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Preface 

The study and implementation of microphone arrays originated over 20 years 
ago. Thanks to the research and experimental developments pursued to the 
present day, the field has matured to the point that array-based technology 
now has immediate applicability to a number of current systems and a vast 
potential for the improvement of existing products and the creation of future 
devices. 

In putting this book together, our goal was to provide, for the first time, 
a single complete reference on microphone arrays. We invited the top re­
searchers in the field to contribute articles addressing their specific topic(s) 
of study. The reception we received from our colleagues was quite enthusi­
astic and very encouraging. There was the general consensus that a work 
of this kind was well overdue. The results provided in this collection cover 
the current state of the art in microphone array research, development, and 
technological application. 

This text is organized into four sections which roughly follow the major 
areas of microphone array research today. Parts I and II are primarily the­
oretical in nature and emphasize the use of microphone arrays for speech 
enhancement and source localization, respectively. Part III presents a num­
ber of specific applications of array-based technology. Part IV addresses some 
open questions and explores the future of the field. 

Part I concerns the problem of enhancing the speech signal acquired by 
an array of microphones. For a variety of applications, including human­
computer interaction and hands-free telephony, the goal is to allow users to 
roam unfettered in diverse environments while still providing a high quality 
speech signal and robustness against background noise, interfering sources, 
and reverberation effects. The use of microphone arrays gives one the oppor­
tunity to exploit the fact that the source of the desired speech signal and the 
noise sources are physically separated in space. Conventional array process­
ing techniques, typically developed for applications such as radar and sonar, 
were initially applied to the hands-free speech acquisition problem. However, 
the environment in which microphone arrays is used is significantly different 
from that of conventional array applications. Firstly, the desired speech signal 
has an extremely wide bandwidth relative to its center frequency, meaning 
that conventional narrowband techniques are not suitable. Secondly, there 
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is significant multipath interference caused by room reverberation. Finally, 
the speech source and noise signals may located close to the array, meaning 
that the conventional far-field assumption is typically not valid. These dif­
ferences ( amongst others) have meant that new array techniques have had 
to be formulated for microphone array applications. Chapter 1 describes the 
design of an array whose spatial response does not change appreciably over 
a wide bandwidth. Such a design ensures that the spatial filtering performed 
by the array is uniform across the entire bandwidth of the speech signal. The 
main problem with many array designs is that a very large physical array is 
required to obtain reasonable spatial resolution, especially at low frequencies. 
This problem is addressed in Chapter 2, which reviews so-called superdirec­
tive arrays. These arrays are designed to achieve spatial directivity that is 
significantly higher than a standard delay-and-sum beamformer. Chapter 3 
describes the use of a single-channel noise suppression filter on the output 
of a microphone array. The design of such a post-filter typically requires in­
formation about the correlation of the noise between different microphones. 
The spatial correlation functions for various directional microphones are in­
vestigated in Chapter 4, which also describes the use of these functions in 
adaptive noise cancellation applications. Chapter 5 reviews adaptive tech­
niques for microphone arrays, focusing on algorithms that are robust and 
perform well in real environments. Chapter 6 presents optimal spatial filter­
ing algorithms based on the generalized singular-value decomposition. These 
techniques require a large number of computations, so the chapter presents 
techniques to reduce the computational complexity and thereby permit real­
time implementation. Chapter 7 advocates a new approach that combines 
explicit modeling of the speech signal (a technique which is well-known in 
single-channel speech enhancement applications) with the spatial filtering af­
forded by multi-channel array processing. 

Part II is devoted to the source localization problem. The ability to locate 
and track one or more speech sources is an essential requirement of micro­
phone array systems. For speech enhancement applications, an accurate fix 
on the primary talker, as well as knowledge of any interfering talkers or coher­
ent noise sources, is necessary to effectively steer the array, enhancing a given 
source while simultaneously attenuating those deemed undesirable. Location 
data may be used as a guide for discriminating individual speakers in a multi­
source scenario. With this information available, it would then be possible to 
automatically focus upon and follow a given source on an extended basis. Of 
particular interest lately, is the application of the speaker location estimates 
for aiming a camera or series of cameras in a video-conferencing system. In 
this regard, the automated localization information eliminates the need for a 
human or number of human camera operators. Several existing commercial 
products apply microphone-array technology in small-room environments to 
steer a robotic camera and frame active talkers. Chapter 8 summarizes the 
various approaches which have been explored to accurately locate an individ-
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ual in a practical acoustic environment. The emphasis is on precision in the 
face of adverse conditions, with an appropriate method presented in detail. 
Chapter 9 extends the problem to the case of multiple active sources. While 
again considering realistic environments, the issue is complicated by the pres­
ence of several talkers. Chapter 10 further generalizes the source localization 
scenario to include knowledge derived from non-acoustic sensor modalities. 
In this case both audio and video signals are effectively combined to track 
the motion of a talker. 

Part III of this text details some specific applications of microphone array 
technology available today. Microphone arrays have been deployed for a vari­
ety of practical applications thus far and their utility and presence in our daily 
lives is increasing rapidly. At one extreme are large aperture arrays with tens 
to hundreds of elements designed for large rooms, distant talkers, and adverse 
acoustic conditions. Examples include the two-dimensional, harmonic array 
installed in the main auditorium of Bell Laboratories, Murray Hill and the 
512-element Huge Microphone Array (HMA) developed at Brown University. 
While these systems provide tremendous functionality in the environments 
for which they are intended, small arrays consisting of just a handful (usu­
ally 2 to 8) of microphones and encompassing only a few centimeters of space 
have become far more common and affordable. These systems are intended 
for sound capture in close-talking, low to moderate noise conditions (such 
as an individual dictating at a workstation or using a hands-free telephone 
in an automobile) and have exhibited a degree of effectiveness, especially 
when compared to their single microphone counterparts. The technology has 
developed to the point that microphone arrays are now available in off-the­
shelf consumer electronic devices available for under $150. Because of their 
growing popularity and feasibility we have chosen to focus primarily on the 
issues associated with small-aperture devices. Chapter 11 addresses the in­
corporation of multiple microphones into hearing aid devices. The ability of 
beamforming methods to reduce background noise and interference has been 
shown to dramatically improve the speech understanding of the hearing im­
paired and to increase their overall satisfaction with the device. Chapter 12 
focuses on the case of a simple two-element array combined with postfiltering 
to achieve noise and echo reduction. The performance of this configuration 
is analyzed under realistic acoustic conditions and its utility is demonstrated 
for desktop conferencing and intercom applications. Chapter 13 is concerned 
with the problem of acoustic feedback inherent in full-duplex communica­
tions involving loudspeakers and microphones. Existing single-channel echo 
cancellation methods are integrated within a beamforming context to achieve 
enhanced echo suppression. These results are applied to single- and multi­
channel conferencing scenarios. Chapter 14 explores the use of microphone 
arrays for sound capture in automobiles. The issues of noise, interference, and 
echo cancellation specifically within the car environment are addressed and a 
particularly effective approach is detailed. Chapter 15 discusses the applica-
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tion of microphone arrays to improve the performance of speech recognition 
systems in adverse conditions. Strategies for effectively coupling the acous­
tic signal enhancements afforded through beamforming with existing speech 
recognition techniques are presented. A specific adaptation of a recognizer to 
function with an array is presented. Finally, Chapter 16 presents an overview 
of the problem of separating blind mixtures of acoustic signals recorded at a 
microphone array. This represents a very new application for microphone ar­
rays, and is a technique that is fundamentally different to the spatial filtering 
approaches detailed in earlier chapters. 

In the final section of the book, Part IV presents expert summaries of 
current open problems in the field, as well as personal views of what the future 
of microphone array processing might hold. These summaries, presented in 
Chapters 17 and 18, describe both academically-oriented research problems, 
as well as industry-focused areas where microphone array research may be 
headed. 

The individual chapters that we selected for .the book were designed to 
be tutorial in nature with a specific emphasis on recent important results. 
We hope the result is a text that will be of utility to a large audience, from 
the student or practicing engineer just approaching the field to the advanced 
researcher with multi-channel signal processing experience. 

Cambridge MA, USA 
London, UK 
January 2001 

Michael Brandstein 
Darren Ward 
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Speech Enhancement 



1 Constant Directivity Beamforming 

Darren B. Ward1 , Rodney A. Kennedy2 , and Robert C. Williamson2 

1 Imperial College of Science, Technology and Medicine, London, UK 
2 The Australian National University, Canberra, Australia 

Abstract. Beamforming, or spatial filtering, is one of the simplest methods for dis­
criminating between different signals based on the physical location of the sources. 
Because speech is a very wideband signal, covering some four octaves, traditional 
narrowband beamforming techniques are inappropriate for hands-free speech ac­
quisition. One class of broadband beamformers, called constant directivity beam­
formers, aim to produce a constant spatial response over a broad frequency range. 
In this chapter we review such beamformers, and discuss implementation issues 
related to their use in microphone arrays. 

1.1 Introduction 

Beamforming is one of the simplest and most robust means of spatial filtering, 
i.e., discriminating between signals based on the physical locations of the 
signal sources [l]. In a typical microphone array environment, the desired 
speech signal originates from a talker's mouth, and is corrupted by interfering 
signals such as other talkers and room reverberation. Spatial filtering can be 
useful in such an environment, since the interfering sources generally originate 
from points in space separate from the desired talker's mouth. By exploiting 
the spatial dimension of the problem, microphone arrays attempt to obtain a 
high-quality speech signal without requiring the talker to speak directly into 
a close-talking microphone. 

In most beamforming applications two assumptions simplify the analysis: 
(i) the signals incident on the array are narrowband (the narrowband as­
sumption); and (ii) the signal sources are located far enough away from the 
array that the wavefronts impinging on the array can be modeled as plane 
waves (the farfield assumption). For many microphone array applications, the 
farfield assumption is valid. However, the narrowband assumption is never 
valid, and it is this aspect of the beamforming problem that we focus on in 
this chapter (see [2] for techniques that also lift the nearfield assumption). 

To understand the inherent problem in using a narrowband array for 
broadband signals, consider a linear array with a fixed number of elements 
separated by a fixed inter-element distance. The important dimension in mea­
suring array performance is its size in terms of operating wavelength. Thus 
for high frequency signals (having a small wavelength) a fixed array will ap­
pear large and the main beam will be narrow. However, for low frequencies 
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Fig. 1. 1. Response of a narrowband array operated over a wide bandwidth. 

(large wavelength) the same physical array appears small and the main beam 
will widen. 

This is illustrated in Fig. 1.1 which shows the beampattern of an array 
designed for 1.5 kHz, but operated over a frequency range of 300 Hz to 
3 kHz. If an interfering signal is present at, say, 60°, then ideally it should be 
attenuated completely by the array. However, because the beam is wider at 
low frequencies than at high frequencies, the interfering signal will be low-pass 
filtered rather than uniformly attenuated over its entire band. This "spectral 
tilt" results in a disturbing speech output if used for speech acquisition, 
and thus , such a narrowband array is unacceptable for speech applications. 
Another drawback of this narrowband design is that spatial aliasing is evident 
at high frequencies. 1 

To overcome this problem, one must use a beamformer that is designed 
specifically for broadband applications. In this chapter we focus on a spe­
cific class of broadband beamformers, called constant directivity beamformers 
(CDB), designed such that the spatial response is the same over a wide fre­
quency band. The response of a typical CDB is shown in Fig. 1.6 on page 15. 

There have been several techniques proposed to design a CDB. Most tech­
niques are based on the idea that at different frequencies, a different array 
should be used that has total size and inter-sensor spacing appropriate for 
that particular frequency. An example of this idea is the use of harmonically-

1 Spatial aliasing comes about if a sensor spacing wider than half a wavelength is 
used. It is analogous to temporal aliasing in discrete-time signal processing. 
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designed for 1.5 kHz, but operated over a frequency range of 300 Hz to
3 kHz. If an interfering signal is present at, say, 60°, then ideally it should be
attenuated completely by the array. However, because the beam is wider at
low frequencies than at high frequencies, the interfering signal will be low-pass
filtered rather than uniformly attenuated over its entire band. This “spectral
tilt” results in a disturbing speech output if used for speech acquisition,
and thus, such a narrowbandarray is unacceptable for speech applications.
Another drawback of this narrowband design is that spatial aliasing is evident
at high frequencies.'

To overcome this problem, one must use a beamformerthat is designed
specifically for broadband applications. In this chapter we focus on a spe-
cific class of broadband beamformers, called constant directivity beamformers
(CDB), designed such that the spatial response is the same over a widefre-
quency band. The response of a typical CDB is shownin Fig. 1.6 on page 15.

There have been several techniques proposed to design a CDB. Mosttech-
niques are based on the idea that at different frequencies, a different array
should be used that has total size and inter-sensor spacing appropriate for
that particular frequency. An example of this idea is the use of harmonically-

1 Spatial aliasing comes aboutif a sensor spacing wider than half a wavelengthis
used. It is analogous to temporal aliasing in discrete-time signal processing.
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nested subarrays, e.g., [3-5]. In this case, the array is composed of a set of 
nested equally-spaced arrays, with each subarray being designed as a nar­
rowband array. The outputs of the various subarrays are then combined by 
appropriate bandpass filtering. The idea of harmonic nesting is to reduce the 
beampattern variation to that which occurs within a single octave. This ap­
proach can be improved by using a set of subarray filters to interpolate to 
frequencies between the subarray design frequencies [6]. 

A novel approach to CDB design was proposed by Smith in [7]. Noting 
that, for a given array, the beamwidth narrows at high frequencies, Smith's 
idea was to form several beams and to steer each individual beam in such 
a way that the width of the overall multi-beam was kept constant. Thus, 
as the individual beams narrow at higher frequencies, they are progressively 
"fanned" outwards in an attempt to keep the overall beamwidth constant. 
Unless a very large number of beams are formed, at high frequencies this 
fanning will result in notches in the main beam where the progressively nar­
rower beams no longer overlap. This approach was applied to the design of 
microphone arrays in [8]. 

The first approach to CDB design that attempted to keep a constant 
beampattern over the entire spatial region (not just for the main beam) 
was presented by Doles and Benedict [9]. Using the asymptotic theory of 
unequally-spaced arrays [10,11], they derived relationships between beam­
pattern characteristics and functional requirements on sensor spacings and 
weightings. This results in a filter-and-sum array, with the sensor filters creat­
ing a space-tapered array: at each frequency the non-zero filter responses iden­
tify a subarray having total length and spacing appropriate for that frequency. 
Although this design technique results in a beampattern that is frequency­
invariant over a specified frequency band, it is not a general design technique, 
since it is based on a specific array geometry and beampattern shape. Other 
recent techniques for CDB design include [12] (based on a two-dimensional 
Fourier transform property [13] which exists for equally-spaced arrays) and 
[14] (based on a beam space implementation). 

Prompted by the work of Doles and Benedict, we derived in [15] a very 
general design method for CD B's, suitable for three-dimensional array geome­
tries. In this chapter we outline this technique, and discuss implementation 
issues specific to microphone array applications. 

Time-domain versus frequency-domain beamforming 

There are two general methods of beamforming for broadband signals: time­
domain beamforming and frequency-domain beamforming. In time-domain 
beamforming an FIR filter is used on each sensor, and the filter outputs 
summed to form the beamformer output. For an array with M sensors, each 
feeding a L tap filter, there are ML free parameters. In frequency-domain 
beamforming the signal received by each sensor is separated into narrow­
band frequency bins ( either through bandpass filtering or data segmentation 



6 Ward et al. 

and discrete Fourier transform), and the data in each frequency bin is pro­
cessed separately using narrowband techniques. For an array with M sen­
sors, with L frequency bins within the band of interest, there are again ML 
free parameters. As with most beamformers, the method that we describe in 
this chapter can be formulated in either domain. A time-domain formulation 
has previously been given in [16], and hence, we restrict our attention to 
frequency-domain processing here. 

1.2 Problem Formulation 

Consider a linear array of M = 2N + 1 sensors located at Pn, n = -N, ... , N. 
Assume that the data received at the nth sensor is separated into narrowband 
frequency bins, each of width L).J. Let the center frequency of the ith bin be 
Ji, and denote the frequencies within the bin as 

Fi = [Ji - L).J /2, Ji+ L).J /2). 

The array data received in the ith bin at time k, is given by the M-vector: 

Xi(k) = a(0, Ji)si(k) + vi(k). 

The desired source signal is represented by si(k), and the M-vector vi(k) rep­
resents the interfering noise ( consisting of reverberation and other unwanted 
noise sources). The array vector a( 0, f) represents the propagation of the 
signal source to the array, and its nth element is given by 

where c is the speed of wave propagation, and 0 is the direction to the desired 
source (measured relative to the array axis). To simplify notation we will drop 
the explicit dependence on k in the sequel. 

The beamformer output is formed by applying a weight vector to the 
received array data, giving 

Yi=wfxi, (1.1) 

where H denotes Hermitian transpose, and Wi is the M-vector of array 
weights to apply to the ith frequency bin.2 

The spatial response of the beamformer is given by 

b(0, f) = wf" a(0, J), J E Fi, (1.2) 

which defines the transfer function between a source at location 0 E [-1r, 1r) 
and the beamformer output. Also of interest is the beampattern, defined as 
the squared magnitude of the spatial response. 

2 Note that it is a notational convention to use wH rather than wT [1]. 

6 Ward et al.

and discrete Fourier transform), and the data in each frequency bin is pro-
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wherecis the speed of wave propagation, and 9 is the direction to the desired
source (measuredrelative to the array axis). To simplify notation we will drop
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The beamformer output is formed by applying a weight vector to the
received array data, giving
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The problem of designing a CDB can now be formulated as finding the 
array weights in each frequency bin such that the resulting spatial response 
remains constant over all frequency bins of interest. 

One simple (but not very illuminating) approach to solving this problem 
is to perform a least-squares optimization in each frequency bin, i.e., 

(1.3) 

where bF1(0) is the desired frequency-invariant response. Thus, in each fre­
quency bin there are M free parameters to optimize. Although this is a stan­
dard least-squares optimization problem and the required array weights are 
easily found, the solution provides very little insight into the problem. Specif­
ically, there is no suggestion of any inherent structure in the CDB, and many 
important questions are left unanswered, such as how many sensors are re­
quired, and what range of frequencies can be used. 

In an attempt to provide some insight into the problem of designing a 
CDB, we take an alternative theoretical approach in the following section, 
and then relate these theoretical results back to the problem of finding the 
required filter coefficients. As we will see, there is in fact a very strong implicit 
structure in the CDB, and exploiting this structure enables us to reduce the 
number of design parameters and find efficient implementations. 

1.3 Theoretical Solution 

It is well known that the important dimension in determining the array re­
sponse is the physical array size, measured in wavelengths. Thus, to obtain 
the same beampattern at different frequencies requires that the array size 
remains constant in terms of wavelength. Specifically, consider a linear ar­
ray with N elements located at Pn, n = l, ... , N, and assume the array 
weights are chosen to produce a desired beampattern b(0) at a frequency 
/ 1 . Then, at a frequency h, the same beampattern b(0) will be produced 
if the same array weights are used in an array with elements located at 
PnUi/ h), n = l, ... , N. In other words, the size of the array must scale di­
rectly with frequency to obtain the same beampattern.3 To obtain the same 
beampattern over a continuous range of frequencies would theoretically re­
quire a continuum of sensors. 

1.3.1 Continuous sensor 

Motivated by this interpretation, we consider the response of a theoretical 
continuous sensor. Assume that a signal x(p, f) is received at a point p on 

3 This is precisely the idea used in the harmonically-nested subarray technique. 
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continuous sensor. Assume that a signal x(p, f) is received at a point p on

° This is precisely the idea used in the harmonically-nested subarray technique.



8 Ward et al. 

the sensor at frequency f, and a weight w(p, f) is applied to the sensor at 
this point and frequency. The output of the sensor is 

y(f) = j w(p, f) x(p, f) dp, 

and the spatial response for a source at angle 0 is 

b(0, f) = J w(p, f) e-j21rfc- 1 pcos0 dp. (1.4) 

We assume that the aperture has finite support in p, and thus, the integration 
has infinite limits. 

Let u = c-1 cos 0. The response of the continuous sensor can now be 
written 

bu(u, f) = J w(p, f) e-jhfpu dp. 

Let the sensor weighting function be given by 

w(p,f) = JB(pf), (1.5) 

where B(·) is an arbitrary, absolutely-integrable, finite-support function. Sub­
stitution gives 

bu(u, f) = J f B(pf) e-i21rfpu dp. (1.6) 

With the change of variable ( = pf, and noting that d( = f dp, it is easily 
seen that the resulting spatial response is now independent of frequency, i.e., 

(1. 7) 

This is an important result, since it states that if the weighting function 
is given by (1.5), then the resulting spatial response will be independent of 
frequency. In qther words, (1.5) defines the weighting function for a CDB. It 
was shown in [15], that not only does (1.5) provide a sufficient condition, but 
it is in fact the necessary condition for a frequency-invariant spatial response. 

1.3.2 Beam-shaping function 

Equation ( 1. 7) defines a Fourier transform relationship between B ( ·) and 
bFr(·). To achieve some desired spatial response, the required function B(() 
is thus easily found by taking the inverse Fourier transform of b(u). We will 
refer to B(·) as the beam-shaping (BS) function, since it has a fundamental 
role in determining the spatial response. 
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Because of its symmetry with respect to space and frequency, the BS 
function can be interpreted as either a filter response at a certain point, 
i.e., Hp(/) = B(pf), or equivalently, as an aperture weighting function at a 
certain frequency, i.e., A1(p) = B(pf). 

We will assume that the BS function is Hermitian symmetric, i.e., B(-() = 
B*((). This implies that the resulting spatial response is real-valued. 

1.4 Practical Implementation 

Whilst we have shown theoretically that it is possible to produce a beampat­
tern that is exactly frequency-invariant using a continuous sensor, in prac­
tise we must attempt to approximate such a response using a finite array 
of discrete sensors. The problem of approximating a continuous aperture by 
a discrete array has been considered in [I 7]. One simple but effective tech­
nique is to approximate the integral in (1.6) using a Riemann sum-this is 
the approach we take here. In particular, we use trapezoidal integration to 
approximate the integral (1.6) by a summation of the form: 

N 

bFr(u) = L f B(pnf) e-j21rfpnu Lln (1.8) 
n=-N 

where Pn is the location of the nth discrete sensor, and bF1 denotes an approx­
imation of bFr· We assume that the array is Hermitian symmetric about the 
origin, so that B(-pf) = B(pf)*, and P-n = -Pn· Although the technique 
is suitable for an arbitrary array geometry, a symmetric geometry simplifies 
implementation, and ensures that the position of the array phase center does 
not vary with frequency. The length of the nth subinterval is 

Ll _ Pn+l - Pn-1 
n - 2 , (1.9) 

which we refer to as the spatial weighting term. 
Relating (1.8) to the response of a general array (1.2), we find that for a 

CDB the weight on the nth sensor in the ith frequency bin is 

(1.10) 

where, recall, Pn is the location of the sensor, and /i is the center frequency 
of the bin. 

1.4.1 Dimension-reducing parameterization 

Define the reference beam-shaping filter response as 

H(f) = B(p,ed), (1.11) 
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Because of its symmetry with respect to space and frequency, the BS
function can be interpreted as either a filter response at a certain point,
ie., H,(f) = B(pf), or equivalently, as an aperture weighting function at a
certain frequency, i.e., Ar(p) = B(pf).

We will assume that the BS function is Hermitian symmetric, i-e., B(—¢) =
B*(¢). This implies that the resulting spatial response is real-valued.

1.4 Practical Implementation

Whilst we have shown theoretically that it is possible to produce a beampat-
tern that is exactly frequency-invariant using a continuous sensor, in prac-
tise we must attempt to approximate such a response using a finite array
of discrete sensors. The problem of approximating a continuous aperture by
a discrete array has been considered in [17]. One simple but effective tech-
nique is to approximate the integral in (1.6) using a Riemann sum—this is
the approach we take here. In particular, we use trapezoidal integration to
approximate the integral (1.6) by a summation of the form:

N

blu) = So f BPnf) ePtP" An (1.8)
n=—N

where p, is the location of the nth discrete sensor, and Beet denotes an approx-
imation of b.;. We assume that the array is Hermitian symmetric about the
origin, so that B(—pf) = B(pf)*, and p_, = —pn. Although the technique
is suitable for an arbitrary array geometry, a symmetric geometry simplifies
implementation, and ensures that the position of the array phase center does
not vary with frequency. The length of the nth subinterval is

A, = HOP (1.9)
which we refer to as the spatial weighting term.

Relating (1.8) to the response of a general array (1.2), we find that for a
CDB the weight on the nth sensor in the ith frequency bin is

Win = fi An B(pnfi), (1.10)

where,recall, p,, is the location of the sensor, and f; is the center frequency
of the bin.

1.4.1 Dimension-reducing parameterization

Define the reference beam-shaping filter response as

H(f) = Bderf), (1.11)



10 Ward et al. 

where Prer is some reference location ( to be defined later). Also define the 
beam-shaping filter response of the nth sensor as 

Hn(f) = B(pnf), n = -N, ... , N. 

It immediately follows that the BS filters satisfy the following dilation prop­
erty: 

where 

Pn 
"fn=­

P«r 

(1.12) 

is the dilation factor for the nth sensor. This is an extremely important prop­
erty, since it shows that the filter responses on all sensors can be derived from 
the single filter response, H(f), and enables the following efficient implemen­
tation of the CDB. 

Let the reference BS filter response be given by its standard FIR filter 
representation: 

where fs is the sampling frequency, and h[l] is a £-vector of beam-shaping 
coefficients. From (1.12), the nth BS filter response is given by 

HnU) = L h[l] e-j2,rf/fs"fnl 

l 

= hH dn(f), (1.13) 

where dn (!) is the £-dimensional dilation vector for the nth sensor. From 
(1.10), we see that the weight to use on the nth sensor in the ith bin is 

(1.14) 

where 

(1.15) 

is a £-dimensional transformation vector. 
Equation (1.14) demonstrates the efficient parameterization afforded by 

this particular formulation of the CDB problem. Whereas the naive least­
squares approach (1.3) requkes an optimization of M parameters w; in each 
frequency bin, we find that it is really only necessary to choose L frequency­
independent BS parameters h. Changing the beampattern shape only re­
quires modification of these BS coefficients, and the implicit structure im­
posed by the transformation vectors ensures that the resulting response has 
constant directivity over the design band. 
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1.4.2 Reference beam-shaping filter 

The underlying principle of the CDB is that the size and shape of the active 
array aperture should scale directly with frequency. This frequency scaling 
operation is performed by the BS filters. In deciding the coefficients of the ref­
erence BS filter, and the location of the reference point p,.f, we must consider 
this scaling property in more detail. 

Let the chosen aperture size be Q wavelengths. Assuming the array is 
symmetric about the origin, this means that at any wavelength >., sensors 
further from the origin than Q>./2 should be inactive. In other words, the 
nth sensor should have a low-pass characteristic with a cutoff frequency of 

Qc 
fn = 2IPnl · (1.16) 

From (1.13), note that "In > l results in compression in the frequency do­
main, whereas "In < l results in frequency expansion. Since the discrete-time 
frequency response H(f) is periodic, it follows that frequency compression 
may cause aliasing; this is extremely undesirable. Aliasing can be avoided in 
one of two ways. First, choosing Pref = max IPnl ensures that "fn :S 1, Vn, thus 
avoiding aliasing altogether-however, this requires additional constraints on 
the reference BS coefficients to impose the low-pass property (1.16). Alterna­
tively, for sensors having "In > l, the weights Wi,n are set to zero for frequency 
bins Ji > f n-the reference BS weights are now potentially unconstrained. 
Of these two approaches, the second is preferable, since it removes any con­
straints on the BS coefficients. Moreover, the requirement that the sensor 
weights within certain bins are always zero does not complicate implementa­
tion. 

Assume that the frequency response of the reference BS filter is non-zero 
for all frequencies up to J./2, the Nyquist frequency; this is the most general 
case of H(f). From (1.16), it follows that a sensor with non-zero frequency 
response up to J./2 would be positioned at IPnl = Qc/ J •. Thus, for the most 
general case of H(f) the reference location is chosen as 

Qc 
Pref= Ts· (1.17) 

The reference BS coefficients can be found by using the Fourier transform 
relationship defined by (1.7). Specifically, the BS function B(() is found by 
taking the Fourier transform of the desired frequency-invariant spatial re­
sponse bF1(u). Setting f = (/Pref, B(() now defines the frequency response of 
the reference BS filter. The BS coefficient vector h is found using any stan­
dard FIR filter design technique. In practise, low-order implementations of 
the reference BS filter are generally to be preferred; this point is demonstrated 
in the following section. 
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1.4.3 Sensor placement 

The most common geometry for array processing applications is typically 
an equally-spaced array, usually with a spacing of one half-wavelength at 
the highest frequency of operation. Although such a geometry is valid for a 
CDB, less sensors are required if a logarithmically spaced array is used. In 
choosing an appropriate sensor geometry, the most important consideration 
is to ensure that at any frequency spatial aliasing is avoided. 

The idea is to start with an equally-spaced array that is used at the highest 
frequency, and then progressively add more sensors with wider spacings as 
frequency decreases ( and the wavelength increases). At any frequency f, the 
total active aperture size should be Qc/ f, and the largest spacing within the 
active array should be c/(21). These requirements are met (using the least 
number of sensors) with the following symmetric array geometry: 

C 

Pn = n 2fu' O<n< Q 
- - 2 

Q 
Pn+l = Q- l Pn, 

Q (Q - l)c 
n > 2' Pn < 2h 

P-n = -Pn· 

(1.18a) 

(1.18b) 

(1.18c) 

Note that a harmonically-nested subarray geometry is only produced if Q = 2. 

1.4.4 Summary of implementation 

1. Choose a set of L reference BS coefficients, h. 
2. Position the sensors according to (1.18a)-(1.18c). 
3. In the ith frequency bin, the weight on the nth sensor is 

where 

t· _ {fiL1ndn(fi), 
,,n - 0 

' 

h <fn 

otherwise, 

Qc 
fn = 2IPnl 

L1 _ Pn+l - Pn-1 
n - 2 

dn(Ji) = [ej211"f/f.-y,.(L-l)/2, ... ,e-j211"f/f.-y,.(L-1)/2] 

IPnl 
'Yn=­

Pref 

Qc 
Pref= Ts 
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1.4.3 Sensor placement

The most common geometry for array processing applications is typically
an equally-spaced array, usually with a spacing of one half-wavelength at
the highest frequency of operation. Although such a geometryis valid for a
CDB, less sensors are required if a logarithmically spaced array is used. In
choosing an appropriate sensor geometry, the most important consideration
is to ensure that at any frequency spatial aliasing is avoided.

Theidea is to start with an equally-spaced array that isused at the highest
frequency, and then progressively add more sensors with wider spacings as
frequency decreases (and the wavelength increases). At any frequency f, the
total active aperture size should be Qc/f, and the largest spacing within the
active array should be c/(2f). These requirements are met (using the least
number of sensors) with the following symmetric array geometry:

c Q
nah 5e7 sn<y AdPa =n Do O<n 5 (1.18a)

__Q Q (Q — De
Pati = Q-1 Pn, > os Pn < ofr (1.18b)
Don = —Pn- (1.18c)

Note that a harmonically-nested subarray geometry is only producedif Q = 2.

1.4.4 Summary of implementation

1. Choose a set of LZ reference BS coefficients, h.
2. Position the sensors according to (1.18a)—(1.18c).
3. In the ith frequency bin, the weight on the nth sensoris

H
Win = h tin,

 

where

A LFiAndn(fi,—fi< Sn
on 0, otherwise,

_ Qe
In = Fp

An = Pn+1 — Pn-1
2

d,(f:) = [eintferm (EDP, yePatFermi]
vy = al

" Dret
Qe

Pret =
fe
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1.5 Examples 

We now show an example of the COB design technique. The design was for 
a bandwidth of 300-3000 Hz (i.e., the same bandwidth as used in Fig. 1.1), 
with an aperture size of Q = 4 wavelengths. Using an FFT size of 128 resulted 
in 44 bins within the design band, with each bin having a width of 62.5 Hz. 
The sensors were positioned according to (1.18a)-(l.18c), resulting in the 
M = 25 sensor array geometry shown in Fig. 1.2. For frequencies of 1000 Hz 
and 2000 Hz, the active sensors are also indicated in this figure. 

t = 2000 Hz 

f=1000Hz 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1.5 2 2.5 
POSITION (m) 

Fig. 1.2. Array geometry used for example CDB. 

Assume we wish to design a standard sine-like response (as produced 
by a uniformly weighted array). In this case it is known that the aperture 
function should be uniform. Thus, the BS function B(·) should ideally be a 
brick-wall low-pass filter. Assume we design the BS vector h to approximate 
an ideal low-pass filter using L = IOI filter coefficients. This results in the 
BS frequency responses shown in Fig. 1.3; for each sensor in the array, the 
weight required at each frequency is plotted. Note that these responses are 
all dilations of a single response, and that each has a low-pass characteristic. 

Using these BS coefficients, the resulting spatial response of the CDB is 
shown in Fig. 1.4. Although the variation is not as great as for the narrow­
band design in Fig. 1.1, the spatial response in Fig. 1.4 is far from frequency 
invariant. Why is this? The answer lies in the fact that the BS frequency 
response has a very sharp cutoff. Consider a single sensor. At low frequencies 
the sensor is always on. As frequency increases, there will come a point where 
the sensor will suddenly turn off, and at this frequency the aperture abruptly 
changes size. This abrupt change in the active aperture causes the alp-like 
appearance of the spatial response in Fig. 1.4. 

Now, returning to the problem of designing the BS coefficients for the 
desired uniform spatial response, assume we design the BS vector h to ap-



14 Ward et al. 

w 
0 
::::, 
t--

1.2 

0.8 

z 0.6 
Cl 
< :::; 

0.4 

0.2 

0 
0 500 

\ 

Int, B Jnl•~ lnl ~ 

1000 1500 2000 2500 3000 3500 4000 
FREQUENCY (Hz) 

Fig. 1.3. Frequency responses of the weights on each sensor. 
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Fig. 1.4. Spatial response of example CDB. 

180 

proximate an ideal low-pass filter using only L = 21 filter coefficients. This 
results in the BS frequency responses shown in Fig. 1.5. In comparing this fig­
ure with Fig. 1.4, notice that the frequency responses exhibit a more gradual 
cutoff. 
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proximate an ideal low-pass filter using only Z = 21 filter coefficients. This
results in the BS frequency responses shown in Fig. 1.5. In comparingthis fig-
ure with Fig. 1.4, notice that the frequency responses exhibit a more gradual
cutoff.
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500 1000 1500 2000 2500 3000 3500 4000 
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Fig. 1.5. Frequency responses of the weights on each sensor. 

180 

FREQUENCY (Hz) ANGLE (degrees) 

Fig. 1.6. Spatial response of example CDB. 

Using these 21 BS coefficients, the resulting spatial response of the CDB is 
shown in Fig. 1.6. In this case the spatial response shows very little variation 
with frequency. This demonstrates that one should take careful consideration 
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of how well the underlying function can be approximated by the discrete 
array when choosing the required BS function. 

1.6 Conclusions 

Constant-directivity beamforming is a useful technique for spatial filtering 
in broadband signal environments in which the desired signal and the inter­
ference signals cover approximately the same bandwidth. In this chapter we 
have developed a technique for designing a CDB, and shown that there is 
an efficient parameterization and underlying structure exhibited by a CDB. 
The greatest drawback of a CDB in microphone array applications is that 
the size of the array is related to the lowest frequency of operation. Thus, 
producing an array that has a frequency-invariant spatial response down to, 
say, 300 Hz may require an array that is several meters long. In all but the 
largest rooms this is impractical. However, a constant spatial response can be 
readily achieved for mid and high frequencies ( above say 1000 Hz) using an 
array with a total size of less than a meter. For the lower frequencies, other 
methods (such as the superdirective techniques described in the following 
chapter) are probably more appropriate. 
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Abstract. This chapter gives an overview of so-called superdirective beamform­
ers, which can be derived by applying the minimum variance distortionless response 
(MVDR) principle to theoretically well-defined noise fields, as for example the dif­
fuse noise field. We show that all relevant performance measures for beamformer 
designs are functions of the coherence matrix of the noise field. Additionally, we 
present unconstrained and constrained MVDR-solutions using modified coherence 
functions. Solutions for different choices of the optimization criterion are given in­
cluding a new solution to optimize the front-to-back ratio. Finally, we present a 
comparison of superdirective beamformers to gradient microphones and an alter­
native generalized sidelobe canceler (GSC) implementation of the superdirective 
beamformer. 

2.1 Introduction 

What is "super" about a superdirective microphone array? Compared to 
the standard delay-and-sum beamformer a superdirective array achieves a 
higher directivity. Therefore, "super" -directivity indicates that summing is 
not the optimal choice for combining sensor signals, if optimal directivity is 
desired. The term directivity describes the ability of a beamformer to suppress 
noise coming from all directions without affecting a desired signal from one 
principal direction. 

A short historical overview in [6] shows that superdirectivity (or super­
gain) in connection with array processing was first mentioned in the first half 
of the last century. The solutions provided at that time were of academic 
interest only, since a lot of practical problems occurred which restricted the 
use of the theoretical work. The main reasons for failure were the self-noise 
and the gain and phase errors of the microphones. In order to overcome these 
problems a first constrained solution was published by Gilbert and Morgan 
in 1955 (15]. Early applications with slight modifications were seismic and 
sonar techniques [5]. It was not until the 90's that supergain was connected 
to microphone applications. Research in hearing aids highlighted the advan­
tages of fixed beamformers over adaptive solutions (17]. Modern designs of 
superdirective beamformers include nearfield assumptions and the possibility 
to adapt the constraining to the actual problem. 

This chapter is organized as follows: Section 2.2 introduces the measures 
to judge the different designs. In section 2.3 the optimal design will be derived 
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with respect to the given problems. Further extensions and special details are 
given in section 2.4. Concluding remarks close this chapter. 

2.2 Evaluation of Beamformers 

In order to get a better understanding of the features of the different designs 
of optimal beamformers, we first need to derive the measures to analyze their 
performance. 

z 

i noise field 

Q~ o . "'r)(k) = s(k- t 0)+ vJk) I . 

0 ~1 
------+--

M 2 o • -
1 

_,. ource 

X 

Fig. 2.1. Signal model consisting of noise field and desired source signal 

The signal model is shown in Fig. 2.1. We assume that one sample of 
the discrete input sequence x(k) at each sensor n consists of a delayed and 
attenuated version of the desired signal ais(k - rn) and a noise component 
vn(k) with arbitrary spatial statistics. 

x(k) = as(k - -r) + v(k) . (2.1) 

Since all relevant quantities and designs depend on the frequency, the follow­
ing examinations are carried out in the frequency domain without any loss 
of generality. The Fourier-transform leads to 

(2.2) 

where d is the representation of the delays and the attenuation in the fre­
quency domain which depends on the actual geometry of the array and the 
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with respect to the given problems. Further extensions and special details are
given in section 2.4. Concluding remarks close this chapter.

2.2 Evaluation of Beamformers

In order to get a better understanding of the features of the different designs
of optimal beamformers, wefirst need to derive the measures to analyze their
performance.
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Fig. 2.1. Signal model consisting of noise field and desired source signal

The signal model is shown in Fig. 2.1. We assume that one sample of
the discrete input sequence x(k) at each sensor n consists of a delayed and
attenuated version of the desired signal a;s(k — 7,) and a noise component
Un(k) with arbitrary spatial statistics.

£o(k) ags(k — 7) vo(k)
x(k) ais(k — 7) v1 (k)

. = : +

ens ® waeole ora) owath

a(k) = as(k—7)+v(k). (21)

Since all relevant quantities and designs depend on the frequency,the follow-
ing examinations are carried out in the frequency domain without any loss
of generality. The Fourier-transform leads to

X(ei@) = S(e3”)d + V(eF%), (2.2)

where d is the representation of the delays and the attenuation in the fre-
quency domain which depends on the actual geometry of the array and the
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direction of the source signal. 

dT = [ao exp( -j fho), a1 exp( -j fh1 ), · · · , aN-1 exp( -j DTN-1)] (2.3) 

Finally, the output signal 

N-1 

Yi,(ei!t) = L Wn *(ej!t)Xn(ej!t) = wH X' (2.4) 
n=O 

where Wn(ein) denotes the frequency-domain coefficients of the beamformer 
of sensor n at the frequency D and the operator H denotes a conjugated 
transposition (Hermitian operator). The inverse Fourier-transform results in 
the discrete-time output signal Yb(k). 

2.2.1 Array-Gain 

The array-gain (AG) is the measure which shows the improvement of the 
signal-to-noise ratio (SNR) between one sensor and the output of the whole 
array 1 . Therefore, 

G = SNRArray 
SNRsensor 

(2.5) 

Assuming stationary signals, the SNR of one sensor is given by the ratio of 
the power spectral densities (PSD) of the signal <Pss and the average noise 
Pva Va· 

The SNR at the output can be computed by deriving the PSD of the 
output signal 

(2.6) 

where 

<Pxx = ( 

<PxaXo <PxaX1 
<Px1Xo <Px1X1 

<PxN~1Xo <PxN:-1X1 

<PxaXN-1 ) 
<Px1XN-1 

<PxN-~xN-1 

(2.7) 

is a power spectral density matrix of the array input signals. When the desired 
signal is present only, the output is 

(2.8) 
Signal 

1 The dependence on fl is omitted for the sake of brevity and readability. 
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direction of the source signal.

d” = [ap exp(—j. 279), a1 exp(—j 271), +++ ,an—1 exp(—jQrnw-1)] . (2.3)

Finally, the output signal

N-1 .
¥5(e3) = S> Wr*(e?7)X,(e7%) = WX , (2.4)

n=0

where W,,(e/) denotes the frequency-domain coefficients of the beamformer
of sensor n at the frequency and the operator % denotes a conjugated
transposition (Hermitian operator). The inverse Fourier-transform results in
the discrete-time output signal y,(k).

2.2.1 Array-Gain

The array-gain (AG) is the measure which shows the improvement of the
signal-to-noise ratio (SNR) between one sensor and the output of the whole
array }. Therefore,

_ SNRarray
C= SNRegensor , (2.5)

Assuming stationary signals, the SNR of one sensor is given by the ratio of
the power spectral densities (PSD) of the signal 35 and the average noise
®v.Va-

The SNR at the output can be computed by deriving the PSD of the
output signal

by,y, = W9SxxW, (2.6)

where

PxyX, Oxx, --- Pxoxy_y

Pex - Bx, Xo Px, x; : PxXw on)
BXn Xo xn1X, vee xnyXw a

is a power spectral density matrix of the array input signals. When the desired
signal is present only, the output is

2

by,y, = 655 |W"d| , (2.8)
Signal

‘ The dependence on 2 is omitted for the sake of brevity and readability.
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and for the noise-only case the output is 

Pybyb I = Pva Va WHPvv w' 
Noise 

(2.9) 

where Pvv is a normalized cross power spectral density matrix of the noise2 • 

Therefore, 

G- JWHdJ2 
- WHPvvW. (2.10) 

Assuming a homogeneous noise field (2.10) can be expressed in terms of 
the coherence matrix 

I'vv = ( 

1 I'vo Vi I'vo V2 

I'Vi Vo 1 I'Vi V2 

I'vN:-1 Vo I'vN:-1 V1 I'v~-~1 V2 . _= • 

I'voVN-1) 
I'Vi VN-1 

1 

(2.11) 

where 

(2.12) 

is the coherence function [4]. 
Thus, 

JWHdJ2 
G-~--~-

- WHI'vvW · (2.13) 

This representation allows an easier examination of beamformers for different 
noise fields, since many theoretically defined noise fields can be expressed by 
their coherence function. 

2.2.2 Beampattern 

One way to evaluate beamformers is to compute the response of the array to 
a wavefront coming from a specific frequency and a specific angle, depending 
on azimuth 1./J and elevation 0 in a spherical coordinate system. Computing 
this response over all angles and frequencies leads to the spatial-temporal 
transfer function 

2 ( JWHdJ 2 
) IH(l.fJ,0)1 I = -10log10 

1 dB WHI'vv W 
Wavefront 

(2.14) 

2 The normalization factor is set to force the trace of the matrix to equal N. 
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and for the noise-only case the output is

by, y, = by yWiSyyW, (2.9)
Noise

where yy is a normalized cross power spectral density matrix of the noise?.
Therefore,

walg=Wid |WidyyWw (2.10)
Assuming a homogeneous noise field (2.10) can be expressed in terms of

the coherence matrix

1 Tvov, TVove use Von1
Ty 1 Tyive 0 Pvvy_

Tyy = 1 0 " 2 1VN-1 (2.11)

Fy1 Vo Ty -1V1 TV1 Ve ue 1

where

; @ j2Tyg vy (2%) = even) (2.12)
Py, v,, (€@) By, vin, (eF?)

is the coherence function [4].
Thus,

g = wna 2.13~ WAlyyWw 13)
This representation allows an easier examination of beamformersfor different
noise fields, since many theoretically defined noise fields can be expressed by
their coherence function.

2.2.2 Beampattern

One way to evaluate beamformers is to compute the responseof the array to
a wavefront coming from a specific frequency and a specific angle, depending
on azimuth y and elevation @ in a spherical coordinate system. Computing
this response over all angles and frequencies leads to the spatial-temporal
transfer function

wal"
WIvyy

IH(v,6)? |, = —W0lo8ro (2.14) Wavefront

? The normalization factor is set to force the trace of the matrix to equal N.
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called the farfield beampattern, which is usually displayed on a logarithmic 
scale. It can be computed by using (2.13) and the knowledge of the coherence 
function of a single wavefront with frequency fl and an angle of arrival <p, 0. 
Additionally, ls denotes the sampling frequency, c = 340 m/s the speed of 
sound, and ln m the distances between the sensors in the Cartesian coordinate 
system 

I'vn Vm I = exp(jflTnm) ' 
Wavefront 

(2.15) 

where 

Tnm = ls (lx nm sin(0) cos(<p) + ly nm sin(0) sin(ip) + lz nm cos(0)) 
C ' ' ' 

(2.16) 

Since the beampattern depends on three variables, it is not possible to 
display it in a single plot. Fortunately, line arrays aligned to the z-axis have 
a rotational symmetry and, therefore, the beampattern is independent of <p. 
Examples of beampatterns for line arrays will be shown in section 2.3. 

2.2.3 Directivity 

A common quantity to evaluate beamformers is the directivity factor, or its 
logarithmic equivalent the directivity index (DI) which describes the ability 
of the array to suppress a diffuse noise field. Therefore, we can compute the 
directivity factor by using (2.13) and inserting the coherence function of a 
diffuse noise field: 

I'v V (ej!?)I = sin(flfslnm/c) 
n m Diffuse flfslnm/c 

(2.17) 

. { ilfslnm} = sine 
C 

where sinc(x) = sin(x)/x. Thus, the DI is 

(2.18) 

Another formal definition uses the transfer function (2.14) and describes 
the ratio of the transfer function of the look-direction 00 , <po of the array to 
the spatial integration over all directions of incoming signals. 

DI(ei!?)=lOlo H(e ,<po,0o) 
( 

I j!? 1

2 
) 

glO l IT 2IT 

4n la la IH(e1n,<p,0)l 2 sin(0)dipd0 

(2.19) 
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called the farfield beampattern, which is usually displayed on a logarithmic
scale. It can be computed by using (2.13) and the knowledge of the coherence
function of a single wavefront with frequency 2 and an angle of arrival y, @.
Additionally, f, denotes the sampling frequency, c = 340 m/s the speed of
sound, and l,, , the distances between the sensors in the Cartesian coordinate
system

LY. Vin = exp(j2T m) , (2.15)Wavefront

where

™mm = fe (le,nm Sin(@) cos(y) + ly.nm sin(@) sin(y) + zn m cos(@)) .
(2.16)

Since the beampattern depends on three variables, it is not possible to
display it in a single plot. Fortunately, line arrays aligned to the z-axis have
a rotational symmetry and, therefore, the beampattern is independent of y.
Examples of beampatterns for line arrays will be shown in section 2.3.

2.2.3 Directivity

A common quantity to evaluate beamformersis the directivity factor, or its
logarithmic equivalent the directivity index (DI) which describes the ability
of the array to suppress a diffuse noise field. Therefore, we can compute the
directivity factor by using (2.13) and inserting the coherence function of a
diffuse noisefield:

_ sin (Qfslnm/c)LQ ja = 2.1VnVin (2) Diffuse Qfsluam/e (2.17)

= sinc \e\c

where sinc(#) = sin(z)/z. Thus, the DI is

wa)?
Di(e7?) = 10 logy, (2.18)

WiIyy Diffuse 
Another formal definition uses the transfer function (2.14) and describes

the ratio of the transfer function of the look-direction 09, yo of the array to
the spatial integration over all directions of incoming signals.

|H(e#?, 0,60)!”
1 T 27 :

— / [ |H(e?, 9, 8)!” sin(@)dydéAr 0 0

 

Di(e?”) = 10 logig (2.19)
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2.2.4 Front-to-Back Ratio 

In many applications no principal look-direction exists, as for example in 
video-conferences or the recording of orchestras. Therefore, the DI is not the 
best quantity to describe the behavior of the array. In such applications a 
front-to-back ratio (FBR) is a better choice, since in most cases all desired 
sources are in front of the array and all unwanted disturbances are behind 
the array [19], [11]. The formal description utilizes the beampattern again: 

(2.20) 

2.2.5 White Noise Gain 

This last quantity shows the ability of the array to suppress spatially uncor­
related noise, which can be caused by self-noise of the sensors. Inserting the 
coherence matrix for this noise field 

I'vvJ = I 
uncorr 

(2.21) 

into (2.13) results in the white noise gain: 

(2.22) 

On a logarithmic scale positive values represent an attenuation of uncorre­
lated noise, whereas negative values show an amplification. 

2.3 Design of Superdirective Beamformers 

In order to design optimal beamformers, we have to minimize the power of 
the output signal Yb(k) of the array. The output PSD is given by (2.6) and is 
a function of the input signal and the coefficients we want to determine. In 
order to avoid the trivial solution Wn = 0, the minimization is constrained 
to give an undistorted signal response in the desired look direction, i.e., 

(2.23) 

Therefore, the following constrained minimization problem has to be solved: 

min WH«PxxW subjectto WHd = 1. 
w 

(2.24) 
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Since we are only interested in the optimal suppression of the noise, and we 
assume a perfect correspondence between the direction of the desired signal 
and the look-direction of the array, only the noise PSD-matrix ~vv is used. 

The well-known solution for (2.24) is called the Minimum Variance Dis­
tortionless Response (MVDR) beamformer [6]. It is given by 

~vv-1d 
W = dH~vv-ld' (2.25) 

and can be derived by using the Lagrange-multiplier [13] or gradient compu­
tation [20], [9]. Assuming a homogeneous noise field the solution is a function 
of the coherence matrix: 

I'vv- 1d 
W = dHI'vv- 1d · (2.26) 

Equations (2.25) or (2.26) can be interpreted as a spatial decorrelation 
process followed by a matched filter for the desired signal. The normalization 
in the denominator leads to unity signal response for the look direction. 

The design procedure reduces to the choice of theoretically well-defined 
noise-fields in order to get optimal designs for different applications. Fur­
thermore, different models for the desired signal can be included, leading to 
farfield and nearfield designs. 

Examples for desired signal models are: 

• Standard farfield model for linear arrays with equidistant sensors: 

dT = [1,exp(-jDfsc-1lcos(0o)),exp(-jDfsc-12lcos(0o)), (2.27) 

··· ,exp(-jDfsc-1(N- l)lcos(0o))] 

where l is the inter-sensor spacing. 
• Nearfield design, including attenuation of the desired signal [14], [22] 

dT = [aoexp(-jwro),a1exp(-jwr1),··· ,aN-1exp(-jwTN-1)], 
(2.28) 

ai = liq - Pref II 
liq-Pill , 

liq - Pref II - llq - Pill 
C 

(2.29) 

(2.30) 

where llq - Pref II and llq - Pill denote the distance between the vector 
location of the source q and a reference sensor Pref, or the sensor Pi, 
respectively. 

More elaborate examples for exact nearfield designs can be found in [18], [23] 
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2.3.1 Delay-and-Sum Beamformer 

Although this chapter is called superdirective microphone arrays the well­
known Delay-and-Sum Beamformer (DSB) is included for comparison pur­
poses. It is an 'optimal' beamformer for optimizing the WNG. We can derive 
the coefficients from (2.26) by inserting the coherence matrix for spatial un­
correlated noise I'= I. Thus, 

(2.31) 

The WNG is optimal in this case and reaches N. All other standard shad­
ing schemes like the Dolph-Chebycheff window [10] worsen the performance 
subject to WNG. 

2.3.2 Design for spherical isotropic noise 

In order to optimize the directivity factor, which depends on the noise-field 
of a spherical isotropic noise field (diffuse), we have to solve (2.26) by using 
the coherence matrix of the diffuse noise field, given by (2.17). The resulting 
coefficients represent the classic superdirective beamformer (SDB)3 • 

Figure 2.2 shows the beampattern of a DSB and a superdirective beam­
former, both using five linear equispaced microphones (l = 5 cm) in endfire 
steering direction (00 = 1r). The x-axis represents the incoming spatial angle 
([O · · · 21r]) and they-axes represents the frequency of the signal in kHz. The 
sampling-frequency was set to 8 kHz to cover the telephone bandwidth. The 
grey-scaled image represents the attenuation of the incoming signals in dB. 

The look-direction is unmodified at all frequencies due to the linear con­
straint. Additionally, an unmodified region at higher frequencies can be seen 
caused by spatial aliasing, since our choice of the parameter does not fulfill 
the spatial sampling theorem, which is given by 

.A 
l < -

2 ' 
(2.32) 

where .A denotes the wavelength. The upper sampling frequency should there­
fore be restricted to Is = 6.8 kHz, or the distance should not exceed l = 4.25 cm. 
However, in order to show some effects we will keep these parameters in all 
experiments. 

Furthermore, the DSB is unable to suppress low frequency noise sources 
coming from any direction. In contrast, the superdirective beamformer atten­
uates very well sources coming from directions other than the look-direction 

3 In this chapter the term superdirective beamformer is used for the beamformer 
which optimizes the directivity factor, independent of the frequency or the ratio 
of the wavelength to the distance between the sensor elements. In the classic 
definition this is often restricted to the case where the wavelength is large with 
respect to the distance between sensors. 
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2.3.1 Delay-and-Sum Beamformer

Although this chapter is called superdirective microphone arrays the well-
known Delay-and-Sum Beamformer (DSB) is included for comparison pur-
poses. It is an ‘optimal’ beamformer for optimizing the WNG. Wecan derive
the coefficients from (2.26) by inserting the coherence matrix for spatial un-
correlated noise F = I. Thus,

1

W=—d. (2.31)

The WNGis optimal in this case and reaches N. All other standard shad-
ing schemes like the Dolph-Chebycheff window [10] worsen the performance
subject to WNG.

2.3.2 Design for spherical isotropic noise

In order to optimize the directivity factor, which depends on the noise-field
of a spherical isotropic noise field (diffuse), we have to solve (2.26) by using
the coherence matrix of the diffuse noise field, given by (2.17). The resulting
coefficients represent the classic superdirective beamformer (SDB)?.

Figure 2.2 shows the beampattern of a DSB and a superdirective beam-
former, both using five linear equispaced microphones (J = 5 cm) in endfire
steering direction (89 = 7). The x-axis represents the incoming spatial angle
((O---27]) and the y-axes represents the frequency of the signal in kHz. The
sampling-frequency was set to 8 kHz to cover the telephone bandwidth. The
grey-scaled image represents the attenuation of the incoming signals in dB.

The look-direction is unmodified at all frequencies due to the linear con-
straint. Additionally, an unmodified region at higher frequencies can be seen
caused by spatial aliasing, since our choice of the parameter does not fulfill
the spatial sampling theorem, which is given by

i< 3? (2.32)

where » denotes the wavelength. The upper sampling frequency should there-
fore be restricted to f, = 6.8 kHz, or the distance should not exceed | = 4.25 cm.
However, in order to show someeffects we will keep these parametersin all
experiments.

Furthermore, the DSB is unable to suppress low frequency noise sources
coming from any direction. In contrast, the superdirective beamformer atten-
uates very well sources coming from directions other than the look-direction

3 In this chapter the term superdirective beamformer is used for the beamformer
which optimizes the directivity factor, independent of the frequency or the ratio
of the wavelength to the distance between the sensor elements. In the classic
definition this is often restricted to the case where the wavelength is large with
respect to the distance between sensors.
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Fig. 2 .2. Left: beampattern of a delay-and-sum beamformer. Right: beampattern 
of an optimal array for isotropic noise (superdirective beamformer) . (l = 5 cm, 
N = 5, endfire steering direction) 

over the whole frequency range. However, at higher frequencies the superdi­
rective beamformer degrades to the DSB, since supergain can only be achieved 
if the signal wavelength is larger than two times the microphone distance. 
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Fig. 2.3. Left : Directivity index (DI) for delay-and-sum beamformer and superdi­
rective beamformer. Right : White noise gain (WNG) for delay-and-sum beamformer 
and superdirective beamformer. (l = 5 cm, N = 5, endfire steering direction) 

Figure 2.3 shows the DI on the left side and the WNG on the right side for 
the same parameters as in the previous figure. The directivity index reaches 
zero at low frequencies for the DSB ( as expected by analyzing the beam­
pattern) and N 2 for the superdirective beamformer . The proof for this limit 
in the endfire steering case can be found in [11] . At higher frequencies the 
directivity for both designs is nearly the same and it is given by N , since the 
sine{·} function tends to zero, and the noise field is uncorrelated in this case. 
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over the whole frequency range. However, at higher frequencies the superdi-
rective beamformer degrades to the DSB, since supergain can only be achieved
if the signal wavelength is larger than two times the microphone distance.
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Fig. 2.3. Left: Directivity index (DI) for delay-and-sum beamformer and superdi-
rective beamformer. Right: White noise gain (WNG) for delay-and-sum beamformer
and superdirective beamformer. (1 = 5 cm, N = 5, endfire steering direction)

Figure 2.3 shows the DI on theleft side and the WNGonthe rightside for
the same parameters as in the previous figure. The directivity index reaches
zero at low frequencies for the DSB (as expected by analyzing the beam-
pattern) and N? for the superdirective beamformer. The prooffor this limit
in the endfire steering case can be found in [11]. At higher frequencies the
directivity for both designs is nearly the same andit is given by N, since the
sine{-} function tends to zero, and the noisefield is uncorrelated in this case.
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If we now take a closer look at the WNG, we can see why this design is not 
suitable in real-world applications. Whereas the DSB suppresses uncorrelated 
noise equally at all frequencies, the SDB boosts uncorrelated noise at lower 
frequencies. 

In order to give a deeper insight into how supergain works, we will com­
pute the coefficients for an array of only two microphones. The distance is 
again 5 cm, and endfire steering is used. 
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Fig. 2.4. Coefficients of a two channel SDB, left: Magnitude, right: Phase (l = 5 
cm, N = 2, endfire steering direction) 

In Fig. 2.4 the squared magnitude and the phase of the two coefficient vec­
tors are shown. First of all, the coefficients are conjugate complex. Secondly, 
the filters force the phase between the noise components at each sensor to 
be 1r. Therefore, the correlated part of the noise will be compensated. Hence, 
the desired signal is also correlated, and therefore it is reduced as well. To 
fulfill the constraint of an undisturbed desired signal, the coefficients have 
to boost the input signals to compensate this behavior, which can be seen 
on the left side of Fig. 2.4. Therefore, uncorrelated noise will be amplified. 
At higher frequencies the correlation between the noise components vanishes 
and the beamformer degrades to the DSB. The magnitude of the coefficients 
reaches 1/2. 

