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Destage Algorithms for Disk Arrays with Non-Volatile Caches 

Anujan Varma and Quinn Jacobson 
Computer Engineering Department 

University of California 
Santa Cruz, CA 95064 

Abstract 

In a disk array with a nonvolatile write cache, destages 
from the cache to the disk are performed in the background 
asynchronously while read requests from the host system 
are serviced in the foreground. In this paper, we study a 
number of algorithms for scheduling destages in a RAID-5 
system. We introduce a new scheduling algorithm, called 
linear threshold scheduling, that adaptively varies the rate 
of destages to disks based on the instantaneous occupancy 
of the write cache. The performance of the algorithm is 
compared with that of a number of alternative scheduling 
approaches such as least-cost scheduling and high/low mark. 
The algorithms are evaluated in terms of their effectiveness 
in making destages transparent to the servicing of read re-
quests from the host, disk utilization, and their ability to 
tolerate bursts in the workload without causing an overflow 
of the write cache. Our results show that linear threshold 
scheduling provides the best read performance of all the al-
gorithms compared, while still maintaining a high degree 
of burst tolerance. An approximate implementation of the 
linear-threshold scheduling algorithm is also described. The 
approximate algorithm can be implemented with much lower 
overhead, yet its performance is virtually identical to that 
of the ideal algorithm. 

I. INTRODUCTION 

A disk array, in general, consists of a group of disk drives 
together with an associated controller function, organized 
logically as a single I/O device [2], [4]. Disk arrays, also 
known as RAIDs (Redundant Arrays of Inexpensive Disks), 
are capable of providing improved levels of reliability, avail-
ability, and/or performance over single disks. A disk array 
usually provides protection against loss of data from a disk 
failure by maintaining redundant information within the ar-
ray. Moreover, data availability can be maintained on a disk 
failure by using the redundant information to reconstruct 
data stored on the failed disk in real time. In addition to 
improving reliability and availability, disk arrays also im-
prove the performance of the storage system by distributing 
data across multiple disk drives — this is the result of either 
concurrency in servicing multiple I/O requests or parallelism 
in the data transfer for a single I/O request. 

Several types of disk array configurations are known in 
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the literature [2], [4], [17]. These configurations vary primar-
ily in the redundancy scheme employed and the data distri-
bution (striping) scheme used to map logical blocks among 
the individual disks. In a seminal paper, Patterson, Gib-
son, and Katz [11] introduced a taxonomy of disk arrays, 
consisting of six different types (or "levels"), which is now 
widely used in the industry. Among these RAID levels, of 
particular interest are RAID-4 and RAID-5, which are op-
timized for transaction processing workloads. These arrays 
employ coarse-grained striping of data so that small requests 
can benefit from the concurrency in servicing multiple re-
quests, while a large request can achieve high throughput 
by transferring data from multiple disks in parallel. RAID-
4 organizes the disks in the array into parity groups, with 
one dedicated parity disk in each group. This has the dis-
advantage of the parity disks becoming a bottleneck while 
updating data in the system. RAID-5 eliminates this bottle-
neck by distributing parity blocks uniformly among all the 
disks in the group. 

Both RAID-4 and RAID-5 provide reliability and avail-
ability at a fraction of the storage overhead incurred in disk 
mirroring. This reduction in storage overhead, however, is 
achieved at the expense of increasing the number of disk ac-
cesses necessary to update data in the system. Every write 
request to the array that does not update an entire stripe 
must now update parity by reading the old data and the old 
parity, and exclusive-ORing them with the new data. This 
involves a total of four disk accesses — reading the old data 
and parity, and writing the new data and parity. Menon and 
Mattson [7] showed that this overhead can degrade the per-
formance of a RAID-5 considerably in a transaction process-
ing environment where small requests dominate the work-
load. In addition, a small increase in the ratio of writes to 
reads in the workload can lead to a drastic increase in the 
response time for both reads and writes. 

Several solutions have been proposed to reduce the over-
head for small writes in a RAID-5 [8], [9], [15]. One approach 
is parity logging [15], where parity updates are posted into 
a dedicated log disk instead of updating the parity blocks 
in the array; updates of parity blocks in the array are per-
formed in the background. This has the advantage of con-
verting small writes of parity into large writes; the scheme 
also captures some of the temporal locality in parity updates 
since successive updates of parity can be combined into a sin-
gle update in the disk array. Another scheme that reduces 
the overhead in parity updates is floating parity [9], where 
parity blocks are dynamically remapped within disk cylin-
ders to reduce the rotational latency between reading and 
writing parity. 

Both parity logging and floating parity only attempt to 
reduce the overhead of parity updates. In both schemes, 
the old data must be read from the disk and the new data 
written before signaling completion of the I/O transaction. 
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A more general scheme is to use a nonvolatile write cache to 
reduce write latency. Writes can now be deemed complete 
after writing the new data into the cache, an operation often 
referred to as fast write [8]. Both the data and the parity 
blocks on the disks can then be updated in the background. 
The process of updating data or parity in the disks from the 
write cache is referred to as destaging. In addition to the 
write cache, a larger (volatile) read cache may be used to 
improve read performance. 

A nonvolatile write cache has several advantages [8], the 
most important of which is the substantially lower service 
time seen by write requests to the array. In addition, the 
write cache can also exploit any locality in writes — both 
temporal and spatial — in the workload. Temporal local-
ity is exploited by capturing successive updates of the same 
block in the cache. Spatial locality allows many small writes 
to be aggregated into a single large write to the disk. Fi-
nally, the write cache can also lower the response time for 
read requests serviced by the disks because of the reduced 
contention with writes to the disk. 

In spite of the above advantages, a nonvolatile write cache 
introduces several new problems. First, the write cache must 
be designed to be at least as reliable as the redundancy 
scheme used for the disks. The IBM Hagar disk array [8], 
for example, used duplicate caches with independent power 
boundaries to protect the contents of the write cache. Sec-
ond, data losses could still occur while updating the disks 
from the cache because of a failure in the cache memory, 
disks, or the datapath between them. The destage algorithm 
must be designed to leave data in a consistent state should 
a failure occur while updating the disks. Several such algo-
rithms to prevent data losses while destaging are presented 
in [8]. 

A third problem in the use of a write cache is that of 
scheduling the destages, that is determining when to destage 
data from the cache to the disk, as well as which of the dirty 
blocks is to be destaged next. Ideally, in a disk array with 
a write cache, the disks see only two types of requests —
read requests generated by the workload that miss in the 
read cache, and (ii) read and write requests originated by 
the array controller for destaging data from the write cache. 
Requests of the first category must be serviced as soon as 
possible while destage requests can usually be serviced in the 
background. Ideally, destages should appear transparent to 
the user requests received by the array. In practice, however, 
because of the non-preemptive nature of disk service, some 
interference between user requests and destage requests is 
unavoidable. For example, a read request received while 
a destage request is being serviced is made to wait until 
the latter is completed. This interference, however, can be 
minimized with careful scheduling of the destages. 

