
Zynga Ex. 1015, p. 1
Zynga v. IGT

IPR2022-00368

(on en
TalkCombine the powerof Ege Bent :Elaclaee
Bh

Mark Nadelson & Tom Hagar

Zynga Ex. 1015, p. 2
Zynga v. IGT

IPR2022-00368

C++ Objects for Making
UNIX and WinNTTalk

Mark Nadelson and Tom Hagan

CMP Books

Lawrence, Kansas 66046

Zynga Ex. 1015, p. 2
Z Iynga v. IGT

IPR2022-00368

Zynga Ex. 1015, p. 3
Zynga v. IGT

IPR2022-00368

Kurt, Wars? Library
Universiiy of Vises sin - Madison

215-N, Randall Avenue

CMP Books Madison, WI 53706-1688
CMPMedia,Inc.
1601 W. 23rd Street, Suite 200
Lawrence, KS 66046
USA

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where CMP Booksis aware of a trademark claim, the product
name appearsininitial capital letters, in all capital letters, or in accordance with the ven-
dor’s capitalization preference. Readers should contact the appropriate companies for
more complete information on trademarks and trademark registrations. All trademarks
and registered trademarksin this book are the property of their respective holders.

Copyright © 2000 by CMP Media, Inc., except where noted otherwise. Published by
CMP Books, CMP Media,Inc.All rights reserved. Printed in the United States of Amer-
ica. No part ofthis publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission
of the publisher; with the exception that the program listings may be entered, stored, and
executed in a computer system, but they may notbe reproduced for publication.

The programsin this book are presented for instructional value. The programs have been
carefully tested, but are not guaranteed for any particular purpose. The publisher does
not offer any warranties and does not guarantee the accuracy, adequacy, or completeness
of any information herein and is not responsible for any errors or omissions. The pub-
lisher assumes noliability for damages resulting from the use of the information in this
book or for any infringement of the intellectual property rights of third parties that
would result from the use of this information.

Coverart created by Robert Ward.

Distributed in the U.S, and Canada by:
Publishers Group West
1700 Fourth Street

Berkeley, CA 94710 5
1-800-788-3123 .

ISBN: 1-929629-07-9 R&D Developer Series

Zynga Ex. 1015, p. 3
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 4
Zynga v. IGT

IPR2022-00368

NETWORK PROGRAMMING

Want to reduce your overall cost of ownership? The object-oriented
techniques for cross-platform communications presented in this book
will enable you to develop applications capable of accessing functionali-
ty located on either UNIX or Windows NT

This book delivers an in-depth look at cross-platform techniques
beyond socket communications.It builds on the authors’ creteT=) an
Making UNIX and Windows NTTalk. which demonstrated how to
UDP and TCP socket communications to implement cross-platform
tems na sre ORT =) AY of run-time environments

C++ Objects for Making UNIX and WinNTTalk is a practical gqui¢
implementing object-oriented cross-platform communications. Es
eset VelASpapie la cole te le—icmc Mea chmereseteiclal mech delE-bralclemnaia] supporting architec:
tural drawings, C++ classes, and working applications. You learn how
fo create increasingly sophisticated C++ inter-platform objects that will
enable you to implement cross-platform communications bee MoleCeF ee
ety of architectures — single-threaded, m ulti-threaded, and Windows-
based applications,

Learn how to use these advanced techniques that provide features
not inherently available from pure sockets.

= Remote Procedure Calls (RPC) that call a procedure from an
application running on one machineto execute on another
Remote Execution (REXEC), the daemon residing on UNIX
workstations, provides a powerful communication channel
requiring user authentication

File Transfer Protocol (FTP) with feature-rich customfile transfer
SMResas

Cross-Platform Semaphores that can protect shared feelers)
resources, or facilitate multi-platform processes
Shared Memory processes that can write and read from a central
resource Independent of each other
Pipes for process-to-process communications that transmit pele
recelve data using standard input and output file descriptors.
Publish and Subscribe application frameworks that allow UNIX
and NT to communicate without customizing message sendingand translation,

C++ Objects that you can plug into your own applications are
supplied on the companion CD-ROM.

CMPBooksis an imprint of CMP Media. Inc.
Other fine publications in the CMPfamily include:

OhHt regial
. SA

CPAP hooks’
R&D Developer Series

49070912365

O00
B8907091236

_IpisxKg)
ENCLOSED

mumcations, digital signal

processing, internet

programming, and financial

institutions.It is in their

development of mission

critical applications for finan-

cial institutions, where legacy
UNIX systems are wedded to

Windows NT workstations,

that they have honed their

skills in inter-platform

communications.

$49.95 © ISBN: 1-929629-07-9

| 54995
ynga Vv.9°781929 62907

Zynga Ex. 1015, p. 5
Zynga v. IGT

IPR2022-00368

bendy 5160730
WA

Table of Contents

RYBTSCG.! bi hiie.i's ote e'eitiar ais -z:e'are-acs eaecs acnate dd ad ew ae ix
COERONEINGE: 8 oira.sctart dad ahs nA ea aol p a Sheth Ati Arete ta xi

Chapter 1 Introduction.................000ccc cee e cece ewees 1
1.1 Overview of System Application Tools--0 5 eee ceececeuveees2

The UNIX and WindowsNT File System... 0000 cc ee eeeeeee2
UNIX and Windows NT Run-TimeSignal Processing9
Windows NT and UNIX Semaphores................020 cece ceeues 14
Windows NT and UNIX Threads, 0.00.5 .ccssceevceevuseuecnoss 18

Windows NT and UNIX Process Spawning2-.000eeesceees25
Li2. Overview? af internét Protease 0.0% 5 ccnvaale 5 vineais dames Folsle maw Gass33

TCP/IP aad the OST Model ons canis posed wes sake toe nae eaaceea’33
PRECerCR FOSS yc sche assy ng 50,9 % ators eehaae ee QB REE Rad aot ual35
ERE SUBTCE AGAR 53 bd ook Foc nse BA RRO PRE RIMES REV. Qarictams 35
FNEEHICHO SEE9Gur. s Vin'dsin.e valve er uipacg maple Oe see GREE a TOE Ra36
UDP versus TCP Process os sass Sirs ode cies Aslam acictalna, diiaveew lee37
POL SETSsro ry cia sale OME Yee MSAD ae Flatware wma SBT aE37

LS*Socket ConingacanOn 207 jas vse teen kw nae india PARERSMURR ETS aie38

PTUCEGED ACMIphyie's Sielsistal tale sere aoe NIRA Bars F OUEKETEAT E-H8 Farah38
BYE CeInetirs 9st, op Soe xk, 8K ote auth wae BIE ph ald Mh a ARE RINT» Store38
LE eras 1Ce RRtied assis sien aes oe e paSGia es Nn aeniee 25a Paras41
WAMNG SMSO ENS Sac dice greece theca toys meu eug Tanla lo, 216, Saglianw ie, ayben ata ke amr eloes« .s42

Customizing Socket Operations0 csc cence ence eee ceneeee50

Zynga Ex. Hi? p.5
Zynga v. IGT

IPR2022-00368

Zynga Ex. 1015, p. 6
Zynga v. IGT

IPR2022-00368

iv Table of Contents

Multiple-Connection Processing Using TCP Sockets.--+.++-- 58
Integrating Sockets with Windows0-0ee eee cece eeeeeees 62
AsynchronousSockets and Windows-0++00 ee eeeeeeeeees 65

1.4 Creating A Good Cross-Platform Design.........6.0+:0 cee eee eeeees 81
Choosing The Correct Operating Systems For the Client and Server. 81
Choosing The Right Communication Protocol For the System......... 82
Choosing the Appropriate Cross-Platform Communication Method 82

1.5 Overview of Cross-Platform Communication Methods...............-. 83
RemoPeaceciite tialls3 secczcicgras cacy ta bohapead ss Guep-hads 83

Remote Execution (RES) so scsae 0a aoe yeow ae aera al wp eve Ridio a eee miss Bue 84
SeMANhGrEs,'s si5 haces stag SeI CRM ESDE De MOL ETA S Sma R Das 84
Pile SATIN: + unwed edacsa em dx gusay as cd aed edaeu olen 2 pitied 84
Shared MEMOVY : iaisis ab dae Ree aa de es OA ad a eath aoa a Hele ed 85
PEGS 3s .2se- tgieie wg ee ahs terp sia esos wreis Roba, cry Sg eye tes eee ey 85
Transferring Data Between Clients and Servers Using Generic Messaging. . 86

1.6 How This Bookie Presented, 5.30 oe 55 aay ie eee a es eas ge ens 86

Orie Fitial Wotd iit acdc int ce dea id obeaneadid ie aeete ate bkae Pas 87

Chapter 2 Interplatform Communication Using Remote
Procedure Gallas 6 Sistah tai awialanta wey os baeee nets eee 89

O01 a ONETVIEW OE RPSS:...c pa ssdame eae sche Sep adg edie Dba deaRaien don 90

Logatnit the Srvet sec. th srt ie as YRC KRU vol ee EROS REY 92
EPC and the OSI Network Model. .c.csc ieee es 4ogoa ck bao aad 4 94

RING. RPGs 5 seraprarqlevicigs sy's Ge Rese ye Ae SREY weiss Satay ity 94

Passing Data To and From the RPC Client and Server- 94
ONG RPC Communication-Protncdls,. css .5 05 s.0su9 sea ey Sula ws 96

2.2 RPCGEN: The ONC RPCProtocol Compiler.............0 000s eae 96
2.3 The ONC RPC Interface Specification Language.06-0eeeeuee 100

The Constant Petition. JeG.cce ch occ3G welateasaasceeessaekan 100

‘The Enumeration Debmiieis sci ch i ata ea CARTES eT ese aa ERE 100

Thesiectie Detinition 22. i caaa¢ 2 + oem mwcis Rebels 85,006. Be miyi 212 101

ENS LINC AARIION Cis gts eS. tia ERAS SERS OR ETRE PASS APs ET 102

SLUG PRES DCIS fe 25 649. Hara E OD EPRI SE Ree S OA 103
The Progtamt Detititicnhc..cocsdencdasactaled Chis BOL ee ae eT 104
Additional RPCL Variable Syntax Definitions0.0-00000ee 107

2.4 Creating an RPC Client/Server Application... 00: e seen enenee 108
Connecting and Disconnecting from the RPC Server5- 108
Manipulating the CLIENT Structure Definition-000005 110
Galling the Remote Procedure. 6 visa ates a0 dante tae ole wand ae a eee 111
Finding The Best Loan: A Simple RPC Client/Server Application 112

2.5 Transferring Arrays and Linked Lists in an RPC Cross-Platform
ASPISSHON Wil edd .hauwe tise CEA IRS AG we eA ER ADO Sead 129

Sending a Fixed-Length Loan Amortization Schedule............... 130
Zynga Ex. 1015, p. 6

Zynga v. IGT
IPR2022-00368

Zynga Ex. 1015, p. 7
Zynga v. IGT

IPR2022-00368

Table of Contents Vv

Sending a Variable-Length Loan Amortization Schedule 142
2.6 Encapsulating an RPC Client within a Windows NT GUI Application 155

Creating the Loan System Client within a GUI Application155
The Chet GUI Glass Dehnitions <s64as icccd sted Pane DON ESAs156

Connecting tothe RPC Loan Servers sac agile snes saddens easy 158
ExitthGRPO Lear CCRC se 5 nis aiae iad a ese oahe Sate tala gdp dnserp cen aa 159
Processing a Doan Query: + seul ae Pes see eee Lae esa ee160
Multithreading the RPC GUI Client..............0000 5 cece eens 163

2.7 Multiple RPC Server Comrnecttons <u oxcay cedex cae es oo eos Hee ay eed 167
The Multiprocess RPG Server. 205. 2 .2os cca p i dectiag ems caremaaes 167
Multithresdigr The RPC Server y...e vite pdade ses eee av tas PEemEeeS 172

Desy RSCUGIIACODEES s s9l 5 5, 0At ators b> Gehrke tla Si Ne ON NREL eh ees ees talg CNSR o.maries ane 182

Ghenters)RENE ors tose shee ets ct TKR cae nthe 183
Bil. AEDSHIGE 5c oa cig visa ale ra Ee RETR Meee Velde whe TAS Be oes 184

3.2 Creating an REXEC PC Client Using TCP Sockets22.000 00 185
he Seo kecceSopp hiss a hcs aes olen aaa bles da eee ceer reams 186
XPCRexecSetup Private Methods.000cenecanaauneaees 188
XPCRexecSetup Public Methods: . icc causavaacccaassaacdsdcaaws 191
A Sample Client/Server Using the XPCRexecSetup Class-. 195

3.3” Thteadige thy REXEG BG Cine ccc ann dace au men te eo ae ale be eee ee201
The Threaded PC Client: Main Progratti..s...<c0:0 esr a0es aeta cee ours205
She Thread Function .c.c cas ose sea say iekdakeoattaneshlordaaned207

Sat Wena EBS APE oo eras ten arrange ete Bee a ea p tate alates eae sue ep209

The New XPCRexecSetup Constructor00 cece eee eeeeuees209
heew NREMEECT BACHE aii siete cite 9 ta'pe ote elev We ip eee ree aiegiae210

3.5 Creating an REXEC PC Client Using Windowsand Asynchronous Sockets . .210
Asynchronous Socket XPCRexecAsyncSetup Class........0ce ecu eeuee212
The Tin PO Windows Glignts i. cscs esceaa dude ae SRE db weal Bada ee220
Te LIDS Server suis siig sav teh blade eaeldlpt niet aea bibdate solace 220

Tie Pe Chien Diale® Code: « s'sicccnntas ta avcht wanted eo dees222
Connecting to the Server cat ay scalp ts Wy pce tea ot ae ld223
VRSSU ERS LOGGED oF cine bag ocaaas otag oh y ee Pg Gia s ermucses225

aS OURCHISRON vy 5 aevradatele siecn chip eaia ene ne RUE PEEL lan Eees eagses228

Chapter 4 Cross-Platform Semaphores0000:5: 229
Hel Unteretaais 9 aso. esa aie 1d, Cite Pent ped ae BND bin RUN ere ala &.Ga.m5 230

4.2 The Cross-Platform Semaphore Architecture...400ee0 ee seee231
4.3 Cross-Platform Semaphore RPC Interface Specification233
4.4 Cross-Platform Semaphore XDR Translation Routines..............00237
4.5 Creating a Cross-Platform Semaphore Client 00000 e cues239
4.6 THe SenAphONe. SEVER5 5 ax eeleaine wae rs nak ee aly os alms HE eta are245

The Semaphore Server Remote Procedures.0000ee0eeeeees249

Zynga Ex. 1015, p. 7

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 8
Zynga v. IGT

IPR2022-00368

vi Table of Contents

Remote Procedure Semaphore Access Procedures...+-s+eee8eeee ee? 251
4.7 Synchronizing Execution of a UNIX and Windows NTSystem....-++-+ 259

World Wide Web Price Publisher----+-++recrrerrrrrtcrt 259
Seas Brice Server’ seid irae sine ees NS PAwED BE SEES MENS? SEE 263

BS CneGOUens. fate vie ve be 3nd RA EE EASE TARR EE RIEL TS ON 268
Chapter5 File Transfer... -.0ee eee e creer err enseeresess 277

51. File Transfer Using FIP... 22 .c0 esc csmaieee saree fee rne arenes 278
MPEETPE TEND CIASS ela vers ae AES STM wee nas See Se 278
YPCETPClient Comstructor-++eeeerte rr rretere sess 279
¥PCFTPCIient Constructor ...iccns ces cee eee reanesnecees cess 282
The vLogin() Method ..csccecsesceereaet tinge nersmnceene rere 283
The vPWD() and vCWD() Methods ...-..--seseeeecetterreresetss 283
The vAscii() and vBinary() Methods .o..24 se0s%s%22 Chr aneneee 285
The vGetFile() Methods... ..05-0200s5ceeles nen eene nas rreeees 286
The ListenSocket() Method ...-.---e+-eesterreersrsrssseeees 288
The VTSECT MEPHOM joven nee nF ode ales etre Ane eo ne BEAST? 290
The yPutFi lel) Method... .isceseccaeteeseea corer were eresree® 291
¥PCFTPClient Example......----esseeereeserer esters 293

