67 4
header and a second header

Reconstruct the second header from the stored ~ 676 first header and the differences

Send the second request to the server
including the reconstructed header

..
(Stop)

FIG. 14

k-.., 678

Netflix, Inc. - Ex. 1031, Page 000015

U.S. Patent Dec. 22, 1998

(Start

,. (702

The client hook intercepting a first
dient request to the server that

includes a first header

r104

The client hook sending the first client
request to the agent for transmission

to the server

(706

The agent storing a copy of the
first header

.. (708

The agent sending the first client
request to the server

(710

The client hook intercepting a second
client request from the client to the

server that includes a second header

, I. (712

The client hook modifying the second
client request to include differences

between the first and second headers ---
instead of the first header

Sheet 15 of 15 5,852,717

r 714

The agent receiving the modified
~ second client request from the

client

,Ir r 716

The agent reconstructing the second
header from the stored first header

and differences

(718

The agent sending the second client
request to the server including the

reconstructed header

,1,

(Stop)

FIG. 15

Netflix, Inc. - Ex. 1031, Page 000016

5,852,717
1

PERFORMANCE OPTIMIZATIONS FOR
COMPUTER NETWORKS UTILIZING HTTP

BACKGROUND OF THE INVENTION

2
riences between sending a request to the server and receiv
ing a response. A connection cache may be maintained by an
agent on the network access equipment to more quickly
respond to request for network connections to the server.

The present invention is related to increasing performance
of networked computer systems and, more particularly,
increasing the performance of computer systems accessing
the World Wide Web ("Web") on the Internet.

5 Additionally, the agent may maintain a cache of information
to more quickly respond to requests to get an object if it has
been modified. These enhancements may be implemented
singly or in conjunction to reduce the latency involved in
sending the respective requests to the server by saving

The Internet is a network which provides avenues for
worldwide communication of information, ideas and mes
sages. Although the Internet has been utilized by academia
for decades, recently there has been almost an explosion of
interest in the Internet and the information residing thereon.
The Web accounts for a significant part of the growth in the
popularity of the Internet, perhaps because of the user
friendly graphical user interfaces ("GUis") of browsers that
are readily available for accessing the Web.

10 round-trip times between the agent and the server. The
invention complements caching provided by browsers and
other components (e.g., proxy servers).

Performance may also be increased by the network access
equipment sending an HTTP request to either the Web server

15 or a proxy server based on an analysis of the HTTP request.

The World Wide Web makes hypertext documents avail
able to users over the Internet. A hypertext document does 20

not present information linearly like a book, but instead
provides the reader with links or pointers to other locations
so that the user may jump from one location to another. The
hypertext documents on the Web are accessed through the
client/server protocol of Hypertext Transport Protocol 25

("HTTP").
The Internet utilizes the Transmission Control Protocol/

Internet Protocol ("TCP/IP") to network very diverse and
dissimilar systems. In Windows 3.x environments, the
browser typically utilizes a dynamic link library WIN- 30

SOCK.DLL to communicate with the TCP/IP-based Inter
net. Although the hardware backbone of the Internet is a
series of high-speed communications links between
educational, research, government, and commercial main
frame computer systems, a great number of the users that 35

access the Web utilize a browser that is connected to the
Internet through a relatively slow or weak link (e.g., a 28.8K
modem over an analog phone line) to network access
equipment networked to the Internet.

The network access equipment typically has a fast con- 40

nection to the Internet (e.g., a T-1 connection at 1.54 MB).
Network access equipment may be a remote access server
for allowing remote users to connect to intranet and Internet
resources. Such a remote access server, the LanRover™

45 Access Switch remote access server, is available from Shiva
Corporation, Bedford, Mass. Other types of network access
equipment are utilized by Internet Service Providers
("ISPs") to provide Internet access to customers. Thus, the
network access equipment is networked between the com-

50 puter running the browser and the Web server providing
what is called the Point of Presence ("POP") for the user.

Network performance in general is hampered because the
network link between users and their POP commonly has a
significantly lower bandwidth than the network link between

55
the POP and the Web server. Additionally, there is a signifi
cant amount of latency in conventional networks while the
client waits for a response from the Web server. Accordingly,
there is a need for systems and methods for increasing the
performance of the computer networks, preferably without

60
requiring modification of existing browsers.

The Web browsers may then utilize a proxy server
transparently, without specifically sending requests to the
proxy server.

Additionally, performance may be increased by effec-
tively increasing the effectively bandwidth of the weak link
between the client and the network access equipment. A
client hook intercepts client requests to the server and
modifies the client requests to increase performance. The
modified requests are then sent to the agent which recon
structs the client requests from the modified requests and
sends the client requests to the server. For example, multiple
client requests may be combined into a single modified
requests or individual client requests may be intelligently
compressed for more efficient utilization of the weak link.

In one embodiment, the present invention provides a
method executed by an agent in a computer network
between clients and a server for increasing performance
between the clients and the server, the method comprising
the steps of: receiving a first request from a client to open a
single network connection to the server; sending a plurality
of requests to the server to open a plurality of network
connections to the server; receiving a second request from
the client; and sending the second request to the server using
one of the plurality of network connections. Accordingly, the
plurality of network connections to the server are opened in
response to the first request from the client to open a single
network connection.

In another embodiment, the present invention provides a
method executed by an agent in a computer network
between clients and a server for increasing performance
between the clients and the server, the method comprising
the steps of: receiving a first request from a client to get an
object from the server if the object has been modified after
a specific timestamp; sending the first request to the server;
receiving a first response from the server that the object has
not been modified after the specific timestamp; sending the
first response to the client; storing an identifier for the object
and a timestamp in a cache; receiving a second request from
the client to get the object from the server if the object has
been modified after the specific timestamp; and if the
timestamp stored in the cache is within a predetermined
amount of time from the current time, sending a second
response to the client that the object has not been modified
after the specific timestamp without sending the second
request to the server.

