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Active Self-Calibration of Robotic Eyes
and Hand-Eye Relationships with
Model Identification

Guo-Qing Wei, Klaus Arbter, and Gerd Hirzinger

Abstract— In this short paper, we first review research results of
camera self-calibration achieved in photogrammetry, robotics and com-
puter vision. Then we propose a method for self-calibration of robotic
hand cameras by means of active motion. Through tracking a set of
world points of unknown coordinates during robot motion, the internal
parameters of the cameras (including distortions), the mounting param-
eters as well as the coordinates of the world points are estimated. The
approach is fully autonomous, in that no initial guesses of the unknown
parameters are to be provided from the outside by humans for the
solution of a set of nonlinear equations. Sufficient conditions for a unique
solution are derived in terms of controlled motion sequences. Methods
to improve accuracy and robustness are proposed by means of best
model identification and motion planning. Experimental results in both a
simulated and a real environments are reported.

Index Terms— Active motion, hand-cameras, hand-eye calibration,
model identification, motion planning, self-calibration, unique solution.

1. INTRODUCTION

In order to use cameras for estimating robot motion for object
manipulation, it is usually necessary to do the following three
calibrations: camera calibration, hand—eye calibration, and robot
calibration. In this paper, we address the first two problems, assuming
the third, i.e., robot calibration, has been done.

For camera calibration, the basic theory has been developed in the
field of photogrammetry [17]. Calibration approaches used nowadays
can be generally categorized into two classes: test-field calibration and
self-calibration. Test-field calibration determines the camera internal
and external parameters from images of a set of control points
whose three-dimensional (3-D) coordinates are known in a world
coordinate system [5], [17], [22], [26], [29]. Since it is difficult
to fabricate and also maintain for a long period a highly accurate
control field, the self-calibration methods were developed, which
estimate not only the camera parameters but also the coordinates
of the control points, based on multiple images of the same control
field acquired at different camera stations. The collinearity constraint
[11] and the coplanarity constraint [12], [17, pp. 259-260] were the
most popular equations used in self-calibration, the later of which
eliminates the world point coordinates. A major difficulty with the
photogrammetric self-calibration approach is that good initial guesses
of the unknown parameters have to be provided from the outside

Manuscript received November 22, 1996. This paper was recommended
for publication by Editor A. Goldenberg upon evaluation of the reviewers’
comments.
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by humans for an iterative procedure to converge to the correct
solution. In Computer Vision, Faugeras et al. [6] recently proposed a
camera self-calibration approach which involves only camera internal
parameters. “The method, however, was found to be noise sensitive
and also computationally intensive, in spite of some improvements
[14] in the formulation” (Luong and Faugeras [15]) The above self-
calibration methods are passive in the sense that no knowledge about
the camera motion is assumed. Active methods employ knowledge
about camera motion, in terms of either a movable mechanical devices
or a robot [1], [3], [16]. Among the self-calibration methods, either
passive or active, developed in computer vision, almost all of them do
not consider lens distortions (and some of the formulations are only
applicable to the no-distortion case, e.g., [6], [16]). Besides, most of
the above methods do not address the problem of how to automate
the process of getting initial values of the unknown parameters in
nonlinear iteration.

For hand—eye calibration, two basic hand—eye configurations were
used in the robotics literature: static cameras and on-hand cameras. In
the case of stationary cameras, hand—eye calibration was performed
by moving the hand and tracking in the image, a single point (e.g., a
light emitting diode, LED) on the gripper [2], [10], [13]. When the
coordinates of the LED with respect to the hand coordinate system are
known, hand—eye calibration is equivalent to camera calibration [10],
[13], where the control points are generated by hand movements.
These approaches, however, cannot deal with multiple points with
unknown relative positions. The capability of utilizing multiple points
is important in improving robustness and reducing the number of
robot motions required. For the camera-on-hand configuration, earlier
work on hand—eye calibration assume that the cameras have been
calibrated in advance [21], [24]. By moving the robot hand to at least
three stations, the hand—eye calibration problem was shown to be
equivalent to solving equations of the form A; X = XB; [21], [24],
[25], [30]. In this approach, the robot motion matrix A, is calculated
from the known robotic kinematics; while the camera motion matrix
B is determined by camera extrinsic calibration in terms of a known
control field [24]. Recently, Zhuang et al. [31] calibrated a hand-
camera, the hand—eye transformation, and the robot together by using
a known control field, assuming that the image center and scale factor
are known a priori. It was suggested in [31] that gauging devices be
used to manually measure some parameters as the initial values in
the solution of a set of nonlinear equations.

