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Direction of Arrival Estimation Using the
Parameterized Spatial Correlation Matrix

Jacek Dmochowski, Jacob Benesty, Senior Member, IEEE, and Sofiène Affes, Senior Member, IEEE

Abstract—The estimation of the direction-of-arrival (DOA) of
one or more acoustic sources is an area that has generated much
interest in recent years, with applications like automatic video
camera steering and multiparty stereophonic teleconferencing
entering the market. DOA estimation algorithms are hindered by
the effects of background noise and reverberation. Methods based
on the time-differences-of-arrival (TDOA) are commonly used
to determine the azimuth angle of arrival of an acoustic source.
TDOA-based methods compute each relative delay using only two
microphones, even though additional microphones are usually
available. This paper deals with DOA estimation based on spatial
spectral estimation, and establishes the parameterized spatial cor-
relation matrix as the framework for this class of DOA estimators.
This matrix jointly takes into account all pairs of microphones,
and is at the heart of several broadband spatial spectral estima-
tors, including steered-response power (SRP) algorithms. This
paper reviews and evaluates these broadband spatial spectral esti-
mators, comparing their performance to TDOA-based locators. In
addition, an eigenanalysis of the parameterized spatial correlation
matrix is performed and reveals that such analysis allows one to
estimate the channel attenuation from factors such as uncalibrated
microphones. This estimate generalizes the broadband minimum
variance spatial spectral estimator to more general signal models.
A DOA estimator based on the multichannel cross correlation
coefficient (MCCC) is also proposed. The performance of all
proposed algorithms is included in the evaluation. It is shown that
adding extra microphones helps combat the effects of background
noise and reverberation. Furthermore, the link between accurate
spatial spectral estimation and corresponding DOA estimation
is investigated. The application of the minimum variance and
MCCC methods to the spatial spectral estimation problem leads
to better resolution than that of the commonly used fixed-weighted
SRP spectrum. However, this increased spatial spectral resolution
does not always translate to more accurate DOA estimation.

Index Terms—Circular arrays, delay-and-sum beamforming
(DSB), direction-of-arrival (DOA) estimation, linear spatial predic-
tion, microphone arrays, multichannel cross correlation coefficient
(MCCC), spatial correlation matrix, time delay estimation.

I. INTRODUCTION

PROPAGATING signals contain much information about
the sources that emit them. Indeed, the location of a signal

source is of much interest in many applications, and there exists
a large and increasing need to locate and track sound sources.

Manuscript received September 6, 2006; revised November 8, 2006. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Hiroshi Sawada.
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For example, a signal-enhancing beamformer [1], [2] must con-
tinuously monitor the position of the desired signal source in
order to provide the desired directivity and interference sup-
pression. This paper is concerned with estimating the direc-
tion-of-arrival (DOA) of acoustic sources in the presence of sig-
nificant levels of both noise and reverberation.

The two major classes of broadband DOA estimation
techniques are those based on the time-differences-of-arrival
(TDOA) and spatial spectral estimators. The latter terminology
arises from the fact that spatial frequency corresponds to the
wavenumber vector, whose direction is that of the propagating
signal. Therefore, by looking for peaks in the spatial spectrum,
one is determining the DOAs of the dominant signal sources.

The TDOA approach is based on the relationship between
DOA and relative delays across the array. The problem of es-
timating these relative delays is termed “time delay estimation”
[3]. The generalized cross-correlation (GCC) approach of [4],
[5] is the most popular time delay estimation technique. Alter-
native methods of estimating the TDOA include phase regres-
sion [6] and linear prediction preprocessing [7]. The resulting
relative delays are then mapped to the DOA by an appropriate
inverse function that takes into account array geometry.

Even though multiple-microphone arrays are commonplace
in time delay estimation algorithms, there has not emerged a
clearly preferred way of combining the various measurements
from multiple microphones. Notice that in the TDOA approach,
the time delays are estimated using only two microphones at a
time, even though one usually has several more sensor outputs at
one’s disposal. The averaging of measurements from indepen-
dent pairs of microphones is not an optimal way of combining
the measurements, as each computed time delay is derived from
only two microphones, and thus often contains significant levels
of corrupting noise and interference. It is thus well known that
current TDOA-based DOA estimation algorithms are plagued
by the effects of both noise and especially reverberation.

To that end, Griebel and Brandstein [8] map all “realizable”
combinations of microphone-pair delays to the corresponding
source locations, and maximize simultaneously the sum (across
various microphone pairs) of cross-correlations across all pos-
sible locations. This approach is notable, as it jointly maximizes
the results of the cross-correlations between the various micro-
phone pairs.

