

US009875160B2

(12) United States Patent

Bezbaruah et al.

(54) EFFICIENTLY PROVIDING VIRTUAL MACHINE REFERENCE POINTS

(71) Applicant: MICROSOFT TECHNOLOGY LICENSING, LLC, Redmond, WA

(US)

(72) Inventors: Angshuman Bezbaruah, Redmond,

WA (US); Lars Reuther, Kirkland, WA (US); Taylor O'Neil Brown, Bellevue, WA (US); John Andrew Starks,

Seattle, WA (US)

(73) Assignee: Microsoft Technology Licensing, LLC,

Redmond, WA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 15/219,958

(22) Filed: Jul. 26, 2016

(65) Prior Publication Data

US 2017/0109240 A1 Apr. 20, 2017

Related U.S. Application Data

(63) Continuation of application No. 14/573,976, filed on Dec. 17, 2014, now Pat. No. 9,430,272.

(51) **Int. Cl.**

 G06F 9/455
 (2006.01)

 G06F 11/14
 (2006.01)

 G06F 3/06
 (2006.01)

(52) U.S. Cl.

(Continued)

(10) Patent No.: US 9,875,160 B2

(45) **Date of Patent:**

*Jan. 23, 2018

(58) Field of Classification Search

CPC G06F 3/0619; G06F 3/065; G06F 3/067; G06F 9/45558; G06F 11/1451; G06F 2201/84

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

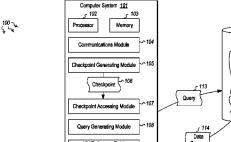
5,721,915 A 2/1998 Sockut et al. 6,411,964 B1 6/2002 Iyer et al. (Continued)

FOREIGN PATENT DOCUMENTS

CN 103946807 A 7/2014

OTHER PUBLICATIONS

Zhang et al., "Optimizing VM Checkpointing for Restore Performance in VMware ESXi", 2013, USENIX Annual Technical Conference, 12 pages.*


(Continued)

Primary Examiner — Ted T Vo (74) Attorney, Agent, or Firm — Workman Nydegger

(57) ABSTRACT

Data Store 115
_____11
Checkpoint Data
State Data
118
_____117
Storage Data

A computer system maintains identifiers that identify changed blocks of virtual machine (VM) storage. The computer system accesses a stable VM checkpoint comprising a restorable VM image at a time, and that stores a representation of data of at least one block as it existed at the time. The computer system converts the checkpoint to a reference point. Reference point information is transferable with the VM, such that if the VM is moved to a different computing system, any data identified by the reference point is recoverable. The conversion includes querying the storage to determine an identifier corresponding to the block of the checkpoint at the time, storing this identifier as a part of the reference point, and releasing the representation of the data (Continued)

State Management Module

of the block from the checkpoint. The computer system then uses the reference point to identify changes in the blocks of the storage since the time.

20 Claims, 3 Drawing Sheets

(52)	U.S. Cl.	
	CPC	G06F 3/0619 (2013.01); G06F 9/45558
		(2013.01): G06F 2201/84 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

6,795,966	B1	9/2004	Lim et al.
6,981,114	B1	12/2005	Wu et al.
7,162,662	B1	1/2007	Svarcas et al.
7,249,262	B2	7/2007	Hauck et al.
7,328,366	B2	2/2008	Michelman
7,447,854	B1	11/2008	Cannon
7,516,286	B1	4/2009	Dalai et al.
7,519,858	B2	4/2009	Korlepara
7,574,459	B2	8/2009	Sen et al.
7,860,837	B2	12/2010	Ali et al.
7,865,470	B2	1/2011	Fries et al.
8,055,613	B1	11/2011	Mu et al.
8,145,601	B2	3/2012	Zizys et al.
	В1	12/2012	Feathergill
8,356,013		1/2013	Fachan et al.
8,356,148		1/2013	Popovski et al.
8,443,166		5/2013	Czezatke et al.
8,463,747		6/2013	Wahlert et al.
8,463,749		6/2013	Zizys et al.
8,468,609		6/2013	Leggette
8,538,919	В1	9/2013	Nielsen et al.
8,560,855		10/2013	Resch
8,712,970		4/2014	Sim-Tang
8,726,127		5/2014	Grube et al.
8,726,273		5/2014	Le
8,751,515		6/2014	Xing et al.
8,782,086	B2	7/2014	Resch
8,788,773	B2	7/2014	Goodman et al.
8,805,788	B2	8/2014	Gross, IV et al.
8,813,204		8/2014	Leggette
8,966,341	B2	2/2015	Grube et al.
9,081,714		7/2015	Grube et al.
	B2	7/2015	Grube et al.
9,086,994		7/2015	Resch
9,130,957		9/2015	Yamaura et al.
9,276,980	B2	3/2016	Chan
9,430,272	B2 *	8/2016	Bezbaruah G06F 9/4555
2008/0126445	Al	5/2008	Michelman
2008/0140963	A1	6/2008	Thomason et al.
2010/0049929	Al	2/2010	Nagarkar et al.
2010/0228913	Al	9/2010	Czezatke et al.
2010/0262585	A1	10/2010	Rosikiewicz et al.
2010/0274980	Al	10/2010	Stringham et al.
2011/0167196	Al	7/2011	Scales et al.
2012/0072659		3/2012	Wade et al.
2013/0067179	Al	3/2013	Paleologu et al.
2013/0254479		9/2013	Czezatke et al.
2013/0290782	A1	10/2013	Chen et al.

