
HPE, Exh. 1014, p. 1

Proceedings

The 22nd Annual International

Symposium on

COMPUTER ARCHITECTURE

June 22-24, 1995 Santa Margherita Ligure, Italy

Sponsored by

ACM SIGARCH
IEEE Computer Society, TCCA

With support of SGS-Thomson-Microelectronics and Olivetti
In cooperation with the University of Genoa

SIGARCH

Lan HPE,Exh. 1014, p. 1

HPE, Exh. 1014, p. 2

QA% 5 ;
S BY
aac
he)

TheAssociation for Computing Machinery
1515 Broadway

New York, N.Y. 10036

Copyright © 1995 by the Association for Computing Machinery, Inc. Copying withoutfee
is permitted provided that the copies are not madeordistributed for direct commercial
advantage,and credit to the source is given. Abstracting with credit is permitted. For other
copying ofarticles that carry a code at the bottom ofthefirst or last page, copying is permit-
ted provided that the per-copyfee indicated in the codeis paid through the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For permission to republish
write to: Director of Publications, Association for Computing Machinery. To copy otherwise
or republish, requires a fee and/or specific permission.

IEEE Catalog Number 95CB35801
ISBN 0-89791-698-0 (softbound)
ISBN 0-7803-3000-5 Ccasebound)
ISBN 0-7803-3001-3 (microfiche)
Library of Congress Number 85-642899
ISSN: 1063-6897

Additional copies may be ordered prepaid from:

ACM Order Department Phone: 1-800-342-6626
P.O. Box 12114 (U.S.A. and Canada)
Church Street Station 1-212-626-0500
New York, N.Y. 10257 (All other countries)

Fax: 1-212-944-1318

E-mail: acmhelp@acm.org
acm_europe@acm.org (in Europe)IEEE ComputerSociety Press

CustomerService Center
10662 Los VaquerosCircle
Los Alamitos, CA 90720

Printed in the U.S.A.

HPE, Exh. 1014, p. 2

HPE, Exh. 1014, p. 3

Table of Contents

Coebial IMES ESSAcececciecsenrscte chen ceneen ges cservage encsentegnenaser sant ncsrregsnanscoenagman Ses teaae eagerrtVv
Program Chair's Message ...--ss++-.s-ssssssssseseseesssnesssesessnanecscnnnnnnannnssennanener setteeetteee vi
Organizing Committeess..sssscsssesssssessseecsceeseessssnssensssseeneseeannnnnnagmnaasisterengnennn ag sane ge eee eeeae Vii
Refarets.c.cc.KincadeaeeredfitSoeePareeeetneiinsest ix

Session 1: Multiprocessors and Applications
The MIT Alewife Machine: Architecture and Performance........cccccccsesscesceeteeeeeerseesseeeseeeeeetseeenesnees =

A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatow-
icz, B.-H. Lim, K. Mackenzie, D. Yeung

The EM-X Parallel Computer: Architecture and Basic Performance...--:csecceecseeseenseesnconeeenees 14
Y¥. Kodama, H. Sakane, M. Sato, H. Yamana,S. Sakai, Y. Yamaguchi

The SPLASH-2 Programs: Characterization and Methodological Considerations............-+1-+++24
S. C. Woo, M.Ohara, E. Torrie, J. P. Singh, A. Gupta

Session 2A: Cache Coherence

Efficient Strategies for Software-Only Directory Protocols in Shared-Memory
Ma tobegstencaeRSU Satecnetcae ceneecnonnnnseditncgnenrnntrgntenenbchinsecnratuesnnnns test sir SAEEOEEA38

H. Grahn,P. Stenstrom

Dynamic Self-Invalidation: Reducing Coherence Overhead in Shared-Memory
MultigroQesS@rs.--cateaincesaieiersensy everteraeMeeeEeeeees48

A. R. Lebeck, D. A. Wood

Boosting the Performance of Hybrid Snooping Cache Protocols.......sssseeeeecsccerscreteeetensseeesciss60
F. Dahlgren

Session 2B: Interconnect Technology and I/O
S-Connect: from Networks of Workstations to Supercomputer Peformatices...<..8...acnyece- yest71

A. G. Nowatzyk, M. C. Browne, E. J. Kelly, M. Parkin
Destage Algorithms for Disk Arrays with Non-volatile Caches::ccceeseesseeseeensetseeereeerseteress 83

A. Varma, Q. Jacobson

Evaluating Multi-Port Frame Buffer Designs for a Mesh-Connected Multicomputer..............6++96
G. Stoll, B. Wei, D. Clark, E. W. Felten, K. Li, P. Hanrahan

Are Crossbars Really Dead? The Case for Optical Multiprocessor Interconnect Systems......... 106
A. G. Nowatzyk, P. R. Prucnal

Session 3: Instruction Level Parallelism

Exploring Configurations of Functional Units in an Out-of-Order Superscalar Processor......... 117
S. Jourdan, P. Sainrat, D. Litaize

HPE, Exh. 1014, p. 3

HPE, Exh. 1014, p. 4

Unconstrained Speculative Execution with Predicated State Buffering00.ceeee126
H. Ando, C. Nakanishi, T. Hara, M. Nakaya

A Comparison of Full and Partial Predicated Execution Support for ILP Processors................. 138
S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, W. W. Hwu

Session 4A: New Microarchitectures

Implementation Trade-offs in Using a Restricted Data Flow Architecture in a High
Performance RISC MECTOPOCESSOR octdunes Uy ssede lee teesUMAR Hla ck coh anaidegn at Maat ee yuiss 15.1

M.Simone, A. Essen, A. Ike, A. Krishnamoorthy, T. Maruyama, N. Patkar, M.
Ramaswami, M. Shebanow, V. Thirumalaiswamy, D. Tovey

Performance Evaluation of the PowerPC 620 Microarchitecture..........0c cece eecese eee ceseseeee ees 163

T. A. Diep, C. Nelson, J. P. Shen

Session 4B: Managing MemoryHierarchies

Reducing TLB and Memory Overhead using Online Superpage Promotion:.ccceeeseerees 176
T. H. Romer, W. H. Ohlrich, A. R. Karlin, B. N. Bershad

Speeding up Irregular Applications in Shared-Memory Multiprocessors: Memory
Binding and Group PrefetChing sibs hassens gas yess caucasiananaes bls sas sh SUNN ee Melee, sc alates As 188

Z. Zhang, J. Torrellas

Session 5A: Interconnection Network Routing

An Efficient, Fully Adaptive Deadlock Recovery Scheme: DISHA.........cece eeeeeetesseneeeees201
Anjan K. V., T. M. Pinkston

Analysis and implementation of Hybrid Switching(iit maai.............dsseantelmeeneetn sth ee 211
K. G. Shin, S. W. Daniel

Configurable Flow Control Mechanisms for Fault-Tolerant Routing... ceseeeseeeeneeeseeeeeeee220
B. V. Dao, J. Duato, S. Yalamanchili

NIFDY:»A/Low' Overhead, High ThroughputiNetworktmtertace ..o.cecevesccstecessnecssteciecsene230
T. Callahan, S. C. Goldstein

Session 5B: Novel Memory Access Mechanisms

Vector Multiprocessors with Arbitrated Memory AcCeSS..........ccsscsseescsscneseescseenssaesseseesscensens243
M.Peiron, M.Valero, E. Aygaudé, T. Lang

Design of Cache Memories for Multi-Threaded Dataflow Architecturecccccccesesesteeeeeesees253
K. M. Kavi, A. R. Hurson,P. Patadia, E. Abraham, P. Shanmugam

Skewed Associativity Enhances Performance Predictability .0.....0.0...ccccccssecesecetseeesteeseseeeeesees 265
F. Bodin, A. Seznec

Session 6: Branch Prediction

A Comparative Analysis of Schemes for Correlated Branch Prediction.........c.cccsesesescseeseeees276
C. Young, N. Gloy, M. D. Smith

xii

HPE, Exh. 1014, p. 4

HPE, Exh. 1014, p. 5

Next Cache Line and Set Predictions::sssssssssessseseessenreeeeseessensesseneercnacsneencensensegna ggg geste287

B. Calder, D. Grunwald

Session 7A: System Evaluation

A Comparison of Architectural Support for Messaging on the TMC CM-5and Cray TOD298
V. Karamcheti, A. A. Chien

Optimizing Memory System Performance for Communication in Parallel Computers.............-308
T. Stricker, T. Gross

Empirical Evaluation of the CRAY-T3D: A Compiler Perspective........s.ssessssesessseretiescissseesesties320
R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. G. Steinberg, K. Yelick

Session 7B: Instruction Fetching

Optimization of Instruction Fetch Mechanisms for High Issue Rates.............-::seseseetereeereesereees 333
T. M.Conte, K. N. Menezes, P. M.Mills, B. A. Patel

Instruction Fetching: Coping with Code Bloatscesscseereersressisctcenteenenntensettntt tenesee345
R. Uhlig, D. Nagle, T. Mudge, S. Sechrest, J. Emer