In order to overcome the problem of self-noise amplification in superdirec­
tive designs, Gilbert and Morgan have proposed a method for solving (2.24) 
under a WNG constraint [15]. The method uses a small added scalar µ to 
the main diagonal of the normalized PSD or coherence matrix: 

(I'vv + µJ)- 1d 
We= -------. 

dH(I'vv + µJ- 1d 
(2.33) 

We prefer a mathematically equivalent form, which preserves the interpreta­
tion as a coherence matrix with elements smaller than one. Instead of adding 
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In Fig. 2.4 the squared magnitude and the phase of the two coefficient vec-
tors are shown.First of all, the coefficients are conjugate complex. Secondly,
the filters force the phase between the noise components at each sensor to
be 7. Therefore, the correlated part of the noise will be compensated. Hence,
the desired signal is also correlated, and therefore it is reduced as well. To
fulfill the constraint of an undisturbed desired signal, the coefficients have
to boost the input signals to compensate this behavior, which can be seen
on the left side of Fig. 2.4. Therefore, uncorrelated noise will be amplified.
At higher frequencies the correlation between the noise components vanishes
and the beamformer degrades to the DSB. The magnitudeof the coefficients
reaches 1/2.

In order to overcome the problem ofself-noise amplification in superdirec-
tive designs, Gilbert and Morgan have proposed a method for solving (2.24)
under a WNGconstraint [15]. The method uses a small added scalar ys to
the main diagonal of the normalized PSD or coherence matrix:

(vv +I) 'd
We= an(Iyy + plod (2.33)

We prefer a mathematically equivalent form, which preserves the interpreta-
tion as a coherence matrix with elements smaller than one. Instead of adding
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the scalar to the main diagonal, we divide each non-diagonal element by 1 + µ. 
Therefore, µ can be interpreted as the ratio of the sensor noise u2 to the am­
bient noise power <l>vv. For the diffuse noise field the non-diagonal elements 
are given by 

V n=pm. (2.34) 

The factor µ can vary from zero to infinity, which results in the unconstrained 
SDB or the DSB respectively. The WNG changes as a monotonic function 
between the two limits [15). Typical values for µ are in the range between 
-lOdB to -30dB. Unfortunately, there is no simple relation betweenµ and 
the resulting WNG. By using a frequency variant µ the WNG can be re­
stricted at all frequencies , but not through direct computation. 

There are two different iterative design schemes. The first one was pub­
lished by Doerbecker [9) . It is a straightforward implementation of a trial­
and-error strategy. Another iterative design method uses the scaled projection 
algorithm developed by Cox et al. for adaptive arrays [6). Instead of the es­
timated PSD-matrix, the theoretically defined coherence or PSD-matrix is 
inserted in the scaled projection algorithm. This solution was presented in 
[17]. Both algorithms result in similar coefficients and can be implemented 
easily. 
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Fig. 2.5. Left: Directivity index (DI) for different constrained designs. Right : White 
noise gain (WNG) for different constrained designs. (l = 5 cm, N = 5, endfire 
steering direction) 

Figure 2.5 depicts the effects for three fixed and one variable µ as con­
straining parameters. For the variable µ , the WNG constraint was set to 
-6 dB. The constrained design facilitates a good compromise between DI 
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the scalar to the main diagonal, we divide each non-diagonal element by 1+ p.
Therefore, js can be interpreted as the ratio of the sensor noise a? to the am-
bient noise power yy. For the diffuse noise field the non-diagonal elements
are given by

sinc { Qfslr TL \
ly... =a Vv ném. (2.34)

1+ Sev
The factor yz can vary from zero to infinity, which results in the unconstrained
SDB or the DSB respectively. The WNG changes as a monotonic function
between the two limits [15]. Typical values for y are in the range between
—10dB to —30dB. Unfortunately, there is no simple relation between yz and
the resulting WNG. By using a frequency variant js the WNG can be re-
stricted at all frequencies, but not through direct computation.

There are two different iterative design schemes. The first one was pub-
lished by Doerbecker [9]. It is a straightforward implementation of a trial-
and-error strategy. Another iterative design method uses the scaled projection
algorithm developed by Cox et al. for adaptive arrays [6]. Instead of the es-
timated PSD-matrix, the theoretically defined coherence or PSD-matrix is
inserted in the scaled projection algorithm. This solution was presented in
[17]. Both algorithmsresult in similar coefficients and can be implemented
easily.
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Fig. 2.5. Left: Directivity index (DI) for different constrained designs. Right: White
noise gain (WNG) for different constrained designs. (1 = 5 cm, N = 5, endfire
steering direction)

Figure 2.5 depicts the effects for three fixed and one variable p as con-
straining parameters. For the variable yp, the WNG constraint was set to
—6dB. The constrained design facilitates a good compromise between DI
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and WNG. A careful design can optimize such arrays for a wide range of 
applications. 

2.3.3 Design for Cylindrical Isotropic Noise 

In some applications a spherical isotropic noise field is not the best choice 
or the best approximation of a given noise-field. Another well-defined noise­
field can be used, if we reduce the three dimensions to two dimensions. We 
get a noise-field which is defined by infinite noise sources of a circle with an 
infinite radius. This kind of noise can arise if a lot of people speak in large 
rooms where the ceiling and the floor are damped well, or in the free-field 
(cocktail-party noise) 4 • The coherence between two sensors is given by [7] 

(2.35) 

where J0 ( •) is the zeroth-order Bessel function of the first kind. This leads to 
the solution of [8] as an improved design for speech enhancement for a hearing­
aid application. In order to constrain the coefficients, a similar technique as 
in (2.34) has to be carried out. 

In comparison to the design for a diffuse noise-field the differences are not 
large, but at lower frequencies a better suppression of noise sources behind 
the look direction can be observed. Elko [11] has shown that the directivity 
factor is less and its limit is 2N - 1, in contrast to N 2 in the unconstrained 
case (µ = 0). A design example will be given in the next section. 

2.3.4 Design for an Optimal Front-to-Back Ratio 

A last data-independent design tries to optimize the front-to-back ratio. In 
many applications the look direction of the desired signal cannot be pre­
determined, but in most cases the desired signal is in front of the array and 
all disturbances are at the rear, e.g. when recording an orchestra or in video­
conferences. 

Our suggestion for a different design strategy is not to use an isotropic 
noise field, but to restrict the assumed infinite noise sources to the back half 
of a circle or a sphere. 

The resulting noise-field between two sensors separated by the distance l 
can be described by an integration over an infinite number of uncorrelated 
noise sources. The resulting function in the two-dimensional case is: 

. l 10o+31r /2 
J(e1n,00 ) = - exp (jDJ8 c~ 1lcos(0)) d0. 

7r 00+1r/2 
(2.36) 

4 The origin of this cylindrical isotropic noise-field is the sonar application in shal­
low water. 
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Using numerical integration methods, inserting the resulting complex values 
in the coherence matrix and solving (2.26) , results in a new design which 
suppresses noise sources from the rear very well. 
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Fig. 2.6. Left: beampattern of a constrained superdirective beamformer. Right : 
beampattern of a constrained beamformer, designed with (2 .36). (l = 5 cm, N = 5, 
µ = 0.01, endfire steering direction) 

Figure 2.6 shows beampatterns of two constrained beamformers (µ = 
0.01). The left side is computed with optimized coefficients for a diffuse noise­
field, and the right side uses coefficients designed with the help of (2.36). 
At lower frequencies the constraining parameter is dominant and therefore, 
both designs do not perform well. From 300 Hz to 2800 Hz the new design 
suppresses all signals coming from the rear at the cost of a wider main lobe; 
this is sometimes an advantage, for example if the source is not exactly in 
endfire position. 

At higher frequencies, especially if spatial aliasing occurs, the new design 
boosts signals coming from directions near the look direction, which can cause 
some unnatural coloring of the signal and the remaining noise. Therefore, 
special care has to be taken when choosing the parameters of the new design 
scheme. 

In order to show the advantages of the new schemes, Fig. 2.7 depicts the 
DI and the FBR measure for the three different designs. At lower frequencies 
the small advantage of the cylindrical optimal design against the spherical 
design for the FBR can be seen, but the differences are very small over the 
whole frequency range. On the other hand, the behavior of the new design is 
completely different. Measuring the DI leads to much smaller values, but the 
FBR is very high, especially in the mid-frequency range. 

Interestingly, we can transform between the optimal design for cylindri­
cal isotropic noise and the new design by introducing a new variable which 
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Using numerical integration methods, inserting the resulting complex values
in the coherence matrix and solving (2.26), results in a new design which
suppresses noise sources from the rear very well.
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Fig. 2.6. Left: beampattern of a constrained superdirective beamformer. Right:
beampattern of a constrained beamformer, designed with (2.36). (J = 5 cm, N = 5,
ps = 0.01, endfire steering direction)

Figure 2.6 shows beampatterns of two constrained beamformers (u =
0.01). Theleft side is computed with optimized coefficients for a diffuse noise-
field, and the right side uses coefficients designed with the help of (2.36).
At lower frequencies the constraining parameter is dominant and therefore,
both designs do not perform well. From 300 Hz to 2800 Hz the new design
suppresses all signals coming from the rear at the cost of a wider main lobe;
this is sometimes an advantage, for example if the source is not exactly in
endfire position.

At higher frequencies, especially if spatial aliasing occurs, the new design
boosts signals coming from directions near the look direction, which can cause
some unnatural coloring of the signal and the remaining noise. Therefore,
special care has to be taken when choosing the parameters of the new design
scheme.

In order to show the advantages of the new schemes, Fig. 2.7 depicts the
DI and the FBR measurefor the three different designs. At lower frequencies
the small advantage of the cylindrical optimal design against the spherical
design for the FBR can be seen, but the differences are very small over the
whole frequency range. On the other hand, the behavior of the new designis
completely different. Measuring the DI leads to much smaller values, but the
FBRis very high, especially in the mid-frequency range.

Interestingly, we can transform between the optimal design for cylindri-
cal isotropic noise and the new design by introducing a new variable which
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Fig. 2. 7. Left: Directivity index (DI) for three optimal designs. Right: Front-to­
back ratio (FBR) for three optimal designs. (l = 5 cm, N = 5, µ = 0.01, endfire 
steering direction) 

adjusts the limits of the integral , i.e., 

1 100-0+21r 

f(ei'\0o , i5) = 2( i5) exp (jDf8 c- 1lcos(0)) d0 0 :S i5 :S 1r 
7r - 0o+o 

(2.37) 

Setting i5 = 0 corresponds to the isotropic noise case, and i5 = 1r /2 results in 
(2.36). 

2.3.5 Design for Measured Noise Fields 

So far, only data-independent designs have been considered. If a priori knowl­
edge is available, however, it should be used to improve the performance. For 
example, this information could be a prescribed direction (0 = angle) of an 
incoming noise source. Assuming the noise source is in the far field of the mi­
crophone array, the complex coherence function between two sensors is given 
by 

R {I' ( )} ( Dfscos(0)lnm) 
e xx w =cos 

n m C 
(2.38) 

I {I' ( )} . (Dfscos(0)lnm) 
m XnXm W = -Sln 

C 
(2.39) 

Inserting the complete coherence matrix in (2.26) forms a null in that direc­
tion over the whole frequency range. In order to restrict the WNG a con­
strained design is necessary. 

Furthermore, if we assume stationarity we can measure the actual noise­
field and solve the design equation which results in the MVDR solution. 
Adaptive algorithms like the constrained projection by Cox [6], or the original 
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Fig. 2.7. Left: Directivity index (DI) for three optimal designs. Right: Front-to-
back ratio (FBR) for three optimal designs. (f = 5 cm, N = 5, » = 0.01, endfire
steering direction)

adjusts the limits of the integral, i.e.,

1 69-5420 . —l .

n=Joos exp (jQfsc”'lcos(9)) dd O<d<x
(2.37)

f(er”, 60, 6) —

Setting 6 = 0 correspondsto the isotropic noise case, and 6 = 7/2 results in
(2.36).

2.3.5 Design for Measured Noise Fields

So far, only data-independent designs have been considered. If a priori knowl-
edge is available, however, it should be used to improve the performance. For
example, this information could be a prescribed direction (@ = angle) of an
incoming noise source. Assuming the noise sourceis in the farfield of the mi-
crophone array, the complex coherence function between two sensorsis given
by

Re{Tx, x,, (w)} = cos (Hache) (2.38)
Im{Tx,,x,, (w)} = —sin (Faehnn) . (2.39)

Inserting the complete coherence matrix in (2.26) forms a null in that direc-
tion over the whole frequency range. In order to restrict the WNG a con-
strained design is necessary.

Furthermore, if we assumestationarity we can measure the actual noise-
field and solve the design equation which results in the MVDRsolution.
Adaptive algorithmslike the constrained projection by Cox [6], or the original
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algorithm by Frost [13], will converge exactly to the same solution under the 
assumption of stationary noise and an infinitely small step-size. 

2.4 Extensions and Details 

After describing the main form of the MVDR beamformer and typical data­
independent designs, we will compare them to their analogue counterparts, 
the gradient microphones. Furthermore, an alternative implementation struc­
ture will be given which can reduce the computational complexity and open 
superdirective designs for future extensions. 

2.4.1 Alternative Form 

Assuming a time-aligned input signal, the optimal weights are defined differ­
ently, since the look-direction vector dis replaced by the column-vector 

1 = r1.1.--- .11r 
~ 

N 

containing only ones, and the PSD-matrix or the coherence matrix contain 
the statistical information after time alignment (see Fig. 2.8). This gives 
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Fig. 2.8. Signal model after time delay compensation 

(2.40) 

This solution of the constrained minimization problem can be decomposed 
into two orthogonal parts, following the ideas of Griffith and Jim [16]. One 
part represents the constraints only and the other part represents the uncon­
strained coefficients to minimize the output power of the noise. 
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assumption of stationary noise and an infinitely small step-size.

2.4 Extensions and Details

After describing the main form of the MVDR beamformerand typical data-
independent designs, we will compare them to their analogue counterparts,
the gradient microphones. Furthermore, an alternative implementation struc-
ture will be given which can reduce the computational complexity and open
superdirective designs for future extensions.

2.4.1 Alternative Form

Assuminga time-aligned input signal, the optimal weights are defined differ-
ently, since the look-direction vector d is replaced by the column-vector
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This solution of the constrained minimization problem can be decomposed
into two orthogonal parts, following the ideas of Griffith and Jim [16]. One
part represents the constraints only and the other part represents the uncon-
strained coefficients to minimize the output powerof the noise.
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Fig. 2.9. Schematic description of the decomposition of the optimal weight vector 
into two orthogonal parts 

The decomposed structure is depicted in Fig. 2.9. The multi-channel time­
aligned input signal X is multiplied by w 0 to fulfill the constraints. Fur­
thermore, the input signal is projected onto the noise-only subspace5 by a 
blocking matrix B. The resulting vector X B is multiplied by the optimal 
vector H and then subtracted from the output of the upper part of the struc­
ture to get the noise-reduced output signal Z. Several authors have shown 
the equivalence between this structure and the standard beamformer [16], 
[3], [12], if 

1 
W 0 =-l 

N' 

which represents a delay-and-sum beamformer. Additionally, B has to fulfill 
the following properties: 

• The size of the matrix is (N - 1) x N 
• The sum of all values in one row is zero 
• The matrix has to be of rank N-1. 

An example for N = 4 is given by 

[
11 -1-1] 

B = 1 -1 -1 1 
1 -1 1 -1 

(2.41) 

Another well-known example is the original Griffith-Jim matrix which sub­
tracts two adjacent channels only: 

B = (~ ~I ~I ~ ... ~ ) . 

0 · · · 0 0 1 -1 

The last step to achieve a solution equivalent to (2.25) is the computation 
of the optimal filter H. A closer look at Fig. 2.9 shows that Yt, xn and Z 
describe exactly the problem of a multiple input noise canceler, described by 

5 Which means that the desired signal is spatially filtered out (blocked). 
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into two orthogonal parts

The decomposedstructure is depicted in Fig. 2.9. The multi-channel time-
aligned input signal X is multiplied by W© tofulfill the constraints. Fur-
thermore, the input signal is projected onto the noise-only subspace’ by a
blocking matrix B. The resulting vector X” is multiplied by the optimal
vector H and then subtracted from the output of the upper part of the struc-
ture to get the noise-reduced output signal Z. Several authors have shown
the equivalence between this structure and the standard beamformer [16],
(3), [12], if

which represents a delay-and-sum beamformer. Additionally, B has to fulfill
the following properties:

e Thesize of the matrix is (V—-—1)x N
e The sum of all values in one row is zero
e The matrix has to be of rank N-1.

An example for N = 4 is given by

1 1-1-1

B=|1-1-11 (2.41)
1-1 1-1

Another well-known example is the original Griffith-Jim matrix which sub-
tracts two adjacent channels only:

1-10 0-:-- 0

01-10-:- 0

B=]... ..

0--- 0 0 1 -1

Thelast step to achieve a solution equivalent to (2.25) is the computation
of the optimal filter H. A closer look at Fig. 2.9 shows that Y>, X? and Z
describe exactly the problem of a multiple input noise canceler, described by

5 Which means that the desired signal is spatially filtered out (blocked).
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Widrow and Stearns [24]. Therefore, this structure is called the generalized 
sidelobe canceler (GSC), if an adaptive implementation is used. The non­
adaptive multi-channel Wiener solution of this problem can be found in [21] 

(2.42) 

where <P x Bx B denotes the PSD-matrix of all signals after the matrix B, and 
<PxBy1 is the cross-PSD vector between the fixed beamformer output and 
the output signals X B. Additionally, the coefficient vector can be computed 
as a function of the input PSD-matrix: 

(2.43) 

If we now assume a homogeneous noise field, the PSD-matrix can be replaced 
by the coherence matrix of the delay-compensated noise field to compute the 
optimal coefficients: 

(2.44) 

Therefore, all designs presented in section 2.3 can be implemented by using 
the GSC-structure. However, why should we do that? First of all, the new 
structure needs one filter less than the direct implementation. Using the first 
blocking matrix (2.41) further reduces the number of filters [1]. Secondly, a 
DSB output is available which can be used for future extensions. Thirdly, the 
new structure allows us to combine superdirective beamformers with adap­
tive post-filters for further noise reduction [2], and the new structure gives a 
deeper insight into MVDR-beamforming. For example, we can see that opti­
mal beamforming is an averaging process combined with noise compensation. 

2.4.2 Comparison with Gradient Microphones 

Other devices with superdirectional characteristics are optimized gradient 
microphones [11]. In Fig. 2.10 a typical structure of a first order gradient 
microphone and its technical equivalent ( composed of two omni-directional 
microphones) is shown. 

The acoustic delay between the two open parts of the microphone can be 
realized by placing the diaphragm not exactly in the middle, or by using a 
material with a slower speed of sound. 

The output of such systems is given by 

E(w, 0) = P0 (1 - exp(-jw[T + c-1z cos(0)])) , (2.45) 

where T is the acoustic delay and P0 denotes the amplitude of the source 
signal. If we now assume a small spacing with respect to the wavelength, an 
approximate solution can be derived: 

E(w, 0) :=;:j P0w( T + c-1 l cos(0)) . (2.46) 
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Fig. 2.10. Schematic description of a first order gradient microphone 

A proper choice of T leads to the different superdirective designs, called car­
dioid, supercardioid and hypercardioid. For example, the beampattern for a 
hypercardioid first order gradient microphone shows its zeros at ~ ± 109°. 
This type of microphone is designed to optimize the directivity factor and 
therefore, it represents the analogue equivalent of a two-sensor superdirective 
array. For a deeper insight and a complete review of higher order gradient 
microphones see [11]. 

At lower frequencies the two systems react more or less equally. The ad­
vantages of the analogue system are the smaller size of the device, and that 
no analogue-to-digital conversion is necessary. The advantages of the digital 
array technique are its flexibility, the easy scaling for many microphones, and 
the possible extensions with post-filters or other adaptive techniques. 

At higher frequencies, if the assumption of small spacing is not valid any­
more, the differences become visible. Through careful manufacturing these 
frequencies are much higher than the covered bandwidth. However, at some 
high frequencies the analogue microphone cancels the desired signal com­
pletely. On the other hand the array system reacts like a DSB at these fre­
quencies, and no cancellation occurs. 

2.5 Conclusion 

Designing a so-called superdirective array or an optimal array for theoret­
ically well-defined noise fields can be reduced to solving a single equation. 
Even nearfield assumptions and measured noise fields can be easily included. 
We have shown that the spatial characteristic, described by the coherence 
function, plays a key role in designing arrays. Most of the evaluation tools 
like the beampattern or the directivity index are directly connected to the 
coherence function. Beamformer designs with optimized directivity or higher 
front-to-back ratio also use the coherence. 

One of the new aspects included in this chapter was a new noise model 
to improve the front-to-back ratio. Furthermore, we emphasized the close 
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A proper choice of 7 leads to the different superdirective designs, called car-
dioid, supercardioid and hypercardioid. For example, the beampattern for a
hypercardioid first order gradient microphone showsits zeros at ~ +109°.
This type of microphone is designed to optimize the directivity factor and
therefore, it represents the analogue equivalent of a two-sensor superdirective
array. For a deeper insight and a complete review of higher order gradient
microphonessee [11].

At lower frequencies the two systems react more or less equally. The ad-
vantages of the analogue system are the smaller size of the device, and that
no analogue-to-digital conversion is necessary. The advantages of the digital
array techniqueareits flexibility, the easy scaling for many microphones, and
the possible extensions with post-filters or other adaptive techniques.

At higher frequencies, if the assumption of small spacing is not valid any-
more, the differences become visible. Through careful manufacturing these
frequencies are much higher than the covered bandwidth. However, at some
high frequencies the analogue microphone cancels the desired signal com-
pletely. On the other hand the array system reacts like a DSB at these fre-
quencies, and no cancellation occurs.

2.5 Conclusion

Designing a so-called superdirective array or an optimal array for theoret-
ically well-defined noise fields can be reduced to solving a single equation.
Even nearfield assumptions and measured noisefields can be easily included.
We have shown that the spatial characteristic, described by the coherence
function, plays a key role in designing arrays. Most of the evaluation tools
like the beampattern or the directivity index are directly connected to the
coherence function. Beamformer designs with optimized directivity or higher
front-to-back ratio also use the coherence.

One of the new aspects included in this chapter was a new noise model
to improve the front-to-back ratio. Furthermore, we emphasized the close
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relationship between superdirective arrays and adaptive beamformers and 
their well-known implementation as a generalized sidelobe canceler. 
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Abstract. In the context of microphone arrays, the term post-filtering denotes the 
post-processing of the array output by a single-channel noise suppression filter. A 
theoretical analysis shows that Wiener post-filtering of the output of an optimum 
distortionless beamformer provides a minimum mean squared error solution. We 
examine published methods for post-filter estimation and develop a new algorithm. 
A simulation system is presented to compare the performance of the discussed 
algorithms. 

3.1 Introduction 

What can be gained by additional post-filtering if the Minimum Variance 
Distortionless Response (MVDR) beamformer already provides the optimum 
solution for a given sound field? 

Assuming that signal and noise are mutually uncorrelated the MVDR 
beamformer minimizes the noise power (or variance) subject to the constraint 
of a distortionless look direction response. The solution can be shown to be 
optimum in the Maximum Likelihood (ML) sense and produces the best pos­
sible Signal to Noise Ratio (SNR) for a narrowband input [1]. However, it 
does not maximize the SNR for a broadband input such as speech. Further­
more, the MVDR beamformer does not provide a broadband Minimum Mean 
Squared Error (MMSE) solution. The best possible linear filter in the MMSE 
sense is the multi-channel Wiener filter. As shown below the broadband multi­
channel MMSE solution can be factorized into a MVDR beamformer followed 
by a single-channel Wiener post-filter. The multi-channel Wiener filter gen­
erally produces a higher output SNR than the MVDR filter. Therefore, addi­
tional post-filtering can significantly improve the SNR, which motivates this 
chapter. 

The squared error minimized by the single-channel Wiener filter is the 
sum of residual noise and signal distortion components at the output of the 
filter. As a result, linear distortion of the desired signal cannot be avoided en­
tirely if Wiener filtering is used. Additional Wiener filtering is advantageous 
in practice, however, because signal distortions can be masked by residual 
noise and a compromise between signal distortion and noise suppression can 
be found. Using MVDR beamforming alone often does not provide sufficient 
noise reduction due to its limited ability to reduce diffuse noise and rever­
beration. 
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The first concept of an electronic multi-microphone device to suppress 
diffuse reverberation was proposed by Danilenko in 1968 [2]. His research 
was motivated by Bekesy's [3] observation that human listeners are able to 
suppress reverberation if sounds are presented binaurally. In Danilenko's re­
verberation suppressor a main microphone signal is multiplied by a broad­
band gain factor that is equal to the ratio of short-time cross-correlation and 
energy measurements. Two auxiliary microphones were used to measure cor­
relation and energy. Danilenko already noted that such a system would also 
suppress incoherent acoustic noise. However, the proposed analog, electronic 
tube version of this system was not realized at that time. Another proposal 
in [2] was to evaluate squared sum and differences of two microphone signals, 
an idea that later was developed independently by Gierl and others in the 
context of digital multi-channel spectral subtraction algorithms [4], [5], [6], 
[7], [8]. 

According to Danilenko, his correlation-based concept was first realized 
during Blauert's stay at Bell Labs. In [9], Allen et al. presented a digital, 
two-microphone algorithm for dereverberation based on short-term Fourier­
Transform and the overlap-add method. In 1984, Kaneda and Tohyama ex­
tended the application of the correlation based post-filters to noise reduction 
[10]. The first multi-microphone solution was published by Zelinski [11], [12]. 
Simmer and Wasiljeff showed that Zelinski's approach does not provide an op­
timum solution in the Wiener sense if the noise is spatially uncorrelated, and 
developed a slightly modified version [13]. A deeper analysis of the Zelinski 
and the Simmer post-filter can be found in [14], [15]. 

In the last decade, several new combinations and extensions of the post­
filter approach were published. Le-Bouquin and Faucon used the coherence 
function as a post-filter [16], [17] and extended their system by a coherence 
subtraction method to overcome the problem of insufficient noise reduction at 
low frequencies [18], [19]. The problem of time delay estimation and further 
improvement of the estimation of the transfer function was independently 
addressed by Kuczynski et al. [20], [21] and Drews et al. [22], [23]. Fischer 
and Simmer gave a first solution by associating a post-filter and a generalized 
sidelobe canceler (GSC) to improve the noise reduction in case the noise field 
is dominated by coherent sources [24], [25]. Another system for the same task 
was introduced by Hussain et al. [26] and was based on switching between al­
gorithms. The same strategy of switching between different algorithms, where 
the decision is based on the coherence between the sensors, can be found in 
(27], (28]. Furthermore, Mamhoudi and Drygajlo used the wavelet-transform 
in combination with different post-filters to improve the performance (29], 
(30]. Bitzer et al. [31], (32] proposed a solution with a super-directive array 
and McCowan et al. used a near-field super-directive approach [33]. 

Reading these papers we find that a theoretical basis for post-filtering 
seems to be missing. Therefore, an analysis based on optimum MMSE multi­
channel filtering is presented in the following section. 



3 Post-filtering Techniques 41 

3.2 Multi-channel Wiener Filtering in Subbands 

We use matrix notation for a compact derivation. Signal vector x and weight 
vector w denote the multi-channel signal at the output of the N microphones 
and the multi-channel beamformer coefficients, respectively. We assume that 
the input signal vector x(k) is decomposed into M complex subband signals 
x(k, i) by means of an analysis filter-bank, where k is the discrete time in­
dex and i is the subband index. The optimum weight vector Wapt(k,i) for 
transforming the input signal vector x(k, i) = s(k, i) + v(k, i) corrupted by 
additive noise v(k, i) into the best possible MMSE approximation of the de­
sired scalar signal s(k, i) is referred to as multi-channel Wiener filter [34]. 
We assume that the relation between the desired scalar signal s(k, i) and the 
signal vector s(k, i) is linear and that the N elements of the column vectors 
s(k, i) and v(k, i) are random processes. In the following, T denotes trans­
position, * denotes complex conjugation, H denotes Hermitian transposition, 
and E [·] denotes the statistical expectation operator. 

3.2.1 Derivation of the Optimum Solution 

The error in subband i for an arbitrary weight vector w(k, i) is defined as 
the difference of the filter output 

y(k, i) = wH (k, i)x(k, i) = wH (k, i) [s(k, i) + v(k, i)] 

and the scalar desired signal s(k, i), that is 

e(k, i) = s(k, i) - wH (k, i)x(k, i). 

Using the definitions for the power of a complex signal 

1>xx(k, i) = E [x(k, i)x(k, i)*], 

the cross-correlation vector 

¢xv(k, i) = E [x(k, i)y* (k, i)], 

and the correlation matrix 

<Pxx(k,i) = E [x(k,i)xH(k,i)], 

the squared error at time k may be written as 

1>ee(i) = E [{s(i) - wH (i)x(i)}{s*(i) - xH (i)w(i)}] 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

= qJ88 (i) - WH (i)¢xs(i) - ¢,lfs(i)w(i) + WH (i)<Pxx(i)w(i), (3.6) 

where the time index k has been omitted without loss of generality. The 
optimum solution minimizes the sum of all error powers c/>ee(i): 

M 

L [1>ss(i) - WH (i)¢xs(i) - ¢,lfs(i)w(i) + WH (i)<Pxx(i)w(i)]. (3.7) 
i=O 
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Since the error power is necessarily real-valued and nonnegative for all sub­
bands, the sum can be minimized for the weight vector w(i) by minimizing 
the error power <Pee(i) for each subband. Therefore, the frequency index i 
may also be omitted without loss of generality. 

The power <Pee is a quadratic function of w and therefore has a single, 
global minimum. The optimum weight vector minimizing the squared error 
is obtained by setting the gradient of <Pee with respect to w equal to the null 
vector [35]: 

( ) O<Pee 
v'w <Pee = 2~ = -2</Jxs + 24-i.,.,w = 0. 

uw* 
(3.8) 

The resulting expression is the subband version of the multi-channel Wiener­
Hopf equation in its most general form 

(3.9) 

where 4-i.,., is the correlation matrix of the noisy input vector and <Pxs is the 
cross-correlation vector between the noisy input vector and the desired scalar 
signals. Assuming 4-i.,., to be nonsingular, we may solve (3.9) for the optimum 
weight vector: 

(3.10) 

3.2.2 Factorization of the Wiener Solution 

In our application, the received signal is assumed to consist of a single desired 
scalar signal that is transformed by the acoustic path d and additive noise: 

x = sd+v. 

The noise vector v is given by 

V = [vo,V1, · · · ,VN-1]T 

(3.11) 

(3.12) 

where Vn is a complex noise signal in subband i at microphone n. The complex 
propagation vector is 

(3.13) 

where dn describes the acoustic path from the desired source to the micro­
phone n for subband i. The propagation vector d may include time delays, 
near-field effects, and the transfer functions of enclosure and microphones. 
With the definitions (3.3), (3.4), (3.5) and assuming that signal and noise are 
uncorrelated, the cross-correlation vector may be reduced to 

(3.14) 
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and the correlation matrix may be expressed as 

(3.15) 

Consequently, the optimum weight vector may be written as 

-1 [ H ]-1 
Wopt = Pxx efJssd = efJssdd + Pvv efJssd. (3.16) 

The multi-channel Wiener filter can now be factorized into an array processor 
and a single channel post-filter by applying the Sherman-Morrison-Woodbury 
formula 

which is also known as the matrix inversion lemma [35]. Substituting 

A= Pvv - 1 , B = J"¢;;d, and C = 1 

(3.17) 

(3.18) 

into (3.17), and taking into account that the Hermitian form dH Pvv -ld is 
scalar and real valued, the MMSE solution (3.16) can be transformed into 

Wopt = [P -1 _ efJssPvv -lddH Pvv -l] ,;_ d 
vv 1 + efJssdH Pvv -Id l/-'BB 

[ efJss ] p -ld 
1 + efJssdHPvv -ld vv 

= [ efJss ] cf>vv -ld 
efJss+(dHPvv-ld)-l dHPvv-ld" 

(3.19) 

Equation (3.19) shows that the multi-channel Wiener filter (3.10) can be 
written as the product of the weight vector of the MVDR beamformer, (see 
Chapter 2) and a real-valued scalar factor. A similar result is used in (36] and 
[1] to show that the multi-channel Wiener and the MVDR solution yield the 
same SNR if the input is narrowband. In this case the MVDR beamformer is 
preferable since it is data independent (i.e. completely defined by the spatial 
configuration of signal and noise sources), whereas the Wiener solution is 
data dependent (¢ss must be known or estimated) and is therefore much 
more difficult to handle. However, MVDR and Wiener solutions yield the 
same SNR only if the input consists of a single frequency. For the broadband 
case (which has already been discussed in [37]), the scalar factor becomes a 
subband or frequency domain post-filter that may significantly improve the 
SNR. 
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and the correlation matrix may be expressed as

Prz = bs3dd” + Byy. (3.15)

Consequently, the optimum weight vector may be written as

Wopt = Prebse = [Poedd” + Fy] "dood (3.16)

The multi-channel Wienerfilter can now be factorized into an array processor
and a single channel post-filter by applying the Sherman-Morrison-Woodbury
formula

[A?+BC'B") * =A-AB(C+ BAB) 'BYA (3.17)

which is also known as the matrix inversion lemma [35]. Substituting

A=6,,', B=\V/¢ssd, and C=1 (3.18)

into (3.17), and taking into account that the Hermitian form d"6,,,~'d is
scalar and real valued, the MMSEsolution (3.16) can be transformed into

 

—_ Gasesate |opt = |Pp Lee oowort | TFbnd¥6,a |°
$5507 @,, ‘d _= | -aeinamata) ort“4

_ | Oss @ —lq1+ @ssd#6,, 1a] °°

_ bss b,, 'd (3.19)
7 Pss + (d#6,,-1d) d¥DyId .  

Equation (3.19) shows that the multi-channel Wiener filter (3.10) can be
written as the product of the weight vector of the MVDR beamformer, (see
Chapter 2) and a real-valued scalar factor. A similar result is used in [36] and
[1] to show that the multi-channel Wiener and the MVDRsolution yield the
same SNRif the input is narrowband. In this case the MVDR beamformeris
preferable since it is data independent (i.e. completely defined by the spatial
configuration of signal and noise sources), whereas the Wiener solution is
data dependent (¢,, must be known or estimated) and is therefore much
more difficult to handle. However, MVDR and Wienersolutions yield the
same SNRonly if the input consists of a single frequency. For the broadband
case (which has already been discussed in [37]), the scalar factor becomes a
subband or frequency domain post-filter that may significantly improve the
SNR.
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To show that the optimum post-filter is also a Wiener filter that operates 
on the single-channel output data, we evaluate the power of the desired signal 
at the output of the MVDR processor as 

(3.20) 

This demonstrates the distortionless magnitude response. Furthermore, we 
determine the power of the output noise as 

(3.21) 

Substituting (3.20) and (3.21) into (3.19), we can finally factorize the opti­
mum MMSE solution into the following expression: 

<Pvv -ld 

dH <Pvv -1 d . ______ ...__., 
Wiener post-filter MVDR array 

(3.22) 

Equation (3.22) includes the complex weight vector of the MVDR beam­
former 

w (k i) _ <T>-;;v1 (k, i) d(k, i) 
mvdr ' - dH(k,i) <T>;;;(k,i) d(k,i)' 

(3.23) 

and the scalar, single channel Wiener post-filter that depends on the SNR at 
the output of the beamformer: 

H (k ") _ <Ps 0 s0 (k, i) 
post , i - ,1, (k ") ,1, (k ") 

o/S080 , 'l, + o/VoVo , i, 

SNRaut(k,i) 
1 + SNRaut(k,i). 

(3.24) 

The output signal z(k, i) of the factorized MMSE filter is the product of the 
output signal y(k, i) of the MVDR array: 

y(k, i) = w:!vdr(k, i) x(k, i), 

and the transfer function Hpost(k, i) of a single-channel post-filter: 

z(k, i) = y(k, i) Hpost(k, i). 

(3.25) 

(3.26) 

The MVDR solution (3.23) maximizes the directivity index if <Pvv equals 
the correlation matrix of the diffuse sound field. The resulting system may 
therefore be called 'superdirective array with Wiener post-filter' (although 
the term superdirectivity originated in the context of analog microphones). 
Since the definition (3.13) of the propagation vector does not include any far­
field assumptions, (3.23) may also be used to design a near-field superdirective 
array. 
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To show that the optimum post-filter is also a Wienerfilter that operates
on the single-channel output data, we evaluate the powerof the desired signal
at the output of the MVDRprocessoras

2
d#6,,, 1d

= ds. (3.20)
A H

Ps55 = OssW d dd Winvdr = Oss _
mvar d'@,,, lq  

This demonstrates the distortionless magnitude response. Furthermore, we
determine the power of the output noise as

d#6,,7'd 1
(d¥@,, 1d)? d#6,,‘a

 

(3.21)
AH

Quote = WmydrPovWmvdr =

Substituting (3.20) and (3.21) into (3.19), we can finally factorize the opti-
mum MMSEsolution into the following expression:

| bso80 | b,, ‘dWopt = —] :
Ps, 80 + Prov. dif Dry d
SSSS
Wiener post—filter MVDR array

 

(3.22)

Equation (3.22) includes the complex weight vector of the MVDR, beam-
former

$,5 (k, 4) A(k, 4)
d#(k,i)By(k,i)d(k,i)’ (3.23)Winvar(k, i) =

and the scalar, single channel Wiener post-filter that depends on the SNR at
the output of the beamformer:

; s,s. (k, 4) SNRout (k, 1)
post (kt) = — <= 3.24post (ho)=Bhi) + benulBed) 1+ SNRou(kyi) 828)

The output signal z(k,) of the factorized MMSEfilter is the product of the
output signal y(k,7) of the MVDRarray:

 

y(k, 4) = Wrnvar(h, t) x(k, t), (3.25)

and the transfer function Hpos¢(k,i) of a single-channel post-filter:

2(k,1) = y(k,t) Hpost(k,4). (3.26)

The MVDRsolution (3.23) maximizes the directivity index if @,, equals
the correlation matrix of the diffuse sound field. The resulting system may
therefore be called ‘superdirective array with Wiener post-filter’ (although
the term superdirectivity originated in the context of analog microphones).
Since the definition (3.13) of the propagation vector does not include any far-
field assumptions, (3.23) mayalso be used to design a near-field superdirective
array.
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3.2.3 Interpretation 

Although the above results are clearly related to Wiener's work on optimum 
filtering [38], some basic assumptions were different. First of all, Wiener con­
sidered continuous time signals which leads to the Wiener-Hopf integral equa­
tion. The corresponding equation in matrix form (3.10) usually determines 
the filter coefficients for an optimum discrete time FIR filter of order N. In 
our case, the delay line is defined by the spatial arrangement of the acoustic 
sensor and the taps are realized by the N microphones. The array and the 
weight vector form a spatial filter. Wiener assumed that signal and noise are 
ergodic and stationary random processes and he used the Fourier-transform 
to find a solution for the optimum filter. This leads to a linear, time invariant 
filter. Such a filter is not appropriate for speech signals that may be modeled 
as short-time stationary processes only. The derivation used here is based 
on ensemble averages (expectations) and does not assume stationarity. In 
practice, however, only an approximate realization of such a filter is possible. 

There are two main sources of errors: the analysis and synthesis filter­
bank, and the procedures to estimate the time-varying signal and noise powers 
in the individual subbands. For the design of the filter-banks, a compromise 
between frequency and time resolution has to be made. High resolution in the 
frequency domain leads to poor resolution in the time domain and vice versa. 
Therefore, the highest possible frequency resolution that does not violate 
the short-term stationarity of speech should be chosen. Furthermore, the 
minimum error in the time-domain is only reached if the filters have non­
overlapping frequency regions (see the discussion of sub band methods in [39]). 
Since such filters are physically unrealizable, overlapping of subbands cannot 
be avoided. As a result, the suppression of a noise-only subband may affect 
adjacent subbands containing desired signal components. In the following, 
we will use windowing, Fast Fourier Transform (FFT) and the overlap-add 
method to implement the filter-bank. However, (3.22) is general enough to 
allow any complex or real valued filter-bank method. If overlap-add is used, 
circular convolution should be avoided by zero padding and by constraints 
imposed on the estimated transfer function. 

In the derivation of the optimum filter, expectations are used to estimate 
the parameters. This is a theoretical construction since the ensemble averages 
cannot be computed in practice. An approximation proposed in [9] is the 
recursive Welsh periodogram: 

¢xy(k, i) = a efixy(k - 1, i) + (1 - a)x(k, i)y* (k, i), (3.27) 

where a = exp( - D / [Ta: ls]) is defined by the decimation factor D of the 
filter-bank, the time-constant Ta: (ms), and the sampling frequency ls (kHz). 
The time constant is again a compromise. If Ta: is low, artifacts may occur 
due to the variation of the transfer function estimate. On the other hand, if 
a high time constant Ta: is chosen, the assumption of short time stationarity 
is violated and the output speech signal may sound reverberant. 
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Unfortunately, the factorized result (3.22) does not give any indication of 
how the Wiener post-filter could be estimated. A possible solution, which we 
discuss in the next section, is based on the observation that the correlation 
between two microphone signals is low if the sound field is diffuse and the 
microphone distance is large enough. 

3.3 Algorithms for Post-Filter Estimation 

Figure 3.1 shows the block diagram of the studied algorithms. The micro­
phone signals are time aligned and decomposed by a frequency subband 
transform (FT). The coefficients Wn represent the weight vector w of the 
beamformer and H represents the post-filter. The inverse subband transform 
(IFT) synthesizes the output signal. The coefficients f n for post-filter estima­
tion form a vector f. Unless otherwise noted we assume that f = w. We begin 

Post­
fi lter 

estimation 

Fig. 3.1. General block diagram of the examined post-filters. 

our analysis on multi-microphone post-filters by recalling some results on the 
performance of arrays from Chapter 2 since these results are needed later. We 
generally assume that the coefficients are normalized so that wH 11 H w = 1 
and fH11 Hf= 1, where 1 is the N-vector of ones. Therefore, the array gain 
equals the noise reduction of the array. For convenience, we define a noise 
power attenuation factor that equals the inverse of the array gain: 

Ar= wHI'vvW = c-1 , (3.28) 
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our analysis on multi-microphonepost-filters by recalling someresults on the
performanceof arrays from Chapter 2 since these results are needed later. We
generally assume that the coefficients are normalized so that w11"w = 1
and f11"f = 1, where 1 is the N-vector of ones. Therefore, the array gain
equals the noise reduction of the array. For convenience, we define a noise
power attenuation factor that equals the inverse of the array gain:

Arp=w'T,,w=G, (3.28)
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where the coherence matrix I'vv is the normalized noise correlation matrix 
I'vv = cl>vvN /trace [cl>vvl, and all quantities are assumed to be frequency de­
pendent. 

An examination of (3.28) shows that the noise attenuation of the array 
is the weighted sum of the complex coherence functions of all sensor pairs. 
Thus, all products appear in conjugate pairs I'mn + I'nm = 2Re{I'nm}- As 
a result, the noise reduction of the array is actually a function of the real 
part of the complex coherence between the sensors. The knowledge of the 
magnitude squared coherence is not sufficient. 

The white noise gain is the array gain for spatially uncorrelated noise, 
where I'vv = I. Thus, the attenuation factor for spatially white noise is 

The additional noise attenuation of the post-filter is given by 

Apost = IHpost 12 • 

(3.29) 

(3.30) 

The total noise attenuation of the combined system is the product of the at­
tenuation of the array and the attenuation of the post-filter, or the respective 
sum in dB: 

Atotal I = 10 loglO (Ar) + 10 log10 (Apost) . 
dB 

3.3.1 Analysis of Post-Filter Algorithms 

(3.31) 

The first method for post-filter estimation we study is a generalized version of 
Zelinski's algorithms that was discussed by Marro et al. [15]. It covers several 
other algorithms as a special case. 

(3.32) 

Equation (3.32) includes Danilenko's [2] idea to use the ratio of cross-correlation 
cpXnX-m and power cpXnXn for suppressing incoherent noise, the complex sub­
band approach of Allen et al. [9], Zelinski's proposal to average over all mi­
crophone pairs m > n [11], and Marro's (40] extension to complex shading 
coefficients Wn- To write this algorithm in matrix notation, we note that 

{
N-2 N-1 } N-1 N-1 N-1 

2Re L L Wnw:n<PxnX-m = L L Wnw:n<PxnXm - L WnW~<PXnXn. 
n=O m=n+ 1 n=O m=O n=O 
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This is a Hermitian form of the shading coefficients Wn and the correlation 
matrix Pxx, minus the weighted sum of diagonal elements of Pxx· The algo­
rithm (3.32) requires that the relative time-delay differences and gain ratios 
between the microphone signals have been compensated in advance so that 
d = 1. This leads to a modified noise correlation matrix Pxx (see Chapter 
2). The transfer function of the post-filter (3.32) may now conveniently be 
written in matrix form as 

(3.33) 

where Pfx is a diagonal matrix of the diagonal elements of Pxx· If the sound 
field is homogeneous, we have the same input power at each microphone, i.e. 
Pfx = c/Jxxl, and may write 

(wHPxxW - c/JxxWHw) 

Hzm = ¢xx (wHllHw -wHw). 
(3.34) 

If signal and noise are uncorrelated we have Pxx = P 88 + Pvv· Therefore, 

(3.35) 

Assuming that the coefficients are normalized such that wH 11 H w = 1, the 
desired signal is coherent, i.e., P88 = cp88 llH. With the noise correlation 
matrix being Pvv = ¢vvI'vv, where ¢vv = trace[Pvv] /N, we finally obtain 

H _ c/Jss c/Jvv (wH I'vvW - wHw) 
zm - + ( H ) · c/Jss + c/Jvv ( qJ88 + c/Jvv) 1 - W W 

(3.36) 

Although the designs of the MVDR array and the post-filter estimation 
algorithm do not seem to have much in common, the transfer function of the 
post-filter may be expressed as a function of the attenuation factors of the 
array by substituting (3.28) and (3.29) into (3.36): 

H _ c/Jss + c/Jvv (Ar - Ai) 
zm - c/Jss + c/Jvv (c/Jss + c/Jvv) (1 - Ai) 

(3.37) 

This is also true for the slightly modified version of Zelinski's algorithm [13]: 

(3.38) 
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rithm (3.32) requires that the relative time-delay differences and gain ratios
between the microphone signals have been compensated in advance so that
d = 1. This leads to a modified noise correlation matrix ®,, (see Chapter
2). The transfer function of the post-filter (3.32) may now conveniently be
written in matrix form as

(w"6,,.w — w"6?w) wilw
(wi11?w — ww) wid?Ww

 

Hom = (3.33)

where 6. is a diagonal matrix of the diagonal elements of $,,. If the sound
field is homogeneous, we have the same input power at each microphone, i.e.
> = ¢,21, and may write

H= (w"d,.w ~ ozzW"w)2m

= bonww—ww) (8.34)
If signal and noise are uncorrelated we have &,, = ©,, + ®y,. Therefore,

w'd,.w — bs5ww) + (wiyw — dyyw"w)Aum = (
= (Bos + bou) (WITT— ww)

 
(3.35)

Assuming that the coefficients are normalized such that w“11"%w = 1, the
desired signal is coherent, i.e., 65, = ¢s,11/7. With the noise correlation
matrix being By, = d,,Ty,, where @y, = trace [®,y| /N, we finally obtain

bss dur (wiTyyw — ww)
Ham ~ Pss + Pov (Oss + duv) ( _ ww) ,
 

(3.36)

Although the designs of the MVDRarray and the post-filter estimation
algorithm do not seem to have much in common,the transfer function of the
post-filter may be expressed as a function of the attenuation factors of the
array by substituting (3.28) and (3.29) into (3.36):

dss + Puy (Ar _ Ay)
Pss + Pvv (ss + dv) qd 7 Aj) :

This is also true for the slightly modified version of Zelinski’s algorithm {13]:

N-2 N-1

rel valBent}n=0 m=n+1
N-2 N-1 ,

nel » vntdwint} nln=0 m=n+1

Aim =
 

(3.37)

Hem (i) =
 

(3.38)
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where </>yy = <l>ss + <l>vvAr is the output power of the array. The modified 
post-filter can be expressed as 

Hsm = <l>ss + </>vvAr (Ar - A1) 
</>ss + </>vvAr ( </>ss + </>vvAr) (1 - A1) 

(3.39) 

These rather surprising results were first derived in [15]. They are used in 
the following section to discuss the properties of a large class of post-filtering 
algorithms. 

3.3.2 Properties of Post-Filter Algorithms 

First of all, we note that the shading coefficients Wn form a weight vector 
w that generally can be computed by using the design rule of the MVDR 
array. It is not necessary, however, to use the same design for array processor 
and post-filter (see Fig. 3.1). Both the MVDR weight vector and the array 
gain are functions of the noise correlation matrix. It should be noted that the 
correlation matrix that is used for the design may differ from the correlation 
matrix of the environment in which the array operates. Therefore, three dif­
ferent correlation matrices may be involved: a first one for the design of the 
array processor, a second one for the design of the post-filter, and a third one 
to determine the performance in the actual environment. 

Analyzing (3.37) and (3.39) leads to the following conclusions: 

• Optimum performance is only reached if Ar = A1: 
The difference of the two attenuation factors is zero only if the noise is 
spatially uncorrelated which was Danilenko's initial assumption in the 
design of his suppression system. In this case, (3.37) becomes a Wiener 
filter for the input signal of the beamformer. On the other hand, (3.39) 
becomes a Wiener filter for the beamformer output and therefore rep­
resents the MMSE solution for uncorrelated noise if the delay and sum 
beamformer is used. All other coefficient sets, including superdirective so­
lutions, yield suboptimal performance. In a diffuse sound field, the noise 
is correlated at low frequencies which leads to poor performance for low 
frequency noise. 

• Negative post-filter if Ar < A1: 
In a diffuse noise field, or if coherent sources are present, the difference of 
the attenuation factors (Ar -A1) may cause a negative transfer-function. 
If negative parts of the transfer functions are set to zero, which is a 
common strategy, signal cancellation may occur. 

• Infinite post-filter if A1 = 1: 
This is usually the case with superdirective designs which amplify uncor­
related noise at low frequencies. 

To demonstrate the preceding results, we computed the theoretical perfor­
mance of a four microphone end-fire array with 8 cm inter-microphone dis­
tance in a diffuse noise field (<l>ss = 0). Figure 3.2 shows the attenuation 
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Fig. 3.2. Theoretical noise attenuation of an end-fire array for a diffuse noise field. 
Left: delay and sum beamformer coefficients. Right: superdirective coefficients. 

factors Ar and A1 of the beamformer and the noise attenuation Apost of 
the post-filter (3.37). The left part depicts the attenuation for delay and 
sum beamformer coefficients (f = w = 1/N) and the right part depicts the 
attenuation for superdirective coefficients (f = WMVDR)-

The performance of the delay and sum beamformer and the respective 
post-filter is poor at low frequencies. At high frequencies the coherence of a 
diffuse noise field is approaching zero. Therefore, Ar is close to A1 and both 
post-filters perform nearly optimally. 

The superdirective beamformer performs particularly well at low frequen­
cies. The respective post-filter, however, does not benefit from using superdi­
rective coefficients. The performance gets even worse at low frequencies and 
the transfer function is infinite at the frequency where A1 crosses O dB. 

3.3.3 A New Post-Filter Algorithm 

To derive an improved algorithm we note that in all cases the subtraction of 
the white noise attenuation A1 in (3.37) is causing the trouble. It reduces the 
performance for superdirective coefficients and is responsible for negative or 
infinite post-filters. Our straightforward approach for solving these problems 
is to replace the difference Ar -A1 with Ar, since Ar is the parameter that 
is actually minimized by the design of the MVDR beamformer. Substituting 
A1 = 0 in (3.37) results in 

H </Jss + </JvvAr 
apab = 

</Jss + </Jvv </Jss + </Jvv 
- </>yy 

</>xx· 
(3.40) 

This new algorithm can be implemented easily by estimating the ratio of 
the output power </>yy and the input power <!>xx of the beamformer for all sub­
bands, where <!>xx is the power of the microphone closest to the desired source 
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factors Ar and Ay of the beamformer and the noise attenuation Apost of
the post-filter (3.37). The left part depicts the attenuation for delay and
sum beamformer coefficients (f = w = 1/N) and the right part depicts the
attenuation for superdirective coefficients (f = wavpr).

The performance of the delay and sum beamformer and the respective
post-filter is poor at low frequencies. At high frequencies the coherence of a
diffuse noise field is approaching zero. Therefore, Ap is close to Ay and both
post-filters perform nearly optimally.

The superdirective beamformer performs particularly well at low frequen-
cies. The respective post-filter, however, does not benefit from using superdi-
rective coefficients. The performance gets even worse at low frequencies and
the transfer function is infinite at the frequency where A; crosses 0 dB.

3.3.3 A New Post-Filter Algorithm

To derive an improved algorithm we note that in all cases the subtraction of
the white noise attenuation Ay in (3.37) is causing the trouble. It reduces the
performance for superdirective coefficients and is responsible for negative or
infinite post-filters. Our straightforward approach for solving these problems
is to replace the difference Ar — Ay with Ay, since Ar is the parameter that
is actually minimized by the design of the MVDR beamformer. Substituting
Ay = 0 in (3.37) results in

Oss + duvAr _ Pyy
Dss + Puy Pss + Puv Oza

This new algorithm can be implemented easily by estimating the ratio of
the output power ¢,, and the input power ¢zz of the beamformerforall sub-
bands, where ¢,,z is the power of the microphoneclosest to the desired source

Hapab = (3.40)
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or , alternatively, the average input power of the beamformer (see Fig. 3.3) . 
This design is compatible with superdirective coefficients, is always positive, 
and provides good performance for low frequency noise. However, the new 
transfer function still approximates a Wiener filter for the input signal. It 
does not take into account that the noise has already been reduced by the 
MVDR beamformer. In order to correct this behavior, we may apply the 
following function to (3.40) 

H 
g(H, A) = H+(l-H)A. (3.41) 

This transforms the Wiener filter for the input to a Wiener filter for the 
output of the beamformer: 

( </>ss A ) _ </>ss 
g ' r - . 

</>ss + <Pvv </>ss + <PvvAr 
(3.42) 

Since Ar is usually unknown, we may implement (3.40) directly and call this 
algorithm Adaptive Post-Filter for an Arbitrary Beamformer (APAB). 

Channel­
switch 

Post-filter­
estimation 

Fig. 3.3. Block diagram of the adaptive post-filter for an arbitrary beamformer 
(APAB). 

3.4 Performance Evaluation 

It is difficult to obtain reliable speech quality measures for the performance 
evaluation of noise reduction units. Subjective listening tests reach statistical 
significance only for a large number of trained listeners and are expensive 
and time-consuming. On the other hand, objective measures are often less 
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3.4 Performance Evaluation

It is difficult to obtain reliable speech quality measures for the performance
evaluation of noise reduction units. Subjective listening tests reach statistical
significance only for a large number of trained listeners and are expensive
and time-consuming. On the other hand, objective measures are often less
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sensitive than the human auditory system to artifacts such as musical tones. 
Therefore, we did not rely exclusively on objective measures to optimize 
the noise reduction algorithms. Accompanying informal listening tests were 
conducted to validate the objective results. 

3.4.1 Simulation System 

Our simulation system consists of three parts: A signal generation module, 
the device or algorithm under test (DUT), and the evaluation unit. In a first 
step, clean speech s(k) and a pure noise signal v(k) are convolved with room 
impulse responses (RIR) that are computed using the image method of Allen 
and Berkley [41]. In Fig. 3.4, we show the room configuration used. Noise is 
added to the computed multi-channel signals to produce a given signal-to­
noise ratio (SNR). The resulting noisy signal is fed into the DUT. 
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Fig. 3.4. Configuration of the simulated room. 

The adaptive coefficients of the algorithm are copied to two slave algo­
rithms which process speech or noise only. Thus, we have access to the pro­
cessed speech signal Ys(k), the processed noise signal Yv(k), and a processed 
sum Ys+v(k). Finally, these three output signals and the input signals are 
used in the evaluation unit to compute several speech quality measures. See 
Fig. 3.5 for a graphical description of the complete system. 

3.4.2 Objective Measures 

We are using three different quantities to obtain objective information about 
the tested algorithm. The first one is the segmental signal-to-noise ratio en-
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The adaptive coefficients of the algorithm are copied to two slave algo-
rithms which process speech or noise only. Thus, we have access to the pro-
cessed speech signal y,(k), the processed noise signal y,(k), and a processed
suM Ys4y(k). Finally, these three output signals and the input signals are
used in the evaluation unit to compute several speech quality measures. See
Fig. 3.5 for a graphical description of the complete system.

3.4.2. Objective Measures

Weare using three different quantities to obtain objective information about
the tested algorithm. Thefirst one is the segmental signal-to-noise ratio en-
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Fig. 3.5. Graphical description of the complete simulation system. 

hancement (SNRE): 

SN RE(l) = SN R;n(l) - SN Rout(l). (3.43) 

The segmental SNR is computed from consecutive samples with block-length 
B = 256 at a sampling frequency of 8 kHz: 

(l+l)B 

L s2(k) 
k=lB+l 

SNR;n(l)=10-log10 ( ) 
l+l B 

L v2(k) 
k=lB+l 

(l+l)B 

L y;(k) 
k=lB+l 

SNRout(l)=lO-log10 ( ) 
l+l B 

L y~(k) 
k=lB+l 

(3.44) 

(3.45) 

The second objective measure is the log-area-ratio distance (LAR) which 
has been tested with good results in (42]. This quantity can be computed in 
three steps: 

1. Estimate the PARtial CORrelation coefficients (PARCOR) of a block of 
samples. The block-size should be small enough to hold the assumption of 
stationarity but large enough to reduce bias and variance of the estimated 
values. A good choice is a block-size of 256 for a model order of P = 12. An 
algorithm for estimating PARCOR coefficients is the well-known Burg­
algorithm [35]. 

2. Determine the area-coefficients by 

(p l) = 1 + k(p, l) w 
g , l _ k(p, l) v 1 :S p '.S 12 (3.46) 
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where k(p, l) is the pth PARCOR coefficient of block l. 
3. Compute the LAR of block l 

(3.47) 

The final quantity we use is a speech degradation measure, which can be 
defined by the LAR of the input and the output speech signals only 

(3.48) 

It includes the room reverberation, the signal distortion caused by the tested 
algorithm, and the dereverberation features of the tested algorithm only. 
Finally, the average of all blocks containing speech is computed. 

3.4.3 Simulation Results 

The described simulation system was used to evaluate the performance of 
four different post-filter algorithms: 

1. Zel88: The algorithm by Zelinski in the frequency-domain implementation 
[21]. 

2. Sim92: The algorithm by Simmer described in [13]. 
3. APAB: The adaptive post-filter for an arbitrary beamformer, described 

in section 3.3 with a constrained MVDR-beamformer designed for an 
isotropic noise field in three dimensions (superdirective beamformer). The 
constraining parameter is set toµ= 0.01 (see Chapter 2). 

4. APES: The adaptive post-filter extension for superdirective beamformers 
[32]. 

For comparison, we include the results of the case in which no algorithm is 
used (No NR). 

