US 8,639,267 B2

223

6154 ensures each parameter is in a ready to use form to be
processed with the command and operand. Each parameter
results in embodiments of a data value, a data value resulting
from an expression, a data reference (e.g. pointer), or other
embodiments well known in the art of passing parameters
(arguments) to a function, procedure, or script for processing.
Thereafter, if block 6156 determines the REMOTE variable is
set to No (i.e. “No” equals a value distinguishable from any
Host specification for having the meaning of “No Host Speci-
fication™), then processing continues to block 6158 where the
ExecuteAction procedure of FIG. 62 is invoked with the
command, operand and parameters of the action in process.
Upon return from the procedure of FIG. 62, processing con-
tinues back to block 6126 for any remaining charter actions.
If block 6156 determines the REMOTE variable is set to a
Host for running the action, then processing continues to
block 6160 for preparing send data procedure parameters for
performing a remote action (of the command, operand and
parameters), and then invoking the send data procedure of
FIG. 75A for performing the action at the remote MS (also see
FIG. 75B). Processing then continues back to block 6126. An
alternate embodiment will loop on multiple BNF grammar
Host specifications for multiple invocations of the send data
procedure (i.e. when multiple Host specifications are sup-
ported). Another embodiment to FIG. 61 processing permits
multiple actions with a single Host specification.

Referring back to block 6128, if'it is determined all current
charter actions are processed, then processing continues to
block 6104 for any next charter to process. Referring back to
block 6106, if it is determined all charters have been pro-
cessed, processing terminates at block 6164.

Depending on various embodiments, there may be obvious
error handling in FIG. 61 charter parsing. Preferably, the
charters were reasonably validated prior to being configured
and/or previously processed/parsed (e.g. FIG. 57 processing).
Also, TimeSpec and/or MSRelevance information may be
used in FIG. 61 so that charter part processing occurs only in
one place (i.e. FIG. 61 rather than FIG. 57) to achieve better
MS performance by preventing more than one scan over
charter data. Some embodiments of FIG. 61 may be the single
place where charters are eliminated based on privileges,
TimeSpecs, MSRelevance, or any other criteria discussed
with FIG. 57 for charter elimination to improve performance
(i.e. asingle charter parse when needed). Third party MSs (i.e.
those that are not represented by the in-process WDR and the
MS of FIG. 57 processing) can be affected by charter actions
(e.g. via Host specification, privileged action, privileged fea-
ture, etc).

Preferably, statistics are maintained throughout FIG. 61
processing for how charters were processed, which charters
became effective, why they became effective, which com-
mands were processed (e.g. invocation of FIG. 62), etc.

With reference now to FIG. 75 A, depicted is a flowchart for
describing a preferred embodiment of a procedure for send-
ing data to a remote MS, for example to perform a remote
action as invoked from block 6162. FIG. 75A is preferably of
linkable PIP code 6. The purpose is for the MS of FIG. 75A
processing (e.g. a first, or sending, MS) to transmit data to
other MSs (e.g. at least a second, or receiving, MS), for
example an action (command, operand, and any para-
meter(s)), or specific processing for a particular command
(e.g. Send atomic command). Multiple channels for sending,
or broadcasting should be isolated to modular send process-
ing (feeding from a queue 24). In an alternative embodiment
having multiple transmission channels visible to processing
of FIG. 75A (e.g. block 6162), there can be intelligence to
drive each channel for broadcasting on multiple channels,

40

45

55

224

either by multiple send threads for FIG. 75A processing, FIG.
75A loop processing on a channel list, and/or passing channel
information to send processing feeding from queue 24. If
FIG. 75A does not transmit directly over the channel(s) (i.e.
relies on send processing feeding from queue 24), an embodi-
ment may provide means for communicating the channel for
broadcast/send processing when interfacing to queue 24 (e.g.
incorporate a channel qualifier field with send packet inserted
to queue 24).

In any case, see detailed explanations of FIGS. 13A
through 13C, as well as long range exemplifications shown in
FIGS. 50A through 50C, respectively. Processing begins at
block 7502, continues to block 7504 where the caller param-
eter(s) passed to FIG. 75A processing (e.g. action for remote
execution, or command for remote execution) are used for
sending at least one data packet containing properly format-
ted data for sending, and for being properly received and
interpreted. Block 7504 may reformat parameters into a suit-
able data packet(s) format so the receiving MS can process
appropriately (see FIG. 75B). Depending on the present dis-
closure embodiment, any reasonable supported identity (ID/
IDType) is a valid target (e.g. as derived from a recipient or
system parameter). Thereafter, block 7506 waits for an
acknowledgement from the receiving MS if the communica-
tion embodiment in use utilizes that methodology. In one
embodiment, the send data packet is an unreliable datagram
that will most likely be received by the target MS. In another
embodiment, the send data packet is reliably transported data
which requires an acknowledgement that it was received in
good order. In any case, block 7506 continues to block 7508.

Block 7504 formats the data for sending in accordance
with the specified delivery method, along with necessary
packet information (e.g. source identity, wrapper data, etc),
and sends data appropriately. For a broadcast send, block
7504 broadcasts the information (using a send interface like
interface 1906) by inserting to queue 24 so that send process-
ing broadcasts data 1302 (e.g. on all available communica-
tions interface(s) 70), for example as far as radius 1306, and
processing continues to block 7506. The broadcast is for
reception by data processing systems (e.g. MSs) in the vicin-
ity of FIGS. 13 A through 13C, as further explained by FIGS.
50A through 50C which includes potentially any distance.
The targeted MS should recognize that the data is meant for it
and receives it. For a targeted send, block 7504 formats the
data intended for recognition by the receiving target. In an
embodiment wherein usual MS communications data 1302 of
the MS is altered to contain CK 1304 for listening MSs in the
vicinity, send processing feeding from queue 24, caused by
block 7504 processing, will place information as CK 1304
embedded in usual data 1302 at the next opportune time of
sending usual data 1302. As the MS conducts its normal
communications, transmitted data 1302 contains new data
CK 1304 to be ignored by receiving MS other character 32
processing, but to be found by listening MSs within the vicin-
ity which anticipate presence of CK 1304. Otherwise, when
LN-Expanse deployments have not introduced CK 1304 to
usual data 1302 communicated on a receivable signal by MSs
in the vicinity, FIG. 75A sends/broadcasts new data 1302.

Block 7506 waits for a synchronous acknowledgement if
applicable to the send of block 7504 until either receiving one
or timing out. Block 7506 will not wait if no ack/response is
anticipated, in which case block 7506 sets status for block
7508 to “got it”. If a broadcast was made, one (1) acknowl-
edgement may be all that is necessary for validation, or all
anticipated targets can be accounted for before deeming a
successful ack. Thereafter, if block 7508 determines an appli-
cable ack/response was received (i.e. data successfully sent/

APPLE

EXHIBIT 1001 - PAGE 0376

US 8,639,267 B2

225

received), or none was anticipated (i.e. assume got it), then
processing continues to block 7510 for potentially processing
the response. Block 7510 will process the response if it was
anticipated for being received as determined by data sent at
block 7504. Thereafter, block 7512 performs logging for
success (e.g. to LBX History 30). If block 7508 determines an
anticipated ack was not received, then block 7512 logs the
attempt (e.g. to LBX history 30). An alternate embodiment to
block 7514 will log an error and may require a user action to
continue processing so a user is confirmed to have seen the
error. Both blocks 7512 and 7514 continue to block 7516
where the caller (invoker) is returned to for continued pro-
cessing (e.g. back to block 6162).

With reference now to FIG. 75B, depicted is a flowchart for
describing a preferred embodiment of processing for receiv-
ing execution data from another MS, for example action data
for execution, or processing of a particular atomic command
for execution. FIG. 75B processing describes a Receive
Execution Data (RXED) process worker thread, and is of PIP
code 6. There may be many worker threads for the RxED
process, just as described for a 19xx process. The receive
execution data (RXED) process is to fit identically into the
framework of architecture 1900 as other 19xx processes, with
specific similarity to process 1942 in that there is data
received from receive queue 26, the RXxED thread(s) stay
blocked on the receive queue until data is received, and a
RXED worker thread sends data as described (e.g. using send
queue 24). Blocks 1220 through 1240, blocks 1436 through
1456 (and applicable invocation of FIG. 18), block 1516,
block 1536, blocks 2804 through 2818, FIG. 29A, FIG. 29B,
and any other applicable architecture 1900 process/thread
framework processing is to adapt for the new RXED process.
For example, the RXED process is initialized as part of the
enumerated set at blocks 1226 (e.g. preferably next to last
member of set) and 2806 (e.g. preferably second member of
set) for similar architecture 1900 processing. Receive pro-
cessing identifies targeted/broadcasted data destined for the
MS of FIG. 75B processing. An appropriate data format is
used, for example using X.409 encoding of FIGS. 33A
through 33C for some subset of data packet(s) received
wherein RxED thread(s) purpose is for the MS of FIG. 75B
processing to respond to incoming data. It is recommended
that validity criteria set at block 1444 for RxED-Max be set as
high as possible (e.g. 10) relative performance considerations
of architecture 1900, to service multiple data receptions
simultaneously. Multiple channels for receiving data fed to
queue 26 are preferably isolated to modular receive process-
ing.

In an alternative embodiment having multiple receiving
transmission channels visible to the RXED process, there can
be a RXED worker thread per channel to handle receiving on
multiple channels simultaneously. If RxED thread(s) do not
receive directly from the channel, the preferred embodiment
of FIG. 75B would not need to convey channel information to
RxED thread(s) waiting on queue 24 anyway. Embodiments
could allow specification/configuration of many RxED
thread(s) per channel.

A RxED thread processing begins at block 7552, continues
to block 7554 where the process worker thread count RXED-
Ctis accessed and incremented by 1 (using appropriate sema-
phore access (e.g. RXED-Sem)), and continues to block 7556
for retrieving from queue 26 sent data (using interface like
interface 1948), perhaps a special termination request entry,
and only continues to block 7558 when a record of data (e.g.
action for remote execution, particular atomic command, or
termination record) is retrieved. In one embodiment, receive
processing deposits data as record(s) to queue 26. In another

20

35

40

45

226

embodiment, XML is received and deposited to queue 26, or
some other suitable syntax is received as derived from the
BNF grammar. In another embodiment, receive processing
receives data in one format and deposits a more suitable
format for FIG. 75B processing.

Block 7556 stays blocked on retrieving from queue 26 until
data is retrieved, in which case processing continues to block
7558. If block 7558 determines a special entry indicating to
terminate was not found in queue 26, processing continues to
block 7560. There are various embodiments for RXED
thread(s), RxCD thread(s), thread(s) 1912 and thread(s) 1942
to feed off a queue 26 for different record types, for example,
separate queues 26A, 26B, 26C and 26D, or a thread target
field with different record types found at queue 26 (e.g. like
field 2400a). In another embodiment, there are separate
queues 26D and 26E for separate processing of incoming
remote action and send command data. In another embodi-
ment, thread(s) 1912 are modified with logic of RxED
thread(s) to handle remote actions and send command data
requests, since thread(s) 1912 are listening for queue 26 data
anyway. In yet another embodiment, there are distinct threads
and/or distinct queues for processing each kind of an atomic
command to FIG. 75B processing (i.e. as processed by blocks
7578 through 7584).

Block 7560 validates incoming data for this targeted MS
before continuing to block 7562. A preferred embodiment of
receive processing already validated the data is intended for
this MS by having listened specifically for the data, or by
having already validated it is at the intended MS destination
(e.g. block 7558 can continue directly to block 7564 (no block
7560 and block 7562 required)). If block 7562 determines the
data is valid for processing, then block 7564 checks the data
for its purpose (remote action or particular command). If
block 7564 determines the data received is for processing a
remote action, then block 7566 accesses source information,
the command, the operand, and parameters from the data
received. Thereafter, block 7568 accesses privileges for each
of'the remote action parts (command, operand, parameters) to
ensure the source has proper privileges for running the action
at the MS of FIG. 75B processing. Depending on embodi-
ments, block 7568 may include evaluating the action for
elaborating special terms and/or expressions as described for
FIG. 61 (blocks 6140 through 6154), although the preferred
embodiment preferably already did that prior to transmitting
the remote action for execution (e.g. remote action already
underwent detailed privilege assessment). However, in some
embodiments where privileges are only maintained locally,
the action processing of FIG. 61 processing would be
required at block 7568 to check privileges where appropriate
in processing the action. In such embodiments, FIG. 61 would
process local actions as disclosed, but would not process
actions known to be for remote execution (i.e. Host specifi-
cation) since a FIG. 75B embodiment would include FIG. 61
processing for performing privilege check processing to
determine that sufficient privileges are granted. Thus,
depending on the present disclosure embodiment, block 7568
may include little privilege verification, no privilege verifica-
tion, or may include all applicable action privilege verifica-
tion discussed already in FIG. 61.

In yet another embodiment, special terms processing of
FIG. 61 can be delayed until FIG. 75B processing (e.g. block
7566 continues to a new block 7567 which continues to block
7568). It may be advantageous to have new block 7567 elabo-
rate/evaluate special terms at the MS of FIG. 75B processing
in some embodiments. In a further embodiment, a syntax or
qualifier can be used to differentiate where to perform special
term elaboration/evaluation.

APPLE

EXHIBIT 1001 - PAGE 0377

US 8,639,267 B2

227

Thereafter, if block 7570 determines the action for execu-
tion is acceptable (and perhaps privileged, or privileged per
source, or there was no check necessary), then block 7572
invokes the execute action procedure of FIG. 62 with the
action (command, operand, and any parameter(s)), completes
at block 7574 an acknowledgement to the originating MS of
the data received at block 7556, and block 7576 sends/broad-
casts the acknowledgement (ack), before continuing back to
block 7556 for the next incoming execution request data.
Block 7576 sends/broadcasts the ack (using a send interface
like interface 1946) by inserting to queue 24 so that send
processing transmits data 1302, for example as far as radius
1306. Embodiments will use the different correlation meth-
ods already discussed above, to associate an ack with a send.

If block 7570 determines the data is not acceptable/privi-
leged, then processing continues directly back to block 7556.
For security reasons, it is best not to respond with an error. It
is best to ignore the data entirely. In another embodiment, an
error may be returned to the sender for appropriate error
processing and reporting.

Referring back to block 7564, if it is determined that the
execution data is for processing a particular atomic com-
mand, then processing continues to block 7578. Block 7578
accesses the command (e.g. send), the operand, and param-
eters from the data received. Thereafter, block 7580 accesses
privileges for each of the parts (command, operand, param-
eters) to ensure the source has proper privileges for running
the atomic command at the MS of FIG. 75B processing.
Depending on embodiments, block 7580 may include evalu-
ating the command for elaborating special terms and/or
expressions as described for FIG. 61 (blocks 6140 through
6154), although the preferred embodiment preferably already
did that prior to transmitting the command for execution.
However, in some embodiments where privileges are only
maintained locally, the privilege processing of FIG. 61 would
be required at block 7580 to check privileges where appro-
priate in processing the command. In such embodiments,
FIG. 61 would process local actions as disclosed, but would
not process actions known to be for remote execution (i.e.
Host specification) since a FIG. 75B embodiment would
include FIG. 61 processing for performing privilege check
processing to determine that sufficient privileges are granted.
Thus, depending on the present disclosure embodiment,
block 7580 may include little privilege verification, no privi-
lege verification, or may include all applicable action privi-
lege verification discussed already in FIG. 61.

In yet another embodiment, special terms processing of
FIG. 61 can be delayed until FIG. 75B processing (e.g. block
7566 continues to a new block 7567 which continues to block
7568). It may be advantageous to have new block 7567 elabo-
rate/evaluate special terms at the MS of FIG. 75B processing
in some embodiments. In a further embodiment, a syntax or
qualifier can be used to differentiate where to perform special
term elaboration/evaluation.

Thereatter, if block 7582 determines the command (Com-
mand, Operand, Parameters) for execution is acceptable (and
perhaps privileged, or privileged per source, or there was no
check necessary), then block 7584 performs the command
locally at the MS of FIG. 75A processing. Thereafter, block
7586 checks if a response is needed as a result of command
(e.g. Find command) processing at block 7584. If block 7586
determines aresponse is to be sent back to the originating MS,
7574 completes a response to the originating MS of the data
received at block 7556, and block 7576 sends/broadcasts the
response, before continuing back to block 7556 for the next
incoming execution request data. Block 7576 sends/broad-
casts the response containing appropriate command results

5

10

15

20

25

30

35

40

45

50

55

60

65

228

(using a send interface like interface 1946) by inserting to
queue 24 so that send processing transmits data 1302, for
example as far as radius 1306. Embodiments will use the
different correlation methods already discussed above, to
associate a response with a send.

If block 7586 determines a response is not to be sent back
to the originating MS, then processing continues directly
back to block 7556. If block 7582 determines the data is not
acceptable/privileged, then processing continues back to
block 7556. For security reasons, it is best not to respond with
an error. It is best to ignore inappropriate (e.g. unprivileged,
unwarranted) data entirely. In another embodiment, an error
may be returned to the sender for appropriate error processing
and reporting.

Blocks 7578 through 7584 are presented generically so that
specific atomic command descriptions below provide appro-
priate interpretation and processing. The actual implementa-
tion may replace blocks 7578 through 7584 with program-
ming case statement conditional execution for each atomic
command supported.

Referring back to block 7562, if it is determined that the
data is not valid for the MS of FIG. 75 processing, processing
continues back to block 7556. Referring back to block 7558,
if a worker thread termination request was found at queue 26,
then block 7586 decrements the RxED worker thread count
by 1 (using appropriate semaphore access (e.g. RxED-Sem)),
and RXED thread processing terminates at block 7588. Block
7586 may also check the RxED-Ct value, and signal the
RxED process parent thread that all worker threads are ter-
minated when RxED-Ct equals zero (0).

Block 7576 causes sending/broadcasting data 1302 con-
taining CK 1304, depending on the type of MS, wherein CK
1304 contains ack/response information prepared. In the
embodiment wherein usual MS communications data 1302 of
the MS is altered to contain CK 1304 for listening MSs in the
vicinity, send processing feeding from queue 24, caused by
block 7576 processing, will place ack/response information
as CK 1304 embedded in usual data 1302 at the next oppor-
tune time of sending usual data 1302. As the MS conducts its
normal communications, transmitted data 1302 contains new
data CK 1304 to be ignored by receiving MS other character
32 processing, but to be found by listening MSs within the
vicinity which anticipate presence of CK 1304. Otherwise,
when LN-Expanse deployments have not introduced CK
1304 to usual data 1302 communicated on a receivable signal
by MSs in the vicinity, FIG. 75B sends/broadcasts new ack/
response data 1302.

In an alternate embodiment, remote action and/or atomic
command data records contain a sent date/time stamp field of
when the data was sent by a remote MS, and a received
date/time stamp field (like field 2490c¢) is processed at the MS
in FIG. 75B processing. This would enable calculating a
TDOA measurement while receiving data (e.g. actions or
atomic command) that can then be used for location determi-
nation processing as described above.

For other acceptable receive processing, methods are well
known to those skilled in the art for “hooking” customized
processing into application processing of sought data
received, just as discussed with FIG. 44B above (e.g. mail
application, callback function API, etc). Thus, there are well
known methods for processing data in context of this disclo-
sure for receiving remote actions and/or atomic command
data from an originating MS to a receiving MS, for example
when using email. Similarly, as described above, SMS mes-
sages can be used to communicate data, albeit at smaller data
exchange sizes. The sending MS may break up larger portions

APPLE

EXHIBIT 1001 - PAGE 0378

US 8,639,267 B2

229

of data which can be sent as parse-able text to the receiving
MS. It may take multiple SMS messages to communicate the
data in its entirety.

Regardless of the type of receiving application, those
skilled in the art recognize many clever methods for receiving
data in context of a MS application which communicates in a
peer to peer fashion with another MS (e.g. callback
function(s), API interfaces in an appropriate loop which can
remain blocked until sought data is received for processing,
polling known storage destinations of data received, or other
applicable processing). FIGS. 75A and 75B are an embodi-
ment of MS to MS communications, referred to with the
acronym MS2MS.

FIG. 62 depicts a flowchart for describing a preferred
embodiment of a procedure for performing an action corre-
sponding to a configured command, namely an ExecuteAc-
tion procedure. Only a small number of commands are illus-
trated. The procedure starts at block 6202 and continues to
block 6204 where parameters of the Command, Operand, and
Parameters are accessed (see BNF grammar), depending on
an embodiment (e.g. parameters passed by reference or by
value). Preferably, FIG. 62 procedure processing is passed
parameters by reference (i.e. by address) so they are accessed
as needed by FIG. 62 processing. Block 6204 continues to
block 6206.