Instruction Cache Fetch Policies for Speculative Executionseseseseessreeseeser renter ssrsessseseteenentsaT
D. Lee, J.-L. Baer, B. Calder, D. Grunwald

Session 8: Caches

Streamlining Data Cache Access with Fast Address Calculationcc:cccccsscersesescenneeeneeeeeeee 369
T. M. Austin, D. N. Pnevmatikatos, G. S. Sohi

CAT — Caching Address Tags: A Technique for Reducing Area Cost of On-Chip Caches........381
H. Wang,T. Sun, Q. Yang

Session 9: Processor Architecture

Simultaneous Multithreading: Maximizing On-Chip Parallelism:...::cecccssceseetreenersaeeeernrens $92
D. M.Tullsen, S. J. Eggers, H. M. Levy

Architecture Validation for ProcessOrs.......ssssssesesssesseenerssenessssscsescstecsssenenananenanecrarerssnsns ese ttts404
R. C. Ho, C. H. Yang, M.A. Horowitz, D. L. Dill

Murltiscalar ProCeSSOrs s....ssis:ess-ce-osess--scensanapuammeresesunstentenosabinnentanernxepnonananesenananenananbessassearanecseasest414
G. S. Sohi, S. E. Breach, T. N. Vijaykumar

PRAAe BREieeecereal ey Gebvonessessnebanedsmmmenteoeanamntatetesanwclyshieny aravenberzarssrsmolccrnangeses Assis arsr4 yy426

xiii

HPE, Exh. 1014, p. 5

HPE, Exh. 1014, p. 6

Destage Algorithms for Disk Arrays with Non-Volatile Caches

Anujan Varma and Quinn Jacobson
Computer Engineering Department

University of California
Santa Cruz, CA 95064

Abstract

In a disk array with a nonvolatile write cache, destages
from the cache to the disk are performed in the background
asynchronously while read requests from the host system
are serviced in the foreground. In this paper, we study a
numberof algorithms for scheduling destages in a RAID-5
system. We introduce a new scheduling algorithm, called
linear threshold scheduling, that adaptively varies the rate
of destages to disks based on the instantaneous occupancy
of the write cache. The performance of the algorithm is
compared with that of a numberof alternative scheduling
approaches such as least-cost scheduling and high/low mark.
The algorithms are evaluated in termsof their effectiveness
in making destages transparent to the servicing of read re-
quests from the host, disk utilization, and their ability to
tolerate bursts in the workload without causing an overflow
of the write cache. Our results show that linear threshold

scheduling provides the best read performanceofall the al-
gorithms compared, whilestill maintaining a high degree
of burst tolerance. An approximate implementation of the
linear-threshold scheduling algorithm is also described. The
approximate algorithm can be implemented with much lower
overhead, yet its performanceis virtually identical to that
of the ideal algorithm.

I. INTRODUCTION

A disk array, in general, consists of a group ofdisk drives
together with an associated controller function, organized
logically as a single I/O device [2], [4]. Disk arrays, also
known as RAIDs (Redundant Arrays of Inexpensive Disks),
are capable of providing improvedlevels of reliability, avail-
ability, and/or performance over single disks. A disk array
usually provides protection against loss of data from a disk
failure by maintaining redundant information within the ar-
ray. Moreover, data availability can be maintained on a disk
failure by using the redundant information to reconstruct
data stored on the failed disk in real time. In addition to

improving reliability and availability, disk arrays also im-
prove the performance ofthe storage system bydistributing
data across multiple disk drives — this is the result of either
concurrency in servicing multiple I/O requests or parallelism
in the data transfer for a single I/O request.

Several types of disk array configurations are knownin

This research is supported by NSF Young Investigator AwardNo. MIP-9257103.

Permission to copy without feeall or part of this material is
granted provided that the copies are not madeordistributed for
direct commercial advantage, the ACM copyright notice and the
litle of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires
afee and/or specific permission.
ISCA'95, Santa Margherita LigureItaly
© 1995 ACM 0-89791 -698-0/95/0006...$3.50

 83

the literature [2], [4], [17]. These configurations vary primar-
ily in the redundancy scheme employed andthe data distri-
bution (striping) scheme used to maplogical blocks among
the individual disks. In a seminal paper, Patterson, Gib-
son, and Katz [11] introduced a taxonomyof disk arrays,
consisting of six different types (or “levels”), which is now
widely used in the industry. Among these RAIDlevels, of
particular interest are RAID-4 and RAID-5, which are op-
timized for transaction processing workloads. These arrays
employ coarse-grained striping of data so that small requests
can benefit from the concurrency in servicing multiple re-
quests, while a large request can achieve high throughput
by transferring data from multiple disks in parallel. RAID-
4 organizes the disks in the array into parity groups, with
one dedicated parity disk in each group. This has the dis-
advantage of the parity disks becoming a bottleneck while
updating data in the system. RAID-5eliminates this bottle-
neck by distributing parity blocks uniformly among all the
disks in the group.

Both RAID-4 and RAID-5 provide reliability and avail-
ability at a fraction of the storage overhead incurred in disk
mirroring. This reduction in storage overhead, however, is
achieved at.the expense of increasing the numberof disk ac-
cesses necessary to update data in the system. Every write
request to the array that does not update an entire stripe
must now update parity by reading the old data and the old
parity, and exclusive-ORing them with the new data. This
involves a total of four disk accesses — reading the old data
and parity, and writing the new data and parity. Menon and
Mattson [7] showed that this overhead can degrade the per-
formance of a RAID-5 considerably in a transaction process-
ing environment where small requests dominate the work-
load. In addition, a small increase in the ratio of writes to
reads in the workload can lead to a drastic increase in the
response time for both reads and writes.

Several solutions have been proposed to reduce the over-
head for small writes in a RAID-5[8], [9], [15]. One approach
is parity logging [15], where parity updates are posted into
a dedicated log disk instead of updating the parity blocks
in the array; updates of parity blocks in the array are per-
formed in the background. This has the advantage of con-
verting small writes of parity into large writes; the scheme
also captures someof the temporal locality in parity updates
since successive updates of parity can be combined into a sin-
gle update in the disk array. Another scheme that reduces
the overhead in parity updatesis floating parity [9], where
parity blocks are dynamically remapped within disk cylin-
ders to reduce the rotational latency between reading and
writing parity.

Both parity logging and floating parity only attempt to
reduce the overhead of parity updates. In both schemes,
the old data must be read from the disk and the new data
written before signaling completion of the I/O transaction.

HPE, Exh. 1014, p. 6

HPE, Exh. 1014, p. 7

A more general schemeis to use a nonvolatile write cache to
reduce write latency. Writes can now be deemed complete
after writing the new data into the cache, an operation often
referred to as fast write [8]. Both the data and the parity
blocks on the disks can then be updated in the background.
The process of updating data or parity in the disks from the
write cache is referred to as destaging. In addition to the
write cache, a larger (volatile) read cache may be used to
improve read performance.

A nonvolatile write cache has several advantages [8], the
most important of which is the substantially lower service
time seen by write requests to the array. In addition, the
write cache can also exploit any locality in writes — both
temporal and spatial — in the workload. Temporal local-
ity is exploited by capturing successive updates of the same
block in the cache. Spatial locality allows many small writes
to be aggregated into a single large write to the disk. Fi-
nally, the write cache can also lower the response timefor
read requests serviced by the disks because of the reduced
contention with writes to the disk.

In spite of the above advantages, a nonvolatile write cache
introduces several new problems. First, the write cache must
be designed to be at least as reliable as the redundancy
scheme used for the disks. The IBM Hagar disk array [8],
for example, used duplicate caches with independent power
boundaries to protect the contents of the write cache. Sec-
ond, data losses could still occur while updating the disks
from the cache because of a failure in the cache memory,
disks, or the datapath between them. Thedestage algorithm
must be designed to leave data in a consistent state should
a failure occur while updating the disks. Several such algo-
rithms to prevent data losses while destaging are presented
in [8].

A third problem in the use of a write cache is that of
scheduling the destages, that is determining when to destage
data from the cache to the disk, as well as whichof the dirty
blocks is to be destaged next. Ideally, in a disk array with
a write cache, the disks see only two types of requests —
read requests generated by the workload that miss in the
read cache, and (ii) read and write requests originated by
the array controller for destaging data from the write cache.
Requests of the first category must be serviced as soon as
possible while destage requests can usually be serviced in the
background. Ideally, destages should appear transparent to
the user requests received by the array. In practice, however,
because of the non-preemptive nature of disk service, some
interference between user requests and destage requests is
unavoidable. For example, a read request received while
a destage request is being serviced is made to wait until
the latter is completed. This interference, however, can be
minimized with careful scheduling of the destages.

In this paper, we study a number of algorithms for
scheduling destages in a RAID-5 system. We introduce a
new scheduling algorithm, called linear threshold scheduling,
that adaptively varies the rate of destages to disks based on
the instantaneous occupancyof the write cache. The perfor-
manceofthe algorithm is compared with that of a numberof
alternative scheduling approaches such as least-cost schedul-
ing and high/low mark. The algorithms are evaluated in
terms of their effectiveness in making destages transparent
to the servicing of read requests, as well as their ability to
tolerate large bursts of write requests without causing an

84

miea!

overflow of the write cache. Ourresults show that linear
threshold scheduling provides the best read performance of
all the algorithms compared, while still maintaining a high
degree of burst tolerance.

