
HPE, Exh. 1010, p. 1

Proceedings

The 20th Annual International

Symposium on

COMPUTER ARCHITECTURE

May 16-19, 1993 San Diego, California

Sponsored by

IEEE ComputerSociety
Technical Committee on Computer Architecture

Association for Computing Machinery
SIGARCH

@.
IEEE Computer Society Press

Los Alamitos, California

Washington ° Brussels ° Tokyo

HPE, Exh. 1010,p. 1

HPE, Exh. 1010, p. 2

The papersin this book comprise the proceedingsof the meeting mentioned on the
coverand title page. They reflect the authors’ opinions and,in the interests of timely
dissemination, are published as presented and without change.Their inclusionin this
publication does not necessarily constitute endorsement by the editors, the IEEE
Computer Society Press,or the Institute of Electrical and Electronics Engineers,Inc.

Published by the
IEEE Computer Society Press

10662 Los VaquerosCircle
® PO Box 3014

Los Alamitos, CA 90720-1264

© 1993bythe Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyondthelimit of US copyrightlaw,for private use
of patrons, thosearticles in this volume that carry a code at the bottom ofthefirst page,
providedthat the per-copyfee indicatedin the codeis paid through the Copyright Clearance
Center, 27 CongressStreet, Salem, MA 01970. For other copying, reprint, or republication
permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, PO
Box 1331, Piscataway, NJ 08855-1331.

IEEE Computer Society Press Order Number 3810-02
IEEE Catalog Number 93CH3284-7

Library of Congress Number 85-642899
ISBN 0-8186-3810-9 (paper)

ISBN 0-8186-381 1-7 (microfiche)
ISBN 0-8186-3812-5 (case)

ISSN 0884-7495
ACM Order Number415930

ACMLibrary Series ISBN 0-89791-579-8 (Hardcover)
ACM SIGARCHISSN 0163-5964

Additional copies can be ordered from:

IEEE Computer Society Press IEEE Service Center IEEE Computer Society IEEE ComputerSociety
Customer Service Center 445 Hoes Lane 13, avenue deI'Aquilon Ooshima Building
10662 Los VaquerosCircle PO Box 1331 B-1200 Brussels 2-19-1 Minami-Aoyama
PO Box 3014 Piscataway, NJ 08855-1331 BELGIUM Minato-ku, Tokyo 107
Los Alamitos, CA 90720-1264 JAPAN

ACM Order Dept., PO Box 64145, Baltimore, MD 21264

Production Editors: Mary E. Kavanaugh and Edna Straub
Coverart: Joseph Daigle / Schenk-Daigle Studios

Printed in the United States of America by Braun-Brumfield, Inc.

& The Institute of Electrical and Electronics Engineers,Inc.

iv HPE, Exh. 1010,p. 2

HPE, Exh. 1010, p. 3

Table of Contents

General Chair’s Message..............:ssssssscccccsssssssscccccesseesnnssaneseccccceeeeenseseeeeeeeeeeesceeeeeseeseeseeseeeesssenseecesenaees v
Program Chair’s Message.............sssssssscsccccsssssnscececeseessnnaseaasecceceeeeeesceeeeceeesecesesceesesseeeeeeessesesssssesnsenees vi
Organizing COMMiIttee............cccccccccccccccccccseecceseeceeececeeececcccecccececeeeceecscceeeceeeeauaeseseeeceececcceseeueuensececeeseees vii
ROLETCOS esse cae eh exseewnwesnacasavcnaveusedtesanesugumsaaces Sessa tease Sse inky 6a V 6H eH SAU WEN SA TORR UN TATOXONAUERY BD Eaxaaaren cause creUNaaweReaes viii

Session 1: Opening Session

Session 2: Architectural Characteristics of Scientific Applications

Architectural RequirementsofParallel Scientific Applications
with Explicit Communication «cscsesscecescsaceceitevcsceeteedettin tes venwwenan cus sansoncesstreseecreestn dee das dea davis tbe tacaceenennsacees 2

R. Cypher, A. Ho, S. Konstantinidou, and P. Messina

WorkingSets, Cache Sizes, and Node Granularity Issues for Large-Scale Multiprocessors............. 14

E. Rothberg, J.P. Singh, and A. Gupta

Session 3: TLBs and Memory Management

Design Tradeoffs for Software-Managed TLBs Seostvayckoevea/otnusnenerorheTeres essscnensueewers 27

D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, and R. Brown

Architectural Support for Translation Table Management in Large Address
Space Machines..............ccsccccccssssscccssssccceessccceesnseccsessesceessseecssesnseeeseseesaseecssseaeeseseessaeeeeseeseeeseeseueeeenes 39

J. Huck and J. Hays

Session 4: Input/Output

The TickerTAIP Parallel RAID Architecture.............c:::cccccssssscccsssscccesssnsceccseeseesssaseeecesssaneeeeeeeseeeesaees 52

P. Cao, S.B. Lim, S. Venkataraman, and J. Wilkes

Parity Logging Overcoming the Small Write Problem in Redundant Disk ArrayS.................::esescee 64

D. Stodolsky, G. Gibson, and M. Holland

The Architecture of a Fault-Tolerant Cached RAID Controller..................cccccccssssssecesesssnscececeesesseees 76

J. Menon and J. Cortney

Session 5: Multiprocessor Caches

The Detection and Elimination of Useless Misses in Multiprocessor,.............:.:ccccccsssssssseceeeseessnenceees 88

M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P. Stenstrém

Adaptive Cache Coherency for Detecting Migratory Shared Data.................cccsssssccccsssssssceceeesseessnnees 98
A.L. Cox and R.J. Fowler

An Adaptive Cache CoherenceProtocol Optimized for Migratory Sharing...................ccssseseecceeesnees 109
P. Stenstrém, M. Brorsson, and L. Sandberg

Session 6: Panel Session I — High-Performance Computing from
the Applications Perspective

D. Kuck (Chair)

x HPE, Exh. 1010, p. 3

HPE, Exh. 1010, p. 4

Session 7: Multithreading Support

Register Relocation: Flexible Contexts for Multithreading................cccccccsccccssssscsssccsssssscesesesceeeesnes 120
C.A. Waldspurger and W.E. Weihl