If it is determined at block 6206 that the action atomic
command is a send command, then processing continues to
block 6208 where the send command action procedure of
FIG. 63A is invoked. The send command action procedure is
invoked with parameters including the passed parameters of
Operand and Parameters discussed for block 6204. Upon
return from the send command action procedure, block 6208
continues to block 6256. Block 6256 returns to the calling
block of processing (e.g. block 6158) that invoked FIG. 62
processing. If block 6206 determines the action atomic com-
mand is not a send command, then processing continues to
block 6210. If it is determined at block 6210 that the action
atomic command is a notify command, then processing con-
tinues to block 6212 where the notify command action pro-
cedure of FIG. 64A is invoked. The notify command action
procedure is invoked with parameters including the passed
parameters of Operand and Parameters discussed for block
6204. Upon return from the notify command action proce-
dure, block 6212 continues to block 6256. If block 6210
determines the action atomic command is not a notify com-
mand, then processing continues to block 6214. If it is deter-
mined at block 6214 that the action atomic command is a
compose command, then processing continues to block 6216
where the compose command action procedure of FIG. 65A
is invoked. The compose command action procedure is
invoked with parameters including the passed parameters of
Operand and Parameters discussed for block 6204. Upon
return from the compose command action procedure, block
6216 continues to block 6256. If block 6214 determines the
action atomic command is not a compose command, then
processing continues to block 6218. If it is determined at
block 6218 that the action atomic command is a connect
command, then processing continues to block 6220 where the
connect command action procedure of FIG. 66A is invoked.
The connect command action procedure is invoked with
parameters including the passed parameters of Operand and
Parameters discussed for block 6204. Upon return from the
connect command action procedure, block 6220 continues to
block 6256. If block 6218 determines the action atomic com-
mand is nota connect command, then processing continues to
block 6222. If it is determined at block 6222 that the action
atomic command is a find command, then processing contin-

10

15

20

25

30

35

40

45

50

55

60

65

230

ues to block 6224 where the find command action procedure
of FIG. 67A is invoked. The find command action procedure
is invoked with parameters including the passed parameters
of Operand and Parameters discussed for block 6204. Upon
return from the find command action procedure, block 6224
continues to block 6256. If block 6222 determines the action
atomic command is not a find command, then processing
continues to block 6226. If it is determined at block 6226 that
the action atomic command is an invoke command, then
processing continues to block 6228 where the invoke com-
mand action procedure of FIG. 68A is invoked. The invoke
command action procedure is invoked with parameters
including the passed parameters of Operand and Parameters
discussed for block 6204. Upon return from the invoke com-
mand action procedure, block 6228 continues to block 6256.
Ifblock 6226 determines the action atomic command is notan
invoke command, then processing continues to block 6230. If
itis determined at block 6230 that the action atomic command
is a copy command, then processing continues to block 6232
where the copy command action procedure of FIG. 69A is
invoked. The copy command action procedure is invoked
with parameters including the passed parameters of Operand
and Parameters discussed for block 6204. Upon return from
the copy command action procedure, block 6232 continues to
block 6256. If block 6230 determines the action atomic com-
mand is not a copy command, then processing continues to
block 6234. If it is determined at block 6234 that the action
atomic command is a discard command, then processing
continues to block 6236 where the discard command action
procedure of FIG. 70A is invoked. The discard command
action procedure is invoked with parameters including the
passed parameters of Operand and Parameters discussed for
block 6204. Upon return from the discard command action
procedure, block 6236 continues to block 6256. If block 6234
determines the action atomic command is not a discard com-
mand, then processing continues to block 6238. If it is deter-
mined at block 6238 that the action atomic command is a
move command, then processing continues to block 6240
where the move command action procedure of FIG. 71A is
invoked. The move command action procedure is invoked
with parameters including the passed parameters of Operand
and Parameters discussed for block 6204. Upon return from
the move command action procedure, block 6240 continues
to block 6256. If block 6238 determines the action atomic
command is not a move command, then processing continues
to block 6242. If it is determined at block 6242 that the action
atomic command is a store command, then processing con-
tinues to block 6244 where the store command action proce-
dure of FIG. 72A is invoked. The store command action
procedure is invoked with parameters including the passed
parameters of Operand and Parameters discussed for block
6204. Upon return from the store command action procedure,
block 6244 continues to block 6256. Ifblock 6242 determines
the action atomic command is not a store command, then
processing continues to block 6246. If it is determined at
block 6246 that the action atomic command is an administrate
command, then processing continues to block 6248 where the
administrate command action procedure of FIG. 73A is
invoked. The administrate command action procedure is
invoked with parameters including the passed parameters of
Operand and Parameters discussed for block 6204. Upon
return from the administrate command action procedure,
block 6248 continues to block 6256. If block 6246 determines
the action atomic command is not an administrate command,
then processing continues to block 6250. If it is determined at
block 6250 that the action atomic command is a change
command, then processing continues to block 6252 where the

APPLE

EXHIBIT 1001 - PAGE 0379

US 8,639,267 B2

231

change command action procedure of FIG. 74A is invoked.
The change command action procedure is invoked with
parameters including the passed parameters of Operand and
Parameters discussed for block 6204. Upon return from the
change command action procedure, block 6252 continues to
block 6256. If block 6250 determines the action atomic com-
mand is not a change command, then processing continues to
block 6254 for handling other supported action atomic com-
mands on the MS. There are many commands that can be
implemented on a MS. Block 6254 continues to block 6256
for processing as already described. FIGS. 60 through 62
describe action processing for recognized events to process
WDRs.

FIGS. 63A through 74C document a MS toolbox of useful
actions. FIGS. 63A through 74C are in no way intended to
limit LBX functionality with a limited set of actions, but
rather to demonstrate a starting list of tools. New atomic
commands and operands can be implemented with contextual
“plug-in” processing code, API plug-in processing code,
command line invoked plug-in processing code, local data
processing system (e.g. MS) processing code, MS2MS plug-
in processing code, or other processing, all of which are
described below. The “know how” of atomic commands is
preferably isolated for a variety of “plug-in” processing. The
charter and privilege platform is designed for isolating the
complexities of privileged actions to “plug-in” methods of
new code (e.g. for commands and/or operands) wherever
possible.

Together with processing disclosed above, provided is a
user friendly development platform for quickly building LBX
applications wherein the platform enables conveniently
enabled LBX application interoperability and processing,
including synchronized processing, across a plurality of MSs.
Some commands involve a plurality of MSs and/or data pro-
cessing systems. Others don’t explicitly support a plurality of
MSs and data processing systems, however that is easily
accomplished for every command since a single charter
expression can cause a plurality of actions anyway. For
example, if a command does not support a plurality of MSs in
a single command action, the plurality of MSs is supported
with that command through specifying a plurality of identical
command actions in the charter configuration for each desired
MS. Actions provided in this LBX release enable a rich set of
LBX features and functionality for:

Desired local MS LBX processing;

Desired peer MS LBX processing relative permissions pro-

vided; and

Desired MS LBX processing from a global perspective of
a plurality of MSs. MS operating system resources of
memory, storage, semaphores, and applications and
application data is made accessible to other MSs as
governed by permissions. Thus, a single MS can become
a synchronization point for any plurality of MSs, and
synchronized processing can be achieved across a plu-
rality of independently operating MSs.

There are many different types of actions, commands, oper-
ands, parameters, etc that are envisioned, but embodiments
share at least the following fundamental characteristics:

1) Syntax is governed by the LBX BNF grammar;

2) Command is a verb for performing an action (i.e. atomic
command);

3) Operand is an object which provides what is acted upon
by the Command—e.g. brings context of how to process
Command (i.e. atomic operand); and

4) Parameters are anticipated by a combination of Com-
mand and Operand. Each parameter can be a constant, of
any data type, or a resulting evaluation of any arithmetic

10

15

20

25

30

35

40

45

50

60

65

232

or semantic expression, which may include atomic
terms, WDRTerms, AppTerms, atomic operators, etc
(see BNF grammar). Parameter order, syntax, seman-
tics, and variances of specification(s) are anticipated by
processing code. Obvious error handling is incorporated
in action processing.

Syntax and reasonable validation should be performed at
the time of configuration, although it is preferable to check for
errors at run time of actions as well. Various embodiments
may or may not validate at configuration time, and may or
may not validate at action processing time. Validation should
be performed at least once to prevent run time errors from
occurring. Obvious error handling is assumed present when
processing commands, such error handling preferably includ-
ing the logging of the error to LBX History 30 and/or notify-
ing the user of the error with, or without, request for the user
to acknowledge the reporting of error.

FIGS. 63 A through 74C are organized for presenting three
(3) parts to describing atomic commands (e.g. 63A, 63B (e.g.
63B-1 through 63B-7), 63C):

#A=describes preferred embodiment of command action

processing;

#B=describes LBX command processing for some oper-
ands; and

#C=describes one embodiment of command action pro-
cessing.

Some of the #A figures highlight diversity for showing dif-
ferent methods of command processing while highlighting
that some of the methods are interchangeable for commands
(e.g. Copy and Discard processing). Also the terminology
“application” and “executable” are used interchangeably to
represent an entity of processing which can be started, termi-
nated, and have processing results. Applications (i.e.
executables) can be started as a contextual launch, custom
launch through an API or command line, or other launch
method of an executable for processing.

Atomic command descriptions are to be interpreted in the
broadest sense, and some guidelines when reading the
descriptions include:

1) Any action (Command, Operand, Parameters) can
include an additional parameter, or use an existing
parameter if appropriate (e.g. attributes) to warn an
affected user that the action is pending (i.e. about to
occur). The warning provides the user with informative
information about the action and then waits for the user
to optionally accept (confirm) the action for processing,
or cancel it;

2) In alternate embodiments, an email or similar messaging
layer may be used as a transport for conveying and
processing actions between systems. As disclosed
above, characteristic(s) of the transported distribution
will distinguish it from other distributions for processing
uniquely at the receiving system(s);

3) Identities (e.g. sender, recipient, source, system, etc)
which are targeted data processing systems for process-
ing are described as MSs, but can be a data processing
system other than a MS in some contexts provided the
identified system has processing as disclosed;

4) Obvious error handling is assumed and avoided in the
descriptions.

The reader should cross reference/compare operand
descriptions in the #B matrices for each command to appre-
ciate full exploitation of the Operand, options, and intended
embodiments since descriptions assume information found in
other commands is relevant across commands. Some operand
description information may have been omitted from a com-

APPLE

EXHIBIT 1001 - PAGE 0380

US 8,639,267 B2

233

mand matrix to prevent obvious duplication of information
already described for the same operand in another command.

FIG. 63A depicts a flowchart for describing a preferred
embodiment of a procedure for Send command action pro-
cessing. There are three (3) primary methodologies for car-
rying out send command processing:

1) Using email or similar messaging layer as a transport

layer;

2) Using a MS to MS communications (MS2MS) of FIGS.

75A and 75B; or

3) Processing the send command locally.

In various embodiments, any of the send command Operands
can be implemented with either one of the methodologies,
although there may be a preference of which methodology is
used for which Operand. Atomic send command processing
begins at block 6302, continues to block 6304 for accessing
parameters of send command “Operand” (BNF Grammar
Operand) and “Parameters” (BNF Grammar Parameters), and
then to block 6306 for checking which “Operand” was
passed. If block 6306 determines the “Operand” indicates to
use email as the mechanism for performing the send com-
mand, then block 6308 checks if a sender parameter was
specified. If block 6308 determines a sender was specified,
processing continues to block 6312, otherwise block 6310
defaults one (e.g. valid email address for this MS) and then
processing continues to block 6312. Block 6312 checks if a
subject parameter was specified. If block 6312 determines a
subject was specified, processing continues to block 6316,
otherwise block 6314 defaults one (e.g. subject line may be
used to indicate to email receive processing that this is a
special email for performing atomic command (e.g. send
command) processing), and then processing continues to
block 6316. Block 6314 may specify a null email subject line.
Block 6316 checks if an attributes parameter was specified. If
block 6316 determines attributes were specified, processing
continues to block 6320, otherwise block 6318 defaults
attributes (e.g. confirmation of delivery, high priority, any
email Document Interchange Architecture (DIA) attributes or
profile specifications, etc) and then processing continues to
block 6320. Block 6318 may use email attributes to indicate
that this is a special email for send command processing while
using the underlying email transport to handle the delivery of
information. Block 6320 checks if at least one recipient
parameter was specified. [f block 6320 determines at least one
recipient was specified, processing continues to block 6324,
otherwise block 6322 defaults one (e.g. valid email address
for this MS) and then processing continues to block 6324.
Block 6322 may specify a null recipient list so as to cause an
error in later processing (detected at block 6324).

Block 6324 validates “Parameters”, some of which may
have been defaulted in previous blocks (6310, 6314, 6318 and
6322), and continues to block 6326. If bock 6326 determines
there is an error in “Parameters”, then block 6328 handles the
error appropriately (e.g. log error to LBX History 30 and/or
notify user) and processing returns to the caller (invoker) at
block 6334. If block 6326 determines that “Parameters” arein
good order for using the email transport, then block 6330
updates an email object in context for the send command
“Operand” and “Parameters”, block 6332 uses a send email
interface to send the email, and block 6334 returns to the
caller (e.g. block 6208). Block 6330 can use the attributes
parameter to affecthow “Parameters™ is to be interpreted. The
attributes parameter may be modified, and can be used by any
processes which receive the sent distribution. Those skilled in
the art know well known email send interfaces (e.g. APIs)
depending on a software development environment. The
email interface used at block 6332 will be one suitable for the

10

15

20

25

30

35

40

45

50

55

60

65

234
underlying operating system and available development envi-

ronments, for example, a standardized SMTP interface. In a
C# environment, an SMTP email interface example is:

SmtpClient
VER_NAME);

smtpCl=new SmtpClient(SMTP_SER-

smtpCl.UseDefaultCredentials=true;
MailMessage objMsg;

objMsg=new MailMessage(fromAddr, toAddr, subjlLn,
emailBod);

smtpCl.Send(objMsg);
objMsg.Dispose();

Those skilled in the art recognize other interfaces of similar
messaging capability for carrying out the transport of an
action (e.g. Send command). Email is a preferred embodi-
ment. While there are Send command embodiments that
make using an existing transport layer (e.g. email) more suit-
able than not, even the most customized Send command
Operands can use email (instead of MS2MS) by implement-
ing one or more recognizable signature(s), indication(s), or
the like, of/in the email distribution to be used for informing
a receiving email system to treat the email uniquely for car-
rying out the present disclosure. Depending on the embodi-
ment, integrated processing code is maintained/built as part
of the email system, or processing code is “plugged”
(“hooked”) into an existing email system in an isolated third
party manner. Regardless, the email system receiving the
present disclosure email will identify the email as being one
for special processing. Then, email contents is parsed out and
processed according to what has been requested.

In embodiments where Send command Operands are more
attractively implemented using an existing transport layer
(e.g. email), those send commands can also be sent with
MS2MS encoded in data packet(s) that are appropriate for
processing.

Referring back to block 6306, if it is determined that the
“Operand” indicates to not use an email transport (e.g. use a
MS2MS transport for performing the send command, or send
command is to be processed locally), then block 6336 checks
if a sender parameter was specified. If block 6336 determines
a sender was specified, processing continues to block 6340,
otherwise block 6338 defaults one (e.g. valid MS ID) and then
processing continues to block 6340. Block 6340 checks if a
subject message parameter was specified. [f block 6340 deter-
mines a subject message was specified, processing continues
to block 6344, otherwise block 6342 defaults one, and then
processing continues to block 6344. Block 6342 may specify
a null message. Block 6344 checks if an attributes parameter
was specified. If block 6344 determines attributes were speci-
fied, processing continues to block 6348, otherwise block
6346 defaults attributes (e.g. confirmation of delivery, high
priority, etc) and then processing continues to block 6348.
Block 6348 checks if at least one recipient parameter was
specified. If block 6348 determines at least one recipient was
specified, processing continues to block 6352, otherwise
block 6350 defaults one (e.g. valid ID for this MS) and then
processing continues to block 6352. Block 6350 may specify
a null recipient list so as to cause an error in later processing
(detected at block 6352).

Block 6352 validates “Parameters”, some of which may
have been defaulted in previous blocks (6338, 6342, 6346 and
6350), and continues to block 6354. If bock 6354 determines

APPLE

EXHIBIT 1001 - PAGE 0381

US 8,639,267 B2

235

there is an error in “Parameters”, then block 6356 handles the
error appropriately (e.g. log error to LBX History and/or
notify user) and processing returns to the caller (invoker) at
block 6334. If block 6354 determines that “Parameters™ arein
good order, then block 6358 updates a data object in context
for the send command “Operand” and “Parameters”, and
block 6360 begins a loop for delivering the data object to each
recipient. Block 6360 gets the next (or first) recipient from the
recipient list and processing continues to block 6362.

If block 6362 determines that all recipients have been pro-
cessed, then processing returns to the caller at block 6334,
otherwise block 6364 checks the recipient to see if it matches
the ID of the MS of FIG. 63A processing (i.e. this MS). If
block 6364 determines the recipient matches this MS, then
block 6366 (see FIG. 63B discussions) performs the atomic
send command locally and processing continues back to
block 6360 for the next recipient. If block 6364 determines
the recipient is an other MS, block 6368 prepares parameters
for FIG. 75A processing, and block 6370 invokes the proce-
dure of FIG. 75A for sending the data (send command, oper-
and and parameters) to the other MS. Processing then contin-
ues back to block 6360 for the next recipient. Blocks 6366,
6368, and 7584 can use the attributes parameter to affect how
“Parameters” is to be interpreted. The attributes parameter
may be modified, and can be used by any processes which
receive the send result.

MS2MS processing is as already described above (see
FIGS. 75A and 75B), except FIG. 75A performs sending data
for the send command to a remote MS, and FIG. 75B blocks
7578 through 7584 carry out processing specifically for the
send command. Block 7584 processes the send command
locally (like block 6366—see FIG. 63B).

InFIG. 63 A, “Parameters” for the atomic send command in
accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 63A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
63A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof) can be under-
stood to be in good order by the time FIG. 63A processing
occurs (e.g. no blocks 6308 through 6328 and/or 6336
through 6356 required). In yet another embodiment, no
defaulting or some defaulting of parameters is implemented.
In some embodiments, any subset of send commands will
utilize email distributions for processing between MSs. In
other embodiments, any subset of send commands will utilize
FIGS. 75A and 75B for processing between MSs. Operations
of the send command can be carried out regardless of the
transport that is actually used to perform the send command.

FIGS. 63B-1 through 63B-7 depicts a matrix describing
how to process some varieties of the Send command (e.g. as
processed at blocks 6366 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Send command processing:

E=Email transport preferably used (blocks 6308 through

6332);

O=0Other processing (MS2MS or local) used (blocks 6336

through 6370).

Any of the Send command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the

20

25

30

35

40

45

50

55

60

236

Send processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “101” represents the
parameters applicable for the Send command. The Send com-
mand has the following parameters, all of which are inter-
preted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
sender=The sender of the Send command, typically tied to the

originating identity of the action (e.g. email address or MS

ID). A different sender can be specified if there is an appli-

cable privilege in place, or if impersonation has been

granted;

msg/subj=A message or subject associated with Send com-
mand;

attributes=Indicators for more detailed interpretation of Send
command parameters and/or indicators for attributes to be
interpreted by external (e.g. receiving) processes affected
by the Send command result (e.g. handled appropriately by
block 7584 or receiving email system);

recipient(s)=One or more destination identities for the Send

command (e.g. email address or MS ID).

FIG. 63C depicts a flowchart for describing one embodi-
ment of a procedure for Send command action processing, as
derived from the processing of FIG. 63A. All operands are
implemented, and each of blocks S04 through S54 can be
implemented with any one of the methodologies described
with FIG. 63A, or any one of a blend of methodologies
implemented by FIG. 63C.

FIG. 64A depicts a flowchart for describing a preferred
embodiment of a procedure for Notify command action pro-
cessing. The Alert command and Notify command provide
identical processing. There are three (3) primary methodolo-
gies for carrying out notify command processing:

1) Using email or similar messaging layer as a transport

layer;

2) Using a MS to MS communications (MS2MS) of FIGS.

75A and 75B; or

3) Processing the notify command locally.

In various embodiments, any of the notify command Oper-
ands can be implemented with either one of the methodolo-
gies, although there may be a preference of which methodol-
ogy is used for which Operand. Atomic notify command
processing begins at block 6402, continues to block 6404 for
accessing parameters of notify command “Operand” (BNF
Grammar Operand) and “Parameters” (BNF Grammar
Parameters), and then to block 6406 for checking which
“Operand” was passed. If block 6406 determines the “Oper-
and” indicates to use email as the mechanism for performing
the notify command, then block 6408 checks if a sender
parameter was specified. If block 6408 determines a sender
was specified, processing continues to block 6412, otherwise
block 6410 defaults one (e.g. valid email address for this MS)
and then processing continues to block 6412. Block 6412
checks if a subject parameter was specified. If block 6412
determines a subject was specified, processing continues to
block 6416, otherwise block 6414 defaults one (e.g. subject
line may be used to indicate to email receive processing that
this is a special email for performing atomic command (e.g.
notify command) processing), and then processing continues
to block 6416. Block 6414 may specify a null email subject
line. Block 6416 checks if an attributes parameter was speci-
fied. If block 6416 determines attributes were specified, pro-
cessing continues to block 6420, otherwise block 6418
defaults attributes (e.g. confirmation of delivery, high prior-

APPLE

EXHIBIT 1001 - PAGE 0382

US 8,639,267 B2

237

ity, any email DIA attributes or profile specifications, etc) and
then processing continues to block 6420. Block 6418 may use
email attributes to indicate that this is a special email for
notify command processing while using the underlying email
transport to handle the delivery of information. Block 6420
checks if at least one recipient parameter was specified. If
block 6420 determines at least one recipient was specified,
processing continues to block 6424, otherwise block 6422
defaults one (e.g. valid email address for this MS) and then
processing continues to block 6424. Block 6422 may specify
a null recipient list so as to cause an error in later processing
(detected at block 6424).

Block 6424 validates “Parameters”, some of which may
have been defaulted in previous blocks (6410, 6414, 6418 and
6422), and continues to block 6426. If bock 6426 determines
there is an error in “Parameters”, then block 6428 handles the
error appropriately (e.g. log error to LBX History 30 and/or
notify user) and processing returns to the caller (invoker) at
block 6434. If block 6426 determines that “Parameters” are in
good order for using the email transport, then block 6430
updates an email object in context for the notify command
“Operand” and “Parameters”, block 6432 uses a send email
interface to notify through email, and block 6434 returns to
the caller (e.g. block 6212). Block 6430 can use the attributes
parameter to affect how “Parameters™ is to be interpreted. The
attributes parameter may be modified, and can be used by any
processes which receive the notify. The email interface used
atblock 6432 will be one suitable for the underlying operating
system and available development environments, for
example, a standardized SMTP interface, and other messag-
ing capability, as described above for FIG. 63A.

While there are Notify command embodiments that make
using an existing transport layer (e.g. email) more suitable
than not, even the most customized Notify command Oper-
ands can use email (instead of MS2MS) by implementing one
or more recognizable signature(s), indication(s), or the like,
of/in the email distribution to be used for informing a receiv-
ing email system to treat the email uniquely for carrying out
the present disclosure. Depending on the embodiment, inte-
grated processing code is maintained/built as part of the email
system, or processing code is “plugged” (“hooked”) into an
existing email system in an isolated third party manner.
Regardless, the email system receiving the present disclosure
email will identify the email as being one for special process-
ing. Then, email contents is parsed out and processed accord-
ing to what has been requested.

In embodiments where Notify command Operands are
more attractively implemented using an existing transport
layer (e.g. email), those notify commands can also be sent
with MS2MS encoded in data packet(s) that are appropriate
for processing.

Referring back to block 6406, if it is determined that the
“Operand” indicates to not use an email transport (e.g. use a
MS2MS transport for performing the notify command, or
notify command is to be processed locally), then block 6436
checks if a sender parameter was specified. If block 6436
determines a sender was specified, processing continues to
block 6440, otherwise block 6438 defaults one (e.g. valid MS
ID) and then processing continues to block 6440. Block 6440
checks if a subject message parameter was specified. If block
6440 determines a subject message was specified, processing
continues to block 6444, otherwise block 6442 defaults one,
and then processing continues to block 6444. Block 6442 may
specify a null message. Block 6444 checks if an attributes
parameter was specified. If block 6444 determines attributes
were specified, processing continues to block 6448, other-
wise block 6446 defaults attributes (e.g. confirmation of

35

40

45

238

delivery, high priority, etc) and then processing continues to
block 6448. Block 6448 checks if at least one recipient
parameter was specified. If block 6448 determines at least one
recipient was specified, processing continues to block 6452,
otherwise block 6450 defaults one (e.g. valid ID for this MS)
and then processing continues to block 6452. Block 6450 may
specify a null recipient list so as to cause an error in later
processing (detected at block 6452).

Block 6452 validates “Parameters”, some of which may
have been defaulted in previous blocks (6438, 6442, 6446 and
6450), and continues to block 6454. If bock 6454 determines
there is an error in “Parameters”, then block 6456 handles the
error appropriately (e.g. log error to LBX History and/or
notify user) and processing returns to the caller (invoker) at
block 6434. If block 6454 determines that “Parameters™ are in
good order, then block 6458 updates a data object in context
for the notify command “Operand” and “Parameters”, and
block 6460 begins a loop for delivering the data objectto each
recipient. Block 6460 gets the next (or first) recipient from the
recipient list and processing continues to block 6462.