$9. File Transfer Using Sockets ...2.s¢s0s0es0deeeesee new eseeenreeres 295
XPCFileTransfer Class.+ssseestenreeearewererescseene® 295
XPCEileTransfer Client Constructor ..-..-+-+-errrrcretsrrret 297
XPCFileTransfer Server Application++++++errrrsrscrrrrr ess 305
XPCFileTransfer Client Application. ..-..++-+sseerrerrtterreet 308

5 CenchGRMN ine we ack aad agg Bg ar Be ee weet SR Te eS 312
Chapter 6 Cross-Platform Shared Memory ...-----:+s+0'" 313

EA Teroduchon cries Gx earemae's awh ees hee Sans ERMA Te Sa e TEs 314
6.2 Shared Memory on UNIX... ..--. see eeseetereerersermesenene es: 316

Shared Memory CommandLine TONS vic acia caw Selah ee Ste ers eae 318
The xPCSharedMem Definition+++++eecceertrresrestertt 319
An Interprocess Communication System Using XPCSharedMem--+ 323
The Personnel Entry Server... ..-0cscesene eee eseenreneennenes 324
The Personnel Entry Client.....:2sse-eeeesenenteeoeueereeercss 327

6.3 The Architecture and Data Structures of the Cross-Platform Shared
AAemoty Serveie casey cnt h lee ase tae eres Ae ze seers se 330

The Cross-Platform Shared Memory RPC Interface File.....+--++++ 332
6.4 Developing the Cross-Platform Shared Memory Server..-.-++-+++s520> 337

The crossplatformmem_1() Procedure: iiss aecdesaee ede te hheines 338
The Remote Procedures Defined... ...+-++sssererreeerreerreees 341
Processing Multiple Client Connections-.-0+eees renee ereeees 347
Shared Memory Server Error Recovery. ---++++++++ereterrsrtees 348

Zynga Ex. 1015, p. 8
Zynga v. IGT

IPR2022-00368

Zynga Ex. 1015, p. 9
Zynga v. IGT

IPR2022-00368

Table of Contents Vii

6.5 Creating a Cross-Platform Shared Memory System....---+++++5eerrre>349
Steps for Creating a Shared Memory Glec:Caeeea349
Protecting Access to Cross-Platform Shared Memory....-+++++se+9%:354
Application Example: Simple Purchasing and Confirmation System.356
The Confirmation Server--- see e eee ec eee e eter r ere eneees361
The Purchase Order Client.......---20 eevee etre re reece eesees367

6.6. Condlagion ..c.c oc ee ea ea Sia pene ete RTE TEESE ARTO NSS 373

Chapter 7 Cross-Platform Pipes......--++++++s5rrrerctres 375
7A) lateodchon «vaiecd ioe 0x aided eee bh neem aes es Sa ethe se Ohms Hee 376
7.2 Using REXEC as the Pipe--- Mi 3p CAGE ERRORS eee med gan378

Developing an Interplatform Pipe Communication System Using
BRMEC. cos clita sd oka Rep este iam are ee Gees379

Application Example: Controlling Remote Processes Using
(PERGKOCPIDE 0. dec aweee Dee ee Ta ssa ea eee ee Eg NEY 382

7.3 Creating the Spawn Server ...-- ++ 0 see eeec tee eeesr ete seers rs seees399
The UNIX Version of the Spawn Server. ...--+ee ee eeeeeeeerereees404
The Windows NT Version of the Spawn Server ...--- ++ e-+seererres415

7.4 Cross-Platform Pipe Client and Server. ...--...0ee0esserrretrerreses415
The VPCne CLASK cs a cb sexes eal eed aes rte d pa Gea Wore Haas eas416
The XPCPipe Class Constructors.....-..seesssreerrrreeesretses418
Accepting Pipe Connections-.++++eseseeeereseressetssesss419
Communicating Using the XPCPipe Class ...----+0+ +e seeeeerrersss419
Example: Direct Communication Using NPCPTDG aa se xdsaearetoa seas421
The Process Controller Server... ... eee eeee cree e rere eer see sees421
The Process Controller Client.---s esses eeer eee rete recess431
Spawning and Communicating with Remote Applications........+---435
The XPCSpawn Constructor-ssse seer ete eeeense resets ceress436
Integrating XPCPipe and XPCSpawn ..-..+seereesereerrseresserees439
Example: Creating ProcessControlServer and ProcessControlClient

Using XPCPipe and XPCServerSpawn ...-++.+e-eeereerereeseres442
a5 Conclusion oaslals sla ba. ne eed ppe sie oe He SERRE EAS Sse tase eer ese455

Chapter 8 Cross-Platform Publish and Subscribe-+--- 457
Fl) WAtrOduetiN no ccs sesrcies Pee R ae edna eC ERs ERAN ETS Shee HATES S 458
82 Publish and Subscribe-. 00s seer ese eee rn etree eee eceneeeaes459

The Anatomyof a Published Message +++ ++2e+eeeerrrrerteee460
How to Create, Publish, and Subscribe to Messages... -. +++ +++++++05462

8.3 Creating the Generic Message Class+++++0eeeerersreerrsceess463
The Header Component...0--eseeeeeer reese eee enerser esse463
The Body Component+..0eseeereeeeneee eter neserrrc eens.467
Putting the Message Components Together in XPCMessage....----+++-472
¥PCMessage Constructors ... 66. ee eee eer eter eee eee esters css474

Zynga Ex. 1015, p. 9

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 10
Zynga v. IGT

IPR2022-00368

Vili Table of Contents

Inserting, XPCComponentOBpects aacssanaae tae dna dadowe saw die ans 478
Retrieving XPCComporient Wales as ccs cw peas eo Ras Sees nea ene 479
Publishing, Subscribing, and Receiving XPCMessage Objects.......... 485

8.4 The Publish=and-Subsenibe Server cs yack oda ve ee ioe ¥ He Eee Re Kaas ys 487

8.5 Creating a Publish-and-Subscribe System.-000000 eee ee eeee 490
Overview of the Sample System0-.0 ccs e eee eeecevecene 490
Phe News PubMeberes 25 scis.ch ci sieceisis.cie ceiesik Glare Ryarsieep aie asiece 498

ERE EWS SUSDEES once. ds rte ere CS Riesy COSA CoS TOAD aes 2 505

Single-Threaded News Message Retrieval...........-..0000 ee eeee 505
Receiving Messages on Multiple Sockets.... 2.0.0... 0.0 e eee ee eee 509
Threading Message Retrieval--ccc0ess ee rascereaeeecees 514
Asynchronous Message Retrieval Within a Windows Application 522

Mite KenmCleeaerc staicigsoralale aetaisbesa ah & ddl avery aA G Meisheuel te SSI WA sian desea, 2 533

Appendix A UNIX Run-Time Signals055 535

Appendix B The Sample Code and Files on the CD-ROM....... 541
B.1 Compiling and Executing the Example Applications.............-.+.- 543

SHLOSSATWN (2.5 913.6 38106. 68 eR ard dni deter ils Bk gibi Diente ane 545

BNOQUADNY s - 6 costo s chs contact +4 emda ase eo ROE SO9G 551

0EE ROR Pet ete oh Beene CR eee ne ae Ka Pa aE es 553

What's on the CD-ROM?..... 0... 0.0.2.0 eee eee eens 580

Zynga Ex. 1015, p. 10

Zynga v. IGT
IPR2022-00368

Zynga Ex. 1015, p. 11
Zynga v. IGT

IPR2022-00368

 This material may be protected by Copyright law (Title 17 U.S. Code)

Zynga Ex. 1015, p. 12
Zynga v. IGT

IPR2022-00368

458 Chapter 8: Cross-Platform Publish and Subscribe

server on both UNIX and Windows NT andSection 8.5 shows how to developa cross-plat-
form publish-and-subscribe system that passes generic messages.

8.1 Introduction
Oneofthe greatest difficulties with cross platform communication is properly aligning data
structures and adjusting for big endian/little endian differences. In previous chapters, these
difficulties have been overcome by using one of two methods. Thefirst methodis to force all
elements of the communicated data structure into character arrays. A character is a single
byte and has no ordering issue. Both UNIX and Windows NT align character arrays to the
nearest byte implicitly, correcting the byte alignmentissue. Integrating multibyte data types
such as integers within a data structure causes the resulting data structure to align differently
dependingon the operating system beingused.

The second method used to overcome thestructure alignment big endian/little endian
problem is to encapsulate multibyte data types within the XPCEndian class (See Chapter 5 of
Making UNIX and Windows NT Talk). The XPCEndian class converts multibyte data types
into a character array. This can be done because a multibyte data type is stored in memory as
consecutive bytes — exactly the way a characterarrayis represented. Converting to character
arrays avoids structure alignment issues. The XPCEndian class also contains methods for
reversing the ordering of bytes so that endian issues are avoided.

Although the two methods — character arrays and the XPCEndian class — overcome the
problemsrelated to sending data structures between UNIX and Windows NT, a common
complexity still exists. All methodsof interplatform communication used thusfar require cus-
romizing the client and server’s method of sending data structures. Both applications need to
know the data structures being sent and received and how to decode them once received. In
previous applications, decoding transferred data structures was accomplished by encapsulat-
ing the transferred data within an object, whereby the object contained methodsfor correctly
storing and extracting the data elements.

‘A maintenanceissue arises when using the sameclass in twodifferent places. If the class 1s
changed ontheclient bur not on the server, the system ceases to function correctly, The fix for
this situation is to update the data class on the server side, immediately followed by an update
ontheclientside. If only oneside is updated, disastrous results may occur. The need to change
the data transfer class on one system butnoton the otheris a realistic situation. For example,
if the application that receives data needsto store information regarding the data’s source, the
data class storing the incoming messageis a good place to put this. Unfortunately, increasing
the size of the data class results in errors when attempting to transfer the same data object
back to its source since the target of the transferstill maintains the original data structure.

Another methodof interplatform communication overcomes these problems related to
data transfer, The data structure alignment andbig endian/little endian issues are avoided by
incorporating character arrays and XPCEndian objects into the method. Theissue regarding
the maintenance of data transfer objects across platformsis also avoided through the use of
a generic messaging framework. The generic messaging framework enables data objects to
be transferred between client and server applications regardless of the type or amount
data. The creation and use of the generic messaging class framework arethe focal points ¢
this chapter.

Zynga Ex. 1015,p.
Zyngav. IG

IPR2022-0036:

Zynga Ex. 1015, p. 13
Zynga v. IGT

IPR2022-00368

Publish and Subscribe 459

8.2 Publish and Subscribe

The generic messaging class framework uses the data transfer concept of publish and sub-
scribe. The basis for a publish-and-subscribe system is as follows.
* Processes receiving network messages subscribe to all messages they want to receive. The

subscription is accomplished by using a label that uniquely identifies the message being
transferred.

* Processes sending network messages publish their messages using a uniqueidentifier. If the
process receives a message whoseidentifier matches the one subscribed to, the messageis
stored; otherwise, the message is discarded.

Figure 8.1 illustrates the basic architecture ofpublish-and-subscribe system.

Figure 8.1 Architecture of a Publish-and-Subscribe System

Publisher Subscriber

Subscribe toall

Messages with a
Unique Identifier

"A"

Create a New

Message

 Publish the

Message Using
the Unique
Identifier"A*

Receive Network

Messages

Extract Message

Identifier

 Process Message

The communicating processes in a publish-and-subscribe system are not directly connected
to each other. This enables a subscriber to exist without a publisher and a publisher to exist
withouta subscriber, When a process subscribing to a messageinitializes, it waits for messages

Zynga Ex. 1015, p. 13

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 14
Zynga v. IGT

IPR2022-00368

460 Chapter 8: Cross-Platform Publish and Subscribe _

bearing the identifier to which it has subscribed.If the process publishing such a message does
not exist, the subscriber does not fail but continues to wait for the message to whichit has
subscribed. Likewise, if a publishing process has no subscribers, the publisher does not termi-
nate but publishes the messages, which are sent over the network and discarded.

In previous systems, communication via TCP socketsfail if the connection with their com-
municating process is broken or does notexist at the time of data transfer. Transferring data
via UDP sockets avoidsthe situation of having all communicating entities connected. Because
the communicating processes are not connected, UDP communication avoids having all com-
municating processesinitialized and running at the same time. Unfortunately, UDP sockets do
not provide reliable data transfer. The publish-and-subscribe system eliminates the restriction
of having all system components running and providesreliable data transfer when both the
publish-and-subscribe processes are active at the sametime. Providing reliable data transfer is
discussed in Sections 8.4 and 8.5. :

Removing the restriction that all communicating entities be active provides sey
advantages.
¢ It avoids system failure because of the loss of a communicating entity. In a system that

communicates via TCP sockets,all clients are connecteddirectly to their server. If the con-
nection breaks because of a network failure or the loss of the client or server, the entire’
system fails when the next data transfer action takes place (either sending or receiving),
This type of system failure is avoided within a publish-and-subscribe system since the pro~
cesses publishing messages are notdirectly connected to the subscribing processes.

* Publishing and subscribing processes canbeinitialized at any time throughoutthelife
of a cross-platform communication system because processes that publish and subs
do notrely on each other’s existence. This meansthat within a cross-platform commur
tion system, processes can start up and terminate without fear of harming the system.

* Multiple publishers and multiple subscribers can coexist. A publish-and-subseribe sys
enables many processes to publish a message using the same identifier and many proces
to subscribe to a message. All processes subscribe to a specific message regardless of
message source. The complexity involved with connecting to all sources of a message i
eliminated.

* An unlimited number of messages can be received from a single socket connection. E
message delivered within a publish-and-subscribe system contains a subject or identi
associated with the message. The subscriber can subscribe to an unlimited number of r
sage subjects. The subscriber would have to know how to decode each message, but it
would be able to receive all messages on a single socket connection.

¢ A publisher can also be a subscriber. A process publishing messages can also subseri
other messages using the same socket connection. The process can even subscribe
own published messages.

~

The Anatomyof a Published Message
A published message is made of up one or more components. Each componentof the messa
is created and sent independently, and the entire message is reconstructed on the recet
end. Thefirst componentofall published messages is the subject component. Thesubje
message identifies the type of message, and all messages bearing a particular subject m
contain the same structure. The subject component also contains the total number of ba

Zynga Ex. 1015,

Zynga Ex. 1015, p. 15
Zynga v. IGT

IPR2022-00368

Publish and Subscribe 461

components, After decoding the componentsize of the message, the publisher and subscriber
treate message structures large enough to hold all components of the message and know how
many components to receive. Each message componentcontains a unique identifier in which
the identifier signifies the position of the message component within the entire message. This
identifier can be used by the receiving process to reconstruct the message in its original format
and to detect errors in message transmission. Transmission errors are detected by examining
the identifiers received, If an identifier is missing or out of sequence, a message transmission
error has occurred. The subject component's identifier is always 0. The structure for the sub-
ject componentis shownin Figure 8.2.

The remainder of the message componentsmakes up the body of the message. These com-
ponents are referred to as body components:Each body componentis independently created
and added to the complete message. Body components are objects of one type bur can contain
data of any type andsize. A single body componentobjectis created so thatall Processes in a
publish-and-subscribe system can receive and send messages regardless of the message com-
position. The objects that make up the body of the message contain a data member that is a
large character array used to store data types in their string representation. Character arrays
are sent over the network in their original form and do not need to be conyerted to a format
specific to an operating system. The message componentcontainsaflag to indicate the origi-
nal type of the data stored within the character array, If the originaltypeis a multibyte data
structure, such asa double or an int, and the message componentis received by a different
operating system than that from which it originated, the value of the componentis returned
in its endian form, The operating system data memberused in the subject component deter-
mines whether the componentwasreceived from a foreign operating system.