The rest of this paper is organized as follows: Sec-
tion II summarizes the tradeoffs involved in the design of
the destage algorithm and describes the algorithms studied
in the paper. Section III introduces the disk array model and
workload modelused in our simulations. Section IV presents
simulation results for the algorithms and compares theal-
gorithmsin terms of read ‘performance,disk utilization, and
tolerance to bursts of write requests. Section V concludes
the paper with directions for future research.

II. DESTAGE ALGORITHMS

In a disk array with a nonvolatile write cache, destages
from the cache to the disk are performed in the background
asynchronously, while read requests from the host system
are serviced in the foreground. Thus, the workload seen by
an individual disk predominantly consists of (i) reads from
the host system that cannot be serviced from the read cache

or write cache, and (ii) read and write requests generated
by the array controller as part of destage operations. We
refer to requests of the first category as host reads and those
of the second category as destages. Reads of data or parity
information performed as part of a destage are referred to
as destage reads and the writes as destage writes. A write
request from the host is never directed to the disk except in
the event of a write cache overflow or when thesize of the

block being written is large enough to justify bypassing the
write cache.

If host reads are given higher priority over destages, a
destage would never beinitiated by the array controller when
there are requests in the read queue. Still, considerable flex-
ibility exists in scheduling the destages, as the updates to
the disk need not be performed in the order the writes were
posted to the cache. In addition, the four disk accesses in-
volved in a disk update — reads ofold parity and data, and
writes of new parity and data — need not be performed as
a single indivisible operation.

A. Algorithm Design Tradeoffs

Wefirst examine the tradeoffs involved in the design of
the destage algorithm. Assuming that no overflow of the
write cache occurs and noneof the write requests bypasses
the cache, all the write requests from the host system are
serviced by the cache. In this case, the scheduling algorithm
employed has no direct effect on the response timefor a write
to the disk array. However, the schedulingalgorithm canstill
affect the response time seen by the host reads serviced by
the disks, as well as the maximum sustainable throughput
of the array. A schedulingalgorithm that optimizes destages
reduces the load on the disks due to destages, thus improving
their read performance.

There are three ways in which a scheduling algorithm
can improve the performance of the disk array: First, the
algorithm can reduce the numberof destages by capturing
most of the re-writes in the write cache, thus exploiting the
temporallocality in the workload. This requires maintaining
blocks that are likely to be re-written in the near future in
the write cache and destaging them only when additional
re-writes are unlikely to occur soon. Similarly, if parity is

HPE, Exh. 1014, p. 7

HPE, Exh. 1014, p. 8

allowed to be cached, successive updates of blocks in the

"sameparity group generateonly a single update of the parity
_block on disk.
_ Second, the numberof destages can also be reduced by

aggregating blocks that lie physically close on a disk and
_ destaging them as a large read and/or write. This exploits
any spatial locality present in the workload.

Finally, the scheduling algorithm can reduce the aver-
age time for a destage by ordering destage requests to the
disks such that the service times in the individual disks are
_ minimized. Since the mechanical positioning delays usually
_ dominate the service time, this calls for ordering the requests
_ to minimize the positioning delays in the disk. Many such
algorithms for scheduling requests in individual disks taking

_ into account the seek time and therotational latency of re-
_ quests have been described in theliterature [3], [5], [6], [14],
| [16]. While similar algorithms could be used to schedule
_ destage requests in a disk array, a basic distinction exists
- between the problem of scheduling destages in a disk ar-
_ ray and that of scheduling host requests in an independent
disk. A disk scheduling algorithm for host requests must
_ make a tradeoff between maximizing throughput and pro-

viding fairness to user requests; for example, servicing the
_ user requests in FCFS(first-come,first-served) order maxi-
 mizes fairness, while a scheduling algorithm that reorders re-

- quests to minimize the total service time achieves maximum
_ throughput at the expense of increasing the variance of the
_ response time [5]. The destage algorithm in a disk array, on
_ the other hand, does not have to deal with this dilemma: In

_ most cases, the algorithm can schedule destages to maximize
throughput without causing starvation of user requests.

All the above objectives in the design of the scheduling
algorithm suggest maintaining the occupancy of the write

_ cache close to its capacity. This allows maximum benefit
to be obtained from anylocality present in the workload

and maximizes scheduling flexibility. Maintaining the write
- cacheclose to full, however, makes it vulnerable to overflow.

_ Evena short burst of writes in the workload may cause the
cache to overflow, forcing subsequent writes to bypass the
_ cache until some destages can be posted to disk. Thus, the

scheduling algorithm muststrike a compromise between the
conflicting goals of being able to exploit maximum locality
and scheduling flexibility for destages, and preventing fre-
quent overflows of the write cache.

The scheduling algorithm may be designed to be either
_ work-conserving or non-work-conserving with respect to the

disks in the array. A work-conserving algorithm never allows
a disk to be idle when one or more destages are pending to
the disk. A non-work-conserving algorithm, on the contrary,
mayrefrain from scheduling a destage to the disk even when
it is idle, expecting that the same destage could be per-
formed at a lower cost in the future; the goal is to minimize
the response time for host reads by reducing the contention
between host reads and destages. Both types of algorithms
are studied in this paper.

Thus, in summary, the following are the parameters that
can be used by the destage algorithm to determine the block
to be destaged next:

1. The probability of the block to be re-written in the
near future. This factor is usually accommodated in
the algorithm by ordering blocks in the destage queue
based on the time of their last access.

85

2. The numberof blocks to be read/updated on the same

track (or cylinder) to take advantage of spatial locality.
3. Service times of the requests in the destage queue. The

service time includes the delay in positioning the head
at the beginningof the block to be read/written and the
data transfer time. Different levels of approximations
could be used to estimate the positioning delays in the
disk [16].

4. The current level of occupancy of the cache.

In addition, other factors such as the type of destage re-
quest (parity or data, read or write), may also be used in
the scheduling process.

In the following, we describe four scheduling algorithms
for destaging blocks from the write cache in a RAID-5.In all
the algorithms, destaging to each disk is handled indepen-
dently by maintaining a separate queue of pending destages
for each disk. In addition,in all the algorithms, a destage to
a disk is initiated only when there are no host reads queued
for that disk at that time. However, not all of the algorithms
schedule a destage always when the read queue is empty. The
algorithmsdiffer in the criteria used to determine whether a
destage is to be initiated when the disk becomesidle after
servicing a request, and in the function used to select the
block to be destaged.

B. Least-Cost Scheduling

This algorithm is modeled after the well-known shortest
seek-timefirst disk scheduling algorithm [3]. After every disk
operation, the queue of eligible destages is examined and
the request that takes the shortest access time is performed.
In addition, to exploit spatial locality, if there are pending
destage requests to other blocks on the sametrack, these are
also performed as onelarge read or write.

The access time of a destage read or write operation in-
cludes the seek time (or head-switch time), rotational la-
tency, and controller delays. Precise estimation of these de-
lays is difficult due to many factors such as the physical-to-
logical mappingof sectors on the disk and the use of caching
within the disk itself. Considerable improvementcan still be
obtained using approximate models for estimating the de-
lays involved. We implemented such a scheme in our RAID
simulator for comparison with other schemes. Details of im-
plementation of the scheme can be foundin Section III.

C. High/Low Mark Algorithm

This algorithm is designed after the cache purging algo-
rithm proposed by Biswas, Ramakrishnan and Towsley [1]
for disks with a nonvolatile write cache. In this algorithm,
two cache-occupancy thresholds are used to enable and dis-
able destages. Destages to the disk are disabled when the
cache occupancy drops below a “low mark” and turned on
when it increases over a “high mark.” Some hysteresis be-
tween the two thresholds is used to prevent short bursts in
the workload from causing a cache overflow. We chose the
high threshold as 70% of cache capacity and the low thresh-
old as 30%, Destage requests were selected using theleast-
cost policy to minimize the service time of individual disk
accesses. In addition, when a block is selected for destage,
all pending destage requests to the same track on the disk
are scheduled together. 5

HPE, Exh. 1014, p. 8

HPE, Exh. 1014, p. 9

D. Linear Threshold Scheduling

Thebasic principle of this algorithm is to match the rate
of destages from the cacheto the currentlevel of occupancy
of the cache, accelerating destages gradually as the cache oc-
cupancy increases and slowing them as the occupancyfalls.
The primary difference between this algorithm and high/low
mark scheduling is that, instead of on/off thresholds, the
rate of destages is changed gradually as a function of cache
occupancy.

Asin other algorithms, each disk in the array is scheduled
independently. Both parity and data destages are treated
in a similar manner. The destage queue is examined after
each disk operation if the host read queue is empty. As in
the case of least-cost scheduling, the block to be destagedis
chosen as the one with minimum cost amongall the eligible
destage requests to that disk. However, unlike in least-cost
scheduling, the destage is performedonlyif its cost is within
a certain threshold maintained by the algorithm. Should
a read request from the host arrive while the destage is in
progress, this policy minimizes its waiting time.

