

A publish/subscribe CORBA Persistent State Service
Prototype

C. Liebig, M. Cilia†, M. Betz, A. Buchmann

Database Research Group - Department of Computer Science
Darmstadt University of Technology - Darmstadt, Germany

{chris,cilia,betz,buchmann}@dvs1.informatik.tu-darmstadt.de

Abstract. An important class of information dissemination applications
requires 1:n communication and access to persistent datastores. CORBA’s new
Persistent State Service combined with messaging capabilities offer the
possibility of efficiently realizing information brokers between data sources and
CORBA clients. In this paper we present a prototype implementation of the PSS
that exploits the reliable multicast capabilities of an existing middleware
platform. This publish/subscribe architecture makes it possible to implement an
efficient update propagation mechanism and snooping caches as a generic
service for information dissemination applications. The implementation is
presented in some detail and implications of the design are discussed. We
illustrate the use of a publish/subscribe PSS by applying it to an auction
scenario.

1 Introduction

The deployment of large scale information dissemination systems like Intranet and
Extranet information systems, e-commerce applications, and workflow management
and groupware systems, is key to the success of companies competing in a global
marketplace and operating in a networked world. Applications like warehouse
monitoring, auctions, reservation systems, traffic information systems, flight status
tracking, logistics systems, etc. consist of a potentially large number of clients spread
all over the world demanding timely information delivery. Many of these applications
span organizational boundaries and are centered around a variety of data sources, like
relational databases or legacy systems that maintain business data. The business logic
may be spread over separate modules and the entire system is expected to undergo
continuous extension and adaptation to provide new functionality.
Common approaches in terms of systems architecture can be classified into traditional
2-tier client/server, 3-tier TP-heavy using TP monitors and n-tier Object-Web
systems.
In 2-tier client/server the client part implements the presentation logic together with
application logic and data access. This approach depends primarily on RPC-like
communication and scales well only if client and server are close together in terms of

† Also ISISTAN, Faculty of Sciences, UNICEN, Tandil, Argentina.

J. Sventek and G. Coulson (Eds.): Middleware 2000, LNCS 1795, pp. 231-255, 2000.
© Springer-Verlag Berlin Heidelberg 2000

231
Zynga Ex. 1013, p. 1

Zynga v. IGT
IPR2022-00368

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

232

network bandwidth and access latency. However, it does not scale in the face of wide-
area distribution. Moreover, the fat-client approach renders the client software depen-
dent on the data model and API of the backend.
In a 3-tier architecture a middle-tier – typically based on a TP monitor - is introduced
to encapsulate the business logic and to hide the data source specifics. TP monitors
provide scalability in terms of resource management, i.e. pooling of connections,
allocating processes/threads to services and load balancing. The communication
mechanisms used in 3-tier architectures range from peer-to-peer messaging and
transactional queues to RPC and RMI. TP monitor based approaches assume that the
middle-tier has a performant connection to the backend data sources, because
database access protocols for relational systems are request/response and based on
“query shipping”. In order to reduce access latency and to keep the load of the data
source reasonably low, the application programmers are urged to implement their own
caching functionality in the middle-tier. A well known example of such an
architecture is the SAP system [21].
In n-tier Object-Web systems the clear distinction between clients and servers gets
blurred. The monolithic middle-tier is split up into a set of objects. Middleware
technology, such as CORBA, provides the glue for constructing applications in
distributed and heterogeneous environments in a component-oriented manner.
CORBA leverages a set of standard services [22] like Naming Service, Event and
Notification Service, Security Service, Object Transaction Service, and Concurrency
Control Service. CORBA has not been able to live up to expectations of scalability,
particularly in the information dissemination domain, because of a limiting
(synchronous) 1:1 communication structure and the lack of a proper persistence
service. The new CORBA Messaging standard [23] will provide true asynchronous
communication including time independent invocations. We argue, that the recently
proposed Persistent State Service [14], which replaces the ill-fated Persistent Object
Service, will not only play a key role as integration mechanism but also provides the
opportunity to introduce efficient data distribution and caching mechanisms.
A straightforward implementation of the PSS relying on relational database
technology is based on query shipping. The PSS must open a datastore connection to
the server, then ships a query that is executed at the server side and the result set is
returned in response. Such a PSS implementation realizes storage objects as stateless
incarnations on the CORBA side, that act as proxies to the persistent object instance
in the datastore. Operations that manipulate the state of objects managed by the PSS
are described in datastore terms. This approach generates a potential bottleneck at the
datastore side, because each operation request on an instance will result in a SQL
query. Furthermore, for information dissemination systems, where the user wants to
continuously monitor the data of interest, polling must be introduced which results in
a high load at the backend, wasting resources and possibly delivering low quality of
data freshness.
For information dissemination systems an alternate approach based on server-initiated
communication is more desirable. Techniques ranging from cache consistency
mechanisms in (OO)DBMSs [33,5] and triggers/active database rules [10] to
broadcast disks [1] can be used to push data of interest to clients. In the context of the
PSS a new publish/subscribe session is needed. A publish/subscribe session represents
the scope of the objects an application is interested in, i.e. subscribes to. For those