The spatial spectral estimation problem is well defined in the
narrowband signal community. There are three major methods:
the steered conventional beamformer approach (also termed
the “Bartlett” estimate), the minimum variance estimator (also
termed the “Capon” or maximum-likelihood estimator), and
the linear spatial predictive spectral estimator. Reference [9]
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provides an excellent overview of these approaches. These
three approaches are unified in their use of the narrowband
spatial correlation matrix, as outlined in the next section.

The situation is more scattered in the broadband signal
case. Various spectral estimators have been proposed, but there
does not exist any common framework for organizing these
approaches. The steered conventional beamformer approach
applies to broadband signals. The delay-and-sum beamformer
(DSB) is steered to all possible DOAs to determine the DOA
which emits the most energy. An alternative formulation of
this approach is termed the “steered-response power” (SRP)
method, which exploits the fact that the DSB output power may
be written as a sum of cross-correlations. The computational
requirements of the SRP method are a hindrance to practical
implementation [8]. A detailed treatment of steered-beam-
former approaches to source localization is given in [10], and
the statistical optimality of the approach is shown in [11]–[13].
Krolik and Swingler develop a broadband minimum variance
estimator based on the steered conventional beamformer [14],
which may be viewed as an adaptive weighted SRP algorithm.
There have also been approaches that generalize narrowband
localization algorithms (i.e., MUSIC [15]) to broadband sig-
nals through subband processing and subsequent combining
(see [16], for example). A broadband linear spatial predictive
approach to time delay estimation is outlined in [17] and [18].
This approach, which is limited to linear array geometries,
makes use of all the channels in a joint fashion via the time
delay parameterized spatial correlation matrix.

This paper attempts to unify broadband spatial spectral esti-
mators into a single framework and compares their performance
from a DOA estimation standpoint to TDOA-based algorithms.
This unified framework is the azimuth parameterized spatial
correlation matrix, which is at the heart of all broadband spa-
tial spectral estimators.

In addition, several new ideas are presented. First, due to
the parametrization, well-known narrowband array processing
notions [19] are applied to the DOA estimation problem, gen-
eralizing these ideas to the broadband case. A DOA estimator
based on the eigenanalysis of the parameterized spatial corre-
lation matrix ensues. More importantly, it is shown that this
eigenanalysis allows one to estimate the channel attenuation
from factors such as uncalibrated microphones. The existing
minimum variance approach to broadband spatial spectral esti-
mation is reformulated in the context of a more general signal
model which accounts for such attenuation factors. Further-
more, the ideas of [17] and [18] are extended to more general
array geometries (i.e., circular) via the azimuth parameterized
spatial correlation matrix, resulting in a minimum entropy DOA
estimator.

Circular arrays (see [20]–[22], for example) offer some ad-
vantages over their linear counterparts. A circular array provides
spatial discrimination over the entire 360 azimuth range, which
is particularly important for applications that require front-to-
back signal enhancement, such as teleconferencing. Further-
more, a circular array geometry allows for more compact de-
signs. While the contents of this paper apply generally to planar
array geometries, the circular geometry is used throughout the
simulation portion.

Fig. 1. Circular array geometry.

Section II presents the signal propagation model in planar
(i.e., circular) arrays and serves as the foundation for the re-
mainder of the paper. Section III reviews the role of the tradi-
tional, nonparameterized spatial correlation matrix in narrow-
band DOA estimation, and shows how the parameterized ver-
sion of the spatial correlation matrix allows for generalization
to broadband signals. Section IV describes the existing and pro-
posed broadband spatial spectral estimators in terms of the pa-
rameterized spatial correlation matrix. Section V outlines the
simulation model employed throughout this paper and evaluates
the performance of all spatial spectral estimators and TDOA-
based methods in both reverberation- and noise-limited envi-
ronments. Concluding statements are given in Section VI.

The spatial spectral estimation approach to DOA estimation
has limitations in certain reverberant environments. If an inter-
fering signal or reflection arrives at the array with a higher en-
ergy than the direct-path signal, the DOA estimate will be false,
even though the spatial spectral estimate is accurate. Such situ-
ations arise when the source is oriented towards a reflective bar-
rier and away from the array. This problem is beyond the scope
of this paper and is not addressed herein. Rather, the focus of
this paper is on the evaluation of spatial spectral estimators in
noisy and reverberant environments and on their application to
DOA estimation.

II. SIGNAL MODEL

Assume a planar array of elements in a 2-D geom-
etry, shown in Fig. 1 (i.e., circular geometry), whose outputs
are denoted by , , where is the time index.
Denoting the azimuth angle of arrival by , propagation of the
signal from a far-field source to microphone is modeled as:

(1)

where , , are the attenuation factors due to
channel effects, is the propagation time, in samples, from the
unknown source to microphone 0, is an additive noise
signal at the th microphone, and , , is the
f 
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