Elisa Bertino (Ed.)

ECOQOP 2000 —
Object-Oriented
Programming

14th European Conference
Sophia Antipolis and Cannes, France, June 12-16, 2000
Proceedings

€): Springer

Zynga Ex. 1022, p. 1
Zyngav. IGT
IPR2022-00368

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Elisa Bertino

Universita’ di Milano

Dipartimento di Scienze dell’Informazione
Via Comelico 39/49, 20135 Milano, Italy
E-mail: bertino@dsi.unimi.it

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Object oriented programming : 14th European conference ; proceedings /
ECOOP 2000, Sophia Antipolis and Cannes, France, June 12 - 16, 2000.
Elisa Bertino (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ;
Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2000
(Lecture notes in computer science ; Vol. 1850)

ISBN 3-540-67660-0

urt K. Wendt Library
ty of Wisconsin-Madison
ai Avenue

n, Wi 53706-1688

CR Subject Classification (1991): D.1-3, H.2, F.3,C.2, K 4,J.1

ISSN 0302-9743
ISBN 3-540-67660-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a company in the BertelsmannSpringer publishing group.
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN 10722117 06/3142 543210

Zynga Ex. 1022, p. 2
Zynga v. IGT
IPR2022-00368

This material may be protected by Copyright law (Title 17 U.S. Code)

Distributed Asynchronous Collections:
Abstractions for Publish/Subscribe Interaction*

Patrick Th. Eugster!, Rachid Guerraoui!, and Joe Sventek?

1 Swiss Federal Institute of Technology, Lausanne
2 Agilent Laboratories Scotland, Edinburgh

Abstract. Publish/subscribe is considered one of the most important
interaction styles for the explosive market of enterprise application inte-
gration. Producers publish information on a software bus and consumers
subscribe to the information they want to receive from that bus. The
decoupling nature of the interaction between the publishers and the sub-
scribers is not only important for enterprise computing products but also
for many emerging e-commerce and telecommunication applications.

It is often claimed that object-orientation is inherently incompatible
with the publish/subscribe interaction style. This flawed argument is
due to the persistent confusion between object-orientation as a mode-
ling discipline and the specific request/reply mechanism promoted by
CORBA-like middleware systems. This paper describes object-oriented
abstractions for publish/subscribe interaction in the form of Distributed
Asynchronous Collections (DACs). DACs are general enough to capture
the commonalities of various publish/subscribe interaction styles, and
flexible enough to allow the exploitation of the differences between these
flavors.

Keywords: Abstraction, concurrency, distribution, asynchrony, publish/
subscribe, collection

1 Introduction

This paper presents Distributed Asynchronous Collections (DACSs): object-orien-
ted abstractions for expressing different publish/subscribe interaction styles and
qualities of service (QoS).

Motivation. With the emergence of wide area networks, the importance of fle-
xible, well-structured and also efficient communication mechanisms is increasing.
Basing a complex interaction between multiple hosts on individual point-to-point
communication models is a burden for the application developer and leads to
rather static and limited applications. In mobile communications furthermore, it
may not be simple for an application to spot the exact location of a component at
any moment. Also may the number of entities interested in certain information
vary throughout the entire lifetime of the system. All these constraints visualize

* This work is partially supported by Agilent Laboratories and Lombard Odier & Co.

Elisa Bertino (Ed.): ECOOP 2000, LNCS 1850, pp. 252-276, 2000. Zynga Ex. 1022 p. 3
© Springer-Verlag Berlin Heidelberg 2000 ;
Zyngav. IGT

IPR2022-00368

Distributed Asynchronous Collections 253

the demand for more flexible communication models, reflecting the dynamic na-
ture of the applications. The publish/subscribe interaction style has proven its
ability to fill this gap [22]. Indeed the decoupling of parties in time as well as
space is a key to scalability.!

Publish/Subscribe Interaction. The classical topic-based or subject-based pu-
blish/subscribe involves a static classification of the messages by introducing
group-like notions [26], and is incorporated by most industrial strength soluti-
ons, e.g., (7,32]. Publish/subscribe is frequently based on a push model, where
producers feed a software bus with information and the information is pushed
towards consumers from there. Other approaches to “messaging” furthermore
integrate pull-style mechanisms [24], i.e., consumers actively poll for new infor-
mation. The term queueing is frequently applied when referring to such pull-style
interaction. Queueing usually expresses one-for-all semantics, which means that
one single consumer will consume an information. In contrast, with push-style
interaction, an information is generally pushed to all consumers (one-for-each).
As noticed in [28], some applications need only one interaction style while others
require both. Instead of bringing all these variants to a common denominator,
much emphasis is usually put on their differences.

Object-Oriented Publish/Subscribe: Does it Make Sense? It is often claimed that
“objects” cannot really support the requirements of a publish/subscribe midd-
leware [18]. That argumentation is also commonly used by the promoters of so-
called “messaging systems”, which claim that objects do communicate through
synchronous method invocations which force the interacting parties to be both
coupled in time and in space. .

This paper makes a case against this argument by making an attempt to
unify the diverging flavors of publish/subscribe. The argument against a fu-
sion of object-orientation and the publish/subscribe communication style indeed
might apply to the current commercial practices in distributed object-oriented
computing, which are mainly based on derivatives of the remote procedure call
(DCOM [25], Java RMI [31], CORBA [23]).2 As we will convey in this paper,
decoupling publishers and subscribers can be made very practical in an object-
oriented setting, and the integration of object-oriented principles and messaging

can go further than simply wrapping a messaging system with an object-oriented
APIL.

Publish/Subscribe Abstractions. To capture the various interaction styles of
publish/subscribe, we propose an abstraction called Distributed Asynchronous
Collection (DAC). A DAC differs from a conventional collection by its distribu-
ted nature and the way objects interact with it: besides representing a collection

! Time decoupling: the interacting parties do not need to be up at the same time.
Space decoupling: the interacting parties do not need to know each other.

2 Much effort is currently made to integrate messaging into existing middleware solu-
tions, as shown by [12,24].

Zynga Ex. 1022, p. 4
Zynga v. IGT
IPR2022-00368

254 P.T. Eugster, R. Guerraoui, and J. Sventek

of objects (set, bag, queue, etc.), a DAC can be viewed as a publish/subscribe
engine of its own. In fact, when querying a DAC for objects, the client expresses
its interest in such objects. In other words, the invocation of an operation on a
DAC expresses the notion of future notifications and can be viewed as a sub-
scription. According to the terminology adopted in the observer design pattern
[9], the DAC is the subject and its client is the observer. This abstraction allows
to unify different publish/subscribe styles in a single framework, which can be
seen as an extension of a conventional collection framework. We will show in this
paper how this approach allowed us to mix push and pull models, one-for-all
and one-for-each semantics, along with different QoS.