SUMMARY OF THE INVENTION

The present invention provides systems and methods of
increasing the performance of computer networks, espe
cially networks connecting users to the Web. Performance
may be increased by reducing the latency the client expe-

In another embodiment, the present invention provides a
method executed by an agent in a computer network
between a client and a Web and proxy servers for increasing

65 performance between the client and the Web server, com
prising the steps of: receiving an HTTP request from a
client; and sending the HTTP request to either the Web

Netflix, Inc. - Ex. 1031, Page 000017

5,852,717
3

server or the proxy server depending on the HTTP request,
the proxy server storing information available on the Web
server. Accordingly, the client does not need to be modified
or configured to utilize the proxy server.

In another embodiment, the present invention provides a 5
method for increasing performance between a client on a
client computer and a server utilizing a client hook on the
client computer and an agent between the client computer
and the server, comprising the steps of: the client hook
intercepting requests from the client to the server; the client

10
hook modifying the requests from the client; the client hook
sending the modified requests to the agent; the agent recon
structing the requests from the client according to the
modified requests; and the agent sending the requests from
the client to the server. The client hook may intercept
requests from the client to open a network connection to the 15

server and immediately respond so that the client does not
have to wait for a response that a network connection is
open. The agent may open the network connection when
required or store a cache of open network connections to the
server. Also, the client hook may intercept requests from the 20

client to compress information into changes from informa
tion in a previous request. The agent has the previous
information stored and reconstructs the hew information
from the changes. Thus, the communication between the
client hook and the agent increases performance of commu- 25

nication between the client and the server.

4
FIG. 11 is a block diagram of a browser connected to a

Web server through network access equipment in which a
client hook intercepts requests from the browser;

FIG. 12 shows a flowchart of a process of a client hook
immediately responding that network connection has been
opened in response to a request to open a network connec
tion to the server;

FIG. 13 shows a flowchart of a process of an agent
receiving a request from the client hook that includes a
request from the client and an identifier for the server to
which the request should be sent;

FIG. 14 shows a flowchart of a process of an agent storing
a header and reconstructing another header from the differ
ences between the headers; and

FIG. 15 shows a flowchart of a process of a client hook
and agent increasing the performance of header transmis
sion.

DESCRIPTION OF PREFERRED
EMBODIMENTS

In the description that follows, the present invention will
be described in reference to preferred embodiments that
increase the performance of Web browsers utilizing a weak
link to network access equipment. The present invention,
however, is not limited to any particular embodiment or
computer network. Therefore, the description the embodi
ments that follow is for purposes of illustration and not
limitation.

FIG. 1 illustrates an example of a computer system used

A feature of the present invention is that performance is
increased without necessitating modification of the client or
server. As no modifications of a Web browser is required, the
enhancements may be implemented to transparently
increase the performance of the browser, regardless of the
browser that is utilized. Other features and advantages of the
present invention will become apparent upon a perusal of the
remaining portions of the specification and drawings.

30 to execute software of an embodiment of the present inven
tion. FIG. 1 shows a computer system 1 which includes a
monitor 3, screen 5, cabinet 7, keyboard 9, and mouse 11.
Mouse 11 may have one or more buttons such as mouse
buttons 13. Cabinet 7 houses a CD-ROM drive 15, a system

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a computer system used
to execute software of an embodiment of the present inven
tion;

FIG. 2 shows a system block diagram of a typical com
puter system used to execute software of an embodiment of
the present invention;

FIG. 3 shows a diagram of multiple computers networked
over the Internet;

35 memory and a hard drive (see FIG. 2) which may be utilized
to store and retrieve software programs incorporating com
puter code that implements the present invention, data for
use with the present invention, and the like. Although a
CD-ROM 17 is shown as an exemplary computer readable

40 storage medium, other computer readable storage media
including floppy disks, tape, flash memory, system memory,
and hard drives may be utilized. Cabinet 7 also houses
familiar computer components (not shown) such as a central
processor, system memory, hard disk, and the like.

FIG. 4 is a block diagram of a browser connected to a Web 45

server through network access equipment including an

FIG. 2 shows a system block diagram of computer system
1 used to execute the software of an embodiment of the
present invention. As in FIG. 1, computer system 1 includes
monitor 3 and keyboard 9. Computer system 1 further
includes subsystems such as a central processor 102, system

agent;
FIG. 5 shows a high level flowchart of a process of

opening multiple network connections to the server in
response to a request to open a single network connection;

FIG. 6 shows a flowchart of another process of opening
multiple network connections to the server in response to a
request to open a single network connection utilizing a
cache;

FIG. 7A and 7B show flowcharts of a process of increas
ing performance of requests to get an object on the server if
it has been modified utilizing a cache;

50 memory 104, 1/0 controller 106, display adapter 108,
removable disk 112 (e.g., CD-ROM drive), fixed disk 116
(e.g., hard drive), network interface 118, and speaker 120.
Other computer systems suitable for use with the present
invention may include additional or fewer subsystems. For

55 example, another computer system could include more than
one processor 102 (i.e., a multi-processor system) or a cache
memory.

FIG. 8 shows a flowchart of a process of periodically
refreshing information in the cache utilized in FIGS. 7 A and 60
7B;

Arrows such as 122 represent the system bus architecture
of computer system 1. However, these arrows are illustrative
of any interconnection scheme serving to link the sub
systems. For example, a local bus could be utilized to

FIG. 9 is a block diagram of a browser connected to a Web
server through network access equipment which utilizes a
proxy server to increase performance;

FIG. 10 shows a flowchart of a process of directing an
HTTP request to either the Web server or the proxy server
depending on the request;

connect the central processor to the system memory and
display adapter. Computer system 1 shown in FIG. 2 is but
an example of a computer system suitable for use with the

65 present invention. Other configurations of subsystems suit
able for use with the present invention will be readily
apparent to one of ordinary skill in the art.