Each message componentalso includes a label, which uniquely names the componentand
is sent along with its value. The label is a character string and can be used to extract a Ppartic-
ular element of the message. The advantage ofusing a label to retrieve message elements is
that the receiving end does not need to know the ordering of body components; it must only
knowthe names of the elements to extract. If the elements of a particular published message
change, the subscribing process does not need to be altered or recompiled.It will only extract
the components it requires, ignoring the rest. The ability to continue processing the same
message bearing a specific subject holds true regardless of whether elements are added or
deleted or their orderingis changed.

The final element of a body componentis the component ID number. Each component
contains a unique ID number. The componentIDs are ordered in the sequence in which they
are created and are attached to the complete message. The subject of a published message
contains ID number 0. The component IDis used in several ways.
* Thevalue of a body componentcan be extracted based onits ID.
* The subscribing process can determineif any message componentsare missing.
* The subscribing process can order the message components received in the same order as

they were originally sent.
The structure of a message componentis shownin Figure 8.3.

Zynga Ex. 1015, p. 15

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 16
Zynga v. IGT

IPR2022-00368

462 Chapter8: Cross-Platform Publish and Subscribe —

Figure 8.2 The Subject Componentof a Published Message

Subject
(char*)

Numberof Body
Components

(int)

Message ID
Number 0

(int)

Operating System
Indicator

(char)

Figure 8.3 The Message Component Structure

ComponentLabel
(char *)

Original Data Type
(char)

Message ID
Number

(int)

How to Create, Publish, and Subscribe to Messages
When a messageis created, a new message template object is instantiated. The message tem-
plate object containsall components of the message, including its subject. The message tem-
plate is created using a subject, its originating operating system, and the number of body
components. Once the template objectis created, each body componentis inserted. A body
objectis inserted using an objectlabel and value. The label uniquely defines the body compo-
nent, and the value can be made of any base data type, including .

Zynga Ex. 1015, p. 16

Zyngav. IGT —
IPR2022-00368

|
J|

Zynga Ex. 1015, p. 17
Zynga v. IGT

IPR2022-00368

Creating the Generic Message Class 463

* IMG

® double, or

* char * (string).

When the message template object is completed, it contains a subject componentand the
number of body components specified. The Messageis sent to the subscriber(s) one compo-
nentat a time, Thefirst componentsentis the subject. The subject informs the subscriber of
the type of message being sent and the number of body components that complete the mes-
sage. If the receiving process has not subscribed to the published message, it discards it and
waits for the next message.If it has subscribed to the message,it decodes the subject compo-
nent and creates a message template object to,hold the number of body components specified
in the subject. The receiving process logps “until it receives all body components andinserts
each componentinto its message template object. The body components are added to the
message template in the order dictated by the component's ID.If an ID is missing, the message
is corruptandit is discarded. Whenall componentsarereceived, the message can be decoded,

The receiving process has two choices of how to decode the message: by label or by ID num-
ber. Whenall the needed components of the message have been extracted, the messageis dis-
carded.Figure 8.4 illustrates the steps required to create, receive, and decode a generic message.

8.3 Creating the Generic Message Class
Thefirst step in creating a publish-and-subscribe system is to define the objects used to create
the generic message. As describe in Section 8.2, a generic message is composed of a header
and zero or more body components. A subject, the number of body components,the originat-
ing operating system, and the message sequence number0 are included within the message
header, whereasa label, value, originating operating system, and sequential message ID are
included within each of the body components. The first component of the message — the
header — is describedfirst.

The Header Component
The first componentof the message headeris the subject, which uniquely defines a message
type. Subscribing processes subscribe to a message’s subject andstoreit as a character string.

The headerof the messagealso includes the total numberof body components thatconsti-
tute the remainder of the message. This numberis used by the subscribing process so thatit
knows how many componentsit should receive. If the number of components received does
not match the numberspecified within the header, a message transfer problem has occurred
and the messageis discarded.

Zynga Ex. 1015, p. 17

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 18
Zynga v. IGT

IPR2022-00368

464 Chapter8: Cross-Platform Publish and Subscribe

Figure 8.4 Creating, Receiving, and Decoding a Generic Message

Publisher , Subscriber

 Subscribe toall
desired messages.

template using a
subject and a

specification for the
number of messag

Receive published
messages

Yes Publish message or

Discard message

Insert a new
message

componentusing a
distinct label, value Retrieve message

and sequence headerthat
number ID specifies thenumberof

components
included

All message 6
components specified
in the message header,

retrieved

componen
available
retrieved

Yes

Retrieve message
Process message component

Extract message
components by

label

Extract message
components by

sequence number

in the correct
sequence

 Zynga Ex. 1015,p. 18
Zynga v. IGT |

IPR2022-00368 ~

Zynga Ex. 1015, p. 19
Zynga v. IGT

IPR2022-00368

Creating the Generic Message Class 465

The number of messagesis stored as an integer within the header component. The repre-sentation for the number of body components must be stored in its original and endian for-

when the subscriber extracts the number of body components from the header. This is
resolved by having the publisher specify its operating system within the header and having the
subscriber specify its operating system when extracting the number of body components.If
the two operating system specifications differ, the endian value is returned; otherwise, the
originalvalueis returned, The operating system value is determined at compile time using the
Windows NT, Even though the operating system is defined at compile time, it can still be
overridden whencalling functions that return a multibyte data type.

Each componentthat composes a published messagecontainsa sequential ID number. The
ID numberfor the header componentis always 0.If the first message componenta subscriber
receives does not have a sequence number of 0, the remainder of the messageis discarded.

The header componenthasthe additionaltask of defining the type of request being made:
PUBLISH or SUBSCRIBE.If the request type is SUBSCRIBE, the number of body componentsis 0,
since the messageonly includes a header. The header componentis defined in the XPCHeaderclass (Listing 8.1).

Listing 8.1 The XPCHeader Class Definition

#include <string.h> ——
#include <XPCEndian.h> // Defines the XPCEndianclassa =
#include <stdlib.h> ree ae

// Message header type defi nitions
#define PUBLISH 0
d#idefine SUBSCRIBE 1

(/ The operating system definition isdetermined at:
SEE OURK, Sy ee geeueae

frdeFine UNTMOP Ook
‘define OPSYSTEM UNIXOR=

_— fdefine WINDOWS_NTOP1
Z defineOPSYSTEMWINDOWS_NTOP.

“class XPCHeader

charcPubSubType; ——// Stores the message header type Zynga Ex. 1015, p. 19
Zynga v. IGT

IPR2022-00368

Zynga Ex. 1015, p. 20
Zynga v. IGT

IPR2022-00368

466 Chapter8: Cross-Platform Publish and Subscribe _

char cOpSystem; // Stores the operating system definition
char sSubject(256]; // Stores the subject of the message
XPCEndian<int> iNumComponents; // Stores the number of body

// that make up a message

public:

components

// Default constructor. Initializes the number of body components to 0. This
// constructor is used when’ the header is received from the network. The

// contents of the received message header replaces the default constructed
// message header.
XPCHeader() { iNumComponents = (int)0; }

// Constructor. Defines the originating operating system, thept
// the message subject, and the number of body components

XPCHeader(char _cType, char *_sSubject, int eianne=
char _cOpSystem = OPSYSTEM)

cOpSystem = _cOpSystem;

cPubSubType = _cType;

strepy(sSubject, _sSubject);

jNumComponents = _iNumComponents; |
, Sanit

// Method that is.used to set. ‘the private date ‘members.
void vsetValues(char _cPubSubType,

har *_sSubseription,
nt._iNumComponents. =0,
har —COpsystem = OPSYSTEM)

 eopiesten'= _cOpSystem;
 ¢PubSubType = _cPubSubType;

strepy(sSubscription, _sSubscription);
_ iNumComponents = _iNumComponents;
} E

// depends upon the original operating system specification and the
// operating system used to retrieve the count
int iGetNumComponents(char _cOpSystem = OPSYSTEM)
{

// The number of body components is returned. The format of the return \\

|

|
Zynga Ex. 1015, p. 20

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 21
Zynga v. IGT

IPR2022-00368

_Creating the Generic Message Class 467

stemsdiffer, the “endian” format is returned,

gina format1sreturned.
=

 char *sGetSubject() 1 petuen

// The message header function (publish or subscribe) is returned.
char cGetPubSubType() { return cPubSubType; }

hs

The Body Component
Messagesthatinclude data contain one or more body components. A body component com-
prises a value,a label that identifies the component,and a sequence number ID. The compo-
nent’s value can be of any basic type (a basic type is just a series of contiguous bytes). The
component's valueis stored as a byte array, since a byte array can beused to store anybasic
type. When a valueis stored within a body component, its endian state is also stored. The
endian valueis stored within another private data memberof the body componentclass and
is the sameasthe originalvalue, except thatits bytes are reversed.If the value being storedis
a string, its endian valueis notstored.

Following the header componentare zero or more body components, Body components
are not necessary whencreating and sending a generic message in twosituations. Thefirst is
when the messageis used for subscription purposes.In this case, the only component needed
is the header component. The header componentcontains the nameof the message being sub-
scribed to and a message header of type SUBSCRIBE. The number of body components speci-
fied within the header is 0. The secondsituation in which body components may not be
needed is when the message being published is used as an event signaler, whichis a catalyst
message that contains no information but, when received, causes specific actions within the
receiving process to occur, Generic messages provide a flexible means for creating an event
signaler because the receiving process can perform different tasks based on the subject of the
published message.

Theoriginal type of the valueis also stored within the body componentobject. Theorigi-
nal type is stored as a single byte and defined using uniqueinteger values. Storing the original
type enables the body componentclass to know how to return the value when it is requested.
The type definition can be extracted and used by the subscribing process. When used this
way, the value of the componentcanbe retrieved and placed in a variable based on the com-
ponent’s originating type.

Another value required by the body componentclassis the operating system. This valueis
stored as a private data member and transferred through messagepublication. The operating

Zynga Ex. 1015, p. 21
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 22
Zynga v. IGT

IPR2022-00368

468 Chapter 8: Cross-Platform Publish and Subscribe

system is determined at compile time but can be overridden by calling methods that return
data composed of multibyte types. The originating operating system is used whenretrieving
the value from the body component.If the retrieving operating system differs from the origi-
nating operating system, the endian representation ofthe original value is returned; other-
wise, the original value is returned.

Values stored within a body componentare associated with two identifiers. One identifier
is a uniquestring that is used as the body component's label. Associating a label with a com-
ponent makestheretrieval of the body componentindependentofits position. If ordering of
body components changes because of the addition or deletion of other components, the sub-
scriber can still access the specific value using the associated label.

The other body component identifier is a sequence number ID. This ID serves two pur-
poses. Each time a body componentis added to the message, it is given an ID that is in
sequence with the previous component. The header componentis alwaysthe first component
sent and contains an ID of 0. The first body componenthas an ID of 1 and the remainder of
the body components increment accordingly. The ID is used by the subscriber to ensure that
all componentsof a message are received.If an ID is missing, the message is discarded.If for
some reason the components are received out of sequence, the subscribing process discards
the message and assumes a networktransport error has occurred. The ID canalso be used to
retrieve body component values. Requesting a specific sequence number from the array of
body componentscanretrieve a value. The ID is stored as a XPCEndian objectso thatits value
can be extracted correctly when sent from a foreign operating system. When the ID is
retrieved, the operating system mustbespecified so that the correct format of the ID can be
returned. The XPCComponent class is shownin Listing 8.2.

Listing 8.2 |The XPCComponent Class Definition

#include <XPCEndian.h> // Defines the XPCEndian class

#include <XPCHeader .h> // Defines the XPCHeader class
#Hinclude <XPCTcpSocket.h> // Defines the XPCTcpSocket class

Jf Original type definitions
-Hdefine STRING 0 eo

 _XPCComponent

_ char sValue[$12]; // Byte representation of the component's value _
// in its original format

char sEndianValue[512]; // Byte representation of component's value
// in its endianformat:

char sLabel(512]; // The label thatuniquely identifies the compo
XPCEndian<int> ild; // The sequence10theuniquely identifies the

// component —
Zynga Ex. 1015, p. 22

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 23
Zynga v. IGT

IPR2022-00368

. 23

IGT
IPR2022-00368

eseoeecee

1015, p
Zyngav.

Zynga Ex

88oOoD©g=3ioc®Ooi]=oD£o2oO

Zynga Ex. 1015, p. 24
Zynga v. IGT

IPR2022-00368

®oO5wOoSsWwvo

1015, p.2Zynga Ex

Zynga Ex. 1015, p. 25
Zynga v. IGT

IPR2022-00368

471

Zyngav. IGT
IPR2022-00368

os
oe

Zynga Ex. 1015, p. 25

a=oO®3®=2oooO£i

Zynga Ex. 1015, p. 26
Zynga v. IGT

IPR2022-00368

472 Chapter 8: Cross-Platform Publish and Subscribe

|

if (cOpSystem |= _cOpSystem)
return i1d.getSwapValue():

else

return iId.getValue();

1;

Putting the Message Components Togetherin
XPCMessage
The message components are stored together within an XPCMessage object, which creates the
header component and body components. XPCMessage contains private data members that
include XPCHeader and a pointer to the array XPCComponent. Also included as private data
membersis the total number of XPCComponent objects (iNumComponents) and the current body
component ID. The current body componentID is stored in the iCurrentComponent data
member, is initialized to 0 at the time of XPCMessage construction, and is incremented each
time a new XPCComponent is inserted. XPCMessage contains methodsthat allow theinsertion
and retrieval of body components. When inserting an XPCComponent, the iCurrentComponent
data member is passed to XPCComponent’s constructor and stored as the object’s ID. Both the
iCurrentComponent and iNumComponents data membersare integers and stored as XPCEndian
objects so that they can be extracted whensent to a different operating system.

In order for the receiving process to know which format to use to extract the values of
iNumComponents and iCurrentComponent, it must know the operating system used to store
their values. This is accomplished by storing the operating system value in the private data
member cOpSystem. The operating system valuesare defined by #define macros and are set at
compile time using the precompiler definitions of UNIXOP or WINDOWS_NTOP. The operating sys-
tem chosen at compile time is the default when storing data in cOpSystem, but it can be over-
ridden during XPCMessage construction.

XPCMessage is responsible for sending and receiving its header and body components.It
sends and receives components using an XPCTcpSocket object passed during construction. A
pointer to the XPCTcpSocket object is stored as a private data member within XPCMessage.

The final data member of XPCMessage dictates its behavior. XPCMessage serves two pur-
poses: It can be used to construct and publish a message, or it can be used to subscribe to a
published message. The publish-and-subscribe indicators are defined using #define macros
and are passed in at the time of XPCMessage construction. The indicatoris stored within the
cTypé private data member.

Besides creating messages and publishing and retrieving messages, other methods within
XPCMessage include extracting the values of the private data members, extracting the values of
body componentseither by label or by ID, andinserting body components.Detailed descrip-
tions of XPCMessage (Listing 8.3) member functions are described throughout the remainder
of this section.

Zynga Ex. 1015, p. 26
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 27
Zynga v. IGT

IPR2022-00368

Creating the Generic MessageClass 473SaSeeae= ee
Listing8.3 The XPCMessageDefinition

3

oe

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 28
Zynga v. IGT

IPR2022-00368

ject is
If the

1015, p. 28
Zyngav. IGT

IPR2022-00368

Zynga Ex

eae

is passed in as parameters
information includes the number of

XPCMessage, as well as XPCHeader. XPCHeader
Message uses it to allocate memory for the array of XPCComponent

ects. The XPCComponentarrayis initialized to the size specified.

tructed, the header informat

tructing
to the vSetValues() method of XPCHeader. The header

private data memberthat stores how the XPCMessage ob
either PUBLISH or SUBSCRIBE andis passed in as a parameter.

ject is cons

d when consequire

ntains a

Cross-PlatformPublish and Subscr
rs.

iE

XPCMessage also co
used. This method can be

XPCMessage Constructors

stores this number, and XP

When the XPCMessage ob

obj

body components r

474 Chapter 8

Zynga Ex. 1015, p. 29
Zynga v. IGT

IPR2022-00368

———— Creating the Generic Message Class 475
method chosen is SUBSCRIBE, the number of body componentsis 0, since no data is associated
with a subscription other than the messagethat is subscribed, When a subscription messageis
defined, the number of body components need notbe specified because its parameter value
defaults to 0. The indication of PUBLISH or SUBSRIBE is stored within the XPCMessage object
and passed to the XPCHeader object.

