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1. Introduction

ABSTRACT

This paper proposes a joint verification-localization structure based on split-band
analysis of speech signal and the mixed voicing level. To address the problems in
reverberant acoustic environments, a new fundamental frequency estimation algorithm
is proposed based on high resolution spectral estimation. In the reconstruction of the
distorted speech this information is utilized to reduce the side effect of acoustic noise on
the voicing parts. A speaker verification system examines the features of the
reconstructed speech in order to authorize the speaker before localization.
This procedure prevents localization and beamforming for non-speech and specially
the unwanted speakers in multi-speaker scenarios. The verification is implemented with
the Gaussian Mixture Model and a new filtering scheme is proposed based on the
voicing likelihood of each frequency band measured in the previous steps for efficient
localization of the authorized speaker. The performance of the proposed VSL (verified
speaker localization) front-end is evaluated in various reverberant and noisy environ-
ments. The VSL is utilized in the development of distant-talking automatic speech
recognition by microphone array where the system can lock on a specific source and
hence the recognition quality improves noticeably.

© 2008 Elsevier B.V. All rights reserved.

noises from other directions regardless of the noise
nature. The main obstacles to achieve reasonable perfor-

For a hands-free speech interface, it is very important
to capture distant talking speech with high quality. An
ideal solution for this purpose is sound acquisition by
microphone array. A microphone array can acquire the
desired speech signals selectively by steering the beam
pattern directivity of the array towards the desired
speaker. This process is called beamforming and due to
the directivity pattern steering, it can spatially filter out

* Corresponding author at: IDIAP Research Institute, Martigny,
Switzerland. Tel.: +41277217773.
E-mail addresses: afsaneh.asaei@idiap.ch (A. Asaei),
taghizadehmj@itrc.ac.ir (M.J. Taghizadeh), bahrololum@itrc.ac.ir
(M. Bahrololum), ghan@essex.ac.uk (M. Ghanbari).

0165-1684/$ - see front matter © 2008 Elsevier B.V. All rights reserved.

mance in array based systems are the reverberation and
the presence of ambient noise of acoustic environment.
These parameters affect the accuracy of speaker localiza-
tion and beamforming in capturing the desired spatial
signal and suppressing the others. To tackle this problem,
various methods have been proposed recently, but they all
seem to give erroneous estimations in speaker direction
finding under the presence of high noise and reverbera-
tion. These conventional algorithms in multi-speaker
environments not only have difficulty in localizing the
multiple sound sources accurately, but they also fail to
localize the target talker among the known multiple
speaker positions. These localization techniques can
be loosely classified into three general categories:

—
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(i) those adopting high resolution spectral concepts,
(ii) techniques based upon maximizing the steered
response power (SRP) of a beamformer and (iii) ap-
proaches employing time-difference of arrival (TDOA)
information.

The first class of these techniques, characterizes any
localization scheme that is dependent upon applications
of the spatio-spectral correlation matrix [1]. Interestingly,
all of these methods are all designed for narrowband
signals and are very sensitive to source and microphone
modeling [2] implying complexities within the speaker
localization process [3,4]. The second class of the afore-
mentioned strategies is based on maximizing the output
power of a steered beamformer or SRP. In this case, a
beamformer is used to scan over a predefined spatial
region by adjusting its steering delays [5]. A filtering
process can also be employed to increase accuracy
whereby filters are designed in such a way to boost the
power of the desired signal even if they may increase
distortion. This is the main distinction between the
popular beamforming techniques in speech acquisition
systems and that of localization [6,7]. This category has
the most robustness in source localization in practical
situations and is preferable in enabling reliable localiza-
tion of speech signals with short frames [8]. The third
category is realized in two phases. Firstly, it detects a set
of TDOA of the wave-front between different microphone
pairs mostly based on the generalized cross-correlation
(GCC) function maximization [9]. In computing the cross-
correlation function, to increase accuracy, some weighting
schemes are also employed. The most important weight-
ings are ML (Maximum Likelihood) and PHAT (phase
transform) [10,11]. Second, geometrical constraints are
used to infer the source position. Due to its low
computational cost, this technique has attracted many
interests. However, pair-wise techniques suffer consider-
ably from multipath propagation [8]. Since the primary
goal of microphone array based systems is practicality in
the real environment, we have considered this subject for
real applications. In the scenario which is the subject of
this investigation, we have focused on SRP based localiza-
tion.