In short, within all publish/subscribe interaction styles none is clearly better
than the others for all application purposes. In this paper we present simple
abstractions for publish/subscribe interaction, called Distributed Asynchronous
Collections. On the one hand, DACs allow to capture the different styles without
blurring their respective advantages. On the other hand, DACs unite these styles
inside a single framework.

Roadmap. The remainder of this paper is organized as follows. Section 2 recalls
the various interaction styles in distributed computing and motivates the need
for a subscription-like way of communicating. Section 3 gives an overview of the
DAC abstraction. Section 4 gives the basic DAC API, whereas Section 5 presents
some preliminary class implementations. In Section 6 we show a simple example
of programming with DACs. Section 7 discusses some performance issues of our
implementation, and Section 8 contrasts our efforts with related work. Finally
Section 9 summarizes our work and concludes the paper.

2 Publish/Subscribe: Commonalities and Variations

Before describing our DAC abstraction, we first overview the basics of pu-
blish/subscribe interaction styles. In a first step, the publish/subscribe com-
munication style is compared with more traditional interaction schemes. In a
second phase, the different existing approaches to publish/subscribe are elucida-
ted more precisely. We point out the fact that each of the different interaction
styles has proven certain advantages over others, which motivates the usefulness
of unifying them inside a framework.

2.1 Publish/Subscribe in Perspective

The publish /subscribe paradigm is a loose communication scheme for modeling
the interaction between applications in distributed systems. Unlike the classic
request/reply model or shared memory communication, publish/subscribe pro-
vides time decoupling (i.e., the interacting parties do not need to be up at the
same time) of message producers and consumers. Figure 1 shows a comparison
of the most common communication schemes: message passing (asynchronous

Zynga Ex. 1022, p. 5
Zynga v. IGT
IPR2022-00368

Distributed Asynchronous Collections 255

send) may also offer an asynchronous interaction scheme, but lacks space de-
coupling (i.e., the interacting parties need to know each other), just like the re-
quest/reply communication style. Indeed with message passing, the information
producer must have a means of locating the information consumer to which the
information will be sent, whereas with the request/reply interaction model the
message consumer requires a reference to the information producer in order to is-
sue a request to it. Publish/subscribe combines time as well as space decoupling,
since the information providers and consumers remain anonymous to each other.
This outlines the general applicability of this communication model and makes
it appealing.® Like communication based on shared memory, publish/subscribe
moreover allows to address several destinations (arity of n). Basically the pu-
blish/subscribe terminology defines two roles:

— Subscriber: A party which is interested in certain information (events, mes-
sages) subscribes to that information, signalling that it wishes to receive all
pieces of information (event notifications, messages) manifesting the speci-
fied characteristics. Leasing is a special form of subscribing, in which the
duration of the subscription is limited by a time-out.

— Publisher: A party that produces information (events, messages) becomes a
publisher.

In most applications however, participating entities incorporate both publis-
hers and subscribers, which allows a very flexible interaction. This is one of
the main differences to pure push-based systems [13], where participants are eit-
her producers or consumers and producers are supposed to be several orders of
magnitude higher in number than consumers.

Time Space Arity
Request/Reply Coupled Coupled 1
Asnynchronous Send Decoupled |Coupled 1
Shared Memory Coupled Decoupled |n
Publish/Subscribe Decoupled |Decoupled |[n

Fig. 1. Different Communication Models

2.2 Topics

The classic publish/subscribe interaction model is based on the notion of topics
or subjects, which basically resemble groups [26]. Subscribing to a topic T can
be viewed as becoming member of a group T. The topic abstraction however

3 It is possible to build closer coupled communication models on top of loose ones and
vice versa, as proposed by [34] for instance. The resulting performance in the second
case however is generally poor.

Zynga Ex. 1022, p. 6
Zynga v. IGT
IPR2022-00368

256 P.T. Eugster, R. Guerraoui, and J. Sventek

differs from the group abstraction by its more dynamic nature. While groups
are usually disjoint sets of members (e.g., group communication for replication
[3]), topics typically overlap, i.e., a participant subscribes to more than just one
topic. In order to classify the topics more easily, it is of great use to furthermore
introduce a hierarchy of topics [32]. In this model, a topic can be a derived or
more specialized topic of another one, and is therefore called subtopic. The use
of wildcards offers a more convenient way of expressing cross-topic requests.

Figure 2 shows an example of topic-based subscribing. Subscriber S;has an-
nounced its interest in both topics = and y. It is notified of events corresponding
to both topics (messages m, and m,). Subscriber S has only subscribed to topic
z, and therefore only receives messages related to that topic (message m,).

* Publish
' Subscribe
* Deliver
P Publisher
S; Subscriber

Fig. 2. Topic-Based Subscribing

2.3 Push and Pull Mixing

In the publish/subscribe model, the action of subscribing describes a sort of
registration procedure for an interested party. However, interests in events can
also be expressed through a more direct interaction. In general, we distinguish
the following ways for an interested party to interact:

— In a passive way, it can subscribe to a choice of notifications. By callbacks it
will be notified of the occurrence of events. This kind of interaction consti-
tutes the push model, since the information is pushed from the information
bus to the subscriber. This is the classic publish/subscribe approach, since
it enforces applications which are only loosely coupled in time.

— More actively, a consumer can poll for new notifications. This task may waste
resources and is not well adapted to asynchronous systems. In fact, polling
based solutions tend to be very expensive and scale poorly: polling too often
can be inefficient and polling too slowly may result in delayed responses to
critical situations [29]. This style is often called queueing, and in the context
of this paper this is the type of interaction we will refer to as pull model.

Zynga Ex. 1022, p. 7

Zynga v. IGT
IPR2022-00368

Distributed Asynchronous Collections 257

— Another yet more synchronous pull-type interaction is given by blocking pull-
style interaction. In this scenario, a consumer which tries to pull information
is blocked until a new notification is available. Just like the request/reply
model however, this variant introduces time coupling, and is therefore rarely
used in common messaging systems.

Although in general push-style interaction seems more appropriate, certain
applications may not be interested in receiving information as soon as possible,
but only at precise moments. In those situations, the pull model might be of
interest.

2.4 Delivery Semantics and Reliability Issues

In distributed systems, and in particular when considering communication mo-
dels and protocols, precise specification of the semantics of a delivery is a crucial
issue. Delivery guarantees are often limited by the behavior of deeper communi-
cation layers, down to the properties of the network itself, limiting the choice of
feasible semantics. On the other hand, different applications also may demand
for different semantics. While sometimes a high throughput is preeminent and
a low reliability degree is tolerable, some applications prioritize reliability to
throughput. For this reason most common messaging systems provide different
qualities of service, in order to meet the demands of a variety of application pur-
poses [1,32]. The delivery semantics for notifications offered by existing systems
can be roughly divided into two groups.