Therole of the thresholdis to reduce the interference be-

tween destages and host reads; the threshold sets an upper
boundon the waiting timeof a read arriving while a destage
in progress. A tradeoff exists in the choice of the thresh-

old: If the threshold is set too low, the destage rate may
not be adequateto clear the cache fast enough,causing fre-
quent overflows. A large threshold, on the other hand, may
perform destages too soon, degrading both the waiting time
for host reads and the hit rate of the write cache, and re-
ducing the level of temporal andspatial localities that may
potentially be exploited.

In our implementation, the threshold was selected as a
linear function of the instantaneous cache occupancy. The
cost of a destageis its service time, computedas in the case of
the least-cost scheduling algorithm. Asin other algorithms,
when a destage request is scheduled, all pending destage
requests to the sametrack are also performed along withit.

The linear threshold scheduling algorithm uses the cache
occupancy, service time of destages, and spatial locality as
its decision-makingcriteria, but does not attempt to max-
imize temporal locality explicitly. Thus, a block that has
been written recently may be scheduled for destage if the
destage can be performed “cheaply.” This may increase the
total number of destage accesses to the disk in comparison
to servicing the requests in LRU order, but thetotal service
time can still be lower as a result of minimizing the cost
of individual destage requests. Note that temporal locality
for host reads can still be exploited by keeping the destaged
block in the write cache until the block needs to be replaced.

E. Approximation to Linear Threshold Scheduling

A major difficulty in implementing both the least-cost
scheduling and the linear threshold scheduling algorithms
is the need to scan the entire queue of destage requests to
select the minimum-cost request. This operation must be
performed at the completion of every disk service. Further-
more, the cost of individual destage requests must be com-
puted afresh if the position of the head has changed.

The need for searching the entire destage queue can be
overcomebyresorting to an approximate implementation of
linear threshold scheduling; the approach works by dividing
the disk into regions and maintaining a separate queue of

86

MottLe

destage requests into each region. When the disk becomes
idle, the queues are searched in the order of the closest to
the farthest region relative to the current position of the
head. Thefirst non-empty queue is found and the request
at its head is selected as the minimum-cost destage. As in
the ideal linear-threshold scheduling algorithm, the request
is scheduledif its estimated service time is within the thresh-

old determined by the current cache occupancylevel. The
requests within each of the destage queues can be ordered
using the LRU policy to allow maximum temporal locality.
As in the other scheduling algorithms, when a request is se-
lected for destage, all the pending destages to the sametrack
are performed in one disk access.

Both seek time and rotational latency must be taken into
account in ordering the search of regions. Therefore, we used
a partitioning scheme in which the disk cylinders are parti-
tioned into circular bands; each bandis then radially subdi-
vided into regions. This is illustrated in Fig. 1(a) with re-
spect to the example disk used in our simulation model. The

exampledrive is an HP 97560disk with a total of 1935 cylin-
ders. The cylinders are partitioned into 15 circular bands,
with 129 cylinders per band; each bandis radially subdi-
vided into three regions, to provide a total of 45 regions for
the scheduling algorithm. This is similar to the disk parti-
tioning scheme proposed by Jacobson and Wilkes[6], except
that the cost of each destage is approximated as the average
positioning delay from the current region to the target re-
gion. The averagepositioning delay from region i to region j
is taken as the positioning delay from the center of region i
to the center of region j.

The linear threshold scheme is approximated by design-
ing a stepped threshold function that specifies the maximum
destage cost for each level of cache occupancy. The destage
cost is the average access time to a region expressed as a
multiple of the fractional rotational delay of the disk corre-
sponding to a region. Table I shows the threshold function
used in our example. The second columnin the table pro-
vides the maximum allowable destage cost for each step of
cache occupancy; instead of expressing as milliseconds, the
delay is given as the numberofregions that pass under the
head within that period (that is, 3 times the numberof rota-
tions within the period). For example,for a cache occupancy
of 30%, the maximumallowable destage timeis 3 regions, or
the time for one revolution of the disk.

The following algorithm is used to select the regions that
are searched for scheduling destages. Assume that the head
is currently over region i and let w be the cache occupancy.
Let Th(w) be the maximum allowable destage time from
the second column of Table I, in terms of the number of
regions passing under the head. Then, region j qualifies for
scheduling a destage only if

Th(w) > cost(i, j), (1)

wherecost(i, j) is the estimated average cost of the destage
to region 7. Assuming that the headis exactly at the center
of region i, cost(i, j) estimates the delay for the head to be
positioned at the center of region j, taking into account the
seek time, rotational latency, and controller overhead. The
actual equations used in computing the estimates are given
in Appendix A. For convenience, the cost is expressed in
units of the time taken by the disk to rotate through one
region.

HPE, Exh. 1014, p. 9

HPE, Exh. 1014, p. 10

(a)

current positionof head

eee
(b)

Fig. 1. Illustration of the disk partitioning scheme used for approximate implementation of the linear threshold scheduling algorithm:
(a) Regions in the example disk; (b) Regions qualifying for destage when the head is currently on region 0 and the cache occupancy
is in the range 25-37.5 percent.

Searches to the qualifying regions are ordered according
to their destage cost, from the smallest to the largest. In
our simulations, the searches are performed such that all
the regions that fall within one unit of positioning delay are
examinedin parallel first; if no destages are queued in any
of these regions, those that fall within two units of delay are
checked, and so on. If pending destages are found in multi-
ple regions during any step of the search, the least-recently
accessed block among them is chosen for the destage.

Thecost of a destage is estimated as the total access time
for a block at the center of the target region, assuming the
head is at the center of the current region. This requires
estimating the seek time, rotational latency, and other over-
head incurred in positioning the head in the target region.
The average seek time tseex(i, 7) between regions i and j can
be estimated from a seek-time model of the disk. Our sim-

ulation model for the disk drives is based on the HP 97560,
obtained from [13]. If two regions i and j fall in different
bands, the average seek time ftsee%(t, 7) between them is es-
timated as the seek time between the middle cylinders of
the two regions. When theregions i and j are within the
same band,the averageseek time is estimated as the time to
seek across half the width of the band. A constant controller
overhead of 2.2 ms is added to the seek time in both cases.

For example, the shaded area in Fig. 1(b) showsthe re-
gions qualifying for a destage in our example disk when re-
gion 0 is currently under the head and the cache occupancy
is within the range 25-37.5 percent. These regions were
determined as follows: The rotation time of the disk was

taken as 15 ms. Using the seek-time model from [13] and
Eq. (2) from Appendix A, the average seek time from re-
gion 0 to to its adjacent band was computed as 9.98 ms,
including controller overhead. Since this is within one rota-
tional latency, the destage cost from region 0 to region 3 is
estimatedas one rotationallatency, or 3 units. For the range
25-37.5% of cache occupancy, Table I lists the maximum al-
lowable destage cost as 3 units. Thus, region 3 is allowed
to be destaged according to Eq. (1). Similarly, regions 6, 9,

87

destage
delay (in units of
rotational latency
of a region)

Range of cache
occupancy (%)w

0.0 - 12.5
12.5 — 25.0
25.0 — 37.5
37.5 — 50.0
50.0 — 62.5
62.5 — 75.0
75.0 — 87.5
87.5 — 100

 1
2
3
4
5
6
xf
8

TABLE I. Threshold function used in the example to illustrate
the approximate implementationof linear threshold schedul-
ing.

and 12 also qualify because their average seek times were es-
timated to be within 15 ms,satisfying Eq. (1). For region 1,
however, the seek time within the band,plus controller over-
head,is estimated as 6.45 ms; since this is larger than 1/3
of the rotational latency, the destage cost to region 1 is es-
timated as 4 units, or 4/3 x rotational latency. The shaded
regions in Figure 1(b) all have destage cost within 3 units.
Note that blocks within region 0 qualify for destage because
the seek time within the region, as computed by Eq.(3)is
within 15 ms, so that the average cost of a destage would be
estimated as one rotational latency.

III. SIMULATION MODEL

To evaluate the effectiveness of the scheduling algorithms
described in the previous section, we implemented theal-
gorithms in our RAID simulator and performed extensive
simulations. In this section, we describe details of our sim-
ulation model and the methodology used to generate the
synthetic workloads used in our simulations. j

HPE, Exh. 1014, p. 10

HPE, Exh. 1014, p. 11

A. System Configuration

Our disk array model is designed to represent a general
RAID-5 configuration. In all our simulations, we used a
configuration with two parity groups, each consisting of five
disks, for a total of 10 disks. Data was assumed to beor-

ganized on the disks in 4 Kbyte blocks and each requestin-
volves either reading or writing an integral numberof blocks.
A stripe-unit size of 9 blocks was chosen for striping data.
Theuse ofa relatively small stripe-unit size makes our sys-
tem better suited for a workload with predominantly small
requests, as is common in transaction processing applica-
tions. However, since we used 1 Gbyte disks that are at the
low end of disk capacity by today’s standards, our results
should be comparable to those in a disk array using larger
data blocks with higher capacity drives.