Multiple Threads in Cyclic Register Windows..............c::ccesssccesssseeesaAUREAaSS,arealwa ben 131
Y. Hidaka, H. Koike, and H. Tanaka

Session 8: Mechanismsfor Creating Shared Memory

Evaluation of Release Consistent Software Distributed Shared Memory on Emerging
NetworkTechnology#.«3. .<)2th.adeuaant lohsamiaeertanDiaminelantehaes 144

S. Dwarkadas,P. Keleher, A.L. Cox, and W. Zwaenepoel

Mechanismsfor Cooperative Shared Memory..............c::cccssccssscssscsssessecesssesssecessecessecessscsesscessscessesees 156
D.A. Wood, S. Chandra, B. Falsafi, M.D. Hill, J.R. Larus, A.R. Lebeck,
J.C. Lewis, S.S. Mukherjee, S. Palacharla, and S.K. Reinhardt

Session 9: Cache Design

A Case for Two-Way Skewed-Associative Caches............c:cccccccssscsssssssecssscssscsssscessccssssssssssseesscesssevenes 169
A. Seznec

Column-Associative Caches: A Technique for Reducing the Miss Rate of
Direct-Mapped Caches..............cccsssccsssccssssesssecessecessesessssecessescesssessssesesussesssssssessseseesssscssssssessesesesessees 179

A. Agarwal and S.D. Pudar

Cache Write Policies and Performance.ccccccccccccssssssccccsccssssssssccssccecsecssssecssstssssssescesssesseeseees 191

N.P. Jouppi

Session 10: Evaluation of MachinesI

Hierarchical Performance Modeling with MACS: A Case Studyof the Convex C-240............cc0000 203
E.L. Boyd and E.S. Davidson

The Cedar System and anInitial Performance Study:cccsccsssesscessesecsecsssesseessecessseessessseesees 213
D. Kuck, E. Davidson, D. Lawrie, A. Sameh, C.-Q. Zhu, A. Veidenbaum,
J. Konicek, P. Yew, K. Gallivan, W. Jalby, H. Wijshoff, R. Bramley,
U.M. Yang, P. Emrath, D. Padua, R. Eigenmann, J. Hoeflinger, G. Jaxon,
Z. Li, T. Murphy, J. Andrews, and S. Turner

The J-Machine Multicomputer: An Architectural Evaluationccccccccsccscccsssescsssesssesescessceseees 224

M.D. Noakes, D.A. Wallach, and W.J. Dally

Session 11: Processor Architecture and Implementation

16-Bit vs. 32-Bit Instructions for Pipelined Microprocessors..............ccscscsssssscssssscsssscssesessesceesessceess 237
J. Bunda, D. Fussell, R. Jenevein, and W.C. Athas

Register Connection: A New Approach to Adding Registers into Instruction
BT PTArcsnowsscerses es iaccscenacenen cake eyccrs eeizkdoaaRNNSRNRTEAT La Bciga dts dsm aniannachcinmmnnommnondnommmees 247

T. Kiyohara, S. Mahlke, W. Chen, R. Bringmann, R. Hank,
S. Anik, and W.-M. Hwu

A Comparison of Dynamic BranchPredictors that Use Two Levels of Branch History................... 257
T.-Y. Yeh and Y.N.Patt

xi HPE, Exh. 1010,p. 4

HPE, Exh. 1010, p. 5

Session 12: Multiprocessor Memory Systems

The Performance of Cache-Coherent Ring-Based Multiprocessor...................:ccsssssccscessseereseceoseees 268
L.A. Barroso and M. Dubois

Limitations of Cache Prefetching on a Bus-Based Multiprocessor...................csssscccsssssssssscsssssesesees 278

D.M. Tullsen and S.J. Eggers

Transactional Memory: Architectural Support for Lock-Free Data Structures................:.scccseesees 289

M. Herlihy and J.E.B. Moss

Session 13: Panel Session II — Experimental Research: How Do We Measure Success?
Y. Patt and R. Iyer (Co-Chairs)

Session 14: Evaluation of MachinesII

Evaluation of Mechanismsfor Fine-Grained Parallel Programsin the J-Machine
TVG he OMBroan ccs ede cssese can ot iersae Tae tone cas btn waco vn cu oh na 2b Cush SSS La SSN LSATEG CUOLTVON SAGO WG Soon 99 Sa Sea USEN NE ATTNNE 302

E. Spertus, S.C. Goldstein, K.E. Schauser, T. von Eicken,
D.E. Culler, and W.J. Dally

Improving AP1000 Parallel Computer Performance with Message Communication...................00 314
T. Horie, K. Hayashi, T. Shimizu, and H. Ishihata

Session 15: Memory Systemsand Interconnection

Performance of Cached DRAM Organizations in Vector Supercomputers.................sssssseesessessseeees 327
W.-C. Hsu and J.E. Smith

The Chinese Remainder Theorem and the Prime Memory System....................sssscscscessssrecesessseneeees 337

Q.S. Gao

Odd Memory Systems May Be Quite Interesting... eccessssseeeccceeseesscsssesssssssssssssssseseeeeeeaeees 341
A. Seznec and J. Lenfant

A Comparison of Adaptive Wormhole Routing Algorithms.ssssccceccsssseeeesessssseeeseesesoeees 351
R.V. Boppana and S. Chalasani

Author Indewi.i64.beeeeMna bedavertregeeSPETS ©. ch tuSrosetonecetotesstesss 361

HPE, Exh. 1010, p. 5

HPE, Exh. 1010, p. 6

This material may be protected by Copyright law (Title 17 U.S. Code)

The Architecture of a Fault-Tolerant Cached RAID Controller

Jai Menon and Jim Cortney

IBM Almaden Research Center

San Jose, California 95120-6099
E-Mail: menonjm@almaden.ibm.comTelephone: (408) 927-2070