The body componentID,i CurrentComponent,is initialized to 0, and the operating system
used to store XPCMessage valuesis also storedatthis time. The operating system is defaulted to
that chosen at compile time but can be overridden by specifying its value during construction.

Also required when constructing XPCMessage (Listing 8.4) is the TCP socket used to
retrieve and send the object. The TCP socket is passed in as a pointer to an XPCTcpSocket
object stored within a private data member,afid it is used by other XPCMessage methods for
sending andreceiving. Me

Listing 8.4 The XPCMessage Constructor

XPCMessage: :XPCMessage(char *_sSubject, char _clype, XPCTcpSocket *_Socket,
fee int —iNumParts, char_cOpSystem)

cOpSystem. = _cOpSystem;—// The operating system used is stored
cType = _cType: // The XPCMessage type (PUBLISH or SUBSCRIBE) is

// stored — As ay + =

iCurrentComponents = 0: // The current component ID is storedoe
iNumComponents = _iNumParts: // The total number of componentsisstored |
Socket = _Socket; // The XPCTepSocket obje sdsto receiveafd” 1)

// send the XPCMessageobjec ec

// The header component is initialized with
// message being sent (PUBLISH or SUBSCRIBE
// the number of body components, and theopt
Header.vSetValues(_cType, _sSubject, _iNumPart

_// Aerayofbody components isinitialized tosize speci:
- Componentli st =new XPCComponent*[_inumParts]; Cob

The second purpose for which the XPCMessage object can be constructed is to capture
incoming messages. When the messageis transferred from one processto another, the compo-
nents of the message are sent separately and reassembled into an XPCMessage object. The sec-
ond XPCMessage constructor builds its full message from components received over the
network. When the XPCHeader objectis received, the number of body components specified is
extracted, This numberis passed to the XPCMessage constructor along with a pointer to the
XPCTcpSocket used to retrieve the message and the message name. The constructor’s final

Zynga Ex. 1015, p. 29

Zynga v. IGT
IPR2022-00368

Zynga Ex. 1015, p. 30
Zynga v. IGT

IPR2022-00368

476 Chapter8: Cross-Platform Publish and Subscribe

parameteris the operating system thatretrieves the data, which is set at compile time but can
be overridden. The message name and number of componentsare used to set values within
the XPCMessage XPCHeader object. The number of body componentsretrieved from XPCHeader
is used to initialize the array of XPCComponent objects, and each body componentis received
using the XPCTcpSocket pointer.

When using this constructor within a Windowsapplication that incorporates asynchro-
nous sockets, iRecieveMessage() throws an exception becauseit is a blocking operation used
within a nonblocking application. To overcome this problem, iRecieveMessage() is placed
within a loop and each time an exception due to blocking is thrown, the process sleeps 100
microseconds and tries again. Sleeping helps the problem, since the exception is thrown
because there is no data currently available on the socket. Sleeping gives the network time to
send andreceive the data.

The body components are placed into the XPCMessage array whichis initialized with XPC-
Component objects, and each is checked to makesure its ID is in the proper sequence. Two
methods determine whether a message transfer error has occurred. The first is message
sequencing. The order in which the body components are sent is the order in which they
shouldbe retrieved because of the method of network communication used.If a componentis
received out of sequence, a transmission error has occurred and the messageis discarded. The
second method of message transfer error checking is to check the total number of message
componentsreceived.If, after all the componentsare received, the numberreceived does not
equal the value contained within XPCHeader, a transmission error has occurred and the mes-
sage is discarded. Only if the correct number of XPCComponent objects are received, and
received in the correct order, does the XPCMessage constructor return successfully. The con-
structor used to receive and store XPCComponent objects sent over the network is shown in
Listing 8.5.

Listing 8.5 The Second XPCMessage Constructor

XPCMessage(int _iNumParts, XPCTcpSocket *_Socket, char *_sSubscription,

char _cOpSystem)

 // of multi-aa data types can occur:
cOpSystem = _cOpSystem:

SamcoDORKES = _iNumParts;

 Socket = _Socket;

Zynga Ex. 1015, p. 30
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 31
Zynga v. IGT

IPR2022-00368

Creating the Generic Message Class 477

jects isinitialized to the size specified
umComponents];

int ‘specifiedis retrieved
‘NumComponents; iCount++)

y componen rece network and stored within the
_//current: xPCComponent element _ TheMSG_WAITALL option is specified to
// makesurethat the entirexPCComponentobject is received

ifdef UNIX fegee a
ei Socket->iRecieveMessage((void *)ComponentListCicount],

— sizeof(XPCComponent),
MSG_WAITALL);

#else

// If this is a Windows NT a
// on the socket
while(1)

{

pplication loop until the data is available

try

{

Socket ->iRecieveMessage((void *)ComponentList[iCount],
sizeof(XPCComponent), MSG_WAITALL):}

catch(XPCException &except0b)
{

// If the exception is thrown due to a blocking process
// within a non-blocking application, a sleep is done to
// wait for socket data to arrive
if (WSAGetLastError() = WSAENONBLOCKING)
{

Sleep(100):
continue;

}

else

throw except0b; Zynga Ex. 1015,p. 31
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 32
Zynga v. IGT

IPR2022-00368

478 Chapter 8: Cross-Platform Publish and Subscribe

|

break;

}

#endif
// If the current element received is not equal to the ID stored within

// the body component a transmission error occurred, and an exception
// is thrown

if, (iCount != ComponentList(iCount]->iGetId(_cOpSystem))
{

XPCException newExcept ("Received message out of sequence");
throw newExcept;

}

// 1 total number of body components received does not equal total number
/} specified, a transmission error occurred and an exception is thrown 2.
if (iCount != iNumComponents.getValue()) a
{

XPCException = _

newExcept("Received the incorrect number of message components");
throw newExcept;

}

Inserting XPCComponent Objects
When body componentsare added,the overloaded vInsert() methods associate a label with
a value andstore it within the current element of the XPCComponent array. The label associ-
ated with the XPCComponent object should be unique to XPCMessage,since the first matching
xPCComponent object is used when extracting values by label. XPCMessagestores the sequential
ID thatis associated with the inserted XPCComponent value. Each time a body componentis
inserted, the ID is passed to the XPCComponent object then incremented by one. The ID serves
two purposes. It can be used to extract a particular element from the XPCComponent array and
to check the order which the XPCComponent objects were received. Only one vInsert()
method (Listing 8.6) is shown. The others contain the same codewith different parameters.

Listing 8.6 The XPCMessage Overloaded vInsert() Method

void vInsert(char *_sLabel, int _iValue)

{

// Current CComponent element is initialized. Note that the current ID is
// retrieved using the getValue() method of XPCEndian. This method js used —

Zynga Ex. 1015, p. 32
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 33
Zynga v. IGT

IPR2022-00368

Creating the Generic Message Class 479

// since the operating system used to create the XPCMessage object is that
// used to store the XPCComponent elements
ComponentListLiCurrentComponents.getValue()] = new XPCComponent():

// The bady component's label, value , and ID are stored
Component ListtiCurrentComponents.getValue()]->vSetValue(_sLabel.
| _iValue,

iCurrentComponents.getValue());

‘/ The current ID is retrieved, rheremented by 1, and stored
int iCount = iCurrentComponents.getValue() + 1;
iCurrentComponents = iCount:

}

Retrieving XPCComponent Values

stored if the original XPCComponent type specified matches the parameter’s type. If the types do
not match, iGetValueByNumber() returns 0, indicating failure; otherwise, 1GetValueByNum-
ber() returns 1, indicating success. iGetValueByNumber() also returns 0 if the ID specifieddoes not exist. The iGetValueByNumber() methods are overloaded in order to store data of
different types. Only one methodis shown(Listing 8.7).

Listing8.7 The iGetValueByNumber() Method

int iGetValueByNumber(int _1ID, double *_dValue, char —cOpSystem)
{

int jNum:

// If the operating system used to retrieve the XPCComponent value differs
// from the operating system used to store its value, the “endian” value of
// the data member is returned
if (cOpSystem != _cOpSystem)

— iNum = iNumComponents . get EndianValue(Up

Num = iNumComponents. getOri ginal Value();
Zynga Ex. 1015,p. 33

Zynga v. IGT
IPR2022-00368

Zynga Ex. 1015, p. 34
Zynga v. IGT

IPR2022-00368

oa3a3wnoC<©=ie3zsaEhoe3Sggawo°i=oO480 Chapter 8

returns 0,

can be extracted
is returned based

re

_cType parameter.

it

ist, iGetTypeByNumbe
within the

1S
.

is stored

unknown,
The XPCComponent type

ect specified

fied does not e

otherwise, 1 is returned and the type

XPCComponent ob
() method(Listing 8.8).

speciified. If the element*
>

al type of the
.

origin
the iGetTypeByNumber

If the

on the element spec
dicating failure

using

in

TheiGetTypeByNumber() MethodListing 8.8

hee
a eaeRay

oeoOeeaeae

Zynga Ex. 1015, p. 35
Zynga v. IGT

IPR2022-00368

81wnwo=OooDo2wnoO==iocooO®<=-_oDim=oO2oOse

tten that extracts all componentsie can be wr
object, regardless of type (Listing 8.9).

» 4 generic routinUsing iGetTypeByNumber()
of an XPCMessage

Extracting XPCMessage Components Regardless of TypeListing 8

bo
eo

ae

iSee
[

eoaSeee—.aeSS.
aoe

coe

Zynga Ex. 1015, p. 35
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 36
Zynga v. IGT

IPR2022-00368

482 Chapter8: Cross-PlatformPublish and Subscribe

If the entire XPCComponent elementis needed,it can also be retrieved. The method usedis
GetComponent() (Listing 8.10), which returns a pointer to the XPCComponent object givenits
ID.If the element specified does not exist, GetComponent() returns NULL, indicating failure.

Listing 8.10 The Overloaded GetComponent() Method Using the ID

- XPCComponent *GetComponent(int _iID)
(as

int PNum;

UfIf the mEANtibG system used to retrieve the XPCComponent value differs
_// from the operatingsystem used to store its value, t
// of the data member is returned

if (cOpSystem != _cOpSystem)
iNum = iNumComponents.getEndianValue();

else

~ iNum = iNumComponents .getOriginalValue():

anIfthe ID specified does not exist, 0 is returned
if(AID €0) [) (AID >= iNum))

--- return (XPCComponent *)NULL; ©

The other way to extract a body componentvalue is by label. Each body component,

when inserted, is associated with a label, which can be used to extract the associated value.
Accessing body component values by label has the advantage ofretrieving values regardless
of the ordering of body components. If body components are added or removed or the order
in which theyare sent is changed, the subscriber does not need to be modified. The subscriber
can still access the values needed by retrieving the components by name.

Whenretrieving a body component value by label, the iGetValueByName() overloaded
methods are used. These methods store the value of the body component within a passed —
parameter. The data type of the parameter dictates the format of the returned variable. If the
cType data member of XPCComponent does not match the data type of the parameter, iGetVal-
ueByName() returns 0, indicating an error has occurred. If the label requested does not exist, 0
is returned. The value specified by XPCComponent is successfully extracted if the label exists
and the parameter’s data type matches the data type when the value wasoriginally stored in
XPCComponent. Only one iGetValueByName() overloaded method is shown (Listing 8.11)
becausethe rest are similar (see the CD-ROM).

Zynga Ex. 1015,p.

Zyngav. IG
IPR2022-0036:

Zynga Ex. 1015, p. 37
Zynga v. IGT

IPR2022-00368

Creating the Generic MessageClass 483
Listing 8.11 The iGetValueByName() Method

ee

ONY

If the original type of the specified XPCComponent object is unknown,it can be extracted
using the iGetTypeByName() method (Listing 8.12). The xPCComponent type is returned based
on the label specified. If an XPCComponent with the specified label does not exist, iGetType-
ByName() returns 0, indicating failure; otherwise, 1 is returned and the type is stored within
the _cType parameter.

Zynga Ex. 1015, p. 37
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 38
Zynga v. IGT

IPR2022-00368

 484 Chapter 8: Cross-Platform Publish and Subscribe 7 .

Listing 8.12 The iGetTypeByName() Method

eSeeoe3E
8o

. sone

If the entire XPCComponent elementis needed,it can also be retrieved using the associated
label. The method used is GetComponent(), which returns a pointer to the XPCCompone it
object given its label. If the element specified does not exist, GetComponent() returns NULL.
indicating failure. The overloaded GetComponent() method used to retrieve the XPCComponent
element by nameis shown in Listing 8.13.

Zynga Ex. 1015, p

Zyngav.|
IPR2022-00:

Zynga Ex. 1015, p. 39
Zynga v. IGT

IPR2022-00368

Creating the Generic Message Class 485
STSNSS,See

Listing 8.13 The Overloaded GetComponent() Method Using the Label

Publishing, Subscribing, and Receiving
XPCMessage Objects
An XPCMessage object is published using the vPublish() method (Listing 8.14). The compo-
nents are sent oneat a time because

* each componentis a fixed size, which allows the receiving end to know the amount of
data to store;

* the components are relatively small, and sending them oneat a time decreases the chance
of overloading the network; and

* the size of XPCMessage can grow very large without fear of bogging down the network
whentransmitting,

First the XPCHeader objectis sent. This componentcontains the subject of the message and
the number of XPCComponent objects that follow. The XPCTcpSocket data member is used to
transmit the components.

Zynga Ex. 1015, p. 39
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 40
Zynga v. IGT

IPR2022-00368

486 Chapter 8: Cross-Platform Publish and Subscribe

Listing 8.14 The vPublish() Method

Whenan application subscribes to a message, it uses the vSubscribe() method(Listing 8.
15) of XPCMessage, which sends the XPCHeader object to inform the network thatit is sub-
scribing to a message. Listing 8.15 The vSubscribe() Method

After the application subscribes to all messages thatit is interested in, it calls vGetMes-
sages() (Listing 8.16) to receive all published messages. Only the messages subscribed to will
be received. Because vGetMessages() receives all message publications regardless of their
message name and not tied to one particular XPCMessage object, it is a static method. It
receives an XPCHeader object and calls a user-specified function, passing it the name of the
message, the number of body components it contains, and a pointer to the XPCTcpSocket
object used to retrieve the message. A pointer to the user-defined function is passed into vGet-
Messages() along with the pointer to the XPCTcpSocket object, an XPCHeader object, and the —
operating system. If multiple subscribed messages are received, vGetMessages() is called
within a loop.

Zynga Ex. 1015,p.

Zynga Ex. 1015, p. 41
Zynga v. IGT

IPR2022-00368

' . The Publish-and-Subscribe Server 487
Listing 8.16 The vGetMessages() Method

when using TCP sockets, but TCP sockets require that the communicating processes be con-
nected. A loss of connection could cause the entire system to fail if not handled properly,If aclient disconnects from a server, the disconnection can be detected and handled properly bychecking the globalerror code. In the case of a UNIX system, this error codeis stored in the
errno global variable, andits valueis defined by ECONNRESET. Windows NT also stores the cli-
ent’s disconnectin its global error variable, This error is defined by WECONNRESET and is
retrieved from WSAGetLastError(). If the server dies and disconnects from the client, the cli-
ent can no longer communicate andthe entire system fails.

UDPsockets do not have the problemsthatthe connected entities face. Processes commu-
nicating via UDP sockets are not connected and therefore do notfail ifall communicatingentities are not up and running at the same time. UDP sockets allow client and server pro-
cesses to come and go without ever having to check whetherall needed processesareactive.
Unfortunately, the UDP protocol does not guarantee messagedelivery, andit does not guar-antee that the order in which messages are sentare in the same order they are received.

