
Copyright © 1999 IEEE. Published in the Proceedings of the 26th International Symposium on Computer Architecture, May 2-4, 1999, in Atlanta GA, USA. Personal use of this material is per-
mitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O.
Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

ABSTRACT

In response to the growing gap between memory access time and
processor speed, DRAM manufacturers have created several new
DRAM architectures. This paper presents a simulation-based per-
formance study of a representative group, each evaluated in a small
system organization. These small-system organizations correspond
to workstation-class computers and use on the order of 10 DRAM
chips. The study covers Fast Page Mode, Extended Data Out, Syn-
chronous, Enhanced Synchronous, Synchronous Link, Rambus, and
Direct Rambus designs. Our simulations reveal several things: (a)
current advanced DRAM technologies are attacking the memory
bandwidth problem but not the latency problem; (b) bus transmis-
sion speed will soon become a primary factor limiting memory-sys-
tem performance; (c) the post-L2 address stream still contains
significant locality, though it varies from application to application;
and (d) as we move to wider buses, row access time becomes more
prominent, making it important to investigate techniques to exploit
the available locality to decrease access time.

1 INTRODUCTION

In response to the growing gap between memory access time and
processor speed, DRAM manufacturers have created several new
DRAM architectures. This paper presents a simulation-based perfor-
mance study of a representative group, evaluating each in terms of
its effect on total execution time. We simulate the performance of
seven DRAM architectures: Fast Page Mode [35], Extended Data
Out [16], Synchronous [17], Enhanced Synchronous [10], Synchro-
nous Link [38], Rambus [31], and Direct Rambus [32]. While there
are a number of academic proposals for new DRAM designs, space
limits us to covering only existent commercial parts. To obtain accu-
rate memory-request timing for an aggressive out-of-order proces-
sor, we integrate our code into the SimpleScalar tool set [4].

This paper presents a baseline study of asmall-system DRAM
organization: these are systems with only a handful of DRAM chips
(0.1–1GB). We do not consider large-system DRAM organizations
with many gigabytes of storage that are highly interleaved. The
study asks and answers the following questions:

• What is the effect of improvements in DRAM technology on the
memory latency and bandwidth problems?

Contemporary techniques for improving processor performance
and tolerating memory latency are exacerbating the memory
bandwidth problem [5]. Our results show that current DRAM
architectures are attacking exactly this problem: the most recent
technologies (SDRAM, ESDRAM, and Rambus) have reduced
the stall time due to limited bandwidth by a factor of three
compared to earlier DRAM architectures. However, the
memory-latency component of overhead has not improved.

• Where is time spent in the primary memory system (the memory
system beyond the cache hierarchy, but not including secondary
[disk] or tertiary [backup] storage)? What is the performance
benefit of exploiting the page mode of contemporary DRAMs?

For the newer DRAM designs, the time to extract the required
data from the sense amps/row caches for transmission on the
memory bus is the largest component in the average access time,
though page mode allows this to be overlapped with column
access and the time to transmit the data over the memory bus.

• How much locality is there in the address stream that reaches the
primary memory system?

The stream of addresses that miss the L2 cache contains a
significant amount of locality, as measured by the hit-rates in the
DRAM row buffers. The hit rates for the applications studied
range 8–95%, with a mean hit rate of 40% for a 1MB L2 cache.
(This does not include hits to the row buffers when making
multiple DRAM requests to read one cache-line.)

We also make several observations. First, there is a one-time trade-
off between cost, bandwidth, and latency: to a point, latency can be
decreased by ganging together multiple DRAMs into a wide struc-
ture. This trades dollars for bandwidth that reduces latency because
a request size is typically much larger than the DRAM transfer
width. Page mode and interleaving are similar optimizations that
work because a request size is typically larger than the bus width.
However, the latency benefits are limited by bus and DRAM speeds:
to get further improvements, one must run the DRAM core and bus
at faster speeds. Current memory busses are adequate for small sys-
tems but are likely inadequate for large ones. Embedded DRAM [5,
19, 37] is not a near-term solution, as its performance is poor on
high-end workloads [3]. Faster buses are more likely solutions—wit-
ness the elimination of the slow intermediate memory bus in future
systems [12]. Another solution is to internally bank the memory
array into many small arrays so that each can be accessed very
quickly, as in the MoSys Multibank DRAM architecture [39].

