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Multisensory Visual Servoing by a Neural Network

Guo-Qing Wei and G. Hirzinger

Abstract—Conventional computer vision methods for determining a
robot’s end-effector motion based on sensory data needs sensor cali-
bration (e.g., camera calibration) and sensor-to-hand calibration (e.g.,
hand–eye calibration). This involves many computations and even some
difficulties, especially when different kinds of sensors are involved. In this
correspondence, we present a neural network approach to the motion
determination problem without any calibration. Two kinds of sensory
data, namely, camera images and laser range data, are used as the input to
a multilayer feedforward network to associate the direct transformation
from the sensory data to the required motions. This provides a practical
sensor fusion method. Using a recursive motion strategy and in terms of
a network correction, we relax the requirement for the exactness of the
learned transformation. Another important feature of our work is that
the goal position can be changed without having to do network retraining.
Experimental results show the effectiveness of our method.

Index Terms—Cameras, laser range finders, neural networks, visual
servoing.

I. INTRODUCTION

When we use robotic external sensors for object manipulation,
e.g., grasping, the motion of the robot gripper needs to be deter-
mined. Traditional computer vision methods for accomplishing such
visual servoing tasks require both the sensors and their mounting
parameters to be calibrated in advance [2], [3]. This involves a lot
of computations and even some difficulties, especially when different
kinds of sensors are used [16], [17]. In the case of multiple sensory
visual servoing, an extra difficulty arises in determining the optimal
relative weights (importance) of each sensor in the motion estimation
procedure (e.g., in the minimization of an objective function [15]).
On the contrary, a neural network approach for doing the same job
can avoid all such calibrations and provides a convenient sensor
fusion framework. The network learns the direct transformation from
(multi-) sensory data to the required motions based on a set of
examples. The effects of sensor calibration, geometric transformation,
and the relative importance of each sensor are all absorbed in a single
network.

Kuperstein [7] first proposed to map stereo disparities of stationary
cameras directly to the robot joint angles used to reach a single
point in the three-dimensional (3-D) space by a nonlinear network.
Martinetz et al. [9] addressed the same problem by adding a self-
organization feature map to achieve a dynamic mapping resolution.
Later, Kuperstein [8] considered more degrees of freedom by in-
cluding orientation information in image features. Miller [10], [11]
used an eye-on-hand configuration to track an object on a conveyor.
This was done by learning the mapping from the differences between
the current and the desired images to the joint angle displacements
used to move the end-effector. Since the same relative hand-to-object
position in different robot configurations would require different robot
joint angle displacements to achieve the desired position, the robot’s
current joint angles should be involved in the input space, leading
to an increase in the dimension of the input space and thus in the
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computational complexity. Hashimotoet al. [4] simplified Miller’s
method by considering the relative positioning with respect to astatic
object, without having to involve the current joint angle configuration
in the input space. The case of static objects, however, is trivial since
the desired joint angles are fixed.

A common problem with all previous approaches is that the learned
mapping is assumed to be exact in the recall stage, which is in practice
either not the case or can only be achieved with increased complexity
in learning [4]. Another problem with previous approaches (in the
eye-on-hand case) is that the network has to be retrained if one wants
to change the desired hand-to-object relative position, because of the
change of the mapping.

In this correspondence, we use a multilayer perceptron to learn
the direct transformation from multisensory data to the end-effector’s
Cartesian motion, assuming that the robot kinematics is knowna
priori [14]. The sensors we consider are stereo cameras and laser
range finders mounted on a robot hand. We propose a method to relax
the requirement for the exactness of the learned mapping by means
of network modification and recursive motion. The same network can
also be used to adapt to changed goal positions without the need for
retraining.

II. THE LEARNING AND CONTROL STRATEGY

A. Learning the Sensor-Motion Transformation

SupposeS 2 Rn is the vector of sensor values in the sensor space,
wheren is its dimension. The sensor value vectorS is the input
to the network. The general principle to choose the dimension is
uniquenessandredundancy. Here uniqueness means that the sensory
data should be able to uniquely determine the end-effector’s relative
position with respect to the object, while redundancy requires that
one use more than the minimum number of sensory data to achieve
robustness in the pose determination. In our specific application to
be presented in Section III, the sensor value vector contains two
image points in each of a stereo pair and four laser ranges. Thus we
have the input dimension atn = 12 (see Section III for uniqueness
analysis). The network outputM 2 R