In our disk array model, we simulated two separate
caches, a non-volatile write cache andalarger volatile read
cache. Thisis different from the cache organization consid-
ered by Menon [10], where a single non-volatile cache was
used to service both reads and writes. The single cache al-
lows more flexibility in allocating the available cache space
between reads and writes, but at a substantially higher cost.
Both caches in our model are dual-ported and use LRU re-
placement algorithm. Since the total storage capacity of the
array is approximately 10 Gigabytes, we chose thesize of the
read cache as 8 Mbytes, approximately 0.1 percent of disk
capacity. The size of the write cache used in the simulations

vary over the range of 512 Kbytes — 4 Mbytes, with focus
on the 1 Mbyte cache size. Both the read and write caches
were organized with a fixed block-size of 4 Kbytes.

The read cache always contains unmodified copies of disk
blocks. It is used for two primary purposes: (i) to hold
copies of the most recently read data so that subsequent
reads can be serviced from the cache, and(ii) to hold data
or parity that is needed for parity calculations. The write
cache is used mostly to hold information that is newer than
the copy on the disk, that is, both data written by the host
and newly calculated parity blocks. A block in the write
cache remains valid until it is updated on the disk by the
destage algorithm. Although information can be removed
from the write cache immediately after updating it on disk,
our simulator simply marks the corresponding cache blocks
as “available.” These blocks can still be accessed for future
reads and parity calculations if they have not been writtenover.

In our implementations of the scheduling algorithms, we
did not explicitly attempt to make the algorithms robust.
Instead,our focus is on evaluating their performance. Tech-
niques such as those used by Menon and Cortney [8] could
be used to make the write cache and the destage algorithm
tolerant to failures.

Requests from the host are queued in the system and
scheduled for service in FCFS order. Although requests are
initiated in order, they are not always completed in order.
Requests that can be completed entirely by the read and
write caches and require no immediate disk accesses are com-
pleted in order. Requests that involve disk accesses, on the
other hand, are handled asynchronously and may complete
out of order. The following paragraphs explain the servicing
of host requests in more detail.

Host reads are handled in a relatively simple manner.
Whena read request arrives from the host, both caches are

88

Workload

NonyolatileRead Cache
Write Cache

Parity Group 2

Fig. 2. Model of RAID-5 used in simulations.

checked forthe requested block(s). If all the requested blocks
are present in the caches, data will be transferred as soon as
the I/O channel becomesavailable. If one or more blocks are
found missing, a read request is generated for every missing
block and queued for the corresponding disk to becomefree.
Note that host requests are serviced at a higher priority by
the disks in comparison to destage requests. When all the
blocks have been transferred into the read cache, and on
obtaining access to the I/O channel, data is transferred to
the host system as a single block transfer. Thus, the data
transfers may not occur in the order in which the requests
were received by the disk array.

Handling of write accesses from the host is substantially
more complex, since there are many cases to consider. To
keep our model simple, we assume that a write access never
bypasses the write cache unless the cacheis full. There are
three separate cases to consider in handling a write: First,
the request may be a re-write of a block already present in
the write cache whose parity has not yet been computed.
In this case, the block is simply written over with the new
data. If the block is not in the write cache, orif its parity
has already been computed, an available block is chosen in
the write cache and the new data is written to the block.
Thus, two updated copies of the block may be present at
the same time in the write cache. In this case, the earlier
version can be removedafter the parity is computed taking
into account the newer version. Finally, if the write cache
is full at the time the request is serviced,it is handled as in
a traditional RAID-5, with all the associated disk accesses
occurring before a completion message can be sentout.

Data written to the write cache are eventually updated
on the disks in the background by the destage algorithm.
Since parity must also be updated, the new parity must be
computed using theold copies of data and parity before the
new data can be removed from the cache. If the old data
and parity are not presentin either cache, they must be read
from disk. These disk accesses are scheduled by the destage
algorithm and the associated data/parity are placed in the
read cache when they becomeavailable. Whenall the needed
data/parity blocks are available in the caches, a new parity
is calculated and written into the write cache. Once the

parity computation is complete, requests for updating the

HPE, Exh. 1014, p. 11

HPE, Exh. 1014, p. 12

mt new parity and data are placed in the destage queue. The
 destage algorithm may now schedule the disk accesses to

copy the new data and parity items to disk, thereby freeing
up blocks in the write cache.

In the implementation of our destage algorithms, we did
not partition the write cache into fixed data and parity re-
gions, nor did we impose limits on the number of blocks
occupied by each type of information. We did not see an

overwhelming need to impose such limits, since the distribu-
_ tion of valid blocks in the cache between data and parity re-

mainedrelatively stable over time in our simulations. How-
ever, to avoid deadlocks in the system, a minimum amount

__ of space — 3 blocks — was reserved for parity. Thus, when
the cache has less than three available blocks, an incoming

write is forced to bypass the cache. If incoming writes were
: allowed to fill the cache completely, a deadlock could result
_ from not being able to perform parity computations.

Scheduling of disk requests is performed independently
for each disk. There are two separate queues for each disk,
one for host reads (and writes, when the write cache be-

_ comesfull) and the second for destage accesses. Whenever a
request is received for a disk that is currently idle, or when a
disk that is currently busy completes its access, the schedul-
ing algorithm for that disk is invoked. The scheduling algo-
rithm handles host reads and writes in FCFS order. These
accesses are given priority over destage disk accesses. A re-
questis serviced from the destage queue only when the host
queue is empty.

B. The RAID Simulator

In designing the simulator we needed to determine the
components that are critical to the performance of the sys-
tem. The key elements simulated were the I/O channel, the
two caches, disk drives, the controllers, and someof the data
paths. Wefelt that these elements represented the majority
of the system’s timing and data transfer constraints.

Oursimulation modelfor the disk drives is based on the
HP 97560. These are 5.25-inch, 1.26 Gbyte disks which ro-
tate at 4002 rpm. The average access time of the disk is
23 ms for an 8 Kbyte data transfer. The disk drive model
takes into account seek time, rotational latency, head set-
tling time, and data transfer time. The disk drive model is
based on the work of Ruemmler and Wilkes [13].

Data transfers from the disk drives are limited by the
bandwidth of the write port of the read cache. All data read
from disks must be transferred through this port. When
disks perform reads they buffer the data in their track buffer,
but the disk is marked busy until the data-transfer is com-
pleted. For writes we overlap data transfer with the seek,
and assume that sufficient bandwidth will be available to
transfer the data to the disk buffer before the seek is com-

pleted. This does not model datapath contention in esti-
mating the disk service time, and is therefore optimistic;
in our simulations, however, the number of cases when the
data could not be delivered in time to the disk because of

contention was insignificantly small.
Theresponse timeis also affected by the implementation

of the caches and the I/O channel. Both the read and the
write cache can besearchedin parallel, but blocks in each
cache are searched sequentially. Response times of requests
also take into account the data transfer rate and queue-
ing delay of the cache ports and the I/O bus. The cache

89

ports and the I/O bus haveafixed data transfer rate of
20 Mbytes/second and requests are queued in FIFO order.
Requests must reserve ports and buses in such an order that
deadlocks cannot occur. User requests contend with back-
ground destage and parity operations for these resources.

C. Workload Model

A major problem in evaluating algorithms for disk ar-
rays is the difficulty of obtaining real-world I/O workload
traces that are capable of providing adequate loading to per-
form meaningful measurements. Since none of the workloads
available to us was able to provide the adequatelevel of load-
ing to study the differences in the behavior of the various
destage algorithms, we constructed a workload generator to
generate synthetic workloads that can be used to drive our
simulation model of the disk array. Most of the results in
this section are based on the synthetic workload, but for
validation we also provide someresults from a workload ob-
tained by overlaying multiple request streams from a set of
real traces.

Instead of using a random spatial distribution of requests
to blocks in the disk array, the workload allows to simu-
late requests from multiple process groups (each representing
one or more processes), that accesses subsets of the logical
disk space. Within each of the groups, the request rate,
read/write ratio, and degree of locality of the accesses are
configurable. For obtaining the results reported in this pa-
per, the workload generator was configured to represent ten
process groups each generating requests at the same rate.
Nine of these process groups accessed a randomly chosen
one-percent subset of the disk space, while one process group
produced requests distributed across the entire disk space.

Within each process group, locality is modeled by main-
taining a history buffer of previous requests. The workload
generator chooses the address of a request by either gener-
ating a new one randomly from the process group’s address
space, or from the history buffer randomly. Addresses in the
history buffer are chosen according to a normal distribution
that favors more recent requests over older ones. When the
history buffer is used to generate addresses the target ad-
dresses for reads are chosen from old requests (both reads
and writes) uniformly, while the target addresses for writes
are chosen 90% of the time from old writes and 10% from old

reads. The history buffer is larger than either of the caches,
so the cache hit ratios would be lower than the percentage
of requests generated from the history buffer.