In this paper, we study a number of algorithms for 
scheduling destages in a RAID-5 system. We introduce a 
new scheduling algorithm, called linear threshold scheduling, 
that adaptively varies the rate of destages to disks based on 
the instantaneous occupancy of the write cache. The perfor-
mance of the algorithm is compared with that of a number of 
alternative scheduling approaches such as least-cost schedul-
ing and high/low mark. The algorithms are evaluated in 
terms of their effectiveness in making destages transparent 
to the servicing of read requests, as well as their ability to 
tolerate large bursts of write requests without causing an 

overflow of the write cache. Our results show that linear 
threshold scheduling provides the best read performance of 
all the algorithms compared, while still maintaining a high 
degree of burst tolerance. 

The rest of this paper is organized as follows: Sec-
tion II summarizes the tradeoffs involved in the design of 
the destage algorithm and describes the algorithms studied 
in the paper. Section III introduces the disk array model and 
workload model used in our simulations. Section IV presents 
simulation results for the algorithms and compares the al-
gorithms in terms of read performance, disk utilization, and 
tolerance to bursts of write requests. Section V concludes 
the paper with directions for future research. 

II. DESTAGE ALGORITHMS 

In a disk array with a nonvolatile write cache, destages 
from the cache to the disk are performed in the background 
asynchronously, while read requests from the host system 
are serviced in the foreground. Thus, the workload seen by 
an individual disk predominantly consists of (i) reads from 
the host system that cannot be serviced from the read cache 
or write cache, and (ii) read and write requests generated 
by the array controller as part of destage operations. We 
refer to requests of the first category as host reads and those 
of the second category as destages. Reads of data or parity 
information performed as part of a destage are referred to 
as destage reads and the writes as destage writes. A write 
request from the host is never directed to the disk except in 
the event of a write cache overflow or when the size of the 
block being written is large enough to justify bypassing the 
write cache. 

If host reads are given higher priority over destages, a 
destage would never be initiated by the array controller when 
there are requests in the read queue. Still, considerable flex-
ibility exists in scheduling the destages, as the updates to 
the disk need not be performed in the order the writes were 
posted to the cache. In addition, the four disk accesses in-
volved in a disk update — reads of old parity and data, and 
writes of new parity and data — need not be performed as 
a single indivisible operation. 

A. Algorithm Design Tradeoffs 

We first examine the tradeoffs involved in the design of 
the destage algorithm. Assuming that no overflow of the 
write cache occurs and none of the write requests bypasses 
the cache, all the write requests from the host system are 
serviced by the cache. In this case, the scheduling algorithm 
employed has no direct effect on the response time for a write 
to the disk array. However, the scheduling algorithm can still 
affect the response time seen by the host reads serviced by 
the disks, as well as the maximum sustainable throughput 
of the array. A scheduling algorithm that optimizes destages 
reduces the load on the disks due to destages, thus improving 
their read performance. 

There are three ways in which a scheduling algorithm 
can improve the performance of the disk array: First, the 
algorithm can reduce the number of destages by capturing 
most of the re-writes in the write cache, thus exploiting the 
temporal locality in the workload. This requires maintaining 
blocks that are likely to be re-written in the near future in 
the write cache and destaging them only when additional 
re-writes are unlikely to occur soon. Similarly, if parity is 
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11 allowed to be cached, successive updates of blocks in the 
same parity group generate only a single update of the parity 
block on disk. 

Second, the number of destages can also be reduced by 
aggregating blocks that lie physically close on a disk and 
destaging them as a large read and/or write. This exploits 
any spatial locality present in the workload. 

Finally, the scheduling algorithm can reduce the aver-
age time for a destage by ordering destage requests to the 
disks such that the service times in the individual disks are 
minimized. Since the mechanical positioning delays usually 
dominate the service time, this calls for ordering the requests 
to minimize the positioning delays in the disk. Many such 
algorithms for scheduling requests in individual disks taking 
into account the seek time and the rotational latency of re-
quests have been described in the literature [3], [5], [6], [14], 
[16]. While similar algorithms could be used to schedule 
destage requests in a disk array, a basic distinction exists 
between the problem of scheduling destages in a disk ar-
ray and that of scheduling host requests in an independent 
disk. A disk scheduling algorithm for host requests must 
make a tradeoff between maximizing throughput and pro-
viding fairness to user requests; for example, servicing the 
user requests in FCFS (first-come, first-served) order maxi-
mizes fairness, while a scheduling algorithm that reorders re-
quests to minimize the total service time achieves maximum 
throughput at the expense of increasing the variance of the 
response time [5]. The destage algorithm in a disk array, on 
the other hand, does not have to deal with this dilemma: In 
most cases, the algorithm can schedule destages to maximize 
throughput without causing starvation of user requests. 

All the above objectives in the design of the scheduling 
algorithm suggest maintaining the occupancy of the write 
cache close to its capacity. This allows maximum benefit 
to be obtained from any locality present in the workload 
and maximizes scheduling flexibility. Maintaining the write 
cache close to full, however, makes it vulnerable to overflow. 
Even a short burst of writes in the workload may cause the 
cache to overflow, forcing subsequent writes to bypass the 
cache until some destages can be posted to disk. Thus, the 
scheduling algorithm must strike a compromise between the 
conflicting goals of being able to exploit maximum locality 
and scheduling flexibility for destages, and preventing fre-
quent overflows of the write cache. 

The scheduling algorithm may be designed to be either 
work-conserving or non-work-conserving with respect to the 
disks in the array. A work-conserving algorithm never allows 
a disk to be idle when one or more destages are pending to 
the disk. A non-work-conserving algorithm, on the contrary, 
may refrain from scheduling a destage to the disk even when 
it is idle, expecting that the same destage could be per-
formed at a lower cost in the future; the goal is to minimize 
the response time for host reads by reducing the contention 
between host reads and destages. Both types of algorithms 
are studied in this paper. 

Thus, in summary, the following are the parameters that 
can be used by the destage algorithm to determine the block 
to be destaged next: 

1. The probability of the block to be re-written in the 
near future. This factor is usually accommodated in 
the algorithm by ordering blocks in the destage queue 
based on the time of their last access. 

2. The number of blocks to be read/updated on the same 
track (or cylinder) to take advantage of spatial locality. 

3. Service times of the requests in the destage queue. The 
service time includes the delay in positioning the head 
at the beginning of the block to be read/written and the 
data transfer time. Different levels of approximations 
could be used to estimate the positioning delays in the 
disk [16]. 

4. The current level of occupancy of the cache. 

In addition, other factors such as the type of destage re-
quest (parity or data, read or write), may also be used in 
the scheduling process. 

In the following, we describe four scheduling algorithms 
for destaging blocks from the write cache in a RAID-5. In all 
the algorithms, destaging to each disk is handled indepen-
dently by maintaining a separate queue of pending destages 
for each disk. In addition, in all the algorithms, a destage to 
a disk is initiated only when there are no host reads queued 
for that disk at that time. However, not all of the algorithms 
schedule a destage always when the read queue is empty. The 
algorithms differ in the criteria used to determine whether a 
destage is to be initiated when the disk becomes idle after 
servicing a request, and in the function used to select the 
block to be destaged. 