Ifblock 6462 determines that all recipients have been pro-
cessed, then processing returns to the caller at block 6434,
otherwise block 6464 checks the recipient to see if it matches
the ID of the MS of FIG. 64A processing (i.e. this MS). If
block 6464 determines the recipient matches this MS, then
block 6466 (see FIG. 64B discussions) performs the atomic
notify command locally and processing continues back to
block 6460 for the next recipient. If block 6464 determines
the recipient is an other MS, block 6468 prepares parameters
for FIG. 75A processing, and block 6470 invokes the proce-
dure of FIG. 75A for sending the data (notify command,
operand and parameters) to the other MS. Processing then
continues back to block 6460 for the next recipient. Blocks
6466, 6468, and 7584 can use the attributes parameter to
affect how “Parameters” is to be interpreted. The attributes
parameter may be modified, and can be used by any processes
which receive the notify result.

MS2MS processing is as already described above (see
FIGS. 75A and 75B), except FIG. 75A performs sending data
for the notify command to a remote MS, and FIG. 75B blocks
7578 through 7584 carry out processing specifically for the
notify command. Block 7584 processes the notify command
locally (like block 6466—see FIG. 64B).

In FIG. 64A, “Parameters” for the atomic notify command
in accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 64A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
64A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof can be under-
stood to be in good order by the time FIG. 64 A processing
occurs (e.g. no blocks 6408 through 6428 and/or 6436
through 6456 required). In yet another embodiment, no
defaulting or some defaulting of parameters is implemented.
In some embodiments, any subset of notify commands will
utilize email distributions for processing between MSs. In
other embodiments, any subset of notify commands will uti-
lize FIGS. 75A and 75B for processing between MSs. Opera-
tions of the notify command can be carried out regardless of
the transport that is actually used to perform the notify com-
mand.

FIGS. 64B-1 through 64B-4 depicts a matrix describing
how to process some varieties of the Notify command (e.g. as
processed at blocks 6466 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D

APPLE

EXHIBIT 1001 - PAGE 0383

US 8,639,267 B2

239

for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Notify command processing:

E=Email transport preferably used (blocks 6408 through

6432);

O=0Other processing (MS2MS or local) used (blocks 6436

through 6470).

Any of the Notify command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Notify processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “103” represents the
parameters applicable for the Notify command. The Notify
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
sender=The sender of the Notify command, typically tied to

the originating identity of the action (e.g. email address or

MS ID). A different sender can be specified if there is an

applicable privilege in place, or if impersonation has been

granted;

msg/subj=A message or subject associated with Notify com-
mand;

attributes=Indicators for more detailed interpretation of

Notify command parameters and/or indicators for

attributes to be interpreted by external (e.g. receiving) pro-

cesses affected by the Notify command result (e.g. handled
appropriately by block 7584 or receiving email system);
recipient(s)=One or more destination identities for the Notify

command (e.g. email address or MS ID).

FIG. 64C depicts a flowchart for describing one embodi-
ment of a procedure for Notify command action processing,
as derived from the processing of FIG. 64A. All operands are
implemented, and each of blocks N04 through N54 can be
implemented with any one of the methodologies described
with FIG. 64A, or any one of a blend of methodologies
implemented by FIG. 64C.

FIG. 65A depicts a flowchart for describing a preferred
embodiment of a procedure for Compose command action
processing. The Make command and Compose command
provide identical processing. There are three (3) primary
methodologies for carrying out compose command process-
ing:

1) Launching an application, executable, or program with a

standard contextual object type interface;

2) Custom launching of an application, executable, or pro-

gram; or

3) Processing the compose command through a MS oper-

ating system interface.
Invarious embodiments, any of the compose command Oper-
ands can be implemented with either one of the methodolo-
gies, although there may be a preference of which methodol-
ogy is used for which Operand. Atomic compose command
processing begins at block 6502, continues to block 6504 for
accessing parameters of compose command “Operand”
(BNF Grammar Operand) and “Parameters” (BNF Grammar
Parameters), and then to block 6506 for checking which
“Operand” was passed. If block 6506 determines the “Oper-
and” indicates to launch with a standard contextual object
type interface, then parameter(s) are validated at block 6508
and block 6510 checks the result. If block 6510 determines

15

20

25

35

40

45

55

240

there was at least one error, then block 6512 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller (invoker) at block
6514. If block 6510 determines there were no parameter
errors, then block 6516 interfaces to the MS operating system
for the particular object passed as a parameter. Block 6516
may prepare parameters in preparation for the Operating Sys-
tem (O/S) contextual launch, for example if parameters are
passed to the application which is invoked for composing the
object. Processing leaves block 6516 and returns to the caller
(invoker) at block 6514.

An example of block 6516 is similar to the Microsoft
Windows XP (Microsoft and Windows XP are trademarks of
Microsoft corp.) O/S association of applications to file types
for convenient application launch. For example, a user can
double click a file (e.g. when viewing file system) from Win-
dow Explorer and the appropriate application will be
launched for opening the file, assuming an application has
been properly registered for the file type of the file opened. In
a Windows graphical user interface scenario, registration of
an application to the file type is achieved, for example, from
the user interface with the “File Types” tab of the “Folder
Options” option of the “File Types” pulldown of the Windows
Explorer interface. There, a user can define file types and the
applications which are to be launched when selecting/invok-
ing (e.g. double clicking) the file type from the file system.
Alternatively, an O/S API or interface may be used to config-
ure an object to associate to a launch-able executable for
handling the object. In this same scheme, the MS will have a
similar mechanism whereby an association of an application
to a type of object (e.g. file type) has been assigned. Block
6516 makes use of the system interface for association which
was set up outside of present disclosure processing (e.g. via
MS O/S).

Referring back to block 6506, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 6518. If
block 6518 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 6520
and block 6522 checks the result. If block 6522 determines
there was at least one error, then block 6524 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller (invoker) at block
6514. If block 6522 determines there were no parameter
errors, then processing continues to block 6526.

If block 6526 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable application for composing the object passed as a
parameter, then block 6528 prepares a command string for
launching the particular application, block 6530 invokes the
command string for launching the application, and process-
ing continues to block 6514 for returning to the caller.

If block 6526 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for composing the object passed as a
parameter, then block 6532 prepares any API parameters as
necessary, block 6534 invokes the API for launching the
application, and processing continues to block 6514 for
returning to the caller.

Referring back to block 6518, if it is determined that the
“Operand” indicates to perform the compose command
locally (e.g. use operating system interface (e.g. set sema-
phore, program object, data, signal, etc)), then parameter(s)
are validated at block 6536 and block 6538 checks the result.
If block 6538 determines there was at least one error, then
block 6540 handles the error appropriately (e.g. log error to
LBX History 30 and/or notify user) and processing returns to

APPLE

EXHIBIT 1001 - PAGE 0384

US 8,639,267 B2

241

the caller (invoker) at block 6514. If block 6538 determines
there were no parameter errors, then block 6542 performs the
compose command, and block 6514 returns to the caller.

In FIG. 65A, “Parameters” for the atomic compose com-
mand in accordance with the “Operand” were shown to be
validated for being properly privileged prior to FIG. 65A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 65A in context of where the “Parameters”
are processed. Also, some embodiments may not validate
“Parameters” since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 65A
processing occurs (e.g. no blocks 6510/6512 and/or 6522/
6524 and/or 6538/6540 required). In yet another embodi-
ment, some defaulting of parameters is implemented.

FIGS. 65B-1 through 65B-7 depicts a matrix describing
how to process some varieties of the Compose command (e.g.
as resulting after blocks 6516, 6534 and 6542). Each row in
the matrix describes processing apparatus and/or methods for
carrying out command processing for certain operands (see
FIG. 34D for the Operand which matches the number in the
first column). The second column shows the Preferred Meth-
odology (PM) for carrying out Compose command process-
ing:

S=Standard contextual launch used (blocks 6508 through

6516);

C=Custom launch used (blocks 6520 through 6534);
O=0Other processing (O/S interface) used (blocks 6536
through 6542).
Any of the Compose command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Compose processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.
With reference back to FIGS. 31A through 31E, note that
the column of information headed by “105” represents the
parameters applicable for the Compose command. The Com-
pose command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of
the Operand,;
sender=The sender of the Compose command, typically tied
to the originating identity of the action (e.g. email address
or MS ID). A different sender can be specified if there is an
applicable privilege in place, or if impersonation has been
granted;

msg/subj=A message or subject associated with Compose
command;

attributes=Indicators for more detailed interpretation of

Compose command parameters and/or indicators for

attributes to be interpreted by external (e.g. receiving) pro-

cesses affected by the Compose command result;
recipient(s)=One or more destination identities for the Com-

pose command (e.g. email address or MS ID).

Compose command data is preferably maintained to LBX
history, a historical call log (e.g. outgoing when call placed),
or other useful storage for subsequent use (some embodi-
ments may include this processing where appropriate (e.g. as
part of blocks 6516, 6542, etc)).

FIG. 65C depicts a flowchart for describing one embodi-
ment of a procedure for Compose command action process-
ing, as derived from the processing of FIG. 65A. All operands
are implemented, and each of blocks P04 through P54 can be

25

30

40

45

50

55

242

implemented with any one of the methodologies described
with FIG. 65A, or any one of a blend of methodologies
implemented by FIG. 65C.

FIG. 66A depicts a flowchart for describing a preferred
embodiment of a procedure for Connect command action
processing. The Call command and Connect command pro-
vide identical processing. There are four (4) primary meth-
odologies for carrying out connect command processing:

1) Launching an application, executable, or program with a

standard contextual object type interface;

2) Custom launching of an application, executable, or pro-

gram;

3) Processing the connect command through a MS operat-

ing system interface; or

4) Using a MS to MS communications (MS2MS) of FIGS.

75A and 75B.

In various embodiments, any of the connect command Oper-
ands can be implemented with either one of the methodolo-
gies, although there may be a preference of which methodol-
ogy is used for which Operand. Atomic connect command
processing begins at block 6602, continues to block 6604 for
accessing parameters of connect command “Operand” (BNF
Grammar Operand) and “Parameters” (BNF Grammar
Parameters), and then to block 6606 for checking which
“Operand” was passed. If block 6606 determines the “Oper-
and” indicates to launch with a standard contextual object
type interface, then parameter(s) are validated at block 6608
and block 6610 checks the result. If block 6610 determines
there was at least one error, then block 6612 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller (invoker) at block
6614. If block 6610 determines there were no parameter
errors, then block 6616 interfaces to the MS operating system
for the particular object passed as a parameter. Block 6616
may prepare parameters in preparation for the O/S contextual
launch, for example if parameters are passed to the applica-
tion which is invoked. Processing leaves block 6616 and
returns to the caller (invoker) at block 6614.

An example of block 6616 is similar to the Microsoft
Windows XP O/S association of applications to file types for
convenient application launch, and is the same as processing
of'block 6516 described above. Block 6616 makes use of the
system interface for association which was set up outside of
present disclosure processing (e.g. via MS O/S).

Referring back to block 6606, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 6618. If
block 6618 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 6620
and block 6622 checks the result. If block 6622 determines
there was at least one error, then block 6624 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller (invoker) at block
6614. If block 6622 determines there were no parameter
errors, then processing continues to block 6626.

If'block 6626 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable application for the object passed as a parameter,
then block 6628 prepares a command string for launching the
particular application, block 6630 invokes the command
string for launching the application, and processing continues
to block 6614 for returning to the caller.

If block 6626 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for the object passed as a parameter,
then block 6632 prepares any API parameters as necessary,

APPLE

EXHIBIT 1001 - PAGE 0385

US 8,639,267 B2

243

block 6634 invokes the API for launching the application, and
processing continues to block 6614 for returning to the caller.

Referring back to block 6618, if it is determined that the
“Operand” indicates to perform the connect command locally
(e.g. use operating system interface (e.g. set semaphore, pro-
gram object, data, signal, etc)), or to use MS2MS for process-
ing, then parameter(s) are validated at block 6636 and block
6638 checks the result. If block 6638 determines there was at
least one error, then block 6640 handles the error appropri-
ately (e.g. log error to LBX History 30 and/or notify user) and
processing returns to the caller (invoker) at block 6614. If
block 6638 determines there were no parameter errors, then
block 6642 checks the operand for which processing to per-
form. If block 6642 determines that MS2MS processing is
needed to accomplish processing, then block 6644 prepares
parameters for FIG. 75A processing, and block 6646 invokes
the procedure of FIG. 75A for sending the data (connect
command, operand and parameters) for connect processing at
the MS to connect. Processing then continues to block 6614.
MS2MS processing is as already described above (see FIGS.
75A and 75B), except FIG. 75A performs sending data for the
connect command to the remote MS for processing, and FIG.
75B blocks 7578 through 7584 carry out processing specifi-
cally for the connect command. Block 7584 processes the
connect command for connecting the MSs in context of the
Operand. Referring back to block 6642, if it is determined that
MS2MS is not to be used, then block 6648 performs the
connect command, and block 6614 returns to the caller.

In FIG. 66A, “Parameters” for the atomic connect com-
mand in accordance with the “Operand” were shown to be
validated for being properly privileged prior to FIG. 66A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 66A in context of where the “Parameters”
are processed. Also, some embodiments may not validate
“Parameters” since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 66A
processing occurs (e.g. no blocks 6610/6612 and/or 6622/
6624 and/or 6638/6640 required). In yet another embodi-
ment, some defaulting of parameters is implemented.

In the case of automatically dialing a phone number at a
MS, there are known APIs to accomplish this functionality,
depending on the MS software development environment, by
passing at least a phone number to the MS API programmati-
cally at the MS (e.g. see C# phone application APIs,]2ME
phone APIs, etc). In a 2ME embodiment, you can place acall
by calling the MIDP 2.0 platformRequest method inside the
MIDlet class (e.g. platformRequest(“tel://mobileNumber™)
will request the placing call functionality from the applicable
mobile platform).

FIGS. 66B-1 through 66B-2 depicts a matrix describing
how to process some varieties of the Connect command (e.g.
as processed at blocks 6648 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Connect command processing:
S=Standard contextual launch used (blocks 6608 through

6616);

C=Custom launch used (blocks 6620 through 6634);
O=0Other processing (MS2MS or local) used (blocks 6636
through 6648).
Any of the Connect command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart

10

15

20

25

30

35

40

45

50

55

60

65

244

embodiments. There are many embodiments derived from the
Connect processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “119” represents the
parameters applicable for the Connect command. The Con-
nect command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
sender=The sender of the Connect command, typically tied to

the originating identity of the action (e.g. email address or

MS ID). A different sender can be specified if there is an

applicable privilege in place, or if impersonation has been

granted;

msg/subj=A message or subject associated with Connect
command;

attributes=Indicators for more detailed interpretation of Con-
nect command parameters and/or indicators for attributes
to be interpreted by external (e.g. receiving) processes
affected by the Connect command result;

recipient(s)=One or more destination identities for the Con-

nect command (e.g. email address or MS ID).

Connect command data is preferably maintained to LBX
history, a historical call log (e.g. outgoing when call placed),
or other useful storage for subsequent use (some embodi-
ments may include this processing where appropriate (e.g. as
part of blocks 6616, 6648, 7584, etc)).

FIG. 66C depicts a flowchart for describing one embodi-
ment of a procedure for Connect command action processing,
as derived from the processing of FIG. 66A. All operands are
implemented, and each of blocks T04 through T54 can be
implemented with any one of the methodologies described
with FIG. 66A, or any one of a blend of methodologies
implemented by FIG. 66C.

FIG. 67A depicts a flowchart for describing a preferred
embodiment of a procedure for Find command action pro-
cessing. The Search command and Find command provide
identical processing. There are four (4) primary methodolo-
gies for carrying out find command processing:

1) Launching an application, executable, or program with a

standard contextual object type interface;

2) Custom launching of an application, executable, or pro-

gram;

3) Processing the find command locally; or

4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for remote finding.
In various embodiments, any of the find command Operands
can be implemented with either one of the methodologies,
although there may be a preference of which methodology is
used for which Operand. Atomic find command processing
begins at block 6700, continues to block 6702 for accessing
parameters of find command “Operand” (BNF Grammar
Operand) and “Parameters” (BNF Grammar Parameters), and
then to block 6704 for getting the next (or first) system param-
eter (block 6704 starts a loop for processing system(s)). At
least one system parameter is required for the find. If at least
one system is not present for being processed by block 6704,
then block 6704 will handle the error and continue to block
6752 for returning to the caller (not shown—considered obvi-
ous error handling, or was already validated at configuration
time). Block 6704 continues to block 6706. If block 6706
determines that an unprocessed system parameter remains,
then processing continues to block 6708. If block 6708 deter-
mines the system is not the MS of FIG. 67A processing, then
MS2MS processing is used to accomplish the remote find

APPLE

EXHIBIT 1001 - PAGE 0386

US 8,639,267 B2

245

processing, in which case block 6708 continues to block 6710
for preparing parameters for FIG. 75A processing. Thereaf-
ter, block 6712 checks to see if there were any parameter
errors since block 6710 also validates them prior to preparing
them. If block 6712 determines there was at least one param-
eter error, then block 6713 handles the error appropriately
(e.g. log error to LBX History 30 and/or notify user) and
processing continues back to block 6704. If block 6713 deter-
mines there were no errors, then block 6714 invokes the
procedure of FIG. 75A for sending the data (find command,
operand and parameters) for remote find processing at the
remote MS. Processing then continues back to block 6704.
MS2MS processing is as already described above (see FIGS.
75A and 75B), except FIG. 75A performs sending data for the
find command to the remote MS for finding sought operand
dependent criteria at the remote MS, and FIG. 75B blocks
7578 through 7584 carry out processing specifically for the
find command. Block 7584 processes the find command for
finding sought criteria in context of the Operand at the MS of
FIG. 75B processing. Blocks 7574 and 7576 will return the
results to the requesting MS of FIG. 75A processing, and
block 7510 will complete appropriate find processing. Note
that block 7510 preferably includes application launch pro-
cessing (e.g. like found in FIG. 67A) for invoking the best
application in the appropriate manner with the find results
returned. The application should be enabled for searching
remote MSs further if the user chooses to do so. Another
embodiment of block 7510 processes the search results and
displays them to the user and/or logs results to a place the user
can check later and/or logs results to a place a local MS
application can access the results in an optimal manner. In
some embodiments, find processing is spawned at the remote
MS and the interface results are presented to the remote user.
In some embodiments, the find processing results interface is
presented to the user of FIG. 67A processing. In some
embodiments, find processing is passed an additional param-
eter for whether or not to spawn the search interface at the
remote MS for the benefit of the remote MS user (at MS of
FIG. 75 processing), or to spawn locally for the benefit of the
user of the MS of FIG. 67A processing.

In one embodiment, block 6714 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 67A process-
ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
find command, perhaps involving search of storage, memory,
or operating system resources which is shared by many MSs.

Referring back to block 6708, if it is determined that the
system for processing is the MS of FIG. 67 A processing, then
processing continues to block 6716 for checking which
“Operand” was passed. If block 6716 determines the “Oper-
and” indicates to launch a search application for the sought
operand with a standard contextual object type interface, then
parameter(s) are validated at block 6718 and block 6720
checks the result. If block 6720 determines there was at least
one error, then block 6722 handles the error appropriately
(e.g. log error to LBX History 30 and/or notify user) and
processing returns back to block 6704. If block 6720 deter-
mines there were no parameter errors, then block 6724 inter-
faces to the MS operating system to start the search applica-
tion for the particular object passed as a parameter. Block
6724 may prepare parameters in preparation for the O/S con-
textual launch, for example if parameters are passed to the

10

15

20

25

30

35

40

45

50

55

60

65

246
application which is invoked for finding the object. Process-
ing leaves block 6724 and returns to block 6704.

An example of block 6724 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 6716, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 6726. If
block 6726 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 6728
and block 6730 checks the result. If block 6730 determines
there was at least one error, then block 6732 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to block 6704. If block 6730
determines there were no parameter errors, then processing
continues to block 6734.

If'block 6734 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable search application for finding the object passed as
a parameter, then block 6736 prepares a command string for
launching the particular application, block 6738 invokes the
command string for launching the application, and process-
ing continues to block 6704.

If block 6734 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for finding the object passed as a
parameter, then block 6740 prepares any API parameters as
necessary, block 6742 invokes the API for launching the
application, and processing continues back to block 6704.

Referring back to block 6726, if it is determined that the
“Operand” indicates to perform the find command with other
local processing, then parameter(s) are validated at block
6744 and block 6746 checks the result. If block 6746 deter-
mines there was at least one error, then block 6748 handles the
error appropriately (e.g. log error to LBX History 30 and/or
notify user) and processing returns to block 6704. If block
6748 determines there were no parameter errors, then block
6750 checks the operand for which find processing to per-
form, and performs find processing appropriately.

Referring back to block 6704, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 6752.

InFIG. 67A, “Parameters” for the atomic find command in
accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 67A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
67A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof) can be under-
stood to be in good order by the time FIG. 67A processing
occurs (e.g. no blocks 6720/6722 and/or 6728/6730 and/or
6746/6748 required). In yet another embodiment, some
defaulting of parameters is implemented.

FIGS. 67B-1 through 67B-13 depicts a matrix describing
how to process some varieties of the Find command (e.g. as
processed at blocks 6750 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Find command processing:
S=Standard contextual launch used (blocks 6716 through

6724);

C=Custom launch used (blocks 6726 through 6742);
O=0Other processing (MS2MS or local) used (blocks 6744
through 6750, blocks 6708 through 6714).

APPLE

EXHIBIT 1001 - PAGE 0387

US 8,639,267 B2

247

Any of the Find command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Find processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “107” represents the
parameters applicable for the Find command. The Find com-
mand has the following parameters, all of which are inter-
preted in context of the Operand:
first parameter(s)=These are required, and are in context of

the Operand;
system(s)=One or more destination identities for the Find

command (e.g. MS ID or a data processing system identi-
fier).

FIG. 67C depicts a flowchart for describing one embodi-
ment of a procedure for Find command action processing, as
derived from the processing of FIG. 67A. All operands are
implemented, and each of blocks F04 through F54 can be
implemented with any one of the methodologies described
with FIG. 67A, or any one of a blend of methodologies
implemented by FIG. 67C.

Find command processing discussed thus far demonstrates
muliithreaded/multiprocessed processing for each system to
search. In one embodiment, the same methodology is used for
each system and each launched find processing saves results
to a common format and destination. In this embodiment,
block 6706 processing continues to a new block 6751 when
all systems are processed. New block 6751 gathers the super-
set of find results saved, and then launches an application
(perhaps the same one that was launched for each find) to
show all results found asynchronously from each other. The
application launched will be launched with the same choice
of schemes as blocks 6716 through 6750. Block 6751 then
continues to block 6752. This design requires all applications
invoked to terminate themselves after saving search results
appropriately for gathering a superset and presenting in one
find results interface. Then, the new block 6751 handles pro-
cessing for a single application to present all search results.

In another embodiment, while an application may be
launched multiple times for each system, the application itself
is relied upon for handling multiple invocations. The appli-
cation itself has intelligence to know it was re-launched
thereby permitting a single resulting interface for multiple
target system searches, regardless of the number of times the
same search application was launched.

