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Foreword 

Just a couple of decades ago we would think of "sound capture and 
processing" as the problems of designing microphones for converting 
sounds from the real world into electrical signals, as well as amplifying, 
editing, recording, and transmitting such signals, mostly using analog 
hardware technologies. That's because our intended applications were 
mostly analog telephony, broadcasting, and voice and music recording. 
We have come a long way: small digital audio players have replaced bulky 
portable cassette tape players, and people make voice calls mostly via 
digital mobile phones and voice communication software in their com­

puters. Thanks to the evolution of digital signal processing technologies, we now focus mostly 
on processing sounds not as analog electrical signals, but rather as digital files or data streams in 
a computer or digital device. We can do a lot more with digital sound processing, such as 
transcribe speech into text, identify persons speaking, recognize music from humming, remove· 
noises much more efficiently, add special effects, and so much more. Thus, today we think of 
sound capture as the problem of digitally processing the signals captured by microphones so as 
to improve their quality for best performance in digital communications, broadcasting, 
recording, recognition, classification, and other applications. 

This book by Ivan Tashev provides a comprehensive yet concise overview of the funda­
mental problems and core signal processing algorithms for digital sound capture, including 
ambient noise reduction, acoustic echo cancellation, and reduction of reverberation. After 
introducing the necessary basic aspects of digital audio signal processing, the book presents 
basic physical properties of sound and propagation of sound waves, as well as a review of 
microphone technologies, providing the reader with a strong understanding of key aspects of 
digitized sounds. The book dLscusses the fundamental problems of noise reduction, which are 
usually solved via techniques based on statistical models of the signals of interest (typically 
voice) and of interfering signals. An important discussion of properties of the human auditory 
system is also presented; auditory models can play a very important role in algorithms for 
enhancing audio signals in communication and recording/playback applications, where the 
final destination is the human ear. 

Microphone arrays have become increasingly important in the past decade or so. Thanks to 
the rapid evolution and reduction in cost of analog and digital electronics in recent years, it is 
inexpensive to capture sound through several channels, using an array of microphones. That 
opens new opportunities for improving sound capture, such as detecting the direction of 
incoming sounds and applying spatial filtering techniques. The book includes two excellent 
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chapters whose coverage goes from the basics of microphone array configurations and delay­
and-sum beamforming, to modem sophisticated algorithms for high-performance multichan­
nel signal enhancement. 

Acoustic echoes and reverberation are the two most important kinds of signal degradations in 
many sound capture scenarios. If you 're a professional singer, you probably don't mind holding 
a microphone or wearing a headset with a microphone close to your mouth, but most of us prefer 
microphones to be invisible, far away from our mouths. That means microphone will capture 
not only our own voices, but also reverberation components because of sound reflections from 
nearby walls, as well as echoes of signals that are being played back from loudspeakers. 
Removing such undesirable artifacts presents significant technical challenges, which are well 
addressed in the final two chapters, which present modern algorithms for tackling them. 

A key quality of this book is that it presents not only fundamental theoretical analyses, 
models, and algorithms, but it also considers many practical aspects that are very important for 
the design of real-world engineering solutions to sound capture problems. Thus, this book 
should be of great appeal to both students and engineers. 

I have had the pleasure of working with Ivan on research and development of sound capture 
systems and algorithms. His enthusiasm, deep engineering and mathematical knowledge, and 
pragmatic approaches were all contagious. His work has had significant practical impact, for 
example the introduction of multichannel sound capture and processing modules in the 
Microsoft Windows operating system. I have learned a considerable amount about sound 
capturing and processing from my interactions with Ivan, and I am sure you will, as well, by 
reading this book. Enjoy! 

Henrique Malvar 
Managing Director 
Microsoft Research 

Redmond Laboratory 

Preface 

Capturing and processing sounds is critical in mobile and handheld devices, communication 
systems, and computers using automatic speech recognition. Devices and technologies for 
proper conversion of sounds to electric signals and removing unwanted parts, such as noise and 
reverberation, have been used since the first telephones. They evolved, becoming more and 
more complex. In many cases the existing algorithms exceed the abilities of typical processors 
in these devices and computers to provide real-time processing of the captured signal. 

This book will discuss the basic principles for building an audio processing stack, sound 
capturing devices, single-channel speech-enhancement algorithms, and microphone arrays for 
sound capture and sound source localization. Further, algorithms will be described for acoustic 
echo cancellation and de-reverberation - building blocks of a sound capture and processing 
stack for telecommunication and speech recognition. Wherever possible the various algorithms 
are discussed in the order of their development and publication. In all cases the aim is to try to 
give the larger picture - where the technology came from, what worked and what had to be · 
adapted for the needs of audio processing. This gives a better perspective for further 
development of new audio signal processing algorithms. 

Even the best equations and signal processing algorithms are not worth anything before 
being implemented and verified by processing of real data. That is why, in this book, stress is 
placed on experimenting with recorded sounds and implementation of the algorithms. In 
practice, frequently a simpler model with fewer parameters to estimate works better than a more 
precise but more complex model with a larger number of parameters. With the latter one has 
either to sacrifice estimation precision or to increase the estimation time. This balance of 
simplicity, precision, and reaction time is critical for real-time systems, where on top of 
everything we have to watch out for parameters such as latency, consumed memory, and CPU 
time. 

Most of the algorithms and approaches described in this book are based on statistical models. 
In mathematics, a single example cannot prove but can disprove a theorem. In statistical signal 
processing, a single example is ... just a sample. What matters is careful evaluation of the 
algorithms with a good corpus of speech or audio signals, distributed in their signal-to-noise 
ratios, type of noise, and other parameters - as close as possible to the real problem we are trying 
to solve. 

The solution of practically any signal processing problem can be improved by tuning the 
parameters of the algorithm, provided we have a proper criterion for optimality. There are 
always adaptation time constants, thresholds, which cannot be estimated and their values 
have to be adjusted experimentally. The mathematical models and solutions we use are usually 
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optimal in one or another way. If they reflect properly the nature of the process they model, then 
we have a good solution and the results are satisfactory. In all cases it is important to remember 
that we do not want a "minimum mean-square error solution," or a "maximum-likelihood 
solution," or even a "log minimum mean-square error solution." We do not want to improve 
the signal-to-noise ratio. What we want is for listeners to perceive the sound quality of the 
processed signal as better - improved - compared to the input signal. From this perspective, 
the final judge of how good is an algorithm is the human ear, so use it to verify the solution. 
Hearing is an important sense for humans and animals. In many places in this book are provided 
examples of how humans and animals hear and localize sounds - this explains better some 
signal processing approaches and brings biology-inspired designs for sound capture and 
processing systems. 

In many cases the signal processing chain consists of several algorithms for sound capture 
and speech enhancement. The practice shows us that a sequence of separately optimized 
algorithms usually provides suboptimal results. Tuning and optimization of the designed sound 
capturing system end-to-end is a must if we want to achieve best results. 

For further information please visit http://www.wiley.com/go/tashev sound 
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4 
Single-channel Noise Reduction 

This chapter deals with noise reduction of a single channel. We assume that we have a 
mixture of a useful signal, usually human speech, and an unwanted signal - which we 
call noise. The goal of this type of processing is to provide an estimate of the useful 
signal - an enhanced signal with better properties and characteristics. 

The problem with a noisy speech signal is that a human listener can understand a 
lower percentage of the spoken words. In addition, this understanding requires more 
mental effort on the part of the listener. This means that the listener can quickly lose 
attention - an unwanted outcome during meetings over a noisy telephone line, for 
example. If the noisy signal is sent to a speech recognition engine, the noise reduces the 
recognition rate as it masks speech features important for the recognizer. 

With noise-reduction algorithms, as with most other signal processing algorithms, 
there are multiple trade-offs. One is between better reduction of the unwanted noise 
signal and introduction of undesired effects - additional signals and distortions in the 
wanted speech signal. From this perspective, while improvement in the signal-to-noise 
ratio (SNR) remains the main evaluation criterion of the efficiency of these algorithms, 
subjective listening tests or objective sound quality evaluations are also important. The 
perfect noise-reduction algorithm will make the main speaker's voice more under­
standable so that it seems to stand out, while preserving relevant background noise 
(train station, party sounds, and so on). Such an algorithm should not introduce 
noticeable dist011ions in either foreground (wanted speech) or background (unwanted 
noise) signals. 

Most single-channel algorithms are based on building statistical models of the 
speech and noise signals. In this chapter we wilJ look at the commonly used approaches 
for suppression of noise, the algorithms to distinguish between noise and voice (called 
"voice activity detectors"), and some adaptive noise-canceling algorithms. Exercises 
with implementation of some of these algorithms will be provided for better 
understanding of the processes inside the noise suppressors. 

Sound Capture and ProceJ·sing Ivan J. Tashev 
© 2009 John Wiley & Sons, Ltd 
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4.1 Noise Suppression as a Signal Estimation Problem 

Let the speech signal be x(t). This signal is captured after it has been mixed with noise 
d(t). We can assume that these two signals are statistically independent. The capturing 
process is linear, so the captured signal is y(t) = x(t) + d(t). The goal of the noise 
reduction is to estimate the speech signal x(t) using the observed signal y(t) and some 
known properties of both speech and noise signals. This process is shown in Figure 4.1. 
We have the unobservable part when the speech and noise signals are mixed. In the 
observable part we have only the observed signal and some a-priori knowledge about 
the character of the signals. The estimation process is optimal in one way or another; 
that is, it satisfies a certain criterion. 

signal x(t) 

~ 
y(t) x..,,(I) 

Noise 
suppressor 

noise d(1) 

unobservable observable 

Figure 4.1 Noise reduction as a signal estimation problem 

As we saw in Chapter 2, the majority of the audio processing algorithms work with 
audio frames, obtained by the overlap-add procedure, described in the same chapter. 
This is why we will look at most of the noise suppression algorithms from the 
per pective of proce • ing in the frequency domain, after short.time spectral conver­
sion. Since the transformation i linear, we have Yt) = xt'J + vtl where k i. the 
frequency bin index and n is the frame index. Under these conditions it is a common 
assumption that the values of the frequency bins are statistically independent for both 
noise and speech signals. This allows derivation of the speech signal estimation 
algorithms for each frequency bin independently, which greatly simplifies the algorithms 
and the corresponding equations. 

4.2 Suppression Rules 

4.2.1 Noise Suppression as Gain-based Processing 

The early work of Norbert Wiener [1] has an impact on signal processing algorithms 
by providing an original look from a statistical point of view. He derived an optimal 
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filter for estimation of a signal corrupted by noise in the time domain. Later 
derivations for representation in the frequency domain found that this optimal 
estimator applies a real-valued gain to the complex spectral vector. In general, 
human perception of speech is insensitive to the phase of the signal [2] , and the 
same is true for automated speech recognizers. In later work, Ephraim andMalah [31 
proved that the optimal phase estimator for a signal corrupted with noise just takes 
the phase of the noi y ignal. In this manner, noi e reduction can be viewed a an 
application of a Lime-varying n?,n-negati~e, real-v~lued g~t,~H¼') to ea:h_frequ_ency 
bin k of the ob erved ignal Yk l to obtain thee t,mate Xk of the ong111al tgnal 
spectrum: 

XA (n) _ H (n) . y (n) 
k - k k · (4.1) 

The time-varying real-valued gain Hk is called the suppression rule and it is 
e timated for each ff,~me. Note that the complex value of the signal estimati n for 
thi frequen y bin x;' keep the phase of the ob erved complex signal Yk") because 
Ht') is real-valued. 

4.2.2 Definition of A-Priori and A-Posteriori SNRs 

In most algorithms for estimation of the suppression rule, a-priori and a-posteriori 
SNRs are involved. They were defined for the first time in [ 4]. The authors model the· 
elements of the noise spectrwn as independent, identically distributed Gaussian 
variables with a zero mean and variances ).d(k): 

(4.2) 

In the same paper they model the signal as a stationary sum of sinusoidal signals with 
magnitude Ak which i an estimation of the signal magnitude for this frequency bin. In 
general we can say that ).d(k) A E{IDkl 2} and A.ik) AE{IXkl2}. Then we can define 
the a-priori SNR gk and a-posteriori SNR 'Yk as 

(4.3) 

Note that while gk is an average (statistical) SNR, 'Yk can be viewed as a momentary 
SNR. 
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4.1 Noise Suppression as a Signal Estimation Problem

Let the speechsignalbe x(¢). This signal is captured after it has been mixed with noise
d(t). We can assumethat these twosignalsare statistically independent. The capturing
processis linear, so the captured signal is y(t)= x(t) + d(t). The goal of the noise
reduction is to estimate the speech signal x(f) using the observed signal y(t) and some
known properties of both speech andnoisesignals. This process is shown in Figure 4.1.
We have the unobservable part when the speech and noise signals are mixed. In the
observable part we have only the observed signal and some a-priori knowledge about
the character of the signals. The estimation process is optimal in one way or another;
that is, it satisfies a certain criterion.

signal x()

 

  
_ Xosi(t)Noise

suppressor

  noise a(r)

unobservable observable

Figure 4.1 Noise reduction as a signal estimation problem

As we saw in Chapter2, the majority of the audio processing algorithms work with
audio frames, obtained by the overlap—add procedure, described in the same chapter.
This is why we will look at most of the noise suppression algorithms from the
perspective of processing in the frequency domain, after short-time spectral conver-
sion. Since the transformation is linear, we have Y\”” = x(”” + D” where k is the
frequency bin index andnis the frame index. Under these conditionsit is a common
assumptionthat the valuesof the frequency binsare statistically independentfor both
noise and speech signals. This allows derivation of the speech signal estimation
algorithmsforeach frequency bin independently, whichgreatly simplifies the algorithms
and the corresponding equations.

4.2 Suppression Rules

4.2.1 Noise Suppression as Gain-based Processing

The early work of Norbert Wiener[1] has an impact on signal processing algorithms
by providing an original look fromastatistical point of view. He derived an optimal
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filter for estimation of a signal corrupted by noise in the time domain. Later
derivations for representation in the frequency domain found that this optimal
estimator applies a real-valued gain to the complex spectral vector. In general,
humanperception of speech is insensitive to the phase of the signal [2], and the
sameis true for automated speech recognizers.In later work, Ephraim and Malah[3]
proved that the optimal phase estimator for a signal corrupted with noise just takes
the phase ofthe noisy signal. In this manner, noise reduction can be viewed as an

application of a time-varying, non-negative, real-valued gainH” to each frequency
bin k of the observed signal yy” to obtain the estimate oe of the original signal
spectrum:

2 =A. (4.1)

The time-varying real-valued gain H, is called the suppression rule and it is

estimated for each frame. Note that the complex value of the signal estimation for
this frequency bin Xi: keeps the phase of the observed complexsignal Y,An) because
H}”is real-valued.

4.2.2 Definition ofA-Priori and A-Posteriori SNRs

In most algorithms for estimation of the suppression rule, a-priori and a-posteriori
SNRsare involved. They were defined forthefirst time in [4]. The authors model the
elements of the noise spectrum as independent, identically distributed Gaussian
variables with a zero mean and variances Ag(k):

De ~ N(0,Aa(k)). (4.2)

In the same paperthey modelthe signal as a stationary sum ofsinusoidal signals with
magnitude A, whichis an estimation of the signal magnitudeforthis frequencybin.In
general we can say that Ay(k) ££{|D,|?} and A,() © E{|X,|"}. Then we can define
the a-priori SNR &; and a-posteriori SNR y, as

halk)
2

a [|
ee halk)

 

&k

(4.3) 

Note that while é;, is an average (statistical) SNR, y;, can be viewed as a momentary
SNR.
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4.2.3 Wiener Suppression Rule 

The Wiener estimator for a discrete signal corrupted by noise was initially derived in 
the time domain as an N-tap FIR (finite impulse response) filter; that is: 

N- 1 

x(n) = L,h; ·y(n-i). (4.4) 
i= O 

Then the estimation error will be 

e(n) = x(n)-x (n) (4.5) 

and the goal is to find filter b0 P1 with coefficients h; that minimizes the estimation 
error: 

E{le(n)l2} = E{e(n)e*(n)}. 

After taking first derivatives, the filter that zeroes them is 

hopt = R;;,1 • ryy(O) 

where ryy(n) is the autocorrelation vector 

ryy(n) = [ryy(n), ryy(n-1), · · ·, ryy(n-N + l)]T 

and Ryy is the autocon-elation matrix 

Ryy = I ryy(O) 
r;y(I) 

r;y(;-1) r~(N-2) 

ryy{N-1)1 
ryy{N- 2) 

. . 

ryy(O) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Considering the stationarity of the signals, and the fact that they are statistically 
independent, in the frequency domain the optimal filter derivation is much simpler. The 
filter that minimizes the derivatives is 

(4.10) 

where Sss is the power spectral density of the signal and Syy is the power spectral density 
of the observation. Due to statistical independence, Syy = S.1·s + Sdd and the optimal 
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filter is 

( 4.11) 

Equation 4.11 can easily be converted in terms of a-priori SNR for each frequency bin 
as 

(4.12) 

which is the Wiener suppression rule. This rule minimizes the mean square error of the 
estimated signal. 

4.2.4 Artifacts and Distortions 

The derived elegant solution for the optimal suppression rule stumbles on some 
difficulties when it is applied to real noise-reduction systems - estimation of the 
a-priori SNR. While obtaining the noise variation Ji.J(k) is relatively easy, estimation of 
the signal variation is not trivial. The logical step of using the a-posteriori SNR 'Yk to 
estimate ~k leads to the approximate solution 

(4.13) 

which is ea ier to imP,lement in praclice. By definition, H¾2) is non-negative and real; 
but, for values of j Y¾')l2 smaller than Ad(k), Equation 4.13 can have negative values. 
The common approach is to limit the values of the suppression rule to be non-negative. 
Another practical problem is potential division by zero for frequency bins where the 
input signal has a zero value. This is solved by adding a small number e, and we finally 
have the Wiener suppression rule widely used in practice: 

(4.14) 

This approximate rule provides good noise suppression and improves the SNR of the 
output signal. On the down side, in the output signal some artifacts and disto1tions may 
be audible. 

The artifacts appear during the silence segments when a very specific type of noise, 
called "musical noise," can be heard. Investigations have shown that this is due to the 
fact that some frequency bins are zeroed during these segments owing to the way 

98 Sound Capture and Processing

4,2.3 Wiener Suppression Rule

The Wienerestimatorfor a discrete signal corrupted by noise wasinitially derived in
the time domain as an N-tap FIR (finite impulse response)filter; that is:

N-1

X(n) = Doh; -y(n—i). (4.4)
i=0

Then the estimation error will be

e(n) = x(n)—X (n) (4.5)

and the goalis to find filter h,,, with coefficients h; that minimizes the estimation
CITror:

E{|e(n)|"} = Efe(n)e"(n)}. (4.6)

After taking first derivatives, the filter that zeroes them is

Rope = RS Tyy(0) (4.7)

where r,,(7) is the autocorrelation vector

Py(7) = [Pyy(2), My (m1), -++, Hyy(n—-N + 1)]" (4.8)

and R,, is the autocorrelation matrix

Tyy(0) tyy(1) ‘1+ Py(N—1)
Nyy (1) ryy(0) rs Fyy(N—2)

By= ‘ ., (4-9)

ryy(N—1) ryy(N—2) wave ryy(0)

Considering the stationarity of the signals, and the fact that they are statistically
independent,in the frequency domainthe optimalfilterderivation is much simpler. The
filter that minimizes the derivatives is

S;,—Hopt Sy = 0 (4.10)

where S,, is the powerspectral density of the signal and S,,, is the power spectral density
of the observation. Dueto statistical independence, S,,= S,, + Szq and the optimal
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filter is

Sy As
i===. 4.11on Sad +Sss Aa + As ( )

Equation 4.11 can easily be converted in termsof a-priori SNR for each frequency bin
as

__bk
1+&,

 

A (4.12)

which is the Wiener suppressionrule. This rule minimizes the mean squareerrorofthe
estimated signal.

4.2.4 Artifacts and Distortions

The derived elegant solution for the optimal suppression rule stumbles on some
difficulties when it is applied to real noise-reduction systems — estimation of the
a-priori SNR. While obtaining the noisevariation A(X)is relatively easy, estimation of
the signal variationis nottrivial. The logical step of using the a-posteriori SNR yz,to
estimate €;, leads to the approximate solution

Ee Me 1 _ We? —Aalk)H"”) = ~
RT U+E XE iy?

(4.13)

whichis easier to implementin practice. By definition, HW” is non-negative andreal;
but, for values of|yy smaller than Ag(k), Equation 4.13 can have negative values.
The commonapproachisto limit the values of the suppressionrule to be non-negative.
Anotherpractical problem is potential division by zero for frequency bins where the
input signal has a zero value. This is solved by adding a small number¢, and wefinally
have the Wiener suppression rule widely used in practice:

max(0, |¥.”|?—Aa(k)]H”” as
k [ye/? +¢

(4.14)

This approximate rule provides good noise suppression and improves the SNR ofthe
outputsignal, On the downside,in the output signal some artifacts and distortions may
be audible.

Theartifacts appear during the silence segments whena very specific type of noise,
called “musical noise,” can be heard. Investigations have shownthatthis is due to the
fact that some frequency bins are zeroed during these segments owing to the way



100 Sound Capture and Processing 

uppression gain is estimated via Equation 4.14. During ilence segment , where we 
only have a noi e signal with variation J..tt_k), a substantial number of cases I Yt) 12 will 
be smaller than ).,lk) and the corresponding frequency bin will be zeroed. This 
"patchy" spectrogram, converted to the time domain, has the specific musical noise 
sound. 

The Wiener filter is a minimum mean-square estimator, which provides an approxi­
mate value of the output signal. Introducing some distortions when compared with the 
original signal is inevitable. The problem with distortions, audible as metallic and 
unnatural sound of the estimated speech signal, increases in signals with low SNR 
owing to the approximation in Equation 4.13. 

4.2.5 Spectral Subtraction Rule 

The musical noises and distortions in the output signal stimulated the search for 
better estimators . Considering that less suppression means less musical noise and 
less distortion, the spectral subtraction rule [5] was introduced. It is defined 
as 

and frequently used with the approximation 

H(n) ~ 
k ~ 

max[O, 1Yt) l2- ,ld(k)] 

1Yk")12+ e 

(4.15) 

(4.16) 

The rule is optimal in the sense of estimation of the speech magnitude spectrum. The 
overall noise suppression is less, but the spectral subtraction suppression rule has a 
lower distortion of the estimated speech signal; that is, the output sounds better to the 
human ear. The problem with the musical noise remains, as many frequency bins are 
still zeroed during silence periods. 

4.2.6 Maximum-likelihood Suppression Rule 

McAulay and Malpass [ 4] proposed a new suppression rule, optimal in the maximum­
likelihood sense. They modeled the speech signal as a deterministic waveform of 
unknown amplitude and phase, and the noise as a random Gaussian signal. Under these 
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conditions the maximum-likelihood suppression rule is 

jr k'l j2 - I d(k) 

lyt)J2 
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(4.17) 

The first thing to notice is that this suppression rule never becomes zero. This 
completely eliminates the musical noise. A second fact to notice is that its minimal gain 
value is actually quite high and the rule never goes below 0.5. This substantially 
reduces the noise-suppression capabilities of the maximum-likeUhood suppression 
rule; it has the lowest noise suppression among the suppression rules we discuss in 
this book. The same practical measures to limit the value under the square root to be 
non-negative and to prevent division by zero as in Equation 4.16 should be taken here 
as well. 

Figure 4.2 shows the three suppression rules, discussed so far, as a function of the 
a-posteriori SNR. It is obvious that Wiener filtering suppresses the most, and maxi­
mum-likelihood suppresses the least, of the signal energy. For perfonnance compari­
son of the different suppression rules, see later in this chapter_ We will return to the 
work of McAulay and Malpass in the section about suppression with the uncertain 
presence of a speech signal. 

Wiener, spectral subtraction and ML suppression rules 
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suppression gain is estimated via Equation 4.14. During silence segments, where we
only have a noisesignal with variation A,(k), a substantial numberofcases [yi ? will
be smaller than Ak) and the corresponding frequency bin will be zeroed. This
“patchy” spectrogram, converted to the time domain, has the specific musical noise
sound,

The Wienerfilter is a minimum mean-square estimator, which provides an approxi-
mate value of the output signal. Introducing some distortions when compared with the
original signal is inevitable. The problem with distortions, audible as metallic and
unnatural sound of the estimated speech signal, increases in signals with low SNR
owing to the approximation in Equation 4.13.

4.2.5 Spectral Subtraction Rule

The musical noises and distortions in the output signal stimulated the search for
better estimators. Considering that less suppression means less musical noise and
less distortion, the spectral subtraction rule [5] was introduced. It is defined
as

: =fH®) = ,/Ye~ (4.15)
Vk

and frequently used with the approximation

 

max(0, |¥{"|’—Aa(k)]
? |? +e

(4.16)

Therule is optimalin the senseofestimation of the speech magnitude spectrum. The
overall noise suppression is less, but the spectral subtraction suppression rule has a
lower distortion of the estimated speechsignal; that is, the output sounds better to the
humanear. The problem with the musical noise remains, as many frequency bins are
still zeroed during silence periods.

4.2.6 Maximum-likelihood Suppression Rule

McAulay and Malpass[4] proposed a new suppressionrule, optimalin the maximum-
likelihood sense. They modeled the speech signal as a deterministic waveform of
unknown amplitude and phase, andthe noise as a random Gaussian signal. Under these

Single-channel Noise Reduction 101

conditions the maximum-likelihood suppression rule is

y)_aalkk a( )
alaaa (4.17)   

The first thing to notice is that this suppression rule never becomes zero. This
completely eliminates the musicalnoise. A secondfactto noticeis that its minimal gain
value is actually quite high and the rule never goes below 0.5. This substantially
reduces the noise-suppression capabilities of the maximum-likelihood suppression
rule; it has the lowest noise suppression among the suppression rules we discuss in
this book. The samepractical measures to limit the value under the square root to be
non-negative and to prevent division by zero as in Equation 4.16 should be taken here
as well.

Figure 4.2 showsthe three suppression rules, discussed so far, as a function of the
a-posteriori SNR.It is obvious that Wienerfiltering suppresses the most, and maxi-
mum-likelihood suppressesthe least, of the signal energy. For performance compari-
son of the different suppression rules, see later in this chapter. We will return to the
work of McAulay and Malpass in the section about suppression with the uncertain
presence of a speechsignal.

Wiener, spectral subtraction and ML suppression rules
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Figure 4.2 Wiener, spectral subtraction, and maximum-likelihood suppressionrulesas functions of the
a-posteriori SNR
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4.2. 7 Ephraim and Malah Short-term MMSE Suppression Rule 

Ephraim and Malah (3) model botb speech and noise signals as zero-mean random 
Gaussian signals. Under the conditions of short term-spectral estimation, they derive a 
suppression rule, known in the form 

(4.18) 

Here /0(,) and / 1(-) denote the modified Bessel functions of zero- and first-order, 
respectively, and 

(4.19) 

Tbe spectral magnitude estimator, given by Equation 4.18, is optimal in the MMSE 
sense. It provides good noise suppression comparable to that of the Wiener filter, while 
maintaining lower distortions and artifacts. For the first time, the suppression rule is 
defined as a function of both a-priori SNR ~k and a-posteriori SNR "/k: Hk(fa, 'Yk). 
Figure 4.3 shows the shape of the Ephraim and Malah suppression rule as a function of 
these two parameters. 
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Figure 4.3 Short-te1m minimum mean-square estimator (MMSE) suppression rule as a function of 
a-priori and a-posteriori SNRs 
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4.2.8 Ephraim and Malah Short-term Log-MMSE Suppression Rule 

Considering the fact that humans hear in a logarithmic scale of sound pressure level 
(i.e., magnitudes), Ephraim and Malah (6) derived another suppression rule that is 
optimal in the MMSE log-spectral amplitude sense. The suppression rule is simpler 
than the MMSE spectral amplitude estimator: 

H = ~ { _!_ OOJ exp(- t) dt} 
k l + fa 2 t 

Vk 

(4.20) 

but unfortunately it contains an integral that has to be computed in real time. As this is 
one of the best performing suppression rules, numerous interpolations and approxi­
mations for fast computation of this integral have been designed. The integral is 
a function of one variable and can be easily tabulat~d and interpolated in real time. 

Regardless of the quite different optimization criterion and analytic form, the short­
term log-MMSE suppression rule is surprisingly close to the short-term MMSE 
suppression rule. Figure 4.4 shows the shape of a log-MMSE suppression rule and 
the difference between this rule and the MMSE suppression rule. The mean of 
the difference is l.12dB, and the maximum difference is only 1.46dB for fkE (-30, 
+ 30] dB and 'Yk E (- 30, + 30] dB. 

4.2.9 More Efficient Solutions 

The Wiener filter approach relies on second-order statistics only. Therefore it makes 
fewer assumptions about the shapes of the probability densities involved. The 
suppression rules from Ephraim and Malah take explicitly into account the probability 
density functions of the speech and the noise signals. The :MMSE and log-MMSE 
optimal solutions lead to integrals, exponents, and Bessel functions that are difficult 
to compute. 

Wolfe and Godsill (7) looked for computationally more efficient alternatives. They 
derived three additional suppression rules, using different criteria for optimality: the 
'joint maximum a-posteriori spectral amplitude and phase' (JMAP SAP) estimator, the 
'maximum a-posteriori spectral amplitude ' (MAP SA) estimator, and the 'minimum 
mean-square-error spectral power' (MMSE SP) estimator. They assume both speech 
and noise signa1s to be Gaussian random processes. The three criteria they use and the 
corresponding suppression rules are shown in Table 4.1. The table shows the mean and 
maximum difference between these suppression rules, and Ephraim and Malah's short­
term MMSE estimator. 

All three rules are much faster to compute in real time as they do not contain Bessel 
functions and exponents. In the same paper the authors compare these three rules with 
the short-time MMSE suppression rule, derived by Ephraim and Malah. The average 
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4.2.7 Ephraim and Malah Short-term MMSE Suppression Rule

Ephraim and Malah [3] model both speech and noise signals as zero-mean random
Gaussian signals. Underthe conditions of short term-spectral estimation, they derive a
suppression rule, knownin the form

[(1+ vx)lo =) + yl (=) exp=). (4.18)
Here /p(-) and J,(-) denote the modified Bessel functions of zero- and first-order,
respectively, and

Jik
Ay =

2K

 

&%Ap=
ew T+&
 

The spectral magnitude estimator, given by Equation 4.18, is optimal in the MMSE
sense. It provides good noise suppression comparableto that of the Wienerfilter, while
maintaining lower distortions andartifacts. For the first time, the suppression rule is
defined as a function of both a-priori SNR &, and a-posteriori SNR yz: Hy(€,.Yx)-
Figure 4.3 showsthe shape of the Ephraim and Malah suppressionrule as a function of
these two parameters.

SuppressionruleH,,dB 
30> <30

a-posteriori SNR, dB a-priori SNR &,, dB

Figure 4.3 Short-term minimum mean-square estimator (MMSE) suppression rule as a function of
a-priori and a-posteriori SNRs
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4.2.8 Ephraim and Malah Short-term Log-MMSE Suppression Rule

Considering the fact that humanshearin a logarithmic scale of sound pressure level
(i.e., magnitudes), Ephraim and Malah [6] derived another suppression rule thatis
optimal in the MMSElog-spectral amplitude sense. The suppression rule is simpler
than the MMSEspectral amplitude estimator:

oo

_ & 1[exp(—2)He = Se 5| at (4.20)
UK

  

but unfortunately it containsan integral that has to be computedinreal time.Asthisis
one of the best performing suppression rules, numerous interpolations and approxi-
mations for fast computation of this integral have been designed. Theintegral is
a function of one variable and can be easily tabulated and interpolated in real time.

Regardlessof the quite different optimization criterion and analytic form, the short-
term log-MMSEsuppression rule is surprisingly close to the short-term MMSE
suppression rule. Figure 4.4 shows the shape of a log-MMSEsuppression rule and
the difference between this rule and the MMSEsuppression rule. The mean of
the difference is 1.12 dB, and the maximum difference is only 1.46 dB for &, € [—30,
+30] dB and yy, € [—30, + 30] dB.

4.2.9 More Efficient Solutions

The Wienerfilter approach relies on second-orderstatistics only. Therefore it makes
fewer assumptions about the shapes of the probability densities involved. The
suppression rules from Ephraim and Malahtake explicitly into accountthe probability
density functions of the speech and the noise signals. The MMSE and log-MMSE
optimal solutions lead to integrals, exponents, and Bessel functions that are difficult
to compute.

Wolfe and Godsill [7] looked for computationally more efficient alternatives. They
derived three additional suppression rules, using differentcriteria for optimality: the
‘joint maximum a-posteriori spectral amplitude and phase’ (JMAP SAP)estimator, the
‘maximum a-posteriori spectral amplitude’ (MAP SA)estimator, and the ‘minimum
mean-square-error spectral power’ (MMSESP)estimator. They assume both speech
and noise signals to be Gaussian random processes. Thethree criteria they use and the
corresponding suppressionrules are shown in Table 4.1. The table shows the mean and
maximum difference between these suppression rules, and Ephraim and Malah’s short-
term MMSEestimator.

All three rules are much faster to compute in real time as they do not contain Bessel
functions and exponents.In the same paper the authors comparethese three rules with
the short-time MMSEsuppressionrule, derived by Ephraim and Malah. The average
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difference for (rk - 1, fa) E [-30, 30] dB is of the order of 1 dB, as Table 4.1 shows. 
This means that all four rules should have approximately the same noise suppression. 
Figure 4.5 shows the difference between Ephraim and Malah' s suppression rule and the 
MAP SA estimator - the rule with highest difference. 
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Table 4.1 More efficient suppression rules 

Optimality Suppression rule Mean diff (dB) Max diff (dB) 

Joint maximum a-posteriori 
spectral amplitude and phase 
(JMAP SAE) estimator 

fa + J,: + 2(1 + {d~ o.522 + 1.n 

Hk = 2(1 +{k) 

Maximum a-posteriori spectral {k + J {~ + (1 + {k) ~ 
amplitude (MAP SA) estimator Hk = 2(! +{k) 

1.261 + 4.70 

MMSE spectral power estimator 0.685 -1.05 

4.2.10 Exploring Other Probability Distributions of (he Speech Signal 

As was noted in Chapter 2, a speech signal does not have a Gaussian probability 
distribution. With suppression rules taking into ~ccount the actual PDF of the speech 
signal, the next logical step is to derive suppression rules with better probabilistic 
models of the speech signal. Martin [8] derives three new suppression rules, under the 
assumption of Gaussian noise and Gaussian, gamma, and Laplace PDFs of the speech 
signal - see Equations 2.1, 2.3, and 2.5, respectively. All three rules are optimal in 
amplitude MMSE sense. For the first time, here the real and imaginary parts in each . 
frequency bin are estimated separately, which may eventually lead to better estimation 
of the phase; that is 

(4.21) 

where YR and Yi are the real and imaginary parts of the input signal, SR and Si are the 
real and imaginary parts of the estimated speech signal, all in the corresponding 
frequency bins. 

Assumption of Gaussian noise and Gaussian speech PDFs leads directly to the 
Wiener estimation rule in Equation 4.12. 

With Gaussian noise and gamma distribution of the speech signal, the suppression 
rule is 

-oo 

(4.22) 
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Figure 4.4 Short-term log-MMSEsuppressionrule: (a) as a function of a-priori and a-posteriori SNRs;
(b) difference between MMSEand log-MMSEsuppression rules

difference for (y,— 1, &;.) € [—30, 30] dB is ofthe order of 1 dB, as Table 4.1 shows.
This meansthat all four rules should have approximately the same noise suppression.
Figure 4.5 showsthe difference between Ephraim and Malah’s suppressionrule andthe
MAPSAestimator — the rule with highest difference.
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Table 4.1 Moreefficient suppression rules

  

Optimality Suppression rule Mean diff (dB) Max diff (dB)

Joint maximum a-posteriori fet /e +2(1+é,)& 0.522 +1.77
spectral amplitude and phase A=ae(JMAPSAE)estimator (1+ 8x)

Maximum a-posteriori spectral & +,/&+(1+&) & 1.261 +4,70
amplitude (MAP SA) estimator Ax =~~wi+&)k

MMSEspectral power estimator Hi = y/- fs: (: —) 0.685 ~1.05k ke

4.2.10 Exploring Other Probability Distributions of the Speech Signal

As was noted in Chapter 2, a speech signal does not have a Gaussian probability
distribution. With suppression rules taking into accountthe actual PDF of the speech
signal, the next logical step is to derive suppression rules with better probabilistic
models of the speech signal. Martin [8] derives three new suppression rules, under the
assumption of Gaussian noise and Gaussian, gamma, and Laplace PDFsofthe speech
signal — see Equations 2.1, 2.3, and 2.5, respectively. All three rules are optimal in
amplitude MMSEsense.Forthe first time, here the real and imaginary parts in each _
frequency bin are estimated separately, which may eventually lead to better estimation
of the phase; that is

E{S|¥} = E{Sr|¥r} +JE{Si|¥i} (4.21)

where Yp and ¥; are the real and imaginary parts of the input signal, Sp and 5; are the
real and imaginary parts of the estimated speech signal, all in the corresponding
frequency bins.

Assumption of Gaussian noise and Gaussian speech PDFs leads directly to the
Wienerestimation rule in Equation 4.12.

With Gaussian noise and gammadistribution of the speech signal, the suppression
rule is

V1.5 0.5 Radlei
—oO

E{Sp|¥a} =
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Figure 4.5 Maximum a-posteriori spectral amplitude estimator (MAP SA) suppression rule: (a) as a 
function of a-priori and a-posteriori S Rs; (b) difference between MMSE and MAP SA suppression rules 

Here a-,, and <rs are the variations of the noise and speech signal. After solving the 
integral, the suppression rule takes the form 

E{SRIYR} = 2~;GR { exp(~-)D-1.s(V2C¾-)- exp(~+ )D-1.s(V2C¾ +)} 

(4.23) 
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where ~+, ~- and ZGR are given by 

(4.24) 

(4.25) 

(4.26) 

In the equations above, Dp(z) denotes a parabolic cylinder function. The computa­
tional complexity is obvious, the suppression rule includes numerous exponents and 
parabolic cylinder functions. Note that in real time the estimation of this rule has to be 
done twice for each frequency bin - once for the real part and once for the imaginary 
part. Figure 4.6 shows the shape of this suppression rule. While we already had 
suppression gain values above O dB in previous suppression rules, here in high a-priori 
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Figure 4.6 Suppression rule under the assumption of Gaussian noise and gamma speech distributions as 
function of a-priori and a-posteriori SNRs 
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where Gp;, Ga— and Zgp are given by

V30n,Yr__ v3 Z “ (4.24)Hn

  
Gr — ~—

+ 2f305 On W2JE

aoe (4.25)Gr. =
« 2/20; on wW2/é on
 SuppressionruleH,,dB

 Zor = exp()D_o5(V2Gp_) + exp (=)D-03(V2Gxs ). (4.26)10
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parabolic cylinder functions. Note that in real time the estimationofthis rule has to be
done twice for each frequency bin — oncefor the real part and once for the imaginary
part. Figure 4.6 shows the shape of this suppression rule. While we already had
suppression gain values above 0 dB in previous suppression rules,here in high a-priori
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and low a-posteriori SNRs they reach +20dB. As we will see later, this can cause 
some instability of the entire noise suppressor, which is not desirable. 

Under the assumptions of Gaussian noise and Laplace PDF, one more suppression 
rule is derived, which is even more complex than Equation 4.23. The experimental 
results with a speech signal corrupted with Gaussian and car noise show a slight 
advantage with the Gaussian/gamma suppression rule - in the range of 0.1- 0.4dB 
better suppression than the Wiener suppression rule. 