In this paper, we propose a complete autonomous approach for
self-calibration of hand-cameras and hand—eye relationships.

The proposed approach has the following features

1) No metric control points are used. The coordinates of the
calibration points are determined by the calibration itself.
Besides, the number of object points can be as few as one
and as many as one wants.

2) The initial values of all the unknowns for starting the iteration
in the solution of a system of nonlinear equations for the
calibration are found automatically, all in closed forms, by the
calibration method itself.

3) Lens distortions are considered.

4) The method does not rely on any system knowledge or any
pre-calibration or partial calibration of the camera’s internal or
external parameters.

As another salient feature, the method identifies the best lens

distortion model and plans the robot motion such that both robustness
and accuracy can be improved.

1042-296X/98$10.00 © 1998 IEEE >
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The paper is organized as follows. In Section II, we present the
method of active camera calibration. In Section III, we address the
problem of how to identify the best distortion model and to design
robot motion. In Section IV, the method is tested and compared with
a modified Tsai’s algorithm. Conclusions are given in Section V.

II. SELF-CALIBRATION OF A HAND-EYE SYSTEM

Suppose a camera is rigidly mounted on a robot gripper. We denote
the camera coordinate system by (c): X. — Y. — Z., the gripper
coordinate system by (g): Xy — Y, — Z,. The transformation from
the camera coordinate system to the hand (gripper) coordinate system
is represented by the rotation R., and translation t., as

Xg Xc
}'g = ch }'c + tcg (1)
Z, Z.
or in homogeneous form as
X, X
b e Yo
Z | =Hs| 7 @
1 1
where
Rey | tey R
Hey= |- ——— — | —=| = H(Rcy, tey). 3)
0 0 (Ol s

Assume there is a set of world points {P;}, whose coordinates
in an initial camera coordinate system (co) are represented by
(Xio, Yio, Zio).? = 1,2,---, N, where N is the number of
points. If we move the robot hand to M different stations (g;),
j=0,1,2,---, M, where (go) stands for initial hand station, then
the coordinates (X;;, Yi;, Z;;) of the ith point at the jth camera
station (c;) are

‘X,‘ j -Xi 0

Yi; Yio

z) | =Heoi| 70 “
1 1

where Ho; is the homogeneous transformation matrix from (co) to
(cj). If we use Hgoj = H(Rgoj, tgo;) to denote the robot motion
matrix from (go) to (g;), with R40; and t4o; being the rotation and
translation components, respectively, then H.o; can be computed as

Heoj = H'HyojHey. )

It can be easily shown that the rotation and translation components
of Heoj are

Reoj = RiyRyo; Reg ©)
teo; = Rig(Reg = Dteg + Rigtgo;. )

Fig. 1 illustrates the chain of transformations.
Suppose (u;j, vij) are the measured image coordinates of the ith

world point P; at the jth camera station (c;). Then the following
perspective equations can be obtained as the measurement equations:

2 Xij _ Y ) .
Uij = fx Z,:‘”w—fyZ” t=ly s NG
j=0,1,---, M ®)

where f. and f, are the effective focal lengths in the = and y
directions of the image plane, respectively; and (u;;, vi;) are the
distortion-compensated frame buffer coordinates from the measured
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Fig. 1. The hand and eye coordinate systems and hand motion.

ones (u;j, vij), according to a distortion model containing both radial
and tangential components' [4]:

T =ui —uo + pr(30® + v /K%) + 2pay® + (1 + k1r®) (9)

i =vi = vo + 2p1zy + p2(2”k? 4+ 3y?) + y(1 + kir®)  (10)
with
T=Ui—Uo; Y =Vi— Vo “(11)
and
r? = k202 4y 12)

where we have, for simplicity, omitted the subscript j; the parameters
(w0, vo) are the coordinates of the image center; p1, p2, and k; are the
tangential and radial distortion coefficients, respectively; k = f,/f-
is the image plane scale factor, which is the ratio of the between-
pixel distances d. and d, in the x- and y- directions of the camera
CCD plane.