In order to provide the reliability of TCP sockets with the flexibility of the UDP protocol,the publish-and-subscribe system incorporatesa servercalled PubSubServer, which is a dae-
mon that runs in the background and connects publishers with subscribers. PubSubServer
communicates using TCP sockets to ensure message delivery and ordering. Whenever a pro-cess publishes or subscribes to a Message, it communicates directly with PubSubServer, As
long as PubSubServer is active, publishing and subscribing processes can StartZyngb op) 015,p. 41

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 42
Zynga v. IGT

IPR2022-00368

488 Chapter 8: Cross-Platform Publish and Subscribe

necessary. The communicating processes do not need knowledge of the destination processes
because the publishers and subscribers communicate directly with PubSubServer. Systems
described in previous chapters require that the host on which the processis running and the
socket port on which the process is communicating be known at run time. Using PubSub-
Server as an intermediary process, this information is not needed. Only the host name and
socket port of PubSubServer is necessary.

Publish-and-subscribe processes never have to create XPCTcpSocket objects that accept
connectingclients. Instead, theses processes create XPCTcpSocket objects that connect directly
with PubSubServer. Once a connectionis established, two-way communication with PubSub-
Server can takeplace.

Whena process connects, PubSubServer spawns a thread dedicated to publisher and sub-
scriber communication. When a connected process sends a message, it sends an XPCHeader
object first. The message type contained within the object is extracted to determine howit
should be treated. This message type can be either PUBLISH or SUBSCRIBE.If the message type
is SUBSCRIBE, the subscribed message is extracted and, along with the TCP socket of the sub-
scribing process, is added to the PubSubServer subscriptionlist. This subscription list is stored
as a linked list of XPCSubscription objects (Listing 8.17).

Listing 8.17 The XPCSubscription Class Definition

include <XPCTcpSocket.h> // Defines the XPCTcpSocket object

class XPCSubscription {

char sSubscribe[1024]; // Message being subscribed
XPCTepSocket *Socket:—// TCP socket object that is connectedto the
iee coAASME
eta

xPCSubscription *next; // Pointer to the next element in the
oe /f XPCSubseription Tinked-Tist Constructor.

“// Stores the message subscribe to and the

// socket connected to the subscriber

xPCSubscription(char *_sSubscribe, XPCTcpSocket *_Socket)
{

strcpy(sSubscribe, _sSubscribe);
Socket = _Socket;

next = NULL;

// Returns the message subscription

char *sGetSubscribe() { return sSubscribe; };

Zynga Ex. 1015, p. 43
Zynga v. IGT

IPR2022-00368

The Publish-and-Subscribe Server 489

// Returns the socket connected to the subscriber
XPCTcpSocket *getSocket()(return Socket; }

hb oe

When a client disconnects from PubSubServer, its XPCTcpSocket object is searched for
within the linkedlist. If it is found, the subscriber is assumed to have died, andits entry is
removed from thelinkedlist. Because a process can subscribe to multiple messages,all XPC-
Subscription objects associated with the subscriber are removed.

Whena processes sends an XPCHeader object with the message type PUBLISH, the name of
the message and the numberof body components being published are extracted. An XPCMes -
sage objectis constructed using the number of body components contained within XPCHeade fs
and the XPCTcpSocket objectis used to communicate with the publisher. Constructing an XPC-
Message object in this manner builds the XPCMessage object’s ComponentList using the XPC-
Component object transmitted over the network. Any problem thatoccurs transmitting the
message from the publisher to PubSubServer is caughtat this point. During construction of
the XPCMessage object, each incoming XPCComponent sequence ID is checked to makesure that
all componentsare received in the ordersent. If a discrepancy occurs, the entire message is
discarded. If the XPCMessage objectis successfully created, the linked list of XPCSubscription
objects is traversed, matching the published message name with the subscribed name. The
XPCMessage object is sent to all subscribed processes using the XPCTcpSocket object thatis
stored within XPCSubscription objects and that matches the subscription name.

Each time the XPCSubscription linked list is accessed for traversal, insertion, or deletion,
a semaphoreis locked to prevent other threads from changing the linked list at the same time
anotherthread is accessing it. The semaphore andthe xPCTcpSocket object are passed to the
communicating thread and encapsulated within an XPCClientInfo object (Listing 8.18),

Listing 8.18 The XPCClientInfo Class Definition

// The Semaphore class defined depends upon the operating system used.
#include <xPCSemaphore. h> oe

#include <XPCTcpSocket.h> // Defines the XPCTepSocket

class XPCConnectInfo

(ag ,
XPCTcpSocket *Socket; // Pointer to the XPCTcpSocket object used for
- i . _ // receiving messages from the publisher and
a ao // subscriber

_ XPCSemaphore *Sem; // Stores the semaphore used to protect the linked
a a // list of connected subscribers

public: —
//Constructor. Stores the pointer to the XPCTcpSocket object as well as

Zynga Ex. 1015, p. 43

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 44
Zynga v. IGT

IPR2022-00368

490 Chapter8: Cross-Platform Publish andSubscribe

// the pointer to the semaphore object
XPCConnectInfo (XPCTepSacket *_Socket,

XPCSemaphore *_Sem)
{ Socket = Socket; Sem = _Sem; }

//. Member functions that return the private member values
XPCTepSocket *GetSocket() { return Socket; |}
XPCSemaphore *GetSem() { return Sem; |

V;

Thestate diagram of PubSubServer is shown in Figure 8.5, andafull listing is shown in
Listing 8.19. Code specific to an operating system is encapsulated within #Hifdef ... #endif
code blocks. The PubSubServer shown here communicates on socket port 6800 and can run
under the UNIX or Windows NT operating systems.

8.5 Creating a Publish-and-Subscribe System
A publish-and-subscribe system has no server applications — only clients, who can either
send messages (publish), receive messages (subscribe), or both. The clients do not communi-
cate directly with each other; rather, they communicate indirectly through PubSubServer,
Whena clientis activated,it creates an XPCTcpSocket object using socket port number 6800
and connects to PubSubServer using the nameof the host on whichit is executing.

Whenthe client communicates,it sends messages directly to PubSubServer. The messageis
encapsulated within an XPCMessage object and can be a SUBSCRIBE message or a PUBLISH mes —
sage, which contains an XPCHeader object with the name of the message and zero or more
XPCBodyComponent objects that contain data associated with the message. When PubSub-_
Server receives a published message, it matches the message name to those processes that
subscribed to it and forwards the received XPCMessage object.

In order for a process to receive subscribed messages, it must use the static vGetMes-
sages() method, which receives the XPCHeader object sent by PubSubServer andcalls a user
defined function to process the remainder of the message. The user-defined function can pi
cess the messagedifferently based on the subject of the message contained within XPCHeader.
Methodsfor publishing and subscribing to messages are discussed in this section, and
and Windows NT examples are shown.

Overview of the Sample System
The sample system created for this section is a real-time news publication and subscrip
service. The goal of this system is to simulate news items published from various soure
and to retrieve the published news item in real time. The two sources used within this
tem are “Business News” and “Tech News.” These services can start and stop with
affecting the other publishers and subscribers within the network. The services publish’
following information.
* the actual news item

* the source of the news item

e the priority of the news item
Zynga Ex. 1015,

Zynga Vv.
IPR2022-0!

Zynga Ex. 1015, p. 45
Zynga v. IGT

IPR2022-00368

Creating aPublish-and-Subscribe System—491
Figure 8.5 ThearState Diagram

Main PubSubServer
Thread

 Create a

XPCTcpSocket
instance using port

#6800

 ‘ Create a
semaphorethatis
initially unlocked

and has a
maximum value of

1

 Listen for

incoming client
connections

 Suspend cceptProcessing until a A al
connection is received|Connecting client

and store the newly
created connected

socket within a
XPCTepSocket

obj

 connected socket

and the
semaphore within
a XPCClientinfo

 dedicated to

communicating
with the

connected

Processpassingit
the

XPCClientinfo
object

Zynga Ex. 1015, p. 45

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 46
Zynga v. IGT

IPR2022-00368

492 Chapter8:Cross-Platform Publish and Subscribe

Listing 8.19 PubSubServer

(genoa Siiviocteicuen semaines eeeeOh eeeae eeee
oe —t : Ce

caei8
ae

Sees=ee eeeeee.
:

one

eeesSa
eeeasea

Shyoe oeoe ao 18SaSee be

ee

Aeeeae
Cae Sgeeeeeeeeae Ce

ee
2see eae

ee p /ee :e

eeeeee

thyhr
saasinectoadiioendeee eeeseee eeoe

Soeeeoon
a&

.

oSoa See
ae eee See

aeooee Ce es. Sos pieareee eee ae
2CeeeeCeee

eeee8
eeeeaeee Seeee

ees FirstCTient
8

noe
eeSe

-

ee Beeoneae eeeee= eee aeaoe
(gfecee eteeee Ce eooeea

tourpobreer ceceerieesSee

ieGe eaeMea

—,
=

5 2
oe

eee2aoaae2yaBeassagasSESE .
ee

ee ee cybecemer eeice| oe oS ee shee He Re setePeaygaeei

- 5 : : FQ geeeeae
ofbaBeceelyie

Boat ce eater ci eeeHepa

cecum ans
eea—

es rie 3 :
ees t : ‘ : * : eySidi cor : = - 4 fete a E Sia rareatiec aeBee . c 2 : ‘ " Ceeseae ee fee

ecu ieweeee

Dee2aes oybape ce
Tne : coe : ‘in

ft ee Pet fae tai : Ww oe oy po oe. syi : aes uaa " ee Ceeee Ceeeae: i eee
Ceeeee aei

be

eee
_. vent¢
a
ee Keg 1!

aeeeae ee Gite oeBesetaeete agileeee

oe Sp eewithin:ieEW2
oeife eee ee -a oe i 7 Sse ans

e pale- poe eee : ee Sea8
me oe oe :

oocoe eenPe
a :
ee
...

S: oo
eeeeeeae: ee

eeeee aeBoeoe
Geeeekaeeae (odeokeedobbie

skeeeoeBeoe
uae ee oe

e ieeeeoer bene es oeCgBeet ewees ae
pe a. eeeee

aaoa

see
= ‘ feeEs tee eonensee :
UEeeece ne ans
Seee ee — =oo Le oe-

é f ousi : ee

- Goee =eco eeogee.deca oeee. ae aeCee ——eeBeeee
eeeee

oe

oeee
Oe i

fet
ee aea,rt<“—Ssw™”S”SSCsie ete Seeeea

ACear RpeeeS :

eee. a Ehretnection* vi2eee cee oreeee eaeSali nees Se oS eeate. ae . - : i egeeeeEe aie ne eae aa = 3 oS|ies

arestill‘are sti]» /eeeee

eeeeS

eeeae Pee ae FieSaewer
e-

aesee eeOegenous oe oeaeeeesyeoe oe ce= Gegee eeeeae Deaaoeae Geeyeaee ee
cee

.

feos Sos aecece Geegded Cee pofee -acntipaccmneear TBNOeeeaeee
3 a Sheanshed:HERESSEfe

8
Se—

eeeeoeee
po enas uese Bo GayaenactsSane Gooeeeeeee esaoe ee|

So
pes aeSege eei&

=aoe ee os ee a ee ae eeee

intae . : ce : oc- eile oe3 ¢ 4 ay c cae: rre Crd -oe 6
EIS Tie eecoe 4 noe :ee care Be8heed= 2iersoec a : peg yee

ee _-¢onnect oe etsackaos hoeeeee et Ing
: ee : :ne : :ae i :Sone:onlSaiediteeiaarout Eeeeteeeoe oean getSocket<Ceaea oeee

Zynga Ex. 1015,
ZyngaV.

IPR2022-0

Zynga Ex. 1015, p. 47
Zynga v. IGT

IPR2022-00368

ay
rd

Raceafoa

oSpasi
ee

ae

=
eeCee

a

* J

Gy ae
ee—:

Atfeteoes eS=
ae

onae
=

vet ae

el

IPR2022-00368

Zynga Ex. 1015, p. 48
Zynga v. IGT

IPR2022-00368

494 Chapter 8: Cross-Platform Publish and Subscribe —

yPCHeader Header; // Stores the message header.
int iRet; // Stores return values from XPCTcpSocket socket

// reads

// Points to the current element in the linked-listof subscribed clients
XPCClientConnection *currentClient;

try

{

while(1) // Loop forever

{

-4f (Header.cGetType() —= SUBSCRIBE)

if ((iRet = 0)

deleteconnect Info;

// The XPCHeader object is the first object sentby th
// clients and so is the first message received by
// PubSubServer. The MSG_WAITALL option is sentt

// If a 0 is returned from iReceiveMessage, the client
i} disconnected. Al] client related subscription linked
// are removed and the thread exits so:

vbeleteConnection(connect Info);

return 1:

::

// The message type is SUBSCRIBE. The subscription is
// removed from the XPCHeader object and it along with the
// connected XPCTcpSocket object are encapsulated within
// a XPCClientConnection object and added to the linked list

// The semaphore protecting the linked list is locked
connect Info->getSem()->vLockWait();

Zynga Ex. 1015, p. 48

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 49
Zynga v. IGT

IPR2022-00368

}

Tit

{ i

Creating a Publish-and-Subscribe System 495
firstClient — NULL)

| FirstClient = new XPCClientConnection(

c

£

}

else

‘

c

aPubSubMsg. sGetSubscription(), connect Info->getSocket());
urrentClient = firstClient:

urrentC] ient->next = NULL;

oh ee
urrentClient = firstClient;

while (currentClient->next != NULL)

//

con

currentClient = currentCl]ient->next:

XPCClientConnection *newClient = new
XPCClientConnection(aPubSubMsg.sGetSubscription(),

connect Info->getSocket()):
currentClient->next = newClient:
currentClient = currentClient->next:
currentClient->next = NULL:

The semaphore protecting the linked - list is unlocked
nect Info->getSem()->vUnlock():

else if (Header.cGetType() — PUBLISH)
{

/f

//

//

//

//

//

//

at

XP

~

If the message type is PUBLISH. A YPCMessage|object
is constructed to storethe received Header and the
incoming XPCComponent objects. When the XPCMessage
object is fully constructed, the linked listof
subscribed clients are parsed. The XPCMessage object
is published to all clients within the Vinked list who" ve
subscribed to the published message,

‘XPCMessage is constructed and receives al] incoming
XPCComponent objects

CMessage newMessage(aPubSubMsg.iGetCount(),
connect Info->getSocket());

Zynga Ex. 1015, p. 49

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 50
Zynga v. IGT

IPR2022-00368

496 Chapter 8: Cross-Platform Publish and Subscribe

// The linked-list of subscribed clientsis traversed and
//the XPCMessage object is sent to al] clients whose
//subscription matches the published message.
currentClient = firstClient;
while(currentClient != NULL)
{

if (stremp(currentClient

currentClient->getSocket()- >sendMessage(
(void *)&aPubSubMsg, ‘sizeof(XPCPubSubMsg));_

for (int iCount = 0; Count < aPubsubleg.(GetCount;
‘iCountH)

-pgetSocket ()-JewnMiecsaget
‘oid *)newMessage.ContainerList[iCount].
izeof(XPCContainer));

currentClient = currentClient->next;

]

catch(XPCException &except0b)
{

// All exceptions are.‘caught and displayed to the user
cout << "Client communication (ror: " << exceptOb. sGetException()

<< end]; = :

vDeleteConnection(connectIn
delete connectInfo:

return1;

main()

{

// Definition of the semaphore used to protect access to the linked
// of XPCClientConnection objects. Theser aphore 1 initialized to
// unlocked with only values of untocked ocked

#Hifdef UNIX

->sGetSubscribe(), aPubSubMsg. sGetSubseription()) = 0)

Zynga Ex. 1015, p. 51
Zynga v. IGT

IPR2022-00368
Zyngav. IGT

IPR2022-00368

woaWw9OoeSxin}%oDSN

aTesa,

(maeShseriaueeagpetaOpeaeLe

Zynga Ex. 1015, p. 52
Zynga v. IGT

IPR2022-00368

498 Chapter 8: Cross-Platform Publish and Subscribe

The news item and news item source are strings, whereas the priority indicatoris an inte-
ger. Processes subscribe to one or both of the news sources and receive all published items.
Like publishers, subscribers can come and go withoutaffecting the other processes within the
system. When a subscriber receives a message,it displays the message to theuser in the fol-
lowing format.