Second, widening buses will present new optimization opportu-
nities. Each application exhibits a different degree of locality and
therefore benefits from page mode to a different degree. As buses
widen, this effect becomes more pronounced, to the extent that dif-
ferent applications can have average access times that differ by 50%.
This is a minor issue considering current bus technology. However,
future bus technologies will expose the row access as the primary
performance bottleneck, justifying the exploration of mechanisms to
exploit locality to guarantee hits in the DRAM row buffers: e.g. row-
buffer victim caches, prediction mechanisms, etc.

Third, while buses as wide as the L2 cache yield the best mem-
ory latency, they cannot halve the latency of a bus half as wide. Page
mode overlaps the components of DRAM access when making mul-
tiple requests to the same row. If the bus is as wide as a request, one

A Performance Comparison of Contemporary DRAM Architectures

Vinodh Cuppu, Bruce Jacob Brian Davis, Trevor Mudge
Dept. of Electrical & Computer Engineering Dept. of Electrical Engineering & Computer Science

University of Maryland, College Park University of Michigan, Ann Arbor
{ramvinod,blj}@eng.umd.edu {btdavis,tnm}@eecs.umich.edu

1063-6897/99/$10.00 (c) 1999 IEEE

1 of 12 Petitioner Lenovo (United States) Inc. - Ex. 1011222f

Find authenticated court documents without watermarks at docketalarm.com.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F300979.300998&domain=pdf&date_stamp=1999-05-01
https://www.docketalarm.com/

cannot exploit this overlap. For cost considerations, having at most
an N/2-bit bus, N being the L2 cache width, might be a good choice.

Fourth, critical-word-first does not mix well with burst mode.
Critical-word-first is a strategy that requests a block of data poten-
tially out of address-order; burst mode delivers data in a fixed but
redefinable order. A burst-mode DRAM can thus can have longer
latencies in real systems, even if its end-to-end latency is low.

Finally, the choice of refresh mechanism can significantly alter
the average memory access time. For some benchmarks and some
refresh organizations, the amount of time spent waiting for a DRAM
in refresh mode accounted for 50% of the total latency.

As one might expect, our results and conclusions are dependent
on our system specifications, which we chose to be representative of
mid- to high-end workstations: a 100MHz 128-bit memory bus, an
eight-way superscalar out-of-order CPU, lockup-free caches, and a
small-system DRAM organization with ~10 DRAM chips.

2 RELATED WORK

Burger, Goodman, and Kagi quantified the effect on memory behav-
ior of high-performance latency-reducing or latency-tolerating tech-
niques such as lockup-free caches, out-of-order execution,
prefetching, speculative loads, etc. [5]. They concluded that to hide
memory latency, these techniques often increase demands on mem-
ory bandwidth. They classify memory stall cycles into two types:
those due to lack of available memory bandwidth, and those due
purely to latency. This is a useful classification, and we use it in our
study. This study differs from theirs in that we focus on the access
time of only the primary memory system, while their study com-
bines all memory access time, including the L1 and L2 caches. Their
study focuses on the behavior of latency-hiding techniques, while
this study focuses on the behavior of different DRAM architectures.

Several marketing studies compare the memory latency and
bandwidth available from different DRAM architectures [7, 29, 30].
This paper builds on these studies by looking at a larger assortment
of DRAM architectures, measuring DRAM impact on total applica-
tion performance, decomposing the memory access time into differ-
ent components, and measuring the hit rates in the row buffers.

Finally, there are many studies that measure system-wide perfor-
mance, including that of the primary memory system [1, 2, 9, 18, 23,
24, 33, 34]. Our results resemble theirs, in that we obtain similar fig-
ures for the fraction of time spent in the primary memory system.
However, these studies have different goals from ours, in that they
are concerned with measuring the effects on total execution time of

varying several CPU-level parameters such as issue width, cache
size & organization, number of processors, etc. This study focuses
on the performance behavior of different DRAM architectures.

3 BACKGROUND

A Random Access Memory (RAM) that uses a single transistor-
capacitor pair for each binary value (bit) is referred to as a Dynamic
Random Access Memory or DRAM. This circuit is dynamic
because leakage requires that the capacitor be periodically refreshed
for information retention. Initially, DRAMs had minimal I/O pin
counts because the manufacturing cost was dominated by the num-
ber of I/O pins in the package. Due largely to a desire to use stan-
dardized parts, the initial constraints limiting the I/O pins have had a
long-term effect on DRAM architecture: the address pins for most
DRAMs are still multiplexed, potentially limiting performance. As
the standard DRAM interface has become a performance bottleneck,
a number of “revolutionary” proposals [26] have been made. In most
cases, the revolutionary portion is the interface or access mecha-
nism, while the DRAM core remains essentially unchanged.