Netflix, Inc. - Ex. 1031, Page 000018

5,852,717
5

Preferred embodiments of the invention increase the
performance of Web browsers' (or clients') access to the
Web on the Internet. FIG. 3 shows a diagram of multiple
computers networked over the Internet. Computers 202, 204
and 206 are interconnected by the Internet 208, which is a 5
series of high-speed communications links between
educational, research and commercial computer sites around
the world. Internet computers use the TCP/IP as the com
munications protocol.

The Web utilizes the HTTP client/server protocol, which
10

is a request-response protocol. HTTP transactions include
four stages: connection, request, response, and disconnec
tion. In the connection stage, the client attempts to open a
network connection to the server. Unless otherwise
specified, HTTP attempts to use port 80 on the server for this
connection. Establishing a connection involves one round-

15

trip time from the client to the server as the client requests
to open a network connection and the server responds that a
network connection has been opened. Although the discus
sion herein focuses on version 1.0 of HTTP, the invention is
not limited to any version of HTTP or to HTTP specifically.

20

After a network connection is open, the client may send
an HTTP request to the server in the request stage. A request
stage involves one half of a round-trip time as the request
goes from the client to the server. Once the server receives

25
the request, the server responds by sending a response to the
client in the response stage. As with the request, the response
stage involves one half of a round-trip time as the response
goes from the server to the client.

6
FIG. 5 shows a high level flowchart of a process of

opening multiple network connections to the server in
response to a request to open a single network connection.
The process shown is executed by an agent on the network
access equipment. At step 302, the agent receives a client
request to open a single network connection to the server.

In response to the client request to open a single network
connection to the server, the agent sends multiple requests to
the server to open multiple network connections to the
server at step 304. Thus, multiple network connections to the
server are opened in response to a client request to open a
single network connection. Preferably, the agent requests
persistent network connections. Once one of the network
connections is open, the agent will receive a response from
the server and send that response to the client. The client will
then issue a request to the server over the open network
connection which will be received by the agent. At step 306,
the agent sends the following client request to the server
using the open network connection.

Oftentimes, the agent will receive another client request to
open a single network connection to the server. Since the
agent previously opened multiple network connections, the
agent responds immediately that a network connection is
available, thus saving a round-trip time between the agent
and server. The client then issues the following client request
over the open network connection. The agent may store the
open network connections in a cache, which will be
described more detail in reference to FIG. 6.

The disconnection stage closes the network connection to
the server. This stage involves one half of a round-trip time
and may occur many different ways. The server may close
the connection after the response is sent or by the client by
sending a Stop sequence (e.g., the user clicked on the Stop
button in the browser or the Back/Forward buttons). Con
ventional browsers show each of the four stages on a status
line on the screen.

30
For simplicity, the discussion herein describes the inter-

action of the agent with a single client browser and a single
Web server. However, in practice, the agent is typically in
communication with multiple clients and multiple Web
servers. The methods of the present invention are not

The terms of "client" and "server" are relative terms. A
client is an entity that is making a request to a server which
typically responds back to the client. However, these labels
are request-response specific and are not an indication that
the entities' roles are fixed. In preferred embodiments, the
client is a browser and the server is a Web server. The
browser may be executed on a computer similar to the one
shown in FIGS. 1 and 2. The server may be similar but is
typically a much more powerful system including faster
subsystems and more storage capacity.

35
isolated to increasing the performance of each individual
client alone. For example, one client may open multiple
network connections to the server by issuing a request to
open a single network connection. Subsequently, another
client may request to open a single network connection to

40
the same server. The agent may then immediately grant a
network connection to this client as a network connection
has already been opened. Thus, the actions of one client may
also result in an increase in performance of other clients. The
agent preferably opens another network connection to the

45
server to replace the one that has become used.

FIG. 6 shows a flowchart of another process of opening
multiple network connections to the server in response to a
request to open a single network connection utilizing a
cache. In this embodiment, the agent maintains a cache of

50 network connections to the server (or servers). At step 352,
the agent receives a client request to open a single network
connection to the server.

FIG. 4 is a block diagram of a browser connected to a Web
server through network access equipment including an
agent. The computer network shown includes a Web browser
252, network access equipment 254 and a Web server 256.
The browser communicates over a link to the network access
equipment via a network protocol (e.g., TCP/IP) stack 258.
The browser and network protocol stack reside on the client
computer system. The network access equipment is typically 55

an electronic box and may include some of the subsystems
shown in FIG. 2. The Web server resides on a server which
is typically a remote computer system.

The network access equipment includes an agent 260. The
agent is a program that includes embodiments of the inven- 60

tion. The computer code for the agent may reside on any
computer readable storage medium including dynamic ran
dom access memory, electrically erasable programmable
read only memory, or flash memory just to name a few. In
a preferred embodiment, the agent resides on a LanRover™ 65

Access Switch remote access server available from Shiva
Corporation, Bedford, Mass.

The agent scans the cache for an open network connection
to the server at step 354. If an open network connection to
the server is not available in the cache at step 356, the agent
sends a request to the server to open a network connection.
Although this embodiment opens a single network connec
tion at this point and makes a subsequent determination if
connection caching improves performance, in another
embodiment, the agent sends multiple requests to the server
to open multiple network connections and bypasses the
subsequent determination.