4.2.11 Probability-based Suppression Rules 

Assume that we have a zero-mean Gaussian noise with magnitude variance Ad and a 
speech signal with Gaussian distribution and magnitude variance Ax, If we have a 
complex signal with independent and identically distributed real XR and imaginary X1 

part , both modeled as Gau ian noi e N(O, a-2), then the magnitude of this noise, 
IX/ = (xi+ X?) '12, will have the Rayleigh distribution 

p(IXII CT) = ~exp ( - /Xl2
) 

a-2 2u2 (4.27) 

where a- is the only parameter. The maximum-likelihood estimator for the parameter 
N -1 

a- is u 2 = ,lN I:; [X;j2 which leads to a-d = Ad/2 and U-x = ).x/2. Then the noise and 
i= O 

speech signals will have the following distributions: 

p,(IYI) = 2tl exp ( - 1;,:') 

Px(IYI) = 21r1 exp ( - 'y'2). 
Ax ,t . 

(4.28) 

Now assume that we have two hypotheses: 

• Hd: the noise signal dominates in this frame and frequency bin; 
• Hx: the speech ignal dominates in this frame and frequency bin. 

Then the probability of the second hypothesis is given by 

P(H l[ YI) _ Px(IYl)P(Hx) 
x - px(I Yl )P(Hx) + Pd( IYl)P(~ ) (4.29) 

where P(Hd) and P(Hx) are the a-priori probabilities for the corresponding hypotheses, 
and pd (I YI) and p xO YI) are the distributions, defined in Equation 4. 28. We will return to 
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this equation later, but for now we just factorize P x(IYI). In this case the probability of 
the speech signal to be dominant for a given magnitude IYI will be 

P(H IIYI) - p (IYI) px(I YI ) 
X - X P.~(I YI) + ~~fl~ll p,,(I YI) 

(4.30) 

which after some substitutions can be expressed in terms of a-priori and a-posteriori 
SNRs: 

exp(-I ) 1 
P(H IIYl) -P (IYI) E = Px(IYI)------ . 

x - x exp (-j)+exp(-y) l+exp(- -y) / exp(--y/~) 

(4.31 ) 

The probability of the speech signal dominating the frequency bin can be used as a 
suppression rule: 

(4.32) 

We will return later to discuss why the prior probability of signal presence P x(IYI) 
was removed from the suppression rule. The shape of the derived 'most probable 
amplitude' (MPA) estimator is shown in Figure 4.7a. It is quite different from the 
suppression rules plotted above. One of the differences is that this suppression rule never 
goes above 1.0, as it is a probability. This guarantees the stability of the entire noise­
reduction system, as we will see later in this chapter. Figure 4.7b shows the 
suppression rule as a function of the a-posteriori SNR 'Y (i.e., the magnitude IYI 
for given Ad) for 5 dB and 15 dB a-priori SNRs f The Wiener and maximum­
likelihood suppression rules are plotted for comparison. The second obvious 
difference is that the rule never goes to zero - again because it is a probability. 
This eliminates the problem with musical noise. The MPA estimator has interesting 
behavior in the area of very low a-priori SNR, where it actually suppresses the high 
amplitudes and lets the low amplitudes go unattenuated. In the area of O dB a-priori 
SNR, the suppression rule is constant and equals 0.5 - we cannot separate a mixture of 
two Gaussians with the same variation, the best we can do from the probabilistic 
standpoint is to attenuate the magnitude to one-half. 

This probabilistic approach can be easily adopted for other than Gaussian PDFs of 
the speech signal and the noise. There are many studies regarding the speech signal 
probability distribution, but it is commonly accepted that for short-time audio frames 
(10-50 ms) a Laplace distribution models the speech signal best [9]. For periods of 
speech in the range of one to two seconds, the gamma distribution provides better 
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and low a-posteriori SNRs they reach +20dB. As wewill see later, this can cause
someinstability of the entire noise suppressor, which is not desirable.

Under the assumptions of Gaussian noise and Laplace PDF, one more suppression
rule is derived, which is even more complex than Equation 4,23. The experimental
results with a speech signal corrupted with Gaussian and car noise show a slight
advantage with the Gaussian/gamma suppression rule — in the range of 0.1-0.4dB
better suppression than the Wiener suppression rule,

4.2.11 Probability-based Suppression Rules

Assume that we have a zero-mean Gaussian noise with magnitude variance 1, and a
speech signal with Gaussian distribution and magnitude variance A,. If we have a
complex signal with independentand identically distributed real Xp and imaginary X;
parts, both modeled as Gaussian noise N(0,a*), then the magnitude ofthis noise,
|X| = (X2 +X?)'/, will have the Rayleigh distribution

2

p({X\\o) = Alexp (- Ee (4.27)
where @ is the only parameter. The maximum-likelihood estimator for the parameter

N-1

ciso* = 3 X x;| which leads to 7g = Ag/2 and oy = /,/2. Then the noise andi=

speech signals will have the following distributions:

2|¥| \y/?
y|) =—+ rgPa(| ) AG e0( hg

_ aly \y/?Px(|¥|) =— I. v(- a %
Now assumethat we have two hypotheses:

(4.28)

* Ha the noise signal dominates in this frame and frequency bin;
¢ H,: the speech signal dominates in this frame and frequency bin.

Thenthe probability of the second hypothesis is given by

P(H,||¥|) = px(|¥|)P(Ax)Pe((¥))P(Hx)+pal(lY)P(Ha)(4.29)

where P(H,) and P(H,)are the a-priori probabilities for the corresponding hypotheses,
and pa (IY!) andp,(l¥|) are the distributions, defined in Equation 4.28, We will return to
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this equationlater, but for now wejust factorize P,(IYi). In this case the probability of
the speech signal to be dominant for a given magnitude |¥1| will be

P(H,IIY|) = P,(I¥ Px(l¥) 4.30eT at lv) + SEDpale oe
which after some substitutions can be expressed in terms of a-priori and a-posteriori
SNRs:

exp(—#) - 1
exp(—z) texp(—y) *" Trexp(—y) exp(—7/8)

(4.31)

P(H,||¥|) = P,(\Y|)

The probability of the speech signal dominating the frequency bin can be used as a
suppression rule:

renn
1 xP¥%)

exp(—¥4/Ex)

H, = (4.32)

Wewill return later to discuss why the prior probability of signal presence P,(\Y1)
was removed from the suppression rule. The shape of the derived ‘most probable -
amplitude’ (MPA) estimator is shown in Figure 4.7a. It is quite different from the
suppressionrules plotted above. Oneofthe differencesis that this suppression rule never
goes above1.0, as it is a probability. This guarantees the stability of the entire noise-
reduction system, as we will see later in this chapter. Figure 4.7b shows the
suppression rule as a function of the a-posteriori SNR y (i.e., the magnitude IY]
for given Ay) for 5dB and 15dB a-priori SNRs €. The Wiener and maximum-
likelihood suppression rules are plotted for comparison. The second obvious
difference is that the rule never goes to zero — again because it is a probability.
This eliminates the problem with musical noise. The MPA estimatorhasinteresting
behaviorin the area of very low a-priori SNR, whereit actually suppresses the high
amplitudes and lets the low amplitudes go unattenuated. In the area of 0 dB a-priori
SNR,the suppression rule is constant and equals 0.5 — we cannotseparate a mixture of
two Gaussians with the same variation, the best we can do from the probabilistic
standpointis to attenuate the magnitude to one-half.

This probabilistic approach can be easily adopted for other than Gaussian PDFs of
the speech signal and the noise. There are many studies regarding the speech signal
probability distribution, but it is commonly acceptedthat for short-time audio frames
(10-50 ms) a Laplace distribution models the speechsignal best [9]. For periods of
speech in the range of one to two seconds, the gammadistribution provides better
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Figure 4.7 MPA estimator suppression rule under the assumption of Gaussian noise and speech 
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modeling. Considering the fact that the gamma distribution is more generic (the 
Laplace distribution is a particular case of the gamma distribution), we will use the 
gamma distribution. Given Gaussian complex noise with magnitude variance Ad and 
Rayleigh distribution of the amplitudes (the same as above), and a speech signal with 
magnitude variance Ax and gamma distribution, we have 

(4.33) 

where k is the shape and 0 is the scale parameter. In our case k = 1, and the magnitude 
of the speech signal is exponentially distributed: 

P(lxl f0) = J_exp(-~)-2/3 2/3 
(4.34) 

The exponential distribution parameter is the magnitude variance {3 2 ~Ax.Under the 
same asswnption of the two hypotheses above, the suppression rule for gamma speech 
and Gaussian noise is 

(4.35) 

This suppression rule is plotted in Figure 4.8. Note the similarity in the shape of the 
rule for low a-priori/high a-posteriori SNRs with Figure 4.6 - the MMSE solution for 
gamma speech and Gaussian noise - and the similarity in the shape in low a-posteriori/ 
high a-priori SNRs with the shape of the previous probabilistic rule. 

4.2.12 Comparison of the Suppression Rules 

To compare the effectiveness of the suppression rules alone, an experiment was 
conducted in a controlled environment. The speech signal, recorded with a close-talk 
microphone and high SNR, was mixed with noise, recorded in normal office condi­
tions, to generate signals with 0, 10 and 20 dB SNRs. For each experiment, all three 
signals - clean speech, the noise signal, and the mixture- were available. Audio frames 
with 512 samples and 50% overlapping frames, weighted with a Han window, were 
used for conversion to the frequency domain and synthesis back to the time domain. 
The entire overlap-add process was discussed in detail in Chapter 2, where a MATLAB® 
script called ProcessWA V.m was provided. All three signals were conve1ted to the 
frequency domain and precise estimations for a-piiori SNR ~k and a-posteriori SNR 'Yk 

were available for each frame. They were estimated as 

,, 
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modeling. Considering the fact that the gammadistribution is more generic (the
Laplace distribution is a particular case of the gammadistribution), we will use the
gamma distribution. Given Gaussian complex noise with magnitude variance /,, and
Rayleigh distribution of the amplitudes (the same as above), and a speech signal with
magnitude variance A, and gammadistribution, we have

 
k-1

p(x\|k, 0) = HB exp (- a) (4.33)
where k is the shape and@is the scale parameter. In our case kK = 1, and the magnitude
of the speech signal is exponentially distributed:

P(|x\||@) = sge%7(- 4). (4.34)
The exponential distribution parameteris the magnitude variance B* ~A,. Underthe

same assumptionofthe two hypotheses above, the suppression rule for gamma speech
and Gaussian noise is

Ay = (4.35)

may)8
This suppressionruleis plotted in Figure 4.8. Note the similarity in the shape of the

rule for low a-priori/high a-posteriori SNRs with Figure 4.6 — the MMSEsolution for
gammaspeech and Gaussian noise — and thesimilarity in the shapein low a-posteriori/
high a-priori SNRs with the shape of the previous probabilistic rule.

4.2.12 Comparison of the Suppression Rules

To compare the effectiveness of the suppression rules alone, an experiment was
conducted in a controlled environment. The speech signal, recorded with a close-talk
microphone and high SNR, was mixed with noise, recorded in normal office condi-
tions, to generate signals with 0, 10 and 20dB SNRs. For each experiment,all three
signals — clean speech,the noise signal, and the mixture — were available. Audio frames
with 512 samples and 50% overlapping frames, weighted with a Han window, were

used for conversion to the frequency domain and synthesis back to the time domain,
Theentire overlap—addprocess wasdiscussed in detail in Chapter 2, where a MATLAB®
script called ProcessWAV.m was provided. All three signals were converted to the
frequency domain and precise estimations for a-priori SNR €; and a-posteriori SNR +,
were available for each frame. They were estimated as
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Figure 4.8 MPA estimator suppression rule under the assumption of Gaussian noise and Laplace speech 
distributions as a function of a-priori and a-posteriori SNRs 

(4 .36) 

for a = 0.02. Here D~,), Xf'), and Yk") are the noise, clean speech, and mixed signals 
for the k-th frequency bin in then-th frame. Note that while the noise variance A.dis 
averaged, the speech signal variance is taken as 1Xi2; that is, as momentary variance. 
Under any circumstances in areal scenario, when we have access only to the mixed signal, 
we cannot have such a precise estimation of the signal and noise variances and SNRs. 

The criteria for comparison were the mean square error (MSE), log-spectral distance 
(LSD, see Equation 2.47), improvement in the SNR (as difference between the 
SNR after and before the processing, measured in decibels), and mean opinion score 
(MOS), measured with the implementation of objective quality measurement algo­
rithm PESQ-W. 

The results are shown in Table 4.2. There are sections for each SNR separately and 
averaged values for each algorithm. 

From the MSE perspective, the best performers are Wiener (which is optimal in 
exactly this sense), closely followed by the entire group of efficient alternatives, and 
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probabilistic rules. The maximum-likelihood suppression rule is definitely worst in 
this sense. 

From the LSD perspective, the front runners are MMSE and log-MMSE (which is 
optimal in the log-MMSE sense). Good results are shown by the entire group of 
efficient alternatives. Note that Wiener and probabilistic rules are worse from this 
perspective, which means that they do not deal well with low levels of noise and speech. 

The best average SNR improvement definitely has Wiener and probabilistic 
rnles, followed by the efficient alternatives and spectral subtraction. The maximum­
likelihood rule, as expected, has the lowest improvement in SNR. It is outperformed 
by the approximate Wiener suppression rule. 

The highest MOS score and the best sound is achieved by log-MMSE and MAP 
SAE, followed closely by the group of efficient alternatives. The maximum-likelihood 
suppression rule sounds worse owing to a substantial amount of noise. 

Figure 4.9 shows the relationship between the average improvement of SNR and the 
average MOS score - the last two columns in Table 4.2. It is clear that, to a certain 
degree, the noise suppression helps, and the signals with more suppressed noise achieve 
better perceptual sound quality. Enforcing the noise suppression further actually 
decreases the sound quality, regardless of the better SNR. This is good evidence that, 
when evaluating noi e-suppressing algorithms, improvement in the SNR should not 
be used as the only criterion, and even not as a main evaluation criterion. IBtimately the 
goal of this type of speech enhancement is to make the output signal sound better for the 
human listener. From this perspective, the MOS is a much better criterion. When 
targeting speech recognition, the best criterion is, of course, the highest recognition rate. 

4.4 

4.2 

QI 4.0 .. 
0 

3.8 u 

~ .. .... • 
<n 

U) 3.6 
0 

.. 
~ 

~ 3.4 ~ 

3.2 
• 

3.0 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 

Improvement in SNR, dB 

Figure 4.9 MOS results as a function of the SNR jmprovement for various suppression rules 

On comparing the overall performance of the suppression rules, spectral subtraction 
and the entire group of efficient alternatives of Ephraim and Malah's MMSE (and that 
very same rule, of course) definitely stand out. To reiterate, this evaluation has been 
done under the best possible conditions and prec.ise SNR estimates. In real conditions, 
the parameters for computation of the suppression rules will be estimated and have 
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certain errors. Thus it will be important how robust each one of these suppression rules 
is to those errors. 

EXERCISE 

Look at the MATLAB script SuppressionRule.m which returns the suppression rule 
values for the given vectors of a-priori and a-posteriori SNRs: 

Gain= SuppressionRule (gamma , xi , SuppressionType) 

The argument SuppressionTyp e is a numberfrom0to9 and determines which 
suppression rule is to be used. The script contains implementation of most of the 
suppression rules discussed so far. Finish the implementation of the rest of the 
suppression rules. 

Write a MATLAB script that computes the suppression rules as a function of the a­
priori and a-posteriori SNRs in the range of ±30 dB. Limit the gain values in the range 
from - 40d.B to +20d.B and plot the rules in three dimensions using the mesh 
function. 

4.3 Uncertain Presence of the Speech Signal 

All the suppression rules discussed above were derived under the assumption of the 
presence of both noise and speech signals. The speech signal, however, is not always 
presented in the short-term spectral representations. Even continuous speech has 
pauses with durations of 100- 200 ms-which, compared with the typical frame sizes of 
10-40 ms, means that there will be a substantial number of audio frames without a 
speech signal at all. Trying to estimate the speech signal in these frames leads to 
di tortions and musical noise . 

Classification of audio frames into "noise only" and "contains some speech" is in 
general a detection and estimation problem [10]. Stable and reliable work of the voice 
activity detector (VAD) is critical for achieving good noise-suppression results. Frame 
classification is used further to build statistical models of the noise and speech signals, 
so it leads to modification of the suppression rule as well. 

4.3.J Voice Activity Detectors 

Voice activity detectors are algorithms for detecting the presence of speech in a 
mixed signal consisting of speech plus noise. They can vary from a simple binary 
decision (yes/no) for the entire audio frame to precise estimators of the speech 
presence probability for each frequency bin. Most modern noise-suppression 
systems contain at least one VAD, in many cases two or more. The commonly 
used algorithms base their decision on the assumption of a quasi-stationary noise; 
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that is, the noise variance changes more slowly than the variance of the speech 
signal . This allows one to build a model of the noise and track the changes. Then the 
decision is based on the assumption that the presence of a speech signal means an 
increase in energy - for the entire frame and per frequency bin. Such VADs work 
reliably for SNRs down to O dB. There is a separate group of approaches for 
detecting the presence of the speech signal in very low SNR conditions, or when the 
noise is highly non-stationary and changes as fast as, or faster than, the energy 
envelope of the speech signal. 

One of the most commonly used and cited V ADs is described in [11]. The purpose of 
this VAD is to detect the silent periods and improve the work of the G.729 codec. It is 
frequently used as a baseline to compare the performance of improved algorithms for 
VADs. 

4.3.1.1 ROC Curves 

Simple VADs produce a binary decision for the presence or absence of a speech signal 
in the current audio frame. In signal detection theory, such binary classifiers are 
characterized by the so-called receiver operating characteristic (ROC), or simply 
ROC curve. This is a graphical plot of probabilities of true positives versus false 
positives. In general, the binary classifier makes a decision that can be interpreted in 
four ways: 

• true positive TP - a correct decision for presence was made = hit; 
• true negative TN - a correct decision for absence was made = correct rejection; 
• false positive FP - a decision for presence was made when a speech signal is not 

present= false alarm; 
• false negative FN - a decision for absence was made when a speech signal was 

present = miss. 

If we have a total number of positives Np and a total number of negatives NN, the true 
positive rate PTP, or sensitivity, or recall, is defined as the proportion of true positives 
and all positives: 

(4.37) 

and the false positive rate Ppp, or false-alarm rate, is defined as the proportion offalse 
positives and all negatives: 

(4.38) 
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Another important parameter of this type of detectors is the accuracy PA, defined as 
the proportion of the correct decisions (i.e., true positives and true negatives) to all 
decisions: 

(4.39) 

Energy-based binary classification (or VAD) for the absence/presence of speech 
signals can operate using a certain threshold. That is, if the energy of the current frame 
is greater than the threshold, then we have a speech signal, otherwise the speech signal 
is not present. The optimal value of the threshold can be estimated using the ROC 
curves. A typical ROC curve in this case will look like the one in Figure 4. 10. For each 
threshold there is a corresponding point on the chart. For higher thresholds we have 
fewer false positives, but more false negatives. With a lower threshold the detection 
rate of the speech signal will be higher, but with the price of more noise frames detected 
as speech. The diagonal line shows the random-decision approach. The ROC of our 
classifier should be above this line ( otherwise we can just negate the decisions made by 
the classifier). The threshold, corresponding to the point closest to the upper left corner, 
minimizes the sum of the squares of false positives and false negatives, Pf.N + P°;,p. It is 
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that is, the noise variance changes more slowly than the variance of the speech
signal. This allows oneto build a modelof the noise and track the changes. Then the
decision is based on the assumption that the presence of a speech signal means an
increase in energy — for the entire frame and per frequency bin. Such VADs work
reliably for SNRs down to 0dB. There is a separate group of approaches for
detecting the presence of the speech signal in very low SNR conditions, or when the
noise is highly non-stationary and changes as fast as, or faster than, the energy
envelope of the speech signal.

Oneofthe most commonly used and cited VADsis describedin [11]. The purpose of
this VADisto detect the silent periods and improve the work of the G.729 codec.It is
frequently used as a baseline to compare the performance of improved algorithmsfor
VADs.

4.3.1.1 ROC Curves

Simple VADsproducea binary decision for the presence or absenceofa speechsignal
in the current audio frame. In signal detection theory, such binary classifiers are
characterized by the so-called receiver operating characteristic (ROC), or simply
ROC curve. This is a graphical plot of probabilities of true positives versus false
positives. In general, the binary classifier makes a decision that can be interpreted in
four ways:

e true positive TP — a correct decision for presence was made= hit;
true negative TN — a correct decision for absence was made = correctrejection;

¢ false positive FP — a decision for presence was made whena speechsignalis not
present = false alarm;

e false negative FN — a decision for absence was made when a speechsignal was
present = miss.

If we have a total numberofpositives Np and a total numberofnegatives Ny,the true
positive rate Pyp, or sensitivity, or recall, is defined as the proportionoftrue positives
and all positives:

Nrp Nrp
Pp = — = —__——_

Te Ne Nop +Nen (4.37)

and the false positive rate Ppp, or false-alarm rate, is defined as the proportion offalse
positives andall negatives:

Nyp Nep
Pe = — = ——. .FP ies (4.38)
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Another important parameterofthis type of detectors is the accuracy P,, defined as
the proportion ofthe correct decisions (i.¢., true positives and true negatives) to all
decisions:

_ Nop + NowPa= j
% Np + Nx (4.39)

Energy-based binary classification (or VAD) for the absence/presence of speech
signals can operate using a certain threshold. Thatis, if the energy of the current frame
is greater than the threshold, then we have a speechsignal, otherwise the speechsignal
is not present. The optimal value of the threshold can be estimated using the ROC
curyes. A typical ROC curvein this case will look like the one in Figure 4.10. For each
threshold there is a corresponding point on the chart. For higher thresholds we have
fewerfalse positives, but more false negatives. With a lower threshold the detection
rate of the speechsignal will be higher, but with the price of more noise frames detected
as speech. The diagonal line shows the random-decision approach. The ROC of our
classifier should be abovethis line (otherwise we can just negate the decisions made by
the classifier). The threshold, correspondingto the point closest to the upperleft corner,
minimizes the sum ofthe squaresoffalse positives and false negatives, P}y + Pip.It is

ROC curve

Truepositives 
0 04 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positives

Figure 4.10 Receiver operating characteristics (ROC) curves for various thresholds of energy-based
voice activity detectors. A “++” marks the highest accuracypoint, an “o” marksthe closestto the upperleft
cornerpoint, where the sum of the squares of false positives and false negatives is minimal
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marked with a small circle. The point where the accuracy from Equation 4.39 is highest 
is marked with a plus sign. Under some special circumstances the optimal point can be 
different. For estimation of the noise statistical parameters, for example, we may want 
to specify some true positive rate at the price of reducing the false positive rate, when 
energy from the speech signal will be averaged as noise statistical parameters. 

ROC analysis was first used in World War II for the analysis of radar signals before 
being employed in signal detection theory. Currently it is widely used in biology and 
medicine. ROC curves find application in some machine-learning techniques as 
well. 

EXERCISE 

Write a MATLAB script to mix a clean speech signal (record or use Speech. WA V) with 
noise (record or use NoiseHoth. WA V) to achieve ~5 dB SNR. Write the output into 
NoisySpeech. WAV. 

Create a text file containing the beginnings and ends of each speech segment - this is 
going to be used as a ground truth. 

Write a MATLAB script to build the ROC characteristics of a fixed-threshold VAD. 
The script reads the NoisySpeech. WAVand the text file with the ground truth. Then use 
a set of thresholds for classifying the frames to speech (RMS of the frame above the 
threshold) or noise (RMS of the frame below the threshold). Compute the false 
positives and false negatives. Plot the ROC curve - it should look like Figure 4.10. 

4.3.1.2 Simple V AD with Dual-time-constant Integrator 

Using a fixed threshold in binary YAO limits the system to a certain level of noise in the 
signal. In real VAD systems, the noise floor is usually adaptively tracked and the 
decision for absence/presence is made based on the average noise floor level. 
Assuming that the noise floor changes more slowly than the speech envelope, we 
can track the noise floor level with two different time constants: one low when 
the current level is higher than the estimate, and one high when the level is lower than 
the estimate: 

(4.40) 

Here L~l1 is the estimate of the noise floor for then-th frame, L <n) is the estimated signal 
level for the same frame, Tis the frame duration, and 'rctown and 'rup are the time 
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constants for tracking the noise floor level when the level goes lower or higher than the 
current estimate. As the speech-plus-noise signal has a higher level than just the noise 
signal, 'rctown « 'rup· For estimation of the signal level, weighted RMS is usually used: 

(4.41 ) 

Here Wis a weighting function. The idea is to give more weight to the frequency bins 
with a higher difference between the signal and the noise (i.e., with higher SNR), which 
will allow easier differentiation. As the noise energy is usually concentrated in the 
lower part of the frequency band, this can just be a high-pass filter. Considering the fact 
that the speech energy decreases in the higher parts of the frequency band, it is a good 
idea to suppress the higher frequencies as well, in case of unexpected noises there. A 
standard weighting is often used - C-message or ITU-T Recommendation 0.41 for 
modeling the telephone channel bandwidth. These weightings increase the signal SNR, 
which makes the detection easier. 

The deci ion for prei ence/ab ence of the peech signal can be made based on the 
estimated noise floor Ltln the ignal level L c,,), and the previous value of the voice 
activity flag V (V = 0 for noise, V = 1 for speech): 

0 if 
L (n) 
W < Tctown 
Lmin 

v (n) = L (") (4.42) 
1 if w> Tup 

Lmin 

v (n- 1) otherwi e. 

Note that the flag V switches unconditionally to state "noise" if the proportion of the 
current and minimal level is below the threshold Tctown· To switch to "speech" state, this 
proportion should go above the threshold T up (Tctown < Tup)- To switch back, the 
proportion should fall below Tctown, and so on. This hysteresis stabilizes the work of the 
VAD, decreases the false positives, and the VAD switches back to its "noise" state after 
the end of the word. The downside is that the VAD switches to "speech" state with a 
small delay and can cut off the beginning of the word if it starts with a low-level 
consonant. 

This simple, energy-based V AD with binary decision is a software implementation of 
the well-known hardware VAD used in a countless number of amateur radio stations -
see Figure 4.11. The first two RC groups, R I C 1 and R2C2, form the band-pass filter. 
The low cut-off frequency is !tow= 1/(2nC1R2), the high is !high= 1/(2nR1C2). 

The diode D1, the resistor R3, and the integration capacitor C3 estimate the envelope 
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marked with a small circle. The point where the accuracy from Equation 4.39is highest
is marked with a plus sign. Under somespecial circumstances the optimal point can be
different. For estimation of the noisestatistical parameters, for example, we may want
to specify sometruepositive rate at the price of reducing the false positive rate, when
energy from the speech signal will be averaged as noise statistical parameters.

ROCanalysis wasfirst used in World War I] for the analysisofradar signals before
being employedin signal detection theory. Currently it is widely used in biology and
medicine. ROC curves find application in some machine-learning techniques as
well.

EXERCISE

Write a MATLABscriptto mix a clean speechsignal (record or use Speech. WAV) with
noise (record or use NoiseHoth. WAV) to achieve ~5 dB SNR. Write the outputinto
NoisySpeech.WAV.

Createa textfile containing the beginnings and ends ofeach speech segment — thisis
going to be used as a groundtruth.

Write a MATLABscript to build the ROC characteristics of a fixed-threshold VAD.
Thescript reads the NoisySpeech. WAV and thetextfile with the ground truth. Then use
a set of thresholds for classifying the frames to speech (RMSofthe frame above the
threshold) or noise (RMS of the frame below the threshold). Compute the false
positives and false negatives. Plot the ROC curve — it should look like Figure 4.10.

4.3.1.2 Simple VAD with Dual-time-constant Integrator

Usinga fixed threshold in binary VADlimits the system to a certain level of noise in the
signal. In real VAD systems, the noise floor is usually adaptively tracked and the
decision for absence/presence is made based on the average noise floor level.
Assuming that the noise floor changes more slowly than the speech envelope, we
can track the noise floor level with two different time constants: one low when

the current level is higher than the estimate, and one high when the level is lower than
the estimate:

(1-2) poY Tim ps pon(n) sy Pans min
LY”) — ‘ ; (4.40)(-<Z)asar+ Zam ue <adown Tdown

Here L\”) is the estimateofthe noise floorforthe n-th frame, L”is the estimatedsignal
level for the same frame, T is the frame duration, and tgow, and Typ are the time
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constants for tracking the noisefloor level whenthe level goes lower or higherthan the
currentestimate. As the speech-plus-noise signal hasa higher level than just the noise
signal, Tdown < Typ- For estimation of the signal level, weighted RMSis usually used:

1 K-1 3
L) = 1-5 (Welk). (4.41)

k=0 
Here W is a weighting function. The idea is to give more weightto the frequency bins
with a higherdifference betweenthe signalandthenoise(i.e., with higher SNR), which
will allow easier differentiation. As the noise energy is usually concentrated in the
lowerpart ofthe frequency band,this can just be a high-passfilter. Considering the fact
that the speech energy decreasesin the higherparts of the frequency band,it is a good
idea to suppress the higher frequencies as well, in case of unexpected noises there. A
standard weighting is often used — C-message or ITU-T Recommendation 0.41 for
modeling the telephone channel bandwidth. These weightings increase the signal SNR,
which makesthe detection easier.

The decision for presence/absence of the speech signal can be made based on the
estimated noise floor ) the signal level L”, and the previous value of the voice
activity flag V (V=0 for noise, V=1 for speech):

LL)
0 if 7) < Léown

‘min

vi") = (n) 4.421 if ail 3.7, ( )
) P

Dain
yer) otherwise.

Note that the flag V switches unconditionally to state “noise”if the proportion of the
current and minimallevel is below the threshold Tyown. To switch to “speech”state, this

proportion should go above the threshold 7, (Taown <Tup). To switch back, the
proportion should fall below Town, and so on. This hysteresis stabilizes the workofthe
VAD,decreasesthe false positives, and the VAD switchesbackto its “noise”state after
the end of the word. The downsideis that the VAD switches to “speech”state with a
small delay and can cut off the beginning of the word if it starts with a low-level
consonant.

This simple, energy-based VADwithbinary decision is a software implementation of
the well-known hardware VAD used in a countless numberof amateur radio stations —

see Figure 4.11. The first two RC groups, R,C, and R2C2, form the band-passfilter.
The low cut-off frequency is fiopy=1/(2mC,R2), the high is fyign = 1/(27R) C3).
The diode Dj, the resistor Rs, and the integration capacitor C; estimate the envelope
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Figure 4.11 Hardware implementation of a binary energy-based voice activity detector 

RMS - note that the non-linear VA characteristic of the diode is used as an interpolation 
of the squaring in Equation 4.41, but the square-root is missing in this analog RMS 
estimator. The group R4, D2, R7, and C4 is the minimum level tracker from Equa­
tion 4.40. Here 'rup = (R4 + R7)C4 and 'tdown = R7C4. Resistors R5 and ~ form the 
absolute threshold, and the operational amplifier, together with R8 and R9, fonns a 
Schmitt trigger with a given hysteresis. The Schmitt trigger output is the VAD state. 

This VAD has four parameters to adjust, S = [ <dowrn 'tup, Tdown, Tupl Typical 
values used in analog circuitry are 'tdown = 40 ms, <up = 10 s, Tdown = 1.2, and Tup = 3. 
The performance of this VAD can be improved by maximizing the accuracy 
(Equation 4.39): 

S0 p1 = arg max(P A (S)) 
s 

(4.43) 

which minimizes the sum of false positives and false negatives, regardless of their 
proportions. The point with maximal accuracy is marked with " + "on the ROC curve 
in Figure 4.10. If we assume that true positives and true negatives are equally 
important, we can minimize the minimal distance between the ROC curve and the 
upper left corner, where the ideal classifier is - zero false positives and all true 
positives. This optimization criterion is given by 

(4.44) 

The optimal from this perspective point is marked with "o" on the ROC curve in 
Figure 4. l 0. The accuracy and the corresponding probabj}j ties can be estimated with a 
large set of manually labeled WAV files with SNR varying in the work range of this 
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VAD. An easier approach is to use the VAD and clean speech signal to label the frames 
with the presence and absence of a speech signal, and then to contaminate the clean 
speech signal with variable amounts of noise. Almost any optimization method can 
find the solutions above; gradient-based methods will most probably be the most 
efficient. 

Regardless of its simplicity, the energy-based binary decision VAD works surpris­
ingly well. It easily achieves accuracy above 95% for SNRs varying from 5 to 30 dB. A 
major contributor to this is the weighting in Equation 4.41, which removes most of the 
noise energy under normal conditions. This weighting is equivalent to band-pass 
filtering for telephone bandwidth. One of the advantages of this classifier is that it does 
not need prior knowledge of lhe noise and ·pee h stali tical parameters - the estimated 
L(") is nothing more than tracking the noi e floor. Thi VAD doe not provide oft 

Mn • 
probability of the speech signal presence in the cwrent frame and per frequency bm. 

EXERCISE 

Examine the MATLAB script SimpleVAD.m. This is an implementation of the voice 
activity detector above. The function needs the current level, the current time, and a 
data structure as input parameters, carrying the pre-initialized time constants, thresh­
olds, and so on as described in the initial comment. This data structure has to be 
initialized at the beginning with the recommended values. 

Write a MATLAB script to compute the SNR of the given WAV file, which takes as 
parameters the file name and returns the signal-to-noise-ratio: 

SNR = SNRMeasurement ( inpFileName) 

Read the WAV file, initialize the necessary variables (V AD data structure, signal 
and noise levels, and signal and noise frame counters), organize a loop for processing 
the file on frames with duration of 20 ms, and compute the RMS level of the current 
frame. Then use the simple VAD above to do the classification of speech or noise, and 
add the square of the computed level to the conesponcting variable. Increment the 
corresponding frame counter. When you reach the end of the file, compute the 
average levels of the signal and noise frames, convert to decibels, and subtract. 
Display the result. 

Modify the MATLAB script above to work in the frequency domain. Use 
Process WAV.m as a template. Pre-compute the weightings for A-, B-, and C­
weightings using the approximation formulas from Chapter 3. Organize three sets of 
noise and speech levels - one for each weighting. At the end, compute and display three 
SNRs-one for each weighting. For the level provided to the V AD, use either C-message 
weighting or a rectangular band-pass filter (300-3400 Hz). 

Test the final version of the SNR measurement tool and make sure it works well, as 
this will be a frequently used tool later in the book. 
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Figure 4.11 Hardware implementation of a binary energy-based voice activity detector

RMS—notethat the non-linear VA characteristic of the diodeis used as an interpolation
of the squaring in Equation 4.41, but the square-root is missing in this analog RMS
estimator. The group Ry, D2, R7, and C4 is the minimum level tracker from Equa-
tion 4.40. Here ty, =(R4 + R7)Cq and Tgown = R7C4. Resistors Rs and Rg form the
absolute threshold, and the operational amplifier, together with Rg and Ro, forms a
Schmitt trigger with a given hysteresis. The Schmitt trigger output is the VAD state.

This VAD has four parameters to adjust, S=[tgown, Tup» Taown Typ]. Typical
values used in analogcircuitry are Tgown =40 ms, Typ = 108, Taown = 1.2, and Typ = 3.
The performance of this VAD can be improved by maximizing the accuracy
(Equation 4.39):

Sopt = arg naa (S)) (4.43)

which minimizes the sum of false positives and false negatives, regardless of their
proportions. The point with maximal accuracy is marked with “+” on the ROC curve
in Figure 4.10. If we assume that true positives and true negatives are equally
important, we can minimize the minimal distance between the ROC curve and the
upper left corner, where the ideal classifier is — zero false positives and all true
positives. This optimization criterion is given by

Sip = argmin (min( [1—Prp(S)]° + Pro(5)*) ) (4.44)
The optimal from this perspective point is marked with “o” on the ROC curve in

Figure 4.10. The accuracy and the corresponding probabilities can be estimated with a
large set of manually labeled WAV files with SNR varying in the work range ofthis
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VAD.An easier approachis to use the VAD and clean speechsignalto label the frames
with the presence and absenceofa speech signal, and then to contaminate the clean
speech signal with variable amounts of noise. Almost any optimization method can
find the solutions above; gradient-based methods will most probably be the most
efficient,

Regardless of its simplicity, the energy-based binary decision VAD workssurpris-
ingly well. It easily achieves accuracy above 95% for SNRs varying from 5 to 30 dB. A
major contributorto this is the weighting in Equation 4.41, which removes most of the
noise energy under normal conditions. This weighting is equivalent to band-pass
filtering for telephone bandwidth. Oneof the advantagesofthis classifier is that it does
not need prior knowledgeofthe noise and speechstatistical parameters — the estimated
1") is nothing more than tracking the noise floor. This VAD does not provide soft
probability of the speech signal presence in the current frame and per frequencybin.

EXERCISE

Examine the MATLAB script SimpleVAD.m. This is an implementation of the voice
activity detector above. The function needs the current level, the current time, and a
data structure as input parameters, carrying the pre-initialized time constants, thresh-
olds, and so on as described in the initial comment. This data structure has to be

initialized at the beginning with the recommendedvalues.
Write a MATLABscript to compute the SNR ofthe given WAVfile, which takes as

parameters the file name and returns the signal-to-noise-ratio: .

SNR = SNRMeasurement (inpFileName)

Read the WAVfile, initialize the necessary variables (VADdata structure, signal
and noise levels, and signal and noise frame counters), organize a loop for processing
the file on frames with duration of 20 ms, and compute the RMSlevel of the current
frame. Then use the simple VAD aboveto dotheclassification of speechor noise, and
add the square of the computedlevel to the corresponding variable. Increment the
corresponding frame counter. When you reach the end of the file, compute the
average levels of the signal and noise frames, convert to decibels, and subtract.
Display the result.

Modify the MATLAB script above to work in the frequency domain. Use
Process WAV.m as a template. Pre-compute the weightings for A-, B-, and C-
weightings using the approximation formulas from Chapter 3. Organize three sets of
noise and speechlevels — one for each weighting. At the end, compute and display three
SNRs-oneforeach weighting. For the level provided to the VAD,use either C-message
weighting or a rectangular band-pass filter (300-3400 Hz).

Testthe final version of the SNR measurementtool and makesure it works well, as

this will be a frequently used toollater in the book.



122 Sound Capture and Processing 

4.3.1.3 Statistical-model-based V AD with Likelihood Ratio Test 

Sohn et al. [12] use the likelihood ratio test and an effective hangover scheme for 
classification of the audio frames. Given a speech signal degraded by uncorrelated 
additive noise, two hypotheses can be considered: 

• H0: speech absent, Y = D· 
• Hi: speech present, Y = D + X; 

where D, X, and Y are the K-dimensional compJex vectors of the noise, speech and 
noisy speech. Assuming Gaussian distribution and known variances Ad and Ax for the 
real and imaginary parts of the noise and speech signals, the probability density 
functions of these two hypotheses are 

(4.45) 

This yields the likelihood ratio 

(4.46) 

where fa and 'Yk are the a-priori and a-posteriori SNRs. Then a decision rule is 
established by comparing the geometric mean of the likelihood ratios for all frequency 
bins: 

(4.47) 

where 'Y/ is a fixed threshold for deciding which one of the two hypotheses is true. 
To account for the timing of the speech signal, Sohn and co-authors use an HMM­

based hang-over scheme. It is based on the idea that there is a strong correlation in the 
consecutive occurrences of speech frames. The sequence is modeled with a first-order 
Markov process - that is, assuming that the current state depends only on the previous 
states. The correlative characteristics of speech occurrence can be represented by 
P(q,, = H11q11 _ 1 = H1) with the following constraint: 

(4.48) 
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Here q11 denotes the state of then-th frame and is either Ho or H 1 . With the assumption 
that the Markov process is time-invariant, then au~P(qn = Hi lqn = H;); and under 
the assumption of process staionarity, P(qn = H;) = P(H,), where P(Ho) and P(H,) 
are the steady-state probabilities, obtained from a01 P(H0) = a 10P(H1) and P(Ho) + 
P(H 1) = 1. Then the overall process is described with only two parameters, ao, and a10. 