232
Zynga Ex. 1013, p. 2

Zynga v. IGT
IPR2022-00368

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 233

objects in a publish/subscribe session the cache is loaded and updated automatically.
Additionally, this session provides notifications about insert, modify and delete events
to the application. While publish/subscribe sessions currently are not part of the PSS
specification they are definitely not precluded by it and would represent a useful
extension to the spec.
In this paper we present an implementation of a PSS prototype that provides an
intelligent caching mechanism and active functionality in conjunction with message
oriented middleware (MOM) that is capable of 1:n communication. By removing two
crucial bottlenecks from the CORBA platform we claim that highly scalable Object-
Web systems become feasible.
In our PSS prototype1 we take advantage of commercial publish/subscribe
middleware that provides the paradigm of subject based addressing and 1-to-many
reliable multicast message delivery. We show how a snoopy cache can be
implemented for multi-node PSS deployment. We make use of a prototype of a
database adapter for object-relational databases (Informix IUS, in particular) that was
partially developed and extended in the scope of this project. The database adapter
allows to use publish/subscribe functionality in the database and to push data to the
PSS caches when update transactions are issued against the data base backend or
when new data objects are created.
This paper concentrates on the basic infrastructure needed to provide scalability with
respect to dissemination of information from multiple data sources. We explicitly
exclude from the scope of this paper federated database and schema integration
issues.
The remainder of this paper is organized as follows: Section 2 briefly introduces key
concepts of the PSS specification and the multicast-enabled message oriented
middleware; Section 3 provides an overview of the architecture of our prototype
implementation of the PSS and identifies the main advantages of integrating the
reliable multicast functionality of the TIBCO platform; Section 4 describes the
implementation; Section 5 introduces auctions as a typical scenario for middleware-
based Web-applications and Section 6 presents conclusions and identifies areas of
ongoing research.

2 CORBA PSS and Messaging Middleware

2.1 CORBA Persistent State Service

The need for a persistence service for CORBA was recognized early on. In 1995, the
Persistent Object Service was accepted but failed because of major flaws: the
specification was not precise, persistence was exposed to CORBA clients,
transactional access to persistent data was not covered, and the service lacks
integration with other CORBA services. Recently, the Persistent State Service (PSS)
was proposed to overcome those flaws. The goals of the PSS specification [14] are to