All the above mentioned attempts were aimed to
improve the localization accuracy in the presence of
acoustic noise and reverberation and could not achieve
satisfactory results in the presence of spurious speech
sources such as the voice of unwanted speakers. In this
scenario, speaker verification is needed to authorize the
speech. This stage of speaker verification by microphone
array is addressed in [12], where a microphone array is
utilized to capture the speech and provide input for
automatic speech identification. A 2-D matched filter
microphone array is proposed to improve the identifica-
tion scores in a reverberant environment. In this algo-
rithm, the identification is addressed after the array-based
analysis of the received signal. Investigations by Giana-
kopoulos et al. [13] are concentrated on the implementa-
tion of the front-end signal pre-processing tasks such as
filtering, acquisition and beamforming to improve speaker
recognition. This procedure suffers from over computation
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scenarios. In [14] an adaptive near-field beamformer is
implemented for hands-free speaker recognition. In [15]
speech enhancement techniques are utilized to reduce the
acoustic degradation of source signal and improve speaker
verification in the noisy environments. In [16] a speaker
identification algorithm based on the angle of arrival of
the speech is proposed. Since the convergence rate is
large, the new algorithm has practical limitations and
participants are required to remain seated during the
experiment. Hence, limited number of investigators has
studied speaker recognition and although the effective-
ness of beamforming is proven in robust hands-free
speaker recognition [17], but verification always comes
after the localization, beamforming and other computa-
tional array processing algorithms.

In this paper, the idea of verification prior to localiza-
tion is proposed. It has been observed through extensive
testing that the quality of the voiced parts is very
important for verification. Therefore, we have enhanced
these parts and used them for verification. For the verified
speech, localization is performed and the enhanced signal
is acquired through sub-array beamforming. The verifica-
tion result is tested again after beamforming to ensure a
high accuracy. We name this front-end block as verified
speaker localization (VSL). The multi-channel speech
enhancement based on localization and beamforming is
only run for the desired voices and the whole system
becomes robust to unwanted noises as well as other
spontaneous sources of energy. The over computation of
beamforming and post processing for unwanted speech
signals is also prevented which reduces the computational
complexity of the front-end task in multi-speaker scenar-
ios considerably.

Organization of the paper is as follows: The general
architecture of the proposed VSL front-end is explained in
Section 2. It includes a brief overview of VSL components,
details of the split-band reconstruction, speaker verifica-
tion and localization. Scenario of testing and the results
achieved are described in Section 3. A VSL based far-field
automatic speech recognition (ASR) is also introduced in
this section and the effect of the VSL front-end on the
performance of this system is evaluated. Finally, conclud-
ing remarks are given in Section 4.

2. General overview of the proposed VSL front-end

The main elements of the proposed front-end signal
pre-processing block are: acquisition, reconstruction of
the voiced parts, verification, localization and beamform-
ing. The order in which they interact with each other is
shown in Fig. 1.

The acquired speech is first analyzed in split-bands to
measure the voicing level. For this purpose in the
reverberant acoustic environments, a new fundamental
frequency estimation algorithm is proposed based on the
subspace approach in high resolution spectral estimation.
A reconstruction stage for the degraded voiced bands is
also proposed prior to the verification. The verification is
implemented using Gaussian Mixture Model and a new
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Fig. 1. A general architecture of the proposed VSL front-end.

likelihood of each frequency band measured in the
previous steps to effectively localize the authorized
speaker.

In the traditional methods, as discussed in the
introductory part, whenever a source of energy is detected
by the localization algorithm, the beamforming will then
be applied to acquire the enhanced signal. These two
processes are computational intensive in the far-field
interfaces. In the proposed VSL front-end, a new localiza-
tion algorithm improves the speaker localization accuracy
as well as the robustness against the reverberation and
noise, while the verification which is performed prior to
localization prevents the over computation of localization
and beamforming for unwanted sources (specially tran-
sient or unauthorized speakers). Therefore, the whole
system will have the capability to update the location
information of any specific individual. On the other hand,
since the localization is based on short speech frames, it is
also capable of tracking a moving speaker. These two
capabilities indicate that the system can lock on a speaker,
while ignoring other speech sources. Since localization
and beamforming are highly computational demanding
[11] and achieving an enhanced speech for far-field
applications needs heavy processing, this lock on char-
acteristic improves the front-end task both in terms of
computation and robustness in far-field applications such
as teleconferencing, voice control and speech recognition
where the presence of unwanted speech signals is highly
probable.