The decision rule is modified as 

(4.49) 

where N,, = { X11 , X11 _ 1 , ••• , X 1 } is the set of observations up to the current frame n. 
The left fraction in Equation 4.49 is the a-priori probability ratio; the right is the 
a-posteriori probability ratio. Denoting the second one with r n and using the 
forward procedure described by Sohn and co-authors, we can obtain the following 
recursive formula: 

r _ a o1 + {11 1r 11- I A 
11 - fl 

aoo + a1 or 11- 1 
(4.50) 

where A11 is computed using Equation 4.47. Then the modified decision rule with 
hangover scheme is compared to the threshold 71: 

(4.51 ) 

In their practical implementation, the authors used hand-labeled voice data to 
estimate the probabilities. In their case, a01 = 0.2 and a10 = 0.1. With hand-labeled 
data it is relatively easy to draw the ROC curves for various 'Y/ and to pick the value 
with highest accuracy. Taking a more detailed look at Equation 4.50, we find that this 
is just a more sophisticated time smoothing, replacing the traditional first-order 
integrator. 

4.3.1.4 V AD with Floating Threshold and Hangover Scheme with State Machine 

One potential limiting factor of the previous VAD is the fixed threshold. This reduces 
the range of various SNRs the V AD can operate without significant decrease of the 
classification accuracy. Theoretically, for each SNR there is an optimal threshold 'Y/ that 
can work satisfactorily in a certain range of SNRs around the one it is optimal for. Davis 
and Nordholm [13] derive a way to estimate the optimal threshold for a given SNR. 
They compute the log-likelihood ratio using a similar approach as in the previous 
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4.3.1.3 Statistical-model-based VAD with Likelihood Ratio Test

Sohn et al. [12] use the likelihood ratio test and an effective hangover schemefor
classification of the audio frames. Given a speech signal degraded by uncorrelated
additive noise, two hypotheses can be considered:

¢ Ho: speech absent, Y = D;
e H,: speech present, Y=D + X;

where D, X, and Y are the K-dimensional complex vectors of the noise, speech and
noisy speech. Assuming Gaussian distribution and knownvariances A, andA.,. for the
real and imaginary parts of the noise and speech signals, the probability density
functions of these two hypotheses are

(Yio) = [[i ocexp — MelP ~LbaaPY halkk=0

 

md is 2 (4.45)
a. J. koxi) = TNaeeaao alk)oa

This yields the likelihood ratio

PYM) 1 nib
Ae* (XH) 1+811+ & 646)

where €, and y, are the a-priori and a-posteriori SNRs. Then a decision rule is
established by comparing the geometric mean ofthe likelihoodratiosfor all frequency
bins:

| x2! H,
log A=;>jlog Ak 2 i (4.47)

where 7 is a fixed threshold for deciding which one of the two hypothesesis true.
To account for the timing of the speech signal, Sohn and co-authors use an HMM-

based hang-over scheme.It is based on the idea that there is a strong correlation in the
consecutive occurrences of speech frames. The sequence is modeled withafirst-order
Markovprocess — that is, assuming that the current state dependsonly on the previous
states, The correlative characteristics of speech occurrence can be represented by
P(gn = Hylg,—1 = H)) with the following constraint:

P(Gn = Hy |qn-1 a H)) > P(qn = Hj). (4.48)
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Here q,, denotesthe state of the n-th frame andis either Hp or H,. With the assumption
that the Markov processis time-invariant, then aP(g, = Hj\qn = H;); and under
the assumption of process staionarity, P(g,,—=H,;)=P(H,), where P(Ho) and P(H,)
are the steady-state probabilities, obtained from a9,;P(Hp) = a;9P(H,) and P(Hg) +
P(H,) = 1. Thenthe overall process is described with only two parameters, do; and ajo.
The decision rule is modified as

H
= 4 P(Ruldn = Hi) _ P(Ho) Pn =Hil®n) >

"PR nlda=Ho) — PCL) PCa = Hol) 45” “)
 

where X, = {Xn,Xn-1,.--,X1} is the set of observations up to the current framen.
The left fraction in Equation 4.49 is the a-priori probability ratio; the right is the
a-posteriori probability ratio. Denoting the second one with [,, and using the
forward procedure described by Sohn and co-authors, we can obtain the following
recursive formula:

— ay tal
= 4.50a0 + 41001 (

where A,, is computed using Equation 4.47. Then the modified decision rule with
hangover scheme is compared to the threshold 7:

 H,
~ _P(Ho).>

= Ta : 4.51

In their practical implementation, the authors used hand-labeled voice data to
estimate the probabilities. In their case, dg, = 0.2 and a,jy=0.1. With hand-labeled
datait is relatively easy to draw the ROC curvesfor various 7 and to pick the value
with highest accuracy. Taking a more detailed look at Equation 4.50, wefindthatthis
is just a more sophisticated time smoothing, replacing the traditional first-order
integrator.

4.3.1.4 VAD with Floating Threshold and Hangover Scheme with State Machine

Onepotential limiting factor of the previous VAD isthe fixed threshold. This reduces
the range of various SNRs the VAD can operate without significant decrease of the
classification accuracy. Theoretically, for each SNRthere is an optimal threshold 7 that
can worksatisfactorily in a certain range of SNRsaround the oneit is optimal for. Davis
and Nordholm [13] derive a way to estimate the optimal threshold for a given SNR.
They compute the log-likelihood ratio using a similar approach as in the previous
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section. Under the assumption of Gaussian distributions of both noise and speech, the 
optimal threshold for the acceptable probability for a false alarm PFA is 

(4.52) 

where erfc(u) is the complimentary error function [14]. Then the modified decision rule 
with floating threshold for classification of the current frame is 

(4.53) 

In the same paper the authors discuss a slightly different hangover scheme. It is a 
state machine, which requires the decision rule of Equation 4.53 to be in the "speech" 
state for at least four consequent frames before switching to "speech" state, and the 
decision rule to be in the "noise" state for ten consequent frames before switching to 
"noise" state. This state machine effectively delays the decision to gain confidence. 
The number of frames to delay the decision can be tuned for specific conditions, but in 
general the first delay reduces the false alarms, and the second delay allows covering 
the end of the word, which usually has low energy. 

4.3.2 Modified Suppression Rule 

To make the noise suppressors more efficient, a modified suppression rule was derived 
by McAulay and Malpass [4]. While comparing the ML suppression rule, derived by 
them in the same paper, with the Wiener and spectral subtraction rules existing at that 
time, they concluded that it was apparent that none of the suppression rules adequately 
suppresses the background noise when the speech is absent, as all of them are derived 
under the assumption of speech presence. The presence or absence of the speech signal 
is considered a two-state model: 

• Ho: speech absent, I Yt) I = [vtl I; 
• H1: speech present, IYf1ll = JDt) +xt\ 

Under their assumption of Gaussian noise and the speech signal model as a sum of 
sinusoidal signals, the modified suppression rule is derived as 

(4.54) 

where flt) is the modified suppression rule Hf1) is the e timated suppre sion mle (in 
their case, the ML amplitude estimator), and P(H111 rt) I) j the probability to have a 

Single-channel Noise Reduction 125 

speech signal present in this frequency bin and frame. The derivation of Equation 4.54 
is generic and does not depend on the specific assumptions for the distributions of the 
speech and noise signals. 

Ephraim and Malah [3] used results from [IS] to modify the suppression rule under 
the uncertain presence of a speech signal as 

(4.55) 

where A(Yk, qk) is the generalized likelihood ratio defined by 

A(Y ) - P(Yk lHi) 
k, qk - µ,k P(YklHo) (4.56) 

µ,k £. (1-qk) / qk and qk is the probability of signal absence in the k-th frequency 
bin. The two hypotheses Ho and H 1 for the current frequency bin are the same as 
above - the absence and presence of a speech signal. For Gaussian speech and 
Gaussian noise, A(Yk, qk) can be expressed in terms of a-priori and a-posteriori 
SNRs: 

( 4.57) 

where now ~k is defined as the a-priori SNR when speech is present: 

(4.58) 

For convenience and easier estimation, we define 

(4.59) 

which is easier to estimate, and this finalizes the modification of the suppression rule 
under the uncertain presence of a speech signal. Looking closely at the modifier of the 
suppression rule in Equation 4.55, we can say that it is actually a generalized 
probability for the presence of a speech signal, which concurs with the conclusion 
in Equation 4.54. ote the similarity of Equations 4.46 and 4.57 - they both are actually 
speech-presence probability estimators. 

The modified suppression rule is derived under certain assumptions for the 
short-term speech and noise probability distributions. As already mentioned, the 
short-term speech distribution is modeled best with a Laplace distribution, while a 
Gaussian distribution best models the noise in the majority of cases. On the other 
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section. Under the assumption of Gaussian distributions of both noise and speech,the
optimal threshold for the acceptable probability for a false alarm Pra is

Nopt(k) = V2Aa(k).erfc~' (2Ppa) (4.52)

where erfc(u) is the complimentaryerror function [14]. Then the modified decision rule
with floating threshold forclassification of the current frame is

{x2 Hh {x2
i> log Ax 2 erfc~!(2Ppa).V2.—) > Aa(k). (4.53)be

=0 Ho k=0

In the same paperthe authors discussaslightly different hangover scheme.It is a
state machine, which requires the decision rule of Equation 4.53 to be in the “speech”
state for at least four consequent frames before switching to “speech” state, and the
decision rule to be in the “noise”state for ten consequent frames before switching to
“noise” state. This state machine effectively delays the decision to gain confidence.
The numberof framesto delay the decision can be tuned for specific conditions, but in
general the first delay reducesthe false alarms, and the second delay allows covering
the end of the word, which usually has low energy.

4.3.2 Modified Suppression Rule

To makethe noise suppressors moreefficient, a modified suppression rule was derived
by McAulay and Malpass [4]. While comparing the ML suppressionrule, derived by
them in the same paper, with the Wienerand spectral subtraction rules existing at that
time, they concludedthatit was apparentthat noneofthe suppression rules adequately
suppresses the backgroundnoise when the speechis absent, as all of them are derived
underthe assumption of speech presence. The presenceor absenceofthe speech signal
is considered a two-state model:

° Ho: speech absent, |Y!””| = |p”;
e H,: speech present, [ve| os |p” is x”).

Undertheir assumption of Gaussian noise and the speech signal modelas a sum of
sinusoidal signals, the modified suppression rule is derived as

A” = poay||y?))4 (4.54)

where Ae") is the modified suppressionrule, H;,(") is a estimated suppressionrule (intheir case, the ML amplitude estimator), and P(H, || yi") |) is the probability to have a
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speech signalpresentin this frequency bin and frame. The derivation of Equation 4.54
is generic and does not dependonthe specific assumptions for the distributions of the
speech and noise signals,

Ephraim and Malah[3] used results from [15] to modify the suppression rule under
the uncertain presence of a speech signal as

n(n) A(Yx, 9k) (n)H IG 4.55THAde) eo)
where A(Y;, gx) is the generalized likelihood ratio defined by

ae
py, = (1—gx)/qx and g, is the probability of signal absence in the k-th frequency
bin. The two hypotheses Ho and H, for the current frequency bin are the same as
above — the absence and presence of a speech signal. For Gaussian speech and
Gaussian noise, A(Y;, q,) can be expressed in terms of a-priori and a-posteriori
SNRs:

 exp(?E) (4.57)A(Yics Vk) = by 1+é
where now &, is defined as the a-priori SNR when speechis present:

&4 =HMe) (4.58)
For convenience and easier estimation, we define

a ElIXel”} _
1EY (1-qxEx, (4.59)

whichis easier to estimate, and this finalizes the modification of the suppression rule
underthe uncertain presence of a speech signal. Lookingclosely at the modifier of the
suppression rule in Equation 4.55, we can say that it is actually a generalized
probability for the presence of a speech signal, which concurs with the conclusion
in Equation 4.54. Note the similarity ofEquations 4.46 and 4.57 — they both are actually
speech-presence probability estimators.

The modified suppression rule is derived under certain assumptions for the
short-term speech and noise probability distributions. As already mentioned, the
short-term speech distribution is modeled best with a Laplace distribution, while a
Gaussian distribution best models the noise in the majority of cases. On the other
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hand, the gamma distribution models longer intervals of speech signals (1-2 seconds); 
see [9]. 

4.3.3 Presence Probability Estimators 

An alternative approach to introduce the uncertain presence of the speech signal is 
presented in Equation 4.29 with the a-priori probabilities for a dominant presence of 
speech P(Hd) or noise P(Hx), respectively. The noise and speech probability for the 
entire frame can be used as a prior for each frequency bin. Using the likelihood, 
estimated from Equation 4.47 or 4.51, we can estimate the probability for speech 
presence or absence in the current audio frame: 

A (") 
p (,1) (H1 ) = --

I + AM 

p (n)(Ho) = l - P<11l(H1 ). 

(4.60) 

The level £(11>, or RMS estimated according to Equation 4.41, has a Rayleigh 
distribution during the noise frames. The distribution of the levels during speech 
frames can be assumed to be either Rayleigh (assuming Gaussian distribution of the 
speech signal) or exponential (assuming Laplace distribution of the speech signal) . 
These assumptions and the hypotheses for a predominant noise or speech signal lead to 
the probability estimators in Equation 4.31 or 4.35, but this time for the entire audio 
frame. 

Estimation of the speech-presence probability Pi") (H1 IIYk[) for each frequency bin 
can be done using either of the two methods described above for estimation of the 
speech-presence probability per audio frame. 

4.4 Estimation of the Signal and Noise Parameters 

4.4.1 Noise Models: Updating and Statistical Parameters 

Estimation of the noise variation l d, given the VAD state v<11> for the n-th frame can be 
done using a simple recursive formula: 

( ) 1 (11- l )(k ) [ (n) [2 A (n) (k) = 1- a Jl.d + a y k 
d A.~n- l)(k) 

for y (n) = 0 

for v<n) = 1 
(4.61 ) 

where a is the adaptation parameter with typical values between 0.5 and 0.95. 
This adaptation formula works well in real systems. One thing we may want to fix 
is that at the end of the word the noise estimation is outdated if the noise 
variance changed meantime. In addition, speech is quite a sparse signal in the 
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frequency domain. Even with speech present, a Jot of frequency bins contain 
just noise and we can update the noise variance for them even when the speech 
signal is present in the frame. This leads to the probability-based noise variance 
estimator 

(4.62) 

that is, we use the speech absence and presence probabilities for the frequency 
bin to modify the adaptation parameLer. A mall problem here is that, when 
Pt'' (Hdl Ykl) approache · one which is completely po ible, then we will have an 
estimate that is actually the momentary value of the noise variation. In most cases 
this is not desirable, as l k is a statistical parameter. This leads to combining the two 
estimators: 

(4.63) 

which is nothing more than limiting the adaptation speed to the value of the adapt­
ation parameter a in cases of high probability of noise-only presence. 

Another interesting approach for estimation of the noise variance is based on 
minimum statistics [16]. It is based on the estimation of floating and optimal values of 
the smoothing parameter a. During the speech-absence frames we want our noise 
variance estimate 1,1 to be a clo e a pos ible to the actual~- Therefore the goal is to. 
minimize E{(l~''- o-3)2ll~'- 1l} . After setting the first derivative to zero, we can find 
the optimal value for the smoothing parameter: 

a(n)(k) =---I __ _ 
opt ( A. (11- l} ) 2' 

1 + - - - 1 
Ad 

(4.64) 

Since the parameter ai1r(k) is always between O and 1, a stable non-negative 
variance timation i guaranteed. Looking clo ly at the denominator we can ay Lhal 
the term t¼') = i <n- I) / lt1 can be recognized and e ti mated a a. moothed ve, ion f the 
a-po teriori S R 'Y¼'). The values of the parameter a¼i for .:~t ) varying between O and 
IO are hown in Figure 4.12. ote that the minimum tatistics approach doe not 
require VAD a the smooth d a-po teriori S R -yt'l i e timaled for each frame and 
then the optjmal parameter a~~{(k) adapt accordingly. 

4.4.2 A-Priori SNR Estimation 

Most of the noise suppression rules described so far depend on two parameters: a-priori 
and a-posteriori SNRs, fa and 'Yk, respectively. They have to be estimated for each 

r 
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hand, the gammadistribution models longerintervals of speech signals (1—2 seconds);
see [9].

4.3.3 Presence Probability Estimators

Analternative approach to introduce the uncertain presence of the speech signalis
presented in Equation 4.29 with the a-priori probabilities for a dominant presence of
speech P(H,) or noise P(H,,), respectively. The noise and speech probability for the
entire frame can be used as a prior for each frequency bin. Using the likelihood,
estimated from Equation 4.47 or 4.51, we can estimate the probability for speech
presence or absence in the current audio frame:

A”)

1+A” (4.60)

P)(Ho) = 1— P)(H)).

p)(H,) =

The level L, or RMS estimated according to Equation 4.41, has a Rayleigh
distribution during the noise frames. The distribution of the levels during speech
frames can be assumedto be either Rayleigh (assuming Gaussian distribution of the
speech signal) or exponential (assuming Laplace distribution of the speech signal).
These assumptions and the hypotheses for a predominantnoise orspeechsignallead to
the probability estimators in Equation 4.31 or 4.35, but this time for the entire audio
frame.

Estimation of the speech-presence probability pe (Hj ||¥,|) for each frequency bin
can be done using either of the two methods described above for estimation of the
speech-presence probability per audio frame.

4.4 Estimation of the Signal and Noise Parameters

4.4.1 Noise Models: Updating and Statistical Parameters

Estimation ofthe noise variation 2, given the VADstate V”for the n-th frame can be
done using a simple recursive formula:

(—a)Ae (kK) +al¥? for v” =0(") py) (4.61)

where a is the adaptation parameter with typical values between 0.5 and 0.95.
This adaptation formula works well in real systems. One thing we may wantto fix
is that at the end of the word the noise estimation is outdated if the noise

variance changed meantime. In addition, speech is quite a sparse signal in the
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frequency domain. Even with speech present, a lot of frequency bins contain
just noise and we can update the noise variance for them even when the speech
signal is present in the frame. This leads to the probability-based noise variance
estimator

AW(k) = PO(Hi ||¥el)ay? (de) + PO(Hol Yel) Yes (4.62)

that is, we use the speech absence and presence probabilities for the frequency

bm to modify the adaptation parameter. A small problem here is that, whenP*” (Hi ||Yq|) approaches one, which is completely possible, then we will have an
estimate that is actually the momentary value of the noise variation. In most cases
this is not desirable, as A, is a statistical parameter. This leads to combining the two
estimators:

AW(k) = (1—a)PO (Hy ||¥e [a9(k) + eP?(Ho|| Yel) [Yel (4.63)

which is nothing morethan limiting the adaptation speedto the value of the adapt-
ation parameter a in cases of high probability of noise-only presence.

Another interesting approach for estimation of the noise variance is based on
minimum statistics [16]. It is based on the estimation offloating and optimal values of
the smoothing parameter a. During the speech-absence frames we want our noise

variance estimateA,abe - closeas possibleto the actual a3. Thereforethe goalis to.minimize E{(A\)— 0%2140“0Aftersettingthe first desivative to zero, we can find
the optimal value forthe smoothing parameter:

st.
Ae 1) 2"

1+ -1( Aa
Since the parameter alt (k) is always between 0 and 1, a stable non-negative

variance estimation is guaranteed. Looking closely at the denominator, we cansaythat

theterm 7,” = ae )(Aa can be recognizedand estimated as a smoothed versionofthe
a-posteriori SNR yiThe valuesofthe parametera for x" varying between O and
10 are shown in Figure 4.12. Note that the minimum statistics approach does not
require VAD,as the smoothed a-posteriori SNR yn) is estimated for each frame and
then the optimal parameter a") (k) adapts accordingly.

al”) (k) = (4.64)
 

4.4.2 A-Priori SNR Estimation

Mostofthe noise suppression rules described so far depend on two parameters: a-priori
and a-posteriori SNRs, &; and y;,, respectively. They have to be estimated for each
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. Figure 4.12 The adaptation parameter optimal in a minimum statistics sense as a function of the 
smoothed a-priori SNR 

frame and frequency bin, according Lo Equation 4.36. With the noise variance estimate 
J (n) and current magnitude I Y!"l I in the frequency bin, estimation of the a-posteriori 

k R -y<") i not a problem. However, e cimation of the a-priori SNR requires using the 
clean ;eech magnitude IX!")I (which we actually want to estimate). There are several 
approache to overcome this problem. 

The first is to use the fact that noise and speech are not correlated. Then the 
maximum-likelihood estimate of the a-priori SNR is 

(4.65) 

We already discussed the disadvantages of this approach in the section on suppression 
rules, and experiments confirmed that the Wiener suppression rule based on this 
estimate (Equation 4.14) performed worse than the one based on the actual a-priori 
SNR estimation (Equation 4.12). 

A definitely better approach is based on the fact that the speech signal changes more 
slowly than the normal duration of an audio frame, 10-40 ms. This makes the speech 
signal in ~on equ~nt audi? (,f~~es highly corre~ated and we can u e the pr~viou c~ean­
speech signal esllmate IXk I as an approximate value of the cleau- peech signal 
magnitude in the c1ment frame. This is called the decision-directed approach (DDA) 
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and was derived by Ephraim and Malah [3]. Analyses showed that this approach 
contributes as much to the success of their noise suppressor as the suppression rule 
derived by them. The a-priori SNR is estimated as 

~ (11- 1)12 

g¥1l =,B IX~(,,) + (l - {3).max[O,(rt'l-1)] 
d 

(4.66) 

where ,B varies between 0.9 and 0.98. The second term is mostly a stabilizer and plays a 
role at the beginning. Regardless of the fact that this is an approximate solution, it 
provides much better results with any suppression rule than the estimator from 
Equation 4.65. On the negative side, the decision-directed approach introduces 
dependency of the current output on the values of previous outputs; that is, it converts 
the noise suppressor to a system with feedback. This immediately raises concerns 
about the stability of the entire system. These concerns increase especially when we 
have modules with gain higher than 1. This is a case with both suppression rules from 
Ephraim and Malah and their computationally efficient alternatives. Under certain 
circumstances and not very well set time constants, these noise suppressors can 
become unstable and provide output with audible echoes. This is not the case with the 
Wiener or probabilistic suppression rules . 

Another potential problem with a ODA-based estimation of a-priori SNR is that it 
provides a one-frame-delayed estimation, which in the transition moments (from 
speech to noise and from noise to speech) is not correct. This problem can be addressed 
by using forward-backward DDA [17]. Assuming backward off-line processing, we 
can define the backward ODA-based a-priori SNR estimation as 

~ (11 + 1) 2 

1;~2 = ,B IX~(ll) I + (1-m.max[0, (rt)-1)]. 
cl 

(4.67) 

Note that, for estimation of the n-thframe, frame (n + 1) is used. The final estimation of 
the a-priori SNR is a linear combination between the forward and backward estima­
tions: 

1;r) = r,t) gt2 + ( 1- .at)) gt2 ( 4.68) 

where ~~2 is the f~rward estim_ation accordfo~
1
~o _Equ~Lion 4.66, ~~{2 i the backward 

estimation according to Equatt n 4.67, and {3k ) 1 a lime- and ftequency-dependent 
adaptation constant. At tbe beginning of a peech egment I;~¼ should be prefe1Ted, 
while al the end of the peech egment x~2 is a better estimate. The adaptation constant 
can be computed using labeled audio files and learning techniques, or interpolated with 
a smooth function based on the distance after the beginning of the word or before its 
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Oopt as function of y

Optimaladapationo.o,, 
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A-posteriori SNR y

Figure 4.12 The adaptation parameter optimal in a minimum statistics sense as a function of the
smoothed a-priori SNR

frame and frequency bin, according to Equation 4.36. With the noise variance estimate
ay”) and current magnitude \y”| in the frequency bin, estimation of the a-posteriori
SNR yi is not a problem. However,estimation ofthe a-priori SNR requires using the
clean speech magnitude \xi”)| (which weactually want to estimate). There are several
approaches to overcomethis problem.

The first is to use the fact that noise and speech are not correlated. Then the
maximum-likelihood estimate of the a-priori SNR is

&” = max(0, (yf”—1)). (4.65)

Wealready discussed the disadvantagesof this approachin the section on suppression
rules, and experiments confirmed that the Wiener suppression rule based on this
estimate (Equation 4.14) performed worse than the one based onthe actual a-priori
SNRestimation (Equation 4.12).

A definitely better approachis based onthe fact that the speech signal changes more
slowly than the normal duration of an audio frame, 10-40 ms. This makes the speech

signal in consequentaudio frames highly correlated, and we can use the previousclean-
speech signal estimate |X, “| as an approximate value of the clean-speech signal
magnitude in the current frame. This is called the decision-directed approach (DDA)

Single-channel Noise Reduction 129

and was derived by Ephraim and Malah [3]. Analyses showed that this approach
contributes as much to the success of their noise suppressor as the suppression rule
derived by them. The a-priori SNRis estimated as

o(n—1) 2
x, |

ain) + (1 B).max(0, (y\” - 1)] (4.66)
d

& =B
 

where 6 varies between 0.9 and 0.98. The second term is mostly a stabilizer and plays a
role at the beginning. Regardless of the fact that this is an approximate solution,it
provides much better results with any suppression rule than the estimator from
Equation 4.65. On the negative side, the decision-directed approach introduces
dependencyofthe current output on the values of previous outputs; that is, it converts
the noise suppressor to a system with feedback. This immediately raises concerns
aboutthe stability of the entire system. These concerns increase especially when we
have modules with gain higher than 1. This is a case with both suppression rules from
Ephraim and Malah and their computationally efficient alternatives. Under certain
circumstances and not very well set time constants, these noise suppressors can
becomeunstable and provide output with audible echoes. This is not the case with the
Wieneror probabilistic suppressionrules.

Anotherpotential problem with a DDA-based estimation of a-priori SNR isthatit
provides a one-frame-delayed estimation, which in the transition moments (from
speech to noise and from noise to speech)is not correct. This problem can be addressed '
by using forward—backward DDA [17]. Assuming backward off-line processing, we
can define the backward DDA-baseda-priori SNR estimation as

gtaX

ef = BOE Gy + (1B)max, (yy? -1)). (4.67)
d

Note that, for estimation ofthe n-th frame, frame (m + 1) is used. Thefinal estimation of
the a-priori SNRis a linear combination between the forward and backward estima-
tions:

gi” = Byem + (1-By”ese Ga)

where ge) is the forward estimation scconding to Equation 4.66, g is the backward
estimation according to Equation 4.67, and By” is a time- and frequency-dependent
adaptation constant. At the beginning of a speech segment, gw should be preferred,
while atthe end of the speech segment x;is a better estimate. The adaptation constant
can be computedusing labeled audiofiles and learning techniques, or interpolated with
a smooth function based on the distance after the beginning of the word or before its
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end. The proposed approach provides a 0.7-1.1 dB better SNR improvement; and, 
ac ording to tests conducted with human Ii teners, the utput of a forward- backward 
DOA-based noise uppr r is pret rred. Good estimation of f~i require. at lea. t two 
frames delay, which is not acceptable in most of the cases when the noise suppres or is 
part of a real-time communication system. 

4.5 Architecture of a Noise Suppressor 

Having discussed all the components of a noise suppres or it is time to put all of them 
together. The overall block diagram is shown in Figure 4.13. 

One of the most important things in statistical-model-based noise suppression is to 
have good estimations of the noise statistical parameters. This can be done in two 
stages: 

• U ea imple YAO like the one de cribed in ection 4.3. l .2 and do frame cla ifi ­
cation and reate a rough noi e model 1~1\ k) with adaptation per Equation 4.61. 
W . h O b . d 1 . h . . d . . NR ~(") d • 1t 1e roug nOJ e mo e , e ttmate roug a-pnon an a-po tenon ·, "' k an 
1{11> according to quation 4.66 and 4.3, and use them in a more sophisticated VAD, 
like the one described in Section 4.3.1.3. 

• With the obtained likelihood ratios for each frequency bin, estimate the speech 
presence probability Pt (H1 IIYk l) ace rding to Equation 4.60. E timate the peech 
presence probability P 11\H 1) for the entire frame as well. 

• Use the speech-presence probability to estimate a more preci e noi e model .t~;')(k) 
according to Equation 4.62 or 4.63. 
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Figure 4.13 Block diagram of noise suppressor 
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An alternative approach is to use the minimal statistics method, described in 
Equation 4.64. It can be used for estimation of the final noise model of the first stage 
only. 

he precise noi e model il~') (k) can be u ed for estimation of the final a-priori and 
a-po teriori SNR ti") and Yt'l, and the elected uppre ion rul H!") . Spectral 
subtraction and the log-MMSE estimator are among the most frequently used. The 
suppression rule can be modified with the speech-presence probability for the entire 
frame. 

Estimate the output signal by applying the suppression rule to the output ignal. 
The noise suppressor described above is a good practical example of a working 

system. Properly implemented it sounds good and provides improvement in the overall 
SNR. The number of potential combinations between various VADs, noise model 
updaters, and suppression rules is very large and it is not intended here to provide 
detailed comparison between all variants. 

An example of how the noise suppressor works with a real signal is shown in 
Figure 4.14. Part (a) shows the input signal with SNR = 10 dB in the time domain. Note 
the noise during the pauses. The same figure shows the speech presence probability, 
computed later by the voice detector using Equations 4.51 and4.60. Part (b) shows the 
spectrogram of the input signal. The noise is easily visible during the pauses and 
especially in the lower part of the frequency band. There are some constant tones, 
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Figure 4.14 Noise suppressor: (a) input signa.l and speech presence probability per frame; (b) input 
signal - spectrogram; (c) speech presence probability after the voice activity detector; (d) suppression 
gain; (e) output signal - spectrogram; (f) output signal in the time domain 
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end. The proposed approach provides a 0.7—1.1 dB better SNR improvement; and,
according to tests conducted with humanlisteners, the output of a forward—backward
DDA-based noise suppressoris preferred. Good estimation ofew requiresat least two
frames delay, which is not acceptable in mostof the cases whenthe noise suppressoris
part of a real-time communication system.

4.5 Architecture of a Noise Suppressor

Havingdiscussedall the componentsof a noise suppressorit is time to putall of them
together. The overall block diagram is shown in Figure 4.13.

One ofthe most important things in statistical-model-based noise suppressionis to
have good estimations ofthe noise statistical parameters. This can be done in two
stages:

e Use a simple VADlike the one describediin Section 4.3.1.2, and do frameclassifi-
cation and create a rough noise model Ay (k) with adaptation per waa 4.61.

° wae the rough noise model, estimate rough a-priori and a-posteriori SNRs, e”) and
x” , according to Equations 4.66 and 4.3, and use them in a more sophisticated VAD,
like the one described in Section 4.3.1.3.

¢ With the obtained likelihood ratios for each frequency bin, estimate the speech
presence probability P\”) (H;||¥,|) according to Equation 4.60. Estimate the speech
presence probability P ™(H,) for the entire frame as well.

e Use the speech-presence probability to estimate a more precise noise model 4(k)
according to Equation 4.62 or 4.63.

x(1)

==: magnitude|¥()|Framing,weighting Short-termFFT Short-termiFFT, synthesis 5 g| Is
g 8| |&
3 2 18and

&

Figure 4.13 Block diagram of noise suppressor
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Analternative approach is to use the minimal statistics method, described in
Equation 4.64. It can be used for estimation of the final noise modelofthefirst stage
only,

The precise noise pet an(k) can be used for estimation ofthe final a-an anda-posteriori SNRs, ge” and“A and the selected suppression rule H”), Spectral
subtraction and the log-MMSEestimator are among the most frequently used. The
suppression rule can be modified with the speech-presence probability for the entire
frame.

Estimate the output signal by applying the suppression rule to the output signal.
The noise suppressor described above is a good practical example of a working

system. Properly implementedit sounds good and provides improvementin the overall
SNR. The number of potential combinations between various VADs, noise model
updaters, and suppression rules is very large andit is not intended here to provide
detailed comparison betweenall variants.

An example of how the noise suppressor works with a real signal is shown in
Figure 4,14. Part (a) showsthe input signal with SNR = 10 dB in the time domain. Note
the noise during the pauses. The samefigure shows the speech presence probability,
computed later by the voice detector using Equations 4.51 and 4.60.Part (b) showsthe
spectrogram of the input signal. The noise is easily visible during the pauses and
especially in the lower part of the frequency band. There are some constant tones,

(a)

Amplitude/probability 
“0 5 10 15 20 25 30 35

Time, sec

Figure 4.14 Noise suppressor: (a) input signal and speech presence probability per frame; (b) input
signal — spectrogram; (c) speech presence probability after the voice activity detector; (d) suppression
gain; (e) output signal — spectrogram; (f) output signal in the time domain
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Figure 4.14 (Continued) 

represented by horizontal lines, caused by computer fans and hard disks. We will 
discuss a more elegant way to deal with them later in this chapter. Figure 4.14c shows 
the output of the second voice activity detector. This is the speech presence probability 
per frequency bin, computed according to Equations 4.46, 4.51, and 4.60. The speech 
presence probability is used for updating the precise noise model - Equation 4.63. 
The suppression gain is presented in Figure 4.14c. It is computed according to 
Equation 4.20 and modified for the uncertain presence of a speech signal in the frame 
according to Equation 4.55. Note that to the first several frequency bins (below 100 Hz) 
some minimal gain value is assigned. The noise model there is very volatile and cannot 
provide a good enough signal estimation. The same is done for the last several 
frequency bins (above 7500Hz) to remove aljasing effects. Figure 4.14d shows the 
spectrogram of the output signal. Note the minimal residual noise in the pause egments 
and compare this spectrogram with Figure 4.14b. The output signal in the time domain 
is shown in Figure 4.14e. Compare the noise level with the noise in the input signal­

Figure 4.14a. 
A comparison of the various suppression rules is presented in Table 4.3. These 

results are computed using the noise-suppressor implementation above by varying the 
algorithm for computing the suppression rule. This is similar to the comparison 
described in Section 4.2.11 and presented in Table 4.2. 

From the MMSE perspective, the best results are achieved by the two probabilistic 
rules. They are apparently more robust to the inevitable errors in estimation of the noise 
models. At the other end is, again, the ML suppression rule. 
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Figure 4.14 (Continued)

represented by horizontal lines, caused by computer fans and hard disks. We will
discuss a more elegant way to deal with themlaterin this chapter. Figure 4.14c shows
the outputof the second voiceactivity detector. This is the speech presence probability
perfrequency bin, computed according to Equations 4.46, 4.51, and 4.60. The speech
presence probability is used for updating the precise noise model — Equation 4.63.
The suppression gain is presented in Figure 4.14c, It is computed according to
Equation 4.20 and modified for the uncertain presenceof a speech signal in the frame
according to Equation 4.55. Notethatto thefirst several frequencybins (below 100 Hz)
some minimalgain valueis assigned. The noise modelthere is very volatile and cannot
provide a good enoughsignal estimation. The same is done for the last several
frequency bins (above 7500 Hz) to removealiasing effects. Figure 4.14d showsthe
spectrogram ofthe outputsignal. Note the minimal residual noise in the pause segments
and compare this spectrogram with Figure 4.14b. The output signal in the time domain
is shown in Figure 4.14e. Compare the noise level with the noise in the input signal —
Figure 4,14a.

A comparison of the various suppression rules is presented in Table 4.3. These
results are computed using the noise-suppressor implementation above by varying the
algorithm for computing the suppression rule. This is similar to the comparison
described in Section 4.2.11 and presented in Table 4.2.

From the MMSEperspective,the best results are achieved by the two probabilistic
rules. They are apparently more robustto the inevitable errors in estimation ofthe noise
models. At the other end is, again, the ML suppressionrule.

Single-channel Noise Reduction

Table4.3.Comparisonofvarioussuppressionrulesforend-to-endnoisesuppressor
Average

20dB

10dB

0dB

MSELSDSNRIMOSMSELSDSNRIMOSMSELSDSNRIMOSMSELSDSNRIMOS
0.04290.886

Equation

Algorithm

3.16

3.930.02030.575 6.853.980.00890.5377.043.32
3.160.00430.301

2.400.01360.537

Donothing Uncertain

0.01840.7277.122.620.00600.4847.143.360.00230.401
(4.54)

presence Wiener,a-posteriori(4,14)

0.00970.51614.642.930.00370.51814.483.600.00180.62113.153.960.00510.55214.093.50 0.01100.49717.512.930.00480.54218.093.650.00220.66516.204.050.00600.56817.273.54 0.01520.6558.912.720,00520.4569.043.460.00210.4258.623.990.00750.5128.863.39
(4.12)

Maximum-likelihood(4.17)
MMSEWiener,a-priori

0.01160.51914.202.850.00480.46814.793.600.00210.55213.904.040.00620.51314.303.50
(4.18) (4.20)

Spectralsubtraction(4.16) JMAPSAE

0.01150.52913.162.880.00430.46913.413.620.00190.54612.624.030.00590.51513.063.51 Table4.1,10.01120.51314.412.860.00480.47414.963.600.00210.56614.024.040.00610.51814.463.500.01140.50915.152.870.00490.48215.783.620.00220.57814.654.050.00610.52315.193.51 Table4.1,20.01190.50215.642.890.00480.49616.223.630.00210.60014.954.050.00600.53315.603.52 Table4.1,30.00950.53213.372.830.00490.45813.913.580.00210.53013.204.040.00630.50613.493.48
Log-MMSE MMSESPEMAPSAE

0.00850.49919.462.900.00360.55919.553.620.00180.68716.504.030.00490,58218.503.52
(4.32)

Prob,Laplace-Gauss(4.35)Prob.Gaus-Gauss

0.01030.48618.673.010,00340.54018.533.680.00170.67015.914.040.00450.56517.703.57
135
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From the LSD perspective, best results are achieved by MMSE and log-MMSE rules 
(optimal in this sense), closely followed by the group of the efficient alternatives. In 
general all rules achieve quite similar performance. . . 

The two probabilistic suppression rules achieve best n01se ~uppress10n, follow_ed by 
the Wiener suppression rule. The ML rule lags behind, as 1n the clean expenment 
before. 

There is no clear winner as far as the MOS results are concerned but the two 
probabilistic suppre sion rules have a small advantage. Figure 4.15 shows the MOS 
results as a function of the improvement in SNR. Compare it with Figure 4.9. The first 
thing to notice is the substantially lower improvement in_ SNR. Under co_ntrolled 
conditions and precise a-priori and a-posteriori SNR estimations (from the no1se-only 
and speech-only signals, known in this experiment) the improvement in SNR goes 
above 35 dB in some cases. Here all algorithms are grouped in the range from 9 to 19 dB 
improvement. Another interesting point is the MOS results. In the ~~ntrolled experi­
ment we were able to achieve MOS up to 4.1 , where under real conditions the average 
MOS barely approaches 3.6. Note that the sound quality of the output signal does ~ot 
depend heavily on the suppression rule used. The reliability of t~e VAD how prec1~e 
we can estimate the noise model, and the suppression rule modifier for the uncertain 
presence of a speech signal are equally important factors f~r buildin~ a good noise 
suppressor. Another interesting effect to notice is that, while the n01se suppressor 
improves the perceptual quality of the output signal for input S~s- of O and 10 dB, t~e 
MOS results are much less improved for input S Rs of 20 dB. This 1s the reason why m 
some practical implementations the noise suppressor is turned off (or gradually 
reduced) above a certain input SNR. 
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Figure 4.15 MOS results as a function of the SNR improvement for various suppression rules - end­
to-cnd noise suppressor 
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EXERCISE 

Create a MATLAB script for suppression of noise. The script should take the input and 
output file names as parameters. Use the provided Process WA V.m script as a template. 
Follow the steps and formulas above. Use the provided SimpleVAD.m for computing 
the rough noise model, and SuppressionRule.m for computing the chosen suppression 
rule. 

Write a MATLAB scriptto generate a set ofWAV files with given SNR (0, 5, 10, 15, 
20, and 25 dB, for example) from clean speech and noise (record or use some of the 
provided). Evaluate the noise suppression script above by processing the generated set 
of files with noisy speech. Use the provided tool SNRMeasurement for evaluation, and, 
most importantly - listen, listen, listen to the output files. 

4.6 Optimizing the Entire System 

A good noise suppres or contains many parameters - the adaptation time constants and 
thresholds seen in many of the equations above. The tuning should start block by block. 