By inserting (3)—(5) into (8), we can now state the camera self-
calibration problem as: determine from the measurement equations
(8), the world coordinates (X0, Yio, Xio),i =1, ---, N, the cam-
era internal parameters wo, vo, fr, fy. P1, P2, k1, and the hand—eye
configuration parameters (external parameters) R., and t.4, based
on the robot motion parameters {Hyo;} and the image coordinate
measurements {(ui;, vi;)}. Here, we use the roll-pitch-yaw angles
(a, 3, ) to parameterize the hand—eye rotation matrix R.g.

In the above formulation, assumptions are made of the known robot
motions {Hgo;}. This is an assumption adopted in most previous
work on hand-eye calibration, e.g., Tsai and Lenz [24], Shiu and
Ahmad [21], to name a few. This assumption is not so hard to meet
for most industrial robots, since we do not require a high absolute
positioning precision. Rather, it is the relative motion that is used
in the calibration. Often, it is helpful to use the measured amounts
of relative motions (from joint angles) rather than the commanded
ones in the calibration equations, because of error accumulation in
the execution of a specified motion sequence.

!Notice that the distortion model is expressed directly in the frame buffer
instead of in the CCD plane, so that a scale factor k is involved, as compared
with that in [4].
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Because of the nonlinearity of the measurement equations, we
adopt the active motion principle to find the initial values of the
unknowns to be used in nonlinear iteration, all in closed forms as
follows.

Suppose the stations {(g;), j = 1.2.:--, M, are obtained by
M, pure translational motions of the hand started from (go). As
a first order approximation, we assume, for the time being, that
the distortion coefficients are all zero, i.e., p1 = 0, p2 = 0, and
k; = 0. Under these assumptions, the perspective equations (8) can
be reduced as in (13) and (14), shown at the bottom of the page,
where R.4(m. n) and t,o; » are the (m, n)th and nth components
of R., and t4o;, respectively. If, in the above equations, we consider
only one point, say P;, then the obtained sub-system (i.e., for
i=1,j=12. -+, M) can be viewed as the projective equations
of a set of virtual world points v; = (tg0,,1. tgoj 2. foniis)
j=0.1,---, M, with the virtual world coordinate system located
at t, = (X10, Y10, Z1o)" and having the orientation R, = RCTg
with respect to the camera coordinate system. This insights allows us
to employ the method of perspective transformation matrix [5] to find
the internal parameters uo. vo, fz. fy, the external parameters Rcg,
and the world coordinates (X0, Y10, Z10) in closed forms. [The
perspective transformation matrix here refers to the 3 x 4 matrix
which transforms the 3-D virtual points {v;} to the two-dimensional
(2-D) frame buffer coordinates {(u1;, v1,)}.] The obtained values
for wo. vo. fr. fy and R, are then substituted into (13) and (14),
for i = 2.3, ---, N. The resulting equations can be rearranged
in a linear form on (Xjo. Yio. Zio) for i = 2,3,---, N, by
multiplying both sides with the denominator. From the obtained
linear system, the world coordinates can be easily solved for in
closed forms. So far, we have obtained uo, vo. fz. fy, Recg, and
the world coordinates (Xjo. Yio. Zio). Suppose then the motion
stations (g;), j = M; + 1,---, M contain nonzero rotational
components, which we call compound motions. By substituting all
the obtained parameters into (4)-(8) for j = M; + 1, -+, M, the
measurement (8) can be similarly rearranged in a linear form on tcy
and can be easily solved for the hand—eye translation parameters. The
complete procedure of estimating the unknown parameters above also
leads to the following sufficient conditions for a unique solution.