3.1 The Conventional DRAM

The addressing mechanism of early DRAM architectures is still uti-
lized, with minor changes, in many of the DRAMs produced today.
In this interface, shown in Figure 1, the address bus is multiplexed
between row and column components. The multiplexed address bus
uses two control signals—the row and column address strobe sig-
nals,RAS andCAS respectively—which cause the DRAM to latch
the address components. The row address causes a complete row in
the memory array to propagate down the bit lines to the sense amps.
The column address selects the appropriate data subset from the
sense amps and causes it to be driven to the output pins.

3.2 Fast Page Mode DRAM (FPM DRAM)

Fast-Page Mode DRAM implementspage mode, an improvement
on conventional DRAM in which the row-address is held constant
and data from multiple columns is read from the sense amplifiers.
The data held in the sense amps form an “open page” that can be
accessed relatively quickly. This speeds up successive accesses to

... Bit Lines ...

Memory
Array

Sense Amps/Word Drivers

R
ow

D
ec

od
er

Column Decoder

Data

rd/wr

ras
cas

address

Figure 1: Conventional DRAM block diagram. The conventional DRAM
uses a split addressing mechanism still found in most DRAMs today.

. .
 .

.

Data In/Out
Buffers

Clock &
Refresh Cktry

Column Address

Row Address

Buffer

Buffer

Figure 2: FPM Read Timing. Fast page mode allows the DRAM controller
to hold a row constant and receive multiple columns in rapid succession.

Row Access

Data Transfer Overlap

Column Access

Data Transfer

Row
Address

Column
Address

Valid
Dataout

Column
Address

Column
Address

Valid
Dataout

Valid
Dataout

RAS

CAS

Address

DQ

1063-6897/99/$10.00 (c) 1999 IEEE

2232 of 12 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

the same row of the DRAM core. Figure 2 gives the timing for FPM
reads. The labels show the categories to which the portions of time
are assigned in our simulations. Note that page mode is supported in
all the DRAM architectures in this study.

3.3 Extended Data Out DRAM (EDO DRAM)

Extended Data Out DRAM, sometimes referred to as hyper-page
mode DRAM, adds a latch between the sense-amps and the output
pins of the DRAM, shown in Figure 3. This latch holds output pin
state and permits theCAS to rapidly de-assert, allowing the memory
array to begin precharging sooner. In addition, the latch in the output
path also implies that the data on the outputs of the DRAM circuit
remain valid longer into the next clock phase. Figure 4 gives the tim-
ing for an EDO read.

3.4 Synchronous DRAM (SDRAM)

Conventional, FPM, and EDO DRAM are controlled asynchro-
nously by the processor or the memory controller; the memory
latency is thus some fractional number of CPU clock cycles. An
alternative is to make the DRAM interface synchronous such that
the DRAM latches information to and from the controller based on a
clock signal. A timing diagram is shown in Figure 5. SDRAM
devices typically have a programmable register that holds a bytes-
per-request value. SDRAM may therefore return many bytes over
several cycles per request. The advantages include the elimination of
the timing strobes and the availability of data from the DRAM each
clock cycle. The underlying architecture of the SDRAM core is the
same as in a conventional DRAM.

3.5 Enhanced Synchronous DRAM (ESDRAM)

Enhanced Synchronous DRAM is an incremental modification to
Synchronous DRAM that parallels the differences between FPM
and EDO DRAM. First, the internal timing parameters of the
ESDRAM core are faster than SDRAM. Second, SRAM row-caches
have been added at the sense-amps of each bank. These caches pro-
vide the kind of improved intra-row performance observed with
EDO DRAM, allowing requests to the last accessed row to be satis-
fied even when subsequent refreshes, precharges, or activates are
taking place.

3.6 Synchronous Link DRAM (SLDRAM)

RamLink is the IEEE standard (P1596.4) for a bus architecture for
devices. Synchronous Link (SLDRAM) is an adaptation of Ram-
Link for DRAM, and is another IEEE standard (P1596.7). Both are
adaptations of the Scalable Coherent Interface (SCI). The SLDRAM
specification is therefore an open standard allowing for use by ven-
dors without licensing fees. SLDRAM uses a packet-based split
request/response protocol. Its bus interface is designed to run at
clock speeds of 200-600 MHz and has a two-byte-wide datapath.
SLDRAM supports multiple concurrent transactions, provided all
transactions reference unique internal banks. The 64Mbit SLDRAM
devices contain 8 banks per device.