The voice activity detector should be tuned using the approach described at the end 
of Section 4.3.1.2. This means preparing a set of sound files with SNR varying over the 
working range - say, from O to 30 dB in steps of 5 dB. This can be done by mixing 
various noises with a given magnitude to a set of clean speech recordings. Even the 
simplest VAD works well with a 30 dB SNR. It can be used to label the speech absence 
and presence frames. Then the mixed files are processed with the algorithm under 
tuning and the labeled data are used to compute the frame classification accuracy. 
Maximizing the accuracy can be done completely automatically by using the gradient­
descent optimization algorithm. 

Once we are sure that each of the blocks works well, it is time to tune the entire 
system. If the noise suppressor is part of a telecommunication system, the main 
optimization criterion is how it sounds. This means wideJy using objective quality 
measurements (PESQ, for example) to tune the entire system end-to-end. The 
improvement in SNR should be monitored, and solutions that sound the same but 
have higher improvement of the SNR should be preferred. The final several variants 
should go through extensive MOS tests with real human listeners. 

If it is expected that speech-enhancement system output will be sent to an 
automatic speech recognizer, the system should be optimized to maximize the 
accuracy of the speech recognizer. Note that a speech enhancement system, 
optimized for speech recognition, may not be optimal for human listeners - and 
vice versa. If differences are substantial, then a separate processing should be done 
for the speech recognizer. Note that when doing this the noise-suppression proce­
dure becomes specialized to the particular speech recognizer; that is, it cannot 
be generic. Different speech recognizers employ various techniques for increasing 
the noi e robustness, and the preceding noise suppressor should not confuse them. If 
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the speech recognizer builds noise models, then applying the modified suppression 
rule usually does not work well. The reason for this is that the modified suppression 
rule suppresses more during the pauses- the time the next block will use to build the 
noise models. This will result in under-estimation of the noise floor and reduction of 
the efficiency of this block. Comparison of various noise-suppression algorithms 
from the speech recognition rate standpoint can be found in [18j. 

The speech recognition system's sensitivity to distortions and artifacts can affect 
even the suppression rule. In [19], the suppression rule, which is a function of two 
parameters, gk and 'Yk, is represented as a discrete 10 x 10 matrix. Fine estimation 
of the suppression rule values is done by bi-linear interpolation. Then the suppres­
sion rule can be subject to optimization with the goal of maximizing the speech 
recognition rate. As a corpus for speech recognition and optimization, the AURO­
RA 2 test is used. After 15 iterations, the new suppression rule allows the speech 
recognizer to achieve a higher recognition rate. The starting point (Ephraim and 
Malah's MMSE estimator) and the resulting suppression rule after 25 iterations are 
shown in Figw-e 4.16. It is clear that, after the optimization, the new rule suppresses less 
noise. This is just an example of using an external optimization criterion (speech 
recognition error rate) to make one of the components of a speech enhancement system 
(the suppression rule) better. This technjque is applicable to most of the parameters in 
the noise-suppression system. 
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Figure 4. 16 Speech-recognition friendly suppression rule: (a) starting point- MMSE suppression rule; 
(b) after 25 iterations of optimization to maximize the speech recognition rate 
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Figure 4.16 (Continued) 

4. 7 Specialized Noise-reduction Systems 

4.7.1 Adaptive Noise Cancellation 

139 

40 

The noise-suppression techniques described above depend heavily on the accuracy of 
the noise mode1. They cannot reconstruct the phase of the original signal, owing to 
the stochastic nature of the noise. What if we have a distorted copy of the original 
noise? A good example here is pladng a microphone into the engine compartment of 
a car to pick up the engine noise. The noise, captured from a microphone inside the 
car cabin, will contain the driver's speech signal and the engine noise, distorted 
during its propagation to the car cabin. This approach is called "adaptive noise 
cancellation" and its block diagram is shown in Figure 4.17. The second microphone 
picks up the noise signal N(n) - the vector representing the spectrum of this 
signal in audio frame n. The microphone inside the car cabin acquires the speech 
signal x<n) and the engine noise, convolved with the engine-cabin impulse response 
H-N<n>: 

y(n) = x (n) + H. N(n) . (4.69) 

Note that in the frequency domain the convolution becomes multiplication. The 
active noise canceller tries to estimate the engine-cabin impulse response II and to 

138 Sound Capture and Processing

the speech recognizer builds noise models, then applying the modified suppression
rule usually does not work well. The reason for this is that the modified suppression
rule suppresses more during the pauses — the time the next block will use to build the
noise models. This will result in under-estimation of the noise floor and reduction of

the efficiency of this block. Comparison of various noise-suppression algorithms
from the speech recognition rate standpoint can be found in [18].

The speech recognition system’s sensitivity to distortions andartifacts can affect
even the suppression rule. In [19], the suppression rule, which is a function of two
parameters, &, and y,, is represented as a discrete 10 x 10 matrix. Fine estimation
of the suppression rule values is done by bi-linear interpolation. Then the suppres-
sion rule can be subject to optimization with the goal of maximizing the speech
recognition rate. As a corpus for speech recognition and optimization, the AURO-
RA2test is used. After 15 iterations, the new suppression rule allows the speech
recognizer to achieve a higher recognition rate. The starting point (Ephraim and
Malah’s MMSEestimator) and the resulting suppressionrule after 25 iterations are
shownin Figure 4.16, It is clear that, after the optimization,the new rule suppressesless
noise. This is just an example of using an external optimization criterion (speech
recognition errorrate) to make one of the components of a speech enhancementsystem
(the suppression rule) better. This technique is applicable to most of the parameters in
the noise-suppression system.
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Figure 4.16 Speech-recognitionfriendly suppression mule: (a) starting point— MMSEsuppressionrule;
(b) after 25 iterations of optimization to maximize the speech recognition rate
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4.7 Specialized Noise-reduction Systems

4.7.1 Adaptive Noise Cancellation

The noise-suppression techniques described above depend heavily on the accuracy of
the noise model. They cannot reconstruct the phase of the original signal, owing to
the stochastic nature of the noise. What if we have a distorted copy of the original
noise? A good examplehere is placing a microphoneinto the engine compartmentof
a car to pick up the engine noise. The noise, captured from a microphoneinside the
car cabin, will contain the driver's speech signal and the engine noise, distorted
during its propagation to the car cabin. This approachis called “adaptive noise
cancellation” and its block diagram is shownin Figure 4.17. The second microphone
picks up the noise signal N” — the vector representing the spectrum of this
signal in audio frame n. The microphoneinside the car cabin acquires the speech

signalX"" and the engine noise, convolved with the engine-cabin impulse response
H.-N”:

y” =x+H-N”, (4.69)

Note that in the frequency domain the convolution becomes multiplication. The
active noise canceller tries to estimate the engine—cabin impulse response H and to
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Figure 4.17 Block diagram of adaptive noise cancellation algorithm 

calculate the speech signal by subtracting it from the mixture: 

X (n) = y (n) _ ft . N(rrJ. (4.70) 

Any adaptive filter techniques can be used, but one of the proven effective and most 
frequently used is the normalized least-mean-squares (NLMS). In each silent frame 
the impulse response is estimated for each frequency bin as 

E (11) -y (11) 
H (n+I) _ H (11) + k · k 

k - k /Lk 1Yt')l2 +e (4.71 ) 

where e is a small number to prevent division by zero. Et ') = Yk") - Ht) Nt> is the 
error that the adaptive filter tries to minimize and that i opposed to be zero during 
non-speech interval . Here rt') denotes the complex conjugate of the le-th frequency 
bin in the n-th frame. In general, the NLMS filter is a minimum mean-square-error 
estimator using the steepest gradient descent. The adaptation time constant /J.,k can vary 
with the frequency bins and the time. It should be 0 < µ < llA.rnax, where Amax is the 
largest eigenvalue of the correlation matiix of the two input signals. In many 
implementations a fixed value for µ, is used. 

The adaptation process can be performed on every bin of every frame if we believe 
that the captured noise N does not contain a portion of the speech signal X. If 
there are leaks of X in N, then it will be better to do the adaptation only during the 
ilen e i~tervals. Thi, will prevent cancellati~~ of portion · of the pe~ch irral. lf we 

have estimate of the ·peecb ab ence probability for the frequenci bin Pt' (Hol lXkl), 
provided by a VAD, Lhen we can modify the adaptation stepµ, = P; 1)(Hol lXkl)P,. Herc 
P, is the initial (non-variable) adaptation step. In silent frequency bins the adaptation 
goes with this step, while in frequency bins with speech present the adaptation slows 
down to prevent cancelling of the speech signal 
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The theory of adaptive filters and algorithms is out of the scope of this book. There 
are numerous papers, books, and book chapters discussing the variable-size adaptation 
step, other adaptation algorithms, constraints to guarantee convergence, and so on. 
See [20] for an exhaustive theory of adaptive filters. 

Only one dominant noise source is assumed in the adaptive noise cancellation. The 
delay between the noise-capturing microphone and the speech-capturing microphone 
should be less than one-quarter of the frame length. For the commonly used frame 
lengths of 10-50 ms, this means a distance between 3.4 and 17 .15 m. In a car environ­
ment, for example, the distance between the microphone in the engine compartment 
and the microphone in the cabin is under 2 m, which means that any frame length above 
25 ms will contain practically the same engine noise. If the delay between the noise­
capturing and speech-capturing microphones is larger, and the frame length should not 
be increased for other reasons (latency of a real-time communication system, for 
example), then a specialized delay-estimation and time-shifting logic should be 
implemented for the signal from the noise microphone. This logic should delay the 
noise signal in a way so as to align it with the same noise component in the speech 
microphone. 

The limitations of this type of noise cancelling are due to the presence of other noise 
sources. In the car example this can be the noise from the tires. In this case we have four 
additional and independent noise sources. The noise microphone in the engine 
compartment captures the noise from the engine and from all four tires with a given 
delay between the engine noise and the noise signal from each tire. The adaptive filter 
will try to subtract this mixture from the noise, captured by the speech microphone. As · 
the delay from each tire to the speech-capturing microphone is different, there will be a 
residual noise even after the adaptive filter converges. The adaptive noise-cancellation 
system cannot cancel noises that are not presented in the noise-only signal- wind noise 
in the cabin, or other passengers talking. Note that for best results the two ADCs have to 
have synchronous clocks, otherwise tracking the clock drift will decrease the perfor­
mance of the adaptive filter. 

Overall this technique is linear and does not introduce distortions. It is complimen­
tary to the classic noise-suppression techniques and should precede the non-linear 
noise suppressor. In many cases, adding a second microphone is justified by the speech 
enhancement this system can achieve. The general idea of having a noise-only signal, 
which can be subtracted from the mixture of useful signals and noise using an adaptive 
filter, will be explored fmther in the chapter on microphone rurnys. 

EXERCISE 

Create a MATLAB script for adaptive noise cancellation. The script should take as 
parameters the input and output file names. Perform the processing in the frequency 
domain. Use the provided ProcessWAV.m script as a template. Follow the steps and 
formulas above. Use the provided SimpleVAD.m for controlling the adaptation process. 
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calculate the speech signal by subtracting it from the mixture:

x” = yO_A.NM, (4.70)

Anyadaptivefilter techniques can be used, but one of the proven effective and most
frequently used is the normalized least-mean-squares (NLMS).In eachsilent frame
the impulse response is estimated for each frequency bin as

Ee,y)(n+1)__pyln)
H = Ay’ +k We ro> + (4.71)

where ¢ is a small numberto prevent division by zero. EY= y”HN is the
error that the adaptivefilter tries to minimize and that is eeameed to be zero during
non-speech intervals. Here ye denotes the complex conjugate of the k-th frequency
bin in the n-th frame. In general, the NLMSfilter is a minimum mean-square-error
estimatorusing the steepest gradient descent. The adaptation time constant 4, can vary
with the frequency bins and the time. It should be 0 << L/Amax, Where Amax is the
largest eigenvalue of the correlation matrix of the two input signals. In many
implementations a fixed value for yz is used.

The adaptation process can be performed on every bin of every frame if we believe
that the captured noise N does not contain a portion of the speech signal X. If
there are leaks of X in N, then it will be better to do the adaptation only during the

silence intervals. This will prevent cancellation of portionsof the speech . nal. If we
have estimates of the speech absence probability for the frequenc bin pi (Ho| Xx),provided by a VAD,then we can modify the adaptation step jz = P;n) (Holl!))j. Here
fis theinitial (non-variable) adaptation step. In silent frequency bins the adaptation
goes with this step, while in frequency bins with speech present the adaptation slows
downto prevent cancelling of the speech signal.
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The theory of adaptive filters and algorithmsis outofthe scope of this book. There
are numerouspapers, books, and book chapters discussing the variable-size adaptation
step, other adaptation algorithms, constraints to guarantee convergence, and so on.
See [20] for an exhaustive theory of adaptivefilters.

Only one dominant noise source is assumedin the adaptive noise cancellation. The
delay between the noise-capturing microphone and the speech-capturing microphone
should be less than one-quarter of the frame length. For the commonly used frame
lengths of 10-50 ms, this meansa distance between 3.4 and 17.15 m.In a car environ-
ment, for example, the distance between the microphonein the engine compartment
and the microphonein the cabin is under 2 m, which meansthat any frame length above
25 mswill contain practically the same enginenoise. If the delay between the noise-
capturing and speech-capturing microphonesis larger, and the frame length should not
be increased for other reasons (latency of a real-time communication system, for
example), then a specialized delay-estimation and time-shifting logic should be
implemented for the signal from the noise microphone. This logic should delay the
noise signal in a way so asto align it with the same noise componentin the speech
microphone.

Thelimitations ofthis type of noise cancelling are due to the presence ofother noise
sources.In the car example this can be the noisefrom thetires. In this case we have four
additional and independent noise sources. The noise microphone in the engine
compartmentcaptures the noise from the engine and from all fourtires with a given
delay between the engine noise and the noise signal from eachtire. The adaptivefilter
will try to subtract this mixture from the noise, captured by the speech microphone.As”
the delay from eachtire to the speech-capturing microphoneis different, there will be a
residualnoise evenafterthe adaptive filter converges. The adaptive noise-cancellation
system cannotcancelnoisesthat are not presentedin the noise-only signal — wind noise
in the cabin,or other passengers talking. Notethat for best results the two ADCshaveto
have synchronousclocks, otherwise tracking the clock drift will decrease the perfor-
mance of the adaptivefilter.

Overall this techniqueis linear and doesnotintroducedistortions. It is complimen-
tary to the classic noise-suppression techniques and should precede the non-linear
noise suppressor. In many cases, adding a second microphoneisjustified by the speech
enhancementthis system can achieve. The general idea of having a noise-only signal,
which can be subtracted from the mixture of useful signals and noise using an adaptive
filter, will be explored further in the chapter on microphonearrays.

EXERCISE

Create a MATLAB script for adaptive noise cancellation. The script should take as
parameters the input and outputfile names. Perform the processing in the frequency
domain. Use the provided ProcessWAV.m script as a template. Follow the steps and
formulas above. Use the provided SimpleVAD. mfor controlling the adaptation process.
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Evaluate the solution using the provided two-channel WAV file. The first channel is 
recorded with a microphone inside the car cabin, the second channel is the engine 
sound only. Measure the improvement in SNR and listen to the output. 

4. 7.2 Psychoacoustic Noise Suppression 

4.7.2.1 Human Hearing Organ 

The human hearing organ - the ear - consists of outer, middle, and inner parts. A very 
schematic diagram of the ear is shown in Figure 4.18. Note that not all parts are present 
in this figure. Part of the inner ear, for example, is the human vestibular system, which 
has nothing to do with hearing. 
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Figure 4.18 Human hearing organ 

The outer ear-the pinna and outer ear canal-play a role in forming the directivity of 
the human hearing, together with the head and the shoulders. In addition, the pinna acts 
like a funnel, amplifying and directing the sound to the outer ear canal. It increases the 
sound level 10-15 dB in the frequency range between 1.5 and 7 kHz, where the energy 
of human speech is concentrated. The outer ear canal is a tube with a length of 30 mm, 
and a practically uniform diameter of around 7 mm. The ear canal has an acoustical 
resonance at approximately 3000 Hz, which is the reason for increased sensitivity of 
humans to these frequencies. The ear canal ends with an ear drum, which converts the 
changes in the air pressure to mechanical vibrations. 

The middle ear is an air-filled cavity and contains the smallest bones in the human 
body: malleus, incus, and staple. They transfer the mechanical vibrations of the ear 
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drum to the inner ear, which is filled with liquid. These three bones form an acoustical 
impedance transformer to maximize the energy transmission. 

The inner ear is filled with liquid. The staple vibrations are transferred to the 
cochlea - a tubular organ with a spiral shape (the name comes from the Latin word for 
snail), and 2.5 turns. The tube is 32 mm long and has a diameter of 0.05 mm at the 
beginning and 0.5 mm at the end. Inside the cochlea is the Organ of Corti, which 
consists of thousands of hair cells. They sense the movements of the liquid in the inner 
ear and cause the neurons connected to them to fire. The auditory nerve transfers the 
electrical pulses to the brain for further processing. Without going into great detail, the 
specific shape and construction of the cochlea results in different frequencies agitating 
different sets of hair cells: for lower frequencies the ones at the end of the Organ of 
Corti, for higher frequencies the ones at the beginning. This is how humans can 
distinguish between frequencies. 

Detailed description of the physiology and acoustics of the human hearing organ can 
be found in [21]. 

4. 7 .2.2 Loudness 

Human hearing is not perfect; the same sound pressure level generates a different audio 
sensation for different frequencies. The perceived loudness of the sound is a function of 
both the frequency and sound pressure level. This is why we introduce the loudness 
level-the sound pressure level of a reference frequency that causes the same subjective 
loudness. The reference frequency is chosen to be 1000 Hz, and the measuring unit is · 
called a "phon." This means that a sound with magnitude 40 dB SPL and frequency 
1000 Hz will have loudness of 40 phons. The human ear is less sensitive towards the 
lower frequencies, which means that a sound with higher SPL will be necessary to 
cause the same audio sensation. These equal-loudness curves were studied in the early 
years by Fletcher and Munson [22] and later were replaced by more precise measure­
ments done by Robinson and Dadson [23]. These measurements became the basis of 
the standard ISO 226. Later they were revised based on newer and more precise 
measurements, done by scientists from various countries, and the standard was updated 
in 2003 as ISO 226:2003. 

The equal-loudness curves for several loudness levels are shown in Figure 4.19. The 
dashed line shows segments with low confidence, or not confirmed by many measure­
ments. The role of the outer ear is clearly visible, as the human hearing has the highest 
sensitivity in the range 300-?000Hz. The human sensitivity degrades smoothly for 
sounds with lower frequencies and rapidly for sounds with frequencies above 
15 000 Hz. The upper threshold of human hearing is age-dependent. Young people 
at the age of 25 years can hear frequencies up to 19-20 kHz, while at the age of 45 years 
the upper frequency for individuals with normal hearing is down to 15-16kHz. The 
curve for O phons is actually the threshold of human hearing as a function of the 
frequency. 
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Evaluate the solution using the provided two-channel WAVfile. Thefirst channel is
recorded with a microphone inside the car cabin, the second channelis the engine
sound only. Measure the improvement in SNR andlisten to the output.

4.7.2 Psychoacoustic Noise Suppression

4.7.2.1 Human Hearing Organ

The human hearing organ — the ear — consists of outer, middle, and inner parts. A very
schematic diagram of the ear is showninFigure 4.18. Note that notall parts are present
in this figure. Part of the inner ear, for example, is the human vestibular system, which
has nothing to do with hearing.

Outer ear Inner ear

 
 

‘malleus,
incus, and

‘Staple

Middleear auditorynerve
 
 |

|

Figure 4.18 Human hearing organ

The outer ear—the pinnaand outerearcanal —play arole in forming thedirectivity of
the human hearing, together with the head and the shoulders. In addition, the pinna acts
like a funnel, amplifying and directing the soundto the outer ear canal. It increases the
soundlevel 10-15 dB in the frequency range between 1.5 and 7 kHz, where the energy
of human speechis concentrated. The outer ear canalis a tube with a length of 30 mm,
and a practically uniform diameter of around 7 mm. Theear canal has an acoustical
resonance at approximately 3000 Hz, which is the reason for increased sensitivity of
humansto these frequencies. The ear canal ends with an ear drum, which converts the
changes in the air pressure to mechanical vibrations.

The middleear is an air-filled cavity and contains the smallest bones in the human
body: malleus, incus, and staple. They transfer the mechanical vibrations of the ear
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drumto the innerear, whichis filled with liquid. These three bones form an acoustical
impedance transformer to maximize the energy transmission.

The inner ear is filled with liquid. The staple vibrations are transferred to the
cochlea —atubular organ with a spiral shape (the name comesfrom the Latin word for
snail), and 2.5 turns. The tube is 32 mm long andhas a diameter of 0.05 mm at the
beginning and 0.5mm at the end. Inside the cochlea is the Organ of Corti, which
consists of thousandsofhaircells. They sense the movementsof the liquidin the inner
ear and cause the neurons connected to them to fire. The auditory nerve transfers the
electrical pulsesto the brain for further processing. Without goinginto greatdetail, the
specific shape and construction of the cochlea results in different frequenciesagitating
different sets of hair cells: for lower frequencies the ones at the end of the Organ of
Corti, for higher frequencies the ones at the beginning. This is how humans can
distinguish between frequencies.

Detailed description of the physiology and acoustics of the human hearing organ can
be found in [21].

4.7.2.2 Loudness

Human hearingis not perfect; the same soundpressure levelgenerates a different audio
sensationfordifferent frequencies. The perceived loudnessofthe soundis a function of
both the frequency and soundpressure level. This is why we introduce the loudness
level—the sound pressure level of areference frequency that causes the same subjective
loudness. The reference frequency is chosen to be 1000 Hz, and the measuring unit is ©
called a “phon.” This means that a sound with magnitude 40 dB SPL and frequency
1000 Hz will have loudness of 40 phons. The humanearis less sensitive towards the
lower frequencies, which meansthat a sound with higher SPL will be necessary to
cause the same audio sensation. These equal-loudness curves werestudiedin the early
years by Fletcher and Munson [22] and later were replaced by more precise measure-
ments done by Robinson and Dadson [23]. These measurements becamethe basis of
the standard ISO 226. Later they were revised based on newer and more precise
measurements, donebyscientists from various countries, and the standard was updated
in 2003 as ISO 226:2003.

The equal-loudness curves for several loudness levels are shownin Figure 4.19. The
dashed line shows segments with low confidence, or not confirmed by many measure-
ments. Therole of the outer ear is clearly visible, as the human hearing hasthe highest
sensitivity in the range 300-7000 Hz. The humansensitivity degrades smoothly for
sounds with lower frequencies and rapidly for sounds with frequencies above
15000 Hz. The upper threshold of human hearing is age-dependent. Young people
at the age of 25 years can hear frequencies up to 19-20 kHz,while atthe age of45 years
the upper frequency for individuals with normal hearing is down to 15—16 kHz. The
curve for 0 phonsis actually the threshold of human hearing as a function of the
frequency.
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Figure 4.19 Equal-loudness curves for several loudness levels as a function of the frequency and sound 
pressure level 

4. 7 .2.3 Masking Effects 

The human ability to distinguish the frequencies of single tones is quite remarkable -
we have a spectral resolution of about 4 Hz for frequencies below 500 Hz, which 
slowly degrades above this frequency, but remains better than 0.7%. In total, around 
640 frequency steps can be distinguished in the audible range for humans. 

The situation changes when several sinusoidal signals with different loudness are 
involved. Experiments and measurements found that the spectral selectivity of 
human hearing can be modeled as a set of filters with asymmetric shape and a 
frequency-dependent bandwidth-constant and around 100 Hz in the lower part of the 
frequency band, decreasing to ~20% of the center frequency above 500 Hz. This 
simply means that a tone with frequency 1000 Hz will cause a sensation to a group of 
hair cells in the cochlea around the ones responsible for detecting this frequency; that 
is, it wil1 "leak" into the neighboring frequencies. Figure 4.20 shows the excitation of 
the hair cells in the cochlea for a triple-tone audio signal - 500, 2000, and 8000 Hz -
according to [21 J. The leakage of the signal in the neighboring frequencies is clearly 
visible. 

To model the non-linear frequency resolution of the human ear, the Bark scale is 
introduced, named after the famous physicist H . G. Barkhausen. It converts the 
frequencies in hertz .into a number in the range from 1 to 25 in a non-linear manner, 
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Figure 4.20 Excitation of the hair cells in the cochlea for a triple-tone audio signal - 500, 2000, and 
8000Hz with the same amplitude. Signal leakage towards neighboring hair cells is clearly visible, The 
horizontal axis is the length inside the cochlea in rrrillimeters, the vertical is the relative magnitude of the 
excitation 

approximated by the formula 

z,(/) ~ 13 arctan(0.00075/) + 3 .5 arctan [ ( 7{00 )'] . (4.72) 

Figure 4.21 shows the relationship between the linear frequency scale and the Bark 
scale. The dots mark the frequencies for Bark values of 0.5, 1.5, 2.5, and so on. The . 
leaking of the single-tone frequencies is modeled as a triangle-shaped filter in the Bark 
scale with slopes + 25 dB/Bark and - 10 dB/Bark, respectively. The more convenient 
and smoother empirical model for the slope is given in [24]: 

A(M) = 15.81+7.5(M+0.474)-17.5 ✓l+(M+0.474)2 • (4.73) 

Here M is the distance from the center frequency in Barks and A(LlB) is the 
attenuation in decibels. This means that the human auditory system can be modeled as a 
set of overlapping fi lters with asymmetric triangle-shaped frequency responses. The 
center frequencies of these filters are chosen to be the dots in Figure 4.21. To simplify 
the model further, these filters are replaced with a set of rectangular non-overlapping 
filters with equivalent noise bandwidth; that is, under white-noise excitation they will 
provide the same average magnitude of the output signal as the corresponding triangle­
shaped filter. For the band around 1000 Hz this is shown in Figure 4.22. Instead of 
using the triangle-shaped filter with a peak at 1000 Hz, the rectangular filter will be 
used, which passes all frequencies between 920 and 1080 Hz. Table 4.4 shows the 
center, beginning, and end frequency of the commonly used filter bank of rectangular 
filters; see (25] for more details. The widely used name for these filters is "critical 
bands." 
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Figure 4.19 Equal-loudness curves for several loudness levels as a function of the frequency and sound
pressure level

4.7.2.3, Masking Effects

The human ability to distinguish the frequencies of single tones is quite remarkable —
we have a spectral resolution of about 4Hz for frequencies below 500 Hz, which
slowly degrades above this frequency, but remains better than 0.7%. In total, around
640 frequency steps can be distinguished in the audible range for humans.

Thesituation changes whenseveral sinusoidal signals with different loudness are
involved. Experiments and measurements found that the spectral selectivity of
human hearing can be modeled as a set of filters with asymmetric shape and a
frequency-dependent bandwidth —constantand around 100 Hz in the lowerpart of the
frequency band, decreasing to ~20% of the center frequency above 500 Hz. This
simply means that a tone with frequency 1000 Hz will cause a sensation to a group of
hair cells in the cochlea around the ones responsible for detecting this frequency; that
is, it will “leak” into the neighboring frequencies. Figure 4.20 showsthe excitation of
the haircells in the cochlea fora triple-tone audio signal — 500, 2000, and 8000 Hz —
according to [21]. The leakageof the signal in the neighboring frequenciesis clearly
visible.

To model the non-linear frequency resolution of the human ear, the Bark scale is
introduced, named after the famous physicist H. G. Barkhausen. It converts the
frequencies in hertz into a numberin the range from 1 to 25 in a non-linear manner,
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Figure 4.20 Excitation of the haircells in the cochlea fora triple-tone audio signal — 500, 2000, and
8000 Hz with the same amplitude. Signal leakage towards neighboring haircells is clearly visible. The
horizontal axis is the length inside the cochlea in millimeters, the verticalis the relative magnitude of the
excitation

approximated by the formula

r\Z,(f) = 13 arctan(0.00075f) +-3.5 arctan (x5) | (4.72)
Figure 4.21 showsthe relationship betweenthe linear frequency scale and the Bark

scale. The dots mark the frequencies for Bark values of 0.5, 1.5, 2.5, and so on. The |
leaking of the single-tone frequencies is modeledasa triangle-shapedfilter in the Bark
scale with slopes +25 dB/Bark and —10 dB/Bark, respectively. The more convenient
and smoother empirical model for the slope is given in [24]:

A(AB) = 15.81 +-7.5(AB + 0.474)—17.54/1+ (AB + 0.474)", (4.73)

Here AB is the distance from the center frequency in Barks and A(AB) is the
attenuation in decibels. This meansthat the human auditory system can be modeled as a
set of overlapping filters with asymmetric triangle-shaped frequency responses. The
center frequencies ofthesefilters are chosen to be the dots in Figure 4.21. To simplify
the model further, thesefilters are replaced with a set of rectangular non-overlapping
filters with equivalent noise bandwidth;that is, under white-noise excitation they will
provide the same average magnitude of the output signalas the corresponding triangle-
shapedfilter. For the band around 1000 Hz this is shown in Figure 4.22. Instead of
using the triangle-shapedfilter with a peak at 1000 Hz, the rectangular filter will be
used, which passesall frequencies between 920 and 1080 Hz. Table 4.4 shows the
center, beginning, and end frequency of the commonly usedfilter bank of rectangular
filters; see [25] for more details. The widely used namefor thesefilters is “critical
bands.”
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Figure 4.21 Conversion function from frequency to Bark scale. The dots show the positions of integer 
Bark numbers: 1, 2, 3, and so on 
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Figure 4.22 Equivalent rectangular bandwidth filter for the critical band with center 1000 Hz. The solid 
line is the critical band filter, the dashed line the equivalent rectangular bandwidth filter 
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Table 4.4 Center, beginning, and end of the critical bands (hertz) 

Center Beginning End 

50 0 100 
150 100 200 
250 200 300 
350 300 400 
450 400 510 
570 510 640 
700 630 775 
840 765 920 
1000 920 1095 
1170 1075 1275 
1370 L265 1490 
1600 1480 1740 
1850 1710 2010 
2150 1990 2340 
2500 2310 2725 
2900 2675 3175 
3400 3125 3750 
4000 3650 4450 
4800 4350 5350 
5800 5250 6450 
7000 6350 7900 
8500 7600 9750 
10500 9250 12250 
13500 11750 20000 

The masking effects in the frequency domain are caused by the leaking. If we have 
additional signals with lower amplitude and close frequency, they may be below the 
hearing threshold. This is shown in Figure 4.23, where we have three signals with close 
frequencies. The 1000 Hz tone has the highest amplitude. The tone with frequency 
1500 Hz and lower amplitude will not be audible, because it is masked by the leakage 
from the l 000 Hz tone. The third tone with frequency 3000 Hz and the same amplitude 
as the second one will be audible, since it is far enough to be masked. This simply 
means that the auditory nerves have a non-linear response to the audio sensation: there 
is an absolute hearing threshold, and there is a relative threshold, which indicates that 
the variation in excitation amplitude can be detected only if it is above this relative 
threshold. The absolute threshold is the O phones curve from Figure 4.21. Humans can 
detect the presence of an additional tone if it is ~8 dB above the masking threshold [26]. 
Multiple studies of human hearing have shown that a noise can mask a single tone if its 
level is ~4 dB above the tone, and a tone can mask noise if it has a level of ~24 dB 
above the noise in that Bark band [27). These thresholds are used for designing more 
sophisticated audio compression algorithms. 
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Figure 4,22 Equivalent rectangular bandwidthfilterforthe critical band with center 1000 Hz. Thesolid
line is the critical bandfilter, the dashed line the equivalent rectangular bandwidthfilter
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Table 4.4 Center, beginning, and end of the critical bands (hertz)

Center Beginning End

50 0 100
150 100 200
250 200 300

350 300 400
450 400 510
570 510 640
700 630 775
840 765 920

1000 920 1095
1170 1075 1275
1370 1265 1490

1600 1480 1740
1850 1710 2010
2150 1990 2340
2500 2310 2725
2900 2675 3175

3400 3125 3750
4000 3650 4450

4800 4350 5350
5800 5250 6450
7000 6350 7900

8500 7600 9750
10 500 9250 12250
13 500 11750 20000

The maskingeffects in the frequency domain are caused by the leaking. If we have
additional signals with lower amplitude and close frequency, they may be below the
hearing threshold. This is shownin Figure 4.23, where we havethree signals with close
frequencies. The 1000 Hz tone has the highest amplitude. The tone with frequency
1500 Hz and lower amplitude will not be audible, becauseit is masked by the leakage
from the 1000 Hz tone. Thethird tone with frequency 3000 Hz and the same amplitude
as the second onewill be audible, since it is far enough to be masked. This simply
meansthat the auditory nerves have a non-linear responseto the audio sensation: there
is an absolute hearing threshold, andthere is a relative threshold, which indicatesthat
the variation in excitation amplitude can be detected only if it is above this relative
threshold. The absolute threshold is the 0 phones curve from Figure 4.21. Humans can
detectthepresence ofan additional toneifit is ~8 dB above the maskingthreshold [26].
Multiple studies of human hearing have shownthat a noise can maska single toneifits
level is ~4dB above the tone, and a tone can mask noise if it has a level of ~24 dB
abovethe noise in that Bark band [27]. These thresholds are used for designing more
sophisticated audio compression algorithms.
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Figure 4.23 Excitation of the hair cells in the cochlea for a triple-tone audio signal - 1000, 1500, and 
3000 Hz with different amplitudes. The signal with frequency 1500 Hz will be masked, while the signal 
with frequency 3000 Hz will be audible. The horizontal axis is the length inside the cochlea in millimeters, 
the vertical is the relative magnitude of the excitation 

In addition to the masking effect in the frequency domain there is masking in the 
time domain as well, known as "non-simultaneous masking." Pre-masking appears 
when the masking tone starts some time after the masked tone or noise. This is shown in 
Figure 4.24. Measurable results registered for 20-30 ms, when the masking threshold 
is at -50 dB of its simultaneous masking threshold level. The effect is much more 
sensible in the post-masking case. Signals are still masked 100-200 ms after the 
masking tone is removed. It is assumed that the masking threshold is at -30, -40, 
and -45 dB of its simultaneous masking level after 50, 100 and 150 ms, respectively 
[28]. 
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Figure 4.24 Masking in time: pre-, simultaneous, and post-masking effects. The horizontal axis is time, 
with masking white-noise signal between 0 and 200 ms. The vertical line is the necessary level Lr above 
the noise level for the audibility of a sinusoidal burst (test tone) 
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At thi po.int we have all the nece ary number and models toe timate the ma king 
tlu-eshold Mf') in the frequency domain, given the input magnitude I rtl I for given 
frequency bin and frame. It gives the level below which humans cannot hear tones or 
noi es. If we want to use the po t-masking effec we will have to have the magnitude of 
everal previous frame - that i , JY['-1)1, IYt-2\ IYt-3) I, and so on. The algorithm is 

simple and starts with computing the average magnitude in each critical band. Then 
for each band the masking slopes towards the higher and lower frequencies per 
critical band are computed. The highest value from all the bands is compared with the 
hearing threshold. The higher value is the masking threshold for the current frame. 
Humans cannot hear the tones in each frequency bin if their magnitude is lower than the 
masking threshold. 

The major application of psychoacoustics and masking effects is in audio compres­
sion. The principle is "do not store or transmit frequency bins that we cannot hear 
anyway". All major audio compression techniques today (MPEG-1, MPEG-2 MP3, 
MPEG-4, Windows Media Audio, Wmdows Real-Time Voice, etc.) are based on th.is 
principle. Discussing audio compression techniques is not in the scope of this book, but 
we will focus on the psychoacoustic approach for noise suppression. 

4.7.2.4 Perceptually Balanced Noise Suppressors 

We have seen that more suppression means more distortions in the estimated clean 
signal. In the psychoacoustic approach for noise suppression, the principle is "do not . 
suppress noise below the level we can hear." In some papers it is defined as the principle 
of "least processing." Wolfe and Godsil [29) apply a perceptually modified suppression 
rule as follows: 

H- (11) -
k -

for 

otherwise. 

(4.74) 

Here, flt ) is the perceptually modified suppression rule and Ht) is the suppression 
rule estimated using any of the algorithms already discussed. In that particular paper 
the authors use the short-term MMSE rule from Ephraim and Malah. The ratio 
M1" ) /IYt) I is the relative masking level. Note that there is no processing done when 
the relative masking level is above 1; that is, on the masked frequency bins. The relative 
masking level is used as a limiting factor to the suppression gain, which does not allow 
suppression below the audible threshold. 

The authors report a marginal decrease in the SNR improvement, which is expected, 
but increase in the user's preference. 
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Figure 4.23 Excitation of the hair cells in the cochlea for a triple-tone audio signal — 1000, 1500, and
3000 Hz with different amplitudes. The signal with frequency 1500 Hz will be masked, while the signal
with frequency 3000 Hz will be audible. The horizontalaxis is the length inside the cochlea in millimeters,
the vertical is the relative magnitude of the excitation

In addition to the masking effect in the frequency domain there is masking in the
time domain as well, known as “non-simultaneous masking.” Pre-masking appears
whenthe maskingtonestarts sometimeafter the maskedtoneor noise. This is shown in
Figure 4.24. Measurable results registered for 20-30 ms, when the masking threshold
is at —SOdB of its simultaneous masking threshold level. The effect is much more
sensible in the post-masking case. Signals are still masked 100-200 ms after the
masking tone is removed. It is assumed that the masking threshold is at —30, —40,
and —45 dB ofits simultaneous maskinglevel after 50, 100 and 150 ms,respectively
{28].
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Figure 4.24 Masking in time:pre-, simultaneous, and post-masking effects. The horizontal axisis time,
with masking white-noise signal between 0 and 200 ms. Theverticalline is the necessary level Ly above
the noise level for the audibility of a sinusoidal burst (test tone)
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Atthis point we haveall the necessary numbers and models to estimate the masking
threshold M\" in the frequency domain, given the input magnitude [re for given
frequency bin and frame.It gives the level below which humanscannot hear tones or
noises. If we wantto use the post-masking effects, we will have to have the magnitude of
several previous frames — thatis,| Y,nf !) B yer) |, iy |, and so on. Thealgorithm is
simple and starts with computing the average magnitude in eachcritical band. Then
for each band the masking slopes towards the higher and lower frequencies per
critical band are computed. The highest value from all the bands is compared with the
hearing threshold. The higher value is the masking threshold for the current frame.
Humanscannothear the tones in each frequencybinif their magnitude is lower than the
masking threshold.

The major application of psychoacoustics and maskingeffects is in audio compres-
sion. The principle is “do not store or transmit frequency bins that we cannot hear
anyway”. All major audio compression techniques today (MPEG-1, MPEG-2, MP3,
MPEG-4, Windows Media Audio, Windows Real-Time Voice, etc.) are based on this

principle. Discussing audio compression techniquesis not in the scopeofthis book, but
wewill focus on the psychoacoustic approach for noise suppression.

4.7.2.4 Perceptually Balanced Noise Suppressors

We have seen that more suppression means more distortions in the estimated clean
signal. In the psychoacoustic approach for noise suppression, the principle is “do not .
suppress noise below the level we can hear.”In somepapers it is defined as the principle
of“least processing.” Wolfe and Godsil[29] apply a perceptually modified suppression
tule as follows:

Me”\0), Meke i for me < [ve |
Ye |

  
~ ( ) aie

Hy’ = iv.) (4.74)
1 otherwise.

Here, H tw) is the perceptually modified suppression rule and H(n) is the suppression
rule estimated using any of the algorithms already discussed. In that particular paper
the authors use the short-term MMSErule from Ephraim and Malah. The ratio
om”/| is the relative masking level. Note that there is no processing done when
the relative maskinglevel is above1; that is, on the masked frequencybins. The relative
masking level is used as a limiting factor to the suppression gain, which doesnot allow
suppression below the audible threshold.