The speech sample we used is the sentence "I am now speaking to you 
from a distance of 50 cm from the microphone" spoken by an adult male. 
The length of this file leads to 98 blocks containing speech. The noise file 
was white Gaussian noise used in order to give technical results which can 
be reproduced by other researchers. The input SNR was computed only for 
blocks containing speech by using the segmental SNR. 

In the first experiment, the broadside array shown on the left side of 
Fig. 3.4 is examined. Figure 3.6 depicts the results for the SNRE. The left 
side shows the dependence on the input-SNR if the reverberation time is 
set to T6o = 300 ms. The right figure shows the results for SNR=5 dB as a 
function of the reverberation time. This provides information on the behavior 
of the algorithms for different spatial conditions. The noise-field is coherent 
for low reverberation time and approximately diffuse for high values. 
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(Broadside). 

Although not optimal the Zel88 algorithm performs quite well, especially 
for high reverberation times where it provides the best results of all tested al­
gorithms (if only the SNRE is considered). At low reverberation times APAB 
and APES can benefit from the better suppression at low frequencies by us­
ing a superdirective beamformer instead of a standard delay and sum beam­
former. 
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If we take into account the next two measures shown in Fig. 3. 7 and 3.8, 
which describe the performance in terms of speech quality, the results are 
different. All algorithms enhance the speech quality in comparison to the 
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Although not optimal the Zel88 algorithm performs quite well, especially
for high reverberation times where it provides the best results ofall tested al-
gorithms(if only the SNREis considered). At low reverberation times APAB
and APEScan benefit from the better suppression at low frequencies by us-
ing a superdirective beamformerinstead of a standard delay and sum beam-
former.
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Fig. 3.7. Left: SD vs. input-SNR. Right: SD vs. reverberation time 7¢9 (Broadside).

If we take into account the next two measures shownin Fig. 3.7 and 3.8,
which describe the performance in terms of speech quality, the results are
different. All algorithms enhance the speech quality in comparison to the
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unprocessed input signal 1 . However, the algorithm with the highest SNRE 
does not produce the best LAR. A closer look at Fig. 3. 7 explains this behav­
ior. Since these figures show the speech degradation only, the non-processed 
signal is constant versus the SNR and reduces to zero if no reverberation 
is added to the speech signal. The algorithms cause signal distortion at low 
SNR and the algorithm with the highest performance in SNRE induces the 
largest distortion, whereas APAB and APES provide the best speech quality 
(LAR). At very good conditions (SNR > 15 dB), these algorithms are able 
to suppress reverberation without introducing speech degradation. The lack 
of artifacts was corroborated through informal listening tests. 

1 Smaller values indicate better quality. 
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unprocessed input signal '. However, the algorithm with the highest SNRE
does not produce the best LAR. A closer look at Fig. 3.7 explains this behav-
ior. Since these figures show the speech degradation only, the non-processed
signal is constant versus the SNR and reduces to zero if no reverberation
is added to the speech signal. The algorithms cause signal distortion at low
SNR. and the algorithm with the highest performance in SNRE induces the
largest distortion, whereas APAB and APESprovide the best speech quality
(LAR). At very good conditions (SNR > 15 dB), these algorithms are able
to suppress reverberation without introducing speech degradation. The lack
of artifacts was corroborated through informallistening tests.

' Smaller values indicate better quality.
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In a second experiment (right side of Fig. 3.4), we changed the orientation 
of the array and the inter-microphone distance. Additionally, only four mi­
crophones were used to reduced the array size. In Fig. 3.9 the SNRE results 
of the simulation are shown. The performance of the Sim92 and Zel88 al­
gorithms degrades drastically, since the inherent delay and sum beamformer 
does not perform well at low frequencies due to the small array size. On 
the other hand, APAB and APES perform well under all conditions. The 
SNRE for APES at high reverberation time is close to the result for the 
broadside-experiment although the number of microphones is reduced. Thus, 
we conclude that end-fire steering is preferable for this algorithm. 

3.5 Conclusion 

Wiener post-filtering of the output signal of an MVDR beamformer pro­
vides an optimum MMSE solution for signal enhancement. A large number 
of published algorithms for post-filter estimation are based on the assumption 
of spatially uncorrelated noise. This assumption leads to post-filtering algo­
rithms with suboptimal performance in coherent and diffuse noise fields. In 
this chapter we presented a new algorithm which performs considerably bet­
ter in correlated noise fields by using the gain of an arbitrary array. Small size 
end-fire arrays comprising an MVDR beamformer and optimized post-filters 
showed the best performance in our simulations. 
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4 Spatial Coherence Functions for 
Differential Microphones in Isotropic Noise 
Fields 

Gary W. Elko 
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Abstract. The spatial correlation function between directional microphones is use­
ful in the design and analysis of the performance of these microphones in actual 
acoustic noise fields. These correlation functions are well known for omnidirectional 
receivers, but not well known for directional receivers. This chapter investigates the 
spatial correlation functions for Nth-order differential microphones in both spher­
ically and cylindrically isotropic noise fields. The results are used to calculate the 
amount of achievable cancellation from an adaptive noise cancellation application 
using combinations of differential microphones to remove unwanted noise from a 
desired signal. The results are useful in determining signal-to-noise ratio gains from 
arbitrarily positioned differential microphone elements in microphone array appli­
cations. 

4.1 Introduction 

The spatial correlation function is important in the design of optimal beam­
formers that maximize the signal-to-noise ratio (SNR), source direction find­
ing algorithms, the calculation of actual SNR gain from arrays, and other 
array signal processing areas. The space-time correlation functions are well 
known for omnidirectional receivers in two specific environments: spherically 
and cylindrically isotropic noise fields. One area of large concern that has been 
a topic of ongoing work has been the design and performance of directional 
differential microphone systems. One application of these systems is in adap­
tive noise cancellation schemes. In order to predict the expected performance 
gains of these adaptive cancellation systems, the spatial correlation functions 
between directional microphones are required. Results are presented here for 
the specific cases of general orientation for first-order differential microphones 
in both spherically and cylindrically isotropic fields. Specific results are given 
for the general Nth-order cases for differential arrays that have collinear axes. 

4.2 Adaptive Noise Cancellation 

The use of adaptive noise cancellation in communication devices has been 
under investigation for more than two decades [1], [2]. The early studies 
predicted SNR gains on the order of 10 dB and higher. However, it was 
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Fig. 4.1. Schematic model of adaptive noise cancellation system. 

quickly learned that these predictions were not realized when devices were 
actually tested in real acoustic environments (2]. One of the problems that 
was encountered was the lack of coherence between a noise-alone sensor and 
the noise signal that was corrupting the desired signal. This lack of coherence 
was due to time-varying multipath, multiple uncorrelated noise sources, and 
nonlinearities in the transmission path to the signal channel (3]. 

Figure 4.1 shows the typical model of an adaptive noise cancellation sys­
tem. It can be seen from this model that the adaptive noise cancellation 
problem is equivalent to the acoustic echo cancellation problem as described 
by Sondhi (4]. The desired output signal is s(t). This signal is, however, cor­
rupted by the noise signal n(t), and the measured noise signal x(t) convolved 
with the transmission path h from the measured noise channel to the signal 
pick-up channel. 

The adaptive cancellation algorithm estimates the transmission path h 
and this estimated filter is represented by h. It is assumed that the signals 
s(t), n(t), and x(t) are uncorrelated stationary random processes. The output 
signal is e(t), and if h ~ h, the output signal e(t) ~ s(t). If it is further 
assumed that the filter h is time-invariant, the optimum filter Hapt is the 
Wiener filter given by [1], 

A Sxd(w) 
Hapt(w) = Bxx(w) (4.1) 

where Sxd is the cross-spectrum between signals x and d, and Bxx is the 
autospectrum of signal x. If this filter is used in the model shown in Fig 4.1 
then the output auto-spectrum is, 

See(w) = sdd(w)- I Hapt(w) 12 Bxx(w) 

= sdd(w) [1- I ')'xd(w) 12 ] (4.2) 
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quickly learned that these predictions were not realized when devices were
actually tested in real acoustic environments [2]. One of the problems that
was encountered was the lack of coherence between a noise-alone sensor and

the noise signal that was corrupting the desired signal. This lack of coherence
was due to time-varying multipath, multiple uncorrelated noise sources, and
nonlinearities in the transmission path to the signal channel[3].

Figure 4.1 shows the typical model of an adaptive noise cancellation sys-
tem. It can be seen from this model that the adaptive noise cancellation
problem is equivalent to the acoustic echo cancellation problem as described
by Sondhi[4]. The desired output signal is s(t). This signal is, however, cor-
rupted by the noise signal n(¢), and the measured noise signal x(¢) convolved
with the transmission path h from the measured noise channelto the signal
pick-up channel.

The adaptive cancellation algorithm estimates the transmission path h
and this estimated filter is represented by h. It is assumed that the signals
s(t), n(t), and x(t) are uncorrelated stationary random processes. The output
signal is e(t), and if h & h, the output signal e(t) = s(t). If it is further
assumed that the filter h is time-invariant, the optimum filter Hopi is the
Wienerfilter given by[1],

Sxa(w)
Hopt (w) ~ Sax (w) (4.1)

where S,q is the cross-spectrum between signals x and d, and Sz, is the
autospectrum ofsignal x. If this filter is used in the model shown in Fig 4.1
then the output auto-spectrum is,

See(w) = Saa(w)— | Hopt (w) |? Sz2(w)
= Saa(w) [1- | yea(w)|?] (4.2)
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Fig. 4.2. Adaptive cancellation in dB versus the mean-square coherence between 
the noise signal x(t) and the signal d(t) as defined in Fig 4.1. 

where "/xd is the complex coherence function between the signals x(t) and 
d(t) and is defined as, 

(4.3) 

The amount of cancellation is equal to the ratio of the primary corrupted 
signal power to the output signal power, 

R(w) = sdd(w) 
See(w) 

1 

1- I rxd(w) 12 . 
(4.4) 

The results presented in (4.4) are well known [2] and a plot of this equation 
is shown in Fig. 4.2. 

As can be seen in Fig. 4.2, the magnitude-squared coherence value must 
be greater than 0.9 if the cancellation R is to be larger than 10 dB. 

In Fig. 4.1 it can be seen that if s(t) and n(t) are zero, then the can­
cellation will become infinite. However, in the case of a multipath field with 
many independent noise sources, the cancellation will be diminished since 
the coherence between the signals x and d will decrease. To see this, it is 
illustrative to examine the case of two independent noise sources n 1 and n2 

as shown in Fig. 4.3. 
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Fig. 4.2. Adaptive cancellation in dB versus the mean-square coherence between
the noise signal x(t) and the signal d(t) as defined in Fig 4.1.

where Yq is the complex coherence function between the signals x(t) and
d(t) and is defined as,

Yoa(w) = lea 4.ae (w)S34(w) -“
The amountof cancellation is equal to the ratio of the primary corrupted
signal power to the output signal power,

se Saa(w)
~~ See(w)
es
~ 1 | Yea(w) |?”

The results presented in (4.4) are well known [2] and a plot of this equation
is shownin Fig. 4.2.

As can be seen in Fig. 4.2, the magnitude-squared coherence value must
be greater than 0.9 if the cancellation R is to be larger than 10 dB.

In Fig. 4.1 it can be seen that if s(t) and n(t) are zero, then the can-
cellation will become infinite. However, in the case of a multipath field with
many independent noise sources, the cancellation will be diminished since
the coherence between the signals x and d will decrease. To see this, it is
illustrative to examine the case of two independent noise sources n, and nz
as shownin Fig. 4.3.

 

R(w)

(4.4)
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Fig. 4.3. Schematic model of two independent sources n 1 and n 2 combining through 
filters to form signals x and d. 

For this case the autospectral densities are, 

(4.5) 

and 

(4.6) 

The cross-spectral density is, 

(4.7) 

where the superscript * denotes the complex conjugate. The magnitude­
squared coherence between x and d is therefore, 

2 2 

L Sii(w)Hix(w)H!d(w) 

I t'xd(w) 1
2 = -[-2 ----'--i_·=l __ ]_[_2 __ '-----l < 1. ( 4·8) 

~ Sii(w) IHix(w)l2 ~ Sii(w) IHid(w)l 2 

The coherence function given in (4.8) has a value of 1 only if Hix = Hid 
and H2x = H2d- In general, for L independent sources the limit of the sums 
in (4.8) would be £. The model as explained above is a reasonable approx­
imation to what is typically found in practice for acoustic environments in 
which people work and communicate. Thus, the loss of coherence between 
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For this case the autospectral densities are,

Sez(w) = Si) | Hiz) |? +522(w) | Hoe(w) 7 (4.5)

and

Saa(w) = Sir(w) | Mia(w) |? +$22(w) | Hoa(w) |? . (4.6)

The cross-spectral density is,

Szalw) = S11 (w)Mie(@) Hjq(w) + S22(w) Hoo (w)Ay) (4.7)

where the superscript * denotes the complex conjugate. The magnitude-
squared coherence between x and d is therefore,

   
| yea) |? = <1. (4.8)

pare) |Hin w| [Posute) |Hiala
The coherence function given in (4.8) has a value of 1 only if Hi, = Hig
and H2, = Hog. In general, for L independent sources the limit of the sums
in (4.8) would be L. The model as explained above is a reasonable approx-
imation to what is typically found in practice for acoustic environments in
which people work and communicate. Thus, the loss of coherence between
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sensors in adaptive noise cancellation will most likely be due to this multiple­
independent-noise condition. As such, an analysis as to the loss of coherence 
between sensors for different acoustic noise fields is important. This chapter 
investigates the achievable cancellation for adaptive noise cancellation us­
ing differential sensors in both spherically and cylindrically isotropic noise 
fields. It is expected that these two types of fields will yield results that are 
representative of what can be obtained in real-world acoustic noise fields. 

A practical example of interest in telephony is the use of adaptive noise 
cancellation for noise removal from the transmitter (microphone) in a tele­
phone handset. A recent patent application [5] has explicitly proposed the use 
of a secondary directional microphone mounted on the handset such that the 
null of this noise-alone microphone is aimed in the direction of the "desired" 
signal. The output from this "noise-alone" microphone is then used to cancel 
the correlated noise in the microphone that is used to pick-up the desired sig­
nal. In order to predict the cancellation from this proposed arrangement of 
transducers, it is necessary to calculate the spatial coherence between these 
sensors. 

In a typical adaptive noise cancellation implementation the transfer func­
tion H is approximated as an all-zero filter, i.e., the impulse response h is 
estimated by an adaptive finite-impulse response (FIR) filter. One advantage 
of making this system adaptive is to allow for the possibility of a time varying 
impulse response h(t). There are several problems that occur in this imple­
mentation. One major problem is the presence of the desired signal and/or 
uncorrelated noise signal n(t), when the adaptive filter is attempting to adapt 
to the measured noise-to-primary input transfer function. This problem is the 
same as the "double-talk" problem in the field of acoustic echo cancellation 
[4]. Another problem is that the signals s(t), n(t), and x(t) are typically 
nonstationary. Finally, another problem that can limit the cancellation per­
formance is low coherence between the signals x(t) and the signal d(t), even 
when s(t) and n(t) are small in signal power compared to the power of the 
noise signal x(t). This lack of coherence has been postulated to be due to non­
linearities and strong nonstationary (time-varying) multipath environments 
[3],[10]. 

4.3 Spherically Isotropic Coherence 

The spatio-temporal autocorrelation and cross-correlation functions are very 
useful quantities in sensor array processing. Perhaps the most simple and 
historically prominent calculation was the correlation between two omnidi­
rectional microphones in an isotropic noise field. The initial calculation was 
published by R. K. Cook et al. [6]. For completeness and to develop the 
notation this well-known result will now be derived. 
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The space-time correlation function for stationary random processes p1 
and p2 is defined as, 

R12 (r, T) = E[p1 (s, t)p2(s - r, t - T)] (4.9) 

where E is the expectation operator, s is the position of the sensor measuring 
acoustic pressure p1, and r is the displacement vector to the sensor measuring 
pressure p2. For a plane-wave incident field with wavevector k, ( 11 k 11 = k = 
w/c where c is the speed of sound), R12 can be written as 

R12(r, T) = R(T + k · r) (4.10) 

where R is the temporal autocorrelation function of the acoustic pressure p. 
The cross-spectral density is the Fourier transform of the cross-correlation 
function, 

(4.11) 

If we assume that the acoustic field is spatially homogeneous ( the correlation 
function is not dependent on the absolute position of the sensors), and also 
assume that the field is spherically isotropic ( uncorrelated signals from all 
directions), the vector r can be replaced with a scalar variable r which is the 
spacing between the two measurement locations. Thus the cross-spectral den­
sity for an isotropic field is the average cross-spectral density for all spherical 
directions, 0, </J. Therefore, 

S12(r,w) = N~sw) fa" 12,r e-jkrcosO sin0d0d¢> 

N 0 (w) sin(wr/c) 
wr/c 

N 0 (w) sin(kr) 
kr 

( 4.12) 

where N 0 (w) is the power spectral density at the measurement locations and 
it has been assumed without loss in generality that the vector r lies along 
the z-axis. Note that the isotropic assumption implies that the autopower­
spectral density is the same at each location. The complex coherence function 
'Y is defined as the normalized cross spectral density, 

S12(r,w) 
"/l2(r,w) = [S11 (w)S22(w)]1/2 · ( 4.13) 

For spherically isotropic noise and omnidirectional receivers, the spatial co­
herence function is, 

sin(kr) 
"(12(r,w) = --;;;;:-· (4.14) 
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The space-time correlation function for stationary random processes p;
and po is defined as,

Rio(t,7) = Elpi(s, t)pa(s — r,t — 7)] (4.9)

where F is the expectation operator, s is the position of the sensor measuring
acoustic pressure p,, and r is the displacement vector to the sensor measuring
pressure po. For a plane-wave incident field with wavevector k, (|| k ||= & =
w/c where c is the speed of sound), Riz can be written as

Rie(r,T) = R(r +k-r) (4.10)

where & is the temporal autocorrelation function of the acoustic pressure p.
The cross-spectral density is the Fourier transform of the cross-correlation
function,

Sio(r uw) = f Rar(r(r, r)e4“7dr. (4.11)
If we assumethat the acoustic field is spatially homogeneous(the correlation
function is not dependent on the absolute position of the sensors), and also
assume that the field is spherically isotropic (uncorrelated signals from all
directions), the vector r can be replaced with a scalar variable r whichis the
spacing between the two measurement locations. Thus the cross-spectral den-
sity for an isotropic field is the average cross-spectral density for all spherical
directions, 0, ¢. Therefore,

Sia(r,w) = NoMele) [ [veedkcos 6 sin odode
_ Noe) sin(wr/c)
7 wr/¢c
_ N,(w) sin(kr)
~ kr

where N,(u) is the power spectral density at the measurement locations and
it has been assumed without loss in generality that the vector r lies along
the z-axis. Note that the isotropic assumption implies that the autopower-
spectral density is the same at each location. The complex coherence function
+ is defined as the normalized cross spectral density,

Sya(r, w)

[S11 (w) S22(w)})/?

For spherically isotropic noise and omnidirectional receivers, the spatial co-
herence functionis,

_ sin(kr)
q12(r,w) = ——. (4.14)

(4.12)

yi2(r,w) = (4.13)
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In general, the spatial coherence function can be determined as, 

(4.15) 

where T1 and T2 are the directivity functions for the two directional sensors. 
In integral form for spherically isotropic fields, (4.15) can be written as, 

N12(r,w) 
')'12(r,w) = D12(w) ' 

where 

r r2tr 
N12(r,w) = la la T1(0,</>,w)T;(0,</>,w)e-jkrcos 0 sin0d0d</>, 

and 

D12(r,w) = (11r 12
1r I T1(0,</>,w) 12 sin0d0d</>) 

112 

( r r2tr ) 112 
x la la I T2(0, </>,w) 1

2 sin0d0d</> 

( 4.16) 

The denominator is inversely proportional to the geometric mean of the two 
microphone directivity factors Q1 and Q2 [8]. Therefore the denominator D12 
is, 

( 4.17) 

A general closed-form solution for the spatial coherence between any Nth 
and M th-order differential array if the differential axes are collinear has been 
found and is presented in a subsequent section. First, however, a general 
result for first-order differential arrays will be discussed. For this particu­
lar differential order, a solution is presented that allows the calculation of 
the spatial coherence for any arbitrary orientation of first-order differential 
arrays. 

The directional response for a first-order differential microphone can be 
written as [8], 

Ti('¢i) = Cl'.i + (1-ai)cos'lj;i, i E {1,2} ( 4.18) 

where '¢i is the angle between the incident wave and the axis of the ith 
first-order microphone. Defining Ui as the unit vector indicating the spatial 
orientation of differential microphone i, and defining k = k/ 11 k 11 as a unit 
vector, results in the following definitions in spherical coordinates: 

k = (cos</> sin 0, sin</> sin 0, cos 0) 

ui = (cos</>isin0i,sin</>isin0i,cos0i)- (4.19) 
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In general, the spatial coherence function can be determinedas,

B[T.(0,6,0)L3 (0, 6,u)e9* *] 
yi2(r,w) = 73 (4.15)

B[| 10.4.4) P]B[|BO.40) 2]
where T, and T> are the directivity functions for the two directional sensors.
In integral form for spherically isotropic fields, (4.15) can be written as,

Nia(r, w)
Dinlw) (4.16)Ne(r,w) =

where

v Qn . 6Nio(r,0) = / T1(0,4,«)T3 (8,4, w)e~IkT 89 sin pabdg,0 0

and

nw p2n 1/2

rate) = ([ [ | T,(0,¢,w) |? sind déa¢)
nw 2n 1/2

2 sin0déd .«([° [i 20,44) P sine aoae)
The denominatoris inversely proportional to the geometric mean of the two
microphonedirectivity factors Q1 and Q2 [8]. Therefore the denominator Dj».
is,

D12(w) = [Qi(w)Q2(w)] 7”. (4.17)

A general closed-form solution for the spatial coherence between any Nth
and Mth-order differential array if the differential axes are collinear has been
found and is presented in a subsequent section. First, however, a general
result for first-order differential arrays will be discussed. For this particu-
lar differential order, a solution is presented that allows the calculation of
the spatial coherence for any arbitrary orientation of first-order differential
arrays.

The directional response for a first-order differential microphone can be
written as [8],

Ti(Wi) =a; + (1—aj)cosyp;, i€ {1,2} (4.18)

where wy; is the angle between the incident wave and the axis of the ith
first-order microphone. Defining u; as the unit vector indicating the spatial
orientation of differential microphone i, and defining k = k/|| k || as a unit
vector, results in the following definitions in spherical coordinates:

k = (cos dsin 8, sin ¢sin 6, cos)
u; = (cos ; sin ;, sin ¢; sin 6;, cos 4;). (4.19)
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Thus, the cosine term in (4.18) can be written as 

cos'lj;i = k · ui. (4.20) 

Using (4.15), (4.16), (4.18), (4.19), and (4.20) and again assuming, without 
loss of generality, that the microphones lie along the z-axis, yields 

1 r r27r 
N12(kr) = 41r lo lo 

[0:1 + (1 - o:i)(x1 cos¢ sin 0 + y1 sin¢ sin 0 + z1 cos 0)] 

[0:2 + (1 - o:2)(x2 cos ¢sin 0 + Y2 sin ¢sin 0 + z2 cos0)] 

sin(0)e-jkrcos 0d0d¢, (4.21) 

where 

Xi = cos <Pi sin 0i, 

Yi = sin <Pi sin 0i, 

Zi = cos0i, i E {1, 2}. 

Note that since the directional response of the differential array is indepen­
dent of w, then the functional arguments for 1 , N, and D, can be compressed 
into one variable that is the product of k and r. Thus, only the functional 
dependency for the product kr will be used in the remainder of this chapter 
and the functions that depend solely on frequency will be written without 
the frequency dependence. Solving the integral (4.21) yields 

N12 (kr) = 0:10:2 sin(kr) 
kr 

+ (1 - 0:2)(1 - o:2)(x1x2 + Y1Y2) [ . (k ) _ k (k )] 
(kr)3 sm r rcos r 

Z1Z2 [ 2 . ( ) + (kr)3 { (kr) sm kr + 2krcos(kr)](l - o:1)(1 - o:2) 

+2sin(kr)(l - 0:1)(0:2 -1)} 

+ (::)3 [j(kr)20:2 cos(kr)(o:1 - 1) + jkm2 sin(kr)(l - 0:1)] 

+ (k~) 3 [j(kr)20:1 cos(kr)(o:2 - 1) + jkm1 sin(kr)(l - o:2)]. 

(4.22) 

For an Nth-order differential array whose directional response can be 
written as [8] 

T(0) = ao + a1 cos(0) + a2 cos2(0) + · · · + aN cosN (0), (4.23) 
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the solution for the directivity factor is 

(4.24) 

For a first-order differential microphone (4.24) reduces to 

3 
3a2 + (1 - a:)2 · 

( 4.25) 

Thus, for the first-order case the denominator term D 12 is 

D _ [3ar + (1- a:1)2]112 [3a~ + (1- a:2)2]112 
12 - 3 (4.26) 

The quotient of ( 4.22) and ( 4.26) yields the general result for the coherence 
function between any arbitrarily oriented first-order differential microphones 
spaced at a distance r . If the values of ai are both equal to 1, the microphones 
are omnidirectional and the coherence from the ratio of ( 4.22) and ( 4.26) 
reduces to the well-known sin(kr)/kr result as given in (4.14). Figure 4.4 
shows the coherence between a pair of omnidirectional microphones and the 
coherence between various orientations of pairs of dipole microphones spaced 
as a function of the dimensionless parameter kr. The suffix symbols in the 
plot legend indicate the orientation of the dipole microphone axes. The curve 
for the orthogonal dipole case runs along the abscissa and therefore can not 
be explicitly seen in the figure. The fact that the orthogonal dipoles have a 
zero coherence can be understood if symmetry is considered. The complex 
coherence for a wave impinging from one angle is of opposite sign to a wave 
impinging from the opposing angle (0 1 = 0, cf/ = -</>). The net coherence 
is therefore zero for the isotropic noise case. The parallel dipoles ( denoted 
as a dash-dot line) have a higher coherence value for kr < Jr, compared to 
the omnidirectional and collinear dipoles since there is zero delay for signals 
propagating along the major axes of the microphones. 

Figure 4.5 shows the amount of possible cancellation attainable with these 
various orientations of the dipole microphones calculated from ( 4.4). Fig­
ure 4.6 shows the coherence between various orientations of cardioid micro­
phones as a function of kr. Figure 4. 7 shows the amount of possible cancel­
lation attainable with these various orientations of the dipole microphones. 
These results are the same as those calculated using explicit forms for the 
cardioid microphones in an earlier paper by Goulding and Bird (9]. 

Figure 4.8 shows the coherence between various orientations of omnidi­
rectional microphones, dipole and cardioid microphones, as a function of kr. 
Figure 4.9 shows the amount of possible cancellation attainable with these 
various orientations of omnidirectional, dipole, and cardioid microphones. It 
is interesting to note (but not unexpected) that the maximum cancellation for 
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the solution for the directivity factor is
—1

 aia;we = 4.24Q(ao, ---, an) yey oe ( )i=0 j=0
i+j even

For a first-order differential microphone (4.24) reduces to

3 3
=SS 4.25@(a0, a1) 3aa +a?=3a? + (1- a)? (4.25)

Thus, for the first-order case the denominator term Dj2is

3a? + (1 —a1)?) 1? [302 + (1 — a2)?]”[Saf+(1=an)*]"” [803+(1 a2)?] 4” (4.26) 

12 = 3

The quotient of (4.22) and (4.26) yields the general result for the coherence
function between any arbitrarily oriented first-order differential microphones
spaced at a distance r . If the values of a; are both equal to 1, the microphones
are omnidirectional and the coherence from the ratio of (4.22) and (4.26)
reduces to the well-known sin(kr)/kr result as given in (4.14). Figure 4.4
shows the coherence between a pair of omnidirectional microphones and the
coherence between various orientations of pairs of dipole microphones spaced
as a function of the dimensionless parameter kr. The suffix symbols in the
plot legend indicate the orientation of the dipole microphone axes. The curve
for the orthogonal dipole case runs along the abscissa and therefore can not
be explicitly seen in the figure. The fact that the orthogonal dipoles have a
zero coherence can be understood if symmetry is considered. The complex
coherence for a wave impinging from one angle is of opposite sign to a wave
impinging from the opposing angle (6 = 0, ¢' = —¢). The net coherence
is therefore zero for the isotropic noise case. The parallel dipoles (denoted
as a dash-dot line) have a higher coherence value for kr < 7, compared to
the omnidirectional and collinear dipoles since there is zero delay for signals
propagating along the major axes of the microphones.

Figure 4.5 shows the amountof possible cancellation attainable with these
various orientations of the dipole microphones calculated from (4.4). Fig-
ure 4.6 shows the coherence between various orientations of cardioid micro-

phones as a function of kr. Figure 4.7 shows the amount of possible cancel-
lation attainable with these various orientations of the dipole microphones.
These results are the same as those calculated using explicit forms for the
cardioid microphones in an earlier paper by Goulding and Bird [9].

Figure 4.8 shows the coherence between various orientations of omnidi-
rectional microphones, dipole and cardioid microphones, as a function of kr.
Figure 4.9 shows the amount of possible cancellation attainable with these
various orientations of omnidirectional, dipole, and cardioid microphones.It
is interesting to note (but not unexpected) that the maximum cancellation for
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Fig. 4.4. Magnitude-squared coherence (MSC) for omnidirectional and dipole mi­
crophones in a spherically isotropic noise field. Note that the curve for the orthog­
onal dipoles lies along the abscissa. 

the omnidirectional and the cardioid has a value of 6 dB, which is the maxi­
mum directional gain for a first-order differential microphone in an isotropic 
noise field. It is also interesting to note that the omnidirectional and the 
dipole are uncorrelated over all values of k and r. This result is again due to 
the symmetry argument that was made for the two orthogonal dipoles. 

In order to find a closed-form solution for an arbitrary order differential 
microphone arrangement, it is necessary to confine the orientation of the 
arrays. A solution can be found if the axes of the two Mth-order and Nth­
order differential microphones are collinear. To begin, recall that an Nth­
order differential array directional response can be written as ( 4.23) , 

T1 (0) = ao + a1 cos(0) + ... + aN cosN (0) 

T2(0) = bo + b1 cos(0) + ... + bN cosN (0) . (4.27) 

Note that it is not necessary to have both differential elements of the same 
order.1 The solution to (4.21) using directivity functions of the form of (4.27) 
requires the solution of the integral: 

In(kr) = ! (" cosn(0)e-jkrcos 0 sin0d8. 
2 lo (4.28) 

1 The number N chosen in ( 4.27) is the larger order of the individual microphones. 
Therefore, the coefficients of the lower order differential microphone are zero from 
the differential order of this microphone to the term N . 

70 Elko

ce omni o
le —-

08 anoledipole -|

07} dipole || 4

0.6}

O56

0.4} yk

0.3} |

|
0.2} \ |
0.1} 4

|
Oo st —— et — sail

0 1 2 3 5 6 T 8 9 10

Fig. 4.4. Magnitude-squared coherence (MSC) for omnidirectional and dipole mi-
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the omnidirectional and the cardioid has a value of 6 dB, which is the maxi-
mum directional gain for a first-order differential microphone in an isotropic
noise field. It is also interesting to note that the omnidirectional and the
dipole are uncorrelated over all values of k and r. This result is again due to
the symmetry argument that was made for the two orthogonal dipoles.

In order to find a closed-form solution for an arbitrary order differential
microphone arrangement, it is necessary to confine the orientation of the
arrays. A solution can be found if the axes of the two Mth-order and Nth-
order differential microphones are collinear. To begin, recall that an Nth-
order differential array directional response can be written as (4.23),

Ti (0) = ap + a; cos(@) + ... + ancos’(6)
T2(@) = bo +b; cos(@) + ... + by cos’ (8). (4.27)

Note that it is not necessary to have both differential elements of the same
order.' Thesolution to (4.21) using directivity functions of the form of (4.27)
requires the solution of the integral:

i,(kr) = ; [ cos” (@)e JAP 6089 gin gag. (4.28)
1 The number N chosenin (4.27) is the larger order of the individual microphones.

Therefore, the coefficients of the lower order differential microphone are zero from
the differential order of this microphone to the term N.
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Fig. 4.6. Magnitude-squared coherence (MSC) for various orientations of cardioid 
microphones in a spherically isotropic noise field. 

From Appendix A, the result is 

In= n! [ejkr ~ (-jkr)n - e-jkr ~ (jkr)nl 
2(jkr)n+l L., ml L., m! 

m=O m=O 

(4.29) 
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From Appendix A, the result is
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The numerator of (4.21) is a sum of integrals given by (4.29). The denomi­
nator is inversely proportional to the square-root of the product of the direc­
tivity factors as given in (4.24) . Therefore the solution to (4.21) for a general 
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The numerator of (4.21) is a sum ofintegrals given by (4.29). The denomi-
nator is inversely proportional to the square-root of the product of the direc-
tivity factors as given in (4.24). Therefore the solution to (4.21) for a general
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combination of collinear differential arrays is 

N [ n n l '°"' a b n! ejkr '°"' (-jkr)n - e-j kr '°"' (jkr)n 
~ n N-n (jkr)n+I ~ m! ~ m! 

(k ) _ n=O m=O m=O 
1 r - 1~ 1~ 

2 [tt.W+}] [tt.&+,] 
i+J even i+J even 

(4.30) 

Plots of the coherence function for second and third-order dipole and cardioid 
microphones are shown in Figs. 4.10 and 4.11. 

4.4 Cylindrically Isotropic Fields 

The previous section dealt with spherically isotropic acoustic noise fields. 
It has been proposed that some room acoustic fields may be more closely 
modeled as a cylindrically isotropic field [8]. As a result, it is useful to derive 
theoretical spatial coherence functions for this type of field. The coherence 
function for any general field was given in ( 4.15). To derive the forms for 
the cylindrical field the only difference from the previous development for 
the spherically isotropic case is the integration implied by the expectation 
operator E. For the cylindrically isotropic field the expectation involves only 
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combination of collinear differential arraysis

 

N n nm

n! jkr (<jkr)" _ .—jkr (jkr)*Yoanbu-n Gerye Fi ed Dy mi! Ee » ml
_ n=0 m=0 m=0

ykr) = 1/2 1/2
N ON N N

aia; bib;
2)ums]|Loa

i=07=0 i=0j7=0
i4j even i+7 even

(4.30)

Plots of the coherence function for second and third-orderdipole and cardioid
microphones are shown in Figs. 4.10 and 4.11.

4.4 Cylindrically Isotropic Fields

The previous section dealt with spherically isotropic acoustic noise fields.
It has been proposed that some room acoustic fields may be more closely
modeledas a cylindrically isotropicfield [8]. As a result, it is useful to derive
theoretical spatial coherence functions for this type of field. The coherence
function for any general field was given in (4.15). To derive the forms for
the cylindrical field the only difference from the previous development for
the spherically isotropic case is the integration implied by the expectation
operator E. For the cylindrically isotropic field the expectation involves only
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the integration in one dimension, the cylindrical angle ¢. The directional 
responses of the two first-order differential arrays with general orientation of 
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the integration in one dimension, the cylindrical angle ¢. The directional
responses of the twofirst-order differential arrays with general orientation of



4 Spatial Coherence Functions 75 

Ti(</>) = ai + (1 - ai) cos(</> - </>i), i E {1, 2}. (4.31) 

The numerator for the coherence function is the integral of the product of 
the two directional responses given in (4.31) and is (assuming without loss 
in generality that the microphones lie along the z-axis), 

1 {2,r 
N12(kr) = 27r Jo [a1 + (1- a1)(x1 cos¢>cos</>1 + sin</>sin</>1)] 

x [a2 + (1 - a2)( cos¢> cos </>2 +sin</> sin </>2)] 

x e -j kr cos</> d</>. ( 4.32) 

The integration of ( 4.32) is rather tedious and is given in Appendix B. The 
resulting numerator for the coherence function is 

N12(kr) = a1a2Jo(kr) 

+(a1 - l)(a2 - 1) cos</>1 cos¢>2[Jo(kr) - h(kr)]/2 

+(a1 - l)(a2 - 1) sin </>1 sin </>2[Jo(kr) + J2(kr )]/2 

+j[a2 cos </>1 (1 - ai) + a1 cos </>2(1 - a2)]J1 (kr) (4.33) 

where Jn are the Bessel functions of the first-kind of integer order n. The 
denominator for the coherence function for first-order differential arrays is 
easily derived and is, 

(4.34) 

A closed-form solution can also be found for the general Nth-order differ­
ential array in a cylindrically correlated field if the differential microphones 
have axes that are collinear. The numerator for the coherence function is the 
integral of the product of the individual directional responses given in ( 4.27). 
This product of polynomials can itself be expressed as a polynomial of or­
der equal to the sum of the two individual directivity polynomial orders. In 
general, the solution for the numerator requires the evaluation of the integral 

(4.35) 

From Appendix C, In is, 

[
n/2 l 

In= 2}_1 ~ cm(-j)n-2mc(n,m)Jn-2m(kr) , for n even 

1 [(n-1)/2 l 
In= 2n-l ~ (-it-2mc(n,m)ln-2m(kr) , for n odd ( 4.36) 
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g, and ¢2 are

Ti(?) = a; + (1 — a4) cos(@— gi), 1 € {1,2}. (4.31)

The numerator for the coherence function is the integral of the product of
the two directional responses given in (4.31) and is (assuming without loss
in generality that the microphoneslie along the z-axis),

20

Nio(kr) = x | la, + (1 — a1) (x1 cos cos ; + sin dsin g1)]™ Jo

x [a2 + (1 — a2) (cos dcos d2 + sin dsin P2)]

x eIhr 60s bag, (4.32)

The integration of (4.32) is rather tedious and is given in Appendix B. The
resulting numerator for the coherence function is

Nio(kr) = a a2Jo(kr)

+(a1 — 1)(a2 — 1) cos g1 cos @2[Jo(kr) — Jo(kr}]/2

+(a1 — 1)(a2 — 1) sing; sin d2[Jo(kr) + Jo(kr)]/2

+jla2 cos ¢1(1 — a1) + ay cos $2 (1 — @2)] Ji (kr) (4.33)

where J, are the Bessel functions of the first-kind of integer order n. The
denominator for the coherence function for first-order differential arrays is
easily derived andis,

2 1 2 We 2 1 2 ve
Dig = (ay + 5 _ an) (a5 + 5( _ a2) . (4.34)

A closed-form solution can also be found for the general Nth-order differ-
ential array in a cylindrically correlated field if the differential microphones
have axes that are collinear. The numerator for the coherence function is the

integral of the product of the individual directional responses given in (4.27).
This product of polynomials can itself be expressed as a polynomial of or-
der equal to the sum of the two individual directivity polynomial orders. In
general, the solution for the numerator requires the evaluation of the integral

 

1 f* .

I, = ~ | cos” geIhr COS Gag, (4.35)WT LO

From Appendix C, J, is,

l n/2
Tn = nl S| Em(—j)?™C(n,m)In—am(kr)| , for n evenm=0

1 femne
In= sar|DD (IO"C(n,m)In-am(kr)] , for n odd (4.36)m=0
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where cm is defined as, 

cm = 1, m =I n/2, 
1 

= - m =n/2 
2' ' 

and the function C is the binomial coefficient [7] 

n! 
C(n,m)=( _ )' 1• n m.m. 

The numerator of the coherence function is 

2N 

N12(kr) = L dnln, 
n=O 

where the coefficients dn are components of the vector 

(4.37) 

(4.38) 

(4.39) 

( 4.40) 

The symbol * indicates the convolution and the vectors a and b are from the 
directivity response polynomials as defined in (4.27). 

The denominator term has previously been shown as equal to the inverse 
of the directivity factor. The directivity factor for a differential array in a 
cylindrically isotropic sound field is [8] 

aTGa 
Qcy1(ao, ... aN-d = aTHa' (4.41) 

where the superscript T denotes the transpose operator, the subscript on Q 
indicates a cylindrical field, 

aT = {ao,a1, .. ,,aN}, 

G is an (N + 1) x (N + 1) matrix whose elements are 

and H is a Hankel matrix given by, 

{ 
(i + j -1)!! 

Hi,i = (i + j)!! ' 
0, 

if i+j even, 

otherwise. 

( 4.42) 

( 4.43) 

(4.44) 

The double factorial function is defined as [7]: (2n)!! = 2 · 4 ... · (2n) for n 
even, and (2n + 1)!! = 1 • 3 • ... · (2n + 1) for n odd. The denominator D12 is 

[ ]
-1/2 

D12 = Q cyll Q cyl2 · (4.45) 
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where €,, is defined as,

Em = 1, m#n/2,
1

=5 m= n/2, (4.37)

and the function C’ is the binomial coefficient [7]

n!
C = —————___.. 4,(n,m) (n—m)!m! (4.38)

The numerator of the coherence function is

2N

Ni2(kr) = S| dntn, (4.39)
n=0

where the coefficients d, are components of the vector

d=axb. (4.40)

The symbol x indicates the convolution and the vectors a and b are from the
directivity response polynomials as defined in (4.27).

The denominator term has previously been shown as equal to the inverse
of the directivity factor. The directivity factor for a differential array in a
cylindrically isotropic sound field is [8]

a’Ga
THe (4.41)Qcyi(@o, --GN—1) =

where the superscript T denotes the transpose operator, the subscript on @
indicates a cylindrical field,

al = {ao,a1,...,an} , (4.42)

G is an (N +1) x (N + 1) matrix whose elements are

Gij = 1, (4.43)

and H is a Hankel matrix given by,

G+j—1)!
Ai= (G+ 7)!

0, otherwise.

, if i+j even, (4.44)

The double factorial function is defined as [7]: (2n)!! = 2-4...- (2n) for n
even, and (2n + 1)!!=1-3- ...-(2n +1) for n odd. The denominator Dj2 is

peDiz= [Qcyi1 @eyl2 (4.45)
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The quotient of ( 4.39) and ( 4.45) yields the general result for the coherence 
function between any arbitrarily oriented first-order differential microphones 
spaced at a distance r . If the two values of ai are both unity, the spatial 
coherence reduces to the well-known value for omnidirectional elements in a 
cylindrically isotropic noise field [6] 

')'12(kr) = Jo(kr), (4.46) 

where Jo is the zero-order Bessel function of the first-kind. Figure 4.12 shows 
the coherence between a pair of omnidirectional microphones and various 
orientations of dipole microphones spaced as a function of the dimensionless 
parameter kr. Figure 4.13 shows the amount of possible cancellation attain­
able with these various orientations of the dipole microphones. In general the 
curves for the cylindrically isotropic noise fields are similar to those of the 
spherically isotropic fields except that the values are higher for the cylindri­
cal case as a function of kr. This result should not be too surprising since 
the integration region has now been confined to a plane, and not over all 
spherical directions. 

Figure 4.14 shows the coherence between various orientations of cardioid 
microphones and as a function of kr. Figure 4.15 shows the amount of pos­
sible cancellation attainable with these various orientations of the cardioid 
microphones. Figure 4.16 shows the coherence between various orientations 
of omnidirectional microphones and dipole and cardioid microphones as a 
function of kr. Figure 4.17 shows the amount of possible cancellation attain­
able with these various orientations of the omnidirectional and dipole and 
cardioid microphones. Plots of coherence function for second and third-order 
dipole and cardioid microphones are shown in Figs. 4.18 and 4.19. The co­
herence functions decay more slowly for higher-order differential arrays that 
are collinear. This is due to the narrower beamwidth and the commensurate 
higher weighting of the noise field in the direction along the microphone axes. 

4.5 Conclusions 
It has been shown that adaptive noise cancellation schemes that utilize low­
order differential microphones in isotropic noise fields require care in the 
orientation of the sensors. As an example, the use of orthogonal dipole mi­
crophones or an omnidirectional and an appropriately rotated dipole micro­
phone will yield no noise cancellation at all. In general, adaptive cancellation 
will occur only for small values of kr (frequency-spacing product). It has been 
argued that strong multipath (reverberant) acoustic fields exhibit statistics 
similar to isotropic fields [10]. As a result, it should be expected that adaptive 
noise cancellation schemes will show limited SNR improvements in isotropic 
fields over a wide bandwidth. There is also the the problem of signal can­
cellation that occurs with adaptive algorithms in multipath acoustic fields 
that further limits the performance of adaptive noise cancellation in rever­
berant acoustic fields. The results presented here can be used to predict the 
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if the noise field is generated by a dominant noise source close to the micro­
phone array, i.e., the direct field of the noise dominates. 
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if the noise field is generated by a dominant noise source close to the micro-
phone array,i.e., the direct field of the noise dominates.
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Appendix A 

The numerator term of the spatial coherence function for spherically isotropic 
noise fields contains a finite series containing integrals of the following type: 

In=! [1' cosn 0e-jkrcosB sin0d8. 
2 }o 

(4.47) 
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Appendix A

The numerator term of the spatial coherence function for spherically isotropic
noise fields contains a finite series containing integrals of the following type:

Le ; [ cos” GeI Kr C08 9 sin gdp. (4.47)0



4 Spatial Coherence Functions 81 

0.8 

0.7 

0.6 

u 
~0.5 

0.4 

0.3 

0 .2 

0.1 

- 2nd-order dipole --
3rd- order dipole -

o~-~-~--~-~--~-~-~--~~~-~ 
0 2 3 4 5 

kr 
6 7 8 9 10 

Fig. 4.18. Magnitude-squared coherence for second and third-order collinear 
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This integral can be simplified by a change of variables, 

t = jkr cos 0, 

dt = -jkrsin0 d0. 
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This integral can be simplified by a change of variables,

t = jkrcos@,

dt = —jkrsin6 dé.
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Therefore, 

The integral given in (4.48) can be found in Abramowitz [7) and is 

In= 2(jk!)n+l [P(n + 1,jkr) + (-l)nP(n + 1, -jkr)], 

( 4.48) 

(4.49) 

where the function P is the normalized incomplete Gamma function, which 
can be written in series form for integer values n as [7] 

(jkr)2 (jkr)n "k 
P(n + 1,jkr) = 1- (1 + jkr + ~ + • • • + ----;r-)e-J r_ (4.50) 

Therefore the integral In is 

1 _ n! [ jkr ~ (-jkr)m _ -jkr ~ (jkr)ml 
n - 2(3"kr)n+1 e ~ ' e ~ ' . 

m=O m. m=O m. 
(4.51) 

Appendix B 

The numerator for the spatial coherence function for first-order microphones 
in a cylindrically isotropic noise field, and whose major axes are oriented at 
</>1 and </>2 with respect to the Cartesian coordinate system is 

1 /27' 
N(kr) = 21r Jo [0:1 + (1 - 0:1) cos </>1 cos</> - sin </>1 sin</>)) 

x [0:2 + (1 - 0:2) cos </>2 cos ct> - sin </>2 sin</>)) e-jkr cos </>~52) 

Expanding the integrand yields 

N(kr) = 2~ 121r { 0:10:2 

+[(0:1 - l)o:2cos</>1 + (0:2 - l)o:1cos</>2)cos</> 

+(0:1 - l)(o:2 - 1) cos </>1 cos </>2 cos2 </> 

+(0:1 - l)(o:2 - 1) sin </>1 sin ¢2 sin2 </> 

+[(0:1 - l)o:2sin</>1 + (0:2 - l)o:1sin</>2]sin</> 

+[(0:1 - l)(o:2 - 1) cos </>2 sin </>1 

+(0:1 - l)(o:2 - 1) cos </>1 sin </>2) sin</>} 

e-jkrcos</>d</>. (4.53) 
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Therefore,

1 jkr t[y= ooo tre “dt. 44"" Q(jkr)rt l. ° (4.48)
The integral given in (4.48) can be found in Abramowitz [7] and is

1
Ll, =>" DeriP(n +1, jkr) + (-1)"P(n 4+ 1, —Jjkr)], (4.49)

where the function P is the normalized incomplete Gamma, function, which
can be written in series form for integer values n as [7]

 

P(n+1,jkr) =1—(14 jkr + Oey" feed GET e—akr, (4.50)
Therefore the integral I, is

ni jkr =e —jkr (ukr}™In = (jkr)ttfJ >!tseI Yor . (4.51)m=0

Appendix B

The numerator for the spatial coherence function for first-order microphones
in a cylindrically isotropic noise field, and whose major axes are oriented at
¢, and @2 with respect to the Cartesian coordinate system is

Qn

N(kr) = - [ [a1 + (1 — a,) cos ¢; cos ¢ — sin gj sin d)]
x [a2 + (1 — a2) cos d2 cos ¢ — sin gg sin ¢)] edkr cos }4559)

Expanding the integrand yields

1 27
N(kr) = — 0109

27 Jo

+[(a1 — l)az cos ¢) + (az — 1)a1 cos d2] cos b
+(a1 — 1)(a2 — 1) cos d1 cos d2 cos”
+(a; — 1)(a2 — 1) sin g; sin de sin?
+{(a1 — lag sin d; + (a2 — 1)a1 sin d2] sin d

+[(ay — 1)(a2 — 1) cos¢2 sin $1

+(a1 — 1)(a2 — 1) cos¢1 sin 2] sin oh
eTJkr cos bag, (4.53)
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Only four of the terms in (4.53) that are symmetric in ±¢ survive in the 
integration. The first term in ( 4.53) involves 

~ {21r e-jkrcos¢d¢ = Jo(kr). 
21r lo 

The next term involves 

The next term involves 

~ { 2
1r cos2 ¢e-jkr cos ¢d¢ = Jo(kr) - h(kr). 

~k 2 

The final non-zero term involves 

~ { 2
1r sin2 ¢e-jkr cos ¢d¢ = Jo(kr) + h(kr). 

21r 10 2 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

The resulting numerator for the spatial coherence function is therefore 

N12(kr) = o:10:2Jo(kr) 

+(0:1 - l)(o:2 -1) cos¢1 cos¢2(Jo(kr) - J2(kr))/2 

+(0:1 - l)(o:2 -1) sin¢1 sin¢2(Jo(kr) + J2(kr))/2 

+j[o:2 cos ¢1 (1 - o:i) + 0:1 cos ¢2(1 - o:2)]J1 (kr). (4.58) 

Appendix C 

The numerator of the spatial coherence function for Nth-order differential 
microphones in a cylindrically correlated sound field involves integrals of the 
following form: 

(4.59) 

Abramowitz [7] defines the nth-order Bessel function of the first kind as 

Jn(kr) = (-j)n r cos(n¢)e-jkrcos¢d¢. 
1r lo (4.60) 

Therefore it remains to find the relationship between cosn ¢ and cos(n¢). 
This relationship can be easily obtained by using Euler's relation and the 
binomial theorem. Using Euler's relation, 

(4.61) 
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The final non-zero term involves

20 .

= / sin? gedkr cos Pdo =Jol}+Jatin) (4.57)T Jo

The resulting numerator for the spatial coherence function is therefore

Nio(kr) = a1a2Jo(kr)

+(a1 — 1)(a@2 — 1) cos ¢; cos do (Jo(kr) — Jo(kr))/2

+(a1 —1)(a@2 — 1) sing: sin go(Jo(kr) + Jo(kr))/2

+jla2 cos ¢1(1 — a1) + a1 cos do(1 — a2)Ji (kr). (4.58)

Appendix C

The numerator of the spatial coherence function for Nth-order differential
microphonesin a cylindrically correlated sound field involves integrals of the
following form:

I=+ [ cos” geJkr cos bag, (4.59)T Jo

Abramowitz [7] defines the nth-order Bessel function of the first kind as

Jn(kr) = co" | cos(ng)e IRF COS Pag. (4.60)0

Therefore it remains to find the relationship between cos” ¢ and cos(n@).
This relationship can be easily obtained by using Euler’s relation and the
binomial theorem. Using Euler’s relation,

cos” @ = = (</? + eJ0)" . (4.61)
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Using the binomial theorem, 

cosn </> = 21.i [ejn</> + C(n, I)ej(n - I)</>e-i<I> 

+C(n, 2)ej(n - 2)<1>e-2i<I> 

+··· 
+C(n,n - I)e-j(n - l)<l>ei<I> + e-jn</>], 

where the function C is the binomial coefficient [7] 

n! 
C(n, m) = ( _ )' 1 n m .m. 

Combining terms and invoking ( 4.60) yields 

In = 2}_, [ f e(n, m)(-j)•-2mC(n, m)Jn-2m (kr)] , n even 

(4.62) 

(4.63) 

In= 2}_, [
1•f.'<-j)•-2mC(n,m)Jn-,m(kr)] , n odd. (4.64) 

where c:(n,m) is defined as, 

c:(n, m) = 1, m-:/- n/2, 
1 = 2, m = n/2. 
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5 Robust Adaptive Beamforming 

Osamu Hoshuyama and Akihiko Sugiyama 
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Abstract. This chapter presents robust adaptive beamforming techniques designed 
specifically for microphone array applications. The basics of adaptive beamform­
ers are first reviewed with the Griffiths-Jim beamformer (GJBF). Its robustness 
problems caused by steering vector errors are then discussed with some convention­
ally proposed robust beamformers. As better solutions to the conventional robust 
beamformers, GJBFs with an adaptive blocking matrix are presented in the form of 
a microphone array. Simulation results and real-time evaluation data show that a 
new robust adaptive microphone array achieves improved robustness against steer­
ing vector errors. Good sound quality of the output signal is also confirmed by a 
subjective evaluation. 

5.1 Introduction 

Beamforming is a technique which extracts the desired signal contaminated 
by interference based on directivity, i.e. spatial signal selectivity [1]-[5]. This 
extraction is performed by processing the signals obtained by multiple sensors 
such as microphones, antennas, and sonar transducers located at different 
positions in the space. The principle of beamforming has been known for a 
long time. Because of tlie vast amount of necessary signal processing, most 
research and development effort has been focused on geological investigations 
and sonar, which can afford a higher cost. With the advent of LSI technology, 
the required amount of signal processing has become relatively small. As a 
result, a variety of research projects where acoustic beamforming is applied 
to consumer-oriented applications, have been carried out [6]. 

Applications of beamforming include microphone arrays for speech en­
hancement. The goal of speech enhancement is to remove undesirable sig­
nals such as noise and reverberation. Among research areas in the field of 
speech enhancement are teleconferencing [7]-[8], hands-free telephones [9]­
[11], hearing aids [12]-[21], speech recognition [22]-[23], intelligibility improve­
ment [24]-[25], and acoustic measurement [26]. 

Beamforming can be considered as multidimensional signal processing 
in space and time. Ideal conditions assumed in most theoretical discussions 
are not always maintained. The target DOA (direction of arrival), which is 
assumed to be stable, does change with the movement of the speaker. The 
sensor gains, which are assumed uniform, exhibit significant distribution. As 
a result, the performance obtained by beamforming may not be as good as 
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is expected. Therefore, robustness against steering-vector errors caused by 
these array imperfections are becoming more and more important. 

This chapter presents robust adaptive beamforming with the emphasis 
on microphone arrays as its application. In Section 2, the basics of adap­
tive beamformers are reviewed with the Griffiths-Jim beamformer (GJBF). 
Section 3 discusses robustness problems in the GJBF. Robust adaptive micro­
phone arrays as solutions to the robustness problem are presented in Section 
4. Finally in Section 5 evaluations of a robust adaptive microphone array are 
presented with simulation results and real-time evaluation data. 

5.2 Adaptive Beamformers 

A beamformer which adaptively forms its directivity pattern is called an 
adaptive beamformer. It simultaneously performs beam steering and null 
steering. In most acoustic beamformers, however, only null steering is per­
formed with an assumption that the target DOA is known a priori. Due 
to adaptive processing, deep nulls can be developed even when errors in the 
propagation model exist. As a result, adaptive beamformers naturally exhibit 
higher interference suppression capability than its fixed counterpart. Among 
various adaptive beamformers, the Griffiths-Jim beamformer (GJBF) [27], or 
the generalized sidelobe canceler, is most widely known. 

Figure 5.1 depicts the structure of the GJBF. It comprises a fixed beam­
former (FBF), a multiple-input canceler (MC), and a blocking matrix (BM). 
The FBF is designed to form a beam in the look direction so that the target 
signal is passed and all other signals are attenuated. On the contrary, the BM 
forms a null in the look direction so that the target signal is suppressed and 
all other signals are passed through. 

The simplest structure for the BM is a delay-and-subtract beamformer 
which was described in the previous section. Assuming a look direction per­
pendicular to the array surface, no delay element is necessary. Thus, a set 
of subtracters which take the difference between the signals at the adjacent 
microphones can be used as a BM. This structure is actually the one shown 
in Fig. 5.1. The BM was named after its function, which is to block the target 
signal. 

The MC is composed of multiple adaptive filters each of which is driven 
by a BM output, Zn(k) (n=O, 1, · · ·, N - 2). The BM outputs, Zn(k), contain 
all the signal components except that in the look direction. Based on these 
signals, the adaptive filters generate replicas of components correlated with 
the interferences. All the replicas are subtracted from a delayed output signal, 
b( k - L1 ), 1 of the fixed beamformer which has an enhanced target signal 
component. As a result, in the subtracter output y(k), the target signal is 

1 The L1 -sample delay is introduced to compensate for the signal processing delay 
in the BM and the MC. 
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enhanced and undesirable signals such as ambient noise and interferences are 
suppressed. 

The GJBF can be considered as an adaptive noise canceler with multiple 
reference signals, each of which is preprocessed by the BM. In an adaptive 
noise canceler, the auxiliary microphone is located close to the noise source 
to obtain a best possible noise reference. On the other hand, the BM in the 
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enhanced and undesirable signals such as ambient noise and interferences are
suppressed.

The GJBF can be considered as an adaptive noise canceler with multiple
reference signals, each of which is preprocessed by the BM. In an adaptive
noise canceler, the auxiliary microphoneis located close to the noise source
to obtain a best possible noise reference. On the other hand, the BM in the
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GJBF extracts, with its directivity, the signal components correlated with 
the noise. 

Figure 5.2 depicts an example directivity pattern obtained by the GJBF. 
In the direction of the target signal, almost constant gains close to O dB are 
obtained over a wide range of frequencies. On the contrary, in the direction 
of the interference, a deep null is formed. Although the directivity has fre­
quency dependency, target signal extraction and interference suppression are 
simultaneously achieved. 

With the same microphone array, adaptive beamformers generally achieve 
better interference suppression than fixed beamformers. This is because nulls 
are sharper than beams. The effect is demonstrated in Fig. 5.3, where direc­
tivity patterns of the FBF and the BM are illustrated. The null of the BM 
and the main lobe (beam) of the FBF are located in the target direction. It 
is also clear from the figure that they are orthogonal to each other. The BM 
in Fig. 5.1 has a simple delay-and-sum structure, however, a filter-and-sum 
beamformer [28,29] may also be employed. 

5.3 Robustness Problem in the GJBF 

The GJBF suffers from target-signal cancellation due to steering-vector er­
rors, which is caused by an undesirable phase difference between Xn(k) and 
Xn+i(k) for the target. A phase error leads to target signal leakage into the 
BM output signal. As a result, blocking of the target becomes incomplete, 
which results in target signal cancellation at the microphone array output. 

Steering-vector errors are inevitable because the propagation model does 
not always reflect the nonstationary physical environment. The steering vec­
tor is sensitive to errors in the microphone positions, those in the microphone 
characteristics, and those in the assumed target DOA (which is also known 
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GJBF extracts, with its directivity, the signal components correlated with
the noise.

Figure 5.2 depicts an example directivity pattern obtained by the GJBF.
In the direction of the target signal, almost constant gains close to 0 dB are
obtained over a wide range of frequencies. On the contrary, in the direction
of the interference, a deep null is formed. Although the directivity has fre-
quency dependency,target signal extraction and interference suppression are
simultaneously achieved.