Abstract— RAID-5 arrays need 4 disk accesses to
update a data block -- 2 to read old data and parity,
and 2 to write new data andparity. Schemes previously
proposed to improve the update performance of such
arrays are the Log-Structured File System [10] and
the Floating Parity Approach [6]. Here, we consider
a third approach, called Fast Write, which eliminates
disk time from the host response time to a write, by
using a Non-Volatile Cache in the disk array controller.
We examine three alternativesfor handling Fast Writes
and describe a hierarchy of destage algorithms with
increasing robustness to failures. These destage algo-
rithms are compared against those that would be used
by a disk controller employing mirroring. We show
that array controllers require considerably more (2 to
3 times more) bus bandwidth and memory bandwidth
than do disk controllers that employ mirroring. So,
array controllers that use parity are likely to be more
expensive than controllers that do mirroring, though
mirroring is more expensive when both controllers and
disks are considered. ,

1. Introduction

A disk array is a set of disk drives (and controller)
which can automatically recover data when one (or
more) drives in the set fails by using redundant data
that is maintained by the controller on the drives. [8]
describes five types of disk arrays called RAID-1
through RAID-S and [2] describes a sixth type called
a parity striped disk array. In this paper, our focusis
on RAID-5 and/or parity striped disk arrays which
employ a parity technique described in [1,8]. This
technique requires fewer disks than mirroring and is
therefore more acceptable in manysituations.

The main drawback of such arrays are that they
need four disk accesses to update a data block -- two
to read old data and parity, and two to write new
data and parity. [5] showed that the performance deg-
radation can be quite severe in transaction processing
environments. Two schemes that have been previ-
ously proposed to improve array update performance

0884-7495/93 $3.00 © 1993 IEEE
76

are the Log-Structured File System [10] and the
Floating Parity Approach [6]. In this paper, we con-
sider a third approach,called Fast Write, which elim-
inates disk time from the host response time to a
write, by using Non-Volatile Storage (NVS) in the
disk array controller. A block received from a host
system is initially written to NVS in the disk array
controller and a completion message is sent to the
host system at this time. Actual destage of the block
from NVSto disk is done asynchronously at a later
time. We call a disk array that uses the Fast Write
technique a Cached RAID.

The rest of this paper is organized as follows. We
first review the parity technique. Then, we describe
Fast Write. Next, we give an overview of the archi-
tecture of Hagar, a disk array controller prototype
developed at the IBM Almaden Research Center.
Hagar uses Fast Write. In the last sections of this
report, we then analyze several alternatives for
destaging blocks from NVS to disk. We show that
destage algorithms must be carefully developed be-
cause of complex trade-offs between availability and
performance goals.

2.ReviewofParityTechnique
Weillustrate the parity technique on a disk array

of six data disks and a parity disk. In this diagram,
Pi is a parity block that protects the six data blocks
labelled Di. Pi and the 6 Dis together constitute a
parity group. The Pi of a parity group must always
be equal to the parity of the 6 Di blocks in the same
parity group as Pi.
Data Disk 1 D1 D2 D3 D4
Data Disk 2 D1 D2 D3 D4
Data Disk 3 D1 D2 D3 D4
Data Disk 4 D1 D2 D3 D4
Data Disk 5 D1 D2 D3 D4
Data Disk 6 D1 D2 D3 D4

Parity Disk Pl P2 P3 P4
Weshowonly one track (of 4 blocks) from each of
the disks. In all, we show four parity groups. P1
contains the parity or exclusive OR of the blocks
labeled D1 on all the data disks, P2 the exclusive OR

HPE, Exh. 1010, p. 6

ksaari
Copyright

HPE, Exh. 1010, p. 7

D2s, and so on. Such an array is robust against single
disk crashes; if disk 1 were to fail, data on it can be
recreated by reading data from the remainingfive data
disks and the parity disk and performing the appro-
priate exclusive OR operations.

Wheneverthe controller receives a request to write
a data block, it must also update the corresponding
parity block for consistency. If D1 is to be altered,
the new value of P1 is calculated as:

new P1 = (old D1 XOR new D1 XOR old P1)
Since the parity must be altered each time the data is
modified, these arrays require four disk accesses to
write a data block - two to read old data andparity,
two to write new data and parity.

3. Overview of the Fast Write Technique —
In this technique,all disk array controller hardware

such as processors, data memory (memory containing
cached data blocks and other data buffers), control
memory (memory containing control structures such
as request control blocks, cache directories, etc..) are
divided into at least two disjoint sets, each set on a
different power boundary. The data memory and the
control memory are either battery-backed or built us-
ing NVSso they can survive power failures. When a
disk block to be written to the disk array is received,
the blockis first written to data memory in the array
controller, in two separate locations, on two different
power boundaries. At this point, the disk array con-
troller returns successful completion of the write to
the host. In this way, from the host’s point of view,
the write has been completed quickly without requiring
any disk access. Since two separate copies of the disk
block are made in the disk array controller, no single
hardware or powerfailure can cause a loss of data.

Disk blocks in array controller cache memory that
need to be written to disk are called dirty. Such dirty
blocksare written to disk in a process wecall destaging.
Whenablockis destaged to disk, it is also necessary
to update, on disk, the parity block for the data block.
This may require the array controller to read the old
values of the data block and the parity block from
disk, XOR them with the new value of the data block
in cache, then write the new value of the data block

and of the parity block to disk. Since many applica-
tionsfirst read data before updating them, we expect
that the old value of the data block might already be
in array controller cache. Therefore, the more typical
destage operation is expected to require one disk read
and two disk writes.

3.1. Overview of Destage
Typically, the disk blocks in the disk array controller

(both dirty and clean disk blocks) are organized in
Least-Recently-Used (LRU) fashion. When space for

77

a new disk block is needed in the cache, the LRU
disk block in cache is examined. If it is clean, the
space occupiedby that disk block can be immediately
used; if it is dirty, the disk block must be destaged
before it can be used. While it is not necessary to
postpone destaging a dirty block until it becomes the
LRU block in the cache, the argument for doing so
is that it could avoid unnecessary work. Consider that
a particular disk block has the value d. If the host
later writes to this disk block and changesits value
to d’, we would havea dirty block (d’) in cache which
would have to be destaged later. However, if the host
writes to this disk block again, changing its value to
d”, before d’ became LRU and wasdestaged, we no
longer need to destage d’, thus avoiding some work.!