The authors report a marginal decrease in the SNR improvement, which is expected,
but increase in the user’s preference.
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Note that the perceptual-based noise suppressors are not compatible with any 
psychoacoustic-based audio compressor because they are created on antagonistic 
principles. It is pointless to have a perceptual-based noise suppressor, followed by a 
psychoacoustic compressor. The major application of perceptually balanced noise 
suppressors is for cleaning and restoring high-quality music recordings. By minimiz­
ing the intervention only to the bearable part of the noise and limiting the suppression to 
go no further than the masking threshold, the introduced distortion is minimized and 
the user perception of the restored records is improved. 

4. 7.3 Suppression of Predictable Components 

Frequently speech recordings are contaminated by stationary tones. They usually come 
from power wiring, inadequate shielding, or grounding of the microphone cables, or 
placement of the microphones near power lines or transformers. In those cases the 
interference frequency is 50/60 Hz or 400 Hz and their harmonics. Other kinds of 
stationary-tone interference come from microphones positioned near TVs, monitors, 
or video cameras; the microphones can capture interference at frame or line frequencies 
acoustically from transformers or electronically from the cables. Yet another source of 
this kind of interference are noises coming from the acoustical environment, such as fans, 
computer hard drives, and air conditioning. Because of non-lineatities and room 
reverberation, these signals behave mostly as random zero-mean Gaussian noise, but 
usually there are still predictable components. The frequencies of the predictable portion 
of these noises vary depending on the fan or hard drive spindle rotating speed. The 
common property of these signals is that they are practically stationary. In their time­
frequency representations they show up as horizontal lines with constant amplitude. 

The most intuitive approach to solve this problem and to clean up the contaminated 
signal is to apply band-pass filtering or notch filters tuned to the constant tones. These 
approaches remove speech signal components if the interfering frequencies are within 
the speech band. If the speech signal is contaminated by single-tone interference, then a 
notch filter works well and the missing frequency is usually inaudible. If the 
contaminating signal has multiple harmonics, then a set of notch filters or a comb 
filter may be needed to achieve significant filtering, and that can substantially distort 
the speech signal. 

Classic noise suppressors, like the ones described above, assume that the noise is a 
stationary zero-mean Gaussian process and build a statistical model of the noise as a 
vector of variances per frequency bin. The stationary tones have a probability density 
function that is usually not Gaussian. Using a Gaussian PDF as a model of these signals 
and some of the known suppression rules (Wiener, or Ephraim and Malah, etc.) results 
in complete suppression of the speech signals in these frequency bins; that is, the noise 
suppressor converts to a notch filter for these frequencies. 

The problem of tracking frequencies in a time-frequency representation is well 
studied. In [30], an ARCAP (autoregressive Capone algorithm) method is used to 
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identify the spectral lines, followed by Kalman filtering to track their movement. The 
method is illustrated with a processing of avalanche signals. It is sensitive to noise and 
best results are obtained with a forward-backward Kalman filter, which makes it 
inapplicable for real-time algorithms where low latency is desired. Improving the 
algorithm further [31] by adding trajectory smoothing with a Fraser filter still keeps the 
algorithm good for off-line processing only. The birth/death time estimation of spectral 
lines is improved in [32] as well. In addition, a particle filter is used to perform optimal 
estimation in jump Markov systems for detection and tracking of spectral lines. The 
proposed time-varying autoregressive (TVAR) estimator is evaluated with synthetic 
signals. It is computationally expensive and sensitive to the times of birth/death of 
spectral lines. Andia [33] proposes image processing techniques to be used to detect, 
model and remove spectral lines from the time-frequency representation. All of these 
approaches solve problems that are more complex than necessary, and are mostly 
suitable for off-line processing of the contaminated signals. 

One of the main properties of the predictable components is that they are stationary, 
or pseudo-stationary, and can be modeled as a linear combination of sinusoidal signals 
and a noise component: 

L 

z(t) = LA,-sin(2nfit) + N(0,l) (4.75) 
i=l 

where Lis the number of stationary tones, each with frequency f i- Converting this . 
signal to the frequency domain yields the following model for the n-th audio 
frame: 

L 

zt) = L Wr(k )*Aie-j2mzTJi + N(O,,lN) (4.76) 
i= l 

where Wr is the Fourier image of the frame weighting function, Tis the audio frame 
step, n is the frame number, and k is the frequency bin. 

We note the following: 

• Due to the "smearing" of the spectral lines because of the weighting, bins 
neighboring the central bin (for each contaminating frequency) contain portions 
of the energy. 

• These neighboring bins will rotate in the complex plane (phase shift) from frame to 
frame with the same speed, which can be different than the speed of each bin's central 
frequency exp ( - j2nnTf~ / K). 

These two aspects introduce additional complications in the extrapolation of the 
signal model for the next frame. 
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Assuming we have perfect estimation for the n-th frame zt'l, then the extrapolation 
for the next frame will be 

L L Wr(k )*Aie-iZn:(n + l)1Ji 
A(n + l ) ~(n)i= l z k = z k __ L ______ _ 

L Wr(k)*A;e-1"2m11Ji 
i=I 

(4.77) 

The second term is a complex number that represents the "speed" of rotation of our 
complex model from frame to frame. As already noted, this "speed" can be different 
from the "speed" of the central frequency of the bin. Because Wr(k) decays quickly 
with increasing k, we can assume that one frequency from the contaminating signal 
dominates in each frequency bin. In this case 

L L Wr(k )*A;e-j2n:(11 + 1)1Ji 

i= \ ~ e-J"2n:Tfi + N(O,AE) - (4.78) 
L Wr(k)*A;e-j211111Ji 
i= l 

wheref1 is the dominant frequency and N (0, A£) is an error term, modeled as zero-mean 
Gaussian noise. As the dominant frequency is unknown, the extrapolation can be 
presented as 

~(n + l) h(n)h(n) 
zk = zk yk (4.79) 

where ztl is the contaminating signal estimation for the n-th frame, and Yt) is the 
rotating speed of the model towards the next frame. Both components have additive 
Gaussian noise with variances AN and Ae, respectively. 

With the speech signal present, Equation 4.75 takes the form 

L 

x(t) = s( t) + LA; sin(2nfit) + N(O, J,,, ) (4.80) 
i=l 

and the representation in the frequency domain of the n-th frame is 

l 

xtl =sin)+ L Wr(k )*A;e-jn1Ji + N(O),N ). (4.81) 
i=l 
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In this case our estimation of the speech signal is 

S (n) - x<n) - z (n) (k) · 
k - k est , (4.82) 

that is, we just subtract our estimation of the contaminating signal 

z <"l (k) _ z<n- t) . p (n- tl 
est - k k · (4.83) 

The speech signal estimation contains the captured noise N ( 0, AN) and the cancel­
lation adds an additional noise component~ N ( 0, AE) due to the approximations in the 
model and estimation errors. 

In parallel with the contaminating signal cancellation, we should constantly update 
the contaminating signal model, which for each frequency bin consists of four 
elements: Z(k), Y(k), J..,1.,k), and AE(k) (from which only the first two are involved 
in the constant-tones cancellation process). The contaminating signal model is updated 
as follows: 

(4.84) 

where a = T / t z i:2 i the adaptation time constant, and Pk") is the probability that we 
have only contaminating signal in Xf') - tlhat is, the probability of speech absence. It 
can be provided by any voice activity detector (VAD), which produces per-bin . 
probability estimation of speech presence. The additive noise variance is updated as 
follows: 

(4.85) 

where atl = IIX~"l_ z!;}(k) ll2. The rotating speed estimation is updated in the same 
way: 

(4.86) 

where 

is the normalized rotation speed estimation 
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(n)Assuming we haveperfect estimation for the n-th frame 2 , then the extrapolation
for the next frame will be

> Wr(k)*Aje27"+ VTi
gin+l) _ 4 (#) =Ik SS (4.77)

> Wr(k)*Ajpethi
i=l

The second term is a complex numberthat represents the “speed” of rotation of our
complex model from frame to frame. As already noted, this “speed” can be different
from the “speed”of the central frequency of the bin. Because W7(k) decays quickly
with increasing k, we can assume that one frequency from the contaminating signal
dominates in each frequency bin. In this case

Wr(k) #4 jeJn+1)TfMeAL

- wel + N(0, Ag). (4.78)
ac Wr(k)*Ae200
i=]

wheref;is the dominantfrequency and N(0, A,) is an error term, modeled as zero-mean
Gaussian noise. As the dominant frequency is unknown, the extrapolation can be
presented as

get) gy (4.79)

where a is the contaminating signal estimation for the n-th frame, and pe is the
rotating speed of the model towards the next frame. Both components have additive
Gaussian noise with variances Ay and Ag, respectively.

With the speech signal present, Equation 4.75 takes the form

L

x(t) = s(t) + 5~Aj sin(2nfit) + N(O, A) (4.80)
i=]

and the representation in the frequency domain of the n-th frame is

L

Xp? = SL? + > Wr(k)*Aie"™+ NO, Ay). (4.81)
i=1
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In this case our estimation of the speech signal is

$s) =x 22H; (4.82)

that is, we just subtract our estimation of the contaminating signal

Ze) a2,ee (4.83)

The speech signal estimation contains the captured noise N(0,/,) and the cancel-
lation addsan additional noise component ~ N(0, 1g) due to the approximationsin the
model and estimation errors.

In parallel with the contaminating signal cancellation, we should constantly update
the contaminating signal model, which for each frequency bin consists of four
elements: Z(k), Y(k), Ay(k), and Ag(k) (from which only the first two are involved
in the constant-tones cancellation process). The contaminating signal model is updated
as follows:

At a(n—1 n nH n a(a—lBy = (1-a)Ze? +apfxf” + (1-pf?) 2”) (4.84)
where a = T/tz, tzis the adaptation time constant, andpe is the probability that we
have only contaminatingsignal in X\”” — thatis, the probability of speech absence.It
can be provided by any voice activity detector (VAD), which produces per-bin
probability estimation of speech presence. The additive noise variance is updated as
follows:

ag = (1-a)ag? +a(pfPef”+ (1pJay) (4.85)
where al” = ||x"”— z(k)||?. The rotating speed estimation is updated in the same
way:

«(n—1)Py” = (1—p)r) +B (pel (k) + (1-pe)F”) (4.86)
where

(n)ipy ___Yk
re) = TyFe

is the normalized rotation speed estimation
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Figure 4.25 Cancellation of predictable contaminating signals: (a) speech signal, contaminated with 
buzzer signal; (b) spectrogram of the contaminated signal, the buzzer signal being visible as horizontal 
lines; (c) cleaned speech signal; (d) spectrogram of the cleaned speech signal 
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for the current frame, e is a small number, /3 = T /-r:y, and -r:y is the adaptation time 
constant. 

The proposed method is evaluated in [34] with a speech signal contaminated with 
several noises: white noise, office noise, and two buzzer sounds with a different number 
of harmonics. The improvement in SNR is shown in Table 4.5. There is no suppression 
for white noise and clean speech, as expected. For office noise (three computers with 
their fans and hard drives, air conditioning) the algorithm improves the SNR by almost 
3 dB, removing the predictable components from the noise. The proposed algorithm 
suppresses the signals from the two buzzers up to 15 dB. 

Table 4.5 Improvements in SNR with predictab.le signals compensation (decibels) 

Input Output 

Recording Signal Noise SNR Signal Noise SNR Improvement 

White noise - 13.43 - 13.43 0.00 
Clean speech - 25.37 - 60.44 35.07 -25.38 - 60.75 35.37 0.30 
Office noise - 34.55 - 44.62 10.07 -35.02 - 47.98 12.96 2.89 
Buzzer 1 -21.42 - 21.69 0.27 - 23.19 - 39.35 16.16 15.89 
Buzzer 2 - 18.56 - 20.52 1.96 -24.21 -39.96 15.75 13.79 

Figure 4.25 shows the contaminated and cleaned signals and their spectrograms. 
The contaminating signal is visible as three horizontal lines. This is a real recording 
in a room where people move, changing the reverberation and interference patterns. 
After each change the algorithm has to adapt to the new signals. During this time we 
see the bright traces in the spectrogram. Their magnitude is still much lower than the 
captured signal, which is visible in the time domain representation of the output 
signal. 

This type of processing is suitable as a pre-processor, before a classic noise 
suppressor. It removes the predictable part without artifacts and musical noise, leaving 
the noise suppressor less to suppress, which in general means less musical noise and 
artifacts. It is computationally inexpensive and even in office conditions reduces 
almost 3 dB of the noise, which is well audible. It is a safety net when the microphone is 
accidentally placed near sources of predictable noises. It successfully removes most of 
the hard drive spindle noise, captured by the microphone in a laptop, but signal and 
audio processing are not fixes for a not very thoughtful design - the microphones 
should be kept away from such noise sources. 

EXERCISE 

Create a MATLAB script for cancellation of predictable components of the noise. The 
script should take as parameters the input and output file names. Perform the 
processing in the frequency domain. Use the provided ProcessWAV.m script as a 
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template. Follow the steps and formulas above. Use the provided SimpleVAD.m 
for controlling the adaptation process. 

Evaluate the solution using the provided SpeechBuzzer. WAV file. Measure the 
improvement in SNR and listen to the output. 

4. 7.4 Noise Suppression Based on Speech Modeling 

The algorithms discussed so far assume one model of the speech signal, usually 
statistical with Gaussian, gamma, or Laplace distribution. In Chapter 2 we saw that 
speech is a complex signal and consists of segments with quite different char­
acteristics. Apparently each of the segments can have an optimal suppression filter 
that is quite different from the optimal filters for the other types of segments. 

The idea of different filters for different segments of the speech signal was 
first proposed by Drucker (35]. In his paper he groups the approximately 40 pho­
nemes in the English language into five broad classes: stops, fricatives, glides, 
vowels, and nasals. Each phoneme is processed by a separate filter, designed to 
eliminate the intra-class confusion - that is, the error of assigning a class sound from 
the same class - and the use of a different fi lter eliminates interclass confusion. The 
proposed algorithm works as follows (Figure 4.26). The input speech plus noise is 
segmented into phonemes; a decision device determines which of the five classes of 
sounds the phoneme belongs to, and then routes the speech plus noise segment to the 
appropriate filter. According to the paper, the proposed algorithm increases the 
intelligibility around 25% in the input SNRs ranging from - 8 dB to O dB; above 
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Figure 4.26 Block diagram of a noise suppressor based on speech modeling 
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for the current frame, ¢ is a small number, 8B = 7/ty, and ty is the adaptation time
constant.

The proposed methodis evaluated in [34] with a speech signal contaminated with
several noises: white noise, office noise, and two buzzer sounds with a different number

of harmonics. The improvementin SNR is shownin Table 4.5. There is no suppression
for white noise and clean speech, as expected. For office noise (three computers with
their fans andharddrives, air conditioning) the algorithm improves the SNR by almost
3 dB, removing the predictable components from the noise. The proposed algorithm
suppresses the signals from the two buzzers up to 15 dB.

Table 4.5 Improvements in SNR with predictable signals compensation (decibels)

Input Output

Recording Signal Noise SNR Signal Noise SNR Improvement

White noise —13.43 —13.43 0,00

Clean speech 25,37 —60.44 35.07 —25.38 —60.75 35.37 0.30
Office noise —34.55 —44.62 10.07 —35.02 —47.98 12.96 2.89
Buzzer | —21.42 —21.69 0.27 —23.19 —39,35 16.16 15.89

Buzzer 2 —18.56 —20.52 1.96 —24.21 —39.96 15:75 13.79

Figure 4.25 showsthe contaminated and cleanedsignals and their spectrograms.
The contaminating signal is visible as three horizontal lines. This is a real recording
in a room where people move, changing the reverberation and interference patterns.
After each changethe algorithm has to adaptto the new signals. During this time we
see the brighttraces in the spectrogram. Their magnitudeis still much lower than the
captured signal, which is visible in the time domain representation of the output
signal.

This type of processing is suitable as a pre-processor, before a classic noise
suppressor. It removesthe predictable part withoutartifacts and musical noise, leaving
the noise suppressor less to suppress, which in general means less musical noise and
artifacts. It is computationally inexpensive and even in office conditions reduces
almost 3 dB ofthe noise, which is well audible.It is a safety net when the microphoneis
accidentally placed near sourcesofpredictable noises.It successfully removes most of
the hard drive spindle noise, captured by the microphonein a laptop, but signal and
audio processing are not fixes for a not very thoughtful design — the microphones
should be kept away from such noise sources.

EXERCISE

Create a MATLABscript for cancellation of predictable componentsofthe noise. The
script should take as parameters the input and output file names. Perform the
processing in the frequency domain. Use the provided ProcessWAV.m script as a
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template. Follow the steps and formulas above. Use the provided SimpleVAD.m
for controlling the adaptation process.

Evaluate the solution using the provided SpeechBuzzer.WAVfile. Measure the
improvement in SNR andlisten to the output.

4.7.4 Noise Suppression Based on Speech Modeling

The algorithms discussed so far assume one model of the speech signal, usually
statistical with Gaussian, gamma,or Laplace distribution. In Chapter 2 we saw that
speech is a complex signal and consists of segments with quite different char-
acteristics. Apparently each of the segments can have an optimal suppressionfilter
that is quite different from the optimal filters for the other types of segments.

The idea of different filters for different segments of the speech signal was
first proposed by Drucker [35]. In his paper he groups the approximately 40 pho-
nemes in the English language into five broad classes: stops, fricatives, glides,
vowels, and nasals. Each phonemeis processed by a separate filter, designed to
eliminate the intra-class confusion — thatis, the error of assigning a class sound from
the same class — andthe use ofa differentfilter eliminates interclass confusion. The

proposed algorithm works as follows (Figure 4.26). The input speech plus noise is
segmented into phonemes;a decision device determines whichofthe five classes of
sounds the phonemebelongsto, and then routes the speech plus noise segment to the
appropriate filter. According to the paper, the proposed algorithm increases the
intelligibility around 25% in the input SNRs ranging from —8dB to 0dB; above
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Figure 4.26 Block diagram of a noise suppressor based on speech modeling
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0dB the improvement in the intelligibility decreases to ~7%. The major source of 
potential problems in this approach is the classifier. 

Many researchers later tried either to reduce the classification error, or to synthesize 
more robust filters to such errors. Algorithms for precise measurement and tracking of 
the pitch frequency and synthesis of the proper comb filters proved to be very efficient 
for denoising of the vowels. 

In a later work, Ephraim and Cohen [36] proposed parallel processing, based on the 
probability of classification. In general the processing model with certain probability 
of speech presence is a multi-class model. From this perspective a useful modeling 
apparatus can be a hidden Markov process (HMP). The classes are not a-pri01i defined, 
but they are created in a learning process from training data of clean speech signals. It is 
in fact a clustering process that can be performed by using vector quantization 
techniques. Each class may contain spectrally similar vectors of the signal, which 
can be parameterized as an autoregressive process. Transformations from one spectral 
prototype to another can be modeled by the HMP. The various noises can be processed 
in a similar manner. If we have M speech classes and N noise classes, then we have 
M x N combinations; that is, estimators for enhancing the speech signals. For a 
given sequence of noise speech vectors Y 1 = p,<n\ y<n- J), ... , y<n- t)}, and the 
probability p(i, J)IY1) of the signal being in state i and the noise being in a state 
j given Y 1, the MMSE estimator of the clean speech signal xis 

M N 

E{X1IY1} = L LP((i,J) IY')E{X11Y1, (i,j)}. (4.87) 
i=l j=l 

4.8 Practical Tips and Tricks for Noise Suppression 

While the mathematical models above are correct and valid to describe the behavior of 
captured and processed signals, there are some additional tips and tricks that can and 
should be used for successful implementation of a real noise suppression and reduction 
system. Audio processing is a science, an art, and a craft. So far we have covered the 
science part and touched on the art part when talking about human perception. This 
section is about the craft. 

4.8.1 Model Initialization and Tracking 

Each time the processing starts there can be different noise levels, or rotational speed. 
Using some default initial value and adaptation equations like Equation 4.63 leads to 
slow adaptation in the initial phase. On the other hand, decreasing the time constants 
for faster adaptation leads to less stable values of the model. To adapt quickly at the 
beginning and keep the values stable during normal working, we can use a variable time 
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constant in the initial phase: 

if n = l 

if 
"Cd 

I< n< ­
T 

'td 
for n>-. - T 

159 

(4.88) 

In the first frame we initialize with the value of the current frame; the second frame is 
the average between the first and second frames; and so on until we reach the number of 
frames big enough to use as an adaptation factor Thd, 

4.8.2 Averaging in the Frequency Domain 

The noise amplitude in each of the frequency bins varies substantially. To build a more 
precise model we should increase the adaptation time constant. Unfortunately this 
leads to slower adaptation to changes in the noise. A good trade-off is to use smoothing 
towards the neighboring frequency bins as well. Weighting causes leakage, so even a 
single sinusoidal signal will be represented in several frequency bins. Usually just a 
moving average of three to seven frequency bins does a sufficient job to stabilize the 
rough noise model, used in VADs. 

4.8.3 Limiting 

For robustness to accidental spikes and errors, the values of the measured parameters 
should be kept within reasonable limits. The standard deviations cannot go below 
certain minimal values. The mean parameter in a gamma distribution should not go 
below the standard deviation of the Gaussian noise. Every probability has values 
between 0 + e and I - e. Likelihood should be limited to be above 0 + e and some 
certain number that is not too big - 1000 is a good practical value. Good limitation for 
signal-to-noise ratios of any kind is in the range - 60 dB to + 60 dB. Suppression gains 
should be limited to the range 0-1. Proper limiting of the value range in the real-time 
execution code allows the algorithm to be more robust to unexpected input data or 
computational errors. 

4.8.4 Minimal Gain 

Zeroing some frequency bins is never a good idea. It is a harsh operation for the sound 
which results in musical noise and unpleasant distortions for the human ear. The 
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0 dB the improvementin the intelligibility decreases to ~7%. The major source of
potential problemsin this approachis the classifier.

Manyresearcherslater tried either to reduce the classification error, or to synthesize
more robustfilters to such errors. Algorithms for precise measurementandtracking of
the pitch frequency and synthesis of the proper combfilters proved to bevery efficient
for denoising of the vowels.

In a later work, Ephraim and Cohen [36] proposedparallel processing, based on the
probability of classification. In general the processing model with certain probability
of speech presence is a multi-class model. From this perspective a useful modeling
apparatus can be a hidden Markovprocess (HMP). The classesare not a-priori defined,
but they are created in a learning process from training data of clean speech signals.It is
in fact a clustering process that can be performed by using vector quantization
techniques. Each class may contain spectrally similar vectors of the signal, which
can be parameterized as an autoregressive process. Transformations from one spectral
prototype to another can be modeled by the HMP. Thevariousnoises can be processed
in a similar manner. If we have M speech classes and N noise classes, then we have
MxN combinations; that is, estimators for enhancing the speech signals. For a
given sequence of noise speech vectors Y'= fy; yr). 1, ie yr") and the
probability p(i, IY’) of the signal being in state i and the noise being in a state
j given Y’, the MMSEestimator of the clean speech signal x is

M

E{X'¥"} = S> Sp((i,/) XQE{X'|YS, (i,/)}. (4.87)
j=1i juz]

4.8 Practical Tips and Tricks for Noise Suppression

While the mathematical models abovearecorrect and valid to describe the behavior of

captured and processedsignals, there are some additional tips and tricks that can and
should be used for successful implementationofa real noise suppression and reduction
system. Audio processing is a science, an art, and a craft. So far we have covered the
science part and touched on the art part when talking about human perception. This
section is aboutthe craft.

4.8.1 ModelInitialization and Tracking

Each time the processingstarts there can be different noise levels, or rotational speed.
Using somedefault initial value and adaptation equations like Equation 4.63 leadsto
slow adaptation in the initial phase. On the other hand, decreasing the time constants
for faster adaptation leads to less stable values of the model. To adapt quickly at the
beginning andkeepthevaluesstable during normal working, we can useavariabletime
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constant in the initial phase:

[yim if n=]

] ss ] T
1 Jae -yMP if leneae) — ( a ni T (4.88)

AV ited oF 2 Ta(-Z)as + IR| for n2>—.
In the first frame weinitialize with the value of the current frame; the second frameis
the average betweenthefirst and second frames; and so on until we reach the numberof
frames big enough to use as an adaptation factor T/tg.

4.8.2 Averaging in the Frequency Domain

The noise amplitude in eachofthe frequencybins varies substantially. To build a more
precise model we should increase the adaptation time constant. Unfortunately this
leads to slower adaptation to changesin the noise. A goodtrade-off is to use smoothing
towards the neighboring frequency bins as well. Weighting causes leakage, so even a
single sinusoidal signal will be represented in several frequency bins. Usually just a
moving average of three to seven frequency bins doesasufficient job to stabilize the
rough noise model, used in VADs.

4.8.3 Limiting

For robustness to accidental spikes and errors, the values of the measured parameters
should be kept within reasonable limits. The standard deviations cannot go below
certain minimal values. The mean parameter in a gammadistribution should not go
below the standard deviation of the Gaussian noise. Every probability has values
between 0 + e and 1 —«. Likelihood should belimited to be above 0 + e¢ and some

certain numberthatis not too big — 1000 is a good practical value. Good limitation for
signal-to-noiseratios of any kind is in the range —60 dB to 4-60 dB. Suppression gains
should be limited to the range 0-1. Proper limiting of the value rangein the real-time
execution code allows the algorithm to be more robust to unexpected input data or
computationalerrors.

4.8.4 Minimal Gain

Zeroing some frequencybinsis never a good idea.It is a harsh operation for the sound
which results in musical noise and unpleasant distortions for the human ear. The
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background noise in the silent segments is distorted and chopped. To prevent 
this from happening, a minimal gain should be applied after estimating the final 
suppression rule: 

(11) (k) ( ) (n) 
Hrinnl = 1-Gmin Hk + Gmin· (4.89) 

The most frequently used value for the minimum gain is 0.1, which limits the 
suppression to 20 dB. The level of musical noises is negligible and the background 
noise, while suppressed, is not distorted. 

4.8.5 Overflow and Underflow 

The noise suppression and all other audio processing algorithms are usually imple­
mented a real-time processing modules. There is no time to handle all potential 
overflow and underflow exceptions; this is why proper measures to avoid them should 
be taken. Earlier in this chapter it was said that, in real-time implementations, 1/x 
becomes 1/(x + e ), where .ds a small positive number. The same is true for computing 
logarithms (log-likelihood, for examp]e). Then log (x) becomes log (max (e, x)) or 
log (x + e). In many ca e we compute exponents and large arguments can cause 
exceptions or undefined results. For double precision, floating-point numbers exp (x) 
overflows when x is slightly greater than 700. For secure execution we should use 
exp (min (700, x)). 

4.8.6 Dealing with High Signal-to-Noise Ratios 

The noise suppression is a trade-off between suppression and introduced distortions. 
Most of the algorithms are optimized for SNRs of 5-15 dB - the most common when 
capturing sound in homes offices, and conference rooms. This means that these 
algorithms are suboptimal for high-quality input when the SNR is 30-50 dB. This can 
happen when using a headset, for example. Then the noise-suppression algorithms just 
introduce distortions, decreasing the actual quality and the overall MOS results. In such 
cases, instead of making the algorithms more complex, it is a better idea just to turn the 
noise suppression off. 

The noise suppressor has a signal/pause classifier anyway. For each frame we can 
compute the level and add it to our estimation of the signal or of the noise using a certain 
time constant. With the signal and noise level estimations, computing the average SNR 
is trivial. If it is high enough we can tum off the noise suppression. Actually the 
suppression rules work well under very high SNR conditions. They stay around l and 
do not harm the signal quality. 

The suppression rule modifier for the uncertain presence of a speech signal (see 
Equation 4.54) is usually the source of increased distortions under high SNR condi­
tions. In most cases it makes sense to turn only this feature off. This should be done with 
a certain hysteresis; that is, turn the feature off when the average SNR goes above a high 
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threshold and turn it back on when the average SNR goes below a lower threshold. 
Typical values for these two thresholds are 20 dB and 25 dB average SNR. 

4.8. 7 Fast Real-time Implementation 

The processing algorithms described so far require computation of many probabilities, 
exponents, gamma functions, and so on. While the processors used in modern personal 
computers have the integrated ability to work with floating-point numbers, the 
operations they can do beyond the four arithmetic operations are limited to exponent 
and tangent. This means that everything else has to be computed in a programmatic 
way. Not many digital signal processors have the capability to perform operations with 
floating-point numbers at all. This makes perlormance optimizations critical for the 
success - and even applicability - of given algorithms. 

Fortunately, the majority of these computations can be perlormed off-line and kept 
as a set of tables. Most of the distributions (Gaussian, gamma, Laplace) can be 
tabulated with steps. In real time, a linear interpolation can be used to obtain the exact 
value. In many cases the nearest-neighbor algorithm provides sufficient precision. The 
suppression rule itself is a function of two parameters. It can be discretized as a matrix, 
computed off-line and used in real time. This can save computations and make the 
algorithm run faster. 

Of course, before going to performance optimization of the execution code, the 
normal software engineering rules should be followed. The process starts with_ 
perlormance profiling, which provides the time used by the CPU to execute any of 
the functions in the code. Then the performance optimization starts with the functions 
with highest execution times. It is pointless to optimize the performance of a function 
or operation that takes 0.1 % of the CPU time; even completely removed it will reduce 
the execution time only by 0.1 %. 

In many cases the most computationally expensive part is the conversion to the 
frequency domain and back- that is, FFf and iFFT functions. From this perspective, 
the manufacturer of most DSPs provide implementation of the FFT algorithm 
optimized for their processor. Using frame size, which is a power of two, decreases 
the execution time of these two operations as well. 

4.9 Summary 

This chapter has discussed algorithms and approaches for single-channel noise 
reduction. Clean signal estimation from the mixture of signal and noise is a gain­
based process and the algorithms belong to the group of noise suppressors. The 
process applies a time-varying, real-valued gain to each frame in the frequency 
domain. The computation of this gain, called a suppression rule, is based on the 
statistical parameters of both the noise and clean signal. The suppression gain is a 
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function of the a-priori and a-posteriori SNRs and is optimal in one way or another: 
the MMSE of the magnitudes, ML, and so on. Applying the suppression rule 
reduces the noise component, but introduces distortion and artifacts, called musical 
noise. 

An important part of each noise suppressor is the voice activity detector. In its 
simplest form this is a two-way classifier: the current audio frame contains only noise, 
or it is a mixture of noise and speech. The most complex VADs provide a speech 
presence probability for each frequency bin. In some cases this probability is used to 
modify the uppression rule - the uncertain presence of speech signal approach. 

Part of the noise suppression algorithm builds the noise and the speech models. 
Based on the V AD output, the noise model variance is updated from frame to frame. For 
estimation of the speech signal statistical parameters, the decision-directed approach is 
commonJy used, which assumes high correlation of the speech ignal in consequent 
frames and uses the previous output frame to estimate the a-priori SNR. 

The goal of the noise suppressor is not to remove the noise, but to make the output 
sound better to humans. Therefore optimizing the noise suppressor as a system targets 
maximization of the MOS results, not improvement in the SNR. 

To reduce distortion and artifacts, other approaches are used such as adaptive noise 
cancellation (with a secondary channel for capturing just the noise) or a stationary­
tones canceller (which estimates and subtracts the non-random components of the 
noise). A separate group are perceptually based noise suppressors, which use the 
masking effects in human hearing to suppress less noise - the parts we cannot bear 
anyway. 

The noise-reduction system in modem communication devices is a real-time 
running complex program. It can and should be optimized for better initialization 
and tracking, faster adaptation, and faster execution. 

In general, noise reduction is a science, an art, and a craft. It is a science because it 
deals with mathematical models and has reproducible results. It is an art because it is 
about the human perception of sounds, where not everything can be modeled with 
numerical models. It is a craft because there arc always better implementations of the 
same algorithm, some "secret sauce" which makes the entire system work well. This 
chapter has discussed all three aspects of good noise-reduction systems. 
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5 
Sound Capture with Microphone 
Arrays 

This chapter is dedicated to sound capture with systems of multiple microphones, 
called "microphone arrays." The sound propagation itself is a three-dimensional 
process, so that capturing it in one single point, with one microphone, is not sufficient to 
deal with 3D processes like ambient noise, reverberation, and multiple sound sources. 
Using several closely positioned microphones allows listening to the sound coming 
from one direction, while suppre sing the noises and interference sounds coming from 
other directions. In addition, microphone arrays allow estimation of the direction of 
arrival - that is, sound source localization. 

There are two major groups of microphone-array processing algorithms: time­
invariant and adaptive. The first are optimal under the assumption of isotropic ambient 
noise, and they are fast and simple to implement for working in real time. Adaptive 
processing algorithms shine when we have point noise sources in low reverberant 
conditions. They require more CPU resources and are more complex to implement. 
Both approaches assume identical capturing channels and are affected by mismatch, 
caused mainly by the manufacturing tolerances of the microphones used. This is 
handled by creating a robustness to manufacturing tolerances in the algorithms, by 
manufacturing time-calibration procedures, or by real-time autocalibration algo­
rithms. Multiple channels allow the creation of multichannel noise suppressors and 
spatial filters, which further improve the quality of the sound and increase suppression 
of unwanted sounds and noise. 

5.1 Definitions and Types of Microphone Array 

5.1.1 Transducer Arrays and their Applications 

The concept of using a set of antennas for directional radio transmission and receiving 
has been known since World War 1, but was employed in practice in radars used during 
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5.6.4 Adaptive Algorithms for Microphone Arrays - Summary 

Adaptive array algorithms were initially designed for antenna arrays. There they are 
considered more efficient and suppress more noise due to the fact that they place nulls 
towards the undesired signal sources. In audio, the efficiency of the adaptive micro­
phone array algorithms is reduced mostly owing to the reverberation. In reverberant 
conditions there are no point sources - desired and undesired sound sources are 
smeared. At a critical distance where the received energy directly from the sound 
source equals the reverberant energy, even if we place a perfect null towards the 
unwanted sound source the best we can achieve is a 6 dB attenuation- the direct path. 
The reverberation is practically isotropic ambient noise. For most rooms and offices the 
critical distance is close to the work distance for hands-free sound capture - around 
1.5 m. From this perspective, an isotropic ambient noise model is closer to reaHty than a 
point noise source model. The time-invariant beamformers were optimal exactly for 
isotropic ambient noise. Under these conditions, a time-invariant beamformer with 
perfect channel matching is as efficient as an adaptive beamfonncr; that is, the adaptive 
beamformer replaces the autocalibration procedure. Still, the adaptive beamformers 
provide slightly better results in a reverberant environment, with the price ofincreased 
CPU and memory use. 

5.7 Microphone-array Post-processors 

Both time-invariant and adaptive beamformers are linear processors and compute the 
output signal as a linear combination of the input signals. Even if the weights of 

Sound Capture with Microphone Arrays 237 

different microphones change, which is the case with adaptive beamformers, they do it 
much slower than the audio frame rate. Microphone-array post-processors apply real­
valued gain which varies from frame to frame in the same way as the static noise 
suppressors do. The difference is that the gain estimation is based on the additional 
information about the positions of the desired and undesired sound source, which we 
have from the multiple channels and eventually the microphone positions. 

5.7.1 Multimicrophone MMSE Estimator 

Assume that the source signal Sc(j) in Equation 5.27 has variance lc(f). The noise 
contains correlated and uncorrelated components, with spectral matrix presented in 

Equation 5.42: 

cf.>N'N' (f) = cf.>NN(/) + ANc(/)1 (5.94) 

where ).NcCf) is the variance of the uncorrelated noise and (f)N,./._f) is the spectral 
matrix of the correlated (spatial) noise. Then the spectral matrix of the input signals is 

(5.95) 

Let the estimation of the desired signal be provided by a matrix processor H(f), which 
is an M-element complex vector. The derivation provided here follows [2]. Then the 

mean square error is 

(5.96) 

Taking the complex gradient with respect to HH(f) and setting the result equal to zero 

gives 

B[Sc(f)XH(J)] - H(J)E[X(f)X8 (f)] = 0 
or cf.>cfXH(/) = Ho(f)cf.>xx(f). 

(5.97) 

From Equation 5.27 and the assumption for uncorrelated signal and noise compo­

nents: 

cf.>dXH(/) = Ac(f)D~(J). (5.98) 

This leads to the solution for the optimal MMSE estimator: 

Ho(!)= lc(f)D~(f)cf.>;; (f). (5.99) 
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5.6.4 Adaptive Algorithms for Microphone Arrays — Summary

Adaptive array algorithms were initially designed for antenna arrays. There they are
considered more efficient and suppress more noise due to the fact that they place nulls
towards the undesired signal sources. In audio, the efficiency of the adaptive micro-
phonearray algorithms is reduced mostly owing to the reverberation. In reverberant
conditions there are no point sources — desired and undesired sound sources are
smeared. At a critical distance, where the received energy directly from the sound
source equals the reverberant energy, even if we place a perfect null towards the
unwanted sound source the best we can achieveis a 6 dB attenuation — the direct path.
The reverberation is practically isotropic ambientnoise. For most roomsandoffices the
critical distance is close to the work distance for hands-free sound capture — around
1.5 m. From this perspective, an isotropic ambient noise modelis closerto reality than a
point noise source model. The time-invariant beamformers were optimal exactly for
isotropic ambient noise. Under these conditions, a time-invariant beamformer with
perfect channel matchingis as efficient as an adaptive beamformer;thatis, the adaptive
beamformerreplaces the autocalibration procedure. Still, the adaptive beamformers
provideslightly better results in a reverberant environment, withtheprice of increased
CPU and memory use.

5.7 Microphone-array Post-processors

Both time-invariant and adaptive beamformersare linear processors and compute the
output signal as a linear combination of the input signals. Even if the weights of
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different microphones change,whichis the case with adaptive beamformers,they do it
muchslowerthan the audio framerate. Microphone-array post-processors apply real-
valued gain which varies from frame to frame in the same way asthe static noise
suppressors do. The difference is that the gain estimation is based on the additional
information aboutthe positions of the desired and undesired sound source, which we
have from the multiple channels and eventually the microphonepositions.

5.7.1 Multimicrophone MMSEEstimator

Assumethat the source signal S,(f) in Equation 5.27 has variance 4,(f). The noise
contains correlated and uncorrelated components, with spectral matrix presented in
Equation 5.42:

yw (f) = Pyy(f) + Anc(fI (5.94)

where Ayc(f) is the variance of the uncorrelated noise and Py(f) is the spectral
matrix of the correlated (spatial) noise. Then the spectral matrix of the inputsignalsis

@yy(f) = Ac(f)Dc(f)DB(f) + Ouw(f): (5.95)

Letthe estimationof the desired signal be provided by a matrix processor H(f), which
is an M-element complex vector. The derivation provided here follows [2]. Then the
mean square error is

& E{|Se(f)-H(f)X(A)I"} 06= E{(Sef)-HU)X(/))(Si(f)-X"(BE(S))}- es)
Taking the complex gradient with respect to H"(f) andsetting the result equal to zero
gives

E[S.(f)X"(f)]|-H(/)E[X(f)X"(f)] = 0 (5.97)
or @ay«(f) = Ho(f)Pxx(/).

From Equation 5.27 and the assumption for uncorrelated signal and noise compo-
nents:

Dzyu(f) = Ac(fDE(f). (5.98)

This leads to the solution for the optimal MMSEestimator:

Ho(f) = dc(f)DE(A)®y (/)- (5.99)
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On inverting Equation 5.95 using the matrix inversion formula, we obtain 

(5.100) 

where the frequency indices are suppressed for simplicity. After defining 

A- 1(!) = D~(f)fl>-;,,¼,(f)Dc(f) (5.101) 

and on substituting (5.99) in (5.100) we obtain the optimal solution: 

(5.102) 

This MMSE processor is practically a multichannel Wiener filter. Its block diagram is 
shown in Figure 5.34. Taking a closer look, it is easy to see that it consists of an 
MVDR beamformer - compare the right part of Equation 5.102 with Equation 5.38, 
and something close to the single-channel Wiener filter, described in Chapter 4. The 
noise variance Ad(f) is computed by A(/), defined in Equation 5.101. ln this chapter 
we ignore the beamformer and focus on the post-processor only. 