B. Least-Cost Scheduling 

This algorithm is modeled after the well-known shortest 
seek-time first disk scheduling algorithm [3]. After every disk 
operation, the queue of eligible destages is examined and 
the request that takes the shortest access time is performed. 
In addition, to exploit spatial locality, if there are pending 
destage requests to other blocks on the same track, these are 
also performed as one large read or write. 

The access time of a destage read or write operation in-
cludes the seek time (or head-switch time), rotational la-
tency, and controller delays. Precise estimation of these de-
lays is difficult due to many factors such as the physical-to-
logical mapping of sectors on the disk and the use of caching 
within the disk itself. Considerable improvement can still be 
obtained using approximate models for estimating the de-
lays involved. We implemented such a scheme in our RAID 
simulator for comparison with other schemes. Details of im-
plementation of the scheme can be found in Section III. 

C. High/Low Mark Algorithm 

This algorithm is designed after the cache purging algo-
rithm proposed by Biswas, Ramakrishnan and Towsley [1] 
for disks with a nonvolatile write cache. In this algorithm, 
two cache-occupancy thresholds are used to enable and dis-
able destages. Destages to the disk are disabled when the 
cache occupancy drops below a "low mark" and turned on 
when it increases over a "high mark." Some hysteresis be-
tween the two thresholds is used to prevent short bursts in 
the workload from causing a cache overflow. We chose the 
high threshold as 70% of cache capacity and the low thresh-
old as 30%. Destage requests were selected using the least-
cost policy to minimize the service time of individual disk 
accesses. In addition, when a block is selected for destage, 
all pending destage requests to the same track on the disk 
are scheduled together. 
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D. Linear Threshold Scheduling 

The basic principle of this algorithm is to match the rate 
of destages from the cache to the current level of occupancy 
of the cache, accelerating destages gradually as the cache oc-
cupancy increases and slowing them as the occupancy falls. 
The primary difference between this algorithm and high/low 
mark scheduling is that, instead of on/off thresholds, the 
rate of destages is changed gradually as a function of cache 
occupancy. 

As in other algorithms, each disk in the array is scheduled 
independently. Both parity and data destages are treated 
in a similar manner. The destage queue is examined after 
each disk operation if the host read queue is empty. As in 
the case of least-cost scheduling, the block to be destaged is 
chosen as the one with minimum cost among all the eligible 
destage requests to that disk. However, unlike in least-cost 
scheduling, the destage is performed only if its cost is within 
a certain threshold maintained by the algorithm. Should 
a read request from the host arrive while the destage is in 
progress, this policy minimizes its waiting time. 

The role of the threshold is to reduce the interference be-
tween destages and host reads; the threshold sets an upper 
bound on the waiting time of a read arriving while a destage 
in progress. A tradeoff exists in the choice of the thresh-
old: If the threshold is set too low, the destage rate may 
not be adequate to clear the cache fast enough, causing fre-
quent overflows. A large threshold, on the other hand, may 
perform destages too soon, degrading both the waiting time 
for host reads and the hit rate of the write cache, and re-
ducing the level of temporal and spatial localities that may 
potentially be exploited. 

In our implementation, the threshold was selected as a 
linear function of the instantaneous cache occupancy. The 
cost of a destage is its service time, computed as in the case of 
the least-cost scheduling algorithm. As in other algorithms, 
when a destage request is scheduled, all pending destage 
requests to the same track are also performed along with it. 

The linear threshold scheduling algorithm uses the cache 
occupancy, service time of destages, and spatial locality as 
its decision-making criteria, but does not attempt to max-
imize temporal locality explicitly. Thus, a block that has 
been written recently may be scheduled for destage if the 
destage can be performed "cheaply." This may increase the 
total number of destage accesses to the disk in comparison 
to servicing the requests in LRU order, but the total service 
time can still be lower as a result of minimizing the cost 
of individual destage requests. Note that temporal locality 
for host reads can still be exploited by keeping the destaged 
block in the write cache until the block needs to be replaced. 

E. Approximation to Linear Threshold Scheduling 

A major difficulty in implementing both the least-cost 
scheduling and the linear threshold scheduling algorithms 
is the need to scan the entire queue of destage requests to 
select the minimum-cost request. This operation must be 
performed at the completion of every disk service. Further-
more, the cost of individual destage requests must be com-
puted afresh if the position of the head has changed. 

The need for searching the entire destage queue can be 
overcome by resorting to an approximate implementation of 
linear threshold scheduling; the approach works by dividing 
the disk into regions and maintaining a separate queue of 

destage requests into each region. When the disk becomes 
idle, the queues are searched in the order of the closest to 
the farthest region relative to the current position of the 
head. The first non-empty queue is found and the request 
at its head is selected as the minimum-cost destage. As in 
the ideal linear-threshold scheduling algorithm, the request 
is scheduled if its estimated service time is within the thresh-
old determined by the current cache occupancy level. The 
requests within each of the destage queues can be ordered 
using the LRU policy to allow maximum temporal locality. 
As in the other scheduling algorithms, when a request is se-
lected for destage, all the pending destages to the same track 
are performed in one disk access. 

Both seek time and rotational latency must be taken into 
account in ordering the search of regions. Therefore, we used 
a partitioning scheme in which the disk cylinders are parti-
tioned into circular bands; each band is then radially subdi-
vided into regions. This is illustrated in Fig. 1(a) with re-
spect to the example disk used in our simulation model. The 
example drive is an HP 97560 disk with a total of 1935 cylin-
ders. The cylinders are partitioned into 15 circular bands, 
with 129 cylinders per band; each band is radially subdi-
vided into three regions, to provide a total of 45 regions for 
the scheduling algorithm. This is similar to the disk parti-
tioning scheme proposed by Jacobson and Wilkes [6], except 
that the cost of each destage is approximated as the average 
positioning delay from the current region to the target re-
gion. The average positioning delay from region i to region j 
is taken as the positioning delay from the center of region i 
to the center of region j. 

The linear threshold scheme is approximated by design-
ing a stepped threshold function that specifies the maximum 
destage cost for each level of cache occupancy. The destage 
cost is the average access time to a region expressed as a 
multiple of the fractional rotational delay of the disk corre-
sponding to a region. Table I shows the threshold function 
used in our example. The second column in the table pro-
vides the maximum allowable destage cost for each step of 
cache occupancy; instead of expressing as milliseconds, the 
delay is given as the number of regions that pass under the 
head within that period (that is, 3 times the number of rota-
tions within the period). For example, for a cache occupancy 
of 30%, the maximum allowable destage time is 3 regions, or 
the time for one revolution of the disk. 

The following algorithm is used to select the regions that 
are searched for scheduling destages. Assume that the head 
is currently over region i and let w be the cache occupancy. 
Let Th(w) be the maximum allowable destage time from 
the second column of Table I, in terms of the number of 
regions passing under the head. Then, region j qualifies for 
scheduling a destage only if 

Th(w) > cost(i, j), (1) 

where cost(i, j) is the estimated average cost of the destage 
to region j. Assuming that the head is exactly at the center 
of region i, cost(i, j) estimates the delay for the head to be 
positioned at the center of region j, taking into account the 
seek time, rotational latency, and controller overhead. The 
actual equations used in computing the estimates are given 
in Appendix A. For convenience, the cost is expressed in 
units of the time taken by the disk to rotate through one 
region. 
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Fig. 1. Illustration of the disk partitioning scheme used for approximate implementation of the linear threshold scheduling algorithm: 
(a) Regions in the example disk; (b) Regions qualifying for destage when the head is currently on region 0 and the cache occupancy 
is in the range 25-37.5 percent. 