The issue times of the requests were based on a normal
distribution. This distribution causes requests to be issued
with a pattern of small cyclical bursts. For the most part
we set the mean issue rate to a fixed value, but in some
of the experiments designed to measure the burst-tolerance
of the scheduling algorithm, we configured the system to
create sustained bursts in the workload. The bursts were

implemented by issuing requests at a fixed background rate
and then tripling the issue rate periodically.

A number of default values are implied for parameters
in the simulations reported in this paper. The size of the
write cache is 1 Mbyte, unless specified otherwise. The to-
tal number of process groups used in the workload model
is 10, and the write percentage is always 40%. The default
size of the history buffer is 10 Mbytes (0.1 percent of disk
capacity). The default percentage of requests to be chosen

HPE, Exh. 1014, p. 12

HPE, Exh. 1014, p. 13

from the history buffer is 65% for reads and 90% for writes.
For an 8 Mbyte read cache, this results in a hit ratio of ap-
proximately 51%. Forall the simulations the mean number
of disk blocks per request was 2, with a normaldistribution
favoring smaller requests.

The basic objective of our evaluation is to study the be-
havior of the destage algorithms, as opposed to benchmark-
ing. The simplified workload model we used allowed us to
study how the parameters of the workload suchas locality
and burst distribution affect the different algorithms. The
model allows certain characteristics of the workload to be
exaggerated in a simple manner. In addition, errors intro-
duced by the spatial skew in a real workload arelikely to
be much less severe in a disk array as compared toasingle
disk, because of the striping employed in the former.

IV. SIMULATION RESULTS

Thus far we described the algorithms for scheduling
destages and the simulation modelof the disk array. In this
section, we present results from our simulation of the algo-
rithms and analyze the behaviorof the algorithms based on
observedresults. Wefirst start with a discussion of the per-
formance metrics that are useful in comparing the scheduling
algorithms.

A. Performance Metrics

As pointed out in Section II, the average response time
for write requests from the host may belittle affected by
the scheduling algorithm, as most of them maybeserviced
by the cache. The destage algorithm may, however, have a
significant effect on the latency of host reads that are ser-
viced by the disks, particularly at heavy loads. In addition,
a number of other metrics are useful in bringing out the
tradeoffs involved in the design of the algorithm. We used
the following metrics to evaluate our destage algorithms:

1. Response time of host reads: This is the average
delay experienced by a read request from the host, tak-
ing into account the service time and various queue-
ing delays involved. Since the response time of the
read requests serviced from the caches is not directly
affected by the destage algorithm, we considered only
the host reads that miss in the caches and are there-

fore serviced by the disks. These reads, although ser-
viced at a higher priority as compared to destages, may
still undergo queueing delaysif a destage is in progress
at the time the read request arrives in the queue. A
scheduling algorithm that reduces either the number
of destage accesses or the average time per destage, or
both, can potentially reduce this delay, thus improving
the response time of host reads directed to the disks.

2. Maximum throughput: The maximum throughput
is the maximum sustained rate of host requests that
can be serviced by the disk array without causing the
response time to grow unbounded. The destage algo-
rithm can increase the maximum throughput by min-
imizing both the number of destages and the service
time of individual destages. The former is achieved by
exploiting the temporal locality of writes and the latter
by minimizing the total delay for each destage.

3. Disk utilization: Thedisk utilization is defined as the
fraction of the time the disk is busy servicing a request.
The disk utilization can be broken up into two com-

90

—— FCFS
—8- Least-cost

2%Meancacheoccupancy =22See
t

0 50 100 150 200 250 300

System throughput(I/O requests per sec)

Fig. 3. Mean occupancyof the write cache in the RAID-5 system
for the various scheduling algorithms(size of write cache =
1 Mbyte).

ponents, one representing host accesses and the other
destage accesses, and further into reads and writes. The
load due to host reads is unlikely to change signifi-
cantly with the different scheduling algorithms; thus,
any changein thetotal utilization is predominantly due
to the destage component. This component captures
both the average number of destages performed in a
given period of time and the average time per destage,
and can therefore be taken as a measure of the total
amount of work performed by the disks in a unit of
time for performing the destage function.

4. Burst tolerance: Another important aspect of the
destage algorithm is its ability to tolerate short bursts
in the workload without causing a write-cacheoverflow.
The degree of tolerance to bursts can be measured in
several ways; we chose to use the minimum length of a
burst to cause cache overflow to express thesensitivity
of the algorithm to bursts in the workload. We evalu-
ated this metric as follows: The system is first brought
to steady state with a certain steady background work-
load. After reaching steady state, a burst is injected
into the system, increasing the request rate. In our ex-
periments, the burst rate was chosen as three times the
background rate. The length of the burst to cause an
overflow was then foundas the interval from the start of
the burst to the time at which the write cache becomes
full. The burst is turned off once a cache overflow oc-
curs and the system allowedto reach steady state again
with the background workload. The cycle was repeated
several times to obtain a mean valueof the burst length
to cause cache overflow.

B. Results

We nowpresent the results from simulating the various
scheduling algorithmsintroducedin Section II. Wefirst com-
pare the performance offour scheduling algorithms — least-
cost scheduling, high/low mark, linear threshold schedul-
ing, and a fourth algorithm where destages are performed in
FCFSorder. The approximationto linear-threshold schedul-
ing discussed in Section IIE is evaluated later since its be-
havioris similar to that of linear threshold scheduling.

Fig. 3 shows the mean occupancy of the write cache for
the four destage algorithms. Fig. 4 shows the variation in
the occupancy over time for the same algorithms. As ex-

HPE, Exh. 1014, p. 13

HPE, Exh. 1014, p. 14

(a) Least-cost scheduling.

(b) High/low mark scheduling algorithm.

20

Time(sec)

(b) Linear-threshold scheduling algorithm.

Fig. 4. Variation of the occupancy of the write cache with various scheduling algorithms (size of write cache = 1 Mbyte).

pected, the high-low mark algorithm maintains the write
_ cache occupancy at approximately 50%, near the middle of
_ its high and low marks. The inability of the high-low mark

algorithm to destage quickly enough once it reaches its high
mark results in frequent overflow of the write cache, as seen
in Fig. 4(b). This is a serious limitation in that the per-
formanceof the system is degraded during the periods when
the write cache becomesfull. The linear threshold algorithm
demonstrated greater stability. Its write cache occupancy
has the same mean of approximately 50%, butisless likely to
cause an overflow for comparable workloads. The least-cost
and FCFS algorithms maintain much lower cache occupan-
cies, until the workload becomes very heavy. At the limits
of their sustainable workload intensities, the write cache oc-
cupancies of both FCFSandleast-cost scheduling approach
that of linear threshold scheduling.

Destage algorithms gain performance by optimizing disk
use in terms of both the number and duration of disk ac-

cesses. Figures 5, 6, and 7 illuminate this aspect of the
algorithms. Figure 5 plots the ratio of the number of writes
actually seen by the disks to the numberof host writes, both
in blocks. Both FCFSandleast-cost scheduling perform sig-
nificantly more writes as compared to the linear threshold
scheduling algorithm, becauseof their inability to exploit lo-
cality among the writes. The high/low mark algorithm per-
forms the best in terms of the number of writes performed,
becauseof its higher average cache occupancy.

To evaluate the effectiveness of the algorithms in mini-

Ol

—e FCS
=Least-cost

—t— High/low mark
—+Linear threshold

0 50 100 150 200 250

System throughput(I/O requests per sec)

Fig. 5. Ratio of disk writes to host writes for the four scheduling
algorithms.

mizing the total time taken by disk writes, both the number
of disk writes and their service times must be taken into

account. Fig. 6 compares the disk utilization of the four
destage algorithms. Fig. 7 further provides a breakdown of
the utilization into its components, measured at a system
throughput level of 200 I/Os per second. The linear thresh-
old and the high-low mark algorithms have noticeably lower
disk utilization than the other two algorithms for compara-
ble workloads. The improved disk utilization is the result of
spendingless time performing destage reads and writes. This
is accomplished by maintaining more dirty blocks in their

HPE, Exh. 1014, p. 14

HPE, Exh. 1014, p. 15

=O CES

—@ Least-cost

—#- High/low mark
—*— Linear threshold

0 50 150 200 250 300

System throughput(I/O requests per sec)

Fig. 6. Disk Utilization in the RAID-5 system for the various
scheduling algorithms with a 1 Mbyte write cache.

Linear thresholdLeast-cost

Destagealgorithm
High/low mark

Fig. 7. Breakdown of disk usage in the RAID-5 system for the
various scheduling algorithms with a 1 Mbyte write cache.

write caches, which gives them the advantages of fewer du-
plicate destages and more flexibility in scheduling. In spite
of the slightly larger number of destage writes performed
by the linear threshold algorithm, it has better utilization
than the high/low mark algorithm. This is because thelat-
ter is forced to schedule a large number of destages when
the cache occupancy threshold crosses the high mark with
less opportunity to minimizethecost of individual destages.
Fig. 6 also illustrates the extremely high disk utilizations the
system can achieve. The write cache allows the system to
buffer work during small cyclical bursts. This work is then
performedat a later time, allowing for better disk utilization
andtheability to sustain heavy loads.

