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Multisensory Visual Servoing by a Neural Network computational complexity. Hashimotet al. [4] simplified Miller’s
_ _ o method by considering the relative positioning with respectgstatc
Guo-Qing Wei and G. Hirzinger object, without having to involve the current joint angle configuration

in the input space. The case of static objects, however, is trivial since

Ab ional " hods for d . the desired joint angles are fixed.
stract—Conventional computer vision methods for determining & A common problem with all previous approaches is that the learned
robot's end-effector motion based on sensory data needs sensor cali-

bration (e.g., camera calibration) and sensor-to-hand calibration (e.g., Mapping is assumed to be exact in the recall stage, which is in practice
hand—eye calibration). This involves many computations and even some either not the case or can only be achieved with increased complexity
difficulties, especially when different kinds of sensors are involved. In this in learning [4]. Another problem with previous approaches (in the

correspondence, we present a neural network approach to the motion eye_on-hand case) is that the network has to be retrained if one wants

determination problem without any calibration. Two kinds of sensory . . . "
data, namely, camera images and laser range data, are used as the input tot0 change the desired hand-to-object relative position, because of the

a multilayer feedforward network to associate the direct transformation ~ change of the mapping.
from the sensory data to the required motions. This provides a practical In this correspondence, we use a multilayer perceptron to learn
sensor fusion method. Using a recursive motion strategy and in terms of the direct transformation from multisensory data to the end-effector’s

a network correction, we relax the requirement for the exactness of the -, yagjan motion, assuming that the robot kinematics is knawn
learned transformation. Another important feature of our work is that

the goal position can be changed without having to do network retraining. Priori [14]. The sensors we consider are stereo cameras and laser

Experimental results show the effectiveness of our method. range finders mounted on a robot hand. We propose a method to relax
Index Terms—Cameras, laser range finders, neural networks, visual the reqwremen,t ,for ,the exactness. of the ,Ieamed mapping by means
servoing. of network modification and recursive motion. The same network can
also be used to adapt to changed goal positions without the need for
retraining.

I. INTRODUCTION

When we use robotic external sensors for object manipulation,
e.g., grasping, the motion of the robot gripper needs to be deter- Il. THE LEARNING AND CONTROL STRATEGY
mined. Traditional computer vision methods for accomplishing such
visual servoing tasks_ requir@j both the sensors an_d Fheir moumiﬂ.gLearning the Sensor-Motion Transformation
parameters to be calibrated in advance [2], [3]. This involves a lot . .
of computations and even some difficulties, especially when different>UPPOSES € R" is the vector of sensor values in the sensor space,
kinds of sensors are used [16], [17]. In the case of multiple sensdij€re is its dimension. The sensor value vectdris the input
visual servoing, an extra difficulty arises in determining the optim&p the network. The general principle to choose the dimension is
relative weights (importance) of each sensor in the motion estimatidfiduenesandredundancy. Here uniqueness means that the sensory
procedure (e.g., in the minimization of an objective function [15] .ata_\ _shou[d be able to unlquely_ determ!ne the end-effector's_ relative
On the contrary, a neural network approach for doing the same jBBsmon with respect to tr_le_ object, while redundancy requires t_hat
can avoid all such calibrations and provides a convenient senS§f€ Use more than the minimum number of sensory data to achieve
fusion framework. The network learns the direct transformation frofPUStNess in the pose determination. In our specific application to
(multi-) sensory data to the required motions based on a set_tlﬁ prese_nted_ in Section Ill, the sensor value vector contains two
examples. The effects of sensor calibration, geometric transformatiA2g€ Points in each of a stereo pair and four laser ranges. Thus we

and the relative importance of each sensor are all absorbed in a sift4 the input dimension at = 12 (see Section Ill for uniqueness
network. analysis). The network output/ € R™ is the Cartesian motion