1/2014	Fuente et al.
2/2014	Kotagiri et al.
6/2014	Garthwaite et al
8/2014	Blyler
9/2014	Grube et al.
11/2014	Resch et al.
11/2014	Leggette et al.
6/2016	Bezbaruah
7/2016	Starks et al.
	2/2014 6/2014 8/2014 9/2014 11/2014 11/2014 6/2016

OTHER PUBLICATIONS

"Notice of Allowance Issued in U.S. Appl. No. 14/573,976", dated Jun. 7, 2016, 7 Pages.

"Notice of Allowance Issued in U.S. Appl. No. 14/595,047", dated Mar. 14, 2016, 11 Pages.

"Notice of Allowance Issued in U.S. Appl. No. 14/595,047", dated May 16, 2016, 9 Pages.

"International Search Report and Written Opinion Issued in PCT Application No. PCT/US2015/063565", dated Jun. 30, 2016, 20 Pages.

"International Search Report and Written Opinion Issued in PCT Application No. PCT/US2015/067761", dated May 24, 2016, 12 Pages.

Ramdas, Aashish, "Resynchronization of Virtual Machines in Hyper-V Replica", Retrieved from: <<ht><https://blogs.technet.microsoft.com/virtualization/2013/05/10/resynchronization-of-virtual-machines-in-hyper-v-replica/>>, May 10, 2013, 5 Pages.

Garg, et al., "Checkpoint-Restart for a Network of Virtual Machines", In Proceedings of International Conference on Cluster Computing, IEEE, Sep. 23, 2013, 8 Pages.

Park, et al., "Fast and Space-Efficient Virtual Machine Checkpointing", In Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, Mar. 9, 2011, pp. 75-85.

Sinofsky, Steven, "Building the next generation file system for Windows: ReFS", Retrieved from: <<https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-system-for-windows-refs/>>, Jan. 17, 2012, 45 Pages.

windows-refs/>>, Jan. 17, 2012, 45 Pages.
Werneburg, Ken, "VMware vSphere® Replication 5.5 Overview: Simple and Effective Virtual Machine Protection", In Technical White Paper, Nov. 16, 2013, 14 Pages.

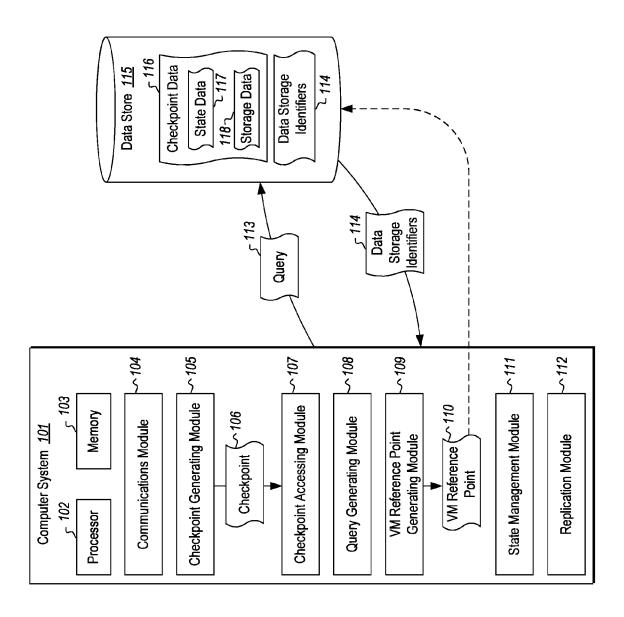
"Advanced Restore—Virtual Server Agent for VMware", Retrieved from: <https://documentation.commvault.com/commvault/v10/article?p=products/vs_vmware/restore_adv.htm>, Retrieved on: Nov. 7, 2014, 32 Pages.