3.7 Rambus DRAMs (RDRAM)

Rambus DRAMs use a one-byte-wide multiplexed address/data bus
to connect the memory controller to the RDRAM devices. The bus
runs at 300 Mhz and transfers on both clock edges to achieve a theo-
retical peak of 600 Mbytes/s. Physically, each 64-Mbit RDRAM is

... Bit Lines...

Memory
Array

Sense Amps/Word Drivers

R
ow

D
ec

od
er

Column Decoder

Q D

Figure 3: Extended Data Out (EDO) DRAM block diagram. EDO adds a
latch on the output that allows CAS to cycle more quickly than in FPM.

. .
 .

.

Data

rd/wr

ras
cas

address

Data In/Out
Buffers

Clock &
Refresh Cktry

Column Address

Row Address

Buffer

Buffer

Figure 4: EDO Read Timing. The output latch in EDO DRAM allows more
overlap between column access and data transfer than in FPM.

Row
Address

Column
Address

Valid
Dataout

RAS

CAS

Address

DQ

Column
Address

Column
Address

Valid
Dataout

Valid
Dataout

Data Transfer

Column Access

Transfer Overlap

Row Access

Figure 5: SDRAM Read Operation Clock Diagram. SDRAM contains a
writable register for the request length, allowing high-speed column access.

CAS

Address

DQ Valid
Dataout

Valid
Dataout

Valid
Dataout

Column
Address

Row
Address

RAS

Clock Data Transfer

Column Access

Data Transfer Overlap

Row Access

Figure 6: Rambus DRAM Read Operation. Rambus DRAMs transfer on
both edges of a fast clock and can handle multiple simultaneous requests.

DQ

Command

Address Col

Dout Dout Dout

Col Col

Read
Strobe

Read
Term

ACTV/
READ

Bank/
Row

4 cycles

Data Transfer

Column Access

Transfer Overlap

Row Access

1063-6897/99/$10.00 (c) 1999 IEEE

2243 of 12 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

divided into 4 banks, each with its own row buffer, and hence up to 4
rows remain active or open1. Transactions occur on the bus using a
split request/response protocol. Because the bus is multiplexed
between address and data, only one transaction may use the bus dur-
ing any 4 clock cycle period, referred to as an octcycle. The protocol
uses packet transactions; first an address packet is driven, then the
data. Different transactions can require different numbers of octcy-
cles, depending on the transaction type, location of the data within
the device, number of devices on the channel, etc. Figure 6 gives a
timing diagram for a read transaction.

3.8 Direct Rambus (DRDRAM)

Direct Rambus DRAMs use a 400 Mhz 3-byte-wide channel (2 for
data, 1 for addresses/commands). Like the Rambus parts, Direct
Rambus parts transfer at both clock edges, implying a maximum
bandwidth of 1.6 Gbytes/s. DRDRAMs are divided into 16 banks
with 17 half-row buffers2. Each half-row buffer is shared between
adjacent banks, which implies that adjacent banks cannot be active
simultaneously. This organization has the result of increasing the
row-buffer miss rate as compared to having one open row per bank,
but it reduces the cost by reducing the die area occupied by the row

1. In this study, we model 64-Mbit Rambus parts, which have 4 banks and
4 open rows. Earlier 16-Mbit Rambus organizations had 2 banks and 2
open pages, and future 256-Mbit organizations may have even more.

2. As with the previous part, we model 64-Mbit Direct Rambus, which has
this organization. Future (256-Mbit) organizations may look different.

buffers, compared to 16 full row buffers. A critical difference
between RDRAM and DRDRAM is that because DRDRAM parti-
tions the bus into different components, three transactions can simul-
taneously utilize the different portions of the DRDRAM interface.