Kuperstein [7] first proposed to map stereo disparities of stationdfgrameters of the end-effector. It is well known that a rigid motion
fully described by a rotation matrix and a translation vector. For

cameras directly to the robot joint angles used to reach a singfe ' ) © ;
point in the three-dimensional (3-D) space by a nonlinear netwo e sake of computational savings, it is useful to parameterize the

Martinetz et al. [9] addressed the same problem by adding a sefptation matrix by fewer parameters, e.g., by the representations in

organization feature map to achieve a dynamic mapping resolutiéhl: However, we showed [13] that most of those parameterizations

Later, Kuperstein [8] considered more degrees of freedom by ifit€ NOt appropriate to be used as the network output. The reason
cluding orientation information in image features. Miller [10], [11]'S thgt the smgulan_tles in the repres_entat_lons break the smoqthn_ess
used an eye-on-hand configuration to track an object on a convey&aduirement for the input-output relationship of the network, which is
This was done by learning the mapping from the differences betweprecondition for a correct I_earnmg and a meaningful generallze_ttlon
the current and the desired images to the joint angle displacemerd- (The smoothness requirement says that smooth changes in the
used to move the end-effector. Since the same relative hand-to-ob|BRt SPace should also cause smooth changes in the output space.)
position in different robot configurations would require different robofV€ list in Table I the validity of the various parameterizations as the
joint angle displacements to achieve the desired position, the robdt&Work output. It can be seen from the table that only the roll-pitch-
current joint angles should be involved in the input space, leadidg"W (Or the X-Y-Z Euler angles) [1] can be used in a suitable range
to an increase in the dimension of the input space and thus in fthe network output. Thus the ur_nversal r_ep_resentatlon_ of a rotation
as the network output is the rotation matrix itself. (But in this case
Manuscript received October 14, 1998. This paper was recommendedibys difficult to ensure orthonormality of the rotation matrix.) Since
Associate Editor M. S. Obaidat. the range of motion in our case does not exceetl @@ choose
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TABLE |
THE POSSIBILITY OF VARIOUS PARAMETERIZATIONS AS THE NETWORK QUTPUT exact mapping
Type of representation Applicability M A
Roll-pitch-yaw —90° < a, 8,7 < 90°

inappropriate: around the reference posi-
Z —Y — Z Euler angles | tion, tiny movements may cause abrupt

changes of the o angle — .
inappropriate: around the reference posi- learned mapping
Equivalent angle-axis tion, tiny movements may cause abrupt

changes of the axis of rotation (180°)
inappropriate: the same as the equivalent

angle-axis

Quaternion

To obtain the training data, we set the robot end-effector to the
desired grasping position, which we call the reference position. Then
we make random movement of the robot hand. The amount of
motions{M;,i = 1,---, K'} with respect to the reference position ]
and the sensory datéS;,i = 1,---,K} after each motion are Fig- 1. The exact and the leamed mappings.
recorded, wherek is the number of motions. The network is
then trained by using the backpropagation algorithm [12] with thtae mappingf( ), the inverse functiory () is also smooth. That is,

input—output example$S;, M;;i = 1,---, K} as the training data. a small motionA A will cause a small changa$ for the sensory
data. Thus, at theth step of motion, we have
B. Dealing with the Inexactness of the Mapping M,
: . . AS, ~ 290\ )
Theoretically, a feedforward network can approximate any contin- oM,
uous mapping up to any accuracy [6]. But due to the finite number of Snt1 =S, + AS, (2
training samples available and the finite network size used in practice, (S,
g samp P AMpsr 7 pn 25 ng, ®)

the actually learned mapping is usually not exact, especially when a 9S,,
large motion range is involved. M1 =M, +AM,11 4)