Searches to the qualifying regions are ordered according 
to their destage cost, from the smallest to the largest. In 
our simulations, the searches are performed such that all 
the regions that fall within one unit of positioning delay are 
examined in parallel first; if no destages are queued in any 
of these regions, those that fall within two units of delay are 
checked, and so on. If pending destages are found in multi-
ple regions during any step of the search, the least-recently 
accessed block among them is chosen for the destage. 

The cost of a destage is estimated as the total access time 
for a block at the center of the target region, assuming the 
head is at the center of the current region. This requires 
estimating the seek time, rotational latency, and other over-
head incurred in positioning the head in the target region. 
The average seek time t-seek(i7 j) between regions i and j can 
be estimated from a seek-time model of the disk. Our sim-
ulation model for the disk drives is based on the HP 97560, 
obtained from [13]. If two regions i and j fall in different 
bands, the average seek time t-seek(i) j) between them is es-
timated as the seek time between the middle cylinders of 
the two regions. When the regions i and j are within the 
same band, the average seek time is estimated as the time to 
seek across half the width of the band. A constant controller 
overhead of 2.2 ms is added to the seek time in both cases. 

For example, the shaded area in Fig. 1(b) shows the re-
gions qualifying for a destage in our example disk when re-
gion 0 is currently under the head and the cache occupancy 
is within the range 25-37.5 percent. These regions were 
determined as follows: The rotation time of the disk was 
taken as 15 ms. Using the seek-time model from [13] and 
Eq. (2) from Appendix A, the average seek time from re-
gion 0 to to its adjacent band was computed as 9.98 ms, 
including controller overhead. Since this is within one rota-
tional latency, the destage cost from region 0 to region 3 is 
estimated as one rotational latency, or 3 units. For the range 
25-37.5% of cache occupancy, Table I lists the maximum al-
lowable destage cost as 3 units. Thus, region 3 is allowed 
to be destaged according to Eq. (1). Similarly, regions 6, 9, 

Range of cache 
occupancy (%) 

w 

Maximum destage 
delay (in units of 
rotational latency 
of a region) 

Th(w) 
0.0 - 12.5 1 

12.5 - 25.0 2 
25.0 - 37.5 3 
37.5 - 50.0 4 
50.0 - 62.5 5 
62.5 - 75.0 6 
75.0 - 87.5 7 
87.5 - 100 8 

TABLE I. Threshold function used in the example to illustrate 
the approximate implementation of linear threshold schedul-
ing. 

and 12 also qualify because their average seek times were es-
timated to be within 15 ms, satisfying Eq. (1). For region 1, 
however, the seek time within the band, plus controller over-
head, is estimated as 6.45 ms; since this is larger than 1/3 
of the rotational latency, the destage cost to region 1 is es-
timated as 4 units, or 4/3 x rotational latency. The shaded 
regions in Figure 1(b) all have destage cost within 3 units. 
Note that blocks within region 0 qualify for destage because 
the seek time within the region, as computed by Eq. (3) is 
within 15 ms, so that the average cost of a destage would be 
estimated as one rotational latency. 

III. SIMULATION MODEL 

To evaluate the effectiveness of the scheduling algorithms 
described in the previous section, we implemented the al-
gorithms in our RAID simulator and performed extensive 
simulations. In this section, we describe details of our sim-
ulation model and the methodology used to generate the 
synthetic workloads used in our simulations. 
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A. System Configuration 

Our disk array model is designed to represent a general 
RAID-5 configuration. In all our simulations, we used a 
configuration with two parity groups, each consisting of five 
disks, for a total of 10 disks. Data was assumed to be or-
ganized on the disks in 4 Kbyte blocks and each request in-
volves either reading or writing an integral number of blocks. 
A stripe-unit size of 9 blocks was chosen for striping data. 
The use of a relatively small stripe-unit size makes our sys-
tem better suited for a workload with predominantly small 
requests, as is common in transaction processing applica-
tions. However, since we used 1 Gbyte disks that are at the 
low end of disk capacity by today's standards, our results 
should be comparable to those in a disk array using larger 
data blocks with higher capacity drives. 

In our disk array model, we simulated two separate 
caches, a non-volatile write cache and a larger volatile read 
cache. This is different from the cache organization consid-
ered by Menon [10], where a single non-volatile cache was 
used to service both reads and writes. The single cache al-
lows more flexibility in allocating the available cache space 
between reads and writes, but at a substantially higher cost. 
Both caches in our model are dual-ported and use LRU re-
placement algorithm. Since the total storage capacity of the 
array is approximately 10 Gigabytes, we chose the size of the 
read cache as 8 Mbytes, approximately 0.1 percent of disk 
capacity. The size of the write cache used in the simulations 
vary over the range of 512 Kbytes — 4 Mbytes, with focus 
on the 1 Mbyte cache size. Both the read and write caches 
were organized with a fixed block-size of 4 Kbytes. 

The read cache always contains unmodified copies of disk 
blocks. It is used for two primary purposes: (i) to hold 
copies of the most recently read data so that subsequent 
reads can be serviced from the cache, and (ii) to hold data 
or parity that is needed for parity calculations. The write 
cache is used mostly to hold information that is newer than 
the copy on the disk, that is, both data written by the host 
and newly calculated parity blocks. A block in the write 
cache remains valid until it is updated on the disk by the 
destage algorithm. Although information can be removed 
from the write cache immediately after updating it on disk, 
our simulator simply marks the corresponding cache blocks 
as "available." These blocks can still be accessed for future 
reads and parity calculations if they have not been written 
over. 

In our implementations of the scheduling algorithms, we 
did not explicitly attempt to make the algorithms robust. 
Instead, our focus is on evaluating their performance. Tech-
niques such as those used by Menon and Cortney [8] could 
be used to make the write cache and the destage algorithm 
tolerant to failures. 

Requests from the host are queued in the system and 
scheduled for service in FCFS order. Although requests are 
initiated in order, they are not always completed in order. 
Requests that can be completed entirely by the read and 
write caches and require no immediate disk accesses are com-
pleted in order. Requests that involve disk accesses, on the 
other hand, are handled asynchronously and may complete 
out of order. The following paragraphs explain the servicing 
of host requests in more detail. 

Host reads are handled in a relatively simple manner. 
When a read request arrives from the host, both caches are 
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Fig. 2. Model of RAID-5 used in simulations. 

checked for the requested block(s). If all the requested blocks 
are present in the caches, data will be transferred as soon as 
the I/O channel becomes available. If one or more blocks are 
found missing, a read request is generated for every missing 
block and queued for the corresponding disk to become free. 
Note that host requests are serviced at a higher priority by 
the disks in comparison to destage requests. When all the 
blocks have been transferred into the read cache, and on 
obtaining access to the I/O channel, data is transferred to 
the host system as a single block transfer. Thus, the data 
transfers may not occur in the order in which the requests 
were received by the disk array. 