4 EXPERIMENTAL METHODOLOGY

For accurate timing of memory requests in a dynamically reordered
instruction stream, we integrated our code into SimpleScalar, an exe-
cution-driven simulator of an aggressive out-of-order processor [4].
We calculate the DRAM access time, much of which is overlapped
with instruction execution. To determine the degree of overlap, and
to separate out memory stalls due to bandwidth limitations vs.
latency limitations, we run two other simulations—one with perfect
primary memory (zero access time) and one with a perfect bus (as
wide as an L2 cache line). Following the methodology in [5], we
partition the total application execution time into three components:
TP TL and TB which correspond to time spent processing, time spent
stalling for memory due to latency, and time spent stalling for mem-
ory due to limited bandwidth. In this paper, time spent “processing”
includes all activity above the primary memory system, i.e. it con-
tains all processor execution time and L1 and L2 cache activity. Let
T be the total execution time for the realistic simulation; let TU be
the execution time assuming unlimited bandwidth—the results from
the simulation that models cacheline-wide buses. Then TP is the
time given by the simulation that models a perfect primary memory
system, and we calculate TL and TB: TL = TU – TP and TB = T – TU.
In addition, we consider one more component: the degree to which
the processor is able to overlap memory access time with processing

Table 1: DRAM Specifications used in simulations

DRAM
type Size Rows Columns Transfer

Width
Row
Buffer

Internal
Banks Speed Pre-

charge
Row
Access

Column
Access

Data
Transfer

FPMDRAM 64Mbit 4096 1024 16 bits 16K bits 1 – 40ns 15ns 30ns 15ns

EDODRAM 64Mbit 4096 1024 16 bits 16K bits 1 – 40ns 12ns 30ns 15ns

SDRAM 64Mbit 4096 256 16 bits 4K bits 4 100MHz 20ns 30ns 30ns 10ns

ESDRAM 64Mbit 4096 256 16 bits 4K bits 4 100MHz 20ns 20ns 20ns 10ns

SLDRAM 64Mbit 1024 128 64 bits 8K bits 8 200MHz 30ns 40ns 40ns 10ns

RDRAM 64Mbit 1024 256 64 bits 16K bits 4 300MHz 26.66ns 40ns 23.33ns 13.33ns

DRDRAM 64Mbit 512 64 128 bits 4K bits 16 400MHz 20/40ns 17.5ns 30ns 10ns

Table 2: Time components in primary memory system

Component Description

Row Access Time The time to (possibly) precharge the row buffers, present the row address, latch the
row address, and read the data from the memory array into the sense amps

Column Access Time The time to present the column address at the address pins and latch the value

Data Transfer Time The time to transfer the data from the sense amps through the column muxes to
the data-out pins

Data Transfer Time Overlap The amount of time spent performing both column access and data transfer
simultaneously (when using page mode, a column access can overlap with the
previous data transfer for the same row)

Note that, since determining the amount of overlap between column address and
data transfer can be tricky in the interleaved examples, for those cases we simply
call all time between the start of the first data transfer and the termination of the last
column access Data Transfer Time Overlap (see Figure 8).

Refresh Time Amount of time spent waiting for a refresh cycle to finish

Bus Wait Time Amount of time spent waiting to synchronize with the 100MHz memory bus

Bus Transmission Time The portion of time to transmit a request over the memory bus to & from the DRAM
system that is not overlapped with Column Access Time or Data Transfer Time

1063-6897/99/$10.00 (c) 1999 IEEE

2254 of 12 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

time. We call this overlapped component TO, and if TM is the total
time spent in the primary memory system (the time returned by our
DRAM simulator), then TO = TP – (T – TM). This is the portion of
TP that is overlapped with memory access.

4.1 DRAM Simulator Overview

The DRAM simulator models the internal state of the following
DRAM architectures: Fast Page Mode [35], Extended Data Out
[16], Synchronous [17], Enhanced Synchronous [10, 17], Synchro-
nous Link [38], Rambus [31], and Direct Rambus [32].

The timing parameters for the different DRAM architectures are
given in Table 1. Since we could not find a 64Mbit part specification
for ESDRAM, we extrapolated based on the most recent SDRAM
and ESDRAM datasheets. To measure DRAM behavior in systems
of differing performance, we varied the speed at which requests
arrive at the DRAM. We ran the L2 cache at speeds of 100ns, 10ns,
and 1ns, and for each L2 access-time we scaled the main processor’s
speed accordingly (the CPU runs at 10x the L2 cache speed).

We wanted a model of a typical workstation, so the processor is
eight-way superscalar, out-of-order, with lockup-free L1 caches. L1
caches are split 64KB/64KB, 2-way set associative, with 64-byte
linesizes. The L2 cache is unified 1MB, 4-way set associative, write-
back, and has a 128-byte linesize. The L2 cache is lockup-free but
only allows one outstanding DRAM request at a time; note this orga-

nization fails to take advantage of some of the newer DRAM parts
that can handle multiple concurrent requests. 100MHz 128-bit buses
are common for high-end machines, so this is the bus configuration
that we model. We assume that the communication overhead is only
one 10ns cycle in each direction.