In one preferred embodiment, find processing permits mul-
tiple instances of a search application launched wherein Find
processing is treated independently (this is shown in FIG.
67A).

Preferably all find command embodiments provide the
ability to perform other commands (e.g. Copy, Move, Dis-
card, Change, Administrate, etc) wherever possible from the
resulting interface in context for each search result found.

Find command data is preferably maintained to LBX his-
tory, a historical log, or other useful storage for subsequent
use (some embodiments may include this processing where
appropriate). Additional find command parameters can be
provided for how and where to search (e.g. case sensitivity,
get all or first, how to present results, etc).

FIG. 68A depicts a flowchart for describing a preferred
embodiment of a procedure for Invoke command action pro-
cessing. The Spawn command, Do command, and Invoke

20

25

30

35

40

45

55

60

65

248

command provide identical processing. There are five (5)
primary methodologies for carrying out invoke command
processing;:

1) Launching an application, executable, or program with a

standard contextual object type interface;

2) Custom launching of an application, executable, or pro-

gram;

3) Processing the invoke command locally;

4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for remote invocation; or

5) Using email or similar messaging layer as a transport

layer for invoking distributions.

In various embodiments, any of the invoke command Oper-
ands can be implemented with either one of the methodolo-
gies, although there may be a preference of which methodol-
ogy is used for which Operand. Atomic invoke command
processing begins at block 6802, continues to block 6804 for
accessing parameters of invoke command “Operand” (BNF
Grammar Operand) and “Parameters” (BNF Grammar
Parameters), and then to block 6892 for checking if the Oper-
and for invocation indicates to use the email (or similar mes-
saging transport). [f block 6892 determines the Operand is for
email/messaging transport use, then block 6894 invokes send
command processing of FIG. 63A with the Operand and
Parameters. Upon return, processing continues to block 6852
for returning to the caller (invoker of FIG. 68 A processing). If
send processing of FIG. 63 A (via block 6894) is to be used for
Operands with a system(s) parameter, then the system(s)
parameter is equivalent to the recipient(s) parameter and
other parameters are set appropriately.

If block 6892 determines the Operand is not for the email/
messaging transport use, then processing continues to block
6806 for getting the next (or first) system parameter (block
6806 starts an iterative loop for processing system(s)). At
least one system parameter is required for the invoke com-
mand at block 6806. If at least one system is not present for
being processed by block 6806, then block 6806 will handle
the error and continue to block 6852 for returning to the caller
(not shown—considered obvious error handling, or was
already validated at configuration time). Block 6806 contin-
ues to block 6808. If block 6808 determines that an unproc-
essed system parameter remains, then processing continues
to block 6810. If block 6810 determines the system is not the
MS of FIG. 68 A processing, then MS2MS processing is used
to accomplish the remote invoke processing, in which case
block 6810 continues to block 6812 for preparing parameters
for FIG. 75A processing, and block 6814 invokes the proce-
dure of FIG. 75A for sending the data (invoke command,
operand and parameters) for remote invoke processing at the
remote MS. Processing then continues back to block 6806.
MS2MS processing is as already described above (see FIGS.
75A and 75B), except FIG. 75A performs sending data for the
invoke command to the remote MS for an invocation at the
remote MS, and FIG. 75B blocks 7578 through 7584 carry out
processing specifically for the invoke command. Block 7584
processes the invoke command for invocation in context of
the Operand at the MS of FIG. 75 processing (e.g. using
invocation methodologies of FIG. 68A).

In one embodiment, blocks 6812 and 6814 cause process-
ing at a remote data processing system which incorporates
similar MS2MS processing, but the remote data processing
system is not a MS (i.e. system parameter is for a data pro-
cessing system identifier accessible to the MS of FIG. 68A
processing). The remote data processing system may be a
service data processing system, or any other data processing
system capable of similar MS2MS processing as described

APPLE

EXHIBIT 1001 - PAGE 0388

US 8,639,267 B2

249

for the invoke command, perhaps involving invocation of a
suitable executable in context for the operand.

Referring back to block 6810, if it is determined that the
system for processing is the MS of FIG. 68 A processing, then
processing continues to block 6816 for checking which
“Operand” was passed. If block 6816 determines the “Oper-
and” indicates to invoke (launch) an appropriate application
for the operand with a standard contextual object type inter-
face, then parameter(s) are validated at block 6818 and block
6820 checks the result. If block 6820 determines there was at
least one error, then block 6822 handles the error appropri-
ately (e.g. log error to LBX History 30 and/or notify user) and
processing returns back to block 6806. If block 6820 deter-
mines there were no parameter errors, then block 6824 inter-
faces to the MS operating system to start the appropriate
application for the particular object passed as a parameter.
Block 6824 may prepare parameters in preparation for the
O/S contextual launch, for example if parameters are passed
to the application which is invoked. Processing leaves block
6824 and returns to block 6806.

An example of block 6824 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as described above for
block 6616.

Referring back to block 6816, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 6826. If
block 6826 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 6828
and block 6830 checks the result. If block 6830 determines
there was at least one error, then block 6832 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to block 6806. If block 6830
determines there were no parameter errors, then processing
continues to block 6834.

Ifblock 6834 determines the custom invocation (launch) is
not to use an Application Programming Interface (API) to
invoke the application for the object passed as a parameter,
then block 6836 prepares a command string for invoking the
particular application, block 6838 invokes the command
string for launching the application, and processing continues
to block 6806.

Ifblock 6834 determines the custom invocation (launch) is
to use an Application Programming Interface (API) to invoke
the applicable for the object passed as a parameter, then block
6840 prepares any API parameters as necessary, block 6842
invokes the API for launching the application, and processing
continues back to block 6806.

Referring back to block 6826, if it is determined that the
“Operand” indicates to perform the invoke command with
other local processing, then parameter(s) are validated at
block 6844 and block 6846 checks the result. If block 6846
determines there was at least one error, then block 6848
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to block 6806. If
block 6848 determines there were no parameter errors, then
block 6850 checks the operand for which invoke processing
to perform, and performs invoke command processing appro-
priately.

Referring back to block 6808, if'it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 6852.

InFIG. 68 A, “Parameters” for the atomic invoke command
in accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 68A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.

10

15

20

25

30

35

40

45

50

55

60

65

250

68A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereot) can be under-
stood to be in good order by the time FIG. 68A processing
occurs (e.g. no blocks 6820/6822 and/or 6830/6832 and/or
6846/6848 required). In yet another embodiment, some
defaulting of parameters is implemented.

FIGS. 68B-1 through 68B-5 depicts a matrix describing
how to process some varieties of the Invoke command (e.g. as
processed at blocks 6850 and 7584). Each row in the matrix
describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Invoke command processing:
S=Standard contextual launch used (blocks 6816 through

6824);

C=Custom launch used (blocks 6826 through 6842);
E=Email transport preferably used (blocks 6892 through

6894);

O=0Other processing (MS2MS or local) used (blocks 6844
through 6850, blocks 6812 through 6814).
Any of the Invoke command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Invoke processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.
With reference back to FIGS. 31A through 31E, note that
the column of information headed by “109” represents the
parameters applicable for the Invoke command. The Invoke
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=These are required, and are in context of
the Operand;
system(s)=One or more destination identities for the Invoke
command (e.g. MS ID or a data processing system identi-
fier);

sender=The sender of the Invoke command, typically tied to
the originating identity of the action (e.g. email address or

MS ID). A different sender can be specified if there is an

applicable privilege in place, or if impersonation has been

granted;

msg/subj=A message or subject associated with invoke com-
mand;

attributes=Indicators for more detailed interpretation of
invoke command parameters and/or indicators for
attributes to be interpreted by external (e.g. receiving) pro-
cesses affected by the invoke command result;

recipient(s)=One or more destination identities for the Invoke

command (e.g. email address or MS ID).

FIG. 68C depicts a flowchart for describing one embodi-
ment of a procedure for Invoke command action processing,
as derived from the processing of FIG. 68A. All operands are
implemented, and each of blocks J04 through J54 can be
implemented with any one of the methodologies described
with FIG. 68A, or any one of a blend of methodologies
implemented by FIG. 68C.

In some embodiments, the invoke command may be used
as an overall strategy and architecture for performing most, if
not all, actions (e.g. other commands).

FIG. 69A depicts a flowchart for describing a preferred
embodiment of a procedure for Copy command action pro-
cessing. There are four (4) primary methodologies for carry-
ing out copy command search processing:

APPLE

EXHIBIT 1001 - PAGE 0389

US 8,639,267 B2

251

1) Launching an application, executable, or program with a
standard contextual object type interface, for finding the
source object(s) to copy;

2) Custom launching of an application, executable, or pro-
gram, for finding the source object(s) to copy;

3) Processing the copy command locally, for finding the
source object(s) to copy; or

4) MS to MS communications (MS2MS) of FIGS. 75A and
75B for finding the source object(s) to copy.

The source parameter specifies which system is to be the
source of the copy: the MS of FIG. 69A processing or a
remote data processing system.

There are two (2) primary methodologies for carrying out
copy command copy processing:

1) Using local processing;

2) MS to MS communications (MS2MS) of FIGS. 75A and
75B for remote copying.

In various embodiments, any of the copy command Operands
can be implemented with either of the methodologies,
although there may be a preference of which methodology is
used for which Operand. Atomic copy command processing
begins at block 6900, continues to block 6902 for accessing
parameters of copy command “Operand” (BNF Grammar
Operand) and “Parameters” (BNF Grammar Parameters), and
continues to block 6904.

If block 6904 determines the source system parameter
(source) is this MS, then processing continues to block 6906.
Ifblock 6906 determines the “Operand” indicates to launch a
search application for the sought operand object with a stan-
dard contextual object type interface, then parameter(s) are
validated at block 6908 and block 6910 checks the result. If
block 6910 determines there was at least one error, then block
6912 handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to the
caller (invoker) at block 6960. If block 6910 determines there
were no parameter errors, then block 6914 interfaces to the
MS operating system to start the search application for the
particular object (for Operand). Block 6914 may prepare
parameters in preparation for the operating system. Process-
ing leaves block 6914 and continues to block 6938 which is
discussed below.

An example of block 6914 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 6906, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 6916. If
block 6916 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 6918
and block 6920 checks the result. If block 6920 determines
there was at least one error, then block 6912 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller at block 6960. If
block 6920 determines there were no parameter errors, then
processing continues to block 6922.

If block 6922 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
searching application for copying the object, then block 6924
prepares a command string for launching the particular appli-
cation, block 6926 invokes the command string for launching
the application, and processing continues to block 6938 dis-
cussed below.

If block 6922 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for searching, then block 6928 pre-

10

15

20

30

35

40

45

252

pares any API parameters as necessary, block 6930 invokes
the API for launching the application, and processing contin-
ues to block 6938.

Referring back to block 6916, if it is determined that the
“Operand” indicates to perform the copy command with local
search processing, then parameter(s) are validated at block
6932 and block 6934 checks the result. If block 6934 deter-
mines there was at least one error, then block 6912 handles the
error appropriately (e.g. log error to LBX History 30 and/or
notify user) and processing returns to the caller at block 6960.
It block 6934 determines there were no parameter errors, then
block 6936 searches for the operand object in context for the
Operand, and processing continues to block 6938.

Referring back to block 6904, if it is determined the source
parameter is not for this MS, then block 6962 prepares param-
eters for FIG. 75A processing. Thereafter, block 6964 checks
to see if there were any parameter errors since block 6962 also
validates them prior to preparing them. If block 6764 deter-
mines there was at least one parameter error, then block 6712
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to the caller at
block 6960. If block 6764 determines there were no errors,
then block 6766 invokes the procedure of FIG. 75A for send-
ing the data (copy command, operand and parameters) for
remote copy search processing at the remote MS. Processing
then continues to block 6938 discussed below. MS2MS pro-
cessing is as already described above (see FIGS. 75A and
75B), except FIG. 75A performs searching for data for the
copy command at the remote MS, and FIG. 75B blocks 7578
through 7584 carry out processing specifically for the copy
command search processing. Block 7584 processes the copy
command for finding the object to copy in context of the
Operand. Blocks 7574 and 7576 will return the results to the
requesting MS of FIG. 75A processing, and block 7510 will
complete appropriate copy search processing so that FIG.
69A processing receives the search results. FIG. 75A can
convey the found object(s) for copy by returning from a
function interface (the send procedure being a function),
returning to a file, setting data visible to both processes, etc.
Note that block 7510 may invoke application launch process-
ing (e.g. like found in FIG. 69A) for invoking the best appli-
cation in the appropriate manner for determining copy search
results returned from FIG. 75B processing, or block 7510
may process results itself.

In one embodiment, block 6966 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 67A process-
ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
find command, perhaps involving search of storage, memory,
or operating system resources which are shared by many
MS:s.

By the time processing reaches block 6938 from any pre-
vious FIG. 69A processing, a search result is communicated
to processing and any launched executable (application) for
searching for the copy object(s) has terminated. Search
results can be passed back as a function return, placed to a
well known directory, placed to a file, placed to interfaced
variable(s), or other communications of the result to further
processing. Regardless of the embodiment, search results are
accessed at block 6938. An alternate embodiment is like FIG.
70A wherein the application/processing invoked at blocks
6914, 6926, 6930 and 6936 handles the ack parameter and
ambiguous results appropriately (i.e. no need for blocks 6938

APPLE

EXHIBIT 1001 - PAGE 0390

US 8,639,267 B2

253
through 6958) to proceed with completing the copy (process-
ing of blocks 6938 through 6958 incorporated). Different
methods are disclosed for similar processing to highlight
methods for carrying out processing for either one of the
commands (Copy or Discard).

Block 6938 checks the results of finding the source object
for copying to ensure there are no ambiguous results (i.e. not
sure what is being copied since the preferred embodiment is
to not copy more than a single operand object at a time). If
block 6938 determines that there was an ambiguous search
result, then processing continues to block 6912 for error
handling as discussed above (e.g. in context for an ambiguous
copy since there were too many things to copy). If block 6938
determines there is no ambiguous entity to copy, block 6940
checks the acknowledgement parameter passed to FIG. 69A
processing. An alternate embodiment assumes that a plurality
ofresults is valid for copying all results to the target system(s)
(ie. no ambiguous check). In another embodiment, an
ambiguous result relies on user reconciliation to reconcile
whether or not to perform the copy (like FIG. 70A discard
processing).

If block 6940 determines the acknowledgement (ack)
parameter is set to true, then block 6942 provides the search
result which is to be copied. Thereafter, processing waits for
a user action to either a) continue with the copy; or b) cancel
the copy. Once the user action has been detected, processing
continues to block 6944. Block 6942 provides a user recon-
ciliation of whether or not to perform the copy. In another
embodiment, there is no ack parameter and multiple results
detected at block 6938 forces processing into the reconcilia-
tion by the MS user. In yet another embodiment, the ack
parameter is still provided, however multiple search results
forces processing into the reconciliation by the MS user any-
way for selecting which individual object shall be copied. In
still other embodiments, all results are copied.

If block 6944 determines the user selected to cancel pro-
cessing, then block 6946 logs the cancellation (e.g. log error
to LBX History 30) and processing returns to the caller at
block 6960. If block 6944 determines the user selected to
proceed with the copy, then processing continues to block
6948 for getting the next (or first) system parameter (block
6948 starts a loop for processing system(s) for the copy
result). Also, if block 6940 determines that the ack parameter
was set to false, then processing continues directly to block
6948. At least one system parameter is required for the copy
as validated by previous parameter validations. Block 6948
continues to block 6950. If block 6950 determines that an
unprocessed system parameter remains, then processing con-
tinues to block 6952. If block 6952 determines the system
(target for copy) is the MS of FIG. 69 A processing, then block
6954 appropriately copies the source object to the system and
processing continues back to block 6948. If block 6952 deter-
mines the system is not the MS of FIG. 69A processing, then
MS2MS processing is used to accomplish the copy process-
ing to the remote data processing system (e.g. MS), in which
case block 6956 prepares parameters for FIG. 75A process-
ing, and block 6958 invokes the procedure of FIG. 75A for
sending the data (copy command, operand, and search result)
for remote copy processing at the remote MS. Processing then
continues back to block 6948. MS2MS processing is as
already described above (see FIGS. 75A and 75B), except
FIG. 75A performs sending data for the copy action to the
remote MS for copying sought operand dependent criteria to
the remote MS, and FIG. 75B blocks 7578 through 7584 carry
out processing specifically for the copy processing. Block
7584 processes the copy of the search result from FIG. 69A to
the system of FIG. 75B processing.

20

35

40

45

50

254

In one embodiment, blocks 6956 and 6958 cause process-
ing at a remote data processing system which incorporates
similar MS2MS processing, but the remote data processing
system is not a MS (i.e. system parameter is for a data pro-
cessing system identifier accessible to the MS of FIG. 69A
processing). The remote data processing system may be a
service data processing system, or any other data processing
system capable of similar MS2MS processing as described
for the copy command, perhaps involving storage, memory,
or operating system resources which are shared by many
MS:s.

Referring back to block 6950, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 6960.

In FIG. 69A, “Parameters” for the atomic copy command
in accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 69A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
69A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof can be under-
stood to be in good order by the time FIG. 69A processing
occurs (e.g. no blocks 6908/6910 and/or 6918/6920 and/or
6932/6934 required). In yet another embodiment, some
defaulting of parameters is implemented.

The first parameter may define a plurality of entities to be
copied when the object inherently contains a plurality (e.g.
directory, container). In an alternate embodiment, the search
results for copying can be plural without checking for ambi-
guity at block 6938, in which case all results returned can/will
be copied to the target systems.

FIGS. 69B-1 through 69B-14 depicts a matrix describing
how to process some varieties of the Copy command. Each
row in the matrix describes processing apparatus and/or
methods for carrying out command processing for certain
operands (see FIG. 34D for the Operand which matches the
number in the first column). The second column shows the
Preferred Methodology (PM) for carrying out Copy com-
mand processing:

S=Standard contextual launch used (blocks 6906 through
6914);
C=Custom launch used (blocks 6916 through 6930);
O=Other processing used (e.g. block 6936).
Any of the Copy command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Copy processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.
With reference back to FIGS. 31A through 31E, note that
the column of information headed by “111” represents the
parameters applicable for the Copy command. The Copy
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=This is required, and is in context of the
Operand;
ack=Boolean for whether or not to prompt user for perform-
ing the copy, prior to doing the copy.
source=A source identity for the Copy command (e.g. MS ID
or a data processing system identifier);

system(s)=One or more destination identities for the Copy
command (e.g. MS ID or a data processing system identi-
fier).

APPLE

EXHIBIT 1001 - PAGE 0391

US 8,639,267 B2

255

In a preferred embodiment, an additional parameter is pro-
vided for specifying the target destination of the system for
the copy. For example, a directory can be placed to a target
path, an email can be placed to a target folder, etc. Otherwise,
there is an assumed target destination. In another embodi-
ment, a user can select from a plurality of search results which
objects are to be copied.

FIG. 69C depicts a flowchart for describing one embodi-
ment of a procedure for Copy command action processing, as
derived from the processing of FIG. 69A. All operands are
implemented, and each of blocks C04 through C54 can be
implemented with any one of the methodologies described
with FIG. 69A, or any one of a blend of methodologies
implemented by FIG. 69C.

FIG. 70A depicts a flowchart for describing a preferred
embodiment of a procedure for Discard command action
processing. The Delete command, “Throw Away” command,
and Discard command provide identical processing. There
are four (4) primary methodologies for carrying out discard
command processing:

1) Launching an application, executable, or program with a

standard contextual object type interface;

2) Custom launching of an application, executable, or pro-

gram;

3) Processing the discard command locally; or

4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for remote discarding.
In various embodiments, any of the discard command Oper-
ands can be implemented with either one of the methodolo-
gies, although there may be a preference of which methodol-
ogy is used for which Operand. Atomic discard command
processing begins at block 7002, continues to block 7004 for
accessing parameters of discard command “Operand” (BNF
Grammar Operand) and “Parameters” (BNF Grammar
Parameters), and then to block 7006 for getting the next (or
first) system parameter (block 7006 starts an iterative loop for
processing system(s)). At least one system parameter is
required for the discard. If at least one system is not present
for being processed by block 7006, then block 7006 will
handle the error and continue to block 7062 for returning to
the caller (not shown—considered obvious error handling, or
was already validated at configuration time). Block 7006
continues to block 7008. If block 7008 determines that an
unprocessed system parameter remains, then processing con-
tinues to block 7010. If block 7010 determines the system is
not the MS of FIG. 70 A processing, then MS2MS processing
is used to accomplish the remote discard processing, in which
case block 7010 continues to block 7012 for preparing param-
eters for FIG. 75A processing. Thereafter, block 7014 checks
to see if there were any parameter errors since block 7012 also
validates them prior to preparing them. If block 7014 deter-
mines there was at least one parameter error, then block 7016
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing continues back to block
7006. If block 7014 determines there were no errors, then
block 7018 invokes the procedure of FIG. 75A for sending the
data (discard command, operand and parameters) for remote
discard processing at the remote MS. Processing then contin-
ues back to block 7006. MS2MS processing is as already
described above (see FIGS. 75A and 75B), except FIG. 75A
performs sending data for the discard command to the remote
MS for discarding sought operand dependent criteria at the
remote MS, and FI1G. 75B blocks 7578 through 7584 carry out
processing specifically for the discard command. Block 7584
processes the discard command for discarding sought criteria
in context of the Operand. In a preferred embodiment, the

10

15

20

25

30

35

40

45

50

55

60

65

256

discard takes place when privileged, and when an ack param-
eter is not provided or is set to false.

Blocks 7574 and 7576 will return the results to the request-
ing MS of FIG. 75A processing when the ack parameter is set
to true, and block 7510 will complete appropriate discard
processing after prompting the user of the MS of FIG. 75A
processing for whether or not to continue ((just like blocks
7054 through 7060 discussed below). Note that block 7510
may include invoking the best application in the appropriate
manner (e.g. like found in FIG. 70A) with the discard results
returned when an acknowledgement (ack parameter) has
been specified to true, or block 7510 may process results
appropriately itself. Processing should be enabled for then
continuing with the discard through another invocation of
FIG. 75A (from block 7510 and a following processing of
blocks 7578 through 7584 to do the discard) if the user
chooses to do so. Block 7510 includes significant processing,
all of which has been disclosed in FIG. 70A anyway and then
included at block 7510 if needed there for ack processing.

In one embodiment, block 7018 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 70A process-
ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
discard command, perhaps involving search of storage,
memory, or operating system resources which are shared by
many MSs.