Handling of write accesses from the host is substantially 
more complex, since there are many cases to consider. To 
keep our model simple, we assume that a write access never 
bypasses the write cache unless the cache is full. There are 
three separate cases to consider in handling a write: First, 
the request may be a re-write of a block already present in 
the write cache whose parity has not yet been computed. 
In this case, the block is simply written over with the new 
data. If the block is not in the write cache, or if its parity 
has already been computed, an available block is chosen in 
the write cache and the new data is written to the block. 
Thus, two updated copies of the block may be present at 
the same time in the write cache. In this case, the earlier 
version can be removed after the parity is computed taking 
into account the newer version. Finally, if the write cache 
is full at the time the request is serviced, it is handled as in 
a traditional RAID-5, with all the associated disk accesses 
occurring before a completion message can be sent out. 

Data written to the write cache are eventually updated 
on the disks in the background by the destage algorithm. 
Since parity must also be updated, the new parity must be 
computed using the old copies of data and parity before the 
new data can be removed from the cache. If the old data 
and parity are not present in either cache, they must be read 
from disk. These disk accesses are scheduled by the destage 
algorithm and the associated data/parity are placed in the 
read cache when they become available. When all the needed 
data/parity blocks are available in the caches, a new parity 
is calculated and written into the write cache. Once the 
parity computation is complete, requests for updating the 
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new parity and data are placed in the destage queue. The 
destage algorithm may now schedule the disk accesses to 
copy the new data and parity items to disk, thereby freeing 
up blocks in the write cache. 

In the implementation of our destage algorithms, we did 
not partition the write cache into fixed data and parity re-
gions, nor did we impose limits on the number of blocks 
occupied by each type of information. We did not see an 
overwhelming need to impose such limits, since the distribu-
tion of valid blocks in the cache between data and parity re-
mained relatively stable over time in our simulations. How-
ever, to avoid deadlocks in the system, a minimum amount 
of space — 3 blocks — was reserved for parity. Thus, when 
the cache has less than three available blocks, an incoming 
write is forced to bypass the cache. If incoming writes were 
allowed to fill the cache completely, a deadlock could result 
from not being able to perform parity computations. 

Scheduling of disk requests is performed independently 
for each disk. There are two separate queues for each disk, 
one for host reads (and writes, when the write cache be-
comes full) and the second for destage accesses. Whenever a 
request is received for a disk that is currently idle, or when a 
disk that is currently busy completes its access, the schedul-
ing algorithm for that disk is invoked. The scheduling algo-
rithm handles host reads and writes in FCFS order. These 
accesses are given priority over destage disk accesses. A re-
quest is serviced from the destage queue only when the host 
queue is empty. 

B. The RAID Simulator 

In designing the simulator we needed to determine the 
components that are critical to the performance of the sys-
tem. The key elements simulated were the I/O channel, the 
two caches, disk drives, the controllers, and some of the data 
paths. We felt that these elements represented the majority 
of the system's timing and data transfer constraints. 

Our simulation model for the disk drives is based on the 
HP 97560. These are 5.25-inch, 1.26 Gbyte disks which ro-
tate at 4002 rpm. The average access time of the disk is 
23 ms for an 8 Kbyte data transfer. The disk drive model 
takes into account seek time, rotational latency, head set-
tling time, and data transfer time. The disk drive model is 
based on the work of Ruemmler and Wilkes [13]. 

Data transfers from the disk drives are limited by the 
bandwidth of the write port of the read cache. All data read 
from disks must be transferred through this port. When 
disks perform reads they buffer the data in their track buffer, 
but the disk is marked busy until the data-transfer is com-
pleted. For writes we overlap data transfer with the seek, 
and assume that sufficient bandwidth will be available to 
transfer the data to the disk buffer before the seek is com-
pleted. This does not model datapath contention in esti-
mating the disk service time, and is therefore optimistic; 
in our simulations, however, the number of cases when the 
data could not be delivered in time to the disk because of 
contention was insignificantly small. 

The response time is also affected by the implementation 
of the caches and the I/O channel. Both the read and the 
write cache can be searched in parallel, but blocks in each 
cache are searched sequentially. Response times of requests 
also take into account the data transfer rate and queue-
ing delay of the cache ports and the I/O bus. The cache 

ports and the I/O bus have a fixed data transfer rate of 
20 Mbytes/second and requests are queued in FIFO order. 
Requests must reserve ports and buses in such an order that 
deadlocks cannot occur. User requests contend with back-
ground destage and parity operations for these resources. 

C. Workload Model 

A major problem in evaluating algorithms for disk ar-
rays is the difficulty of obtaining real-world I/O workload 
traces that are capable of providing adequate loading to per-
form meaningful measurements. Since none of the workloads 
available to us was able to provide the adequate level of load-
ing to study the differences in the behavior of the various 
destage algorithms, we constructed a workload generator to 
generate synthetic workloads that can be used to drive our 
simulation model of the disk array. Most of the results in 
this section are based on the synthetic workload, but for 
validation we also provide some results from a workload ob-
tained by overlaying multiple request streams from a set of 
real traces. 

Instead of using a random spatial distribution of requests 
to blocks in the disk array, the workload allows to simu-
late requests from multiple process groups (each representing 
one or more processes), that accesses subsets of the logical 
disk space. Within each of the groups, the request rate, 
read/write ratio, and degree of locality of the accesses are 
configurable. For obtaining the results reported in this pa-
per, the workload generator was configured to represent ten 
process groups each generating requests at the same rate. 
Nine of these process groups accessed a randomly chosen 
one-percent subset of the disk space, while one process group 
produced requests distributed across the entire disk space. 

Within each process group, locality is modeled by main-
taining a history buffer of previous requests. The workload 
generator chooses the address of a request by either gener-
ating a new one randomly from the process group's address 
space, or from the history buffer randomly. Addresses in the 
history buffer are chosen according to a normal distribution 
that favors more recent requests over older ones. When the 
history buffer is used to generate addresses the target ad-
dresses for reads are chosen from old requests (both reads 
and writes) uniformly, while the target addresses for writes 
are chosen 90% of the time from old writes and 10% from old 
reads. The history buffer is larger than either of the caches, 
so the cache hit ratios would be lower than the percentage 
of requests generated from the history buffer. 

The issue times of the requests were based on a normal 
distribution. This distribution causes requests to be issued 
with a pattern of small cyclical bursts. For the most part 
we set the mean issue rate to a fixed value, but in some 
of the experiments designed to measure the burst-tolerance 
of the scheduling algorithm, we configured the system to 
create sustained bursts in the workload. The bursts were 
implemented by issuing requests at a fixed background rate 
and then tripling the issue rate periodically. 

A number of default values are implied for parameters 
in the simulations reported in this paper. The size of the 
write cache is 1 Mbyte, unless specified otherwise. The to-
tal number of process groups used in the workload model 
is 10, and the write percentage is always 40%. The default 
size of the history buffer is 10 Mbytes (0.1 percent of disk 
capacity). The default percentage of requests to be chosen 
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from the history buffer is 65% for reads and 90% for writes. 
For an 8 Mbyte read cache, this results in a hit ratio of ap-
proximately 51%. For all the simulations the mean number 
of disk blocks per request was 2, with a normal distribution 
favoring smaller requests. 