With the same microphonearray, adaptive beamformers generally achieve
better interference suppression than fixed beamformers. This is because nulls
are sharper than beams. The effect is demonstrated in Fig. 5.3, where direc-
tivity patterns of the FBF and the BM areillustrated. The null of the BM
and the main lobe (beam) of the FBF are located in the target direction. It
is also clear from the figure that they are orthogonal to each other. The BM
in Fig. 5.1 has a simple delay-and-sum structure, however, a filter-and-sum
beamformer[28,29] may also be employed.

5.3. Robustness Problem in the GJBF

The GJBF suffers from target-signal cancellation due to steering-vector er-
rors, which is caused by an undesirable phase difference between 2,,(k) and
n+41(k) for the target. A phase error leads to target signal leakage into the
BM output signal. As a result, blocking of the target becomes incomplete,
which results in target signal cancellation at the microphone array output.

Steering-vector errors are inevitable because the propagation model does
not always reflect the nonstationary physical environment. The steering vec-
tor is sensitive to errors in the microphonepositions, those in the microphone
characteristics, and those in the assumed target DOA (which is also known
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as the look direction). For teleconferencing and hands-free communication in 
the car, the error in the assumed target DOA is the dominant factor. 

A variety of techniques to reduce target-signal cancellation have been pro­
posed mainly in the field of antennas and radars. The beamformers with these 
techniques are called robust beamformers. Typical approaches are reduction 
of the target-signal leakage in the BM outputs and restraint of coefficient 
growth in the MC. The former can be considered as a direct approach which 
reduces the target leakage in the BM output. The latter takes the form of an 
indirect approach. Even if there is target leakage in the BM output used as 
the MC input, the MC tries to minimize its influence. 

Techniques to reduce target-signal leakage include: 

• Target Tracking: The look direction is steered to the continuously esti­
mated DOA [30]-[32]. Mistracking to interference may occur in the ab­
sence of a target signal. 

• Multiple Constraints in BM: Multiple constraints are imposed on the BM 
so that signals from multiple DOAs are eliminated (33]. To compensate 
for the loss of the degrees of freedom for interference reduction with a 
large DOA error, additional microphones are needed. 

• Constrained Gradient for Look-Direction Sensitivity: Gradient of the sen­
sitivity at the look direction is constrained for a smaller variance of the 
sensitivity [34,35]. For a large error, loss in the degrees of freedom is 
inevitable. 

• Improved Spatial Filter: A carefully designed spatial filter is used to elim­
inate the target signal [28]. Such a spatial filter also loses degrees of free­
dom. 

Techniques that attempt to restraint excess coefficient growth include: 

• Noise Injection: Artificially-generated noise is added to the error signal 
used to update the adaptive filters in the MC. This noise causes errors in 
the adaptive filter coefficients, preventing tap coefficients from growing 
excessively [36]. A higher noise level is needed to allow a larger look­
direction error, resulting in less interference suppression. 

• Norm Constraint: The coefficient norm of the adaptive filters in the MC is 
constrained by an inequality to suppress the growth of the tap coefficients 
[37]. In spite of its simplicity, interference reduction is degraded when the 
constraint is designed to allow a large error. 

• Leaky Adaptive Algorithm: A leaky coefficient adaptation algorithm such 
as leaky LMS is used for the adaptive filters in the MC [28]. A large 
leakage is needed to allow a large look-direction error, leading to degraded 
interference-reduction. 

• Adaptation Mode Control: Coefficient adaptation in the MC is controlled 
so that adaptation is carried out only when there is no target signal [38]. 
If there is no target signal when coefficients are adapted in the MC, 
the target leakage, if any, will have no effect on the performance of the 
beamformer. 
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These methods have been developed for a small look-direction error, typ­
ically less than 10 degrees. In the case of microphone arrays, the variance 
of the target DOA is typically much larger than in antennas and radar ap­
plications. No single conventional technique for robustness is sufficient for 
microphone arrays with a larger phase errors. 

5.4 Robust Adaptive Microphone Arrays - Solutions 
to Steering-Vector Errors 

5.4.1 LAF-LAF Structure 

A target-tracking method with leaky adaptive filters (LAF) in the BM was 
proposed as a solution to target signal cancellation in [39]. It is combined 
with leaky adaptive filters in the MC [28], thereby called a LAF-LAF struc­
ture. Figure 5.4 depicts its block diagram. The leaky adaptive filters in the 
BM alleviate the influence of phase error, which results in the robustness. 
This structure can pick up a target signal with little distortion when the 
error between the actual and the assumed DOAs is not small. It does not 
need matrix products, and provides easy implementation. The nth output 
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These methods have been developed for a small look-direction error, typ-
ically less than 10 degrees. In the case of microphone arrays, the variance
of the target DOAis typically much larger than in antennas and radar ap-
plications. No single conventional technique for robustness is sufficient for
microphonearrays with a larger phase errors.

5.4 Robust Adaptive Microphone Arrays — Solutions
to Steering-Vector Errors

5.4.1 LAF-LAF Structure

A target-tracking method with leaky adaptive filters (LAF) in the BM was
proposed as a solution to target signal cancellation in [39]. It is combined
with leaky adaptive filters in the MC [28], thereby called a LAF-LAFstruc-
ture. Figure 5.4 depicts its block diagram. The leaky adaptive filters in the
BM alleviate the influence of phase error, which results in the robustness.
This structure can pick up a target signal with little distortion when the
error between the actual and the assumed DOAsis not small. It does not

need matrix products, and provides easy implementation. The nth output
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zn(k)(n = 0, 1, ... , N - 1) of the BM can be obtained as follows: 

zn(k) = Xn(k - L2) - h~(k)b(k), 

hn (k) ~ [hn,o(k), hn,l (k ), • • • , hn,M1 -1 (k )f, 
b(k) ~ [b(k), b(k - 1), ... , b(k - M1 + l)f, 

(5.1) 

(5.2) 

(5.3) 

where [·f denotes vector transpose and Xn(k) is the nth microphone signal. 
L2 is the number of delay samples for causality, hn(k) is the coefficient vector 
of the nth LAF, and b(k) is the signal vector consisting of delayed signals 
of b(k) (which is the FBF output). Each LAF is assumed to have M1 taps. 
The adaptation by the normalized LMS (NLMS) algorithm [40] is described 
as follows: 

(5.4) 

where a is the step size for the adaptation algorithm, and 8, 0 :::;: 8 :::;: 1, is the 
leakage constant. 

LAFs are also used in the MC for enhancing the robustness obtained 
in the BM. The LAFs prevent undesirable target-signal cancellation caused 
by the remaining correlation with the target signal in Zn(k). Tap coefficient 
vectors wn(k) of the MC have M2 taps and are updated by an equation 
similar to (5.4), where hn, b, and Zn(k) are replaced with Wn, Zn, and y(k), 
respectively. The leakage constant 8 and the step size a are replaced with 'Y 
and /3 respectively, and may take different values from those in (5.4). 

With the LAFs in the BM, the LAF-LAF structure adaptively controls the 
look direction, which is fixed in the GJBF. Due to robustness by the adaptive 
control of the look direction, the LAF-LAF structure does not lose degrees 
of freedom for interference reduction. Thus, no additional microphones are 
required compared to the conventional robust beamformers. Target signal 
leakage in the BM is sufficiently small to use a minimum leakage constant 'Y 
in the MC even for a large look-direction error. Such a value of 'Y leads to 
a higher interference-reduction performance in the MC. The output of the 
LAFs are summed and subtracted from an L1 sample delayed version of the 
FBF output to generate the microphone array output y(k). 

The width of the allowable DOA for the target is determined by the 
leaky constants and the step sizes in both the BM and the MC. Generally, 
smaller values of these parameters make the allowable target DOA wider. The 
allowable DOA width for the target is not a simple function of the parameters, 
however, and is not easy to prescribe. It is reported [39] that the interference 
is attenuated by more than 18 dB when it is designed, through simulations, 
to allow 20 degree directional error. Tracking may not be sufficiently precise 
for a large tracking range. Thus, there is a trade-off between the degree of 
target-signal cancellation and the amount of interference suppression. 
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5.4.2 CCAF-LAF Structure 

A more effective solution is to use coefficient-constrained adaptive filters 
(CCAFs) in the BM [41,42). When combined with leaky adaptive filters in 
the MC as depicted in Fig. 5.5, the result is called a CCAF-LAF structure. 
CCAFs behave like adaptive noise cancelers. The input signal to each CCAF 
is the output of the FBF, and the output of the CCAF is subtracted from the 
delayed microphone signal. The CCAF coefficient vectors hn(k) are adapted 
with constraints. Adaptation by the NLMS algorithm is described as follows: 

, ) Zn (k) ( ) 
h n(k+l) = hn(k + ab(k)Tb(k) bk , 

for h1 n(k+ 1) > <Pn 
for h' n(k+l) < '1/Jn 
otherwise. 

<Pn ~ [<Pn,o,<Pn,1,··· ,¢n,M1 - 1f, 

'1/Jn ~ [1/Jn,o,1/Jn,1,··· ,1Pn,M1-lf, 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

where each CCAF is assumed to have M1 taps and h' n(k+ 1) is a temporal 
coefficient vector for limiting functions. <Pn and '1/Jn are the upper and lower 
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5.4.2 CCAF-LAF Structure

A more effective solution is to use coefficient-constrained adaptive filters
(CCAFs) in the BM [41,42]. When combined with leaky adaptive filters in
the MC as depicted in Fig. 5.5, the result is called a CCAF-LAF structure.
CCAFs behavelike adaptive noise cancelers. The input signal to each CCAF
is the output of the FBF, and the output of the CCAFis subtracted from the
delayed microphonesignal. The CCAFcoefficient vectors h,() are adapted
with constraints. Adaptation by the NLMSalgorithmis described as follows:

2n(k)
h’,(k+1) = h,, (k) + Feb)Pt)»

Pn: for h’,(kK+1) > ¢,
ha(k+l)=¢ ,,  forh’,(k+1)<¥,

h’,(k+1), otherwise.

bn = [bn0,Ons°** >On,My—1]"5
wr, = [en,o, Un,1> ee Winapiaca|

(5.5)

(5.6)

(5.7)

(5.8)

where each CCAF is assumed to have M, taps and h’,(k+1) is a temporal
coefficient vector for limiting functions. @, and a, are the upper and lower
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bounds for coefficients. In the output signal zn(k), the components correlated 
with b(k) are cancelled by the CCAFs. 

Each coefficient of the CCAFs is constrained based on the fact that filter 
coefficients for target-signal minimization vary significantly with the target 
DOA. An example of filter-coefficient variation is illustrated in Fig. 5.6. By 
the design of the constrained regions of the CCAF coefficients, the maximum 
allowable look-direction error can be specified. For example, when the CCAF 
coefficients are constrained in the hatched region in Fig. 5.6, up to 20° error 
in look direction could be allowed. Only the signal that arrives from a DOA in 
the limited DOA region is minimized at the outputs of the BM and remains 
at the output of the MC. If no interference exists in the region, which is 
common with microphone arrays, no mistracking occurs. For details on the 
design of upper and lower bounds, refer to [42]. 

Figure 5. 7 illustrates a qualitative comparison between the LAF and the 
CCAF with respect to look-direction error and coefficient error from the 
optimum for signal blocking. Both the CCAF and the LAF give error char­
acteristics approximating the ideal nonlinearity for target tracking. However, 
the coefficient error of the CCAF is a better approximation to the ideal non­
linearity than that of the LAF as shown by Fig. 5.7. The coefficient error 
of the CCAF becomes effective only when the look-direction error exceeds 
the threshold, otherwise it has no effect. On the other hand, the coefficient 
error of the LAF varies continuously with the look-direction error. Therefore, 
the CCAF leads to precise target tracking, which results in sharper spatial 
selectivity and less target-signal cancellation. 

5.4.3 CCAF-NCAF Structure 

It is possible to combine the BM with CCAFs [42] and the MC with norm­
constrained adaptive filters (NCAFs) [37]. This is a CCAF-NCAF struc­
ture [43]. NCAFs subtract from b(k - £ 1 ) the components correlated with 
Zn(k) (n = 0, ... , N - 1). Let M2 be the number of taps in each NCAF, and 
let w n ( k) and Zn ( k) be the coefficient vector and the signal vector of the nth 
NCAF, respectively. The signal processing in the MC is described by 

N-1 

y(k) = b(k - L1) - L w;(k)zn(k), 
n=O 

where 

Wn(k) ,§, [wn,o(k),wn,1(k), ... ,Wn,Mr1(k)f, 

zn(k) ,§, [zn(k), Zn(k-1), ... , Zn(k-M2+l)f. 

(5.9) 

(5.10) 

(5.11) 
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Coefficients of the NCAFs are updated by an adaptive algorithm with a norm 
constraint. Adaptation with the NLMS algorithm is described as follows: 

wn(k+l) = {fifi w~ 
w' n 

for fl> K 

otherwise, 

(5.12) 

(5.13) 

(5.14) 
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Coefficients of the NCAFsare updated by an adaptive algorithm with a norm
constraint. Adaptation with the NLMSalgorithm is described as follows:

—_— y(k)wn = wo) Pag)
Q=w'iwi, (5.13)

K t

w,,(k+1) = vi We fee (5.14)

Zn(k), (5.12)

wi, otherwise,
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where f3 and w~ are a step size and a temporal vector for the constraint, 
respectively. D and Kare the total squared-norm of wn(k) and a threshold. 
If D exceeds K, w n ( k + 1) are restrained by scaling. The norm constraint by 
scaling restrains excess growth of tap coefficients. The restraint inhibits the 
undesirable target cancellation when the target signal leaks into the NCAF 
inputs. If the outputs of the BM have no target signal, the MC cancels only 
the interference signals. In this ideal case, a norm constraint in the MC is not 
needed. However, complete rejection of the target signal is almost impossible 
in the BM, because actual environments have reflection and reverberation. 
To completely cancel the target signal in a reverberant environment, more 
than 1,000 taps are needed for each CCAF in the BM. Such a large number of 
taps leads to slow convergence, large misadjustment, and increased compu­
tation. Even with a high-speed processor and a fast convergence algorithm, 
misadjustment with the adaptive filters is inevitable. Adaptation with a low 
signal-to-interference ratio (SIR) causes additional misadjustment by the in­
terference, which leads to leakage of the target signal at the BM outputs. 
Therefore, to avoid the target signal cancellation by leakage, a restraint with 
the MC such as the NCAF is essential. Because the CCAF-NCAF structure 
loses no degrees of freedom for interference reduction in the BM, it is robust 
to large look-direction errors with a small number of microphones. 

5.4.4 CCAF-NCAF Structure with an AMC 

Adaptations in the BM and in the MC should be performed alternately. 
This is because the relationship between the desired signal and the noise for 
the adaptation algorithm in the BM is contrary to that in the MC. For the 
adaptation algorithm in the BM, the target signal is the desired signal and 
the noise is the undesired signal. In the MC, however, the noise is the desired 
signal and the target signal is the undesired signal. 

In the robust adaptive beamformers discussed so far, it was implicitly 
assumed that adaptive filters in the BM are adapted only when the target is 
active and those in the MC are adapted only when the target is inactive. In 
a real environment, however, the situation is not so simple, since incorrect 
adaptation of the BM may cause incomplete target blocking. As a result, 
the MC directivity may have a null in the direction of the target signal, 
resulting in target-signal cancellation. Combined with target tracking by the 
BM, adapting coefficients only when the target signal is absent is an effective 
strategy for adding robustness to adaptive beamforming [38]-(45]. In order 
to discriminate active and inactive periods of the target, an adaptation mode 
controller (AMC) is necessary. 

The CCAF-NCAF structure with an AMC [46] depicted in Fig. 5.8 uses 
a mixed approach of the BM with CCAFs, the MC with NCAFs [37], and an 
AMC. A BM consisting of CCAFs provides a wider null for the target with 
sharper edges than leaky adaptive filters. An MC comprising NCAFs reduces 
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The AMC controls adaptation of the BM and the MC by target-signal 
detection based on an estimate of the SIR (46]. The SIR is estimated as a 
power ratio of the output signal b(k) of the FBF, to the output signal zn(k) 
of the BM. The main component in the FBF output is the target signal and 
that in the BM output is the noise. Therefore, the power ratio s(k) can be 
considered as a direct estimate of the SIR. When the ratio is larger than a 
threshold T/ , the adaptation of the BM is performed. Otherwise, the MC is 
adapted. 

5.5 Software Evaluation of a Robust Adaptive 
Microphone Array 

The GJBF with CCAF-NCAF structure combined with an AMC (GJBF­
CNA) was evaluated in a computer-simulated anechoic environment and in 
a real environment with reverberation. In the former environment, it was 
compared with conventional beamformers in terms of sensitivity pattern. In 
the latter environment, it was evaluated objectively by SIR and subjectively 
by mean opinion score (MOS). 
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5.5.1 Simulated Anechoic Environment 

A four-channel equi-spaced broadside array was used for these simulations. 
The spacing between microphones was 4.1 cm.The sampling rate was 8 kHz. 
The FBF used was a simple beamformer whose output is given by 

l N-1 

b(k) = N L Xn(k) . 
n=O 

(5.15) 
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The AMC controls adaptation of the BM and the MCbytarget-signal
detection based on an estimate of the SIR [46]. The SIR is estimated as a
powerratio of the output signal b(k) of the FBF, to the output signal z,(k)
of the BM. The main componentin the FBF output is the target signal and
that in the BM output is the noise. Therefore, the power ratio s(k) can be
considered as a direct estimate of the SIR. When theratio is larger than a
threshold 7, the adaptation of the BM is performed. Otherwise, the MC is
adapted.

5.5 Software Evaluation of a Robust Adaptive
Microphone Array

The GJBF with CCAF-NCAFstructure combined with an AMC (GJBF-
CNA) was evaluated in a computer-simulated anechoic environment and in
a real environment with reverberation. In the former environment, it was
compared with conventional beamformers in termsof sensitivity pattern. In
the latter environment, it was evaluated objectively by SIR and subjectively
by mean opinion score (MOS).
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5.5.1 Simulated Anechoic Environment

A four-channel equi-spaced broadside array was used for these simulations.
The spacing between microphones was 4.1 cm.The sampling rate was 8 kHz.
The FBF used was a simple beamformer whose outputis given by

b(k) = + S— tn(k). (5.15)
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The first simulation investigated sensitivity (after convergence) as a func­
tion of t he single-sided DOA. Band-limited (0.3- 3.7 kHz) Gaussian signals 
were used, and the assumed target direction was 0° . The maximum allowable 
target-direction error was 20°, unless otherwise stated. The number of coef­
ficients for all the CCAFs and all the NCAFs was 16. The parameters were 
L1 =10, L2 =5, K =10.0, o:=0.1, and /3=0.2. The constraints of the CCAF were 
set based on the arrangement of the simulated array and maximum allowable 
target-direction errors. Total output powers after convergence, normalized by 
the power of the assumed target direction, are plotted in Fig. 5.9. 

The plots are of the FBF (FBF), simple GJBF [27] (GJBF), norm con­
strained method [37] (Norm Constrained), and the GJBF-CNA (Proposed). 
The solid line D shows that the GJBF-CNA achieves both robustness against 
20° target-direction error and high interference-reduction performance (which 
is 30 dB at 0=±30°). Similar results for a colored signal instead of the band­
limited Gaussian signal have been obtained [43]. The directivity pattern of 
the GJBF-CNA is slightly degraded for a colored signal. However, the degra­
dation by the norm-constrained method is more serious. This fact shows that 
the GJBF-CNA exhibits robustness to the power spectrum of input signal. 
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Fig. 5.10. Sensitivities after convergence as a function of DOA at different frequen­
cies. 

Frequency dependency of the directivity pattern is shown in Fig. 5.10. 
In this figure, sensitivities to the frequency component of the target signal 
are plotted. Frequency dependency of the GJBF-CNA is small, and thus, 
the GJBF-CNA is suitable for broadband applications such as microphone 
arrays. The widths of the high-sensitivity regions are almost the same as the 
allowable target-direction error (-20° < 0 < 20°) and the sensitivity in the 
region is constant. 
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tion of the single-sided DOA. Band-limited (0.3-3.7 kHz) Gaussian signals
were used, and the assumed target direction was 0°. The maximum allowable
target-direction error was 20°, unless otherwise stated. The numberof coef-
ficients for all the CCAFs and all the NCAFs was 16. The parameters were
L,=10, L2=5, K=10.0, a=0.1, and S=0.2. The constraints of the CCAF were
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target-direction errors. Total output powers after convergence, normalized by
the power of the assumed target direction, are plotted in Fig. 5.9.
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strained method [37] (Norm Constrained), and the GJBF-CNA (Proposed).
Thesolid line D shows that the GJBF-CNAachieves both robustness against
20° target-direction error and high interference-reduction performance (which
is 30 dB at 6=+30°). Similar results for a colored signal instead of the band-
limited Gaussian signal have been obtained [43]. The directivity pattern of
the GJBF-CNAis slightly degraded for a colored signal. However, the degra-
dation by the norm-constrained method is more serious. This fact shows that
the GJBF-CNA exhibits robustness to the power spectrum of input signal.
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Frequency dependency of the directivity pattern is shown in Fig. 5.10.
In this figure, sensitivities to the frequency component of the target signal
are plotted. Frequency dependency of the GJBF-CNA is small, and thus,
the GJBF-CNAis suitable for broadband applications such as microphone
arrays. The widthsof the high-sensitivity regions are almost the same as the
allowable target-direction error (—20° < @ < 20°) and the sensitivity in the
region is constant.
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In the second simulation, sensitivities for different SIRs were investigated. 
The simulation was performed with amplitude control that was similar to a 
realistic scenario. A target signal source generated a band-limited white Gaus­
sian signal for the first 50,000 iterations and then stopped. This is a simple 
simulation of burst characteristics like speech. Another bandlimited white 
Gaussian signal, which imitates an interference like airconditioner noise, ex­
isted throughout the simulation. The SIR is defined as a power ratio of the 
two signals. The target signal source was placed about 10° off the assumed 
target DOA and the DOA of the interfering signal source was scanned. 

Figure 5.11 shows normalized output power after convergence as a func­
tion of interference DOA. Lines G and H have a sharp peak at 0 = 10°, which 
indicates that the target-signal at the output of the BM is sufficiently mini­
mized for the overall robustness. Therefore, when SIR is higher than about 
lOdB (which is lower than a typical SIR value expected in teleconference) the 
interference is suppressed even if it arrives from a direction in the allowable 
target DOA region. When the interference comes from outside the allowable 
target DOA region, even an SIR of O dB causes almost no problem in the 
GJBF-CNA. 

Finally, Fig. 5.12 shows the total output powers for various coefficient 
constraints with the CCAFs. The signal was bandlimited white Gaussian 
noise. The allowable target-direction errors are approximately 4, 6, 9, 12, 16, 
and 20 degrees. These lines demonstrate that the allowable target-direction 
error can be specified by the user. 

5.5.2 Reverberant Environment 

Simulations with real sound data captured in a reverberant environment were 
also performed. The data were recorded with a broad-side linear array. Four 
omni-directional microphones without calibration were mounted on a univer­
sal printed circuit board with an equal spacing of 4.1 cm. The signal of each 
microphone was bandlimited between 0.3 and 3.4 kHz and sampled at 8 kHz. 
The number of taps was 16 for both the CCAFs and NCAFs. 

Figure 5.13 illustrates the arrangement for sound-data acquisition. The 
target source was located in front of the array at a distance of 2.0 m. A white 
noise source was placed about 0 = 45° off the target DOA at a distance of 
2.0 m. The reverberation time of the room was about 0.3 second, which is 
common with actual small offices. All the parameters except the step-sizes 
were the same as those in the previous subsection. The target source was an 
English male speech signal. 

Objective Evaluation 

Output powers for the FBF, the GJBF [27] (GJBF), and the norm-constrained 
method [37] (Norm Constrained) after convergence are shown in Fig. 5.14. 
The step-size a for the CCAFs was 0.02 and (J for the NCAFs was 0.004. 
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These step-sizes were selected so that breathing noise and cancellation of the 
target signal are sufficiently small subjectively. All other parameters were 
selected based on the microphone arrangement. If there is any difference be­
tween trajectory A and any of B, C, D, E, or F when the voice is active 
(sample index from 1,720,000 to 1,740,000), the target signal corresponding 
to the trajectory is partially cancelled. The FBF (B) causes almost no target­
signal cancellation. With the GJBF (C) , cancellation of the target signal is 
serious. With the the norm-constrained method (D) , and the GJBF-CNA 
(E) , the cancellation of target signal was 2dB, which is subjectively small. 

The output powers during voice absence (after sample index 1,760,000) 
indicate the interference-reduction ratio (IRR) . The IRR of the FBF is 3dB, 
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These step-sizes were selected so that breathing noise and cancellation of the
target signal are sufficiently small subjectively. All other parameters were
selected based on the microphone arrangement.If there is any difference be-
tween trajectory A and any of B, C, D, E, or F when the voice is active
(sample index from 1,720,000 to 1,740,000), the target signal corresponding
to the trajectory is partially cancelled. The FBF (B) causes almost no target-
signal cancellation. With the GJBF (C), cancellation of the target signal is
serious. With the the norm-constrained method (D), and the GJBF-CNA
(E), the cancellation of target signal was 2dB, which is subjectively small.

The output powers during voice absence (after sample index 1,760,000)
indicate the interference-reduction ratio (IRR). The IRR of the FBFis 3dB,



~ 0 

I Q. -10 
'5 
% o -20 

5 Robust Adaptive Beamforming 103 

' eft-OSM .. 
Target Source = ~ 
(Male Speech)= 

Interference 

2.0m 
~ (White Noise) 

' -~~--··· 
" Reflection Board 

30cm 

4.1cm -0000 

4 Microphones 

Fig. 5.13. Experimental set-up. 

-30 l...:=========r====::i----___i::_ ___ _J 
1,680,000 1,700,000 1,720,000 1,740,000 1,760,000 1,780,000 

Sample Index 

Fig. 5.14. Output Powers for a male speech signal and white noise. 

and that of the norm-constrained method is 9dB. On the other hand, with 
the GJBF-CNA (F), the IRR is as much as 19dB. 

Subjective Evaluation 

MOS evaluation by 10 nonprofessional subjects was performed based on [47]. 
As anchors, the signal recorded by a single microphone was used for grade 1 
and the original male speech without interference for grade 5. Subjects were 
instructed that target-signal cancellation should obtain a low score. 

Evaluation results are shown in Fig. 5.15. The thick horizontal line on 
each bar and the number on it represent the score obtained by the corre­
sponding method. The vertical hatched box on each bar indicates ± one 
standard deviation. The FBF obtained l. 7 points because the number of 
microphones is so small that its IRR is low. The GJBF reduced the interfer-
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and that of the norm-constrained method is 9dB. On the other hand, with
the GJBF-CNA (F), the IRR is as much as 19dB.

Subjective Evaluation

MOSevaluation by 10 nonprofessional subjects was performed based on [47].
As anchors, the signal recorded by a single microphone was used for grade 1
and the original male speech without interference for grade 5. Subjects were
instructed that target-signal cancellation should obtain a low score.

Evaluation results are shown in Fig. 5.15. The thick horizontal line on
each bar and the number on it represent the score obtained by the corre-
sponding method. The vertical hatched box on each bar indicates + one
standard deviation. The FBF obtained 1.7 points because the number of
microphonesis so small that its IRR is low. The GJBF reduced the interfer-



104 Hoshuyama and Sugiyama 

s~-----------------~ 

~ 
8 4 

(/) 

C 
0 
·c: 3 ·a. 
0 
C 
111 
~ 2 

. 3.8-

2.8 
2.6 

1.2 

Single 
Mic. 

FBF GJBF Norm Proposed 
Constrained 

Fig. 5.15. Mean opinion score results. 

ence considerably with serious target signal cancellation, thus, it was scored 
2.8 points. The norm-constrained method was scored 2.6 points for its 9dB 
interference-reduction capability. The GJBF-CNA obtained 3.8 points, which 
is the highest of all the beamformers. 

5.6 Hardware Evaluation of a Robust Adaptive 
Microphone Array 

5.6.1 Implementation 

The GJBF-CN A was implemented on a portable and flexible DSP system 
shown in Fig. 5.16 (48,49]. The system comprises a microphone array and 
a compact touch-panel personal computer which includes a floating point 
DSP, the ADSP-21062 (50]. The DSP contains a dual on-chip 2-Mbit SRAM 
and allows 32-bit IEEE floating-point computation. The sampling rate was 
software-programmed at 8 kHz. 

The DSP board has a PCI (Peripheral Component Interconnect) interface, 
therefore, it can be connected to the PCI bus of any personal computer. A 
graphical interface has been developed to facilitate ease-of-use and monitoring 
of the implemented GJBF-CNA. It provides interactive parameter selection 
and displays the input and the output signals powers as well as the filter 
coefficients. This graphical display is useful for demonstrating the behavior 
of the GJBF-CNA and its performance. The system is shown in Fig. 5.16 

5.6.2 Evaluation in a Real Environment 

The GJBF-CNA in Fig. 5.16 was evaluated using the same linear microphone 
array as in the previous section. The selected step sizes were 0.02 for the ABM 
and 0.005 for the MC. The threshold TJ = 0.65 was used for the AMC. All 
other parameters were the same as those in the previous section. 
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Fig. 5.16. Real-time DSP system. 
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Directivity 

Directivity for a single signal-source was measured. A white-noise source was 
scanned in two directions from 0° to 50° at a distance of 2.0 m from the 
array. Output powers of the system were measured in 5-degree intervals, and 
compared with those of a single microphone and an FBF ( delay-and-sum 
beamformer). Figure 5.17 shows the output powers normalized by the power 
at the center. The figure indicates that the GJBF-CN A can suppress the 
interference at 0 = 30° by as much as 15 dB when the allowable target DOA 
is set to ±20 degrees. 

Noise Reduction 

Noise reduction capability was evaluated in the same room as that for direc­
tivity evaluation. There were several computers with noisy fans. In addition, 
two noise-generating loudspeakers were located on both sides of the array. 
Stereo music or white noise was used as the noise signal. 

In the beginning, breathing noise due to adaptation was observed at al­
most every utterance. It disappeared in a second and caused almost no prob­
lem for conversation. Although the degree of noise reduction depends on the 
loudspeaker positions, it was typically 8 to 1 dB. These results confirm that 
the GJBF-CNA is a promising technique for voice communications. 

5. 7 Conclusion 

An overview of robust adaptive beamforming techniques have been presented 
in this chapter, with an emphasis on systems that are robust to steering-vector 
errors. It has been shown that the GJBF with the CCAF-NCAF structure 
and an AMC (GJBF-CNA) is effective in a real environment. Integrated 
systems with a microphone array, a noise canceler, and an echo canceler will 
play a key role in future acoustic noise and echo control devices. 
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Abstract. Talker localization with microphone arrays has received significant at­
tention lately as a means for the automated tracking of individuals in an enclo­
sure and as a necessary component of any general purpose speech capture system. 
Several algorithmic approaches are available for speech source localization with 
multi-channel data. This chapter summarizes the current field and comments on 
the general merits and shortcomings of each genre. A new localization method is 
then presented in detail. By utilizing key features of existing methods, this new 
algorithm is shown to be significantly more robust to acoustical conditions, par­
ticularly reverberation effects, than the traditional localization techniques in use 
today. 

8.1 Introduction 

The primary goal of a speech localization system is accuracy. In general, es­
timate precision is dependent upon a number of factors. Major issues include 
(1) the quantity and quality of microphones employed, (2) microphone place­
ment relative to each other and the speech sources to be analyzed, (3) the 
ambient noise and reverberation levels, and (4) the number of active sources 
and their spectral content. The performance of localization techniques gen­
erally improves with the number of microphones in the array, particularly 
when adverse acoustic effects are present. This has spawned the research 
and construction of large array systems (e.g. 512 elements) [1). However, 
when acoustic conditions are favorable and the microphones are positioned 
judiciously, source localization can be performed adequately using a modest 
number ( e.g. 4 elements) of microphones. Performance is clearly affected by 
the array geometry. The optimal design of the array based on localization cri­
teria is typically dependent on the room layout, speaking scenarios, and the 
acoustic conditions [2]. In practice, many of these design considerations are 
very dependent on the specific application conditions, the hardware avail­
able, and non-scientific cost criteria. In an effort to make its applicability 
as general as possible, this chapter will focus primarily on speech localiza­
tion effectiveness as a function of the acoustic degradations present, namely 
background noise and reverberations, rather than attempt to address more 
specific environmental scenarios. 

In addition to high accuracy, these location estimates must be updated 
frequently in order to be useful in practical tracking and beamforming appli-
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cations. Consider the problem of beamforming to a moving speech source. It 
has been shown that for sources in close proximity to the microphones, the 
array aiming location must be accurate to within a few centimeters to pre­
vent high-frequency rolloff in the received signal [3] and to allow for effective 
channel equalization [4]. A practical beamformer must therefore be capable of 
including a continuous and accurate location procedure within its algorithm. 
This requirement necessitates the use of a location estimator capable of fine 
resolution at a high update rate. Additionally, any such estimator would have 
to be computationally non-demanding and possess a short processing latency 
to make it practical for real-time systems. 

These factors place tight constraints on the microphone data require­
ments. While the computation time required by the algorithm largely de­
termines the latency of the locator, it is the data requirements that define 
theoretical limits. The work in [5], for example, focuses on reducing the size 
of the data segments necessary for accurate source localization in realistic 
room environments. 

The goal of this chapter is to detail the issues associated with the problem 
of speech source localization in reverberant and noisy rooms and to present 
an effective methodology for its solution. While the focus will be the single­
source scenario, the techniques described, in many cases, are applicable to 
situations where several individuals are conversing. The more general prob­
lem of simultaneous, multi-talker localization is addressed further in Chap­
ter 9. The following section contains a summary of the existing genres for 
speech source localization using microphone arrays and highlights their rel­
ative merits. It is followed in Section 8.3 by the development of a speech 
source localization algorithm designed specifically for reverberant enclosures 
which combines two of these general approaches. Section 8.4 then offers some 
experimental results and conclusions. 

8.2 Source Localization Strategies 

Existing source localization procedures may be loosely divided into three 
general categories: those based upon maximizing the steered response 
power (SRP) of a beamformer, techniques adopting high-resolution spec­
tral estimation concepts, and approaches employing time-difference of arrival 
(TDOA) information. These broad classifications are delineated by their ap­
plication environment and method of estimation. The first refers to any situ­
ation where the location estimate is derived directly from a filtered, weighted, 
and summed version of the signal data received at the sensors. The second 
will be used to term any localization scheme relying upon an application of 
the signal correlation matrix. The last category includes procedures which 
calculate source locations from a set of delay estimates measured across var­
ious combinations of microphones. 
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8.2.1 Steered-Beamformer-Based Locators 

The first categorization applies to passive arrays for which the system in­
put is an acoustic signal produced by the source. The optimal Maximum 
Likelihood (ML) location estimator in this situation amounts to a focused 
beamformer which steers the array to various locations and searches for a 
peak in output power. Termed focalization, derivations of the optimality of 
the procedure and variations thereof are presented in [6-8]. Theoretical and 
practical variance bounds obtained via focalization are detailed in [6,7,9] and 
the steered-beamformer approach has been extended to the case of multiple­
signal sources in [10]. 

The simplest type of steered response is obtained using the output of a 
delay-and-sum beamformer. This is what is most often referred to as a con­
ventional beamformer. Delay-and-sum beamformers apply time shifts to the 
array signals to compensate for the propagation delays in the arrival of the 
source signal at each microphone. These signals are time-aligned and summed 
together to form a single output signal. More sophisticated beamformers ap­
ply filters to the array signals as well as this time alignment. The derivation 
of the filters in these filter-and-sum beamformers is what distinguishes one 
method from another. 

Beamforming has been used extensively in speech-array applications for 
voice capture. However, due to the efficiency and satisfactory performance 
of other methods, it has rarely been applied to the talker localization prob­
lem. The physical realization of the ML estimator requires the solution of 
a nonlinear optimization problem. The use of standard iterative optimiza­
tion methods, such as steepest descent and Newton-Raphson, for this pro­
cess was addressed by [10]. A shortcoming of each of these approaches is 
that the objective function to be minimized does not have a strong global 
peak and frequently contains several local maxima. As a result, this genre 
of efficient search methods is often inaccurate and extremely sensitive to the 
initial search location. In [11] an optimization method appropriate for a multi­
modal objective function, Stochastic Region Contraction (SRC), was applied 
specifically to the talker localization problem. While improving the robust­
ness of the location estimate, the resulting search method involved an order 
of magnitude more evaluations of the objective function in comparison to 
the less robust search techniques. Overall, the computational requirements of 
the focalization-based ML estimator, namely the complexity of the objective 
function itself as well as the relative inefficiency of an appropriate optimiza­
tion procedure, prohibit its use in the majority of practical, real-time source 
locators. 

Furthermore, the steered response of a conventional beamformer is highly 
dependent on the spectral content of the source signal. Many optimal deriva­
tions are based on a priori knowledge of the spectral content of the back­
ground noise, as well as the source signal [7,8]. In the presence of significant 
reverberation, the noise and source signals are highly correlated, making ac-
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curate estimation of the noise infeasible. Furthermore, in nearly all array­
applications, little or nothing is known about the source signal. Hence, such 
optimal estimators are not very practical in realistic speech-array environ­
ments. 

The practical shortcomings of applying correlation-based localization es­
timation techniques without a great deal of intelligent pruning is typified by 
the system produced in [12]. In this work a sub-optimal version of the ML 
steered-beamformer estimator was adapted for the talker-location problem. 
A source localization algorithm based on multi-rate interpolation of the sum 
of cross-correlations of many microphone pairs was implemented in conjunc­
tion with a real-time beamformer. However, because of the computational 
requirements of the procedure, it was not possible to obtain the accuracy 
and update rate required for effective beamforming in real-time given the 
hardware available. 

8.2.2 High-Resolution Spectral-Estimation-Based Locators 

This second categorization of location estimation techniques includes the 
modern beamforming methods adapted from the field of high-resolution spec­
tral analysis: autoregressive (AR) modeling, minimum variance (MV) spec­
tral estimation, and the variety of eigenanalysis-based techniques (of which 
the popular MUSIC algorithm is an example). Detailed summaries of these 
approaches may be found in [13,14]. While these approaches have success­
fully found their way into a variety of array processing applications, they all 
possess certain restrictions that have been found to limit their effectiveness 
with the speech-source localization problem addressed here. 

Each of these high-resolution processes is based upon the spatiospectral 
correlation matrix derived from the signals received at the sensors. When ex­
act knowledge of this matrix is unknown (which is most always the case), it 
must be estimated from the observed data. This is done via ensemble averag­
ing of the signals over an interval in which the sources and noise are assumed 
to be statistically stationary and their estimation parameters (location in this 
case) are assumed to be fixed. For speech sources, fulfilling these conditions 
while allowing sufficient averaging can be very problematic in practice. 

With regard to the localization problem at hand, these methods were 
developed in the context of far-field plane waves projecting onto a linear array. 
While the MV and MUSIC algorithms have been shown to be extendible to 
the case of general array geometries and near-field sources [15], the AR model 
and certain eigenanalysis approaches are limited to the far-field, uniform 
linear array situation. 

With regard to the issue of computational expense, a search of the lo­
cation space is required in each of these scenarios. While the computational 
complexity at each iteration is not as demanding as the case of the steered­
beamformer, the objective space typically consists of sharp peaks. This prop­
erty precludes the use of iteratively efficient optimization methods. The sit-
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uation is compounded if a more complex source model is adopted (incorpo­
rating source orientation or head radiator effects, for instance) in an effort to 
improve algorithm performance. Additionally, it should be noted that these 
high-resolution methods are all designed for narrowband signals. They can 
be extended to wideband signals, including speech, either through simple 
serial application of the narrowband methods or more sophisticated general­
izations of these approaches, such as (16-18). Either of these routes extends 
the computational requirements considerably. 

These algorithms tend to be significantly less robust to source and sen­
sor modeling errors than conventional beamforming methods (19,20). The 
incorporated models typically assume ideal source radiators, uniform sensor 
channel characteristics, and exact knowledge of the sensor positions. Such 
conditions are impossible to obtain in real-world environments. While the sen­
sitivity of these high-resolution methods to the modeling assumptions may be 
reduced, it is at the cost of performance. Additionally, signal coherence, such 
as that created by the reverberation conditions of primary concern here, is 
detrimental to algorithmic performance, particularly that of the eigenanalysis 
approaches. This situation may be improved via signal processing resources, 
but again at the cost of decreased resolution[21). Primarily for these reasons, 
localization methods based upon these high-resolution strategies will not con­
sidered further in this work. However, this should not exclude their judicious 
use in other speech localization contexts, particularly multi-source scenarios. 

8.2.3 TDOA-Based Locators 

With this third localization strategy, a two-step procedure is adopted. Time 
delay estimation (TDE) of the speech signals relative to pairs of spatially 
separated microphones is performed. This data along with knowledge of the 
microphone positions are then used to generate hyperbolic curves which are 
then intersected in some optimal sense to arrive at a source location estimate. 
A number of variations on this principle have been developed, [22-28) are 
examples. They differ considerably in the method of derivation, the extent 
of their applicability (2-D vs. 3-D, near source vs. distant source, etc.), and 
their means of solution. Primarily because of their computational practicality 
and reasonable performance under amicable conditions, the bulk of passive 
talker localization systems in use today are TDOA-based. 

Accurate and robust TDE is the key to the effectiveness of localizers 
within this genre. The two major sources of signal degradation which com­
plicate this estimation problem are background noise and channel multi-path 
due to room reverberations. The noise-alone case has been addressed at length 
and is well understood. Assuming uncorrelated, stationary Gaussian signal 
and noise sources with known statistics and no multi-path, the ML time-delay 
estimate is derived from a SNR-weighted version of the Generalized Cross­
Correlation (GCC) function [29). An ML-type weighting appropriate for non­
stationary speech sources was presented in [30) and applied successfully to 
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speech source localization in low-multipath environments [31]. However, once 
room reverberations rise above minimal levels, these methods begin to ex­
hibit dramatic performance degradations and become unreliable [32,33]. A 
basic approach to dealing with multi-path channel distortions in this con­
text has been to make the GCC function more robust by deemphasizing the 
frequency-dependent weightings. The Phase Transform (PHAT) [29] is one 
extreme of this procedure which has received considerable attention recently 
as the basis of speech source localization systems [34-36]. By placing equal 
emphasis on each component of the cross-spectrum phase, the resulting peak 
in the GCC-PHAT function corresponds to the dominant delay in the rever­
berated signal. While effective at reducing some of the degradations due to 
multi-path, the Phase Transform accentuates components of the spectrum 
with poor SNR and has the potential to provide poor results, particularly 
under low reverberation, high noise conditions. 

Other approaches for TDE of talkers in adverse environments are avail­
able. A procedure which utilizes a speech specific criterion in the design of 
the GCC weighting function is presented in [37]. Cepstral prefiltering [38] has 
been used to deconvolve the effects of reverberation prior to applying GCC. 
However, deconvolution requires long data segments since the duration of 
a typical small-room impulse response is 200-400 ms. It is also very sensi­
tive to the high variability and non-stationarity of speech signals. In fact, 
the experiments performed in [38] avoided the use of speech as input alto­
gether. Instead, colored Gaussian noise was used as the source signal. While 
identification of room impulse responses is extremely problematic when the 
source signal is unknown, the method proposed in [24], which is based on 
eigenvalue decomposition, efficiently detects the direct paths of the two im­
pulse responses. This method is effective with speech as input, but requires 
250 ms of microphone data to converge. A short-time TDE method, which 
is more complex than GCC, is presented in [33]. It involves the minimiza­
tion of a weighted least-squares function of the phase data. It was shown 
to outperform both GCC-ML and GCC-PHAT in reverberant conditions. 
However, this improvement comes at the cost of a complicated searching al­
gorithm. The marginal improvement over GCC-PHAT may not justify this 
added cost in computational complexity. Reverberation effects can also be 
overcome to some degree by classifying TDE's acquired over time and as­
sociating them with the direction of arrival (DOA) of the sound waves [39]. 
This approach, however, is not suitable for short-time TDE. Under extreme 
acoustic conditions, a large percentage of the TDE's are anomalous, and it 
takes a considerable period (1-2 s in [39]) to acquire enough estimates for a 
statistically meaningful classification. 

Among the methods summarized above, those that rely on long data seg­
ments generally outperform those that do not. This result may be attributed 
to the ensemble averaging performed under these conditions to improve the 
quality of the underlying signal statistics. However, the dynamic environ-
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ments of many speech array applications require high update rates, which 
limit the duration of the data segments used for analysis. For example, the 
automatic camera steering video-conferencing system detailed in (34] utilizes 
a TDOA-based method with GCC-PHAT TDE applied at update rates of 
200-300 ms. With such long data segments, reliable estimates are produced, 
even in moderately adverse acoustic conditions. However, applications such 
as adaptive beamforming and the tracking of multiple talkers using a TDOA­
based localizer require an appreciably higher estimate rate; source positions 
must be acquired from independent data segments as short as 20-30 ms. Over 
such limited durations, the lack of ensemble averaging has a severe impact 
on the performance of the TDE. 

Given a set of TDOA figures with known error statistics, the second step 
of obtaining the ML location estimate necessitates solving a set of nonlinear 
equations. The calculation of this result is considerably less computationally 
expensive than that required for estimators belonging to the two previously 
discussed genres. There is an extensive class of sub-optimal, closed-form loca­
tion estimators. designed to approximate the exact solution to the nonlinear 
problem. These techniques are computationally undemanding and, in many 
cases, suffer little detriment in performance relative to their more compute­
intensive counterparts. [22,25-28,40,41] are typical of these methods. Re­
gardless of the solution method employed, this third class of location esti­
mation techniques possesses a significant computational advantage over the 
steered-beamformer or high-resolution spectral-estimation based approaches. 

TDOA-based locators do present several disadvantages when used as the 
basis of a general localization scheme. Their primary limitation is the inability 
to accommodate multi-source scenarios. These algorithms assume a single­
source model. While TDOA-based methods with short analysis intervals may 
be used to track several individuals in a conversational situation [31,42], 
the presence of multiple simultaneous talkers, excessive ambient noise, or 
moderate to high reverberation levels in the acoustic field typically results 
in poor TDOA figures and subsequently, unreliable location fixes. A TDOA­
based locator operating in such an environment would require a means for 
evaluating the validity and accuracy of the delay and location estimates. 
These shortcomings may be overcome to some degree through judicious use 
of appropriate detection methods at each stage in the process [31]. 

While practical, the application of TDOA-based localization procedures 
is of limited utility in realistic, acoustic environments. Steered-Beamformer 
strategies are computationally more intensive, but tend to possess a robust­
ness advantage and require a shorter analysis interval. The two-stage pro­
cess requiring time-delay estimation prior to the actual location evaluation is 
suboptimal. The intermediate signal parameterization accomplished by the 
TDOA estimation procedure represents a significant data reduction at the 
expense of a decrease in theoretical localization performance. However, in 
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real situations the performance advantage inherent in the optimal steered­
beamformer estimator is lessened because of incomplete knowledge of the 
signal and noise spectral content as well as unrealistic stationarity assump­
tions. 

With these relative advantages and shortcomings in mind, a new local­
ization method, which combines the best features of the steered-beamformer 
with those of the Phase Transform weighting of the GCC, was introduced 
in [5]. The goal was to exploit the inherent robustness and short-time anal­
ysis characteristics of the steered response power approach with the insen­
sitivity to signal conditions afforded by the Phase Transform. This new al­
gorithm, termed SRP-PHAT, will be detailed in the following section and 
will be shown to produce highly reliable location estimates in rooms with 
reverberation times up to 200 ms, using independent 25 ms data segments. 

8.3 A Robust Localization Algorithm 

Before describing the SRP-PHAT algorithm, it will be necessary to develop 
further a number of topics addressed in the prior section. Specifically, the 
following subsections will provide details of the impulse response model, the 
GCC and its PHAT implementation, ML TDOA-based localization, and the 
computation of the SRP. These items will then be tied together in the final 
subsection to motivate and define the SRP-PHAT algorithm. 

8.3.1 The Impulse Response Model 

It will be assumed that sound waves propagate as predicted by the linear 
wave equation [43]. With this assumption, the acoustic paths between sound 
sources and microphones can be modeled as linear systems [44]. This is clearly 
advantageous to the analysis and modeling of the signals produced by the mi­
crophones of an array. Such linear models are valid under the realistic condi­
tions encountered in small-room speech-array environments and are regularly 
exploited by array-processing techniques [13]. 

In the presence of sound-reflecting surfaces, the sound waves produced 
by a single source propagate along multiple acoustic paths. This gives rise 
to the familiar effects of reverberation; sounds reflect off objects and pro­
duce echoes. The walls of most rooms are reflective enough to create sig­
nificant reverberation. While it is not always noticeable to the occupants, 
even mild reverberation can severely impact the performance of speech-array 
systems. Hence, multi-path propagation must be incorporated into the signal­
processing model. 

The wave field at a particular location inside a reverberant room may be 
considered to be linearly related to the source signal, s(t). Let the 3-element 
vectors, Pn and q8 , define the Cartesian coordinates of the nth microphone 
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and the source, respectively. The received signal at the nth microphone may 
now be expressed as 

Xn(t) = s(t) * hn(qs, t) + Vn(t) (8.1) 

The overall impulse response, hn(q., t), is the result of cascading two fil­
ters: the room impulse response and the microphone channel response. The 
former characterizes all acoustic paths between the source and microphone 
locations, including the direct path. It is a function of Pn as well as the 
source location, q., and is highly dependent on these parameters. In general, 
the room impulse response is affected by environmental conditions, such as 
temperature and humidity. It also varies with the movement of furniture and 
individuals inside the room. While such variations are significant, it is reason­
able to assume that these factors remain constant over short periods. Hence, 
a room impulse response may be considered time-invariant for short periods 
when the source and microphone are spatially fixed. The microphone chan­
nel response accounts for the electrical, mechanical and acoustical properties 
of the microphone system. In general, the microphone's directivity pattern 
makes its response a function of its orientation as well as its spatial place­
ment relative to the source. The additive term, vn(t), is the result of channel 
noise in the microphone system and any propagating ambient noise such as 
that due to fans or other mechanical equipment. The propagating noise is 
usually more significant than the channel noise and tends to dominate this 
term. Generally, vn(t) is assumed to be uncorrelated with s(t). 

Figure 8.1 illustrates a close-up view of the response that was measured in 
a typical conference room. The direct-path component and some of the strong 
reflected components are highlighted in this plot. The peaks corresponding 
to the reflected sound waves are comparable in size to the direct-path peak. 
These peaks, which occur within 20 ms of the direct-path, are responsible for 
many of the erroneous results produced by short-time TD E's, which operate 
on data blocks as small as 25 ms. The large secondary peaks in the room 
response are highly correlated with the false peaks in the GCC function [5]. 

The purpose of TDE is to evaluate the temporal disparity between the 
direct-path components in the two received microphone signals. To this end, 
it will be useful to rewrite the impulse response specifically in terms of its 
direct-path component. Equation 8.1 is modified to: 

1 
Xn(t) = -s(t - Tn) * 9n(q., t) + Vn(t) 

rn 
(8.2) 

where rn is the source-microphone separation distance, Tn is the direct path 
time delay, and 9n(q., t) is the modified impulse response which encompasses 
the original response minus the direct path component. The microphone sig­
nal model is now expressed explicitly in terms of the parameter of interest, 
namely the time delay, T n. 
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Fig. 8.1. A close-up of a IO-millisecond segment of a room impulse response mea­
sured in a typical conference room. The direct-path component and some strong 
reflected components are highlighted. 

8.3.2 The GCC and PHAT Weighting Function 

For a pair of microphones, n = 1, 2, their associated TDOA, T12 , is defined 
as 

(8.3) 

Applying this definition to their associated received microphone signal 
models yields 

1 
X1 (t) = -s(t - T1) * 91 (qs, t) + V1 (t) 

r1 

1 
X2(t) = -s(t - T1 - T12) * g2(qs, t) + v2(t). (8.4) 

r2 

If the modified impulse responses for the microphone pair are similar, 
then (8.4) shows that a scaled version of s(t - T1 ) is present in the signal 
from microphone 1 and a time-shifted (and scaled) version of s(t - T1 ) is 
present in the signal from microphone 2. The cross-correlation of the two 
signals should show a peak at the time lag where the shifted versions of s(t) 
align, corresponding to the TDOA, T12 . The cross correlation of signals and 
is defined as: 

(8.5) 
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Fig. 8.1. A close-up of a 10-millisecond segment of a room impulse response mea-
sured in a typical conference room. The direct-path component and somestrong
reflected components are highlighted.

8.3.2 The GCC and PHAT Weighting Function

For a pair of microphones, n = 1,2, their associated TDOA, 712, is defined
as

T12 = T2 — Ti- (8.3)

Applying this definition to their associated received microphone signal
models yields

x(t) = ~a(e — 1) *91(ae,t) + 01(t)
z(t) = =at —T1 — T12) * g2(Qs,t) + ve(t). (8.4)

If the modified impulse responses for the microphonepair are similar,
then (8.4) shows that a scaled version of s(t — 7) is present in the signal
from microphone 1 and a time-shifted (and scaled) version of s(t — 7) is
present in the signal from microphone 2. The cross-correlation of the two
signals should show a peak at the time lag where the shifted versions ofs(t)
align, corresponding to the TDOA, 72. The cross correlation of signals and
is defined as:

+00

era(r) = / we (t)aa(t + 7)at (8.5)—00
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The GCC function, R 12 (T), is defined as the cross correlation of two fil­
tered versions of x 1 (t) and x 2 (t) [29]. With the Fourier transforms of these 
filters denoted by G1 (w) and G2 (w), respectively, the GCC function can be 
expressed in terms of the Fourier transforms of the microphone signals 

(8.6) 

Rearranging the order of the signals and filters and defining the frequency 
dependent weighting function, tfr12 = G1 (w)G2 (w)*, the GCC function can 
be expressed as 

(8.7) 

Ideally, R 12 (T) will exhibit an explicit global maximum at the lag value 
which corresponds to the relative delay. The TDOA estimate is calculated 
from 

f12 = argmax R12(T). 
rED 

(8.8) 

The range of potential TDOA values is restricted to a finite interval, D, which 
is determined by the physical separation between the microphones. In general, 
R 12 (T) will have multiple local maxima which may obscure the true TDOA 
peak and subsequently, produce an incorrect estimate. The amplitudes and 
corresponding time lags of these erroneous maxima depend on a number of 
factors, typically ambient noise levels and reverberation conditions. 

The goal of the weighting function, tfr12 , is to emphasize the GCC value 
at the true TDOA value over the undesired local extrema. A number of such 
functions have been investigated. As previously stated, for realsitic acoustical 
conditions the PRAT weighting [29] defined by 

1 
tiri 2 (w) = IX1(w)X;(w)I (8.9) 

has been found to perform considerably better than its counterparts designed 
to be statistically optimal under specific non-reverberant, noise conditions. 
The PRAT weighting whitens the microphone signals to equally emphasize 
all frequencies. The utility of this strategy and its extension to steered­
beamforming form the basis of the SRP-PRAT algorithm that follows. 

8.3.3 ML TDOA-Based Source Localization 

Consider the ith pair of microphones with spatial coordinates denoted by the 
3-element vectors, Pil and Pi2 , respectively. For a signal source with known 
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The GCC function, R,2(7), is defined as the cross correlation of two fil-
tered versions of z;(t) and x(t) [29]. With the Fourier transforms of these
filters denoted by Gi(w) and G2(w), respectively, the GCC function can be
expressed in terms of the Fourier transforms of the microphonesignals

1 rte «4Rya(r) = / (Gi(w)Xi (w)) (Ga(w)X2(w)) "dew (8.6)~on

Rearranging the orderofthe signals andfilters and defining the frequency
dependent weighting function, Wig = Gi(w)Go(w)*, the GCC function can
be expressed as

+00

Rio(r) = i / D2 (w)Xy (w) Xo(w)*e?”7 dw (8.7)2m Joo

Ideally, Ri2(7) will exhibit an explicit global maximum at the lag value
which corresponds to the relative delay. The TDOA estimate is calculated
from

Tig = argmax Rj2(7). (8.8)
TED

The range of potential TDOA valuesis restricted to a finite interval, D, which
is determined by the physical separation between the microphones. In general,
Ri2(7) will have multiple local maxima which may obscure the true TDOA
peak and subsequently, produce an incorrect estimate. The amplitudes and
corresponding time lags of these erroneous maxima depend on a numberof
factors, typically ambient noise levels and reverberation conditions.

The goal of the weighting function, W2, is to emphasize the GCC value
at the true TDOAvalue over the undesired local extrema. A number of such

functions have been investigated. As previously stated, for realsitic acoustical
conditions the PHAT weighting [29] defined by

1

Yale) = Ow (8.9)

has been found to perform considerably better than its counterparts designed
to be statistically optimal under specific non-reverberant, noise conditions.
The PHAT weighting whitens the microphonesignals to equally emphasize
all frequencies. The utility of this strategy and its extension to steered-
beamforming form the basis of the SRP-PHAT algorithm that follows.

8.3.3 ML TDOA-Based Source Localization

Consider the 7” pair of microphones with spatial coordinates denoted by the
3-element vectors, pj, and p;2, respectively. For a signal source with known
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spatial location, Qs, the true TDOA relative to the ith sensor pair will be 
denoted by T ( {Pil, Pi2}, q s), and is calculated from the expression 

T({ } ) _ lqs - Pi2I - lqs -Pill Pil, Pi2 , Q s - ~----'----'----'­
c 

(8.10) 

where c is the speed of sound in air. The estimate of this true TDOA, the 
result of a TDE procedure involving the signals received at the two micro­
phones, will be given by Ti. In practice, the TDOA estimate is a corrupted 
version of the true TDOA and in general, Ti =I- T( {Pil, Pi2}, Qs)-

For a single microphone pair and its TDOA estimate, the locus of potential 
source locations in 3-space which satisfy (8.10) corresponds to one-half of a 
hyperboloid of two sheets. This hyperboloid is centered about the midpoint 
of the microphones and has Pi2 - Pil as its axis of symmetry. 

For sources with a large source-range to microphone-separation ratio, the 
hyperboloid may be well-approximated by a cone with a constant direction 
angle relative to the axis of symmetry. The corresponding estimated direction 
angle, Bi, for the microphone pair is given by: 

(8.11) 

In this manner each microphone pair and TDOA estimate combination may 
be associated with a single parameter which specifies the angle of the cone 
relative to the sensor pair axis. For a given source and TDOA estimate, (Ji is 
referred to as the DOA relative to the i th pair of microphones. 

Given a set of M TDOA estimates derived from the signals received at 
multiple pairs of microphones, the problem remains as how to best estimate 
the true source location, q 8 • Ideally, the estimate will be an element of the 
intersection of all the potential source loci. In practice, however, for more 
than two pairs of sensors this intersection is, in general, the empty set. This 
disparity is due in part to imprecision in the knowledge of system parame­
ters (TDOA estimate and sensor location measurement errors) and in part to 
unrealistic modeling assumptions (point source radiator, ideal medium, ideal 
sensor characteristics, etc.). With no ideal solution available, the source loca­
tion must be estimated as the point in space which best fits the sensor-TDOA 
data or more specifically, minimizes an error criterion that is a function of the 
given data and a hypothesized source location. If the time-delay estimates at 
each microphone pair are assumed to be independently corrupted by zero­
mean additive white Gaussian noise of equal variance then the ML location 
estimate can be shown to be the position which minimizes the least squares 
error criterion 

M 

E(q) = L(Ti -T({Pil,Pi2},q))2 . (8.12) 
i=l 
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The location estimate is then found from 

<Js = argmin E(q). 
q 

(8.13) 

The criterion in (8.12) will be referred to as the LS-TDOA error. As stated 
earlier, the evaluation of <ls in this manner involves the optimization of a 
non-linear function and necessitates the use of search methods. Closed-form 
approximations to this method were given earlier. 