"Changed Block Tracking (CBT) on Virtual Machines (1020128)", Retrieved from: <https://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1020128 &sliceId=1&docTypeID=DT_KB_1_1&dialogID=155782394 &stateId=0 0 160353152>>, Retrieved on: Nov. 7, 2014, 2 Pages. "High Availability and Data Protection with EMC Isilon Scale-Out

NAS", In White Paper, Nov. 2013, 36 Pages. "What's New in Hyper-V for Windows Server 2012", Retrieved from: <<ht><https://technet.microsoft.com/en-us/library/hh831410(v=ws.11).aspx>>, Feb. 29, 2012, 6 Pages.

"Non Final Office Action Issued in U.S. Appl. No. 14/573,976",

dated Dec. 3, 2015, 10 Pages.
"International Preliminary Report on Patentability Issued in PCT Application No. PCT/US2015/063565", dated Mar. 24, 2017, 14


Application No. PCT/US2015/063565", dated Mar. 24, 2017, 14 Pages.

Notice of Allowance dated Oct. 6, 2016 cited in U.S. Appl. No. 14/595,047.

"SecondWritten Opinion Issued in PCT Application No. PCT/US2015/063565", dated Jan. 13, 2017, 12 Pages.

* cited by examiner

Figure

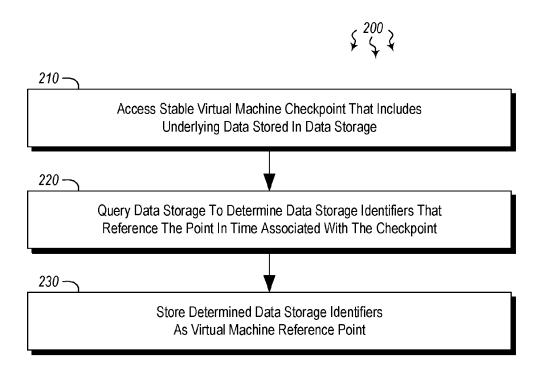


Figure 2

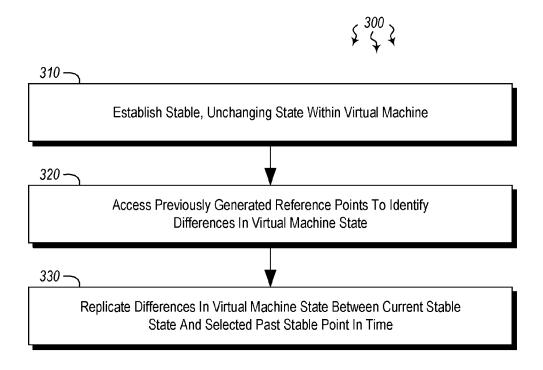


Figure 3

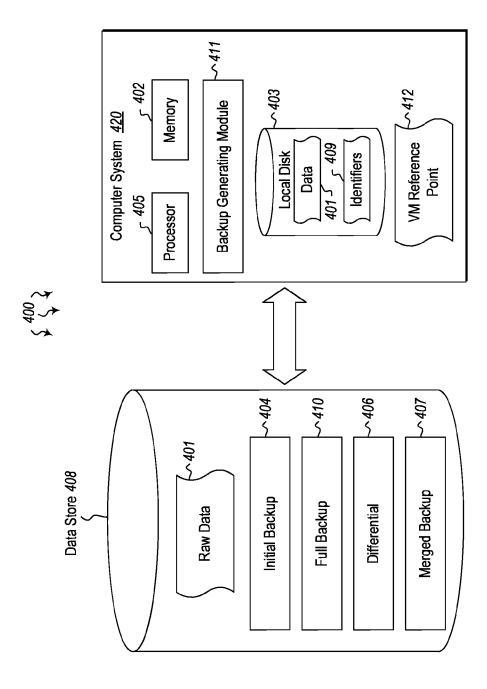


Figure 4

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