— Unreliable delivery. Protocols for unreliable delivery give few guarantees.
These semantics are often used for applications where the throughput is of
primary importance, but the loss of certain messages is not fatal for the
application.

— Reliable delivery. Reliable delivery means that a message will be delivered to
every subscriber despite certain failures. Usually the failure or the absence
of the subscriber itself is not considered, i.e., if the subscriber has failed,
the message might not be delivered to it and the reliability property is not
considered violated. When using persistent storage to buffer such messages
until the subscriber is back on line, a stronger guarantee is given. This is
often referred to as certified delivery [32].

3 Distributed Asynchronous Collections: Overview

This section gives an overview of our approach to publish/subscribe, by first
introducing Distributed Asynchronous Collections as key abstractions. We show
the relationship between those abstractions and the publish/subscribe communi-
cation model. In a second step, we picture more in detail how these abstractions
allow to build several different publish/subscribe variants inside a unified frame-
work. This section however should be understood as a general introduction to

4 [32] adopts the notion of delivery service.
Zynga Ex. 1022, p. 8

Zynga v. IGT
IPR2022-00368

258 P.T. Eugster, R. Guerraoui, and J. Sventek

our abstractions for publish/subscribe. The following sections will give a more
concrete view of DACs.

3.1 DACs as Object Containers

Just like any collection, a DAC is an abstraction of a container object that re-
presents a group of objects. It can be seen as a means to store, retrieve and
manipulate objects that form a natural group, like a mail folder or a file direc-
tory. Unlike a conventional collection, a DAC is a distributed collection whose
operations might be invoked from various nodes of a network. DACs differ funda-
mentally from the distributed collections described in [21] for instance, by being
asynchronous and essentially distributed, i.e., DACs can be seen as omnipresent
entities.® Participating processes act with a DAC through a local proxy, which
is viewed as a local collection and hides the distribution of the DAC. DACs are
not centralized on a single host, in order to guarantee their availability despite
certain failures.

A collection framework is a unified architecture for representing and acces-
sing collections, allowing them to be manipulated independently of their repre-
sentation. For example, both Smalltalk [14] and Java [16] contain rich collection
frameworks that reduce the programming effort by providing useful data structu-
res and algorithms together with high-performance implementations. Collection
frameworks can for instance also be found for C++ (e.g., Silicon Graphics’ STL
(30]) as additional libraries. Figure 3 shows the inheritance graph of the Java
collection framework.

3.2 The Asynchronous Flavor of DACs

Our notion of Distributed Asynchronous Collection represents more than just a
distributed collection. In fact, a synchronous invocation of a distant object can
involve a considerable latency, hardly comparable with that of a local one. In
contrast, asynchronous interaction is enforced with our collections. By calling
an operation of a DAC, one expresses an interest in future notifications. When
querying a DAC for objects of a certain kind for instance, the party interacting
with the DAC expresses its interest in such objects. Therefore, when such an ob-
ject is eventually “pushed” into the DAC, the interested party is asynchronously
notified.

There is a strong resemblance with the notion of future [4] (future type mes-
sage passing [35]), that describes a communication model in which a client que-
ries an asynchronous object for information by issuing a request to it. Instead
of blocking however, the client can pursue its processing. As soon as the reply
has been computed, the object acting as server notifies the client. Latter one
may query the result (lazy synchronization or wait-by-necessity [5]), or ignore
it. Figure 4 compares the two paradigms. When programming with DACs, the

5 The distributed collections presented in [21] are centralized collections that can be
remotely accessed through RMI.
Zynga Ex. 1022, p. 9
Zynga v. IGT
IPR2022-00368

Distributed Asynchronous Collections 259

Collection

AbstractColl|

Set

| SorledSet—I |AbstractSet|

I 1
Ilm&t—l LHahs:I I Vector] IAmyLlstI ’AbsSeqLIstl

l+ implements + extends I Interface] I Class —l IAbstract CI.I

Fig. 3. Collections in Java (Excerpt)

subscriber can be viewed as the client. The DAC incarnates a server role in
this scenario, since the publishers, which are the effective information suppliers,
remain anonymous.

By calling an operation on the DAC, the caller requests certain information.
The main difference with futures lies in the number of times that information is
supplied to the client. Within the notion of future, only a single reply is passed to
the client,® whereas with DACs, every time an information which is interesting
for the registered party is created, it will be sent to it.

3.3 Publish/Subscribe with DACs

Expressing ones interest in receiving information of a certain kind can be viewed
as subscribing to information of that kind. By viewing event notifications as
objects, a DAC can be seen as an entity representing related event notifications.
Clearly, if a collection is a set of somehow related objects, a DAC can be seen as
a set of related “events”. When considering the classical topic-based approach
to publish/subscribe, a DAC can be pictured as an extension of a conventional
collection but also as a representation for a topic. It is always possible to insert
a new element into a DAC. In the sense of publish/subscribe, inserting an object

o ABCL/1 represents an exception, in the sense that several replies may be returned
[35].
Zynga Ex. 1022, p. 10
Zynga v. IGT
IPR2022-00368

260 P.T. Eugster, R. Guerraoui, and J. Sventek

Asynchronous Invocation Publish/Subscribe with DACs

|

|

|

I
Invocation 1 I Invocation 1

Dk Q) | [%@l

1 Future I n Notifications

|

|

|

Client Asynchr. Object Subscriber DAC

E Thread

Fig. 4. DACs vs. Future

into a DAC also means to publish that object for the topic represented by the
DAC. Every DAC can thus be viewed as a publish/subscribe engine of its own.
Figure 5 shows the traditional topic-based publish/subscribe scheme. The topic
is represented by an attribute of the message, and the application has to deal
with it explicitly. Since a DAC is bound to a topic, the topic is given implicitly,
and appears only in the protocol message which is hidden from the application,
as shown in Figure 6. It encapsulates the application message.

Existing publish/subscribe frameworks introduce specialized message types,
e.g., [12]. Our approach frees the application programmer from the burden of
marshalling and unmarshalling data into and from dedicated messages. In our
context, a message can be basically of any kind of object. In Java, this is ex-
pressed by allowing any object of class java.lang.Object to be passed as a
message.”

Message m [public class Message {
public String topic;
public String content;
}
Criteria |topic of m is “/Chat/Insomnia”
Argument (String topic = "/Chat/Insomnia"
Evaluation |m.topic.equals("/Chat/Insomnia")
Deliver m

Fig. 5. “Traditional” Topic-Based Publish/Subscribe

" In order to be conveyable, a Java object should furthermore implement the
java.io.Serializable interface [15], which contains no methods.