When a block is ready to be destaged, the disk
array controller may also decide to destage other dirty
blocks in the cache that need to be written to the

sametrack, or the same cylinder. This helps minimize
disk arm motion,byclustering together many destages
to the same disk arm position. However, this also
meansthat somedirty blocks are destaged before they
become the LRU disk block, since they will be
destaged at the same time as some otherdirty block
that became LRU and that happened to be on the
same track or cylinder. Therefore, the destage algo-
rithm must be carefully chosen to trade-off the reduc-
tion in destages that can be caused by overwrites of
dirty blocks if we wait until dirty blocks become LRU
versus the reduction in seeks that can be achieved if

we destage multiple blocks at the same track or cyl-
inder position together. An example compromise
might be along the followinglines: when a dirty block
becomes LRU, destage it and all other dirty blocks
on the same track (cylinder) as long as these other
blocks are in the LRU half of the LRU chain of

cached disk blocks.

In a practical implementation, we may havea back-
ground destage process that continually destages dirty
blocks near the LRU end of the LRUlist (and others
on the sametrack or cylinder) so that a request that
requires cache space (such as a host write that misses
in the cache) does not have to wait for destaging to
complete in order to find space in the cache. Another
option is to trigger destages based on the fraction of
dirty blocks in the cache. For example,if the fraction
of dirty blocks in the cache exceeds some threshold
(say 50%), we may trigger a destage of dirty blocks
that are near the LRU end of the LRU chain (and

1 On the other hand, there are two copies of every dirty disk
block in the cache. The longer we delay destaging the dirty
blocks, the longer they occupy two cachelocations.

HPE, Exh. 1010,p. 7

HPE, Exh. 1010, p. 8

of other dirty blocks on the same tracks as these
blocks). This destaging may continue until the number
of dirty blocks in cache drops below some reverse
threshold (say 40%).

Since read requests to the disk are synchronous
while destages to the disk are asynchronous,the best
destage policy is one that minimizes any impact on
read performance. Therefore, the disk controller might
delay starting a destage until all waiting reads have
completed to the disk and it may even consider pre-
empting a destage (particularly long destages of many
tracks) for subsequent reads.
3.2. Summary of Fast Write Benefits

To summarize, Fast Write: will eliminate disk time
from write response time as seen by the host; will
eliminate some disk writes due to overwrites caused

by later host writes to dirty blocks in cache; will
reduce disk seeks because destages will be postponed
until many destages can be doneto a track orcylinder;
and can convert small writes (single block) to large
writes (all blocks in parity group) and thuseliminate
many disk accesses. Work done by Joe Hyde [3]
indicates that, for high-end IBM 370 processor work-
loads, anywhere from 30%to 60%of the writes to
the disk controller cause overwrites of dirty blocks in
cache. His work also indicates that even though the
host predominantly issues single block writes, any-
where from 2 to 7 dirty blocks can be destaged to-
gether whenatrackis destaged. Together, these results
indicate that Fast Write can be an effective technique
for improving the write performance of disk arrays
that use the parity technique.

4.OverviewofHagar
The Hagar prototype is designed to support very

large amounts of disk storage (up to 1 Terabyte); to
provide high bandwidth (100 MB/sec); to provide
high IOs/sec (5000 IOs/sec at 4 Kbyte transfers); and
to provide high availability. It provides for continuous
operation through use of battery-backed memory, du-
plexed hardware components, multiple power bound-
aries, hot sparing of disks, on-the-fly-rebuilding of
data lost in a disk crash to a hot spare and by per-
mitting nondisruptive installation and removal of disks
and hardware components.

Hagar is organized around checked and reliable
control and data buses on a backplane. The structure
of Hagar is shown in Figure 1. The data busis opti-
mized for high throughput on large data transfers and
the control bus is optimized for efficient movement
of small control transfers. The Hagar data bus is a
multi-destination bus; a block received from the host
system or from the disks can be placed in multiple

78

data memory locations even though only one copy
of the data block travels on the data bus.

In the idealized Hagar implementation, we would
have processorcards; host interface cards; global data
memory cards; global control memory cards and disk
controller cards attached to the reliable data and con-

trol buses. Cards of each type are divided intoat least
2 disjoint sets; each set is on a different power bound-
ary. The disk controller cards would attach to multiple
disk strings overa serial link using a logical command
structure such as SCSI. For availability reasons, the
disks would be dual-ported and would each attach to
two serial links originating from two different disk
controllers. The data memory cards would provide
battery-backed memory, accessible to all processors,
for caching, fast write and data buffering. The control
memory cards also provide battery-backed memory,
accessible to all processors, used for control structures
such as cache directories and lock tables. Unlike the

data memory, the control memory providesefficient
access to small amounts of data (bytes) and supports
atomic operations necessary for synchronization be-
tween multiple processors.

The XOR hardware needed for performing parity
operations is integrated with the data memory. We
chose to integrate the XOR logic with the data mem-
ory to avoid bus bandwidth during XOR operations
to a separate XOR unit such as that used in the
Berkeley RAID-II design ((9]). The data memory in
Hagar supports two kinds of store operations: a reg-
ular store operation and a special store & XOR op-
eration. A store & XORto location X, takes the

incoming data, XORsit with data at location X, and
stores the result of the XOR back into location X.

5. Data Memory Management Algorithms
5.1. Four Logical Regions of Data Memory

The data memory in the disk array controller is
divided into four logical regions: the free pool, the
data cache, the parity cache and the buffer pool.
When a block is written by the host, it is placed in
the buffer pool, in two separate power boundaries.
Subsequently, the two data blocks are movedinto the
data cache(this is a logical, not a physical move; that
is, the cache directories are updated to reflect the fact
that the disk block is in cache). After this logical
move of the blocks into the data cache, the array
controller returns “done” to the host system that did
the write. At some subsequenttime, the block D is
destaged to disk. The data cache region of the data
memory contains data blocks from disk and the parity
cache region of the data memory contains parity
blocks from disk. The parity blocks are useful during
destage, since the presence of a parity block in the

HPE, Exh. 1010, p. 8

HPE, Exh. 1010, p. 9—

Logical Architecture of Array Controller
checked checked
Rellable Reliable

DataContro
bus

 serial

Disk Ctrirn

bus

pleunarcemn|
Global

Data Store

Global

Data Store

Global

Control Store

Global

Control Store

handles requests

manages cache

manages rebuild
directs disk ctrirs

bullds responses

HostI/f
To

Host

Host I/f

Add uPsfor performance
Add global memory for performa
Add HostI/F cards for connectivity
Adddisk controllers for more disks

Adddisks for capacity

detgri 3/9/91

Figure 1: Hagar Array Controller

parity cache would eliminate the need to read it from
disk at destage time. There is some argumentfor not
having a parity cache at all and to make the data
cachelarger. This is because parity blocksin the parity
cache only help destage performance, whereas data
blocks in the data cache can help both read perfor-
mance (due to cache hits) and destage performance

79

(by eliminating the need to read old data from disk).
Furthermore, data blocks are brought into the data
cache naturally as a result of host block requests;
parity blocks, on the other hand, must be specially
brought into the cache when a particular data block
is read in the hope that the host will subsequently
write the data block.