8.3.4 SRP-Based Source Localization 

The microphone signal model in (8.2) shows that for an array of N mi­
crophones in the reception region of a source, a delayed, filtered, and noise 
corrupted version of the source signal, s(t), is present in each of the received 
microphone signals. The delay-and-sum beamformer time aligns and sums to­
gether the Xn(t), in an effort to preserve unmodified the signal from a given 
spatial location while attenuating to some degree the noise and convolutional 
components. It is defined as simply as 

N 

y(t, Qs) = L Xn(t + Lln) (8.14) 
n=l 

where Lln are the steering delays appropriate for focusing the array to the 
source spatial location, q., and compensating for the direct path propagation 
delay associated with the desired signal at each microphone. In practice, the 
delays relative to a reference microphone are used instead of the absolute 
delays. This makes all shifting operations causal, which is a requirement of 
any practical system, and implies that y(t, qs) will contain an overall delayed 
version of the desired signal which in practice is not detrimental. The use 
of a single reference microphone means that the steering delays may be de­
termined directly from the TDOA's (estimated or theoretical) between each 
microphone and the reference. This implies that knowledge of the TDOA's 
alone is sufficient for steering the beamformer without an explicit source lo­
cation. 

In the most ideal case with no additive noise and channel effects, the 
output of the deal-and-sum beamformer represents a scaled and potentially 
delayed version of the desired signal. For the limited case of additive, uncor­
related, and uniform variance noise and equal source-microphone distances 
this simple beamformer is optimal. These are certainly very restrictive condi­
tions. In practice, convolutional channel effects are nontrivial and the additive 
noise is more complicated. The degree to which these noise and reverberation 
components of the microphone signals are suppressed by the delay-and-sum 
beamformer is frequently minimal and difficult to analyze. Other methods 
have been developed to extend the delay-and-sum concept to the more general 
filter-and-sum approach, which applies adaptive filtering to the microphone 
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signals before they are time-aligned and summed. Again, these methods tend 
to not be robust to non-theoretical conditions, particularly with regard to 
the channel effects. 

The output of an N-element, filter-and-sum beamformer can be defined 
in the frequency domain as 

N 

Y(w,q) = L Gn(w)Xn(w)ejwLln (8.15) 
n=l 

where Xn(w) and Gn(w) are the Fourier Transforms of the n th microphone 
signal and its associated filter, respectively. The microphone signals are phase­
aligned by the steering delays appropriate for the source location, q. This is 
equivalent to the time-domain beamformer version. The addition of micro­
phone and frequency-dependent filtering allows for some means to compen­
sate for the environmental and channel effects. Choosing the appropriate 
filters depends on a number of factors, including the nature of the source 
signal and the type of noise and reverberations present. As will be seen, the 
strategy used by the PHAT of weighing each frequency component equally 
will prove advantageous for practical situations where the ideal filters are 
unobtainable. 

The beamformer may be used as a means for source localization by steer­
ing the array to specific spatial points of interest in some fashion and evalu­
ating the output signal, typically its power. When the focus corresponds to 
the location of the sound source, the SRP should reach a global maximum. In 
practice, peaks are produced at a number of incorrect locations as well. These 
may be due to strong reflective sources or merely a byproduct of the array 
geometry and signal conditions. In some cases, these extraneous maxima in 
the SRP space may obscure the true location and in any case, complicate the 
search for the global peak. The SRP for a potential source location can be 
expressed as the output power of a filter-and-sum beamformer by 

l+oo 
P(q) = _

00 
IY(w)l2dw (8.16) 

and location estimate is found from 

CJ. 8 = argmax P(q). (8.17) 
q 

8.3.5 The SRP-PHAT Algorithm 

Given this background, the SRP-PHAT algorithm may now be defined. With 
respect to GCC-based TDE, the PHAT weighting has been found to provide 
an enhanced robustness in low to moderate reverberation conditions. While 
improving the quality of the underlying delay estimates, it is still not sufficient 
to render TDOA-based localization effective under more adverse conditions. 
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The delay-and-sum SRP approach requires shorter analysis intervals and ex­
hibits an elevated insensitivity to environmental conditions, though again, 
not to a degree that allows for their use under excessive multi-path. The 
filter-and-sum version of the SRP adds flexibility but the design of the filters 
is typically geared towards optimizing SNR in noise-only conditions and is 
excessively dependent on knowledge of the signal and channel content. Orig­
inally introduced in [5), the goal of the SRP-PHAT algorithm is to combine 
the advantages of the steered beamformer for source localization with the 
signal and condition independent robustness offered by the PRAT weighting. 

The SRP of the filter-and-sum beamformer can be expressed as 

(8.18) 

where w1k(w) = G1(w)G'i.(w) is analogous to the two-channel GCC weighting 
term in (8.7). The corresponding multi-channel version of the PRAT weight­
ing is given by 

(8.19) 

which in the context of the filter-and-sum beamformer (8.15) is equivalent to 
the use of the individual channel filters 

1 
Gn(w) = [Xn(w)f (8.20) 

These are the desired SRP-PHAT filters. They may be implemented from 
the frequency-domain expression above. Alternatively, it may be shown that 
(8.18) is equivalent to the sum of the GCC's of all possible N-choose-2 micro­
phone pairings. This means that the SRP of a 2-element array is equivalent 
to the GCC of those two microphones. Hence, as the number of microphones 
is increased, SRP naturally extends the GCC method from a pairwise to a 
multi-microphone technique. Denoting Rtk(T) as the PRAT-weighted GCC 
of the l th and kth microphone signals, a time-domain version of SRP-PHAT 
functional can now be expressed as 

N N 

P(q) = 21r LL Rtk(L1k - L'.11)- (8.21) 
l=l k=l 

This is the sum of all possible pairwise GCC permutations which are time­
shifted by the differences in the steering delays. Included in this summation 
is the sum of the N autocorrelations, which is the GCC evaluated at a lag of 
zero. These terms contribute only a DC offset to the steered response power 
since they are independent of the steering delays. 

Given either method of computation, SRP-PHAT localization is per­
formed in a manner similar to the standard SRP-based approaches. Namely, 
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The delay-and-sum SRP approach requires shorter analysis intervals and ex-
hibits an elevated insensitivity to environmental conditions, though again,
not to a degree that allows for their use under excessive multi-path. The
filter-and-sum version of the SRP addsflexibility but the design of the filters
is typically geared towards optimizing SNR in noise-only conditions and is
excessively dependent on knowledge of the signal and channel content. Orig-
inally introduced in [5], the goal of the SRP-PHATalgorithm is to combine
the advantages of the steered beamformer for source localization with the
signal and condition independent robustness offered by the PHAT weighting.

The SRPofthe filter-and-sum beamformer can be expressed as

N Nag

P@=>2>- / Vip (w)X1(w) XE (w)F(A4)dug (8.18)t=1 k=1" ~

where Yj,(w) = Gi(w)GZ(w) is analogous to the two-channel GCC weighting
term in (8.7). The corresponding multi-channel version of the PHAT weight-
ing is given by

1

~ Tw)Xe] (819)Py. (w)

which in the context of thefilter-and-sum beamformer (8.15) is equivalent to
the use of the individual channel filters

1

Gr(w) [Xa(w)|” (8.20)
These are the desired SRP-PHATfilters. They may be implemented from

the frequency-domain expression above. Alternatively, it may be shown that
(8.18) is equivalent to the sum of the GCC’s of all possible N-choose-2 micro-
phone pairings. This means that the SRP of a 2-element array is equivalent
to the GCC of those two microphones. Hence, as the number of microphones
is increased, SRP naturally extends the GCC method from a pairwise to a
multi-microphone technique. Denoting Rj,(7) as the PHAT-weighted GCC
of the 1** and k’” microphonesignals, a time-domain version of SRP-PHAT
functional can now be expressed as

N N

P(q) = 20 >> >> Rin(Ag — A). (8.21)
l=] k=1

This is the sum of all possible pairwise GCC permutations which are time-
shifted by the differences in the steering delays. Included in this summation
is the sum of the N autocorrelations, which is the GCC evaluated at a lag of
zero. These terms contribute only a DC offset to the steered response power
since they are independent of the steering delays.

Given either method of computation, SRP-PHAT localization is per-
formed in a mannersimilar to the standard SRP-based approaches. Namely,
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P(q) is maximized over a region of potential source locations. As will be 
shown in the next section, relative to the search space indicative of the stan­
dard SRP approach, the SRP-PHAT functional significantly deemphasizes 
extraneous peaks and dramatically sharpens the resolution of the true peak. 
These desirable features result in a decreased sensitivity to noise and rever­
berations and more precise location estimates than the existing localization 
methods offer. Additionally, this is achieved using a very short analysis in­
terval. 

8.4 Experimental Comparison 

While more extensive results are available in (5] , an experiment is offered 
here to evaluate and compare the relative characteristics and performance 
of three different source locators: SRP, SRP-PHAT and ML-TDOA. Five 
second recordings were made for three source locations in a 7 by 4 by 3 m 
conference room at Brown University using a 15-element microphone array. 
Figure 8.2 illustrates the room layout. Pre-recorded speech, which was ac­
quired using a close-talking microphone, was played through a loudspeaker 
while simultaneously recording the signals from the array. The use of the 
loudspeaker was preferable to an actual talker since the loudspeaker could 
be precisely located and would be fixed over the duration of the recordings. 
The talkers were males uttering a unique string of alpha-digits. Source 1 was 
most distant from the array and was positioned at standing height in front 
of a white-board. The other two sources were positioned at a seated level 
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P(q) is maximized over a region of potential source locations. As will be
shownin the next section, relative to the search space indicative of the stan-
dard SRP approach, the SRP-PHAT functional significantly deemphasizes
extraneous peaks and dramatically sharpens the resolution of the true peak.
These desirable features result in a decreased sensitivity to noise and rever-
berations and moreprecise location estimates than the existing localization
methods offer. Additionally, this is achieved using a very short analysis in-
terval.

8.4 Experimental Comparison

While more extensive results are available in [5], an experiment is offered
here to evaluate and compare the relative characteristics and performance
of three different source locators: SRP, SRP-PHAT and ML-TDOA.Five
second recordings were made for three source locations in a 7 by 4 by 3 m
conference room at Brown University using a 15-element microphonearray.
Figure 8.2 illustrates the room layout. Pre-recorded speech, which was ac-
quired using a close-talking microphone, was played through a loudspeaker
while simultaneously recording the signals from the array. The use of the
loudspeaker was preferable to an actual talker since the loudspeaker could
be precisely located and would befixed over the duration of the recordings.
The talkers were males uttering a unique string of alpha-digits. Source 1 was
most distant from the array and was positioned at standing height in front
of a white-board. The other two sources were positioned at a seated level
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around a conference table, which was located approximately in the center of 
the room. 

The microphone array was composed of eight omni-directional electret 
condenser microphones, which were randomly distributed on a plane within 
a .33 by 0.36 m rectangle. The microphones were attached to a rectangular 
sheet of acoustic foam, which was supported by an aluminum frame. This 
frame was mounted on a tripod that was placed parallel to the back wall at a 
distance of 0.9 m. The acoustic foam damps some of the multi-path reflections 
from this wall and isolates the microphones from vibrations traveling along 
the mountings. 

The loudspeaker faced the array and the volume level was adjusted at each 
location to maximize SNR conditions. SNR levels at each microphone aver­
aged about 25 dB for the three source locations. Source 3, with its location 
the closest to the microphone array, had SNRs as high as 36 dB. With such 
high SNRs, all microphones signals in the conference room dataset have min­
imal contributions from the background noise, which was primarily produced 
by the fans inside the computer equipment. 

The measured reverberation time of the room was determined to be 
200 ms. This qualifies as a mildly reverberant room. However, the near-end 
peaks in the impulse responses (as in Figure 8.1) combined with a 200 ms 
reverberation time do, in fact, have a significant impact on localization. This 
will be demonstrated by the following performance comparisons. 

Given the size of the array aperture relative to the source ranges, all three 
talkers can be considered to lie in the far field of array. Under such conditions, 
range estimates are ambiguous, and only the azimuth and elevation angles 
can be estimated reliably. Accordingly, this experiment will focus on DOA 
measures as opposed to 3-D Cartesian coordinates. Results obtained with 
more extensive arrays and near-field sources are available in [5]. 

The recorded data was segmented into 25 ms frames using a half­
over lapping Hanning window. SNR-based speech detection was performed 
for each frame. All frames where any of the eight microphone channels had 
SNR within 12dB of the background noise were eliminated. Out of the 399 
frames per recording, 313, 340, and 297 were retained for sources 1,2, and 
3, respectively. The DOA's of the sources were estimated by minimization 
of the LS-TDOA error and maximization of SRP and SRP-PHAT evaluated 
over azimuth and elevation relative to the array's origin. The frequency range 
used to compute both the steered responses and the GCC's was 300 Hz to 
8 kHz. These functions were computed over a range of -60° to +60° for both 
azimuth and elevation with a 0.1 ° resolution. 

By taking all possible combinations, 28 microphone pairs were formed us­
ing the 8-element array. Hence, for each data frame, 28 TDOA estimates were 
made for each of the three speech recordings using GCC-PHAT. Figure 8.3 
illustrates the LS-TDOA error as a function of azimuth and elevation for a 
segment of nine successive frames recorded for source 1. The white point in 



174 DiBiase et al. 

::--""-----:,o;;----;-!:,oo::------,,~,.-----::200'::---:-',..,::----,-.:,00---J,,8 

100.1ms 

137.6ms ., C'ti 
I 

! 
' 
' 

. 

. , 
175.1ms 

- 60 
- 60 

8 

Bb;k- r1m1 (mt) 

112.6ms 

150.1ms 

187.6ms 

60 - 60 60 
8 

125.l ms 

162.6ms 

200.1ms 

60 
8 

Fig. 8.3. Speech segment (top) with nine frames of the LS-TDOA error surfaces. 

each contour plot marks the true DOA. The dark area in the center of the 
images represents the minima of the LS-TDOA error. At the top of this fig­
ure is a plot of the amplitude of the corresponding speech segment, which 
is the letter "R", spoken as in "Are we there yet?" Superimposed on this 
speech signal is a curve representing the average power of the signals from 
the array, with the scale of its vertical axis labeled on the right side of the 
graph. Each point along this power curve corresponds to the average frame 
SNR. The three frames at the beginning and end of this speech segment 
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each contour plot marks the true DOA. The dark area in the center of the
images represents the minima of the LS-TDOAerror. At the top of this fig-
ure is a plot of the amplitude of the corresponding speech segment, which
is the letter “R”, spoken as in “Are we there yet?” Superimposed on this
speech signal is a curve representing the average power of the signals from
the array, with the scale of its vertical axis labeled on the right side of the
graph. Each point along this power curve corresponds to the average frame
SNR. The three frames at the beginning and end of this speech segment
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Fig. 8.4. Delay-and-sum beamformer SRP over nine, 25 ms frames. 

lacked sufficient SNR to included in the analysis. These plots show that the 
LS-TDOA error is generally a smooth surface with a global minimum over 
the angular range of ±60°. However, from frame to frame the minima vary 
from the true source location. This inaccuracy is caused by erroneous TDOA 
estimates. Note also that because of the smooth nature of the error space, 
the resolution of the DOA estimates is considerably limited. 

Figures 8.4 and 8.5 illustrate the error spaces of the SRP and SRP-PHAT 
as evaluated for the same nine 25 ms frames of speech. Relative to the prior 
figure the contour images are now inverted in darkness to emphasize the max­
ima. The plots of the delay-and-sum beamformer SRP in Figure 8.4 bear a 
noticeable similarity in general shape to their LS-TDOA counterparts. The 
maximum value in each SRP image, marked by an X, occurs at points dis­
tant from the actual DOA, indicated by a white dot . The main beam of the 
delay-and-sum beamformer is broad and fluctuates considerably over the du­
ration of the speech segment. As a result, many inaccurate location estimates 
are produced by this method. In contrast to the LS-TDOA and SRP cases, 
the peaks of SRP-PHAT plots in Figure 8.5 match the actual DOA almost 
exactly. The main beam of the PHAT beamformer is sharp and consistent 
over each frame. This produces contour images which appear quite different 
from the LS-TDOA and SRP versions. The PHAT filters, when applied to 
the filter-and-sum beamformer, yield an error space that is superior to that of 
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Fig. 8.4. Delay-and-sum beamformer SRP over nine, 25 ms frames.

lacked sufficient SNR. to included in the analysis. These plots show that the
LS-TDOAerror is generally a smooth surface with a global minimum over
the angular range of +60°. However, from frame to frame the minima vary
from the true source location. This inaccuracy is caused by erroneous TDOA
estimates. Note also that because of the smooth nature of the error space,
the resolution of the DOA estimates is considerably limited.

Figures8.4 and8.5 illustrate the error spaces of the SRP and SRP-PHAT
as evaluated for the same nine 25 msframes of speech. Relative to the prior
figure the contour images are now inverted in darkness to emphasize the max-
ima. The plots of the delay-and-sum beamformer SRP in Figure 8.4 bear a
noticeable similarity in general shape to their LS-TDOA counterparts. The
maximum value in each SRP image, marked by an X, occurs at points dis-
tant from the actual DOA,indicated by a white dot. The main beam of the
delay-and-sum beamformeris broad and fluctuates considerably over the du-
ration of the speech segment. As a result, many inaccurate location estimates
are produced by this method. In contrast to the LS-TDOA and SRPcases,
the peaks of SRP-PHAT plots in Figure 8.5 match the actual DOA almost
exactly. The main beam of the PHAT beamformer is sharp and consistent
over each frame. This produces contour images which appear quite different
from the LS-TDOA and SRP versions. The PHAT filters, when applied to
the filter-and-sum beamformer, yield an error space that is superior to that of
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Fig. 8.5. SRP-PHAT response over nine, 25 ms frames . 

the delay-and-sum beamformer or the TDOA-based criterion. This qualita­
tive observation will now be corroborated through a numerical performance 
comparison. 

For the DOA estimates produced for each of the three source locations, 
an RMS DOA error was computed from 

(8.22) 

where </> and 0 are the true azimuth and elevation angles and ¢ and iJ are their 
estimated counterparts. Figure 8.6 illustrates the results. These plots show 
the fraction of DOA estimates in each case which exceed a given RMS error 
threshold. Using this metric, the SRP-PHAT consistently outperforms the 
other two methods for each of the source locations. The ML-TDOA exhibits 
definite advantages over the SRP. While the SRP-PHAT's results are nearly 
identical for all the source locations, including the most distant source 1, the 
ML-TDOA locator is highly dependent on source location. For example, 60% 
percent of the estimates from source 1 had error greater than 10° while 50% 
percent from source 2 and 15% percent from source 3 had error greater 10°. 
In contrast , nearly all the estimates produced by SRP-PHAT had error less 
than 10°. About 90% of the estimates from sources 2 and 3, and 80% from 
source 1 had errors less than 4 ° . 
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the delay-and-sum beamformer or the TDOA-basedcriterion. This qualita-
tive observation will now be corroborated through a numerical performance
comparison.

For the DOA estimates produced for each of the three source locations,
an RMS DOAerror was computed from

Egos(6.4) = y (6 - 0)? + (¢- 4)? (8.22)

where ¢ and @ are the true azimuth and elevation angles and ¢ and @ are their
estimated counterparts. Figure 8.6 illustrates the results. These plots show
the fraction of DOA estimates in each case which exceed a given RMSerror
threshold. Using this metric, the SRP-PHAT consistently outperforms the
other two methods for each of the source locations. The ML-TDOAexhibits

definite advantages over the SRP. While the SRP-PHAT’sresults are nearly
identical for all the source locations, including the most distant source 1, the
ML-TDOAlocatoris highly dependent on source location. For example, 60%
percent of the estimates from source 1 had error greater than 10° while 50%
percent from source 2 and 15% percent from source 3 had error greater 10°.
In contrast, nearly all the estimates produced by SRP-PHAThad errorless
than 10°. About 90% of the estimates from sources 2 and 3, and 80% from
source 1 had errors less than 4°.
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Fig. 8.6. Localizer DOA error rates for three different sources. 

The results of this limited experiment illustrate the performance advan­
tages of the SRP-PHAT localizer relative to more traditional approaches for 
talker localzation with microphone arrays. Other experiments conducted un­
der more general and adverse conditions are consistent with the results here 
and serve to confirm the utility of combining steered-beamforming and a 
uniform-magnitude spectral weighting for this purpose. 

While the TDOA-based localization method performed satisfactorily for 
a talker relatively close to the array, it was severely impacted by even the 
mild reverberation levels encountered when the source was more distant. This 
result is due to the fact that signal-to-reverberation ratios decrease with in­
creasing source-to-microphone distance. As the reverberation component of 
the received signal increases relative to the direct path component, the valid­
ity of the single-source model inherent in the TDE development is no longer 
valid. As a result TDOA-based schemes rapidly exhibit poor performance 
as the talker moves away from the microphones. The SRP-PHAT algorithm 
is relatively insensitive to this effect. As the results here suggest the pro­
posed algorithm exhibits no marked performance degradation from the near 
to distant source conditions tested. 

The SRP-PHAT algorithm is computationally more demanding than the 
TDOA-based localization methods. However, its significantly superior perfor­
mance may easily warrant the additional processing expense. Additionally, 
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Fig. 8.6. Localizer DOAerror rates for three different sources.

Theresults of this limited experiment illustrate the performance advan-
tages of the SRP-PHATlocalizer relative to more traditional approaches for
talker localzation with microphone arrays. Other experiments conducted un-
der more general and adverse conditions are consistent with the results here
and serve to confirm the utility of combining steered-beamforming and a
uniform-magnitude spectral weighting for this purpose.

While the TDOA-basedlocalization method performedsatisfactorily for
a talker relatively close to the array, it was severely impacted by even the
mild reverberation levels encountered when the source was moredistant. This

result is due to the fact that signal-to-reverberation ratios decrease with in-
creasing source-to-microphone distance. As the reverberation component of
the received signal increases relative to the direct path component, the valid-
ity of the single-source model inherent in the TDE developmentis no longer
valid. As a result TDOA-based schemes rapidly exhibit poor performance
as the talker moves away from the microphones. The SRP-PHATalgorithm
is relatively insensitive to this effect. As the results here suggest the pro-
posed algorithm exhibits no marked performance degradation from the near
to distant source conditions tested.

The SRP-PHATalgorithm is computationally more demanding than the
TDOA-based localization methods. However, its significantly superior perfor-
mance mayeasily warrant the additional processing expense. Additionally,
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while not discussed here, it is possible to alter the algorithm to dramatically 
reduce its computational load while maintaining much of its benefit. 
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12 Small Microphone Arrays with Postfilters 
for Noise and Acoustic Echo Reduction 

Rainer Martin 

Institute of Communication Systems and Data Processing 
Aachen University of Technology, Aachen, Germany 

Abstract. This chapter presents arrays with two microphones and a postfilter for 
noise reduction and acoustic echo cancellation. The postfilter algorithm exploits 
the spatial coherence of the microphone signals. In contrast to single-microphone 
enhancement algorithms, it does not need an explicit noise power spectral density 
estimate. An analysis of the mean square error reveals that the coherence properties 
of the microphone signals are of paramount importance for the performance of the 
postfilter. Coherence measurements of signals in various acoustic environments are 
presented. The influence of the directivity and orientation of the microphones on 
the measured coherence is discussed and rules for the design of the acoustic interface 
are given. Finally, applications of this approach are presented. The two-microphone 
algorithm is employed to reduce the non-stationary noise in the voice intercom of a 
computed tomography scanner. It is also combined with echo cancellers to be used 
in a robust desktop conferencing device. 

12.1 Introduction 

Hands-free operation of voice communication terminals presents a challeng­
ing signal processing task. The relatively large distance between speaker and 
microphones, the feedback of acoustic echoes, and the "anywhere and any­
time" paradigm of mobile communications can all contribute to considerably 
disturbed speech signals. To achieve a reasonable communication quality the 
hands-free terminal must therefore reduce disturbing environmental acoustic 
noise as well as acoustic echoes in received speech signals. 

Because of their ease of implementation and use, single-microphone speech 
enhancement systems are favored in many applications. However, multi­
microphone systems have considerable advantages over single-microphone 
systems when the noise is non-stationary or the speech is reverberated. Multi­
microphone systems take the spatial correlation of sound fields into account. 
The spatial correlation can be exploited to dereverberate the desired speech 
signal and to reduce noise and acoustic echoes. The simplest system which 
takes advantage of some of these benefits is the two-microphone array. 

In contrast to larger arrays, the two-microphone approach relies less on the 
beamforming gain of the array but more on the noise and echo suppression 
of a postfilter. The postfilter combines and processes the two microphone 
signals in order to compute an estimate of the clean speech signal. The array 
can be easily implemented using widely available stereo A/D converters. 
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Figure 12.1 depicts the basic components of the two-microphone speech 
enhancement system. The microphone signals are assumed to be a linear 
combination of clean speech signals sn(t) and noise signals vn(t), where n E 

{1, 2} denotes the microphone index. The system is symmetric, i.e., we assume 
that both microphones pick up speech and noise alike. This is quite different 
from the noise cancellation algorithm [1], where the primary microphone picks 
up both speech and noise and the secondary microphone serves as a noise 
reference only. It has been demonstrated that the noise cancellation approach 
does not work well in reverberant environments [2]. According to Fig. 12.1, 
the sampled microphone signals xi[k] and x2 [k] (sampling frequency fs) are 
adjusted for possible time delay differences in the range of -T :S: T :S: T, where 
T denotes the maximum delay difference. The signals are then combined 
and filtered. The filtering takes the spatial correlation (coherence) of the 
microphone signals into account and constructs an estimate s[k] of the clean 
speech for instance by minimizing a mean square error criterion. In contrast to 
most single-microphone algorithms, the coherence based approach does not 
rely on an explicit noise power spectral density estimate. Its performance, 
however, depends to a large extent on the acoustics of the environment. 

Two-microphone arrays with coherence based postfilters were pioneered 
in [3,4] and later improved in [5-8]. Systems with more microphones and with 
significantly higher array gains were investigated in e.g. [9,10] and in [11]. 
The latter approach also makes use of subarrays and subband processing. 

In this contribution we will first present the magnitude squared coherence 
function (MSC) as a tool for the analysis of the spatial correlation of the mi­
crophone signals. Using the Wiener filter as an example, we will then motivate 
in Section 12.3, why the spatial coherence of speech and noise signals is im­
portant for the performance of the two-microphone postfilter. Finally, we will 
describe applications of the two-microphone postfilter in the voice intercom 
of a computed tomography scanner and in desktop conferencing experiments. 
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Fig. 12.1. Block diagram of the symmetric two-microphone noise reduction system. 
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12.2 Coherence of Speech and Noise 

The MSC, Cx 1 x2 (.0), is a frequency domain measure of correlation between 
two signals. As it turns out, it is also a powerful tool for analyzing the po­
tential and the performance of multi-microphone noise reduction systems. 
In this section we first define the MSC and the reverberation distance, an­
other measure which helps to characterize the acoustic environment. We then 
present coherence measurements for various noise types and for speech. We 
will find that the directivity of the microphone and its orientation towards 
the speaker play an important role. The aim of this section is to derive rules 
for the design of the acoustic interface of the two-microphone noise reduction 
system. 

12.2.1 The Magnitude Squared Coherence 

For stationary input signals, x1 [k] and x2 [k], the MSC is defined as the ratio of 
the magnitude squared cross power spectral density, Px 1 x2 (.0), to the power 
spectral densities, Px1 x1 (.0) and Px2 x2 (.0), of the input signals [12,13] 

(12.1) 

where n denotes a normalized frequency variable, n = 2n I/ Is- The MSC 
takes on values between zero and one, 0 ::; Cx 1 x2 (.0) ::; 1. 

It is well known that the coherence of two bandlimited and sampled signals 
recorded with omnidirectional microphones in an ideally diffuse (isotropic) 
sound field is given by [14,15] 

C, . (.0) _ sin2 (.(}Is dmic C-1) 
diffuse - (n Is dmic c-1 )2 ' {12.2) 

where dmic denotes the distance between the microphones and c the speed 
of sound. Cctiffuse (.0) attains its first zero at frequency lo(dmic) = c/(2dmic)­
The sound field is highly correlated for frequencies below lo(dmic) while the 
correlation is low for frequencies above lo(dmic)- Equation (12.2) is a nec­
essary but not a sufficient condition for a sound field to be ideally diffuse. 
Hence, it is possible to construct sound fields which have an MSC according 
to (12.2) and which are not ideally diffuse [16]. 

Besides the spatial distribution of the sound sources and the room acous­
tics the directivity of the microphones also has an impact on the measured 
coherence. For omnidirectional microphones the coherence of the ideally dif­
fuse sound field is given by (12.2) independent of the microphone orienta­
tion. For directional microphones the coherence depends on the orientation 
of the microphones to each other. Figure 12.2 plots the coherence of the ide­
ally diffuse sound field for microphones with a cardioid directivity pattern. 
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12.2 Coherence of Speech and Noise

The MSC, Cz,2, (2), is a frequency domain measure of correlation between
two signals. As it turns out, it is also a powerful tool for analyzing the po-
tential and the performance of multi-microphone noise reduction systems.
In this section we first define the MSC and the reverberation distance, an-
other measure which helps to characterize the acoustic environment. We then
present coherence measurements for various noise types and for speech. We
will find that the directivity of the microphone and its orientation towards
the speaker play an important role. The aim of this section is to derive rules
for the design of the acoustic interface of the two-microphonenoise reduction
system.

12.2.1 The Magnitude Squared Coherence

For stationary input signals, x, [k] and x2[k], the MSCis defined as theratio of
the magnitude squared cross power spectral density, P,,2, (2), to the power
spectral densities, P,,,, (2) and P,.., (?), of the input signals [12,13]

|Pesieg (2))
Caza (2) = By&,,., (@)’ (12.1)

where 9 denotes a normalized frequency variable, 2 = 2rf/f,. The MSC
takes on values between zero and one, 0 < Cz,2, (2) <1.

It is well known that the coherenceof two bandlimited and sampled signals
recorded with omnidirectional microphones in an ideally diffuse (isotropic)
soundfield is given by [14,15]

sin? (22 fs dmic ct)
Cai use Q)=diff ( ) (2 fe dmic C72)" (12.2)

?

where dmic denotes the distance between the microphones and c the speed
of sound. Cyiftuse ({2) attains its first zero at frequency fo(dmic) = ¢/(2dmic)-
The soundfield is highly correlated for frequencies below fo(dmic) while the
correlation is low for frequencies above fo(dmic). Equation (12.2) is a nec-
essary but not a sufficient condition for a sound field to be ideally diffuse.
Hence, it is possible to construct sound fields which have an MSC according
to (12.2) and which are not ideally diffuse [16].

Besides the spatial distribution of the sound sources and the room acous-
tics the directivity of the microphones also has an impact on the measured
coherence. For omnidirectional microphones the coherence of the ideally dif
fuse sound field is given by (12.2) independent of the microphone orienta-
tion. For directional microphones the coherence depends on the orientation
of the microphones to each other. Figure 12.2 plots the coherence of the ide-
ally diffuse sound field for microphones with a cardioid directivity pattern.
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Fig. 12.2. Magnitude squared coherence of two microphone signals in an ideally 
diffuse noise field [17]. The microphones have a cardioid directivity pattern and 
different look directions. The microphone distance is 0.1 m. 0° equals broadside 
orientation. 
(a): both microphones are turned clockwise by the same angle; 
(b): one microphone is turned clockwise, the other counterclockwise. 
(--): 30° turn, (- · -): 60° turn, (· · · · ·): 90° turn. 

In Figure 12.2a the microphones were turned from a broadside orientation 
(0°) clockwise by the same angle. In Figure 12.2b one microphone is turned 
clockwise, the other is turned counterclockwise by the same angle. In the 
90° position the directions of maximal sensitivity face each other. When the 
microphones look in different directions, the MSC at low frequencies is sig­
nificantly reduced (17] . 

12.2.2 The Reverberation Distance 

The coherence of the microphone signals depends on the amount of spatially 
uncorrelated sound energy and thus also on the amount of reverberated sound 
within these signals. The reverberation distance (14], r H, can be used to char­
acterize the ratio of direct sound energy to reverberated sound energy. When 
a sound source radiates sound equally under free field conditions in all spatial 
directions, the energy density at the distance 

~ 
rH = VT6:;- ~o.lm (12.3) 

has the same magnitude as the steady-state energy density which is obtained 
when the same sound power is radiated in a reverberant enclosure. <iAb de­
notes the absorption coefficient averaged over all walls of the enclosure. A is 
the area of all of these walls, V is the volume of the enclosure, and T6o is 
the reverberation time. The approximation on the right hand side of (12.3) 
is obtained when the reverberation time is computed using Sabine's equa­
tion (14), which holds when <iAb is small compared to unity. For an office 

258 Martin

 
 

0.81,

g Baal \a4 a) Ue \

5 5 "
Ss “e 0.47_ \i) =)

0.2 Pe

0 0
0 1000 2000 3000 4000 0 1000 2000 3000 4000

f / Hz f / Hz

Fig. 12.2. Magnitude squared coherence of two microphonesignals in an ideally
diffuse noise field [17]. The microphones have a cardioid directivity pattern and
different look directions. The microphone distance is 0.1m. 0° equals broadside
orientation.

(a): both microphones are turned clockwise by the sameangle;
(b): one microphoneis turned clockwise, the other counterclockwise.
( ): 30° turn, (—-+—): 60° turn, (--+-: ): 90° turn.
 

In Figure 12.2a the microphones were turned from a broadside orientation
(0°) clockwise by the same angle. In Figure 12.2b one microphoneis turned
clockwise, the other is turned counterclockwise by the same angle. In the
90° position the directions of maximal sensitivity face each other. When the
microphoneslook in different directions, the MSC at low frequenciesis sig-
nificantly reduced [17].

12.2.2 The Reverberation Distance

The coherence of the microphonesignals depends on the amountofspatially
uncorrelated sound energy and thus also on the amount of reverberated sound
within these signals. The reverberation distance [14], r#, can be used to char-
acterize the ratio of direct sound energy to reverberated sound energy. When
a soundsource radiates sound equally underfree field conditionsin all spatial
directions, the energy density at the distance

Ab A V/m3
= 4/ . 12.nH 167 meta a Teo/s a)

has the same magnitude as the steady-state energy density which is obtained
when the same sound poweris radiated in a reverberant enclosure. G4, de-
notes the absorption coefficient averaged overall walls of the enclosure. A is
the area of all of these walls, V is the volume of the enclosure, and Tgo is
the reverberation time. The approximation on the right handside of (12.3)
is obtained when the reverberation time is computed using Sabine’s equa-
tion [14], which holds when @,, is small compared to unity. For an office
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room with V = 100m3 and a reverberation time of 0.7s the reverberation 
distance is about rH:::::: 0.67m. The direct sound energy outweighs the rever­
berated sound energy when the receiver is within a sphere with radius rH. 
The portion of direct sound energy in the microphone signals is significantly 
increased if the sound source and the sound receiver have a pronounced direc­
tivity. For microphones with a hypercardioid sensitivity pattern the effective 
reverberation distance is approximately twice as large as the reverberation 
distance of omnidirectional receivers. 

12.2.3 Coherence of Noise and Speech in Reverberant Enclosures 

In this section we present and discuss coherence measurements for noise and 
speech signals. As we will see in Section 12.3, the two-microphone postfilter 
approach relies on a low coherence of noise signals and a high coherence of 
the desired speech signal. 

Coherence of Office Noise Figure 12.3 shows the coherence of the ideally 
diffuse sound field (solid) and the measured coherence of noise in a reverber­
ant office room (dotted). The noise in this room is generated by computer fans 
and hard disk drives. The microphones have an omnidirectional directivity 
pattern. We find that the width of the main maximum is well modeled by the 
coherence of the ideally diffuse sound field. To avoid coherent noise within 
the telephone bandwidth of 300 ::; f ::; 3400 Hz, the microphone distance 
must be larger than 0.4 m. 

Coherence of Car Noise Figure 12.4 plots the coherence of noise recorded 
in a car. In this case the microphones have a hypercardioid directivity pattern 
and were turned towards the driver by about 15 degrees. In accordance with 
Fig. 12.2 the application of directional microphones results in a significant 
reduction of the MSC at low frequencies. 

Coherence of Speech In contrast to the spatially distributed noise sources 
of the typical, noisy environment ( office or car), the near-end speaker can be 
modeled by a point source provided the microphones are located sufficiently 
far from the speaker's mouth. The transmission of the speech signal from the 
mouth of the speaker to the microphones can be then described by linear 
transfer functions. 

The MSC as defined in (12.1) is invariant under linear transformations 
of the input signals [12]. The MSC of a single speaker in a noise-free, re­
verberant enclosure should be therefore close to one regardless of where the 
speaker is situated with respect to the microphones and regardless of the re­
verberation distance. However, in a practical application where the coherence 
must be estimated from finite signal segments the estimated coherence might 
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Fig. 12.3. Coherence of the ideally diffuse sound field (solid) and measured co­
herence (dotted) of office noise for omnidirectional microphones and microphone 
distances dmic = 0.lm (a), dmic = 0.2m (b), dmic = 0.4m (c), and dmic = 0.6m 
(d). 

be severely biased. If, for instance, the coherence is estimated by averaging 
magnitude squared DFT frames (periodograms) the coherence estimate of 
reverberated speech is biased towards zero. The bias depends on the ratio 
of the block length of the DFT to the length of the impulse response of the 
acoustic path, and on the distribution of energy in the impulse response [17]. 

Figure 12.5 plots the estimated coherence of a speech signal uttered by 
a speaker in a reverberant room (T6o = 0. 7 s) for omnidirectional and for 
hypercardioid microphones and three distances from speaker to microphones. 
To estimate the coherence, the speech signals were segmented into frames of 
128 signal samples at a sampling rate offs = 8 kHz. To improve the rendering 
of the coherence plots, the signal frames were zero-padded to a DFT frame 
length of 512 samples. A short term coherence estimate was then computed 
on the basis of short time averaged periodograms and the final coherence 
estimate by long term averaging the short term coherence estimates . Taking 
the directivity of a human speaker into account, the effective reverberation 
distance of this setup is about 0.9 m for omnidirectional microphones. For 
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be severely biased. If, for instance, the coherence is estimated by averaging
magnitude squared DFT frames (periodograms) the coherence estimate of
reverberated speech is biased towards zero. The bias depends on the ratio
of the block length of the DFT to the length of the impulse response of the
acoustic path, and on the distribution of energy in the impulse response [17].

Figure 12.5 plots the estimated coherence of a speech signal uttered by
a speaker in a reverberant room (Tg. = 0.7s) for omnidirectional and for
hypercardioid microphones and three distances from speaker to microphones.
To estimate the coherence, the speech signals were segmented into frames of
128 signal samples at a sampling rate of f, = 8 kHz. To improve the rendering
of the coherence plots, the signal frames were zero-padded to a DFT frame
length of 512 samples. A short term coherence estimate was then computed
on the basis of short time averaged periodograms and the final coherence
estimate by long term averaging the short term coherence estimates. Taking
the directivity of a human speaker into account, the effective reverberation
distance of this setup is about 0.9m for omnidirectional microphones. For
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Fig. 12.4. Measured coherence of noise in a car for hypercardioid microphones and 
microphone distances dmic = 0.lm (a), dmic = 0.2m (b), dmic = 0.4m (c), and 
dmic = 0.6m (d). 

the hypercardioid microphones the effective reverberation distance is about 
1.6 m. We find that even when the speaker is well within the reverberation 
distance the coherence is significantly below unity. This is a result of the 
relatively large reverberation time and the small frame size of the coherence 
estimation procedure. The estimated coherence is less biased in environments 
with shorter reverberation times, e.g., in a car. Nevertheless, it is important 
that the speaker is located well within the reverberation distance since the 
coherence will be additionally reduced by incoherent ambient noise. 

Similar results are obtained when a speech signal is radiated from a (small) 
loudspeaker of a hands-free conferencing terminal into the acoustic environ­
ment. Since the feedback of speech echoes via the noise reduction system to 
the far-end side is not desired, the coherence of these speech echoes should 
be low. They can be then treated in the same way as ambient noise. The 
coherence of the microphone signals in the presence of speech echoes depends 
to a large extent on the placement of the loudspeaker with respect to the 
microphones, on the directional pattern of the microphones, and the room 
acoustics. To increase the robustness of a hands-free conferencing terminal, 
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the hypercardioid microphones the effective reverberation distance is about
1.6m. We find that even when the speaker is well within the reverberation
distance the coherence is significantly below unity. This is a result of the
relatively large reverberation time and the small frame size of the coherence
estimation procedure. The estimated coherenceis less biased in environments
with shorter reverberation times, e.g., in a car. Nevertheless, it is important
that the speaker is located well within the reverberation distance since the
coherence will be additionally reduced by incoherent ambient noise.

Similar results are obtained when a speechsignal is radiated from a (small)
loudspeaker of a hands-free conferencing terminal into the acoustic environ-
ment. Since the feedback of speech echoes via the noise reduction system to
the far-end side is not desired, the coherence of these speech echoes should
be low. They can be then treated in the same way as ambient noise. The
coherence of the microphonesignals in the presence of speech echoes depends
to a large extent on the placement of the loudspeaker with respect to the
microphones, on the directional pattern of the microphones, and the room
acoustics. To increase the robustness of a hands-free conferencing terminal,
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the coupling between the loudspeaker and the microphones and the coherence 
of the speech echoes must be minimized. This can be, for instance, achieved 
by using directional microphones and by placing the loudspeaker in the di­
rection of minimum microphone sensitivity. 
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the coupling between the loudspeaker and the microphones and the coherence
of the speech echoes must be minimized. This can be, for instance, achieved
by using directional microphones and by placing the loudspeakerin the di-
rection of minimum microphonesensitivity.
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12.3 Analysis of the Wiener Filter with Symmetric 
Input Signals 

In this section we compute the mean square error of the two-microphone 
adaptive algorithm with symmetric input signals when the filter is adapted 
by means of the unconstrained Wiener filter [18]. In contrast to other Wiener 
filter optimization approaches, we do not use the undisturbed desired speech 
signal as a reference in the derivation of the optimal filter. We show that 
the performance of the system can be characterized using the magnitude 
squared coherence (MSC) function of the microphone signals. The analysis 
supplements the coherence measurements of the previous section. 

For the computation of the linear MMSE filter and its mean square error 
we consider an IIR filter as shown in Figure 12.6a and assume that the input 
signals xn[k] = sn[k] + vn[k], n E {1, 2}, are the sum of clean speech signals 
sn[k] and noise signals vn[k]. In Figure 12.6a, x2[k] = s2[k]+v2[k] is the input 
signal of the adaptive filter while x1 [k] = si[k] + vi[k] serves as a reference 
signal. Since both microphones pick up speech and noise alike, the reference 
signal contains not only (reverberated) speech but also noise. 

The Wiener filter in Figure 12.6a minimizes the mean square error 
E{(x1[k] - s[k])2}, where s[k] is computed using the non-causal IIR filter. 
When the speech and the noise signals are statistically independent, the fre­
quency response of the Wiener solution is given by [18] 

Hw(D) = Px1x2(D) = Ps1s2(D) + Pv1v2(D) 
Px2x2(il) Ps2s2(il) + Pv2v2(n) 

(12.4) 

Ps1s2(D) Pv1v2(D) 
= Ps2s2 ( D) + Pv2v2 ( D) + Ps2s2 ( D) + Pv2v2 ( D) ' 

(12.5) 

which is recognized as a linear combination of two optimal subfil­
ters, see Figure 12.6b. Hsopt(D) = Ps1 8 2(il)/Px2x2(D) and Hvopt(D) = 
Pv1v2(il)/Px2x2(D) are linear MMSE estimators for the speech component 
si[k] and the (undesired) noise component vi[k] of the reference signal xi[k], 
respectively. The estimation error between the desired speech signal si[k] and 
the output of the Wiener filter s{k] can therefore be written in terms of the 
estimation errors of the subfilters 

(12.6) 

The overall minimum mean square error can be then decomposed into 

E { e;[kl} = E { (si[k] - s{k])2} (12.7) 

= E { (si[k] - ii[k]) si[k]} + E { v1[k]i;i[k]} (12.8) 

= E { vr[kl} + E { (s1[k] - ii[k]) si[k]} - E { ( vi[k] - i;i[k]) v1[IJ2}~) 
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In this section we compute the mean square error of the two-microphone
adaptive algorithm with symmetric input signals when thefilter is adapted
by meansof the unconstrained Wienerfilter [18]. In contrast to other Wiener
filter optimization approaches, we do not use the undisturbed desired speech
signal as a reference in the derivation of the optimal filter. We show that
the performance of the system can be characterized using the magnitude
squared coherence (MSC) function of the microphone signals. The analysis
supplements the coherence measurements of the previous section.

For the computation of the linear MMSEfilter and its mean square error
we consider an IIR filter as shown in Figure 12.6a and assumethat the input
signals x,,[k] = s,[k] + v»[k], n € {1,2}, are the sum of clean speech signals
$k] and noise signals v,[k]. In Figure 12.6a, xo[k] = so[k]+ve2[k] is the input
signal of the adaptive filter while x1[&/] = s1[k] + v1[k] serves as a reference
signal. Since both microphones pick up speech and noise alike, the reference
signal contains not only (reverberated) speech but also noise.

The Wiener filter in Figure 12.6a minimizes the mean square error
E{(x;[k] — 8{k])?}, where &[k] is computed using the non-causal ITR filter.
Whenthe speech and the noise signals are statistically independent, the fre-
quency response of the Wienersolution is given by [18]

Hw(Q) _ Peize(2) _ P5152(Q) + Pyiy2 (2) (12.4)
Pr2e2(2) Ps252(2) + Py2v2(2)

_ Psisa(Q2) + Pyiv2(2) , (12.5)
Py252(2) + Pyove(2)—Ps2s2(2) + Poave(22)

which is recognized as a linear combination of two optimal subfil-
ters, see Figure 12.6b. Hgopt (2) = Pets2(2)/Pa2one(@) and Hyopt(2) =
Pyiv2()/Peo22(f2) are linear MMSEestimators for the speech component
81 [k] and the (undesired) noise component v;[k] of the reference signal x; [kl],
respectively. The estimation error between the desired speech signal s,[k] and
the output of the Wienerfilter s[k] can therefore be written in terms of the
estimation errors of the subfilters

er{h] = s1[] ~ Sf] = (si[} — Si [A}) - O11A], (12.6)

 

 

The overall minimum mean squareerror can be then decomposed into

B {e2{k]} = E { (si [k] - s{a))’} (12.7)
= E{(siff —$i[k]) 1 (KS +B {oilk}ou[h]} (12.8)
= E {vp[k}} +2 { (sifk] — 8:(e1) sift] } — 2 { (vif) - G11h)) vi(apo)
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where we used E { ;fr~ [k]} = E { v1 [k]J1 [k]} which holds for the MMSE filter. 
Using Parceval's relation, the minimum mean square errors of the uncon­

strained subfilters Hsopt (D) and Hvopt (D) can be rewritten in the frequency 
domain as [18] 

E { ( vi(k] - J1 [k]) vi(k]} 
K K 

= 2~ / Pv1v1 (D) dD - 2~ / Hvopt (D) p:1v2 (D) dD (12.10) 
-K -K 

-K -K 

and 

-n -K 

-n -K 

where Pxy(D) denotes the (cross) power spectral density of the signals in the 
subscript. 

 
Fig. 12.6. The Wienerfilter (a) and its subfilter decomposition (b).

a2 ~

where we used E {,[k] } = E {v1 A]o:[k] } which holds for the MMSEfilter.
Using Parceval’s relation, the minimum mean squareerrors of the uncon-

strained subfilters Hsopt (2) and Hyopt (2) can be rewritten in the frequency
domain as [18]

E { (fe) — 1f]) vif] }
1anJ Pov, (2) dQ ~ HBi|Hom 2) dQ (12.10)Pov. (

Pov (2) 1Qn [ Pata On|th ma
and

E { (sift] ~3,[k]) si[k]}
1 Tv

on[P$181 (2) dQ) — ml
= i[ Pant 40— FefgPiya(

(2) + Prag (er)

(2) Px ,, (Q) dQ (12.12)

ape—[Pars2(QPPSPO)——_tssa")__(49.1)

where P,,({2) denotes the (cross) power spectral density of the signals in the
subscript.
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Applying these results to (12.9), we obtain for the overall MMSE 

rr rr 2 2 

E { e;[k]} = 2_ f p 8181 (D) dD + 2_ J IPv,v2 (D)I - IPs,s2 (D)I d[). 
2n 2n P8282 (D) + Pv2v2 (D) 

-rr -rr 

(12.14) 

The representation of the MMSE in the frequency domain shows that a suc­
cessful application (i.e. a small MMSE) of the two-microphone Wiener filter 
to the speech enhancement task requires a high correlation of the speech 
components s1 [k] and s2 [k] and a low correlation of the noise components 
v1 [k] and v2 [k]. In the following sections we consider two special cases. 

12.3.1 No Near End Speech 

During speech pause, si[k] = s2 [k] = 0, the MMSE E { e;[kl} is given by 

7r 2 7r 

{ 2 [ ] } 1 / IPv, v2 ( [)) I 1 / ( ) ( ) 
E erk = 2n Pv2v2 (D) dD = 2n Pv,v, [) Cv,v2 [) d[). 

-rr -rr 

(12.15) 

The residual noise at the output of the optimal filter depends on the power 
spectral density Pv, v, ( D) of the noise and the coherence Cv, v2 ( D) of the 
noise components. 

12.3.2 High Signal to Noise Ratio 

If the microphone signals have a high SNR the MMSE can be written as a 
function of the power spectral density of the speech signal and the coher­
ence C 8182 (D) of the speech components. The approximations P8282 (D) » 
Pv2v2 (D) and P 8282 (D) » 1Pv,v2 (D)l 2 lead to 

7r 

E { e;[kl} ~ 2_ f Ps,s, (D) (1 - Cs, 82 (D)) dD. 
2n 

-rr 

(12.16) 

A prerequisite for high speech quality is thus a coherence of the speech com­
ponents which is close to one. Incoherent speech components generated, for 
instance, by reverberation will be attenuated. Whether this attenuation con­
stitutes an improvement or a reduction of the perceived speech quality de­
pends on the ratio of coherent and incoherent speech sounds and the noise 
level. If the speech components are less coherent than the ambient noise the 
SNR will not be improved. A sufficient amount of coherent speech is there­
fore of paramount importance for a good performance of the coherence based 
two-microphone speech enhancement system. The coherence of speech signals 
can be improved by using directional microphones. 
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12.4 A Noise Reduction Application 

In this section we describe a noise reduction algorithm which is based on the 
Wiener filter as discussed in Section 12.3. The algorithm uses a time domain 
implementation of the Wiener filter and was developed for the voice intercom 
of a computed tomography scanner. 

The voice communication between a patient in a computed tomography 
(CT) scanner and the operator at the control desk is disturbed by acoustic 
noise which originates from the CT scanner. The acoustic noise in the gantry 
tunnel is due to numerous cooling fans and to the rotating x-ray imaging 
system. To reduce the fatigue of the operator, it is very desirable to reduce 
the level of noise transmitted from the gantry of the scanner to the con­
trol desk. Since the noise is highly non-stationary, single microphone speech 
enhancement methods do not perform well in this environment. 

Figure 12. 7 illustrates the application of the two-microphone noise re­
duction algorithm in the computed tomography scanner. The microphones 
which pick up the patient's speech are mounted inside the gantry tunnel at 
a distance of 0.4 m. The microphone signals are sampled and processed on a 
DSP. The enhanced signal s[k] is then played back on a loudspeaker at the 
control desk. 

12.4.1 An Implementation Based on the NLMS Algorithm 

Figure 12.8 shows a block diagram of the time domain implementation. 
The microphone signals are bandlimited to 3600 Hz and sampled with 
Is = 8000 Hz. Preemphasis filters whiten the input signals and thus im­
prove the convergence of the adaptive filter. They also help to improve the 

prompt 

memory 

-----
( ( ( ( noise 

s1 +v1 

reduction 
S2 + V2 

2 microphon 

dmic = 0.4m 

Fig. 12. 7. Application of the two-microphone noise reduction system for voice com­
munication in a computed tomography scanner. 
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12.4 A Noise Reduction Application

In this section we describe a noise reduction algorithm which is based on the
Wienerfilter as discussed in Section 12.3. The algorithm uses a time domain
implementation of the Wienerfilter and was developed for the voice intercom
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The voice communication between a patient in a computed tomography
(CT) scanner and the operator at the control desk is disturbed by acoustic
noise which originates from the CT scanner. The acoustic noise in the gantry
tunnel is due to numerous cooling fans and to the rotating x-ray imaging
system. To reduce the fatigue of the operator, it is very desirable to reduce
the level of noise transmitted from the gantry of the scanner to the con-
trol desk. Since the noise is highly non-stationary, single microphone speech
enhancement methods do not perform well in this environment.

Figure 12.7 illustrates the application of the two-microphone noise re-
duction algorithm in the computed tomography scanner. The microphones
which pick up the patient’s speech are mounted inside the gantry tunnel at
a distance of 0.4 m. The microphonesignals are sampled and processed on a
DSP. The enhancedsignal 8[k] is then played back on a loudspeaker at the
control desk.

12.4.1 An Implementation Based on the NLMS Algorithm

Figure 12.8 shows a block diagram of the time domain implementation.
The microphone signals are bandlimited to 3600 Hz and sampled with
fs = 8000 Hz. Preemphasis filters whiten the input signals and thus im-
prove the convergence of the adaptive filter. They also help to improve the
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Fig. 12.7. Application of the two-microphone noise reduction system for voice com-
munication in a computed tomography scanner.
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Fig. 12.8. Block diagram of the two-microphone noise reduction system. 
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reproduction of high frequency speech components in a fixed-point imple­
mentation. 

An adaptive time delay estimation algorithm compensates time delays 
between the two input signals. The time delay compensation is based on the 
correlation of the two microphone signals and on the SNR. When a high 
SNR is detected, a recursively smoothed correlation function is searched for 
maxima and the time delay is determined [17] . To avoid noticeable lowpass 
or comb-filtering effects, the magnitude of the delay error after delay com­
pensation should be smaller than 1/(4/8 ). 

The spectral density and the coherence properties of the microphone sig­
nals suggest processing the speech signal in two frequency bands. Above 
800 Hz, a linear phase adaptive Wiener filter is used which suppresses inco­
herent signal components (noise and reverberated speech) and passes highly 
coherent speech signals. Processing the frequency band below 800 Hz with 
this adaptive filter would result in noticeable fluctuations of the residual 
noise. These fluctuations are caused by the correlation of the noise signals at 
low frequencies . The noise in the band between 240 and 800 Hz is therefore 
suppressed by an adaptive scalar factor b[k] . This factor is controlled by the 
speech activity of the person inside the gantry tunnel. The speech activity is 
determined by the SNR estimator which is also used to increase the robust­
ness of the time delay estimation algorithm [19]. The frequency band below 
240 Hz is attenuated by 20 dB by means of a second order recursive highpass 
filter. The deemphasis filter at the output of the speech enhancement system 
restores the spectral characteristics of the speech signal. This noise reduction 
system is currently used in the Siemens SOMATOM PLUS 4 CT scanner1 . 

1 Siemens and SOMATOM PLUS 4 are registered trademarks of Siemens AG , 
Germany. 
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reproduction of high frequency speech components in a fixed-point imple-
mentation.

An adaptive time delay estimation algorithm compensates time delays
between the two input signals. The time delay compensation is based on the
correlation of the two microphone signals and on the SNR. When a high
SNRis detected, a recursively smoothed correlation function is searched for
maxima and the time delay is determined [17]. To avoid noticeable lowpass
or comb-filtering effects, the magnitude of the delay error after delay com-
pensation should be smaller than 1/(4f,).

The spectral density and the coherence properties of the microphonesig-
nals suggest processing the speech signal in two frequency bands. Above
800 Hz, a linear phase adaptive Wienerfilter is used which suppresses inco-
herent signal components (noise and reverberated speech) and passes highly
coherent speech signals. Processing the frequency band below 800 Hz with
this adaptive filter would result in noticeable fluctuations of the residual
noise. These fluctuations are caused by the correlation of the noise signals at
low frequencies. The noise in the band between 240 and 800 Hz is therefore
suppressed by an adaptive scalar factor b{k]. This factor is controlled by the
speech activity of the person inside the gantry tunnel. The speech activity is
determined by the SNR estimator which is also used to increase the robust-
ness of the time delay estimation algorithm [19]. The frequency band below
240 Hz is attenuated by 20 dB by means of a second order recursive highpass
filter. The deemphasis filter at the output of the speech enhancement system
restores the spectral characteristics of the speech signal. This noise reduction
system is currently used in the Siemens SOMATOM PLUS4 CTscanner!.

' Siemens and SOMATOM PLUS4 are registered trademarks of Siemens AG,
Germany.
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The computational complexity of the algorithm is about 10 MIPS on a 24 bit 
fixed-point DSP. In what follows we briefly describe the algorithm. 

12.4.2 Processing in the 800 - 3600 Hz Band 

The Wiener filter is approximated by two antiparallel linear phase NLMS 
adapted FIR filters (see Figure 12.8). The adaptive filters with the coefficient 
vectors hi[k] and h2[k] of order LH = 64 are updated using a linear phase 
version [20] of the NLMS algorithm (TH= LH/2), 

(J + JR) Yhppre1[k] 
hi[k + 1] = h1[k] + aei[k] T [k] [k] (12.17) 

Yhpprel Yhpprel 

(J + JR) Yhppre2[k] 
h2[k + 1] = h2[k] + ae2[k] r [k] [k] , (12.18) 

Yhppre2 Yhppre2 

where J denotes the identity matrix and 

0 0 0 .. 1 
0 0 .. 
0 .. 1 

JR= .. 0 (12.19) 
1 .. 0 

.. 0 0 
1 .. 0 0 0 

denotes a modified reflection matrix. The error signals e1 [k] and e2 [k] are 
given by 

and 

e1[k] = Yhppre2[k - TH] - Yip,ei[k]h1[k] (12.20) 

e2[k] = Yhppre1[k - TH] - Yip,e2[k]h2[k], (12.21) 

Yhppre1[k] = (Yhppre1[k], •··, Yhppre1[k - LH]) T 

Yhppre2[k] = (Yhppre2[k], •··, Yhppre2[k - LH]) T 

(12.22) 

(12.23) 

denote the data vectors of the filter input signals. a ~ 0.1 is the stepsize 
parameter of the NLMS algorithm. Because of the symmetry of the coefficient 
vector updates (J + JR) Yhppre1[k] and (J + JR) Yhppre2[k] and a symmetric 
initialization, the coefficient vectors h1[k+l] and h2[k+l] are symmetric for 
all k. Therefore, only the first half of the vectors need to be adapted. 