Zynga Ex. 1022, p. 11

Zynga v. IGT
IPR2022-00368

Distributed Asynchronous Collections 261

Protocol |public class Message {
Message p | public String getTopic() {aw}
public Object getMsg() {...}

}

Message m |public class ChatMsg {...}

Criteria [topic of m is “/Chat/Insomnia”

Argument |String topic = "/Chat/Insomnia"
Evaluation |p.getTopic() .equals("/Chat/Insomnia")
Deliver m = p.getMsg()

Fig. 6. Topic-Based Publish/Subscribe with DACs

4 DAC Interfaces

The previous section introduced DACs as general abstractions for publish/sub-
scribe. This section presents the main interfaces of our DAC realization in Java.
In the context of this paper, we will limit ourselves to describing the functionali-
ties which are common to all DAC subinterfaces, in order to show their similarity
to operations on conventional centralized collections.

4.1 Topic-Based Subscribing with DACs

In our system, each topic is represented by a DAC, and is denoted by a name,
like “Chat”. A DAC constructor thus requires an argument which denotes the
name of the topic it will represent (see Section 6 for an example). Topics can
have specializations, or subtopics, and connecting to a topic requires the name
in a URL-type format. Typically, “/Chat/Insomnia” is a reference to the topic
called “Insomnia” which is a subtopic of “Chat”. The root of the hierarchy is
represented by an abstract topic (denoted by “/”). Top-level topics, which are
no specializations of already existing ones, are subtopics of the abstract root
topic only. Subscribing to a topic can trigger subscriptions for the subtopics as
well, as illustrated in Figure 8. Subscriber S; subscribes to topic “Chat” and
claims its interest in all subtopics. Hence S; does not only receive message mqy
but also message m; published for topic “/Chat/Insomnia”. In contrast, S; only
subscribes to “/Chat/Insomnia” and thus does not receive message ms, which
belongs to the supertopic. With the push model adopted in DACs, subscribing
entities must register a callback object. That callback object must implement a
specific interface, namely the Notifiable interface, shown in Figure 7. Through
a call to the contains () method, the DAC notifies the subscriber that it contains
a new notification. The second argument enables the use of the same callback
object for several topics.

Zynga Ex. 1022, p. 12
Zynga v. IGT
IPR2022-00368

262 P.T. Eugster, R. Guerraoui, and J. Sventek

public interface Notifiable {

public void contains(Object msg, String topicName);

}

Fig. 7. Interface Notifiable

@ © @ =

4 Deliver
P Publisher

S;j Subscriber

Fig. 8. Topic-Based Publish/Subscribe with DACs

4.2 DAC Methods

Figure 9 summarizes the main methods of the base DAC interface. More sophi-
sticated interfaces like the DASet all derive from this interface, but are omitted
for the sake of brevity. We roughly distinguish synchronous and asynchronous
methods.

Synchronous Methods. Since a DAC is in the first place a collection, the DAC
interface inherits from the standard java.util.Collection interface. The in-
herited methods are not denatured but adapted, and we denote them as syn-
chronous.

— get (). Similarly to a centralized collection, calling this method allows to
retrieve objects. The synchronization it introduces is however very weak,
since it returns null in the absence of unconsumed information, as explained
in Section 2. Which element will be returned depends on the nature of the
collection (see Section 5 for more details). This implements the pull model.

— contains (). A DAC is first of all a representation of a collection of elements.
This method allows to query the collection for the presence of an object. Note
that an object that is contained in a DAC belongs to the topic represented
by that DAC.

— add (). This method allows to add an object to the collection. The correspon-
ding meaning for a DAC is straightforward: it allows to publish a message
for the topic represented by that collection. An asynchronous variant of this
method could consist in advertising the eventual production of notifications.

Zynga Ex. 1022, p. 13
Zyngav. IGT
IPR2022-00368

Distributed Asynchronous Collections 263

This could furthermore be combined with the registration of a callback ob-
ject, that the DAC would poll in order to obtain new event notifications. In
the terminology adopted in [24], this is called a pullsupplier.

Asynchronous Methods. We have added several asynchronous methods to ex-
press the decoupled nature of publish/subscribe interaction specific to DACs. In
these methods, asynchrony is expressed by an additional argument, denoting a
callback object which implements the Notifiable interface. Not all operations
known from conventional collections find an analogous meaning in an asynchro-
nous distributed context, and our ongoing research in that domain might cause
minor modifications to this interface.

— contains(Notifiable n). The effect, for instance, of invoking this method
is not to check if the collection already contains an object revealing certain
characteristics, but is to manifest an interest in any such object, that should
be eventually pushed into the collection. The interested party advertises its
interest by providing a reference to an object implementing the Notifiable
interface (Figure 7), through which it will be notified of events.

— containsAll(Notifiable n). This method offers the same signature than
the previous method. The difference is that a subscription is generated for
all subtopics of the topic represented by this DAC. This reflects the situation
given in Figure 8.

— remove(Notifiable n). Likewise, by calling one of these methods, a sub-
scriber does not trigger the removal of an object already contained in the
collection, but expresses its interest in being notified whenever an object
matching its criteria is inserted in the collection, after which the object will
be removed immediately. This expresses that a message is delivered to one
single subscriber only. This is frequently called one-for-all or one-of-n [32]
in contrast to one-for-each,® implemented by the asynchronous contains ()
methods, where a message is sent to all.

— removeAll(Notifiable n). This method is similar to the previous one, ex-
cept that a subscription is generated for all subtopics of the topic represented
by this DAC.

— clear(Notifiable n). The conventional argument-less clear () method al-
lows to erase all elements from the collection, whereas this asynchronous
variant expresses the action of unsubscribing.

5 DAC Classes

The previous section focused on the interfaces, through which an application can
use DACs in order to benefit from the strength of our publish/subscribe abstrac-
tions. As depicted earlier, our framework consists of a variety of DACs spanning

® By using the formalism of [27], one could say that every Nth occurrence of an event
is notified to a subscriber, with N being the total number of subscribers, and no
event being delivered to more than one subscriber.

Zynga Ex. 1022, p. 14
Zynga v. IGT
IPR2022-00368

264 P.T. Eugster, R. Guerraoui, and J. Sventek

public interface DAC
extends java.util.Collection

public Object get();
public boolean contains(Object message) ;
public boolean add(Object message);

public boolean contains(Notifiable N);
public boolean containsAll(Notifiable N);

public boolean remove(Notifiable N);
public boolean removeAll(Notifiable N);

public void clear(Notifiable N);

Fig. 9. Interface DAC (Excerpt)

different semantics and guarantees, since different applications have different
requirements. These semantics can be seen as different QoS. While certain pro-
perties of DACs reflect in their interfaces, certain semantics do not appear in the
API. These parameters influence the classes implementing those interfaces, and
thus lead to a variety of classes implementing the same interface. This section
presents the different properties of the classes constituting our framework.