Under the assumptions made at the beginning of the last Se<ﬁ ind th i 1 > 1:5. is th dat
tion, there is a one-to-one (bidirectional) correspondence betwelfCré n INdexes the motion stepy = 1;5, 1S e sensory data

the sensory pattern and the motion parameters (uniqueness). ?‘héhe"th station (i.e., after then — 1)th motion step) M, is the

transformation from the sensory data to the robot motions is th[?algl am_ount of r|n0\f/ement_|f_rr<])m ;he |n|_t|al k? osition toftmh sltlatlon}
monotonic [18]. Therefore, there is only one sensory pattern whidjid /n 1S @ scale ac@or. eretore, in the case of sma _motlons,
induces the zero motion: the sensory pattén at the reference the sensor-motion loci are approximately along the mapping curve.

position. If we visualize the mapping in a simplified one-dimensiongl can be seen from the ahove equations that the dynamic behavior

(1-D) case, there is only one point of intersection of the mappinﬁf the recursive motion is completely governed by the differential

curve with the sensor axi§ (see Fig. 1). If the learned mappingProPerties of the mapping, i.e., (1) and (3). Equations (2) and (4) here
is accurate enough, the property that there is only one point onglffor unr(]jerstandlng ?turpcr)]ses: 'I'_hijexacrt]valménqﬁ shlc_)uld
intersection with theS-axis in the learned mapping is maintainecp(,a read from the sensors after the mm »- The same applies to
(seeS'. in Fig. 1). Suppose the exact and the learned mappings a1 the total amount of robot motion should be computed from the
represreented byl = £(S), and M = f'(S), respectively. Then, it difference between the actual robot position and the initial position.
follows that f(Srer) = 0 and F1(S') = 0. Based on this prope;ty, B‘_as_ed on (1) and (3), if the learned mapping (ingxact) is differ_ential!y
the sensory dat&’.; will be called stable sensory pattermince it similar to the exact one, the system of the inexact mapping wil

) Y] N ; L, = g !
does not trigger any motion; the corresponding robot end-effec{o?Ver9e atMy, = f (Sn1) = 0, with Sy = S, where N
position will be called thestable position. Is the number motion steps. Here thiéferential similarity of the

Now we analyze the behavior of @xactmapping underecursive Iearngd mappi_ng o the ex"f‘“ one can be stated more _concretely as
motion. SupposeS: is the sensory pattern at an initial grippelIhe sign equality O.f the derivatives .O.f the Ie'arne_d mapping (o those
position. If the robot moves according to the exact mappihg = of the exagt mapping at every position. (It is tiaections (signs)
7(S1), the reference position will be reached in one step. Witﬂf_the motions which determine the convergence of the system.) In

recursive motion (or sensory feedback), we send only a small portitcmS way, the reqU|rement for thealue exactness of t,he mapping 1S

of M, to the robot. We denote the small portion b7, = p)M, _not necessary. Another_lmportant feat_ure of recursive motion is that
where the constanp is used to scale the motion and is madd ensures a smooth trajectory for an inexact mapping.

dependent on the magnitude &f,;. After the robot has moved by o

AM,, we measure the sensory data to obtain, Sayat the new C- Network Modification

position. Then,S. is used to recall another small motidn\Z,. This We have just established the convergence properties of the recur-
process repeats until convergence is reachedat= f(Sy) =0, sive motion for an inexact mapping. Since the converged position
where N is the number of motion steps. Since the exact mappingfisr an inexact mapping is different from the required one (i.e.,
used here, convergence is guaranteed to be reached at the refer§hge# S..¢), we have to modify the mapping such that the required
position, that is,Sy = S:er. (Since each step of motion reduces theeference position be reached. This can be done in two ways. The
difference between the current sensory pattern$ad the process is first is to shift the sensory data in the input space of the network
convergent.) This procedure can be analyzed by a local linearization the amountS,.; — S/.;. The modified mapping reads a4 =
method as follows. Sinc&/ = f(S) is monotonic, its inverse exists, f(S) = f'(S — Set + Sier). Since f'(Svet) = f'(Sief) = 0, We
which will be denoted bys = g(M). Because of the smoothness ofnow have the stable position St= S..¢, i.e., the required reference
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Fig. 2. The system diagram for learning the sensor-motion transformation.