The basic objective of our evaluation is to study the be-
havior of the destage algorithms, as opposed to benchmark-
ing. The simplified workload model we used allowed us to 
study how the parameters of the workload such as locality 
and burst distribution affect the different algorithms. The 
model allows certain characteristics of the workload to be 
exaggerated in a simple manner. In addition, errors intro-
duced by the spatial skew in a real workload are likely to 
be much less severe in a disk array as compared to a single 
disk, because of the striping employed in the former. 

IV. SIMULATION RESULTS 

Thus far we described the algorithms for scheduling 
destages and the simulation model of the disk array. In this 
section, we present results from our simulation of the algo-
rithms and analyze the behavior of the algorithms based on 
observed results. We first start with a discussion of the per-
formance metrics that are useful in comparing the scheduling 
algorithms. 

A. Performance Metrics 

As pointed out in Section II, the average response time 
for write requests from the host may be little affected by 
the scheduling algorithm, as most of them may be serviced 
by the cache. The destage algorithm may, however, have a 
significant effect on the latency of host reads that are ser-
viced by the disks, particularly at heavy loads. In addition, 
a number of other metrics are useful in bringing out the 
tradeoffs involved in the design of the algorithm. We used 
the following metrics to evaluate our destage algorithms: 

1. Response time of host reads: This is the average 
delay experienced by a read request from the host, tak-
ing into account the service time and various queue-
ing delays involved. Since the response time of the 
read requests serviced from the caches is not directly 
affected by the destage algorithm, we considered only 
the host reads that miss in the caches and are there-
fore serviced by the disks. These reads, although ser-
viced at a higher priority as compared to destages, may 
still undergo queueing delays if a destage is in progress 
at the time the read request arrives in the queue. A 
scheduling algorithm that reduces either the number 
of destage accesses or the average time per destage, or 
both, can potentially reduce this delay, thus improving 
the response time of host reads directed to the disks. 

2. Maximum throughput: The maximum throughput 
is the maximum sustained rate of host requests that 
can be serviced by the disk array without causing the 
response time to grow unbounded. The destage algo-
rithm can increase the maximum throughput by min-
imizing both the number of destages and the service 
time of individual destages. The former is achieved by 
exploiting the temporal locality of writes and the latter 
by minimizing the total delay for each destage. 

3. Disk utilization: The disk utilization is defined as the 
fraction of the time the disk is busy servicing a request. 
The disk utilization can be broken up into two com-
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Fig. 3. Mean occupancy of the write cache in the RAID-5 system 
for the various scheduling algorithms (size of write cache = 
1 Mbyte). 

ponents, one representing host accesses and the other 
destage accesses, and further into reads and writes. The 
load due to host reads is unlikely to change signifi-
cantly with the different scheduling algorithms; thus, 
any change in the total utilization is predominantly due 
to the destage component. This component captures 
both the average number of destages performed in a 
given period of time and the average time per destage, 
and can therefore be taken as a measure of the total 
amount of work performed by the disks in a unit of 
time for performing the destage function. 

4. Burst tolerance: Another important aspect of the 
destage algorithm is its ability to tolerate short bursts 
in the workload without causing a write-cache overflow. 
The degree of tolerance to bursts can be measured in 
several ways; we chose to use the minimum length of a 
burst to cause cache overflow to express the sensitivity 
of the algorithm to bursts in the workload. We evalu-
ated this metric as follows: The system is first brought 
to steady state with a certain steady background work-
load. After reaching steady state, a burst is injected 
into the system, increasing the request rate. In our ex-
periments, the burst rate was chosen as three times the 
background rate. The length of the burst to cause an 
overflow was then found as the interval from the start of 
the burst to the time at which the write cache becomes 
full. The burst is turned off once a cache overflow oc-
curs and the system allowed to reach steady state again 
with the background workload. The cycle was repeated 
several times to obtain a mean value of the burst length 
to cause cache overflow. 

B. Results 

We now present the results from simulating the various 
scheduling algorithms introduced in Section II. We first com-
pare the performance of four scheduling algorithms — least-
cost scheduling, high/low mark, linear threshold schedul-
ing, and a fourth algorithm where destages are performed in 
FCFS order. The approximation to linear-threshold schedul-
ing discussed in Section IIE is evaluated later since its be-
havior is similar to that of linear threshold scheduling. 

Fig. 3 shows the mean occupancy of the write cache for 
the four destage algorithms. Fig. 4 shows the variation in 
the occupancy over time for the same algorithms. As ex-
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Fig. 4. Variation of the occupancy of the write cache with various scheduling algorithms (size of write cache = 1 Mbyte). 

petted, the high-low mark algorithm maintains the write 
cache occupancy at approximately 50%, near the middle of 
its high and low marks. The inability of the high-low mark 
algorithm to destage quickly enough once it reaches its high 
mark results in frequent overflow of the write cache, as seen 
in Fig. 4(b). This is a serious limitation in that the per-
formance of the system is degraded during the periods when 
the write cache becomes full. The linear threshold algorithm 
demonstrated greater stability. Its write cache occupancy 
has the same mean of approximately 50%, but is less likely to 
cause an overflow for comparable workloads. The least-cost 
and FCFS algorithms maintain much lower cache occupan-
cies, until the workload becomes very heavy. At the limits 
of their sustainable workload intensities, the write cache oc-
cupancies of both FCFS and least-cost scheduling approach 
that of linear threshold scheduling. 

Destage algorithms gain performance by optimizing disk 
use in terms of both the number and duration of disk ac-
cesses. Figures 5, 6, and 7 illuminate this aspect of the 
algorithms. Figure 5 plots the ratio of the number of writes 
actually seen by the disks to the number of host writes, both 
in blocks. Both FCFS and least-cost scheduling perform sig-
nificantly more writes as compared to the linear threshold 
scheduling algorithm, because of their inability to exploit lo-
cality among the writes. The high/low mark algorithm per-
forms the best in terms of the number of writes performed, 
because of its higher average cache occupancy. 

To evaluate the effectiveness of the algorithms in mini-
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Fig. 5. Ratio of disk writes to host writes for the four scheduling 
algorithms. 

mizing the total time taken by disk writes, both the number 
of disk writes and their service times must be taken into 
account. Fig. 6 compares the disk utilization of the four 
destage algorithms. Fig. 7 further provides a breakdown of 
the utilization into its components, measured at a system 
throughput level of 200 I/Os per second. The linear thresh-
old and the high-low mark algorithms have noticeably lower 
disk utilization than the other two algorithms for compara-
ble workloads. The improved disk utilization is the result of 
spending less time performing destage reads and writes. This 
is accomplished by maintaining more dirty blocks in their 
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Fig. 7. Breakdown of disk usage in the RAID-5 system for the 
various scheduling algorithms with a 1 Mbyte write cache. 

write caches, which gives them the advantages of fewer du-
plicate destages and more flexibility in scheduling. In spite 
of the slightly larger number of destage writes performed 
by the linear threshold algorithm, it has better utilization 
than the high/low mark algorithm. This is because the lat-
ter is forced to schedule a large number of destages when 
the cache occupancy threshold crosses the high mark with 
less opportunity to minimize the cost of individual destages. 
Fig. 6 also illustrates the extremely high disk utilizations the 
system can achieve. The write cache allows the system to 
buffer work during small cyclical bursts. This work is then 
performed at a later time, allowing for better disk utilization 
and the ability to sustain heavy loads. 