To filter the combined input signals of the upper band, (Yhpprei[k] + 
Yhpprdk])/2, we use the mean of the two adaptive coefficient vectors h1[k] 
and h2 [k] and an additional smoothing window w = (wo,w1, ... ,WLH)T 

h[k] = hi[k] + h2[k] 0 w. 
2 

(12.24) 
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The symbol 181 denotes the pointwise multiplication of two vectors. The win­
dow function is used to smooth the frequency response of the adaptive fil­
ter. A Kaiser window [21] with a shape parameter /3Kaiser in the range of 
3 :S: /3Kaiser :S: 5 results in good speech quality and increased noise reduction. 
Since the coefficient vectors hi[k] and h2 [k] represent linear phase filters, the 
averaging of the vectors hi[k] and h2 [k] in (12.24) yields an average of the 
amplitude spectra of these filters without errors due to mismatching phase 
spectra. 

12.4.3 Processing in the 240 - 800 Hz Band 

The attenuation factor b(k] (bmin :S: b(k] :S: bmax) is controlled by a speech ac­
tivity detector and adjusted according to the estimated SNR. Whenever the 
estimated SNR is below a preselected threshold the attenuation is slowly and 
successively increased until a maximum attenuation of 40 dB ( correspond­
ing to bmin = 0.01) is reached. Whenever the estimated SNR is above the 
threshold the attenuation is rapidly decreased to a minimum value of 3 dB 
(bmax = 0.5). The SNR threshold is set to 3 dB. Thus, the attenuation factor 
b(k] is computed using the recursive system 

b[k + 1] = b[k]/31 + bmax (l - /31), SN R > threshold 

b[k + 1] = b[k]/32 + bmin (1- /32), SNR :S: threshold. 

(12.25) 

(12.26) 

The smoothing constants /31 and /32 are set to /31 = 0.9996 and /32 = 0.99999. 

12.4.4 Evaluation 

We assess the performance of the noise reduction algorithm in terms of 

• distortion of the speech signal; 
• noise reduction during speech activity; 
• noise reduction during speech pause. 

These criteria can be measured during simulation of the speech enhancement 
system. For the purpose of measuring the above properties, the adaptive filter 
is duplicated such that the undisturbed speech signal and the noise signal 
can be processed independently [22]. Figure 12.9a outlines this approach. It 
requires separate recordings of the noise and the speech signals. 

The speech signal distortion can then be measured as the segmental SNR 
of the filtered signal s(k] with respect to the unprocessed delayed speech 
signal s[k - TH] 

K-1 

SEGSNRf_ 8 = ! L max (SNRf_ 8 (m) ,0) 
m=O 

(12.27) 
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with 

( 
mMtM-l s2[k -TH] ) 

SN R;_ 8 (m) = 10 · log10 _m_M_+_;-".'.'.-';-M _____ _ 
I: (s(k] - s[k - TH]) 2 

k=mM 

(12.28) 

M denotes the segment length and K the number of segments. To reduce the 
influence of speech pauses, we average the SNR of only those speech signal 
frames which exhibit an SNR larger than O dB. Since we use a linear phase 
filter, the segmental SNR measures the amplitude distortion of the speech 
signal and is therefore well correlated with perceived distortions. 

The attenuation of the noise signals during speech activity N Ractive and 
during speech pause N Rpause is measured as the power ratio of the noise 
signals before and after the adaptive filter 

NRactive = lOloglO (Pv[k -TH]/Pv[k]) , Ps[k] f. 0 (12.29) 

(12.30) 

where Pv[k] and A[k] denote the average power of the unprocessed and the 
processed noise signal, respectively. P8 [k] denotes the short term power of the 
speech signal. 

adaptive filter 
h[k] 

(a) 

s(k]-e-- • 1 

v[k]-

t 
filter 
h[k] 
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h(k] 

8 

- • s[k] ~ 6 

• s[k] 
4 

2 
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~ 
- iii_ 

-llE_ 
(b) -* 
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Fig. 12.9. Method for computing objective measures (a). Distortion of speech sig­
nal and noise reduction during speech activity and during speech pause vs. input 
SNR of the adaptive filter in the upper band (b). Step size: a = 0.1, filter order 
LH = 64. 
(--): Segmental SNR of speech; (· · · · · ): noise attenuation during speech pause; 
(- - - ): noise reduction during speech activity. 
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with

mM+M-—-1

s°[k — Tr]
SNR§_,(m) = 10-logio|Saami - (12.28)

py (3[k] — s[k — Tu])”
M denotes the segment length and K the numberof segments. To reduce the
influence of speech pauses, we average the SNR of only those speech signal
frames which exhibit an SNR larger than 0 dB. Since we use a linear phase
filter, the segmental SNR measures the amplitude distortion of the speech
signal and is therefore well correlated with perceived distortions.

The attenuation of the noise signals during speech activity NRactive and
during speech pause NRpause is measured as the power ratio of the noise
signals before and after the adaptivefilter

NRecasug = 101086 (Polk —Ta] /Pi[K]) , P.lk] £0 (12.29)

NRpause = 101g; @ (k — Ty] /Pilkl) , P[k] =0, (12.30)
where P,[k] and P;[k] denote the average power of the unprocessed and the
processed noise signal, respectively. P,[k] denotes the short term powerof the
speech signal.

s{k] + vfk}| adaptive filter Stk]
h{k]

(a) v
s[k]-¢ + it o—» 5

4  ‘ ylk] adaptation L. t
a algorithm i .

of[k|-e——»| filter o> ofk] -10 0 10 20
h[k] SNR / dB

Fig. 12.9. Method for computing objective measures (a). Distortion of speech sig-
nal and noise reduction during speech activity and during speech pause vs. input
SNR. of the adaptive filter in the upper band (b). Step size: a = 0.1, filter order
Ly = 64.

(——-): Segmental SNRof speech;(- ---- ): noise attenuation during speech pause;
(——-—): noise reduction during speech activity.
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Figure 12.9b plots the objective measures as a function of the input SNR. 
For this experiments, adaptive filters of order LH = 64 and a rectangular 
window w were used (equivalent to f3Kaiser = 0). It can be seen that the 
speech signal distortion increases as the input SNR decreases. When the in­
coherent noise becomes dominant at about 0 dB, the speech SNR significantly 
degrades. The noise reduction during speech pause is about 5 - 6 dB. It can 
be improved by 2 - 3 dB if a tapered smoothing window is used. The overall 
noise reduction during speech pause including the adaptive scalar weighting 
in the lower band and the highpass filter is about 14 dB during speech pause. 

12.4.5 Alternative Implementations of the Coherence Based 
Postfilter 

The speech enhancement system as outlined above exploits the coherence 
properties of the microphone signals. Coherence based noise reduction sys­
tems can be also implemented in the frequency domain [3,9,5,6]. Since the 
coherence based approach does not rely on an explicit noise power spectral 
density estimate, the performance of these systems is limited by the coherence 
of the noise and the speech signals. To improve the noise reduction especially 
for low frequencies, the combination with spectral weighting techniques has 
been proposed. In [5] the coherence function is also employed to detect speech 
pauses and to enable noise power spectral estimation during speech pauses. 
In [23] the cross power spectral density of the microphone signals is used to 
derive an explicit noise power spectral density estimate, which is then used in 
a two-channel spectral subtraction. Combined with small superdirective end­
fire arrays, this system led to significant improvements of speech intelligibility 
in conjunction with cochlear implants [24]. 

12.5 Combined Noise and Acoustic Echo Reduction 

A hands-free conferencing system has to cope not only with ambient noise 
but also with acoustic echoes. The feedback of the far-end speech signal via 
the loudspeaker, the room, and the microphone ( the "LRM system") back 
to the far-end side necessitates an echo suppression device to guarantee the 
stability of the electro-acoustic loop and to supply sufficient echo reduction. 
While the stability of the electro-acoustic loop can be treated as a control 
problem, the echo reduction aims at making the echo imperceptible. The echo 
reduction problem is therefore closely linked to psychoacoustics, especially to 
masking effects in the human auditory system. 

The noise and the echo reduction problems were addressed independently 
for many years (see e.g. [25-28] and [29,30] for reviews of these methods). 
To achieve optimal performance it has been recognized, however, that the 
echo control and noise reduction problem should be tackled in a combined 
approach [31,8,32-34]. The combined treatment yields algorithms which de­
liver better performance at less computational costs than systems based on 
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Fig. 12.10. Processing options for combined systems: EC precedes ENR (a), ENR 
precedes EC (b). 

separate algorithms [8,35]. In this section we will outline one solution to the 
combined echo and noise reduction problem and show how the coherence 
based noise reduction postfilter can be extended to achieve a high level of 
echo reduction. This requires the integration of echo cancellers into the two­
microphone speech enhancement system. 

When acoustic echo cancellation is combined with an echo and noise re­
duction postfilter it must be asked in which order these two processing opera­
tions should be performed [36]. Figures 12.lOa and 12.lOb depict two principal 
cases: the configuration EC /NR where the acoustic echo cancellation (EC) 
precedes a speech enhancement postfilter (NR), and vice versa, the configu­
ration NR/EC. 

Although the echo canceller can benefit from the noise reduction in the 
NR/EC configuration, there are good reasons why the configuration of Fig­
ure 12.lOa, where the echo cancellation precedes the noise reduction, is prefer­
able. The main advantage of the EC /NR configuration is that the noise re­
duction postfilter is not presented with the disturbing and possibly highly 
coherent echo that is found in the microphone signals and that there is no 
time varying noise reduction filter in the echo path. Besides that, if the echo 
canceller does not deliver sufficient echo attenuation, the residual echo can be 
treated similar to the background noise signal and can be further attenuated 
by the postfilter. This idea is successfully exploited in a frequency selective 
echo reduction technique, called echo shaping [37], which does not require 
complete cancellation of the echo by the echo canceller. Instead, the total 
echo attenuation is split between the echo cancellers and the postfilter. A 
disadvantage of the EC/NR approach is, however, that it requires cancella­
tion of the microphone signals of the array by individual cancellers. 

The combination of acoustic echo cancellation with an adaptive micro­
phone array is a challenging task by itself [38-40]. If we provide a canceller 
for each microphone channel, the echo cancellers converge as well as in the 
single microphone case. However, the computational load may be too large. 
If a single echo canceller is placed after the summation point of the array, the 
adaptation of the echo canceller might be severely disturbed when the look 
direction of the array is adapted to the speaker position. 
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separate algorithms[8,35]. In this section we will outline one solution to the
combined echo and noise reduction problem and show how the coherence
based noise reduction postfilter can be extended to achieve a high level of
echo reduction. This requires the integration of echo cancellers into the two-
microphone speech enhancement system.

When acoustic echo cancellation is combined with an echo and noise re-

duction postfilter it must be asked in which order these two processing opera-
tions should be performed [36]. Figures 12.10a and 12.10b depict two principal
cases: the configuration EC/NR where the acoustic echo cancellation (EC)
precedes a speech enhancement postfilter (NR), and vice versa, the configu-
ration NR/EC.

Although the echo canceller can benefit from the noise reduction in the
NR/EC configuration, there are good reasons why the configuration of Fig-
ure 12.10a, where the echo cancellation precedes the noise reduction,is prefer-
able. The main advantage of the EC/NR configuration is that the noise re-
duction postfilter is not presented with the disturbing and possibly highly
coherent echo that is found in the microphonesignals and that there is no
time varying noise reduction filter in the echo path. Besides that, if the echo
canceller does not deliver sufficient echo attenuation, the residual echo can be
treated similar to the background noise signal and can be further attenuated
by the postfilter. This idea is successfully exploited in a frequency selective
echo reduction technique, called echo shaping [37], which does not require
complete cancellation of the echo by the echo canceller. Instead, the total
echo attenuation is split between the echo cancellers and the postfilter. A
disadvantage of the EC/NR approach is, however, that it requires cancella-
tion of the microphonesignals of the array by individual cancellers.

The combination of acoustic echo cancellation with an adaptive micro-
phonearrayis a challenging task by itself [38-40]. If we provide a canceller
for each microphone channel, the echo cancellers converge as well as in the
single microphone case. However, the computational load may be too large.
If a single echo canceller is placed after the summation point of the array, the
adaptation of the echo canceller might be severely disturbed when the look
direction of the array is adapted to the speaker position.
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Fig. 12.11. Block diagram of the two microphone combined echo and noise reduc­
tion algorithm. 

To avoid the adaptation and the complexity problems, we adopt a strat­
egy as follows: The echo cancellers are placed at the microphone inputs but 
they are equipped with a reduced number of filter taps. The echo attenua­
tion of the cancellers will be reduced but since they have fewer filter taps 
their speed of convergence will be improved. The reduced echo attenuation 
of the echo cancellers is compensated for by the array gain [41] and the noise 
reduction postfilter which will also reduce acoustic echoes, especially the in­
coherent late reverberation portion. To improve the echo suppression, we 
apply additional echo attenuation in the postfilter by using the echo shaping 
technique for the postfilter adaptation. The echo shaping technique attenu­
ates only those frequencies for which the echo dominates the near-end signal. 
It leads to significantly increased echo attenuation, to acceptable near-end 
signal distortions during double talk, and to modest computational demands 
as compared to single-microphone speech enhancement systems. 

Figure 12.11 depicts a block diagram of the combined echo and noise 
reduction algorithm. The cancellers at the microphone inputs are NLMS 
adapted FIR filters with adaptive stepsize control [42]. The echo cancelled 
signals are time delay compensated. Because some of the echo is incoherent, 
the noise reduction postfilter will also reduce acoustic echoes. To amplify this 
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Fig. 12.11. Block diagram of the two microphone combined echo and noise reduc-
tion algorithm.

To avoid the adaptation and the complexity problems, we adopta strat-
egy as follows: The echo cancellers are placed at the microphone inputs but
they are equipped with a reduced numberoffilter taps. The echo attenua-
tion of the cancellers will be reduced but since they have fewerfilter taps
their speed of convergence will be improved. The reduced echo attenuation
of the echo cancellers is compensated for by the array gain [41] and the noise
reduction postfilter which will also reduce acoustic echoes, especially the in-
coherent late reverberation portion. To improve the echo suppression, we
apply additional echo attenuation in the postfilter by using the echo shaping
technique for the postfilter adaptation. The echo shaping technique attenu-
ates only those frequencies for which the echo dominates the near-end signal.
It leads to significantly increased echo attenuation, to acceptable near-end
signal distortions during double talk, and to modest computational demands
as compared to single-microphone speech enhancement systems.

Figure 12.11 depicts a block diagram of the combined echo and noise
reduction algorithm. The cancellers at the microphone inputs are NLMS
adapted FIR filters with adaptive stepsize control [42]. The echo cancelled
signals are time delay compensated. Because someof the echo is incoherent,
the noise reduction postfilter will also reduce acoustic echoes. To amplify this
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effect and to reduce coherent echoes, the amount of echo in the inputs of the 
adaptive filters is deliberately increased by using a linear combination of the 
microphone signal Xn[k] and the echo compensated signal en[k] as an input 
to the adaptive filters. The reference signal of the adaptive filters is the echo 
compensated signal of the other microphone channel. Neglecting the time 
delay compensation ( or letting T = T), the input to the adaptive filter h2 is 
given by 

zi[k] = a[k]x1 [k] + {1 - a[k])e1 [k] 

= s1 [k] + vi[k] + d1 [k] - {1 - a[k])di[k] , 

{12.31) 

{12.32) 

where d1 [k] denotes the echo signal and di[k] the echo estimate of the echo 
canceller. The linear combination is controlled by the time varying factor a[k]. 
For a[k] > 0 there will be more echo in the input signal of the adaptive filter 
than in the reference signal since the reference signal is the echo compensated 
signal. To match the echo level of the reference signal, the adaptive filters 
will attenuate the echo if it dominates the near-end signals. Therefore, this 
mechanism provides for additional echo attenuation whenever the echo is 
disturbing. An algorithm for the adaptation of the "mixing factor" a[k] is 
outlined in [17]. 

12.5.1 Experimental Results 

The two-microphone algorithm as explained above was evaluated in a desk­
top conferencing experiment. Since we aim for low coherence of the acoustic 
echoes and high inherent robustness, the acoustic interface was designed such 
that there is little coupling between the loudspeaker and the microphones. 
Also, to increase the performance of the system, directional microphones or 
small superdirective endfire arrays [43] should be used. Figure 12.12 explains 
the experimental setup. The near-end speaker and the microphones are placed 
at a table in accordance with ITU-T recommendation P.34 [44]. The micro­
phones have a hypercardioid directivity pattern and the loudspeaker is placed 
in a direction of low sensitivity of the microphones. The specific arrangement 
of the microphones and the loudspeaker combined with the gains of the loud­
speaker and the microphone amplifiers resulted in an echo return loss of 9 dB. 
A similar setup ( with similar results) was also used in a car. In this case the 
two microphones were mounted at the sun visor and the loudspeaker was 
attached to the dashboard. 

Figure 12.13a plots the echo return loss enhancement {ERLE) for single 
talk and a stationary LRM system as a function of the number of compen­
sator taps. For a [k] = 0, the postfilter reduces noise and incoherent echo 
components only. The additional echo reduction delivered by the postfilter 
is then about 6 dB, independent of the compensator order. A significant in­
crease of the echo attenuation is achieved when the echo shaping algorithm 
is turned on (a[k] adaptive). It can be shown with the noise-free case that 
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for a [k] = 1 the postfilter delivers the same amount of echo suppression as 
the echo canceller alone (17). Hence, the slope of the ERLE vs. compensator 
order plot is about twice as steep as the slope of the plot for the echo canceller 
only. Figure 12.13b plots the ERLE as a function of the SNR. Again we find 
a significant increase of the echo attenuation for the echo shaping technique. 
For double talk most of the echo reduction is delivered by the echo canceller 
since the coherent near-end speech is passed by the filter. Only for frequen­
cies where the residual echo dominates the near-end signal is significant echo 
reduction applied. If the far-end speaker is not active (no echo), the combined 
system behaves exactly like the two-microphone noise reduction systems of 
Section 12.4.1. For the office situation the average noise reduction is about 
10 dB. 

12.6 Conclusions 

This chapter has presented a two-microphone postfilter approach to noise 
reduction and to combined echo and noise reduction. It was shown that the 
performance of these systems is closely linked to the spatial coherence of 
the speech, the noise, and the echo signals. The coherence based processing 
is useful only above a cutoff frequency which depends on the microphone 
distance. However, as a high coherence of the speech signal is also of great 
importance, the microphone distance cannot be made arbitrarily large. Best 
results are therefore obtained when microphones or small (endfire) arrays 
with a high directivity are used in conjunction with the proposed postfilter. 

e 
e 
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speaker 

A/D x1[k] 

0.4m [n~· 0.4m 
----~----,...~----- D/A u[k] 

Fig. 12.12. Setup of the near-end speaker, the microphones, and the loudspeaker 
for conferencing experiments. The microphones have a hypercardioid directivity 
pattern. 
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for a[k] = 1 the postfilter delivers the same amount of echo suppression as
the echo canceller alone [17]. Hence, the slope of the ERLE vs. compensator
order plot is about twice as steep as the slope of the plot for the echo canceller
only. Figure 12.13b plots the ERLE as a function of the SNR. Again wefind
a significant increase of the echo attenuation for the echo shaping technique.
For double talk most of the echo reduction is delivered by the echo canceller
since the coherent near-end speech is passed by thefilter. Only for frequen-
cies where the residual echo dominates the near-end signal is significant echo
reduction applied. If the far-end speakeris not active (no echo), the combined
system behaves exactly like the two-microphone noise reduction systems of
Section 12.4.1. For the office situation the average noise reduction is about
10 dB.

12.6 Conclusions

This chapter has presented a two-microphonepostfilter approach to noise
reduction and to combined echo and noise reduction. It was shown that the

performance of these systems is closely linked to the spatial coherence of
the speech, the noise, and the echo signals. The coherence based processing
is useful only above a cutoff frequency which depends on the microphone
distance. However, as a high coherence of the speech signal is also of great
importance, the microphone distance cannot be madearbitrarily large. Best
results are therefore obtained when microphones or small (endfire) arrays
with a high directivity are used in conjunction with the proposed postfilter.
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Fig. 12.12. Setup of the near-end speaker, the microphones, and the loudspeaker
for conferencing experiments. The microphones have a hypercardioid directivity
pattern.
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The array and postfilter approach has been successfully deployed in the voice 
intercom of a computed tomography scanner. 
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Beamforming Microphone Arrays 
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Abstract. Acoustic feedback from loudspeakers to microphones constitutes a ma­
jor challenge for digital signal processing in interfaces for natural, full-duplex 
human-machine speech interaction. Two techniques, each one successful on its 
own, are combined here to jointly achieve maximum echo cancellation in real en­
vironments: For one, acoustic echo cancellation (AEC), which has matured for 
single-microphone signal acquisition, and, secondly, beamforming microphone ar­
rays, which aim at dereverberation of desired local signals and suppression of local 
interferers, including acoustic echoes. Structural analysis shows that straightfor­
ward combinations of the two techniques either multiply the considerable compu­
tational cost of AEC by the number of array microphones or sacrifice algorithmic 
performance if the beamforming is time-varying. Striving for increased computa­
tional efficiency without performance loss, the integration of AEC into time-varying 
beamforming is examined for two broad classes of beamforming structures. Finally, 
the combination of AEC and beamforming is discussed for multi-channel recording 
and multi-channel reproduction schemes. 

13.1 Introduction 

For natural human-machine interaction, acoustic interfaces are desirable that 
support seamless full-duplex communication without requiring the user to 
wear or hold special devices. For that, the general scenario of Figure 13.1 
foresees several loudspeakers for multi-channel sound reproduction and a mi­
crophone array for acquisition of desired signals in the local acoustic en­
vironment. Acoustic signal processing is employed to support services such 
as speech transmission, speech recognition, or sound field synthesis offered 
by communication networks or autonomous interactive systems. Such hands­
free acoustic interfaces may be tailored for incorporation into a wide variety 
of communication terminals, including teleconferencing equipment, mobile 
phones and computers, car information systems, and home entertainment 
equipment. 

For signal acquisition, microphone arrays allow spatial filtering of arriving 
signals and, thus, desired signals can be enhanced and interferers can be sup­
pressed. With full-duplex communication, echoes of the loudspeaker signals 
will join local interferers to corrupt the desired source signals. Beamforming, 
however, does not exploit the available loudspeaker signals as reference infor­
mation for suppressing the acoustic echoes. This is accomplished by acoustic 
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echo cancellation (AEC) algorithms [1-3]. For discussing the combination of 
AEC with microphone arrays, the concept of AEC is first reviewed in Sec­
tion 13.2 and beamforming methods are categorized in Section 13.3 with re­
spect to the properties determining the interaction with AEC. Then, generic 
concepts for the combination of AEC and beamforming are discussed in Sec­
tion 13.4. Structures for integrating AEC into beamforming are investigated 
in Section 13.5. Finally, the extension from single-channel reproduction to 
the case of multiple reproduction channels is outlined. 

13.2 Acoustic Echo Cancellation 

The concept of AEC is first considered for the case of a single loudspeaker 
and a single microphone according to Figure 13.2. To remove the echo from 
the microphone signal x(n) (with n denoting discrete time), AEC aims at 
generating a replica v(n) for the signal v(n), which is an echoed version of the 
loudspeaker signal u(n). Aside from the echo v(n), x(n) contains components 
originating from local desired sources and local interferers, s(n) and r(n), 
respectively. Introducing the residual echo 

e(n) = v(n) - v(n), 

the estimate for the desired signal s(n) can be written as: 

s(n) = x(n) - v(n) = s(n) + e(n) + r(n). 

(13.1) 

(13.2) 
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echo cancellation (AEC) algorithms [1-3]. For discussing the combination of
AEC with microphone arrays, the concept of AEC is first reviewed in Sec-
tion 13.2 and beamforming methodsare categorized in Section 13.3 with re-
spect to the properties determining the interaction with AEC. Then, generic
concepts for the combination of AEC and beamformingare discussed in Sec-
tion 13.4. Structures for integrating AEC into beamforming are investigated
in Section 13.5. Finally, the extension from single-channel reproduction to
the case of multiple reproduction channels is outlined.

13.2 Acoustic Echo Cancellation

The concept of AEC is first considered for the case of a single loudspeaker
and a single microphone according to Figure 13.2. To remove the echo from
the microphonesignal x(n) (with n denoting discrete time), AEC aimsat
generating a replica O(n) for the signal v(n), which is an echoed version of the
loudspeakersignal u(n). Aside from the echo v(n), «(n) contains components
originating from local desired sources and local interferers, s(n) and r(n),
respectively. Introducing the residual echo

e(n) = v(n) — v(n), (13.1)

the estimate for the desired signal s(n) can be written as:

3(n) = x(n) — O(n) = s(n) + e(n) + r(n). (13.2)
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The amount of echo attenuation achieved by AEC is expressed by the echo 
return loss enhancement (ERLE)1: 

£{v2 (n)} 
ERLE1o9 (n) = 10 - log£ {e2 (n)} [dB], (13.3) 

with £ { •} denoting the expectation operator. As long as potential nonlineari­
ties of the loudspeaker system can be neglected [4], the loudspeaker-enclosure­
microphone(LEM) system is completely characterized by its generally time­
varying impulse response h(k,n). Indeed, the impulse response may vary 
drastically and unpredictably over time, as a slight change in position of any 
object can alter many coefficients significantly [2]. The number of impulse 
response samples that must be modeled for an ERLE109 value of x dB is 
estimated by [2,5] 

(13.4) 

where Is denotes the sampling frequency, and T60 is the reverberation time2 • 

Based on this estimate, more than LAEC = 1000 impulse response coefficients 
must be perfectly matched to assure 20 dB of ERLE109 for a typical office 
with T6o = 400 ms and an echo canceller operating at Is= 8 kHz. 

As a model for the LEM s_y:stem, a digital FIR filter structure with a 
time-varying impulse response h(k,n) of length LAEC is employed, so that 
the estimated echo v(n) is given by 

v(n) = hr (n) • u(n) (13.5) 

1 As v(n) and e(n) are not accessible in practical situations, ERLE must be esti­
mated from s(n) and x(n) [2]. 

2 As characteristic parameter of an enclosure, the reverberation time T60 is the 
time until the sound energy decays by 60dB after switching off the source. 
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s(n) = s(n) + e(n) + r(n)
  
 

The amount of echo attenuation achieved by AEC is expressed by the echo
return loss enhancement (ERLE)':

E fu? (nERLEjog(n) = 10- logoe [dB], (13.3)
with € {-} denoting the expectation operator. As long as potential nonlineari-
ties of the loudspeaker system can be neglected[4], the loudspeaker-enclosure-
microphone(LEM)system is completely characterized by its generally time-
varying impulse response h(k,n). Indeed, the impulse response may vary
drastically and unpredictably over time, as a slight change in position of any
object can alter many coefficients significantly [2]. The number of impulse
response samples that must be modeled for an ERLEjog value of x dB is
estimated by [2,5]

xz

LAgc ® 60 fs - Teo, (13.4)

where f, denotes the sampling frequency, and Tgo is the reverberation time?.
Based on this estimate, more than Lagc = 1000 impulse responsecoefficients
must be perfectly matched to assure 20 dB of ERLE,,, for a typical office
with Tg9 = 400 ms and an echo canceller operating at f, = 8 kHz.

As a model for the LEM system, a digital FIR filter structure with a
time-varying impulse response h(k,n) of length Lagzc is employed, so that
the estimated echo @(n) is given by

3(n) = h7 (n) - u(n) (13.5)

' As u(n) and e(n) are not accessible in practical situations, ERLE must beesti-
mated from 8(n) and x(n) [2}.

? As characteristic parameter of an enclosure, the reverberation time Tso is the
time until the sound energy decays by 60dB after switching off the source.



284 Kellermann 

where T denotes transposition and 

h(n) = [h(O, n), h(l, n), ... , h(LAEC - 1, n)] T, 

u(n) = [u(n), u(n - 1), ... , u(n - LAEC + l)f. 

(13.6) 

(13.7) 

The misalignment between the FIR model h(n) and the LEM system h(n) 
is described by the logarithmic system error norm D1o9 (n): 

llh(n) - h(n)II~ 
D109 (n) = 10 - log llh(n)II~ , (13.8) 

with 11 · I b denoting the h norm3• 

13.2.1 Adaptation algorithms 

For identifying the time-varying impulse response h(k, n), adaptive filtering 
algorithms derive an optimum vector hovt(n) by minimizing a mean square 
error criterion based on the input u(n) and the estimation error e(n) (assum­
ing here, for simplicity, s(n) = r(n) = 0). Three fundamental algorithms are 
introduced below for the general case of complex signals (for a comprehen­
sive treatment of adaptive FIR filtering see, e.g., [6,7]). Adaptation control 
in the context of AEC is addressed and frequency domain implementations 
are outlined briefly. 

Fundamental algorithms. Minimizing the mean squared error E {le(n)l2} 
for (at least) wide-sense stationary signals and a time-invariant echo path 
h(k,n) = h(k) leads to the Wiener-Hopf equation for the optimum echo 
canceller hopt [7] 

~ -1 
hopt = R;:;:u · ruv (13.9) 

with the time-invariant correlation matrix Ruu and the crosscorrelation vec­
tor ruv given by 

Ruu = E { u(n)uH (n)}, 

ruv =E{u(n)v*(n)}, 

(13.10) 

(13.11) 

respectively. (* denotes complex conjugation and H conjugate complex trans­
position.) For nonstationary environments, iterative or recursive algorithms 
are required to approach the Wiener solution in (13.9). As the most popu­
lar adaptation algorithm, the NLMS(Normalized Least Mean Square) algo­
rithm [6,7] updates the filter according to 

~ ~ u(n) * 
h(n + 1) = h(n) + a: uH (n)u(n) e (n) (13.12) 

3 If the length of h(n) is greater than LAEC, then h(n) must be complemented 
with zeros accordingly. 
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and may be understood as a stochastic approximation of the steepest descent 
algorithm, with u( n) approximating the negative gradient vector, and a step­
size parameter a, 0 <a< 2. Obviously, for correlated signals such as speech, 
u(n) will not cover uniformly the LAEc-dimensional vector space, which im­
plies that the convergence to minimum system error D109 (n) in (13.8) is 
slow [7]. The popularity of the NLMS is based on its robust convergence 
behavior [2] and its low computational complexity (about 2LAEC multipli­
cations per sampling interval T (MUL's per T) are needed for implementing 
(13.1), (13.5), and (13.12)). 

To improve the convergence for speech signals, the Affine Projection Al­
gorithm (APA) uses P previous input vectors 

U(n) = [u(n), u(n - 1), ... , u(n - P+ 1)] 

to compute an error vector 

e(n) = v(n) - VT(n) • h*(n), 

where 

e(n) = [e(n), e(n - 1), ... , e(n - P + 1)], 

v(n) = [v(n), v(n - 1), ... , v(n - P + 1)]. 

The filter coefficients are then updated according to 

h(n + 1) = h(n) + aU(n) [UH(n)U(n) - 01r1 e*(n), 

(13.13) 

(13.14) 

(13.15) 

(13.16) 

(13.17) 

with the regularization parameter o (o ~ 0) and I denoting the identity ma­
trix. Thus, the APA can be interpreted as a generalization of the NLMS 
algorithm, which in turn corresponds to an APA with P = 1, o = 0. The 
gradient estimate for the APA is equal to the projection of the system mis­
alignment vector h(n) - h(n) onto the P-dimensional subspace spanned by 
U(n). Thus, the complementary orthogonal component of the misalignment 
vector becomes smaller with increasing P. The computational complexity of 
the APA amounts to approximately (P + 1) · LAEC + O(P3 ) MUL's per T, 
where, typically, P = 2, ... , 32, and LAEC is given by (13.4). Fast versions 
of the APA reduce the computational load to 2LAEC + 20P, but require 
additional measures to assure numerical stability [2,6]. 

As the most powerful and computationally demanding adaptation 
method, the RLS(Recursive Least Squares) algorithm directly minimizes a 
weighted sum of previous error samples 

n 

J(h,n) = L,B(k)le(k)l2, with O < ,8:::; 1. (13.18) 
k=l 
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The solution has the form of (13.9), however with time-dependent estimates 
for Ruu(n), ruv(n) given by 

n 

Ruu(n) = L ,B(k)u(k)uH (k), 
k=l 

n 

ruv(n) = L ,B(k)u(k)v*(k). 
k=l 

The update equation reads here 

h(n + 1) = h(n) + ft;;~(n)u(n)e*(n). 

(13.19) 

(13.20) 

(13.21) 

If an exponential window ,B(k) = >,n-k with the forgetting factor O < >.. < 1 
is used, the inversion of Ruu(n) is avoided by exploiting the matrix inversion 
lemma that allows recursive update of the inverse [7]. Then, the complexity 
of the RLS algorithm is on the order of L~EC MUL's per T [6]. Similarly 
to the APA, fast versions for the RLS algorithm have been proposed which 
reduce computational complexity to 7LAEC MUL's per T. However, the large 
filter order LAEC and the nonpersistent excitation u(n) require extra efforts 
to assure stable convergence [6]. A simplified version of fast RLS algorithms 
is the Fast Newton Algorithm [6], which reduces the complexity to LAEC • P 
MUL's per T, with P being a predictor order that should be matched to 
the correlation properties of the input u(n). (For speech signals, P :=:::: 10 is a 
typical value at fs = 8kHz.) 

Adaptation control. Adaptation control has to satisfy two contradict­
ing requirements. On one hand, changes in the echo path h(k,n) should be 
tracked as fast as possible. This requires a large stepsize, o:, for the NLMS 
and APA algorithms in (13.12) and (13.17)), and a rapidly decaying ,B for the 
RLS algorithm in (13.21), respectively. On the other hand, the adaptation 
must be robust to interfering local sources s(n) and noise r(n), which requires 
a small stepsize, o:, and a slowly decaying ,8, respectively [2,7]. When a local 
talker is active, adaptation should be stalled immediately to avoid diver­
gence of h(n). Therefore, a fast and reliable detection of local source activity 
and estimation of background noise levels is decisive for efficient AEC op­
eration. Correspondingly, a significant amount of computational complexity 
is invested in monitoring parameters and signals which support adaptation 
control [2]. With properly tuned adaptation control, acoustic echoes are at­
tenuated by, typically, about 25 dB of ERLE109 during steady state using 
the above adaptation algorithms. 

Frequency subband and transform domain structures. To reduce 
computational load and to speed up convergence of adaptation algorithms 
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which do not inherently decorrelate u(n) (e.g., the NLMS algorithm), fre­
quency subband and transform domain structures have been developed [1,8]. 
Subband structures decompose the fullband signals u(n) and x(n) into M 
subbands which are usually downsampled by R < M [3,9]. The adaptive 
subband filters operate at a reduced sampling rate and require fewer coef­
ficients which leads to overall computational savings by a factor of close to 
R2 / M compared to full band adaptive filtering. After subtraction, the sub­
band signals are synthesized to yield again a full band signal s( n). While the 
additional complexity for the analysis/synthesis filter banks is relatively small 
for large LAEC, the introduced signal delay for s(n) is objectionable in some 
applications [2,31). 

Transform-domain structures draw their computational advantage over 
direct time-domain implementations from the fast Fourier transform (FFT) 
and its use for fast convolution [1,6,8]. Block-exact adaptation algorithms, 
which behave exactly like their time-domain counterparts, have been pro­
posed for all the fundamental algorithms above. For the long impulse re­
sponses at issue, the system model h(k,n) is often partitioned into shorter 
subsystems to reduce the signal delay [2]. 

13.2.2 AEC for multi-channel sound reproduction 

Considering a multi-channel reproduction unit (see Figure 13.1) broadcasting 
K different sound channels ul< ( n) ("' = 0, ... , K - l) with usually time­
varying mutual correlation, any microphone records the sum of K echo signals 
produced by different echo paths hi<(k,n), 

K-1 

v(n) = L hi<(n)T • ui<(n), (13.22) 
i<=O 

with hi<(n), ul<(n) being defined according to (13.6) and (13.7). Correspond­
ingly, K echo cancellers, hi<(n), are needed to model the respective echo 
paths. As only one error signal, e(n), is available, the K inputs, ui<(n), must 
be mutually decorrelated without perceptible distortion to allow identifica­
tion of the individual hi<(n). This difference to single-channel AEC defines 
an even more challenging system identification problem, which has been con­
sidered only for the stereo case (K = 2) so far [1,10-12]. Current adaptation 
schemes still exhibit slower convergence and multiply computational load by 
more than K compared to their single-channel AEC counterparts. 

13.2.3 AEC for multi-channel acquisition 

A straightforward extension of the single-loudspeaker/ single-microphone sce­
nario to an N-microphone acquisition system essentially multiplies the num­
ber of adaptive filters by N. The N-channel echo cancellation is captured by 
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extending the signals in (13.2) to N-dimensional column vectors, 

s(n) = x(n) - v(n) = s(n) + r(n) + e(n) 

= s(n) + r(n) + v(n) - HT(n)u(n) 

(13.23) 

(13.24) 

with u(n) according to (13.7), with e(n), r(n), s(n), s(n), v(n), v(n), x(n) as 
column vectors of the form 

x(n) = [xo(n), ... ,XN-1(n)f, (13.25) 

and with H(n) as a matrix containing the impulse responses h-v(n) as columns 
according to 

H(n) = [ho(n), ... ,hv(n), ... ,hN-1(n)]. (13.26) 

While this implies a corresponding multiplication of the computational cost 
for filtering, the cost for adaptation and its control is not necessarily multi­
plied by N. All operations depending only on the input data, u(n), have to be 
carried out only once for all N channels, which would include the matrix in­
version in the APA or RLS algorithms, (13.17) and (13.21), respectively. How­
ever, some fast versions draw their efficiency from interweaving matrix inver­
sion and update equations [6] and, therefore, do not completely support this 
separation. Frequency subband and transform domain algorithms [1,6,8,9] 
support this separation at least by requiring the analysis transform of u(n) 
only once for all channels. 

13.3 Beamforming 

This section only aims at categorizing beamforming algorithms with respect 
to their interaction with AEC. For a comprehensive treatment of fundamental 
techniques see, e.g., [13,14], while the current state of beamforming technol­
ogy with microphone arrays is covered in several other chapters of this book. 

13.3.1 General structure 

Consider a microphone array capturing N real-valued sensor signals, xv(n), 
which are filtered by linear time-varying systems with impulse responses 
gv(k, n) and then summed up (Figure 13.3). The resulting beamformer out­
put, y(n), can be written as 

y(n) = GT(n) · X(n) = GT(n) · [S(n) + R(n) + V(n)], (13.27) 

with the column vector G(n) representing the concatenated impulse response 
vectors gv ( n) 

[ T T ]T G(n) = g 0 (n), ... , gN-1 (n) , (13.28) 
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y(n) 

Fig. 13.3. General structure for a beamforming microphone array 

where all gv(n) are of length LBF: 

gv(n) = [gv(0,n), ... ,gv(LBF -1,n)f. (13.29) 

The column vector X(n) (and, equally, R(n), S(n), V(n)) contains the latest 
LBF signal samples of each microphone signal 

X(n) = [x;f(n), ... ,x1_1(n)( 

with 

xv(n) = [xv(n), ... ,xv(n - LBF + l)f. 

(13.30) 

(13.31) 

In the scenario of Figure 13.1, beamforming aims at spatial filtering to dere­
verberate the components s(n) originating from the desired source(s) and to 
suppress interfering signals r(n) and echoes v(n). 

For ideal dereverberation of a single source, the desired signal as it is 
emitted by the source, 3(o) ( n), should be retrieved except for some delay 
no> 0: 

(13.32) 

Assuming that delayed versions of 3(0l(n) are contained in sv(n) defined by 
(13.31), the filters 9v(k,n) have to equalize the corresponding delays and 
the sum of the filters has to provide a flat frequency response for all sig­
nals arriving from the source direction. Obviously, delay equalization requires 
knowledge about the location of the desired source(s). For the following, it is 
assumed that the source location is given by a priori knowledge or separately 
determined by some source localization algorithm (see, e.g., Chapters 8-10). 
For an anechoic environment and with the desired signal components being 
delay-equalized by the array geometry, the total impulse response, g(k,n), of 
the beamformer to the desired source 3(o) ( n) should ideally fulfill 

N 

g(k,n) = L9v(k,n) :!:: 8(k- ko) (13.33) 
v=l 
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Fig. 13.3. General structure for a beamforming microphonearray

where all g,(n) are of length Lgr:

g(r) = [g/(0,n),... ,g(Ler —1,n)] (13.29)

The column vector X(n) (and, equally, R(n), S(n), V(n)) contains the latest
Lepr signal samples of each microphonesignal

X(n) = [xg (n), was xhi (n)]" (13.30)
with

x,(n) =[x,(n),...,2.(n-Ler+1)]’. (13.31)

In the scenario of Figure 13.1, beamforming aimsat spatial filtering to dere-
verberate the components s(n) originating from the desired source(s) and to
suppress interfering signals r(n) and echoes v(n).

For ideal dereverberation of a single source, the desired signal as it is
emitted by the source, s(n), should be retrieved except for some delay
no > 0:

GT (n)-S(n) = 8(n — no). (13.32)

Assuming that delayed versions of s()(n) are contained in s,(n) defined by
(13.31), the filters g,(k,n) have to equalize the corresponding delays and
the sum of the filters has to provide a flat frequency response for all sig-
nals arriving from the source direction. Obviously, delay equalization requires
knowledge about the location of the desired source(s). For the following,it is
assumed that the source location is given by a priori knowledge or separately
determined by some source localization algorithm (see, e.g., Chapters 8-10).
For an anechoic environment and with the desired signal components being
delay-equalized by the array geometry, the total impulse response, g(k, 7), of
the beamformerto the desired source s)(n) should ideally fulfill

N

ak,n) = S° g.(k,m) = 5k ~ ko) (13.33)
vol
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to assure a constant frequency response with unity gain and constant group 
delay ko. 

For interference suppression, the beamformer should minimize its response 
to all undesired signal components, which include here local interferers and 
loudspeaker echoes. Using, the mean squared error (MSE) as optimization 
criterion, this reads: 

(13.34) 

Based on this general concept and with AEC in mind, basic methods for 
time-invariant or time-varying beamforming are outlined below. 

13.3.2 Time-invariant beamforming 

Time-invariant beamforming, i.e., G(n) = G, gv(n) = gv, is used for applica­
tions where the beamformer does not have to change the 'look direction' and 
where the potential nonstationarity of the involved signals, s(n),r(n), v(n), 
is not accounted for. 

As the most basic beamforming method, the delay-and-sum beam­
former (DSB) realizes in its simplest form a tapped delay line with a single 
non-zero coefficient for each filter gv(n) [13,14]. If the required delays for the 
desired 'look direction' do not coincide with integer multiples of the sampling 
period, interpolation filters are required for realizing fractional delays [15-17]. 
Accounting for the wideband nature of speech and audio signals, nested ar­
rays are often employed using different sets of sensors for different frequency 
bands to approximate a constant ratio between aperture width and signal 
wavelength [17-19]. As a generalization of DSB, filter-and-sum beamform­
ing (FSB) aims for a frequency-independent spatial selectivity within each 
frequency band as detailed in Chapter 1 and [20]. Both beamforming con­
cepts, DSB and FSB, were first developed on the basis of the far-field assump­
tion [18], but may also be extended to near-field beamforming as described 
in Chapter 1. Time-invariant DSB and FSB are mostly signal-independent, 
i.e., no attention is paid to the power spectral densities of the signals s(n), 
r(n), v(n) and the direction of arrival (DOA) of interferers. 

Such 'beamsteering' techniques are obviously appropriate for human­
machine interfaces in reverberant environments with a restricted range of 
movement for a single desired source and where, due to reverberation, un­
wanted signal components of comparable level must be expected from all 
directions. 

Nevertheless, time-invariant beamforming can incorporate additional spa­
tial information to suppress dominant interferers [21,22]. Moreover, know­
ledge about long-term statistics of the noise field can be accounted for [23] 
and may lead to statistically optimum beamformers with superdirective be­
haviour for low frequencies as described in Chapter 2 and [24]. 
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Fig. 13.4. Generalized sidelobe canceller structure for adaptive beamforming. 

13.3.3 Time-varying beamforming 

For nonstationary environments with both nonstationary signal characteris­
tics and potentially moving sources, the beamformer should be able to track 
the time-variance of the signal characteristics and the spatial arrangement 
of the interfering sources. For that purpose, adaptive beamforming methods 
design filters Yv(k, n) which minimize a statistical error criterion based on 
the array output, y(n), with constraints for the DOA of a desired source (or 
'target') such as formulated in (13.33) and (13.34) (13,14,25-27]. See also 
Chapter 5. 

Generalized Sidelobe Canceller ( GSC). As an example for an efficient 
implementation of adaptive beamformers that minimize a mean square er­
ror (MSE) criterion subject to a linear constraint, the generalized sidelobe 
canceller structure (13,25] is considered (Figure 13.4). Here, the adaptive 
beamforming is separated into two parallel paths: The upper path is a time­
invariant, signal-independent beamformer, GF, steered toward the desired 
source. In the lower path, the first stage implements a blocking-matrix, 
GBM(n), which, ideally, completely suppresses the components of the de­
sired source, s(n), by a linear combination of the microphone channels (13] 
or filtering (28]. This topic is also detailed in Chapter 5. The P ~ N outputs, 
wi(n), i = 0, ... , P - 1, are then used by the adaptive interference canceller, 
Gw(n), to form an estimate for the interference component in y(n). Op­
timization of Gw(n) becomes an unconstrained Wiener filtering problem 
when the MSE criterion of (13.9) is used, and ideally leads to removal of all 
components in y(n) which are correlated to wi(n). For identifying the opti­
mum Gw(n), the same adaptation algorithms as for echo cancellation can 
be used, i.e., (13.12),(13.17),(13.21), with gradient-type algorithms like the 
NLMS algorithm being most common. 
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13.3.3 Time-varying beamforming

For nonstationary environments with both nonstationary signal characteris-
tics and potentially moving sources, the beamformer should be able to track
the time-variance of the signal characteristics and the spatial arrangement
of the interfering sources. For that purpose, adaptive beamforming methods
design filters g,(k,n) which minimize a statistical error criterion based on
the array output, y(n), with constraints for the DOA ofa desired source (or
‘target’) such as formulated in (13.33) and (13.34) [13,14,25-27]. See also
Chapter 5.

Generalized Sidelobe Canceller (GSC). As an example for anefficient
implementation of adaptive beamformers that minimize a mean square er-
ror (MSE) criterion subject to a linear constraint, the generalized sidelobe
canceller structure [13,25] is considered (Figure 13.4). Here, the adaptive
beamforming is separated into two parallel paths: The upper path is a time-
invariant, signal-independent beamformer, Gy, steered toward the desired
source. In the lower path, the first stage implements a blocking-matrix,
Gam(n), which, ideally, completely suppresses the components of the de-
sired source, s(n), by a linear combination of the microphone channels [13]
or filtering [28]. This topic is also detailed in Chapter 5. The P < N outputs,
w;(n),i =0,...,P—1, are then used by the adaptive interference canceller,
Grc(n), to form an estimate for the interference component in y(n). Op-
timization of Gyco(n) becomes an unconstrained Wiener filtering problem
when the MSEcriterion of (13.9) is used, and ideally leads to removal of all
components in y(n) which are correlated to w;(n). For identifying the opti-
mum Gyc(n), the same adaptation algorithms as for echo cancellation can
be used, i-e., (13.12),(13.17),(13.21), with gradient-type algorithms like the
NLMSalgorithm being most common.
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13.3.4 Computational complexity 

For both time-invariant and time-varying beamforming, the computational 
load is essentially proportional to the number of sensors N. The FIR fil­
ter lengths typically do not exceed LBF = 128 [17,20,29,30]. With increasing 
filter length, computational savings are obtained by frequency-domain imple­
mentations of the filtering [20,29]. As with AEC, for adaptive beamforming 
implementations a significant share of computational complexity is dedicated 
to fast and reliable source activity detection which forms the basis of adap­
tation control. 

13.4 Generic structures for combining AEC with 
beamforming 

First, the combination of AEC with beamforming is motivated by comparing 
practical requirements with typical performance of AEC and beamforming. 
Then, the main properties of two generic options for a combination are dis­
cussed in some detail. 

13.4.1 Motivation 

Although AEC and beamforming are two distinct signal processing concepts, 
their goals meet with regard to acoustic echoes. While AEC subtracts from 
x(n) an echo estimate, v(n), based on u(n) as reference information, beam­
forming suppresses echoes within x(n) as undesired interference by its spatial 
filtering capability. With beamforming being undisputed for its effectiveness 
in suppressing local noise and reverberance of local desired sources, the need 
for a complementary AEC unit for acoustic echo suppression is discussed in 
the following. 

As a guideline for desired echo suppression for telecommunication, [31] 
requires ERLE109 2:'. 45 dB during single-talk and at least 30 dB during 
double-talk, assuming a 'natural' echo attenuation of up to 6 dB between the 
loudspeaker signal, u(n), and the microphone signal, x(n). Echo suppression 
methods other than AEC, e.g., noise reduction, loss insertion, or nonlinear 
devices, impair full-duplex communication and, thus, are only acceptable as 
supplementary measures [2]. For full-duplex speech dialogue systems employ­
ing automatic speech recognition, the echo attenuation requirements are not 
as well-defined and will depend on the desired recognition rate as well as 
on the robustness of the speech recognizer with respect to speech-like in­
terference. In view of these requirements, the echo attenuation provided by 
microphone arrays and the echo path gain for a microphone array are exam­
ined below. 
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Array gain. The echo attenuation provided by a microphone array is usu­
ally identified with the array gain for the desired sources relative to echoes 
as interference. For signal-independent time-invariant beamforming, the di­
rectivity index quantifying the array gain of the desired direction over the 
average of all other directions [26] does typically not exceed 20 dB over a 
wide frequency range, and is much smaller at low frequencies ( < 500 Hz) 
due to usual geometrical aperture constraints (19,26]. This contrasts with 
the fact that acoustic echoes usually exhibit their maximum energy at low 
frequencies [2]. As a remedy, differential beamforming realizes superdirective 
array gains at low frequencies and allows for a directivity index of up to 
12 dB in practical implementations [1,27]. On the other hand, for adaptive 
beamforming, interference suppression is usually also limited to about 20 dB 
for reverberant environments if distortion of the desired source signal s(0) ( n) 

should be precluded. See Chapters 2 and 5 as well as [19,32]. 

Echo path gain. For microphone array applications, the echo path gain 
between u(n) and the beamformer output, y(n), will often be higher than 
for single-microphone systems (-6 dB), because the sum of the distances 
from the loudspeaker to the listener, and from the desired source to the 
microphone array, will usually be greater ( e.g. in teleconferencing). The user 
will typically increase the gains for the loudspeaker signal and the microphone 
array correspondingly to compensate for the decay of the sound level (~ 
6 dB per doubling of distance in the far-field). If the microphone array and 
loudspeaker are relatively close, then the required echo attenuation will be 
increased accordingly. 

13.4.2 Basic options 

Restricting the scenario to a single reproduction channel, u(n), and a sin­
gle acquisition channel, s(n), a combination of AEC and beamforming is 
obviously conceivable in two fundamentally different ways as shown in Fig­
ure 13.5. Here, 'AEC first' realizes one adaptive filter for each microphone in 
ftUl(n) of (13.26), whereas 'Beamforming first' uses a single-channel AEC, 
ii(Hl(n), which obviously has to include the beamformer, G(n), into its echo 
path model. 

13.4.3 'AEC first' 

This structure suggests that ftU) ( n) may operate without any repercussions 
from the beamforming so that the AEC problem corresponds to that de­
scribed by (13.23). On the other hand, with perfect echo cancellation, the 
beamforming will be undisturbed by acoustic echoes and will concentrate on 
suppressing local interferers and reverberation. 
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Fig. 13.5. Generic structures for combining AEC with beamforming. 

AEC properties. Although AEC could operate independently from the 
beamforming, synergies with beamforming should be exploited with regard 
to detection of local source activity and computational complexity. 

Local source activity detection. As noted above, the adaptation of ft( I) ( n), re­
quires a fast and reliable detection of local source activity to avoid divergence. 
With single-channel AEC, the detection is based on comparing estimates for 

E {v~(n)} 
Qv(n) = E {(rv(n) + Sv(n))2} (13.35) 

to a given threshold. With subsequent beamforming, this decision can be 
derived from estimates of 

E { (GT(n)V(n)) 2 } 

Q(n) = --,-~------c­

E { (GT(n) [R(n) + S(n)])2} 
(13.36) 

which reflect local source activity much clearer than Qv(n) as rv(n), vv(n) are 
suppressed relative to s(n) by beamforming. Thus, Q(n) reduces uncertainty 
in local source activity detection and allows adaptation during time intervals 
where adaptation might have been stalled if its control was based on Qv(n). 

Computational complexity. At least the filtering and the filter coefficient up­
date of the AEC adaptation will require N-fold computational cost compared 
to a single-channel AEC. Even with continuing growth of the performance­
cost ratio of signal processing hardware, this computational load will remain 
prohibitive in the near future for many cost-sensitive or very large systems 
employing N = 5, ... , 512 sensors [17,19,26,30,33,34]. One option to alleviate 
the computational burden is to reduce the length LAEC in (13.4) of the FIR 
filter models, hv, and to rely on the beamformer for suppressing the residual 
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AEC properties. Although AEC could operate independently from the
beamforming, synergies with beamforming should be exploited with regard
to detection of local source activity and computational complexity.

Local source activity detection. As noted above, the adaptation of HY)(n), re-
quires a fast and reliable detection of local source activity to avoid divergence.
With single-channel AEC, the detection is based on comparing estimates for

Qy(n) =Efron)+8,(0))?} (13.35)
to a given threshold. With subsequent beamforming, this decision can be
derived from estimates of

E{(G7(n)V(n))’}
Q(n) = 5 (13.36)

E{(GT(n) [Rin) + S(n)})’}
 

which reflect local source activity much clearer than Q,(n) as r,(n), v,(n) are
suppressed relative to s(n) by beamforming. Thus, Q(n) reduces uncertainty
in local source activity detection and allows adaptation during time intervals
where adaptation might have been stalled if its control was based on Q,(n).

Computational complexity. At least the filtering and thefilter coefficient up-
date of the AEC adaptation will require N-fold computational cost compared
to a single-channel AEC. Even with continuing growth of the performance-
cost ratio of signal processing hardware, this computational load will remain
prohibitive in the near future for many cost-sensitive or very large systems
employing N = 5,... ,512 sensors [17,19,26,30,33,34]. One option to alleviate
the computational burden is to reduce the length Lago in (13.4) of the FIR
filter models, h,, and to rely on the beamformer for suppressing the residual
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Fig. 13.6. Example for convergence of ERLE109 components and local interference 
suppression(IR) for 'AEC first' structure (N = 8, T50 ~ 300 ms, Is = 12 kHz, 
LAEC = 2500, LaM = 16, LIC = 50) . 

echoes, e( n). Shortening hv implies however, that the adaptation of the AEC 
is disturbed by an increased noise component, which is due to the unmodeled 
tail of the true echo path impulse response, hv(n) [2]. 

Beamforming performance. For a signal-independent beamformer, the 
presence and performance of the AEC has no impact on the beamforming. 
The signal-independent spatial filtering will increase echo suppression accord­
ing to its directivity while suppression of local interferers remains unaffected. 

Signal-dependent beamformers use w( n) = x( n) - vUl ( n) for optimizing 
the beamforming filters G(n) . Thereby, at the cost of local interference sup­
pression, the beamformer will concentrate on suppressing echo components, 
e( n), if their levels exceed that of local interferers, r( n), and it will further 
suppress residual echoes as long as they are not negligibly small compared to 
the local interferers. For illustration, the typical convergence behaviour for 
'AEC first' using a GSC beamformer is shown in Figure 13.6 for r(n), s(n), 
u(n) being white noise signals, and for alternating adaptation of Gw(n) , and 
ftUl(n) (see also [32]). Due to its short filters, the beamformer converges al­
most instantaneously to about ERLEasc = 18 dB, and thereby provides a 
significant amount of ERLE109 long before ftUl(n) has converged. At the 
same time, suppression of local interference, I Rase, remains essentially con-
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echoes, e(7). Shortening h, implies however, that the adaptation of the AEC
is disturbed by an increased noise component, which is due to the unmodeled
tail of the true echo path impulse response, h,(n) [2].

Beamforming performance. For a signal-independent beamformer, the
presence and performance of the AEC has no impact on the beamforming.
The signal-independentspatial filtering will increase echo suppression accord-
ing to its directivity while suppression of local interferers remains unaffected.

Signal-dependent beamformers use w(n) = x(n) — ¥)(n) for optimizing
the beamformingfilters G(n). Thereby, at the cost of local interference sup-
pression, the beamformer will concentrate on suppressing echo components,
e(n), if their levels exceed that of local interferers, r(n), and it will further
suppress residual echoes as long as they are not negligibly small compared to
the local interferers. For illustration, the typical convergence behaviour for
‘AEC first’ using a GSC beamformer is shown in Figure 13.6 for r(n), s(n),
u(n) being white noise signals, and for alternating adaptation of G;c(n), and
HH(n) (see also [32]). Due toits short filters, the beamformer converges al-
most instantaneously to about ERLEgsc = 18 dB, and thereby provides a
significant amount of ERLEjog long before H)(n) has converged. At the
same time, suppression of local interference, [Rgsc, remains essentially con-
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stant over time, as it converges very rapidly to almost 20 dB and is not 
allowed to converge much further to preclude distortion of the desired signal. 

13.4.4 'Beamforming first' 

In this structure, the beamformer is essentially independent from the AEC 
so that the beamforming performance agrees with Section 13.3 for acous­
tic echoes being perceived as another source of interference. AEC is realized 
by a single adaptive filter h(Jil(n) as in Figure 13.5 which is attractive with 
regard to computational complexity. However, the system identification prob­
lem faced by h (JI) ( n) requires closer examination. 

Echo path for AEC. Incorporating the beamformer, G(n), into the echo 
path model means that, ideally, the adaptive filter, h(Jil(n), models the sum 
of N echo paths from the loudspeaker input, u(n), to the beamformer output, 
y(n), (see Figure 13.3) 

N 

h~~!l(n) = f(n) = Lfv(n), (13.37) 
v=l 

with the impulse responses, f(n), given by (*denotes linear convolution): 

fv(n) = [fv(O, n), ... , fv(LAEC+BF - l, n)f, 

fv(k, n) = hv(k, n) * 9v(k, n). 

(13.38) 

(13.39) 

Thus, the impulse response length of ii(Jil(n) depends on the beamforming, 
and, if any 9v(k,n) is time-varying, h(Jil(n) has to track this time-variance 
as well4 • The required length, LAEC+BF, for h(Jil(n) is essentially the sum 
of the length LBF and the necessary length for the acoustic path (including 
loudspeaker and microphone), LAEc= 

(13.40) 

Note that for a given desired ERLE1o9 , LAEC can be chosen smaller than 
given by (13.4) depending on the expected contribution of beamforming to 
ERLE,09 (see also [35]). 

Signal-independent, time-invariant beamformers. Due to the time-invariance 
of 9v ( k, n), the adaptation of h ( JI) ( n) only has to track the time-variance of 
hv(n) and, thus, the adaptation of h(Jil(n) is identical to the adaptation of 
one of the N filters hfl ( n) in the 'AEC first' structure except for the different 
filter length LAEC+BF· 

4 Note that the time-varying components hv(k,n) cannot be identified separately, 
although gv(k, n) is known ('knapsack problem'). 
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stant over time, as it converges very rapidly to almost 20 dB and is not
allowed to converge much further to preclude distortion of the desired signal.

13.4.4 ‘Beamformingfirst’

In this structure, the beamformeris essentially independent from the AEC
so that the beamforming performance agrees with Section 13.3 for acous-
tic echoes being perceived as another source of interference. AEC is realized
by a single adaptive filter h(n) as in Figure 13.5 which is attractive with
regard to computational complexity. However, the system identification prob-
lem faced by h(n) requires closer examination.