Referring back to block 7010, if it is determined that the
system for processing is the MS of FIG. 70A processing, then
processing continues to block 7020 for checking which
“Operand” was passed. If block 7020 determines the “Oper-
and” indicates to launch a search application for the sought
operand with a standard contextual object type interface, then
parameter(s) are validated at block 7022 and block 7024
checks the result. If block 7024 determines there was at least
one error, then block 7016 handles the error appropriately
(e.g. log error to LBX History 30 and/or notify user) and
processing returns back to block 7006. If block 7024 deter-
mines there were no parameter errors, then block 7026 inter-
faces to the MS operating system to start the search applica-
tion for the particular object passed as a parameter and then to
continue with the discard for ack set to false, and to prompt for
doing the discard for the prompt set to true. Block 7026 may
prepare parameters in preparation for the operating system,
for example if parameters are passed to the application which
is invoked for discarding the object. Processing leaves block
7026 and returns to block 7006. An alternate embodiment
processes like FIG. 69 A wherein the application launched at
block 7026 produces only a search result prior to continuing
to block 7050. Then, the search result is discarded if there are
no ambiguous results or the ack parameter is set to false, or
there are ambiguous results and the user selects to continue,
or the ack parameter is set to true and the user selects to
continue. FIG. 70A demonstrates processing where the
executable launched is an all inclusive processing. Likewise,
FIG. 69A can be like FIG. 70A wherein the application
launched handles the ack parameter appropriately. Different
methods are disclosed for similar processing to highlight
methods to carrying out processing for either one of the
commands (Copy or Discard).

An example of block 7026 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

APPLE

EXHIBIT 1001 - PAGE 0392

US 8,639,267 B2

257

Referring back to block 7020, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 7028. If
block 7028 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 7030
and block 7032 checks the result. If block 7032 determines
there was at least one error, then block 7016 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to block 7006. If block 7032
determines there were no parameter errors, then processing
continues to block 7034.

Ifblock 7034 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable search application for discarding the object passed
as a parameter, then block 7036 prepares a command string
for launching the particular application, block 7038 invokes
the command string for launching the application, and pro-
cessing continues to block 7006. An alternate embodiment
processes like FIG. 69A wherein the application launched at
block 7026 produces only a search result prior to continuing
to block 7050. Then, the search result is discarded if there are
no ambiguous results or the ack parameter is set to false, or
there are ambiguous results and the user selects to continue,
or the ack parameter is set to true and the user selects to
continue. FIG. 70A demonstrates processing where the
executable launched is an all inclusive processing (e.g.
includes processing of blocks 7050 through 7060).

If block 7034 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for discarding the object passed as a
parameter, then block 7040 prepares any API parameters as
necessary, block 7042 invokes the API for launching the
application, and processing continues back to block 7006. An
alternate embodiment processes like FIG. 69A wherein the
application launched at block 7042 produces only a search
result prior to continuing to block 7050. Then, the search
result is discarded if there are no ambiguous results or the ack
parameter is set to false, or there are ambiguous results and
the user selects to continue, or the ack parameter is set to true
and the user selects to continue. FIG. 70A demonstrates pro-
cessing where the executable launched is an all inclusive
processing (includes processing of blocks 7050 through
7060).

Referring back to block 7028, if it is determined that the
“Operand” indicates to perform the discard command with
other local processing, then parameter(s) are validated at
block 7044 and block 7046 checks the result. If block 7046
determines there was at least one error, then block 7016
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to block 7006. If
block 7046 determines there were no parameter errors, then
block 7048 checks the operand for which discard processing
to perform, and performs discard search processing appropri-
ately. Thereafter, block 7050 checks the results.

Block 7050 checks the results of finding the source object
for discard to ensure there are no ambiguous results (i.e. not
sure what is being discarded since the preferred embodiment
is to not discard more than a single operand object at a time).
If block 7050 determines that there was an ambiguous search
result, then processing continues to block 7052. If block 7050
determines there is no ambiguity, then processing continues
to block 7054. If block 7054 determines the ack parameter is
set to true, then processing continues to block 7052, other-
wise processing continues to block 7060. Block 7054 checks
the acknowledgement parameter passed to FIG. 70A process-
ing. An alternate embodiment assumes that a plurality of
results is valid and discards all results at the target system(s)

10

15

20

25

30

35

40

45

50

55

60

65

258

(i.e. no ambiguous check). In another embodiment, an
ambiguous result causes error handling at block 7014 (like
FIG. 69A copy processing).

Block 7052 causes processing for waiting for a user action
to either a) continue with the discard; or b) cancel the discard.
Once the user action has been detected, processing continues
to block 7056. Block 7052 provides a user reconciliation of
whether or not to perform the discard. In another embodi-
ment, there is no ack parameter and multiple results detected
at block 7048 are handled for the discard.

If block 7056 determines the user selected to cancel pro-
cessing, then block 7058 logs the cancellation (e.g. log error
to LBX History 30) and processing returns to block 7006. If
block 7056 determines the user selected to proceed with the
discard, then processing continues to block 7060. Block 7060
performs the discard of the object(s) found at block 7048.
Thereafter, processing continues back to block 7006.

Referring back to block 7008, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 7062.

In FIG. 70A, “Parameters” for the atomic discard com-
mand in accordance with the “Operand” were shown to be
validated for being properly privileged prior to FIG. 70A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 70A in context of where the “Parameters”
are processed. Also, some embodiments may not validate
“Parameters” since they (or some reasonable subset thereof
can be understood to be in good order by the time FIG. 70A
processing occurs (e.g. no blocks 7022/7024 and/or 7030/
7032 and/or 7044/7046 required). In yet another embodi-
ment, some defaulting of parameters is implemented.

FIGS. 70B-1 through 70B-11 depicts a matrix describing
how to process some varieties of the Discard command. Each
row in the matrix describes processing apparatus and/or
methods for carrying out command processing for certain
operands (see FIG. 34D for the Operand which matches the
number in the first column). The second column shows the
Preferred Methodology (PM) for carrying out Discard com-
mand processing:

S=Standard contextual launch used (blocks 7020 through

7026);

C=Custom launch used (blocks 7028 through 7042);
O=0Other processing (MS2MS or local) used (blocks 7044

through 7060, blocks 7012 through 7018).

Any of the Discard command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Discard processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “113” represents the
parameters applicable for the Discard command. The Discard
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=This is required, and is in context of the

Operand;
ack=Boolean for whether or not to prompt user for perform-

ing the discard, prior to doing the discard.
system(s)=One or more identities affected for the Discard

command (e.g. MS ID or a data processing system identi-
fier).

Discard command processing discussed thus far demon-
strates multithreaded/multiprocessed processing for each

APPLE

EXHIBIT 1001 - PAGE 0393

US 8,639,267 B2

259

system to search. In search results processing, for example
when a plurality of results for discard are available, an appli-
cation may be launched multiple times. For each system, the
application itself is relied upon for handling multiple invoca-
tions. The application itself has intelligence to know it was
re-launched thereby permitting a single resulting interface for
multiple target system searches, regardless of the number of
times the same search application was launched. In a pre-
ferred embodiment, discard processing permits multiple
instances of a search application launched. In another
embodiment, a user selects which of a plurality of results are
to be discarded prior to discarding.

FIG. 70C depicts a flowchart for describing one embodi-
ment of a procedure for Discard command action processing,
as derived from the processing of FIG. 70A. All operands are
implemented, and each of blocks D04 through D54 can be
implemented with any one of the methodologies described
with FIG. 70A, or any one of a blend of methodologies
implemented by FIG. 70C.

FIG. 71A depicts a flowchart for describing a preferred
embodiment of a procedure for Move command action pro-
cessing. There are four (4) primary methodologies for carry-
ing out move command search processing:

1) Launching an application, executable, or program with a
standard contextual object type interface, for finding the
source object(s) to move;

2) Custom launching of an application, executable, or pro-
gram, for finding the source object(s) to move;

3) Processing the move command locally, for finding the
source object(s) to move; or

4) MS to MS communications (MS2MS) of FIGS. 75A and
75B for finding the source object(s) to move.

The source parameter specifies which system is to be the
source of the move: the MS of FIG. 71A processing or a
remote data processing system.

There are two (2) primary methodologies for carrying out
move command processing:

1) Using local processing;

2) MS to MS communications (MS2MS) of FIGS. 75A and
75B for remote processing.

In various embodiments, any of the move command Oper-
ands can be implemented with either of the methodologies,
although there may be a preference of which methodology is
used for which Operand. Atomic move command processing
begins at block 7100, continues to block 7102 for accessing
parameters of move command “Operand” (BNF Grammar
Operand) and “Parameters” (BNF Grammar Parameters), and
continues to block 7104.

If block 7104 determines the source system parameter
(source) is this MS, then processing continues to block 7106.
Ifblock 7106 determines the “Operand” indicates to launch a
search application for the sought operand object with a stan-
dard contextual object type interface, then parameter(s) are
validated at block 7108 and block 7110 checks the result. If
block 7110 determines there was at least one error, then block
7112 handles the error appropriately (e.g. log error to LBX
History 30 and/or notify user) and processing returns to the
caller (invoker) at block 7160. If block 7110 determines there
were no parameter errors, then block 7114 interfaces to the
MS operating system to start the search application for the
particular object. Block 7114 may prepare parameters in
preparation for the operating system. Processing leaves block
7114 and continues to block 7138 which is discussed below.

An example of block 7114 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

10

15

20

25

30

35

40

45

50

55

60

65

260

Referring back to block 7106, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 7116. If
block 7116 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 7118
and block 7120 checks the result. If block 7120 determines
there was at least one error, then block 7112 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify
user) and processing returns to the caller at block 7160. If
block 7120 determines there were no parameter errors, then
processing continues to block 7122.

If'block 7122 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
searching application for moving the object, then block 7124
prepares a command string for launching the particular appli-
cation, block 7126 invokes the command string for launching
the application, and processing continues to block 7138 dis-
cussed below.

If block 7122 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for searching, then block 7128 pre-
pares any API parameters as necessary, block 7130 invokes
the API for launching the application, and processing contin-
ues to block 7138.

Referring back to block 7116, if it is determined that the
“Operand” indicates to perform the move command with
local search processing, then parameter(s) are validated at
block 7132 and block 7134 checks the result. If block 7134
determines there was at least one error, then block 7112
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to the caller at
block 7160. If block 7134 determines there were no param-
eter errors, then block 7136 searches for the operand object in
context for the Operand, and processing continues to block
7138.

Block 7138 checks the results of finding the source object
for moving to ensure there are no ambiguous results (i.e. not
sure what is being moved since the preferred embodiment is
to not move more than a single operand object at a time). If
block 7138 determines there was an ambiguous search result,
then processing continues to block 7112 for error handling as
discussed above (e.g. in context for an ambiguous move since
there were too many things to move). If block 7138 deter-
mines there is no ambiguous entity to move, block 7140
checks the acknowledgement parameter passed to FIG. 71A
processing. An alternate embodiment assumes that a plurality
of results is valid and moves all results to the target system(s)
(i.e. no ambiguous check). In another embodiment, an
ambiguous result relies on user reconciliation to reconcile
whether or not to perform the move (like FIG. 70A discard
processing).

If block 7140 determines the acknowledgement (ack)
parameter is set to true, then block 7142 provides the search
result which is to be moved. Thereafter, processing waits for
auser action to either a) continue with the move; or b) cancel
the move. Once the user action has been detected, processing
continues to block 7144. Block 7142 provides a user recon-
ciliation of whether or not to perform the move. In another
embodiment, there is no ack parameter and multiple results
detected at block 7138 forces processing into the reconcilia-
tion by the user. In yet another embodiment, the ack param-
eter is still provided, however multiple search results forces
processing into the reconciliation by the MS user anyway for
selecting which individual object shall be moved. In still other
embodiments, all results are moved.

If block 7144 determines the user selected to cancel pro-
cessing, then block 7146 logs the cancellation (e.g. log error

APPLE

EXHIBIT 1001 - PAGE 0394

US 8,639,267 B2

261

to LBX History 30) and processing returns to the caller at
block 7160. If block 7144 determines the user selected to
proceed with the move, then processing continues to block
7148 for getting the next (or first) system parameter (block
7148 starts an iterative loop for processing system(s) for the
move result). Also, if block 7140 determines that the ack
parameter was set to false, then processing continues directly
to block 7148. At least one system parameter is required for
the move as validated by previous parameter validations.
Block 7148 continues to block 7150.

If block 7150 determines that an unprocessed system
parameter remains, then processing continues to block 7152.
If block 7152 determines the system (target for move) is the
MS of FIG. 71A processing, then block 7154 appropriately
moves the source object to the system and processing contin-
ues back to block 7148. If block 7152 determines the system
is not the MS of FIG. 71A processing, then MS2MS process-
ing is used to accomplish the move processing to the remote
data processing system (e.g. MS), in which case block 7156
prepares parameters for FIG. 75 A processing, and block 7158
invokes the procedure of FIG. 75 A for sending the data (move
command, operand, and search result) for remote move pro-
cessing at the remote MS. Processing then continues back to
block 7148. MS2MS processing is as already described above
(see FIGS. 75A and 75B), except FIG. 75 A performs sending
data for the move action to the remote MS for moving sought
operand dependent criteria to the remote MS, and FIG. 75B
blocks 7578 through 7584 carry out processing specifically
for the move processing. Block 7584 processes the move of
the search result from FIG. 71A to the system of FIG. 75B
processing.

Referring back to block 7104, if it is determined the source
parameter is not for this MS, then block 7162 prepares param-
eters for FIG. 75A processing. Thereafter, block 7164 checks
to see if there were any parameter errors since block 7162 also
validates them prior to preparing them. If block 7164 deter-
mines there was at least one parameter error, then block 7112
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to the caller at
block 7160. If block 7164 determines there were no errors,
then block 7166 invokes the procedure of FIG. 75A for send-
ing the data (move command, operand and parameters) for
remote move search processing at the remote MS. Processing
then continues to block 7138 discussed below. In one embodi-
ment, the object(s) to move are discarded from the source
system (via block 7166) in preparation for the move com-
mand processing at blocks 7154 and 7158. In another
embodiment, the object(s) to move will be discarded from the
source system when completing move processing at blocks
7154 or 7158. MS2MS processing via block 7166 is as
already described above (see FIGS. 75A and 75B), except
FIG. 75A performs searching for data for the move command
at the remote MS, and FIG. 75B blocks 7578 through 7584
carry out processing specifically for at least the move com-
mand search processing for the source system. Block 7584
processes the move command for finding the object to move
in context of the Operand. Blocks 7574 and 7576 will return
the results to the requesting MS of FIG. 75A processing, and
block 7510 will complete appropriate move search process-
ing so that FIG. 71A processing receives the search results.
FIG. 75A can convey the found object(s) for the move by
returning from a function interface (the send procedure being
a function), returning to a file, setting data visible to both
processes, etc. Note that block 7510 may include application
launch processing (e.g. like found in FIG. 71A) for invoking
the best application in the appropriate manner for determin-

10

30

35

40

45

55

262

ing move search results returned from FIG. 75B processing,
or block 7510 may process returned results itself.

In one embodiment, block 7166 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 71A process-
ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
find command, perhaps involving search of storage, memory,
or operating system resources which are shared by many
MS:s.

By the time processing reaches block 7138 from any pre-
vious FIG. 71A processing, a search result is communicated
to processing and any launched executable (application) for
searching for the move object(s) has terminated. Search
results can be passed back as a function return, placed to a
well known directory, placed to a file, placed to interfaced
variable(s), or other communications of the result to further
processing. Regardless of the embodiment, search results are
accessed at block 7138. An alternate embodiment is like FIG.
70A wherein the application/processing invoked at blocks
7114, 7126, 7130 and 7136 handles the ack parameter and
ambiguous results appropriately (i.e. no need for blocks 7138
through 7158) to proceed with completing the move (process-
ing of blocks 7138 through 7158 incorporated). Different
methods are disclosed for similar processing to highlight
methods for carrying out processing for either one of the
commands (Move or Discard).

In one embodiment, blocks 7156 and 7158 cause process-
ing at a remote data processing system which incorporates
similar MS2MS processing, but the remote data processing
system is not a MS (i.e. system parameter is for a data pro-
cessing system identifier accessible to the MS of FIG. 71A
processing). The remote data processing system may be a
service data processing system, or any other data processing
system capable of similar MS2MS processing as described
for the move command, perhaps involving storage, memory,
or operating system resources which are shared by many
MS:s.

Referring back to block 7150, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 7160.

In FIG. 71A, “Parameters” for the atomic move command
in accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 71A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
71A in context of where the “Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof) can be under-
stood to be in good order by the time FIG. 71A processing
occurs (e.g. no blocks 7108/7110 and/or 7118/7120 and/or
7132/7134 required). In yet another embodiment, some
defaulting of parameters is implemented.

The first parameter may define a plurality of entities to be
moved when the object inherently contains a plurality (e.g.
directory, container). In an alternate embodiment, the search
results for moving can be plural without checking for ambi-
guity at block 7138, in which case all results returned will be
moved to the target systems.

FIGS. 71B-1 through 71B-14 depicts a matrix describing
how to process some varieties of the Move command. The end
result of a move command is identical to “Copy” command
processing except the source is “Discard”-ed as part of pro-
cessing (preferably after the copy). Each row in the matrix

APPLE

EXHIBIT 1001 - PAGE 0395

US 8,639,267 B2

263

describes processing apparatus and/or methods for carrying
out command processing for certain operands (see FIG. 34D
for the Operand which matches the number in the first col-
umn). The second column shows the Preferred Methodology
(PM) for carrying out Move command processing:
S=Standard contextual launch used (blocks 7106 through
7114);
C=Custom launch used (blocks 7116 through 7130);
O=0Other processing used (e.g. block 7136).
Any of the Move command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Move processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.
With reference back to FIGS. 31A through 31E, note that
the column of information headed by “115” represents the
parameters applicable for the Move command. The Move
command has the following parameters, all of which are
interpreted in context of the Operand:
first parameter(s)=This is required, and is in context of the
Operand;
ack=Boolean for whether or not to prompt user for perform-
ing the move, prior to doing the move.
source=A source identity for the Move command (e.g. MS ID
or a data processing system identifier);

system(s)=One or more destination identities for the Move
command (e.g. MS ID or a data processing system identi-
fier).

In an alternate embodiment, an additional parameter is
provided for specifying the target destination of the system
for the move. For example, a directory can be placed to a
target path, an email can be placed to a target folder, etc.

FIG. 71C depicts a flowchart for describing one embodi-
ment of a procedure for Move command action processing, as
derived from the processing of FIG. 71A. All operands are
implemented, and each of blocks M04 through M54 can be
implemented with any one of the methodologies described
with FIG. 71A, or any one of a blend of methodologies
implemented by FIG. 71C.

FIG. 72A depicts a flowchart for describing a preferred
embodiment of a procedure for Store command action pro-
cessing. There are four (4) primary methodologies for carry-
ing out store command processing:

1) Launching an application, executable, or program with a

standard contextual object type interface;

2) Custom launching of an application, executable, or pro-

gram;

3) Processing the store command locally; or

4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for storing remotely.
In various embodiments, any of the store command Operands
can be implemented with either one of the methodologies,
although there may be a preference of which methodology is
used for which Operand. Atomic store command processing
begins at block 7202, continues to block 7204 for accessing
parameters of store command “Operand” (BNF Grammar
Operand) and “Parameters” (BNF Grammar Parameters), and
then to block 7206 for getting the next (or first) system param-
eter (block 7206 starts an iterative loop for processing
system(s)). At least one system parameter is required for the
store command. If at least one system is not present for being
processed by block 7206, then block 7206 will handle the
error and continue to block 7250 for returning to the caller
(not shown—considered obvious error handling, or was

35

40

45

50

264

already validated at configuration time). Block 7206 contin-
ues to block 7208. If block 7208 determines that an unproc-
essed system parameter remains, then processing continues
to block 7210. If block 7210 determines the system is not the
MS of FIG. 72A processing, then MS2MS processing is
needed to accomplish the remote store processing, in which
case block 7210 continues to block 7212 for preparing param-
eters for FIG. 75A processing. Thereafter, block 7214 checks
to see if there were any parameter errors since block 7212 also
validates them prior to preparing them. If block 7214 deter-
mines there was at least one parameter error, then block 7216
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing continues back to block
7206. If block 7214 determines there were no errors, then
block 7218 invokes the procedure of FIG. 75A for sending the
data (store command, operand and parameters) for remote
store processing at the remote MS. Processing then continues
back to block 7206. MS2MS processing is as already
described above (see FIGS. 75A and 75B), except FIG. 75A
performs sending data for the store command to the remote
MS for storing operand dependent criteria at the remote MS,
and FIG. 75B blocks 7578 through 7584 carry out processing
specifically for the store command. Block 7584 processes the
store command for storing in context of the Operand.

In one embodiment, block 7218 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 72A process-
ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
store command, perhaps involving search of storage,
memory, or operating system resources which are shared by
many MSs.

Referring back to block 7208, if it is determined that the
system for processing is the MS of FIG. 72 A processing, then
processing continues to block 7220 for checking which
“Operand” was passed. If block 7220 determines the “Oper-
and” indicates to launch a store application for the sought
operand with a standard contextual object type interface, then
parameter(s) are validated at block 7222 and block 7224
checks the result. If block 7224 determines there was at least
one error, then block 7216 handles the error appropriately
(e.g. log error to LBX History 30 and/or notify user) and
processing returns back to block 7206. If block 7224 deter-
mines there were no parameter errors, then block 7226 inter-
faces to the MS operating system to start the storing applica-
tion for the particular object passed as a parameter. Block
7226 may prepare parameters in preparation for the operating
system, for example if parameters are passed to the applica-
tion which is invoked for storing the object. Processing leaves
block 7226 and returns to block 7206.

An example of block 7226 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 7220, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 7228. If
block 7228 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 7230
and block 7232 checks the result. If block 7232 determines
there was at least one error, then block 7216 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify

APPLE

EXHIBIT 1001 - PAGE 0396

US 8,639,267 B2

265

user) and processing returns to block 7206. If block 7232
determines there were no parameter errors, then processing
continues to block 7234.

Ifblock 7234 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable application for storing the object passed as a
parameter, then block 7236 prepares a command string for
launching the particular application, block 7238 invokes the
command string for launching the application, and process-
ing continues to block 7206.

If block 7234 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for storing the object passed as a
parameter, then block 7240 prepares any API parameters as
necessary, block 7242 invokes the API for launching the
application, and processing continues back to block 7206.

Referring back to block 7228, if it is determined that the
“Operand” indicates to perform the store command with
other local processing, then parameter(s) are validated at
block 7244 and block 7246 checks the result. If block 7246
determines there was at least one error, then block 7216
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to block 7206. If
block 7246 determines there were no parameter errors, then
block 7248 checks the operand for which store processing to
perform, and performs store processing appropriately.

Referring back to block 7206, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 7250.

In FIG. 72A, “Parameters” for the atomic store command
in accordance with the “Operand” were shown to be validated
for being properly privileged prior to FIG. 72A processing
(by FIG. 61 processing). However, an alternate embodiment
could move some or all applicable privilege validation to FIG.
72A in context of where the ‘“Parameters” are processed.
Also, some embodiments may not validate “Parameters”
since they (or some reasonable subset thereof) can be under-
stood to be in good order by the time FIG. 72A processing
occurs (e.g. no blocks 7222/7224 and/or 7230/7232 and/or
7244/7246 required). In yet another embodiment, some
defaulting of parameters is implemented.