If an open network connection to the server is available in
the cache, the agent sends a response to the client that a
network connection is open. The client sends a client request
to the server using the open network connection which the
agent sends to the server at step 360.

Netflix, Inc. - Ex. 1031, Page 000019

5,852,717
7 8

At step 362, the agent determines if network connection
caching for the server improves performance. This determi
nation may be made from many factors including the
number of times the agent has a "hit" in the cache, the
overhead required to maintain the cache, whether the server 5

is allowing the network connections to stay open in response

In general, it may take two client requests to set up the cache
of information and a third client request to realize a perfor
mance increase. For completeness, the following assumes
that browser does not have the desired object in its cache.

At step 402 in FIG. 7A, the agent receives a client request
to get an object from the server. The agent then sends the
client request to the server. The agent receives the object
from the server and sends it to the client at step 404.
Conventional browsers have a cache in which they store

to a request to "keep open" the connection (i.e., persistent
connection), and the like. The agent may request that the
server "keep open" the connection but honoring this request
is at the discretion of the server.

The agent checks if all the network connections to the
server in the cache are in use at step 364. If connection
caching does improve performance and all the network
connections to the server are in use, the agent sends at least
one request to the server to open a network connection at
step 366. Multiple network connections may be opened to
the server if it has been determined that this improves
performance. For example, it may be beneficial to have a
predetermined number (e.g., user specified or determined by
the agent as it monitors performance) of network connec
tions open in the cache for a server. If the number of open
connections is less than the predetermined number, the agent
sends at least one request to open a network connection to
the server.

In a preferred embodiment, the cache stores all the
network connections and an indication of whether the net
work connection is open, in use or closed. As the agent
opens network connections, they are marked as "open."
When the agent receives a request to open a network
connection to the server and there is an open network
connection to the server in the cache, the agent marks the
network connection as "in use" or "used." When the agent
receives an indication from the server that a network con
nection in the cache has been closed, the agent marks the
network connection as "closed."

In another embodiment, the cache stores only open net
work connections. Each time a network connection in the
cache is either used or closed, the agent removes the network
connection from cache. The agent may also issue a request
to the server to open a network connection to replace a
network connection removed from the cache.

In conventional network systems, when a client wants to
get an object from the server, it takes two round-trip times
between the client and server: one to open the connection
and one to get the object. With the present invention, one
round-trip time between the agent and server may be
avoided, thus reducing the overall time to one and a half
round-trip times between the client and server. This provides
a significant increase in the performance of the client.

FIG. 7A and 7B show flowcharts of a process of increas
ing performance of requests to get an object on the server if
it has been modified utilizing a cache. With HTTP, a client
is able to request that the server send an object if it has not
been modified since a specified time and date, which will be
herein called a timestamp for convenience. More
specifically, the header of an HTTP get message may include
a header with fields specifying "If-Modified-Since" in one
field and a timestamp in another field. If the server deter
mines that the object has not been modified since the
specified timestamp, the server does not need to send the
object to the client but instead issues a not-modified (304)
response.

Although this feature may be utilized by the browser to
maintain its own cache, an agent of the present invention
utilizes the feature to maintain a cache of information to
further increase the performance of the computer network.

10 objects for future reference (e.g., when a user revisits the
web page). The browser cache includes timestamps indicat
ing the currency of the objects in the cache.

When the client desires an object in its cache, the browser
sends a request to get the object if it has been modified since

15 the timestamp specified in the browser cache. The agent
receives this request and sends it to the server at step 406.

At step 408, the agent receives a response (304) from the
server that the object has not been modified since the
timestamp. The agent sends this response to the client. The

20 agent stores an identifier for the object and the current
timestamp in a cache (i.e., the timestamp of when the server
indicated that the object had not changed) at step 410. The
current timestamp will be utilized as an estimate of the time
at which the object remained unmodified. The cache may be

25 a table including the address of the object (e.g., an
identifier), the timestamp of the object in the browser's
cache and the current timestamp. The agent does not need to
store the object in the cache.

30
The agent receives a request to get the object from the

server if it has been modified at step 412. The agent
determines if the request specifies an object in its caches by
scanning the cache. As the previous client request described
above requested this same object and received a not-

35 modified response, the object is specified in the cache.
Now referring to FIG. 7B, the agent determines if policy

indicates the object in the browser's cache is sufficiently
current at step 414. The policy may be a comparison of the
current times tamp to the times tamp in the cache of when the

40 server last indicated that the object had not been modified.
If the difference between these timestamps is within a
predetermined amount of time, the object in the browser's
cache is sufficiently current. The predetermined time may be
set by a administrator or may be preset by the agent.

45 Additional policy considerations may be applied. If the
server does not change its contents often (e.g., as noticed by
the agent), the amount of time may be lengthened. On the
other hand, if the server does change its contents often (e.g.,
stock quotes), the amount of time may be shortened. Thus,

50 the amount of time for an object still being current may be
server, Web page or Uniform Resource Locator ("URL")
specific.

At step 416, the agent has determined that the object in the
browser's cache is sufficiently current and the agent sends a

55 not-modified response to the client. The agent responds to
the client without sending a request to the server, thereby
saving a round-trip time between the agent and server.

If the agent determines that the browser's cache is not
sufficiently current, the agent sends a request to get the

60 object form the server if it has been modified at step 418.
Thus, the agent sends the client request to the server. When
the agent receives a response from the server, the agent
sends the response to the client at step 420. The agent
updates the cache according to the response at step 422. For

65 example, the agent may store the current timestamp in the
cache to indicate that at this point in time the server
indicated that the object had not been modified. If a new

Netflix, Inc. - Ex. 1031, Page 000020

5,852,717
9

copy of the object is received, the agent may also update the
timestamp in the cache indicating the last time the browser
received the object.