Echo path for AEC. Incorporating the beamformer, G(n), into the echo
path model meansthat, ideally, the adaptivefilter, h(n), models the sum
of N echo paths from the loudspeakerinput, u(n), to the beamformer output,
y(n), (see Figure 13.3)

ho?(n)(n) =£(n) = y f,(n), (13.37)
with the impulse responses, f(n), given by ( * denotes linear convolution):

f,(n) = [fv(0,n),...,fy(Lazc+er —1,n)]", (13.38)
fu (k,n) = hy (k,n) * gy (k,n). (13.39)

Thus, the impulse response length of h/!)(n) depends on the beamforming,
and, if any g,(k,n) is time-varying, hY)(n) has to track this time-variance
as well’. The required length, Lazc+ser, for hi)(n) is essentially the sum
of the length Lyr and the necessary length for the acoustic path (including
loudspeaker and microphone), Lag:

Lanc+spr = Lanc+ Lar -1. (13.40)

Note that for a given desired ERLEjo,, Lazc can be chosen smaller than
given by (13.4) depending on the expected contribution of beamforming to
ERLEjog (see also [35]).

Signal-independent, time-invariant beamformers. Due to the time-invariance
of g, (k,n), the adaptation of hU)(n) only has to track the time-variance of
h,(n) and, thus, the adaptation of h(n)is identical to the adaptation of
one of the N filters hDn) in the ‘AEC first’ structure except for the different
filter length Lanc+sr.

4 Note that the time-varying components h, (k,n) cannot be identified separately,
although g,(k,n) is known (knapsack problem’).
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Signal-dependent, time-varying beamformers. Here, the main problem is that 
the adaptation of h(IIl(n) has to track the time-variance of G(n). As for the 
adaptation algorithms discussed in Section 13.2.1 an increasin_,e; filter order in­
volves a reduced tracking capability [7], the high-order filter, h (II) ( n), cannot 
follow the time-variance of the low-order filters of G(n) (LAEC+BF » LBF ). 

Therefore, h(IIl(n) can find a useful echo path model only when G(n) re­
mains time-invariant for a sufficiently long time. In Figure 13.7, the adapta­
tion behaviour of the 'beamforming first' structure is analyzed for a speech 
conversation with a GSC as adaptive beamformer [28,32]. Inspecting the time 
domain signals u(n) and s(n) in Figures 13.7a and 13.7b shows that a 'double­
talk' period occurs for time n = 3.5 ... 4.0 -105 . Figure 13. 7c illustrates which 
component is adapted at a given time. To track slight movements of the de­
sired local source, the blocking matrix, GBM(n), is adapted if only the local 
source and noise are present [28,32]. The system error of (13.8) depicted in 
Figure 13.7d converges monotonically when h(IIl(n) is adapted. When the 
interference canceller, Gw(n), or the blocking matrix, GBM(n), are adapted 
the system error rises instantaneously (n = 2 ... 3.5 -105). This is not critical 
as long as u(n) = 0, however, during double-talk (n = 3.5 ... 4.0 • 105 ), a 
large residual error, e(n), arises (Figure 13.7e,f) as h(IIl(n) cannot recon­
verge. Consequently, with the 'beamforming first' structure, the benefits of 
AEC are missing when they are desired most, i.e., during double-talk and 
during transitions from far-end activity to local activity and vice-versa (at 
other times primitive echo suppression methods, such as loss insertion [2], are 
less objectionable). 

13.5 Integration of AEC into time-varying 
beamforming 

As time-varying beamforming, G(n), cannot be tracked satisfactorily by the 
adaptation of h(II) (n), a compromise is desirable for AEC which avoids the 
computational burden of ft(J) ( n) for large N and provides improved echo 
cancellation compared to h(IIl(n). For this, the beamformer is decomposed 
into a time-invariant and a time-varying part in the sequel, with AEC acting 
only on the output of the time-invariant part. Two options for arranging 
the time-invariant and the time-varying stage are examined: First, a cascade 
with the time-invariant stage followed by the time-varying stage, and second, 
a parallel arrangement of the two stages. 

13.5.1 Cascading time-invariant and time-varying beamforming 

As illustrated in Figure 13.8, instead of a single beamformer output, y(n), 
(see Figure 13.3), M < ... « N beamformer output signals y(n) = 
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Fig. 13.8. AEC integrated into cascaded beamforming. 

u(n) 

[Yo ( n), ... y M _ 1 ( n)] T are produced by M sets of fixed beamforming filters 
G ~M) according to 

y(n) = G~M)T • X(n), (13.41) 

where X(n) is given by (13.30) and 

G (M) - [GT GT GT ] 
F - F,O, · · · , F,µ, · · ·, F,M-l (13.42) 

with GF,µ according to (13.28). For AEC, ft(III) (n) realizes M adaptive echo 
cancellers hµ(n), µ = 0, ... , M - l, which exhibit the same performance as 
£.(IIl(n) with time-invariant G(n) (see Section 13.4.4). Thus, if M < N and 
LAEC+BF::::: LAEC, AEC operates at a reduced computational cost compared 
to ftUl(n) (see Section 13.4.3). The time-varying part of the beamforming 
implements a weighted sum ('voting') using time-varying weights, 9v,µ(n): 

s(n) = g~(n) • z(n) 

with 

gv(n) = [9v,o(n), ... ,9v,µ(n), ... ,9v,M-1(n)f, 

z(n) = [zo(n), ... ,zµ(n), ... ,ZM-1(n)f. 

(13.43) 

(13.44) 

(13.45) 

Fixed beamformer design. The fixed beamformers of G ~M) may be de­
signed to account for various situations, for instance, different beamformers 
could be employed for the presence or absence of echo, v(n), and of certain 
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[yo(n),.. -ym—1(n)]" are produced by M sets of fixed beamformingfilters
Ge according to

T

y(n) =GYO" -X(n), (13.41)

where X(n) is given by (13.30) and

Gi) = [Gho,...,GF,,...,6hya] (13.42)

with Gr,,, according to (13.28). For AEC, HOD) (n) realizes M adaptive echo
cancellers h, (n), = 0,...,44 —1, which exhibit the same performance as
h(n) with time-invariant G(n) (see Section 13.4.4). Thus, if M < N and
Larcyer ® Larc, AEC operatesat a reduced computational cost compared
to HM (n) (see Section 13.4.3). The time-varying part of the beamforming
implements a weighted sum (‘voting’) using time-varying weights, g,,,,(n):

8(n) = gf (n) - 2(n) (13.43)

with

Zy(n) = [9v,0(7), tte 9vu(t), soe ,9v,m—1(n)]|" > (13.44)
z(n) = [zo(n),-.. ,2u(n),.-. ,2m-—1(n)]". (13.45)

Fixed beamformer design. The fixed beamformers of G™ may be de-
signed to account for various situations, for instance, different beamformers
could be employed for the presence or absence of echo, v(n), and of certain
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local interferers, r( n). This concept is easily extended to cover several desired 
sources or moving desired sources, which is especially attractive for telecon­
ferencing (5,17,18,22,26]. For the actual design of GF,µ, techniques based on 
both time-invariant or time-varying beamforming can be applied. Updating 
may be attractive to allow for long-term flexibility. 

G ~M) based on time-invariant beamforming. As a straightforward approach, 
Mo > M signal-independent fixed beams may be formed to cover several 
possible interference scenarios and/or all possible desired source positions. 
The output of these Mo beamformers is monitored and a subset of M beam­
formers is used for Gt\n) to produce potentially desired signals y(n). As 
an example, in a teleconferencing studio with M 0 = 7 seats and three local 
participants being present, only M = 3 beams should produce desired signals 
(for examples see [17,18,22,26]). 

G~M) based on adaptive beamforming. Signal-dependent adaptive beamform­
ing can be used to identify fixed beamformers for typical interference scenar­
ios. To this end, an adaptive beamformer operates at a normal adaptation 
rate with its filter coefficients acting as a training sequence for finding M 
representative fixed beamformers. A priori knowledge of the desired source 
location(s) for incorporating constraints is necessary as well as initial train­
ing [5]. 

Initializing and updating G ~M}. The monitoring of Mo fixed beams, or the 

learning of optimum beamformers for deciding upon G ~) can be carried out 
during an initial training phase only, or continuously. Continuous monitoring 
is recommended when changes are expected that demand the updating of 
G~M}. Monitoring of M 0 beams helps also to establish reliable estimates for 
background noise levels and supports detection of local talker activity so 
that convergence speed and robustness of AEC adaptation can be improved. 
Generally, as long as updating of G ~M) occurs less frequently than significant 
changes in the acoustic path, the model of time-invariant beamforming is 
justified with respect to AEC behavior. Aiming at minimum computational 
complexity for AEC, more frequent updates of Gt) may be accepted for 
reduced M. The update should preferably occur at the beginning of 'far-end 
speech only' periods, as then, the AEC ff(II I) ( n) can immediately adapt to 
the new echo path. 

Voting. The time-varying weights, 9v,µ(n), in (13.44) must be chosen to 
allow for a fast reaction (::; 20 ms) to newly active local sources or chang­
ing interference scenarios, while at the same time avoiding the perception of 
switching, e.g., by applying a sigmoYd-like gain increase over time. For maxi­
mum spatial selectivity, only one beam signal should have a nonzero weight, 
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y(n) 

w(n) 

w(n) 

Fig. 13.9. GSC with embedded AEC. 

9v,µ(n), in the stationary case. Frequent toggling between beams is subjec­
tively objectionable and should be prevented by hysteresis mechanisms (see 
also [17 ,26]). 

13.5.2 AEC with GSC-type beamforming structures 

As a popular representative of adaptive beamformers, the GSC (see Sec­
tion 13.3.3) is also an example for a parallel arrangement of time-varying 
and time-invariant beamforming. If an integrated AEC should only see time­
invariant beamforming in the echo path, it has to act on the output of the 
fixed beamformer, y(n), as depicted in Figure 13.9 [32]. Obviously, only a sin­
gle adaptive filter, h(IV)(n), is necessary which faces the same system identi­
fication task as h(Hl(n) for time-invariant beamforming (see Section 13.4.4), 
which in turn is essentially identical to the plain single-microphone AEC 
problem. However, residuals of acoustic echoes, v(n), will also be contained 
in w(n) unless they are eliminated by GBM(n) or Gw(n). Here, leaving echo 
suppression to the interference canceller, G1c(n), seems to be the obvious 
solution. Recall that Gw(n) minimizes the quadratic norm ofs(n) to remove 
all components from z(n) that are correlated with w(n). If h(IV)(n) is per­
fectly adjusted, no echo components remain in z(n) and the echo estimate 
within w(n) should be zero. On the other hand, local interference components 
in w(n) should be linearly combined using nonzero filter coefficients, so that 
w(n) can remove interference residuals from z(n). Clearly, a conflict in the 
design of Gw(n) arises [32]. 

For illustration, consider a stationary situation for a given frequency, w0 , 

in a 2-D plane containing a linear beamforming array with time-invariant GF, 
GEM, and Gw. A local interferer, r(n), arrives as a planar wave from 0o and 
passes the blocking matrix which is transparent for r( n) ( G~ M · r( n) = r( n)). 
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9v,n{), in the stationary case. Frequent toggling between beams is subjec-
tively objectionable and should be prevented by hysteresis mechanisms (see
also [17,26]).

13.5.2 AEC with GSC-type beamforming structures

As a popular representative of adaptive beamformers, the GSC (see Sec-
tion 13.3.3) is also an example for a parallel arrangement of time-varying
and time-invariant beamforming. If an integrated AEC should only see time-
invariant beamforming in the echo path, it has to act on the output of the
fixed beamformer, y(n), as depicted in Figure 13.9 [32]. Obviously, only a sin-
gle adaptivefilter, hv) (n), is necessary which faces the same system identi-
fication task as h(n) for time-invariant beamforming(see Section 13.4.4),
which in turn is essentially identical to the plain single-microphone AEC
problem. However, residuals of acoustic echoes, v(n), will also be contained
in w(n) unless they are eliminated by Ggu(n) or Grco(n). Here, leaving echo
suppression to the interference canceller, Gro(n), seems to be the obvious
solution. Recall that Gro(n) minimizes the quadratic norm of s(n) to remove
all components from z(n) that are correlated with w(n). If hUY)(n) is per-
fectly adjusted, no echo components remain in z(n) and the echo estimate
within w(n) should be zero. On the other hand, local interference components
in w(n) should be linearly combined using nonzerofilter coefficients, so that
w(n) can remove interference residuals from z(n). Clearly, a conflict in the
design of Gic(n) arises [32].

For illustration, consider a stationary situation for a given frequency, wo,
in a 2-D plane containing a linear beamforming array with time-invariant Gr,
Gem, and Gr. A local interferer, r(n), arrives as a planar wave from 6 and
passes the blocking matrix which is transparent for r(n) (GB,,-r(n) = r(n)).
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Then, for perfect interference cancellation, Gw(n) has to model the re­
sponse of the fixed beamformer, :F {Gw} (0o, wo) = :F {Gp} (0o, wo), with 
:F { G(.)} ( 0, w) denoting the frequency response for a plane wave of frequency 
w arriving from 0. If, on the other hand, an acoustic echo arrives from the 
same direction, 0o, with nonzero spectral support at wo, this should be per­
fectly suppressed if z(n) contains no echo, which means :F {Gw} (0o,w0 ) = 0. 
Obviously, this conflict requires a compromise at the cost of either local in­
terference suppression or echo attenuation. Here, adaptation algorithms will 
automatically favor the dominant signal component in w(n). Even if echo and 
local interference do not arrive from the same direction, the finite number of 
degrees of freedom limits the ability of Gw to suppress echo and local inter­
ference simultaneously. This is especially true for reverberant environments 
which possess a very large (if not infinite) number of DOAs for both echoes 
and local interference. 

To avoid the conflict of interests within G1c, a suppression of the acoustic 
echoes, v(n), using GnM(n) seems attractive. Considering the options, it is 
obvious that the output, w(n), should be freed from v(n) without suppressing 
r(n) or impairing the suppression of s(n). This means that no additional 
filtering on x(n) is allowed. As an alternative, estimates for the echoes, v(n), 
could be subtracted from w(n), which requires one adaptive filter for each of 
the P ~ N channels and is similar to the generic concept of Section 13.4.3. 

13.6 Combined AEC and beamforming for 
multi-channel recording and multi-channel 
reproduction 

Multi-channel recording means that the output of the acquisition part of the 
acoustic interface in Figure 13.1 consists of several (L > 1) channels which, 
e.g., are necessary to convey spatial information for remote multi-channel 
sound reproduction, but may also support local signal processing. In Fig­
ures 13.5, 13.6, and 13.7 this translates to an £-dimensional output vector 
s( n). With respect to the beamforming, it means a duplication of the filtering 
and adaptation for each channel using the techniques outlined in Section 13.3. 
Both, time-invariant and adaptive beamforming will typically use L differ­
ent 'look directions.' Regarding the generic methods to combine AEC with 
beamforming (Section 13.4), this means that for the 'AEC first' structure, 
the AEC part, HY)(n), remains unchanged while only the beamforming has 
to be duplicated. For the 'beamforming first' structure, the AEC realized by 
ii_(II)(n) has to be duplicated as well. 

When AEC is integrated into cascaded beamforming (see Section 13.5.1) 
the extension to the multi-channel recording case is included in the concept. 
The number of parallel fixed beams simply must equate or exceed the number 
of recorded chan~els, M ~ L, and the voting must be chosen accordingly. The 
AEC structure, ff(III)(n), remains unchanged. If the AEC is embedded into 
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a GSC-like structure, both the beamforming, G(n), and the AEC structure, 
ii_(IV) (n), have to be implemented L times. However, removal of the acoustic 
echoes in the blocking matrix is necessary only once if performed directly on 
the microphone signals, x(n). 

Multi-channel reproduction introduces a K-channel AEC problem (as de­
scribed in Section 13.2.2), wherever a single echo cancellation filter is em­
ployed for single-channel reproduction, regardless of whether echo is to be re­
moved from a microphone output or from a beamformer output. Essentially, 
this deteriorates convergence behavior and increases computational complex­
ity for all structures discussed in Sections 13.4 and 13.5, accordingly. 

Finally, for a system with both multi-channel reproduction and multi­
channel recording as suggested in Figure 13.1, the complexity for combined 
AEC and beamforming obeys the superposition principle with respect to 
filtering and filter adaptation. Synergies are obtained by the common use 
of control information for several channels. The nature of the problems, 
however, does not change compared to the basic scenarios studied in Sec­
tions 13.2.2, 13.4, and 13.5 so that the corresponding results remain mean­
ingful. 

13. 7 Conclusions 

Beamforming and acoustic echo cancellation have been shown to jointly con­
tribute to the suppression of acoustic feedback occurring in hands-free acous­
tic man-machine interfaces. While for time-invariant beamforming a single 
adaptive AEC filter suffices in the case of single-channel reproduction and 
single-channel recording, time-varying beamformers demand multiple adap­
tive filters if echo cancellation performance is not to degrade severely. How­
ever, realizing a time-varying beamformer as a cascade of time-invariant 
beamforming and time-varying voting requires only a few adaptive echo can­
cellers even for microphone arrays with many sensors. Implementing a combi­
nation of AEC and beamforming for a multi-channel reproduction and multi­
channel recording system involves a corresponding increase in computational 
complexity. Signal processing performance, however, is still determined by 
the solutions for the elementary problems. 

Acknowledgement 

The author wishes to thank Wolfgang Herbordt for providing the simulation 
results and Susanne Koschny for preparing the illustrations. 

References 

1. S.L. Gay and J. Benesty, eds., Acoustic Signal Processing for Telecommunica­
tion, Kluwer, 2000. 



304 Kellermann 

2. C. Breining, P. Dreiseitel, E. Ransler, A. Mader, B. Nitsch, H. Puder, 
T. Schertler, G. Schmidt, and J. Tilp, "Acoustic echo control," IEEE Sig­
nal Processing Magazine, vol. 16, no. 4, pp. 42-69, July 1999. 

3. M.M. Sondhi and W. Kellermann, "Echo cancellation for speech signals," in 
Advances in Speech Signal Processing, (S. Furui and M.M. Sondhi, eds.), Marcel 
Dekker, 1991. 

4. A. Stenger and W. Kellermann, "Adaptation of a memoryless preprocessor for 
nonlinear acoustic echo cancelling," Signal Processing, vol. 80, pp. 1747-1760, 
2000. 

5. W. Kellermann, "Strategies for combining acoustic echo cancellation and adap­
tive beamforming microphone arrays," in Proc. IEEE Int. Conf. Acoust., 
Speech, Signal Processing (ICASSP-97), Munich, Germany, pp.219-222, Apr. 
1997. 

6. G.-O. Glentis, K. Berberidis, and S. Theodoridis. "Efficient least squares adap­
tive algorithms for FIR transversal filtering," IEEE Signal Processing Maga­
zine, vol. 16, no. 4, pp. 13---41, July 1999. 

7. S. Haykin, Adaptive Filter Theory, Prentice Hall, 3rd edition, 1996. 
8. J.J. Shynk, "Frequency-domain and multirate adaptive filtering," IEEE Signal 

Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992. 
9. W. Kellermann, "Analysis and design of multirate systems for cancellation of 

acoustical echoes," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process­
ing (ICASSP-88), New York NY, USA, pp.2570-2573, Apr. 1988. 

10. M.M. Sondhi, D.R. Morgan, and J.L. Hall, "Stereophonic echo cancellation: An 
overview of the fundamental problem," IEEE Signal Processing Letters,vol. 2, 
no. 8, pp. 148-151, Aug. 1995. 

11. S. Shimauchi and S. Makino, "Stereo projection echo canceller with true echo 
path estimation," in Proc. IEEE Int. Conj. Acoust., Speech, Signal Process­
ing (ICASSP-95), Detroit MI, USA, pp.3059-3062, May 1995. 

12. J.Benesty, D.R. Morgan, and M.M. Sondhi, "A hybrid mono/stereo acoustic 
echo canceler," IEEE Trans. on Speech and Audio Processing, vol. 6, no. 5, 
pp. 468---475, Sept. 1998. 

13. B.D. Van Veen and K.M. Buckley, "Beamforming: A versatile approach to 
spatial filtering," IEEE ASSP magazine, vol. 5, no. 2, pp. 4-24, Apr. 1988. 

14. D.H. Johnson and D.E. Dudgeon, Array Signal Processing: Concepts and Tech­
niques, Prentice Hall, 1993. 

15. R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Prentice 
Hall, 1983. 

16. R.G. Pridham and R.A. Mucci, "Digital interpolation beamforming for low-pass 
and bandpass signals," Proceedings of the IEEE, vol. 67, no. 6, pp. 904-919, 
June 1979. 

17. W. Kellermann, "A self-steering digital microphone array," in Proc. IEEE 
Int. Conf. Acoust., Speech, Signal Processing (ICASSP-91), Toronto, Canada, 
pp.3581-3584, May 1991. 

18. J.L. Flanagan, J.D. Johnston, R. Zahn, and G.W. Elko, "Computer-steered 
microphone arrays for sound transduction in large rooms," J. Acoust. Soc. 
Am., vol. 78, no. 5, pp. 1508-1518, Nov. 1985. 

19. C. Marro, Y. Mahieux, and K.U. Simmer, "Analysis of noise reduction and dere­
verberation techniques based on microphone arrays with postfiltering," IEEE 
Trans. on Speech and Audio Processing, vol. 6, no. 3, pp. 240-259, May 1998. 



13 Acoustic Echo Cancellation for Beamforming Microphone Arrays 305 

20. T. Chou, "Frequency-independent beamformer with low response error," in 
Proc. IEEE Int. Conj. Acoust., Speech, Signal Processing {ICASSP-g5J, Detroit 
MI, USA, pp.2995-2998, May 1995. 

21. Y. Kaneda and J. Ohga, "Adaptive microphone-array system for noise reduc­
tion," IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 34, no. 6, 
pp. 1391-1400, Dec. 1986. 

22. P. Chu, "Desktop mic array for teleconferencing," in Proc. IEEE Int. Conj. 
Acoust., Speech, Signal Processing (ICASSP-95), Detroit MI, USA, pp.2999-
3002, May 1995. 

23. M. Dahl, I. Claesson, and S. Nordebo, "Simultaneous echo cancellation and car 
noise suppression employing a microphone array," in Proc. IEEE Int. Conj. 
Acoust., Speech, Signal Processing (ICASSP-91), Munich, Germany, pp.239-
242, Apr. 1997. 

24. P. Chu, "Superdirective microphone array for a set-top videoconferencing sys­
tem," in Proc. IEEE Int. Conj. Acoust., Speech, Signal Processing (ICASSP-
91), Munich, Germany, pp.235-238, Apr. 1997. 

25. L.J. Griffiths and C.W. Jim, "An alternative approach to linear constrained 
adaptive beamforming," IEEE Trans. on Antennas and Propagation, vol. 30, 
no. 1, pp. 27-34, Jan. 1982. 

26. J.L. Flanagan, D.A. Berkley, G.W. Elko, J.E. West, and M.M. Sondhi, "Au­
todirective microphone systems," Acustica, vol. 73, pp. 58-71, 1991. 

27. G. Elko, "Microphone array systems for hands-free telecommunication," Speech 
Communication, vol. 20, pp. 229-240, 1996. 

28. 0. Hoshuyama and A. Sugiyama, "A robust adaptive beamformer for micro­
phone arrays with a blocking matrix unsing constrained adaptive filters, in 
Proc. IEEE Int. Conj. Acoust., Speech, Signal Processing (ICASSP-96), At­
lanta GA, USA, pp.925-928, May 1996. 

29. I. Claesson, S.E. Nordholm, B.A. Bengtsson, and P. Eriksson, "A multi-DSP 
implementation of a broad-band adptive beamformer for use in a hands-free 
mobile radio telephone," IEEE Trans. on Vehicular Technology, vol. 40, no. 1, 
pp. 194-202, Feb. 1991. 

30. S. Oh, V. Viswanathan, and P. Papamichalis, "Hands-free voice communication 
in an automobile with a microphone array," in Proc. IEEE Int. Conj. Acoust., 
Speech, Signal Processing (ICASSP-92), San Francisco CA, USA, pp. 1:281-
1:284, Mar. 1992. 

31. ITU-T recommendation G.167, Acoustic echo controllers, Mar. 1993. 
32. W. Herbordt and W. Kellermann, "GSAEC - Acoustic echo cancellation embed­

ded into the generalized sidelobe canceller," in Signal Processing X: Theories 
and Applications (Proceedings of EUSIPCO-2000), Tampere, Finland, vol.3, 
pp.1843-1846, Tampere, Finland, Sept. 2000. 

33. S. Nordebo, S. Nordholm, B. Bengtsson, and I. Claesson, "Noise reduction using 
an adaptive microphone array in a car - a speech recognition evaluation," in 
Conference Recordings of the ASSP Workshop on Application of Digital Signal 
Processing to Audio and Acoustics, New Paltz NY, USA, Oct. 1993. 

34. H. Silverman, W. R. Patterson, J.L. Flanagan, and D. Rabinkin, "A digital 
processing system for source location and sound capture by large microphone 
arrays," in Proc. IEEE Int. Conj. Acoust., Speech, Signal Processing (ICASSP-
91), Munich, Germany, pp.251-254, Apr. 1997. 



306 Kellermann 

35. W. Kellermann, "Some properties of echo path impulse responses of microphone 
arrays and consequences for acoustic echo cancellation," in Conf. Rec. of the 
Fourth International Workshop on Acoustic Echo Control, R0ros, Norway, June 
1995. 



14 Optimal and Adaptive Microphone 
Arrays for Speech Input in Automobiles 

Sven Nordholm1 , Ingvar Claesson2 , and Nedelko Grbic2 

1 Curtin University of Technology, Perth, Australia 
2 Blekinge Institute of Technology, Ronneby, Sweden 

Abstract. In this chapter, speech enhancement and echo cancellation for hands­
free mobile telephony are discussed. A number of microphone array methods have 
been tested and results from car measurements are given. Traditional methods 
such as linearly constrained beamforming and generalized sidelobe cancelers are 
discussed as well as array gain optimization methods. An in situ calibrated method 
which gives an overall improved performance is also presented. Algorithms such 
as Least-Squares (LS) and Normalized-Least-Mean-Squares (NLMS) are used to 
find optimal weights. Improved performance using an LS-method is shown, but 
at the cost of increased numerical complexity limiting its implementation in real­
time applications. By introducing subband processing this issue can be avoided. The 
results show a noise suppression of approximately 18 dB and hands-free loudspeaker 
suppression of the same order. 

14.1 Introduction: Hands-Free Telephony in Cars 

The increased use of mobile telephones in cars has created a greater demand 
for hands-free, in-car installations. The advantages of hands-free telephones 
are safety and convenience. In many countries and regions hand-held tele­
phony in cars is prohibited by legislation. The car manufacturers also pro­
hibit such use since it will interact with other electronic devices in the car 
such as air bags, navigation equipment, etc. This means that a mobile tele­
phone should be properly installed and an external antenna should be used. 
However, by installing the microphone far away from the user, a number of 
disadvantages, such as poor sound quality and acoustic feedback from the 
far-end side, are introduced. This means that some form of filtering is re­
quired in order to obtain sound quality comparable to that of hand-held 
telephony. This filtering operation must suppress the loudspeaker, as well 
as background noise and room reverberation, without causing severe speech 
distortion. A number of potential methods will be presented to address this 
problem. 

For automobile applications, there has also been the desire to replace 
many hand-controlled functions with voice controls. The signal degradations 
in this context have many similarities to those encountered in distant-talker 
speech recognition applications. A study of recognition in car environments 
was presented in [1,2]. However this topic is beyond the primary goal here 
and is the specific subject of Chapter 15. 
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Hands-free car installations result in noisy near-end speech as well as an 
acoustic feedback of the far-end speech. The near-end disturbances, result­
ing in substantial speech distortion, are mainly room reverberation and car 
noise. Furthermore, acoustic feedback, generated at the near-end side, is a 
problem for the far-end side talker, who will hear his voice echoed with 100-
200 ms delay, making speech conversation substantially more difficult. Three 
major tasks must be addressed in order to improve the quality of hands-free 
mobile telephones: noise suppression, room reverberation suppression, and 
acoustic feedback suppression of the hands-free loudspeaker. Because of the 
cabin conditions, room reverberation suppression is not a critical issue in 
most standard automobiles. In trucks, buses, people movers and 4-WD with 
their larger interiors, it may need to be considered. The measurements pre­
sented here are from a normal-sized station wagon. The acoustic channel is 
non-minimum phase and thus quite hard to deconvolve [3]. Matched filtering 
approaches which do not require explicit channel deconvolution [3,4] and sev­
eral other methods detailed earlier in this text are available for reverberation 
suppression under more adverse conditions. 

Speech enhancement in hands-free mobile telephony can be performed us­
ing spectral subtraction [5-8] or temporal filtering such as Wiener filtering, 
noise cancellation and multi-microphone methods using a variety of different 
array techniques [9-11]. Room reverberation in this context is most effectively 
handled using array techniques or by proper microphone design and place­
ment. Acoustic feedback for hands-free mobile telephony is usually addressed 
by conventional echo cancellation techniques [12-15] although subband echo 
cancellation has been popular lately, see for instance [15,16]. 

A broad-band microphone array is able to perform all the given tasks, i.e. 
speech enhancement, echo cancellation and reverberation suppression, in a 
concise and effective manner. This is due to the fact that the spatial domain 
is utilized as well as the time domain. An effective combination of spatial 
and temporal processing will lead to a very efficient solution. Hence, im­
proved speech enhancement performance is achieved compared to single mi­
crophone solutions. The microphone array technique also handles the acoustic 
feedback in an efficient way. The hands-free loudspeaker represents a single 
source despite having been filtered by the channel associated with the car's 
interior. Similarly, the main talker (driver) represents an additional single 
source within the cabin. These two sources will have different locations. The 
echo-suppression level and speech distortion will depend on how "well apart" 
these two sources are placed [17]. 

The outline of this chapter is as follows: 

• Section 2, Optimum and Adaptive Beamforming topics are reviewed from 
a hands-free mobile telephone perspective, specifically: 
1. Signal Model 
2. Constrained Minimum Variance Beamforming and Generalized Side­

lobe Canceler ( GSC) 
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3. In situ Calibrated Microphone Array 
4. Time-Domain Minimum-Mean-Square-Error Beamformer 
5. Frequency-Domain Minimum-Mean-Square-Error Beamformer 
6. Optimal Near-field Signal-to-Noise plus Interference Beam­

former (SNIB) 
• Section 3, Subband Implementation of the Microphone Array 

1. Description of LS-Subband Beamforming 
• Section 4, Multi-resolution Time-Frequency Adaptive Beamforming 

1. Complexity Comparisons 
• Section 5, Evaluation and examples 
• Section 6, Summary and conclusions 

14.2 Optimum and Adaptive Beamforming 

The hands-free mobile telephony problem in an automobile is well suited 
for optimum or adaptive beamforming. The user is in a fixed and known 
location relative to the array and enclosure. The geometrical array configu­
ration is known. It is further possible to place the loudspeaker in a position 
that is advantageous from a beamforming perspective. Early approaches to 
this task involved the direct adoption of adaptive antenna array methods in 
use since the 1960's [18]. However, this proved not to be a straightforward 
task and required the development of approaches specific to the application 
environment, e.g. [11,19,10,20]. 

The most common means of applying adaptive beamforming concepts 
is to treat the problem as one of constrained optimization. These methods 
rely on geometrical constraints, where the location of the source is known 
either perfectly or with some accuracy. They require sensor calibration and 
stable hardware (e.g. to avoid low temperature drift). The algorithms may be 
extended using different robustness constraints [21-23] and noise sub-space 
constraints [3]. The problem may also be viewed as several multi-dimensional 
filtering problems. These filters are combined with an interference cancelling 
structure [10,24,25]. 

14.2.1 Common Signal Modeling 

In order to provide a consistent description it will be useful to introduce a sim­
ple signal model which is general in the sense that microphone elements and 
sources with any spectral content can be placed arbitrarily. The D different 
point signal sources sd(t), d = 1,2, ... ,D, with spectral densities Rsdsd(w) 
are assumed to be mutually uncorrelated, i.e. the cross power spectral density 
Rsds.(w) is zero if d =I- e. All sources impinge on an array of N microphone 
elements, corrupted with non-directional independent diffuse additive noise 
v(t). The transfer function between sourced and array element n is denoted 
Gd,n(w) and is either measured or modeled. In this model, a spherical source 
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in a free-field and homogeneous medium is assumed. In a real world situation 
with measured data such an assumption may be suspect. The signal received 
at the n th microphone element, Xn(t), is 

D 

Xn(t) = L sd(t) * 9d,n(t) + v(t) n = 1, 2, ... , N, (14.1) 
d=l 

where * denotes convolution. Each source signal is treated as a point source 
filtered by an LTI system. An implication of these assumptions is that vari­
ations in the acoustic channel are slow relative to the filter update rate. In 
the sequel all signals are assumed to be bandlimited and sampled with a 
discrete-time index k. 

14.2.2 Constrained Minimum Variance Beamforming and the 
Generalized Sidelobe Canceler 

In minimum variance beamforming, the objective is to minimize the output 
of a (broadband) array while maintaining a constant gain constraint towards 
the desired source, in this case the talker of interest. 

The output of the beamformer is given as 

N 

y[k] = L w:xn[k] (14.2) 
n=l 

where the weight vector and input data vector both are of length L. 
The expression to be minimized is the "variance" of the assumed zero­

mean output, E(ly[k]l2), with respect to the filter weights given by 

(14.3) 

If it is assumed, without loss of generality, that point source one is the 
talker of interest, then the major task is to find the constraint on the weight 
vector such that y[k] = s1(t)lt=kT, i.e. the output is distortion free. A natural 
way to do this is to express the minimization in the frequency domain and 
include matched filtering [3]. For this process, there is a strict requirement 
of accurate signal modeling or robust constraints, otherwise super-resolution 
will cancel the source [23,10]. 

The Generalized Sidelobe Canceler can be viewed as a constrained beam­
former which has been converted to a non-constrained beamformer by means 
of a blocking matrix. Thus, the problem is separated into two tasks: the de­
sign of a fixed beamformer to determine the response for the desired source 
and a matrix filter that blocks the desired source from entering. In the sim­
plest case of a free-field, far-field source and a perfectly calibrated array this 
blocking matrix will amount to a point constraint [26,27]. For the near field 
situation and a reverberant enclosure, special measures must be taken. The 
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Fig. 14.1. Structure of the Generalized Sidelobe Canceler. 

original form of the GSC only provides for a point constraint and is ex­
cessively sensitive to calibration and direction errors [23,22]. A number of 
methods have been proposed which are more suitable for microphone array 
applications [27,28,21,10,29]. Details of this appropriate GSC implementation 
will now be presented. 

The GSC structure shown in Figure 14.1 consists of two main parts: an 
upper fixed beamformer and a blocking matrix with subsequent interference 
cancelers. In order to avoid attenuation of the desired signal it is critical that 
the input to these interference cancelers contain only the undesired signals. 

The input signal vector, x[k], is filtered by the upper beamformer, a, 
steering towards the talker of interest and creating an output Yd[k] , 

(14.4) 

This beamforming filter in its simplest form consists of a vector of ones. More 
generally, it consists of FIR filters forming a multi-dimensional filter. The 
blocking matrix should form signals that are orthogonal to the desired signal. 
Thus, the input to the interference cancelers should contain only undesired 
signals, (and some injected noise) 

zm[k] = h?;',x[k] ( + T/m[k]). (14.5) 

When designing the lower beamformers, bm, which implement the signal 
blocking matrix, the requirement is that the desired signal should be blocked 
totally. This is not practically feasible. To do so would require knowledge of 
the transfer function from the desired source to the input of the lower beam­
formers with extremely high precision. By choosing to relax this requirement 
and viewing the problem from a filter design perspective where the desired 
signal should be suppressed below a certain level determined by an artificial 
injected noise level, TJm[k], one may overcome these limitations [10]. This in­
jected noise is not actually present, it is only included in the filter weight 
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original form of the GSC only provides for a point constraint and is ex-
cessively sensitive to calibration and direction errors [23,22]. A number of
methods have been proposed which are more suitable for microphone array
applications [27,28,21,10,29]. Details of this appropriate GSC implementation
will now be presented.

The GSC structure shown in Figure 14.1 consists of two main parts: an
upper fixed beamformer and a blocking matrix with subsequent interference
cancelers. In order to avoid attenuation of the desired signal it is critical that
the input to these interference cancelers contain only the undesired signals.

The input signal vector, x[k], is filtered by the upper beamformer, a,
steering towards the talker of interest and creating an output ya[k],

yalk] = a”x[k]. (14.4)

This beamformingfilter in its simplest form consists of a vector of ones. More
generally, it consists of FIR filters forming a multi-dimensional filter. The
blocking matrix should form signals that are orthogonal to the desired signal.
Thus, the input to the interference cancelers should contain only undesired
signals, (and someinjected noise)

%m[k] = by, x[k] (+ 1m[k]). (14.5)

When designing the lower beamformers, b,,, which implement the signal
blocking matrix, the requirementis that the desired signal should be blocked
totally. This is not practically feasible. To do so would require knowledge of
the transfer function from the desired source to the input of the lower beam-
formers with extremely high precision. By choosing to relax this requirement
and viewing the problem fromafilter design perspective where the desired
signal should be suppressed below a certain level determined by anartificial
injected noise level, 7,,[k], one may overcomethese limitations [10]. This in-
jected noise is not actually present, it is only included in the filter weight
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updating algorithm used in the adaptive implementation of the interference 
canceler. The desired signal will not be picked up and attenuated by the in­
terference canceler as long as the injected noise dominates over the desired 
signal. This approach is also valid for the background noise free case [25]. 

Another approach to this constrained optimization problem is the use of 
subspace techniques such as that suggested in [3]. This method requires sev­
eral adaptive steps and also a Voice Activity Detector (VAD). The speech 
distortion is related to how well the transfer functions from the desired source 
to each microphone element, Gli(w), are identified. The upper beamformer 
is then created as a matched spatial temporal filter and the blocking matrix 
is created as a projection matrix that is orthogonal to the transfer function 
vector (G11(w),G12(w), ... ,G1N(w)). This implies that, as long as this or­
thogonality constraint is valid, no target signal will leak through. All of this 
assumes that a good estimate of the transfer function vector is used, the talker 
can be represented by a point source, and the conditions are time invariant. 

Experience using the GSC has shown that it provides a very good sup­
pression of background noise, but that control of the signal distortion and 
calibrating for a combined array are problematic [10]. Another observation 
reached from implementation experience is the importance of using a precise 
VAD. The interference canceler is very effective at exploiting correlations with 
the target and adjusting its weights to suppress or heavily distort the desired 
signal. A combination of VAD and leaky LMS was used in the implementa­
tion [10] to give a reasonable result. Still it was difficult to obtain satisfactory 
results with long term tests in a car, i.e. over a few days of measurements 
using an initial calibration. This suggests the need to have a means for very 
simple in situ calibration. 

14.2.3 In Situ Calibrated Microphone Array {ICMA) 

The basic idea when developing this scheme was to find a robust yet effective 
strategy to an undistorted version of the desired signal with significant sup­
pression of background noise and unwanted sources. A primary goal was to 
overcome the environmental sensitivity inherent in the constrained optimiza­
tion strategies outlined above. A way to achieve this is to record calibration 
sequences through the actual system in a real situation with all of its im­
perfections. These calibration sequences contain information regarding the 
statistical properties of the speaker, from both a spatial and temporal point 
of view. All calibration signals are gathered from the correct position and 
with the actual hardware. The adaptive system, as such, is then designed not 
to suppress signals close to the calibration point, i.e it should have low sensi­
tivity to perturbation errors and avoid super-resolution. This can be achieved 
by moving the source (spatial dithering) around the nominal point during cal­
ibration or exploiting temporal dithering in the A/D converters. Calibration 
sequences are recorded from both the jammer position(s) and the target po­
sition when no car noise is present. These signals are stored in memory for 
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later use as training signals in an adaptive phase. As will be shown it is only 
necessary to save the second order statistics of the calibration signals in the 
implementation phase. This approach gives an inherent calibration where it 
is possible to average and weigh interesting frequency bands, microphones, 
and spatial points. The methodology does not rely on any geometric a pri­
ori information or array element similarities with accurate positioning. The 
result is a system that is tailored for the actual situation. The system has 
been studied from a theoretical (17] and implementation perspectives (30-32]. 
The ICMA uses a Minimum-Mean-Square-Error (MMSE) optimization that 
is approximated by either an NLMS implementation (30,31] or an LS solu­
tion [33]. An LS or Recursive-Least-Squares (RLS) solution becomes practical 
when using a subband implementation. The ICMA design can be viewed as 
an MMSE beamformer where there is separate access to the undesired noise 
and desired speech signal. 

14.2.4 Time-Domain Minimum-Mean-Square-Error Solution 

Assume that the input to the beamformer consists of a sum of known calibra­
tion sequence observations, sn[k], n = 1 ... N, sent out from the position of 
interest, and noise-plus-interference signals, Xn[k], n = 1 ... N, consisting of 
the actual environment signal observations. The time-domain objective can 
be formulated as 

W 0 pt = argmin E [(y[k] - sr[k])2] 
w 

where the output, y[k], from the beamformer is given by 

N 

y[k] = L w;{ (xn[k] + sn[k]) . 
n=l 

(14.6) 

(14.7) 

The desired signal, sr[k], is chosen from a single calibration array sensor 
observation, sn[k], or a separate reference microphone signal chosen as the 
reference sensor. In theory the true source signal would be desirable to use 
instead of a sensor observation, but the true source signal is simply not ac­
cessible in a noise-filled car. The optimal weights which minimizes the mean 
square error between the output and the reference signal are found by (34] 

Wopt = [Rss + Rvvrl rs. 

where Rss is defined as 

Rss = ( 

Rs1s1 Rs1s2 Rs1BN ) 
Rs2s1 Rs2s2 Rs2BN 

Rs~s1 Rs~s2 .-.-: Rs:BN 

(14.8) 

(14.9) 
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and 

(14.10) 

with 

l=0,1,···,L-1 (14.11) 

The noise correlation matrix, Rvv, is defined similarly and consists of the 
correlation estimates of all noise plus interference signals. The filter weights, 
w, are arranged according to 

wT = [wf wf ... wiJ 

where 

w~ = [wn[O] Wn[l) ... Wn[L -1)) n = 1,2,··· ,N. 

The cross correlation vector, rs, is defined as 

with 

Tn[L -1)) n = 1,2,··· ,N 

and each element as 

rn[l] = E[sn[k]sr[k + l)] 

n = 1, 2, · · · , N, r E [1, 2, · · · , N], l = 0, 1, · · · , L - 1. 

14.2.5 Frequency-Domain Minimum-Mean-Square-Error 
Solution 

(14.12) 

(14.13) 

(14.14) 

(14.15) 

(14.16) 

The formulation of the MMSE bearnformer can be expressed in terms of indi­
vidual frequency bands. The optimal bearnformer consists of the frequency­
dependent weights that minimize the mean square error across the individ­
ual frequency bands. This is provided that the different frequency bands are 
essentially independent and that the fullband signal can be represented accu­
rately via this subband decomposition. The frequency domain design criterion 
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can be formulated in a fashion similar to that of the time domain. For each 
subband with center frequency, f, the criterion will be 

where the output, yU) [kl, from the beamformer is given by 

N 

yUl[k] = I: wr.fl [xk'l[k] + sk'l[k]) 
n=l 

(14.17) 

(14.18) 

where xk'l[k], sk'l[k] and, yUl[k] are narrow-band signals containing essen­
tially only components of frequency f. The single sensor observation, sr[k]Ul, 
is again one of the microphone observations chosen as the reference sensor. 
The optimal weights, which minimize the mean square error between the 
output and the reference signal for each frequency band, are found by 

w(f) = [RU)+ RUl)-1 rUl 
opt ss vv s · (14.19) 

where 

(14.20) 

where 

(14.21) 

Here each signal, sk'l[k], n = 1,2,··· ,N, is the narrow-band observation 
when only the source signal of interest is active. The correlation matrix Rl{l 
is defined similarly where each microphone observation consists of only the 
noise and interference signals. The cross correlation vector, r~f), is defined as 

(14.22) 

with each element as 

(14.23) 

n = 1, 2, · · · , N, r E [1, 2, · · · , N]. 

The frequency dependent weights, wUl, are defined as complex valued vectors 
of dimension N. 
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14.2.6 Optimal Near-Field Signal-to-Noise plus Interference 
Beamformer 

The output signal-to-noise plus interference power ratio (SNIR) is defined as 

Q = average signal output power 
average noise-plus-interference output power 

(14.24) 

and the beamformer which maximizes the ratio, Q, is the optimal SNIB. 
Expressing the mean signal output power as a function of the filter weights 
in the beamformer and finding the optimal weights which maximize Q is done 
below. 

Time-Domain Formulation The beamformer output power when only the 
signal of interest, s[k], is active, is found from the zero lag of the autocorre­
lation function, ry.y.[O], as 

(14.25) 

The matrix, Rs,., is defined in (14.9). The weights, w, are arranged as in 
(14.12) and (14.13). 

An expression for the noise-plus-interference power, rYvYv [O], is found from 

(14.26) 

when all the surrounding noise sources are active and the source signal of 
interest is inactive. 

Now, the optimal weights are found by maximizing the ratio of two 
quadratic forms, according to 

Wopt = argm~ { ;:::::}. (14.27) 

Frequency-Domain Formulation The formulation of the optimal signal­
to-noise plus interference beamformer may be derived for individual frequency 
subbands. The weights that maximize the quadratic ratios at individual fre­
quencies constitute the optimal beamformer that maximizes the total output 
power ratio, provided the subband signals are independent. 

For frequency, f, the quadratic ratio between the output signal power and 
the output noise-plus-interference power is 

w(J) = arg max 
opt w(/) 

(14.28) 

where the matrices, RW and RW, are defined as in (14.20). The weights, 
wU), are defined as the complex valued vectors of dimension N. 
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14.2.6 Optimal Near-Field Signal-to-Noise plus Interference
Beamformer

The output signal-to-noise plus interference power ratio (SNIR) is defined as

average signal output power 
= : ” (14.24)

average noise-plus-interference output power

and the beamformer which maximizes the ratio, Q, is the optimal SNIB.
Expressing the mean signal output power as a function of the filter weights
in the beamformer and finding the optimal weights which maximize Q is done
below.

Time-Domain Formulation The beamformer output power when only the
signal of interest, s{k], is active, is found from the zero lag of the autocorre-
lation function, ry,,,[0], as

Ty.y. [0] = w?Resw (14.25)

The matrix, Reg, is defined in (14.9). The weights, w, are arranged as in
(14.12) and (14.13).

Anexpression for the noise-plus-interference power, ry, y, [0], is found from

Ty.yo[0] = Ww? Ryvw (14.26)

when all the surrounding noise sources are active and the source signal of
interest is inactive.

Now, the optimal weights are found by maximizing the ratio of two
quadratic forms, according to

w'R..W \ 14.2wRYw ( 7)Wopt = arg max {
Frequency-Domain Formulation The formulation of the optimal signal-
to-noise plus interference beamformer may be derived for individual frequency
subbands. The weights that maximize the quadratic ratios at individual fre-
quencies constitute the optimal beamformer that maximizes the total output
powerratio, provided the subband signals are independent.

For frequency, f, the quadratic ratio between the output signal power and
the output noise-plus-interference poweris

ARM wh)
wi} = argmax4~ (14.28)wh|wh RD Wl)

where the matrices, RY and RP are defined as in (14.20). The weights,
w‘f), are defined as the complex valued vectors of dimension N.
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Fig. 14.2. Subband Beamforming Structure. 

14.3 Subband Implementation of the Microphone 
Array 

Noise and echo suppression exhibit significant gains when an LS solution is 
used in place of the NLMS algorithm [33]. However, computational consid­
erations make use of the LS criterion impractical for the wide-band prob­
lem. Subband frequency transformations as shown in Figure 14.2 provide 
efficient means of allowing for the use of second order methods (such as 
RLS) , while keeping computational complexity low. The frequency-domain 
algorithms have a least-squares objective function, as described in (14.29). 

An uniform DFT analysis-synthesis filterbank [35] will be employed here. 
The filterbank is used to decompose the full-rate sampled signals, xn[k], into 
I subband signals [36] . The subband signals are essentially generated from 
a common bandpass filter with varying center frequency, 2t, and cover the 
entire frequency range. As a special case, when the number of subbands 
equals the length of the prototype filter, the subband decomposition will equal 
the overlapped Short-Time Fourier Transform (STFT) and the prototype 
filter is chosen as a simple, uniform moving average. The subband signals are 
decimated to a lower sampling rate allowing for a polyphase implementation. 
This provides an analysis-synthesis structure with approximately the same 
computational complexity as the STFT [35]. 
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Fig. 14.2. Subband Beamforming Structure.

14.3. Subband Implementation of the Microphone
Array

Noise and echo suppression exhibit significant gains when an LS solution is
used in place of the NLMSalgorithm [33]. However, computational consid-
erations make use of the LS criterion impractical for the wide-band prob-
lem. Subband frequency transformations as shown in Figure 14.2 provide
efficient means of allowing for the use of second order methods (such as
RLS), while keeping computational complexity low. The frequency-domain
algorithms have a least-squares objective function, as described in (14.29).

An uniform DFTanalysis-synthesis filterbank [35] will be employed here.
Thefilterbank is used to decomposethefull-rate sampledsignals, x,,[k], into
I subbandsignals [36]. The subband signals are essentially generated from
a common bandpassfilter with varying center frequency, ont and cover the
entire frequency range. As a special case, when the number of subbands
equals the length of the prototypefilter, the subband decomposition will equal
the overlapped Short-Time Fourier Transform (STFT) and the prototype
filter is chosen as a simple, uniform moving average. The subbandsignals are
decimated to a lower sampling rate allowing for a polyphase implementation.
This provides an analysis-synthesis structure with approximately the same
computational complexity as the STFT [35].
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14.3.1 Description of LS-Subband Beamforming 

The MMSE beamforming scheme formulated in (14.17) may be reexpressed 
in the time domain using an LS formulation as subband number 

(i) (N) - . 
Wz8,opt - arg e}l,? (14.29) 

where i indicates the subband index, K is the number of data points con­
sidered, and where y(i)[k] is given by (14.18) with f = 21ri/I. The reference 

source signal, s~i) [k], is not directly available, but a calibration sequence gath­
ered in a quiet environment can be used in its place. This calibration signal 
contains the source's temporal and spatial information. Since ii) (k] is inde­

pendent of the actual data x~)[k], at least for large K, the LS problem can 
be expressed as the sum of two components by 

w(i) (K) = argmin {~
1 

[lw(i)H s(i)(k] - sr(i)(k]l 2+ 
/5,opt w(i) L....., 

k=O 

(14.30) 

The equation may be rewritten as 

w(i) (K) = argmin {w(i)H [fl(il(K) + fl(i)(K)] w(i)_ 
/5,opt w(i) 88 xx 

(14.31) 

where the source correlation estimates can be precalculated in the calibration 
phase from 

fli~(K) = -k Lf=ol s(il[k]s(i)H[k] 
(14.32) 

f~i) (K) = -k Lf,;:;/ s(il [k]s~i)H (k] 

where 

is the microphone data when the source signal alone is active. The least­
squares minimization of (14.31) is found by 

w(i) (K) = [fl(i)(K) + fl(il(K)]- 1 f(i)(K) 
/5,opt 88 xx 8 (14.33) 

where 
K-1 

ft1iJ(K) = ~ L x(i)(k]x(i)H[k] (14.34) 
k=O 

is the observed data correlation matrix estimate. This implies that an esti­
mate of the calibration data may be used as part of the solution. 
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14.4 Multi-Resolution Time-Frequency Adaptive 
Beamforming 

The performance of the algorithm stated in previous section requires that the 
number of subbands is large enough for the frequency-domain representation 
to be accurate. The number of subbands is proportional to the length of 
the equivalent time-domain filters, and the more subbands chosen, the more 
degrees of freedom inherent in the beamformer. The number of subbands is 
also related to the delay caused by the frequency transformations since a 
large number of subbands necessitates a longer prototype filter, which in its 
turn will cause an increased delay. 

The algorithm is easily extended to a combination of time- and frequency­
domain representations. Each subband signal can be seen as a time-domain 
signal sampled at a reduced sampling rate and containing only frequencies 
in that particular subband. By applying a time-domain algorithm in each 
sub band, the degrees of freedom for the filters are increased while the number 
of subbands can be held constant. The lengths of the corresponding filters 
may differ across the subbands to produce a multi-resolution framework. 

14.4.1 Memory Saving and Improvements 

The proposed beamformer consists of a source signal information gathering 
phase followed by the operation phase. Information about the source signal is 
represented through the frequency-dependent, source-only correlation matrix 
estimates, Ri~. These estimates are calculated and stored for each of the 
I subbands. When there are known unwanted sources, such as hands-free 
loudspeakers, which have a fixed location in relation to the microphones and 
the enclosure, correlation estimates from these signals are also estimated and 
saved. Estimates of the frequency-dependent cross-correlation vectors, rii), 
are also maintained. The number of elements, P, required in memory to 
store the fullband time-domain solution is: 

ptime = [N L(N L + 2)]2 

where N is the number of microphone channels and L is the fullband FIR 
filter length. For the frequency-domain representation the number of storage 
elements needed is 

pfreq = I[N!:_(N!:_ + 2)]2 

I I 

where index I is the number ofsubbands. As an example, Figure (14.3), shows 
the ratio of the number of storage elements required for the time- and the 
frequency-domain implementations as a function of the full band time-domain 
filter length and subbands values of I = 16, 32, 64, 128,256,512. The number 
of channels is N = 6. Even for moderate filter lengths, the size of the mem-
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Relation between ptime and Pfreq for different filter lengths L 
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Fig. 14.3. The ratio ptime / pfreq for filter lengths L varying from 4 to 1024, and 
the number of subbands, I, is varying from 16 to 512. The number of channels is 
N=6. 

ory is reduced substantially with the frequency-domain implementation. The 
number of multiplications is proportional to the number of stored elements, 
and the relationship between computational costs for the time-domain and 
frequency-domain implementations is the same as in Figure 14.3. 

14.5 Evaluation and Examples 

14.5.1 Car Environment 

A performance evaluation of the beamformer was made in a hands-free situa­
tion with a six-element microphone array mounted on the passenger-side visor 
of a Volvo station wagon. Data was gathered on a multi-channel DAT-recorder 
with a 12 kHz sampling rate and a 300-3400 Hz bandwidth. In order to fa­
cilitate simultaneous driving and recording, an artificial talker was mounted 
in the passenger seat to simulate a real person engaging in a conversation. 
Initially, a white noise sequence within the bandwidth was emitted from the 
artificial talker, in a non-moving car with the engine turned off. This sequence 
served as the desired sound source calibration signal in all of the following 
simulations. Interference signals were recorded by emitting an independent 
sequence of bandlimited, white noise from the hands-free loudspeaker. This 
recording functioned as the point-source interference calibration signal and 
was referred to as the echo signal. In order to gather background noise esti­
mates, the car was driven at a speed of 110 km/h over a paved road. The car 
cabin noise environment consisted of a number of unwanted sound sources, 
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Fig. 14.3. The ratio P“™*/P/"°4 for filter lengths L varying from 4 to 1024, and
the number of subbands, J, is varying from 16 to 512. The numberof channels is
N=6.

ory is reduced substantially with the frequency-domain implementation. The
number of multiplications is proportional to the number of stored elements,
and the relationship between computational costs for the time-domain and
frequency-domain implementations is the same as in Figure 14.3.
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recording functioned as the point-source interference calibration signal and
was referred to as the echo signal. In order to gather background noiseesti-
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Fig. 14.4. Geometry of the six-element, linear array with an adjacent microphone 
spacing of 5 cm. 

mostly with broad spectral content, e.g. wind and tire noise. Recordings with 
real speech signals, from both the artificial talker and the hands-free loud­
speaker, were recorded both individually and while driving. These recordings 
served as the beamformer evaluation signals. All of the performance measures 
presented in Section 14.5.5 were based on these real speech recordings. 

14.5.2 Microphone Configurations 

The sensors used in this evaluation were high-quality Sennheiser microphones 
mounted flat on the visor. The speaker was positioned 35 cm from the center 
of the array and oriented perpendicular to the its axis. The mounting of the 
six-element linear array is given in Figure 14.4. The spacing between adjacent 
elements in the array was 5 cm. 

14.5.3 Performance Measures 

There are two objectives for the beamformer: minimize the distortion caused 
by the beamforming filters (measured by the deviation between the beam­
former output and the source signal) and maximize noise and interference 
suppression. In order to measure the performance the normalized distortion 
quantity, D, is introduced as 

(14.35) 

where w = 21r f and f is the normalized frequency. The constant, Cd, is 
defined as 

J1r Px (w)dw 
C - -7' 8 

d - A 

J::1r Py. ( w )dw 
(14.36) 

'::here Px. ( w) is a spectral power estimate of a single sensor observation and 
Py, ( w) is the spectral power estimate of the beamformer output when the 
source signal alone is active. The constant Cd normalizes the mean output 
spectral power to that of the single sensor spectral power. The single sensor 
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observation is chosen as the reference microphone observation, i.e. micro­
phone 4 in the array. This distortion measure is essentially an estimate of 
the mean output spectral power deviation from the observed single sensor 
spectral power, and under ideal circumstances will be zero. 

To measure normalized noise suppression, the quantity, SN, is computed 
from 

(14.37) 

where 

(14.38) 

and PyN(w) and P:i:N(w) are the spectral power estimates of the beamformer 
output and the reference sensor observation, respectively, when the surround­
ing noise alone is active. 

Similarly, the normalized interference suppression quantity, S 1, is given 
by 

(14.39) 

with Py1 (w) and P:i: 1 (w) being the spectral power estimates when the in­
terference and desired signals, respectively, are active alone. Both of these 
suppression measures are normalized to the amplification (or attenuation) 
caused by the beamformer relative to the reference sensor observation when 
the source signal is active alone. Accordingly, when the beamformer scales 
the source signal by a specific amount, the noise and interference suppression 
quantities are adjusted appropriately. 

14.5.4 Spectral Performance Measures 

In order to evaluate the performance within individual subbands, the above 
definitions may be made frequency-dependent by omitting the integration 
operations, i.e. 

(14.40) 

and 

(14.41) 
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where the definition of Cs and the power spectral estimates are the same as 
above. 

In practice, the above measures were calculated using Welch's averaged 
periodogram spectral estimation method with non-overlapping Hanning win­
dows of length 256. The integrals were approximated by discrete summation 
over the periodograms. All measures were calculated from the time-domain 
signals, which implies that any distortions created by the frequency transfor­
mations were also taken into account. 

14.5.5 Evaluation on car data 

In this evaluation, 8 s white noise calibration signals were used. These were 
emitted individually from the artificial talker and the hands-free loudspeaker, 
as the source and interference calibration signals, respectively. The calibration 
input sequence used to generate all the optimal beamformer weights consisted 
of these signals along with the car cabin noise signals, gathered at a specific 
time instant, t. 

In order to evaluate the optimal beamformers, input signals were cre­
ated by emitting independent speech signals from the artificial talker and 
the hands-free loudspeaker and recording the microphone observations with 
car cabin noise taken at time instant t + 8 s. The beamformer output was 
generated by filtering the inputs with the fixed filter weights found from the 
calibration sequences. 

In the time-domain implementations, the FIR filter length was chosen as 
L = 256. For the frequency-domain implementations, the total number of 
subbands was set to I = 64. By setting the prototype filter length in the 
filterbank to 256, the same filter order as for the corresponding time-domain 
filters was obtained. This comes from the fact that the number of time-domain 
lags used in the frequency transformation equals the prototype filter length. 