FIGS. 72B-1 through 72B-5 depicts a matrix describing
how to process some varieties of the Store command. Each
row in the matrix describes processing apparatus and/or
methods for carrying out command processing for certain
operands (see FIG. 34D for the Operand which matches the
number in the first column). The second column shows the
Preferred Methodology (PM) for carrying out Store com-
mand processing:

S=Standard contextual launch used (blocks 7220 through

7226);

C=Custom launch used (blocks 7228 through 7242);
O=0Other processing (MS2MS or local) used (blocks 7244

through 7248, blocks 7212 through 7218).

Any of the Store command operand combinations can be
carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Store processing descriptions without departing from the
spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “117” represents the
parameters applicable for the Store command. The Store
command has the following parameters, all of which are
interpreted in context of the Operand:

10

30

40

45

266

first parameter(s)=These are required, and are in context of
the Operand,;

system(s)=One or more destination identities for the Store
command (e.g. MS ID or a data processing system identi-
fier).

In an alternate embodiment, an ack parameter is provided for

proving a user reconciliation of the store processing (like ack

parameter in other commands) wherein the reconciliation

preferably presents the proposed store operation in an infor-

mative manner so that the user can make an easy decision to

proceed or cancel.

FIG. 72C depicts a flowchart for describing one embodi-
ment of a procedure for Store command action processing, as
derived from the processing of FIG. 72A. All operands are
implemented, and each of blocks R04 through R54 can be
implemented with any one of the methodologies described
with FIG. 72A, or any one of a blend of methodologies
implemented by FIG. 72C.

FIG. 73A depicts a flowchart for describing a preferred
embodiment of a procedure for Administrate command
action processing. There are four (4) primary methodologies
for carrying out administrate command processing:

1) Launching an application, executable, or program with a

standard contextual object type interface;

2) Custom launching of an application, executable, or pro-

gram;

3) Processing the administrate command locally; or

4) Using MS to MS communications (MS2MS) of FIGS.

75A and 75B for remote administration.
In various embodiments, any of the administrate command
Operands can be implemented with either one of the meth-
odologies, although there may be a preference of which meth-
odology is used for which Operand. Atomic administrate
command processing begins at block 7302, continues to
block 7304 for accessing parameters of administrate com-
mand “Operand” (BNF Grammar Operand) and “Param-
eters” (BNF Grammar Parameters), and then to block 7306
for getting the next (or first) system parameter (block 7306
starts an iterative loop for processing system(s)). At least one
system parameter is required for the administrate command.
If at least one system is not present for being processed by
block 7306, then block 7306 will handle the error and con-
tinue to block 7350 for returning to the caller (not shown—
considered obvious error handling, or was already validated
at configuration time). Block 7306 continues to block 7308. If
block 7308 determines that an unprocessed system parameter
remains, then processing continues to block 7310. If block
7310 determines the system is not the MS of FIG. 73A pro-
cessing, then MS2MS processing is needed to accomplish the
remote administration processing, in which case block 7310
continues to block 7312 for preparing parameters for FIG.
75A processing. Thereafter, block 7314 checks to see if there
were any parameter errors since block 7312 also validates
them prior to preparing them. If block 7314 determines there
was at least one parameter error, then block 7316 handles the
error appropriately (e.g. log error to LBX History 30 and/or
notify user) and processing continues back to block 7306. If
block 7314 determines there were no errors, then block 7318
invokes the procedure of FIG. 75A for sending the data (ad-
ministrate command, operand and parameters) for remote
administrate processing at the remote MS. Processing then
continues back to block 7306. MS2MS processing is as
already described above (see FIGS. 75A and 75B), except
FIG. 75A performs sending data for the administrate com-
mand to the remote MS for searching for sought operand
dependent criteria at the remote MS, and FIG. 75B blocks
7578 through 7584 carry out processing specifically for the

APPLE

EXHIBIT 1001 - PAGE 0397

US 8,639,267 B2

267

administrate command search result. Block 7584 processes
the administrate command for searching for sought criteria in
context of the Operand. Blocks 7574 and 7576 will return the
results to the requesting MS of FIG. 75A processing, and
block 7510 will complete appropriate administrate process-
ing. Note that block 7510 may include application launch
processing (e.g. like found in FIG. 73A) for invoking the best
application in the appropriate manner with the administrate
results returned. The application should be enabled for
searching remote MSs further if the user chooses to do so, and
be enabled to perform the privileged administration. Another
embodiment of block 7510 processes the search results and
displays them to the user for subsequent administration in an
optimal manner. In some embodiments, administrate pro-
cessing is spawned at the remote MS and the interface results
are presented to the remote user. In preferred embodiments,
the administrate processing results interface is presented to
the user of FIG. 73A processing for subsequent administra-
tion. In some embodiments, administrate processing is passed
an additional parameter for whether or not to spawn the
search interface at the remote MS for the benefit of the remote
MS user, or to spawn locally for the benefit of the user of the
MS of FIG. 73 A processing. Block 7510 may process results
itself.

In one embodiment, block 7318 causes processing at a
remote data processing system which incorporates similar
MS2MS processing, but the remote data processing system is
not a MS (i.e. system parameter is for a data processing
system identifier accessible to the MS of FIG. 73A process-
ing). The remote data processing system may be a service data
processing system, or any other data processing system
capable of similar MS2MS processing as described for the
administrate command, perhaps involving search of storage,
memory, or operating system resources which are shared by
many MSs.

Referring back to block 7310, if it is determined that the
system for processing is the MS of FIG. 73 A processing, then
processing continues to block 7320 for checking which
“Operand” was passed. If block 7320 determines the “Oper-
and” indicates to launch the administration application for the
sought operand with a standard contextual object type inter-
face, then parameter(s) are validated at block 7322 and block
7324 checks the result. If block 7324 determines there was at
least one error, then block 7316 handles the error appropri-
ately (e.g. log error to LBX History 30 and/or notify user) and
processing returns back to block 7306. If block 7324 deter-
mines there were no parameter errors, then block 7326 inter-
faces to the MS operating system to start the administration
application for the particular object passed as a parameter.
Block 7326 may prepare parameters in preparation for the
operating system, for example if parameters are passed to the
application which is invoked for administration of the object.
Processing leaves block 7326 and returns to block 7306.

An example of block 7326 is similar to the Microsoft
Windows XP association of applications to file types for
convenient application launch, just as was described above
for block 6616.

Referring back to block 7320, if it is determined the “Oper-
and” does not indicate to launch with a standard contextual
object type interface, processing continues to block 7328. If
block 7328 determines the “Operand” indicates to perform a
custom launch, then parameter(s) are validated at block 7330
and block 7332 checks the result. If block 7332 determines
there was at least one error, then block 7316 handles the error
appropriately (e.g. log error to LBX History 30 and/or notify

10

15

20

25

30

35

40

45

50

55

60

65

268

user) and processing returns to block 7306. If block 7332
determines there were no parameter errors, then processing
continues to block 7334.

If'block 7334 determines the custom launch is not to use an
Application Programming Interface (API) to launch the
applicable administration application for administration of
the object passed as a parameter, then block 7336 prepares a
command string for launching the particular application,
block 7338 invokes the command string for launching the
application, and processing continues to block 7306.

If block 7334 determines the custom launch is to use an
Application Programming Interface (API) to launch the
applicable application for administration of the object passed
as a parameter, then block 7340 prepares any API parameters
as necessary, block 7342 invokes the API for launching the
application, and processing continues back to block 7306.

Referring back to block 7328, if it is determined that the
“Operand” indicates to perform the administrate command
with other local processing, then parameter(s) are validated at
block 7344 and block 7346 checks the result. If block 7346
determines there was at least one error, then block 7316
handles the error appropriately (e.g. log error to LBX History
30 and/or notify user) and processing returns to block 7306. If
block 7346 determines there were no parameter errors, then
block 7348 checks the operand for which administration pro-
cessing to perform, and performs administration processing
appropriately.

Referring back to block 7306, if it is determined that there
are no remaining unprocessed system parameters, then pro-
cessing returns to the caller at block 7350.

In FIG. 73A, “Parameters” for the atomic administrate
command in accordance with the “Operand” were shown to
be validated for being properly privileged prior to FIG. 73A
processing (by FIG. 61 processing). However, an alternate
embodiment could move some or all applicable privilege
validation to FIG. 73 A in context of where the “Parameters”
are processed. Also, some embodiments may not validate
“Parameters” since they (or some reasonable subset thereof)
can be understood to be in good order by the time FIG. 73A
processing occurs (e.g. no blocks 7322/7324 and/or 7330/
7332 and/or 7344/7346 required). In yet another embodi-
ment, some defaulting of parameters is implemented.

FIGS. 73B-1 through 73B-7 depicts a matrix describing
how to process some varieties of the Administrate command.
Each row in the matrix describes processing apparatus and/or
methods for carrying out command processing for certain
operands (see FIG. 34D for the Operand which matches the
number in the first column). The second column shows the
Preferred Methodology (PM) for carrying out Administrate
command processing:

S=Standard contextual launch used (blocks 7320 through

7326);

C=Custom launch used (blocks 7328 through 7342);
O=0Other processing (MS2MS or local) used (blocks 7344

through 7348, blocks 7308 through 7318).

Any of the Administrate command operand combinations can
be carried out with either of the methodologies. The second
column shows a preferred methodology (PM). The third col-
umn describes processing which is placed into flowchart
embodiments. There are many embodiments derived from the
Administrate processing descriptions without departing from
the spirit and scope of the disclosure. Descriptions are self
explanatory.

With reference back to FIGS. 31A through 31E, note that
the column of information headed by “121” is not shown.
However, it is assumed to be present (. . .). The Administrate

APPLE

EXHIBIT 1001 - PAGE 0398

US 8,639,267 B2

269

command has the following parameters, all of which are

interpreted in context of the Operand:

first parameter(s)=These are required, and are in context of
the Operand;

system(s)=One or more destination identities for the Admin-
istrate command (e.g. MS ID or a data processing system
identifier).

FIG. 73C depicts a flowchart for describing one embodi-
ment of a procedure for Administrate command action pro-
cessing, as derived from the processing of FIG. 73A. All
operands are implemented, and each of blocks A04 through
A54 can be implemented with any one of the methodologies
described with FIG. 73A, or any one of a blend of method-
ologies implemented by FIG. 73C.

Administrate command processing discussed thus far dem-
onstrates multithreaded/multiprocessed processing for each
system to perform administration. In one embodiment, the
same methodology is used for each system and each launched
administrate processing saves results to acommon format and
destination. In this embodiment, block 7308 processing con-
tinues to a new block 7349 when all systems are processed.
New block 7349 gathers the superset of administrate results
saved, and then launches an application (perhaps the same
one that was launched for each administrate) to show all
results found asynchronously from each other. The applica-
tion launched will be launched with the same choice of
schemes as blocks 7320 through 7350. Block 7349 then con-
tinues to block 7350. This design will want all applications
invoked to terminate themselves after saving search results
appropriately. Then, the new block 7349 starts a single
administration application to present all search results for
performing the administration.

In another embodiment, while an application may be
launched multiple times for each system, the application itself
is relied upon for handling multiple invocations. The appli-
cation itself has intelligence to know it was re-launched
thereby permitting a single resulting interface for multiple
target system searches, regardless of the number of times the
same search application was launched.

In one preferred embodiment, administrate processing per-
mits multiple instances of a search application launched.
Administrate processing is treated independently (this is
shown in FIG. 73A).

Preferably all administrate command embodiments pro-
vide the ability to perform other commands (e.g. Copy, Move,
Discard, Change, . . .) wherever possible from the resulting
interface in context for each search result found.

There are many other reasonable commands (and oper-
ands), some of which may intersect processing by other com-
mands. For example, there is a change command. The change
command can be described by operand as the other com-
mands were, except the change command has identical pro-
cessing to other commands for a particular operand. There are
multiple commands duplicated with the change command,
depending on the operand of the change command (like Con-
nect command overlap of functionality). FIG. 74A depicts a
flowchart for describing a preferred embodiment of a proce-
dure for Change command action processing, and FIG. 74C
depicts a flowchart for describing one embodiment of a pro-
cedure for Change command action processing, as derived
from the processing of FIG. 74A.

Charters certainly provide means for a full spectrum of
automated actions from simple predicate based (conditional)
alerts to complex application processing. Actions includes
API invocations, executable script invocations (e.g. from
command line), executable program invocations, O/S contex-
tual launch executions, integrated execution processing (e.g.

20

30

40

45

270

part of block processing), or any other processing executions.
As incoming WDRs indicate that a MS (MS user) of interest
is nearby, charters provide the mechanism for the richest
possible executions of many varieties to be automatically
processed. From as simple a use as generating nearby/near-
ness/distantness status to performing a complicated set of
processing based on nearby/nearness/distantness relative a
MS user, there is no limit to the processing that can occur. All
of the processing is handled locally by the MS and no con-
nected service was required.

A first LBX enabled MS with phone capability can have a
charter configuration for automatically placing a call to a
second LBX enabled MS user upon determining that the
second MS is close by the first MS user, for example when
both users are coincidentally nearby each other. Perhaps the
users are in a store at the same time, or are attending an event
without knowledge of each other’s attendance. It is “cool” to
be able to cause an automatic phone call for connecting the
users by conversation to then determine that they should
“hook up” since they are nearby. Furthermore, a charter at the
first MS can be configured wherein the first MS automatically
dials/calls the second MS user, or alternatively a charter at the
first MS can be configured wherein the second MS automati-
cally dials/calls the first MS user, provided appropriate privi-
leges are in place.

FIG. 76 depicts a flowchart for describing a preferred
embodiment of processing a special Term (BNF Grammar
Term: WDRTerm, AppTerm, atomic term, etc) information
paste action at a MS. Special paste action processing begins at
block 7602 upon detection of a user invoked action to perform
a special paste using Term information. Depending on the
embodiment, FIG. 76 processing is integrated into the MS
user interface processing, either as presentation manager
code, a plug-in, TSR (Terminate and Stay Resident) code, or
other method for detecting applicable user input at the MS
(e.g. keystroke(s), voice command, etc). Unique paste
requests (user actions) cause processing to start at block 7602.
Block 7602 continues to block 7604 where the most recent
Term information for the MS of FIG. 76 processing is
accessed, then to block 7606 to see if the referenced value for
the paste is set. Depending on when a user invokes the special
paste option, the sought Term for pasting may nothave a value
set yet (e.g. AppTerm newly registered). If block 7606 deter-
mines the Term has not yet been set with a value, then block
7608 default the value for paste, otherwise block 7606 con-
tinues to block 7610. Block 7608 may or may not choose to
default with an obvious value for “not set yet”. If block 7610
determines the Term to be pasted is a WDRTerm, then pro-
cessing continues to block 7612 where the WTV is accessed,
and then to block 7614 to see how timely the most recent
WDR accessed at block 7604 is for describing whereabouts
of'the MS. If block 7614 determines the WDR information is
not out of date with respect to the WTV (i.e. whereabouts
information is timely), then block 7616 pastes the WDR
information according to the special paste action causing
execution of FIG. 76. If there is no data entry field in focus at
the MS at the time of FIG. 76 processing, then an error occurs
at block 7616 which is checked for at block 7618. If block
7618 determines the WDR information paste operation was
successful, processing terminates at block 7622, otherwise
block 7620 provides the user with an error that there is no data
entry field in focus applicable for the paste operation. The
error may require a user acknowledgement to clear the error
to ensure the user sees the error. Block 7620 then continues to
block 7622.

Ifat block 7614 it is determined the user attempted to paste
WDR information from an untimely WDR, then block 7624

APPLE

EXHIBIT 1001 - PAGE 0399

US 8,639,267 B2

271

provides the user with a warning, preferably including how
stale the WDR information is, and processing waits for a user
action to proceed with the paste, or cancel the paste. There-
after, if block 7626 determines the user selected to cancel the
paste operation, then processing terminates at block 7622,
otherwise processing continues to block 7616.

Referring back to block 7610, if it determined the paste
operation is not for a WDRTerm, then processing continues
directly to block 7616 for pasting the other Term construct
terms being referenced by the paste operation (i.e. atomic
term, AppTerm, etc).

FIG. 76 processes special paste commands for pasting
Term information to data entry fields of the MS user interface
from Term data maintained at the MS. In a preferred embodi-
ment, queue 22 is accessed for the most recent WDR at block
7604 when a WDRTerm (WDR field/subfield) is referenced.
In another embodiment, a single WDR entry for the most
recent WDR information is accessed at block 7604. In a
preferred embodiment, there are a plurality of special paste
commands detected and each command causes pasting the
associated Term information field(s) in an appropriate format
to the currently focused user interface data entry field. There
can be a command (user input) for pasting any Term (e.g.
WDR) field(s) in a particular format to the currently focused
data entry field. In another embodiment, one or more fields
are accessed at block 7616 and then used to determine an
appropriate content for the paste operation to the currently
focused data entry field. For example, there can be a special
keystroke sequence (<Ctrl><Alt><[>) to paste a current loca-
tion (e.g. WDRTerm WDR field 1100¢) to the currently
focused data entry field, a special keystroke sequence
(<Ctrl><Alt><s>)to paste a current situational location to the
currently focused data entry field (e.g. my most recent atomic
term situational location), a special keystroke sequence
(<Ctrl><Alt><i>) to paste the MS ID of the most recently
received WDR, a special keystroke sequence
(<Ctrl><Alt><c>) to paste a confidence (e.g. WDRTerm
WDR field 11004) to the currently focused data entry field, a
special keystroke sequence (<Ctrl><Alt><e>) to paste a cur-
rent email source address from the WDR application fields
section of the WDR, a special keystroke sequence
(<Ctrl><Alt><F1>) to paste a current email source address
from the WDR application fields section of the WDR, a
special keystroke sequence (<Ctrl><Alt><1>) to paste a cur-
rent statistical atomic term, etc. There can be a user input for
pasting any Term data including from WDRs, atomic terms
(Value construct), Application Terms, most recent Invocation,
etc.

In another embodiment, the keystroke sequence for the
particular paste operation includes a keystroke as defined in a
prefix 5300a, or in a new record field 5300: for an application,
so that particular application field(s) are accessible from
WDR Application fields 1100%. In other embodiments, there
are special paste actions for LBX maintained statistics,
whereabouts information averages, or any other useful cur-
rent or past LBX data, including from L.LBX History 30. In
another embodiment, there are special paste actions for pre-
dicted data which is based on current and/or passed LBX data,
for example using an automated analysis of a plurality of
WDRs, application terms, atomic terms, statistics, or infor-
mation thereof.

Application Fields 1100%

Application fields 1100% are preferably setina WDR when
it is completed for queue 22 insertion (for FIG. 2F process-
ing). This ensures WDRs which are in-process to queue 22

40

45

272

contain the information at appropriate times. This also
ensures the WDRs which are to be sent outbound contain the
information at the appropriate time, and ensures the WDRs
which are to be received inbound contain the information at
the appropriate time. Fields 1100% may be set when process-
ing at inbound time as well. Application fields can add a
significant amount of storage to a WDR. Alternate embodi-
ments may not maintain field 1100% to queue 22, but rather
append information, or an appropriate subset thereof, to field
1100% when sending WDRs outbound to minimize storage
WDRs utilize at a MS. This alternate embodiment will enable
appropriate WITS processing for maintained WDRs, inbound
WDRs, and outbound WDRs without an overhead of main-
taining lots of data to queue 22, however application fields
functionality will be limited to application data from an out-
bound originated perspective, rather than application field
setting at the time of an in process WDR regardless of when
it was in process. For example, field 11004 may alternatively
be set at blocks 2014 and 2514 and then stripped after being
processed by receiving MSs prior to any insertion to queue
22. In some embodiments, certain field 11004 data can be
enabled or disabled for being present in WDR information.

Preferably, there are WDRTerms for referencing each rea-
sonable application fields section individually, as a subset, or
as a set. For example, _appfid.appname.dataitem should
resolve to the value of “dataitem” for the application section
“appname” of application fields 1100% (i.e. “_appfld”). The
hierarchy qualification operator (i.e. “.”) indicates which sub-
ordinate member is being referenced for which organization
is use of field 1100%. The requirement is the organization be
consistent in the LN-expanse (e.g. data values for anticipated
application categories). For example, _appfld.email.source
resolves to the email address associated with the email appli-
cation of the MS which originated the WDR. For
example, _appfld.phone.id resolves to the phone number
associated with the phone application of the MS which origi-
nated the WDR (e.g. for embodiments where the MS ID is not
the same as the MS caller id/phone number). If a WDRTerm
references an application field which is not presentin a WDR,
then preferably a run time error during WITS processing is
logged with ignoring of the expression and any assigned
action, or the applicable condition defaults to false. Prefer-
ably, a user has control for enabling any application subsets of
data in field 1100%.

FIG. 77 depicts a flowchart for describing a preferred
embodiment of configuring data to be maintained to WDR
Application Fields 1100%. While there can certainly be privi-
leges put in place to govern whether or not to include certain
data in field 1100%, it may be desirable to differentiate this
because of the potentially large amount of storage required to
carry such data when transmitting and processing WDRs.
Highlighting such consideration and perhaps warning a user
of'its use may be warranted. FIG. 72 processing provides the
differentiation. Depending on present disclosure implemen-
tations, there are privileges which require associated infor-
mation, for example for enabling profile communication
(preferably can define which file is to be used for the profile),
accepting data/database/file control (preferably can define
which data and what to do), etc. An alternate embodiment
may define a specific privilege for every derivation, but this
may overwhelm a user when already configuring many privi-
leges. Also, specific methods may be enforced without allow-
ing user specification (e.g. always use a certain file for the
profile). A preferred embodiment permits certain related
specifications with privileges and also differentiates handling
of certain features which could be accomplished with privi-
leges.

APPLE

EXHIBIT 1001 - PAGE 0400

US 8,639,267 B2

273

Application fields 1100K specification processing begins
at block 7702 upon a user action for the user interface pro-
cessing of FIG. 77, and continues to block 7704 where the
user is presented with options. Thereafter, block 7706 waits
for a user input/action. The user is able to specify any of a
plurality of application data for enablement or disablement in
at least outbound WDR fields 1100%. Various embodiments
will support enablement/disablement for inbound, outbound,
or any other in-process WDR event executable processing
paths. Field 1100% can be viewed as containing application
sections, each section containing data for a particular type of
MS application, or a particular type of application data as
described above.

Upon detection of a user action at block 7706, block 7708
checks if the user selected to enable a particular application
section of fields 1100%. If block 7708 determines the user
selected to enable a particular application fields 1100% sec-
tion, then block 7710 sets the particular indicator for enabling
that particular application fields 1100% section, and process-
ing continues back to block 7704. If block 7708 determines
the user did not select to enable a particular application fields
1100% section, then processing continues to block 7712. If
block 7712 determines the user selected to disable a particular
application fields 1100% section, then block 7714 sets the
particular indicator for disabling that particular application
fields 1100% section, and processing continues back to block
7704. If block 7712 determines the user did not select to
disable a particular application fields 1100k section, then
processing continues to block 7716. If block 7716 determines
the user selected to disable sending profile information in a
application fields 1100% section, then block 7718 sets the
profile participation variable to NULL (i.e. disabled), and
processing continues back to block 7704. If block 7716 deter-
mines the user did not select to disable sending profile infor-
mation, then processing continues to block 7720. If block
7720 determines the user selected to enable sending profile
information in a application fields 1100% section, then block
7722 prompts the user for the file to be used for the profile
(preferably the last used (or best used) file is defaulted in the
interface), and block 7724 interfaces with the user for a vali-
dated file path specification. The user may not be able to
specify a validated profile specification at block 7724 in
which case the user can cancel out of block 7724 processing.
Thereafter, if block 7726 determines the user cancelled out of
block 7724 processing, processing continues back to block
7704. If block 7726 determines the user specified a validated
profile file, then block 7728 sets the profile participation
variable to the fully qualified path name of the profile file, and
processing continues back to block 7704. Block 7724 prefer-
ably parses the profile to ensure it conforms to an L. N-expanse
standard format, or error processing is handled which pre-
vents the user from leaving block 7724 with an incorrect
profile.