Fig. 7 shows the contribution to the disk utilization from 
three different components — host reads, destage reads, and 
destage writes. Host writes occur in our simulations only 
when the write cache is full; therefore it was an insignifi-
cant part of overall disk utilization. The share of host reads 
is virtually identical for all the algorithms, demonstrating 
the relative insensitivity of the number and service time of 
host reads serviced by the disks to the scheduling algorithm 
used. The contribution of the destage components, however, 
shows considerable variation among the algorithms. Both 
the high/low mark and the linear threshold algorithms again 
perform the minimum amount of work for destaging. 

One of the most important performance measures visi-
ble to the user is the response time of host reads that are 
serviced by the disks. Fig. 8 compares the disk read re-
sponse time for all the destage algorithms. For moderate to 
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Fig. 8. Performance of disk reads in the RAID-5 system with 
1 Mbyte write cache. 

heavy workloads, the linear threshold algorithm has the best 
read-to-disk response times. The high-low mark algorithm 
has comparable performance up to a point; however at high 
workloads its inability to destage fast enough degrades its 
performance. For most workloads the least-cost algorithm 
performs worse than the linear threshold algorithm. At the 
limit of sustainable throughput, however, the performance 
of linear threshold and least-cost begins to converge. This 
is because at high workloads the linear threshold algorithm 
destages at almost every opportunity, behaving similar to the 
least-cost algorithm. At low workloads the response times of 
all the algorithms converge to the disk access time for reads 
since there is very little queueing delay. 

Up to this point we have focused on systems with a write 
cache size of 1 Mbyte, but it is important to consider how 
the algorithms are affected by the size of the write cache. 
Fig. 9 and Fig. 10 show the delay-throughput plots for var-
ious cache sizes for least-cost scheduling and linear thresh-
old scheduling, respectively. The least-cost algorithm is not 
able to achieve substantial response-time gains from a larger 
write cache. This is due to the conservative nature of the al-
gorithm. The linear threshold algorithm, on the other hand, 
consistently improves response times for larger caches as it 
becomes more selective in scheduling destages, as can be 
seen in Fig. 10. Both algorithms see comparable increases in 
sustainable throughput as the cache size is increased. This 
is due both to being able to achieve better disk utilization 
and to having the additional cushion for absorbing bursts. 

The ability of the destage algorithm to tolerate sustained 
bursts in the workload without causing an overflow of the 
write cache is important for the stable operation of the sys-
tem. The addition of a write cache to a disk array allows 
it to tolerate occasional overloads by buffering work. How-
ever, to sustain a burst in the workload comparable to the 
size of the cache, the scheduling algorithm must perform 
as many destages as possible. Fig. 11 compares the ability 
of the scheduling algorithms to tolerate occasional bursts in 
the workload, in terms of the minimum duration of the burst 
to cause a cache overflow. This was measured by bringing 
the system to steady state with a certain background work-
load represented by the x-axis, and then injecting a burst by 
tripling the request rate. The length of the burst to cause 
an overflow was then found as the interval from the start 
of the burst to the time at which the write cache becomes 
full. The burst is turned off once a cache overflow occurs 
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Fig. 9. Performance of disk reads in the RAID-5 system with the 
least-cost scheduling algorithm. 
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Fig. 10. Performance of disk reads in the RAID-5 system with 
the linear-threshold scheduling algorithm. 

and the system allowed to reach steady state again with the 
background workload. The cycle was repeated several times 
to obtain a mean value of the burst length to cause cache 
overflow. 

The least-cost algorithm, followed closely by FCFS, 
showed the best burst tolerance. Both of these algorithms 
gain their resilience from maintaining a low mean write-
cache occupancy before the burst, thus giving them a larger 
cushion when the burst begins. The linear threshold al-
gorithm is not able to sustain bursts as long as the least-
cost or FCFS algorithms because it generally has a higher 
write-cache occupancy at the beginning of a burst. How-
ever, although its burst tolerance is only moderate, the lin-
ear threshold algorithm was able to recover from bursts with 
considerably higher background workloads than the other al-
gorithms. 

Fig. 12 shows the performance of the approximate im-
plementation of the linear threshold scheduling algorithm in 
terms of the response time for host reads. The approximate 
implementation shows no degradation in response time as 
compared to the ideal algorithm it is based on; in fact, the 
performance slightly improved as a result of the approxima-
tion. This effect can be explained as follows: The approx-
imate implementation attempts to exploit spatial locality 
among the destage requests in the same manner as the lin-
ear threshold algorithm, but its coarseness in estimating the 
destage cost makes it slightly less effective. However, this 
deficiency is more than offset by its increased effectiveness 
in exploiting the temporal locality. By using the LRU or-
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Fig. 11. Minimum burst duration to cause write cache overflow 
in the RAID-5 system under various scheduling algorithms 
(size of write cache = 1 Mbyte). 
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Fig. 12. Performance of disk reads in the RAID-5 system for lin-
ear threshold scheduling and its approximate implementation 
(size of write cache = 1 Mbyte). 

dering to schedule a destage from the regions with the same 
estimated cost, the approximate implementation is able to 
exploit temporal locality better than the ideal algorithm. 
Thus, the parameters of the approximate implementation 
can actually be chosen to achieve a balance between spatial 
and temporal locality. 

We close this section with some comments on how the 
performance of the approximate version of the linear thresh-
old scheduling algorithm is affected by the manner in which 
the cost of individual destage requests is estimated. In all 
the simulations so far, the destage cost was computed based 
on the average positioning delay between regions on the disk. 
This results in the algorithm occasionally under-estimating 
the delay, causing the actual delay of the destage to be higher 
than the estimate by as much as one rotational latency. A 
more conservative approach would be to estimate the cost of 
the destage based on the maximum positioning delay needed 
to move the head to any part of the target region from any 
point in the current region. A third alternative is to take 
an aggressive approach by computing the estimate based on 
the minimum positioning delay from the current region to 
the target region. The three approaches are compared in 
Fig. 13. The comparison is based on the the actual values of 
the mean access time of the destages measured in the simula-
tions. The conservative algorithm performed nearly as well 
as the average one, missing cheaper accesses in some cases 

93 

HPE, Exh. 1012, p. 16



D. 4°

E

14 35 

a 

25 

0 

—o— aggressive 

-a}-conservative 

—a—average 

50 100 150 200 250 

System throughput (I/O requests per sec) 

300 

Fig. 13. Comparion of mean destage service time measured under 
various schemes for estimating disk service time in approxi-
mate linear threshold scheduling. 