<Priority Level>; From <Service> Issued by <Source> - <News Item>

The <Priority Level> can be Critical, Important, or Informative. <Service> is either Business
Newsor Tech News, depending on the source from which the message is received. <Source>
stands for the service from which the news item was received. The news item source is

included within the message received. <News Item>is the actual newsbeing published.
Both the publishers and subscribers are developed on UNIX and Windows NT. The Win-

dows NT applications are developed as both console and Windowsexecutables. The PubSub-
Server being used can run on either UNIX or Windows NT since both versions serve the
same purpose. Regardless of the operating systems, the components that compose the news
publication and subscription service are the same. The basic news publication and subscrip-
tion service system is shownin Figure 8.6.

Figure 8.6 The News Publication and Subscription System

wi NTP; UNIX Processes

| "Business News” "Tech News"
| Publisher : ¥ Publishera "Business News" “Tech News" —aeMessage Message

"Business News" |_| “Tech News"ItemSubscriber | is displayed
L .

re =

| Subscriberto | | Business News" /
"Tech News" item "Business News" “Business News" | "Tech News" Item |

is displayed and "Tech News* | and "Tech News" | is displayed |

The NewsPublishers

The NewsPublisher is the simplest of the real-time news publications. Each news publication
process is predefined to publish one type of message: Business News or Tech News.At appli-
cationinitialized, the user is prompted for the news message,the sourceof the newsitem, and
a priority indicator,

Whenthe publisher initializes, it creates an XPCTcpSocket object constructed with socket
port number 6800. Upon successful construction of the XPCTcpSocket object, it is connected©
to PubSubServer using its vConnect() method, passing vConnect() the name of the host on
which PubSubServer is executing.

When the publisher is connected to PubSubServer, the user is prompted for information
pertaining to the newsitem. Theuseris required to input the newsitem, the source from which

Zynga Ex. 1015,

Zynga v.
IPR2022-00:

Zynga Ex. 1015, p. 53
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 499

the newsoriginated, and the priority level in the order given.If the user enters QUIT in place of
the news item, the News Publisher exits; otherwise, an XPCMessage object is constructed with
the subject “Business News” or “Tech News,” depending on the type of publisher. Three XPC-
BodyComponent objects are specified upon construction, and a pointer to the connected
XPCTcpSocket object is passed to the constructor. For each piece of the news message, an XPC-
BodyComponent object representing the user’s entry is inserted into XPCMessage by using the
vInsert() method andassigning the componentvalue a label, When all three XPCBodyCompo-
nent objects are inserted, the XPCMessage object is published using the vPublish() method.

The first News Publisher process presented is a UNIX/Windows NT console application
(Listing 8.20). Each application is assigned asépecific service: BUSINESS or TECH. The exam-
ple presented publishes BUSINESS news items. The console application that publishes TECH
messages is on the CD-ROM.Thefollowing code can be compiled on either UNIX or Win-
dows NT.

Listing 8.20 The Console-Based NewsPublisher

#include <XPCMsg.h> // Defines the XPCMsg object.
#Hinclude <jostream.h>

main(int argc, char *argv[1)
{

char sBuf(256]; // Stores the user-entered values

try

{

// A XPCTcpSocket object is created using socket port #6800 and
// connected to the host specified on the command-line. The host
// specified must be executing the PubSubServer application

XPCTcpSocket businessSocket((long int)6800);

businessSocket. vConnect(argv[1]);

while(1) // Loop forever
{

// The user is prompted for the news message. If the user enters-
// "QUIT", the client exits.

cout << "Enter News Item: " << flush:

cin.getline(sBuf, 256);

if (stremp(sBuf, “QUIT") — 0)

break;

Zynga Ex. 1015, p. 53

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 54
Zynga v. IGT

IPR2022-00368

500 Chapter 8: Cross-Platform Publish and Subscribe

ff A new XPCMessage object is created. Three XPCBodyComponent
Ifobjects are ‘specified and the message is given the name of
 //"BUSINESS".

goetenen newessage(3, "BUSINESS", PUBLISH, AbusI Papssaceeh)s

oeThe user-Gallered=snews item ‘is inserted into theHPcHessa9@ a
_/fobject and is given a label of "News" ee

/ MewMessage.vinsert(*News" , sBuf);
“Hate.sours of ‘thenews.itemis prompted for.

_ cout << "Enter Source: " << flush;

facedsetbinetenr, ae
aagThe user-entered source 16 inserted into the XPCMessage
ee.object‘andis given a label of “Source”
/newessage..vInsert("Source" , sBuf);
i "ptoe'petartty Jevel of the news item is prompted for.

— cout <<“EnterPriority Level: " << flush;
 cin.getline(sBuf, 256);

// The user-entered priority is converted to an integer and
// inserted into the XPCMessage object. The priority is given a

// label of "Priority"

newMessage.vInsert("Priority". atoi(sBuf));

// The XPCMessage object is published

newMessage.vPublish();

}

catch(XPCException &except0b)
{

// All socket communication related exceptions are caught andd dist
// to the user.

return 0;

return 1;

Zynga Ex. 1015, p. 55
Zynga v. IGT

IPR2022-00368

_ Creating a Publish-and-SubscribeSystem 501

It might be preferable to develop the publishing application using a GUI interface on Win-
dows NT asa dialog-based application. An MFC dialog application is encapsulated within a
class that inherits from the CDialog class. The dialog used for the News Publisher allows the
user to choose the type of new service, the source of the news item, the priority for the news
item, and the news messageitself. The News Publisher dialog is displayed in Figure 8.7.

Figure 8.7 The NewsPublisher Dialog

m_NewsSource
The Windows componentobjects are encapsulated within the main NewsPublisher dialog

class. This class is referred to as CNewsPublisherDlg, and an instance of this object is created
whenthe dialog application executes. Because multiple methods of CNewsPublisherDig can
create and publish messages, the XPCTcpSocket object is a private data member of CNewsPub-
lisherD1g (Listing 8,21).

Listing 8.21 The CNewsPublisherD1g Class

include <XPCMsg.h> /// Defines the XPCMsg class
#include Seskram a We
TESS: CesPubherpublic coreteg .
{ . inal aii

XPCTepSocket rcientsocket| HW socket used to Esmampmisate to the
// PubSubServer ati
public: |

PMeishabshardaceiinde pParent- NULL): cH standard constructor

Zynga Ex. 1015, p. 55

Zynga v. IGT
IPR2022-00368

Zynga Ex. 1015, p. 56
Zynga v. IGT

IPR2022-00368

502 Chapter8: Cross-Platform Publish and Subscribe

When the Windowsapplication executes, the OnInitDialog() method ofthe inheri

CDialog class is called. OnInitDialog() performs preparation operations prior to displayi
the GUI, inserts entries (BUSINESS and TECH) into the news services combo box (m_News
viceCombo), andinserts priority values (Critical, Important, and Informative)into the Prior
Level combo box (m_NewsPriorityCombo). The OnInitDialog() method also c ‘
XPCTcpSocket object using socket port number 6800 andcalls its vConnect() method
nect to the PubSubServer that is executing on the specified host. The CNewsPublis'
OnInitDialog() method is shown in Listing 8.22.

"

Zynga Ex. 10
Zyng

IPR20 :

Zynga Ex. 1015, p. 57
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 503

Listing 8.22 The OnInitDialog() Method

A news messageis published whentheuser hits the Send button and calls the OnSendBut-
ton() method (Listing 8.23) of CNewsPublisherDlg. An XPCMessage object is constructed
using the newsservice chosen as its message name. The XPCMessage CBodyComponent objects
are inserted using the values entered into the various dialog components. The component

Zynga Ex. 1015, p. 57
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 58
Zynga v. IGT

IPR2022-00368

504 Chapter8: Cross-Platform Publish and Subscribe

values are extracted andinserted using the XPCMessage vInsert() method. Whenall values
are extracted and inserted into XPCMessage, its vPublish() methodis called to send the com-
plete message to the PubSubServer. The remainder of the Windows-based News Publisher
dialog application is not shown but can be found on the included CD-ROM.

Listing 8.23 The OnSendButton() Method

-yoid CNewsPublisherD1g::O0nSendButton()

{ '

char sBuf[256]; // Temporary storage for the user-entered data

try

{

_ m_NewsMessage. GetWindowText(sBuf, sient(but):
: fewessaic)Ee; sbuf);
hk:The.news ‘source is extracted from the GUI and inserted into the

: “1prior cy‘aie in tngerved into the XPCMessage object
mNewsPriority..GetWindowText(sBuf, sizeof(sBuf));

// The news service is retrieved
m_NewsService.GetWindowText(sBuf, sizeof (sBuf)):

// A XPCMessage object is created for publication. Themessa
// give is the news service chosen by the user i
XPCMessage newMessage(3, sBuf, PUBLISH, clientSocket);

// The news item is extracted from the GUI andi inserted4 to
// XPCMessage object _—

ssage.object
wsSource,GetWindowText (sBuf, sizeof (sBuf));

sgHANSTESTRee . sBut);

if (stromp(sBuf, “Critical") = 0)
-newMessage.vInsert("Priority" Ey is

else if (stremp(sBuf, “Important") — 0)
newMessage.vInsert("Priority". 2);

else

newMessage.vinsert("Priority”, 3);

Zynga Ex. 1015, p. 59
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 505

// The XPCMessage object is published

newMessage.vPublish();

J

catch(XPCException &except0b)

// Al) socket related exception are caught and displayed
MessageBox(except0b.sGetException(), "Publish Error", MB_OK):
return; —

The News Subscribers

The subscribers to news messageslisten to one or manynewsservices. The published message
has the nameofthe newsservice publishing it. The news messages received are formatted and
displayed. Many techniques can enhance the ways that published messages are received and
processed. These methods include
* single-threaded messageretrieval,
* multithreaded messageretrieval,

* multiple-socket message retrieval, and
® asynchronous message retrieval within a Windowsapplication.

Single-Threaded News Message Retrieval
When the subscriberinitializes, it connects to PubSubServer and prompts theuser to enter the
news messages to subscribe to. The user can choose BUSINESS, TECH, or both by specifying
ALL, An XPCMessage object is constructed for each message subscribed to, and the objectis
sent to PubSubServer. After it has successfully subscribed, the News Subscriber waits to
receive published messages. Because it has subscribed to a particular set of messages, PubSub-
Server sends only those messages.

The NewsSubscriber waits to receive XPCHeader objects. It uses the static vGetMessages()
method of XPCMessage and passes an XPCHeader object and the XPCTcpSocket object used to
receive socket messages. vGetMessages() suspends processing until an XPCHeader objectis
received. Once the XPCHeader objectis received, a user-defined callback function processes the
incoming message. This callback function is passed as a pointer to vGetMessages(). The call-
back function is passed the XPCTcpSocket object used to receive the incoming message, the
numberof XPCBodyComponent objects contained with the published message, and the name of
the message being received. The number of XPCBodyComponent objects and the nameof the
received messageis extracted from the XPCHeader object. The user-defined callback function
constructs an XPCMessage object using the information passed. XPCMessage finishes construc-
tion when all XPCBodyComponent objects have been received. After XPCMessageis received, the
data within the object is formatted and displayed to the user. Only after the messages have
been fully processed does the callback function return, allowing the receipt of additional news
messages. The program flow for the single-threaded News Subscriber is shown in Figure 8.8,
and the code for the single-threaded News Subscriber is shownin Listing 8.24.

Zynga Ex. 1015, p. 59

Zynga v. IGT
IPR2022-00368

Zynga Ex. 1015, p. 60
Zynga v. IGT

IPR2022-00368

506 Chapter8: Cross-Platform Publish and Subscribe-

Figure 8.8 The Single-Threaded News Subscriber
Message Processing ThreadMain Thread

Construct a

XPCTcpSocket
object using port

#6800 and connect to
PubSubServer

Extract message
priority, news item,
and news source

 Errorextracting Successfull message
XPCGMessage message extraction

Object is Passed componentsto Thread rompt user for

message to
subscribe to : . Feeae

(BUSINESS, eee epoaestaye" Format messagege object and display to user TEGH,or ALL)

 TECH

BUSINESS or ALL

reate a
: Create a

XPCMessage
object with a type XPCMessage
of SUBSCRIBE object with a typeof SUBSCRIBE
and a message

name of and a messagename of TECH
BUSINESS

Spawna thread to
process the

message

Subscribe to the
given message

abject passingit the
Wal pe aee XPCTcpSocket object, the

process numberof
APCHeater XPCBodyComponent objectsobjects ;to receive and the nameof the

Zynga Ex. 1015, p

Zynga Ex. 1015, p. 61
Zynga v. IGT

IPR2022-00368

 Creating a Publish-and-Subscribe System 507

ooeeeyiteces
1015,p. 61

Zynga v. IGT
IPR2022-00368

Zynga Ex.

Zynga Ex. 1015, p. 62
Zynga v. IGT

IPR2022-00368

508

main(int argc, char *argv[])
{

Chapter8: Cross-Platform Publish and Subscribe

charsSubscription[50]; // Stores theuser-chosensubsc
-XPCMessage *Subscribe; /// Definesthe XPCMessage

try :

}

// The entire news message is formatted anddisplayed to the user.
sprintf(sNewsitem, "%s : From %s Issued by %s - %s", —

sPriority, _sMsgName, sSource, sNews);
cout << sNewsItem << endl;

}

catch(XPCException &except0b)
{

// All news processing errors are caught and cisplayed w the user
cerr << "Error receiving news message from" = i

<< _sMsgName << ": " << except0b.sGetExcept¥on()<¢ end

xPCHeader Header; Sate StorestheDantes
// An XPCTcpSocket object is cenistrhicted using socketportpee: and
// connected toa host executingthePubSubServer oe
XPCTcpSocket SubscriptionSocket((long {nt)6800);
SabantebiOnediih:niConuteetdTSubhubpeyierHost bs

fi The user. iss prompted for Ene message dabserdptton:
Keflush; —

cin PeSSUNIEEPLBTION
// If the name chosenis ALL or BUSINESS, the BUSINESS message is”
// subscribed

if ((stremp(sSubscription, *ALL") = 0) ||
(stromp(sSubscription, "BUSINESS") = 0))

Subscribe = new XPCMessage(0, "BUSINESS", SUBSCRIBE,
&BusSubscriptionSocket) ;

Zynga Ex. 1015, p. 63
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 509

Subscribe->vSubscribe();
delete Subscribe;

// If thenamechos: L CH, the TECH message is. subscribed
if ((stremp(sSubser: = 0)

reas
Subscribe.=new“xPCMessag 0,ator, SUBSCRIBE,

eee

. ‘Subscribe->vSubseribec);,
delete Subscribe; ---

while(1) // Loop forever
{ a wey .

// Published messages are retrieved using the XPCTcpSocket

// object. The XPCHeader object is received and the: vProcessNews()
// function is called to process the message

XPCMessage:: PRESSaaHesUNRFeWEODE: Header,‘WProcessNews);
}

catch(XPCException &exceptOb)
{

// All socket communication errors are Salah ‘andsisntaved
cout << "Communication Error: " << Saceptthote
return 0; .

return 1;

i -

Receiving Messages on Multiple Sockets
Sometimesit is useful to use a specific socket connection to process a specific subscribed mes-
sage. The approach shown in Listing 8.24 uses a single XPCTcpSocket object to subscribe to
all chosen messages. Any subscribed messages are sent to the News Subscriber on the socket
port originally subscribed to the message. Using separate sockets to receive subscribed mes-
sages forces dedicated socket connections, Dedicating socket connections can be useful for
determining how to process a message without havingto fully examineit. This is possible if
specific messages are received on specific sockets.