In an alternate embodiment, block 7728 additionally inter-
nalizes the profile for well performing access (e.g. to a XML
tag tree which can be processed). This alternate internaliza-
tion embodiment for block 7728 would additionally require
performing internalization after every time the user modified
the profile, in which case there could be a special editor used
by the user for creating/maintaining the profile, a special user
post-edit process to cause internalization, or some other
scheme for maintaining a suitable internalization. In an
embodiment which internalizes the profile from a special
editor, the special editor processing can also limit the user to
what may be put in the profile, and validate its contents prior
to internalization. An internalized profile is preferably always
in correct parse-friendly form to facilitate performance when

20

25

30

40

45

274

being accessed. In the embodiment of block 7728 which sets
the fully qualified path name of the profile file, a special editor
may still be used as described, or any suitable editor may be
used, but validation and obvious error handling may have to
be performed when accessing the profile, if not validated by
block 7724 beyond a correct file path. Some embodiments
may implement a profile in a storage embodiment that is not
part of a file system.

If block 7720 determines the user did not select to enable
profile information to be maintained to field 11004, then
processing continues to block 7730. If block 7730 determines
the user selected to exit FIG. 77 processing, application fields
1100% specification processing terminates at block 7732. If
block 7730 determines the user did not select to exit, then
processing continues to block 7734 where any other user
actions detected at block 7706 are handled appropriately.
Block 7734 then continues back to block 7704.

There can be many MS application sections of field 11004
which are enabled or disabled by blocks 7708 through 7714.
In the preferred embodiment of profile processing, the profile
is a human readable text file, and any file of the MS can be
compared to a profile of a WDR so that the user can maintain
many profiles for the purpose of comparisons in expressions.
Alternate embodiments include a binary file, data maintained
to some storage, or any other set of data which can be pro-
cessed in a similar manner as describe for profile processing.
Some embodiments support specification of how to enable/
disable at blocks 7708 through 7714 derivatives for mWITS,
iWITS and/or oWITS.

In the preferred embodiment, a profile text file contains at
least one tagged section, preferably using XML tags. Alter-
natively, Standard Generalized Markup Language (SGML)
or HTML may be used for encoding text in the profile. There
may be no standardized set of XML tags, although this would
make for a universally consistent interoperability. The only
requirement is that tags be used to define text strings which
can be searched and compared. It helps for a plurality of users
to know what tags each other uses so that comparisons can be
made on a tag to tag basis between different profiles. A plu-
rality of MS users should be aware of profile tags in use
between each other so as to provide functionality for doing
comparisons, otherwise profiles that use different tags cannot
be compared.

Indicators disabled or enabled, as well as the profile par-
ticipation variable is to be observed by WDR processing so
that field 1100% is used accordingly. In some embodiments,
certain application field sections cannot be enabled or dis-
abled by users (i.e. a MS system setting). In preferred
embodiments, WITS processing checks these settings to
determine whether or not to perform applicable processing. In
some embodiments, WITS processing checks these settings
to strip out (e.g. for setting(s) disabled) information from a
WDR which is to be in process.

FIG. 78 depicts a simplified example of a preferred XML
syntactical encoding embodiment of a profile for the profile
section of WDR Application Fields 1100%. This is also the
contents of a profile file as specified at block 7724. Any tag
may have any number of subordinate tags and there can be
any number of nested levels of depth of subordinate tags. A
user can define his own tags. Preferably, the user anticipates
what other MS users are using for tags. Individual text ele-
ments for a tag are preferably separated by semicolons.
Blanks are only significant when non-adjacent to a semico-
lon. The text between tags is compared (e.g. text elements
(e.g. Moorestown)), regardless of whether a tag contains sub-
ordinate tags, however subordinate tags are compared for
matching prior to determining a match of contents between

APPLE

EXHIBIT 1001 - PAGE 0401

US 8,639,267 B2

275

them. Ultimately, the semicolon delimited text elements
between the lowest order tags (leaf node tag sections of tag
tree) are compared for matching. Ascending XML tags and
the lowest level tags hierarchy provide the guide for what to
compare. Thus, tags provide the map of what to compare, and
the stuff being compared is the text elements between the
lowest order tags of a particular tag hierarchy tree. Some
explanations of atomic operator uses in expressions are
described for an in-process WDR:
#d:\myprofs\benchmark.xm1>5

This condition determines if the benchmark.xml file contains
greater than 5 tag section matches in the entire WDR profile
of'the WDR in process. Text elements of the lowest order tag
sections are used to decide the comparison results. A tag
hierarchy, if present, facilitates how to compare. Six (six) or
more matches evaluates to true, otherwise the condition
evaluates to false.

% d:\myprofs\benchmarkl>=75

This condition determines if the benchmark.xml file contains
greater than or equal to 75% of tag section matches in the
entire WDR profile of the WDR in process. Contents that
occurs between every tag is compared for a match. The num-
ber of matches found divided by the number of tag matches
performed provides the percentage of matches (after multi-
plying the result by 100). The resulting percentage greater
than or equal to 75% evaluates to true, otherwise the condition
evaluates to false.

#(interests)d:\myprofs\benchmark.xml>2

In using FIG. 78 as an example, this condition determines if
the benchmark.xml file contains greater than two (2) semico-
lon delimited matches within only the interests tag in the
WDR profile of the WDR in process. If either the bench-
mark.xml file or the WDR profile does not contain the inter-
ests tag, then the condition evaluates to false. If both contain
the interests tag, then the semicolon delimited items which is
interests tag delimited are compared. Three (3) or more semi-
colon delimited interests that match evaluates to true, other-
wise the condition evaluates to false.

% (home,hangouts)d:\myprofs\benchmark.xm1>75

This condition determines if the benchmark.xml file contains
greater than 75% matches when considering the two tags
home and hangouts in the WDR profile of the WDR in pro-
cess. Any number of tags, and any level of ascending tag
hierarchy, can be specified within the (. . .) syntax. If either
the benchmark.xml file or the WDR profile does not contain
the tags for matching, then the condition evaluates to false. If
both contain the sought tags for matching, then the text ele-
ments of the lowest order subordinate tags are treated as the
items for compare. Of course, if the tags have no subordinate
tags, then text elements would be compared that occurs
between those tag delimiters. The number of matches found
divided by the number of comparisons made provides the
percentage of matches (after multiplying the result by 100).
The resulting percentage greater than 75% evaluates to true,
otherwise the condition evaluates to false.

WITS processing preferably uses an internalized form of
FIG. 78 to perform comparisons. The internalized form may
be established ahead of time as discussed above for better
WITS processing performance, or may be manufactured by
WITS processing in real time as needed.

Other Embodiments

As mentioned above, architecture 1900 provides a set of
processes which can be started or terminated for desired

10

20

40

45

65

276

functionality. Thus, architecture 1900 provides a palette from
which to choose desired deployment methods for an LN
expanse.

In some embodiments, all whereabouts information can be
pushed to expand the LN-expanse. In such embodiments, the
palette of processes to choose from includes at least process
1902, process 1912 and process 1952. Additionally, process
1932 would be required in anticipation of LN-expanse par-
ticipating data processing systems having NTP disabled or
unavailable. Additionally, process 1922 could be used for
ensuring whereabouts are timely (e.g. specifically using all
blocks except 2218 through 2224). Depending on DLM capa-
bility of MSs in the LN-expanse, a further subset of processes
1902, 1912, 1952 and 1932 may apply. Thread(s) 1902 bea-
con whereabouts information, regardless of the MS being an
affirmifier or pacifier.

In some embodiments, all whereabouts information can be
pulled to expand the LN-expanse. In such embodiments, the
palette of processes to choose from includes at least process
1922 (e.g. specifically using all blocks except 2226 and
2228), process 1912, process 1952 and process 1942. Addi-
tionally, process 1932 would be required in anticipation of
LN-expanse participating data processing systems having
NTP disabled or unavailable. Depending on DLM capability
of MSs in the LN-expanse, a further subset of processes 1922,
1912, 1952, 1942 and 1932 may apply.

There are many embodiments derived from architecture
1900. Essential components are disclosed for deployment
varieties. In communications protocols which acknowledge a
transmission, processes 1932 may not be required even in
absence of NTP use. A sending MS appends a sent date/time
stamp (e.g. field 1100%) on its time scale to outbound data
1302 and an acknowledging MS (or service) responds with
the sent date/time stamp so that when the sending MS
receives it (receives data 1302 or 1312), the sending MS (now
a receiving MS) calculates a TDOA measurement by com-
paring when the acknowledgement was received and when it
was originally sent. Appropriate correlation outside of pro-
cess 1932 deployment enables the sending MS to know which
response went with which data 1302 was originally sent. A
MS can make use of 19xx processes as is appropriate for
functionality desired.

In push embodiments disclosed above, useful summary
observations are made. Service(s) associated with antennas
periodically broadcast (beacon) their reference whereabouts
(e.g. WDR information) for being received by MSs in the
vicinity. When such services are NTP enabled, the broadcasts
include a sent date/time stamp (e.g. field 11007). Upon
receipt by a NTP enabled MS in the vicinity, the MS uses the
date/time stamp of MS receipt (e.g. 1100p) with the date/time
stamp of when sent (e.g. field 1100#) to calculate a TDOA
measurement. Known wave spectrum velocity can translate
to a distance. Upon receipt of a plurality of these types of
broadcasts from different reference antennas, the MS can
triangulate itself for determining its whereabouts relative
known whereabouts of the reference antennas. Similarly, ref-
erence antennas are replaced by other NTP enabled MSs
which similarly broadcast their whereabouts. A MS can be
triangulated relative a mixture of reference antennas and
other NTP enabled MSs, or all NTP enabled MSs. Stationary
antenna triangulation is accomplished the same way as trian-
gulating from other MSs. NTP use allows determining MS
whereabouts using triangulation achievable in a single unidi-
rectional broadcast of data (1302 or 1312). Furthermore, ref-
erence antennas (service(s)) need not communicate new data
1312, and MSs need not communicate new data 1302. Usual
communications data 1312 are altered with a CK 1314 as

APPLE

EXHIBIT 1001 - PAGE 0402

US 8,639,267 B2

277

described above. Usual communications data 1302 are
altered with a CK 1304 as described above. This enables aMS
with not only knowing there are nearby hotspots, but also
where all parties are located (including the MS). Beaconing
hotspots, or other broadcasters, do not need to know who you
are (the MS ID), and you do not need to know who they are in
order to be located. Various bidirectional correlation embodi-
ments can always be used for TDOA measurements.

In pull embodiments disclosed above, data processing sys-
tems wanting to determine their own whereabouts (request-
ers) broadcast their requests (e.g. record 2490). Service(s) or
MSs (responders) in the vicinity respond. When responders
are NTP enabled, the responses include a sent date/time
stamp (e.g. field 1100z) that by itself can be used to calculate
a TDOA measurement if the requester is NTP enabled. Upon
receipt by a requestor with no NTP, the requestor uses the
date/time stamp of a correlated receipt (e.g. 1100p) with the
date/time stamp of when sent (e.g. fields 11007 or 2450a) to
calculate a time duration (TDOA) for whereabouts determi-
nation, as described above. New data or usual communica-
tions data applies as described above.

IfNTP is available to a data processing system, it should be
used whenever communicating date/time information (e.g.
NTP bit of field 11005, 11007 or 1100p) so that by chance a
receiving data processing is also NTP enabled, a TDOA mea-
surement can immediately be taken. In cases, where either the
sending (first) data processing system or receiving (second)
data processing system is not NTP enabled, then the calcu-
lating data processing system wanting a TDOA measurement
will need to calculate a sent and received time in consistent
time scale terms. This includes a correlated bidirectional
communications data flow to properly determine duration in
time terms of the calculating data processing system. In a
send initiated embodiment, a first (sending) data processing
system incorporates a sent date/time stamp (e.g. fields 11007
or 2450q) and determines when a correlated response is
received to calculate the TDOA measurement (both times in
terms of the first (sending) data processing system). In
another embodiment, a second (receiving) data processing
system receives a sent date/time stamp (e.g. field 11007) and
then becomes a first (sending) data processing as described in
the send initiated embodiment. Whatever embodiment is
used, it is beneficial in the LN-expanse to minimize commu-
nications traffic.

The NTP bit in date/time stamps enables optimal elegance
in the LN-expanse for taking advantage of NTP when avail-
able, and using correlated transmissions when it is not. ANTP
enabled MS is somewhat of a chameleon in using unidirec-
tional data (1302 or 1312 received) to determine whereabouts
relative NTP enabled MS(s) and/or service(s), and then using
bidirectional data (1302/1302 or 1302/1312) relative MS(s)
and/or service(s) without NTP. A MS is also a chameleon
when considering it may go in and out of a DLM or ILM
identity/role, depending on what whereabouts technology is
available at the time.

The MS ID (or pseudo MS ID) in transmissions is useful
for a receiving data processing system to target a response by
addressing the response back to the MS ID. Targeted trans-
missions target a specific MS ID (or group of MS IDs), while
broadcasting is suited for reaching as many MS IDs as pos-
sible. Alternatively, justa correlation is enough to target a data
source.

In some embodiments where a MS is located relative
another MS, this is applicable to something as simple as
locating one data processing system using the location of
another data processing system. For example, the where-
abouts of a cell phone (first data processing system) is used to

10

15

20

25

30

35

40

45

50

55

60

278

locate an in-range automotive installed (second) data process-
ing system for providing new locational applications to the
second data processing system (or visa-versa). In fact, the
second data processing may be designed for using the nearby
first data processing system for determining its whereabouts.
Thus, as an MS roams, in the know of its own whereabouts,
the MS whereabouts is shared with nearby data processing
systems for new functionality made available to those nearby
data processing systems when they know their own where-
abouts (by associating to the MS whereabouts). Data process-
ing systems incapable of being located are now capable of
being located, for example locating a data processing
equipped shopping cart with the location of an MS, or plural-
ity of MSs.

Architecture 1900 presents a preferred embodiment for
IPC (Interprocess Communications Processing), but there are
other embodiments for starting/terminating threads, signal-
ing between processes, semaphore controls, and carrying out
present disclosure processing without departing from the
spirit and scope of the disclosure. In some embodiments,
threads are automatically throttled up or down (e.g. 1952-
Max) per unique requirements of the MS as determined by
how often threads loop back to find an entry already waiting
in a queue. If thread(s) spend less time blocked on queue, they
can be automatically throttled up. If thread(s) spend more
time blocked on queue, they can be automatically throttled
down. Timers can be associated with queue retrieval to keep
track of time a thread is blocked.

LBX history 30 preferably maintains history information
of key points in processing where history information may
prove useful at a future time. Some of the useful points of
interest may include:

Interim snapshots of permissions 10 (for documenting who

had what permissions at what time) at block 1478;
Interim snapshots of charters 12 (for documenting charters
in effect at what times) at block 1482;

Interim snapshots of statistics 14 (for documenting useful
statistics worthy of later browse) at block 1486;

Interim snapshots of service propagation data of block
1474,

Interim snapshots of service informant settings of block
1490;

Interim snapshots of LBX history maintenance/configura-
tions of block 1494;

Interim snapshots of a subset of WDR queue 22 using a

configured search criteria;

Interim snapshots of a subset of Send queue 24 using a

configured search criteria;

Interim snapshots of a subset of Receive queue 26 using a

configured search criteria;

Interim snapshots of a subset of PIP data 8;

Interim snapshots of a subset of data 20;

Interim snapshots of a subset of data 36;

Interim snapshots of other resources 38;

Trace, debug, and/or dump of any execution path subset of

processing flowcharts described; and/or

Copies of data at any block of processing in any flowchart

heretofore described.
Entries in LBX history 30 preferably have entry qualifying
information including at least a date/time stamp of when
added to history, and preferably an O/S PID and O/S TID
(Thread Identifier) associated with the logged entry, and per-
haps applicable applications involved (e.g. see fields 1100%).
History 30 may also be captured in such a way there are
conditions set up in advance (at block 1494), and when those
conditions are met, applicable data is captured to history 30.
Conditions can include terms that are MS system wide, and

APPLE

EXHIBIT 1001 - PAGE 0403

US 8,639,267 B2

279

when the conditions are met, the data for capture is copied to
history. In these cases, history 30 entries preferably include
the conditions which were met to copy the entry to history.
Depending on what is being kept to history 30, this can
become a large amount of information. Therefore, FIG. 27
can include new blocks for pruning history 30 appropriately.
In another embodiment, a separate thread of processing has a
sleeper loop which when awake will prune the history 30
appropriately, either in its own processing or by invoking new
FIG. 27 blocks for history 30. A parameter passed to process-
ing by block 2704 may include how to prune the history,
including what data to prune, how old of data to prune, and
any other criteria appropriate for maintaining history 30. In
fact, any pruning by FIG. 27 may include any reasonable
parameters for how to prune particular data of the present
disclosure.

Location applications can use the WDR queue for retriev-
ing the most recent highest confidence entry, or can access the
single instance WDR maintained (or most recent WDR of
block 289 discussed above). Optimally, applications are pro-
vided with an API that hides what actually occurs in ongoing
product builds, and for ensuring appropriate semaphore
access to multi-threaded accessed data.

Correlation processing does not have to cause a WDR
returned. There are embodiments for minimal exchanges of
correlated sent date/time stamps and/or received date/time
stamps so that exchanges are very efficient using small data
exchanges. Correlation of this disclosure was provided to
show at least one solution, with keeping in mind that there are
many embodiments to accomplish relating time scales
between data processing systems.

Architecture 1900 provides not only the foundation for
keeping an MS abreast of its whereabouts, but also the foun-
dation upon which to build LBX nearby functionality. Where-
abouts of MSs in the vicinity are maintained to queue 22.
Permissions 10 and charters 12 can be used for governing
which MSs to maintain to queue 22, how to maintain them,
and what processing should be performed. For example, MS
user Joe wants to alert MS user Sandy when he is in her
vicinity, or user Sandy wants to be alerted when Joe is in her
vicinity. Joe configures permissions enabling Sandy to be
alerted with him being nearby, or Sandy configured permis-
sions for being alerted. Sandy accepts the configuration Joe
made, or Joe accepts the configuration Sandy made. Sandy’s
queue 22 processing will ensure Joe’s WDRs are processed
uniquely for desired functionality.

FIG. 8C was presented in the context of a DLM, however
architecture 1900 should be applied for enabling a user to
manually request to be located with ILM processing if nec-
essary. Blocks 862 through 870 are easily modified to accom-
plish a WDR request (like blocks 2218 through 2224). In
keeping with current block descriptions, block 872 would
become a new series of blocks for handling the case when
DLM functionality was unsuccessful. New block 872-A
would broadcast a WDR request soliciting response (see
blocks 2218 through 2224). Thereafter, a block 872-B would
wait for a brief time, and subsequently a block 872-C would
check if whereabouts have been determined (e.g. check queue
22). Thereafter, if a block 872-D determines whereabouts
were not determined, an error could be provided to the user,
otherwise the MS whereabouts were successfully determined
and processing continues to block 874. Applications that may
need whereabouts can now be used. There are certainly emer-
gency situations where a user may need to rely on other MSs
in the vicinity for being located. In another embodiment,
LBX history can be accessed to at least provide a most recent
location, or most recently traveled set of locations, hopefully

10

15

20

25

30

35

40

45

50

55

60

65

280

providing enough information for reasonably locating the
user in the event of an emergency, when a current location
cannot be determined.

To maintain modularity in interfaces to queues 24 and 26,
parameters may be passed rather than having the modular
send/receive processing access fields of application records.
When WDRs are “sent”, the WDR will be targeted (e.g. field
1100a), perhaps also with field 1100f'indicating which com-
munications interface to send on (e.g. MS has plurality of
comm. interfaces 70). When WDRs are “broadcast” (e.g. null
MS ID), the WDR is preferably outbound on all available
comm. interfaces 70), unless field 1100findicates to target a
comm. interface. Analogously, when WDR requests are
“sent”, the request will be targeted (e.g. field 2490a), perhaps
also with field 24904 indicating which communications inter-
faceto send on (e.g. MS has plurality of comm. interfaces 70).
When WDR requests are “broadcast” (e.g. null MS ID), the
WDR is preferably outbound on all available comm. inter-
faces 70), unless field 1100/ indicates to target a comm.
interface.

Fields 1100, 11007, 1100p, 24905 and 2490c¢ are also of
interest to the transport layer. Any subset, or all, of transport
related fields may be passed as parameters to send processing,
orreceived as parameters from receiving processing to ensure
send and receive processing is adaptable using pluggable
transmission/reception technologies.

An alternate embodiment to the BESTWDR WDR
returned by FIG. 26B processing may be set with useful data
for reuse toward a future FIG. 26B processing thread where-
abouts determination. Field 1100/ (see pg. 168) can be set
with useful data for that WDR to be in turn used at a subse-
quent whereabouts determination of FIG. 26B. This is
referred to as Recursive Whereabouts Determination (RWD)
wherein ILMs determine WDRs for their whereabouts and
use them again for calculating future whereabouts (by popu-
lating useful TDOA, AOA, MPT and/or whereabouts infor-
mation to field 1100f).

An alternate embodiment may store remote MS movement
tolerances (if they use one) to WDR field 1100fso the receiv-
ing MS can determine how stale are other WDRs in queue 22
from the same MS, for example when gathering all useful
WDRs to start with in determining whereabouts of FIG. 26B
processing (e.g. block 2634). Having movement tolerances in
effect may prove useful for maximizing useful WDRs used in
determining a whereabouts (FIG. 26B processing).

Many LBX aspects have been disclosed, some of which are
novel and new in LBS embodiments. While it is recom-
mended that features disclosed herein be implemented in the
context of LBX, it may be apparent to those skilled in the art
how to incorporate features which are also new and novel in
a LBS model, for example by consolidating distributed per-
mission, charters, and associated functionality to a shared
service connected database.

Privileges and/or charters may be stored in a datastream
format (e.g. X.409), syntactical format (e.g. XML, source
code (like FIGS. 51 A and 51B), compiled or linked program-
ming data, database data (e.g. SQL tables), or any other
suitable format. Privileges and/or charters may be communi-
cated between MSs in a datastream format (e.g. X.409), syn-
tactical format (e.g. XML, source code (like FIGS. 51A and
51B), compiled or linked programming data, database data
(e.g. SQL tables), or any other suitable format.