14.5.6 Evaluation Results 

Performance measures in dB of the distortion, noise, and interference quan­
tities, as described in section 14.5.3, are presented in Table 14.1. In general, 
the optimal SNIB beamformers have better suppression levels for both noise 
and interference when compared to the LS beamformers. However, the LS 
beamformers have much lower distortions values. Additionally, the subband­
LS beamformer has performance comparable to the fullband-LS solution as 
the number of subband weights is increased. 

Evaluation plots are now presented for the least-squares beamformer. Fig­
ure 14.5 illustrates the short-time (20 ms) power estimates in dB derived 
from an 8 s sequence of the single-reference microphone observation without 
any processing, followed by 8 s of the beamformer output signal acquired 
using the time-domain least-squares beamformer. Source speech, hands-free 
interference and car cabin noise are all active simultaneously. The near-end 



324 Nordholm et al. 

Table 14.1. Distortion, noise, and interference performance measures of the beam­
former output. 

IIPerformance [dB] I D I SN I S1 I 
Time domain 
SNIB -19.4 18.1 30.7 
NLMS -24.9 4.04 3.78 
LS -30.6 15.2 17.2 

Frequency domain 
SNIB -19.8 18.0 23.7 
NLMS 1-tap -21.1 8.68 5.00 
NLMS 2-tap -20.9 7.95 5.55 
NLMS 3-tap -20.8 7.45 4.96 
NLMS 4-tap -20.7 7.19 4.68 
NLMS 5-tap -20.7 7.11 4.54 
NLMS 6-tap -24.8 7.05 4.45 
LS 1-tap -28.6 12.9 13.6 
LS 2-tap -28.8 13.4 14.4 
LS 3-tap -30.0 13.8 15.2 
LS 4-tap -30.4 14.2 15.4 
LS 5-tap -30.5 14.3 15.7 
LS 6-tap -30.7 14.3 15.8 

speech, coming from the location of interest is denoted in the plot as "Speech 
Male/Female" while the far-end speech echo, i.e. the interfering hands-free 
loudspeaker, is denoted by "Echo Male/Female". 

Figures 14.6 and 14.7 show the spectral power estimates in dB of the 
reference microphone observation and the normalized spectral estimate of 
the least-squares beamformer outputs when the noise and the interference 
signals are active individually. These plots correspond to the numerator and 
the denominator of (14.40) and (14.41), respectively. 

14.6 Summary and Conclusions 

A number of optimal, time- and frequency-domain beamformers based on 
different error criteria were presented. The beamformers were evaluated in a 
real environment, a car hands-free telephony situation. Simulations with real 
speech signals acquired by a linear microphone array show that noise reduc­
tion of 18 dB and echo suppression of 30 dB can be achieved, simultaneously. 
This was accomplished by the time-domain version of the optimal signal-to­
noise plus interference beamformer. With the time-domain least-squares im­
plementation, noise suppression of 15 dB and hands-free suppression of 17 dB 
were found. The least-squares implementation yields ten times less distortion, 
as compared to the optimal signal-to-noise plus interference beamformer. 
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Fig. 14.5. Short-time {20 ms) power estimates of an unprocessed single microphone 
observation followed by the time-domain least-squares beamformer output signal. 

The frequency-domain implementations show a similar relation between 
the optimal beamfomers. Better suppression is achieved with the optimal 
signal-to-noise plus interference beamformer, but the distortion is much 
higher than that for the least-squares implementations. 

The subband least-squares beamformer evaluation showed that the per­
formance on the real speech recordings is very close to that of the optimal 
time-domain least-squares beamformer. The noise and echo suppression were 
14 dB and 16 dB, respectively, while the computational complexity was sub­
stantially reduced, thereby making it amenable to real-time processors. The 
distortion caused by the proposed method is the same as with the optimal 
time-domain least-squares beamformer. 

Further research includes blind speech source extraction where the desired 
cross-correlation vector may be interchanged with a nonlinear function of the 
averaged beamformer output, for each frequency. The performance relies on 
the difference between the probability density functions of the source speech 
and the background noise. Implementations at an early stage show encourag­
ing results. Source tracking is implicitly possible since a calibration sequence 
is unnecessary, and the objective function is made invariant to source move­
ments. 
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Fig. 14.5. Short-time (20 ms) power estimates of an unprocessed single microphone
observation followed by the time-domain least-squares beamformer output signal.

The frequency-domain implementations show a similar relation between
the optimal beamfomers. Better suppression is achieved with the optimal
signal-to-noise plus interference beamformer, but the distortion is much
higher than that for the least-squares implementations.

The subbandleast-squares beamformer evaluation showed that the per-
formance on the real speech recordings is very close to that of the optimal
time-domain least-squares beamformer. The noise and echo suppression were
14 dB and 16 dB, respectively, while the computational complexity was sub-
stantially reduced, thereby making it amenable to real-time processors. The
distortion caused by the proposed method is the same as with the optimal
time-domain least-squares beamformer.

Further research includes blind speech source extraction where the desired
cross-correlation vector may be interchanged with a nonlinear function of the
averaged beamformer output, for each frequency. The performancerelies on
the difference between the probability density functions of the source speech
and the backgroundnoise. Implementations at an early stage show encourag-
ing results. Source tracking is implicitly possible since a calibration sequence
is unnecessary, and the objective function is made invariant to source move-
ments.
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Fig. 14.6. Power spectrum of unprocessed single microphone observation (solid 
line) and power spectrum of the least-squares beamformer output signals (dashed­
dotted lines) when only car cabin noise is present. The time-domain least-squares 
beamformer is marked by dashed-dots with stars. 
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Abstract. Microphone arrays can be advantageously employed in Automatic 
Speech Recognition (ASR) systems to allow distant-talking interaction. Their beam­
forming capabilities are used to enhance the speech message, while attenuating the 
undesired contribution of environmental noise and reverberation. In the first part 
of this chapter the state of the art of ASR systems is briefly reviewed, with a par­
ticular concern about robustness in distant-talker applications. The objective is the 
reduction of the mismatch between the real noisy data and the acoustic models 
used by the recognizer. Beamforming, speech enhancement, feature compensation, 
and model adaptation are the techniques adopted to this end. The second part 
of the chapter is dedicated to the description of a microphone-array based speech 
recognition system developed at ITC-IRST. It includes a linear array beamformer, 
an acoustic front-end for speech activity detection and feature extraction, a recog­
nition engine based on Hidden Markov Models and the modules for training and 
adaptation of the acoustic models. Finally the performance of this system on a 
typical recognition task is reported. 

15.1 Introduction 

During the last decade research on ASR technology has made significant ad­
vances. As a result, high performance systems are now available for situations 
where there is a good match between testing and training conditions [1,2]. 
However, these same systems tend to suffer from a limited robustness to 
variability in their operating environment [3-8]. 

One of the most attractive potential features of ASR technology is the 
flexibility afforded through hands-free interaction. Not being encumbered by 
a hand-held or head-mounted microphone may be of considerable utility to 
the user. Of particular concern is the distant-talker case where the user is 
beyond the normal acquisition range of the system microphone1 ( e.g. at more 
than one meter in the case of an omnidirectional microphone). For ASR 
applications of moderate/high language complexity this represents a very 
ambitious task. 

The development of distant-talker ASR will allow for the expansion of 
voice activated technology into a number of areas where it has until now 

1 The distinctions among different types of microphones will not be treated here. 
However, the choices available and their relative characteristics should be specif­
ically addressed in the design of the application. 
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been ineffective (e.g. noisy offices or factory floors) and will improve its func­
tionality for applications where it has already seen some use ( e.g. computer 
dictation or the home). In the first example, voice messages of a varying na­
ture would have to be recognized as isolated word commands immersed in a 
background of multi-talker speech and noise. The second example involves a 
rather clean environment, but a large vocabulary of words to identify. 

In the real-world applications it would also be necessary to account for 
various factors related to the means of interaction. The talker's position may 
be unknown and time-varying in an unpredictable fashion. Because of sound 
attenuation and talker radiation effects, the quality of the input signal may 
be influenced by even subtle head movements. Moreover, environmental noise 
and room acoustics play an important role, especially in the case of highly 
reverberant conditions and unstationary noise sources. In the most adverse 
noisy conditions, a talker will tend to speak more loudly than usual and 
thereby modify the underlying characteristics of the speech signal produced 
relative to normal speaking conditions. This is known as the Lombard ef­
fect [9]. Additionally, when the language/dialogue model becomes more com­
plex, the variability in talking style may increase and one can expect that 
the talker will often speak in spontaneous mode. 

For these reasons and others, there are many challenging and as yet un­
solved problems in this field. In the last few years, some work has been 
devoted to the application of multi-microphone based processing for distant­
talker speech recognition. Compared to the number of labs working on im­
proving the robustness of single-channel ASR systems, this effort is relatively 
small. This fact may be due to the incipient nature of microphone array 
technology and the increase in hardware complexity that is required for a 
multi-channel front-end. However, judging by the advancements in ASR per­
formance that may be attributed to improvements in input signal quality 
brought about by microphone array processing, this work is well justified. 

The remainder of this chapter is organized into two sections. The follow­
ing section summarizes the current state of research activity in the field of 
ASR, particularly with regard to the distant-talker situation. The final sec­
tion details a specific microphone-array based recognition system, namely an 
Italian language recognizer developed at ITC-IRST. 

15.2 State of the Art 

15.2.1 Automatic Speech Recognition 

Automatic speech recognition can be viewed as a problem of conversion from 
speech into text by a decoding process that involves several processing stages. 
The characteristics and the difficulty of an ASR application differ substan­
tially based upon various features. These include vocabulary size and confus­
ability, speaker independence, language complexity, and input speech quality. 
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Research on ASR has been conducted for more than four decades. The 
related literature is very large; good overviews of the most significant achieve­
ments can be found in [1,2]. Many different techniques for ASR have been 
investigated. Currently, the most widely used approaches are based on some 
form of statistical pattern recognition. Thanks to these modern methods, 
the growth in hardware capability, and the availability of very large speech 
corpora for training, the last decade has witnessed high level performance 
achieved on recognition tasks of progressively increasing complexity. 

The purpose of this section is to give a very brief introduction to the basic 
problem and to the most common solutions which have been adopted, with 
specific reference to the distant talker problem. 

Pattern recognition based ASR A general block diagram of an ASR 
system based on the pattern recognition approach is shown in Figure 15.1. 
It is assumed that the speech message has been transduced by a microphone 
into an electrical signal and then converted into an equivalent digital repre­
sentation with an adequate sampling rate and quantization level (e.g. 16 kHz 
and 16 bit, respectively) . In general , at a preprocessing level ASR systems 
include a pre-emphasis step in the form of a single tap high-pass filter. The 
goal of which is to emphasize high-frequency formants which typically have 
a reduced magnitude due to a negative spectral tilt in the speech signal, 
particularly voiced sounds. 

A speech activity detection process, also called End-Point Detec­
tion (EPD), is employed to isolate speech events from other segments and 
background noise. Several techniques are available for EPD, e.g. [10-14] . 
These are usually based on criteria such as short-term energy and zero­
crossing rate. However, they may also rely on the same acoustic features 
used during the recognition process. 

The objective of Feature Extraction (FE) is to convert the input signal 
into some form of compressed parametric representation. The most common 
examples of FE are based on short-time spectral analysis . Speech can be 
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Research on ASR has been conducted for more than four decades. The

related literature is very large; good overviewsof the most significant achieve-
ments can be foundin [1,2]. Many different techniques for ASR have been
investigated. Currently, the most widely used approaches are based on some
form of statistical pattern recognition. Thanks to these modern methods,
the growth in hardware capability, and the availability of very large speech
corpora for training, the last decade has witnessed high level performance
achieved on recognition tasks of progressively increasing complexity.

The purposeof this section is to give a very brief introduction to the basic
problem and to the most common solutions which have been adopted, with
specific reference to the distant talker problem.

Pattern recognition based ASRAgeneral block diagram of an ASR
system based on the pattern recognition approach is shown in Figure 15.1.
It is assumed that the speech message has been transduced by a microphone
into an electrical signal and then converted into an equivalent digital repre-
sentation with an adequate sampling rate and quantization level (e.g. 16 kHz
and 16 bit, respectively). In general, at a preprocessing level ASR systems
include a pre-emphasis step in the form of a single tap high-pass filter. The
goal of which is to emphasize high-frequency formants which typically have
a reduced magnitude due to a negative spectral tilt in the speech signal,
particularly voiced sounds.

A speech activity detection process, also called End-Point Detec-
tion (EPD), is employed to isolate speech events from other segments and
background noise. Several techniques are available for EPD, e.g. [10-14].
These are usually based on criteria such as short-term energy and zero-
crossing rate. However, they may also rely on the same acoustic features
used during the recognition process.

The objective of Feature Extraction (FE) is to convert the input signal
into some form of compressed parametric representation. The most common
examples of FE are based on short-time spectral analysis. Speech can be
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Fig. 15.2. Block diagram of the computation of Mel-based cepstral coefficients. 

considered statistically stationary over short periods of time ( a few tens of 
milliseconds). As a consequence, the analysis frame size employed for FE is 
generally over 15 ms with a step size in the range of 5-30 ms. The FE process 
produces a sequence of vectors of dimensionality normally ranging between 
8 and 12. These vectors are frequently augmented by including data to char­
acterize the first and second order time derivatives of the given features. 

A number feature sets have been investigated for ASR. Popular ones in­
clude Mel-scaled Cepstral Coefficients (MCC's) (see Figure 15.2), LPC coef­
ficients, PLP coefficients [5,15]. Currently, MCC's are the most widely used 
acoustic features for ASR. Figure 15.2 outlines their method of production. 
Basically, a triangular filter-bank is applied to the output of a short-term 
spectral analysis. The logarithmic-like Mel scale models the frequency reso­
lution of the human ear and for this reason is preferred to a linear scale in the 
filter-bank. A Discrete Cosine 'Iransform (DCT) is then applied to decorre­
late the log-filter-bank output. The resulting MCC's may then be statistically 
modeled through Gaussians with diagonal covariance matrices. This property 
is useful in the case of HMM-based recognition discussed below. 

Note that non-linearities and approximations are included in the process­
ing that derives the acoustic features from the signal or its power spectrum 
representation. For instance, the output of the filter-bank used for MCC com­
putation provides a rough approximation to the FFT-based spectral analysis 
method. As a consequence, when addressing the impact of microphone arrays 
to distant-talker ASR, it is possible that improvements in signal quality pro­
duced by the array processing may be rendered ineffective during successive 
stages of the recognition chain because of these approximations. 

In the pattern recognition approach to ASR, the acoustic feature vector se­
quence derived from the unknown speech is compared to the feature sequence 
of reference speech. Among the various ways to perform this comparison, 
three methods have been primarily utilized: Hidden Markov Model (HMM), 
Dynamic Time Warping (DTW), and Artificial Neural Networks (ANN) . A 
detailed discussion of these techniques, the functional relationships between 
them, and the hybrid solutions which have been studied (e.g. ANN/HMM), 
goes beyond the scope of this chapter and can be found in [1,2]. 

The literature reports that for simple tasks (e.g. connected digit recogni­
tion) in controlled and matched environments (i.e. the user interacts with a 
close-talking microphone and the system has been trained on clean speech), 
satisfactory recognition performance can be obtained using any of the above 
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Fig. 15.3. Concatenation of three HMM-based phone models, characterized by a 
left-to-right three-state topology. 

methods. However, HMM's are currently considered to be the most effective 
and stable framework for speech modeling in a general context. This is par­
ticularly the case for large vocabulary tasks and when statistical language 
modeling as well as integration of the recognizer with a dialogue manager are 
required by the application. As a consequence, the remainder of this chapter 
will assume the use of HMM's as the means for pattern classification. Ac­
cordingly, it will be necessary to present a modicum of detail regarding the 
procedure. 

HMM framework In the statistical ASR paradigm, a generic utterance 
consists of a sequence of unknown words and the recognizer finds the most 
probable word string, given the observed feature vector sequence provided 
by the front-end processing. HMM's serve as the statistical model used to 
classify the utterances and quantify their observation probabilities. 

Bayes' rule is used to decompose the required probability into two com­
ponents: the a priori probability of observing the sequence of words (the 
"language model") and the probability of observing the feature vector se­
quence given that word string (the "acoustic model"). 

Each word is represented by a chain of basic sounds called phones. An 
HMM is adopted for each phone. In practice, the model consists of a number 
of states with the sequencing through them determined by a set of transition 
probabilities. Each state produces observations which are characterized by a 
set of state-dependent observation statistics. These are frequently modeled 
as mixtures of Gaussian densities. Figure 15.3 shows an example of a three­
state, Markov model. In this case the non-zero transition probabilities are 
constrained to produce a left-to-right topology which is very common in ASR 
applications. 

The Training Problem involves learning the appropriate HMM parameters 
given a reference ensemble of feature sequences associated with the desired 
word. An efficient procedure known as the Baum-Welch algorithm is available 
for this purpose. For what concerns the Scoring Problem during recognition, 
once the most likely state sequence is selected, the related recognized text 
is provided. The Viterbi algorithm is commonly used to efficiently evaluate 
word string likelihoods. 
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For a more thorough development of HMM theory and practice, see (16]. 
As to the main concerns of this chapter, note that the theory of HMM and 
its application to ASR are based on a number of signal assumptions, among 
which is that of statistical independence of the observations over time. This 
is not satisfied in many cases, particularly for speech acquired in the presence 
of noise and reverberations. 

15.2.2 Robustness in ASR 

The crucial aspect for most ASR techniques is robustness. In practice, perfor­
mance very often degrades rapidly when these systems are used with speech 
input taken from a noisy environment or, in general, with speech input hav­
ing characteristics which differ from those observed during the training phase. 
Mismatch between training and test conditions can be caused by many fac­
tors. Some examples are background noise, transducers, channel noise, inter­
speaker variability, and spontaneous-speech phenomena. Hence, flexibility 
and robustness with respect to these sources of variability is one of the main 
objectives of current ASR research (3-8]. Generally, the training of speech 
recognizers is accomplished by using large speech corpora. In principle, for 
each noisy environmental condition and, in this case, for each microphone 
and talker position, a specific corpus should be used. This solution being 
impractical, a fundamental task for researchers and technology developers 
becomes that of exploiting as much as possible from existing corpora, tools, 
techniques, and a priori knowledge, in order to build robust recognizers. 

Current approaches to improving robustness of noisy speech recognizers 
can be classified into a number of categories as reported in [ 4, 7, 17]. Four of 
these general approaches (signal enhancement, feature compensation, model 
adaptation, and noise contamination) are summarized below. Figure 15.4 
shows how these methods may be introduced as modules into a generic HMM­
based architecture to improve system robustness. 
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Enhancement techniques are used to increase the quality of the signal 
provided to the recognizer [18-21]. Their impact on ASR is not obvious. 
There is no direct relationship between the SNR (or perceptual quality) of the 
resulting signal and speech recognition performance, even when the recognizer 
is trained using the same preprocessing. In this regard, a further critical 
issue is that of end-point detection. Several algorithms (generally based on 
energy-thresholding techniques) have been proposed, which can be applied 
successfully with a SNR as low as 10 dB. However, most of these algorithms 
generally become unusable with lower SNR conditions [5]. 

Many techniques have been proposed which address the parametric rep­
resentation of the signal. These aim at constructing a compact and robust 
feature set and processing it to compensate for the mismatch between acous­
tic spaces of the clean and noisy speech. As an example, a very simple fea­
ture normalization technique, often combined with MCC's, is Cepstral Mean 
Subtraction (CMS). It consists of removing from each cepstral coefficient se­
quence the mean evaluated across the whole utterance ( or over an extended 
interval). CMS aids in reducing the influence of slow variations in the acoustic 
feature vectors, like those related to convolutional channel effects ( e.g. change 
of microphone) and to speaker-dependent biases. Other relevant compensa­
tion techniques, operating either in the feature space or in the model space, 
are signal bias removal [22,23], stochastic matching [24,17], noise modeling 
and masking [25-27], Parallel Model Combination [28,29]. 

In the recent years increasing attention has been devoted to acoustic 
model adaptation. When the application requirements allow, these techniques 
attempt to adapt system parameters to the speaker and environment by ex­
ploiting data samples representative of the actual acoustic conditions. For sys­
tems based on continuous-density HMM's, most popular adaptation schemes 
rely on maximum a posteriori (MAP) estimation [30] or maximum likelihood 
linear regression (MLLR) [31-33] of the model parameters. 

Finally, it is possible to adopt an approach known in the literature as 
training data contamination [4,34,35], which provides a way of training acous­
tic models which are more robust and representative of the given real noisy 
environment than those derived through training on the corresponding clean 
speech. In practice, training data are produced by injecting real or artificial 
noise into the clean speech material. Clearly, this approach is time-consuming 
and may become impractical when the size of training set grows large. How­
ever, it does offer some advantage. For instance, it is free from the negative 
spectrum problem typical of noise subtraction schemes [36]. 

15.2.3 Microphone Arrays and Related Processing for ASR 

The utility of a microphone array as input to a speech recognition system lies 
in its ability to acquire a higher quality signal than that provided by a single 
far-field microphone. The signal enhancement is obtained by emphasizing the 
talker's speech as well as by reducing noise and reverberation components. 
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These methods are the specific topics of other chapters in this work. The 
relevant approaches will only be summarized very briefly here. 

In order to reduce mismatch effects in the recognizer, a first requirement 
is that of having uniform improvement levels across the complete speech 
spectrum. Additionally, it would be desirable to have these spectral enhance­
ments be independent of the talker's position. Unfortunately, microphone 
array frequency responses are characterized by significant variations across 
source angles and distances. Consequently, it is necessary to reduce as much 
as possible this variability, which may introduce significant discrepancies with 
respect to the training conditions. 

In practice, an enhanced output can be derived from a microphone array 
by the application of beamforming techniques. The simplest and most com­
monly used approach is the delay-and-sum beamformer, which reduces the 
output power for directions other than that of the steering location by means 
of destructive interference. Figure 15.5 illustrates a typical result from this 
procedure. The delay-and-sum beamformer may be used passively to realign 
the signals given a set of delay estimates, or actively by aiming the array 
towards a specific direction. In the former case, delay estimates are derived 
from Time Delay Estimation (TDE) techniques [37], as shown in the case 
of talker location in [38], where a Cross-Power Spectrum Phase analysis was 
adopted. 

Applying Time Delay Compensation (TDC) processing represents a good 
solution for the case of an isotropic (diffuse) noise field, as no spatial coher­
ence is exploitable to suppress undesired components. Very much dependent 
on the number of array elements and their geometry relative to the source po­
sition, delay-and-sum beamforming provides only moderate directivity gains. 
Additional drawbacks [39-43,8], are grating lobes in the directivity pattern 
and a low-pass effect due to both the beam narrowness at high frequencies 
and to imperfect steering caused by imprecise inter-channel delay estimates. 

In the case of coherent noise sources linearly constrained adaptive beam­
formers, such as those proposed by Frost [44] or the Generalized Sidelobe 
Canceler [45], have the specific objective of eliminating noise contributions in 
directions outside the directivity lobe. The main limitation of these schemes 
in a reverberant environment is the issue of signal cancellation. Since the 
degradations are correlated with the desired signal, the suppression process 
introduces distortions to the desired signal. Superdirective beamformers have 
also been proposed [46] to suppress interfering signals effectively. 

A technique specifically developed to address the reverberation phe­
nomenon of enclosures is the Matched Filter Array . This technique uti­
lizes the acoustic impulse responses of the environment to create construc­
tive interference between direct and reflected components of the speech sig­
nal [47,48]. 

Beamforming techniques may also be combined with adaptive post­
filters [46] (e.g. based on Wiener theory) for further noise reduction. However, 
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Fig. 15.5. Portion of a vowel /a/ uttered at 4 m distance from a linear array of 
six microphones. The upper waveform is the close-talker signal, the middle plot 
represents the reverberated signal acquired by one of the microphones, and the 
lower plot shows the corresponding delay-and-sum beamformed signal. 

the use of post-filtering, like its above counterparts, can introduce artifacts 
into the reconstructed signal, particularly for the case of reverberant envi­
ronments [49], and may consequently limit recognition improvements. 

15.2.4 Distant-Talker Speech Recognition 

A sizeable body of work on distant-talker ASR have been produced in recent 
years [50~56]. The use of either single microphones or multi-microphone sys­
tems has focused primarily on experimental contexts ( e.g. car environment) 
for tasks generally characterized by a small-size vocabulary and by a low 
complexity language. Simple multi-microphone products are available com­
mercially and have replaced traditional input devices in some ASR applica­
tions. However, these devices are of limited practical utility and are typically 
only effective for talkers no more than one meter away from the array, at a 
fixed and a quite narrow range of angles, and in a rather quiet environment. 

This section provides a brief overview of the literature relating to various 
research topics related to distant-talker ASR. The intention is not to give a 
thorough description of all the techniques which have been investigated, but 
rather to indicate the general issues and approaches. Section 15.3 will explore 
in detail the system developed at IRST labs. 
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the use of post-filtering, like its above counterparts, can introduce artifacts
into the reconstructed signal, particularly for the case of reverberant envi-
ronments [49], and may consequently limit recognition improvements.

15.2.4 Distant-Talker Speech Recognition

A sizeable body of work on distant-talker ASR have been produced in recent
years [50-56]. The use of either single microphones or multi-microphonesys-
tems has focused primarily on experimental contexts (e.g. car environment)
for tasks generally characterized by a small-size vocabulary and by a low
complexity language. Simple multi-microphone products are available com-
mercially and have replaced traditional input devices in some ASR. applica-
tions. However, these devices are of limited practical utility and are typically
only effective for talkers no more than one meter away from the array, at a
fixed and a quite narrow range of angles, and in a rather quiet environment.

This section provides a brief overview of the literature relating to various
research topics related to distant-talker ASR. The intention is not to give a
thorough description ofall the techniques which have been investigated, but
rather to indicate the general issues and approaches. Section 15.3 will explore
in detail the system developed at IRST labs.
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Array Geometry This first topic concerns the array characteristics as well 
as their influence on recognition performance. Clearly, the number of micro­
phones represents an important factor. In an effort to limit hardware com­
plexity, most investigators utilize 16 or fewer microphones. Optimal array 
design techniques have been addressed by other chapters of this book and, 
with specific reference to ASR, in [57]. For practical ASR systems, the bulk 
of array geometries investigated have either been of the linear equi-spaced 
or harmonic nesting varieties. The latter is the most common in practice, 
despite the fact that a real advantage in application to hands-free ASR is 
not evident [58,59]. In general, demonstrating a potential advantage inherent 
in a specific geometry is difficult. The speech quality improvement due to 
the array configuration is counterbalanced by several approximations ( e.g. 
in the generation of artificial signals, when simulation is used, and in the 
acoustic feature extraction), and by effects related to the application of com­
pensation/ adaptation techniques applied to these features or to the acoustic 
modeling. 

Beamforming The literature reports on the use of various beamforming 
techniques for distant-talker ASR. The delay-and-sum beamformer is the 
most commonly used, despite its limited speech enhancement capabilities. 
The joint use of delay-and-sum beamforming and a talker localization mod­
ule is investigated in [60]. The use of adaptive beamforming techniques (e.g. 
GSC), generally under the assumptions of fixed talker and noise source posi­
tions, is also common. Some examples are shown in (61,51,50,62]. As expected, 
in the presence of coherent noise sources, adaptive beamformers yield more 
robust recognition performance than delay-and-sum beamformers. However, 
many authors report that the improvements are lower than what would be 
expected on the basis of the SNR or of the reconstructed signal's perceived 
quality. This observation seems to be more common for data acquired in real 
environments. 

End-Point Detection This topic is very critical, even in moderately noisy 
and reverberant environments. Most of the experiments reported in the lit­
erature are based on the use of a "push-to-talk" speech acquisition method. 
In the past, a few works addressed the impact of EPD on distant-talker 
recognition performance. In [50] adaptive energy thresholds were applied to 
the output of the delay-and-sum beamformer to identify speech boundaries. 
In [38], a CSP-based coherence measure between two input channels was used 
to detect a generic acoustic event. Its effectiveness in speech activity detection 
will be confirmed in the next section. The application of a similar coherence 
measure to speech/noise classification is also documented in [63]. 

Acoustic Features In ASR research and applications, there is the tendency 
today to adopt a standard acoustic feature set ( e.g. Mel or LPC cepstral co-
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efficients). This is also the case for distant-talker ASR research. Most of the 
systems described in the literature are based on the use of MCC's or LPC 
cepstral coefficients together with their first/second order derivatives and cep­
stral mean subtraction. However, some other acoustic features more robust 
to noise, such as PLP or short-time modified coherence (SMC) (64,46], have 
been investigated. In the interest of acoustic feature robustness to reverbera­
tion effects, possible future approaches may be inspired by techniques which 
selectively process the linear prediction residual (65] or incorporate speech 
production modeling into the given multi-channel framework (66,67]. 

Recognition Engine The majority of recognizers investigated in the lit­
erature are based on the use of traditional HMM-based solutions. Train­
ing HMM's on artificially contaminated speech may lead to robust solutions 
when a large noisy database is not available, as shown in (68] and in [69]. 
In some cases, MAP, MLLR or ANN-based adaptation techniques have been 
adopted [70,71,54,53] to further reduce the mismatch between training and 
test conditions which remains after the microphone array based processing. 
In (56], MLLR is also compared favorably to Parallel Model Combination. 
Broadly speaking, these approaches allow the system to learn more about 
the speaker characteristics, the environmental noise, and the "artifacts" ( e.g. 
low-pass effects typical of delay-and-sum beamforming) introduced by the 
multi-channel processing. Overall, the use of adaptation techniques has had 
a significant positive impact on hands-free ASR system performance. 

An alternative approach that deserves to be mentioned is proposed in [61]. 
Here a new dimension is added to the search space used by the Viterbi al­
gorithm to account for the different directions from which the talker may 
be speaking. In this way, changes in source position should be implicitly de­
tected on the basis of a maximum likelihood criteria. The resulting system is 
more flexible, but possesses a considerable complexity increase and requires 
a consistent HMM training to be performed initially. 

Another alternative approach is reported in [72], where an ANN is used 
to perform a transformation/normalization of the acoustic features extracted 
from the delay-and-sum beamformed signal. During training, the ANN learns 
information related to the talker position. The influence of the talker location 
is addressed in [71], where the effectiveness of a location independent ANN 
is demonstrated. 

Speech Corpora and Tasks A variety of recognition tasks have been in­
vestigated in the literature. The most common is connected-digits. However, 
the choice of the experimental task is probably not as relevant as the way this 
task is created. In order to derive speech material for training and especially 
for test experiments, three main approaches have been adopted: 

• Speech data is collected from a sampling of real talkers using multi­
channel recording hardware. This method requires much more effort than 
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its alternatives, but it represents the most reliable means for investigation 
in this field and for comparing results to theory. 

• Speech data (e.g. extracted from a given clean database) is played back 
through a loudspeaker. Again, multi-channel hardware is used to record 
the signals. With this method there is the advantage of repeatability 
of the same utterances under different conditions, array geometries, etc. 
However, the experiments may be influenced by artifacts inherent in the 
recording process, such as the dependency on loudspeaker response, the 
different radiation modeling, and other variabilities in the environmental 
conditions. It is worth mentioning the work done in Bell Laboratory's 
VarEchoic Chamber [73), by which any reverberant condition can be in­
vestigated without the risk of changing other environmental characteris­
tics across recording sessions. 

• Speech data is reproduced by simulation, typically based on a simplified 
additive/convolutive channel modeling. In this case, the reverberation 
effects on the various input channels are generally recreated by convolving 
the close-talker signal with real impulse responses measured using a time­
stretched pulse [74,75) or with artificial impulse responses derived by 
applying the Image Method [76). A simulation-based experiment has a 
clear limitation due to the fact that many phenomena occurring in a real 
environment may be neglected. Moreover, the use of simulation both in 
training and in test may provide misleading results due to biases in the 
artificial data generation. 

15.3 A Microphone Array-Based ASR System 

This section describes the distant-talking recognition system being developed 
and experimented with at IRST labs [70,60,59,77,68,78,79). Figure 15.6 shows 
a block diagram of the system, consisting of: a microphone array and the re­
lated TDC processing, an acoustic front-end for speech activity detection and 
acoustic feature extraction, a recognition engine module (Viterbi decoding) 
and related modules for HMM adaptation. Each module of the system as 
well as the experimental framework will be described below together with 
the most relevant recognition results so far obtained. 

15.3.1 System Description 

Speech Acquisition Distant-talker speech signals were acquired by a linear 
array of six equi-spaced (at 15 cm) omnidirectional microphones. Each chan­
nel was synchronously sampled at a 16 kHz rate with 16-bit accuracy. Delays 
estimated between the channels (through CSP-based time delay estimation) 
were used to align the signals in a delay and sum beamformer. 
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Fig. 15.6. Block diagram of the distant-talking ASR system developed at IRST. 
It includes signal acquisition, Time Delay Compensation processing, the acoustic 
front-end, a recognition engine, and the modules for training and adaptation of the 
acoustic models. Close-talker and single far-field microphones are used for reference 
purposes in addition to the microphone array. 

Speech-Activity Detection The use of a microphone array adds a spa­
tial dimension to the domain of the time/frequency analysis of conventional 
single input systems. Besides source localization and selective acquisition by 
beamforming, an additional benefit of multi-microphone systems is the ca­
pability of discerning between coherent directive sources ( e.g. a talker facing 
the microphones) and spatially diffuse, low coherence disturbances. The dis­
criminating feature is a coherence measure between the signals of different 
microphones, such as the phase correlation [37,38]. Coherence measure com­
putation is here extended to several microphone pairs to provide a more 
robust speech activity function. This function is effective for low SNR and 
reverberant signals, where an energy-based approach would not be. 

Figure 15. 7 illustrates an example of this procedure. The upper plot de­
picts the noisy speech signal acquired by a single microphone in the array. 
The middle plot represents the corresponding phase correlation between two 
channels of the array as a function of time (horizontal axis) and mutual delay 
in samples between the channels (vertical axis). A darker gray level denotes 
higher coherence. The lower plot shows the coherence measure at the true 
delay versus time. 

In practice, the EPD technique proposed here is based on a preliminary 
selection of an inter-channel delay for each microphone pair. Given the inter­
channel delays associated with the various microphone pairs, the appropriate 
coherence functions are summed to derive a speech activity function. Adap­
tive thresholds are then applied in order to determine speech boundaries. 
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Fig. 15.6. Block diagram of the distant-talking ASR system developed at IRST.
It includes signal acquisition, Time Delay Compensation processing, the acoustic
front-end, a recognition engine, and the modules for training and adaptation of the
acoustic models. Close-talker and single far-field microphones are used for reference
purposes in addition to the microphonearray.

Speech-Activity Detection The use of a microphone array adds a spa-
tial dimension to the domain of the time/frequency analysis of conventional
single input systems. Besides source localization and selective acquisition by
beamforming, an additional benefit of multi-microphone systems is the ca-
pability of discerning between coherent directive sources (e.g. a talker facing
the microphones) and spatially diffuse, low coherence disturbances. Thedis-
criminating feature is a coherence measure between the signals of different
microphones, such as the phase correlation [37,38]. Coherence measure com-
putation is here extended to several microphone pairs to provide a more
robust speech activity function. This function is effective for low SNR and
reverberant signals, where an energy-based approach would notbe.

Figure 15.7 illustrates an example of this procedure. The upper plot de-
picts the noisy speech signal acquired by a single microphone in the array.
The middle plot represents the corresponding phase correlation between two
channels of the array as a function of time (horizontal axis) and mutual delay
in samples between the channels (vertical axis). A darker gray level denotes
higher coherence. The lower plot shows the coherence measure at the true
delay versus time.

In practice, the EPD technique proposed here is based on a preliminary
selection of an inter-channel delay for each microphone pair. Given the inter-
channel delays associated with the various microphone pairs, the appropriate
coherence functions are summed to derive a speech activity function. Adap-
tive thresholds are then applied in order to determine speech boundaries.
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Fig. 15. 7. Example of coherence computation for the signals of a microphone pair. 
It includes one of the noisy speech waveforms acquired by the microphones, a grey 
level coherence measure representation at various inter-channel delays, and the 
coherence levels at the correct delay (0 samples). 

Acoustic Feature Extraction In the experimental set-up described here, 
the input to the feature extractor (see Figure 15.6) is either the output of the 
TDC processing derived from the microphone array data, the signal acquired 
by a single microphone within the array, or that acquired by the close-talker 
microphone. 

In any case, the input signal is pre-emphasized and blocked into 20 ms, 
half-overlapping frames. For each frame, 8 MCC's and the log-energy are 
extracted. CMS is then applied to each feature sequence. The resulting nor­
malized MCC's and log-energy, together with their first and second order time 
derivatives, are arranged into a single observation vector of 27 components. 
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Fig. 15.7. Example of coherence computation for the signals of a microphonepair.
It includes one of the noisy speech waveforms acquired by the microphones, a grey
level coherence measure representation at various inter-channel delays, and the
coherence levels at the correct delay (0 samples).

Acoustic Feature Extraction In the experimental set-up described here,
the input to the feature extractor (see Figure 15.6) is either the output of the
TDCprocessing derived from the microphone array data, the signal acquired
by a single microphone within the array, or that acquired by the close-talker
microphone.

In any case, the input signal is pre-emphasized and blocked into 20 ms,
half-overlapping frames. For each frame, 8 MCC’s and the log-energy are
extracted. CMSis then applied to each feature sequence. The resulting nor-
malized MCC’s and log-energy, together with their first and second order time
derivatives, are arranged into a single observation vector of 27 components.
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HMM Recognizer Acoustic modeling is based on a set of 34 phone units. 
Each unit is modeled with a three state left-to-right continuous-density 
HMM, with output probability distributions represented by the means of 
mixtures having 16 Gaussian components with diagonal covariance matrices. 
Phone HMM's are trained either using a clean speech database or a noisy 
version, obtained by simulation as described below. Once the HMM's have 
been trained, the resulting models are adapted to the real environment by 
applying a M11R adaptation technique (31-33]. 

15.3.2 Speech Corpora and Task 

Various speech corpora have either been collected or produced in order to 
perform the experiments to be discussed. 

Clean Speech Corpus The initial step of HMM training is accomplished 
through the standard Baum-Welch procedure. For this purpose, phonetically 
rich sentences representing a portion of APASCI (80] were used. This corpus 
was acquired in a quiet room (SNR 2: 40 dB) using a high quality close-talker 
microphone. The training set consisted of 2100 utterances collected from a 
total of 100 speakers ( 50 males and 50 females). 

Multi-Channel Real Noisy Corpus The multi-channel noisy corpus con­
sists of speech material collected in an office of size (5.5 m x 3.6 m x 3.5 m) 
characterized by a moderate amount of reverberation (T60 ::: 0.3 s) as well as 
by the presence of coherent noise due to secondary sources ( e.g. computers, 
air conditioning, etc). Multi-channel recording of each utterance was accom­
plished by using both a close-talker (CT) directional microphone and the 
linear array described above. 

Speech material was collected from 8 speakers ( 4 males and 4 females) 
during a series of recording sessions with variable environmental noise condi­
tions. Each speaker uttered 50 connected digit strings (400 digit occurrences), 
both at frontal position F150 (1.5 m distance from the array) and at lateral 
position 1250 (2.5 m distance, left of the array). Four of the individuals also 
uttered the same string set at position 1150 (1.5 m distance, 60° right of the 
array). 

Utterances were recorded with background noise segments of varying 
length at the beginning and end of each digit sequence. SNR, expressed as 
the ratio of the average speech to noise energy measured at the array mi­
crophones, was 12.6 dB mean with 3 dB standard deviation for the frontal 
recordings, and 10.7 dB mean and 2.8 dB standard deviation for the lat­
eral recordings. As reference, SNR estimated on the CT microphone signals 
possessed a 28 dB mean and 3.8 dB standard deviation. 
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Fig. 15.8. Map of the experimental room showing the positions of the talker, the 
microphone array, and the computers (noise sources). The label at each position 
indicates, in a compact form, the orientation (F for frontal , L for lateral) and the 
distance in cm from the array. 

Contaminated Speech Corpora A set of training databases consisting of 
acoustically realistic signals was artificially recreated using the APASCI clean 
corpus along with knowledge ( e.g. room impulse responses and background 
noise signals) of the real operating environment. For this purpose, a simplified 
additive/convolutive model was adopted as follows: 

Sco(t) = hr(t) *Scz(t) + k · n(t) (15.1) 

where hr(t) is an impulse response of the room, k is a scaling factor, n(t) 
is background noise acquired in the room, sc1 is the clean speech, Seo is the 
contaminated speech, and * denotes convolution. The effect of background 
noise is accounted for by scaling the noise recorded inside the room using 
an appropriate amplitude to reproduce different SNR's (ranging from 0 to 
21 dB) and then adding the result to reverberant speech. The reverberation 
effects of a room can be simulated in several ways. In this case, it was achieved 
by convolving the close-talker signal with impulse responses measured using 
a time-stretched pulse. 

15.3.3 Experiments and Results 

Experimental results involving connected-digit recognition are reported be­
low. These are expressed in terms of Word Recognition Rate (WRR), com­
puted as the average performance obtained by testing on material obtained 
from all the speakers and positions. As a result , each test experiment consists 
of the recognition of 8000 digits. 
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Fig. 15.8. Map of the experimental room showing the positions of the talker, the
microphone array, and the computers (noise sources). The label at each position
indicates, in a compact form, the orientation (F for frontal, L for lateral) and the
distance in cm from the array.

Contaminated Speech CorporaAset of training databases consisting of
acoustically realistic signals was artificially recreated using the APASCIclean
corpus along with knowledge (e.g. room impulse responses and background
noise signals) of the real operating environment. For this purpose, a simplified
additive/convolutive model was adopted as follows:

Sco(t) = h,(t) * sea(t) + k= n(t) (15.1)

where h,(t) is an impulse response of the room, k is a scaling factor, n(¢)
is background noise acquired in the room, s,; is the clean speech, $,, is the
contaminated speech, and * denotes convolution. The effect of background
noise is accounted for by scaling the noise recorded inside the room using
an appropriate amplitude to reproduce different SNR’s (ranging from 0 to
21 dB) and then adding the result to reverberant speech. The reverberation
effects of a room can be simulated in several ways.In this case, it was achieved

by convolving the close-talker signal with impulse responses measured using
a time-stretched pulse.

15.3.3 Experiments and Results

Experimental results involving connected-digit recognition are reported be-
low. These are expressed in terms of Word Recognition Rate (WRR), com-
puted as the average performance obtained by testing on material obtained
from all the speakers and positions. As a result, each test experiment consists
of the recognition of 8000 digits.
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Table 15.1. Word recognition rates obtained on a connected-digit recognition task 
using different phone models, input devices, and end-point detection methods. 

Models I Input FarMic ArrcsP_EPD Arr1v_EPD 

Clean 33.7 57.1 61.2 

Rob 91.5 95.2 96.3 

AdaRob 95.6 98.3 98.6 

Experiments were conducted using either the microphone array (Arr) or 
a single microphone of the array (Far Mic). For comparison purposes, results 
obtained testing on material acquired with the close-talker microphone (and 
using clean models) was approximately 99%. This reference result represents 
a sort of upper bound of any experiment conducted. 

As shown in Table 15.1, training with filtered clean speech (Rob) improves 
recognition performance tangibly, even in the case of a single far microphone 
input. This result is consistent with other work [68,78,79]. The results confirm 
that the use of the microphone array, in combination with the TDC mod­
ule ensures superior recognition performance relative to a single microphone. 
However, the advantage of using the array is more relevant in the case of ro­
bust models. In this case, more than 40% relative improvement was obtained 
(from 91.5% to 95.2%). 

A second issue investigated was the impact of the speech activity detec­
tion method on the recognition performance. In addition to difficulties due 
to the distance between the talker and microphones, the system is prone to 
insertions in this experimental framework. This is due to the adoption of 
a digit-loop grammar with no information about string length. As a conse­
quence, pauses inside a digit sequence and long noise segments, preceding and 
following the speech utterance, can cause many errors because of mismatched 
acoustic modeling. The right hand column in Table 15.1 (Arrw_EPD) shows 
the results obtained using an "ideal" end point detector. These were acquired 
using utterance boundaries identified manually and leads to a relative per­
formance improvement of about 20% compared to results obtained using the 
coherence-based EPD method described earlier (ArrcsP_EPD)- Resolving this 
performance disparity is a goal for the future development of a more accurate 
EPD algorithm. 

The results show the further improvement provided by adopting on-line 
incremental HMM adaptation (AdaRob). On-line adaptation is more suitable 
for real-time applications where environmental conditions, talker position, 
etc. may vary substantially with time. The Table shows that in the best case, 
that is starting from robust models and exploiting manually segmented speech 
boundaries, 98.6% WRR was obtained, not far from the close-talker reference 
performance. In previous work [68,79] it was shown that, when starting from 
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clean models, both batch and on-line adaptation techniques do not achieve 
this performance level. Finally, note that the adaptation produces a score of 
95.6% WRR in the case of a single far-microphone. 

15.4 Discussion and Future Trends 

Hands-free interaction represents the most natural form of human commu­
nication. Research on hands-free speech recognition is drawing scientists to­
gether to form an important discipline with numerous potential applications. 
In particular, various multi-modal/multi-media interaction scenarios have be 
conceived thanks to the enhanced functionality added to traditional ASR 
systems. 

Because of growing research and prototype development, the field of 
distant-talker speech recognition using microphone arrays has developed dra­
matically. As seen in this chapter, the introduction of a microphone array 
into an ASR system has the potential to improve performance significantly. 
However, this is at the cost of hardware and software complexity. Additional 
improvements are possible through the use of adaptation/compensation tech­
niques and specific methods for acoustic model training. Through these ap­
proaches, performance increases can be achieved even using a single micro­
phone. Hence, it seems reasonable that future research will focus on the use 
of arrays consisting of few microphones and the joint application of effective 
techniques for an on-line reduction of the mismatch between the operating 
conditions and those under which the system was trained. 

Given the current state of the art, future research is needed in all the direc­
tions highlighted in the previous sections, from microphone array processing, 
to speech activity detection, to robust acoustic features, to adaptation of the 
recognizer to the real environmental conditions. Furthermore, new approaches 
will have to be envisaged to deal with the various environmental uncertainties 
which characterize distant-talker speech recognition applications. 

Distributed multi-microphone systems [69], with instantaneous selection 
of the most reliable microphone input, may represent a promising approach. 
Along these lines, a specific sub-band recognizer or full-band recognizer may 
be associated with each of the given microphones. This would be with the 
purpose of realizing a competitive parallel recognition framework, where the 
recognized word string is selected among different hypotheses. 

Another approach that deserves future study is that of incorporating 
speech production modeling into the multi-channel system and applying non­
linear analysis techniques as those proposed in [66,67] and detailed in Chap­
ter 7. In this way, the system may be made less sensitive to the influence 
of variabilities related to reverberation effects, imperfect talker location, or 
a talker's head movements and may better focus attention on the speech 
propagating in the environment. 
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Finally, experimental tasks and activities are important aspects to high­
light. Because of relevant differences in the experimental frameworks and the 
type of speech material ( and languages) which are adopted, results obtained 
by the various research teams are often not comparable to one another. More­
over, results are often provided only on the basis of simulation experiments, 
while real world experiments are always needed to confirm a given theory. In 
the past, the most relevant and widely known activities for the development 
of basic speech recognition technology were carried out under the ARPA­
CSR program. This produced the development of common speech material 
and standard evaluation criteria. Hence, the creation of a common framework 
for all the research centers operating in this field, may allow for significant 
advances in this exciting discipline. 
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18.1 Lessons From the Past 

Antenna array processing has had long-standing impact on phased array 
radars, sonars and radio astronomy for several decades. The gigantic an­
tenna arrays that were constructed for deep space observation must stand 
out as some of the most impressive engineering achievements of any disci­
pline. Success in these related fields of signal processing have without any 
doubt stimulated interest in microphone array processing. And these suc­
cesses did not only generate interest, they did much more-they created high 
expectations. Another interest generating stimulus came from a very different 
field, i.e. the one of anatomy and physiology. Nature has endowed virtually 
all species with two ears. One good reason, of course, is that there is always 
a second as backup when one of the two fails. But at the same time we all 
know that our sense for orientation is helped considerably by the use of two 
ears instead of one and that it helps us understand each other in the midst 
of a noisy crowd. 

After 20 years of active research, however, we cannot claim that micro­
phone array processing has had the success many of us hoped for, and many 
will wonder when the great breakthrough in microphone array processing 
will finally come, if ever. Nevertheless, progress in computer technology has 
helped us in a big way. In the early days only analog schemes of limited sig­
nal processing complexity were possible. This was followed by early years of 
high cost DSP computations, where computational cost seemed to impede 
widespread use of the technology. Today we have affordable DSPs that allow 
us to implement all but the most complex schemes cheaply in digital signal 
processing technology in real-time. But this in itself was not enough. Apart 
from breaking through the computing bottleneck, our understanding of the 
problems at hand has significantly progressed, as witnessed in this book. Most 
of the results presented are from recent years and give new insight into both 
the potential and the limitations of microphone array processing. However, 
too often the same problems that were considered too hard ten or twenty 
years ago are still set apart for 'future research'. Admitted weaknesses to 
proposed solutions are similar to the ones that we have been struggling with 
for a long time. Generally speaking we may say that many proposed solu­
tions add to our understanding but lack robustness in order to make a bright 
future for themselves. 
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So should we not a.sk ourselves if there is a fundamental issue with micro­
phone array processing? And my answer is 'nothing is fundamentally wrong'. 
Microphone array processing ha.s only proven to be quite a bit harder than 
other previously successful array processing applications. We have known the 
problems from the beginning, but have underestimated the impact of some 
of them in real-life situations. 

The ha.sic problems fall into a small number of categories: (i) the speech 
signal is broadband; (ii) in many practical situations the desired source is 
in a reverberant space in the near or mid field, is moving, and cannot be 
assumed to be a point source; and (iii) the speech signal changes rapidly, 
it is intermittent, and shares many characteristics with the competing and 
interfering signals. 

It is very difficult to tackle all these issues at once. It is especially difficult 
to come up with tractable mathematical models for this complex environ­
ment. The result of this complex situation is that a lot of research effort 
ha.s gone into, and continues to go into the search for optimal beamforming 
strategies that rely on extra assumptions and constraints. Sadly enough, this 
all too often leads to solutions that lack robustness when evaluated in a va­
riety of real-life situations. It may be that a far field assumption is required, 
it may be that less reverberation would be sufficient, or it may be that a 
perfect predictive speech detector will bring the breakthrough. Surely these 
mathematical developments are relevant and give us a better understanding 
of broadband beamforming in general. Simultaneously we should admit to 
ourselves that robustness ha.s been, and still is today, one of the main issues. 

The drive to achieve (mathematically) optimal solutions is a natural un­
derpinning of our science and engineering nature. But is microphone array 
processing not too complex to be solved with optimal approaches? Should 
we not expect real breakthroughs to come from so-called robust solutions 
that are clearly sub-optimal for any given circumstance, but applicable in a 
relatively wide range of situations? Also is it not obvious that there will not 
be a single solution, but that we need quite different solutions depending on 
the target application(s)? These observations go hand in hand with one of 
the major problems that ha.s faced microphone arrays since their debut: size 
and cost. A large size always seemed a must from the requirement of uniform 
broadband beamforming. Some of the first microphone arrays, especially the 
one constructed in the auditorium at Bell Labs, were magically impressive 
by their shear size and number of microphones. They were great fun a.s a 
research project. Also they resulted in functional solutions. At the same time 
the price of such systems seems exorbitant. Later on we saw many arrays on 
the order of, say, 1 meter. Any such design is still only applicable to a very 
limited number of applications such as conference rooms. In the majority 
of potential applications such a bulky design ha.s no place. No industry ha.s 
screamed more for tiny and low cost solutions than the hearing aid industry. 
Here spacing of a few cm are the maximum and processing power is an or-
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der of magnitude less than in desktop applications. In all these situations we 
should not be surprised about the small size and limited number of sensors 
(two) in human hearing. It is far from optimal, but it works. 

18.2 A Future Focused on Applications 

If we ask ourselves what will the future bring for microphone array processing, 
we must envisage a range of widely differing solutions of different sizes and 
costs. 

In the sequel I analyze the potential of the most important market seg­
ments and go looking for killer applications. If commercialization has not yet 
started, the question is of course what hampered commercial introduction 
and when, if ever, will we see usage of microphone arrays in each of these 
application fields. 

18.2.1 Automotive 

If any 'killer application' exists for microphone arrays, then it should be voice 
input in the car. It has all the right ingredients. Mobile telephony and speech 
recognition scream for hands-free voice input in a noisy environment. Signal­
to-noise ratios obtained by single microphones are just not sufficient. Thus 
microphone arrays seem the logical solution. There are extra features that 
should help. The speakers inside a car are not mobile and their position is 
reasonably constant from session to session. Ultimately, a market potential 
of tens of millions of units per year should be commercially convincing. All of 
this should be sufficient for successful uptake of microphone array technology, 
but is it? 

Today, penetration of microphone arrays in cars is minimal, except for 
a few top brands that are not all that noisy by themselves, and therefore 
have the least need for it. The major concern of car equipment manufac­
turers and car manufacturers alike is cost: multiple microphones, multiple 
wires, extra DSP power required, etc. Every cent in every component counts 
when putting a car together and microphone arrays have been judged as too 
expensive. Also, at least for the foreseeable future one should envisage that 
most microphones are mounted into existing cars, further complicating the 
story for arrays. 

Given this large cost concern I do not believe that large arrays spanning 
the entire car will ever be viable. On the contrary, the car is an ideal envi­
ronment for a microphone array that behaves like a traditional directional 
microphone but with a slightly steerable beam. Such an embedded array can 
be mounted as any regular microphone by not so specialized technicians. I 
do believe that the development of better microphones for usage inside the 
car will be a point of focus for microphone developers in the coming years. 
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18.2.2 Desktop 

Cost has been the stumbling block as well for desktop microphone arrays 
in conjunction with speech recognition in the PC environment. People just 
do not like it if you tell them that the accuracy of a $50 speech recognition 
software package will drastically improve if they buy a $150 microphone array 
to go with it. It is still unclear if we will ever overcome the cost hurdle in this 
case. It may just be a question of whether large enough volumes will ever be 
reached such that current prices can be lowered drastically. 

Microphone arrays for the desktop have just started to appear on the 
market. The reviews so far are ambiguous. In quiet environments they work 
as well as any headset worn. So if you do not want to be physically hooked 
up to your computer, this is the way to go the reviews say. At the same time 
the reviews will warn you that the existing commercial array microphones do 
not work well in considerable noise, and that one should not move around. 
Current reviews unanimously advise a wireless headset if one needs to move 
around a lot. 

It seems therefore that current commercial implementations only solve a 
small part of the problem. All of the designs rely primarily on fixed beam­
forming, most often with limited directionality adjustment. On top of this, 
some additional noise suppression may be used. The 'speech seeking' part 
seems to be insufficient in all of the produced arrays. Also the quality and 
speed of tracking is substandard. It just shows how great the robustness issue 
really is when bringing microphone array technology to consumer products. 

All in all there is reason for optimism, however. Desktop arrays are very 
pragmatic in their designs. These microphones are built for applications that 
use a PC screen or monitor, and they sit perfectly well on top of a monitor or 
attach to the front of it. Overall size is limited to about 20 cm, all computing 
is done inside the array, and the array connects to other equipment just as 
any other microphone would do. We have come a very long way to bring 
prices down enough such that a single enclosure with multiple elements, A/D 
converters and a DSP can be made at prices competing with traditional high 
end microphones. And let us not forget that these are first generation devices 
and that volumes are still very small. 

Given some more time, I believe that there is hope that microphone arrays 
will capture a part of this market. Who knows, 5 years from now microphone 
arrays may be standard equipment on laptop and desktop computers. There 
is also a chicken and egg situation here. A wider usage of speech recognition 
would put more pressure on hardware manufactures to include higher end 
microphones, including arrays. On the other hand, one of the main hurdles 
in improving performance and subsequent acceptance of speech recognition 
is the low quality audio input on most systems today. 
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18.2.3 Hearing Aids 

Hearing aids form a market by themselves. Restrictions on size and compu­
tational power are an order of magnitude more stringent than in other areas, 
leading to substantially different designs. Array sizes of 5 to 20 cm have been 
used in experiments with hearing aids, but have overall been met with disap­
proval. Nevertheless, here we have also seen the introduction of a range of new 
multi-microphone based products in the last couple of years. Many of these 
products do not use classical arrays, but a combination of microphones with 
different characteristics, used as inputs to a noise suppression stage. Perhaps 
even more obvious than in the automotive or desktop case, the evolution is 
towards an adaptive speech seeking and noise suppressing microphone. The 
distinction here between microphone technology and array technology is not 
entirely clear (but that does not really matter). 

18.2.4 Teleconferencing 

Teleconferencing was for some time seem as one of the potential killer ap­
plications. But I think that this is no longer true. On the one hand, the 
expansion of the teleconferencing market seems to have come down to slow 
growth and we see nothing of the explosion that some had hoped for. There­
fore, the hope for a massive market does not seem justified. Acoustic echo 
cancellation is the crucial issue and it can not be solved by array process­
ing. When using arrays, as with any multi-microphone input, the problem 
becomes significantly worse. Special microphone designs, including radial ar­
rays, have been constructed and will continue to play a role in this market. 
Large wall mounted microphone arrays, however, are unlikely to find their 
way into teleconferencing rooms in any big way. 

18.2.5 Very Large Arrays 

Teleconferencing was one of the potential markets for large arrays. Another 
one is the virtual microphone in large auditoria. However, this can not be 
considered a booming market either. Design and manufacturing of these ar­
rays is costly and a large degree of optimization may be required from site 
to site, making the picture even worse. Hence large microphone arrays are 
doomed to remain a niche market. They will certainly survive in high profile 
demonstration projects, and as a research topic they will carry on for many 
years to come. Another (quite niche) market for very large arrays exists in 
the acoustic monitoring industry. 

18.2.6 The Signal Subspace Approach - An Alternative to 
Spatial Filtering ? 

Finally, we should ask ourselves the question if we should not look for al­
ternative solutions to plain spatial filtering. We may think in two directions: 
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blind signal separation and signal subspace approaches. These techniques do 
not require sensitive geometric information about the array layout but work 
with any configuration. 

These techniques should result in higher configuration robustness. But at 
the same time they are computationally very demanding and, while making 
fewer assumptions about the layout, they make in general more assumptions 
about the signals. Practical implementations have not appeared so far, but 
demonstration results are often impressive. So we should keep an eye open for 
these techniques. It is unlikely we will find them in products in the coming 
years, but in later generation array processing techniques, they may become 
the standard way to go. 

18.3 Final Remarks 

The near-term trend is in one direction: small arrays with few microphones 
and a high degree of robustness that behave as speech seeking, directional, 
and noise canceling microphones. Depending on the target application designs 
may vary from less than a 1 cm in diameter for the hearing aid market, over 
5 cm for the car, to a maximum of 20 cm for desktop. After all, human hearing 
does very well with two ears spaced about 20 cm apart. These designs will not 
reach maximal noise suppression in any theoretical sense. Their goal is clear: 
a few dB gain in signal-to-noise ratio across the board at a cost which is only 
marginally above that of other microphones. A market of several million units 
for such medium cost devices is realistic and therefore economically viable. 
Economic potential for large arrays is much more limited and will therefore 
remain a niche market. 