Zynga Ex. 1015, p. 63

Zynga v. IGT
IPR2022-00368

Zynga Ex. 1015, p. 64
Zynga v. IGT

IPR2022-00368

510 Chapter 8: Cross-Platform Publish and Subscribe

Whenreceiving messages on multiple socket connections, select() is used.It notifies the
application on which socket the message is being received. This knowledge can be used to call
vGetMessages() using the appropriate connected socket. Because the type of message is
known, vGetMessages() can receive different user-defined message-handling functions cus-
tomized to the type of messagereceived.

The multisocket news subscription process uses a separate XPCTcpSocket object for sub-
scribing and receiving BUSINESS and TECH messages. The algorithm for the multisocket News
Subscriber is shown in Figure 8.9. A partial code listing for the multisocket News Subscriberis
shownin Listing 8.25 that details the changes required for communicating on multiple sockets.

Figure 8.9 Multisocket News Subscriber

‘Construct a XPCTcpSocket
object using port #6800
dedicated to BUSINESS
messages and connect to

PubSubServer

onstruct a XPCTcpSocket
object using port #6800

dedicated to TECH messages
and connect to
PubSubServer

rompt userfor
message to
subscribe to
(BUSINESS,

TECH,or ALL
BUSINESS or ALL TECH

Create a
XPCMessage

object with a typeof SUBSCRIBE

 Create a
XPCMessage

object with a type
of SUBSCRIBE

 — and a message
BUSINESS name of TECH

Wait for and
receive a TECH

XPCHeader
object

Subscribe to the
given message

assingit th ’

 Wait for socket
communication on

either socket

ject pi

numberof

Message
pending

ooaeeeWailforand~-Send BUSINESS
receive a ae

BUSINESS
XPCHeader

messa ge

XPCTcpSocket object, the

XPCBodyComponent objects am, And Heeto receive and the name of the

ormat message
and display to

 source

Zynga Ex. 1015,
Zynga v.

IPR2022-00:

Zynga Ex. 1015, p. 65
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System — 51 1

Listing 8.25 The Multisocket News Subscriber

#Hinclude <XPCMsg.h> // Defines theXPCMessage and XPCBodyComponent
#include <Priority.h> If Assignsdefinitions to news priority values
#include <jostream.h> -

void vProcessNews(XPCTcpSocket*Socket, int _iNumComponents, char *_sMsgName)
se

// This function retrieves, processes,#@nd displays an incoming message.
// See Listing 8.24 Ne ge |

main¢int arge, char *argvl])

{

char sSubscription[50]; // Stores the user-chosen subscription
XPCMessage *Subscribe; // Defines the XPCMessage subscription object

XPCHeader Header; // Stores the published XPCHeader object
int iMaxSocketFd = 0; // Stores the maximum file descriptor value
fd_set fdset; // Stores the set of socket file descriptors

try

{ e ie

// A XPCTcpSocket object is created and connected to ny// This XPCTepSocket object is dedicated toSeetoae
// receiving BUSINESS messages. oo
XPCTepSocket BusSubscriptionSocket((long int)6800); A
BusSubscriptionSocket.Connect(aravL1]):
// A XPCTcpSocket object is created and connected to the& PubsubServer.
// This XPCTcpSocket object is dedicated to subscribingtto-and!
// receiving TECH messages.

XPCTcpSocket TechSubscriptionSocket((long int)6800);

_ RESETDERCNSOGKED PORNELE USE):
Le The Jargest. socket file descriptor is chosen and stored
At (BusSubscriptionSocket. iGetSocketFd() >

_TechSubscriptionSocket. iGetSocketFd())
~iMaxSocketFd =BusSubscriptionSocket. iGetSocketFd() + 1;

ae
-MaxSocketFd = TechSubscriptionSocket.iGetSocketFd() + 1:

Zynga Ex. 1015, p. 65
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 66
Zynga v. IGT

IPR2022-00368

512 Chapter 8: Cross-Platform Publish and Subscribe

// User is prompted for the name of the message to which to subscribe

cout << “Enter The Message You Wish to Subscribe (BUSINESS, TECH, ALL): "
oe <8 tdshé

cin >> sSubscription;
if: If the name chosen is ALL or BUSINESS, sii BUSINESS message is
// subscribed

df ((stremp(sSubscription, "ALL")= 0) ||

_ ((stremp(sSubscription, "BUSTHESS*) = 0)))
i .

‘Subscribe = new XPCMessage(0, “BUSINESS”, SUBSCRIBE,
&BusSubscriptionSocket);

Subscribe->vSubscribe():
delete Subscribe;

. i/If the name chosen is ALL or TECH, the TECH message is subscribed
if ((stremp(sSubscription, “ALL") = 0) ||

((stremp(sSubscription, "TECH") = 0)))

4

t=

je

Subscribe = new XPCMessage(0, TECH", SUBSCRIBE,
BTechSubscriptionsockét);Saperitpe-vvSaserDati:

: delete Subscribe;

}

- while(l)=// Loop forever
tee ame: |

 -FOLZERO(&fdset); // The set of socket file deserioors(ee
ee — f/ cleared

ftThe fusiieeae tech socket file oeers are added to tAEset

FOLatcHaScancarinitepee.{GetSocketFa), Afdset):
FD_SET(TechsubseriptionSocket. iGetSocketFa(), &fdset);
// An asyfichrorious ablacntan of sockets that have incoming
// message is established

Zynga Ex. 1015,

Zyngav.I
IPR2022-00

Zynga Ex. 1015, p. 67
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 513

int iSelectRetValue = select(iMaxSocketFd. &fdset, NULL, NULL, 0);
if (iSelectRetValuemere) }
{ mM

cerr << "Select failed" << endl:
return 1;

// If an1 incoming message is deserted, the correct
// XPCTopSocket object is chosen and is used to receive the
// message.

for (int iCount = 0; iCount < iSelectRetValue; iCount++)
{ :

if (FD_ISSET (BusSubscriptionSocket.iGetSocketFd(), &fdset) != 0)
[

// The message received is on the business related
// socket. The XPCHeader object is received and
// vProcessNews() is called
XPCMessage: : vGetMessages (&BusSubscriptionSocket, Header,

vProcessNews);
}

else if (FD_ISSET(TechSubscriptionSocket. iGetSocketFd(),
&fdset) != 0)

{

// The message recéived is on the tech related
// socket. The XPCHeader object is received and
// vProcessNews() is called

XPCMessage: : VGetMessages(&TechSubscriptionSocket,
Header,

vProcessNews);

h,

catch(XPCException &exceptOb)
{ }

// All socket related errors are caught and displayed to the user
cout << "Communication Error: " << exceptOb.sGetException() << endl;
return Q; :

Zynga Ex. 1015, p. 67

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 68
Zynga v. IGT

IPR2022-00368

514 Chapter8: Cross-Platform Publish and Subscribe

}

return 1;
4

Threading MessageRetrieval
A problem commonbetween the two NewsSubscribers presented is that the main application
is suspended regardless of whether or not messagesare being received. As soon as the XPCMes-
sage: :vGetMessages() methodis called, the main process does no other processing. One way
this situation can be resolved is to thread the vGetMessages() process.

After all messages are subscribed, a thread is spawned and passed a pointer to the XPCTcp-
Socket object that communicates with PubSubServer. vGetMessages() is placed within a loop
inside the thread, enabling the main thread to continue processing. Like all threaded pro-
grams, it is important that semaphores protect shared global resources. The architecture for
the threaded message retrieval News Subscriber is shown in Figure 8.10. The code fragment
in Listing 8.26 for the threaded message retrieval News Subscriber details the changes
required for communicating on multiple sockets. Code specific to an operating system is
encapsulated within/H fdef ... #endif code blocks.

Zynga Ex. 1015,p.
Zyngav. IG

IPR2022-003

Zynga Ex. 1015, p. 69
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 515

Figure 8.10 Threaded Message Retrieval News Subscriber
i

Main Thread oea

onstruct a XPCTcpSocket

process ‘ormat message

object using port #6800 Display failure :dedicated to BUSINESS XPCHeader message and display to
objects using the usermessages and connect to XPCTcpSocketPubSubServer object pa: i

the thfead
7 Error retreiving Error extracting

XPCMessage object messagecomponents

Construct a XPCTcpSocket
object using port #6800

dedicated to TECH messagesand connect to
PubSubServer

lessage
object passingit the

XPCTcpSocket object, thenumberof

XPCBodyComponent objects
to receive and the nameof the

message

xtract message
Priority, news

item, and news
source

rompt userfor
message to

subscribe to

(BUSINESS, BUSINESS / TECH
TECH,or ALL XPCTepSocket object

BUSINESSor ALL

Create a

Create a
XPCMessage xPCMessage

object with a type object with a type
of SUBSCRIBE of SUBSCRIBE
and a message and a message

name of name of TECHBUSINESS

 Subscribe to the
given message

pawn a thread to
Process incoming

messagespasing thethread the
socket(BUSINESSor

TECH)used forsubscribing

Continue main
thread processing

Zynga Ex. 1015, p. 69

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 70
Zynga v. IGT

IPR2022-00368

516 Chapter8: Cross-Platform Publish and Subscribe

Listing 8.26 Threaded Message Retrieval News Subscriber

Zynga Ex. 1015,p.
Zyngav.IG

Zynga Ex. 1015, p. 71
Zynga v. IGT

IPR2022-00368

aintttai Creatin g a Publish-and-Subscribe System 517

Zynga Ex. 1015, p. 71

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 72
Zynga v. IGT

IPR2022-00368

518 Chapter8: Cross-Platform Publish and Subscribe

Subscribe = new XPCMessage(0, "BUSINESS", SUBSCRIBE,
: &BusSubscriptionSocket);

Subscribe->vSubscribe(); —
deleteSubscribe;

‘// If the name chosen is ALL or TECH, the TECH message -Ag subscribed
if ((stromp(sSubscription, "ALL")= 0) {|

((stremp(sSubscription, "TECH") = 0)))

Subscribe = new XPCMessage(0, "TECH", SUBSCRIBE,
= _ &TechSubscriptionSocket):

Subscribe->vSubscribe();
delete Subscribe;

// Two threads are created. One thread processes BUSINESS messages and
// the other thread processes TECH nesses

aS UNIX_ XPcPthread<int> BusinessThread(vSubscribeThread,
(void *)&BusSubscr iptionSocket)

xPcPthread<int> TechThread(vSubscribeThread,
(void *)TechSubscriptionSocket) ;

#else

xPCThread BusinessThread(vSubscribeThread,
(void *)&BusSubscriptionSocket) ; :

xPCThread TechThread(vSubscribeThread, — (void *)&TechSubscr’ pti onSock t))
endif

HeThe main program thread execution is suspended while the threads
_// execute 3

BusinessThread. vwaitForThread();
_ TechThread.vWaitForThread();

} fer

catch(XPCException &except0b) |
ee As 5 ~<, Se s a
_// M1 socket related communication errors are caught and displayed

Zynga Ex. 1015, p
Zyngav.|

Zynga Ex. 1015, p. 73
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 519

‘// the-user - : tir “2S Ee are
cout << “Communication Error: “ << except0b.sGetException() << end];

‘return 0; ae .
poe

return 1;
}

Another approach to multithreading a messag€ subscriberis to thread message processing,
which enables the application to receive additional messages while processing previously
received messages. Many messagescan then bereceived and processed in parallel, which will
improve the performance of the system. The News Subscriber spawns a thread within the
message-processing function and passes the same parameters it was passed. The architecture
for the threaded message-processing NewsSubscriber is shown in Figure 8.11. The codefrag-
ment in Listing 8.27 details the changes required for communicating on multiple sockets.
Codespecific to an operating system is encapsulated within #ifdef ... #endif code blocks.

Zynga Ex. 1015, p. 73
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 74
Zynga v. IGT

IPR2022-00368

520 Chapter 8: Cross-Platform Publish and Subscribe

Figure 8.11 NewsSubscriber with Threaded Message Processing
Message Processing ThreadMain Thread

 Construct a xtract message

XPCTcpSocket priority, news
object using port item, and news

#6800 and connect source

to PubSubServer

Error extracting Successfull message
XPCMessage message extraction

Object is Passed componentsto Thread

 rompt userfor
messageto
subscribe to

(BUSINESS,

ormat message
and display touser

Error retreiving
XPCMessage

object

Displayfailure
message

Create a

Create a

ere a XPCMessage
a ; Section’ object with a type
oe eee of SUBSCRIBE
a. 9 and a message

BUSINESS Sa

Spawna thread to
process the
message

Subscribe to the

given message

‘onstruct a XPCMessage
object passingit the

XPCTcpSocket object, the
numberof

XPCBodyComponent objects
to receive and the name of the

message

Wait for an d
process

XPCHeader

objects

Listing 8.27 News Subscriber with Threaded Message Processing

Zynga Ex. 1015,p.
Zyngav. IG

IPR2022-0036

Zynga Ex. 1015, p. 75
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 521eeee ‘

Zynga Ex. 1015, p. 75

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 76
Zynga v. IGT

IPR2022-00368

522 Chapter 8: Cross-Platform Publish and Subscribe

// All message processing errors are caught and displayed to
// the user

cerr << "Error receiving news message from "

<< _sMsgName << ": " << exceptOb.sGetException() << endl;

main(int arge, char *argv[])
{

// This function connects to PubSubServer, subscribes to messages, and

// receives published XPCHeader objects. See main() in Listing 8.24 for a

// full listing

}

Asynchronous MessageRetrieval Within a
WindowsApplication
Receiving published messages within a Windows application must be performed differently
because published messages suspend all Windows event processing if message retrieval is
within the same thread as the main Windows program.An obvioussolution is to subscribe to —
messages and thread XPCMessage: : vGetMessages(). Threading vGetMessages() enables Win-
dowsevent processing to take place while waiting to receive published messages.

Although threading vGetMessages() is a viable solution, it is not the ideal solution.
Threading adds additional complexity because semaphores mustprotect global resources. A
better solution is to use Windows asynchronoussockets, as discussed in Chapter 5 of Making
UNIX and Windows NT Talk, and maintain socket and Windowsprocessing within the main —
thread. Containing all event processing within the main thread avoids the complexity associ-
ated with semaphores. j

Windows asynchronous sockets add socket processing to the Windowseventloop. Socket
communication is queued and handled in the same queueasall other Windowsevents. This
means applicationsarestill controlled by the user while Windows processes socket messages”
within the main thread. 4

The Windowsversion of the News Subscriber (Figure 8.12) allows the user to subscribe
and unsubscribe to newsservices at any time. This is unlike the previous subscribers, which
only allowed messages to be subscribed to at the beginning of the process. In order to chang
subscriptions, the previous applications had to be killed and restarted. Messages receivet
within the Windowsclient are displayed within a scrolling list box.

 Zynga Ex. 1015, p

Zynga Ex. 1015, p. 77
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 523
Figure 8.12. The Graphical User Interface News Subscriber

mle] aicie fi] 8)

}™_SubscribeList ~ m_SubscribedList

m_MessageList
The main News Subscriber dialog class (CNewsSubClientD1 g) contains two XPCTcpSocket

objects. Each objectis dedicated to subscribingto a specific message. When messages are pub-
lished, they are received on the same XPCTcpSocket object on which they were subscribed.
Along with two XPCTcpSocket objects, two XPCAsyncTcpSocket objects are also defined. After
an XPCTcpSocket object is constructed, connected to the PubSubServer, and subscribed,it is
used to construct an XPCAsyncTcpSocket object. The XPCAsyncTcpSocket object enables
socket processing to queue up with Windowsevent processing. Also included within CNews-
SubClientD1g are methods to subscribe and unsubscribe to messages, as well as public data
members associated with the Windows controls. The CNewsSubC] ientDlg class definition is
shownin Listing 8.28.