X(/) 

MVDR 
beamformer Wiener filter 

Figure 5.34 Multirnicrophone MMSE estimator 

S(f) 

5. 7.2 Post-processor Based on Power Densities Estimation 

Equation 5.102 provides the optimal solution under the assumption of the known 
desired signal variation Ac(/) and the noise cross-power matrix ¢'xx(/). Estimation of 
these is not trivial in real conditions, where all we know is the input signals and the 
microphone-array geometry. One of the first practical applications of post-processor 
for microphone arrays was published by Zelinski [23]. Calculating the auto- and cross­
spectral densities of the aligned (i.e., properly delayed) channels i and} leads to (all 
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frequency indices omitted for simplicity) 

Zelinski makes the following assumptions: 
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(5.103) 

(5.104) 

• The signal and noise are uncorrelated ( <PN,S = 0, 'r/i), which is in general true unless 
we do not consider the early reverberation of the desired signal as noise. 

• The noise power spectrum is the same on all sensors, (<PN,N, = 'PNN, 'r/i), which 
restricts the algorithm to microphone arrays with the same type of sensors. 

• The noise is uncorrelated between sensors, (<PN,N, = 0, Vi =f j), which again 
excludes the early reverberation. 

Under these assumptions, Equations 5 .103 and 5 .104 are reduced to 

<Px-x- = <Pss· 
' J 

They can be estimated using a standard smoothing in time: 

A(n) ~(n- 1) * 
<Px-x-= (1-a)cfix-x- +ax,xJ. 

I J I J 

(5.105) 

(5.106) 

(5.107) 

where a = Th, T is the frame direction, and t is the update time constant. Then the 
numerator and denominator in the post-processor part of Equation 5.102 can be 
estimated more robustly by averaging the spectral densities over all the possible 
channel combinations, resulting in the post-filter estimator (frame indices omitted for 
simplicity): 

M-1 M 

M(J - 1) ~ ~ m{ c/>x;x) 
A i=l j = I+ 1 

llpp = --------­M A 

ti ~<Px,x, 
i= I 

(5.108) 

The real operator m{ •} is used because the tenn, estimated in the nominator, is 
required to be a real. 

The Zelinksi post-processor is a good approximation and works well for the lower 
part of the frequency band, where the assumptions above hold better, but it is less 

,, 
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On inverting Equation 5.95 using the matrix inversion formula, we obtain

Oy! = Oy), — DyADe(1 + DEOiyAcD-) ‘DEBTiy) (5.100)

where the frequency indices are suppressed for simplicity. After defining

A (f) = DE(A)®yv(f)D-(F) (5.101)

and on substituting (5.99) in (5.100) we obtain the optimal solution:

de _Hof) =5MDE: (5.102)
This MMSEprocessorispractically a multichannel Wienerfilter. Its block diagram is
shown in Figure 5.34. Taking a closer look,it is easy to see that it consists of an
MVDRbeamformer — compare the right part of Equation 5.102 with Equation 5.38,
and something close to the single-channel Wienerfilter, described in Chapter 4. The
noise variance A4(f) is computed by A(f), defined in Equation 5.101. In this chapter
we ignore the beamformer and focus on the post-processor only.

MVDR
beamformer Wiener filter

X(f)

 
D'o,f) Af)Ww(f)=——_ee SA)me Di (APpw(PDP) DF+M

Figure 5.34 Multimicrophone MMSEestimator

5.7.2 Post-processor Based on Power Densities Estimation

Equation 5,102 provides the optimal solution under the assumption of the known
desired signal variation A.(f) and the noise cross-power matrix ®yx(f). Estimation of
theseis nottrivial in real conditions, where all we knowis the input signals and the
microphone-array geometry. Oneofthe first practical applications of post-processor
for microphonearrays was published by Zelinski [23]. Calculating the auto- and cross-
spectral densities of the aligned (i.e., properly delayed) channels i and/ leadsto (all
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frequency indices omitted for simplicity)

dbx,x, = bss + bun, + 2R{G5n,} (5.103)

dxx, = bss + byw, + Psu, + Ons: (5.104)

Zelinski makes the following assumptions:

¢ The signal and noise are uncorrelated (#y,5 = 0, Vi), which is in general true unless
we do not consider the early reverberation of the desired signal as noise.

e The noise power spectrum is the same onall sensors, (by,y, = Pyn, Vi), which
restricts the algorithm to microphonearrays with the same type of sensors.

* The noise is uncorrelated between sensors, (dy,y, =0,Vi A j), which again
excludes the early reverberation.

Under these assumptions, Equations 5.103 and 5.104 are reduced to

dbx.x, = bss + Onn, (5.105)

bxx, = Pss- (5.106)

They can be estimated using a standard smoothingin time:

a" a n-1) *by, = (1-a)by", + aX;X; (5.107)
where a =7/t,T is the frame direction, and t is the update time constant. Then the
numerator and denominator in the post-processor part of Equation 5.102 can be
estimated more robustly by averaging the spectral densities over all the possible
channel combinations, resulting in the post-filter estimator (frame indices omitted for
simplicity):

s M-1 M “i:
monyds Moxa}

Hpr = — i (5.108)
ML PXX,

The real operator R{-} is used because the term, estimated in the nominator,is
required to beareal.

The Zelinksi post-processor is a good approximation and works well for the lower
part of the frequency band, where the assumptions above hold better, but it is less



7 
Acoustic Echo-reduction Systems 

Acoustic echo-reduction systems have been an integral part of telephones from very 
early, and the quality of the echo reduction is critical for the performance of every 
communication system that works in speakerphone mode. Acoustic echo cancellation 
(AEC) was one of the earliest applications of adaptive filters and one of the most 
studied. The purpose of the acoustic echo canceller is to remove from the microphone 
signal the sounds from the local loudspeaker. This is done by employing an adaptive 
filter to estimate the transfer function between the loudspeaker and the microphone. 
The adaptive filter processes the signal sent to the loudspeakers. Its output is subtracted 
from the microphone signal. This is why in many cases the entire acoustic echo­
reduction system is called an acoustic echo canceller. 

However, we shall see later in this chapter that AEC is just one of several processing 
stages. Owing to noise and reverberation, the transfer function estimation is not exact 
and the adaptive filter cannot remove completely the captured loudspeaker sound, 
called "echo." The second stage in acoustic echo-reduction systems is a suppression­
based non-linear processor. It suppresses the residual energy similarly to a noise 
suppressor - by applying a time-varying real gain to each frequency bin. 

Removing the captured sound from stereo and surround-sound audio systems is 
challenging owing to the non-uniqueness of the solution for the transfer function. 
There are several methods to mitigate this problem. In many practical echo-reduction 
systems additional blocks are used to quickly handle the case when feedback occurs, to 
track sampling rate drifts, and so on. They are described towards the end of the chapter. 

7.1 General Principles and Terminology 

7.1.1 Problem Description 

The effect of sound reflection from walls and objects is called "reverberation." A 
human voice recorded in a studio with a closely positioned microphone has no 
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reverberation. It sounds unnatural and usually is called "dry." With some reverberation 
the human voice sounds warmer and more natural. Echoes are distinct copies of the 
reflected sound. Humans can hear echoes when the difference between arrival times of 
the direct signal and the reflection is more than 0.1 s, but even with differences of 0.05 s 
the audio sounds echoic. In 0.1 s the sound travels 34.3 m, which means that if the 
object reflecting the sound is further away than 17 m (the sound travels to the object and 
back) the reflection will be heard as echo. Acoustic echo-reduction does not suppress 
the echoes in the room. It actually suppresses the effect when the local sound source is 
captured by the microphone, transmitted through the communication line, reproduced 
by the loudspeaker in the receiving room, captured by the microphone there, returned 
back through the communication line, reproduced from the local loudspeaker, and so 
on. This creates an echoic sound and in some cases causes feedback - that is, the entire 
system converts to a generator, reproducing an annoying constant tone. In the context 
of acoustic echo-cancellation, echo is the sound from the local loudspeaker captured by 
the local microphone. 

These echo effects were a problem in telephones even before their official discovery. 
The first prototypes used four wires. They were practically two independent sets, each 
consisting of microphone, battery, two wires, and headphone. The patent application 
filed by Antonio Meucci on 28 December 1871 uses four wires in order to eliminate the 
"local effect," which is nothing but hearing your own voice in the headset. After failing 
to pay the patent application fee, two years later Meucci abandoned his patent 
application. This allowed Alexander Graham Bell to file, on 14 February 1876, his 
patent application for the invention we call today the "telephone." Later, the four wires 
were replaced by two wires; that is, the same two wires are used to carry the electrical 
signal from both sides. The first telephones actually used one wire and closed the circuit 
through the ground in a similar way that telegraphs were doing at that time. Mixing the 
incoming and outgoing signals caused problems with the "local effect," which was 
resolved by using a Wheatstone bridge to separate the two signals in telephone 
circuitry. As the telephone line impedance participates in the bridge, any change in the 
impedance impairs the suppression of the local effect. With increasing length of the 
telephone lines there appeared signal reflections when the impedances of the line and 
the telephone were not balanced. This required the presence of an echo suppressor 
in each telephone, implemented initially as passive circuitry that inserted signal losses 
(a pair of diodes which open when signal levels exceed a certain threshold). Later this 
circuitry was replaced by the "line echo canceller" (sometimes called a "network echo 
canceller"). Since the mid-1960s the line echo canceller has been implemented as an 
electronic adaptive filter. When speakerphones appeared they required suppression of 
the acoustic echo as well. This block is called the acoustic echo canceller and is the 
subject of this chapter. 

The theory of acoustic echo cancellation was initially developed by AT&T Bell 
Labs [1] but was deployed only in the late 1970s owing to performance limitations of 
electronic blocks of that time. They become cost-effective in the 1990s, and currently 
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adaptive echo cancellers are part of practically every mobile or stationary telephone 
with speakerphone capabilities. 

7.1.2 Acoustic Echo Cancellation 

In telecommunications, near-end denotes our end of the communication chain: 
microphone, loudspeaker, and sound. On the other side are the far-end microphone, 
loudspeaker, and sound. The schematic diagram is shown in Figure 7 .1. The near-end 
speaker talks to the microphone and the audio signal is sent to the far-end room. There 
the near-end speaker's voice is reproduced by the far-end loudspeaker. The far-end 
microphone captures the sound from this loudspeaker and the voice of the far-end 
speaker. When both the local and the remote speakers talk simultaneously we have so­
called double talk. The signal captured by the far-end microphone is transmitted through 
the communication line and reproduced by the near-end loudspeaker. Without acoustic 
echo cancellers the near-end speaker will reproduce the delayed and decayed copy of the 
near-end speech, which will be captured by the near-end microphone and the entire 
process will be repeated many times, causing annoying echoes. This system with 
feedback under certain conditions can become unstable and convert itself into a 
generator of a specific audio frequency, making communication impossible. Both near­
and far-end stations have to have acoustic echo cancellers to remove the sound captured 
from the local loudspeakers. Then each station will transmit only the local voice. This 
breaks the feedback chain, the echoes are gone, and audio feedback is not possible. 

Near-end room 

near-end--~ 

near-end 
speaker 

microphone 

near-end 
loudspeaker 

Far-end room 

far-end 
loudspeaker 

• 
far-end 
microphone 

Figure 7.1 Speakerphone telecommunication system 

The schematic diagram of the acoustic echo canceller is shown in Figure 7.2. The 
far-end signal z(t) is sent to the loudspeaker. The microphone captures this signal 
convolved with the impulse response of the transfer path speaker-microphone h(t). It 
captures the local voice s(t) and noise n(t). The transfer path speaker-microphone is 
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reverberation. Jt sounds unnatural and usually is called “dry.” With some reverberation
the human voice sounds warmer and more natural. Echoes are distinct copies of the
reflected sound. Humanscan hear echoes whenthe difference between arrival times of

the direct signal andthereflection is more than 0.1 s, but even with differences of 0.05 s
the audio sounds echoic. In 0.1s the sound travels 34.3 m, which meansthat if the

objectreflecting the soundis further away than 17 m (the soundtravelsto the object and
back)the reflection will be heard as echo. Acoustic echo-reduction does not suppress
the echoes in the room.It actually suppresses the effect when the local sound sourceis
captured by the microphone,transmitted through the communicationline, reproduced
by the loudspeakerin the receiving room, captured by the microphonethere, returned
back through the communication line, reproduced from the local loudspeaker, and so
on. This creates an echoic sound and in somecases causes feedback — thatis, the entire

system converts to a generator, reproducing an annoying constanttone. In the context
of acoustic echo-cancellation, echois the sound from the local loudspeaker captured by
the local microphone.

These echo effects were a problem in telephones even beforetheirofficial discovery.
The first prototypes used four wires. They werepractically two independentsets, each
consisting of microphone,battery, two wires, and headphone. The patent application
filed by Antonio Meucci on 28 December 1871 uses four wires in orderto eliminate the
“local effect,” which is nothing but hearing your own voice in the headset. Afterfailing
to pay the patent application fee, two years later Meucci abandoned his patent
application. This allowed Alexander Graham Bell tofile, on 14 February 1876, his
patent application forthe invention wecall today the “telephone.”Later, the four wires
were replaced by twowires;that is, the same twowiresare usedto carry the electrical
signal from bothsides. Thefirst telephonesactually used one wire and closedthe circuit
through the groundin a similar way that telegraphs were doing atthat time. Mixing the
incoming and outgoing signals caused problems with the “local effect,” which was
resolved by using a Wheatstone bridge to separate the two signals in telephone
circuitry. As the telephone line impedanceparticipates in the bridge, any changein the
impedance impairs the suppression of the local effect. With increasing length of the
telephonelines there appeared signal reflections when the impedancesofthe line and
the telephone were not balanced. This required the presence of an echo suppressor
in each telephone, implementedinitially as passive circuitry that inserted signal losses
(a pair of diodes which open whensignal levels exceed a certain threshold). Later this
circuitry was replacedby the “line echo canceller” (sometimescalled a “network echo
canceller”). Since the mid-1960s the line echo canceller has been implemented as an
electronic adaptivefilter. When speakerphones appeared they required suppression of
the acoustic echo as well. This block is called the acoustic echo canceller andis the

subject of this chapter.
The theory of acoustic echo cancellation wasinitially developed by AT&T Bell

Labs[1] but was deployed only in the late 1970s owing to performancelimitations of
electronic blocksofthat time. They becomecost-effective in the 1990s, and currently
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adaptive echo cancellers are part of practically every mobile or stationary telephone
with speakerphonecapabilities.

7.1.2 Acoustic Echo Cancellation

In telecommunications, mear-end denotes our end of the communication chain:

microphone, loudspeaker, and sound. On the other side are the far-end microphone,
loudspeaker, and sound. The schematic diagram is shown in Figure 7.1. The near-end
speakertalks to the microphoneandthe audiosignalis sent to the far-end room. There
the near-end speaker’s voice is reproduced by the far-end loudspeaker. The far-end
microphone captures the sound from this loudspeaker and the voice of the far-end
speaker. When both the local and the remote speakers talk simultaneously we have so-
called double talk. The signal capturedby the far-end microphoneis transmitted through
the communication line and reproduced by the near-end loudspeaker. Without acoustic
echo cancellers the near-end speakerwill reproduce the delayed and decayedcopyofthe
near-end speech, which will be captured by the near-end microphoneandthe entire
process will be repeated many times, causing annoying echoes. This system with
feedback under certain conditions can become unstable and convert itself into a

generatorof a specific audio frequency, making communication impossible. Both near-
and far-endstations have to have acoustic echo cancellers to remove the sound captured
from the local loudspeakers. Then each station will transmit only the local voice. This
breaks the feedback chain, the echoes are gone, and audio feedbackis not possible.

Near-end room Far-end room
Communication

{| g(t)
far-end

near-end ———__n(t) at)
noise 0we

s(t) microphone loudspeaker

A(t) 2(t)

far-end
near-end ;

microphonenear-end loudspeaker
speaker

 
Figure 7.1 Speakerphone telecommunication system

The schematic diagram of the acoustic echo canceller is shown in Figure 7.2. The
far-end signal z(t) is sent to the loudspeaker. The microphone captures this signal
convolved with the impulse response of the transfer path speaker-microphoneA().It
captures the local voice s(t) and noise n(t). The transfer path speaker-microphoneis
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Figure 7.2 Schematic diagram of acoustic echo canceller 

omitted for simplicity, as we will not deal with it in this chapter. The microphone signal 
is 

x(t) = z(t)*h(t) +s(t) +n(t) . (7.1) 

A The acoustic echo canceller estimates the transfer path loudspeaker-microphone 
h ( t) and subtracts the estimated portion of the loudspeaker signal from the microphone 
signal. At the acoustic echo canceller output we have 

y(t) = x(t) -z(t)*h(t) 

= z(t)*h(t)-z(t)*h(t) +s(t) +n(t). 
(7.2) 

As usual we will illustrate the algorithms with processing in the frequency domain. 
Then the convolution converts to multiplication and we have 

(7.3) 

The modeling described so far assumes that the audio frame is longer than the 
reverberation process, which is incorporated in h(t), and we model it with one tap filter 
for each frequency bin. The reverberation in a normal office or conference room lasts 
200-400 ms to the moment that the reverberation energy goes below -60 dB. On the 
other hand, processing in the frequency domain and the overlap-add process, described 
in Chapter 2, adds one frame delay, increasing the latency of the entire system. A 
latency above 100 ms in communications is considered inconvenient for users, and a 
latency above 250 ms breaks the dialog. In most cases the overall latency of the 
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communication channel should be kept below 50 ms. This leaves less than 20 ms for the 
audio frame; in many cases the audio frame duration is 10 ms. At 16 kHz sampling rate 
this is a 160-sample frame length. To accommodate the longer impulse response, the 
acoustic echo canceller uses a finite impulse response (FIR) filter with multiple taps for 
each frequency bin. This converts Equation 7 .3 to 

L-I L-I 
y(n) _ '°"z(n-i) H(n-i) _ '°"z(n-i) iI(n-i) z(n) + S(n) + N(n) 

k -~k k ~k k k k k 
i=O i=O 
L-I 

_ "z(n-i) (H(n-l) _iI(n-1)) + s(n) +N(n) 
-~k k k k k 

i=O 

(7.4) 

where L is the number of taps in the FIR filter. Denoting 

Z (n) = [z(n) z(n-1) z(n-L+ l)]T 
k k ' k '· · ·' k 

H(n) = [H(n) H(n-I) H(n-L+ l)]T 
k k ' k '· · ·' k 

(7.5) 

X (n) = [X(n) X(n-1) X(n-L+ l)]T 
k k, k , ... , k 

the equation can be rewritten in vector form: 

y(n) - [H(n)]Tz(n)_[H(n)]Tz(n) +s(n) +N(n) 
k-k k k k k k· (7.6) . 

The total number of filter coefficients is K x L, where K is the number of frequency 
bins and L is the number of taps for each frequency bin. The goal of the acoustic echo 
canceller is to estimate these coefficients as close as possible to the actual transfer 
function and to track eventual changes. If someone moves in the room, or a door opens, 
the transfer function between the loudspeaker and the microphone will change. This 
requires the use of adaptive filters in the acoustic echo cancellation. 

7.1.3 Acoustic Echo Suppression 

If we have perfect estimation of the transfer function, the signal captured from the 
loudspeaker will be completely suppressed. Owing to the near-end noise, shorter filters 
than the actual reverberation, and estimation errors, a portion of the captured 
loudspeaker signal will remain. This portion is called the echo residual: 

(7.7) 

Assuming that the adaptive filtering did its best, whatever phase information is left 
behind will be very difficult to track. Then the way to reduce the residual is to use 
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Figure 7.2 Schematic diagram of acoustic echo canceller

omitted for simplicity, as we will not deal with it in this chapter. The microphonesignal
is

x(t) = z(t)*h(t) +.5(t) + n(t). (7.1)

The acoustic echo canceller estimates the transfer path loudspeaker-microphone
h(t) and subtracts the estimated portionofthe loudspeakersignal from the microphone
signal. At the acoustic echo canceller output we have

y() =x(1)=2(1)*h(2) ra
= 2(t)*h(t)—z(t)*h(t) +5(t) +n(t). ,

Asusual wewill illustrate the algorithms with processing in the frequency domain.
Then the convolution converts to multiplication and we have

Y= ZOHO2AM +s+
= 2(aAy”) +5+N. v2)

The modeling described so far assumes that the audio frame is longer than the
reverberation process, whichis incorporated in h(f), and we modelit with onetapfilter
for each frequency bin. The reverberation in a normaloffice or conference room lasts
200-400 msto the momentthat the reverberation energy goes below —60 dB. Onthe
other hand,processingin the frequency domain andthe overlap—add process, described
in Chapter 2, adds one frame delay, increasing the latency of the entire system. A
latency above 100 ms in communicationsis considered inconvenient for users, and a
latency above 250 ms breaks the dialog. In most cases the overall latency of the
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communication channel should be kept below 50 ms.This leaves less than 20 msfor the
audio frame; in many cases the audio frame duration is 10 ms. At 16 kHz samplingrate
this is a 160-sample frame length. To accommodate the longer impulse response, the
acoustic echo canceller usesa finite impulse response (FIR)filter with multiple taps for
each frequency bin. This converts Equation 7.3 to

£-1 L-1
gnc ( ee ( Va (n—i)1ESee He ZO +S.) +N

i m (7.4)
a, = ~ (n—1

=z(al A?) £50) +n
i=0

where L is the numberof taps in the FIR filter. Denoting

PPonesOP
BP = (epep,...ayr (7.5)
xP = eeapagOe

the equation can be rewritten in vector form:

ey (nt)yf? = OPAPP2+sp) +0. (7.6).

The total numberoffilter coefficients is K x L, where K is the numberoffrequency
bins and L is the numberoftaps for each frequency bin. The goal of the acoustic echo
canceller is to estimate these coefficients as close as possible to the actual transfer
function andto track eventual changes.Ifsomeone movesin the room,or a door opens,
the transfer function between the loudspeaker and the microphone will change. This
requires the use of adaptive filters in the acoustic echo cancellation.

7.1.3 Acoustic Echo Suppression

If we have perfect estimation of the transfer function, the signal captured from the
loudspeakerwill be completely suppressed. Owingto the near-end noise,shorterfilters
than the actual reverberation, and estimation errors, a portion of the captured
loudspeakersignal will remain. This portion is called the echo residual:

Rp) = 2) (Hf Ay’). (7.7)

Assumingthat the adaptive filtering did its best, whatever phase informationis left
behind will be very difficult to track. Then the way to reduce the residual is to use
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Figure 7 .3 Acoustic echo canceller and acoustic echo suppressor 

real-gain-based approaches similar to single-channel noise suppression (discussed in 
Chapter 4), as shown in Figure 7 .3. If we can estimate the amount of residual energy 

1mt) 12 in each frequency bin, then we can estimate a real-valued suppression gain Gi") 
such as 

YA(n) - G(n)y(n) ~ s(n) +N(n) 
k-kk~k k (7.8) 

that is optimal in one or another way. This technique is called acoustic echo 
suppression. The goal of the acoustic echo suppressor is to estimate the residual 
energy, to compute a suppression gain, and to apply it to the acoustic echo canceller 
output. It leads to improved suppression of the captured loudspeaker signal, but 
introduces distortion and artifacts typical of noise suppressors. 

7.1.4 Evaluation Parameters 

There is no way to optimize and tune the performance of any engineering system 
without specifying proper evaluation parameters. One commonly used parameter is the 
system distance [2]: 

v(n) = lOlog k - k ( I IH (n) H(n) 11 2) 

IO IIHkn)ll2 
(7.9) 

where 11·11 denotes the P-norm, IIH111lll 2 = (H111)fH1"l. This parameter measures the 
difference between the estimated and actual transfer functions. It is useful when the 
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real transfer function is known - usually when the acoustic echo canceller is evaluated 
with simulated signals. A smaller difference means better estimation. In some sources 
the same parameter is called "normalized misalignment" [3]. This parameter is 
suitable only for evaluation of acoustic echo cancellers. 

For evaluation of the residual energy, echo return loss enhancement (ERLE) is used. 
It is defined as 

(7.10) 

and is the ratio of the signal and residual energies. The residual can be measured 
directly only if there is no local speech and the noise level is very low. Corrections for 
the noise energy should be made if this is not the case. A higher ERLE means better 
echo suppression. 

One indirect parameter to measure the performance of an acoustic echo-reduction 
system is the perceptual sound quality. As discussed in Chapter 2, this is expressed 
with MOS points. Also, besides averaging the estimations from a large number of 
human listeners, the measurement can be done by using some of the algorithms for 
perceptual evaluation of sound quality. One of the standardized and frequently used 
algorithms is PESQ (perceptual evaluation of sound quality). It requires knowledge 
of the clean speech signal, which means that the voice of the local speaker should be 
recorded in parallel using a close-talk microphone. Another approach is a pre- . 
recorded speech signal to be reproduced by either a loudspeaker of a head-and-torso 
simulator. The latter is better as it will create more realistic reverberation for the 
local speech. 

An important part of the acoustic echo canceller e~atuation is the convergence time. 
This is the time for estimation of the new filters 11;1 after change in Hf') or at the 
beginning of the process. As the convergence process may be considered complete when 
the residual reaches the noise level, then it will depend on the noise level and on the 
magnitude of the loudspeaker signal. To eliminate these dependencies, the converging 
process is often modeled with an exponential curve and a single parameter - the time 
constant. 

7 .2 LMS Solution for Acoustic Echo Cancellation 

The block diagram in Figure 7 .2 shows a classic application of an adaptive filter. At 
each audio frame the input signals are processed with the current filter and then the 
filter coefficients are updated. One of the potential goals is to minimize the least 
mean-square error - the classic LMS adaptive filter [4]. The gradient of the mean­
square error is 
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Figure 7.3. Acoustic echo canceller and acoustic echo suppressor

real-gain-based approachessimilar to single-channel noise suppression (discussed in
Chapter 4), as shown in Figure 7.3. If we can estimate the amountof residual energy

)ae” |? in each frequencybin, then we can estimate a real-valued suppression gain Ge
such as

1 = Gyws +N (7.8)

that is optimal in one or another way. This technique is called acoustic echo
suppression. The goal of the acoustic echo suppressor is to estimate the residual
energy, to compute a suppression gain, and to applyit to the acoustic echo canceller
output. It leads to improved suppression of the captured loudspeaker signal, but
introduces distortion and artifacts typical of noise suppressors.

7.1.4 Evaluation Parameters

There is no way to optimize and tune the performance of any engineering system
without specifying proper evaluation parameters. One commonly used parameteris the
system distance [2]:

HA” 2Hy -H," | 79)Dp”) = te( jay”IP

where|l-II denotes the ?-norm, |” \|* = (HY) . This parameter measures the
difference between the estimated and actual transfer functions. It is useful when the
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real transfer function is known — usually whenthe acoustic echo canceller is evaluated
with simulated signals. A smaller difference meansbetter estimation. In some sources
the same parameter is called “normalized misalignment” [3]. This parameter is
suitable only for evaluation of acoustic echo cancellers.

Forevaluationofthe residual energy, echo return loss enhancement (ERLE)is used.
It is defined as

(n)

ERLE") = 10log (# (Xi 2) (7.10)E{(Ry”)”}

and is the ratio of the signal and residual energies. The residual can be measured
directly only if there is no local speech andthe noise Jevel is very low. Corrections for
the noise energy should be made if this is not the case. A higher ERLE meansbetter
echo suppression.

Oneindirect parameter to measure the performance of an acoustic echo-reduction
system is the perceptual sound quality. As discussed in Chapter2, this is expressed
with MOSpoints. Also, besides averaging the estimations from a large numberof
humanlisteners, the measurement can be done by using someofthe algorithmsfor
perceptual evaluation of sound quality. One of the standardized and frequently used
algorithms is PESQ (perceptual evaluation of sound quality). It requires knowledge
of the clean speech signal, which meansthatthe voice ofthe local speaker should be
recorded in parallel using a close-talk microphone. Another approach is a pre-.
recorded speech signal to be reproduced byeither a loudspeakerof a head-and-torso
simulator. The latter is better as it will create more realistic reverberation for the

local speech.

An important part of the acoustic echo canceller evaluation is the convergencetime.
Thisis the time for estimation of the new filters H,° after change in Hi” or at the
beginning ofthe process. As the convergence process may be considered complete when
the residual reaches the noise level, then it will depend on the noise level and on the
magnitude of the loudspeaker signal. To eliminate these dependencies, the converging
process is often modeled with an exponential curve and a single parameter — the time
constant.

7.2 LMSSolution for Acoustic Echo Cancellation

The block diagram in Figure 7.2 showsa classic application of an adaptivefilter. At
each audio frame the input signals are processed with the currentfilter and then the
filter coefficients are updated. One of the potential goals is to minimize the least
mean-square error — the classic LMSadaptivefilter [4]. The gradient of the mean-
squareerroris
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(7.11) 

Note that the frequency-bin index k is omitted for simplicity. Here we replaced the 
error with the residual, which means that the gradient estimation is correct when there 
is no near-end speech and local noise. With estimation of the momentary gradient 

(7.12) 

we can update the filter coefficients in the frames with no local talk: 

(7.13) 

Here, µ, is the step size and determines the adaptation speed. In most applications the 
step size is variable to provide faster adaptation. To guarantee convergence of the filter 
it should be smaller than [ 4]: 

2 
0 < µ, < -,-----

/\,max 
(7.14) 

where Amax is the largest eigenvalue of the input correlation matrix. The convergence 
time constant is given by 

1 
•conv = 2µ, Aav . (7.15) 

In summary, the LMS acoustic echo canceller should adapt only during frames 
without local speech and can use variable step size to converge faster. We will continue 
to use the notation µ, in this chapter, but in most of the cases it is variable and 
dynamically computed; that is, it is actually µ,<n)_ In the literature there are many 
algorithms for step-size control, suitable for acoustic echo cancellation, so they are not 
discussed in detail here. 

EXERCISE 

Find the .WAV files FarEndMono. WAV and AEC_Mono. WA V. The first is the loud­
speaker signal, the second is recorded in normal noise and reverberation conditions 
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(a small office) without near-end speech. Modify the script Process WA V.m from 
Chapter 2 to have three input parameters: far-end file name, recorded file name, and 
output file name. Add reading of the second file, modify the conversion to the 
frequency domain to do conversion of the two files. Add the voice activity detector 
from Chapter 4 (Simple VAD. m) to work on the far-end frames. Add the LMS adaptive 
filter to compensate the echo according to Equation 7 .6, using L = 10. Do adaptation 
only when there is far-end speech (detected by the VAD) according to Equation 7.13. 
Evaluate the results by computing the ERLE (plot it as a function of time) and the 
convergence time. Adjust the adaptation speed by changing the value ofµ,. Save the 
script as MonoAEC.m. 

Find a paper discussing dynamic step size and implement it. Compare the results. 

7.3 NLMS and RLS Algorithms 

The LMS adaptive filter has one known caveat. Assuming that the residual is 
proportional to the far-end signal, the adaptation rate will be proportional to the 
power of the far-end signal because it participates in the gradient estimation. To 
overcome this highly variable adaption- speed, the normalized least-mean-square 
(NLMS) algorithm is preferred. It just adds normalization by the /2 norm of the input 
vector: 

(7.16) 

In real implementations a small number is added to the denominator to prevent 
division by zero. This is one of the most commonly used adaptive filters in acoustic 
echo cancellers. 

NLMS adaptive filtering is well covered in the literature as well. Its convergence 
speed in the context of acoustic cancellers is critical for the quality of the cancellation 
and is well studied. Various modifications of the algorithm have been designed: 
proportionate NLMS (PNLMS) for better behavior with sparse impulse responses [ 5], 
and improved PNLMS (IPNLMS) for better convergence of the PNLMS 
algorithm [6]. 

Among other adaptive filter algorithms with application in acoustic echo cancella­
tion should be mentioned the affine projection algorithm (APA), which is a further 
generalization of the NLMS [7]. The much faster adaptation comes at the cost of a 
substantial increase in computations, which led to creation of the fast affine projection 
(PAP) algoriothm [8]. 

The recursive least-squares (RLS) algorithm uses a recursive way to update the filter 
coefficients in each step and converges much faster than NLMS, but is computationally 
very expensive. 
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Notethatthe frequency-bin index k is omitted for simplicity. Here we replaced the
error with the residual, which meansthat the gradient estimation is correct when there
is no near-end speech and local noise. With estimation of the momentary gradient

Vv” = RO (7.12)

we can updatethe filter coefficients in the frames with no local talk:

H+) =H+ pROZ™, (7.13)

Here,jz is the step size and determinesthe adaptation speed.In mostapplicationsthe
step size is variable to provide faster adaptation. To guarantee convergenceofthefilter
it should be smaller than [4]:

 

O<p< = (7.14)max

where Jmax is the largest eigenvalue of the input correlation matrix. The convergence
time constant is given by

1

Tconv Dpdan (7.15)

In summary, the LMSacoustic echo canceller should adapt only during frames
withoutlocal speech and canusevariable step size to convergefaster. We will continue
to use the notation wz in this chapter, but in most of the cases it is variable and
dynamically computed; thatis, it is actually ”. In the literature there are many
algorithms for step-size control, suitable for acoustic echo cancellation, so they are not
discussed in detail here.

EXERCISE

Find the .WAV files FarEndMono.WAV and AEC_Mono. WAV. Thefirst is the loud-

speaker signal, the second is recorded in normal noise and reverberation conditions
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(a small office) without near-end speech. Modify the script ProcessWAV.m from
Chapter2 to have three input parameters: far-end file name, recordedfile name, and
output file name. Add reading of the second file, modify the conversion to the
frequency domain to do conversion of the twofiles. Add the voice activity detector
from Chapter4 (SimpleVAD.m) to work onthe far-end frames. Add the LMSadaptive
filter to compensate the echo according to Equation 7.6, using L = 10. Do adaptation
only whenthereis far-end speech (detected by the VAD) according to Equation 7.13.
Evaluate the results by computing the ERLE(plotit as a function of time) and the
convergence time. Adjust the adaptation speed by changing the value of yw. Save the
script as MonoAEC.m.

Find a paper discussing dynamic step size and implementit. Compare the results.

7.3 NLMSand RLS Algorithms

The LMS adaptive filter has one known caveat. Assuming that the residual is
proportional to the far-end signal, the adaptation rate will be proportional to the
power of the far-end signal because it participates in the gradient estimation. To
overcomethis highly variable adaptiom speed, the normalized least-mean-square
(NLMS)algorithm is preferred.Itjust adds normalization by the ? norm ofthe input
vector:

Roz
Ht) — _@ 4 ,»—

“TEP (7.16)

In real implementations a small number is added to the denominator to prevent
division by zero. This is one of the most commonly used adaptivefilters in acoustic
echo cancellers.

NLMSadaptivefiltering is well covered in the literature as well. Its convergence
speed in the context of acoustic cancellersis critical for the quality of the cancellation
and is well studied. Various modifications of the algorithm have been designed:
proportionate NLMS (PNLMS)forbetterbehaviorwith sparse impulse responses[5],
and improved PNLMS (IPNLMS) for better convergence of the PNLMS
algorithm [6].

Amongother adaptivefilter algorithms with application in acoustic echo cancella-
tion should be mentioned the affine projection algorithm (APA), which is a further
generalization of the NLMS [7]. The much faster adaptation comesat the cost of a
substantial increase in computations, whichledto creationof the fast affine projection
(FAP) algoriothm [8].

The recursive least-squares (RLS)algorithm uses a recursive wayto updatethefilter
coefficients in each step and converges muchfaster than NLMS,but is computationally
very expensive.
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EXERCISE 

Modify the script MonoAEC.m from the previous exercise to use the NLMS algorithm. 
Evaluate and compare the results with LMS. 

Implement and compare with NLMS the performances of RLS, APA, and FAP 
algorithms. 

7.4 Double-talk Detectors 

The NLMS and other adaptive filters handle well the pauses in the far-end speech 
signal - the filter does not adapt when IIZ(n)ll2 -+ 0. Still, in practical realizations 
of acoustic echo cancellers a voice activity detector (VAD) is used for the far-end 
signal and filters do not adapt when there is no far-end speech activity. The presence of 
near-end speech, however, can divert the adaptive filter to wrongly estimate the transfer 
function. A voice activity detector for the microphone signal can give an indication 
when there is far-end or near-end speech. To block the adaptation when there are both 
far-end and near-end speech signals we need a double-talk detector. The reaction of the 
adaptive acoustic echo canceller in both cases (no far-end speech or double talk) can be 
in a soft way; that is, instead of not adapting at all it can be implemented as reduction of 
the adaptation step size µ,. 

7.4.1 Principle and Evaluation 

Double talk detectors (DTD) have the same evaluation parameters as those discussed in 
Chapter 4 for evaluation of voice activity detectors: true positive rate, false positive 
rate, and accuracy. The generic DTD computes a statistical parameter {, preferably 
data-independent, which is compared with a threshold r,. If the value is higher than the 
threshold, double talk is detected; if it is below, there is no double talk. The threshold 
value can be adjusted using the ROC curves discussed in the same chapter. A good 
published paper about DTD evaluation criteria is [9]. 

Several improvements can be made to the classic comparison with a threshold: 

• Adding hysteresis. Switch the state from "no double talk" to "double talk" when 
g > r, + !l.r,/2, return to "no double talk" when g < r,-!l.r,/2. Here, !l.r, is the 
hysteresis and its value is adjusted together with the threshold r, to be optimal in 
some way - best accuracy, minimal sum of the squares of false positives and false 
negatives, and so on. The hysteresis prevents frequent switching of the state when g is 
close to the threshold r,. 

• Adding timing restrictions. The speech signal has its own dynamics: probabilities 
to switch from pause to speech and from speech to pause, average duration of the 
speech segments, and so on. The simplest improvement is after switching to "double 
talk" state to stay there a certain minimal time. 
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Many DTD algorithms are developed for processing in the time domain. As we are 
here describing processing algorithms in the frequency domain, we will provide all 
equations using notation for that. Processing in the frequency domain uses L tap filters 
for each frequency bin, so the DTD algorithms designed for the time domain can be 
easily adapted to work for each frequency bin. The DTD output will be noisier owing to 
the shorter filter - in the time domain the number of taps is in the range of a couple of 
thou ands while in the frequency domain it is usually under ten. This is why the 
stati tical parameter g, computed for each frequency bin (i.e., gtl), are combined to 
form tbe per-frame parameter g{11) which is compared with the threshold r,. Combining 
is usually as a weighted sum: 

K 

g(n) = L Wk{t) · (7.17) 
k=l 

The weights are selected to be higher where there is more speech energy and lower 
where there is more noise. A typical shape of this frequency weighting is a band-pass 
filter in the range 200-3000 Hz. Some standardized weightings (C-message for 
example, see Chapter 3) can be used as well. 

A good overview of various algorithms for double-talk detectors is given in 
Chapter 6 of [3]. When describing algorithms further we will omit the frequency bin 
indices whenever 11ossible. 

7.4.2 Geigel Algorithm 

One of the earliest DTDs is the Geigel algorithm: 

(n) - max{IX(n)I} 
g - 1z(11)1 . (7.18) 

This evaluates the ratio of the largest magnitude of the microphone signal xCn) ( see 
Equation 7 .5) for the last L frames to the magnitude of the far-end speech zC11). It 
assumes that the near-end speech is typically stronger in the microphone signal. The 
number of evaluated previous values is usually assumed the same as the length of the 
adaptive filter. This algorithm was designed for network echo cancellers where it works 
best. For acoustic echo cancellers the variability of the optimal threshold is higher and 
the Geigel algorithm works less reliably. 

7.4.3 Cross-correlation Algorithms 

Cross-correlation function based DTDs are considered more robust and reliable. The 
cross-correlation vector of xCn) and zC11) is 
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(7.19) 

The statistical variable for comparing with a threshold can be either the t-norm 
(K = 1, 2, ... ) of the correlation vector or the maximal value for the last L frames: 

ttJ = I ICxzl IK 
= max{Cxz}. 

