
Computer-System Operation

A modern, general-purpose computer system consists of a CPU and a number of device controllers
that are connected through a common bus that provides access to shared memory (see figure below).
Each device controller is in charge of a specific type of device (for example, disk drives, audio
devices, and video displays). The CPU and the device controllers can execute concurrently (at the
same time), competing for memory cycles. To ensure orderly access to the shared memory (RAM),
a memory controller is provided whose function is to synchronize access to the memory.

A modern computer system.

For a computer to start running - for instance, when it is powered up or rebooted it needs to have an
initial program to run. This initial program, or bootstrap program, tends to be simple. It initializes
all aspects of the system, from CPU registers to device controllers to memory contents. The
bootstrap program must know how to load the operating system and to start it executing. To
accomplish this goal, the bootstrap program must locate the operating system kernel (core part of
the operating system) and load it into memory. The operating system then starts executing the first
process, such as "init", and waits for some event to occur. The occurrence of an event is usually
signaled by an interrupt (signal to the CPU requesting attention) from either the hardware or
software. Hardware may trigger an interrupt at any time by sending a signal to the CPU, usually by
way of the system bus. Software may trigger an interrupt by executing a special operation called a
system call (also called a monitor call).

There are many different types of events that may trigger an interrupt, for example, the completion
of an I/O operation, division by zero, invalid memory access, and a request for some operating
system service. For each such interrupt, a service routine is provided that is responsible for dealing
with the interrupt.

1 of 3 Petitioner Lenovo (United States) Inc. - Ex. 1017f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


When the CPU is interrupted, it stops what it is doing and immediately transfers execution to a fixed
location. The fixed location usually contains the starting address where the service routine for the
interrupt is located. The interrupt service routine executes, and upon completion, the CPU resumes
the interrupted computation. A time line of this operation is shown in the figure below.

Interrupt time line for a single process doing output.

Interrupts are an important part of a computer architecture. Each computer design has its own
interrupt mechanism, but several functions are common. The interrupt must transfer control to the
appropriate interrupt service routine. The straightforward method for handling this transfer would be
to invoke a generic routine to examine the interrupt information, and it, in turn, would call the
interrupt-specific handler. However, interrupts must be handled very quickly, and given that there
are a predefined number of possible interrupts, a table of pointers to interrupt routines may be used
instead. The interrupt routine is then called indirectly through the table, with no intermediate routine
needed. Generally, the table of pointers is stored in low memory (the first 100 or so locations).
These locations hold the addresses of the interrupt service routines for the various devices. This
array, or interrupt vector, of addresses is then indexed by a unique device number, given with the
interrupt request, to provide the address of the interrupt service routine for the interrupting device.
Operating systems as different as MS-DOS and UNIX dispatch interrupts in this manner.

The interrupt architecture must also save the address of the interrupted instruction. Many old
designs simply stored the interrupt address in a fixed location or in a location indexed by the device
number. More recent architectures store the return address on the system stack. If the interrupt
routine needs to modify the processor state, for instance, by modifying register values, it must
explicitly save the current state and then restore it before returning. After the interrupt is serviced,
the saved return address is loaded into the program counter, and the interrupted computation will
resume as though the interrupt had not occurred.

Usually, interrupts are disabled while an interrupt is being processed, delaying any incoming
interrupts until the operating system is done with the current one, after which interrupts are enabled.
If they were not thus disabled, the processing of the second interrupt while the first was being
serviced would overwrite the first's data, and the first would be a lost interrupt. Sophisticated
interrupt architectures allow for one interrupt to be processed during another. They often use a
priority scheme in which request types are assigned priorities according to their relative importance,

2 of 3 f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


and interrupt processing information is stored separately for each priority. A higher-priority interrupt
will be taken even if a lower-priority interrupt is active, but interrupts at the same or lower levels are
masked, or selectively disabled, to prevent lost interrupts or unnecessary ones.

Modern operating systems are interrupt driven. If there are no processes to execute, no I/O devices
to service, and no users to whom to respond, an operating system will sit quietly, waiting for
something to happen. Events are almost always signaled by the occurrence of an interrupt, or a trap.
A trap (or an exception) is a software-generated interrupt caused either by an error (for example,
division by zero or invalid memory access), or by a specific request from a user program that an
operating-system service be performed.

The interrupt-driven nature of an operating system defines that system's general structure. When an
interrupt (or trap) occurs, the hardware transfers control to the operating system. First, the operating
system preserves the state of the CPU by storing registers and the program counter. Then, it
determines which type of interrupt has occurred. This determination may require polling, the
querying of all I/O devices to detect which requested service, or it may be a natural result of a
vectored interrupt system. For each type of interrupt, separate segments of code in the operating
system determine what action should be taken.

Last Updated Jul.28/99

3 of 3 f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/