Listing 8.28 The CNewsSubClientD] g Class Definition

itinclude <xPCAsyncTcpSocket.h> //Definesthe XPCAsyncTepSocket class
#Hinclude <XPCMsg.h> // Defines XPCMessage and XPCBodyComponent.
classes i

#include ‘<Priority.h> — //Defines the priority values of news ‘messages “4
Class CNewsSubClientDlg : public CDialog
| . a ; 2 F ; d ‘ =

XPCTepSocket *BusSocket;—// XPCTcpSocket objet usedto communicate
// BUSINESS messages

Zynga Ex. 1015, p. 77
Zynga v. IGT

IPR2022-00368

Zynga Ex. 1015, p. 78
Zynga v. IGT

IPR2022-00368

= Chapter8: Cross-Platform Publish and Subscribe

- XPCTcpSocket. *TechSocket; // XPCTcpSocket object used to communicate TECH
(ter: ek // messages

easseyeeeronals socket used to receive BUSINESS messages
“APCsyeepeetiieweSeaeyeva *BusAsyncSocket ;

aR Asynchronous eaanet used to receive TECH messages
-XPCAsyneTcpSocket<CNewsSubCl jentD1g> *TechAsyncSocket;

public:
HE. Processes asynchronous messages received from the socket
void sheagentespaderctar *, XPCAsyncTcpSocket<CNewsSubClientDlqg> *);

Ejycpnueeeees asynchronous socket error messages
void vProcessError(char *_sErrMsg)

{

// Methods required by XPCTcpAsyncSocket are defined but not used
void vProcessConnection(struct sockaddr_in *addr) { return; |

char *sGetMessageBuffer(int _iNumBytes) { return NULL; }
void vProcessClose(struct sockaddr_in *addr) { return; |

CNewsSubClientDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data

//{{AFX_DATA(CNewsSubClientD1g)

enum { IDD = IDD_LNEWSSUBCLIENT_DIALOG |;

CListBox m_SubscribedList;

CListBox m_SubscribeList;

CListBox mMessageList:

protected:

HICON m_hIcon;

/

/

/

/

/

/

MessageBox(_sErrMsg, “Socket Error", MB_OK);

/

~

/

/

/

/

List box containing the list of messages.
subscribed ;

List box containing the list of messages
not subscribed f

List box containing the formatted news —

messages ;

Zynga Ex. 1015,p.
Zyngav.|

IPR2022-003

Zynga Ex. 1015, p. 79
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 525

_//Generatedmessagemap TUNERS
~TTUTAFR_MSG(CNewsSubClientD1g) —
virtual -BOOL OninitDialog ewMethod called when the News Subscription

: - us ising Sateiebizés

etna void€ Omen MAMethod eetied1for Sienates to a chosenhemessage :
weMethod called for subscribing to a chosen

. ssage.

atx,msg void OneettButton() ay‘Method called to exit theNeue
UfSubscription dialog application

LAERNEE :
DECLARE_MESSAGE_MAP()

When the Windows version of the News Subscriber initializes, the OnInitDialog()
method of CNewsSubClientD1g (Listing 8.29) is called. It adds the types of message subscrip-
tions to the m_SubscribeList list box control andinitializes the WinSocklibrary.

Listing 8.29 The OnInitDialog() Method of CNewsSubClientDlg

BOOL SASHSSUOCTSnel aaaaaaOES)
{ é.

CDialog: sontaitbtalogt:

// Al) message types are added tothe list ofunsubscribed messages
m_SubscribeList.AddString("BUSINESS");
m_SubscribeList.ABLESTESHS);
// The WinSock Vibrary 7s: inbeat vege)
if CAfxSocketInit())
{ Ena

NessageBox("Error initializing WinSock. Exiting Application",
"WinSock Error", MB_OK);

CDialog::On0K();

return TRUE; // return TRUE unlessyou set the focus to a control

Zynga Ex. 1015, p. 79
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 80
Zynga v. IGT

IPR2022-00368

526 Chapter 8: Cross-Platform Publish and Subscribe
g the >> button and unsubscribed by clicking the <<

button. When subscribing to a message, the user chooses a message name from the m_Sub-
scribeList and clicks the >> button to add it to m_SubscribedList. This creates an XPCTcp-
Socket instance thatis associated with the chosen message name. The xPCTcpSocket objectis
created using socket port 6800 andis connected to the host running PubSubServer. Once con-
nected, the XPCTcpSocket object is used to construct an ¥PCAsyncSocket object so that incom-
ing messages are processed along with Windows events. An XPCMessage objectis then createdand passed a pointer to the XPCTcpSocket object, along with the name of the message beingsubscribed. The vSubscribe() method of the XPCMessageinstanceis called in order to sub-
scribe to PubSubServer. If the subscription is successful, the message nameis removed from mm_
SubscribeList and added to mSubscribedList. The code for subscribing to a message is
showninListing 8.30.

Messages are subscribed to by clickin:

Listing 8.30 Subscribing to a Chosen Message
void CNewsSubC1 ientD1 9; :OnAddButton()
{

// Stores the name of the subscribed message_ CString sSubscription;
E // chosen from m_SubscribeList

try

// The user-chosen message 1S extracted from the m_SubscribeList
int iCurSel = m_SubscribeList.GetCursel(; ;
if (iCurSe) = LB_ERR) \

{ MessageBox("A Subscription Must Be Chosen”, “SubscribeError", MB_OK):
return: : ow

hb e s i a ee a z

m_Subscribelist.GetText(iCursel, sSubscription):
if (sSubscription = "BUSINESS")

// If the user subscribed to BUSINESS, BusSocket is constructed
// using socketport #6800 and connected to the PubSubServer y
BusSocket = new XPCTcpSocket((long int)6800);
BusSocket->vConnect("PubSubServer_Host”):

// The BusAsyncSocket object is constructed using BusSocket as its
// underlying meansof communication. BusAsyncSocket 7s defined c
// retrieve XPCHeader objects with 4 specification of MSG_WAITALL.

Zynga Ex. 1015, p. 80
Zynga v. IGT

IPR2022-00368

Zynga Ex. 1015, p. 81
Zynga v. IGT

IPR2022-00368

}

Creating a Publish-and-Subscribe System527

// MSG_WAITALL prevents the vProcessMessage() method from being
// called unti] the entire XPCHeader object is received. 7
BusAsyncSocket = new XPCAsyncTcpSocket<CNewsSubClientDIg>(

(CNewsSubClientD1g *)this, BusSocket-“Pi Betsockethat),
sizeof(XPCPubSubMsg) , MSG_WAITALL);

// BusSocket is attached - the Windows. queue
BusAsyncSocket-aeenterae

PP IASXPCMessage object is ponstructed. using the name of the
// user-chosen message and a type of SUBSCRIBE.
XPCMessage Subscribe(0, (char *)(const char *)sSubscription,

SUBSCRIBE, BusSocket);

// The user-chosen message is subscribed
Subscribe. vSubscribe();

else

f

// Tf the user subserttied: to TECH, TechSocket js eonsthuctha
// using socket port #6800 and connected to the PubSubServer
TechSocket. = new XPCTepSocket((long int)6800);
TechSocket->vConnect(" PubsubServer,Host"):
// The Tachibaynceaget. object is cokstiticted using Techsocket as.
// its underlying means of. communication, _ TechAsyncSocket is
// defined to retrieve XPCHeader objects with a specification of
fi MSG_WAITALL. MSG1WAITALL prevents the vProcessMessage() method
// from being called until theentire XPCHeader object is received.
TechAsyneSocket = new XPCAsyncTcpSocket<CNewsSubC1 jentD1g>(

(CNewsSubClientDlg *)this, aa>iGetSocketFd(),_ Sizeof(XPCHeader), MSG_WAITALL);
TechAsyncSocket-EATEN.
// A. XPCMessage object is” constructed using thename of the,
// user-chosen message and a type of SUBSCRIBE.

XPCMessage Subscribe(O, (char *)(const char *)sSubscription,
SUBSCRIBE, TechSocket) ;

Zynga Ex. 1015, p. 81

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 82
Zynga v. IGT

IPR2022-00368

928 Chapter 8: Cross-Platform Publish and Subscribe

The user can also unsubscribe from a message. To unsubscribe, the user selects the mes-

sage to unsubscribe from within the m_SubscribedList list box control andclicks the << but-
ton, which causes the OnRemoveButton() method to be called. This method deletes the
XPCAsyncTcpSocket object associated with the chosen message then deletes the associated
XPCTcpSocket object. The objects must be deleted in this order because XPCAsyncTcpSocket
inherits XPCTcpSocket. Deleting the objects disconnects the socket connection associated with
a message. When the socket disconnects, PubSubServer detects the loss of connection and
removesthe client from its list of subscriptions. Because separate socket connections are used
for each message, unsubscribing from one message does not eliminate subscriptions from
other messages. PubSubServer only removes the subscription associated with the discon-
nected socket. If the socket successfully disconnects, the message name is removed from the
m_SubscribedList list box control and added to the m_SubscriptionList list box control.
The code for unsubscribing from a chosen message is shownin Listing 8.31.

Listing 8.31 Unsubscribing From a Chosen Message

Zynga Ex. 1015,p.

Zynga v. IG

Zynga Ex. 1015, p. 83
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 529rmepsonamr a

Messages can be subscribed to and unsubscribed from at any time. This feature is made

available by asynchronous sockets, which enable Windows events and socket messages to be
queued together and contained within the same thread of execution. The user can manipulate
the Windowsinterface while socket communication takes place. Unlike previoussubscription

Zynga Ex. 1015, p. 83
Zyngav. IGT

IPR2022-00368

Zynga Ex. 1015, p. 84
Zynga v. IGT

IPR2022-00368

530 Chapter 8: Cross-Platform Publish and Subscribe—

client examples, there is no need to contain the retrieval of published methods within a loop.
Asynchronous sockets place the retrieval of socket messages within its event loop. Retrieving
socket messages in an event loop does not manipulate the thread in which it is executing;
therefore, the userstill has control over the Windowsinterface.

When published messages are retrieved, the OnReceive() method of XPCAsyncTcpSocketis
called. This method receivesthefirst part of a published message that is the XPCHeader object.
OnReceive() places the XPCHeader object within a character buffer allocated to the size speci-
fied within OnAddButton(). The MSG_WAITALL TCP socket option was specified when con-
structing the XPCAsyncTcpSocket object so that it will receive the entire XPCHeader object
before continuing. It is important to specify the retrieval of the entire message because TCP
sockets are sent as streams. OnReceive() returnsif it has any portion of the message.

OnReceive() calls the vProcessMessage() method of CNewsSubClientDlg (Listing 8.32).
Because CNewsSubClientDlg defines CAsyncTcpSocket instances, CAsyncTcpSocket must con-
tain a vProcessMessage() method, which receives the character buffer containing the XPC-
Header object. vProcessMessage() casts the character buffer to an XPCHeader object and calls
vProcessNews() to process the remainder of the incoming message. The message subject of
XPCHeader is extracted and vProcessNews() is passed the appropriate XPCTcpSocket object to
receive the specified message. Also passed to vProcessNews() is the number of XPCMessage
objects associated with the message and the name of the message being received. vProcess-
Message() is the asynchronoussocket replacement for the XPCMessage vGetMessages().

Listing 8.32 The vProcessMessage() Method

void CNewsSubClientDlg::vProcessMessage(char *sMsg, int iNumBytes)
{

// Character buffer sent from XPCAsyncTcpSocket is cast to an
// XPCHeader object

XPCHeader *Header = (XPCHeader *)sits:

if (stremp(Header- >sGetSubseription(), "BUSINESS") — 0)
// Tf the message name containe : ithin Header is BUSINESS, the

_// yProcessNews() function Ws2alled to process the remainder of the—
Pewespane. vProcessNews() ispassed a pointer to BusSocket.

rocessNews(BusSocket, Header->iNumComponents(),
Gs Header->sGetSubscription());

// If the message name contained within Header is TECH, the .
// yProcessNews() function is called to process the remainder of the
// message. vProcessNews() is passed a pointer to TechSocket.
vProcessNews(TechSocket, Header->iNumComponents(),

Header->sGetSubscription(Ye

Zynga Ex. 1015,p.
Zyngav.IG

Zynga Ex. 1015, p. 85
Zynga v. IGT

IPR2022-00368

Creating a Publish-and-Subscribe System 531

In previous examples, vProcessNews() was the user-defined function passed to vGetMes-
sages(), The vProcessNews() method in Listing 8.33 is similar to its previous versions,
except that the news message received is placed within the m_MessageList list box control of
CNewsSubClientD1g instead of displayed on the console window. vProcessNews() constructs
an XPCMessage object using the XPCTcpSocket object, the number of incoming XPCBodyCompo-
nent objects, and the name of the incoming message. The XPCMessage object returns from
construction when all XPCBodyComponent objects are received or an error occurs. When the
entire XPCMessage object is constructed, its values are extracted, formatted within a character
string, and inserted within the m_MessageList listbox.

Listing 8.33 The vProcessNews() Function

5 ~// The remainder of the wessige1 retri
oe newMessage(_NCNES

woid vProcessNews(XPCTcpSocket *_Socket, int _iNumComponents, char *_sMsgName)
oe

_// A pointer to the main dialog window is retrieved
CNewsSubClientDlg *dlgPtr = (CNewsSubClientDlg *)AfxGetMainWnd();

_SMsgName) ;

“harsNewsItem(1024]; // Holds the formatted news message
Priority: // Holds the priority value of the news message

oe rsPriorityl256); // Holds the news priority string representation
char-sNews[256]; // Holds the news message

char. sSource[256]; // Holds the news source

// The priority of the news item is extracted.

if (!newMessage. iGetVal ueByName(" ROTeSy é‘BiPriority))
iPriority = UNKNOWN;

 // The newsmassage is extracted| =
if (InewMessage.4GetValueByName("News",iz sNews)

"UNKNOWN"); '
dé The: news sourcene extracted

if (InewMessage. iGetValueByName("Source", sSource))
strcpy(sSource, "UNKNOWN");

// A string representation of the priority is stored based on the

// priority value extracted from the XPCMessage object
Zynga Ex. 1015, p. 85

Zyngav. IGT
IPR2022-00368

Zynga Ex. 1015, p. 86
Zynga v. IGT

IPR2022-00368

532 Chapter 8: Cross-Platform Publish and Subscribe

switch(iPriority)

{

case UNKNOWN: “ PS
strepy(sPriority, "UNKNOWN");
break;

case CRITICAL:

strepy(sPriority, “Critical”);

‘ break;
case IMPORTANT:

strepy(sPriority, "Important");
break;

case INFORMATIVE:

strepy(sPriority, “Informative");
break;

// The entire news sai is formatted and; ‘splays totheusesprintf(sNewsItem, "%s : From %s Issued byba
sPriority, gecane: Sachained 7

_sMsgName,except0b. sGetException());
digPtr->MessageBox(sMsg, "News Error”, MB_OK);

Zynga Ex. 101 5,
Zynga v.

IPR2022-00

Zynga Ex. 1015, p. 87
Zynga v. IGT

IPR2022-00368

Conclusion x 533

8.6 Conclusion

The publish-and-subscribe architecture has the advantages of allowing for dynamic connec-
tions, with multiple subscribers and publishers communicating using the same message, and
having the reliability of TCP socket communication. The process that facilitates these features
is the Subscribe server. The Subscribe server is responsible for keeping track ofall processes
subscribing to a particular message and publishing the message to those processes when one
is received. The Subscribe server is the entry point for all processes within the publish-and-
subscribe system andit must be able to handle both UNIX and Windows NT datasince pro-
cesses can connect from either operating system.

Generic messages allow for run-time message creation. The structure of the message being
sent and received is dynamic and can be changed”based on run-time parameters. In previous
systemsthis flexibility was not available. All’ processes were required to knowall data struc-
tures being communicated. By creating message structure at run time, the communicating pro-
cesses don’t need to be updated and recompiled each time the message structure has changed.

Thereliability of the publish-and-subscribe architecture and theflexibility of the generic
message framework makethis system an attractive approach for cross-platform communica-
tion development.

Zynga Ex. 1015, p. 87

Zynga v. IGT
IPR2022-00368