m is the Cartesian motion
parameters of the end-effector. It is well known that a rigid motion
is fully described by a rotation matrix and a translation vector. For
the sake of computational savings, it is useful to parameterize the
rotation matrix by fewer parameters, e.g., by the representations in
[1]. However, we showed [13] that most of those parameterizations
are not appropriate to be used as the network output. The reason
is that the singularities in the representations break the smoothness
requirement for the input-output relationship of the network, which is
a precondition for a correct learning and a meaningful generalization
[14]. (The smoothness requirement says that smooth changes in the
input space should also cause smooth changes in the output space.)
We list in Table I the validity of the various parameterizations as the
network output. It can be seen from the table that only the roll-pitch-
yaw (or the X-Y-Z Euler angles) [1] can be used in a suitable range
as the network output. Thus the universal representation of a rotation
as the network output is the rotation matrix itself. (But in this case
it is difficult to ensure orthonormality of the rotation matrix.) Since
the range of motion in our case does not exceed 90� we choose
the roll-pitch-yaw as our rotation parameterization for the network
output. The output dimension is thusm = 6 (three for rotation and
three translation).
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TABLE I
THE POSSIBILITY OF VARIOUS PARAMETERIZATIONS AS THE NETWORK OUTPUT

To obtain the training data, we set the robot end-effector to the
desired grasping position, which we call the reference position. Then
we make random movement of the robot hand. The amount of
motionsfMi; i = 1; � � � ; Kg with respect to the reference position
and the sensory datafSi; i = 1; � � � ; Kg after each motion are
recorded, whereK is the number of motions. The network is
then trained by using the backpropagation algorithm [12] with the
input–output examplesfSi;Mi; i = 1; � � � ; Kg as the training data.

B. Dealing with the Inexactness of the Mapping

Theoretically, a feedforward network can approximate any contin-
uous mapping up to any accuracy [6]. But due to the finite number of
training samples available and the finite network size used in practice,
the actually learned mapping is usually not exact, especially when a
large motion range is involved.

Under the assumptions made at the beginning of the last sec-
tion, there is a one-to-one (bidirectional) correspondence between
the sensory pattern and the motion parameters (uniqueness). The
transformation from the sensory data to the robot motions is thus
monotonic [18]. Therefore, there is only one sensory pattern which
induces the zero motion: the sensory patternSref at the reference
position. If we visualize the mapping in a simplified one-dimensional
(1-D) case, there is only one point of intersection of the mapping-
curve with the sensor axisS (see Fig. 1). If the learned mapping
is accurate enough, the property that there is only one point of
intersection with theS-axis in the learned mapping is maintained
(seeS0

ref in Fig. 1). Suppose the exact and the learned mappings are
represented byM = f(S); andM = f 0(S); respectively. Then, it
follows thatf(Sref) = 0 andf 0(S0

ref) = 0: Based on this property,
the sensory dataS0

ref will be called stable sensory patternsince it
does not trigger any motion; the corresponding robot end-effector
position will be called thestable position.

Now we analyze the behavior of anexactmapping underrecursive
motion. SupposeS1 is the sensory pattern at an initial gripper
position. If the robot moves according to the exact mappingM1 =
f(S1); the reference position will be reached in one step. With
recursive motion (or sensory feedback), we send only a small portion
of M1 to the robot. We denote the small portion by�M1 = �M1;

where the constant� is used to scale the motion and is made
dependent on the magnitude ofM1: After the robot has moved by
�M1; we measure the sensory data to obtain, sayS2; at the new
position. Then,S2 is used to recall another small motion�M2: This
process repeats until convergence is reached atMN = f(SN) = 0;

whereN is the number of motion steps. Since the exact mapping is
used here, convergence is guaranteed to be reached at the reference
position, that is,SN = Sref : (Since each step of motion reduces the
difference between the current sensory pattern andSref ; the process is
convergent.) This procedure can be analyzed by a local linearization
method as follows. SinceM = f(S) is monotonic, its inverse exists,
which will be denoted byS = g(M): Because of the smoothness of

Fig. 1. The exact and the learned mappings.

the mappingf( ); the inverse functiong () is also smooth. That is,
a small motion�M will cause a small change�S for the sensory
data. Thus, at thenth step of motion, we have

�Sn �
@g(Mn)

@Mn

��Mn (1)

Sn+1 �Sn +�Sn (2)

�Mn+1 � �n
@f(Sn)

@Sn
��Sn (3)