5.1 Delivery Semantics

When a producer publishes a message, it does not directly interact with sub-
scribers. To whom exactly the message will be delivered does not show in the
DAGs interface. Parts of the semantics do not come to light in the interfaces.
The underlying multicast protocols might lead to different classes implementing
the same interface. The DASet (Distributed Asynchronous Set) interface, for in-
stance, is implemented by multiple classes. The first one does not offer more
than plain unreliable delivery (DAWeakSet), whereas others guarantee reliability
(e.g., DAStrongSet). By distinguishing between unreliable and reliable DACs our
framework hierarchy is roughly split into two subtrees, as shown in Figure 10.

5.2 Duplicates

Just like it is possible to have duplicate elements in centralized collections, it is
possible in Distributed Asynchronous Collections that a same message is deli-
vered more than once. In fact, the two are closely related in our context. If a DAC
does not accept duplicates, it should not deliver any duplicates to subscribers.
Zynga Ex. 1022, p. 15
Zyngav. IGT
IPR2022-00368

Distributed Asynchronous Collections 265

The simple DAWeakBag class for instance does not prevent a notification to
be delivered more than once, whereas the DAWeakSet class gives stronger gua-
rantees by eliminating duplicate elements. This property is orthogonal to other
characteristics of our DACs. For that reason, our framework contains a variant
with and without duplicates for every other property, as shown in Figure 10.
When allowing duplicates and combining with unreliable delivery for instance,
the outcome is best-effort semantics. In return, with reliable delivery, at-least-
once semantics can be guaranteed.

DACollection
N Y Y
A
Yes Duplicates? No Yes No
DAWadtBagl lmwusm
Best-effort At-most-once g
[oaswongeg| | Daswongset|
At-least-once Exactly-once
) " Y
Explicit <Cn'reria>? Implicit
\ 4 \ 4
Yes Duplicates? No A¥es Duplicates? No
Oawrey | | oM | [oasorecow| | DaSoredow
At-least-once Exactlx-onoe At-least-once Exactly-once
FIFO FIFO Total Order Total Order

Fig. 10. DAC Framework

5.3 Storage vs. Delivery Order

Collections are often characterized by the way they store their elements. Sets or
bags for instance do not rely on a deterministic order of their elements. Conver-
sely, sequences can store their elements in an order given explicitly or implicitly
based on properties of the elements. In Distributed Asynchronous Collections
however, the notion of space is somehow replaced by the notion of time. If some
centralized collections reveal a deterministic storage order, a distributed asyn-
chronous sequence may offer a deterministic ordering in terms of order of delivery

Zynga Ex. 1022, p. 16
Zynga v. IGT
IPR2022-00368

266 P.T. Eugster, R. Guerraoui, and J. Sventek

to the subscribers. In the Java collection framework for instance, a sorted set is
a sequence which is characterized by an ordering of the elements based on their
properties. This can be seen as an implicit order. With our DACs, an implicit or-
der is a global delivery order on which the DAC itself decides. The DASortedSet
class for instance presents a total order of delivery. Inversely, a FIFO delivery
order can be seen as an explicit order: it is given by the order in which events
are notified to the DAC by a publisher.

5.4 Insertion Order

In different centralized collections, the insertion order may have an impact on
the storage order. In a queue or a stack for instance, the chronological insertion
order will drive the storage order as well as the extraction order. A position can
be given as additional argument to an insertion into a list for instance. In an
asynchronous collection however, the order of insertion corresponds to the order
of sending or publishing. It seems obvious that inserting an element at a specific
position cannot translate to delivering a message at a certain moment in time
relative to other messages, since inserting a message at the beginning of a list
would translate to sending a message before messages that have possibly already
been delivered to subscribers. Therefore there is never any explicit argument for
the order passed when “inserting” a new element into a DAC.

5.5 Extraction Order

Extracting an element from a centralized implementation corresponds to pulling
messages from a distributed asynchronous one. In the case of consumers polling
a DAC for new messages, two different policies may be applied:

— FIFO. The collection behaves like a queue by returning the first received
and undelivered message. In fact, the DAC proxy contains a buffer, in which
received messages are inserted. From there, they are delivered to the pulling
consumer in a FIFO order.

— LIFO. The collection acts like a stack and delivers the latest received mes-
sage. The principle is the same than above, except that the messages are
delivered in a LIFO order from the buffer to the consumer.

Therefore when using a pull model, the application has the choice between queues
and stacks. Any class presented in Figure 10 can be used both as stack or queue.

Messages may be volatile, which means that they may be dropped immedia-
tely after delivery. Conversely, the message could be stored in memory or even
on persistent storage. In the context of this work however, we did not deal with
message storage so far. Messages are considered volatile, and are dropped as
soon as they have been consumed. Missed messages are therefore not replayed
to late subscribers or temporarily disconnected participants.

Zynga Ex. 1022, p. 17
Zynga v. IGT
IPR2022-00368

Distributed Asynchronous Collections 267
6 Putting DACs to Work

In this section we describe a simple example application using the flexibility of
Distributed Asynchronous Collections. It shows how to implement chat sessions
based on simple DACs.

We will concentrate on two users, Alice and Tom. They are both chat addicts,
and love to chat deep into the night. Therefore they subscribe to the topic
“Insomnia” which is a subtopic of “Chat” to receive all messages from like-
minded chatters (see Figure 11). For the sake of simplicity, we will assume that
this evening Tom is missing inspiration, and therefore takes a pure subscriber
role. Alice on the other hand, is very talkative, and publishes several messages.
Figure 12 shows class ChatMsg, which represents a possible message class for this
application.

Alice Tom

* Publish
@ ' Subscribe

’ Deliver

(2) add(msg) (1) contains(...) (3) contains(msg)

/Chat/Insomnia P Publisher
S Subscriber

Fig. 11. Chatters

public class ChatMsg
implements java.io.Serializable

private String sender;

private String text;

public String getSender() { return sender; }

public String getText() { return text; }

public ChatMsg(String sender, String text) {
this.sender = sender; this.text = text; }

Fig. 12. Event Class for Chat Example

Zynga Ex. 1022, p. 18
Zynga v. IGT
IPR2022-00368

268 P.T. Eugster, R. Guerraoui, and J. Sventek

6.1 Publishing for a Topic

When making use of topic-based publish/subscribe, a topic is represented by a
DAC, as seen previously. In order to access a DAC from a process, a proxy must
be created. This requires an argument denoting the name of the topic it bears.
Except for that argument, the action of creating a proxy is indistinguishable
from creating a local collection. The DAC instance called mychat in Figure 13
henceforth allows us to access the topic “/Chat/Insomnia”. Now it is possible
to directly publish and receive messages for the topic associated to that DAC.