In the proposed VSL front-end, the received signal is
first segmented based on detection of the non-speech
activity for more than 2s. Each segment is analyzed for
voicing level measurement at speech sub-bands corre-
sponding to the fundamental frequency harmonics. The
voiced parts are then reconstructed at split bands
regarding the harmonic bands of the speech spectrum
and the signal is analyzed for authentication within a
verification algorithm. For the verified speech, misdetec-
tion of source localization due to reverberation and
acoustic noise is reduced through the voicing level
measurement. The beamforming algorithm uses this
information to steer the beam pattern towards the
direction of the speaker to acquire the source signal while
suppressing the noise from other directions. Details of
each component are discussed in the following sections.

2.1. Microphone array signal model

In this paper, we assume the sound wave propagation
follows a linear wave equation [18]. Hence, the acoustic
path between the sound sources and microphones can be
modeled as a linear system [19]. This assumption is
plausible in small-room microphone array environments
and is usually employed in the array-processing techni-
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the mth microphone at location d,;, can be expressed as
Xm(t) = S(t) * hs(dm, ds, t) + Vm(t) (1)

where hy(d,,,ds,t) is the room impulse response from the
speech source s(t) at location ds to microphone m. The
operator * is convolution. v, is a white Gaussian and is
assumed to be uncorrelated to s(t).

The impulse response h, characterizes all the acoustic
paths from the source to location d,,,, including the direct
path. In general, hs varies with environmental changes,
such as temperature, humidity, furniture and people
inside the room. It is reasonable to assume these factors
to remain fixed in the period of each experiment.
Separating the direct path component from the rest of
the acoustic paths, the following expression can be
defined for hy(d,,,ds,t):

s(dm, ds, ) = -0t — T) + U(ch, ds. 1) 2)
m

where r,, is the distance between the source and the mth
microphone, 7, is the propagation delay equal to the ratio
of r,,, to the speed of sound. The constant a depends on the
medium and the system of units used. u(d,dst) char-
acterizes all the acoustic paths except the direct path.
Substituting this equation into (1), the signal model at
microphone m is given by

Xin(t) = %s(t— ) + S(£) # U(dm, ds, £) + V(1) (3)

The first term is the direct path component which is
important for localization, the second term is the model of
reverberation and the third term is the uncorrelated noise.

2.2. Split-band reconstruction

A typical simulated room impulse response is illu-
strated in Fig. 2. The largest peak corresponds to the direct
path and the other peaks are due to the surrounding walls
reverberation. Assuming the total system of microphone
array and room as a linear system [21], the received signal
at each microphone is the convolution of this impulse
response with the original source signal. This effect
impairs the received signal quality at the microphone
array and reduces the periodicity of the voiced segments.
Hence we have considered this side-effect and have
enhanced these harmonic parts through reconstruction.

The first step is the estimation of the fundamental
frequency. However, due to the distortion of periodicity
and harmonicity, conventional fundamental frequency
extraction algorithms such as autocorrelation function
(ACF), average magnitude difference function (AMDF),
Cepstrum, simple inverse filtering tracking (SIFT) and
harmonic product spectrum (HPS) give erroneous results.
Since the estimation accuracy of the fundamental fre-
quency in the presence of noise and reverberation is very
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Fig. 2. Room impulse response.

have extracted the fundamental frequency on the sub-
space to benefit from the high resolution spectral
estimation property of this technique.

The subspace based spectral estimation is an accurate
method for detecting the discrete frequencies of a signal
and hence we used the multiple signal classification
(MUSIC) [22,23] in our algorithm. The MUSIC algorithm
detects complex sinusoids by performing eigendecompo-
sition on the data vector covariance matrix of the received
signal. Andrews et al. [24] have already proposed the pitch
determination algorithm based on MUSIC. Here we have
modified their approach for the reverberant signals. To
find the fundamental frequency, the autocorrelation
matrix of the speech signal is computed from its power
spectrum via FT. Since the fundamental frequency of
speech sources is less than 800Hz [25], we have applied
the MUSIC algorithm only to the lower frequency
components of the speech spectrum. With an 800-point
DFT of 20ms of the speech signal at the sampling
frequency of 16kHz, the frequency components of a
MUSIC spectrum will be at 20,40,...,800Hz. The total
number of these components is 40 and the eigenvalues
are computed from the received signal autocorrelation
matrix. The number of harmonics contained in the
spectrum is an important parameter of the MUSIC
algorithm. If it is set too large, the spectrum will be easily
affected by the noise and if it is too small, the spectral
estimation becomes inaccurate and the error will be
increased. For our experiments, the set of dominant
eigenvalues {A,} which span over the signal subspace are
chosen so as to satisfy Ay>4,>4,/8, where A; is the
eigenvalue of the first fundamental component. The FFT is
applied to the logarithm of the MUSIC power spectrum
and the peak location of the signal determines the
estimated fundamental frequency. To reduce the compu-
tational cost, we have estimated the fundamental fre-
quency at the precision of 20Hz. This was done by
searching the pseudospectrum of the signal with 1Hz
precision at the vicinity of 80 Hz around the pre-estimated
fundamental frequency. The corresponding frequency of
the local maxima is detected as the fundamental
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Since the room can be modeled as a linear system, the
frequency content of the received signal is similar to the
original sound and it is only distorted in amplitude
and phase. Therefore reverberation converts the global
maximum of the spectrum to a local maximum with no
frequency displacement.