Mn+1 �Mn +�Mn+1 (4)

where n indexes the motion step,n � 1;Sn is the sensory data
at thenth station (i.e., after the(n � 1)th motion step),Mn is the
total amount of movement from the initial position to thenth station;
and �n is a scale factor. Therefore, in the case of small motions,
the sensor-motion loci are approximately along the mapping curve.
It can be seen from the above equations that the dynamic behavior
of the recursive motion is completely governed by the differential
properties of the mapping, i.e., (1) and (3). Equations (2) and (4) here
are only for understanding purposes: The exact value ofSn+1 should
be read from the sensors after the motion�Mn: The same applies to
Mn+1: the total amount of robot motion should be computed from the
difference between the actual robot position and the initial position.
Based on (1) and (3), if the learned mapping (inexact) is differentially
similar to the exact one, the system of the inexact mapping will
converge atMN = f 0(SN ) = 0; with SN = S0

ref ; whereN 0

is the number motion steps. Here thedifferential similarity of the
learned mapping to the exact one can be stated more concretely as
the sign equality of the derivatives of the learned mapping to those
of the exact mapping at every position. (It is thedirections (signs)
of the motions which determine the convergence of the system.) In
this way, the requirement for thevalue exactness of the mapping is
not necessary. Another important feature of recursive motion is that
it ensures a smooth trajectory for an inexact mapping.

C. Network Modification

We have just established the convergence properties of the recur-
sive motion for an inexact mapping. Since the converged position
for an inexact mapping is different from the required one (i.e.,
S0

ref 6= Sref); we have to modify the mapping such that the required
reference position be reached. This can be done in two ways. The
first is to shift the sensory data in the input space of the network
by the amountSref � S0

ref : The modified mapping reads asM =
f 00(S) = f 0(S � Sref + S0

ref): Sincef 00(Sref) = f 0(S0

ref) = 0; we
now have the stable position atS = Sref ; i.e., the required reference
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Fig. 2. The system diagram for learning the sensor-motion transformation.

Fig. 3. The multisensory gripper used in the experiment.

position; here,S0

ref should be first measured at the converged position
by usingM = f 00(S) in recursive motion. The second method is to
shift the network output. We first computeM0 = f 0(Sref) using the

learned mapping, refer to Fig. 1. Then, the mapping is modified as
M = f 00(S) = f 0(S)�M0; which ensures the stable position to be at
S = Sref ; sincef 00(Sref) = f 0(Sref)�M0 = 0: Since shift in either
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Fig. 4. The stereo image of the object superimposed with the detected centers of gravity and the region of interest in the tracking of the black blobs.

the input or the output space do not change the shape (derivatives)
of the mapping, the convergence property of the modified mapping
in recursive motion is unaffected.

The above methods can be extended to the case of a changed
reference position. Suppose after network training, we want to change
the reference position to a new one, which is specified by another
sensory data vectorSg measured at that position. We can simply
modify the learned mapping according to either of the following
formulas:

M = f
00(S) = f

0(S � Sg + S
0

ref) (5)

and

M = f
00(S) = f

0(S)� f
0(Sg): (6)

With the modified mapping as either (5) or (6), we have the converged
position now at the new reference positionS = Sg sincef 00(Sg) =
0: Therefore, we can use the existing network to achieve the new
reference position without having to do retraining. Here, it is assumed
that the new reference position is within the range where the training
data were sampled. Otherwise there is no guarantee that the modified
mapping curve has only one point of intersection with the sensor
axis in the working range (refer to Fig. 1). Experiments indicate that
the use of (5) needs fewer steps of recursive movements than using
(6); but to use (5), one has to measureS0

ref : Thus we use (6) in
our experiment. Fig. 2 shows the complete system-diagram of our
method, where the training is done off-line, and the required reference
position is used to modify either the network input or the network
output.