With the invention, the time for a client requesting an
object if it has been modified may be reduced from one 5
round-trip time between the client to the server to a round
trip time between the client and the agent (ignoring connec
tion and disconnection times for the moment). Although the
entries in the cache are client specific, the invention provides
a significant performance increase for the clients when they

10
issue a request to get an object if it has been modified.

FIG. 8 shows a flowchart of a process of periodically
refreshing information in the cache utilized in FIGS. 7 A and
7B. Periodically (e.g., using a timer), the agent gets an
identifier for an object in the cache at step 452. The agent

15
then makes a determination of whether the object is suffi
ciently current at step 454. This may be done by the agent
making the same calculation as if a client requested to get
the object if it has been modified.

If the object is not sufficiently current, the agent sends a
20

request to the server to get the object if it has been modified
at step 456. This request originates from the agent and not
the client. The agent then updates its cache at step 458
depending on the response from the server. If the server
responds that the object has not been modified, the agent

25
may update the estimate of the time at which the object
remained unmodified. Otherwise, if the server sends a new
copy of the object, the agent typically discards the new
object and updates the cache to indicate the object has been
modified. In other embodiments, the agent may store the

30
new copy of the object in order to fulfill future client
requests.

10
depending on the request. At step 552, the agent receives an
HTTP request from the client. The agent analyzes the HTTP
request at step 554. The analysis may include a determina-
tion of whether the request gets information or posts infor
mation. Requests that post information may be sent to the
Web server. However, requests that get information may be
sent to the proxy server. There may also be other factors
including determining if this information is likely to reside
on the proxy server.

If it is determined that the HTTP request may be serviced
by the proxy server at step 556, the agent sends the HTTP
request to the proxy server at step 558. The agent may also
need to translate the request to a different protocol before it
is sent to the proxy server. Otherwise, the agent sends the
HTTP request to the Web server at step 560.

The invention allows a client to obtain the benefits of a
proxy server without needing to be modified to send requests
explicitly to the proxy server. Thus, the proxy server may be
changed or otherwise modified by effecting changes to the
network access equipment while the client remains
unchanged.

FIG. 11 is a block diagram of a browser connected to a
Web server through network access equipment in which a
client hook intercepts requests from the browser. The com
puter network shown includes a Web browser 602, network
access equipment 604 and a Web server 606. The browser
communicates over a link to the network access equipment
via a network protocol stack 608. On the client computer
system with the browser and network protocol stack is a
client hook 610, the client hook intercepts calls between the
browser and the network protocol stack.

In preferred embodiment, the client hook intercepts calls
between the browser and the network protocol stack utiliz
ing DLL chaining. For example, the dynamic link library

At step 460, the agent determines if there is another object
identified in the cache. If there is, the agent tries to update
the cache for that object. By periodically updating the cache,
the performance of the client browser will increase as more
round-trip times between the agent and server may be
eliminated.

FIG. 9 is a block diagram of a browser connected to a Web
server through network access equipment which utilizes a
proxy server to increase performance. The computer net
work shown includes a Web browser 502, network access
equipment 504 and a Web server 506. The browser com
municates over a link to the network access equipment via

35 WINSOCK.DLL is renamed to WINSOCKZ.DLL. A new
WINSOCK.DLL is installed on the client computer system
that has routines with the same name as in the original
WINSOCK.DLL. However, the new WINSOCK.DLL has
instructions in the routines (i.e., the client hook) to intercept

40 calls before they are executed. In many instances, the
routines in WINSOCK.DLL call the routines in WINSOCK-

a network protocol stack 508. The browser and network 45
protocol stack reside on the client computer system. The
Web server resides on a server which is typically a remote
computer system.

The network access equipment includes an agent 510. The
agent shown is a program that receives HTTP requests and 50
directs them to either the Web server or a proxy server 512.
The agent will typically receives messages in a number of
protocols but the discussion herein will focus on HTTP
messages. The proxy server is a computer system that stores
information available from the Web server. In general, it 55
may be quicker to access information from the proxy server
instead of the Web server.

Z.DLL at some point in the routine.
The network access equipment includes an agent 612. The

agent shown is a program that receives HTTP requests from
the client hook. The client hook and agent communicate in
such a way to increase performance of the computer network
without requiring a modification of the client. Accordingly,
a user is free to select the browser of his or her choice and
still receive a significant performance increase.

In general, the client hook intercepts HTTP requests from
the client to the server. The client hook modifies the HTTP
requests from the client and sends the modified requests to
the agent. The agent receives the modified requests and
reconstructs the original HTTP requests from the client
according to the modified requests. The agent then sends the
HTTP requests from the client to the server. There is no
requirement that the client hook and agent communicate via
HTTP. Nevertheless, it is the communication between the
client hook and the agent increases performance of commu-

Although the use of proxy servers is known, conventional
systems require the client to specify whether an HTTP
message be sent to the Web server or the proxy server. With
the present invention the client need not explicitly specify
the proxy server to gain an increase in performance resulting
from use of the proxy server. The agent of the present
invention sends the HTTP requests to either the Web server
or proxy server based on an analysis of the HTTP request.

60 nication between the client and the server.

FIG. 10 shows a flowchart of a process of directing an
HTTP request to either the Web server or the proxy server

The computer network shown in FIG. 11 may be utilized
to increase performance of many procedures. For example,
the procedure of opening a network connection to the server
may be improved. Additionally, the procedure of sending

65 headers within requests to the server may enhanced. These
are but a couple examples of the present invention which
will be described in more detail in reference to FIGS. 12-15.

Netflix, Inc. - Ex. 1031, Page 000021

5,852,717
11 12

differences at step 676. At step 678, the agent uses the
reconstructed header in generating and sending a corre
sponding HTTP request to the server.