Through a large number of experiments we have
verified the robustness of the algorithm to different
reverberant noisy environments. The algorithm was also
verified for robustness to sudden closure, such as in a
vowel-to-nasal transition, where waveform periodicity is
reduced but the fundamental frequency did not change.

After estimation of the fundamental frequency, the
algorithm is used to measure the voicing level in each
frequency band. An accurate measure of voicing level was
applied to multi-band excitation (MBE) coders [26]. The
voicing decision was made by calculating the normalized
error E; between the original and the modeled speech
spectrum in each frequency band of the fundamental
frequency harmonics:

(a a |X((,0) X(CL) 0)0)|2
E = Zo=u 4
’ X(@)P? ©

m a

where X(w) is the speech spectrum of the received signal
at the reference microphone channel (#5), wg is the
fundamental frequency, a; and b; are the first and last
harmonics in the Ith band, and X(w, wo) is the estimated
speech spectrum calculated in each frequency band as the
spectral shape of a Hanning window with a constant
amplitude.

To determine the voicing decision, the normalized
error, E;, of the Ith frequency band is compared with an
adaptive threshold [27]. If the normalized error is less
than a threshold, the corresponding frequency band
belongs to the target voice and it is reconstructed in the
split-bands based on the fundamental frequency harmo-
nics.

Since higher harmonics are more susceptible to
reverberation and acoustic noise [28] decision on voicing
for the frame was carried out on the majority of the lower
half of the speech frequency band. For those intervals
when all of the speakers are talking simultaneously, the
speech frames loose their periodicity and these frames are
not involved in the other phases of the VSL processing.

The speech signal due to acoustic noise is distorted.
The distortion can be reduced in voiced parts by precise
extraction of the fundamental frequency and then using it
to reconstruct the speech spectrum. The split-band mixed
voicing decision calculated for each frequency band is
utilized to synthesize the voiced speech spectrum. Each
harmonic band has a shape similar to the spectral shape of
the window used prior to the Fourier transform, whereas
the non-voiced bands are random in nature. Therefore, a
voiced harmonic band can be finely synthesized as a
multiplication of the frequency response of a suitable
window centered at the harmonic of fundamental fre-
quency corresponding to that band with constant ampli-
tude measured with respect to the original signal [29].

Reconstruction of the harmonic bands is given by
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voiced band of the speech spectrum.
X(CU, (J)o) = Ak,wg W((D)

where a; = (k—0.5)wg, by = (k+0.5)wq, [-] stands for the
nearest integer greater than or equal to, K is the number of
harmonics in the 8kHz speech frequency bandwidth,
W(w) is the frequency response of the Hanning window
centered at the kth harmonic of the fundamental
frequency and Ay ,,, is the kth harmonic amplitude defined
as:

1<k<K, la]<w<Tb] (5)

S X (@)W (w)
S g W)

For concatenation of the reconstructed successive frames,
we use linear interpolation to remove frequency mis-
matches [30]. Fig. 3 displays a clean speech, noisy signal
and the synthesized speech from its noisy origin by
spectrogram. This figure shows how reconstruction

Ay = (6)

procedure reduces the acoustical noise and retrieves the
harmonicity of voicing speech.

2.3. Speaker verification

Mixture models belong to a family of density model
that comprises of a number of component functions,
usually Gaussian. The distribution of feature vectors was
extracted from a speaker’s speech modeled by a Gaussian
mixture density. This is a method that has been proven to
be one of the most successful approaches for text-
independent speaker verification. Therefore we have
implemented speaker modeling based on the Gaussian
Mixture Models (GMM). In this algorithm Gaussian
mixtures are used to model arbitrary densities of the
speech signal [31-33].

A block diagram of the implemented speaker verifica-
tion system is shown in Fig. 4. There are two steps in the
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