The DRAM/bus configurations simulated are shown in Figure 7.
For DRAMs other than Rambus and SLDRAM, eight DRAMs are
arranged in parallel in a DIMM-like organization to obtain a 128-bit
bus. We assume that the memory controller has no overhead delay.
SLDRAM, RDRAM, and DRDRAM utilize narrower, but higher
speed busses. These DRAM architectures can be arranged in parallel
channels, but we study them here in the context of a single-width
DRAM bus, which is the simplest configuration. This yields some
latency penalties for these architectures, as our simulations require
that the controller coalesce bus packets into 128-bit chunks to be
transmitted over the 100MHz 128-bit memory bus. To put the
designs on even footing, we ignore the transmission time over the
narrow DRAM channel. Because of this organization, transfer rate
comparisons may also be deceptive, as we are transferring data from
eight conventional DRAM (FPM, EDO, SDRAM, ESDRAM) con-
currently, versus only a single device in the case of the narrow bus
architectures (SLDRAM, RDRAM, DRDRAM).

The simulator models a synchronous memory interface: the pro-
cessor’s interface to the memory controller has a clock signal. This
is typically simpler to implement and debug than a fully asynchro-
nous interface. If the processor executes at a faster clock rate than
the memory bus (as is likely), the processor may have to stall for
several cycles to synchronize with the bus before transmitting the
request. We account for the number of stall cycles inBus Wait Time.

The simulator models several different refresh organizations, as
described in Section 5. The amount of time (on average) spent stall-
ing due to a memory reference arriving during a refresh cycle is
accounted for in the time component labeledRefresh Time.

4.2 Interleaving

For the 100MHz 128-bit bus configuration, the transfer size is eight
times the request size; therefore each DRAM access is a pipelined
operation that takes advantage of page mode. For the faster DRAM
parts, this pipeline keeps the memory bus completely occupied.
However, for the slower DRAM parts (FPM and EDO), the timing
looks like that shown in Figure 8(a). While the address bus may be
fully occupied, the memory bus is not, which puts the slower
DRAMs at a disadvantage compared to the faster parts. For compar-
ison, we model the FPM and EDO parts as interleaved as well
(shown in Figure 8(b)). The degree of interleaving is that required to
occupy the memory data bus as fully as possible. This may actually
over-occupy the address bus, in which case we assume that there are
more than one address buses between the controller and the DRAM
parts. FPM DRAM specifies a 40ns CAS period and is four-way
interleaved; EDO DRAM specifies a 25ns CAS period and is two-
way interleaved. Both are interleaved at a bus-width granularity.

5 EXPERIMENTAL RESULTS

For most graphs, the performance of several DRAM organizations is
given: FPM1, FPM2, FPM3, EDO1, EDO2, SDRAM, ESDRAM,
SLDRAM, RDRAM, and DRDRAM. The first two configurations
(FPM1 and FPM2) show the difference between always keeping the
row buffer open (thereby avoiding a precharge overhead if the next
access is to the same row) and never keeping the row buffer open.
FPM1 is the pessimistic strategy of closing the row buffer after every
access and precharging immediately; FPM2 is the optimistic strat-
egy of keeping the row buffer open and delaying precharge. The dif-

D
R

AM

Figure 7: DRAM bus configurations. The DRAM/bus organizations used
in (a) the non-interleaved FPM, EDO, SDRAM, and ESDRAM simulations; (b)
the SLDRAM and Rambus simulations; and (c) the parallel-channel SLDRAM
and Rambus performance numbers in Figure 11. Due to differences in bus
design, the only bus overhead included in the simulations is that of the bus
that is common to all organizations: the 100MHz 128-bit memory bus.

(b) Configuration used for SLDRAM, RDRAM, and DRDRAM

(a) Configuration used for non-interleaved FPMDRAM, EDODRAM, SDRAM, and ESDRAM

CPU Memory
Controllerand caches

x16 DRAM

x16 DRAM

x16 DRAM

x16 DRAM

x16 DRAM

x16 DRAM

x16 DRAM

x16 DRAM

128-bit 100MHz bus

CPU Memory
Controllerand caches

128-bit 100MHz bus

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

(c) (Strawman) configuration used for parallel-channel SLDRAM & Rambus performance

CPU Memory
Controllerand caches

128-bit 100MHz bus

D
R

AM

D
R

AM

D
R

AM

D
R

AM

...

1063-6897/99/$10.00 (c) 1999 IEEE

2265 of 12 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