(7.20) 

The problem with this algorithm is that the cross-correlation function is not very 
well normalized. It is not quite robust when near-end noise is present. The normalized 
cross-correlation method is derived in [10]. In the absence of near-end speech and 
noise: 

(7.21) 

where Rzz = E{z(n)(z(n))T}. Since x(n) = HTz(n), then Rxz = RzzH and Equa­
tion 7.21 can be rewritten in the form 

2 RT R-lR <rx = zx zz zx. (7.22) 

When we have near-end noise and speech present, this converts to 

<ri = RhRz;iRzx +<rt, (7.23) 

where V = S + N. The statistical parameter g for the DTD is the square-root of (7.22) 
divided by (7.23): 

✓RhRz;iRzx 
gNCC = --,::::::::===== 

✓R'fxRii,Rzx + <ri 

= ·✓Rb,(<ri-Rzz)- 1 Rzx 
= IICzx.11 2 -

Here, Czx = (<r}Rzzt112Rzx is the normalized cross-correlation function. 

(7.24) 

The DTD as described can be computationally expensive. Later, a faster version of 
this algorithm was developed [11]. It is based on recursively updating R.z;iRzx using 
the Kalman gain Rzi Z. Then Equation 7 .24 can be rewritten as 

x2(n) 
<r}(n) 

(7.25) 
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where the statistic parameter is squared for simplicity. Then for each frame the 
estimation of the correlation variables is as follows: 

<ri,(n) = 2<ri,(n-l) + IX(n)l2 

x2(n) = 2x2 (n-l) + 1x(n)l2-<p(n)l9l(n)12 

91(n) = x(n)_HTz(n) 
2 

<p(n) = o,;(n) 

o,;(n) = 2+ (z(n))T(R.z;i(n-l))z(n) 

R11 = 2Rt-l) + z(n)(z(n))T. 

(7.26) 

Here, 2 is a forgetting factor. These two methods are among the most frequently used 
algorithms for double-talk detection. 

7.4.4 Coherence Algorithms 

Instead of using the cross-correlation function as a statistical variable we can use the 
squared magnitude of the coherence function [12]. If the coherence between z(n) and 
x(n) is close to 1, then there is no double talk; if it goes below a certain threshold, then 
there is double talk. The squared magnitude of the coherence function for the frequency 
bin k is 

2 1Szx(k) l2 

'Yzx(k) = Szz(k)Sxx(k). (7.27) 

The statistics function then can be used per bin or as a weighted average of all 
frequency bins for a per-frame decision: 

K 

tcoH = L wnh(k). (7.28) 
k=l 

The weighting is usually by a band-pass filter in the range 200-2000 Hz with smooth 
slopes - see the beginning of this section. 

EXERCISE 

Copy the script MonoAEC.m from the previous exercise as MonoAEC_DTDeval.m. 
Add the double-talk detector. Implement all four algorithms from this subsection. Find 
and use for evaluation files FarEndMono. WAV, AEC_Mono_wDoubleTalk. WAV, and 
NearEndMono. WAV. 

The first is the loudspeaker signal, the second is recorded in normal noise and 
reverberation conditions (small office) with near-end speech, and the third is a clean 
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E{x™y”) RCxz =pe (7.19)
VELX™P}E{IYOP} OX?

Thestatistical variable for comparing with a threshold canbe either the /*“-norm
(x = 1, 2, ...) of the correlation vector or the maximalvalue forthe last L frames:

ed = ||Cxzl|" (7.20)
= max{Ccxz}.

The problem with this algorithm is that the cross-correlation function is not very
well normalized.It is not quite robust when near-endnoiseis present. The normalized
cross-correlation method is derived in [10]. In the absence of near-end speech and
noise:

of = H'RzH (7.21)

where Rzz = E{Z”)(Z)"}. Since X”) =H?Z, then Ryz = RzzH and Equa-
tion 7.21 can be rewritten in the form

oy = RL,Rz7 Rex. (7.22)

When wehave near-end noise and speech present, this converts to

o% = RRRx +04, (7.23)

where V=S' + N. Thestatistical parameter é for the DTD is the square-rootof (7.22)
divided by (7.23):

\/RI,RzRox

Encc =Ren08
VV Rix (0%Razz) "Rox

2
= ||Czxl|"-

Here, Czy = (a3,Rzz)” I/"Rex iis the normalized cross-correlation function.
The DTDas described can be computationally expensive. Later, a faster version of

this algorithm was developed [11]. It is based on recursively updating R;z, Rzx using
the Kalman gain R7}Z. Then Equation 7.24 can be rewritten as

RexRzzRexRzx _ x°(n)
~ox(n) ox(nn)

 

Encc = (7.25)
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where the statistic parameter is squared for simplicity. Then for each frame the
estimation of the correlation variables is as follows:

O(n) = doy (n—1) + |X)?

Xn) = Ay? (n-1 ) +Pom)arRM = x™_a7"
A

7.26o(n) = a(n) ( )
a(n) = A+ (Z)"(Rz7 (n—1))2
RY) = AR4.2(zZ)".

Here,A is a forgetting factor. These two methods are among the most frequently used
algorithms for double-talk detection.

7.4.4 Coherence Algorithms

Instead of using the cross-correlation function asa statistical variable we can use the
squared magnitudeof the coherence function [12]. If the coherence between Z” and
X”is close to 1, then there is no doubletalk;if it goes below a certain threshold, then
there is double talk. The squared magnitudeof the coherencefunction for the frequency
bin k is

ISzx(k))?
Szz(k)Sxx(k)

The statistics function then can be used per bin or as a weighted average ofall
frequency bins for a per-frame decision:

nh) = (7.27)

K

cou = S WKYzx(k): (7.28)
k=1

The weighting is usually by a band-passfilter in the range 200-2000 Hz with smooth
slopes — see the beginningof this section.

EXERCISE

Copy the script MonoAEC.m from the previous exercise as MonoAEC_DTDeval.m.
Add the double-talk detector. Implementall four algorithms from this subsection. Find
and use for evaluation files FarEndMono, WAV, AEC_Mono_wDoubleTalk. WAV,and
NearEndMono. WAV.

The first is the loudspeaker signal, the second is recorded in normal noise and
reverberation conditions (smalloffice) with near-end speech, and the third is a clean
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version of the near-end speech. The second file is recorded with near-end speech played 
by a head-and-torso simulator. 

Add the near-end speech as a fourth parameter; add reading and conversion to 
the frequency domain for the near-end speech. Add a second simple VAD to work on 
the near-end speech. We have double talk when both VADs (far- and near-end) indicate 
speech activity. Compare this with the output of the DTD above. Build a table 
comparing the true positives, false negatives, and accuracies of the four algorithms. 
Use ROC curves to find the best thresholds for each algorithm. 

Add the best DTD to the script MonoAEC.m for further use. Use the NLMS 
algorithm with a variable step size. Modify it to adapt only when there is far-end speech 
and no double talk. At this point you should have a decent MATLAB® implementation 
of a mono acoustic echo canceller. Evaluate the ERLE and convergence time. 

7.5 Non-linear Acoustic Echo Cancellation 

7.5.1 Non-linear Distortions 

The adaptive filter assumes a linear transfer function between the far-end signal and the 
microphone. If the loudspeaker is not perfect (none is, but it is more valid for small 
loudspeakers) it will introduce non-linear distortions. Another potential source of non­
linear distortions is clipping in the output amplifier. The effect of these distortions is 
that the reproduction tract adds harmonics of the far-end signal. The measure for 
harmonic distortions is called total harmonic distortion (THD) and is defined as the 
proportion of the power of all harmonics to the power of the first harmonic: 

(7.29) 

Here, A 1 is the amplitude of the sinusoidal signal sent to the loudspeaker, and Ai is the 
amplitude of the i-th harmonic that appears because of the non-linear distortions. This 
means that the microphone will capture signals (the harmonics) for which the acoustic 
echo canceller is not set up because they are not in the far-end signal. A small 
loudspeaker can have 10% THD at maximal power. This means that at least 10% of the 
echo energy, captured by the microphone, will not be cancelled, which is limiting 
factor to the performance of the acoustic echo canceller. ITU-T standards require 
reduction of the acoustic echo by at least 30 dB, which cannot be achieved even with a 
perfect echo canceller if the loudspeaker introduces more than 3 % harmonic distortion. 
The quality requirements for loudspeakers used in systems employing acoustic echo 
cancellation are usually higher, but there are algorithmic ways to mitigate this problem 
as well. Birkett and Goubran [13] use a neural network and a second microphone (to 
provide an error signal) to achieve considerable improvement. With a very simple 
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delay and saturation model, Stenger and Rabenstein [14] achieve ERLE improvement 
of 4dB. 

Practically all non-linear ABC algorithms proposed in the literature work in the time 
domain. Unfortunately their conversion to the frequency domain is not trivial owing to 
their complex structure. In the following subsections the notation is changed: x[k] is 
the far-end signal and y[k] is the microphone signal at moment kT. 

7.5.2 Non-linear AEC with Adaptive Volterra Filters 

Volterra series is a model for non-linear behavior, similar to the Taylor series. The 
difference is that with a Taylor series the output at any given moment depends only on 
the input at that moment, while in the Volterra series the output depends on the input at 
all times. This "memory" effect allows modeling of complex non-linear systems, 
containing capacitors and inductances. Initially defined with integrals, the Volterra 
series can be converted in discrete form and pruned to order M: 

N M M 

y[k] =LL .. · L h,[k1, .. ·, kr]x[k-k1] .. · x[k-k,], (7.30) 
r=O kt=O k,=k,- 1 

where h, are r-th-order Volterra kernels. As the Volterra kernels are symmetric, in 
Equation 7.30 only coefficients k,. 2:: k,_ 1 are used. An acoustic echo-cancellation 
algorithm using a second-order adaptive Volterra filter is proposed by Stenger et al. · 
[15]. Defining 

for the first-order and 

xi[k] = (x[k],x[k-1], .. ,,x[k-M+l]) 

h1 = (hi[O],hi[l], · · · ,h1[M-l]) 
(7.31) 

x2 [k] = (x2[k], x[k]x[k-1], · · ·, x[k]x[k-M + 1], x2[k-1], x[k-l]x[k-2], ... , 

x[k]x[k-M + 1], · · · x[k-M + l]x[k-M + 1]) (7.32) 

h2 = (h2[0, OJ, h2[0, 1], ... 'hi[O,M-1], h2[l, 1], ... , hi[M-1, M-1]) 

for the second-order Volterra kernel, the LMS adaptive Volterra filter is defined as 

r[k] = y[k]-h1[k]x;[k]-h2[k]x;[k] 

h1[k+ 1] = h1[k] + µ,1r[k]x;[k] 

h2[k+ 1] = h2[k] + µ,2r[k]x;[k]. 

(7.33) 

(7.34) 

(7.35) 
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versionofthe near-end speech. The secondfile is recorded with near-end speech played
by a head-and-torso simulator.

Add the near-end speech as a fourth parameter; add reading and conversion to
the frequency domain for the near-end speech. Add a second simple VAD to work on
the near-end speech. We have double talk when both VADs(far- and near-end) indicate
speech activity. Compare this with the output of the DTD above. Build a table
comparing the true positives, false negatives, and accuracies of the four algorithms.
Use ROC curves to find the best thresholds for each algorithm.

Add the best DTD to the script MonoAEC.m for further use. Use the NLMS
algorithm with a variable step size. Modifyit to adapt only whenthere is far-end speech
and no doubletalk. At this point you should have a decent MATLAB® implementation
of a monoacoustic echo canceller. Evaluate the ERLE and convergence time.

7.5 Non-linear Acoustic Echo Cancellation

7.5.1 Non-linear Distortions

The adaptive filter assumesa linear transfer function betweenthe far-endsignal and the
microphone.If the loudspeaker is not perfect (noneis, but it is more valid for small
loudspeakers)itwill introduce non-lineardistortions. Another potential source of non-
linear distortions is clipping in the output amplifier. The effect of these distortionsis
that the reproduction tract adds harmonics of the far-end signal. The measure for
harmonic distortions is called total harmonic distortion (THD)andis defined as the
proportion of the powerofall harmonics to the powerofthe first harmonic:

 

N

SON ue
é Adyc—A

THD = =.“Ms1(7.29)
Aj Aj

Here, A, is the amplitude ofthe sinusoidal signal sent to the loudspeaker, and A;is the
amplitude of the i-th harmonic that appears becauseof the non-linear distortions. This
meansthat the microphonewill capture signals (the harmonics) for which the acoustic
echo canceller is not set up because they are not in the far-end signal. A small
loudspeaker can have 10% THDat maximal power. This meansthatat least 10% ofthe
echo energy, captured by the microphone, will not be cancelled, which is limiting
factor to the performance of the acoustic echo canceller. ITU-T standards require
reduction of the acoustic echo by at least 30 dB, which cannot be achieved even with a
perfect echo cancellerifthe loudspeakerintroduces more than 3% harmonicdistortion.
The quality requirements for loudspeakers used in systems employing acoustic echo
cancellation are usually higher, but there are algorithmic ways to mitigate this problem
as well. Birkett and Goubran [13] use a neural network and a second microphone(to
provide an error signal) to achieve considerable improvement. With a very simple
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delay and saturation model, Stenger and Rabenstein [14] achieve ERLE improvement
of 4dB.

Practically all non-linear AEC algorithms proposed in the literature work in the time
domain. Unfortunately their conversionto the frequency domainis not trivial owing to
their complex structure. In the following subsections the notation is changed: x[k] is
the far-end signal and y[k] is the microphone signal at momentkT.

7.5.2 Non-linear AEC with Adaptive Volterra Filters

Volterra series is a model for non-linear behavior, similar to the Taylor series. The
differenceis that with a Taylorseries the output at any given momentdepends only on
the input at that moment, whilein the Volterra series the output dependson the inputat
all times. This “memory” effect allows modeling of complex non-linear systems,
containing capacitors and inductances. Initially defined with integrals, the Volterra
series can be converted in discrete form and pruned to order M:

ve x hy [ki ,+++, kp|x[k—ky] --- x[k—k,], (7.30)
0 Kp=ky-1

Me Meryk] =
or= ky

where fi,are r-th-order Volterra kernels. As the Volterra kernels are symmetric, in
Equation 7.30 only coefficients k,>k,_; are used. An acoustic echo-cancellation
algorithm using a second-order adaptive Volterrafilter is proposed by Stenger et al.
[15]. Defining

- = (x[k],x[k—1],---,x[k—M + ]}) (7.31)1 i (hy (0], Ax(1), Pie hy [M—1])

for the first-order and

X[k] = (x7[k], x[k]x[k—1],---, x[A]x[k—M +4 1], x°[k—I], x[k—1]x[k—-2],---,

x[k]x[kK—M + 1],--+x[k—M + 1]x{k-M + 1]) (7.32)

hy = (hp{0, 0), 2[0, 1], +++, 4y[0,M—1], Aa[1, 1], -- + Ay[M—1,M—1])

for the second-order Volterra kernel, the LMSadaptive Volterra filter is defined as

r(k] = yl], [k]x7 [A] hho [&e}x3 [Xk] (7.33)

hh [+1] = yk] + wy rf]xi] (7.34)

fille + 1]= fig] + mrfkXT IA. (7.35)
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This can easily be converted to an NLMS algorithm by normalizing the step size: 

(7.36) 

where a 1 and a2 are the step-size parameters. To reduce computational complexity, the 
authors of the paper propose using different lengths of first- and second-order filters, 
Mi= 50 taps and Mi= 25 taps. With this second-order Volterra filter they report an 
ERLE improvement of 5 .5 dB compared to a linear NLMS adaptive filter. This 
algorithm is applicable for systems working in the time domain. For systems using 
more processing steps (usually in the frequency domain) it does not fit well in the 
overall architecture. 

7.5.3 Non-linear AEC Using Orthogonalized Power Filters 

The non-linear transfer function can be modeled with power filters. These filters 
represent the output signal as a linear combination of a certain number of samples of 
the input signal (what linear filters do) and their square, their third power, and so on; 
that is, using the Taylor series. A power filter of P-th order is shown in Figure 7.4 and 
defined as follows: 

P N-1 P 

y[k] = LL h[p, l]xP[k-l] = L bJxp[k] 
p=l l=O p=l 

x[k] 

+ y[k] 

Figure 7.4 Power filter 

where the vectors are defined as 

xp[k] = [xP[k],xP [k-l], ... ,xP[k-N+l]J7 

hp= [hp,O, hp,1, . . ·, hp,N- lf • 

(7.37) 

(7 .38) 

Direct adaptation of the proposed power filter structure will be slow owing to the 
high correlation of the input signals (i.e., x[k], x2 [k], . . . xP[k]) for these filters working 
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in parallel. To improve the convergence speed, Kuech et al. [16] introduce a new set of 
mutually orthogonal input signals: 

Xo,1 [k] = x[k] 

p-1 

X 0 ,p[k] = xP[k] + Lqp,ixi[k] 
(7 .39) 

i= l 

for 1 <p<P. The orthogonalization coefficients qp,i are chosen such that 

(7.40) 

and determined using the Gram-Schmidt orthogonalization method [17]. After 
modifying the filter structure and using bias correction, the authors of [16] present 
experimental results showing improvement in ERLE. This method has the same 
problem as the previous one - it fits with difficulty in a large signal processing system 
operating in the frequency domain. 

7.5.4 Non-linear AEC in the Frequency Domain 

For acoustic echo cancellers working in the frequency domain the compensation for 
non-linearity of the loudspeaker is more complex. An interesting algorithm is proposed 
by Bendersky et al. [18]. After the linear AECis placed a block that adaptively estimates . 
the magnitudes of harmonics for each frequency bin and uses suppression methods to 
reduce the echo residual magnitude. This naturally leads us to the next section. 

7.6 Acoustic Echo Suppression 

The acoustic echo suppressor usually follows the acoustic echo canceller. Assuming 
that the adaptive filtering has already cancelled the trackable part of the echo signal, 
whatever phase information is left behind will be very difficult to estimate. This is why 
the next step is to remove the residual by using suppression techniques described in 
Chapter 4. The problem remains: we have a mixture of statistically independent signals 
(echo residual, local speech, and local noise). The goal is to estimate a real-valued 
suppression gain which, applied to the output of the acoustic echo canceller, suppresses 
the residual and lets the local speech pass undistorted. 

7.6.1 Estimation of the Residual Energy 

In noise suppressors, one of the most important components was building the noise 
model - that is, the noise variance for each frequency bin, J,.,d(k). It is estimated during 
the pauses of the speech signal, indicated by a voice activity detector (VAD). We 
assumed that the noise is almost stationary, so that the average noise power in each 
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This can easily be converted to an NLMSalgorithm by normalizingthe step size:

my ji 2Mi = 2 = 7.36[bi fAllP afl (7-36)
  

where «and are the step-size parameters. To reduce computational complexity,the
authors of the paper proposeusing different lengths offirst- and second-orderfilters,
M, =50 taps and M, = 25 taps. With this second-order Volterra filter they report an
ERLE improvement of 5.5dB compared to a linear NLMS adaptivefilter. This
algorithm is applicable for systems working in the time domain. For systems using
more processing steps (usually in the frequency domain)it doesnotfit well in the
overall architecture.

7.5.3 Non-linear AEC Using Orthogonalized PowerFilters

The non-linear transfer function can be modeled with power filters. Thesefilters
representthe outputsignalas a linear combination of a certain numberof samplesof
the inputsignal (whatlinear filters do) and their square, their third power, and so on;
that is, using the Taylor series. A powerfilter of P-th order is shownin Figure 7.4 and
defined as follows:

P N-I P

ylkj| = 5 Soap, A? [k—1] = So hyx,[k] (7.37)
p=1 [=0 p=l

x[k]

 
Figure 7.4 Powerfilter

where the vectors are defined as

xp[k] = [x? [A], x?[k—1],...,2?[K-—N+ i"
(7.38)

hy = [Ap.o, Ap, ons Apt)’-

Direct adaptation of the proposed powerfilter structure will be slow owing to the
high correlation ofthe inputsignals(i.e., x[k], x(k], ...x” [k]) for thesefilters working
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in parallel. To improve the convergence speed, Kuechet al. [16] introduce a newsetof
mutually orthogonal inputsignals:

Xo, [k] = xk]

pl (7.39)
Xoplk] = x(k] +>gp.ix'[A]

t=1

for 1<p<P. The orthogonalization coefficients q,; are chosen such that

E{xoi[k]xo,[k]}=0, for i#j (7.40)

and determined using the Gram—Schmidt orthogonalization method [17]. After
modifying thefilter structure and using bias correction, the authors of [16] present
experimental results showing improvement in ERLE. This method has the same
problem as the previousone—it fits with difficulty in a large signal processing system
operating in the frequency domain.

7.5.4 Non-linear AECin the Frequency Domain

For acoustic echo cancellers working in the frequency domain the compensation for
non-linearity of the loudspeaker is more complex. An interesting algorithm is proposed
by Benderskyet al. [18]. After the linear AECisplaced a blockthat adaptively estimates
the magnitudes of harmonics for each frequency bin and uses suppression methodsto
reduce the echo residual magnitude. This naturally leads us to the next section.

7.6 Acoustic Echo Suppression

The acoustic echo suppressor usually follows the acoustic echo canceller. Assuming
that the adaptivefiltering has already cancelled the trackable part of the echo signal,
whatever phase informationis left behind will be very difficult to estimate. This is why
the next step is to remove the residual by using suppression techniques described in
Chapter 4. The problem remains: we have a mixture ofstatistically independentsignals
(echo residual, local speech, and local noise). The goal is to estimate a real-valued
suppression gain which,applied to the output of the acoustic echo canceller, suppresses
the residual and lets the local speech pass undistorted.

7.6.1 Estimation of the Residual Energy

In noise suppressors, one of the most important components was building the noise
model— thatis, the noise variance for each frequencybin, A,(k). It is estimated during
the pauses of the speech signal, indicated by a voice activity detector (VAD). We
assumed that the noise is almost stationary, so that the average noise powerin each
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frequency bin changes much more slowly than the speech power. In acoustic echo 
suppressors, the equivalent of the noise model is estimation of the residual power. None 
of the assumptions for the noise above is valid. We can only assume that the residual 
power is a function of the far-end speech. We should estimate this function during 
frames when we have far-end speech (using a VAD on the far-end signal) and when 
there is no double talk. 

Enzner et al. [ 19] propose using the coherence function for estimation of the residual 
energy. Given an acoustic echo-canceller output a a sum of the stati ticaUy indepen-

. . y (11) s (u) N(n) 9, (11f th th dent near-end speech, noise, and ABC residual k = k + k + i k , en e 
squared coherence function is 

k j(J)zr(k, n) 12 
C ( n) - - '----'--~-

zr ' - (J)zz(k, n)<I>rr(k, n) 
(7.41) 

and we can estimate the power spectral density of the residual energy as 

<l>9191(k, n) = Czy(k, n)<l>zz(k, n). (7.42) 

This method uses a single tap filter in the frequency domain and underestimates the 
residual echo because the reverberation takes longer than the acceptable frame size. 
The authors generalize the residual energy estimation as 

L-I 

<1>9191 (k, n) = L Czr(k, n-i)<l>zz(k, n-i). (7.43) 
i=O 

The derivations in Equations 7.41 and 7.42 are valid under the assumption of 
uncorrelated echo and background noise signals, which is true in the long term. In the 
short term, in one frame, they are correlated and Equation 7.43 will overestimate the 
residual power. The authors propose a technique to compensate for the bias, which 
requires additional computational resources. 

Instead of increasing the complexity of the model, Chhetri et al. [20] propose a direct 
regression model: 

(7.44) 

(7.45) 
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which, according to the authors, is more powerful as it contains the cross-power terms 
that are missing in the power regression model 

(7.46) 

close to the estimation based on power spectral density in Equation 7.43. To compute 
the regression coefficients, the authors propose an adaptive algorithm that assumes 
knowledge of the noise magnitude. In each frame the residual magnitude is estimated 
according to Equation 7.44. Then the error signal and smoothed far-end power are 
computed: 

E(n) - max(jY(n)l-9t(n) N(n)) 
k - k k , k 

The adaptation happens after computing the normalized gradient: 

2Ec"l 1zC") I v7(n) _ _ k k 
k - p (") 

k 
(n + 1) _ (n) µ, v7(n) 

Wk -Wk -2 k . 

(7.47) 

(7.48) 

(7.49) 

Here, wt) is the vector of regression coefficients from Equation 7.44. The adaptation 
is performed only in the absence of a near-end speech signal and the presence of a far­
end speech signal. The authors use a variable step size µ,, adjustable to ensure the 
positivity of I Yk") l-9tt) as much as pos ible, regardless of preventing Et') to fall below 
the noise floor in Equation 7.47. The number of regression coefficients varies with the 
frequency and the room size. 

7.6.2 Suppressing the Echo Residual 

The suppression is based on estimation and applying a real-valued and time-varying 
suppression gain, usually between O and 1. The most straightforward approach is the 
Wiener suppression rule 

(7.50) 

with all the caveats discussed in Chapter 4. Many of the suppression rules from this 
chapter can be adapted and used for suppressing the echo residual. 
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frequency bin changes much more slowly than the speech power. In acoustic echo
suppressors,the equivalentof the noise modelis estimation of the residual power. None
of the assumptions for the noise above is valid. We can only assumethat the residual
poweris a function of the far-end speech. We should estimate this function during
frames when wehave far-end speech (using a VAD onthe far-end signal) and when
there is no double talk.

Enzneretal. [19] propose using the coherencefunctionfor estimationofthe residual
energy. Given an acoustic echo-canceller output as a sum ofthe statistically indepen-
dent near-end speech, noise, and AEC residual Y}” = s\”) +N+9”, then the
squared coherence function is

|®zy (k,n) |?
=ee 7.4Cathe O7z(k, n)Pyy (k,n) oa)

and we can estimate the powerspectral density of the residual energy as

Dye (k,n) = Czy(k,n)z7(k,n). (7.42)

This methodusesa single tapfilter in the frequency domain and underestimates the
residual echo because the reverberation takes longer than the acceptable framesize.
The authors generalize the residual energy estimation as

L-1

Dag (k,n) = S> Czy(k,n—i)®z2(k,n-i). (7.43)
i=0

The derivations in Equations 7.41 and 7.42 are valid under the assumption of
uncorrelated echo and backgroundnoise signals, whichis true in the long term. In the
short term, in one frame, they are correlated and Equation 7.43 will overestimate the
residual power, The authors propose a technique to compensate for the bias, which
requires additional computational resources.

Instead of increasing the complexity ofthe model, Chhetri et a/. [20] propose a direct
regression model:

L-|
 (n) -i

[Ry |e S\wilze). (7.44)
i=0

On squaring Equation 7.44 we have

ey (Ht) 12 — (n—i) P[R, | & (Sm }
paeet

= +.WwW)ze“4 |iz |
i=0 j=0

(7.45)
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which,accordingto the authors, is more powerfulasit contains the cross-powerterms
that are missing in the powerregression model

‘ (n) n—-i[Ry Px > wize OP (7.46)
i=0

close to the estimation based on powerspectral density in Equation 7.43. To compute
the regression coefficients, the authors propose an adaptive algorithm that assumes
knowledgeof the noise magnitude. In each frametheresidual magnitudeis estimated
according to Equation 7.44. Then the error signal and smoothed far-end powerare
computed:

Ey”= max(|¥.")|-2®, wi) (7.47)

Pe? = oP?+ (1a)|||. (7.48)

The adaptation happens after computing the normalized gradient:

_ Efzh|
pi)

wi" +1) _ wi”) = 5 ve” ;

Vy) =
(7.49)

Here, wi”) is the vectorofregression coefficients from Equation 7.44. The adaptation
is performedonly in the absenceofa near-endspeechsignal and the presenceofa far-
end speech signal. The authors use a variable step size jz, adjustable to ensure the
positivity of |¥\””|—9"”as muchaspossible, regardless of preventing EW to fall below
the noise floor in Equation 7.47. The numberofregression coefficients varies with the
frequency and the room size.

7.6.2 Suppressing the Echo Residual

The suppression is based on estimation and applying a real-valued and time-varying
suppression gain, usually between 0 and 1. The moststraightforward approachis the
Wienersuppression rule

«, (1)

max(ll¥¢"[=I1,0) imy”) =
We?17

(7.50)

with all the caveats discussed in Chapter 4. Many of the suppression rules from this
chapter can be adapted and used for suppressing the echo residual.
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An interesting approach is proposed by Madhu et al. [21]. They use an EM 
learning algorithm to estimate directly the probability of the presence of a residual 
signal. This probability is used as a suppression rule, in the same way as described in 
the sections on probability-based suppression rules. Besides the traditional ERLE as 
quality measurement, PESQ MOS is used. The paper reports better echo suppression 
and better perceptual sound quality than the regression AES. 

The presence of near-end noise affects estimation of the echo residual and a noise 
model should be estimated, as described in the previous subsection. Most sound 
capture systems include a stationary noise suppressor immediately after the acoustic 
echo-reduction block. This justifies merging the noise and echo suppressors. Then the 
Wiener gain should be 

(7 .51) 

Most of the a-priori and a-posteriori SNR estimators can be adapted and more 
sophisticated suppression rules used. Good results are achieved using probability as the 
suppression rule: 

(n) (S (11) I 2) 
H(n) - Ps P k J.l.,y, U y 

k - (n) ( (n) I 2) (n) ( (n) I 2) p (n) (n-, (11) I 2) Ps P Ss J.l.,y, a-y +PN P N k µ N, a-N + !R P ;,,k J.l.,9t,<r!R 

(7.52) 

where l-;) is the prior probability for the presence of X in then-th frame, and p(XIµ, a-) 

is the PDF value for X given the mean and variance and know distribution. Practically 
this is a faster way to compute the probability than described in [21]. 

Overall, AES is an important part in acoustic-reduction systems. It provides 5-10 dB 
additional echo suppression. When it is well tuned, most of the artifacts, typical for 
every suppression algorithm, can be negligible. In such cases AES actually increases 
the perceptual sound quality. One more important thing - the AES is the safety net for 
the acoustic echo canceller. When the linear adaptive filter is not converged after rapid 
change in the transfer function, AES should be able to adapt faster and suppress the 
increased echo residual. The speech signal is quite sparse and the probability of having 
far- and near-end speech in the same frequency bin is relatively low. This means that, 
even under double-talk conditions, the quality of the output signal should be acceptable 
and in all cases better than no echo suppression at all. 

EXERCISE 

Copy the script MonoAEC.m from the previous exercise as MonoAEC_AES.m. 
Implement the two algorithms for estimation of the echo residual presented above. 
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Use the files with double talk. Compare the results using the same suppression rule. 
Select the better algorithm by comparing ERLE and performing listening tests. Not 
always does higher suppression mean better listening results. Adapt and implement 
some of the suppression rules from Chapter 4 and select the one that gives best results. 

Experiment with an echo-reduction system with AES only by disabling the AEC 
part. Evaluate the results: echo suppression, and quality of the near-end sound. 

Copy the script MonoAEC.m as M onoAER. m and add the best AES. At this point you 
should have a good working MATLAB implementation of a mono acoustic-reduction 
system. 

7. 7 Multichannel Acoustic Echo Reduction 

7. 7.1 The Non-uniquenes Problem 

Most of communication systems operate with a mono far-end signal. Building a high­
end telecommunication system with stereo sound would allow more comfortable 
communication and better perception of the positions of the different sound sources in 
the far-end room. Attempts to design a stereophonic acoustic echo canceller started in 
the early 1990s [22]. The first results were unsatisfactory and this raised the interest of 
the signal processing community. There followed many efforts to study the problem 
and offer solutions. At the beginning of the next decade there emerged scenarios such 
as controlling the stereo and surround-sound equipment with human voice and speech 
recognition, which requires stereo and a multichannel acoustic echo-reduction system. 

When we refer to a stereo and multichannel acoustic echo-reduction system we 
mean highly correlated speaker channels. The most intuitive approach is to build the 
stereo acoustic echo canceller by chaining two mono units, as shown in Figure 7 .5. This 
scheme will work flawlessly if the two loudspeaker channels are not correlated. Each of 
the filters will adapt independently from the other. Unfortunately this is not the case 

y 

Figure 7.5 Stereo acoustic echo canceller with two mono acoustic echo cancellers 
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Aninteresting approach is proposed by Madhu et al. [21]. They use an EM

learning algorithm to estimate directly the probability of the presence of a residual
signal. This probability is used as a suppression rule, in the same wayas described in

the sections on probability-based suppression rules. Besides the traditional ERLE as
quality measurement, PESQ MOSisused. The paperreports better echo suppression
and better perceptual sound quality than the regression AES.

The presence of near-end noise affects estimation of the echo residual and a noise
model should be estimated, as described in the previous subsection. Most sound
capture systems include a stationary noise suppressor immediately after the acoustic
echo-reduction block. This justifies merging the noise and echo suppressors. Then the
Wiener gain should be
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Mostof the a-priori and a-posteriori SNR estimators can be adapted and more
sophisticated suppression rules used. Good results are achieved using probability as the
suppression rule:
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where py) is the prior probability for the presenceofX in the n-th frame, and p(Xlp, a)
is the PDF value for X given the mean and variance and knowdistribution. Practically
this is a faster way to compute the probability than described in [21].

Overall, AESis an important part in acoustic-reduction systems.Itprovides 5—10 dB
additional echo suppression. Whenit is well tuned, most of the artifacts, typical for
every suppression algorithm, can be negligible. In such cases AESactually increases
the perceptual sound quality. One more important thing — the AESis the safety net for
the acoustic echo canceller. When the linear adaptivefilter is not converged after rapid
changein the transfer function, AES should be able to adapt faster and suppress the
increased echoresidual. The speech signal is quite sparse andthe probability of having
far- and near-end speech in the same frequencybinis relatively low. This meansthat,
even under double-talk conditions, the quality ofthe outputsignal should be acceptable
and in all cases better than no echo suppressionatall.

EXERCISE

Copy the script MonoAEC.m from the previous exercise as MonoAEC_AES.m.
Implement the two algorithms for estimation of the echo residual presented above.
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Usethe files with double talk. Comparethe results using the same suppression rule.
Select the better algorithm by comparing ERLE and performinglistening tests. Not
always does higher suppression meanbetter listening results. Adapt and implement
someofthe suppression rules from Chapter 4 andselect the onethat gives bestresults.

Experiment with an echo-reduction system with AES only by disabling the AEC
part. Evaluate the results: echo suppression, and quality of the near-end sound.

Copythe script MonoAEC.mas MonoAER.mandaddthe best AES.Atthis point you
should have a good working MATLABimplementation of a mono acoustic-reduction
system.

7.7 Multichannel Acoustic Echo Reduction

7.7.1 The Non-uniquenes Problem

Most of communication systems operate with a monofar-endsignal. Building a high-
end telecommunication system with stereo sound would allow more comfortable
communication and better perception ofthe positionsof the different sound sourcesin
the far-end room. Attempts to design a stereophonic acoustic echo canceller started in
the early 1990s [22]. Thefirst results were unsatisfactory andthis raised theinterest of
the signal processing community. There followed many efforts to study the problem
and offer solutions. At the beginning of the next decade there emerged scenarios such
as controlling the stereo and surround-sound equipment with human voice and speech
recognition, which requires stereo and a multichannel acoustic echo-reduction system. -

Whenwerefer to a stereo and multichannel acoustic echo-reduction system we
mean highly correlated speaker channels. The mostintuitive approachis to build the
stereo acoustic echo canceller by chaining two monounits, as shownin Figure 7.5. This
schemewill workflawlessly ifthe two loudspeaker channelsare not correlated. Each of
the filters will adapt independently from theother. Unfortunately this is not the case

 
Figure 7.5 Stereo acoustic echo canceller with two monoacoustic echo cancellers
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with stereo sound where the two channels are highly correlated. The problem is well 
described in [23]. 

Assume for a moment that we have a frame long enough to handle the reverberation; 
that is, we have one tap filter for each frequency bin ( omitted in this section for 
simplicity). Then the sound source S in the far-end room is captured by the two 
microphones as follows: 

(7.53) 

Here, G1 and G2 are the transfer functions from the sound source to each of the 
microphones in the far-end room. These two channels are reproduced by the speakers 
in the near-end room and captured by one of the microphones (no near-end speech and 

noise presented): 

(7.54) 

Here, W 1 and W 1 are the transfer functions from each of the loudspeakers to the 
microphone. We apply two acoustic echo cancellers with filters H 1 and H2 and have on 
the output 

Y = W1Z1 + W2Z2-H1Z1-H2Zz 

= Wi G1S + W2G2S-H1 G1S-H2G2S 
(7.55) 

which, considering that Si:- 0 and completely converged canceller, leads to the 
equations 

W1G1 + W2G2-H1G1-H2G2 = 0 

G1 (W1-Hi) + G2(W2-H2) = 0. 
(7.56) 

The first thing to note is that we have two unknowns and one equation, which leads to 
an infinite number of solutions when G1 i:-0 and G2 i:-0, which is true if we have stereo 
sound capture. The two adaptive filters can converge to any of the infinite number of 
solutions. Unfortunately all of them depend on G1 and G2, except one: W1 =H1 and 
W2 =H2, which is the "true" solution - each adaptive filter converged to the corre­
sponding transfer function. Any other solution is correct for the current situation, but 
changes in the far-end room - the speaker moves or another speaker starts to talk- will 
cause loss of convergence, appearing as echo on the output and the two adaptive filters 
will have to re-converge again. This is called the "non-uniqueness" problem. 

In general, two adaptive filters, working in parallel, perform poorly if their input 
signals are highly correlated. Several approaches to create stereo and multichannel 
acoustic echo-reduction systems are discussed next. 
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7. 7.2 Tracking the Changes 

The general idea is to keep the structure in Figure 7 .5 and to build an acoustic echo 
canceller that converges fast enough to track the changes in the far-end room, including 
changes of speaker position. This requires computationally complex adaptive filters 
such as RLS. Additional measures are taken to stabilize the convergence process. One 
example of such an approach is presented in [24]. 

7. 7.3 Decorrelation of the Channels 

The non-uniqueness problem occurs because the loudspeaker channels are highly 
correlated. If there is a way to de-correlate them, the structure with two adaptive filters 
in parallel will work. This can be achieved by adding non-linear elements, different for 
each channel, as shown in Figure 7.6. This idea is proposed in [25]. Unfortunately, to 
achieve stable working of the stereo acoustic echo canceller it is necessary to add a 
level of non-linear distortions, which are clearly audible and objectionable in high-end 
communication systems. Other attempts to decorrelate loudspeaker signals by adding 
uncorrelated noise to each channel, using comb filtering, using time-varying filters, and 
so on, either destroy the stereo picture or introduce unacceptable distortions and 
delays. 

y 

Figure 7.6 Stereo acoustic echo canceller with non-linear distortion of the far-end signal 

The idea is developed further by Herre et al. [26], whereby the non-linear 
distortions are introduced accounting for psychoacoustics of human hearing. The 
authors achieve enough decorrelation to allow adaptive filters to converge in a 
surround-sound echo-cancellation system. On the other hand, their user studies show 
that human listeners cannot hear these distortions. The paper is a good overview of 
the approaches for multichannel acoustic echo cancellation and provides many 
literature references. 
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with stereo sound where the two channels are highly correlated. The problem is well
described in [23].

Assumefor a momentthat we have a frame long enoughto handlethe reverberation;
that is, we have one tap filter for each frequency bin (omitted in this section for
simplicity). Then the sound source S in the far-end room is captured by the two
microphonesas follows:

Z; = GS 7.5Jy = CoS. p53)

Here, G, and G> are the transfer functions from the sound source to each of the
microphonesin the far-end room. These two channels are reproducedbythe speakers
in the near-end room andcaptured byoneofthe microphones(no near-end speech and
noise presented):

Here, W, and W,are the transfer functions from each of the loudspeakers to the
microphone. Weapply two acoustic echo cancellers with filters H, and H> and have on
the output

Y = WZ, + W2Z.—H\ Z| -—A2Zn
(7.55)

= W|G\S+ W2G2S—H,G,S—A2G2S

which, considering that S#0 and completely converged canceller, leads to the
equations

WG, + W2G2—H,G,—AH2G, = 0

G1 (W\—H1) + G2(W2—H2) = 0. (7.56)

Thefirst thing to note is that we have two unknownsandone equation, which leadsto
an infinite numberof solutions when G +0 and G20, whichis true if we have stereo
sound capture. The two adaptivefilters can converge to any of the infinite number of
solutions. Unfortunately all of them depend on G, and G2, except one: W, =H; and
W>=Hb, whichis the “true” solution — each adaptive filter converged to the corre-
sponding transfer function. Any other solution is correct for the currentsituation, but
changesin the far-end room — the speaker movesoranotherspeakerstarts to talk — will
cause loss of convergence, appearing as echoon the output andthe two adaptivefilters
will have to re-converge again. This is called the “non-uniqueness” problem.