The header typically includes information about the

FIG. 12 shows a flowchart of a process of a client hook
immediately responding that network connection has been
opened in response to a request to open a network connec
tion to the server. At step 622, the client hook intercepts a
client request to open a network connection to the server.
The client hook immediately responds to the client that a
dummy network connection has been opened at step 624.
The dummy network connection is not an actual network
connection but allows the client to proceed with the next
client request.

5 browser (e.g., name and version number), acceptable data
formats, and the like similar to a Multipurpose Internet Mail
Extensions ("MIME") header. Accordingly, much of the
header does not change from request to request. With the
invention, an HTTP request may be reduced from several

10 hundred bytes to a request that is less than twenty bytes. This
is especially significant as the link between the client hook
and agent is typically the weak link in the computer network.
The following describes an embodiment of this process in
more detail.

The client hook intercepts a client request to the server
that specifies the dummy network connection at step 626. At
step 628, the client hook sends the client request and an
identifier for the server to the agent. The identifier for the
server (e.g., the address) is obtained from the client request 15

to open a network connection. As the client hook and agent
are in communication within the computer network, there is
no requirement that the messages between the two conform

FIG. 15 shows a flowchart of a process of a client hook
and agent increasing the performance of header transmis
sion. At step 702, the client hook intercepts a client request
to the server that includes a header, which the client hook
stores. The client request is an HTTP request and the client to HTTP. Thus, the actual protocol utilized may be opti

mized for the actual link.
FIG. 13 shows a flowchart of a process of an agent

receiving a request from the client hook that includes a
request from the client and an identifier for the server to
which the request should be sent. At step 652, the agent
receives a request from the client hook which includes an
identifier for the server. The agent receives the request from
the client hook without necessarily first receiving an HTTP
client request to open a network connection to the server.

20 hook utilize a more optimized protocol (i.e., non-HTTP)
when it sends the client request to the agent.

The client hook sends the client request to the agent for
transmission to the server at step 704. Once the agent
receives the client request, the agent stores a copy of the

25 header in the client request at step 706. If the client request
is non-HTTP, the agent generates a corresponding HTTP
client request. The agent sends the client request to the
server at step 708.

The agent generates and sends an HTTP request to the
server to open a network connection at step 654. Preferably,
the agent requests a persistent network connection. The
server is identified by the identifier received from the client
hook. Once the agent receives a response from the server
that a network connection is open, the agent generates and
sends the client request in the form of an HTTP request to
the server at step 656.

30
At step 710, the client hook intercepts a client request to

the server that includes a header. The client hook modifies
the client request to include a header that specifies differ
ences between this header and the previous header at step
712. Thus, the client request will contain the differences or

35
deltas between the headers.

The agent may send an HTTP request to open a network
connection to the server. The agent may also maintain a
cache of network connections as was described in reference

40
to FIG. 6. In this manner, a round-trip time between the
agent and server may be eliminated.

The invention increases performance in many ways. A
round-trip time between the client and agent may be elimi
nated when opening a network connection to the server. This 45
may be especially significant because this link may be the
weak link in the computer network. Additionally, the pro
tocol between the client hook and agent is not restricted to
HTTP so it may more optimized.

FIG. 14 shows a flowchart of a process of an agent storing 50
a header and reconstructing another header from the differ
ences between the headers. Initially, the client hook inter
cepts client requests and sends them to the agent. As will be
described below, the communication between the client
hook and agent is preferably not HTTP as it is optimized. 55

Additionally, although the embodiment described is directed
to headers in the requests, the invention is applicable to any
information within the requests.

The agent receives the modified client request at step 714.
With the modified client request, the agent reconstructs the
header from the stored header and the differences between
the headers at step 716. The agent generates an HTTP
request that corresponds to the client request and includes
the reconstructed header. The agent sends the client request
to the server at step 718.

The invention increases performance in many ways. A
round-trip time between the client and agent may be elimi
nated when opening a network connection to the server. This
may be especially significant because the link between the
client hook and agent may be substantially slower than the
link between the agent and server. Additionally, the protocol
between the client hook and agent is not restricted to HTTP
so it may be more optimized.

While the above is a complete description of preferred
embodiments of the invention, various alternatives, modifi
cations and equivalents may be used. It should be evident
that the present invention is equally applicable by making
appropriate modifications to the embodiments described
above. For example, although the embodiments have been
described individually, many of the embodiments may be
combined to further increase performance. Therefore, the
above description should not be taken as limiting the scope
of the invention which is defined by the metes and bounds
of the appended claims along with their full scope of
equivalents.

What is claimed is:

When the agent receives a request from the client hook,
the agent stores the header at step 672. The agent then 60

generates and sends a corresponding HTTP request to the
server. At step 674, the agent receives another request from
the client hook that includes differences between the previ
ous header and this header. The differences between headers 1. In a computer network, a method executed by an agent

65 in the computer network between clients and a server for
increasing performance between the clients and the server,
the method comprising the steps of:

is not currently a standard format of headers in HTTP.
The agent reconstructs the header for the current request

from the client hook utilizing the stored header and the

Netflix, Inc. - Ex. 1031, Page 000022

5,852,717
13

rece1vmg a first request from a client to open a single
network connection to the server;

sending a plurality of requests to the server to open a
plurality of network connections to the server;

receiving a second request from the client;
sending the second request to the server using one of the

plurality of network connections;
wherein the plurality of network connections to the server

are opened in response to the first request from the
10

client to open a single network connection.
2. The method of claim 1, further comprising the steps of:
receiving a third request from a client to open a single

network connection to the server;
sending a response to the client that a network connection 15

is open;
receiving a fourth request from the client; and

14
12. A computer network, comprising:

a client computer running a Web browser;

a Web server networked to the client computer;
a proxy server computer networked to the client computer

for storing information available on the Web server;
and

network access equipment, networked between the client
computer and the Web and proxy servers, including an
agent that receives an HTTP request from the Web
browser to open a single network connection to the
server and sends a plurality of requests to the server to
open a plurality of network connections to the server;

wherein the plurality of network connections to the server
are opened in response to the HTTP request from the
Web browser to open a single network connection.