Creating an event notification for a topic consists in inserting a message
object into the DAC by issuing a call to the add() method (see Section 4), from
where it is accessible for any party. It is more favorable for consumers to be
notified automatically when a new message has been published, than to waste
computation time on polling activity. For that purpose, a party interested in a
topic can register as subscriber.

DASet sleeplessChatters = new DAStrongSet("/Chat/Insomnia");
String me = "Alice";

ChatMsg msg = new ChatMsg(me, "Hi everyone");
sleeplessChatters.add(msg); .

Fig. 13. Publishing a Message

6.2 Subscribing to a Topic

In order to subscribe to a topic an interested party must provide a callback object
implementing the Notifiable interface. The callback method comprises two
arguments. The first argument represents the effective message, and the second
argument represents the name of the topic the message was published for. This
provides more flexibility, since the same subscriber object can be used to receive
messages related to several topics. In the above example, a subscriber may be
interested in all ongoing chat sessions, and not only in “Insomnia”. Figure 11
shows the interactions with the DAC, and Figure 14 shows the corresponding
code that allows Tom to subscribe.

7 Implementation Issues

This section discusses the realization of our first DAC implementation, including
first performance measurements. We draw preliminary conclusions of our proto-
type, which has been developed in pure Java and relies on UDP, thus increasing
its portability.
Zynga Ex. 1022, p. 19
Zynga v. IGT
IPR2022-00368

Distributed Asynchronous Collections 269

class ChatSubscriber
implements Notifiable

{
public void contains(Object msg, String topic) {
System.out.println(((ChatMsg)msg) .getText());
}
}

DASet sleeplessChatters = new DAStrongSet("/Chat/Insomnia");
Notifiable sub = new ChatSubscriber();
sleeplessChatters.contains(sub);

Fig. 14. Topic-Based Publish/Subscribe with DACs

7.1 Inside DACs

The effective DAC class as it is perceived by the application only represents a
small portion of the underlying code. Redundant code has been avoided by a
modular design and using inheritance. Figure 15 shows the different layers in
our implementation. These layers do not necessarily correspond to Java classes,
but represent protocol layers.

(Application)
(DAC)
(Network)
(uDP)
C P)

Fig. 15. Layers

— The DAC layer. This layer is composed of the classes implementing direc-
tly the DAC interfaces. They are rather lightweight classes, which delegate
general functionality to the underlying layer. Their tasks are similar to cen-
tralized container classes. They mainly take care of the local management
of messages, and furthermore handle the subscriptions. The most frequent
interaction model is the callback model (push-model), where subscribers do
not poll for new messages but are called back upon incoming messages. In

Zynga Ex. 1022, p. 20
Zynga v. IGT
IPR2022-00368

270 P.T. Eugster, R. Guerraoui, and J. Sventek

that case the DAC applies a predefined threading model, by assigning noti-
fications to threads.

— The Network layer. The Network layer regroups common functionalities
of all DACs, like publishing messages or forwarding subscription informa-
tion. It hides any remote party involved in same topics from the DAC layer.
This layer maintains a form of network topology knowledge, which basically
consists of its immediate neighbors.

— The UDP layer. Our entire publish/subscribe architecture is finally im-
plemented on top of UDP. UDP is a non reliable protocol, which offers us
the looseness required for the decoupled nature of publish/subscribe. Java
offers classes for UDP sockets and datagrams (java.net.DatagramPacket
and DatagramSocket), which are pretty close to the metal.

7.2 Performance

The performance tests of our prototype were made on HP workstations run-
ning HP-UX 10.20 and JVM 1.1.5 and 1.1.6. on a normal working day. The
implementation uses a marshalling/unmarshalling procedure built from scratch
and optimized for each event type (the Java serialization classes were not used,
since they are usually considered rather slow). Four example message types were
considered:

— Integer. This corresponds to the basic Java int type.

— String. Java type String with a length varying between 10 and 20
DetailRecord. This is a class containing four attributes, of which two re-
present dates (Java type Date) and two are strings (Java type String).
CallDetailRecord. A subtype of DetailRecord. In addition to the attribu-
tes of the latter one, a CallDetailRecord furthermore contains four integers
and two strings.

|

In our measurement scenario, several subscribers asynchronously receive
events for a topic where a publisher produced the events. The numbers of mes-
sages considered for a single run of the experiment varied between 10 and 1000
and the measures obtained conveyed an average result after several experiments
of the same profile.

Figure 16 shows the latency when publishing. For example, a publisher needs
3s to publish 100 events of type DetailRecord. They include the time for mars-
halling each of the events and the time to put the events into the UDP socket.

Figure 17 shows the global throughput for the same scenario. It takes for
instance 5s until a subscriber has received 100 events of type DetailRecord. The
5s correspond therefore to the time spent at the publisher side and the subscriber
side of the DAC. They include the time for marshalling, remote communication
and unmarshalling.

These simple measurements allowed us to do draw several preliminary con-
clusions:

Zynga Ex. 1022, p. 21

Zyngav. IGT
IPR2022-00368

Distributed Asynchronous Collections 271

9 +
s.
7
6
5 EBN=10
4 EN=100
34 . CIN =1000
2_/
N: nb messages

1 -
04

Integers Strings CDR CDR++

Fig. 16. Latency

BN=10
EN=100
ON = 1000

N: nb messages

Integers Strings CDR CDR++

Fig. 17. Throughput

— The complexity of the event type has a heavier impact on the time it takes for
a publisher to send events then on a subscriber to receive events. This is not
surprising because in the first case, the marshalling time is more significant
(there is no inherent cost of remote communication).

— It might look surprising that integers take longer than strings. In this im-
plementation however, everything is converted to strings in the serialization
procedure.

— Finally, the overall measures confirm the very fact that nowadays, optimizing
marshalling is at least as important as optimizing remote communication.

8 Related Work

During the last years, the need for large scale event notification mechanisms
has been recognized. Much effort has therefore been invested in this domain,
and a multitude of approaches have emerged from academic as well as industrial

Zynga Ex. 1022, p. 22
Zynga v. IGT
IPR2022-00368

272 P.T. Eugster, R. Guerraoui, and J. Sventek

impulses. We present here the main characteristics of related approaches and we
compare them with our Distributed Asynchronous Collections.