Fig. 7 shows the contribution to the disk utilization from
three different components — host reads, destage reads, and
destage writes. Host writes occur in our simulations only
when the write cacheis full; therefore it was an insignifi-
cant part of overall disk utilization. The share of host reads
is virtually identical for all the algorithms, demonstrating
the relative insensitivity of the number andservice time of
host readsserviced by the disks to the scheduling algorithm
used. The contribution of the destage components, however,
shows considerable variation among the algorithms. Both
the high/low mark andthelinear threshold algorithms again
perform the minimum amountof work for destaging.

One of the most important performance measures visi-
ble to the user is the response time of host reads that are
serviced by the disks. Fig. 8 compares the disk read re-
sponse time for all the destage algorithms. For moderate to

92,

& 3 —* FCFS
= —#- Least-cost

z 35|—#— High/low mark
g—+Linear threshold
&
2 30&
5
=

25

0 50 100 150 200 250 300

System throughput(I/O requests per sec)

Fig. 8. Performance of disk reads in the RAID-5 system with
1 Mbyte write cache.

heavy workloads, the linear threshold algorithm has the best
read-to-disk response times. The high-low mark algorithm
has comparable performance up to a point; howeverat high
workloads its inability to destage fast enough degradesits
performance. For most workloads the least-cost algorithm
performs worse than the linear threshold algorithm. At the
limit of sustainable throughput, however, the performance
of linear threshold and least-cost begins to converge. This
is because at high workloads the linear threshold algorithm
destages at almost every opportunity, behavingsimilar to the
least-cost algorithm. At low workloads the response times of
all the algorithms converge to the disk access time for reads
since thereis very little queueing delay.

Upto this point we have focused on systems with a write
cache size of 1 Mbyte, butit is important to consider how
the algorithmsare affected by the size of the write cache.
Fig. 9 and Fig. 10 show the delay-throughput plots for var-
ious cache sizes for least-cost scheduling and linear thresh-
old scheduling, respectively. The least-cost algorithm is not
able to achieve substantial response-time gains from a larger
write cache. This is due to the conservative nature of the al-
gorithm. Thelinear threshold algorithm,on the other hand,
consistently improves response times for larger caches as it
becomes moreselective in scheduling destages, as can be
seen in Fig. 10. Both algorithms see comparableincreasesin
sustainable throughput as the cachesize is increased. This
is due both to being able to achieve better disk utilization
and to having the additional cushion for absorbing bursts.

The ability of the destage algorithm to tolerate sustained
bursts in the workload without causing an overflow of the
write cache is important for the stable operation of the sys-
tem. The addition of a write cache to a disk array allows
it to tolerate occasional overloads by buffering work. How-
ever, to sustain a burst in the workload comparable to the
size of the cache, the scheduling algorithm must perform
as many destages as possible. Fig. 11 compares the ability
of the scheduling algorithmsto tolerate occasional bursts in
the workload, in terms of the minimum duration of the burst
to cause a cache overflow. This was measured by bringing
the system to steady state with a certain background work-
load represented by the x-axis, and then injecting a burst by
tripling the request rate. The length of the burst to cause
an overflow was then found as the interval from the start
of the burst to the time at which the write cache becomes
full. The burst is turned off once a cache overflow occurs

HPE, Exh. 1014, p. 15

HPE, Exh. 1014, p. 16

soa

are,

ia,

—e— 512 KByte cache
—@ | MByte cache
—#— 2 MByte cache
—»— 4 MByte cache

50 100 150 200 250 300 350 400 450 500

System throughput(I/O requests per sec)

Fig. 9. Performanceof disk reads in the RAID-5 system with the
least-cost scheduling algorithm.

— 512 KByte cache

—s- | MByte cache

—#— 2 MByte cache
—— 4 MByte cache

50 100 150 200 250 300 350 400 450 500

System throughput(I/O requests persec)

Fig. 10. Performance ofdisk reads in the RAID-5 system with
the linear-threshold scheduling algorithm.

and the system allowed to reach steady state again with the
background workload. The cycle was repeated several times
to obtain a mean value of the burst length to cause cache
overflow.

The least-cost algorithm, followed closely by FCFS,
showed the best burst tolerance. Both of these algorithms
gain their resilience from maintaining a low mean write-
cache occupancy before the burst, thus giving them a larger
cushion when the burst begins. The linear threshold al-
gorithm is not able to sustain bursts as long as theleast-
cost or FCFSalgorithms because it generally has a higher
write-cache occupancy at the beginning of a burst. How-
ever, although its burst tolerance is only moderate, the lin-
ear threshold algorithm was able to recover from bursts with
considerably higher background workloads than the other al-
gorithms.

Fig. 12 shows the performance of the approximate im-
plementation of the linear threshold scheduling algorithm in
termsof the response timefor host reads. The approximate
implementation shows no degradation in response time as
compared to the ideal algorithm it is based on; in fact, the
performanceslightly improved as a result of the approxima-
tion. This effect can be explained as follows: The approx-
imate implementation attempts to exploit spatial locality
among the destage requests in the same manneras thelin-
ear threshold algorithm, but its coarseness in estimating the
destage cost makesit slightly less effective. However, this
deficiency is more than offset by its increased effectiveness
in exploiting the temporal locality. By using the LRU or-

93

—e FIFO

—#- Least Cost

Timeuntilwritecachebecomesfull
130 150 170 190. 210 230. 250, 270

Background throughput

Fig. 11. Minimum burst duration to cause write cache overflow
in the RAID-5 system under various scheduling algorithms
(size of write cache = 1 Mbyte).

—#- Linear threshold

—o— Linear approximationMeanresponsetime(msec)
0 50 100 150 200 250 300

System throughput(I/O requests per sec)

Fig. 12. Performance of disk reads in the RAID-5 system for lin-
ear threshold scheduling and its approximate implementation
(size of write cache = 1 Mbyte).

dering to schedule a destage from the regions with the same
estimated cost, the approximate implementation is able to
exploit temporal locality better than the ideal algorithm.
Thus, the parameters of the approximate implementation
can actually be chosen to achieve a balance between spatial
and temporallocality.

We close this section with some comments on how the

performance of the approximateversion ofthelinear thresh-
old scheduling algorithm is affected by the manner in which
the cost of individual destage requests is estimated. In all
the simulations so far, the destage cost was computed based
on the average positioning delay between regions on thedisk.
This results in the algorithm occasionally under-estimating
the delay, causing the actual delay of the destage to be higher
than the estimate by as much as onerotational latency. A
more conservative approach would be to estimate the cost of
the destage based on the mazimum positioning delay needed
to move the head to any part of the target region from any
point in the current region. A third alternative is to take
an aggressive approach by computing the estimate based on
the minimum positioning delay from the current region to
the target region. The three approaches are compared in
Fig. 13. The comparison is based on the the actual values of
the mean access time of the destages measuredin the simula-
tions. The conservative algorithm performed nearly as well
as the average one, missing cheaper accesses in somecases

HPE, Exh. 1014, p. 16

HPE, Exh. 1014, p. 17

LTeeee

&

—* aggressive

eamMeanservicetime(msec) Ss

n
150 200 250 300

System throughput(1/O requests per sec)

Fig. 13. Comparion of mean destage service time measured under
various schemes for estimating disk service time in approxi-
mate linear threshold scheduling.

wea

8

wvSoMeanresponsetime(msec) &
a

Numberoftrace overlays

Fig. 14. Response time for host reads from trace-driven simula-tions.

but compensatingfor them by avoiding cost over-runs in oth-
ers. The aggressive algorithm performed poorly compared
to the other two implementations, as a result of underesti-
mating thecost of almost every destage.

C. Results from Trace-Driven Simulations

To further validate our results from the synthetic work-
load, we also ran a set of simulations on a workload based
on I/O traces obtained from HP Laboratories. These traces
were collected from HP-UX systems during a 4-month pe-
riod, andare described in detail in [12]. To obtain a workload
of adequate intensity, we overlaid multiple trace files corre-
sponding to separate days. The particular trace used was
cello, over a 6-day period starting on April 20, 1992. The
workload for our simulations was generated by first trans-
lating the disk accesses in the traces to a single logically
contiguous space and mapping them to the physical disks
in our RAID model. The workload intensity was varied by
varying the number ofoverlays used.

Fig. 14 plots the average response time seen by all reads
in the workload as a function of the number of overlays.
The high/low mark algorithm provided nearly identical per-
formance as theliner threshold algorithm at low loads, but
diverged considerably as the workloadintensity is increased.
At high intensities, the bursts in the workload caused the
high/low mark algorithm to overflow the cache more often
than the linear threshold algorithm. Note that the plots

94

show the average response timeforall reads, not just those
serviced by the disks. We observed that the read-cache hit
ratios for this workload (20-30%) were even lower than that
obtained with the synthetic workload; thus, the destage al-
gorithm cansignificantly influence the responsetime seen by
the user,

V. CoNcLuDING REMARKS

In this paper, we studied a number of algorithms for
scheduling destages in a RAID-5 system. We introduced
a new scheduling algorithm,called linear threshold schedul-
ing that adaptively varies the rate of destages to disks based
on the instantaneous occupancy of the write cache. Ourre-
sults show that linear threshold scheduling provides the best
read performanceofall the algorithms compared,whilestill
maintaining a high degree of burst tolerance. An approxi-
mate implementation of the linear-threshold scheduling al-
gorithm was also described. The approximate algorithm can
be implemented at much lower overhead,yet its performance
is virtually identical to that of the ideal algorithm.