35 

E 30 

25 

20 

15 

—4— FIFO 

—0—Least-cost 

—a— High/low mark 

—a—Linear threshold 

2 3 4 5 6 

Number of trace overlays 

Fig. 14. Response time for host reads from trace-driven simula-
tions. 

but compensating for them by avoiding cost over-runs in oth-
ers. The aggressive algorithm performed poorly compared 
to the other two implementations, as a result of underesti-
mating the cost of almost every destage. 

C. Results from Trace-Driven Simulations 

To further validate our results from the synthetic work-
load, we also ran a set of simulations on a workload based 
on I/O traces obtained from HP Laboratories. These traces 
were collected from HP-UX systems during a 4-month pe-
riod, and are described in detail in [12]. To obtain a workload 
of adequate intensity, we overlaid multiple trace files corre-
sponding to separate days. The particular trace used was 
cello, over a 6-day period starting on April 20, 1992. The 
workload for our simulations was generated by first trans-
lating the disk accesses in the traces to a single logically 
contiguous space and mapping them to the physical disks 
in our RAID model. The workload intensity was varied by 
varying the number of overlays used. 

Fig. 14 plots the average response time seen by all reads 
in the workload as a function of the number of overlays. 
The high/low mark algorithm provided nearly identical per-
formance as the liner threshold algorithm at low loads, but 
diverged considerably as the workload intensity is increased. 
At high intensities, the bursts in the workload caused the 
high/low mark algorithm to overflow the cache more often 
than the linear threshold algorithm. Note that the plots 

show the average response time for all reads, not just those 
serviced by the disks. We observed that the read-cache hit 
ratios for this workload (20-30%) were even lower than that 
obtained with the synthetic workload; thus, the destage al-
gorithm can significantly influence the response time seen by 
the user. 

V. CONCLUDING REMARKS 

In this paper, we studied a number of algorithms for 
scheduling destages in a RAID-5 system. We introduced 
a new scheduling algorithm, called linear threshold schedul-
ing that adaptively varies the rate of destages to disks based 
on the instantaneous occupancy of the write cache. Our re-
sults show that linear threshold scheduling provides the best 
read performance of all the algorithms compared, while still 
maintaining a high degree of burst tolerance. An approxi-
mate implementation of the linear-threshold scheduling al-
gorithm was also described. The approximate algorithm can 
be implemented at much lower overhead, yet its performance 
is virtually identical to that of the ideal algorithm. 

In the linear-threshold scheduling algorithm, we chose a 
linear function to compute the threshold for destage cost as a 
function of cache occupancy. Other functions could be used, 
for example a function that increases destage rate faster as 
the cache occupancy increases. Their effect on performance 
needs to be investigated further. In addition, the scheduling 
algorithms could be modified to take into account several 
criteria we did not consider in our study, such as the spatial 
locality among the pending destages and the relationships 
between data and parity destages. 

Although most of our simulation results in this paper 
are based on a synthetic workload, results from simulations 
based on a workload derived from real I/O traces show that 
our estimates on the performance of the linear threshold 
algorithm are in fact conservative. The use of caching in the 
operating system can cause the percentage of writes in the 
workload to be higher than the estimate (40%) used in our 
synthetic workload model. At the same time, the locality 
among reads can be considerably lower, making the disk 
read performance more critical. 

The scheduling algorithms we studied can also be applied 
to a RAID-4 system. RAID-4 systems are not as widely used 
as RAID-5 because of the bottleneck due to the dedicated 
parity disks. This bottleneck, however, can be made less se-
vere if a nonvolatile cache is used to buffer updates to the 
disk array. Since parity is stored in a dedicated disk, sep-
arate algorithms could be used to destage data and parity 
in a RAID-4. Since host reads do not access the parity disk 
during normal operation, there is usually no reason to resort 
to a non-work-conserving destage algorithm for the parity 
disk. Thus, the least-cost scheduling algorithm can be used 
to schedule the parity disk, while any of the algorithms in 
Section II can be used for the data disks. From simula-
tions with the synthetic workload, we found the behavior 
of the algorithms to be very similar to that in the RAID-5. 
This suggests that the potential for performance gains from 
optimizing destages is not limited to any single disk-array 
configuration. 
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APPENDIX A: ESTIMATING DESTAGE COST FOR THE 
APPROXIMATE LINEAR-THRESHOLD SCHEDULING 

ALGORITHM 

This section provides the equations we used in calculat-
ing the estimated destage cost for the approximate linear-
threshold algorithm introduced in Section 2.5. We use the 
notation [xi to denote the largest integer less than or equal 
to x, and lxi the smallest integer greater than or equal to 
x. 

The seek time, rotational latency, and controller overhead 
are taken into account in estimating the destage cost. The 
controller overhead t -con is taken as a constant 2.2 ms. Let 
f(x) be the seek time of the disk between two cylinders at 
a distance of x. The average seek time between two regions 
is estimated as follows: Let c be the number of cylinders in 

each band and m the number of regions per band. Assume 
that the regions are numbered from 0 to (c • m — 1), as il-
lustrated in Fig. 1(a). If two regions i and j fall in different 
bands, the average seek time tarek (i, j) between them is esti-
mated as the seek time between the middle cylinders of the 
two regions. For convenience, we also include the constant 
controller overhead in &trek (i, j). That is, 

tseek(i, j) = f (cILlird — L +tcc'n. 
(2) 

When the regions i and j are within the same band, the 
average seek time is estimated as the time to seek across 
half the width of the band. That is, 

tsook(i,j) = f(c/2)+ Gott. (3) 

Let t rot be the rotational latency of the disk in millisec-
onds. Since the scheduling decisions are made at the gran-
ularity of a region, the destage cost is estimated in units of 
the rotational latency of a region on the disk, that is, 1/m 
of the disk rotation time. 

When the regions i and j are at the same rotational offset 
on the disk, the destage cost from i to j is the seek time plus 
controller overhead, rounded up to whole revolutions. That 
is, 

cost(i,j) = teeek(i) 

trot 

expressed in units of the rotational latency of a region. When 
the regions i and j are not at the same rotational offset on 
the disk, the relative rotational positions of i and j need to 
be taken into account. This is accomplished as follows: 
We can express the seek time taro k (i, j) as 

tieek(i, j) = at rot f3, 

where a is an integer and 0 < Q < trot. a represents the 
number of whole revolutions made by the disk during the 
seek time and f3 the fractional part. If the fractional part is 
greater than the rotational offset from i to j, then region j 
can be accessed only during the (a + 1)th revolution of the 
disk. In this case, the total cost of the destage, including 
both seek time and rotational latency is given by 

cost(i, j) = (a + 1)m + (j — i) mod m, 

if ".2- > (j — i) mod m. (4) trog 

If the fractional part is less than or equal to the rotational 
offset, the extra revolution is saved. The cost is then given 
by 

cost(i, j) = am + (j — i) mod m, 

if ;7- 7! ≤ (j — i) mod m. (5) 

Thus, the general equation for the estimated cost of a 
destage from region i to region j is given by 

( [ t";:.(ti'i) i + 1) m + (j — i) mod m, 

cost(i, j) = if m ( t";"(ti'-i) I. t";,.k (ti'i) i ) > (j — i) mod m; { 

[ t''';:(:'-ni m + (j — i) mod m, otherwise. 
(6) 
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