HPE, Exh. 1010, p. 9

HPE, Exh. 1010, p. 10

5.2. Details of Write Request Handling
When a block (value Y2 say) is written by the

host, it is placed in the buffer pool, in two separate
locations. Subsequently, the two copies of Y2 are
movedinto the data cache. At this point,it is possible
that a previous clean version of this block, say Y1, is
already in data cache. In this case, there are three
different possibilities for what action to take.

The first possibility, which is the one we assume
in the rest of this paper, is to leave the old value Y1
in data cache and also create two copies of the new
value Y2, for a total of three data cache locations

occupied. Wecall this the save old data method. The
old value Y1 is not removed because it will be useful

to us in calculating new parity when weare ready to
destage Y2. Since the destage of Y2 may not happen
until much later, we may be consuming an extra
memory location for Y1 for a long time. We have
found from simulations that the disk array controller
will need about a 20% larger cache to hold the old
values of data. A second possibility we considered
was to remove Y1 from cache when Y2is received,
giving us a 20%larger effective cache. We call this
the overwrite old data method. The drawbackis that

now, when weare ready to destage Y2, we will need
to reaccess Y1 from disk. This possibility may be
attractive if the increase in performance from the 20%
larger effective data cache offsets the loss in perfor-
mance dueto needto reaccess old data at destage time.

Finally, we considered and rejected the following
third possibility. Instead of leaving the old value (say
Y1) of the block in cache and creating two copies of
the new value (say Y2) of the block (for a total of
three memory locations occupied), XOR the old and
new values of the block and store (Yl XOR Y2) in
one memory location and Y2 in a second memory
location. We call this the save partial parity method.
This has the advantage of requiring only 2 memory
locations instead of 3; also we would have already
done one of the XOR operations needed to generate
new parity. At destage time, we would only need to
read old parity, XOR it with (Yl XOR Y2) to gen-
erate new parity, then write new parity to disk. How-
ever, the results of [3] indicate that there is a very
high probability of receiving another write (say Y3)
to the samedisk location before we have had a chance

to destage Y2. With our currently assumed approach
(save old data method), we would merely overwrite
the 2 memory locations containing Y2 with the new
value Y3. However, if we went with an approach in
which we hadalready XORed Y1 with Y2, we would
need to first XOR Y2 to this result to get back Y1,
then XOR the new value Y3 to get (Y1 KOR Y3).

80

Because of this complication, we decided not to go
with the save partial parity approach.
5.3. Organization of Data Cache

There are three types of disk blocks in the data
cache - type d, type d’, and type d”. A particular
block in the data cacheis of type d if its value is the
same as the value of this block on the disk - in other

words, it is a clean block. Blocks of type d’ and of
type d” are both dirty blocks. If a block of type d is
in the cache and a new block is written by the host
to the same disk location, we will create two new
blocks of type d’; that is, the cache now contains a
block of type d (old value of block) and 2 blocks of
type d’ (2 copies of new value of block). Only blocks
of type d’ are destaged from cache to disk. Type d”
is a temporary classification to deal with new host
writes received while a block of type d’ is being
destaged. When a block of type d’ is being destaged,
it is possible to receive another write from the host
to the same disk location. If the host write had been

received before the destage started, we would have
merely overwritten the dirty block in cache with the
new onereceived, and made the new onereceived of

type d’. However, once we havestarted the destage
and are committed to doing the destage, we mark any
new block received to the same disk location as being
of type d” (alternatively, we could reject the request).
Once a block of type d’ is destaged, it becomes a
block of type d. At this time, any blocks of type d”
for the disk location just destaged maybereclassified
as blocks of type d’.

6.DestageAlgorithms
If a dirty disk block is destaged to disk, we must

also calculate and write the corresponding parity block
in order to keep the parity group consistent. When a
disk block from a parity group is to be destaged, we
lock the parity group for the duration of the destage.
The parity group is unlocked only after the disk block
and the parity block are both written to disk and the
parity group is consistent on disk. The parity group
lock prevents more than one destage to be in progress
simultaneously to any one parity group. While not
explicitly referred to in the algorithms that follow, a
parity group is locked before a destage begins and is
unlocked after the destage completes.

Webegin by considering the case where only one
of the data blocks of a parity group is dirty in the
data cache and needs to be destaged; later we will
also consider cases where more than one block of a

parity group needs to be destaged. To simplify the
discussion, we assume that whenadirty block is to
be destaged, other blocks of the parity group are not
in the data cache even in clean form. We also assume

HPE, Exh. 1010, p. 10

HPE, Exh. 1010, p. 11

that the old value of the dirty block is not in cache
and needs to be read from disk. Both these assump-
tions will be relaxed in later sections of this paper.
6.1. Two Data Copies Method (Method 1)

Thefirst part of Figure 2 showsthe simplest option
available to us in order to destage a dirty block (la-
belled D1’ in the figure). In this figure, the dotted
line separates two different power boundaries in the
array controller, and we see that the two different
copies of D1’ are on twodifferent power boundaries.
Also, the solid horizontal line separates the array con-
troller from the disk drives themselves. The figure
shows six data disk blocks D1, D2, ... D6, on six
different disks and a seventh parity disk block P on
a seventh disk drive. These seven disk blocks on seven

different disks constitute the parity group ofinterest.
DI’ is an updated value of block D1 which is to be
destaged to disk.