Block 4466 may access an all or none permission (privi-
lege) to receive permission and/or charter data (depending on
what data is being received) from a particular identity (e.g.
user or particular MS). Alternate embodiments implement
more granulated permissions (privileges) on which types,

APPLE

EXHIBIT 1001 - PAGE 0404

US 8,639,267 B2

281

sets, or individual privileges and/or charters can be received
so that block 4470 will update local data with only those
privileges or charters that are permitted out of all data
received. One embodiment is to receive all privileges and/or
charters from remote systems for local maintaining so that
FIG. 57 processing can later determine what privileges and
charters are enabled. This has the benefit for the receiving
user to know locally what the remote user(s) desire for privi-
leges and charters without them necessarily being effective.
Another embodiment is for FIG. 44B to only receive the
privileged subset of data that can be used (privileged) at the
time, and to check at block 4466 which privileges should be
used to alter existing privileges or charters from the same MS
(e.g. altered at block 4470). This has the potential benefit of
less MS data to maintain and better performance in FIG. 57
processing for dealing only with those privileges and charters
which may be useable. A user may still browse another user’s
configurations with remote data access anyway.

WPL is a unique programming language wherein peer to
peer interaction events containing whereabouts information
(WDRs) provide the triggers for novel location based pro-
cessing, however a LBS embodiment may also be pursued.
Events seen, or collected, by a service may incorporate WPL,
the table record embodiments of FIGS. 35A through 37C, a
suitable programming executable and/or data structures, or
any other BNF grammar derivative to carry out analogous
event based processing. For example, the service would
receive inbound whereabouts information (e.g. WDRS) from
participating MSs and then process accordingly. An inbound,
outbound, and in-process methodology may be incorporated
analogously by processing whereabouts information from
MSs as it arrives to the service (inbound), processing where-
abouts information as it is sent out from the service (out-
bound) to MSs, and processing whereabouts information as it
is being processed by the service (in process) for MSs. In one
embodiment, service informant code 28 is used to keep the
service informed of the LBX network. In another embodi-
ment, a conventional L.BS architecture is deployed for col-
lecting whereabouts of MSs.

An alternate embodiment processes inbound/outbound/
maintained WDRs in process transmitted to a MS from non-
mobile data processing systems, perhaps data processing sys-
tems which are to emulate a MS, or perhaps data processing
systems which are to contribute to LBX processing. Interop-
erability is as disclosed except data processing systems other
than MSs participate in interacting with WDRs. In other
embodiments, the data processing systems contain process-
ing disclosed for MSs to process WDRs from MSs (e.g. all
disclosed processing or any subset of processing (e.g. WITS
processing)).

Communications between MSs and other MSs, or between
MSs and data processing systems, may be compressed,
encrypted, and/or encoded for performance or concealing.
Any protocol, X.409 encodings, datastream encodings, or
other data which is critical for processing shall have integrity
regardless of an encapsulating or embedded encoding that
may be in use. Further, internalizations of the BNF grammar
may also be compressed, encrypted, and/or encoded for per-
formance or concealing. Regardless of an encapsulating or
embedded encoding that may be in use, integrity shall be
maintained for processing. When other encodings are used
(compression, encryption, etc), an appropriate encode and
decode pair of processing is used (compress/decompress,
encrypt/decrypt, etc).

Grammar specification privileges are preferably enforced
in real time when processing charters during WITS process-
ing. For example, charters specified may initially be ineffec-

30

40

45

50

282

tive, but can be subsequently enabled with a privilege. It is
preferred that privileges 10 and charters 12 be maintained
independently during configuration time, and through appro-
priate internalization. This allows specifying anything a user
wants for charters, regardless of privileges in effect at the time
of charter configuration, so as to build those charters which
are desired for processing, but not necessarily effective yet.
Privileges can then be used to enable or disable those charters
as required. In an alternate embodiment, privileges can be
used to prevent certain charters from even being created. This
helps provide an error to the user at an appropriate time
(creating an invalid charter), however a valid charter may lose
a privilege later anyway and become invalid. The problem of
a valid charter becoming invalid later has to be dealt with
anyway (rather than automatically deleting the newly invalid
charter). Thus, it is preferable to allow any charters and privi-
leges to be specified, and then candidate for interpreting at
WITS processing time.

Many embodiments are better described by redefining the
“W” in acronyms used throughout this disclosure for the more
generic “Wireless” use, rather than “Whereabouts” use. Thus,
WDR takes on the definition of Wireless Data Record. In
various embodiments, locational information fields become
less relevant, and in some embodiments mobile location
information is not used at all. As stated above with FIG. 11A,
when a WDR is referenced in this disclosure, it is referenced
in a general sense so that the contextually reasonable subset of
the WDR of FIG. 11A is used. This notion is taken steps
further.

A WDR 1100 may be redefined with a core section con-
taining only the MS ID field 11004. The MS ID field 1100a
facilitates routing of the WDR, and addressing a WDR, for
example in a completely wireless transmission of FIGS. 13A
through 13C. In an embodiment with a minimal set of WDR
fields, the WDR may contain only two (2) fields: a MS ID
field 11004 and application fields 1100%. In an embodiment
with minimal changes to the architecture heretofore dis-
closed, all WDR 1100 fields 11005 through 1100p are main-
tained to field 1100%. Disclosure up to this point continues to
incorporate processing heretofore described, except WDR
fields which were peers to application fields 11004 in a WDR
1100 are now subordinate to field 1100k. However, the field
data is still processed the same way as disclosed, albeit with
data being maintained subordinate to field 1100%. Thus, field
11004 may have broader scope for carrying the data, or for
carrying similar data.

In a more extreme embodiment, a WDR (Wireless Data
Record) will contain only two fields: a MS ID field 1100a and
application fields 1100%; wherein a single application (or
certain applications) of data is maintained to field 1100%. For
example, the WDR is emitted from mobile MSs as a beacon
which may or may not be useful to receiving MSs, however
the beaconed data is for one application (other embodiments
can be for a plurality of applications). In this minimal
embodiment, a minimal embodiment of architecture 1900 is
deployed with block changes removing whereabouts/location
processing. The following processes may provide such a
minimal embodiment palette for implementation:

Wireless Broadcast Thread(s) 1902—

FIG. 20 block 2010 would be modified to “Peek WDR
queue for most recent WDR with MS ID=this MS”. Means
would be provided for date/time stamps maintained to queue
22 for differentiating between a plurality of WDRs main-
tained so the more recent can be retrieved. This date/time
stamp may or may not be present in a WDR during transmis-
sion which originated from a remote MS (i.e. in the WDR
transmitted (beaconed)). Regardless, a date/time stamp is

APPLE

EXHIBIT 1001 - PAGE 0405

US 8,639,267 B2

283

preferably maintained in the WDR of queue 22. Appropriate
and timely queue 22 pruning would be performed for one or
more relevant WDRs at queue 22. FIG. 20 would broadcast at
least the MS ID field 1100q and application data field 11004
for the application.

Wireless Collection Thread(s) 1912—

FIG. 21 would be modified to remove location determina-
tion logic and would collect WDRs received that are relevant
for the receiving MS and deposit them to queue 22, preferably
with a date/time stamp. Relevance can be determined by if
there are permissions or charters in place for the originating
MS 1D at the receiving MS (i.e. WITS filtering and process-
ing). The local MS applicable could access WDRs from
queue 22 as it sees fit for processing in accordance with the
application, as well as privileges and charters.

Wireless Supervisor Thread(s) 1922—

FIG. 22 block 2212 would be modified to “Peek WDR
queue for MS ID=this MS, and having a reasonably current
date/time stamp” to ensure there is at least one timely WDR
contained at queue 22 for this MS. If there is not a timely
WDR at the MS, then processing of block 2218 through 2228
would be modified to request helpful WDRs from MSs within
the vicinity, assuming the application applicable warrants
requesting such help, otherwise blocks 2218 through 2228
would be modified to trigger local MS processing for ensur-
ing a timely WDR is deposited to queue 22.

Wireless Data Record Request Thread(s) 1942—

FIG. 25 block 2510 would be modified to “Peek WDR

queue for most recent WDR with this MS ID” and then
sending/broadcasting the response to the requesting MS. FIG.
25 would be relevant in an architecture wherein the applica-
tion does in fact rely on MSs within the vicinity for determin-
ing its own WDRs.
One application using such a minimal embodiment may be
the transmission of profile information (see # and % operators
above). As a MS roams, it beacons out its profile information
for other MSs to receive it. The receiving MSs then decide to
process the profile data in fields 11004 according to privileges
and/or charters that are in place. Note that there is no locating
information of interest. Only the profile information is of
interest. Thus, the MSs become wireless beacons of data that
may or may not be processed by receiving MSs within the
wireless vicinity of the originating MS. Consider a singles/
dating application wherein the profile data contains charac-
teristics and interests of the MS user. A privilege or charter at
the receiving MS could then process the profile data when it
is received, assuming the receiving MS user clarified what is
of interest for automated processing through configurations
for WITS processing.

While a completely wireless embodiment is the preferred
embodiment since MS users may be nearby by virtue of a
completely wireless transmission, a longer range transmis-
sion could be facilitated by architectures of FIGS. 50A
through 50C. In an architecture of transmission which is not
completely wireless, the minimal embodiment WDR would
include field(s) indicating a route which was not completely
wireless, perhaps how many hops, etc as disclosed above.
WITS filtering would play an important role to ensure no
outbound transmissions occur unless there are configurations
in place that indicate a receiving MS may process it (i.e. there
are privileges and/or charters in place), and no inbound pro-
cessing occurs unless there are appropriate configurations in
place for the originating MS(s) (i.e. there are privileges and/or
charters in place). Group identities of WDRs can become
more important as a criteria for WITS filtering, in particular
when a group id indicates the type of WDR. The longer range
embodiment of FIG. 50A through 50C preferably incorpo-

15

25

30

35

40

45

50

284

rates a send transmission for directing the WDRs to MSs
which have candidate privileges and/or charters in place,
rather than a broadcast for communicating WDRs. Broad-
casting can flood a network and may inundate MSs with
information for WITS filtering.
While various embodiments of the present disclosure have
been described above, it should be understood that they have
been presented by way of example only, and not limitation.
Thus, the breadth and scope of the present disclosure should
not be limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with
the following claims and their equivalents.
What is claimed is:
1. A method for automatic location based exchange pro-
cessing by a mobile data processing system, the method com-
prising:
presenting a user interface to a user of the mobile data
processing system, the user interface for configuring
privilege data relating the mobile data processing system
with a remote data processing system, the privilege data
stored local to the mobile data processing system and
searched upon receipt of whereabouts data received for
processing by the mobile data processing system;

receiving, for processing by the mobile data processing
system, the whereabouts data including an originating
identity of the whereabouts data;
searching, by the mobile data processing system, the privi-
lege data stored local to the mobile data processing
system for a matching privilege upon the receiving, for
processing by the mobile data processing system, the
whereabouts data, wherein the matching privilege is
configured for relating the originating identity of the
whereabouts data with a destination identity of the
whereabouts data to permit trigger of a privileged action
for the receipt of whereabouts data received for process-
ing by the mobile data processing system; and

performing the privileged action at the mobile data pro-
cessing system upon finding the matching privilege,
after the searching, by the mobile data processing sys-
tem, the privilege data stored local to the mobile data
processing system.

2. The method of claim 1 wherein the privileged action is
configured by a user of the remote data processing system.

3. The method of claim 2 wherein the destination identity is
associated to the mobile data processing system and wherein
the receiving, for processing by the mobile data processing
system, the whereabouts data including an originating iden-
tity of the whereabouts data comprises receiving, for process-
ing by the mobile data processing system, inbound where-
abouts data including an originating identity of the
whereabouts data, wherein the originating identity is associ-
ated to the remote data processing system, and wherein the
whereabouts data is sent by the remote data processing sys-
tem.

4. The method of claim 2 wherein the destination identity is
associated to the remote data processing system and wherein
the receiving, for processing by the mobile data processing
system, the whereabouts data including an originating iden-
tity of the whereabouts data comprises receiving, for process-
ing by the mobile data processing system, outbound where-
abouts data including an originating identity of the
whereabouts data, wherein the originating identity is associ-
ated to the mobile data processing system, and wherein the
whereabouts data is to be sent to the remote data processing
system.

5. The method of claim 1 wherein the privileged action is
configured by the user of the mobile data processing system.

APPLE

EXHIBIT 1001 - PAGE 0406

US 8,639,267 B2

285

6. The method of claim 5 wherein the destination identity is
associated to the mobile data processing system and wherein
the receiving, for processing by the mobile data processing
system, the whereabouts data including an originating iden-
tity of the whereabouts data comprises receiving, for process-
ing by the mobile data processing system, inbound where-
abouts data including an originating identity of the
whereabouts data, wherein the originating identity is associ-
ated to the remote data processing system, and wherein the
whereabouts data is sent by the remote data processing sys-
tem.

7. The method of claim 5 wherein the destination identity is
associated to the remote data processing system and wherein
the receiving, for processing by the mobile data processing
system, the whereabouts data including an originating iden-
tity of the whereabouts data comprises receiving, for process-
ing by the mobile data processing system, outbound where-
abouts data including an originating identity of the
whereabouts data, wherein the originating identity is associ-
ated to the mobile data processing system, and wherein the
whereabouts data is to be sent to the remote data processing
system.

8. The method of claim 1 further including:

maintaining a user configured charter at the mobile data

processing system, the charter having a conditional
expression and an associated action depending on evalu-
ation of the conditional expression;

evaluating the conditional expression by comparing the

conditional expression to the whereabouts data, upon the
receiving, for processing by the mobile data processing
system, the whereabouts data; and

performing the associated action at the mobile data pro-

cessing system upon the evaluating the conditional
expression by comparing the conditional expression to
the whereabouts data.

9. The method of claim 8 wherein the charter is configured
by a user of the remote data processing system.

10. The method of claim 8 wherein the maintaining a user
configured charter at the mobile data processing system com-
prises maintaining a user specified textual syntax.

11. The method of claim 10 wherein the user specified
textual syntax comprises an XML encoding.

12. The method of claim 10 wherein the user specified
textual syntax comprises a Whereabouts Programming Lan-
guage encoding.

13. The method of claim 1 wherein the whereabouts data is
carried by way of a wireless communications transmission
through no intervening data processing system between the
mobile data processing system and the remote data process-
ing system.

14. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with a user configured time speci-
fication, the time specification stored local to the mobile data
processing system and used to compare to a receipt time of the
receipt of whereabouts data received for processing by the
mobile data processing system.

15. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes initiating an action at
the remote data processing system.

16. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes sending an sms mes-
sage.

10

15

20

25

30

35

40

45

50

55

60

65

286

17. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes sending an electronic
mail.

18. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes automatically making
a phone call by the mobile data processing system.

19. The method of claim 15 wherein the remote data pro-
cessing system establishes a phone call with the mobile data
processing system.

20. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes presenting informa-
tion to an informative user interface.

21. The method of claim 1 wherein the whereabouts data is
an unsolicited broadcast of data from the remote data pro-
cessing system.

22. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, a specified distance between loca-
tions of the mobile data processing system and the remote
data processing system.

23. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, the remote data processing system is
at a specified location.

24. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, the remote data processing system is
at a specified situational location.

25. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, the remote data processing system
arrived to a specified location during a time in history.

26. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, the remote data processing system
departed a specified location during a time in history.

27. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, the mobile data processing system is
in a specified vicinity of a plurality of other mobile data
processing systems.

28. The method of claim 1 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes altering calendar
application data.

29. A mobile data processing system comprising:

one or more processors; and

memory coupled to the one or more processors and storing

instructions, which when executed by the one or more
processors, causes the one or more processors to per-
form operations comprising:

APPLE

EXHIBIT 1001 - PAGE 0407

US 8,639,267 B2

287

presenting a user interface to a user of the mobile data
processing system, the user interface for configuring
privilege data relating the mobile data processing sys-
tem with a remote data processing system, the privi-
lege data stored local to the mobile data processing
system and searched upon receipt of whereabouts
data received for processing by the mobile data pro-
cessing system;

receiving, for processing by the mobile data processing
system, the whereabouts data including an originating
identity of the whereabouts data;

searching, by the mobile data processing system, the
privilege data stored local to the mobile data process-
ing system for a matching privilege upon the receiv-
ing, for processing by the mobile data processing
system, the whereabouts data, wherein the matching
privilege is configured for relating the originating
identity of the whereabouts data with a destination
identity of the whereabouts data to permit trigger of a
privileged action for the receipt of whereabouts data
received for processing by the mobile data processing
system; and

performing the privileged action at the mobile data pro-
cessing system upon finding the matching privilege,
after the searching, by the mobile data processing
system, the privilege data stored local to the mobile
data processing system.

30. The system of claim 29 wherein the whereabouts data
is an unsolicited broadcast of data from the remote data pro-
cessing system.

31. The system of claim 29 wherein the privileged action is
configured by a user of the remote data processing system.

32. The system of claim 31 wherein the destination identity
is associated to the mobile data processing system and
wherein the receiving, for processing by the mobile data
processing system, the whereabouts data including an origi-
nating identity of the whereabouts data comprises receiving,
for processing by the mobile data processing system, inbound
whereabouts data including an originating identity of the
whereabouts data, wherein the originating identity is associ-
ated to the remote data processing system, and wherein the
whereabouts data is sent by the remote data processing sys-
tem.

33. The system of claim 31 wherein the destination identity
is associated to the remote data processing system and
wherein the receiving, for processing by the mobile data
processing system, the whereabouts data including an origi-
nating identity of the whereabouts data comprises receiving,
for processing by the mobile data processing system, out-
bound whereabouts data including an originating identity of
the whereabouts data, wherein the originating identity is asso-
ciated to the mobile data processing system, and wherein the
whereabouts data is to be sent to the remote data processing
system.

34. The system of claim 29 wherein the privileged action is
configured by the user of the mobile data processing system.

35. The system of claim 34 wherein the destination identity
is associated to the mobile data processing system and
wherein the receiving, for processing by the mobile data
processing system, the whereabouts data including an origi-
nating identity of the whereabouts data comprises receiving,
for processing by the mobile data processing system, inbound
whereabouts data including an originating identity of the
whereabouts data, wherein the originating identity is associ-
ated to the remote data processing system, and wherein the
whereabouts data is sent by the remote data processing sys-
tem.

10

15

20

25

30

35

40

45

50

55

60

65

288

36. The system of claim 34 wherein the destination identity
is associated to the remote data processing system and
wherein the receiving, for processing by the mobile data
processing system, the whereabouts data including an origi-
nating identity of the whereabouts data comprises receiving,
for processing by the mobile data processing system, out-
bound whereabouts data including an originating identity of
the whereabouts data, wherein the originating identity is asso-
ciated to the mobile data processing system, and wherein the
whereabouts data is to be sent to the remote data processing
system.

37. The system of claim 29 wherein the operations further
include:

maintaining a user configured charter at the mobile data

processing system, the charter having a conditional
expression and an associated action depending on evalu-
ation of the conditional expression;

evaluating the conditional expression by comparing the

conditional expression to the whereabouts data, upon the
receiving, for processing by the mobile data processing
system, the whereabouts data; and

performing the associated action at the mobile data pro-

cessing system upon the evaluating the conditional
expression by comparing the conditional expression to
the whereabouts data.

38. The system of claim 37 wherein the charter is config-
ured by a user of the remote data processing system.

39. The system of claim 37 wherein the maintaining a user
configured charter at the mobile data processing system com-
prises maintaining a user specified textual syntax.

40. The system of claim 39 wherein the user specified
textual syntax comprises an XML encoding.

41. The system of claim 39 wherein the user specified
textual syntax comprises a Whereabouts Programming Lan-
guage encoding.

42. The system of claim 29 wherein the whereabouts data
is carried by way of a wireless communications transmission
through no intervening data processing system between the
mobile data processing system and the remote data process-
ing system.

43. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with a user configured time speci-
fication, the time specification stored local to the mobile data
processing system and used to compare to a receipt time of the
receipt of whereabouts data received for processing by the
mobile data processing system.

44. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes initiating an action at
the remote data processing system.

45. The system of claim 44 wherein the remote data pro-
cessing system establishes a phone call with the mobile data
processing system.

46. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes sending an sms mes-
sage.

47. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes sending an electronic
mail.

48. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes automatically making
a phone call by the mobile data processing system.

APPLE

EXHIBIT 1001 - PAGE 0408

US 8,639,267 B2

289

49. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes presenting informa-
tion to an informative user interface.

50. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, a specified distance between loca-
tions of the mobile data processing system and the remote
data processing system.

51. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, the remote data processing system is
at a specified location.

52. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, the remote data processing system is
at a specified situational location.

10

15

20

290

53. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, the remote data processing system
arrived to a specified location during a time in history.

54. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, the remote data processing system
departed a specified location during a time in history.

55. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes performing the privi-
leged action in accordance with determining, by the mobile
data processing system, the mobile data processing system is
in a specified vicinity of a plurality of other mobile data
processing systems.

56. The system of claim 29 wherein the performing the
privileged action at the mobile data processing system upon
finding the matching privilege includes altering calendar
application data.

APPLE

EXHIBIT 1001 - PAGE 0409

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,639,267 B2 Page 1 of 1
APPLICATION NO. : 12/287064

DATED : January 28, 2014

INVENTOR(S) : William J. Johnson

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims:

In Col. 287, line 28 (Claim 30), please insert -- mobile data processing -- before the word “system”.
In Col. 287, line 31 (Claim 31), please insert -- mobile data processing -- before the word “system”.
In Col. 287, line 33 (Claim 32), please insert -- mobile data processing -- before the word “system”.
In Col. 287, line 44 (Claim 33), please insert -- mobile data processing -- before the word “system”.
In Col. 287, line 55 (Claim 34), please insert -- mobile data processing -- before the word “system”.
In Col. 287, line 57 (Claim 35), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 1 (Claim 36), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 12 (Claim 37), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 26 (Claim 38), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 28 (Claim 39), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 31 (Claim 40), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 33 (Claim 41), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 36 (Claim 42), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 41 (Claim 43), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 49 (Claim 44), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 53 (Claim 45), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 56 (Claim 46), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 60 (Claim 47), please insert -- mobile data processing -- before the word “system”.
In Col. 288, line 64 (Claim 48), please insert -- mobile data processing -- before the word “system”.
In Col. 289, line 1 (Claim 49), please insert -- mobile data processing -- before the word “system”.
In Col. 289, line 5 (Claim 50), please insert -- mobile data processing -- before the word “system”.
In Col. 289, line 12 (Claim 51), please insert -- mobile data processing -- before the word “system”.
In Col. 289, line 18 (Claim 52), please insert -- mobile data processing -- before the word “system”.
In Col. 290, line 1 (Claim 53), please insert -- mobile data processing -- before the word “system”.
In Col. 290, line 7 (Claim 54), please insert -- mobile data processing -- before the word “system”.
In Col. 290, line 13 (Claim 55), please insert -- mobile data processing -- before the word “system”.
In Col. 290, line 20 (Claim 56), please insert -- mobile data processing -- before the word “system”.

Signed and Sealed this
Sixth Day of May, 2014

Tebatle X Loa

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office

APPLE
EXHIBIT 1001 - PAGE 0410