Lemma 1: If a robot undergoes: a) 5 translational motions (M =
5), among which no more than 3 of the translation vectors with respect
to the initial hand system are coplanar and b) 2 compound motions
whose axes of rotation (with respect to the initial hand system) do not
coincide with t.,, then the solutions for all the unknown parameters
are unique.

Proof: See [27].

If the image data are free of noise and there exist no lens
distortions, the values of the unknown parameters estimated above are
exact, since we have introduced no approximations in the estimation.
In general cases, however, when noises and distortions are both
present, the obtained values can only be regarded as good initial
guesses because the estimation errors accumulate in a sequential
way. To refine the estimates, the Newton-Raphson method is used
to adjust all the parameters (including the distortion coefficients)
simultaneously, by local linearization of the original measurement ®)
about the initial values. It can be easily demonstrated that the normal
equations of the locally-linearized measurement equations take the

following form:

Al 0 S %o 0 Bl LSXl €]

0 Az R 0 BQ (SXQ €2
= - (15)

0 0 An BnN oxN eN

BlT BZT et B]{ Bg 6Xo €0

where 6x; is a 3 x 1 increment vector for the world coordinates,
i=1,---.N,éxo am x | increment vector for the internal and
external parameters, with m being the number of internal and external
parameters; e;’s are the residual errors; A;, B;, and By are matrices
of size 3 x 3,3 x m and m x m, respectively; The bordered block-
diagonal structure of the normal matrix in (15) allows us to use a
partitioning scheme proposed by Brown [17] to solve the normal
equations. This avoids the inversion of a very large matrix when
the number of world points is large. The computational burden in
solving the normal equation by partitioning is made only linearly
proportional to the number of world points. It should be noted that the
Levenberg-Marquardt algorithm [19], which has been widely used
in nonlinear optimizations, takes no account of the structure of the
normal matrix. Its computational cost increases quadratically with the
dimensions of the problem, which can be very large in problems like
uncalibrated 3-D reconstruction [18] or self-calibration. We give, in
the Appendix, details of the matrix reduction scheme and derive the
Gauss—Markov theorem [20] for the estimation of parameter variances
in the reduction case.

III. MODEL IDENTIFICATION AND MOTION PLANNING

In this section, we shall deal with two issues related to improve-
ment of robustness and accuracy of the proposed method.

A. Model Identification

Model identification is concerned with the choice of the best model
in describing a problem. Since the calibration equations derived in the
last section are based on physical processes, the number of parameters
employed should be minimum, except in the distortion model, which
may be camera dependent. We suppose here that the distortion models
of (9) and (10) cover the possible distortions, so that there is only a
possible over-parameterization in the model. Overparameterization
may cause the variances of some of the estimated parameters to
increase, especially when there are few measurements. Although the
computed parameters as a whole in the case of over-parameterization
may still be useful in performing the correct transformation from
the sensor space to the world space, the individual parameters when
used alone for other purposes are not as reliable, because of the
correlations in the estimates. To cope with this problem, we use the
statistic inference method to deduce whether some specific (or all)
distortion components should be excluded from the final calibration
procedure, thus increasing the reliability of the estimated parameters.

The student-distribution (¢-distribution) [8], [20] could be used to
test whether a certain variable takes on a presumed value under a
selected significance level (1 — ), based on the estimated variance
of the variable [7]. A problem with the t-test is that it provides

Reg(1. Dtgoj.1 + Reg(2, Dtgoj.2 + Reg(3. L)tgoj.3 + Xio

uij = o = f R.y(1. 3)tg0;.1 + Rey(2, 3)tgoj.2 + Reg(3. 3)tg0j.3 + Zio 8
it = o = Reg(1, 2)tgoj.1 + Reg(2. 2)tg0j,2Rey(3. 2)tg0,.3 + Yo .
R.g(1. 3)tg0j.1 + Reg(2. 3)tg0).2 + R y(3. 3)tg0).3 + Zio

i=1,+:+,N;j=0,1,---, M; (14)
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