In this option, block D1 and block P are both read
from disk and XORed directly into one of the two
D1’ locations in controller memory (this would use
the store & XORfeature of the data memory we had
described earlier). Because the XOR operation is
commutative, the XOR of D1 and the XOR of P

may happen in either order; this means that we may
actually start the two different disk operations in par-
allel and do not need to serialize the two different

disk seeks on the two different disks. D1’ may be
written to disk anytime after D1 has been read and
XORed. When both D1 and P have been read and

XORed to oneof the two copies of D1’, this location
now contains P’ the new value of P which may now
be written to disk.

From thefirst part of Figure 2, we also see that
the entire destage operation consumes 4X bytes of
controller data bus bandwidth, where X is the number
of bytes in a disk block. This is because there are 2
read and 2 write operations for a total of four disk
block movements on the controller data bus. The

figure also showsthat 6X bytes of memory bandwidth
is consumed (each XORoperation requires 2X bytes
of memory bandwidth, X to read and X to write).
On the other hand, a disk controller that does mir-
roring which only needs 2X bytes of bus bandwidth
and 2X bytes of memory bandwidth.

The simple destage algorithm described above is
robust in that no single error can cause it to fail.
However, it would not be considered robust enough
for many situations, since there are multiple failures
that can cause loss of data. For example, a transient
error during the process of XORing D1 into one of
the two D1’ locations, coupled with a hard failure or
loss of the other copy of D1’ results in a situation

81

where D1’ is lost by the array controller (both copies
are damaged). Since the array controller had previ-
ously assured the host system that the write of D1’
was done as part of the Fast Write operation, this
loss of D1’ may be unacceptable in many kinds of
situations. Below, we describe a more robust destage
algorithm that avoids this situation.
6.2. Two Data Copies and One Parity Copy
Method (Method 2)

The algorithm is graphically shown in the second
part of Figure 2. The first step in the algorithm is a
memory to memory copy operation that creates a
third copy of D1’. The rest of the steps of the algo-
rithm are identical to that described previously. New
parity is created at the location where the third copy
of D1’ is made (location Y). Comparedto theearlier
algorithm, the new algorithm temporarily occupies
one additional disk block in controller memory (lo-
cation Y), it uses X bytes more of bus bandwidth
and 2X bytes more of memory bandwidth,for a total
of 5X bytes of bus bandwidth and 8X bytes of mem-
ory bandwidth.

The algorithm described above is robust enough
for most situations. However, it is not as robust as
a disk controller that does mirroring. When the disk
controller doing mirroring begins a destage, it writes
one copyof the disk block to one disk, another copy
of the disk block to the mirror disk. The destage can
complete even if a disk other than the two involved
in the destage were to fail and, concurrently, a memory
failure on one power boundary were to occur. In
other words, it can survive two hard failures.

Consider the sameset of failures for the disk array
controller. Consider that we have just completed writ-
ing D1’ and that we have started to write new P’
when there is a hard error in the memory location
containing new P’ (location Y). Therefore, we have
damagedthe disk location that was to contain new
P’. It used to contain the old value of P, but it now
contains neither P nor P’. To complete the destage
correctly, we must recalculate P’ and write P’ to this
disk location. Since we already wrote D1’ to disk, we
can no longer calculate P’ the way we did before,
which was by reading D1 and using D1 to calculate
P’. Since D1 on disk has already been overwritten
with D1’, we must recalculate P’ by reading D2, D3,
.., D6 and XORing them all together and with D1’.
If one of the disks containing D2, D3, ..., D6 also
fails, we are unable to recalculate new P’. Therefore,
a set of failures that did not prevent a mirrored disk
controller from destaging could not be handled by the
array controller using the destage algorithm we have
described in this section. In the next section, we de-

HPE, Exh. 1010, p. 11

HPE, Exh. 1010, p. 12

 DESTAGE ALGORITHM - METHOD1

Side B

|
I
!
|
|
|

 STEPS: Bus B/W Memory B/W
Read D1 an to D1’ 2

Read pbpnd KORTODto D1’ ‘ a
xX

4X

 wit new P

 D1 D2 D3 D4 D5 D6

STEPS: Bus B/W Memory B/W
Make ardid copy of D1’ at loc Y XxX 5%to Y 4 2Reada P"OR to Y ae
wis reas P X

Bus B/W M B/WaeGhaioneYee "3irew P

- No bus bandwidth ma’ eg needed if copy is vathin same rae card

Figure 2: Hierarchy of Destage Algorithms

= HPE, Exh. 1010, p. 12

HPE, Exh. 1010, p. 13

scribe a destage algorithm that makes the array con-
troller as robustas a disk controller that uses mirroring.
6.3. Two Data Copies and Two Parity Copies
Method (Method 3)

Thethird part of Figure 2 graphically demonstrates
the most robust of our destage algorithms. (See [7]
for other robust algorithms.). The steps are: make a
third copy of D1’ at location Y; in any order, read
D1 from disk and XORit to Y and also make a copy
of D1 on the other power boundary, read P from
disk and XORit to Y and also make a copy of P on
the other power boundary;after all reads and XORs
are done, write D1’ and new P’ (from location Y) to
disks in any order. By waiting for all reads and XOR
operations to complete before beginning any writes,
this algorithm is robust against a combinationofthree
failures; the hard failure of one of the two memory
cards, the failure of one of the disks containing D2,
D3, ..., D6, and a transient failure while reading and
XORing D1 orP. Key to achieving this robustness
is ensuring that old values of D1 and P are read into
a different power boundary than location Y which
contains the third copy of D1’. This, in effect, means
that two copies of new parity are present in cache
before we begin writing to the disks; one at location
Y and one which can be created on the other power
boundary by XORing D1’, D1 and P. The price to
be paid for the increased robustness of the destage
algorithm is performance (since writes must wait until
all reads are done) and resource consumption (since
it now needs two more temporary locations in mem-
ory, uses 10X bytes of memory bandwidth and 5X
bytes of bus bandwidth).
6.4. Arrays Versus Mirroring Comparison.

We compareadisk controller that performs mir-
roring to one that implements a RAID-Sarray using
one of the three different destage algorithms described
in the previous section. The comparison is in terms
of resources consumed (internal bus bandwidth, in-
ternal memory bandwidth and numberofinternal
memory locations occupied) for write operations. It
is assumedthat all disk controllers use the fast write

technique so that write operations proceed in two
stages; one stage in which the write is received and
buffered and a second stage in which the dirty pages
are destaged.