In the linear-threshold scheduling algorithm, we chose a
linear function to compute the thresholdfor destage cost as a
function of cache occupancy. Other functions could be used,
for example a function that increases destage rate faster as
the cache occupancy increases. Their effect on performance
needs to beinvestigated further. In addition, the scheduling
algorithms could be modified to take into account several
criteria we did not consider in our study, such as the spatial
locality among the pending destages and the relationships
between data and parity destages.

Although most of our simulation results in this paper
are based on a synthetic workload,results from simulations
based on a workload derived from real I/O traces show that
our estimates on the performance of the linear threshold
algorithm are in fact conservative. The use of caching in the
operating system can cause the percentage of writes in the
workload to be higher than the estimate (40%) used in our
synthetic workload model. At the same time, the locality
among reads can be considerably lower, making the disk
read performance morecritical.

The scheduling algorithms we studied can also be applied
to a RAID-4 system. RAID-4 systemsare not as widely used
as RAID-5 because of the bottleneck due to the dedicated
parity disks. This bottleneck, however, can be madeless se-
vere if a nonvolatile cache is used to buffer updates to the
disk array. Since parity is stored in a dedicated disk, sep-
arate algorithms could be used to destage data and parity
in a RAID-4. Since host reads do not access the parity disk
during normal operation, there is usually no reason to resort
to a non-work-conserving destage algorithm for the parity
disk. Thus, the least-cost scheduling algorithm can be used
to schedule the parity disk, while any of the algorithms in
Section II can be used for the data disks. From simula-
tions with the synthetic workload, we found the behavior
of the algorithms to be very similar to that in the RAID-5.
This suggests that the potential for performance gains from
optimizing destages is not limited to any single disk-array
configuration.

ACKNOWLEDGEMENT

Wethank John Wilkes at HP Labs for providing the 1/0
traces used in our simulations. Garth Gibson and the anony-

HPE, Exh. 1014, p. 17

HPE, Exh. 1014, p. 18

mous reviewers provided many insightful comments for im-
proving the technical quality and presentation of the paper.

REFERENCES

P. Biswas, K. K. Ramakrishnan, and D. Towsley, “Trace-
Driven Analysis of Caching Policies for Disks,” Proceedings
of the 1993 ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, May 1993, pp. 13-23.
P. M. Chen,et al., “RAID: High-Performance, Reliable Sec-
ondary Storage,” ACM Computing Surveys, Vol. 26, No. 2,
June 1994, pp. 145-188.
P. J. Denning, “Effect of Scheduling on File Memory
Operations,” AFIPS Spring Joint Computer Conference,
April 1967, pp. 9-21.
G. R. Ganger,et al., “Disk Arrays: High-Performance High-
Reliability Storage Subsystems,” JEEE Computer, Vol. 27,
No. 3, March 1994, pp. 30-36.
R. Geist and S. Daniel, “A Continuum of Disk Schedul-
ing Algorithms,” ACM Transactions on Computer Systems,
February 1987, pp. 77-92.
D. M. Jacobson and J. Wilkes, “Disk Scheduling Algorithms
Based on Rotational Position,” Technical Report HPL-CSP-
91-7, Hewlett-Packard Laboratories, February 1991.
J. Menon and D. Mattson, “Performance of Disk Arrays in
Transaction Processing Environments,” Proceedings of the
12th International Conference on Distributed Computing
Systems, June 1992, pp. 302-309.
J. Menon and J. Cortney, “The Architecture of a Fault-
Tolerant Cached RAID Controller,” Proceedings of the 20th
Annual International Symposium on Computer Architec-
ture, May 1993, pp. 76-86.
J. Menon, J. Roche, and J. Kasson, “Floating Parity and
Data Disk Arrays,” Journal of Parallel and Distributed
Computing, Vol. 17, No. 1-2, 1993, pp. 129-139.
J. Menon, “Performance of RAID5 Disk Arrays with Read
and Write Caching, Distributed and Parallel Databases,
Vol. 2, No. 3, July 1994, pp. 261-293.
D. A. Patterson, G. Gibson, and R. H. Katz, “A Case for Re-
dundant Arrays of Inexpensive Disks (RAID),” Proceedings
of ACM SIGMOD,June 1988, pp. 109-116.
C. Ruemmler and J. Wilkes, “UNIX Disk Access Patterns,”
Proceedings of the Winter 1993 USENIX Conference, Jan-
uary 1993, pp. 405-420.
C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive
Modeling,” IEEE Computer, Vol. 27, No. 3, March 1994,
pp. 17-28.
M. Seltzer, P. Chen, and J. Ousterhout, “Disk Scheduling
Revisited,” Proceedings of the Winter 1990 USENIX Con-
ference, January 1990, pp. 313-324.
D. Stodolsky, G. Gibson, and M. Holland, “Parity Logging:
Overcoming the Small Write Problem in RedundantDisk Ar-
rays,” Proceedings of the 20th Annual International Sym-
posium on Computer Architecture, May 1993, pp. 64-75.
B. Worthington, G. Ganger, and Y. Patt, “Scheduling Al-
gorithms for Modern Disk Drives,” Proceedings of the 1994
ACM Sigmetrics Conference on Measurement and Model-
ing of Computer Systems, May 1994,pp. 241-251.
The RAIDBook, The RAID Advisory Board, Lino Lakes,
Minnesota, June 1993.

(1)

[2]

[3]

[4]

[5]

(6)

[8]

(9]

(10)

(11)

[12]

[13]

(14)

(15)

[16]

[17]

AppENDIX A: ESTIMATING DESTAGE COST FOR THE
APPROXIMATE LINEAR-THRESHOLD SCHEDULING

ALGORITHM

This section provides the equations we used in calculat-
ing the estimated destage cost for the approximate linear-
threshold algorithm introduced in Section 2.5. We use the
notation || to denote the largest integer less than or equal
to x, and [x] the smallest integer greater than or equal toZz.

The seek time, rotational latency, and controller overhead
are taken into account in estimating the destage cost. The
controller overhead tcon is taken as a constant 2.2 ms. Let
f(x) be the seek time of the disk between two cylinders at
a distance of x. The average seek time between two regions
is estimated as follows: Let c be the numberof cylinders in

OD

each band and m the numberof regions per band. Assume
that the regions are numbered from 0 to (c-m — 1), as il-
lustrated in Fig. 1(a). If two regions i and j fall in different
bands, the average seek time tseex(i, 7) between themisesti-
mated as the seek time between the middle cylinders of the
two regions. For convenience, we also include the constant
controller overhead in tscex(i, j). That is,

tseek (7, J) =f (c [2 rs (=1)) + teon- (2)m m

Whenthe regions i and j are within the same band, the
average seek time is estimated as the time to seek across
half the width of the band. Thatis,

tseek (i, 9) = f(c/2) “te tcon- (3)

Let trot be the rotational latency of the disk in millisec-
onds. Since the scheduling decisions are made at the gran-
ularity of a region, the destage cost is estimated in units of
the rotational latency of a region on the disk, that is, 1/m
of the disk rotation time.

Whentheregions i and j are at the samerotational offset
on the disk, the destage cost from i to j is the seek time plus
controller overhead, rounded up to whole revolutions. That
is,

cost(i, j) = ss) in,trot

expressed in units of the rotational latency of a region. When
the regions i and j are not at the same rotational offset on
the disk, the relative rotational positions of i and j need to
be taken into account. This is accomplished as follows:
We can express the seek time tseex(i, j) as

Ujcent, 9) = atror + B,

where a is an integer and 0 < (< trot. a represents the
numberof whole revolutions made by the disk during the
seek time and #3 thefractional part. If the fractional part is
greater than the rotational offset from ¢ to j, then region j
can be accessed only during the (a + 1)th revolution of the
disk. In this case, the total cost of the destage, including
both seek time and rotational latency is given by

cost(i, j) (a + 1)m + (j —%) mod m,
if 22trot >(j-i)modm. (4)

If the fractional partis less than or equal to the rotational
offset, the extra revolution is saved. The cost is then given
by

cost (i, j) am + (j — i) mod m,

if 24 < (j-i) modm. (5)
Thus, the general equation for the estimated cost of a

destage from region i to region j is given by

(|Saeeibisi2| +1) m+ (j-i) mod m,trot

cost(i,j) = if m (4eet) ue |fasedd |) > (j — i) mod m;
| tasenStst2 | m-+(j—i)modm, otherwise.

(6)

HPE, Exh. 1014, p. 18