In general, two adaptivefilters, working in parallel, perform poorly if their input
signals are highly correlated. Several approaches to create stereo and multichannel
acoustic echo-reduction systems are discussed next.
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7.7.2 Tracking the Changes

The general idea is to keep the structure in Figure 7.5 and to build an acoustic echo
canceller that converges fast enoughto track the changesin the far-end room,including
changes of speaker position. This requires computationally complex adaptivefilters
such as RLS. Additional measuresare taken to stabilize the convergence process. One
example of such an approachis presented in [24].

7.7.3 Decorrelation of the Channels

The non-uniqueness problem occurs because the loudspeaker channels are highly
correlated. If there is a way to de-correlate them, the structure with two adaptivefilters
in parallel will work. This can be achieved by adding non-linear elements, different for
each channel, as shownin Figure 7.6. This idea is proposed in [25]. Unfortunately,to
achieve stable working of the stereo acoustic echo canceller it is necessary to add a
level of non-linear distortions, which are clearly audible and objectionable in high-end
communication systems. Other attempts to decorrelate loudspeakersignals by adding
uncorrelated noise to each channel, using combfiltering, using time-varyingfilters, and
so on, either destroy the stereo picture or introduce unacceptable distortions and
delays.

 
Figure 7.6 Stereo acoustic echo canceller with non-linear distortion of the far-end signal

The idea is developed further by Herre et al. [26], whereby the non-linear
distortions are introduced accounting for psychoacoustics of human hearing. The
authors achieve enough decorrelation to allow adaptive filters to converge in a
surround-sound echo-cancellation system. On the other hand,their user studies show
that humanlisteners cannot hear these distortions. The paper is a good overview of
the approaches for multichannel acoustic echo cancellation and provides many
literature references.
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7. 7.4 Multichannel Acoustic Echo Suppression 

The energy transfer function is much less affected by correlation of the loudspeaker 
channels. Considering the fact that the speech signal is sparse in both time and 
frequency domains, building a stereo acoustic echo canceller based entirely on 
methods of suppression may not be such a bad idea as it seems at first look. Faller 
and Toumery [27] model the echo path as a delay and a single tap coloration filter for 
each frequency bin. The delay is computed and introduced before converting to the 
frequency domain. The coloration filter is estimated as 

E{z(n)'x (n)} 
W (n) _ k k 

k - • 
E{xtl xt)} 

E{xl'l' xl'I} = ; 1x/"l' x/"1 I + ( 1- ;) E{xr-11' xj'-tl} (7.57) 

E{zfx/"1} = ~1zi'i'xl'11 + (1-~)E{zja-11'xl'-'1} 

Here, T is the frame duration and • is the adaptation time constant. The authors 
propose•= 1.5 s. Then the estimations of the echo residual and the suppression gain are 

(7 .58) 

Here, ex and {3 are design parameters. If ex = 2 the formula converts to a spectral 
subtraction suppression rule; {3 < 1 is used if the echo is underestimated, {3 > 1 
otherwise. In the multichannel case (in the paper are discussed multiple reproduction 
and capture channels), the single-channel AES described above is used. The micro­
phone and speaker energies are combined as follows: 

l 

1zl'11 = (tc,,izl'\1)1') ' 
l 

1xl'11 = (Pi,,,,1xl"\m)I') 1· 

(7.59) 
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The authors use weightings gz1 = gxrn = 1 for all / and m, and 0 = A = 2, which 
means that all loudspeaker and microphone channels are treated equally and 
Equation 7 .59 combines the channel powers. Then the gain computed in Equation 7 .58 
is applied to all microphone channels. 

7. 7.5 Reducing the Degrees of Freedom 

Looking at Equation 7 .56 again, we can conclude that if we have one equation then we 
should use a single adaptive filter. A similar idea is proposed by Hirano and Sugiyama 
[28]. The stereophonic acoustic cancellation is for telecommunications and assumes 
that the sound source is captured by the two microphones according to Equation 7 .53. 
The adaptive filters for both channels use the same input signal - the speaker channel 
which arrives earlier. One microphone channel of the proposed stereo echo-canceller 
structure is shown in Figure 7.7. Then Equation 7.55 changes to 

Y = W1Z1 + W2Zi-HZ1 

= W1G1S+ W2G2S-HG1S. 
(7.60) 

Figure 7.7 Stereo acoustic echo canceller with one adaptive filter 

Assuming a converged filter and S * 0, Equation 7 .56 in this case will look like 

W1G1 + W2G2-HG1 = 0 

H = (W1 G1 + W2G2)G11. 
(7.61) 

The filter will have a solution and will converge if the far-end room impulse response 
is invertible. While the assumption S * 0 is safe, as we can adapt the filter only when it 
is met (i.e. , we have speech activity at the far end) and the situation is in our control, this 
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means that all loudspeaker and microphone channels are treated equally and
Equation 7.59 combines the channel powers. Thenthe gain computed in Equation 7.58
is applied to all microphone channels.

7.7.5 Reducing the Degrees of Freedom

Looking at Equation 7.56 again, we can concludethat if we have one equation then we
should use a single adaptive filter. A similar idea is proposed by Hirano and Sugiyama
[28]. The stereophonic acoustic cancellation is for telecommunications and assumes
that the sound source is captured by the two microphonesaccording to Equation 7.53.
The adaptive filters for both channels use the same inputsignal — the speaker channel
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structure is shown in Figure 7.7. Then Equation 7.55 changes to
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Figure 7.7 Stereo acoustic echo canceller with one adaptive filter

Assuming a converged filter and S#0, Equation 7.56 in this case will look like

WG, + W2G2—HG, = 0
7.61H = (WG; + W2G2)G7!. ( )

Thefilter will have a solution and will convergeif the far-end room impulse response
is invertible. While the assumption $ #0 is safe, as we can adaptthefilter only whenit
is met(i.e., we have speechactivity at the far end) andthe situationis in our control, this
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is not the case with the far-end room impulse response, which may not be invertible. 
Another caveat of this structure is that if the far-end speaker changes (rapid change of 
G1 and G2) the stereo echo canceller will have to reconverge. 

To resolve these issues, the adaptive filter architecture shown in Figure 7.8 is 
proposed. Assume for a moment that we have good initial estimations of W1 and 
W2 - H01 and H02, respectively. Equation 7 .55 with this structure looks like 

Y = W1Z1 + W2Zz-H(Ho1Z1 +H02Zz) 

= W1 G1S + W2G2S-H(Ho1 G1S + Ho2G2S) 
(7.62) 

Figure 7 .8 Stereo acoustic echo canceller with two fixed and one adaptive filters 

and initially the adaptive filter is converged at H = 1; that is 

(7.63) 

Now let something change in the far-end room (speaker move or change) and the 
impulse responses there change to G1 + g1 and G2 + g2. Then the echo canceller will 
remain converged because 

W1(G1 + g1) + W2(G2 + g2)-H(Ho1(G1 + g1) +Ho2(G2 + g2)) 

= W1G1 + W2G2-H(Ho1G1 +Ho2G2) 

+ W1g1 + W2g2-H(Ho1g1 +Ho2g2) 

=0. 

(7.64) 
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This filter structure is robust to changes in impulse responses in the far-end room. If the 
transfer functions in the near-end room change to W1 + w1 and W2 + w2, the adaptive 
filter will have to converge to H + h to compensate for the changes. Is this compen­
sation possible at all? We will have 

(W1 + w1)G1 + (W2 + w2)G2-(H + h)(Ho1G1 + Ho2G2) 
= [W1G1 + W2G2-H(Ho1G1 +Ho2G2)] + [w1G1 +w2G2-h(Ho1G1 +H02G2)] (7.65) 
= W1G1 +w2G2-h(Ho1G1 +Ho2G2) 

as the first part of the second equation is equal to zero. Then the adaptive filter change is 

(7.66) 

This solution exists because from Equation 7 .63 we know that H01 G1 + H02G2 is 
not zero. The adaptive filter can converge and compensate for the changes in the 
echo path. The two fixed filters thus reduce the degrees of freedom of the entire 
system; they act as constraints and hold the adaptive filter in a position where it can 
find the true solution. It is trivial to prove that, if there are changes in echo paths in 
both far- and near-end rooms, the adaptive filter can converge and the solution is 
Equation 7.66. 

This structure will work well if we have good initial estimations of the echo paths in 
the near-end room. One easy way to do this is to play a short chirp signal from each 
loudspeaker consecutively at the beginning of each telecommunication session. Of · 
course the chirp signals can be converted to something more melodic. It is important to 
have decorrelated wideband signals emitted from all loudspeakers for a short time. The 
entire initial estimation can take less than a second, including pauses before and after 
the calibration signal. 

Another advantage of the proposed multichannel acoustic echo canceller is that the 
adaptive filter deals only with the small changes in the echo path. Most of the 
suppression comes from the fixed filters - the direct path and a substantial portion 
of the reverberation. People moving around in the near-end room cause relatively small 
increases in the residual, which the adaptive filter compensates for. 

It is not a problem to extend this structure to surround-sound systems (five or seven 
loudspeaker channels) and for use with microphone arrays. Note that we have one 
adaptive filter per microphone channel, which means that this approach scales well for 
use with microphone arrays. With the traditional approach shown in Figure 7 .5, a sound 
capture system with an eight-element microphone array and seven-channel surround­
sound system will have to run 56 adaptive filters; while the approach in Figure 7.8 
requires only eight. In addition, these 56 adaptive filters (if such a system can be made 
at all) should be computationally expensive RLS filters, while the eight can be regular 
NLMS filters with variable adaptation step. 
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Thisfilter structure is robust to changesin impulse responsesin the far-end room.If the
transfer functions in the near-end room change to W; + w, and W, + wo,the adaptive
filter will have to converge to H + h to compensate for the changes.Is this compen-
sation possible at all? We will have

(W, + w,)G, + (W, + w,)G,—(H +h)(Ho,G, + HG)
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WwW, G, + w,G,—h(H,G, +HG,)
l

as thefirstpart ofthe second equationis equal to zero. Then the adaptivefilter changeis

h = (w,G, +w,G,) (HG, +HnG,) (7.66)

This solution exists because from Equation 7.63 we know that Ho,;G, + Ho2G2 is
not zero. The adaptive filter can converge and compensate for the changes in the
echo path. The twofixed filters thus reduce the degrees of freedom ofthe entire
system; they act as constraints and hold the adaptivefilter in a position where it can
find the true solution.It is trivial to prove that, if there are changes in echo paths in
both far- and near-end rooms, the adaptive filter can converge and the solution is
Equation 7.66.

This structure will work well if we have good initial estimationsof the echo pathsin
the near-end room. One easy wayto dothis is to play a short chirp signal from each
loudspeaker consecutively at the beginning of each telecommunication session. Of
course the chirp signals can be converted to something more melodic.It is important to
have decorrelated widebandsignals emitted from all loudspeakersfor a short time. The
entire initial estimation can take less than a second, including pauses before and after
the calibration signal.

Another advantage of the proposed multichannel acoustic echo cancelleris that the
adaptive filter deals only with the small changes in the echo path. Most of the
suppression comes from the fixed filters — the direct path and a substantial portion
of the reverberation. People moving around in the near-end room cause relatively small
increases in the residual, which the adaptive filter compensates for.

It is not a problem to extendthis structure to surround-sound systems(five or seven
loudspeaker channels) and for use with microphone arrays. Note that we have one
adaptive filter per microphone channel, which means that this approach scales well for
use with microphonearrays. With the traditional approach shownin Figure 7.5, a sound
capture system with an eight-element microphone array and seven-channel surround-
sound system will have to run 56 adaptive filters; while the approach in Figure 7.8
requires only eight. In addition,these 56 adaptivefilters (if such a system can be made
at all) should be computationally expensive RLSfilters, while the eight can be regular
NLMSfilters with variable adaptation step.
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7.8 Practical Aspects of the Acoustic Echo-reduction Systems 

Building a robust acoustic echo-reduction system is a complex combination of research 
and engineering solutions. One of the most critical issues is guaranteeing that the 
adaptive filters will converge in all usage scenarios. Acoustic echo-reduction systems 
are no longer just for high-end professional equipment. Now personal computers are 
used for audio ( and video) communication, with acoustic echo cancellation and 
suppression being part of the audio stack. People move their speakers during a session 
(which drastically changes the transfer function), they adjust the volume up and down 
using the knob on their loudspeakers or sound system ( something ABC and AES are not 
aware of), and they place the microphones close to the loudspeakers, so the echo signal 
exceeds the local speaker voice by 20 dB or more. Laptop designers do the same 
(perhaps because both the microphone and the loudspeaker are part of the audio system 
and they should be together). All these factors require the addition of more processing 
blocks, many of which act as safety nets and engage only in critical situations -
feedback, lost of convergence, and so on. 

7.8.1 Shadow Filters 

The basic idea is to have one fixed and one adaptive filter. The fixed filter is used to 
process the microphone signals. The adaptive filter works in parallel and adapts to 
changes in the transfer paths. When the adaptive filter starts to produce systematically 
better output its coefficients are copied to the fixed filter. The advantage here is that we 
can use more aggressive step sizes for faster convergence as we do not have to worry 
about the intermediate results during the convergence process. More details about 
shadow filtering can be found in [29]. 

7.8.2 Center Clipper 

Humans can hear well even low-level signals with some organization. The echo 
residual is audible even when it is 20-30 dB below the level of the speech signal. For 
processing in the time domain the center clipper tracks the residual level and sets to 
zero all samples that are below this level: 

ji[k] = 16[k] ly[k] I ~ IR 
otherwise. 

(7.67) 

The clipping value IR should be as small as possible and can be adaptive to track the 
residual. 

The center-clipping equivalent in the frequency domain is the zeroing of all 
frequency bins with magnitude below the estimated residual level for that bin. In 
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Chapter 4 it was explained that zeroing a frequency bin is never a good idea. This very 
old type of processing has been superseded by more sophisticated acoustic echo­
suppression systems. Its advantage, however, is simplicity and ease of implementation, 
especially when the acoustic echo canceller runs in the time domain on low-power 
processors. 

7.8.3 Feedback Prevention 

Feedback is not only annoying, it prevents the adaptive filter readapting to the changed 
transfer functions. The problem occurs when for a certain frequency the phase shift is 
close to (2n + 1) times 180° and the gain is larger than 1 for the entire loop: far 
end + near end + far end. 

One of the simplest ways to prevent feedback is to apply a variable gain to the signal 
that goes to the local loudspeakers when feedback is detected. Some professional echo­
cancellation devices use a set of adjustable notch filters. Once feedback is detected they 
engage and suppress the feedback frequency. The missing narrow frequency band 
cannot be detected by humans and this approach is applicable even for high-end 
systems. Another potential solution is to put in the input processing chain a constant 
tone suppressor like the one described in Chapter 4. It will detect and suppress the 
feedback signal, which will allow the adaptive filter to converge. Another frequently 
used approach is so-called "frequency shift." The general idea is to translate the 
spectrum of the input signal 5-10 Hz. The technique was designed in the mid 1960s for 
public address systems; for more details see [30]. 

7.8.4 Tracking the Clock Drifts 

This problem is typical for personal computers. In devices such as speakerphones or 
mobile telephones, the sampling frequencies of the analog-to-digital and digital-to­
analog converters are synchronized by using the same clock generator. In personal 
computers we can have a loudspeaker connected to the output of the sound card and 
external USB microphone (usually together with the web camera), or we can have 
USB speakers and USB microphone, and so on. In general, even when the sampling 
frequency is set to be the same for both devices (say 16 kHz), the sampling does not 
happen synchronously and the sampling rates are different (within certain limits) 
owing to different clock generators. The adaptive filter should constantly readapt to 
track the sampling rate drift, which reduces its suppression abilities. This is why 
acoustic echo-reduction systems for personal computers have an integrated block 
that estimates the delay between the loudspeaker and microphone signals and 
constantly adjusts the delay of the loudspeaker signal. Usually this happens by 
shifting the weighting window for frame extraction, before conversion in the 
frequency domain. 
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7.8.5 Putting Them All Together 

In va~"ious chapters of this book we have discussed multiple audio processing 
techmques. Some of them are linear (ABC, beamforming), some of them are not 
(noise suppressor, AES). Building an end-to-end audio processing stack requires a 
proper sequencing of these processing blocks. The general rules are linear processing 
first, slower blocks first. 

An example of a multichannel sound capture system for an advanced telecommu­
nication system or for voice control of multimedia equipment is shown in Figure 7 .9. 
The system has stereo or surround-sound playback and uses a microphone array for 
sound capture. The multichannel acoustic echo cancellation is first and works on each 
microphone channel. The microphone-array beamformer follows and combines the 
signals from all microphones into one, filtering the noise and reducing the reverbera­
tion from the local room. In addition it does some suppression of the echo residuals. 
The adaptive filters in the AEC converge independently, under slightly different 
reverberation and noise conditions (both near and far end). We can say that the echo 
res~duals have low correlation in the short term. From this perspective, the echo 
residuals behave as uncorrelated noise for the microphone array. This type of noise is 
suppressed by the instrumental gain. The increased level of uncorrelated noise should 
be accounted for during the microphone array design if it uses a time-invariant 
beamformer. The AEC is placed before the beamformer because the microphone 
array acts as a highly directional microphone. Changing the beam direction causes 
rapid change of the transfer function between the loudspeakers and the beamformer 
output, which the AEC cannot follow if placed after the beamformer. It is possible to 
have the AEC after the beamformer only if the microphone array works with a fixed 
(non-steerable) beam. 

Loudspeakers 

From 
f-'----.-t----------._l.----- decoder or 

D 
D 
D 
D 
Microphone 
array 

BF 

multimedia 

To encoder or 
speech 
recognition 

Figure 7.9 Block diagram of enhanced sound capture system with multichannel acoustic echo 
cancellation and microphone array 
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The beamformer output contains the enhanced local speech signal, decreased local 
noise levels, and still some echo residual. To increase the suppression from the 
microphone array, in Chapter 5 we proposed using a spatial filter, which in general is a 
sound source localizer per bin and suppressor for the bins where we have signals 
coming from an undesired direction. The echo residual should be processed by the 
acoustic echo suppressor discussed in this chapter. The stationary part of the local noise 
should be processed by one of the speech-enhancement algorithms discussed in 
Chapter 4. All of these algorithms compute and apply a time-varying real gain to 
the signal spectrum. They can be applied in the sequence above, or the gain computed 
jointly in a similar manner to Equation 7 .52. 

The output of this system goes either to the speech-recognition engine (if we want to 
do voice control of multimedia equipment) or to the encoder, which compresses the 
audio signal and sends it to the far-end room. The signal to the loudspeakers is either 
from the multimedia equipment (cable TV, DVD player, CD player, TV set, VCR, etc.) 
or from the decoder, converting the compressed audio from the far-end room to a 
waveform. 

EXERCISE 

Figure 7 .8 is not complete. Identify the best places for the processing blocks discussed 
in this section. Where should the stationary tones compensation, or frequency shift, be 
placed? What about the sound source localizer from Chapter 6? 

7.9 Summary 

This chapter has discussed acoustic echo-reduction systems. They remove the sound 
from the loudspeakers which is captured by the microphone or microphones and is 
called echo. Such systems are part of all communication equipment and personal 
computers with speakerphone mode of operation. There are two major approaches for 
removing the echo: by cancellation and by suppression. Both are used in sequence to 
ensure the echo removal and maximal quality of the captured local speech signal. 

Acoustic echo cancellers use adaptive filters to estimate the transfer path between 
the loudspeaker and the microphone. Then the signal sent to the loudspeakers is filtered 
and subtracted from the microphone signal. They should adapt to eventual changes in 
the transfer path. The adaptation process should happen when there is a loudspeaker 
signal (which can be detected by a voice activity detector) and there is no local speech 
signal, which is detected by a block called a double-talk detector. This block is an 
important part of each acoustic echo canceller. 

Echo suppressors deal with the echo residual left after the acoustic echo canceller. 
They work in a similar to noise suppressors manner and use real-valued gain to reduce 
the residual echo. Estimating this residual is critical for acoustic echo suppressors and 
they use various adaptive algorithms to track and predict its power. 
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7.8.5 Putting Them All Together

In various chapters of this book we have discussed multiple audio processing
techniques. Some of them are linear (AEC, beamforming), some of them are not
(noise suppressor, AES). Building an end-to-end audio processing stack requires a
proper sequencing of these processing blocks. The generalrulesare linear processing
first, slower blocksfirst.

An example of a multichannel sound capture system for an advanced telecommu-
nication system or for voice control of multimedia equipmentis shownin Figure 7.9.
The system has stereo or surround-sound playback and uses a microphonearray for
sound capture. The multichannel acoustic echo cancellationis first and works on each
microphone channel. The microphone-array beamformer follows and combines the
signals from all microphonesinto one,filtering the noise and reducing the reverbera-
tion from the local room. In addition it does some suppressionof the echo residuals.
The adaptive filters in the AEC converge independently, underslightly different
reverberation and noise conditions (both near and far end). We can say that the echo
residuals have low correlation in the short term. From this perspective, the echo
residuals behaveas uncorrelated noise for the microphonearray. This type ofnoise is
suppressed by the instrumental gain. The increased level of uncorrelated noise should
be accounted for during the microphone array design if it uses a time-invariant
beamformer. The AEC is placed before the beamformer because the microphone
array acts as a highly directional microphone. Changing the beam direction causes
rapid change ofthe transfer function between the loudspeakers and the beamformer
output, which the AEC cannotfollow if placed after the beamformer.It is possible to
have the AECafter the beamformeronly if the microphone array works with a fixed
(non-steerable) beam.
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The beamformeroutput contains the enhancedlocal speech signal, decreased local
noise levels, and still some echo residual. To increase the suppression from the
microphonearray, in Chapter 5 we proposed usinga spatialfilter, which in generalis a
sound source localizer per bin and suppressor for the bins where we have signals
coming from an undesired direction. The echo residual should be processed by the
acoustic echo suppressordiscussed in this chapter. Thestationarypart ofthe local noise
should be processed by one of the speech-enhancement algorithms discussed in
Chapter 4, All of these algorithms compute and apply a time-varying real gain to
the signal spectrum. They can be applied in the sequence above,or the gain computed
jointly in a similar manner to Equation 7.52.

The output ofthis system goeseither to the speech-recognition engine (if we wantto
do voice control of multimedia equipment) or to the encoder, which compresses the
audio signal and sendsit to the far-end room. Thesignalto the loudspeakersis either
from the multimedia equipment(cable TV, DVD player, CD player, TV set, VCR,etc.)
or from the decoder, converting the compressed audio from the far-end room to a
waveform.

EXERCISE

Figure 7.8 is not complete. Identify the best places for the processing blocks discussed
in this section. Where should the stationary tones compensation,or frequency shift, be
placed? What about the sound source localizer from Chapter 6?

7.9 Summary

This chapter has discussed acoustic echo-reduction systems. They remove the sound
from the loudspeakers which is captured by the microphone or microphones and is
called echo. Such systems are part of all communication equipment and personal
computers with speakerphone modeof operation. There are two major approachesfor
removing the echo: by cancellation and by suppression. Both are used in sequence to
ensure the echo removal and maximal quality of the captured local speechsignal.

Acoustic echo cancellers use adaptivefilters to estimate the transfer path between
the loudspeakerand the microphone. Thenthesignalsent to the loudspeakers is filtered
and subtracted from the microphonesignal. They should adapt to eventual changesin
the transfer path. The adaptation process should happen whenthere is a loudspeaker
signal (which can be detected by a voice activity detector) and there is no local speech
signal, which is detected by a block called a double-talk detector. This block is an
important part of each acoustic echo canceller.

Echo suppressors deal with the echo residual left after the acoustic echo canceller.
They workin a similar to noise suppressors manneranduse real-valued gain to reduce
the residual echo, Estimatingthis residual is critical for acoustic echo suppressors and
they use various adaptive algorithmsto track and predict its power.
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Multichannel echo reduction is part of high-end telecommunication systems and 
speech-controlled multimedia equipment. The main problem here is the non-uniqueness 
of the adaptive filter solution. This means that at any moment there are an infinite number 
of solutions, but they are different when some of the transfer paths change, except one -
the true solution. This problem is resolved by faster adaptation, or advanced suppression 
algorithms, or by reducing the degrees of freedom of the adaptive system. 

Building a robust system for echo reduction is a challenging research and engineer­
ing problem. Besides AEC and AES blocks, such a system may contain additional 
blocks such as algorithms for preventing feedback, and so on. An example of an end-to­
end sound capture system has been described in this chapter. 
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EXERCISE 

Compute and plot the Schroeder function for the impulse response, computed during 
the previous exercise. Find the T60 for this room. 

8.1.5 Modeling 

One of the most popular methods for synthesizing reverberated signals is the so-called 
"image method" [3]. The reflected sound from a wall can be modeled as an additional 
sound source, situated on the other side of the wall as an image of the original. Then 
given a room to model, the absorption coefficient of the walls, and the number of 
reflections, it is easy to represent the sound captured by the microphone in a given 
position as the sum of the sound sources (Figure 8.6). Each time a wall is crossed the 
sound magnitude is decreased by the absorption ratio and the phase inverted. (For non­
rigid walls the reflected image will not be a point source.) The image method uses an 
angle-independent pressure wall reflection coefficient {3, which leads to the energy 
absorption coefficient a = 1 - {32. Improvement of the image method can be found 
in [4]; the algorithm has been implemented in MATLAB and is available to use. 
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Figure 8.6 rmage method for modeling of reverberation 

The image method models the initial set of reflections well, but the reverberation tail 
is sparse and quite different from the actual measurements. This is due to a not very 
precise reflection model, which is frequency-independent and does not include energy 
cliffusion, and to the fact that the room is modeled as empty with only eight reflective 
surfaces - the walls. Regardless of this, the image method is commonly used for 
generation of synthetic room impulse responses. 

Using the idea of the image method we can do some interesting computations. The 
sound sources when a sound wave has already reached the microphone are inside a 
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sphere of radius R = ct, where c is the speed of sound. In this sphere we have 

4 3 
3nR 4nc3t3 

N =--=--
V 3V 

(8.12) 

sound sources where Vis the volume of the room. The rate at which reflected waves 
arrive at the microphone is the first derivative: 

dN 4nc3 t2 
-d = --[reflections/sec]. 

t V 
{8.13) 

For a room of size 4 m x 3 m x 3 m (V = 36 m3), the moment when the reflections 
will arrive with a rate equal to the sampling rate of 16 kHz is 33.7 ms. This is roughly 
the moment where we can say that for that room the reverberation transforms from a 
discrete to a stochastic process. 

8.2 De-reverberation v a De-convolution 

The general idea i toe tima eanL-tap filterGkapplied to the captured signal to give us 
an estimation of the source: 

S-(n) - GTx(n) - GT(HTs(n)) + GTN(n) ~ s <n) 
k- kk- k kk kk~k· (8.14) 

In the ideal case GfHk = 1 and we achieve full restoration of the speech signal. 
There are two potential problems visible at first glance. The first is that the room 
impulse response h(t) may not be invertible and the algorithm will have to find an 
approximate solution. A stable and causal system such as the transfer function h(t) has 
a stable and causal inverse g(t) only if it is a minimum-phase system. Unfortunately the 
room impulse response is almost never a minimum-phase system [12]. The second 
problem is that, even if it is invertible, we do not have access to the original speech, 
which was the case with acoustic echo-cancellation. Indirect criteria or properties of 
the speech signal have to be used as a criterion for updating the adaptive filter. This 
makes de-reverberation via direct estimation of the inverse filter a much more complex 
problem than acoustic echo cancellation. 

EXERCISE 

Use the .WAV file from the previous exercise. Even with complete knowledge of the 
sound source, can you find a good de-convolution filter? Evaluate the solution by 
filtering the microphone signal and comparing it to the speech signal. 
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8.2.1 De-reverberation Using Cepstrum 

The main idea is to use the mean cepstrum as an estimate of the transfer function [5]. 
Once we have an estimation of Hee from Equation 8.10, then it is converted back to the 
time domain, truncated to an appropriate length, and the de-convolution filter g(t) is 
designed. Other algorithms try to use filtering in the cepstral domain based on 
empirical data. Most of the algorithms of this group are not seriously evaluated for 
improving speech-recognition results or human perception. 

8.2.2 De-reverberation with LP Residual 

Human speech production is modeled a an all-pole filter, while the reverberation adds 
only zeros. This means that the linear prediction (LP) coefficients will remain intact 
and only the LP residual will be affected. An entire group of algorithms use this fact. 
The general idea is to compute and subtract the LP and to work only with the residuaJ. 
Once the reverberation effects are removed from the residual we can combine it back 
with the LP and resynthesize the speech signal. Such an algorithm is proposed by 
Yegnanarayana and Satyanarayana Murthy [ 6]. The LP residual is processed using the 
fact that the entropy is higher in the reverberant segments. Proper weighting is 
estimated and applied to regions with a high level of reverberation. The speech 
synthesis from the LP coefficients and processed residual inevitably introduces some 
distortions. 

Similar LP properties are used by Gillespie et al. [7]. The authors use the fact that the 
reverberated LP residual has more of a Gaussian-shaped distribution, while the clean-
peech LP residual is peakier; that is, it has higher kurtosis. To reduce the LP 

reconstruction artifacts, the authors propose a parallel structure (Figure 8.7). The 
adaptive filter works on the LP residual and maximizes the kurtosis. A copy of the filter 
works in parallel on the input signal. The algorithm works well in conditions of strong 
reverberation, where the difference is larger, but is weaker when the reverberation is 
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Figure 8.7 Block diagram of de-reverberator via maximizing kurtosis 
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low. The last requires longer adaption times, which harms the ability to track changes in 
the impulse response in the volatile tail. 

8.2.3 De-reverberation Using Speech Signal Properties 

Speech signals roughly consist of harmonic parts and noise-like segments. Nakatani 
et al. [8] claim that the second group is in general less affected by the reverberation, and 
a perceptual improvement can be obtained if the harmonic segments of the speech 
signal can be cleaned. The idea is to recognize these segments, to estimate the pitch, 
and to resynthesize the harmonic structure. Then the speech signal is assembled and 
evaluated. The algorithm is called HERB; it is iterative and computationally expensive 
which makes it more suitable for offline processing. 

EXERCISE 

Read one of the papers cited above and implement the algorithm. Record your own 
reverberant files and evaluate the algorithm. MATLAB provides good support for LP 
analysis. Process the .WAV file from the previous exercise and plot the Schroeder 
function. Compare it with the same function before the reverberation. Where are the 
strongest and weakest areas of the implemented algorithm? 

8.3 De-reverberation via Suppression 

The general idea is imilar to the way noise suppressors and acoustic echo suppressors 
work. If we can estimate the reverberation energy in the signal we can use suppression 
techniques to estimate a real-vaJued gain for each frequency bin and reduce the bin 
magnitude proportionally to the portion of the reverberation energy. It is obvious that 
this approach will work better on the reverberation tail and will be weaker on the first 
reflections. On the other hand, most of the methods in the previous section can better 
estimate the first part of the correction filter, but usually fail to deal well with the 
volatile reverberation tail. From this perspective, the suppression group of methods 
provides good post-processors for the de-convolution methods. For speech recogni ­
tion, reverberation suppressors can be the only de-reverberation algorithms used, as 
the cepstral mean normalization (CMN) in the front end deals well with the first 
reflections. 

Essential for good reverberation suppression is a good estimate of the reverberation 
power. For the reverberation tail, a common model is the exponential energy decay 
both in the time domain and per frequency bin: 

ERev = Eoexp(- D {8.15) 
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8.2.1 De-reverberation Using Cepstrum

The mainidea is to use the mean cepstrum asan estimate of the transfer function [5].
Oncewehavean estimation ofHec from Equation 8.10, thenit is converted backto the
time domain, truncated to an appropriate length, and the de-convolutionfilter g(1) is
designed. Other algorithms try to use filtering in the cepstral domain based on
empirical data. Most ofthe algorithms of this group are not seriously evaluated for
improving speech-recognition results or human perception.

8.2.2 De-reverberation with LP Residual

Human speech production is modeled asan all-polefilter, while the reverberation adds
only zeros. This meansthat the Jinear prediction (LP) coefficients will remain intact
and only the LP residual will be affected. An entire group of algorithms usethis fact.
The general idea is to compute and subtract the LP and to work only with the residual.
Oncethe reverberation effects are removed from the residual we can combineit back

with the LP and resynthesize the speech signal. Such an algorithm is proposed by
Yegnanarayana and Satyanarayana Murthy [6]. The LP residual is processed using the
fact that the entropy is higher in the reverberant segments. Proper weighting is
estimated and applied to regions with a high level of reverberation. The speech
synthesis from the LP coefficients and processed residual inevitably introduces some
distortions.

Similar LPproperties are used by Gillespieeg a/. [7]. The authors use the factthat the
reverberated LPresidual has more of a Gaussian-shapeddistribution, while the clean-
speech LP residual is peakier; that is, it has higher kurtosis. To reduce the LP
reconstruction artifacts, the authors propose a parallel structure (Figure 8.7). The
adaptivefilter works on the LP residual and maximizesthe kurtosis. A copyofthefilter
worksin parallel on the inputsignal. The algorithm works well in conditions of strong
reverberation, where the difference is larger, but is weaker whenthe reverberation is
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low. The last requires longer adaption times, which harmstheability to track changesin
the impulse response in the volatile tail.

8.2.3 De-reverberation Using Speech Signal Properties

Speech signals roughly consist of harmonic parts and noise-like segments. Nakatani
etal. [8] claim that the second groupis in general less affected by the reverberation, and
a perceptual improvement can be obtained if the harmonic segments of the speech
signal can be cleaned. Theidea is to recognize these segments, to estimate the pitch,
and to resynthesize the harmonic structure. Then the speech signal is assembled and
evaluated. The algorithm is called HERB; it is iterative and computationally expensive
which makes it more suitable for offline processing.

EXERCISE

Read oneof the papers cited above and implementthe algorithm. Record your own
reverberantfiles and evaluate the algorithm. MATLABprovides good support for LP
analysis. Process the .WAV file from the previous exercise and plot the Schroeder
function. Compare it with the same function before the reverberation. Where are the
strongest and weakest areas of the implemented algorithm?

8.3 De-reverberation via Suppression

The general idea is similar to the way noise suppressors and acoustic echo suppressors
work.Ifwe can estimate the reverberation energyin the signal we can use suppression
techniques to estimate a real-valued gain for each frequency bin and reduce the bin
magnitude proportionally to the portion of the reverberation energy. It is obvious that
this approach will work better on the reverberationtail and will be weakeronthefirst
reflections. On the other hand, most of the methods in the previous section can better
estimate the first part of the correction filter, but usually fail to deal well with the
volatile reverberation tail. From this perspective, the suppression group of methods
provides good post-processors for the de-convolution methods. For speech recogni-
tion, reverberation suppressors can be the only de-reverberation algorithms used, as
the cepstral mean normalization (CMN) in the front end deals well with the first
reflections.

Essential for good reverberation suppression is a good estimateofthe reverberation
power. For the reverberation tail, a common modelis the exponential energy decay
both in the time domain and per frequency bin:

Erey = Ep exp(— “) (8.15)
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where E0 is the initial signal power and tis the time constant directly related to T60. 

This simple model with only one parameter is very convenient to estimate, especially 
when the estimation is done per frequency bin and signals are quite noisy. Tashev and 
Allred [9] divide the frequency band into four or eight sub-bands and the decay time 
constant is estimated for each sub-band at the falling slope of the utterance, indicated 
by a voice activity detector. Via linear interpolation, this parameter is propagated 
for each frequency bin. It is trivial to convert the time constant to a single tap UR 
(infinite impulse response) filter, which is used to process the input signal power and 
to receive the reverberation estimate. After this, an enhanced Wiener filter is used to 
suppress the reverberation. The algorithm's purpose is to improve the hands-free 
peech-recognition resu1 ts, and it does not try to work with the first part of the impulse 

response. 
More sophisticated methods for reverberation spectral variance estimation can be 

found in llO]. 

EXERCISE 

Use the estimated room impulse response to compute the decaying time constant in 
several frequency bands. Model the reverberation spectral variance as a function of the 
input signal. Implement a simple Wiener suppression algorithm based on this estima­
tion. Process the .WAV file from the previous exercise and plot the Schroeder function. 
Compare it with the same function before the reverberation. Where are the strongest and 
weakest areas of the implemented algorithm? Evaluate the results by listening to the 
output. Are there artifacts or musical noises? 

8.4 De-reverberation with Multiple Microphones 

8.4.1 Beamjorming 

In general, the more directional a microphone is the less reverberation it captures and 
the greater is the critical distance. From this perspective, microphone arrays that via 
beamfo1ming can achieve a high directivity index are petfonning de-reverberation 
implicitly. Refer to Chapter 5 for the beamforming algorithms and microphone-array 
processing. This group of algorithms to date actually remains the most efficient, 
reliable, and commonly used method for de-reverberation. 

8.4.2 MINT Algorithm 

The authors of Chapter 12 in [ 11] propose this algorithm, based on the Bezout theorem. 
This says that, if the impulse responses from the sound source to each of the microphones 
have no common zeros, it is possible to perfectly com pen ate for the reverberation. This 
is a much lighter constraint than the one in single-channel de-convolution for minimum 

De-reverberation 355 

phase. In essence, this approach combines the signals from all the microphone channels 
using the assumption that the information lost in one channel (i.e., zero for this 
frequency) is available in another channel (no common zeros requirement). The authors 
derive the estimation of the compensation filter. The approach should theoretically give 
perfect compensation of the reverberation, but it is sensitive to noise. 

EXERCISE 

Use some of the multichannel .WAV file from Chapter 5 or Chapter 6 to process with 
some of the bearnforrning algorithms from Chapter 5. Compute and compare the 
Schroeder function for one of the microphone channels and for the beamformer output. 
Where is the beamformer more efficient, and what is left from the reverberation? 

8.5 Practical Recommendations 

De-reverberation is a complex problem that is not yet completely solved. Before 
employing some of the algorithms from the literature, a good evaluation should be 
conducted on why de-reverberation is necessary. Typical applications are far-field 
sound capture for communications, and voice control of multimedia equipment. 

In the first case the target is human ears. The evaluation criteria should be the 
perceptual sound quality achieved by the end-to-end system. The PESQ (perceptual 
evaluation of sound quality) algorithm or the criterion from [2] are good for evaluation, 
separately or in combination. 

If the target is speech recognition, there is no better crite1ion than the recognition 
rate. BuHd a speech corpus, recorded in the target conditions, and tune the de­
reverberation algorithm to minimize the word error rate. 

One of the most robust and efficient solutions for decreasing reverberation remains 
the combination of a microphone array with a bearnf ormer and reverberation suppres­
sor after that. As was mentioned in the chapter on echo reduction (and in many other 
places in this book), chaining suppressors is not a good idea. The suppression blocks for 
noise, echo residual, and reverberation should be combined for joint suppression. Each 
type of suppression hould have what was called in Chapter 4 "minimal gain." This is a 
number that can adjust the amount of suppression from each algorithm: a mjnimal gain 
of O means full suppression, while going up to 1 turns off this type of suppression. The 
system should be tuned end-to-end to achieve the best results according to the design 
goals. 

EXERCISE 

Where should the reverberation suppression be placed on Figure 7.8? Add a reverber­
ation suppressor to the microphone array processor and compare the results with those 
from the previous exercise. 