83

Type of Stage 1 Stage 2 Total
ctlr Bus Mem Bus Mem Bus Mem Mem

B/W B/W B/W B/W B/W B/W Locs

Mirror X 2X 2X 2X 3X 4X 2
Method 1 X 2X 4X 6X 5X 8X 2
Method 2 X 2X 5X 8X 6X 10X 3
Method 3 X 2X 5X 10X 6X 12X 5

From the above table, we see that the simplest parity
array controllers require 67% more bus bandwidth
and twice as much memory bandwidth as disk con-
trollers that employ mirroring. The most robust parity
array controllers need twice the bus bandwidth and
thrice the memory bandwidth of disk controllers that
perform mirroring. Furthermore, during the destage
process, the most robust parity array controllers re-
quire 2.5 times as much temporary cache space as
disk controllers that perform mirroring.
6.5. Other Destage Cases

It turns out that we have only considered one of
four possible destage situations that may arise. Figure
3 showsall the four cases and indicates that which

case applies depends on how manydata blocks of the
parity group are to be destaged and how many of
them are in cache (by definition, all the blocks to be
destaged are in cache in two separate locations). In
the figure, all blocks in cache that are dirty are des-
ignated by Di’. These are the blocks to be destaged.
The four cases are:

e Destage entire parity group
© Destage part of parity group; entire parity group in

cache

© Destage part of parity group; read remaining mem-
bers of parity group to create new parity

© Destage part of parity group; read old values of
data and parity to create new parity

These four cases are described below. In general, we
describe the most robust forms of the destage algo-
rithms to be used in each case.

6.5.1. Destage Entire Parity Group
In this case, wefirst allocate a buffer (P1) to hold

parity andinitialize it to zero. Each blockin the parity
group is written to disk and simultaneously XORed
with Pl. After all data blocks have been written,
write P1 (which contains the new parity) to disk.
6.5.2. Destage Part of Parity Group; Entire Parity
Group in Cache

Wefirst make a copy of one of the data blocks in
the parity group that is not to be destaged at location
Pl. P1 will eventually contain the new parity to be
written to disk. Each dirty block in the parity group
is written to disk and simultaneously XORed with

HPE, Exh. 1010, p. 13

HPE, Exh. 1010, p. 14

Destaging a Parity Group - Four Cases

Destage Entire Parity Group

D1’ D2’ D3’ D4’ DS’ D6’

owerbdydivider
blocks in memory

D1’ D2’ D3’ D4’ D5’ D6’

Di D2 D3 D4 D5 D6 P

“tt—disk blocks

Destage Part of group;all blocks in cache

D1’ D2’ D3 D4 D5 D6 D1’ D2’

Di D2 D3 D4 DS D6 P

Destage part of group; stage in missing blocks

D1’ D2’ D3 D4 D5 D1’ D2’

D1 D2 D3 D4 D5 D6 P

Destage part of group; read old data/parity

D1’ D2’ D1’ D2’

D1 D2 D3 D4 D5 D6 P

Figure 3: Cases for Destaging a Parity Group

Pl. The other blocks of the parity group are only
XORed with Pl. After all XORing is completed,
write P1 (which contains the new parity) to disk.

The aboveapproach hasa small exposure. Consider
that we have completed writing one or more of the
dirty blocks to disk, but have not yet completed gen-
eration of new parity in Pl. Now, consider that we

84

lose a memory card that contains a clean data block
that was going to be used to generate the new parity
in P1. We will now needto read this block from disk,

and an exposure arises if we cannot do so. The ex-
posure is small, since the fact that this block was in
the data cache most likely implies that we were able
to either read or write this disk block in the recent

HPE, Exh. 1010, p. 14

HPE, Exh. 1010, p. 15

past. If the exposure is considered large, we have the
following alternative destage policy.

First make a copy of one of the data blocks in the
parity group that is not to be destaged at location P1.
XORall non-dirty data blocks of the parity group
into Pl. Make copy of result in Pl in other power
boundary at P2. Now, write each dirty data block to
disk while XORing simultaneously with P1. After all
XORing is complete, write Pl which contains the
new parity. If we lose a memory card during destage,
the copy of the result we saved in P2 can be used to
complete the generation of new parity without need
to read any disk block.
6.5.3. Destage Part of Parity Group; Read rest
from disk

The assumption here is that only a very few of the
blocks of the parity group are not in cache, so that
it is faster to read these missing membersin to generate
the new parity than it is to read the old values of the
blocks to be destaged.

In this case, we first allocate and zero out a buffer

Pl. Every data block of the parity group that is
missing in cache is read in from disk and XORedinto
location Pl. After all reads have completed, each
dirty block in the parity group is both written to disk
and XORed with P1 simultaneously. Other blocks of
the parity group that were neither dirty, nor missing
in cache originally, are XORed with P1 but not writ-
ten to disk. Eventually, write new parity in P1 to disk.

The reason for first completing the reads of the
data blocks missing in cache before allowing any
writes to take place is to ensure that all such missing
data blocks are readable. If one of these data blocks

is unreadable, a different algorithm (the one to be
described next) would be used for destage.
6.5.4. Destage Part of Parity Group; Read Old
Values from Disk

Wefirst create a third copy of one of the data
blocks (say D) to be destaged (say at location C).
The old value of every data block to be destaged to
disk is read in from disk to a location on a different

power boundary from C, andit is also simultaneously
XORedinto location C. The old value of parity is
also read in from disk to a location on a different

power boundary from C and simultaneously XORed
with C. As before, the reading of old data blocks and
the reading of the old parity block can proceed in
parallel. After the old value of a block has been read
and XORed,its new value can be written to disk and
XORed with C (if needed; block D does not need to
be XORed with C since we started with a copy of
block D in location C) at any subsequent time. After
all data blocks have been written and the old parity

85

block has been read, write C which contains the new

parity.
7. Conclusions

In this paper, we have described a technique called
Fast Write to improve the performanceof disk arrays
that use the parity technique. This technique involves
use of battery-backed or Non-Volatile Store in the
array controller to hold blocks written by the host
system. These host-written blocks are destaged to
disk asynchronously. Fast Write is expected to have
four advantages: it can eliminate disk time from the
write response time as seen by the host; it can elim-
inate some disk writes due to overwrites caused by
later host writes to dirty blocks in cache; it can reduce
disk seeks because destages will be postponed until
many destages can be done to a track or cylinder;it
can convert small writes to large writes.