13. In a computer network, a method executed by an agent
sending the fourth request to the server using one of the

plurality of network connections previously obtained in
response to the first request.

in the computer network between clients and a server for
increasing performance between the clients and the server,

20 the method comprising the steps of:
3. The method of claim 2, further comprising the step of

sending a request to the server to open a network connection
to the server in order to replace the one of the plurality of
network connections being used.

4. The method of claim 1, further comprising the step of 25

storing the plurality of network connections in a cache of
network connections.

5. The method of claim 4, further comprising the steps of:
receiving a third request from a client to open a single

network connection to the server;
scanning the cache to determine if there is an open

network connection to the server in the cache; and

30

if there is an open network connection in the cache,
sending a response to the client that a network connec
tion is open, whereby the open network connection 35

becomes used.

receiving a first request from a client to get an object from
the server if the object has been modified after a
specific timestamp;

sending the first request to the server;

receiving a first response from the server that the object
has not been modified after the specific timestamp;

sending the first response to the client;

storing an identifier for the object and a timestamp in a
cache;

receiving a second request from the client to get the object
from the server if the object has been modified after the
specific timestamp; and

if the timestamp stored in the cache is within a predeter
mined amount of time from the current time, sending a
second response to the client that the object has not
been modified after the specific timestamp without
sending the second request to the server.

6. The method of claim 5, further comprising the steps of:
determining if network connection caching increases per

formance between the clients and the server; and
if network caching increases performance, sending a

request to the server to open a network connection to
the server in order to store another open network
connection in the cache to replace the used network
connection.

14. The method of claim 13, wherein the storing step
40 includes the steps of storing a location of the object as the

identifier, storing the specific timestamp, and storing the
timestamp as the current time in order to estimate at what
time the object remained unmodified.

7. The method of claim 4, further comprising the steps of:
determining the number of open network connections to

the server stored in the cache; and
if the number of open network connections is less than a

predetermined number, sending a request to the server
to open a network connection to the server in order to
store another open network connection in the cache.

8. The method of claim 4, further comprising the steps of:
determining if an open network connection to the server

in the cache has been closed; and
if there is a closed network connection in the cache,

sending a request to the server to open a network
connection to the server in order to store an open
network connection in the cache.

15. The method of claim 14, further comprising the step
45 of periodically sending requests to the server to get objects

identified in the cache if the object has been modified after
the specific timestamp in order to update the timestamp in
the cache.

16. The method of claim 13, further comprising the step
50 of setting the predetermined amount of time.

55

17. The method of claim 13, wherein the client is a World
Wide Web browser.

18. A computer network, comprising:
a client computer running a Web browser;
a Web server networked to the client computer;
a proxy server computer networked to the client computer

for storing information available on the Web server;
and

9. The method of claim 5, further comprising the step of 60

removing the used network connection from the cache.
network access equipment, networked between the client

computer and the Web and proxy servers, including an
agent that stores identifiers and timestamps for objects
so that when the agent receives a request from the Web
browser to get an object from the server if the object
has been modified after a specific timestamp, the agent
responds to the request without sending a request to the
Web server.

10. The method of claim 5, further comprising the step of
sending a request to the server to open a network connection
to the server in order to store another open network con
nection in the cache to replace the used network connection. 65

11. The method of claim 1, wherein the client is a World
Wide Web browser.

Netflix, Inc. - Ex. 1031, Page 000023

5,852,717
15

19. In a computer network, a method executed by an agent
in the computer network between a client and a Web and
proxy servers for increasing performance between the client
and the Web server, comprising the steps of:

receiving an HTTP request from a client; and
sending the HTTP request to either the Web server or the

proxy server depending on the HTTP request, the proxy
server storing information available on the Web server;

wherein the client does not need to be modified to utilize
the proxy server.

20. The method of claim 19, wherein if the HTTP request
may be serviced by the proxy server, the HTTP request is
sent to the proxy server, and otherwise the HTTP request is
sent to the Web server.

10

21. The method of claim 19, wherein if the HTTP request
15

is to post information to the server, the HTTP request is sent
to the Web server, and otherwise the HTTP request is sent to
the proxy server.

of ;~~~~~i=et~:~;~
1
:!;u::i, t;u:t~:e~~:~r;~~~~o\hie~~:~ 20

the HTTP request is sent to the proxy server.
23. The method of claim 19, wherein the client is a World

Wide Web browser.

16
the client hook intercepting a first request from the client

to open a network connection to the server, the first
request including an identifier for the server;

the client hook immediately responding that a network
connection to the server has been opened to the server
and storing the identifier of the server;

the client hook intercepting a second request from the
client to be sent over the opened network connection to
the server; and

the client hook sending the second request and the iden
tifier of the server to the agent.

30. The method of claim 29, further comprising the steps
of:

the agent sending a third request to open a network
connection to the server identified by the identifier; and

the agent sending the second request to the server over an
open network connection.

31. The method of claim 29, further comprising the steps
of:

the agent identifying an open network connection to the
server in a cache; and

the agent sending the second request to the server over the
open network connection.