Fig. 3. The multisensory gripper used in the experiment.

position; hereS..; should be first measured at the converged positidearned mapping, refer to Fig. 1. Then, the mapping is modified as
by usingM = #"(S) in recursive motion. The second method is taW/ = f"(S) = f'(.5)— My, which ensures the stable position to be at
shift the network output. We first compufey = f'(S,cr) Using the S = S..t, sincef” (Seer) = f'(Sier) — Mo = 0. Since shift in either

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

D
A

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 2, APRIL 1999 279

Fig. 4. The stereo image of the object superimposed with the detected centers of gravity and the region of interest in the tracking of the black blobs.

the input or the output space do not change the shape (derivativ@sl) cm) mounted on the front side of the gripper and the stereo
of the mapping, the convergence property of the modified mappingmeras for visual servoing. When the end-effector is far away from
in recursive motion is unaffected. the object, the range finders are blind, and the camera images alone
The above methods can be extended to the case of a changad be used for motion determination. The experiments have been
reference position. Suppose after network training, we want to changeorted in [13]. When the end-effector gets nearer to the object, the
the reference position to a new one, which is specified by anothabject is occluded by the end-effector, so that only two of the corner
sensory data vectaf, measured at that position. We can simplyoints on the object can be always seen by the cameras. In this case,
modify the learned mapping according to either of the followinghe range finders are in work. But neither the camera images nor
formulas: the range data alone can determine a unique end-effector position,
while the use of them both can. The four range finders, hitting on

14 " ! 1
M= f7(8) = (5= 55+ Srer) ©) the planar surface of the ORU, determine three degrees of freedom:
and one positional and two rotational. The camera images determine the
other three degrees of freedom by using the two corner points. If we
M= f"(S)=f'(S) = f'(Sy). (6) use analytic computer vision methods to solve the same problem, a

With the modified mapping as either (5) or (6), we have the converg%-%('J t\?vfo::l? I;?;?::ggsacgi\:ii tt(k)lebsee I(r:];lgql\p/)i(tjat[iti]é The use of the neural

position now at the new referencg ppsitiSn: 5o sincef’.’(Sg) » Fig. 4 shows the stereo view of the ORU object in the reference
0. Therefore, we can use the existing network to achieve the nevVsition, where the two black blobs were artificially marked on the

reference position without having to do retraining. Here, it is assumgg. T - )
N . _.0bject to ease real-time image processing for blob tracking. The center
that the new reference position is within the range where the tralnlng

data were sampled. Otherwise there is no guarantee that the modiﬁearavny of the blobs were used as the image feature points. The blob

. - . - . racking algorithm was realized on a Datacube MaxVideo 200 image
mapping curve has only one point of intersection with the sensor

axis in the working range (refer to Fig. 1). Experiments indicate thatocessing system, see [15] for details. The detected blobs together

. with the region of interest for tracking are superimposed on the
the use of (5) needs fewer steps of recursive movements than usi L - o
] , ._Inteénsity image in Fig. 4. The absolute accuracy of blob localization
(6); but to use (5), one has to measwgs. Thus we use (6) in : LS -
by image processing is unfortunately unknown because of the difficult

our experiment. Fig. 2 shows the complete system-diagram of qur ' .
p 9. 2 sho np Y a9 c{o obtain ground truth. We could only measure the variance of the
method, where the training is done off-line, and the required reference

position is used to modify either the network input or the netWorocalization; this is 0.23 pixels. Fortunately, the precision of blob
output ocalization is not important in our neural visual servoing method:

Any localization error for the blobs can be learned by the network,
as long as the error is systematic, e.g., a constant shift. This is not the
case for conventional computer vision methods for doing the same
Our method has been tested in a real robot environment. Tjob.
robot we used is MANUTEC R2. The object we used is called A network of size 12x 100 x 6 was chosen. A set of 250
ORU (the Orbital Replaceable Unit), and is chosen from the spatraining samples was randomly generated to cover the work range
robot technology experiment ROTEX in the 1993 German Spaceland used to train the network. Note that due to the relaxation of
mission D2 [5]. This object is in octagonal shape and is to kbe exactness of the learned mapping, we do not need to use huge
grasped in a predefined position by a space robot using telesersoounts of training data. The conjugate gradient method is used for
programming. The end-effector is mounted with multiple sensotise training. After 280 cycles of iterations, which took about 5 min
including two hand cameras and nine range finders (cells) (see Fig.@).a Indygo2 Silicon Graphics workstation, the training is stopped
In our experiments, we used 4 of the short range sensors (active ramgj@ a rms error being 4% of the maximum motion component (each

Ill. EXPERIMENTS
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with some sensory data missing (as long as uniqueness is assured),

3

2 and then switch between the different networks after identifying the

2,0l type of sensory pattern.

- )

820 : IV. CONCLUSIONS

é’ In this correspondence, we have presented a neural network
0

approach to multisensory visual servoing. A multilayer perceptron

network is used to learn the direct mapping from multisensory data
to robot motions. We propose to deal with the inexactness of the
learned mapping in terms of recursive motion and modification of

the network input/output. In this way, an inexact network can be

used to achieve the required mapping. This enables computational
savings, in the sense that a smaller network can be applied, and
fewer numbers of training samples can be used. Another feature of
our method is that we do not need to retrain the network if we change
the reference position; any position within the training range can be
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Fig. 5. The differences between the current sensor data and the reference

sensor data during visual servoing (a) the image data error and (b) the range
data error. 1]

(2]
TABLE I
THE SENSOR VALUE DIFFERENCES AT THE

STARTING POSITION AND THE CONVERGED POSITION [3]

feature index | starting position | converged position
AX | AY [Ad [AX [AY | Ad (4]

No.1 12.03 | 23.33 | 1.75 | 0.26 | 0.37 | 0.125

No.2 13.91 | 22.30 | 0.81 | 0.24 { 0.27 | 0.125
No.3 14.22 | 25.09 | 1.87 | 0.74 | 0.19 | 0.062 (5]

No.4 14.20 | 22.82 | 2.72 | 0.44 | 0.49 | 0.041
(6]

motion component, i.e., the rotation angles and translation value[37,
is normalized by its own maximum value). The trained network is

then used for the visual servoing of the end-effector to any desirablg] —_,

position set within the range of training data without further need
for learning. The scaling of motion used in the recursive scheme i
done for rotation and translation components separately. For rotation
part, we first represent the rotation matrix by the angle-axis formo]
[1]. Then the rotation angle is scaled such that it does not exceed
0.5°. For the translation part, the magnitude of translation is scalt—f{il]
to be within 0.8 mm (if it is larger than this limit). Fig. 5 show the
profiles of the differences between the current sensor data, with the
gripper started from an arbitrary position, and the reference senst?]
data during visual servoing for a reference position. (Note that the
starting position can be outside the range of the training data.) T %
sensory data differences at the starting position and the converged
one are also listed in Table Il, whertd X and AY represent the
X andY image coordinate errors, anfdld the range data error. (14]
It can be seen from the figures and from the table that after 50
steps of motion, the average image error and the average range euer
have been reduced to 0.37 pixels and 0.08 mm, respectively. The
result has been much more accurate than that reported in [4], where
two networks, one for coarse motion and one for fine motion, weF J
used, and the accuracy in [4] for noise-free (simulated) datadwas
pixels. [17]
Concerning the stability of our procedure, occlusions in the sensory
data are not allowed. That is, if an image point is out of track, Ohis
if a laser range sensor fails, the neural network may misguide t
robot. This problem could be solved by training several networks
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reached by modifying the existing network. Experiments have shown

satisfactory accuracy has been achieved.
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