We used an array controller organization which
places the XORlogic (needed for parity generation)
close to the cache memory in the controller and not
as a separate XOR unit as has been proposed for
other array controller designs ([9]). We showed that
such an approach can reduce internal bus bandwidth
requirements for array controllers. We described an
organization of the data memory in the disk controller
to support Fast Write which involved caching both
data and parity blocks. We proposed that the data
cache needs to support three different kinds of disk
data blocks for efficiently handling Fast Writes. We
articulated three alternatives for handling Fast Write
hits - save old data, overwrite old data, save partial
parity - and examinedtheir pros and cons. For what
appears to be the preferred alternative, we estimated
that the disk controller would need a 20%larger
cache than traditional or mirrored disk controllers

that use Fast Write (to achieve the samehit ratios).
We showedthat parity group locking is an effective
technique to avoid incorrect calculation of parity dur-
ing concurrent destage and rebuild activity. Finally,
wedescribed the destage of disk blocks from the data
cache in great detail. Four different destage cases were
identified. By using one of the destage cases as an
example, we described a hierarchy of three different
destage algorithmsofincreasing degrees of robustness
to failures in the disk subsystem. These three algo-
rithms were the two data copies method, the two data
copies and one parity copy method and the two data
copies and two parity copies method. These destage
algorithms were compared against those that would
be used by a disk controller employing mirroring in-
stead of the parity technique. We were able to show
that the least robust array controllers require 67%
more bus bandwidth and twice as much memory

HPE, Exh. 1010, p. 15

HPE, Exh. 1010, p. 16

bandwidth as disk controllers that employ mirroring.
The most robust parity array controllers, on the other
hand, need twice the bus bandwidth and thrice the
memory bandwidth of disk controllers that perform
mirroring. These results indicate that while mirroring
is more expensive overall (because of the need for
more disks), disk array controllers are likely to be
somewhat more expensive than controllers that do
mirroring.

Wealso posed the following questions for future
research:

¢ How muchofthe cache should be devoted to hold

parity blocks instead of data blocks? Parity blocks
are useful during destage, but data blocks can help
both read performance (through read hits in the
cache) and destage performance(by eliminating the
need to read old data from disk at destage time).
Furthermore, data blocks are brought into the data
cache naturally as a result of user requests; parity
blocks, on the other hand, mustbe specially brought
into the cache whena particular data block is read
in the hope that the host will subsequently write
the data block.

© Whena particular data block is selected for destage,
should we also destage other blocks on the same
track? or on the samecylinder? If these other blocks
were only recently received from the host, then it
may be better not to destage them immediately,
since we mightexpect the host to write these blocks
again. Therefore, the destage policy mustbe carefully
chosen to trade-off the reduction in destages that
can be caused by overwrites of dirty blocks if we
wait until dirty blocks become LRU versus the
reduction in seeks that can be achieved if we destage
multiple blocks at the same track or cylinder posi-
tion together. Should wealso take into account the
utilization of devices so that destages are begun to
devices that are currently under-utilized?

e Since every dirty block in the controller cache oc-
cupies two memory locations until the block is
destaged, the sooner we destage the dirty block,the
sooner we can reclaim two memory locations. How
do wetrade-off this requirement for a quick destage
of dirty blocks versus the requirement to hold off
the destage in the expectation of overwrites that
reduce the numberof destages needed?

© Whatis the appropriate method for handling write
hits? Should weleave the old data in cache sinceit
is needed at destage time and take thé attendant
drop in effective cache size, or should we overwrite

86

the old data in cache and reaccess it from disk at

destage time?
Whatis the appropriate granularity at which to do
locking? We have proposedparity group locking be
used, but is either a coarser or finer granularity
more reasonable? What should the duration of lock-

ing be? Is it better to hold the lock until both data
and parity are written to disk as proposed in this
paper, or should werelease the lock sooner.

8. Acknowledgements
Jim Brady originated the idea that we build the

XORhardware close to the memory in the controller.

9. References

1. Clark, B. E.et. al., Parity Spreading to Enhance
Storage Access, United States Patent 4,761,785
(Aug. 1988).

2. Gray, J. N. et. al., Parity Striping of Disk Arrays:
Low-Cost Reliable Storage With Acceptable
Throughput, Tandem Computers Technical Re-
port TR 90.2 (January 1990).

3. Hyde, J., Cache Analysis Results, Personal Com-
munication (1991).

4. Menon,J. M. and Hartung, M., The IBM 3990
Disk Cache, Compcon /988 (San Francisco, June
1988).

5. Menon, J. and Mattson, D., Performance of Disk
Arrays in Transaction Processing Environment,
12th International Conference on Distributed
Computing Systems (1992) pp. 302—309.

6. Menon, J., Roche, J. and Kasson, J., Floating
Parity and Data Disk Arrays, Journal of Parallel
and Distributed Computing (Jan. 1993).

7. Menon, J. and Cortney, J., The Architecture of
a Fault-Tolerant Cached RAID Controller, /BM
Research Report RJ 9187 (Jan. 1993).

8. Patterson, D. A., Gibson, G. and Katz, R. H.,
A Case for Redundant Arrays of Inexpensive
Disks (RAID), ACM SIGMOD Conference (Chi-
cago, Illinois, June 1988).

9. Lee, Ed, Hardware Overview of RAID-II, UC
Berkeley RAID Retreat (Lake Tahoe, Jan 1991).
Ousterhout, J. and Douglis, F., Beating the I-O
Bottleneck: Case for Log-Structured File Sys-
tems, UC Berkeley Research Report UCB-
CSD-88-467 (Berkeley, CA, October 1988).

10.

HPE, Exh. 1010, p. 16

HPE, Exh. 1010, p. 17

SESSION5:

Multiprocessor

Caches

HPE, Exh. 1010, p. 17