1 The work of this project is partially funded by TIBCO Software Inc., Palo Alto.

233
Zynga Ex. 1013, p. 3

Zynga v. IGT
IPR2022-00368

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

234

make the state of the servant persistent, to be datastore neutral and implementable
with any datastore, to be CORBA friendly, consistent with other OMG specifications
(Transactions, POA, Components, etc.) and also with other standards like SQL3 [18]
and ODMG [7].
The PSS provides a single interface for storing objects’ state persistently on a variety
of datastores like OO-, OR-, R-DBMS, and simple files. The PSS provides a service
to programmers who develop object implementations, to save and restore the state of
their objects and is totally transparent to the client. Persistence is an implementation
concern, and a client should not be aware of the persistence mechanisms. Therefore,
the PSS specification does not deal with the external interface (provided by a CORBA
server) but with an internal interface between the CORBA-domain and the datastore-
domain.
Due to numerous problems with IDL valuetypes - used in previous proposals as
requirement imposed by the RFP - the IDL was extended with new constructs to
define storage objects and storage home objects. The extended IDL is known as
Persistent State Definition Language (PSDL). Storage objects are stored in storage
homes, which are themselves stored in datastores. In order to manipulate a storage
object, the programmer uses a representative programming-language entity, called
storage object instance. A storage object instance may be connected to a storage
object in the datastore, providing direct access to the state of this storage object. Such
a connected instance is called storage object incarnation. To access a storage object, a
logical connection between the process and the datastore is needed. Such a connection
is known as session.
There is also a distinction between abstract storage type specification and concrete
storage type implementation. The abstract storage type spec defines everything a
servant programmer needs to know about a storage object, while an implementation
construct defines what a code generator needs to know in order to generate code for it.
A given abstract specification can have more than one implementation and it is
possible to update an implementation without affecting the storage objects’ clients.
So, the implementation of storage types and storage homes lies mainly in the
responsibility of the PSS. An overview of these concepts is depicted in Figure 1.

storage home
incarnations

storage object
incarnations

storage
homes

storage
objects

abstract
storage homes

abstract
storage objects

datastore

P
ro

ce
ss

 A
P

ro
ce

ss
 B sessions

implementation of

Fig. 1. PSS concepts [14].

234
Zynga Ex. 1013, p. 4

Zynga v. IGT
IPR2022-00368

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 235

A storage object can have both state and behavior, defined by the storage type : its
state is described by attributes (also called state members) and its behavior is
described by operations. State members are manipulated through equally named pairs
of accessor functions. Operations on storage objects are specified in the same manner
as with IDL. In addition to IDL parameter types, storage types defined in PSDL may
be used as parameters. In contrast to CORBA objects, operations on storage objects
are locally implemented and not remotely accessible.
A storage home does not have its own state, but it can have behavior, which is
described by operations in the abstract storage home. A storage home can ensure that
a list of attributes of its storage type forms a unique identifier for the storage objects it
manages. Such a list is called a key. A storage home can define any number of keys.
Each key declaration implicitly declares associated finder operations in the language
mapping. To create or locate a storage object, a CORBA server implementor calls
create(<parameters>) or find_by_<some key>(<parameters>) operations on
the storage home of the storage type and in return will receive the according storage
object instance.
The inheritance rules for storage objects are similar to the rules for interface
inheritance in IDL. Storage homes also support multiple inheritance. However, it is
not possible to inherit two operations with the same name; as well as to inherit two
keys with the same name.
In the PSS spec the mapping of PSDL constructs to several programming languages is
also specified. A compliant PSS tool must generate a default implementation for
storage homes and storage types based on the given PSDL definition.
For the case that the underlying datastore is a database system, the PSS introduces a
transactional session orchestrated by OTS through the use of the X/Open XA
interface [34] of the datastore. Access to storage objects within a transactional session
produces executions that comply with the selected isolation level i.e. read
uncommited, read commited. Note that stronger isolation levels like repeatable read
and serializable are not specified.

2.2 Multicast-enabled MOM

We use COTS MOM [31] to build the PSS prototype, namely TIB/Rendezvous and
TIB/ObjectBus products. TIB/Rendezvous is based upon the notion of the
Information Bus [26] (interchangeable with the wording “message bus” in the
following) and realizes the concept of subject based addressing, which is related to
the idea of a tuple space, first introduced in LINDA [6]. Instead of addressing a
sender or recipient for a message by its identifier, which in the end comes down to a
network address, messages are published under a subject name on the message bus.
The subject name is supposed to characterize the contents - i.e. the type - of a
message. If a participant, who is connected to the message bus, is interested in some
specific message types, she will subscribe for the subjects of interest and in turn be
notified of messages published under the selected subject names. The subject name
space is hierarchical and subscribers may use subject name patterns to denote a set of
types to which they want to subscribe.

235
Zynga Ex. 1013, p. 5

Zynga v. IGT
IPR2022-00368

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