24. A computer network, comprising:
a client computer running a Web browser;

32. The method of claim 29, further comprising the steps
25 of:

a Web server networked to the client computer;
a proxy server computer networked to the client computer

for storing information available on the Web server;
and

network access equipment, networked between the client
computer and the Web and proxy servers, including an
agent that receives HTTP requests and sends the HTTP
requests to either the Web server or the proxy server
depending on each HTTP request;

wherein software on the client computer does not need to
be modified to utilize the proxy server.

30

35

25. The computer network of claim 24, wherein HTTP
requests that may be serviced by the proxy server are sent to
the proxy server, otherwise the HTTP requests are sent to the 40

Web server.
26. The computer network of claim 24, wherein HTTP

requests that post information to the server are sent to the
Web server, otherwise the HTTP requests are sent to the
proxy server.

27. The computer network of claim 24, wherein the HTTP
requests are translated to a different protocol before the
HTTP requests are sent to the proxy server.

45

28. In a computer network, a method for increasing
performance between a client on a client computer and a 50

server utilizing a client hook on the client computer and an
agent between the client computer and the server, compris
ing the steps of:

the client hook intercepting requests from the client to the
server;

the client hook modifying the requests from the client;
the client hook sending the modified requests to the agent;
the agent reconstructing the requests from the client

according to the modified requests; and
the agent sending the requests from the client to the

server;
wherein communication between the client hook and the

agent increases performance of communication

55

60

between the client and the server. 65

29. The method of claim 28, further comprising the steps
of:

without first receiving a request from the client to open a
network connection to the server, the agent receiving a
first request from the client to the server and an
identifier for the server;

utilizing the identifier for the server, the agent sending a
second request to the server to open a network con
nection; and

the agent sending the first request to the server over an
open network connection.

33. The method of claim 28, further comprising the steps
of:

the agent storing first information included in a first
request from the client to the server;

the agent receiving a second request from the client to the
server that includes differences between the first infor
mation and second information of the second request
instead of the second information;

the agent reconstructing the second information from the
stored first information and the differences between the
first and second information; and

the agent sending the second request to the server includ
ing the reconstructed second information.

34. The met hod of claim 28, further comprising the steps
of:

the client hook intercepting a first request from the client
to the server that includes first information;

the client hook sending the first request to the agent for
sending to the server;

the agent storing a copy of the first information;
the agent sending the first request to the server;
the client hook intercepting a second request from the

client to the server that includes second information;
the client hook modifying the second request to include

differences between the first and second information
instead of the second information;

the agent receiving the modified second request from the
client;

the agent reconstructing the second information from the
stored first information and the differences between the
first and second information; and

Netflix, Inc. - Ex. 1031, Page 000024

5,852,717
17

the agent sending the second request to the server includ
ing the reconstructed second information.

35. The method of claim 28, wherein the network link
between the client computer and the agent is substantially
slower than the network link between the agent and the 5

server.
36. In a computer network, a method for increasing

performance between a client on a client computer and a
server utilizing a client hook on the client computer and an
agent between the client computer and the server, compris- 10

ing the steps of:
the client hook intercepting a first request from the client

to open a network connection to the server, the first
request including an identifier for the server;

the client hook immediately responding that a network 15

connection to the server has been opened to the server
and storing the identifier of the server;

18
42. The method of claim 40, wherein the client is a World

Wide Web browser.
43. In a computer network, a method executed by an agent

in the computer network between a client and a server for
increasing performance between the client and the server,
the method comprising the steps of:

storing first information included in a first request from
the client to the server;

receiving a second request from the client to the server
that includes differences between the first information
and second information of the second request instead of
the second information;

reconstructing the second information from the stored first
information and the differences between the first and
second information; and

sending the second request to the server including the
reconstructed second information. the client hook intercepting a second request from the

client to be sent over the opened network connection to
the server; and

44. The method of claim 43, wherein the first and second
20 requests are HTTP requests.

the client hook sending the second request and the iden
tifier of the server to the agent.

37. The method of claim 36, further comprising the steps
of:

the agent sending a third request to open a network
connection to the server identified by the identifier; and

the agent sending the second request to the server over an
open network connection.

45. In a computer network, a method for increasing
performance between a client on a client computer and a
server utilizing a client hook on the client computer and an
agent between the client computer and the server, compris-

25 ing the steps of:

38. The method of claim 36, further comprising the steps 30

of:

the agent identifying an open network connection to the
server in a cache; and

the agent sending the second request to the server over the
35

open network connection.
39. The method of claim 36, wherein the second request

to the server to open a network connection includes a request
to keep the network connection open.

40. In a computer network, a method executed by an agent
40

in the computer network between a client and a server for
increasing performance between the client and the server,
the method comprising the steps of:

without first receiving a request from the client to open a
network connection to the server, receiving a first 45
request from the client to the server and an identifier for
the server;

the client hook intercepting a first request from the client
to the server that includes first information;

the client hook sending the first request to the agent for
sending to the server;

the agent storing a copy of the first information;

the agent sending the first request to the server;

the client hook intercepting a second request from the
client to the server that includes second information;

the client hook modifying the second request to include
differences between the first and second information
instead of the second information;

the agent receiving the modified second request from the
client;

the agent reconstructing the second information from the
stored first information and the differences between the
first and second information; and

the agent sending the second request to the server includ
ing the reconstructed second information.

46. The method of claim 45, wherein the client hook
intercepts requests from the client utilizing dynamic link
library chaining. utilizing the identifier for the server, sending a second

request to the server to open a network connection; and

sending the first request to the server over an open
network connection.

47. The method of claim 45, wherein the first and second
50 requests are HTTP requests.

41. The method of claim 40, wherein the second request
to the server to open a network connection includes a request
to keep the network connection open.

48. The method of claim 45, wherein the client is a World
Wide Web browser.

* * * * *

Netflix, Inc. - Ex. 1031, Page 000025