8.1 Event Service Specifications

In order to integrate the publish/subscribe communication style into existing
middleware standards, specifications have been conceived by both the Object
Management Group [24] and Sun [12,2,6].

The OMG has specified a CORBA service for publish/subscribe oriented
communication, called the CORBA FEvent Service. The specification is aimed to
be general enough to not preclude sub-specifications and various implementati-
ons that would match the needs of specific applications. According to the general
service specified however, a consumer subscribes to a channel expressing thereby
an interest in receiving all the events from the channel. In other words, filtering
of events is done according to the channel names, which basically correspond
to topic names. When the consumer subscribes to the channel, it is supposed
to receive all events put in the channel. Event channels are CORBA objects
themselves, and in current implementations they are centralized components.
Therefore these engines manifest a strong sensitivity to any component failure,
which makes them unsuitable for critical applications.

The Java Messaging Service [12] is a specification from Sun. Its goal is to offer
a unified Java API around common publish/subscribe engines. Certain existing
services implement the JMS, but to our knowledge no publish/subscribe system
has been implemented with the goal to merely support the JMS API directly. Its
generic nature, required in order to conform to a maximum number of existing
systems, appears to be rather cumbersome. Applications are very aware of the
underlying messaging service, and developers must make themselves acquainted
with the APL

The Java Distributed Event Specification (2] explicitly introduces the notion
of event kind. Registration of interest indicates the kind of events that is of
interest, while a notification indicates an occurrence of that kind of event. One
can combine this notion with that of JavaSpace [8] to provide support for topic-
based publish/subscribe notification. Inspired by Linda [10], a JavaSpace is for
example a container of objects that might be shared among various suppliers
and consumers. The JavaSpace type is described by a set of operations among
which a read operation to get a copy of an object from a JavaSpace, and a notify
operation aimed at alerting some potential consumer object about the presence
of some specific object in the JavaSpace. Combined with the Java Distributed
Event interfaces, one can build a publish/subscribe communication scheme where
a JavaSpace plays the role of the event channel aimed at broadcasting events
(notifications) to a set of subscriber objects. The nature of the subscription is
however not specified and it is not clear whether one would be able to subscribe
to a particular operation.

The InfoBus 1.2 Specification [6] describes an information bus which ena-
bles dynamic data exchange between JavaBeans. Components must implement
a minimal interface in order to plug into the bus. As a member of the bus any

Zynga Ex. 1022, p. 23
Zynga v. IGT
IPR2022-00368

Distributed Asynchronous Collections 273

component can exchange data structured as arrays, tables, or database rowsets
with other components. Interestingly, adapted collection types are available for
InfoBus, which ease the transfer of collections of objects.

These standards are based on specifications and it would be interesting to see
how one could implement services that comply with these standards using DACs.
Note however that the CORBA Event Service does not present any hierarchical
arrangement of channels, and the Java Messaging Service introduces explicit
message classes which require explicit marshalling/demarshalling.

8.2 Established Systems

Most industrial strength solutions involve topic-based publish/subscribe. Smart-
sockets [7] or TIB/Rendezvous [32] are such engines.

In Smartsockets, an event channel can accept subscriptions for specific topics.
A consumer receives all the event notifications that belong to the topic to which
it has subscribed. The topic defines a kind of virtual connector between objects
of interest and recipients. If a producer is interested in producing an event on
a number of topics or channels, it has to explicitly publish the event on all of
them. Event notifications are represented by records, nevertheless custom event
types may be defined.

A similar approach was adopted in the development of the TIB /Rendezvous
infrastructure. A hierarchical naming model corresponds to the hierarchical or-
ganization of the entities of interest. Just as Uniform Resource Locators (URLs)
provide a way of locating and accessing Internet resources, a naming scheme is
provided to locate and access events of interest. The naming scheme proposed can
use wildcards, which allows to subscribe to patterns of topics. TIB/Rendezvous
provides a certain degree of fault-tolerance, and makes usage of IP-multicast.
Event notifications are composed of a set of typed data fields, including the
topic.

Most industrial systems implement API’s for object-oriented languages, like
the JMS specification for Java. These solutions however did not undergo a fun-
damentally object-oriented design, but only offer an object-oriented layer on top
of a messaging system.

8.3 Collections

Both Java and Smalltalk offer integrated collection frameworks. These only span
the most common collection types. More specific collections can be found as
external libraries. For instance, JGL [21] and the ut3l. concurrent [20] package
offer more elaborate collection types for Java.

JGL is a first approach to distributed collections in Java. It was designed
to provide a more advanced series of collections, since the Java environment by
default only offers limited support for data collections and algorithms, covering
only the main features used by the majority of Java developers. JGL extends
the basic Java collections with more refined types. The notion of distributed

Zynga Ex. 1022, p. 24
Zyngav. IGT
IPR2022-00368

274 P.T. Eugster, R. Guerraoui, and J. Sventek

collection in JGL though describes a centralized collection object, accessible
through Java RMI.

The util.concurrent package provides the application programmer with a
set of collections especially targeted at resolving concurrency problems. It con-
tains for instance collections which alleviate concurrent traversals by making
each time a copy of the array backing the collection. Another feature are syn-
chronization wrappers for standard collections, with the possibility to specify
external read and/or write locks.

In contrast to JGL, our DACs avoid any single point of failure and are es-
sentially distributed. To exploit this distribution, asynchronous interaction is
enforced. Synchronization as discussed in the context of the util.concurrent
package is an issue we do not address with our DACs, but could be the topic of
future work.

9 Concluding Remarks

It has long been argued that distribution is an implementation issue and that the
very well known metaphor of objects as “autonomous entities communicating via
message passing” can directly represent the interacting entities of a distributed
system. This approach has been conducted by the legitimate desire to provide
distribution transparency, i.e., hiding all aspects related to distribution under
traditional centralized constructs. One could then reuse, in a distributed context,
a centralized program that was designed and implemented without distribution
in mind.

As argued in [33,19,11] however, distribution transparency is a myth that
is both missleading and dangerous. Distributed interactions are inherently un-
reliable and often introduce a significant latency that is hardly comparable to
that of a local interaction. The possibility of partial failures can fundamentally
change the semantics of an invocation. High availability and masking of partial
failures involves distributed protocols that are usually expensive and hard, if not
impossible to implement in the presence of network failures (partitions).