III. EXPERIMENTS

Our method has been tested in a real robot environment. The
robot we used is MANUTEC R2. The object we used is called
ORU (the Orbital Replaceable Unit), and is chosen from the space
robot technology experiment ROTEX in the 1993 German Spacelab-
mission D2 [5]. This object is in octagonal shape and is to be
grasped in a predefined position by a space robot using telesensor
programming. The end-effector is mounted with multiple sensors
including two hand cameras and nine range finders (cells) (see Fig. 3).
In our experiments, we used 4 of the short range sensors (active range

0–3 cm) mounted on the front side of the gripper and the stereo
cameras for visual servoing. When the end-effector is far away from
the object, the range finders are blind, and the camera images alone
can be used for motion determination. The experiments have been
reported in [13]. When the end-effector gets nearer to the object, the
object is occluded by the end-effector, so that only two of the corner
points on the object can be always seen by the cameras. In this case,
the range finders are in work. But neither the camera images nor
the range data alone can determine a unique end-effector position,
while the use of them both can. The four range finders, hitting on
the planar surface of the ORU, determine three degrees of freedom:
one positional and two rotational. The camera images determine the
other three degrees of freedom by using the two corner points. If we
use analytic computer vision methods to solve the same problem, a
lot of calibrations have to be involved [15]. The use of the neural
network method avoids these computations.

Fig. 4 shows the stereo view of the ORU object in the reference
position, where the two black blobs were artificially marked on the
object to ease real-time image processing for blob tracking. The center
of gravity of the blobs were used as the image feature points. The blob
tracking algorithm was realized on a Datacube MaxVideo 200 image
processing system, see [15] for details. The detected blobs together
with the region of interest for tracking are superimposed on the
intensity image in Fig. 4. The absolute accuracy of blob localization
by image processing is unfortunately unknown because of the difficult
to obtain ground truth. We could only measure the variance of the
localization; this is 0.23 pixels. Fortunately, the precision of blob
localization is not important in our neural visual servoing method:
Any localization error for the blobs can be learned by the network,
as long as the error is systematic, e.g., a constant shift. This is not the
case for conventional computer vision methods for doing the same
job.

A network of size 12� 100 � 6 was chosen. A set of 250
training samples was randomly generated to cover the work range
and used to train the network. Note that due to the relaxation of
the exactness of the learned mapping, we do not need to use huge
amounts of training data. The conjugate gradient method is used for
the training. After 280 cycles of iterations, which took about 5 min
on a Indygo2 Silicon Graphics workstation, the training is stopped
with a rms error being 4% of the maximum motion component (each
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(a)

(b)

Fig. 5. The differences between the current sensor data and the reference
sensor data during visual servoing (a) the image data error and (b) the range
data error.

TABLE II
THE SENSOR VALUE DIFFERENCES AT THE

STARTING POSITION AND THE CONVERGED POSITION

motion component, i.e., the rotation angles and translation values,
is normalized by its own maximum value). The trained network is
then used for the visual servoing of the end-effector to any desirable
position set within the range of training data without further need
for learning. The scaling of motion used in the recursive scheme is
done for rotation and translation components separately. For rotation
part, we first represent the rotation matrix by the angle-axis form
[1]. Then the rotation angle is scaled such that it does not exceed
0.5�. For the translation part, the magnitude of translation is scaled
to be within 0.8 mm (if it is larger than this limit). Fig. 5 show the
profiles of the differences between the current sensor data, with the
gripper started from an arbitrary position, and the reference sensor
data during visual servoing for a reference position. (Note that the
starting position can be outside the range of the training data.) The
sensory data differences at the starting position and the converged
one are also listed in Table II, where�X and �Y represent the
X and Y image coordinate errors, and�d the range data error.
It can be seen from the figures and from the table that after 50
steps of motion, the average image error and the average range error
have been reduced to 0.37 pixels and 0.08 mm, respectively. The
result has been much more accurate than that reported in [4], where
two networks, one for coarse motion and one for fine motion, were
used, and the accuracy in [4] for noise-free (simulated) data was�4

pixels.
Concerning the stability of our procedure, occlusions in the sensory

data are not allowed. That is, if an image point is out of track, or
if a laser range sensor fails, the neural network may misguide the
robot. This problem could be solved by training several networks

with some sensory data missing (as long as uniqueness is assured),
and then switch between the different networks after identifying the
type of sensory pattern.

IV. CONCLUSIONS

In this correspondence, we have presented a neural network
approach to multisensory visual servoing. A multilayer perceptron
network is used to learn the direct mapping from multisensory data
to robot motions. We propose to deal with the inexactness of the
learned mapping in terms of recursive motion and modification of
the network input/output. In this way, an inexact network can be
used to achieve the required mapping. This enables computational
savings, in the sense that a smaller network can be applied, and
fewer numbers of training samples can be used. Another feature of
our method is that we do not need to retrain the network if we change
the reference position; any position within the training range can be
reached by modifying the existing network. Experiments have shown
that satisfactory accuracy has been achieved.
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