We have been considering an alternative approach where the programmer
would be very aware of distribution but where the ugly and complicated as-
pects of distribution would be encapsulated inside specific abstractions with
a well-defined interface. This paper presents a candidate for such an abstrac-
tion: the Distributed Asynchronous Collection. It is a simple extension of the
well-known collection abstraction. DACs add an asynchronous and distributed
flavor to traditional collections [4], and enable to express various forms of pu-
blish/subscribe interaction. In fact, most systems we know about are unwieldy
and consider only a limited set of interaction models. DACs are general light-
weight publish/subscribe abstractions: they can be introduced through a library
approach and they allow to express various interaction types and QoS.

We believe that our object-oriented view of publish/subscribe is a unique
compromise between transparency and efficiency. By offering a modular design
aligned with different communication semantics, we enforce ease of use without

Zynga Ex. 1022, p. 25
Zynga v. IGT
IPR2022-00368

Distributed Asynchronous Collections 275

missing performance related issues. We are currently making use of DACs in
various practical examples, which are far more complex than the simple chat
example given in this paper. The objective of investing in several applications
is to end up with a stable framework, that would for instance extend JGL.
The issue of translating operations known from conventional collections to an
asynchronous distributed context is however not entirely completed, and certain
parts of the API might be affected by future modifications. We also explore
approaches to express content-based publish/subscribe and specific algorithms to
realize efficient matching. This is especially challenging in a mobile environment,
where nodes might be disconnected, and objects might migrate from a node to
another [17].

References

1. M. Altherr and M. Erzberger and S. Maffeis. iBus - A Software Bus Middleware for
the Java Platform. In International Workshop on Reliable Middleware Systems,
pages 43-53, October 1999.

2. K. Arnold and B. O’Sullivan and R.W. Scheifler and J. Waldo and J. Wollrath.
The Jini Specification. Addison Wesley, 1999.

3. K.P. Birman. The Process Group Approach to Reliable Distributed Computing.
In Communications of the ACM, 36:12, pages 36-53, December 1993.

4. J.-P. Briot and R. Guerraoui and K.-P. Léhr. Concurrency and Distribution in
Object-Oriented Programming. In ACM Computing Surveys, September 1998.

5. D. Caromel. Towards a Method of Object-Oriented Concurrent Programming. In
Communications of the ACM, vol. 36, pages 90-102, September 1993.

6. M. Colan. InfoBus 1.2 Specificationa. Sun Microsystems Inc., February 1999.

7. Talarian Corporation. Everything You need to know about Middleware: Mission-
Critical Interprocess Communication (White Paper). http://www.talarian.com/,
1999. :

8. E. Freeman and S. Hupfer and K. Arnold. JavaSpaces Principles, Patterns, and
Practice. Addison Wesley, 1999.

9. E. Gamma and R. Helm and R. Johnson and J. Vlissides. Design Patterns, Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

10. D. Gelernter. Generative Communication in Linda. In ACM Transactions on
Programming Languages and Systems, 7:1, pages 80-112, Januaray 1985.

11. R. Guerraoui. What object-oriented distributed programming does not have to be,
and what it may be. In Informatik, 2, April 1999.

12. M. Happner and R. Burridge and R. Sharma. Java Message Service. Sun Micro-
systems Inc., October 1998.

13. M. Hauswirth and M. Jazayeri. A Component and Communication Model for Push
Systems. In ESEC/FSE 99 - Joint 7th European Software Engineering Conference
(ESEC) and 7th ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE-7), September 1999.

14. IBM. Smalltalk Tutorial. http://www.smalltalksystems.com/references.htm/,
1995.

15. Sun Microsystems Inc. The Java Platform 1.2 API Specification.
http://java.sun.com/products/jdk/1.2/, 1999.
16. Sun Microsystems Inc. The Java Collections Framework.

http://java.sun.com/products/jdk/1.2/, 1999.

Zynga Ex. 1022, p. 26
Zynga v. IGT
IPR2022-00368

276

17.

18.

19.

20.

21.

22;

23.
24.
25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

P.T. Eugster, R. Guerraoui, and J. Sventek

E. Jul and H. Levy and N. Hutchinson and A. Black. Fine-grained mobility in the
Emerald System. In ACM Transactions on Computer Systems, 6:1, pages 109-133,
February 1988.

P. Koenig,. Messages vs. Objects for Application Integration. In Distributed
Computing, 2:3, pages 44-45, April 1999, BCI.

D. Lea Design for open systems in Java. In Second International Conference on
Coordination Models and Languages, 1997. http://gee.cs.oswego.edu/dl/coord/.

D. Lea. Overview of package util.concurrent Release 1.2.5.
http://gee.cs.oswego.edu/dl/classes/, October 1999.
ObjectSpace. JGL - Generic Collection Library.

http://www.objectspace.com/products/jgl/, 1999.

B. Oki and M. Pfluegl and A. Siegel and D. Skeen. The Information Bus - An
Architecture for Extensible Distributed Systems. In Fourteenth ACM Symposium
on Operating System Principles, pages 58-68, December 1993.

OMG. The Common Object Request Broker: Architecture and Specification. Fe-
bruary 1998.

OMG. CORBAservices: Common Object Services Specification. December 1998.
Microsoft Co. DCOM Technical Overview (White Paper), 1999.

D. Powell. Group Communications. In Communications of the ACM, 39:4, pages
50-97, April 1996.

D. Rosenblum and A. Wolf. A Design Framework for Internet-Scale Event Observa-
tion and Notification. In Sixth European Software Engineering Conference/ ACM
SIGSOFT Fifth Symposium on the Foundations of Software Engineering, Septem-
ber 1997. :

D. Schmidt and S. Vinoski. Overcoming Drawbacks in the OMG Event Service.
In SIGS C++ Report magazine, 10, June 1997.

D. Skeen. Vitria’s Publish-Subscribe Architecture: Publish-Subscribe Overview.
http://www.vitria.com, 1998.

A. Stepanov and M. Lee. The Standard Template Library. Silicon Graphics Inc.,
October 1995.

Sun Microsystems Inc. Java Remote Method Invocation - Distributed Computing
for Java (White Paper). http://java.sun.com/marketing/collateral/javarmi.html/,
1999.

TIBCO Inc. TIB/Rendezvous White Paper.
http://www.rv.tibco.com/whitepaper.html, 1999.

J. Waldo and G. Wyant and A. Wollrath and S. Kendall. A Note on Distributed
Computing. Sun Microsystems Inc., November 1994.

J. Waldo and G. Wyant and A. Wollrath and S. Kendall. Events in an RPC Based
Distributed System. Sun Microsystems Laboratories Inc., November 1995.

A. Yonezawa and E. Shibayama and T. Takada and Y. Honda. Object-Oriented
Concurrent Programming. In Modeling and Programming in an Object-Oriented
Concurrent Language ABCL/1, pages 55-89, MIT Press, 1987.

Zynga Ex. 1022, p. 27
Zynga v. IGT
IPR2022-00368

